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Abstract 

On Gains from Biomarker Optimization 

toward ROC-Related Targets in Real-Life Data 

 

Jian He, MS 

 

University of Pittsburgh, 2021 

 

Abstract 

 

 

In biomedical studies, it is often of interest to classify/predict a subject’s condition using a 

combination of multiple markers. With the introduction of additional markers, one could expect 

that the classification performance of a combined classification score is better than that of a single 

marker. However, this is not always the case. For example, the logistic regression combining two 

markers can be less discriminative than one of them. This phenomenon stems from the fact that 

logistic regression seeks to optimize a likelihood function that is not directly related to measures 

of classification performance. Because of these and other related problems, recent methods for 

marker development recommend matching the optimization targets to performance indices most 

relevant for the targeted application. Those optimization targets include the area under the curve 

(AUC), the partial AUC (pAUC) over a clinically relevant range, and the sensitivity at the lowest 

“tolerable” level of specificity.  

In this work, I investigated and implemented several distribution-free approaches to 

optimizing linear combinations of prostate cancer biomarkers for a screening task, which requires 

high specificity of the decision rule. The primary objective is to study gains from using task-

specific objective functions to optimize meaningful combinations of markers in a real-life dataset. 

The considered approaches range from combining markers sequentially with grid-search methods, 

up to combining multiple (more than 2) markers simultaneously using gradient-based optimization 

toward smooth approximations of classification-related objective functions.  



 v 

The results indicate that combinations of real-life biomarkers can benefit substantially from 

optimizing the objective function tailored for the targeted classification task. The same 

phenomenon, possibly to a lesser degree, can be expected from less interpretable non-linear 

classification approaches. These findings are important in the fields of public health and medicine 

as a targeted optimization of biomarker combinations can substantially improve the performance 

of the resulting decision rules in specific tasks, such as screening a large population or triaging 

patients with symptoms. 
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1.0 Introduction 

In practical applications, a single marker often has limited ability to correctly classify a 

subject’s condition (e.g., “diseased”/ “non-diseased”). Hence, it is often desirable to combine 

multiple markers for better discrimination accuracy. There are multiple rules for combining 

classification markers in the literature. We here focused on a class of rules that assign a scalar 

value called a “classification score” to each subject. Subjects with classification scores higher than 

a certain threshold are classified as potentially diseased (or “positive”), while subjects with lower 

scores are classified as potentially non-diseased (or “negative”). This is a rather flexible class of 

rules because a score can represent any mathematical combination of the input predictors. The 

linear combination is often used as one of the approaches to obtaining explicit and interpretable 

rules. Under this framework, specific marker combinations are obtained by optimizing different 

“objective measures/functions.” Optimizing a general objective function, such as logistic 

likelihood (i.e., the likelihood function of the logistic regression with “diseased” as an outcome), 

is one of the most traditional methods for constructing marker combinations. However, over the 

past decade, it has been increasingly recognized that practical classification tasks could greatly 

benefit from using objective functions related to the receiver operating characteristic (ROC) curve. 

In addition, optimization toward ROC-related objective functions instead of the model-based 

likelihood could be beneficial when the modeling assumptions are not fully verified (Pepe et al., 

2006). 

For a quantitative classification score, a standard classification rule is determined by 

dichotomizing the results into “positive” or “negative” at a threshold . Performance of a resulting 

classification rule is commonly characterized with sensitivity (also known as True Positive 
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Fraction, or 𝑇𝑃𝐹()) and specificity (which is a complement of False Positive Fraction, or 1 −

𝐹𝑃𝐹()). The ROC curve, a plot of 𝑇𝑃𝐹() against 𝐹𝑃𝐹() for all values of threshold , is a 

graphical device characterizing the classification performance of a quantitative marker or a 

classification score. A single ROC can be denoted as 𝑇𝑃𝐹|𝑓𝑝𝑓 , with threshold  being implicit. 

The area under the ROC curve (AUC), a popular summary index of the overall classification 

performance, reflects the probability of correct discrimination between diseased and non-diseased 

subjects and ranges from 0.5 and 1 for reasonable classification scores. 

Pepe et al. (2006) demonstrated that markers’ combinations maximizing AUC, as opposed 

to logistic likelihood, could lead to a substantially more discriminative classification score. Yet, 

aside from specific artificial examples, it is impossible to obtain a uniformly superior ROC curve 

for a linear combination of markers (Anderson and Bahadur, 1962). Thus, the ROC curve of an 

AUC-maximizing combination can be locally lower than the ROC curve for another linear 

combination. More specifically, combining markers to maximize AUC can result in suboptimal 

characteristics for specific practical applications, such as the task of screening a large population 

for rare diseases. 

In the example mentioned, limited resources, combined with the intent to spare healthy 

people of unnecessary procedures, drive the requirement for high specificity (e.g., the national 

benchmark for the abnormal interpretation rate in screening mammography is approximately 10%, 

Lehman et al., 2017). Thus, a clinically relevant combination of markers would aim at improving 

sensitivity levels of the resulting classification score at the thresholds that lead to high specificity 

(e.g., 90% or higher). A straightforward approach to constructing relevant classification scores is 

using part of the ROC curve over the high-specificity region (i.e., 𝜉:𝐹𝑃𝐹(𝜉) ≤ 0.1) as an objective 

function for optimization (e.g., Wang and Chang, 2011; Komori and Eguchi, 2010). Due to the 
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monotonicity of the ROC curve, one of the most natural objective functions is sensitivity at the 

minimum tolerable specificity, or 𝑇𝑃𝐹|𝑓𝑝𝑓  (e.g., Meisner et al., 2017). For example, marker 

combinations that maximize 𝑇𝑃𝐹|𝑓𝑝𝑓=0.1 are designed to achieve the maximum sensitivity while 

constraining specificity to the > 90% range.  

The gains in sensitivity achieved by using a task-specific objective function, 𝑇𝑃𝐹|𝑓𝑝𝑓=0.1, 

instead of a global classification-oriented AUC, for combining markers can be substantial (Bandos 

and Gur, 2017). This can be illustrated with a simple theoretical example of two conditionally 

independent markers 𝑇1  and 𝑇2  ( 𝑇1 ⊥ 𝑇2|𝐷 , where 𝐷 = 0,1, indicates a disease status), with 

normally distributed values for diseased and non-diseased subpopulations (i.e., 

𝑇𝑖 |𝐷~𝑁(𝜇𝐷𝑖
, 𝜎𝐷𝑖

2 )). Figure 1 shows the ROC curves for classification scores based on the linear 

combinations of such markers (i.e., for U=𝛽`T) where different 𝛽’s were selected to maximize 

𝑇𝑃𝐹|𝑓𝑝𝑓=0.1 or AUC of the resulting classification score U. Without loss of generality, values of 

both markers for the non-diseased subpopulation were modeled by a standard normal distribution 

(i.e., 𝑠. For the diseased subpopulation, values of the markers followed the normal distribution 

with the parameters leading to AUCs of 0.65 and 0.75, namely, 𝑇1|𝐷 = 1~𝑁(1.96,25) and 

𝑇2|𝐷 = 1~𝑁(0.69,0.04), respectively. The coefficients of the linear combination maximizing 

AUC (i.e., 𝛽𝐴𝑈𝐶 ) were computed using the available exact solution (Su and Liu, 1993).  The 

coefficients of linear combination maximizing 𝑇𝑃𝐹|𝑓𝑝𝑓=0.1 (i.e., 𝛽𝑇𝑃𝐹 ) were found using grid 

search based on the known distribution parameters. The ROC curves and related summary indices 

for the resulting combinations were determined by the closed-form solutions for the “binormal” 

markers (Zhou et al., 2011).  

The ROC curves in Figure 1 demonstrate that by directly targeting 𝑇𝑃𝐹|𝑓𝑝𝑓=0.1 the given 

markers can be combined to achieve 𝑇𝑃𝐹|𝑓𝑝𝑓=0.1 = 0.57, whereas the combination maximizing 
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AUC offers substantially lower level of sensitivity in the targeted range of specificity 

(𝑇𝑃𝐹|𝑓𝑝𝑓=0.1 = 0.26). The coefficients of the two combinations are substantially different, i.e. 

(𝛽𝑇𝑃𝐹 = (0.84,0.54) versus 𝛽𝐴𝑈𝐶 = (0.11,0.99), indicating a large difference in the needs of the 

two objective functions even in this simple example. The gains and differences in the real-life data 

could be even more substantial. However, in contrast to the theoretical example, the corresponding 

investigation, which primarily centers around studying the gains from using the TPF-based 

objective function in the real-life data of finite size, are complicated by the need to account for 

sampling variability and related phenomena.  

The remainder of this work is organized as follows. In Section 3, we introduce procedures 

for optimizing combinations of markers toward the two task-specific objective functions, namely 

AUC and 𝑇𝑃𝐹|𝑓𝑝𝑓 . The results from optimization toward different objective functions in the real-

life dataset are compared with each other and with the results from lasso, ridge regression, and 

random forests in Section 4. We summarize and discuss the key findings in Section 5. The next 

section focuses on the description of the prostate cancer dataset and the presentation of the results 

from a descriptive analysis of the data. 

 

Figure 1 The ROC curves for the theoretical marker combinations 𝜷`𝑻 optimizing the true 𝑻𝑷𝑭|𝒇𝒑𝒇=𝟎.𝟏 (𝜷 =

(𝟎. 𝟖𝟒, 𝟎. 𝟓𝟒), AUC=0.68, 𝑻𝑷𝑭|𝒇𝒑𝒇=𝟎.𝟏 = 𝟎. 𝟓𝟕) and optimzing the true AUC (𝜷 = (𝟎. 𝟏𝟏, 𝟎. 𝟗𝟗), AUC=0.78, 

𝑻𝑷𝑭|𝒑𝒇=𝟎.𝟏 = 𝟎. 𝟐𝟔). 



 5 

2.0 Dataset: Prostate Cancer Biomarkers 

We explored the possible real-life gains from optimizing marker combinations toward 

screening-oriented performance (i.e., maximum sensitivity for high-specificity decisions) with 

examples of biomarkers for prostate cancer. We used data on quantitative biomarkers obtained in 

the protein mass spectrometry study (Yasui, et al., 2003), which had been used in a work on 

combining markers to maximize the area under the ROC curve, or AUC (Pepe et al., 2006; FHCR, 

DABS/datasets). The dataset contains values of 15 pre-processed protein biomarkers for 167 serum 

samples of different patients with verified prostate cancer and 81 men without cancer (Pepe et al., 

2006). We note that this is an illustrative dataset that contains a selected set of biomarkers, not all 

of which are necessarily important for distinguishing between cancer and non-cancer patients. This 

dataset, however, presents a wide spectrum of biomarkers’ classification characteristics that can 

be encountered in practice. 

Table 1 summarizes the basic classification-related characteristics of each of 15 

biomarkers, with individual ROC curves for detecting cancer samples illustrated in Figure 2. Four 

of fifteen biomarkers (i.e., v30, v182, v354, and v365) had a smaller median value in cancer 

patients than in non-cancer patients (and would have resulted in empirical AUCs < 0.5). Without 

loss of generality for the current investigation of marker combinations, low values of these markers 

were used to indicate the presence of cancer (which results in all empirical AUCs > 0.5).  For the 

other biomarkers, high values were considered indicative of the presence of cancer.  

Four of fifteen biomarkers (v30, v182, v365, and v426) were not univariately significant 

for discriminating between cancer and non-cancer patients (AUC from 0.51 to 0.56, with all p-

values > 0.09). One biomarker, v427, with a fair discrimination ability (AUC = 0.58, with 95% 
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CI: 0.51-0.65) was not statistically significant within the framework of evaluating fifteen distinct 

biomarkers (p = 0.03). Other ten biomarkers (v93, v354, v509, and those with higher numbers) 

had at least moderate and statistically significant ability to discriminate between serum samples 

with and without prostate cancer (AUC from 0.63 to 0.73, all p-values < 0.001). We note, however, 

regardless of the univariate significance any of the fifteen biomarkers can be significant 

contributors to the performance of a combination of multiple biomarkers (Bansal and Pepe, 2013). 

Thus, all fifteen biomarkers would be considered in further investigation of multi-marker 

combinations. 

At the initial stages of constructing multi-marker combinations, individual biomarkers are 

often ordered by the level of their individual performance. A standard approach in statistics is to 

order biomarkers by the p-values from logistic regression (with prostate cancer as an outcome). 

Whereas a general classification-oriented approach is to order biomarkers according to the p-

values of the test for the null hypothesis that AUC is equal to 0.5 (e.g., based upon Delong et al., 

1988). In our dataset, biomarkers significant under the logistic regression formed a subset of non-

trivial biomarkers. For biomarkers v93, v354, and v530, the p-values from the logistic regression 

were 0.45, 0.73, and 0.37, respectively, whereas all corresponding AUC-based p-values were less 

than 0.001). This observation echoes the phenomenon illustrated by Pepe et al. (2006) and 

highlights the importance of using classification-oriented measures to identify and combine 

biomarkers. 

Testing for statistical significance of AUC is theoretically sufficient to identify non-trivial 

markers (Pepe et al., 2013). However, this approach is not uniformly most powerful, and the 

relative importance of individual markers for some specific classification tasks could differ from 

their discrimination ability.  For example, among ten individually non-trivial biomarkers, the most 
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promising for screening was the marker v354 (AUC = 0.68; 95 % CI: 0.61-0.74) with empirical 

𝑇𝑃𝐹|𝑓𝑝𝑓=0.1 = 0.44, whereas the most discriminative marker v831 (AUC = 0.73; 95 % CI: 0.66-

0.79) had empirical 𝑇𝑃𝐹|𝑓𝑝𝑓=0.1 = 0.40. (We note, however, that for the current dataset there was 

no statistically significant difference in classification accuracy of biomarkers v354 and v831, p = 

0.12 for the difference in AUCs.) Discrepancies in the relative importance of individual biomarkers 

for the overall discrimination and screening tasks, indicate a high potential for substantial 

differences in the composition and weights of combinations maximizing 𝑇𝑃𝐹|𝑓𝑝𝑓  versus AUC. 

As shown in Figure 2, the ROC curves of the considered prostate cancer biomarkers span a wide 

spectrum of shapes, including curves that correspond to theoretical scenarios where a large gain 

from the targeted optimization can be expected (e.g., Figure 1).  

 

Figure 2 The ROC curve for each biomarkers in the prostate cancer dataset. 
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Table 1 Estimated characteristics of individual biomarkers (for 167 cancer and 81 non-cancer serum 

samples). 

Biomarkers* 

Median value p-value AUC TPF|fpf=0.1 pAUC(0,0.1) 

non-cancer cancer 
(logistic 

regression) 
 (†p-value)  (‡p-value)  (§p-value) 

v182** -0.07 -0.1 0.548 
0.51 

(0.846) 
0.012 

(<0.001) 
0.001  

(<0.001) 

v30* 0.47 0.44 0.697 
0.54 

(0.379) 
0.042 
(0.073) 

0.002 
(0.0298) 

v426 -0.15 -0.14 0.777 
0.54 

(0.326) 
0.192 
(0.045) 

0.01 
(0.267) 

v365* -0.08 -0.12 0.382 
0.56 

(0.095) 
0.174 
(0.172) 

0.01 
(0.232) 

v427 0.24 0.26 0.246 
0.58 

(0.031) 
0.246 
(0.003) 

0.015 
(0.079) 

v509 -0.31 -0.29 <0.001 
0.63 

(<0.001) 
0.293 

(<0.001) 
0.021 
(0.001) 

v93 0.19 0.29 0.449 
0.64 

(<0.001) 
0.036 
(0.304) 

0.001 
(0.009) 

v354*(best TPF) 0.48 0.29 0.725 
0.68 

(<0.001) 
0.437 

(<0.001) 
0.038 

(<0.001) 

v530 -0.39 -0.31 0.371 
0.69 

(<0.001) 
0.072 
(0.443) 

0.004 
(0.567) 

v653 -0.46 -0.42 <0.001 
0.7 

(<0.001) 
0.389 

(<0.001) 
0.03 

(<0.001) 

v652 -0.46 -0.42 <0.001 
0.71 

(<0.001) 
0.389 

(<0.001) 
0.031 

(<0.001) 

v637 -0.46 -0.41 0.033 
0.71 

(<0.001) 
0.395 

(<0.001) 
0.021 
(0.045) 

v741 -0.48 -0.43 <0.001 
0.72 

(<0.001) 
0.395 

(<0.001) 
0.031 

(<0.001) 

v877 -0.48 -0.43 <0.001 
0.72 

(<0.001) 
0.401 

(<0.001) 
0.031 

(<0.001) 

v831(best AUC) -0.48 -0.43 <0.001 
0.73 

(<0.001) 
0.401 

(<0.001) 
0.032 

(<0.001) 
 

 

* presented in an ascending order by the empirical AUC. 
† Non-parametric asymptotic test for H0: AUC=0.5. 
‡ Non-parametric asymptotic test for H0: TPF|fpf=0.1=0.1. 
§ Non-parametric asymptotic test for H0: pAUC(0,0.1)=0.005. 
** Biomarkers with low values (empirically) more indicative for cancer. These are transformed for computing AUC. 
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3.0 Methodology 

3.1.1 Biomarker Combinations Maximizing Empirical Objective Functions 

We assume that p biomarkers 𝑿 = (𝑿𝟏, … , 𝑿𝒑)  are available for every subject. For 

notational convenience, we use 𝑿1𝑖 to denote the vector of values of p markers for the 𝑖𝑡ℎ diseased 

subject (𝑖 = 1, . . . , 𝑛1) and 𝑿0𝑗 denote the vector of values of the same p markers for the 𝑗𝑡ℎ non-

diseased subject (𝑗 = 1, … , 𝑛0).  

