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An Agent-Based Computational Model of COVID-19 Vaccine Hesitancy 

Kavya Y. Hiryur, MPH 

University of Pittsburgh, 2021 

 

Abstract 

 Vaccine hesitancy plays a huge role in the trajectory of the COVID-19 pandemic and the 

time it takes to reach herd immunity. A number of factors, including demographic and geographic 

characteristics, affect an individual’s likelihood to accept a vaccine. An agent-based model can be 

applied to simulate interactions and behavior change over time. In this study, the Health Belief 

Model, Transtheoretical Model, Dube Conceptual Model of Vaccine Hesitancy, and the WHO 

SAGE Vaccine Continuum were used as a foundation to build a conceptual model representing 

COVID-19 vaccine hesitancy. After collecting relevant data, the FRED agent-based modeling 

platform was used to simulate outcomes from 12/20/2020 to 3/20/2021 in Jefferson County, 

Pennsylvania (population of 45,000). Each agent’s initial vaccine propensity score, on a continuum 

between 0.0 and 1.0, assigned them susceptibility and transmissibility values for the competing 

behavior contagions “acceptance” (closer to 1.0) and “refusal” (closer to 0.0). Based on 

interactions with other agents, their susceptibility and transmissibility values were modified, to 

eventually impact the probability they would take the vaccine at the end of each modeled week. In 

Jefferson County, centering on a propensity score of 0.5, initial population vaccine propensity 

scores had the largest peaks between 0.30-0.34 and 0.59-0.63. About 15,000 agents took the 

vaccine after the first week, with ~53% of the population taking the vaccine by the end of the 

simulation. However, with greater incentive to vaccinate and propensity scores centered on 0.6, 

>20,000 agents took the vaccine after the first week, with approximately 65% taking the vaccine 
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by simulation end. Contrastingly, with lesser incentive to vaccinate and propensity scores centered 

on 0.3, <5,000 agents took the vaccine after the first week, with about 14% taking the vaccine by 

simulation end. This model examined the complex dynamics of linked infectious and behavioral 

contagions. Results revealed how various factors play a role in vaccine hesitancy, and how agents 

can influence the behavior of other agents they come into contact with. The public health 

significance of this study is that the model allows stakeholders and policymakers to understand 

and evaluate the best methods to combat vaccine hesitancy in the population.  
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1.0 Introduction 

After reviewing the literature on COVID-19, vaccines and related vaccine hesitancy, and 

models of behavior change as foundation, a conceptual model and realistic computational 

simulation of COVID-19 vaccine hesitancy was built using the agent-based modeling approach 

with FRED. Measurable parameters were identified and relevant data were collected to simulate 

outcomes over a three-month time period in a population of 45,000 (Jefferson County, PA).  

The goal of this model is to help explain two concurrent epidemic processes: the infectious 

disease contagion of SARS-CoV-2 and the behavioral contagion of vaccine acceptance and refusal. 

This version 1.0 was created as a basis in understanding the complex dynamics of linked infectious 

and behavioral contagions. Future directions include engrafting this code onto a larger simulation 

engine of the epidemic. 

1.1 Current State of the COVID-19 Pandemic 

Coronavirus disease 19 (COVID-19), caused by the virus SARS-CoV-2, first emerged in 

Wuhan, China in late 2019 and has since spread around the globe; the World Health Organization 

declared the outbreak a pandemic on March 11, 20201,2. Infected individuals present with a variety 

of symptoms and severity, from fever and cough to chest pain and shortness of breath; further, a 

significant proportion of infected people are completely asymptomatic, leading to difficulties with 

diagnosis and containment3,4.  

At the time of writing, the United States is the leading country in terms of both cases (>26.6 

million) and deaths (>450,000)5, with disproportionate effects on the black population (mortality 

rate two times higher than non-Hispanic whites), older adults (mortality rate of >80 years of age 

is five times the average), and people with underlying/comorbid conditions (12 times more likely 
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to die of COVID-19 than those without)6. Keeping this in mind, equitable vaccine distribution is 

essential to protect the diverse members of the United States population. 

1.2 Vaccines Overview and COVID-19 

 The race to develop safe and effective COVID-19 vaccines became a pressing concern and 

worldwide mission. The goal of any vaccine is to build immunity against a particular disease by 

creating a defense system of antibodies and T-lymphocytes; if one were to be exposed, their 

immune system has the ability to fight the germs and protect the individual from acquiring the 

disease7. Specific to the relentless COVID-19 pandemic, vaccines are essential in protecting the 

population in terms of reaching herd immunity quickly and restoring pre-pandemic normalcy8. 

However, the vaccine development process is not simple, with an extensive duration and 

expensive cost. To shorten development time from the multiple year standard, developers overlap 

phases during an outbreak, allowing clinical and manufacturing development to occur 

concurrently9. During that time, companies consider the vaccine platform technology (DNA, 

RNA) and attributes (single dose/multiple doses, speed, scale) through stages of clinical trials and 

overall validation9. This allows for preparation at multiple levels, so that the vaccine can be 

distributed swiftly after trial completion. This new pandemic paradigm was developed for the 

COVID-19 pandemic and can be used in future outbreaks9. 

