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Abstract 

Healthcare-associated bacterial pathogens frequently carry plasmids that contribute to 

antibiotic resistance and virulence. The horizontal transfer of plasmids between pathogens within 

hospitals has been previously documented, but the epidemiology and clinical burden of 

nosocomial plasmid transfer remains poorly understood. Our primary objective was to 

systematically resolve plasmids from whole-genome sequences of nosocomial bacterial isolates, 

using thresholds of sequence similarity that were indicative of horizontal transfer. Our secondary 

objective was to identify potential routes and assess the clinical burden of horizontal plasmid 

transfer.  

Whole-genome sequencing was performed on 3,074 nosocomial bacterial isolates from 

2,322 hospitalizations of 1,960 patients, using the Illumina platform. Seventy-eight strains were 

also sequenced by long-read Oxford Nanopore technology, and hybrid genome assemblies were 

generated using Unicycler. Plasmids were resolved from Illumina-sequenced genomes by 

alignment using BLASTn. Single nucleotide polymorphisms (SNPs) were identified using 

Snippy. De-identified patient data associated with bacterial isolates – including length of hospital 

stay and Charlson comorbidity index – were collected using Theradoc. 

Ninety-five percent of analyzed strains maintained at least 95% of the sequence content 

of reference plasmids, with SNPs occurring at rates of fewer than 1 per 5000bp of reference 
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plasmid sequence. Using these thresholds, we identified 41 plasmid lineages that were 

potentially horizontally transferred among non-clonal bacterial strains. Of these lineages, 28 

(68.2%) were significantly associated with at least one medical procedure, room, or hospital 

ward. Hospitalizations involving the 41 plasmid lineages were significantly longer (+3 days; 

95% CI +1 to +4; p < 0.001) than hospitalizations not involving those plasmids. Patients infected 

with strains carrying transferred plasmids had significantly greater overall comorbidity (Charlson 

comorbidity index +1, 95% CI +1 to +2; p < 0.0001) than patients whose infections did not 

involve plasmids in lineages.  

Our findings show that the horizontal transfer of plasmids among bacterial isolates 

causing nosocomial infections is frequent, and that this phenomenon may impose an 

unappreciated clinical burden by exacerbating infections by isolates carrying these plasmids. 

Future directions will include more detailed analyses of comorbidity and mortality, as well as 

sequencing of additional samples to confirm or refute hypothesized routes of plasmid transfer. 
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1.0 Introduction 

1.1 The clinical burden of healthcare-associated bacterial infections 

Infections acquired in hospitals and other healthcare settings impose a serious public 

health burden every year, both in the United States and worldwide. The Centers for Disease 

Control and Prevention (CDC) estimates that the point prevalence of these nosocomial infections 

among hospitalized patients in the United States is greater than three percent (1). A 2015 report 

on the nationwide incidence and prevalence of healthcare-associated infections (HAIs) reported 

approximately 687,000 infections in American acute care hospitals, as well as 72,000 deaths of 

patients diagnosed with HAIs while admitted (1). Bacterial pathogens caused more than 90% of 

these infections, the most common of which were Clostridioides difficile, Staphylococcus 

aureus, Escherichia coli, Enterococcus spp., Enterobacter spp., Pseudomonas aeruginosa, and 

Klebsiella spp. (1). The direct healthcare costs imposed by HAIs in the United States have been 

estimated in the tens of billions of dollars every year (2), as these infections increase the lengths 

of hospital stays of infected patients and force the consumption of numerous additional 

medications, personal protective equipment, and clinical care (2, 3). 

While the most recent iteration of the National and State HAI Progress Report showed 

significant declines in rates of many types of HAIs (4), nosocomial bacterial pathogens remain 

an enormous burden on American healthcare infrastructure. Additional resources and innovative 

strategies are needed to reduce both the rate and the severity of these infections, especially as 

hospital epidemiologists and infectious disease specialists are increasingly occupied with cases 

and outbreaks of COVID-19 (5).  

 

 

https://www.zotero.org/google-docs/?7ICbNm
https://www.zotero.org/google-docs/?xc7Nvk
https://www.zotero.org/google-docs/?6ooXtq
https://www.zotero.org/google-docs/?ZFG4pl
https://www.zotero.org/google-docs/?GsH2dO
https://www.zotero.org/google-docs/?KoEdkO
https://www.zotero.org/google-docs/?o7oE6d
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1.2 Antibiotic resistance, mobile genetic elements, and plasmids 

 The growing global threat of antibiotic resistance is a major contributor to the public 

health burden imposed by healthcare-associated infections (HAIs). The 2019 CDC report on 

antibiotic resistance in the United States estimated that antibiotic-resistant microbial organisms 

cause approximately 2.8 million infections and nearly 35,000 deaths every year (6). Hundreds of 

thousands of these infections occur among hospitalized patients, including more than 320,000 

infections by methicillin-resistant Staphylococcus aureus (MRSA) and 200,000 infections by 

bacterial species of the family Enterobacteriaceae that can produce extended-spectrum beta-

lactamases (ESBLs) (7). HAIs caused by antibiotic-resistant bacterial pathogens complicate 

patients’ regimens of care (8), worsen their prognoses (9), dramatically increase their risk of 

death (8), and substantially increase costs of medical care (2). These effects are particularly 

profound among infections by multidrug-resistant (MDR) bacterial pathogens, including strains 

that express ESBLs, carbapenemases, and/or multiple resistance genes (10).   

Many genes that confer resistance to antibiotics are carried on mobile genetic elements 

(MGEs) – sequences of DNA that can move within and between different organisms’ genomes 

independently of the reproduction of those organisms (11) (Figure 1). There are numerous types 

of MGEs – including plasmids, transposons, genomic islands, prophages, and integrons – that 

each have characteristic structures and mechanisms of movement within and between genomes 

(11). The four major mechanisms by which MGEs mobilize within or between bacterial genomes 

are (a) transformation, the direct uptake of DNA from the environment, (b) transduction, the 

addition and removal of DNA by prophages embedded in bacterial genomes that are expressed to 

form lytic bacteriophages, (c) conjugation, the direct shuttling of plasmids between bacterial 

cells temporarily conjoined by pili, and (d) vesiduction, whereby MGEs are packaged into 

https://www.zotero.org/google-docs/?CL3jTg
https://www.zotero.org/google-docs/?T2Ag82
https://www.zotero.org/google-docs/?AkDTJ5
https://www.zotero.org/google-docs/?6PN0rr
https://www.zotero.org/google-docs/?nOmYDA
https://www.zotero.org/google-docs/?xiUfFH
https://www.zotero.org/google-docs/?AyYqtp
https://www.zotero.org/google-docs/?clFdRK
https://www.zotero.org/google-docs/?pLYazm
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extracellular vesicles that fuse with plasma membranes of other bacterial cells (12). The 

movement of these MGEs is known as horizontal gene transfer (HGT) (Figure 1). In bacteria, 

many MGEs are composed partly or entirely of smaller MGEs that can be added to, rearranged 

in, or removed from larger MGEs within which they are held (12). In this regard, MGEs can be 

likened to Russian nesting dolls that can be rearranged and reshuffled within and between one 

another (13) (Figure 2). 

 

 

Figure 1: Major mechanisms of horizontal gene transfer in bacteria. 

Plasmids can be exchanged directly between bacterial cells by conjugation (A), obtained by 

bacterial cells from the extracellular environment by transformation (C), or packaged and 

shuttled in extracellular vesicles by vesiduction (D). Figure originally presented in Liu et al, 

2020 (14). 

https://www.zotero.org/google-docs/?mN9toV
https://www.zotero.org/google-docs/?ClmA2G
https://www.zotero.org/google-docs/?4hm9b8
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Figure 2: Russian nesting doll-like structures of mobile genetic elements (MGEs) in 

bacteria. 

Plasmids can carry numerous smaller MGEs that themselves can carry smaller MGEs. Gene 

cargo for these nested MGEs frequently includes genes encoding antibiotic resistance, 

environmental persistence, and virulence. Figure created by and shared with the permission of 

Hayley Nordstrom of the Van Tyne Lab, University of Pittsburgh School of Medicine. 

 

MGEs are key players in the spread of antibiotic resistance because HGT can spread 

beneficial evolutionary traits among bacterial populations much more quickly than classical 

Darwinian mutation and selection upon those populations (15, 16). With the added selective 

pressure of the application of enormous quantities of antibiotics both in hospitals, outpatient 

settings, and agriculture in recent decades (17), the rapid distribution of antibiotic resistance 

genes on MGEs has become increasingly advantageous for bacteria exposed to these drugs (15). 

Additionally, some larger MGEs have acquired genes that can confer resistance to other 

antimicrobial compounds – including metal cations like copper, arsenic, and silver – as well as 

metabolic operons and genes that improve the formation of biofilms (18). As a result, MGEs that 

encode antibiotic resistance can spread through and be maintained in bacterial populations that 

https://www.zotero.org/google-docs/?TASdza
https://www.zotero.org/google-docs/?jTRkOL
https://www.zotero.org/google-docs/?dx4u5d
https://www.zotero.org/google-docs/?Me9dwm
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are not frequently subjected to the selective pressure of antibiotics, as other genes present in 

those MGEs can provide beneficial adaptations to the bacterial hosts that carry them (17). 

Additionally, many of the open reading frames encoded on plasmids and transposons have not 

been fully characterized (19), indicating that these larger MGEs may confer numerous other 

functions that the scientific community does not yet fully understand. 

 With recent advances in the field of functional genomics of horizontal gene transfer, 

some MGEs have become notorious for carrying resistance determinants for different antibiotics 

(20). In their 3’ conserved domains, class 1 integrons all carry the qac∆E1 quaternary 

ammonium compound resistance gene and the sul1 sulfonamide resistance genes (21). Class 2 

integrons are highly variable, but typically encode the aminoglycoside resistance gene aadA1 

(21). The Tn4401 transposon is a highly conserved structure known for carrying the blaKPC-2 

carbapenemase gene (22). The ISEcp1 insertion sequence has been predominantly linked to the 

spread of blaCTX-M beta-lactamases (20, 23). Perhaps the most high-profile recently established 

link between a resistance gene and an MGE was the discovery of the polymyxin resistance gene 

mcr-1 on a plasmid carried by an Escherichia coli strain from China (24). This discovery was 

particularly worrisome to the field, because it confirmed that the spread of resistance to this so-

called “last-resort” antibiotic could spread between bacterial strains by HGT (25). 

 Of the numerous types of MGEs found in nature, plasmids are perhaps the most 

worrisome to the field as vectors of multidrug resistance (MDR) in healthcare settings. This is 

because plasmids – circularized extrachromosomal DNA that do not require integration into the 

bacterial chromosome to be functional (26) – can serve as a backbone structure upon which 

numerous smaller MGEs encoding antibiotic resistance genes can be scaffolded and horizontally 

transferred together (12). The presence of MGEs among bacterial strains in healthcare settings 

https://www.zotero.org/google-docs/?Y4D4XT
https://www.zotero.org/google-docs/?zz0o1g
https://www.zotero.org/google-docs/?UljXeX
https://www.zotero.org/google-docs/?prEmCG
https://www.zotero.org/google-docs/?nuP8DU
https://www.zotero.org/google-docs/?ar0ABX
https://www.zotero.org/google-docs/?QnbKIY
https://www.zotero.org/google-docs/?wwuLvJ
https://www.zotero.org/google-docs/?yAONgi
https://www.zotero.org/google-docs/?ZeqRMN
https://www.zotero.org/google-docs/?eAc9sz
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not only increases rates of MDR, extensive drug resistance to numerous antibiotics (XDR), and 

occasionally pan-drug resistance to all available antibiotics (PDR) in nosocomial pathogens, but 

also facilitates the more rapid transfer of smaller MGEs between different plasmids and bacterial 

chromosomes (9, 11, 12, 15, 26). While some plasmid-borne resistance genotypes tend to 

localize geographically (27), other resistance-encoding plasmids have spread rapidly to 

healthcare settings across the world (28). This pandemic spread of MDR plasmids has greatly 

contributed to recent increases in cases of and deaths from ESBL-producing Enterobacteriaceae, 

CRE, and other resistant bacterial pathogens (29). Because of their enormous impact on HAIs, 

studying, tracking, and controlling the horizontal transfer of plasmids has increased in priority in 

the field over the past several years (30). 