We are interested in estimating the coefficients of the linear combination of biomarkers, 

𝑼 = 𝛽𝑇𝑿, that maximize a given objective function. For combination maximizing AUC, we are 

searching for  

 𝛽0 = arg 𝑚𝑎𝑥 
𝛽∈𝚩

𝐴𝑈𝐶(𝛽),   

where 𝚩 = {𝛽 ∈ ℛ𝑝: ‖𝛽‖ = 1} and 𝐴𝑈𝐶 = 𝑃(𝛽𝑇𝑿1 > 𝛽𝑇𝑿0). The restriction of the vectors of 

combination coefficients to a sphere resolves the identifiability problem with maximizing ROC-

related targets (since the ROC curve is invariant with respect to monotone transformations of the 

classification score).  

For practical purposes, it is natural to replace the unknown true AUC with its empirical 

estimate (e.g., Pepe et al., 2006), which for continuous biomarkers can be formulated as follows: 

  𝐴𝑈�̂� = ∑ ∑ 𝐼(𝛽𝑇𝑿1𝑖 > 𝛽𝑇𝑿0𝑗)
𝑛1
𝑖=1

𝑛0
𝑗=1 . (1) 

Equation (1) then leads to the following formulation of the estimate for the combination 

coefficients, 
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�̂� = arg 𝑚𝑎𝑥 
𝛽∈𝚩

1

𝑛0𝑛1
∑ ∑ 𝐼(𝛽𝑇𝑿1𝑖 > 𝛽𝑇𝑿0𝑗)

𝑛1

𝑖=1

𝑛0

𝑗=1

. 
(2) 

The estimation of the combination coefficients is straightforward when only a few biomarkers are 

being considered. For combining two biomarkers, a nonparametric estimate of 𝛽0 can be obtained 

by conducting a single-parameter grid search over a bounded set of the polar angle 𝛾 ∈ (0,360°], 

which defines the vector of coefficients as 𝛽1 = 𝑐𝑜𝑠 (γπ/180°) and 𝛽2 = 𝑠𝑖𝑛(𝛾𝜋/180°) . For 

combining multiple (>2) biomarkers, either the sequential incorporation can be done using a grid 

search, or multiple biomarkers can be combined simultaneously by using gradient-based methods 

or other multivariable techniques. The latter, however, requires the use of smooth object functions 

(e.g., smooth approximations to the empirical ROC indices, which will be described in Section 

3.1.2). 

Once the combination coefficients are estimated, the corresponding classification score, 

𝑼 = 𝛽𝑇𝑿, can be constructed and evaluated. For example, we can estimate the classification 

score’s overall discrimination ability with 𝐴𝑈�̂�(�̂�) obtained according to equation (1). However, 

such an estimate would be too optimistic because using the same data for training and testing 

would result in a positive bias (“optimism”). The unbiased estimate of classification performance 

can be obtained from validation data (testing set) which are independent of the data used for 

estimating the marker combination (training set). Splitting data into fixed training and testing sets 

is, however, often impractical for datasets with small sample sizes. 

Cross-validation can be used to obtain a less biased estimate for 𝐴𝑈𝐶(�̂�) from the same 

dataset. The standard K-fold cross-validation procedure splits data 𝑿 = (𝑿1, 𝑿0) into 𝑘  parts. 

(folds) {𝑿𝑓 = (𝑿0
𝑓

, 𝑿1
𝑓

)}
𝑓=1

𝑘
 , and uses the 𝑓’s fold, 𝑿𝑓 , as the testing set for the combination 
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coefficients estimated on the rest of the data (𝑿(−𝑓)). The most standard cross-validated estimate 

of AUC can then be formulated as follows: 

 

𝐴𝑈𝐶(𝐶𝑉) =
1

𝑛0𝑛1
∑ ∑ ∑ 𝐼(�̂�(−𝑓)𝑇𝑿1𝑖

𝑓
> �̂�(−𝑓)𝑇𝑿0𝑗

𝑓
)

𝑖𝑗

𝑘

𝑓=1

, 
(3) 

where 𝑖 and 𝑗 enumerate subjects within fold 𝑓, and �̂�(−𝑓) is derived according to equation (2) on 

data without the 𝑓𝑡ℎ fold. The estimator in (3) pools the fold-specific data to compute a single 

empirical AUC. An alternative approach is to compute the fold-specific empirical AUCs and use 

their average as an overall cross-validated estimate. The first “pooled” estimator is often associated 

with a negative bias (i.e., overcompensates the bias of re-substitution estimates), while the average 

estimate has substantial variability (Airola, et al., 2011), especially when individual folds have 

small size. We will focus on the pooled cross-validation estimation due to its higher precision, 

while using the average estimator for verifying the magnitude of the pooling-related bias. 

The same general approach can be extended to estimate the biomarker combination that 

maximize other ROC-related objective functions, such as 𝑇𝑃𝐹|𝑓𝑝𝑓 , which is an ROC index 

especially relevant for evaluating classification scores designed for screening a large population. 

For any fixed 𝑡 ∈ (0,1), we consider 

 (𝛽𝑡 , 𝜉𝑡) = arg 𝑚𝑎𝑥 
(𝛽,𝜉)∈𝛀𝐭

𝑇𝑃𝐹(𝛽, 𝜉),  

where Ω𝑡 = {𝛽 ∈ ℛ𝑝, 𝜉 ∈ ℛ: ‖𝛽‖ = 1, 𝐹𝑃𝐹(𝛽, 𝜉) ≤ 𝑡}. For practical implementation, we replace 

the unknown 𝑇𝑃𝐹 and 𝐹𝑃𝐹 characteristics by their empirical estimates, 

𝑇𝑃�̂�(𝛽, 𝜉) =
1

𝑛1
∑ 𝐼(𝛽𝑇𝑿1𝑖 > 𝜉)𝑛1

𝑖=1 , 𝐹𝑃�̂�(𝛽, 𝜉) =
1

𝑛0
∑ 𝐼(𝛽𝑇𝑿0𝑗 > 𝜉)

𝑛0
𝐽=1 . 

and then define 

 (𝛽�̂� , �̂�𝑡) = arg 𝑚𝑎𝑥 
(𝛽,𝜉)∈�̂�𝑡,𝑛0

𝑇𝑃�̂�(𝛽, 𝜉),  (4) 
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where �̂�𝑡,𝑛0
= {𝛽 ∈ ℛ𝑝, 𝜉 ∈ ℛ: ‖𝛽‖ = 1, 𝐹𝑃�̂�(𝛽, 𝜉) ≤ 𝑡}. 

3.1.2 Smooth Approximations to the Empirical ROC Indices 

So far, we have focused our discussion on optimizing linear combinations of two markers 

toward the empirical ROC indices using a simple grid search, which does not require a smooth 

objective function. Since the simultaneous grid search for a combination of more than two or three 

markers is computationally difficult, a sequential approach by adding one marker at a time may be 

considered (Pepe and Thompson, 2000). However, as a greedy algorithm it can often result in 

suboptimal global solutions. This problem is commonly addressed by developing a smooth 

approximation to the desired empirical objective function and applying a simultaneous gradient-

based search for optimal combination coefficients. 

For the AUC-based optimization of biomarker combinations, Fong et al., 2016, proposed 

the smoothed AUC (SAUC) method that is based upon a smooth approximation to the indicator 

function in equation (1), namely 𝐼(𝑤 > 0) ≈ Φ(𝑤/𝑠), where Φ is the cumulative distribution 

function (or CDF) of the standard normal distribution and 𝑠 is a tuning parameter that controls the 

level of smoothing (Lin, et al., 2011). The corresponding vector of optimal combination 

coefficients can be formulated accordingly: 

 

𝛽 = arg 𝑚𝑎𝑥 
𝛽∈𝚩

1

𝑛0𝑛1
∑ ∑ Φ(𝛽𝑇(𝑿1𝑖 − 𝑿0𝑗)/𝑠)

𝑛1

𝑖=1

𝑛0

𝑗=1

, 
(5) 

where 𝚩 = {𝛽 ∈ ℛ𝑝: ‖𝛽‖ = 1} . Certain considerations, including the choices of the tuning 

parameter 𝑠  and the starting value 𝛽  for procedure (5), need to be addressed before the 
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implementation of any gradient-based optimization. 𝑠 = �̃�𝑛−1 2⁄  is suggested by Meisner et al. 

(2017), where �̃� is the sample standard error of 𝛽𝑇𝑿 and 𝑛 is the total sample size. 

A similar procedure can also be applied to the indicator functions involved in equation (4) 

to construct the smooth approximations to the empirical TPF and FPF as follows: 

𝑇𝑃�̃�(𝛽, 𝜉) =
1

𝑛1
∑ Φ (

𝛽𝑇𝑿1𝑖−𝜉

𝑠
)

𝑛1
𝑖=1 , 𝐹𝑃�̃�(𝛽, 𝜉) =

1

𝑛0
∑ Φ (

𝛽𝑇𝑿0𝑗−𝜉

𝑠
)

𝑛0
𝐽=1 . 

The above smooth approximations allow the use of gradient-based optimization, which can then 

be used to compute 

 (�̃�𝑡 , 𝜉𝑡) = arg 𝑚𝑎𝑥 
(𝛽,𝜉)∈𝛀 ̃𝑡,𝑛0

𝑇𝑃�̃�𝑛1
(𝛽, 𝜉),  

where 𝛀 ̃𝑡,𝑛0
= {𝛽 ∈ ℛ𝑝, 𝜉 ∈ ℛ: ‖𝛽‖ = 1, , 𝐹𝑃�̃�(𝛽, 𝜉) ≤ 𝑡}. These steps outline the multi-layer 

approximation which is necessary for the implementation of gradient-based algorithms to achieve 

simultaneous optimization. The complexity of the approximation might affect the performance of 

the resulting estimates, especially for small sample sizes. Thus, in the conducted investigation of 

multi-marker combinations, we consider the estimates obtained by both grid search and gradient-

based optimization. 

3.1.3 Considered Methods for Combining Multiple Markers 

A part of this work centers around the performance comparison across several standard 

approaches to optimizing the linear combinations of multiple (up to all fifteen) biomarkers in the 

dataset. We categorize the considered approaches for such an optimization problem into two 

general classes of methods: the sequential incorporation of biomarkers and the simultaneous 

optimization of all 15 biomarkers. The sequential approaches allow the use of the grid search 

method, which can deal with non-smooth objective functions but gives rise to suboptimal solutions 
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more often than the gradient-based method does. The simultaneous approaches, on the other hand, 

typically require differentiable objective functions, thereby necessitating the use of smooth 

approximations to ROC indices in our investigation, which might lead to suboptimal performance 

of the resulting classification score in terms of ROC measures. 

Within the class of sequential approaches, we consider sequentially adding individual 

biomarkers to the existing linear combination based on p-values from logistic regression, empirical 

AUC, and empirical 𝑇𝑃𝐹|𝑓𝑝𝑓 . This procedure of forward selection does not stop until the p-value 

is less than 0.05 or there is no improvement in the corresponding ROC measures. Within the class 

of simultaneous approaches, we consider likewise the general likelihood-based methods as well as 

classification-oriented ones. Lasso and ridge regression are regression methods that perform both 

variable selection and regularization to enhance classification performance and interpretability of 

the classifiers they produce. SAUC and maxTPR estimate linear combinations of biomarkers by 

maximizing the smooth approximations to the empirical estimates of AUC and 𝑇𝑃𝐹|𝑓𝑝𝑓  

(described in Section 3.1.1). Lastly, the result of random forests (R package “RandomForest”, 

v.4.6-13; Liaw and Weiner, 2002), which combine all fifteen biomarkers in a non-linear manner, 

is used as a benchmark of the achievable classification performance by an optimized classifier.  
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4.0 Application to the Dataset of Prostate Cancer Biomarkers 

We used the dataset of prostate cancer biomarkers (described in Section 2) to investigate 

possible real-life gains in classification performance from maximizing general and classification-

related objective functions. We first analyzed combinations of 105 pairs of biomarkers optimized 

toward logistic regression, AUC, and 𝑇𝑃𝐹|𝑓𝑝𝑓 . The maximum likelihood approach was used for 

optimizing logistic likelihood, while the grid search method was applied to optimization toward 

empirical AUC and 𝑇𝑃𝐹|𝑓𝑝𝑓  and their smooth approximations. We then extended our 

investigation into combinations of multiple biomarkers, where we used the grid search method to 

sequentially construct the combinations maximizing the empirical ROC indices as well as the 

gradient-based method to simultaneously determine the linear combinations of all 15 biomarkers 

maximizing the smooth approximations to the corresponding ROC indices. Finally, we used a 

method of random forests to combine all 15 biomarkers non-linearly to access the extent of 

depreciation in classification performance resulting from more interpretable linear combinations. 

4.1.1 Combinations of Two Biomarkers 

4.1.1.1 Maximizing AUC versus Logistic Likelihood 

Due to the lack of a perfectly correct model, optimization of a linear combination of 

biomarkers toward AUC instead of likelihood can lead to a more accurate classification score 

(Pepe et al., 2006). We analyzed the frequency and magnitude of non-trivial improvements in the 

real data using pairwise linear combinations of 15 biomarkers for prostate cancer (105 pairs 

overall), optimized using a simple grid search and the maximum likelihood approach for AUC and 
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logistic likelihood, respectively. Figure 3 demonstrates that, as expected in training data, the 

biomarkers’ combinations that maximize AUC always achieve better classification performance 

in terms of empirical AUCs (EAUCs) than those that maximize the logistic likelihood.  

 

Figure 3 The training EAUCs of the biomarker pairwise combinations maximizing the EAUC versus logistic 

likelihood. 

Many of the resulting differences in EAUCs were nontrivial and could be substantial (e.g., 

the biomarker pairs, v182&v530, v509&v637). In each of the two examples shown in Figure 4, 

comparing to logistic likelihood, maximizing AUC directly led to gains in EAUC of 0.19 and 0.18, 

respectively. We also note that, in both examples, maximizing the logistic likelihood yielded a 

classification score with poorer discrimination ability than that of a single component marker 

(EAUCs: 0.51 for v182&v530 and 0.63 for v509&v637 versus 0.69 for v530 and 0.71 for v637). 
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The same pairs of biomarkers had been discussed in the work by Pepe et al. (2006). Many other 

pairs with substantial gains from optimization toward AUC could be identified. The current work 

does not aim to identify all instances with substantial gains from optimizing toward AUC instead 

of logistic likelihood, but rather to explore the major trends and notable features of biomarkers’ 

performance that can benefit from the targeted optimization. Figure 3 illustrates that the largest 

gains from optimizing toward AUC occurred when the empirical AUC from the logistic-regression 

score was close to 0.5, however, quite substantial gains persisted for AUCs larger than 0.7. The 

examples shown in Figure 4 demonstrate that substantial gains occurred for biomarkers with 

irregularly shaped ROC curves (e.g., partially below the diagonal) as well as for biomarkers with 

nearly concave ROC curves. 