 There are 176 COVID-19 vaccine candidates in pre-clinical development and 66 

candidates in clinical development at the time of writing10. The three candidates in Phase 3 and 

approved for use in the United States are RNA based vaccines developed by 1) Moderna + National 

Institute of Allergy and Infectious Diseases (NIAID), breaking the record for reaching trials after 

only 69 days from virus identification, 2) Pfizer/BioNTech + Fosun Pharma, and 3) Janssen 

Pharmaceuticals Companies of Johnson and Johnson’s (J&J) viral vector vaccine10–12. Vaccine 
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efficacy, or the difference in infection risk between vaccinated and unvaccinated individuals, is 

FDA recommended as having a primary or secondary endpoint of laboratory-confirmed COVID-

19 or SARS-CoV-2 infection and one or more of these symptoms: fever or chills, cough, shortness 

of breath/difficulty breathing, fatigue, muscle or body aches, headache, new loss of taste or smell, 

sore throat, congestion or runny nose, nausea or vomiting, or diarrhea13,14. 

Moderna’s vaccine is a two shot, intramuscular injection given 4 weeks apart10. After a 

randomized, double-blind trial with 30,420 participants aged 18 and older assigned to either the 

vaccine or the placebo, Moderna vaccine efficacy was determined as 94.1%15. Pfizer’s vaccine is 

a two-shot, intramuscular injection given 3 weeks apart10. After a randomized, double-blind trial 

with 43,548 participants aged 16 and older assigned to either the vaccine or placebo, Pfizer vaccine 

efficacy was determined as 95%16. J&J’s vaccine is a one-shot, intramuscular injection; after a 

trial with 40,000 participants aged 18 and older, J&J’s vaccine efficacy was determined as 

66.3%12. 

1.3 Factors Related to Vaccine Hesitancy and COVID-19 

 Even with the high efficacy rates of these three frontrunners, vaccine hesitancy is important 

when considering uptake; in 2019, the World Health Organization (WHO) declared vaccine 

hesitancy as a top threat to global health17. The WHO SAGE Working Group of Vaccine Hesitancy 

defines vaccine hesitancy as “delay in acceptance or refusal of vaccination despite availability of 

vaccination services. Vaccine hesitancy is complex and context specific, which means it varies 

across time, place, and specific vaccines for specific diseases. It is influenced by factors such as 

complacency, convenience and confidence”18.   

 There are many causes of vaccine hesitancy, especially in recent generations because of 

unfamiliarity with formerly prevalent contagious diseases, that include: fear of adverse reactions 
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and lack of trust in institutions, governments, and pharmaceutical-industrial corporations19. Taking 

one example with pertussis, at the individual level, a case control study found that vaccine 

exemptors had 22.8 times risk of infection compared with vaccinated individuals; at the 

community level, 42% of pertussis and measles exemptors and 11% of vaccinated individuals were 

infected due to lack of immunization20. Therefore, it is important to consider not only the  

individual, but the broader community system when considering interventions to promote 

acceptance19. Furthermore, historical events, such as the ethical repercussions of the Tuskegee 

syphilis study specifically impacting the black population, also affects a group’s confidence in new 

treatments21. The Tuskegee study’s goal was to chart the natural history of syphilis in black males; 

however, when penicillin, the standard treatment for syphilis, became available, it was not given 

to the 600 men in both study arms22. When evaluating real-world policies and rollout strategies in 

communities, knowing these population differences and historical perspectives is vital. 

 Specific to COVID-19, a study conducted in May 2020 showed significant demographic 

and geographic disparities affecting vaccine hesitancy23. This study highlights that across the U.S., 

there is a greater risk for COVID-19 infection and death for both low-income and communities of 

color, so it is vital to tackle any vaccine hesitancy that impacts uptake23. There were also 

differences in vaccine acceptance by gender (male—72%, female—63%, other—50%) and age 

(18-24—59% to 55+—78%). Another study conducted in June 2020 among 804 U.S. adults 

(English speaking, compensated), with a design meant to reflect the U.S. population, showed 

similar results, with “multicultural/other race” being least likely to get a vaccine (43.9%), males 

having a greater likelihood to get a vaccine than females (71.9% to 53.8%), and decreasing 

likelihood to get a vaccine with decreasing age (18-24—52.5% to 55-64—42.0% to 65+—74.5%) 

and decreasing household income (<$40,000—54.3% to $120,000+—73.3%)24.  
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 With the phased distribution of vaccines in the United States and healthcare workers 

(HCWs) being in the first phase, it is important to note the acceptance rate in physicians, nurses, 

and other frontline staff and their influence on patients25. One study conducted at a single allopathic 

medical school in Southeast Michigan found that although >98% of medical students said that it 

was important to develop a COVID-19 vaccine, 23% were still hesitant to take it immediately after 

FDA approval26. While limitations of this study included a response rate of 34% at a single school, 

it is still has value to consider these numbers when looking at the impact of HCWs on general 

public vaccine acceptance26. Vaccine acceptance among HCWs can also be investigated further 

by race; in a Web-based survey with 3366 HCWs to look at relationships between race/ethnicity 

and influenza vaccine uptake, where the study non-Hispanic Black HCW population was 

proportional to the United States’, they found uptake to be 13% lower for non-Hispanic Blacks 

than White HCWs27. This further highlights the complexity of tackling HCW vaccine acceptance. 

 Further, the COVID-19 pandemic occurred at a time where a lot of attention was on 

political figures, including National Institute of Allergy and Infectious Diseases director Dr. 