 

1.3 The rapidly evolving field of microbial genomic epidemiology in healthcare settings 

Preventing and controlling the spread of healthcare-associated bacterial pathogens has 

become more innovative and effective in recent years (31–33). Much of this success can be 

attributed to advances in biotechnology that improved the accuracy and reliability of 

characterizing nosocomial bacterial strains (31). Wholly reliant barely a generation ago (and still 

somewhat reliant) on verifying the existence of outbreaks by techniques like pulsed-field gel 

electrophoresis (PFGE), biochemical typing, and DNA hybridization (34), the field has greatly 

benefited from recent advances in modern genomics (32, 35). The development of multi-locus 

sequence typing (MLST) in the late 1990s has allowed clinical microbiologists to differentiate 

subtypes of numerous bacterial species based on polymorphisms in the DNA sequences of a 

handful of housekeeping genes (36). MLST effectively balanced the precision of comparing and 

contrasting genetic polymorphisms between different strains with the cost and complexity of 

https://www.zotero.org/google-docs/?kUwOPP
https://www.zotero.org/google-docs/?wOEoVD
https://www.zotero.org/google-docs/?1rIuEj
https://www.zotero.org/google-docs/?BhPpAM
https://www.zotero.org/google-docs/?i0sgGv
https://www.zotero.org/google-docs/?xbtsEf
https://www.zotero.org/google-docs/?k54D0D
https://www.zotero.org/google-docs/?R8QWhB
https://www.zotero.org/google-docs/?0Yk2b2
https://www.zotero.org/google-docs/?OJGVTh
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sequencing technology at the time, and it has continued to be used to efficiently group bacterial 

strains in the modern genomics era (37, 38). The development and improvement of next-

generation sequencing technologies – particularly Illumina’s platform of “sequencing by 

synthesis” – then drove the rapid expansion of whole-genome sequencing (WGS) of bacterial 

genomes (35, 39, 40). The more recent development of so-called third-generation sequencing – 

namely Pacific Biosciences’ single-molecule real-time (SMRT) (41) and Oxford Nanopore 

Technologies’ nanopore sequencing platforms (42) – has strengthened the accessibility and 

extended the capabilities of WGS even further (35, 43, 44) (Figure 3). This technology allows for 

sequencing of long fragments or even complete molecules of DNA, without deliberately 

fragmenting them into very short sequences during library preparation. 

 

Figure 3: Short-read Illumina and long-read Oxford Nanopore genome sequencing 

technologies.  

Illumina sequencing (A, left) applies the principle of “sequencing by synthesis” to 

simultaneously detect the presence of nucleotides on numerous short sequences of DNA in a 

prepared library. Oxford Nanopore sequencing (B, right) involves the detection of changes in 

electrical currents caused by nucleotides passing through nanopore structures embedded within a 

A B 

https://www.zotero.org/google-docs/?BnIXOE
https://www.zotero.org/google-docs/?SAs545
https://www.zotero.org/google-docs/?KC5yll
https://www.zotero.org/google-docs/?Eijrjv
https://www.zotero.org/google-docs/?DkDMdQ
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synthetic membrane. Illumina figure originally presented by Illumina, Inc., San Diego CA (45). 

Oxford Nanopore figure from the Database Center for Life Sciences (DCLS), presented under 

the CC by 4.0 Creative Commons license. 

 

The major advantage of WGS over prior techniques is that it permits high-resolution 

comparisons of single nucleotide polymorphisms (SNPs) in bacterial strains across their entire 

genomes (40). This makes WGS more accurate and high-resolution in the differentiation of 

strains than PFGE, which uses restriction digestion to generate banding patterns of DNA that is 

not sequenced and therefore not fully characterized (34, 40). It also makes WGS much more 

comprehensive and discriminatory than traditional MLST, as comparing thousands of bacterial 

gene sequences from WGS yields enough resolution to identify relationships within a single 

sequence type (40, 46). While not all hospitals have the capacity to perform WGS on-site, its 

utility, accuracy, and cost-effectiveness in identifying and controlling outbreaks have been 

repeatedly demonstrated in recent years (47–50).  

The rapid expansion of WGS in clinical microbiology has created a new specialty within 

the diverse field of infection prevention – microbial genomic epidemiology. As its name implies, 

microbial genomic epidemiology (henceforth referred to as “genomic epidemiology”) combines 

analyses of whole-genome sequences of bacterial isolates  collected with reviews of geographic, 

chronological, and/or healthcare-related data linked to those patients to better understand how 

bacterial pathogens spread between patients or in the environment (32, 35, 50–52). The high 

specificity of clustering isolates confirmed by WGS to be identical or closely related has allowed 

genomic epidemiologists to track single bacterial clones throughout numerous locations in single 

healthcare settings (50, 52). It has also confirmed the global dissemination of emerging microbial 

pathogens and drug resistance genes (24, 28, 53). Furthermore, retrospective analyses of 

nosocomial WGS data have helped genomic epidemiologists identify bacterial outbreaks in 

https://www.zotero.org/google-docs/?IoeR8v
https://www.zotero.org/google-docs/?v4pCkT
https://www.zotero.org/google-docs/?gcClfy
https://www.zotero.org/google-docs/?kce62H
https://www.zotero.org/google-docs/?bYE2CA
https://www.zotero.org/google-docs/?amTSul
https://www.zotero.org/google-docs/?yUMsDT
https://www.zotero.org/google-docs/?aEjUNy
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hospitals that had been previously undetected by more conventional infection prevention 

techniques (50, 54). Thanks to improvements in sequencing methods and equipment, as well as 

the development of new programs that simplify the analysis of WGS data (55, 56), the field of 

genomic epidemiology continues to expand and become more accessible worldwide. 

One consequence of the rapid growth of genomic epidemiology is that it has produced 

enormous quantities of data that describe the contents of bacterial genomes. Identifying and 

tracking outbreaks of bacterial strains requires only the comparison of genomic data to one 

another, not necessarily the detailed characterization of the gene content of those strains (57–59). 

As a result, the work of genomic epidemiologists across the world has created veritable gold 

mines of raw data for microbiologists, computational biologists, and bioinformaticians to study. 

These data have helped the field better understand the functional genomics of virulence and 

metabolism in bacterial pathogens (60, 61), the distributions and functions of genes that encode 

resistance to antibiotics, antiseptics, and environmental stressors (20, 62, 63), and the structures 

and functions of numerous types of mobile genetic elements (MGEs) (20–23). Additionally, 

much of the WGS data that their studies have generated are linked to epidemiologic data on 

patient care, locations, and other factors (40, 50, 57). As a result, the field has paved the way for 

clinical microbiologists and infectious disease physicians to understand how genomic features 

influence diseases, environmental persistence, and transmission of bacterial pathogens, as well as 

horizontal gene transfer (35, 62, 64). In fact, the entirety of the study on horizontal gene transfer 

that is described in this document is based on supplementary analyses of bacterial WGS data that 

were generated as part of a cutting-edge genomic epidemiology study on the transmission of 

bacterial pathogens (57, 59). 

 

  

https://www.zotero.org/google-docs/?9qR3uv
https://www.zotero.org/google-docs/?sShU95
https://www.zotero.org/google-docs/?dgzd9B
https://www.zotero.org/google-docs/?clSLcL
https://www.zotero.org/google-docs/?fBcXO7
https://www.zotero.org/google-docs/?GNrD1H
https://www.zotero.org/google-docs/?WA7uUQ
https://www.zotero.org/google-docs/?6bmXwn
https://www.zotero.org/google-docs/?nwZUlv
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1.4 Recent discoveries in the genomic epidemiology of plasmids 

As discussed previously, plasmids contribute substantially to the antibiotic resistance, 

environmental persistence, and virulence of healthcare-associated bacterial pathogens (30, 40). 

Because of this, they have gained considerable attention from genomic epidemiologists and 

microbiologists in recent years. Improvements in sequencing technology have exponentially 

increased the ease of characterizing plasmids carried by bacterial strains (43, 65). As a result, 

tens of thousands of complete plasmid sequences are freely available for scientists all over the 

world to study (66). Furthermore, the increased application of WGS in healthcare settings has 

identified multidrug resistance plasmids that engage in horizontal transfer within the bacterial 

populations of those facilities (27, 43, 44). The combined availability of global plasmid 

characterization and increased WGS in localized hospitals has opened a subfield of microbial 

genomics dedicated to the epidemiology of plasmids (32, 35). 

Plasmids present in hospital microflora have been shown to engage in two phenomena 

that impact patient care: mediating outbreaks of bacterial strains by conferring fitness advantages 

to them, and engaging in horizontal transfer among bacterial strains that are not clonally related 

to one another. A plasmid-mediated outbreak can occur when a bacterial strain present in a 

hospital acquires a plasmid whose gene cargo gives that bacterial strain distinct fitness 

advantages (e.g. resistance, environmental persistence, metabolic advantages, etc.) over other 

strains (26, 47, 67). The strain, in turn, is more likely to survive in the microbicide-rich hospital 

and/or to cause severe infections in patients, thereby increasing the probability that an outbreak 

of that strain will occur (26, 30). In addition to their involvement in these strain-specific 

outbreaks, plasmids can transfer to bacterial strains that are not clonal derivatives of their host 

strains by conjugation, transformation, or vesicle-mediated transfer (11, 30). These events of 

https://www.zotero.org/google-docs/?c7uCXx
https://www.zotero.org/google-docs/?ZOZGQd
https://www.zotero.org/google-docs/?ygL4Ma
https://www.zotero.org/google-docs/?RkZzqs
https://www.zotero.org/google-docs/?YNLKkW
https://www.zotero.org/google-docs/?24Z4Hf
https://www.zotero.org/google-docs/?gDBsI7
https://www.zotero.org/google-docs/?4CgTi0
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HGT have been demonstrated both between bacterial strains of the same sequence type, as well 

as strains of different sequence types, species, and even genera (51, 59). These “secondary 

transmission networks” – to use one phrase of several that have been coined to describe this 

phenomenon – allow plasmids to move to new bacterial strains, some of which may end up 

causing nosocomial infections (68, 69). Importantly, these networks are very difficult to identify 

rapidly enough to intervene against horizontal transfer (70), and prior research has shown that 

they can continue undetected after outbreaks of bacterial strains that carry them are controlled 

(47). This is because conventional diagnostic techniques in clinical microbiology do not detect 

the presence or absence of plasmids within a strain (43, 70), and because the infection prevention 

infrastructure of healthcare settings seldom accommodate the detailed genomic analysis that is 

needed to resolve highly similar plasmids in co-circulating bacterial strains (32). The major focus 

of the study described in this document is on these secondary transmission networks of the 

horizontal transfer of plasmids in hospital settings. 

When the genomic infrastructure to study plasmid-mediated outbreaks and secondary 

transmission networks has been available, genomic epidemiologists have made several key 

discoveries that have advanced the field. First, plasmids co-circulate with one another among 

nosocomial pathogens in transmission networks that cross the boundaries of bacterial outbreaks. 