 

Figure 4 The training ROC curves of the combinations of the selected biomarker pairs maximize the EAUC 

versus logistic likelihood. 

* Top left plot shows the ROC curve for the reversed values of biomarker v182. 
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The gains demonstrated in Figure 3 were, however, somewhat optimistic, as the same data 

was used for estimating the biomarker combinations (i.e., “training”) and estimating their 

classification performance (i.e., “testing”). To adjust for the optimism of these re-substitution 

estimates, we implemented a 10-fold cross-validation procedure described in Section 3. Figure 5 

shows the cross-validated estimates of EAUC from logistic regression and direct optimization 

(toward AUC; thereby representing the bias-adjusted version of Figure 3). In contrast to Figure 3, 

some points in Figure 5 lay below the diagonal indicating that in rare instances logistic regression 

led to marker combinations that had higher testing AUC than those maximizing the empirical AUC 

in the training sample. However, most points were above the diagonal, suggesting prevailing gains 

from the AUC optimization. 

 

Figure 5 The cross-validated EAUCs of the biomarker pairwise combinations maximizing the EAUC versus 

logistic likelihood. 
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Interestingly, points in Figure 5 were overall located higher above the diagonal than those 

in Figure 3. For example, for a pair of biomarkers, v509&v637, the decrease due to cross-

validation was larger for the combination maximizing the logistic likelihood (0.05 = 0.63 − 0.58) 

than for those maximizing the EAUC (0.02 = 0.81 − 0.79), thereby resulting in a larger estimate 

of the gain (i.e., the difference in EAUCs of 0.21, p < 0.001). 

 

Figure 6 The cross-validated ROC curves of the combinations of the selected biomarker pairs maximizing the 

EAUC versus logistic likelihood. 

* Top left plot shows the ROC curve for the reversed values of biomarker v182. 

As evident from Figures 4 and 5, the shapes of the cross-validated ROC curves for the 

combinations of the selected biomarker pairs remained like the training estimates, even though 

their numeric levels demonstrated larger gains from the targeted optimization. For both pairs, the 

classification scores based on the logistic regression resulted in smaller AUCs than that for a single 
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biomarker (0.47 for the combination versus 0.69 for v530 alone, p < 0.001, and 0.58 for the 

combination versus 0.71 for v637 alone, p = 0.006). 

4.1.1.2 Maximizing a Smooth Approximation to AUC 

For later assessments of the gradient-based method, we also examined the performance of 

pairwise biomarker combinations that maximize a smooth approximation to AUC (described in 

Section 3.1.1). We compared the results for the objective function in the form of a smooth 

approximation to AUC (SAUC) with those for EAUC (which we previously considered in Figures 

3, 4, 5, and 6). Figure 7 demonstrates that there was no substantial difference between the training 

EAUCs achieved by the two methods across the 105 pairs of biomarkers. Figure 8 illustrates the 

training ROC curves for the combinations of the previously considered pairs of biomarkers, 

v182&v530 and v509&v637, optimized toward SAUC and EAUC. In both cases, the ROC curves 

are almost identical. 

 

Figure 7 The training EAUCs of the biomarker pairwise combinations maximizing the SAUC versus EAUC. 
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Figure 8 The training ROC curves of the combinations of the selected biomarker pairs maximizing the SAUC 

versus EAUC (the training EAUCs are situated next to the curves). 

 

Figure 9 The cross-validated EAUCs of the biomarker pairwise combinations maximizing the SAUC versus 

EAUC. 
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Figure 10 The cross-validated ROC curves of the combinations of the selected biomarker pairs maximizing 

the SAUC versus EAUC (the cross-validated EAUCs are situated next to the curves). 

The cross-validated results shown in Figures 9 demonstrate a fractional advantage of 

optimization toward EAUC instead of SAUC, especially when AUC > 0.8. We note that for 

previously considered pairs of markers (v182&v530 and v509&v637), the cross-validated ROC 

curves remained almost the same (Figure 10).  

The results illustrated in Figures 7-10 indicate that the standard smooth approximation of 

AUC performed generally well for combining two biomarkers. However, there was a potential for 

suboptimal results when the empirical AUC of the resulting classification score was greater than 

0.8. This problem could be exacerbated in the task of combining more than two biomarkers. We 

considered the results of combining multiple biomarkers in Section 4.1.3. 

4.1.1.3 Maximizing 𝑻𝑷𝑭|𝒇𝒑𝒇 versus AUC 

Aside from specific theoretical examples, there is no single linear combination of 

biomarkers that has a uniformly highest ROC curve (Anderson and Bahadur, 1962). Optimizing a 

linear combination of markers directly toward 𝑇𝑃𝐹|𝑓𝑝𝑓  instead of AUC can result in a 
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classification score with substantially better 𝑇𝑃𝐹|𝑓𝑝𝑓 , at least theoretically (e.g., Figure 1). To 

evaluate the real-life trends and magnitude of non-trivial improvements in 𝑇𝑃𝐹|𝑓𝑝𝑓 , we considered 

pairwise linear combinations of 15 biomarkers for prostate cancer (105 pairs overall) optimized 

using a simple grid search toward the empirical AUC (EAUC) and empirical 𝑇𝑃𝐹|𝑓𝑝𝑓=0.1 (ETPF). 

Figure 11 demonstrates the training estimates of gains in ETPF for the 105 pairs of 

biomarkers. As is expected in training data, combinations that maximize ETPF always achieves 

higher ETPF than the same biomarkers’ combinations that maximize EAUC. Many of the 

substantial gains occurred in scenarios where the AUC-maximizing combinations resulted in the 

ROC curves with a non-concave region (“improperness,” Pan and Metz, 1997) in the range of 

small fpf values. Moreover, substantial gains in TPF happened in cases where the AUC-

maximizing combinations achieved ETPF close to 0.5. 

The above two types of scenarios are illustrated in Figure 12 for the pairs of biomarkers 

v354&v530 and v354&v637. Figure 12 shows the ROC curves for the individual biomarkers and 

their combinations maximizing EAUC and ETPF. The biomarker pair, v354&v530, illustrates the 

scenario where the EAUC-maximizing linear combination results in an empirical ROC curve 

residing below the diagonal line in the range of small fpf values. Under such a scenario, optimizing 

the biomarker combination directly toward ETPF gives rise to a rather substantial gain (increasing 

ETPF from 0.04 to 0.48). The biomarker pair, v354&v637, illustrates another scenario where the 

empirical ROC curves of both combinations are almost proper in the range of interest, however, 

optimization directly toward ETPF leads to a sizable gain by sacrificing performance outside of 

the range of interest (increasing ETPF from 0.39 and 0.58).  
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Figure 11 The training ETPFs of the biomarker pairwise combinations maximizing the ETPF versus EAUC. 

 

Figure 12 The training ROC curves of the combinations of the selected biomarker pairs maximizing the 

EAUC versus ETPF. 
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To alleviate possible biases in the training estimates of TPF-gains shown in Figure 11, we 

implemented a 10-fold cross-validation procedure (described in Section 3.1.1). Figure 13 shows 

the cross-validated estimates of empirical 𝑇𝑃𝐹|𝑓𝑝𝑓=0.1  (ETPF) for linear combinations of 

biomarkers maximizing EAUC and ETPF (thereby presenting the bias-adjusted version of Figure 

11). In contrast to Figure 11, some points in Figure 13 fell below the diagonal, indicating that, for 

those pairs of biomarkers, optimization directly toward ETPF led to worse cross-validated ETPF 

than optimization toward EAUC. Substantial gains in ETPF persisted in cases where the EAUC-

maximizing combinations resulted in irregular ROC curves. In particular, the previously 

considered pair of biomarkers, v354&v530, registered approximately the same gain as shown by 

training estimates (i.e., increasing the cross-validated estimates of ETPF from 0.03 to 0.46, Figure 

14). However, the cross-validated gains appeared less substantial than their training estimates in 

scenarios where the EAUC-maximizing combinations resulted in more regular ROC curves. For 

example, the previously considered pair of biomarkers, v354&v637, had a noticeably smaller 

cross-validated gain (i.e., increasing the cross-validated estimates of ETPF from 0.38 to 0.52, 

Figure 14). Overall, Figure 13 indicates that, when optimizing two biomarkers toward EAUC led 

to ETPF greater than 0.2, optimization toward TPF did not offer substantially better results. These 

observations could indicate the instability of maximizing ETPF in small training sets (e.g., during 

the cross-validation, data are divided into small training sets). 

To investigate the possible reasons for suboptimal results of the TPF-based optimization, 

we considered the relationship between the maximum training ETPF and the difference in the 

cross-validated estimates of ETPF from optimization toward ETPF and EAUC. Figure 15 

demonstrates that optimization toward EAUC achieved substantially better cross-validated ETPF 

for the pairs of biomarkers that achieved high ETPF in training. The most extreme example was 
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provided by the biomarker pair v653&v831. As shown in the top half of Figure 16, when combined 

using the entire dataset, the selected pair of biomarkers achieved a high ROC curve. High ROC 

curves tend to have steep slopes for small fpf, thereby creating a potential for high variability of 

the ETPF-related estimates, especially in the smaller training sets, which could lead to 

combinations that have substantially different performance in the testing sets and/or increase the 

bias of the pooled cross-validated estimates. The bottom left-hand panel of Figure 16 shows that 

the average cross-validated ROC curves for the combinations of v653&v831 were approximately 

the same regardless of the targeted optimization. Thus, the apparent lack of advantages in 

optimization toward TPF over the AUC-based optimization for high-performance classification 

scores was an artifact of the pooled cross-validation approach, which appeared to affect the former 

much more than the latter.  

 

Figure 13 The cross-validated ETPFs of the biomarker pairwise combinations maximizing the ETPF versus 

EAUC. 
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Figure 14 The cross-validated ROC curves of the combinations of the selected biomarker pairs maximizing 

the ETPF versus EAUC. 

 

Figure 15 The maximum of training ETPFs versus the difference between the cross-validated ETPF for 

biomarker combinations maximizing the ETPF versus EAUC. 
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Figure 16 The empirical ROC curves for a selected pair of biomarkers (top left), for combinations 

maximizing ETPF and EAUC in the entire dataset (top right) as well as average cross-validated (bottom left) 

and pooled cross-validated (bottom right) ROC curves for the ETPF and EAUC-maximizing combinations. 

4.1.1.4 Maximizing a Smooth Approximation to 𝑻𝑷𝑭|𝒇𝒑𝒇 

For later assessments of the gradient-based method, we also examined the performance of 

biomarker pairwise combinations that maximize a smooth approximation to the 𝑇𝑃𝐹|𝑓𝑝𝑓=0.1 , 

which we term “STPF” (described in Section 3.1.2). Figure 17 shows that, for many pairs of 

biomarkers, optimization toward the STPF instead of ETPF resulted in substantially smaller 
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training ETPF. These advantages of the ETPF optimization could stem from the properties of the 

considered smooth approximation (e.g., no training ETPF was larger than 0.57 under the STPF-

based optimization) or/and could be due to the possible optimism of the training estimates. 

Comparison of the ROC curves in Figures 18, 20, and 12 (bottom right) for the previously 

considered pair of markers v354&v637 suggests that maximizing the STPF leads to the ROC curve 

similar to that resulting from maximizing the EAUC.  

The cross-validated estimates summarized in Figure 19 reaffirm substantial advantages of 

maximizing the ETPF versus STPF. However, this deficiency of the smooth approximation could 

be overcome by the advantages of simultaneous optimization in the task of combining multiple 

biomarkers (considered in the next section). 

 

Figure 17 The training ETPFs of the biomarker pairwise combinations maximizing the ETPF versus STPF. 
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Figure 18 The training ROC Curves of the combinations of the selected biomarker pair maximizing the 

ETPF versus STPF. 

 

Figure 19 The cross-validated ETPFs of the biomarker pairwise combinations maximizing the ETPF versus 

STPF. 
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Figure 20 The cross-validated ROC curves of the combinations of the selected biomarker pair maximizing the 

ETPF versus STPF. 

4.1.2 Combinations of Multiple Markers 

In this section, we explore linear combinations of markers estimated by methods of 

optimizing specific ROC characteristics (“ROC-focused methods”) and other general objective 

functions using the dataset of prostate cancer biomarkers. In addition to the methods of optimizing 

linear combinations of markers, we also assessed the performance of random forests (the R 

package, randomForest, was used for the assessment), which belongs to a class of non-linear 

methods for simultaneously combining multiple markers. Due to the flexibility of random forests, 

the performance of this non-linear method is a useful benchmark that can be deemed as an 

approximation to the best possible classification accuracy for a given set of biomarkers. Table 2 

summarizes the area under the empirical ROC curve (EAUC) and the empirical 𝑇𝑃𝐹|𝑓𝑝𝑓=0.1 

(ETPF) estimated by all the considered approaches for the entire dataset (i.e., re-substitution, or 
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training estimates) as well as the corresponding cross-validated (CV) estimates obtained by the 

pooled and average cross-validation approaches (as described in Section 3.1.1).  

In terms of the global AUC, all ROC-focused methods that optimize a linear combination 

of markers attained training EAUC as high as the non-linear combination constructed by random 

forests (EAUCs of 0.90-0.92 vs. 0.90). The fractionally highest training EAUC was attained by 

the maxTPR approach (0.92, 95% CI: 0.88-0.95). Overall, (perhaps due to the optimism of the re-

substitution estimation), the training EAUC estimates created an impression of similar 

performance among all the considered approaches. The CV estimates, however, revealed more 

differences. In particular, the highest pooled-CV estimate of AUC for a linear combination was 

attained by the sequential AUC-based optimization, which was only fractionally worse than that 

by random forests (EAUCs of 0.87 vs. 0.91). The second-best pooled-CV estimate of AUC was 

achieved by ridge regression (EAUC = 0.85) with the other approaches leading to substantially 

lower values (0.56-0.77). The high value of AUC achieved by the sequential AUC-based 

optimization was reaffirmed by its average-CV estimate (0.88 vs. 0.91 by random forests). The 

maxTPR approach resulted in a slightly higher average-CV estimate of AUC (0.90, 95% CI: 0.79-

0.90). This result could be caused by the advantages of the simultaneous optimization coupled 

with a general association between the 𝑇𝑃𝐹|𝑓𝑝𝑓  and AUC indices. The advantages of the 

simultaneous optimization were also supported by the performance of the generalized linear 

models (in particular, both lasso and ridge regression outperformed the stepwise logistic 

regression). Perhaps as a result of suboptimality observed for pairwise combinations, the 

performance of the SAUC-based optimization was substantially worse than that of the sequential 

AUC-based optimization in terms of both the pooled cross-validation (EAUCs of 0.56 vs. 0.87, p 

< 0.001) and the average cross-validation (EAUCs of 0.64 vs 0.88, p < 0.001) procedures. 
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In terms of a more specific performance characteristic represented by 𝑇𝑃𝐹|𝑓𝑝𝑓=0.1, all 

ROC-focused methods attained high values of training ETPFs (0.81-0.88), which were 

substantially larger than those obtained by the standard statistical models (0.58-0.77). The 

maxTPR approach attained the highest training ETPF (0.88), with the sequential TPF-based and 

AUC-based optimizations trailing closely behind (ETPFs of 0.86 and 0.83, respectively). 

However, the pooled-CV estimates of 𝑇𝑃𝐹|𝑓𝑝𝑓=0.1 were substantially smaller for maxTPR and the 

sequential TPF-based optimization than for the sequential AUC-based optimization and for ridge 

regression (0.45 and 0.37 vs. 0.73 and 0.68). This anomaly appeared to be in part caused by the 

bias of the pooled-CV estimates of ROC-related indices (Airola et al., 2011). Indeed, maxTPR had 

the highest average-CV estimate of 𝑇𝑃𝐹|𝑓𝑝𝑓=0.1 (0.76) among all the considered approaches, with 

the sequential AUC-based optimization leading to the second-largest estimate (0.65, p < 0.001). 

The rest of the methods, including the sequential-based optimization, had substantially lower 

averaged-CV estimates of 𝑇𝑃𝐹|𝑓𝑝𝑓=0.1 (ranging from 0.27 to 0.57). 

Table 2 Training and testing performance characteristics for linear combinations of markers optimized using 

different approaches. 