Anthony Fauci and President Donald Trump. With politics playing an increased role in vaccine 

acceptance, one survey’s sample trends show the highest vaccine uptake and confidence for those 

who stand by Fauci stating “the vaccine is safe and effective,” and the lowest vaccine uptake and 

confidence for those who stand by Fauci  stating he is “not convinced the vaccine is safe and 

effective”28. In a different nationwide survey conducted in June 2020, political party identity was 

a significant predictor of likelihood to get vaccines, with Republican at 62.6%, Democrat at 73.2%, 

and Independent at 63.0%24. This study also found statistically significant differences by party for 

acceptance of vaccine conspiracies (p-value 0.006) and COVID-19 threat appraisal (p-value 

0.003). This highlights the correlation of political background with vaccine hesitancy. 
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 Aside from HCWs and political leaders influencing those who are considering a vaccine, 

social media is another huge force in spreading important health information, especially through 

governmental organizations as the CDC and NIH. However, as social media involves real-time, 

accessible, reciprocal exchange of ideas, misinformation is also disseminated; this happened 

during the 2014 Ebola outbreak, the Zika epidemic, as well as the current COVID-19 pandemic29. 

In a cross-national study looking at the relationship between social media organizations and beliefs 

about vaccine safety, there was a strong relationship between the percentage of the population that 

thinks vaccines are unsafe and how often the organization posts on social media (regularly, often, 

sometimes, rarely, or never)17. Another study, that had a population of predominantly women from 

Kansas, found that they used internet news websites and Facebook most often to obtain 

information during the COVID-19 pandemic30. 

1.4 Health Belief, Transtheoretical, and other Vaccine Acceptance Models 

Models of behavioral change can be used to incorporate concepts of vaccine hesitancy 

(acceptance to refusal) to outline an individual’s path to taking a certain action. 

Health Belief Model 

 The Health Belief Model (HBM), originating in the 1950s-60s by the work of trained social 

psychologists, was centered on the idea of daily activities consisting of positive and negative 

forces31. As shown in Figure 1, characteristics of the model include an individual considering their 

susceptibility to the disease, the severity of the disease, and the tradeoffs of benefits and barriers 

to taking an action. It also considers modifying factors, such as demographic, sociopsychological, 

and structural variables, as well as cues to action, such as mass media campaigns and advice from 

others31. 
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The HBM model has been used to evaluate behavior/action and interventions across a 

variety of diseases. One specific example includes breast cancer screening, where women consider 

their susceptibility and severity to disease, the subtraction of the barriers from the benefits, as well 

as receiving a cue to action to push them to follow mammography recommendations32. This 

analysis further recognized differences among races, in terms of beliefs of root cause of disease, 

perceived benefits from early detection, and modesty and fear, leading to varied response to the 

mammography intervention32.  

The HBM is a valuable tool to consider potential action at the individual level. Thinking 

about COVID-19, individuals lean towards taking appropriate actions when their perceived threat 

is large, meaning they consider the disease as a serious problem and one they could potentially 

encounter, they evaluate benefits (such as spending time at home or taking a vaccine) as valuable, 

and can mitigate barriers (such as housing/food expenses and minor vaccine side effects) to avoid 

putting themselves in undesirable environments33. 

 

Figure 1. Adapted Health Belief Model31 
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Transtheoretical Model 

 The Transtheoretical Model (TTM), first introduced by Prochaska and DiClemente in 1982 

and shown in Figure 2, is a behavior change model focused on an ordered set of five to six stages: 

precontemplation, contemplation, preparation, action, and maintenance, with some including 

termination34,35.  

 One intervention that has been used multiple times with the TTM includes smoking 

cessation. A study published in July 2020 describes quantifying states in the TTM with a 

population of 436 subjects (46 in the healthcare professional advice experimental group and 390 

in the control group) in a quasi-experimental untreated control design study36. They looked at the 

probabilities of transitioning from stage to stage, and found the advice from healthcare 

professionals was significant especially in the contemplation (stage 2) to preparation (stage 3) 

transition36. This study adds value to the TTM, as it sets up the framework of multiple stages for 

behavior change. 

 Specific to COVID-19, there have not been many applications of the TTM to evaluate 

behaviors or interventions as of yet. One study conducted in Kosovo describes using TTM in the 

context of a questionnaire to evaluate the extent of community pharmacists’ potential behavior 

changes with COVID-19 safeguards and education interventions37. TTM applications for COVID-

19 could surround the deliberation of reopening parts of the economy or with vaccine acceptance 

behavior, and mapping individuals to stages over time.  

 

Figure 2. Adapted Transtheoretical Model35 
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Dube Conceptual Model of Vaccine Hesitancy 

Eve Dube and her group in Canada developed a conceptual model of vaccine hesitancy in 

2013, as shown in Figure 3. This model was based off a workshop in Canada where experts in a 

multitude of fields discussed four large domains that play a role in hesitancy: (1) historic, political 

and socio-cultural context, (2) public health and vaccination policies, (3) communication and 

media, and (4) health professionals’ recommendations38.  

A factor that is unique to this model is the emphasis on trust, with arrows leading from the 

central hesitancy box to the surrounding domains. There is a clear relationship between risk 

perception and trust when it comes to vaccination ideas and the influence of health professionals 

and government/public health institutions38. Therefore, it is important to build trust, or a proxy of 

trust, into any vaccine hesitancy model. 