Studies focused on individual species and sequence types (51), multiple species within the 

Enterobacteriaceae family (64), and multiple species of different families and orders have all 

successfully identified and followed the evolution of plasmids that are conserved within, 

introduced into, and lost from their bacterial populations of interest (43). Second, plasmids found 

in hospital environments can have highly conserved structures, highly dynamic structures, or 

both. Studies that contributed to this finding included Sheppard et al, which demonstrated that 

https://www.zotero.org/google-docs/?kugMOe
https://www.zotero.org/google-docs/?sCTBD7
https://www.zotero.org/google-docs/?m6Qc3v
https://www.zotero.org/google-docs/?PtUET4
https://www.zotero.org/google-docs/?To82Qd
https://www.zotero.org/google-docs/?XI7uxm
https://www.zotero.org/google-docs/?DRjD9j
https://www.zotero.org/google-docs/?CKDYPT
https://www.zotero.org/google-docs/?1jtT11
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nosocomial plasmids served as highly plastic platforms for the recombination of transposons that 

encoded blaKPC-family carbapenemase genes (13), as well as David et al, which showed some 

beta-lactamase genes mobilized on highly conserved plasmids and others on numerous diverse 

plasmid backbones (12). Third, even with modern WGS techniques, establishing clear 

epidemiologic links for the HGT of plasmids has been inconsistent. Some prior studies have 

identified clear links between patients treated both in the same and in multiple healthcare 

facilities found to have carried the same plasmids (44, 67, 68, 71), whereas others were unable to 

establish links between larger numbers of patients infected by strains that carried the same 

plasmids (27). Other studies have identified possible locations where HGT of plasmids may take 

place in environmental reservoirs within the hospital – e.g. sinks, surfaces, and plumbing 

systems (72–74). Taken together, these findings demonstrate that while studying plasmids with 

contemporary techniques in genomics have revealed new insight into the wide range of their 

dynamics and contributions to antibiotic resistance, the epidemiologic factors that contribute to 

horizontal transfer in hospital settings remain poorly understood.  

 

1.5 Key gaps in the field of the genomic epidemiology of plasmids in healthcare settings 

The incomplete understanding of the epidemiology of plasmid transfer in hospital 

settings can be attributed to several gaps in the focuses and methodologies of recent studies. One 

of the most significant shortcomings is that most recent studies have focused either on plasmids 

found within sets of strains that were sequenced for outbreak investigations of bacterial 

transmission, or on plasmids that encoded resistance to specific classes of antibiotics. Far less 

attention has been paid to secondary plasmid transmission from more comprehensive, unbiased 

surveys of greater populations of nosocomial pathogens. As a result, the field of view from 

https://www.zotero.org/google-docs/?co1OET
https://www.zotero.org/google-docs/?RC7u0O
https://www.zotero.org/google-docs/?hCR8dU
https://www.zotero.org/google-docs/?flUvxR
https://www.zotero.org/google-docs/?HXJ18k
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which we have tried to understand the behavior of plasmids in clinical settings is severely 

limited. Greater understanding of their dynamics requires plasmid-focused analyses that are not 

biased by bacterial host species or resistance phenotype. 

While the broader field is rich with discoveries linking plasmids to one another by high 

genetic similarity (43, 44, 65, 68, 72, 74), there remain no uniformly adopted standards by which 

they can be considered similar enough to be epidemiologically linked within a hospital 

environment. This starkly contrasts with the study of bacterial pathogens in clinical settings, 

where numerous studies have proposed or validated thresholds of genome identity to infer 

transmission (75–77). Because of this non-uniformity in the field, genomic inferences of 

potential plasmid transfer cannot be established with the same degree of confidence as can be 

made about the transmission of bacterial strains. Studies that move towards establishing such 

standards for plasmid epidemiology would therefore greatly advance the field. 

More recent studies of greater numbers of strains from single hospital systems have 

begun to capture the influence of plasmid transfer on populations of different bacterial strains 

and species (51, 58), but the potential routes and risk factors of plasmid transfer that may be 

inferred from those studies’ datasets remain largely unexplored. Additionally, while the field has 

identified both loose links between patients infected by strains that carry the same plasmids and 

potential sites or mechanisms by which horizontal transfer occurs in general (27, 44, 59, 78, 79), 

there have been few reports that simultaneously connected the genomics of plasmids and the 

precise routes by which they likely horizontally transferred (59). The result of this gap has been 

much speculation about potential routes of transfer within the hospital environment based on few 

confirmed or probable events with clear genomic and epidemiologic evidence. More studies that 

https://www.zotero.org/google-docs/?fiszv0
https://www.zotero.org/google-docs/?V4PeE4
https://www.zotero.org/google-docs/?MAb9Gm
https://www.zotero.org/google-docs/?EqOVA0
https://www.zotero.org/google-docs/?fdrKN8
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provide these reliable connections are key to developing effective public health interventions 

against nosocomial plasmid transfer in hospitals. 

 

1.6 Previous findings and purpose of the current study 

 Our recent work in the field grew out of our efforts to perform systematic surveys of 

mobile genetic elements (MGEs) within a single hospital setting. The goal of this prior work was 

to improve our understanding of the distribution and horizontal transfer of MGEs within a 

hospital, using methods that minimized our bias towards or against particular species or classes 

of antibiotic resistance (59). Using a large dataset of bacterial whole-genome sequences collected 

from healthcare-associated clinical isolates, we identified several plasmids that appeared to be  

maintained with high sequence preservation in populations of nosocomial bacterial pathogens. 

Some of these plasmids were present in strains of multiple sequence types, species, or genera. 

Additionally, we identified two events of likely horizontal transfer of plasmids between strains of 

different genera that had co-infected two individual patients. We also inferred the likely transfer 

of one of these plasmids to a third patient with a clear epidemiologic link (Figure 4). The results 

of this study indicated that applying the same unbiased approach specifically focused on 

plasmids (as opposed to MGEs of all types) may yield greater insight into how, when, and where 

HGT occurs within a hospital setting. To accomplish this, we acknowledged our need for more 

systematic methods both to resolve plasmids from our genomic data and to establish clear links 

between the patients infected with the isolates that carried those plasmids. 

  

https://www.zotero.org/google-docs/?Li0mZH
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Figure 4: Cross-genus horizontal plasmid transfer among epidemiologically linked 

hospitalized patients.  

(A, left) By performing hybrid assembly of both short-read Illumina and long-read Oxford 

Nanopore genome sequencing data, we resolved three nearly identical plasmids from clinical 

isolates that infected two patients. We concluded that two bacterial strains had likely exchanged 

a plasmid during co-infection of patient A, and then following an unknown intermediate step of 

bacterial transmission, the plasmid was horizontally transferred into a third strain that caused an 

infection in Patient B. Image originally presented in Evans et al, eLife 2020 (59). (B, right) 

Schematic of a hospital wing in which Patients A and B had stayed in adjacent rooms on the 

same unit for three days, after culture of isolates KLP00215 and EC00678 from Patient A but 

before culture of isolate EC00701 from Patient B. 

 

The purpose of the study described in this document was to study the genomic 

epidemiology of horizontal plasmid transfer between patients in clinical settings, as well as to 

explore the clinical burden associated with this transfer. Our goal was to contribute to the field 

both by proposing new methods to systematically identify plasmids that may be engaged in 

horizontal transfer within a hospital setting and to study de-identified healthcare data for 

indications of how horizontal transfer both affected and linked infected patients. Our study helps 

fill the gaps in the field that were described in the previous section by: (1) using methods that 

focus primarily on plasmids from numerous bacterial species and with diverse gene cargo; (2) 

proposing new methods to identify and apply uniform standards of plasmid sequence similarity 

A B 

https://www.zotero.org/google-docs/?pKvthv
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for future studies; and (3) directly connecting genomic inference of horizontal transfer of 

plasmids with epidemiologic data that indicate where, when, and how transfer may have taken 

place within clinical settings.  
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2.0 Public Health Significance 

 Healthcare-associated infections (HAIs) impose a serious burden on healthcare 

infrastructure, both in the United States and worldwide. Each year in the United States, hundreds 

of thousands of Americans acquire bacterial infections while receiving medical care in hospitals, 

outpatient settings, and skilled nursing facilities (4). Plasmids that circulate among the strains 

that cause these infections carry genes that complicate patient care and increase severity of 

infection (69, 80). While the processes of horizontal gene transfer (HGT) that circulate these 

plasmids are known to take place in hospital settings (43, 59, 74), the clinical burden of 

healthcare-associated HGT and the routes by which it occurs remain poorly understood. 

Additionally, the field of plasmid epidemiology currently lacks consistently applied thresholds of 

sequence similarity by which recent horizontal transfer between strains can be reasonably 

inferred. Understanding both the burden and routes of this phenomenon could help infection 

prevention personnel prioritize and control horizontal gene transfer in hospitals, potentially 

limiting the severity of nosocomial bacterial infections. 

This study contributes to public health by quantifying the clinical burden of, and 

describing potential routes and risk factors to, the horizontal transfer of plasmids in a hospital 

setting. Our findings describe the presence of an unmet clinical burden of the nosocomial 

horizontal transfer of plasmids between clinical bacterial isolates that cause HAIs, as well as 

potential routes and risk factors linked to this horizontal transfer. We also present novel 

strategies to study this phenomenon with systematic methods for screening genomic, 

epidemiologic, and clinical data linked to bacterial isolates. Our findings can help broaden the 

scope of infection prevention to control and prevent the exchange of plasmids between bacterial 

https://www.zotero.org/google-docs/?K6dvDM
https://www.zotero.org/google-docs/?nRIE2z
https://www.zotero.org/google-docs/?DFbHJG
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strains by horizontal transfer, thereby mitigating the severity of nosocomial infections that 

benefit from the genetic cargo on those plasmids. 
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3.0 Hypotheses and Specific Aims 

3.1 Hypotheses 

Hypothesis 1: Plasmids engage in horizontal transfer in hospitals between bacterial strains that 

cause nosocomial infections. This phenomenon occurs often enough that it can be detected and 

characterized by systematic screening of whole-genome sequence data. 

 

Hypothesis 2: Leveraging systematic genomic screening data to perform outbreak investigations 

of plasmids in hospitals will identify previously undetected routes of nosocomial plasmid 

transfer. 

 

Hypothesis 3: Plasmids engaged in nosocomial horizontal gene transfer are associated with 

increased burden of disease in healthcare-associated bacterial infections caused by strains that 

carry those plasmids, compared to infections by strains that do not. 

 

3.2 Specific Aims 

Aim 1: To develop and apply novel methods to systematically infer the horizontal transfer of 

plasmids among bacterial strains that cause nosocomial infections. 

 

Aim 1a: To establish reasonable thresholds of plasmid sequence similarity that can be 

used to infer the occurrence of nosocomial plasmid transfer. 

 

Aim 1b: To systematically resolve and characterize lineages of plasmids engaged in 

horizontal transfer among clinical bacterial strains within a single hospital system. 
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Aim 2: To identify likely exposures and risk factors, and assess the clinical burden of plasmids 

engaged in nosocomial horizontal gene transfer. 

 

Aim 2a: To identify common exposures associated with horizontal transfer of plasmids, 

as well as clinical factors that may predispose patients to greater risk of acquiring these 

plasmids. 

 

Aim 2b: To compare measures of disease burden between bacterial infections involving 

plasmids engaged in nosocomial horizontal transfer with infections not involving those 

plasmids, using de-identified patient healthcare data. 
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4.0 Materials and Methods 

4.1 Collection of clinical bacterial isolates and corresponding patient data 

 All bacterial isolates analyzed in this study were collected through the Enhanced 

Detection System for Hospital-Associated Transmission (EDS-HAT) project, an ongoing 

research initiative led by a team of clinicians, microbiologists, and epidemiologists at the 

University of Pittsburgh School of Medicine and the University of Pittsburgh Medical Center 

(50). Isolates were eligible for inclusion in this study with a positive clinical culture from a 

patient admitted to the university’s flagship hospital system either at least 3 days after admission, 

and/or if the patient had any procedure or prior inpatient stay within 30 days of the collection of 

the isolate. All isolates of the genera Acinetobacter, Burkholderia, Citrobacter, Proteus, 

Providencia, Serratia, and Stenotrophomonas that were eligible for this study were included. 

Inclusion of strains from other genera were limited by expression of antibiotic resistance or toxin 

production, i.e. toxin-producing Clostridioides difficile, vancomycin-resistant Enterococcus spp. 