Methods of optimizing 

combinations of markers 

Performance Measures 

Training  
Cross-validated 

Pooled Average 

EAUCs ETPFs EAUCs ETPFs 𝑬𝑨𝑼𝑪𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑬𝑻𝑷𝑭𝒔̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
Maximal AUC (Sequential) 0.90 0.83 0.87 0.73 0.88  0.65 

Maximal 𝑻𝑷𝑭|𝒇𝒑𝒇 (Sequential) 0.91 0.86 0.75 0.45 0.77 0.55 

Logistic Regression (Seqential) 0.90 0.77 0.63 0.27 0.67 0.47 

Lasso (Simultaneous) 0.85 0.58 0.77 0.38 0.85  0.54 

Ridge Regression (Simultaneous) 0.88 0.69 0.85 0.68 0.86 0.57 

Maximal SAUC (Simultaneous) 0.91 0.81 0.56 0.08 0.64 0.27 

Maximal STPF (Simultanous) 0.92 0.88 0.65 0.37 0.90 0.76 

Random Forests* 

(Simultaneous) 

0.90 0.76 0.91 0.81 0.91 0.65 

* Random forests estimate a non-linear combination that provides an approximation to the globally optimal 

combination of biomarkers. 
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Table 3 summarizes standardized coefficients of biomarkers in linear combinations 

optimized by different approaches. The combination coefficients were standardized by the 

standard deviation of the individual biomarker values to facilitate the comparison within each 

approach and rescaled to the norm of 1 to facilitate the comparison between the approaches. Hence, 

coefficients can be interpreted as weights representing the contribution of individual biomarkers 

to the resulting classification score. All ROC-focused combinations included large weights for 

biomarker v653, and most methods allowed for the substantial contribution of biomarker v831, 

which had the best empirical AUC among all individual biomarkers (Table 1). Standard statistical 

methods (that optimize more general objective functions) heavily weighted biomarker v831, yet 

largely ignored the marker v653, indicating its specific relevance to the ROC measures. However, 

unlike other ROC-focused approaches, SAUC incorporated biomarker v652 instead of the 

univariately most discriminative v831. Similar variations seemed to have contributed to the 

suboptimal performance of the SAUC-based optimization during the assessments of cross-

validation.  

Overall, the presented results corroborate the expectations that training estimates of 

performance levels can be misleading, with little difference noticeable among the optimization 

methods, and that a standard pooled cross-validation approach can substantially misrepresent the 

performance of optimized classifiers (at least in the datasets of similar size). The latter is 

particularly evident for optimization driven by more focused characteristics, such as 𝑇𝑃𝐹|𝑓𝑝𝑓 , 

which might be more sensitive to changes in the training sets (especially with a small sample size). 

The results also indicate that sequential procedures might work well for maximizing global 

measures, such as AUC, but are less stable for optimizing more specific objective functions, such 

as 𝑇𝑃𝐹|𝑓𝑝𝑓 . Moreover, the use of smooth approximation had a different impact on the considered 
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optimization methods. It was quite beneficial for simultaneous optimization toward a specific 

objective function represented by 𝑇𝑃𝐹|𝑓𝑝𝑓 , but apparently detrimental for optimization toward 

more global ROC indices represented by AUC (with SAUC leading to an undesirable EAUC). The 

latter part of the observation was reaffirmed by the results given by optAUC (0.65 and 0.37 for 

EAUC and ETPF, respectively), which entails the implementation of an approximated leave-one-

out cross-validation and a smooth approximation by the sigmoid function for the estimation of 

AUC (see Huang et al., 2011, for detail). The standardized coefficients of biomarkers in linear 

combinations optimized by optAUC, however, indicate a pattern of biomarker contributions 

different from those of other considered ROC-focused methods. Lastly, at least in the current 

dataset, the simultaneous optimization toward the STPF by maxTPF gave rise to very competitive 

results in terms of both ETPF and EAUC. 

Table 3 Standardized coefficients of biomarkers in linear combinations optimized by different approaches. 

Biomarkers 

 Methods of optimizing linear combination of markers 

Maximal 

AUC 

(Sequential) 

Maximal

𝑻𝑷𝑭|𝒇𝒑𝒇  

(Sequential) 

Lasso Ridge Regression 
Maximal 

SAUC 

 

optAUC 

 

Maximal 

STPF 

(maxTPR) 

v30 0.03 0.03 0.19 0.26 0.02 -0.09 0.1 

v93   -0.09 -0.15 -0.01 0 -0.03 

v182    0.02 0 -0.33 0.07 

v354   -0.34 -0.4 -0.05 0.6 -0.11 

v365    0.17 0.01 -0.09 0.1 

v426   -0.21 -0.22 -0.03 0.19 0.08 

v427 -0.02 -0.04 -0.11 -0.18 0 0.16 -0.3 

v509 -0.02  0 -0.35 -0.03 0.31 -0.28 

v530   0.15 0.24 0.02 -0.14 0.09 

v637    -0.1 -0.01 0.24 0.05 

v652 0.02 0.02  0.17 0.69 0.22 -0.12 

v653 -0.66 -0.66  0.08 -0.71 0.22 -0.5 

v741    0.34 -0.05 0.26 0.32 

v831 0.75 0.75 0.87 0.4 0.07 0.25 0.43 

v877 0.02  0.12 0.37 0.1 0.25 0.48 
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5.0 Summary and Discussion 

This work explored the real-life gains from task-oriented optimization of biomarker 

combinations, with the primary focus on explicit and interpretable linear combinations. In our 

exploration, we used the dataset of 15 quantitative biomarkers from the protein mass spectrometry 

study (Yasui, et al., 2003), which had been used for illustration in a fundamental work advocating 

classification-oriented optimization toward AUC (Pepe et al., 2006). In light of the need for high 

sensitivity that is constrained by the necessity to limit false positive results for practical application 

(e.g., screening a large population), we considered optimization toward the highest empirical 

estimate of  𝑇𝑃𝐹|𝑓𝑝𝑓=0.1 (ETPF) as the ultimate task-oriented optimization (termed optimization 

toward TPF for brevity). We compared optimization toward TPF versus AUC for sequential and 

simultaneous combinations of 15 biomarkers (altogether and in pairs). The gain from optimization 

toward TPF was assessed by the magnitude of the increase in the ETPF obtained from the optimal 

combination of biomarkers. We also considered the performance of more general statistical 

approaches as benchmarks. This part of the investigation included reiteration and expansion of the 

previous illustrations by Pepe et al., 2006. 

The results indicate that task-oriented optimization can have substantial advantages over 

the global AUC optimization for sequential (pairwise included) and simultaneous combinations of 

biomarkers. Substantial gains in the ETPF occur when individual biomarkers have very improper 

(i.e., non-concave) and differently shaped ROC curves as well as roughly proper ones. Importantly, 

the non-linear combinations of biomarkers optimized by the conventional method of random 

forests did not offer substantial improvement in the ETPF, indicating that optimizing more 
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complicated combinations of biomarkers may still benefit from the use of the task-specific function 

for internal optimization.  

To better characterize the possible advantages of using task-specific objective functions, 

several optimization algorithms were considered. The most robust grid search algorithm was used 

for optimizing biomarker pairwise combinations as well as sequential combinations of multiple 

biomarkers that maximize the empirical AUC (EAUC) and 𝑇𝑃𝐹|𝑓𝑝𝑓=0.1  (ETPF). As for 

simultaneous optimization of multiple biomarkers, we used the methods of smooth approximations 

to AUC and 𝑇𝑃𝐹|𝑓𝑝𝑓=0.1 (Fong, et al., 2016 and Meisner et al., 2017). To determine the effects of 

the implemented smooth approximations, the use of the smoothed AUC (SAUC) and the smoothed 

TPF (STPF by maxTPR) as objective functions was evaluated in the context of biomarker pairwise 

combinations optimized through gradient-based algorithms. The results indicate that the 

implication of using smooth approximations hinges on the objective function as well as the number 

of combined markers. Although there appeared no advantages of using the maxTPR approach to 

optimizing pairs of biomarkers, it led to competitive results from simultaneous optimization of all 

15 biomarkers. Opposite results were observed for SAUC from simultaneous optimization of all 

15 biomarkers. Interestingly, SAUC did relatively well at optimizing pairs of biomarkers in 

contrast to the performance of maxTPR in a similar situation. At least part of what we have 

observed so far is related to the deficiencies in the numeric optimization of the resulting objective 

functions, which might be alleviated by using more advanced optimization algorithms (e.g., a 

difference of convex functions algorithm by Fong et al., 2016). Overall, the maxTPR approach for 

simultaneous optimization is critical to tackling the task of combining multiple markers for 

classification, as the performance of sequential optimization toward TPF was not desirable. 
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In analyzing the gains using the task-specific objective functions, we used a 10-fold cross-

validation. Since the conventional “pooled” cross-validation could lead to downward-biased 

results (e.g., Airola et al., 2011) for optimization toward ROC-related indices, we also considered 

the less biased (albeit more variable) “average” cross-validation, which uses the average of fold-

specific ROC curves instead of the ROC curve for the pooled data. The results indicate that the 

negative bias of the pooled cross-validation could be substantial, especially for the task of 

combining multiple markers. Moreover, the magnitude of the bias depends on the objective 

function, with the TPF-based optimization being much more affected than the global AUC-based 

optimization. It is worth noting that the magnitude of the bias from the pooled cross-validation 

was large enough to make the performance of the maxTPR approach for simultaneous optimization 

appear much worse than that of the sequential optimization toward AUC. 

In conclusion, the results of our investigation indicate that substantial gains can be achieved 

by optimizing a combination of biomarkers toward a task-specific objective function based on 

ROC-related indices (e.g., 𝑇𝑃𝐹|𝑓𝑝𝑓  for tasks requiring limited false positive, such as cancer 

screening of a large asymptotic population). Sustaining the benefits of optimization toward task-

specific objective functions for combining multiple markers requires solving them simultaneously, 

of which the solution is conveniently offered by the R package “maxTPR” (Meisner et al., 2017). 

Further development on the topic is warranted by incorporating task-specific objective functions 

in non-linear approaches such as random forests and neural networks. 
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Appendix A Partial Area Under the Curve 

Appendix A.1 Combinations of Two Biomarkers: Maximizing 𝒑𝑨𝑼𝑪(𝟎, 𝒇𝒑𝒇) versus 

𝑻𝑷𝑭|𝒇𝒑𝒇 

The use of 𝑇𝑃𝐹|𝑓𝑝𝑓  as a target for optimizing biomarker combinations focuses on the 

sensitivity of decisions with low fpf (i.e., high specificity), which is relevant for many practical 

tasks. A related but more global, index is provided by 𝑝𝐴𝑈𝐶(0, 𝑓𝑝𝑓),which is the area under the 

range of low fpf. Like 𝑇𝑃𝐹|𝑓𝑝𝑓 , 𝑝𝐴𝑈𝐶(0, 𝑓𝑝𝑓) has also been proposed as a target for optimizing 

biomarker combinations (e.g., Komori and Eguchi, 2010 and Wang and Chang, 2011). By 

summarizing a larger part of the ROC curve, the pAUC-based optimization might be more stable, 

yet it is not as specific as the TPF-based optimization. It is unclear whether any meaningful gains 

could be obtained by using 𝑇𝑃𝐹|𝑓𝑝𝑓  as an optimization target instead of 𝑝𝐴𝑈𝐶(0, 𝑓𝑝𝑓) . To 

explore the possible real-life gains, we optimized pairwise linear combinations of 15 prostate 

cancer biomarkers toward the empirical 𝑝𝐴𝑈𝐶(0, 0.1) (EpAUC) and 𝑇𝑃𝐹|𝑓𝑝𝑓=0.1 (ETPF). 

Figure 21 illustrates the training estimates of gains in the ETPF for all the biomarker pairs. 

As is expected in training data, biomarker combinations that maximize the ETPF always achieves 

higher ETPF than the same biomarkers’ combinations that maximize the EpAUC. However, 

almost none of the gains was substantial with only one exception of the biomarker pair, 

v509&v637. Figure 22 indicates that for v509&v637, optimization toward ETPF achieved high 

ETPF by sacrificing performance regarding EpAUC. Figure 23 (the cross-validated version of 

Figure 21) shows substantial gains in the cross-validated ETPF for many pairs of biomarkers and 
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virtually no instances of pAUC-based optimization resulting in substantially higher ETPF. 

Comparing with Figure 13, the observed results indicate that pAUC-based optimization did not 

offer the improvements in stability as AUC-based optimization did. 

 

Figure 21 The training ETPFs of the biomarker pairwise combinations maximizing the ETPF versus the 

EpAUC. 

 

Figure 22 The training ROC curves of the combination of the selected biomarker pair maximizing the ETPF 

versus EpAUC. 
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Figure 23 The cross-validated ETPFs of the biomarker pairwise combinations maximizing the ETPF versus 

EpAUC. 

 

Figure 24 The cross-validated ROC curves of the combinations of the selected biomarker pair maximizing the 

ETPF and EpAUC. 
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Appendix A.2 Combination of Two Biomarkers: Maximizing a Smooth Approximation to 

𝒑𝑨𝑼𝑪(𝟎, 𝒇𝒑𝒇) 

Like other ROC-related objective functions, a smooth approximation to 𝑝𝐴𝑈𝐶(0, 𝑓𝑝𝑓) 

(SpAUC) was proposed as a more regular objective function than the empirical one. We estimated 

the empirical 𝑇𝑃𝐹|𝑓𝑝𝑓=0.1 (ETPF) achieved by biomarker pairwise combinations that maximize a 

smooth approximation to 𝑝𝐴𝑈𝐶(0, 𝑓𝑝𝑓) (SpAUC). Figure 25 shows that optimization toward 

SpAUC resulted in slightly larger training ETPFs than the EpAUC-based optimization did, 

indicating a possible benefit of using a smooth approximation. As for the previously consider pair 

of biomarkers v509&v637, the SpAUC-based and ETPF-based optimizations led to similar 

training ROC curves (Figures 26 and 22). Furthermore, optimization toward the SpAUC versus 

EpAUC appeared to have similar cross-validated gains in the ETPF as optimization toward the 

ETPF versus EpAUC did (Figures 27 and 23). 

Overall, pAUC is an optimization target which lies in between AUC and 𝑇𝑃𝐹|𝑓𝑝𝑓  and 

inherits strengths and weaknesses of both albeit to a lesser degree. This property might be the 

reason that smooth approximation worked relatively well with  𝑝𝐴𝑈𝐶(0, 𝑓𝑝𝑓)  when used to 

optimize a pair of biomarkers, but not with AUC and 𝑇𝑃𝐹|𝑓𝑝𝑓  under similar settings.  



 43 

 

Figure 25 The training ETPFs of the biomarker pairwise combinations maximizing the SpAUC versus 

EpAUC. 

 

Figure 26 The training ROC Curves of the combinations of the selected biomarker pair maximizing the 

SpAUC and EpAUC. 
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Figure 27 The cross-validated ETPFs of the biomarker pairwise combinations maximizing the SpAUC versus 

EpAUC. 