 

Figure 3. Adapted Dube Conceptual Model of Vaccine Hesitancy38 
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WHO SAGE Vaccine Hesitancy Continuum 

In October 2014, the WHO released the “Report of the SAGE Working Group on Vaccine 

Hesitancy,” which included Figure 4 to explain the spectrum of vaccine hesitancy, between “accept 

all” and high demand, and “refuse all” and low demand39. This continuum outlining behavior is a 

valuable aid to visualize where individuals fall on the scale, without being too narrow (as with the 

term “vaccine confidence” which offers predominantly binary choices)39. 

This report clearly states that while vaccine uptake could be low due to system failures, 

such as low vaccine stock or transportation issues, those situations are not included for the purpose 

of this model39. The authors built this model to show vaccine hesitancy and uptake in situations 

where the vaccine is readily accessible and available, and individuals have the opportunity to 

choose whether they accept or refuse39. This model could directly apply to COVID-19 vaccine 

hesitancy and uptake in the United States, where members of the population are hesitant to accept 

even with adequate supply. 

 

Figure 4. Adapted WHO SAGE Vaccine Hesitancy Continuum39 
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1.5 Agent-Based Modeling 

 One way we can use these vaccine acceptance behavioral change models as a conceptual 

framework in a tractable, quantifiable simulation is with agent-based models (ABMs). ABMs are 

used to show interactions between microentities, or “agents,” in a system over distinct periods of 

time to model macrosystem responses40. Each agent can represent an actual human in a geographic 

location, with a personal age, sex, race, etc. indicated; their daily behavior can be modified by both 

other agents they interact with and the surrounding environment40. One can even build randomness 

into the model by setting up probabilities that an agent has certain behavioral characteristics or 

what combination of factors lead an agent to make a decision40,41. Major strengths of ABMs are 

their flexibility, ability to show dynamic changes, and incorporation of feedback loops41. 

 ABMs have traditionally been used for tracking the spread of infectious diseases. Many 

models are built upon the “SEIR” framework, where agents transition between states of 

susceptible, exposed, infectious, and recovered42. One study looked at pertussis infections in a 

simulated community of 13,876 agents, based on extrapolated Utah data from the 2000 Census42. 

Setting contact rate parameters for households, classrooms, and day cares, they were able to 

differentiate various symptom states, severity, and duration of disease by the agent’s immunity 

SEIR state42. This highlights the importance of applying ABMs to infectious diseases, as the 

modeler can tweak parameters of contact rates, transmission, and susceptibility to propose various 

scenarios and points of action to researchers and policy makers. 

 Additionally, ABMs can be used to study non-infectious diseases, such as behavior. For 

example, one study that did this successfully considered the relationship between diet quality and 

location/household incomes to determine if pricing and preference factors could counter effects of 

segregation41. After building a conceptual diagram, laying out the agent properties, determining 
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household vs. store behavior, and creating an equation for utility score, they were able to obtain 

the main outcome, or average proportion of times each household visited a healthier food store41.  

We can further extend studying behavior with ABMs to an understudied, but incredibly 

valuable, application of ABMs that includes the transmission of behavior among agents in a 

population. Social contagions are behaviors transmitted by individuals to other individuals they 

interact with43. One study, looking at crisis management and prevention with fire incidents, tested 

the hypothesis that when the social contagion of emotions and beliefs are activated, people will 

evacuate faster44. Using an agent-based evacuation model, they found average evacuation time did 

in fact decrease with recognizing the social contagion44. This study is just one example of the 

variety of projects that can be studied centering on social contagions and ABMs. 

1.6 FRED 

 Epistemix, Inc.’s Framework for Reconstructing Epidemiological Dynamics (FRED) is a 

powerful agent-based modeling platform that can be used to study infectious and non-infectious 

disease transmission. FRED includes a prebuilt synthetic population, from RTI International, that 

uses the US Census Public Use Microdata Sample household and person tables to assign agents to 

households in that match the census tracts population data45. Demographic characteristics as age, 

sex, and race are associated with each agent45. FRED is able to track agents in a simulation over 

time, with individual privacy protected, because while the overall population reflects the census, 

each agent does not actually uniquely match up to a real person46.  

 In FRED, one can specify a number of factors, including location (city, county, state) and 

time-frame of the model47. To start modeling, it is important to build conditions, that manifest the 

purpose of the study, and states that the agent will traverse through47. Within each state, the agent 
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will (1) complete any actions that are described, (2) wait a defined amount of time, and (3) 

transition to the next state based on the code outlined47.  

FRED has been utilized for many published studies. One study modeled measles outbreaks 

in children living in Texas, looking specifically at the relationship between vaccination rates 

(reduced by 1% to 10%) and outbreak size48. Another study looked at access to primary care 

services and emergency preparedness, with various scenarios modeled, such as increased provider 

capacity and swifter mobile health clinic setups49. FRED is currently being employed extensively 

with the COVID-19 pandemic. One case study in Allegheny County, Pennsylvania considered 

teachers and students infected, and resulting hospitalized cases in each group, when physical 

attendance was reduced in schools by 50% under high, medium, and low community conditions50. 

This allowed school and district leadership to consider different circumstances in setting up plans 

that will best benefit their community for the school year. As with this example, Epistemix, Inc. 

harnesses its modeling capacity to empower leaders in school districts, healthcare, government, 

and enterprise to make decisions46.  