(VRE), extended-spectrum beta-lactamase (ESBL)-producing Escherichia spp. and Klebsiella 

spp., and methicillin-resistant Staphylococcus aureus. These isolates were identified using 

TheraDoc software (Version 4.6, Premier, Inc, Charlotte NC). The University of Pittsburgh 

Institutional Review Board (IRB) has approved the EDS-HAT project, classifying it as being 

exempt from informed consent because direct contact with human subjects is not performed. The 

IRB also issued an exemption (STUDY20060252) to use data collected for the EDS-HAT 

project to study the horizontal transfer of MGEs in the hospital setting. 

 

 

 

https://www.zotero.org/google-docs/?z1TYYP
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4.2 Short-read and long-read whole-genome sequencing of clinical bacterial isolates 

 Whole-genome sequencing (WGS) was performed using genomic DNA that was 

extracted from overnight cultures of single bacterial colonies, using the Qiagen DNeasy Tissue 

Kit (Qiagen, Germantown MD). Short-read WGS was performed using Illumina technology 

(Illumina, San Diego CA). Libraries for Illumina sequencing were constructed using the Illumina 

Nextera DNA Sample Prep Kit with 150bp paired-end reads. Libraries were sequenced on the 

Illumina NextSeq platform. Long-read sequencing and base-calling was performed using Oxford 

Nanopore technology (Oxford Nanopore Technologies, Oxford, United Kingdom). Libraries 

were constructed using a rapid multiplex barcoding kit (catalog number SQK-RBK004). 

Sequencing was performed using an Oxford Nanopore MinION device with R9.4.1 flow cells. 

Base-calling was performed using Albacore v2.3.3 or Guppy v2.3.1 (Oxford Nanopore 

Technologies, Oxford, United Kingdom). 

 

4.3 Read processing and assembly of whole-genome sequencing data 

 Short-read Illumina sequencing data were processed prior to assembly. Trim Galore 

v0.6.1 was used to remove sequencing adaptors, low-quality bases, and poor-quality reads. 

Bacterial species were identified from processed Illumina reads by alignment to Kraken v1.0 and 

RefSeq databases (81, 82). Genomes of strains sequenced only with Illumina technology were 

assembled using SPAdes v3.11 (83). The quality of assembled genomes was then verified using 

QUAST (84). Assembled genomes were excluded if they failed to meet the following four 

quality control parameters: genome-wide read depth of at least 40X, cumulative length of 

assembled genome within 20% of the expected length for the assigned genus, fewer than 400 

contigs in the assembled genome, and an N50 value of less than 50,000bp.  

https://www.zotero.org/google-docs/?WJOudi
https://www.zotero.org/google-docs/?Xt4mLE
https://www.zotero.org/google-docs/?bTJBNy
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Long-read sequencing data were processed using default read quality parameters of 

Albacore v2.3.3 or Guppy v2.3.1 (Oxford Nanopore Technologies, Oxford, United Kingdom). 

Hybrid assembly was performed for genomes for which both short- and long-read sequencing 

data were available and whose short-read only assemblies passed the aforementioned parameters, 

using Unicycler v0.4.7 or v0.4.8-beta (85) (Figure 5).  

 

Figure 5: Conceptual framework and utility of hybrid genome assembly.  

Bacterial genomes sequenced only by Illumina technology have highly accurate nucleotide 

sequences, but assembly is typically fragmented. Genomes sequenced only by Oxford Nanopore 

technology have less accurately called sequences but can be assembled to much greater 

contiguity. Successfully using both technologies yields accurate, well assembled whole-genome 

sequences that clearly define the genomic context of mobile genetic elements. 

 

4.4 Characterization, alignment, and phylogenetic analyses of whole-genome and plasmid 

sequences 

Assembled genomes and plasmids were annotated with Prokka v1.13 or v1.14 (86). 

Multi-locus sequence types (STs) were assigned using mlst v2.16.1 with PubMLST typing 

https://www.zotero.org/google-docs/?seqcWr
https://www.zotero.org/google-docs/?v6PYfW
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schemes (37, 38). Antibiotic resistance genes were identified by BLASTn alignments of 

assembled genomes to the ResFinder v4.1 database (87, 88). Plasmid replicons were identified 

by BLASTn alignments of assembled genomes to the PlasmidFinder v2.1 database (89). Other 

genomic features, e.g. metal resistance genes and virulence factors, were identified from 

annotations by Prokka (86) and by BLASTn alignments to the VFDB and VirulenceFinder 

databases (90, 91). Genomospecies were defined by grouping isolates with core genome average 

nucleotide identity (ANI) of at least 95% to one another and less than 95% ANI to any other 

isolate genome. Phylogenies of bacterial whole-genome sequences were constructed from core 

genome alignments generated by Roary v5.18.2 (92) and visualized using RAxML v8.0.26 with 

1,000 bootstrap iterations (93). Phylogenies of plasmids were constructed from core genome 

alignments of reference plasmids to bacterial genomes using snippy-core v4.4.5 (94) and 

visualized using RAxML v8.0.26 with 1,000 bootstrap iterations (93). Annotated plasmid 

sequences were also aligned to one another using EasyFig v2.2.2 (95). 

 

4.5 Analysis of plasmids from known outbreaks to establish parameters of sequence 

similarity 

 Plasmids were identified from hybrid-assembled genomes of isolates for which other 

clonal isolates existed within the dataset. Contigs were selected as plasmids if they met the 

following criteria: closed circular as determined during hybrid assembly (85), longer than 2kb 

but not longer than 300kb, and possessing at least one replicon as identified by PlasmidFinder 

(89). Single nucleotide polymorphisms (SNPs) relative to plasmid sequences were identified 

using snippy-core v4.4.5 (94). Preservation of reference plasmid gene content (“coverage”) in 

https://www.zotero.org/google-docs/?xDwVuy
https://www.zotero.org/google-docs/?hmUZKh
https://www.zotero.org/google-docs/?SGXGbB
https://www.zotero.org/google-docs/?u7CThu
https://www.zotero.org/google-docs/?qMaUIm
https://www.zotero.org/google-docs/?U2DxGX
https://www.zotero.org/google-docs/?EXCXnI
https://www.zotero.org/google-docs/?MIWyIi
https://www.zotero.org/google-docs/?ADHNxG
https://www.zotero.org/google-docs/?yj5sRi
https://www.zotero.org/google-docs/?7nQFNT
https://www.zotero.org/google-docs/?CrOJsM
https://www.zotero.org/google-docs/?PhHSPq
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other bacterial strains was calculated by mapping plasmid sequences to contigs of bacterial 

genomes using BLASTn (96), using a sequence identity threshold for alignments of 95%. 

 

4.6 Resolution and characterization of plasmid lineages using closed circular plasmids 

 Reference plasmid sequences used to resolve groups of strains carrying the same plasmid 

within the hospital setting (“lineages”) were identified from 56 of 78 total hybrid-assembled 

whole-genome sequences of clinical bacterial isolates, using the aforementioned selection 

parameters. 3,074 whole-genome sequences from clinical bacterial isolates were then screened 

for the presence of plasmids by calculating preservation of plasmid gene content by BLASTn-

based mapping (96) and identifying SNPs using snippy-core (94), as described earlier. A plasmid 

lineage was identified if a reference plasmid was resolved at sufficient nucleotide similarity and 

gene content preservation in at least three bacterial strains of the same ST, or in at least two 

strains of different STs, genomospecies, or genera. Lineages were de-duplicated by aligning and 

visualizing closed reference plasmid sequences of similar lengths and distribution among 

sequence types and genomospecies using EasyFig v2.2.2 (95). 

 

4.7 Identification of potential routes of plasmid transfer within the hospital setting 

 Potential routes of horizontal transfer of plasmids of interest were identified by a case-

control methodology, using systematic screening of patient electronic health record (EHR) data 

by a previously published automated data mining algorithm (57). For each plasmid lineage 

resolved by our genomics approach, hospital charge codes and admission records were 

systematically reviewed and assessed for statistically significant enrichment among patients 

infected by strains carrying plasmids in that lineage. Charge codes for identical procedures 

https://www.zotero.org/google-docs/?CyTXBr
https://www.zotero.org/google-docs/?QAL1aI
https://www.zotero.org/google-docs/?1XoZzR
https://www.zotero.org/google-docs/?loOWXf
https://www.zotero.org/google-docs/?hfTjzu
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performed on two or more patients, as well as admission records for patients who had the same 

rooms or units in their hospital records, were counted as potential shared exposures among 

infected patients if those events occurred at any time between 30 days prior to culture of the 

earliest isolate in the plasmid lineage and the date of culture of the latest isolate in the lineage. 

Admission records for roommates with overlapping stays were identified as shared exposures 

regardless of the length of cohabitation. The algorithm then applied the same parameters to 

identify the co-occurrence of the same charge codes or admission records in patients not infected 

by any of the plasmid-carrying bacterial strains. Potential routes of plasmid transfer identified by 

the algorithm were then manually filtered to exclude routes involving only infections by bacterial 

strains of the same sequence types, as well as any isolates whose patients were exposed to those 

routes after the dates of culture of isolates included in the plasmid lineages being examined. 

Odds ratios were calculated from numbers of patients carrying or not carrying plasmids 

of interest and numbers of patients with or without potential exposures identified from charge 

codes or admission records. The Haldane-Anscombe correction was applied to all potential 

exposures for which one count of patients was equal to zero (97). P-values for each potential 

exposure were then calculated by a Z-score method based on standard errors of odds ratios that is 

described in Sheskin, 2004 (98). Multiple hypothesis corrections for statistical significance were 

performed by the Benjamini-Hochberg method (99), using false discovery rate thresholds 

equivalent to the inverses of the total numbers of procedures or geographic shared exposures. 

 

4.8 Analyses of clinical data linked to patient hospitalization records 

Clinical data on patient demographics, comorbidities, admission and discharge dates were 

collected and summarized by an honest broker. Charlson Comorbidity Index scores were 

https://www.zotero.org/google-docs/?rQWyxm
https://www.zotero.org/google-docs/?4INyB5
https://www.zotero.org/google-docs/?0jLO6P
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calculated using International Classification of Disease (ICD) diagnoses from inpatient and 

outpatient encounters, from the date one year prior to admission to the date of admission during 

which one or more isolates in the study were cultured (100). Length of hospital admission was 

calculated from recorded dates of admission and discharge, with hospitalizations with admission 

and discharge dates of the same date recorded as a length of 1 day. Hospitalizations with 

discharge and readmission to units in the same hospital on the same dates were combined and 

counted as single hospitalizations. Comparisons of clinical factors with continuous variables 

were performed using the Wilcoxon rank sum test using GraphPad Prism v9.0.0 software 

(GraphPad Software Inc., California, USA). Outliers within a group of continuous variables were 

defined as any points greater than 3 standard deviations from the mean, and were not included in 

calculations of significance.  

https://www.zotero.org/google-docs/?G2hZaM
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5.0 Results 

5.1 Establishment of plasmid sequence similarity thresholds to indicate potential horizontal 

transfer 

While the epidemiology of plasmids among hospital bacterial isolates has previously 

been characterized (44, 44, 59), the field lacks consistent guidelines for determining thresholds 

of sequence similarity by which the occurrence of horizontal gene transfer can be hypothesized. 

We therefore concluded that to perform our study, we first needed to establish these thresholds 

for plasmid similarity. We reasoned that plasmids undergoing horizontal transfer between 

clinical bacterial strains would most likely maintain sequence identity to a degree that is similar 

to identity between plasmids carried by bacterial strains that were known to (1) have transmitted 

between patients or (2) been maintained within the same patient for a prolonged period of time. 

Thus, our first steps were to identify plasmids that were maintained among such bacterial strains 

and to measure their sequence similarity. 