 

Figure 28 The cross-validated ROC curves of the combinations of the selected biomarker pair maximizing the 

SpAUC and EpAUC. 
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Appendix B R Code 

Appendix B.1 Data Import and Transformation 

## set up the working directory 
setwd("~/Desktop/Thesis") 
 
## load all the R packages used in the analysis 
packages_required <- c("caret","glmnet","maxTPR", "aucm", 
                       "pROC","clinfun","tidyverse","AUCRF","randomForest") 
lapply(packages_required, require, character.only = TRUE) 
 
## import the prostate cancer dataset 
prostate.cancer <- read.csv("yy_biom62dat.csv") 
 
## transform values of some of the biomarkers for the purpose of our analysis 
biomarkers <- prostate.cancer[,-1] 
biomarkers_t <- biomarkers 
biomarkers_t$v30 <- -biomarkers$v30 
biomarkers_t$v182 <- -biomarkers$v182 
biomarkers_t$v354 <- -biomarkers$v354 
biomarkers_t$v365 <- -biomarkers$v365 
 
## create two data frames that contain cases only and controls only 
case_1 <- biomarkers_t[biomarkers_t$case==1, -1] 
cont_0 <- biomarkers_t[biomarkers_t$case==0, -1] 
 

Appendix B.2 Optimization of Two Biomarkers 

## function to calculate the empirical area under the ROC curve 
eAUC <- function(v0, v1) { 
  n0 <- length(v0) 
  n1 <- length(v1) 
  sum_ef=0 
  for (i in 1:n0) { 
    for (j in 1:n1) { 
      if (v0[i] < v1[j]) { 
        sum_ef = sum_ef+1 
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      } else { 
        sum_ef = sum_ef 
      } 
    } 
  } 
  auc_ef = round(sum_ef/(n0*n1), 4) 
  return(auc_ef) 
} 
 

## optimization of two biomarkers toward logistic likelihood 
AUCe_lr <- vector("numeric") 
for (s in 1:14) { 
  for (t in 1:14) { 
    if (s <= t) { 
      m11 <- case_1[, s] 
      m10 <- cont_0[, s] 
      m21 <- case_1[, t+1] 
      m20 <- cont_0[, t+1] 
      dat <- data.frame(case=biomarkers_t$case, marker_1=biomarkers_t[,s+1], 
marker_2=biomarkers_t[,t+2]) 
      fit <-  glm(case ~ marker_1 + marker_2, dat, family="binomial") 
      b1 <- fit$coef[2]  
      b2 <- fit$coef[3] 
      v1 <- b1*m11 + b2*m21 
      v0 <- b1*m10 + b2*m20 
      AUCe_lr <- c(AUCe_lr, eAUC(v0, v1)) 
  } 
  } 
} 
AUCe_lr 
 

## optimization toward the empirical area under the ROC curve 

max.gamma <- vector("numeric") 
gamma_angle <- seq(1, 360, by=0.5) 
eauc2 <- vector("numeric") 
AUCe_do <- vector("numeric") 
for (s in 1:14) { 
  for (t in 1:14) { 
    if (s <= t) { 
      m11 <- case_1[, s] 
      m10 <- cont_0[, s] 
      m21 <- case_1[, t+1] 
      m20 <- cont_0[, t+1] 
      for (g in 1:length(gamma_angle)) { 
        b1 <- cos((gamma_angle[g]*pi)/180) 
        b2 <- sin((gamma_angle[g]*pi)/180) 
        v1 <- b1*m11 + b2*m21 
        v0 <- b1*m10 + b2*m20 
        eauc2 <- c(eauc2, eAUC(v0, v1)) 
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      } 
      AUCe_do <- c(AUCe_do, eauc2[which.max(eauc2)]); max.gamma <- c(max.gamm
a, gamma_angle[which.max(eauc2)]) 
    } 
    eauc2 <- vector("numeric") 
  } 
} 
AUCe_do 

## function to calculate the empirical true positive fraction at a given level of specificity 
eTPF <- function(fpf0=0.1, v0, v1) { 
  n0 <- length(v0) 
  n1 <- length(v1) 
  v0o = v0[order(v0)] 
  v1o = v1[order(v1)] 
  sum_ef=0 
  for (j in 1:n1) { 
    if (v0o[n0-floor(fpf0*n0)] < v1o[j]) { 
      sum_ef = sum_ef+1 
    } else { 
      sum_ef = sum_ef 
    } 
  } 
  tpf_ef = round(sum_ef/n1,4) 
  return(tpf_ef) 
} 

## optimization toward the empirical true positive fraction at a given level of specificitymaxgamm
a_etpf <- vector("numeric") 
etpf2 <- vector("numeric") 
TPFe_do <- vector("numeric") 
for (s in 1:14) { 
  for (t in 1:14) { 
    if (s <= t) { 
      m11 <- case_1[, s] 
      m10 <- cont_0[, s] 
      m21 <- case_1[, t+1] 
      m20 <- cont_0[, t+1] 
      for (g in 1:length(gamma_angle)) { 
        b1 <- cos((gamma_angle[g]*pi)/180) 
        b2 <- sin((gamma_angle[g]*pi)/180) 
        v1 <- b1*m11 + b2*m21 
        v0 <- b1*m10 + b2*m20 
        etpf2 <- c(etpf2, eTPF(0.1, v0, v1)) 
      } 
      TPFe_do <- c(TPFe_do, etpf2[which.max(etpf2)]); maxgamma_etpf <- c(maxg
amma_etpf, gamma_angle[which.max(etpf2)]) 
    } 
    etpf2 <- vector("numeric") 
  } 
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} 
TPFe_do 

## function to calculate the empirical partial area under the ROC curve 
epAUC <- function(fpf0=0.1, v0, v1) { 
  n0 <- length(v0) 
  n1 <- length(v1) 
  v0o = v0[order(v0)] 
  v1o = v1[order(v1)] 
  sum_ef1=0 
  for (i in (n0-floor(fpf0*n0)+1):n0) { 
    for (j in 1:n1) { 
      if (v0o[i] < v1o[j]) { 
        sum_ef1 = sum_ef1+1 
      } else { 
        sum_ef1 = sum_ef1 
      } 
    } 
  } 
  pauc_ef1 = sum_ef1/(n0*n1) 
  sum_ef2=0 
  for (j in 1:n1) { 
    if (v0o[n0-floor(fpf0*n0)] < v1o[j]) { 
      sum_ef2 = sum_ef2+1 
    } else { 
      sum_ef2 = sum_ef2 
    } 
  } 
  pauc_ef2 = (sum_ef2/n1)*(fpf0-(floor(fpf0*n0)/n0)) 
  pauc_ef = round(pauc_ef1+pauc_ef2, 4) 
  return(pauc_ef) 
} 

## optimization toward the empirical partial area under the curve 
epauc2 <- vector("numeric") 
TPFe_pauc <- vector("numeric") 
for (s in 1:14) { 
  for (t in 1:14) { 
    if (s <= t) { 
      m11 <- case_1[, s] 
      m10 <- cont_0[, s] 
      m21 <- case_1[, t+1] 
      m20 <- cont_0[, t+1] 
      for (g in 1:length(gamma_angle)) { 
        b1 <- cos((gamma_angle[g]*pi)/180) 
        b2 <- sin((gamma_angle[g]*pi)/180) 
        v1 <- b1*m11 + b2*m21 
        v0 <- b1*m10 + b2*m20 
        epauc2 <- c(epauc2, epAUC(fpf0=0.1, v0, v1)) 
      } 
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      b1_op <- cos((gamma_angle[which.max(epauc2)]*pi)/180) 
      b2_op <- sin((gamma_angle[which.max(epauc2)]*pi)/180) 
      v1_op <- b1_op*m11 + b2_op*m21 
      v0_op <- b1_op*m10 + b2_op*m20 
      TPFe_pauc <- c(TPFe_pauc, eTPF(0.1, v0_op, v1_op)) 
    } 
    epauc2 <- vector("numeric") 
  } 
} 
TPFe_pauc 

## function to generate pair difference 
calXdiff<-function(X,Y,d) { 
  x_nd<-X[Y==0,] 
  x_d<-X[Y==1,] 
   
  n1=sum(Y==1); 
  n0=sum(Y==0) 
  x_ndr= apply(x_nd, 2, rep, n1) 
  x_dr<-apply(x_d,2,rep,each=n0) 
   
  x_diff=x_dr-x_ndr 
   
   
  x_diff_mul=matrix(0,dim(x_diff),d*d) 
  for (p in 1:d) { 
    for (q in 1:d) { 
      x_diff_mul[,(p-1)*d+q]=as.matrix(x_diff[,p]*x_diff[,q]) 
    } 
  } 
  out=list(x_diff,x_diff_mul) 
  return(out) 
} 

## function to standardize the components of a vector according to its norm 
normsq<-function(x) { 
  return(x/sqrt(sum(x^2))) 
} 

## generate parameter values for grid search 
b1v <- vector("numeric") 
b2v <- vector("numeric") 
for (g in 1:length(gamma_angle)) { 
  b1v <- c(b1v, cos((gamma_angle[g]*pi)/180)) 
  b2v <- c(b2v, sin((gamma_angle[g]*pi)/180)) 
} 
beta_v <- cbind(b1v, b2v) 

## Generate values of the tuning parameter for the smooth approximation 
h_sa <- vector("numeric") 
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for (s in 1:14) { 
  for  (t in 1:14) { 
    if (s <= t) { 
      m11 <- case_1[, s] 
      m10 <- cont_0[, s] 
      m21 <- case_1[, t+1] 
      m20 <- cont_0[, t+1] 
      tmp <- biomarkers_t[,c(1, s+1, t+2)] 
      dat4anal <- model.frame(tmp[,1]~tmp[,2]+tmp[,3], dat=tmp) 
      Y <- dat4anal[,1] 
      n1 <- sum(Y==1) 
      n2 <- sum(Y==0) 
      n <- n1+n2 
      markers <- model.matrix(tmp[,1]~tmp[,2]+tmp[,3],dat=tmp)[,-1] 
      num_markers <- ncol(markers) 
      X1 <- model.matrix(tmp[,1]~tmp[,2]+tmp[,3], dat4anal[dat4anal[,1]==1,])
[,-1,drop=FALSE] 
      X2 <- model.matrix(tmp[,1]~tmp[,2]+tmp[,3], dat4anal[dat4anal[,1]==0,])
[,-1,drop=FALSE] 
      fit.rlogit  <- rlogit(tmp[,1]~tmp[,2]+tmp[,3], tmp) 
      if (fit.rlogit$convergence) { 
        beta.init <- fit.rlogit$coef[-1] 
      } else { 
        beta.init <- rep(1, ncol(tmp)-1) 
      }  
      Xint <-calXdiff(markers, Y, d=length(beta.init)) 
      x_diff <- Xint[[1]] 
      h_sa <- c(h_sa, n^(-1/2)*sd(drop(x_diff%*%normsq(beta.init)))) 
    }  
  } 
} 

## optimization toward a smooth approximation to AUC 
AUCe_sAUC <- vector("numeric") 
counter <- 0 
for (s in 1:14) { 
  for  (t in 1:14) { 
    if (s <= t) { 
      counter <- counter + 1 
      m11 <- case_1[, s] 
      m10 <- cont_0[, s] 
      m21 <- case_1[, t+1] 
      m20 <- cont_0[, t+1] 
      tmp <- biomarkers_t[,c(1, s+1, t+2)] 
      out <- grid.auc(tmp[,1]~tmp[,2]+tmp[,3], tmp, beta_v, approx.type="norm
al", approx.param=h_sa[counter], lambda=0) 
      b1_sAUC <- out$coefficient[1] 
      b2_sAUC <- out$coefficient[2] 
      v1 <- b1_sAUC*m11 + b2_sAUC*m21 
      v0 <- b1_sAUC*m10 + b2_sAUC*m20 
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      AUCe_sAUC <- c(AUCe_sAUC, eAUC(v0, v1)) 
    }  
  } 
} 
AUCe_sAUC 

## pairwise optimization toward a smooth approximation to TPF|fpf 

TPFe_sTPF <- vector("numeric") 
counter <- 0 
for (s in 1:14) { 
  for  (t in 1:14) { 
    if (s <= t) { 
      counter <- counter + 1 
      m11 <- case_1[, s] 
      m10 <- cont_0[, s] 
      m21 <- case_1[, t+1] 
      m20 <- cont_0[, t+1] 
      tmp <- biomarkers_t[,c(1, s+1, t+2)] 
      out <- maxTPR(tmp, 0.1, approxh=h_sa[counter]) 
      b1_sTPF <- out$sTPRrslt[3] 
      b2_sTPF <- out$sTPRrslt[4] 
      v1 <- b1_sTPF*m11 + b2_sTPF*m21 
      v0 <- b1_sTPF*m10 + b2_sTPF*m20 
      TPFe_sTPF <- c(TPFe_sTPF, eTPF(0.1, v0, v1)) 
    }  
  } 
} 
TPFe_sTPF 

## optimization toward a smooth approximation to pAUC(0, fpf) 
TPFe_spAUC <- vector("numeric") 
counter <- 0 
for (s in 1:14) { 
  for  (t in 1:14) { 
    if (s <= t) { 
      counter <- counter + 1 
      m11 <- case_1[, s] 
      m10 <- cont_0[, s] 
      m21 <- case_1[, t+1] 
      m20 <- cont_0[, t+1] 
      tmp <- biomarkers_t[,c(1, s+1, t+2)] 
      out <- grid.auc(tmp[,1]~tmp[,2]+tmp[,3], tmp, beta_v, approx.type="norm
al", approx.param=h_sa[counter], lambda=0, t0=0, t1=0.1) 
      b1_spAUC <- out$coefficient[1] 
      b2_spAUC <- out$coefficient[2] 
      v1 <- b1_spAUC*m11 + b2_spAUC*m21 
      v0 <- b1_spAUC*m10 + b2_spAUC*m20 
      TPFe_spAUC <- c(TPFe_spAUC, eTPF(0.1, v0, v1)) 
    }  
  } 
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} 
TPFe_spAUC 

## implement a 10-fold cross-validation on the optimization toward AUC 
set.seed(123) 
flds1 <- createFolds(1:167, k=10) 
flds0 <- createFolds(1:81, k=10) 
gamma_angle <- seq(1, 360, by=1) 
eauc_tr <- vector("numeric") 
AUCecv_do <- vector("numeric") 
v1f <- vector("numeric") 
v0f <- vector("numeric") 
counter <- 0 
for (s in 1:14) { 
  for (t in 1:14) { 
    if (s <= t) { 
      counter <- counter+1 
      for (f in 1:10) { 
        m11cv <- case_1[-flds1[[f]],s] 
        m10cv <- cont_0[-flds0[[f]],s] 
        m21cv <- case_1[-flds1[[f]],t+1] 
        m20cv <- cont_0[-flds0[[f]],t+1] 
        for (g in 1:length(gamma_angle)) { 
          b1cv <- cos((gamma_angle[g]*pi)/180) 
          b2cv <- sin((gamma_angle[g]*pi)/180) 
          v1cv <- b1cv*m11cv + b2cv*m21cv 
          v0cv <- b1cv*m10cv + b2cv*m20cv 
          eauc_tr <- c(eauc_tr, eAUC(v0cv, v1cv)) 
        } 
        max_gamma <- gamma_angle[which.max(eauc_tr)] 
        b1f <- cos((max_gamma*pi)/180) 
        b2f <- sin((max_gamma*pi)/180) 
        m11f <- case_1[flds1[[f]],s] 
        m10f <- cont_0[flds0[[f]],s] 
        m21f <- case_1[flds1[[f]],t+1] 
        m20f <- cont_0[flds0[[f]],t+1] 
        v1f <- c(v1f, b1f*m11f + b2f*m21f) 
        v0f <- c(v0f, b1f*m10f + b2f*m20f) 
        eauc_tr <- vector("numeric") 
      } 
      AUCecv_do <- c(AUCecv_do, eAUC(v0f, v1f)) 
      v1f <- vector("numeric") 
      v0f <- vector("numeric") 
    } 
  } 
} 
AUCecv_do 

## implement a 10-fold cross-validation on the optimization toward logistic likelihood 
set.seed(123) 
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flds1 <- createFolds(1:167, k=10) 
flds0 <- createFolds(1:81, k=10) 
AUCecv_lr <- vector("numeric") 
v1f <- vector("numeric") 
v0f <- vector("numeric") 
counter <- 0 
for (s in 1:14) { 
  for (t in 1:14) { 
    if (s <= t) { 
      counter <- counter+1 
      for (f in 1:10) { 
        m11cv <- case_1_lr[-flds1[[f]],s+1] 
        m10cv <- cont_0_lr[-flds0[[f]],s+1] 
        m21cv <- case_1_lr[-flds1[[f]],t+2] 
        m20cv <- cont_0_lr[-flds0[[f]],t+2] 
        dat <- as.data.frame(cbind(c(case_1_lr[-flds1[[f]],1], cont_0_lr[-fld
s0[[f]],1]), c(m11cv,m10cv), c(m21cv, m20cv))) 
        fit <-  glm(dat[,1] ~ dat[,2] + dat[,3], dat, family="binomial") 
        b1f <- fit$coef[2]  
        b2f <- fit$coef[3] 
        m11f <- case_1_lr[flds1[[f]],s+1] 
        m10f <- cont_0_lr[flds0[[f]],s+1] 
        m21f <- case_1_lr[flds1[[f]],t+2] 
        m20f <- cont_0_lr[flds0[[f]],t+2] 
        v1f <- c(v1f, b1f*m11f + b2f*m21f) 
        v0f <- c(v0f, b1f*m10f + b2f*m20f) 
      } 
      AUCecv_lr <- c(AUCecv_lr, eAUC(v0f, v1f)) 
      v1f <- vector("numeric") 
      v0f <- vector("numeric") 
    } 
  } 
} 
AUCecv_lr 