1.7 Gaps in the Literature 

 As the COVID-19 pandemic is currently ongoing, we are still collecting information on 

vaccine effectiveness and side effects post Phase 3 clinical trials, so we do not know how that will 

influence vaccine hesitancy. There is a lot of missing/incomplete information on vaccine 

acceptance by race, which makes it difficult to determine true uptake differences by race. Further, 

while there is information on number of vaccines administered, data is not available on vaccines 

distributed, or number of available doses, for all counties in the United States over time. 
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1.8 Public Health Significance 

 COVID-19 is a novel, rampant disease in our population, which has infected and killed 

many individuals. While it is a major accomplishment to have three approved vaccines in the 

United States, vaccine hesitancy proves to be an issue in uptake and reaching herd immunity. By 

using the FRED agent-based modeling platform to consider factors that play a role in initial 

COVID-19 vaccine hesitancy, and assessing agent interactions influencing behavior to accept or 

refuse a vaccine over time, it will be useful tool in evaluating the current state of the pandemic. 

These results could further inform policymakers and researchers on groups to target with education 

and intervention initiatives to increase overall vaccine acceptance. 
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2.0 Objectives 

 The objectives of this study were to (1) develop an agent-based conceptual model rooted 

in the behavioral psychology literature for COVID-19 vaccine hesitancy and (2) to develop a 

computational representation of COVID-19 vaccine hesitancy. We hypothesize that behavior, 

specifically vaccine hesitancy, can be modeled as a social contagion, just like an infectious disease. 

We expect that demographic factors, including age, sex, and race, as well as HBM factors of 

perceived susceptibility, perceived seriousness, perceived benefits of action, and perceived barriers 

of action put agents at a starting point on the WHO vaccine hesitancy continuum (between accept 

all, accept some/delay/refuse some, and refuse all). In addition, we believe there are competing 

behavior contagions in society: agents who pull others to “acceptance” and agents who pull others 

toward “refusal”. Where an agent falls on the continuum likely influences their transmissibility of 

“acceptance” or “refusal” behavioral contagions, and therefore their susceptibility to the 

competing contagion. Building an ABM can represent these features. 
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3.0 Methods 

3.1 Conceptual Model 

 After reviewing the well-known behavior change models, a vaccine hesitancy conceptual 

model was generated from aspects of the HBM, TTM, the Dube Conceptual Model of Vaccine 

Hesitancy, and the WHO Vaccine Hesitancy Continuum. As we wanted the framework to be firmly 

rooted in existing theory, each of these models were necessary to build the tractable agent-based 

framework; the TTM accounted for progression from state to state, the HBM model allowed for 

incorporation of quantitative factors, the Dube Conceptual Model of Vaccine Hesitancy included 

trust, and the WHO Vaccine Hesitancy Continuum set up a framework for recognizing vaccine 

hesitancy behavior as transmissible between agents. 

3.2 Data Sources 

Each component of the vaccine hesitancy conceptual model needed to have a numerical 

representation in FRED (Table 1). Selection of these four data files was somewhat arbitrary, as it 

was challenging to find data that matched components of the behavior change models mentioned 

above. CSV files were built with four columns—the date, the Unix day, the value under study, and 

that value normalized—and imported into the FRED model. The normalized value, between 0.0 

and 1.0, was calculated by (1) obtaining the week with the greatest value under study and (2) 

dividing each week’s value by that number, to generate a column of values ranging from 0 and 1. 

Table 1. Data Sources to Inform the Hesitancy Model 

Component Source Value Under Study Additional Information 

Perceived 

Susceptibility 

USA Facts51 • New cases in county by 

week over time 

• Factor of geographic 

location 

*Needs new CSV file 

for each new county 

under study 
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Perceived 

Seriousness 

CDC COVID 

Data Tracker52 
• New deaths in U.S. by 

week over time 

 

Perceived 

Benefits 

FiveThirtyEight
53,54 

• Presidential approval 

rating by week over 

time (since vaccine 

introduction), 

transitioning from 

President Trump to 

President Biden 

• “YouGov” pollster 

chosen, as it had the 

highest 538 grade (a B 

on an A-F scale), the 

mean-reverted bias 

closest to 0, and the 

most polls analyzed 

where there was still 

weekly adjusted 

approval data 

Perceived 

Barriers 

The New York 

Times55 
• Doses administered in 

the U.S. by week over 

time 

• Represent the vaccine 

supply 

 

For trust, which we are representing in the model with demographic modifier data (age, 

sex, and race), we used the Pew Research Center’s November ’20 survey results of “% of U.S. 

adults who say they would definitely/probably get a vaccine for COVID-19 if one were available 

today” (Table 2)56. Risk ratios were calculated by taking the demographic percentage willingness 

to accept over the population percentage willingness to accept, which was at 60% when the survey 

was performed.  

Table 2. Percentage of Adults Definitely/Probably Get a Vaccine for COVID-19, Nov 2020 

Demographic Variable Group Willi-

ngness to Take 

Vaccine (%) 

Overall Willi-

ngness to Take 

Vaccine (%) 

Risk Ratio 

(Group/Overall 

Willingness) 

Age, years 

     18-29 55 60 55/60 = 0.917 

     30-49 53 60 53/60 = 0.883 

     50-64 60 60 60/60 = 1.000 

     65+ 75 60 75/60 = 1.250 

Sex 

     Male 67 60 67/60 = 1.116 

    Female 54 60 54/60 = 0.900 

Race 

     White 61 60 61/60 = 1.017 

     Black 42 60 42/60 = 0.700 

     Asian 83 60 83/60 = 1.383 
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3.3 Variables 

 A number of personal variables are associated with each agent as drawn from the data 

sources mentioned above.  