To collect these data, we studied four hybrid-assembled plasmid sequences that were 

present in three clusters of bacterial strains that showed strong genomic and epidemiologic 

evidence of nosocomial transmission (Table 1). Three of these plasmids were sequenced as part 

of outbreak investigations that have been previously published (50, 51). Two plasmids were from 

different sequence types of Klebsiella pneumoniae (ST258 and ST307), and two were present in 

the same cluster of Enterococcus faecium isolates (ST1471). We also studied three pairs and two 

triplets of previously published hybrid-assembled plasmids that had been resolved from isolates 

that infected the same patients or were reported as members of the same plasmid lineage within 

the hospital system (Table 1) (59). Additionally, we included 33 strains (23 Klebsiella spp., 6 

Escherichia spp., and 4 Acinetobacter spp.) that (a) comprised pairs and triplets of isolates 

https://www.zotero.org/google-docs/?fZ5uyg
https://www.zotero.org/google-docs/?zbYWGb
https://www.zotero.org/google-docs/?L3Thyo
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collected from the same patients and (b) showed high nucleotide sequence coverage of any of 12 

plasmids that had been previously sequenced and hybrid-assembled (58). Collectively, this 

dataset included 25 plasmids from 5 genera (4 Gram-negative and 1 Gram-positive) of bacterial 

pathogens. Elapsed time between dates of culture of plasmid-linked strains within this dataset 

ranged from 0 days to 427 days (mean 119.5 days, median 82 days). 
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Plasmid Name Length 

(kb) 

Replicons /  

Incompatibility 

Source Isolate(s) Reason for Inclusion 

pKLP00149_2 165.2 IncFII 

(pBK30683) 

K. pneumoniae ST258 Outbreak isolate described in  

Marsh et al, 2019 

pKLP00218_2 164.7 IncFIB 

IncFII(K) 

K. pneumoniae ST307 Clonal isolates identified from  

core genome phylogenetic analyses 

pVRE32553_2 223.8 repUS15 

repA(pNB2354p1) 

E. faecium ST1471 Outbreak isolate described in 

Sundermann et al, 2019 

pVRE32553_3 51.7 rep17 
CDS29(pRUM) 

E. faecium ST1471 Outbreak isolate described in  
Sundermann et al, 2019 

pKLP00177_3 

pKLP00203_3 

170.8 

170.1 

IncFIB(K) K. pneumoniae ST2712  

K. pneumoniae ST25 

Highly similar plasmids from a lineage 

described in Evans et al, 2020 

pKLP00161_2 

pKLO00017_2 

236.5 

226.8 

IncFIB 

IncFII(K) 

K. pneumoniae ST405 

K. oxytoca ST207 

Highly similar plasmids from a lineage 

described in Evans et al, 2020 

pKLP00187_2 

pCB00017_2 

196.7 

196.8 

 

IncFIB 

IncFII(K) 

K. pneumoniae ST231 

C. brakii ST356 

Nearly identical plasmids present in  

two isolates co-infecting the same patient,  

described in Evans et al, 2020 

pKLP00215_4 

pEC00678_3 
pEC00701_3 

113.6 

113.6 
113.6 

IncFIB 

IncFII(K) 

K. pneumoniae ST405 

E. coli ST69 
E. coli ST131 

Nearly identical plasmids from infections of  

two patients with an epidemiologic link,  
described in Evans et al, 2020 

 

Table 1: Reference sequences used to calculate plasmid sequence similarity. 

The dataset included four closed plasmids from hybrid-assembled genomes of clinical isolates 

that caused outbreaks, two pairs of highly similar closed plasmids from genomes of different 

sequence types (STs) or species, and one pair and one triplet of highly similar closed plasmids 

with clear epidemiologic links of nosocomial horizontal transfer.  

 

We used snippy-core to quantify normalized rates of single nucleotide polymorphisms 

(SNPs) in the core sequences shared by reference plasmids and the non-hybrid-assembled whole-

genome sequences of bacterial strains to which they were epidemiologically linked (“core 

mutation rate”). We also used BLASTn to quantify percentages of reference plasmid sequence 

content that were preserved at high sequence identity among these isolates (“sequence 

coverage”). We observed that among groups of bacterial isolates linked to reference plasmids, 

95% of isolates accrued fewer than 14 single nucleotide polymorphisms (SNPs) per 100kb of 

sequence length of the reference plasmid, i.e. 1 core SNP per 7.2kb of reference sequence 
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(Figure 6a). Additionally, 95% of isolates maintained at least 94.7% of the sequence content of 

their corresponding reference plasmid sequence (Figure 6b). Notably, 17 pairs of isolates whose 

plasmids fell within the 95th percentile thresholds of coverage and mutation rates were cultured 

more than 180 days apart. These results indicate that plasmids can remain remarkably well 

preserved in nosocomial pathogens, both within bacterial strains that are known to be 

transmitting between patients and within bacterial strains that exchange these plasmids by 

horizontal transfer. 
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Figure 6: Preservation of gene content and nucleotide identity among plasmids involved in 

healthcare-associated transmission or horizontal transfer.  

(A, top) Plots of loss of reference plasmid gene content, shown as proportions of lengths of 

reference plasmids, versus time between dates of culture of linked isolates. The thick dashed line 

shows the 5th percentile of plasmid coverage, indicating that 95% of linked strains shared at least 

95% of the gene content of their shared plasmids. The thin dashed line shows the coverage 

threshold used for our prior study of plasmid transfer (58). (B, bottom). Plot of single nucleotide 

polymorphisms (SNPs) between reference plasmids and linked strains versus time between dates 

of culture of linked isolates. SNP values are normalized by the lengths of reference plasmids. 

A 

B 
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The thick dashed line shows the 95th percentile threshold of 20 SNPs per 100kb of plasmid 

length (1 per 5kb). 

 

5.2 Application of plasmid similarity thresholds to systematically resolve lineages of 

plasmids in a large genomic dataset from a single hospital system 

After calculating similarity thresholds based on plasmid sequences shared among 

bacterial strains that were likely transmitted between or preserved within infected hospitalized 

patients, we applied those thresholds to systematically resolve shared plasmids among all 

bacterial isolates collected from a single hospital system. To perform this study, we used 3,074 

whole-genome sequences of clinical bacterial isolates that had been collected as part of the 

Enhanced Detection System for Healthcare-Associated Transmission (EDS-HAT) study, an 

ongoing research program that combines WGS data with de-identified patient care data to 

identify and predict routes of bacterial transmission in hospital settings (57). We used genomes 

of 3,074 bacterial strains that had been collected from 2,322 hospitalizations of 1,960 patients 

treated at a single tertiary hospital system over a two-year period from 2016 to 2018 (Tables 2a 

and 2b). Each bacterial strain met predetermined criteria for being classified as having been 

likely involved in nosocomial transmission (see Methods).  

https://www.zotero.org/google-docs/?LGjylh
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Genus of 

Plasmid Host 

Isolates 

in Dataset 

Isolates With 

Plasmid Lineage 

Isolates Without 

Plasmid Lineage 

Acinetobacter 82 5 (6.1%) 77 (93.9%) 

Burkholderia 12 0 (0%) 12 (100%) 

Citrobacter 126 21 (16.7%) 105 (83.3%) 

Clostridioides 517 0 (0%) 517 (100%) 

Escherichia 170 28 (16.5%) 142 (83.5%) 

Enterococcus 250 208 (83.2%) 42 (16.8%) 

Klebsiella 136 81 (59.6%) 55 (40.4%) 

Proteus 151 0 (0%) 151 (100%) 

Providencia 13 0 (0%) 13 (100%) 

Pseudomonas 894 2 (0.2%) 892 (99.8%) 

Serratia 180 2 (1.1%) 178 (98.9%) 

Staphylococcus 420 2 (0.5%) 418 (99.5%) 

Stenotrophomonas 123 9 (7.3%) 114 (92.7%) 

Total 3074 353 2721 

 

Source of 

Clinical Isolate 

Isolates 

in Dataset 

Isolates With 

Plasmid Lineage 

Isolates Without 

Plasmid Lineage 

Respiratory tract 1024 55 (5.4%) 969 (94.6%) 

Tissue or wound 648 101 (15.6%) 547 (84.4%) 

Urinary tract 627 151 (24.1%)  476 (75.9%) 

Stool 517 0 (0%) 517 (100%) 

Blood 258 46 (17.8%) 212 (82.2%) 

Total 3074 353 2721 

 

Table 2: Clinical bacterial isolates examined for the presence of plasmid lineages engaged 

in horizontal transfer.  

(A, top) Distribution of isolates by genus. (B, bottom) Distribution of isolates by source of 

clinical isolate, a proxy for type of infection. 

 

  

B 

A 
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We had previously resolved 142 closed plasmids from 56 of the 78 bacterial strains in our 

dataset whose genomes were assembled using both short-read Illumina and long-read Oxford 

Nanopore sequencing data (Table 3). 12 of these plasmid sequences have previously been 

described in an earlier study of the diversity of mobile genetic elements in a hospital setting, 10 

of which were shown to be members of plasmid lineages maintained by bacterial transmission or 

horizontal plasmid transfer (59). Some of the other sequences were confirmed or potential 

duplicates of one another or of these previously documented plasmids. We used BLASTn to 

query the 3,074 isolates’ genomes against the 142 plasmid sequences and calculate sequence 

coverage of each plasmid within each genome. We then calculated core mutation rates among all 

genomes that had at least 95% sequence coverage of at least one of the plasmids.  

Genus of Isolate 

Carrying Reference 

Plasmid Sequence 

Plasmid Sequences 

Used to Resolve 

Lineages 

(not de-deduplicated) 

Plasmids in Lineages  

Screened for 

Epidemiologic Links 

(de-duplicated) 

Plasmids in Lineages with 

Epidemiologic Links* 

(de-duplicated) 

Acinetobacter 1 1 1 

Citrobacter 5 3 2 

Clostridioides 1 0 0 

Escherichia 48 4 1 

Enterococcus 32 13 11 

Klebsiella 45 16 12 

Pseudomonas 4 1 0 

Serratia 4 0 0 

Staphylococcus 1 1 0 

Stenotrophomonas 1 1 1 

Total 142 40 28 

 

Table 3: Genus distribution of reference plasmids used to identify plasmid lineages 

circulating in the hospital system by horizontal transfer. 

 

https://www.zotero.org/google-docs/?zis36X
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From these isolates, we identified 40 groups of strains that met the following criteria: (1) 

they contained at least 3 strains in the group and/or included strains of different STs, 

genomospecies, or genera; (2) they shared the same plasmid with at least 95% sequence 

coverage and fewer than 20 SNPs per 100kb relative to the reference; and (3) if the reference 

plasmid was less than 10kb in length, it contained a known plasmid replicon or incompatibility 

group sequence (Table 3). We labeled these 40 groups of strains “plasmid lineages”. Reference 

sequences for plasmid lineages ranged in length from 4.0kb to 242.3kb (mean 82.8kb, median 

47.4kb) and carried 20 unique replicons and incompatibility groups. Collectively, the lineages 

that we identified contained 353 (11.4%) of the 3,074 isolates, from 15 of 96 genomospecies and 

9 of 12 genera in the dataset. A total of 303 (13.0%) of the 2,322 hospitalizations, of 246 

(12.6%) of the 1,960 patients in our dataset, involved infection by at least one strain that was 

included in at least one plasmid lineage. Within specific genera of bacterial pathogens, plasmids 

in lineages were most abundant in isolates of the genus Enterococcus (n = 203, 83.2% of isolates 

in genus), Klebsiella (n = 81, 59.6%), Escherichia (n = 28, 16.5%), and Citrobacter (n = 21, 

16.7%) (Table 2) (Figure 7). Lineages of plasmids from Enterococcus spp. included by far the 

greatest numbers of isolates, with five lineages (pVRE32994_4, pVRE33085_3, pVRE33085_4, 

pVRE33562_4, and pVRE33562_5) containing 45 or more isolates each. 