## implement a 10-fold cross-validation on the optimization toward TPF|fpf 

set.seed(123) 
flds1 <- createFolds(1:167, k=10) 
flds0 <- createFolds(1:81, k=10) 
etpf_tr <- vector("numeric") 
TPFecv_do <- vector("numeric") 
v1f <- vector("numeric") 
v0f <- vector("numeric") 
counter <- 0 
for (s in 1:14) { 
  for (t in 1:14) { 
    if (s <= t) { 
      counter <- counter+1 
      for (f in 1:10) { 
        m11cv <- case_1[-flds1[[f]],s] 
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        m10cv <- cont_0[-flds0[[f]],s] 
        m21cv <- case_1[-flds1[[f]],t+1] 
        m20cv <- cont_0[-flds0[[f]],t+1] 
        for (g in 1:length(gamma_angle)) { 
          b1cv <- cos((gamma_angle[g]*pi)/180) 
          b2cv <- sin((gamma_angle[g]*pi)/180) 
          v1cv <- b1cv*m11cv + b2cv*m21cv 
          v0cv <- b1cv*m10cv + b2cv*m20cv 
          etpf_tr <- c(etpf_tr, eTPF(0.1, v0cv, v1cv)) 
        } 
        max_gamma <- gamma_angle[which.max(etpf_tr)] 
        b1f <- cos((max_gamma*pi)/180) 
        b2f <- sin((max_gamma*pi)/180) 
        m11f <- case_1[flds1[[f]],s] 
        m10f <- cont_0[flds0[[f]],s] 
        m21f <- case_1[flds1[[f]],t+1] 
        m20f <- cont_0[flds0[[f]],t+1] 
        v1f <- c(v1f, b1f*m11f + b2f*m21f) 
        v0f <- c(v0f, b1f*m10f + b2f*m20f) 
        etpf_tr <- vector("numeric") 
      } 
      TPFecv_do <- c(TPFecv_do, eTPF(0.1, v0f, v1f)) 
      v1f <- vector("numeric") 
      v0f <- vector("numeric") 
    } 
  } 
} 
TPFecv_do 

## implement a 10-fold cross-validation on the optimization toward pAUC(0, fpf) 
set.seed(123) 
flds1 <- createFolds(1:167, k=10) 
flds0 <- createFolds(1:81, k=10) 
epauc_tr <- vector("numeric") 
TPFecv_pauc <- vector("numeric") 
counter <- 0 
v1f <- vector("numeric") 
v0f <- vector("numeric") 
for (s in 1:14) { 
  for (t in 1:14) { 
    if (s <= t) { 
      counter <- counter+1 
      for (f in 1:10) { 
        m11cv <- case_1[-flds1[[f]],s] 
        m10cv <- cont_0[-flds0[[f]],s] 
        m21cv <- case_1[-flds1[[f]],t+1] 
        m20cv <- cont_0[-flds0[[f]],t+1] 
        for (g in 1:length(gamma_angle)) { 
          b1cv <- cos((gamma_angle[g]*pi)/180) 
          b2cv <- sin((gamma_angle[g]*pi)/180) 
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          v1cv <- b1cv*m11cv + b2cv*m21cv 
          v0cv <- b1cv*m10cv + b2cv*m20cv 
          epauc_tr <- c(epauc_tr, epAUC(fpf0=0.1, v0, v1)) 
        } 
        max_gamma <- gamma_angle[which.max(epauc_tr)] 
        b1f <- cos((max_gamma*pi)/180) 
        b2f <- sin((max_gamma*pi)/180) 
        m11f <- case_1[flds1[[f]],s] 
        m10f <- cont_0[flds0[[f]],s] 
        m21f <- case_1[flds1[[f]],t+1] 
        m20f <- cont_0[flds0[[f]],t+1] 
        v1f <- c(v1f, b1f*m11f + b2f*m21f) 
        v0f <- c(v0f, b1f*m10f + b2f*m20f) 
        epauc_tr <- vector("numeric") 
      } 
      TPFecv_pauc <- c(TPFecv_pauc, eTPF(0.1, v0f, v1f)) 
      v1f <- vector("numeric") 
      v0f <- vector("numeric") 
    } 
  } 
} 
TPFecv_pauc 

## implement a 10-fold cross-validation on the optimization toward the smoothed AUC 
set.seed(123) 
flds1 <- createFolds(1:167, k=10) 
flds0 <- createFolds(1:81, k=10) 
AUCecv_sAUC <- vector("numeric") 
v1f <- vector("numeric") 
v0f <- vector("numeric") 
case_1_cv <- biomarkers_t[biomarkers_t$case==1, ] 
cont_0_cv <- biomarkers_t[biomarkers_t$case==0, ] 
counter <- 0 
for (s in 1:14) { 
  for (t in 1:14) { 
    if (s <= t) { 
      counter <- counter+1 
      for (f in 1:10) { 
        m11cv <- case_1_cv[-flds1[[f]],s+1] 
        m10cv <- cont_0_cv[-flds0[[f]],s+1] 
        m21cv <- case_1_cv[-flds1[[f]],t+2] 
        m20cv <- cont_0_cv[-flds0[[f]],t+2] 
        tmp <- as.data.frame(cbind(c(case_1_cv[-flds1[[f]],1], cont_0_cv[-fld
s0[[f]],1]), c(m11cv,m10cv), c(m21cv, m20cv))) 
        dat4anal <- model.frame(tmp[,1]~tmp[,2]+tmp[,3], dat=tmp) 
        Y <- dat4anal[,1] 
        n1 <- sum(Y==1) 
        n2 <- sum(Y==0) 
        n <- n1+n2 
        markers <- model.matrix(tmp[,1]~tmp[,2]+tmp[,3],dat=tmp)[,-1] 
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        num_markers <- ncol(markers) 
        X1 <- model.matrix(tmp[,1]~tmp[,2]+tmp[,3], dat4anal[dat4anal[,1]==1,
])[,-1,drop=FALSE] 
        X2 <- model.matrix(tmp[,1]~tmp[,2]+tmp[,3], dat4anal[dat4anal[,1]==0,
])[,-1,drop=FALSE] 
        fit.rlogit  <- rlogit(tmp[,1]~tmp[,2]+tmp[,3], tmp) 
        if (fit.rlogit$convergence) { 
          beta.init <- fit.rlogit$coef[-1] 
        } else { 
          beta.init <- rep(1, ncol(tmp)-1) 
        }  
        Xint <-calXdiff(markers, Y, d=length(beta.init)) 
        x_diff <- Xint[[1]] 
        tu <-  n^(-1/2)*sd(drop(x_diff%*%normsq(beta.init))) 
        out_tr <- grid.auc(tmp[,1]~tmp[,2]+tmp[,3], tmp, beta_v, approx.type=
"normal", approx.param=tu, lambda=0) 
        b1f <- out_tr$coefficient[1] 
        b2f <- out_tr$coefficient[2] 
        m11f <- case_1[flds1[[f]],s] 
        m10f <- cont_0[flds0[[f]],s] 
        m21f <- case_1[flds1[[f]],t+1] 
        m20f <- cont_0[flds0[[f]],t+1] 
        v1f <- c(v1f, b1f*m11f + b2f*m21f) 
        v0f <- c(v0f, b1f*m10f + b2f*m20f) 
      } 
      AUCecv_sAUC <- c(AUCecv_sAUC, eAUC(v0f, v1f)) 
      v1f <- vector("numeric") 
      v0f <- vector("numeric") 
    } 
  } 
} 
AUCecv_sAUC 

## implement a 10-fold cross-validation on the optimization toward STPF|stpf 

set.seed(123) 
flds1 <- createFolds(1:167, k=10) 
flds0 <- createFolds(1:81, k=10) 
TPFecv_sTPF <- vector("numeric") 
v1f <- vector("numeric") 
v0f <- vector("numeric") 
counter <- 0 
for (s in 1:14) { 
  for (t in 1:14) { 
    if (s <= t) { 
      counter <- counter+1 
      for (f in 1:10) { 
        m11cv <- case_1_cv[-flds1[[f]],s+1] 
        m10cv <- cont_0_cv[-flds0[[f]],s+1] 
        m21cv <- case_1_cv[-flds1[[f]],t+2] 
        m20cv <- cont_0_cv[-flds0[[f]],t+2] 
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        tmp <- as.data.frame(cbind(c(case_1_cv[-flds1[[f]],1], cont_0_cv[-fld
s0[[f]],1]), c(m11cv,m10cv), c(m21cv, m20cv))) 
        dat4anal <- model.frame(tmp[,1]~tmp[,2]+tmp[,3], dat=tmp) 
        Y <- dat4anal[,1] 
        n1 <- sum(Y==1) 
        n2 <- sum(Y==0) 
        n <- n1+n2 
        markers <- model.matrix(tmp[,1]~tmp[,2]+tmp[,3],dat=tmp)[,-1] 
        num_markers <- ncol(markers) 
        X1 <- model.matrix(tmp[,1]~tmp[,2]+tmp[,3], dat4anal[dat4anal[,1]==1,
])[,-1,drop=FALSE] 
        X2 <- model.matrix(tmp[,1]~tmp[,2]+tmp[,3], dat4anal[dat4anal[,1]==0,
])[,-1,drop=FALSE] 
        fit.rlogit  <- rlogit(tmp[,1]~tmp[,2]+tmp[,3], tmp) 
        if (fit.rlogit$convergence) { 
          beta.init <- fit.rlogit$coef[-1] 
        } else { 
          beta.init <- rep(1, ncol(tmp)-1) 
        }  
        Xint <-calXdiff(markers, Y, d=length(beta.init)) 
        x_diff <- Xint[[1]] 
        tu <-  n^(-1/2)*sd(drop(x_diff%*%normsq(beta.init))) 
        out_tr <- maxTPR(tmp, 0.1, approxh=tu) 
        if (out_tr$sTPRrslt[5] == 0) { 
          out_tr <- maxTPR(tmp, 0.1, approxh=0.5) 
        } 
        b1f <- out_tr$sTPRrslt[3] 
        b2f <- out_tr$sTPRrslt[4] 
        m11f <- case_1[flds1[[f]],s] 
        m10f <- cont_0[flds0[[f]],s] 
        m21f <- case_1[flds1[[f]],t+1] 
        m20f <- cont_0[flds0[[f]],t+1] 
        v1f <- c(v1f, b1f*m11f + b2f*m21f) 
        v0f <- c(v0f, b1f*m10f + b2f*m20f) 
      } 
      TPFecv_sTPF <- c(TPFecv_sTPF, eTPF(0.1, v0f, v1f)) 
      v1f <- vector("numeric") 
      v0f <- vector("numeric") 
    } 
  } 
} 
TPFecv_sTPF 

## implement a 10-fold cross-validation on the optimization toward smoothed pAUC(0, fpf) 
set.seed(123) 
flds1 <- createFolds(1:167, k=10) 
flds0 <- createFolds(1:81, k=10) 
TPFecv_SpAUC <- vector("numeric") 
v1f <- vector("numeric") 
v0f <- vector("numeric") 
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counter <- 0 
for (s in 1:14) { 
  for (t in 1:14) { 
    if (s <= t) { 
      counter <- counter+1 
      for (f in 1:10) { 
        m11cv <- case_1_cv[-flds1[[f]],s+1] 
        m10cv <- cont_0_cv[-flds0[[f]],s+1] 
        m21cv <- case_1_cv[-flds1[[f]],t+2] 
        m20cv <- cont_0_cv[-flds0[[f]],t+2] 
        tmp <- as.data.frame(cbind(c(case_1_cv[-flds1[[f]],1], cont_0_cv[-fld
s0[[f]],1]), c(m11cv,m10cv), c(m21cv, m20cv))) 
        dat4anal <- model.frame(tmp[,1]~tmp[,2]+tmp[,3], dat=tmp) 
        Y <- dat4anal[,1] 
        n1 <- sum(Y==1) 
        n2 <- sum(Y==0) 
        n <- n1+n2 
        markers <- model.matrix(tmp[,1]~tmp[,2]+tmp[,3],dat=tmp)[,-1] 
        num_markers <- ncol(markers) 
        X1 <- model.matrix(tmp[,1]~tmp[,2]+tmp[,3], dat4anal[dat4anal[,1]==1,
])[,-1,drop=FALSE] 
        X2 <- model.matrix(tmp[,1]~tmp[,2]+tmp[,3], dat4anal[dat4anal[,1]==0,
])[,-1,drop=FALSE] 
        fit.rlogit  <- rlogit(tmp[,1]~tmp[,2]+tmp[,3], tmp) 
        if (fit.rlogit$convergence) { 
          beta.init <- fit.rlogit$coef[-1] 
        } else { 
          beta.init <- rep(1, ncol(tmp)-1) 
        }  
        Xint <-calXdiff(markers, Y, d=length(beta.init)) 
        x_diff <- Xint[[1]] 
        tu <-  n^(-1/2)*sd(drop(x_diff%*%normsq(beta.init))) 
        out_tr <- grid.auc(tmp[,1]~tmp[,2]+tmp[,3], tmp, beta_v, approx.type=
"normal", approx.param=tu, lambda=0, t0=0, t1=0.1) 
        b1f <- out_tr$coefficient[1] 
        b2f <- out_tr$coefficient[2] 
        m11f <- case_1[flds1[[f]],s] 
        m10f <- cont_0[flds0[[f]],s] 
        m21f <- case_1[flds1[[f]],t+1] 
        m20f <- cont_0[flds0[[f]],t+1] 
        v1f <- c(v1f, b1f*m11f + b2f*m21f) 
        v0f <- c(v0f, b1f*m10f + b2f*m20f) 
      } 
      TPFecv_SpAUC <- c(TPFecv_SpAUC, eTPF(0.1, v0f, v1f)) 
      v1f <- vector("numeric") 
      v0f <- vector("numeric") 
    } 
  } 
} 
TPFecv_SpAUC 
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Appendix B.3 Sequential Optimization of Multiple Biomarkers 

## sequential AUC 
AUCe_do[which.max(AUCe_do)] 
max.gamma[which.max(AUCe_do)] 
v2 <- biomarkers[,c(1,13,15)] 
m11 <- v2[v2$case==1, 2] 
m10 <- v2[v2$case==0, 2] 
m21 <- v2[v2$case==1, 3] 
m20 <- v2[v2$case==0, 3] 
b1 <- cos((max.gamma[101]*pi)/180) 
b2 <- sin((max.gamma[101]*pi)/180) 
v1 <- b1*m11 + b2*m21 
v0 <- b1*m10 + b2*m20 
eTPF(0.1, v0, v1) 
markers.lm <- data.frame(case=biomarkers_t$case, new.marker=c(v1,v0)) 
markers_left <- biomarkers_t[,-c(13,15)] 
markers_left <- data.frame(markers_left, new.marker=markers.lm$new.marker) 
m11 <- markers_left[markers_left$case==1, ncol(markers_left)] 
m10 <- markers_left[markers_left$case==0, ncol(markers_left)] 
eauc2 <- vector("numeric") 
max.gamma <- vector("numeric") 
max.eauc <- vector("numeric") 
for (sw in 1:(ncol(markers_left)-2)) { 
  m21 <- markers_left[markers_left$case==1, sw+1] 
  m20 <- markers_left[markers_left$case==0, sw+1] 
  for (g in 1:length(gamma_angle)) { 
    b1 <- cos((gamma_angle[g]*pi)/180) 
    b2 <- sin((gamma_angle[g]*pi)/180) 
    v1 <- b1*m11 + b2*m21 
    v0 <- b1*m10 + b2*m20 
    eauc2 <- c(eauc2, eAUC(v0, v1)) 
  } 
  max.eauc <- c(max.eauc, eauc2[which.max(eauc2)]) 
  max.gamma <- c(max.gamma, gamma_angle[which.max(eauc2)]) 
  eauc2 <- vector("numeric") 
} 
max.eauc[which.max(max.eauc)] 
m11 <- markers_left[markers_left$case==1, ncol(markers_left)] 
m10 <- markers_left[markers_left$case==0, ncol(markers_left)] 
m21 <- markers_left[markers_left$case==1, which.max(max.eauc)+1] 
m20 <- markers_left[markers_left$case==0, which.max(max.eauc)+1] 
b1 <- cos((max.gamma[which.max(max.eauc)]*pi)/180) 
b2 <- sin((max.gamma[which.max(max.eauc)]*pi)/180) 
v1 <- b1*m11 + b2*m21 
v0 <- b1*m10 + b2*m20 
eAUC(v0,v1) 
eTPF(0.1, v0,v1) 
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markers.lm <- data.frame(case=biomarkers_t$case, new.marker=c(v1,v0)) 
markers_left <- markers_left[,-c(which.max(max.eauc)+1,ncol(markers_left))] 
markers_left <- data.frame(markers_left, new.marker=markers.lm$new.marker) 