The trust (demographic) personal variable is the result of multiplying the risk ratios of age, 

sex, and race, and dividing by the largest combination value to normalize between 0 and 1. For 

example, the intermediate calculation for the trust personal variable for a 20-year-old, white female 

would be 0.917 * 0.900 * 1.017 = 0.839. However, to normalize between 0 and 1, we have to 

consider the largest trust variable value (1.929, intermediate calculation for Asian male, 65+). 

Therefore, the final trust variable value for the 20-year-old, white female would be 0.839/1.929 = 

0.435 and for a 65+, Asian male would be 1.929/1.929 = 1.0. The options for the demographic 

variables in my model are the same as in Table 2, with one additional option for race, which is 

“other” (calculated by averaging the three races shown). This normalized, personal variable does 

not change through the simulation. 

Susceptibility and seriousness personal variables are pulled from the CSV files at the 

beginning of each week (Sunday, 12am). The personal variable representing perceived threat is 

the result of multiplying the three personal variables of susceptibility, seriousness, and trust. 

 Perceived benefits and perceived barriers personal variables are extracted from the CSV 

files at the beginning of each week (Sunday, 12am). We similarly set the personal variable 

representing perceived empowerment as the multiplication of perceived benefits and perceived 

barriers. Finally, we multiplied perceived threat and perceived empowerment together to create 

one encompassing personal variable: vaccine propensity. This value is an agent’s starting point on 

the vaccine hesitancy continuum for the week, and ranges from 0.0 to 1.0. Vaccine propensities 
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closer to 1.0 designate greater acceptance and vaccine propensities closer to 0.0 designate greater 

refusal.  

 Vaccine propensities are “centered” on 0.5, meaning that half the agents have a propensity 

that is above 0.5 and half have a propensity that is below 0.5. However, we can also model 

scenarios where we center on a different value than 0.5. If there is greater incentive to vaccinate 

in the population (centering on a value > 0.5), more agents are susceptible and transmitting the 

“acceptance” contagion, leading to higher probabilities of accepting the vaccine. Contrastingly, if 

there is overall poor reception to the vaccine in the population (centering on a value < 0.5), more 

agents are susceptible and transmitting the “refuse” contagion, leading the lower probabilities of 

accepting the vaccine. 

3.4 Vaccine Hesitancy as Transmittable Behavior 

 Agents are broadly tracked as being in one of four states, as outlined by the TTM—

precontemplation, contemplation, preparation, or action. The purpose of the precontemplation and 

contemplation conditions is to set a number of personal variables for agents, as mentioned above, 

that designates their starting vaccine propensity value (between 0.0 and 1.0) on the hesitancy 

continuum.  

When an agent reaches preparation, behavior is transmittable, and we are actually juggling 

two competing behavior contagions—that of “acceptance” and of “refusal.” For both of these 

contagion conditions, there is an exposed state, the transmission mode is proximity, and the 

original transmissibility and susceptibility values (which are equal and between 0.0 and 1.0) are 

functions of an agent’s vaccine propensity.  

Personal variables keep track of the number of “acceptance transmissions” and “refusal 

transmissions.” After three transmissions of a condition, an agent’s original susceptibility and 
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transmissibility can be modified up or down the continuum by calculating the susceptibility 

modifier value: 

Susceptibility Modifier = 
# Acceptance Exposures

# Acceptance Exposures + # Refusal Exposures
*2  

Note that the modeler can adjust the number of transmissions before calculating 

susceptibility modification to simulate a slower or quicker behavior change in society (up or down 

from three). 

The susceptibility modifier is multiplied by an agent’s previous susceptibility and 

transmissibility to update the value. Once the “acceptance” susceptibility and transmissibility 

values are calculated, the reciprocal “refusal” values are calculated by subtracting those values 

from 1. “Acceptance” susceptibility is always equal to “acceptance” transmissibility; likewise, 

“refusal” susceptibility is always equal to “refusal” transmissibility. At this point, the personal 

variable for “take vaccine probability” is set equal to the “acceptance” 

susceptibility/transmissibility (greater values = greater probability of taking vaccine). Agents 

repeat this process after every transmission event of “acceptance” or “refusal.”  

Then, after each week (on Sunday at 12am), the “take vaccine probability” personal 

variable determines the probability that an agent will move to take the vaccine. Again, greater 

scores equal leaning towards acceptance, and a greater probability to take the vaccine. If an agent 

decides to take the vaccine, they are not susceptible to either of the “acceptance” or “refusal” 

conditions and not transmissible for the “refusal” condition. They can still transmit the 

“acceptance” condition. They stay in this condition for the rest of the simulation. Table 3 outlines 

two sample agents, where Agent 1 would take the vaccine at the end of the week and Agent 2 

would not. At least three accept or refuse exposures are needed for the susceptibility modifier value 

to change. “Acceptance” and “refusal” susceptibility/transmissibility is capped at 1.0. 
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Table 3. Example Calculations with Sample Agents 