Twenty-six of the 40 reference plasmids for the lineages we resolved carried at least one 

known antibiotic resistance gene; these lineages included 249 (8.1%) of the strains from 214 

(9.2%) hospitalizations of 194 (9.9%) patients in our dataset. Within these reference plasmids, 

the most abundantly present antibiotic resistance genes encoded aminoglycoside resistance (n = 

21 lineages), ESBL enzymes (n = 14), sulfonamide resistance (n = 12), and macrolide resistance 

(n = 11). Five reference plasmids carried at least one carbapenem resistance gene, namely 
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blaKPC-2 (n = 4) and blaKPC-3 (n = 1). Seventeen reference plasmids carried known resistance 

genes or operons for at least one metal; these lineages included 205 (6.7%) of the strains from 

177 (7.6%) hospitalizations of 160 (8.2%) patients. The most abundant classes of metal 

resistance included resistance to copper (n = 9 lineages), silver (n = 6), arsenic (n = 6), and 

cadmium (n = 6). Fourteen plasmid lineages did not carry any known antibiotic or metal 

resistance genes; these lineages included 120 (3.9%) strains of 89 (5.4%) hospitalizations of 87 

(3.7%) patients. Six of these lineages carried at least one virulence factor or other environmental 

persistence gene. The lineages pCB00073_2 and pKLP00155_6 carried cloacin operons (101); 

pVRE33085_3 and pVRE33562_6 carried the bacteriocins microcin C7 and hiracin JM79, 

respectively (102, 103); pACIN00156_2 carried a gene encoding resistance to formaldehyde; 

pSTEN00043_8 carried the non-hemolytic phospholipase plcN (104); and pVRE33085_3 also 

carried the bile salt hydrolase bsh (105).  

Taken together, these results show that the plasmid lineages we resolved from our 

genomic dataset were highly diverse in length, incompatibility group, and gene content, and that 

they were present in many patients infected with nosocomial bacterial pathogens. 

  

https://www.zotero.org/google-docs/?UdRw28
https://www.zotero.org/google-docs/?U2Kxsn
https://www.zotero.org/google-docs/?v2STWH
https://www.zotero.org/google-docs/?A75tTd
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Figure 7: Phylogenetic profiling of plasmid lineages.  

Presence or absence of plasmids in lineages among isolates of (A, top) Enterococcus faecium 

and (B, bottom) Klebsiella spp. The top clade of the phylogenetic tree of Klebsiella spp. contains 

isolates of K. oxytoca, K. michiganensis, and K. grimontii; the bottom clade contains isolates of 

K. pneumoniae. Phylogenies were constructed from bacterial core genome alignments using 

RAxML v8.0.26 with 100 bootstrap iterations and visualized using ITOL v5.7 (93, 106). Color 

strips identify sequence types (STs) of bacterial strains.  

 

  

B A 

https://www.zotero.org/google-docs/?Tk7tAq
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5.3 Improved accuracy and refined resolution of plasmid lineages over previously 

published methods 

The 40 closed reference plasmids that we used in this study included 10 sequences that 

had been previously used to resolve lineages with a less stringent similarity threshold based 

solely on sequence coverage (59). We therefore compared the results of our newer, more 

stringent methods to the results of our prior study, with the hypothesis that our new method 

would more precisely identify and differentiate lineages than did our previously published 

methods. 

Of the previously resolved plasmid lineages, the largest by number of strains was a small 

ColRNAI plasmid (pKLP00155_6, 9.5kb) whose primary cargo was a cloacin- and cloacin 

immunity-encoding gene cassette. When attempting to reconstruct this lineage with our new 

method, core mutation rates calculated relative to pKLP00155_6 plasmid indicated that this 

single lineage was a combination of two closely related plasmid lineages carried by different 

strains (Figure 8a). 13 of the strains in the original lineage showed consistently greater sequence 

identity to another closed reference plasmid (pCB00073_2, 9.3kb) in the original lineage than to 

the pKLP00155_6 reference plasmid. Constructing a maximum likelihood phylogeny of the core 

plasmid sequence shared by all strains in the lineage divided the strains in the lineage into two 

separate clades, one of which included pCB00073_2 and the other pKLP00155_6 (Figure 8b). 

This confirmed that two separate lineages had been combined under a single label, and that 

including the core mutation rate threshold improved our ability to accurately resolve plasmid 

lineages. 

  

https://www.zotero.org/google-docs/?K1MKEi
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pCB00073_2 

pKLP00155_6 

 

 

 

Figure 8: Separation of a previously defined plasmid lineage into two lineages using 

updated methods.  

(A, top) Phylogeny of core plasmid sequences of the lineage pKLP00155_6, as defined in Evans 

et al, 2020 (58), showing sorting of plasmid sequences into two clades. The phylogenetic tree 

was constructed using RAxML v8.0.26 with 1000 bootstrap iterations and visualized using ITOL 

v5.7, using pKLP00155_6 as an internal reference (93, 106). (B, bottom) Alignment of plasmid 

sequences annotated using Prokka and visualized in Mauve (86, 107). 

 

  

B 

A 

https://www.zotero.org/google-docs/?NDD9JT
https://www.zotero.org/google-docs/?13oIGr
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Our prior work also focused on two other plasmids, pKLP00161_2 and pKLP00218_2, 

that were substantially different in length, but pKLP00161_2 appeared to contain most of the 

sequence of pKLP00218_2 (Figure 9a). Using only sequence coverage data, we had previously 

sorted these plasmids and the strains that carried them into two separate lineages. When 

attempting to reconstruct these lineages with our updated methods, we found that all strains in 

the pKLP00161_2 lineage had core mutation rates relative to pKLP00218_2 that met the 

thresholds we had established, and vice versa. Additionally, the extra sequence that was present 

in pKLP00161_2 but absent in pKLP00218_2 included four additional antibiotic resistance 

genes: the ciprofloxacin resistance gene aac(6’)-Ib-cr, the ESBL gene blaOXA-1, the quinolone 

resistance gene qnrB1, and the tetracycline resistance gene tet(A). Given these new data, as well 

as the fact that the earliest-cultured strain in the pKLP00218_2 lineage was collected more than 6 

months after the earliest-cultured strain in the pKLP00161_2 lineage, we hypothesized that the 

pKLP00218_2 lineage was a derivative of the pKLP00161_2 lineage that had evolved in the 

hospital by losing smaller mobile genetic elements – which, among other cargo of hypothetical 

open reading frames, carried multiple drug resistance genes – that were nested within 

pKLP00161_2. Constructing a maximum likelihood phylogeny of the core plasmid sequence 

shared by the isolates in both lineages validated this conclusion by grouping all members of the 

two lineages, save one, into a single clade (Figure 9b). These results further support the utility of 

calculating rates of point mutations as part of our pipeline to systematically resolve plasmid 

lineages. 
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Figure 9: Recent common ancestry of two previously defined lineages identified by updated 

methods.  

(A, top) Core sequence phylogeny of the plasmid lineages pKLP00161_2 and pKLP00218_2, as 

defined in Evans et al, 2020 (58), showing that common ancestry of plasmids was not delineated 

by lineage. The phylogenetic tree was constructed using RAxML v8.0.26 with 1000 bootstrap 

iterations and visualized using ITOL v5.7, using pKLP00218_2 as an internal reference (93, 

106). (B, bottom) Alignment of plasmid sequences annotated using Prokka and visualized with 

EasyFig v2.2.2 (86, 95).  

B 

A 

https://www.zotero.org/google-docs/?bjP1LC
https://www.zotero.org/google-docs/?bjP1LC
https://www.zotero.org/google-docs/?zQm0F4
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We performed similar comparisons between our prior and updated methods for the other 

seven plasmids that were references for lineages that we had previously characterized (59). We 

successfully reconstructed all seven lineages, each of which included strains from at least two 

different patients. Some of the bacterial strains that had been included within the plasmid 

lineages identified by our prior methods were excluded from the lineages resolved by our new 

strategy. This was either because the plasmids carried by those strains covered less than 95% of 

the sequence of their corresponding reference plasmids, or because they had sufficient coverage 

but had excess polymorphisms relative to the reference to exceed our cutoff. 

Taken together, these results demonstrate that our updated methods substantially refined 

the resolution of plasmid lineages as compared to our previously published methods. This 

increased our confidence in our inference of potential horizontal gene transfer within the hospital 

setting.  

 

5.4 Identification of potential routes of horizontal plasmid transfer by review of patient 

healthcare data 

After resolving lineages of plasmids with high sequence similarity, our next goal was to 

search for epidemiologic evidence of potential routes and risk factors of transfer that aligned 

with our genomic data. To perform these investigations systematically and efficiently, we 

employed a previously published data mining algorithm that was designed to identify 

significantly enriched locations and procedures in the hospital system that may have served as 

routes of healthcare-associated bacterial transmission (57). Briefly, the algorithm reviewed 

patient data to identify charge codes and admission records that were present in the EHRs of two 

or more patients that were infected by strains that carried plasmids of the same lineage. Charge 

https://www.zotero.org/google-docs/?ZvV6q5
https://www.zotero.org/google-docs/?Gb0cVj
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codes served as detailed records of procedures performed on patients, and admission records 

identified rooms or units in which patients had stayed while admitted to the hospital system. As 

such, these records identified potential routes of bacterial transmission or plasmid transfer 

between patients. To minimize confounding by transmission of plasmid-carrying bacterial 

strains, potential routes identified by the algorithm were only considered for further analysis if 

patients implicated in each route were infected by strains of different sequence types (STs), 

species, or genera. We used this algorithm to investigate 41 plasmid lineages: the 40 lineages 

based on closed reference plasmids described previously (Table 3), plus an additional lineage 

that combined strains carrying the pKLP00161_2 and pKLP00218_2 plasmids (Figure 9). 

 Using this algorithm, we identified 133 geographic potential shared exposures (Table 4) 

and 81 procedural potential shared exposures (Table 5) among 28 (68.3%) of the 41 plasmid 

lineages we investigated. Among the geographic potential shared exposures were five sets of 

roommates – all ICU patients – who were infected with non-clonal bacterial strains that carried 

the same plasmid lineages (Table 4). Three plasmid lineages were present in isolates that 

infected these roommates: (1) the combined pKLP00161_2 / pKLP00218_2 lineage with IncFIB 

and IncFIIK incompatibility groups that carried multiple ESBLs and genes encoding resistance 

to aminoglycosides, sulfonamides, trimethoprim, arsenic, silver, and copper (n = 7 total patients, 

two groups of two roommates and one group of three); (2) the pSTEN00043_8 lineage, which 

carried the non-hemolytic phospholipase plcN but no metal or antibiotic resistance genes (n = 4 

patients); and (3) the pVRE33536_2 lineage, which carried genes encoding resistance to 

aminoglycosides, cadmium, cobalt, and copper (n = 2 patients). 

 Patients infected with pathogens carrying lineage plasmids also had procedural shared 

exposures of 18 major types (Table 5), which each may have affected anywhere from three to 63 
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patients. The most abundant procedural shared exposures across plasmid lineages included 

insertion of a peripherally inserted central catheter (PICC) (n = 14 lineages), declotting or 

maintenance of faulty intravenous devices or PICCs (n = 8 lineages), insertion of vascular 

catheters of a type other than PICC (n = 7 lineages), venous ultrasounds (n = 7 lineages), and 

inpatient visits by physical therapy or occupational therapy teams (n = 7 lineages). 

 There was substantial epidemiologic evidence to support the hypothesis that the 

pKLP00161_2 and pKLP00218_2 lineages behaved as one lineage engaged in horizontal transfer 

between patients. Plasmids of the two separate lineages were identified in numerous shared 

exposures involving strains of different sequence types or genomospecies. These exposures 

included two sets of ICU roommates; six groups of patients with consecutive or nearly 

consecutive (within 90 days) admissions to the same rooms; seven groups of patients with 

concurrent, consecutive, or near-consecutive admissions on the same units; 15 patients who 

received peripherally inserted central catheters (PICCs); 20 patients who received ultrasounds; 

14 patients who received respiratory bronchoscopies; and 12 patients who received respiratory 

nitric oxide. 