## sequential TPF  
m11 <- case_1[, 12] 
m10 <- cont_0[, 12] 
m21 <- case_1[, 14] 
m20 <- cont_0[, 14] 
b1 <- cos((maxgamma_etpf[which.max(TPFe_do)]*pi)/180) 
b2 <- sin((maxgamma_etpf[which.max(TPFe_do)]*pi)/180) 
v1 <- b1*m11 + b2*m21 
v0 <- b1*m10 + b2*m20 
eTPF(0.1, v0, v1) 
eAUC(v0,v1) 
biomarkers_tpf <- biomarkers_t[,-c(13,15)] 
biomarkers_tpf <- data.frame(biomarkers_tpf, new.marker=b1*biomarkers_t$v653+
b2*biomarkers_t$v831) 
etpf2 <- vector("numeric") 
tpf_sw <- vector("numeric") 
maxgamma_etpf <- vector("numeric") 
m11 <- biomarkers_tpf[biomarkers_tpf$case==1, ncol(biomarkers_tpf)] 
m10 <- biomarkers_tpf[biomarkers_tpf$case==0, ncol(biomarkers_tpf)] 
for (sw in  1:(ncol(biomarkers_tpf)-2)) { 
  m21 <- biomarkers_tpf[biomarkers_tpf$case==1, sw+1] 
  m20 <- biomarkers_tpf[biomarkers_tpf$case==0, sw+1] 
  for (g in 1:length(gamma_angle)) { 
    b1 <- cos((gamma_angle[g]**pi)/180) 
    b2 <- sin((gamma_angle[g]**pi)/180) 
    v1 <- b1*m11 + b2*m21 
    v0 <- b1*m10 + b2*m20 
    etpf2 <- c(etpf2, eTPF(0.1, v0, v1)) 
  } 
  tpf_sw <- c(tpf_sw, etpf2[which.max(etpf2)]) 
  maxgamma_etpf <- c(maxgamma_etpf, gamma[which.max(etpf2)]) 
  etpf2 <- vector("numeric") 
} 
maxgamma_etpf[which(tpf_sw == tpf_sw[which.max(tpf_sw)])] 
tpf_sw[which(tpf_sw == tpf_sw[which.max(tpf_sw)])] 
b1 <- cos((358*pi)/180) 
b2 <- sin((358*pi)/180) 
m21 <- biomarkers_tpf[biomarkers_tpf$case==1, 6+1] 
m20 <- biomarkers_tpf[biomarkers_tpf$case==0, 6+1] 
v1 <- b1*m11 + b2*m21 
v0 <- b1*m10 + b2*m20 
eAUC(v0,v1) 

#0.87 
m21 <- biomarkers_tpf[biomarkers_tpf$case==1, 7+1] 
m20 <- biomarkers_tpf[biomarkers_tpf$case==0, 7+1] 
v1 <- b1*m11 + b2*m21 
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v0 <- b1*m10 + b2*m20 
eAUC(v0,v1) 

#0.88 
biomarkers_tpf <- data.frame(biomarkers_tpf, new.marker3=b1*biomarkers_tpf$ne
w.marker+b2*biomarkers_tpf$v427) 
biomarkers_tpf <- biomarkers_tpf[,-c(8,15)] 
etpf2 <- vector("numeric") 
tpf_sw <- vector("numeric") 
maxgamma_etpf <- vector("numeric") 
m11 <- biomarkers_tpf[biomarkers_tpf$case==1, ncol(biomarkers_tpf)] 
m10 <- biomarkers_tpf[biomarkers_tpf$case==0, ncol(biomarkers_tpf)] 
for (sw in  1:(ncol(biomarkers_tpf)-2)) { 
  m21 <- biomarkers_tpf[biomarkers_tpf$case==1, sw+1] 
  m20 <- biomarkers_tpf[biomarkers_tpf$case==0, sw+1] 
  for (g in 1:length(gamma_angle)) { 
    b1 <- cos((gamma_angle[g]**pi)/180) 
    b2 <- sin((gamma_angle[g]**pi)/180) 
    v1 <- b1*m11 + b2*m21 
    v0 <- b1*m10 + b2*m20 
    etpf2 <- c(etpf2, eTPF(0.1, v0, v1)) 
  } 
  tpf_sw <- c(tpf_sw, etpf2[which.max(etpf2)]) 
  maxgamma_etpf <- c(maxgamma_etpf, gamma_angle[which.max(etpf2)]) 
  etpf2 <- vector("numeric") 
} 
maxgamma_etpf[which(tpf_sw == tpf_sw[which.max(tpf_sw)])] 
tpf_sw[which(tpf_sw == tpf_sw[which.max(tpf_sw)])] 
b1 <- cos((1*pi)/180) 
b2 <- sin((1*pi)/180) 
biomarkers_tpf <- data.frame(biomarkers_tpf, new.marker4=b1*biomarkers_tpf$ne
w.marker3+b2*biomarkers_tpf$v30) 
biomarkers_tpf <- biomarkers_tpf[,-c(2,14)] 
etpf2 <- vector("numeric") 
tpf_sw <- vector("numeric") 
maxgamma_etpf <- vector("numeric") 
m11 <- biomarkers_tpf[biomarkers_tpf$case==1, ncol(biomarkers_tpf)] 
m10 <- biomarkers_tpf[biomarkers_tpf$case==0, ncol(biomarkers_tpf)] 
for (sw in  1:(ncol(biomarkers_tpf)-2)) { 
  m21 <- biomarkers_tpf[biomarkers_tpf$case==1, sw+1] 
  m20 <- biomarkers_tpf[biomarkers_tpf$case==0, sw+1] 
  for (g in 1:length(gamma_angle)) { 
    b1 <- cos((gamma_angle[g]**pi)/180) 
    b2 <- sin((gamma_angle[g]**pi)/180) 
    v1 <- b1*m11 + b2*m21 
    v0 <- b1*m10 + b2*m20 
    etpf2 <- c(etpf2, eTPF(0.1, v0, v1)) 
  } 
  tpf_sw <- c(tpf_sw, etpf2[which.max(etpf2)]) 
  maxgamma_etpf <- c(maxgamma_etpf, gamma_angle[which.max(etpf2)]) 
  etpf2 <- vector("numeric") 
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} 
maxgamma_etpf[which(tpf_sw == tpf_sw[which.max(tpf_sw)])] 
tpf_sw[which(tpf_sw == tpf_sw[which.max(tpf_sw)])] 
b1 <- cos((1*pi)/180) 
b2 <- sin((1*pi)/180) 
m21 <- biomarkers_tpf[biomarkers_tpf$case==1, 5+1] 
m20 <- biomarkers_tpf[biomarkers_tpf$case==0, 5+1] 
v1 <- b1*m11 + b2*m21 
v0 <- b1*m10 + b2*m20 
eAUC(v0,v1) 

#0.9005 
m21 <- biomarkers_tpf[biomarkers_tpf$case==1, 8+1] 
m20 <- biomarkers_tpf[biomarkers_tpf$case==0, 8+1] 
v1 <- b1*m11 + b2*m21 
v0 <- b1*m10 + b2*m20 
eAUC(v0,v1) 

#0.9007 
m21 <- biomarkers_tpf[biomarkers_tpf$case==1, 9+1] 
m20 <- biomarkers_tpf[biomarkers_tpf$case==0, 9+1] 
v1 <- b1*m11 + b2*m21 
v0 <- b1*m10 + b2*m20 
eAUC(v0,v1) 

#0.9066 
m21 <- biomarkers_tpf[biomarkers_tpf$case==1, 10+1] 
m20 <- biomarkers_tpf[biomarkers_tpf$case==0, 10+1] 
v1 <- b1*m11 + b2*m21 
v0 <- b1*m10 + b2*m20 
eAUC(v0,v1) 

#0.9063 
m21 <- biomarkers_tpf[biomarkers_tpf$case==1, 11+1] 
m20 <- biomarkers_tpf[biomarkers_tpf$case==0, 11+1] 
v1 <- b1*m11 + b2*m21 
v0 <- b1*m10 + b2*m20 
eAUC(v0,v1) 

#0.9061 
biomarkers_tpf <- data.frame(biomarkers_tpf, new.marker5=b1*biomarkers_tpf$ne
w.marker4+b2*biomarkers_tpf$v652) 
biomarkers_tpf <- biomarkers_tpf[,-c(10,13) 
etpf2 <- vector("numeric") 
tpf_sw <- vector("numeric") 
maxgamma_etpf <- vector("numeric") 
m11 <- biomarkers_tpf[biomarkers_tpf$case==1, ncol(biomarkers_tpf)] 
m10 <- biomarkers_tpf[biomarkers_tpf$case==0, ncol(biomarkers_tpf)] 
for (sw in  1:(ncol(biomarkers_tpf)-2)) { 
  m21 <- biomarkers_tpf[biomarkers_tpf$case==1, sw+1] 
  m20 <- biomarkers_tpf[biomarkers_tpf$case==0, sw+1] 
  for (g in 1:length(gamma_angle)) { 
    b1 <- cos((gamma_angle[g]**pi)/180) 
    b2 <- sin((gamma_angle[g]**pi)/180) 
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    v1 <- b1*m11 + b2*m21 
    v0 <- b1*m10 + b2*m20 
    etpf2 <- c(etpf2, eTPF(0.1, v0, v1)) 
  } 
  tpf_sw <- c(tpf_sw, etpf2[which.max(etpf2)]) 
  maxgamma_etpf <- c(maxgamma_etpf, gamma_angle[which.max(etpf2)]) 
  etpf2 <- vector("numeric") 
} 
maxgamma_etpf[which(tpf_sw == tpf_sw[which.max(tpf_sw)])] 
tpf_sw[which(tpf_sw == tpf_sw[which.max(tpf_sw)])] 
b1 <- cos((360*pi)/180) 
b2 <- sin((360*pi)/180) 
m21 <- biomarkers_tpf[biomarkers_tpf$case==1, 1+1] 
m20 <- biomarkers_tpf[biomarkers_tpf$case==0, 1+1] 
v1 <- b1*m11 + b2*m21 
v0 <- b1*m10 + b2*m20 
eAUC(v0,v1) 
m21 <- biomarkers_tpf[biomarkers_tpf$case==1, 2+1] 
m20 <- biomarkers_tpf[biomarkers_tpf$case==0, 2+1] 
v1 <- b1*m11 + b2*m21 
v0 <- b1*m10 + b2*m20 
eAUC(v0,v1) 
m21 <- biomarkers_tpf[biomarkers_tpf$case==1, 3+1] 
m20 <- biomarkers_tpf[biomarkers_tpf$case==0, 3+1] 
v1 <- b1*m11 + b2*m21 
v0 <- b1*m10 + b2*m20 
eAUC(v0,v1) 
m21 <- biomarkers_tpf[biomarkers_tpf$case==1, 4+1] 
m20 <- biomarkers_tpf[biomarkers_tpf$case==0, 4+1] 
v1 <- b1*m11 + b2*m21 
v0 <- b1*m10 + b2*m20 
eAUC(v0,v1) 
m21 <- biomarkers_tpf[biomarkers_tpf$case==1, 5+1] 
m20 <- biomarkers_tpf[biomarkers_tpf$case==0, 5+1] 
v1 <- b1*m11 + b2*m21 
v0 <- b1*m10 + b2*m20 
eAUC(v0,v1) 

## implement a 10-fold cross-validation on sequential AUC 
markers_opteAUC <- data.frame(case=biomarkers_t$case, v653=biomarkers_t$v653, 
                              v831=biomarkers_t$v831, v30=biomarkers_t$v30,  
                              v427=biomarkers_t$v427, v652=biomarkers_t$v652, 
                              v509=biomarkers_t$v509, v877=biomarkers_t$v877) 
case.1.swauc <- markers_opteAUC[markers_opteAUC$case==1,] 
cont.0.swauc <- markers_opteAUC[markers_opteAUC$case==0,] 
set.seed(123) 
flds1 <- createFolds(1:167, k=10) 
flds0 <- createFolds(1:81, k=10) 
eauc_tr <- vector("numeric") 
v1f <- vector("numeric") 
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v0f <- vector("numeric") 
for (f in 1:10) { 
  m11cv <- case.1.swauc[-flds1[[f]],2] 
  m10cv <- cont.0.swauc[-flds0[[f]],2] 
  m21cv <- case.1.swauc[-flds1[[f]],3] 
  m20cv <- cont.0.swauc[-flds0[[f]],3] 
  for (g in 1:length(gamma_angle)) { 
    b1cv <- cos((gamma_angle[g]*pi)/180) 
    b2cv <- sin((gamma_angle[g]**pi)/180) 
    v1cv <- b1cv*m11cv + b2cv*m21cv 
    v0cv <- b1cv*m10cv + b2cv*m20cv 
    eauc_tr <- c(eauc_tr, eAUC(v0cv, v1cv)) 
  } 
  max_gamma <- gamma_angle[which.max(eauc_tr)]  
  b1f <- cos((max_gamma*pi)/180) 
  b2f <- sin((max_gamma*pi)/180) 
  m11cv <- case.1.swauc[flds1[[f]],2] 
  m10cv <- cont.0.swauc[flds0[[f]],2] 
  m21cv <- case.1.swauc[flds1[[f]],3] 
  m20cv <- cont.0.swauc[flds0[[f]],3] 
  v1f <- c(v1f, b1f*m11f + b2f*m21f) 
  v0f <- c(v0f, b1f*m10f + b2f*m20f) 
  eauc_tr <- vector("numeric") 
} 
eAUC(v0f, v1f) 

#0.8767 
markers.left.cv <- data.frame(case=markers_opteAUC$case,  
                              new.marker_cv=c(v1f,v0f),  
                              markers_opteAUC[,c(4:8)]) 
case.1.swauc <- markers.left.cv[markers.left.cv$case==1,] 
cont.0.swauc <- markers.left.cv[markers.left.cv$case==0,] 
set.seed(123) 
flds1 <- createFolds(1:167, k=10) 
flds0 <- createFolds(1:81, k=10) 
eauc_tr <- vector("numeric") 
v1f <- vector("numeric") 
v0f <- vector("numeric") 
for (f in 1:10) { 
  m11cv <- case.1.swauc[-flds1[[f]],2] 
  m10cv <- cont.0.swauc[-flds0[[f]],2] 
  m21cv <- case.1.swauc[-flds1[[f]],3] 
  m20cv <- cont.0.swauc[-flds0[[f]],3] 
  for (g in 1:length(gamma_angle)) { 
    b1cv <- cos((gamma_angle[g]*pi)/180) 
    b2cv <- sin((gamma_angle[g]**pi)/180) 
    v1cv <- b1cv*m11cv + b2cv*m21cv 
    v0cv <- b1cv*m10cv + b2cv*m20cv 
    eauc_tr <- c(eauc_tr, eAUC(v0cv, v1cv)) 
  } 
  max_gamma <- gamma_angle[which.max(eauc_tr)] 
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  b1f <- cos((max_gamma*pi)/180) 
  b2f <- sin((max_gamma*pi)/180) 
  m11cv <- case.1.swauc[flds1[[f]],2] 
  m10cv <- cont.0.swauc[flds0[[f]],2] 
  m21cv <- case.1.swauc[flds1[[f]],3] 
  m20cv <- cont.0.swauc[flds0[[f]],3] 
  v1f <- c(v1f, b1f*m11f + b2f*m21f) 
  v0f <- c(v0f, b1f*m10f + b2f*m20f) 
  eauc_tr <- vector("numeric") 
} 
eAUC(v0f, v1f) 