Agent Day Starting 

Vaccine 

Propen-

sity 

# of 

Accept 

E * 

# of 

Refuse 

E * 

Suscepti-

bility 

Modifier 

Value 

Accep-

tance 

S/T * 

Refusal

S/T * 

Take 

Vaccine 

Probability 

1 

Sun 0.6 0 0 N/A 0.6 0.4 0.6 

Mon  1 0 N/A 0.6 0.4 0.6 

Tue  1 1 N/A 0.6 0.4 0.6 

Wed  3 1 1.5 0.9 0.1 0.9 

Thurs  5 1 1.7 1.5 = 

1.0 

0.0 1.0 

Fri  8 2 1.6 1.0 0.0 1.0 

Sat  12 2 1.7 1.0 0.0 1.0 
         

2 

Sun 0.2 0 0 N/A 0.2 0.8 0.2 

Mon  0 1 N/A 0.2 0.8 0.2 

Tue  0 1 N/A 0.2 0.8 0.2 

Wed  0 2 N/A 0.2 0.8 0.2 

Thurs  0 5 2.0 0.0 1.6 = 

1.0 

0.0 

Fri  0 8 2.0 0.0 1.0 0.0 

Sat  0 12 2.0 0.0 1.0 0.0 

 

* E = Exposures, S = Susceptibility, T = Transmissibility 

 

 

If an agent does not take the vaccine, that agent will be sent back to Precontemplation, or 

the beginning of the model, to update their perceived susceptibility, seriousness, benefits, and 

barriers, as per the CSV files with varying weekly values over time. This process is repeated 

through the end of the simulation. However, their “accept transmissions” and “refuse 

transmissions” counters are not reset, so this allows for building of hesitancy behavior until an 

agent decides to take the vaccine or the simulation concludes. 

While we could just focus on transmission in one direction, human behavior is 

representative of agents on either end of the spectrum transmitting “acceptance” (pro-vaccine) and 

“refusal” (anti-vaccine) conditions. Agents on the far ends of the spectrum (“acceptance” at 1.0 

and “refusal” at 0.0) have a high transmissibility of their condition and a reciprocal low 
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susceptibility to the competing condition, compared to agents in the middle that are equally 

susceptible to both conditions and less likely to transmit.  

For example, if Agent 1 is 90% susceptible and transmittable to the “acceptance” condition, 

they are only 10% susceptible and transmittable to the “refusal” condition. If they come into 

contact with Agent 2, who has a 30% susceptibility and transmissibility of “acceptance,” then the 

probability of an “acceptance” transmission event is 0.9 * 0.3 * contact rate = 0.27 * contact rate, 

which is not very probable. The probability of a “refuse” transmission is also low, (1-0.9) * (1-

0.3) * contact rate = 0.07 * contact rate. However, if Agent 1 comes into contact with Agent 3, 

who has an 80% susceptibility and transmissibility of “acceptance,” the probability of an 

“acceptance” transmission event is 0.9 * 0.8 * contact rate = 0.72 * contact rate, which is decently 

probable. 

This notion of continuous bidirectional behavior contagions of “acceptance” and “refusal” 

is shown in Figure 5. This simple network has nodes as agents and arrows representing 

transmission links. It is important to note that while this figure only has four nodes/agents, the 

modeled, county-level populations can have networks of tens of thousands to millions of agents. 

 

Figure 5. Vaccine Propensity and Transmission in a Small Network  
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4.0 Results 

4.1 Conceptual Diagram 

 Figure 6 shows the final conceptual diagram used in FRED. The overarching states of “Pre-

Contemplation,” “Contemplation,” “Preparation,” and “Action” are taken from the TTM, and are 

meant to track an agent through the model. The yellow boxes “Perceived Threat” and “Perceived 

Empowerment” are from the HBM, and the factors below (Perceived Susceptibility, Perceived 

Seriousness, Perceived Benefits of Action, and Perceived Barriers to Action) are quantitatively 

represented through numerical data.  

 

Figure 6. COVID-19 Vaccine Hesitancy FRED ABM Conceptual Diagram 

 

4.2 Computational Representation with Jefferson County 

 Using the FRED Platform, a simulation was run from December 20, 2020, right after the 

Moderna vaccine was first approved, until March 20, 2021 in Jefferson County, Pennsylvania 

(Figure 7). While this model can be used for any county in the United States, Jefferson County 

was selected because it includes the borough Punxsutawney, which is well-known for its 
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Groundhog Day event, which gathers many people and media attention; additionally, it is a smaller 

county of approximately 45,000 people, which allows for faster model run times for debugging 

and testing various variables57. 

 

Figure 7. Jefferson County on the Map of Pennsylvania58 

 

Table 4 outlines the trust (demographic) variables of age, sex, and race in the population. 

The majority of the population is white, while the age and sex breakdowns are more evenly 

distributed.  
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Table 4. Jefferson County Agent Breakdown (N = 45318) 

Variables n (%) 

Age, years 

     18-29 15765 (34.8) 

     30-49 11709 (25.8) 

     50-64 9499 (21.0) 

     65+ 8345 (18.4) 

Sex 

     Male 22122 (48.8) 

     Female 23196 (51.2) 

Race 

     White 43965 (97.0) 

     Black 140 (0.31) 

     Asian 62 (0.14) 

     Other 1151 (2.54) 
 

Figure 8 shows an example with starting vaccine propensities, that incorporates these 

demographic variables into the continuum with the first week of study; the two largest peaks are 

in vaccine propensity ranges of 0.30-0.34 and 0.59-0.63.  

 

Figure 8. Starting Continuum Vaccine Propensity Centered on 0.5, 12/20/2020-12/26/2020 
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Figure 9 outlines the new people who would take the vaccine at the end of every week, 

which shows decreasing values over time, and Figure 10 shows the total percentage of people who 

take the vaccine in the population over time, which rises to about 0.53. 