 The epidemiologic evidence we gathered from our investigations also bolstered the 

hypothesis that antibiotic resistance, metal resistance, and virulence are key drivers of horizontal 

transfer among nosocomial pathogens (30, 108). All of the 28 plasmid lineages that had at least 

one significant procedural or geographic shared exposure among strains of different STs, 

genomospecies, or genera carried at least one antibiotic resistance gene, metal resistance gene, or 

virulence factor whose characterized function was not involved in conjugative transfer. 

Furthermore, of the 14 plasmid lineages we resolved that did not carry any antibiotic or metal 

resistance genes, only six (pACIN00156_2, pCB00073_2, pKLP00155_6, pSTEN00043_8, 

https://www.zotero.org/google-docs/?vWTJNE
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pVRE33085_3, and pVRE33562_6) were found to have at least one procedural or geographic 

shared exposure. These six lineages were the only ones of that group that encoded at least one 

previously characterized virulence factor. 

 Taken together, these results show that the horizontal transfer of plasmids within hospital 

settings is prevalent, affects large numbers of patients infected with nosocomial bacterial strains, 

and is likely driven in part by known selective advantages conferred by plasmids. Additionally, 

they show that investigations into horizontal plasmid transfer within hospitals can be aided by 

systematically combining genomic surveillance with well curated hospital epidemiologic data. 
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 Total ICU LTAC Rehab ED 

 

Room 

Mean No.  

of Pts. 

Median No. 

of Pts. Range 

Roommates with patient(s)  

carrying the same  

plasmid lineage 5 5 0 0 0 0 2.6 2 2 to 5 

Same room recently occupied 

by patient(s) carrying 

plasmid(s) of the same lineage 40 6 1 0 3 30 3.1 3 2 to 5 

Same unit currently or 

previously housing patient(s) 

carrying plasmid(s) of the  

same lineage 88 38 10 1 6 33 8.8 8 2 to 37 

 

Table 4: Epidemiology of plasmid lineages with statistically significantly enriched 

geographic potential shared exposures.  

Potential exposures were included in these data only if they involved infections of two or more 

patients by strains of different sequence types (STs), genomospecies, or genera that were both in 

the same plasmid lineage. 
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Type of Procedure Lineages with 

Significant 

Association 

Mean No. of 

Patients 

Median No. 

of Patients 

Range 

Insertion of peripherally inserted 

central catheter (PICC) 

14 21.3 15.5 4 to 45 

Declotting of / maintenance on IV or PICC 8 17.8 8 3 to 63 

Insertion of non-PICC vascular catheter 7 17.9 3 2 to 58 

Venous ultrasound 7 23.1 20 8 to 46 

Occupational therapy or 

physical therapy inpatient visit 

7 13.2 9 2 to 40 

Stomal therapy, inpatient 6 20.7 7.5 5 to 51 

Mechanical ventilation 5 15.1 9.5 8 to 32 

Respiratory bronchoscopy 4 9 7.5 7 to 14 

Blood transfusion / perfusion 4 5.5 5 4 to 8 

Respiratory tracheostomy 3 32.7 31 18 to 49 

Ultrasound 3 24.7 27 9 to 38 

Speech therapy inpatient visit for 

evaluation/treatment of swallowing 

3 7.3 8 5 to 9 

Hemodialysis 3 5.3 6 3 to 7 

Respiratory nitric oxide 2 9.5 9.5 7 to 12 

Respiratory arterial puncture 2 9 9 3 to 15 

Magnetic resonance imaging (MRI) 1 10 10 n/a 

Thromboelastinography (TEG) 1 6 6 n/a 

Insertion of urinary catheter 1 3 3 n/a 

 

Table 5: Epidemiology of plasmid lineages with statistically significantly enriched 

procedural potential shared exposures.  

Potential exposures were included in these data only if they involved infections of two or more 

patients by strains of different sequence types (STs), genomospecies, or genera that were both in 

the same plasmid lineage. 
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5.5 Excess clinical burden of secondary plasmid transmission networks on patients with 

nosocomial infections 

 While numerous previous studies have documented nosocomial plasmid transfer (26, 43, 

58, 66, 73), and plasmids are known to increase the severity of bacterial infections (24), the 

clinical burden of nosocomial plasmid transfer on entire hospital systems has not been previously 

studied in a systematic manner. We therefore investigated whether the presence of plasmid 

lineages that we had resolved imposed an unmet clinical burden on patients infected with 

healthcare-associated bacterial pathogens. We reviewed de-identified healthcare data from 2,322 

hospitalizations of 1,160 patients infected with pathogens collected by EDS-HAT, to identify 

associations between the carriage of plasmids by those pathogens and indicators of infection 

severity. We used admission and discharge records to calculate and analyze patients’ lengths of 

hospital stay, as a gauge of severity of disease and need for continuous care (Figure 10) (109). 

We also calculated and analyzed Charlson comorbidity index (CCI) data for each patient, to 

assess their risk of mortality or severe disease state following infection (Figure 11) (110). 

 Hospitalizations involving infection by at least one strain carrying a plasmid in any 

lineage were significantly longer than hospitalizations involving infections only by strains that 

did not carry plasmids of any lineage (Hodges-Lehmann median of differences of +3 days; 95% 

CI +1 to +4 days; p < 0.001) (Figure 10a). Infection by multiple strains carrying at least one 

plasmid of any lineage was also linked to longer hospitalization; (+18 days; 95% CI +6 to +28 

days; p < 0.01) (Figure 10b). Infections involving plasmids in any lineage that encoded genes for 

resistance to any antibiotic (+2 days; 95% CI +1 to +4 days; p < 0.01) or resistance to any metal 

(+3 days; 95% CI +1 to +5 days; p < 0.01) were also associated with significantly longer 

hospitalization than infections by strains not carrying any antibiotic or metal resistance plasmids 

https://www.zotero.org/google-docs/?WQ97ML
https://www.zotero.org/google-docs/?t326qw
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in resolved lineages (Figure 10c-d). Associations between length of hospitalization and presence 

of a plasmid in at least one nosocomial isolate were significant within respiratory tract infections 

(n = 710 hospitalizations; +10 days; 95% CI +3 to +15 days; p < 0.01) and tissue or wound 

infections (n = 552 hospitalizations; +5 days; 95% CI +2 to +8 days; p < 0.001) (Figure 10e-f). 

The association was trending yet not significant among urinary tract infections (n = 530 

hospitalizations; +2 days; 95% CI 0 to +4 days; p = 0.0671) (Figure 10g). The association was 

trending yet not significant among bloodstream infections (n = 228 hospitalizations) prior to the 

removal of outliers (p = 0.0940), but significant following the removal of outliers (+5 days; 95% 

CI 0 to +13 days; p = 0.0403) (Figure 10h). Among hospitalizations involving infections by 

Enterococcus spp. (n = 228) or by members of the order Enterobacterales (n = 527) – the 

taxonomic groups carrying the greatest number of plasmids of any lineage – there were no 

significant links to length of hospitalization (0 days; 95% -4 to +5 days; p = 0.8403 and +2 days; 

95% CI -1 to +5 days; p = 0.2457, respectively) (Figure 10i-j). Taken together, these results 

show that the presence of plasmids engaged in horizontal transfer in the hospital system we 

studied was linked to longer hospitalizations, and that this association was mediated by plasmid 

gene cargo and type of infection rather than by the taxonomic groups of pathogens exchanging 

plasmids. 

 Associations between the involvement of plasmids in nosocomial infections and CCIs of 

infected patients largely paralleled those found in length of hospitalization (Figure 11). Patients 

infected by bacterial strains carrying plasmids of any lineage (Hodges-Lehmann median of 

differences of +1; 95% CI +1 to +2; p < 0.0001), as well as strains carrying lineage plasmids 

encoding antibiotic resistance (+1; 95% CI +1 to +2; p < 0.0001) or metal resistance (+1; 95% CI 

+1 to +2; p < 0.0001), tended to have greater CCIs than those whose HAIs did not involve those 
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groups of plasmids (Figure 11a,c-d). Significantly greater CCIs were also associated with the 

carriage of lineage plasmids among patients with tissue or wound infections (+2; 95% CI +1 to 

+2; p < 0.0001) and bloodstream infections (+2; 95% CI 0 to +3; p = 0.0057) (Figure 11e,g). 

There was also no association between greater CCI and carriage of lineage plasmids among 

patients infected by Enterococcus spp. (0; 95% CI -1 to +1; p = 0.777) (Figure 11j). Contrary to 

analyses of length of hospitalization, greater CCI and carriage of plasmids in lineages were 

significantly associated among patients with urinary tract infections (+1; 95% CI +1 to +2; p = 

0.0002) (Figure 11f) and among patients with infections by pathogens of the order 

Enterobacterales (+1; 95% CI 0 to +2; p = 0.012) (Figure 11i). Also contrary to analyses of 

length of hospitalization, there was no association between greater CCI and carriage of lineage 

plasmids among patients with respiratory HAIs (0; 95% CI -1 to +1; p = 0.721) (Figure 11e) or 

with co-infections by multiple bacterial strains carrying lineage plasmids (+1; 95% CI -1 to +3; p 

= 0.195) (Figure 11b), indicating that the link between plasmids and longer hospital stay in those 

groups of patients occurred without any overall differences in degree of comorbidity prior to 

hospitalization.  

 In summary, these results show clear links between nosocomial bacterial pathogens’ 

carriage of plasmid lineages likely engaged in horizontal transfer in hospitals and the clinical 

burden imposed on patients by those pathogens. Many of these associations may have been 

moderated by patient comorbidity, but some evidence points to greater clinical burdens imposed 

by plasmids without moderation by comorbidity. 
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Figure 10: Carriage of plasmids engaged in nosocomial horizontal transfer is associated 

with increased length of hospitalization.  

Data are shown for hospitalizations involving the following nosocomial isolates: (A) any strain 

carrying a plasmid of any lineage; (B) co-infection by multiple strains carrying plasmids of any 

lineage; any strain with a lineage plasmid encoding: (C) at least one known antibiotic resistance 

gene, or (D) at least one known gene; (E) respiratory infections, (F) tissue or wound infections, 

(G) urinary tract infections, metal resistance and (H) bloodstream infections involving a strain 

carrying a plasmid of any lineage; and infections by (I) Enterobacterales and (J) Enterococcus 

spp. strains carrying a plasmid of any lineage. Outliers from each compared group were removed 

prior to plotting and statistical comparison. Significance was assessed by p-values, which are 

shown as not significant (ns), p < 0.05 (*), p < 0.01 (**), or p < 0.001 (***). 
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Figure 11: Carriage of plasmids engaged in nosocomial horizontal transfer is associated 

with greater Charlson comorbidity index.  

Data are shown for Charlson comorbidity indices (CCIs) involving the following nosocomial 

isolates: (A) any strain carrying a plasmid of any lineage; (B) co-infection by multiple strains 

carrying plasmids of any lineage; any strain with a lineage plasmid encoding: (C) at least one 

known antibiotic resistance gene, or (D) at least one known metal resistance gene; (E) respiratory 

infections, (F) tissue or wound infections, (G) urinary tract infections, and (H) bloodstream 

infections involving a strain carrying a plasmid of any lineage; and infections by (I) 

Enterobacterales and (J) Enterococcus spp. strains carrying a plasmid of any lineage. Outliers 

from each compared group were removed prior to plotting and statistical comparison. 

Significance was assessed by p-values, which are shown as not significant (ns), p < 0.05 (*), p < 

0.01 (**), p < 0.001 (***), or p < 0.0001 (****). 
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6.0 Discussion 

 In this study, we thoroughly characterized the genomics, epidemiology, and clinical 

burden of the horizontal transfer of plasmids among nosocomial bacterial pathogens within a 

tertiary hospital setting. We used bacterial whole-genome sequences and closed plasmid 

sequences from known bacterial outbreaks and likely events of healthcare-associated horizontal 

plasmid transfer to identify uniform thresholds of sequence similarity to infer the occurrence of 

transfer. We applied these thresholds to systematically resolve plasmids likely engaged in 

horizontal transfer from a large genomic dataset of clinical bacterial isolates from a single 

hospital system. By repurposing an algorithm designed to identify routes of bacterial 

transmission from hospital admission and patient EHR data, we identified dozens of potential 

routes of horizontal transfer of plasmids among nosocomial strains of different sequence types 

(STs), genomospecies, and/or genera. We also found evidence that the carriage of plasmids 

likely engaged in horizontal transfer by bacterial isolates was associated with greater clinical 

burden among patients with healthcare-associated infections (HAIs). 

Our study contributes to the fields of genomic epidemiology and hospital infection 

prevention in several ways. While the horizontal transfer of plasmids within healthcare settings 

has previously been described (26, 42, 43, 58, 73), the field has not previously proposed or 

established uniform thresholds of sequence similarity by which nosocomial plasmid transfer can 

be inferred. This study improves on prior studies (43, 58) by identifying and systematically 

applying thresholds of sequence content preservation and nucleotide identity that were drawn 

from evidence of horizontal or vertical inheritance of plasmids. Additionally, by using a large 

dataset of bacterial genomes collected for active surveillance of HAIs, we could draw 

conclusions about horizontal plasmid transfer regardless of the suspected occurrence of 
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outbreaks of bacterial pathogens. While many prior studies have described events of horizontal 

transfer within smaller groups of bacterial pathogens that are often implicated in outbreaks (26, 

42, 43, 58, 73), our methods enabled us to study plasmid transfer at a much larger scope and 

more systematically than previous studies. Furthermore, while these prior studies with case-

series designs have described individual cases of likely plasmid transfer, we systematically 

reviewed healthcare data associated with each genome in our dataset by using a data-mining 

algorithm. Because of this, we were able to quantify potential events and routes of horizontal 

plasmid transfer across an entire hospital system, providing more robust evidence about potential 

risk factors and interventions to prevent and control transfer. 

To our knowledge, no previously published study has investigated in as much detail the 

clinical burden that horizontal plasmid transfer imposes on hospitalized patients with nosocomial 

infections. While the contribution of plasmids to the severity of infections has previously been 

described (6, 69, 108), and horizontal transfer is well known to occur in hospitals (43, 59, 69, 70, 

74), our assessment of the scope, routes, and potential exacerbation of disease specifically linked 

to transfer of plasmids among infected patients contributes substantially to the field. As such, this 

study serves as a direct response to calls from the field to study this phenomenon in greater detail 

(30, 46, 59, 108).  

Among our findings, two observations of particular interest were the association between 

carriage of plasmids in resolved lineages and increased length of hospitalization among 1) 

patients with respiratory tract infections, and 2) patients who were co-infected with multiple 

bacterial strains that carried plasmids in lineages. These groups were of interest because of the 

apparent lack of difference in overall comorbidity among patients that were included or excluded 

from these groups, which indicated the potential existence of a clinical burden of horizontally 

https://www.zotero.org/google-docs/?58k5pk
https://www.zotero.org/google-docs/?jnh8Jj
https://www.zotero.org/google-docs/?jnh8Jj
https://www.zotero.org/google-docs/?j39gGi
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transferring plasmids that was not linked to patient comorbidity. Importantly, our statistical 

approach prevented us from establishing or refuting causality among any of the significant links 

we identified. Additionally, the genomic dataset used for this project was generated for studies of 

bacterial transmission rather than plasmid transfer, so key signs or factors of transfer might not 

have been detected as a result. We also did not explore other markers of disease severity, namely 

mortality of infected patients or measures of phenotypic drug resistance. Nonetheless, the 

number of significant associations related to carriage of horizontally transferred plasmids among 

bacterial HAIs calls for further study, both of the epidemiologic factors of transfer and of 

interventions designed to reduce the likely clinical burden that plasmid transfer imposes on 

infected patients. 

While we reported numerous potential shared exposures among patients that were likely 

affected by horizontal plasmid transfer, identifying exact routes by which transfer occurs in 

hospital settings remains challenging. Plasmids can be exchanged between bacterial strains by 

transformation and vesiduction, two mechanisms that do not require both the donor and recipient 

bacterial cells to be present in the same location at the same time (11, 30, 78). In addition to 

routes involving direct or indirect contact by patients, healthcare personnel, or other objects (48, 

67, 72), it has been proposed that plasmids can also disperse through hospitals through airborne 

particulate matter (78). Additionally, bacterial strains can carry and exchange multiple plasmids 

that may have similar gene cargo, which likely led to some overlap or double-counting of 

potential exposures of different plasmids shared among the same isolates in our study. 

Furthermore, plasmids can remain nearly identical while being exchanged among multiple 

clinical bacterial isolates (58), indicating that plasmid transfer between intermediate bacterial 

strains can occur with minimal effect on the sequence of the plasmid. These potential 

https://www.zotero.org/google-docs/?BA9HKc
https://www.zotero.org/google-docs/?lfg55N
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intermediate carriers of plasmids are difficult to identify without abundant sequencing of 

environmental isolates, which was not performed as part of this study. Studies of nosocomial 

plasmids that did include sequencing of environmental samples have identified potential 

intermediates of horizontal transfer (71), demonstrating the utility of these data. However, our 

ability to combine robustly characterized genomic data with detailed patient care records at a 

hospital-wide scale has provided valuable milestones to more precisely navigate this 

phenomenon.   

The selective advantages that plasmids often confer to pathogenic bacteria – namely 

antibiotic resistance, environmental persistence, and virulence – are well documented (108, 111). 

The plasmid lineages that we resolved – particularly the lineages for which we could identify 

potential shared exposures among affected patients – carried genes for many of these functions. 

Intriguingly, of the fourteen lineages that did not encode any known antibiotic resistance or 

metal resistance genes, the six lineages for which we could identify potential shared exposures 

were the only ones that carried virulence factors with functions not directly involved in the 

horizontal transfer of plasmids. However, not all of the plasmid lineages that we resolved carried 

genes known to confer any of these properties to their bacterial hosts. Most plasmid lineages also 

carried genes with a variety of metabolic functions, as well as numerous hypothetical open 

reading frames. While characterizing plasmid sequences can vary depending on the 

bioinformatic tools used for gene annotation, the substantial proportion of plasmids that did not 

encode functions with known direct clinical effects indicates that antibiotic resistance and 

virulence are not the only functions that necessitate their preservation by bacterial strains. 

This indication of potentially unknown drivers of horizontal plasmid transfer concurs with 

previously published results that the gene content of plasmids – and therefore the selective 

https://www.zotero.org/google-docs/?gdQwId
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advantages that they confer to bacterial pathogens – remains poorly understood and should 

therefore be studied in greater detail (112). 

Despite our attempts to perform this study with systematic methods in an unbiased 

manner, there were several limitations to our study design. First, the criteria for the collection of 

nosocomial bacterial strains excluded some well-known genera, e.g. Enterobacter spp.. 

Additionally, the collection of strains from some species and genera was limited by expression of 

antibiotic resistance, i.e. vancomycin-resistant Enterococcus spp. (VRE), extended-spectrum 

beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella spp., and methicillin-resistant 

Staphylococcus aureus. This introduced sampling bias among both our strains and the reference 

plasmids that were included in this study. Second, the diversity of reference plasmids used to 

resolve lineages was limited and likely biased, because the long-read sequencing and hybrid 

assembly that generated those reference plasmids was performed for previous studies that did not 

encompass the entire genomic dataset (50, 51, 59). As a result, there were likely a number of 

lineages that we failed to resolve because we lacked reference plasmids that were key to our 

methods to detect those lineages. Future studies in this field could correct this limitation by 

performing more active and systematic long-read sequencing and hybrid assembly of 

representative distributions of all nosocomial bacterial strains from a single hospital. Third, our 

analyses of length of hospital stay and patient comorbidity could have been confounded by other 

factors linked to patients’ infections rather than the infectious isolates’ plasmids – e.g. 

phenotypic antibiotic resistance, mutations or virulence factors present elsewhere in strains’ 

genomes, or coinfection by other bacterial strains not collected through EDS-HAT. Lastly, 

significantly enriched procedure charge codes and admission records were identified using an 

algorithm that used parameters developed to screen for evidence of bacterial transmission, rather 

https://www.zotero.org/google-docs/?Mk9Nyk
https://www.zotero.org/google-docs/?cMir7a
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than horizontal transfer; this retroactive approach was also not a full substitute for 

comprehensive outbreak investigations to confirm or refute potential routes of plasmid transfer. 

In conclusion, we have shown that the horizontal transfer of plasmids among bacterial 

pathogens that cause healthcare-associated infections is highly prevalent and may impose an 

additional unmet clinical burden upon patients suffering from nosocomial infections. We 

demonstrated the utility of developing and applying systematic methods to resolve plasmids from 

genomic data, as well as to identify potential routes of, and risk factors for, horizontal transfer in 

hospital settings. The fields of genomic epidemiology and hospital infection prevention can build 

upon our findings to further investigate horizontal transfer in clinical settings, to hopefully 

develop effective interventions that control the dissemination of antibiotic resistance, virulence, 

and other selective advantages among nosocomial bacterial pathogens. 
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7.0 Future Directions 

 The results of this study can serve as the basis for several avenues of future research, both 

in microbial genomics and in hospital epidemiology. Further genomic analyses of bacterial 

whole-genome sequences could focus on the similarity of plasmid sequences and gene content, 

to better refine thresholds based on which horizontal transfer between bacterial strains can be 

inferred. Similar approaches or philosophies could be applied to more accurately infer the 

horizontal transfer of other classes of MGEs (e.g. transposons and prophages). Broader use of 

long-read sequencing methods – namely PacBio and Oxford Nanopore technology – would 

resolve more mobile genetic elements within the context in which they exist and exchange in 

bacterial genomes. Additional characterizations of the functions of genes encoded on plasmids 

would provide greater insight into the selective advantages that they confer to the bacterial 

strains that carry them. 

 To further describe and analyze the horizontal transfer of plasmids in hospital settings, 

additional genomic and epidemiologic methods could be applied in future studies. First, active 

surveillance of nosocomial pathogens by culturing clinical isolates could be refined to minimize 

sampling bias, namely by not excluding strains based on genera or phenotypic antibiotic 

resistance profiles. This surveillance could be bolstered by collection and analysis of bacterial 

strains that colonize, rather than infect, hospitalized patients, as these isolates may serve as 

reservoirs for horizontal transfer (113). More widespread, unbiased use of long-read sequencing 

of clinical isolates would likely identify more lineages of MGEs that are exchanged in clinical 

settings. Supplemental culture-based genome sequencing or non-culture-based metagenomic 

sequencing of environmental samples – either as a proactive measure to identify plasmids or as a 

reactive measure to confirm or refute potential routes of HGT – would provide great 

https://www.zotero.org/google-docs/?475vxQ
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supplemental value to the study of nosocomial HGT. Additionally, monitoring for enriched 

recurrence of phenotypic markers of MGEs (namely antibiotic resistance), in addition to 

recurrence of species and STs, among bacterial isolates from infected patients, may help detect 

outbreaks of nosocomial MGEs exchanged by horizontal transfer. Importantly, incorporating 

these techniques into real-time investigations of secondary plasmid transmission would yield key 

insights into horizontal transfer that this study was not able to capture. 

To better understand the clinical burden imposed by horizontal plasmid transfer in 

hospitals, additional patient demographics such as age, sex, primary reasons for hospitalization, 

and diagnoses or known comorbidities could be examined in further detail. Analyses of more 

specific patient comorbidities – e.g. history of bacterial infection, immunodeficiency, etc. – may 

identify more specific mediators and moderators of the relationship between horizontally 

transferred plasmids and associated clinical burden. Additional measures of disease severity – 

including mortality, escalation of care, rates of readmission following discharge, and cost of care 

– would also provide value to these studies. 
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