 

Figure 9. New Agents That Take Vaccine by Week, Centered on 0.5 

 

 

Figure 10. Percentage of the Population that Takes Vaccine Over Time, Centered on 0.5 

 

We also modeled scenarios where vaccine propensities were not centered on 0.5. I chose 

to center on 0.3 and 0.6, because that is where the peaks are with the initial vaccine propensity. 
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While the number of new agents that take a vaccine centering on 0.6 is over 20,000, it is just under 

3,500 when centering on 0.3 (Figure 11).  

Centered on 0.6 Centered on 0.3 
 

 

 

 

 

 

Figure 11. Vaccine Propensity Centering Variations—New Agent Vaccinations/Week 

 

Centering on 0.6, the percentage of agent vaccinations/total agents is greater and reaches 

its peak (approximately 65%) at the end of January. Centering on 0.3, the percentage of agent 

vaccinations/total agents is around 12% at the end of January, and close to 14% at the end of the 

simulation (Figure 12). 

Centered on 0.6 Centered on 0.3 

  
 

 

Figure 12. Vaccine Propensity Centering Variations—Percentage of Agent Vaccinations/Week 
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Figure 13 shows the “take vaccine probability” for 20 agents over the first three weeks of 

the simulation. As shown, agents have different original vaccine propensities between 0.0 and 1.0. 

Dependent on the agents they interact with through the simulation, each agent’s “take vaccine 

probability” can be modified up, down, or stay the same over time. 

 

Figure 13. Individual Agent Vaccine Acceptance Scores, 12/20/2020-1/10/2020 
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5.0 Discussion 

As hypothesized, vaccine hesitancy behavior can be modeled as a social contagion with 

the “acceptance” and “refusal” conditions. I built both a conceptual model and computational 

model using the ABM platform, FRED, on the basis of the HBM, TTM, Dube Conceptual Model 

of Vaccine Hesitancy, and WHO SAGE Vaccine Hesitancy Continuum. Considering factors of 

perceived susceptibility, perceived seriousness, perceived benefits of action, perceived barriers, 

and trust (demographic) factors, an agent’s starting propensity on the vaccine hesitancy continuum 

is set and plays a role in its susceptibility to and transmissibility of reciprocal behavior contagions. 

Agents move up or down the continuum with each behavioral transmission event, until they accept 

the vaccine or the simulation ends. This simulation was run on Jefferson County, Pennsylvania, 

but can be run on any county to help understand the complexity of competing contagions. 

It is important to understand the distribution of the population by age, sex, and race, as that 

sets the starting probability that an agent will take a vaccine. The most important factors that 

influence the curves and peaks of the graphs include the value that the vaccine propensity scores 

are normalized on and the count of transmission events an agent needs before their susceptibility 

and transmissibility are modified. For example, only ~14% of the population end up taking the 

vaccine if the vaccine propensity is centered on 0.3, compared to ~65% for 0.6. Additionally, if an 

agent interacts with three other agents of the same behavior contagion in a short period of time, 

the extreme continuum scores of 0 and 1 for susceptibility and transmissibility are reached very 

quickly (the agent is strongly accepting or refusing, and has low susceptibility to the reciprocal 

condition). 

Limitations of this work include selection of proxies and racial diversity of the county 

selected. My goal was to use the behavior change models as a conceptual framework for the agent-
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based model. Since the HBM includes perceived benefits and barriers, we selected presidential 

approval rating per week and number of doses administered per week, as there were data available. 

However, if we could find a better proxy for benefits, or if data were available for doses available 

to each county by week, instead of doses administered, that would have been included in the model 

for perceived barriers. Further, we did a majority of tests on Jefferson County, where there is not 

a lot of racial diversity (97.0% white, 0.309% black, 0.137% Asian, and 2.54% other). It might be 

interesting to look at transmission in a more diverse county. 

Strengths of this work include utilizing well-known behavior change models as the HBM 

and TTM, as well as the WHO Vaccine Hesitancy model, as a foundation to an ABM model 

considering the transmission of behavior. Further, we are exploring factors that contribute to 

vaccine hesitancy with COVID-19, which has caused a global pandemic, with vaccines that are 

under emergency use authorization; this is a topical subject where there is not a lot of background 

information and previous studies completed. 

One recommendation for future research includes combining this model with that of the 

vaccine eligibility by phase and availability at point of distribution (POD) models. This would 

truly elucidate agent eligibility and who wants to take the vaccine over time. Another 

recommendation includes testing a different equation for the susceptibility modifier. The current 

equation leads to rapid growth in either the “acceptance” or “refusal” direction when there are 3 

or more transmission events of either condition. A different equation that allows for moderate 

growth, but still considers the effects of accumulating accept and refuse transmission events, might 

be preferable. Finally, it would be nice to add political party as one of the trust (demographic) 

modifiers, as it has been shown to be a strong predictor of vaccine hesitancy during the COVID-

19 pandemic. 



 

31 

 

The results of this model are important because they reveal how various factors play a role 

in vaccine hesitancy, and how agents can influence the behavior of other agents they come into 

contact with in the simulation. The idea of competing behavior contagions and vaccine hesitancy 

is novel.  

This model has public health significance to aid stakeholders and policymaker efforts to 

tackle vaccine hesitancy in the population. It is incredibly powerful to represent and visualize 

entire populations in ABM simulations that are close to reality. By testing and developing policies 

in silico, the best policies can be evaluated and launched in practice. 
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Appendix Code 

main.fred 

  

VaccineConfidence.fred 
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Precontemplation.fred 
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Contemplation.fred 
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