#0.8767 
markers.left.cv <- data.frame(case=markers.left.cv$case,  
                              new.marker_cv=c(v1f,v0f),  
                              markers.left.cv[,c(4:(ncol(markers.left.cv)))]) 
case.1.swauc <- markers.left.cv[markers.left.cv$case==1,] 
cont.0.swauc <- markers.left.cv[markers.left.cv$case==0,] 
set.seed(123) 
flds1 <- createFolds(1:167, k=10) 
flds0 <- createFolds(1:81, k=10) 
eauc_tr <- vector("numeric") 
v1f <- vector("numeric") 
v0f <- vector("numeric") 
for (f in 1:10) { 
  m11cv <- case.1.swauc[-flds1[[f]],2] 
  m10cv <- cont.0.swauc[-flds0[[f]],2] 
  m21cv <- case.1.swauc[-flds1[[f]],3] 
  m20cv <- cont.0.swauc[-flds0[[f]],3] 
  for (g in 1:length(gamma_angle)) { 
    b1cv <- cos((gamma_angle[g]*pi)/180) 
    b2cv <- sin((gamma_angle[g]**pi)/180) 
    v1cv <- b1cv*m11cv + b2cv*m21cv 
    v0cv <- b1cv*m10cv + b2cv*m20cv 
    eauc_tr <- c(eauc_tr, eAUC(v0cv, v1cv)) 
  } 
  max_gamma <- gamma_angle[which.max(eauc_tr)] 
  b1f <- cos((max_gamma*pi)/180) 
  b2f <- sin((max_gamma*pi)/180) 
  m11cv <- case.1.swauc[flds1[[f]],2] 
  m10cv <- cont.0.swauc[flds0[[f]],2] 
  m21cv <- case.1.swauc[flds1[[f]],3] 
  m20cv <- cont.0.swauc[flds0[[f]],3] 
  v1f <- c(v1f, b1f*m11f + b2f*m21f) 
  v0f <- c(v0f, b1f*m10f + b2f*m20f) 
  eauc_tr <- vector("numeric") 
} 
eAUC(v0f, v1f) 
eTPF(0.1, v0f, v1f) 
markers.left.cv <- data.frame(case=markers.left.cv$case,  
                              new.marker_cv=c(v1f,v0f),  
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                              v877=markers.left.cv$v877) 
case.1.swauc <- markers.left.cv[markers.left.cv$case==1,] 
cont.0.swauc <- markers.left.cv[markers.left.cv$case==0,] 
set.seed(123) 
flds1 <- createFolds(1:167, k=10) 
flds0 <- createFolds(1:81, k=10) 
eauc_tr <- vector("numeric") 
v1f <- vector("numeric") 
v0f <- vector("numeric") 
for (f in 1:10) { 
  m11cv <- case.1.swauc[-flds1[[f]],2] 
  m10cv <- cont.0.swauc[-flds0[[f]],2] 
  m21cv <- case.1.swauc[-flds1[[f]],3] 
  m20cv <- cont.0.swauc[-flds0[[f]],3] 
  for (h in 1:length(gamma_angle)) { 
    b1cv <- cos((h*pi)/180) 
    b2cv <- sin((h*pi)/180) 
    v1cv <- b1cv*m11cv + b2cv*m21cv 
    v0cv <- b1cv*m10cv + b2cv*m20cv 
    eauc_tr <- c(eauc_tr, eAUC(v0cv, v1cv)) 
  } 
  max_gamma <- which.max(eauc_tr) 
  b1f <- cos((max_gamma*pi)/180) 
  b2f <- sin((max_gamma*pi)/180) 
  m11cv <- case.1.swauc[flds1[[f]],2] 
  m10cv <- cont.0.swauc[flds0[[f]],2] 
  m21cv <- case.1.swauc[flds1[[f]],3] 
  m20cv <- cont.0.swauc[flds0[[f]],3] 
  v1f <- c(v1f, b1f*m11f + b2f*m21f) 
  v0f <- c(v0f, b1f*m10f + b2f*m20f) 
  eauc_tr <- vector("numeric") 
} 
eAUC(v0f, v1f) 

#0.8674 
eTPF(0.1, v0f, v1f) 

#0.7305 

## implement a 10-fold cross-validation on logistic regression (sequentially) 
markers_pvals <- data.frame(case=biomarkers_t$case, v877=biomarkers_t$v877, 
                            v509=biomarkers_t$v509, v354=biomarkers_t$v354,  
                            v30=biomarkers_t$v30, v93=biomarkers_t$v93,  
                            v831=biomarkers_t$v831, v426=biomarkers_t$v426, 
                            v741=biomarkers_t$v741, v637=biomarkers_t$v637, 
                            v365=biomarkers_t$v365, v427=biomarkers_t$v427) 
set.seed(123) 
flds1 <- createFolds(1:167, k=10) 
flds0 <- createFolds(1:81, k=10) 
case.1.pvals <- markers_pvals[markers_pvals$case==1,] 
cont.0.pvals <- markers_pvals[markers_pvals$case==0,] 
v1f <- vector("numeric") 



 67 

v0f <- vector("numeric") 
for (f in 1:10){ 
  dat4pvals <- as.data.frame(rbind(case.1.pvals[-flds1[[f]], c(1,2,3)], cont.
0.pvals[-flds0[[f]], c(1,2,3)])) 
  colnames(dat4pvals) <- c("case", "marker1", "marker2") 
  fit <- glm(case~., dat4pvals, family="binomial") 
  b1 <- fit$coef[2] 
  b2 <- fit$coef[3] 
  v1f <- c(v1f, b1*case.1.pvals[flds1[[f]], 2]+b2*case.1.pvals[flds1[[f]], 3]
) 
  v0f <- c(v0f, b1*cont.0.pvals[flds0[[f]], 2]+b2*cont.0.pvals[flds0[[f]], 3]
) 
} 
eAUC(v0f,v1f) 
eTPF(0.1,v0f,v1f) 
markers_pvals <- markers_pvals[, -c(2,3)] 
head(markers_pvals) 
markers_pvals <- data.frame(new.marker=c(v1f,v0f), markers_pvals) 
markers_pvals <- markers_pvals[,c(2,1,3:(ncol(markers_pvals)))] 

## implement a 10-fold cross-validation on sequential TPF 
markers_opteTPF <- data.frame(case=biomarkers_t$case, v653=biomarkers_t$v653, 
                              v831=biomarkers_t$v831, v427=biomarkers_t$v427, 
                              v30=biomarkers_t$v30, v652=biomarkers_t$v652) 
case.1.swtpf <- markers_opteTPF[markers_opteTPF$case==1,] 
cont.0.swtpf <- markers_opteTPF[markers_opteTPF$case==0,] 
set.seed(123) 
flds1 <- createFolds(1:167, k=10) 
flds0 <- createFolds(1:81, k=10) 
etpf_tr <- vector("numeric") 
v1f <- vector("numeric") 
v0f <- vector("numeric") 
for (f in 1:10) { 
  m11cv <- case.1.swtpf[-flds1[[f]],2] 
  m10cv <- cont.0.swtpf[-flds0[[f]],2] 
  m21cv <- case.1.swtpf[-flds1[[f]],3] 
  m20cv <- cont.0.swtpf[-flds0[[f]],3] 
  for (h in 1:length(gamma_angle)) { 
    b1cv <- cos((h*pi)/180) 
    b2cv <- sin((h*pi)/180) 
    v1cv <- b1cv*m11cv + b2cv*m21cv 
    v0cv <- b1cv*m10cv + b2cv*m20cv 
    etpf_tr <- c(etpf_tr, eTPF(0.1, v0cv, v1cv)) 
  } 
  max_gamma <- which.max(etpf_tr) 
  b1f <- cos((max_gamma*pi)/180) 
  b2f <- sin((max_gamma*pi)/180) 
  m11cv <- case.1.swtpf[flds1[[f]],2] 
  m10cv <- cont.0.swtpf[flds0[[f]],2] 
  m21cv <- case.1.swtpf[flds1[[f]],3] 
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  m20cv <- cont.0.swtpf[flds0[[f]],3] 
  v1f <- c(v1f, b1f*m11f + b2f*m21f) 
  v0f <- c(v0f, b1f*m10f + b2f*m20f) 
  etpf_tr <- vector("numeric") 
} 
eAUC(v0f, v1f) 
eTPF(0.1, v0f, v1f) 
markers.etpf.cv <- data.frame(case=markers_opteTPF$case,  
                              new.marker_cv=c(v1f,v0f),  
                              markers_opteTPF[,c(4:6)]) 
case.1.swtpf <- markers_opteTPF[markers_opteTPF$case==1,] 
cont.0.swtpf <- markers_opteTPF[markers_opteTPF$case==0,] 
set.seed(123) 
flds1 <- createFolds(1:167, k=10) 
flds0 <- createFolds(1:81, k=10) 
etpf_tr <- vector("numeric") 
v1f <- vector("numeric") 
v0f <- vector("numeric") 
for (f in 1:10) { 
  m11cv <- case.1.swtpf[-flds1[[f]],2] 
  m10cv <- cont.0.swtpf[-flds0[[f]],2] 
  m21cv <- case.1.swtpf[-flds1[[f]],3] 
  m20cv <- cont.0.swtpf[-flds0[[f]],3] 
  for (h in 1:length(gamma_angle)) { 
    b1cv <- cos((h*pi)/180) 
    b2cv <- sin((h*pi)/180) 
    v1cv <- b1cv*m11cv + b2cv*m21cv 
    v0cv <- b1cv*m10cv + b2cv*m20cv 
    etpf_tr <- c(etpf_tr, eTPF(0.1,v0cv, v1cv)) 
  } 
  max_gamma <- which.max(etpf_tr) 
  b1f <- cos((max_gamma*pi)/180) 
  b2f <- sin((max_gamma*pi)/180) 
  m11cv <- case.1.swtpf[flds1[[f]],2] 
  m10cv <- cont.0.swtpf[flds0[[f]],2] 
  m21cv <- case.1.swtpf[flds1[[f]],3] 
  m20cv <- cont.0.swtpf[flds0[[f]],3] 
  v1f <- c(v1f, b1f*m11f + b2f*m21f) 
  v0f <- c(v0f, b1f*m10f + b2f*m20f) 
  etpf_tr <- vector("numeric") 
} 
eAUC(v0f, v1f) 
eTPF(0.1, v0f, v1f) 
markers.etpf.cv <- data.frame(case=markers.etpf.cv$case, 
                              new.marker_cv=c(v1f,v0f), 
                              markers.etpf.cv[,c(4:(ncol(markers.etpf.cv)))]) 
markers.etpf.cv <- data.frame(case=markers.etpf.cv$case, 
                              new.marker_cv=c(v1f,v0f), 
                              v652=markers.etpf.cv$v652) 
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markers.etpf.cv <- data.frame(case=markers.etpf.cv$case, 
                              new.marker_cv=c(v1f,v0f)) 

Appendix B.4 Simultaneous Optimization of Multiple Biomarkers 

## lasso 
set.seed(123) 
training.samples <- biomarkers_t$case %>% createDataPartition(p = 0.8, list =
 FALSE) 
train.data  <- biomarkers_t[training.samples, ] 
test.data <- biomarkers_t[-training.samples, ] 
x <- model.matrix(case~., train.data)[,-1] 
x.full <- model.matrix(case~., prostate_lasso)[,-1] 
y.full <- prostate_lasso$case 
y <- train.data$case 
cv.lasso <- cv.glmnet(x, y, alpha = 1, family = "binomial") 
full.model.lasso  <- glmnet(x.full, y.full, alpha=1, lambda = cv.lasso$lambda
.min) 
betas.lasso <- as.numeric(coef(full.model.lasso))[-1] 
new.marker.lasso <- vector("numeric", length=248) 
for (i in 1:length(betas.lasso)) { 
  new.marker.lasso <- new.marker.lasso+betas.lasso[i]*prostate_lasso[,i+1] 
} 
v1.lasso <- new.marker.lasso[c(1:167)] 
v0.lasso <- new.marker.lasso[c(168:248)] 
eAUC(v0.lasso, v1.lasso) 

#0.85 
eTPF(0.1, v0.lasso, v1.lasso) 

#0.58 

## ridge regression 
set.seed(123) 
training.samples <- biomarkers_t$case %>% createDataPartition(p = 0.8, list =
 FALSE) 
train.data  <- biomarkers_t[training.samples, ] 
test.data <- biomarkers_t[-training.samples, ] 
x <- model.matrix(case~., train.data)[,-1] 
y <- train.data$case 
cv.ridge <- cv.glmnet(x, y, alpha = 0, family = "binomial") 
full.model.ridge <- glmnet(x.full, y.full, alpha=0, lambda=cv.ridge$lambda.mi
n) 
betas.ridge  <- as.numeric(coef(full.model.ridge))[-1] 
new.marker.ridge <- vector("numeric", length=248) 
for (i in 1:length(betas.ridge)){ 
  new.marker.ridge <- new.marker.ridge + (betas.ridge[i]*prostate_ridge[,i+1]
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) 
v1.ridge <- new.marker.ridge[c(1:167)] 
v0.ridge <- new.marker.ridge[c(168:248)] 
eAUC(v0.ridge, v1.ridge) 

#0.88 
eTPF(0.1, v0.ridge, v1.ridge) 

#0.69 

## maxTPR 
fit.rlogit <- rlogit(case~., biomarkers_t) 
fit.rlogit$convergence 
beta.init <- fit.rlogit$coef[-1] 
n1 <- 167 
n2 <- 81 
n <- 248 
predictors <- model.matrix(case~., biomarkers_t)[,-1] 
Y <- biomarkers_t$case 
Xint <- calXdiff(predictors, Y, d=length(beta.init)) 
x_diff <- Xint[[1]] 
h15 <- n^(-1/2)*sd(drop(x_diff%*%normsq(beta.init))) 
fit.maxTPR <- maxTPR(data= biomarkers_t, tval=0.1, approxh=h15) 
betas.maxTPR <- as.numeric(fit.maxTPR$sTPRrslt[3:17]) 
new.marker.maxTPR <- vector("numeric", length=248) 
for (i in 1:length(betas.maxTPR)){ 
  new.marker.maxTPR <- new.marker.maxTPR + (betas.maxTPR[i]*prostate.maxTPR[,
i+1]) 
} 
v1.maxTPR <- new.marker.maxTPR[c(1:167)] 
v0.maxTPR <- new.marker.maxTPR[c(168:248)] 
eTPF(0.1, v0.maxTPR, v1.maxTPR) 

#0.88 
eAUC(v0.maxTPR, v1.maxTPR) 

#0.92 

## SAUC 
fit.nr <- sauc.phi(case~., dat=biomarkers_t) 
betas.nr <- fit.nr$coefficients 
new.marker.nr <- vector("numeric", length=248) 
for (i in 1:length(betas.nr)){ 
  new.marker.nr <- new.marker.nr + (betas.nr[i]*prostate.nr[,i+1]) 
} 
v1.nr <- new.marker.nr[c(1:167)] 
v0.nr <- new.marker.nr[c(168:248)] 
eAUC(v0.nr, v1.nr) 

#0.91 
eTPF(0.1, v0.nr, v1.nr) 

#0.8084 

## implement a 10-fold cross-validation on lasso 
set.seed(123) 
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flds1 <- createFolds(1:167, k=10) 
flds0 <- createFolds(1:81, k=10) 
new.marker.lasso  <- vector("numeric") 
etpf.lasso.f <- vector("numeric") 
eauc.lasso.f <- vector("numeric") 
for (f in 1:10){ 
  dat4anal.tr <- as.data.frame(rbind(case_1_cv[-flds1[[f]], ],  
                                     cont_0_cv[-flds0[[f]], ])) 
  x.tr <- model.matrix(case~., dat4anal.tr)[,-1] 
  y.tr <- dat4anal.tr$case 
  lasso.cv <- cv.glmnet(x.tr, y.tr, alpha = 1, family = "binomial") 
  dat4anal.te <- as.data.frame(rbind(case_1_cv[flds1[[f]], ],  
                                     cont_0_cv[flds0[[f]], ])) 
  lasso.tr <- glmnet(x.tr, y.tr, alpha=1, lambda=lasso.cv$lambda.min) 
  betas.lasso.cv <- as.numeric(coef(lasso.tr))[-1] 
  new.marker.lasso.cv <- vector("numeric", length=nrow(dat4anal.te)) 
  for (p in 1:length(betas.lasso.cv)) { 
    new.marker.lasso.cv <- new.marker.lasso.cv+betas.lasso.cv[p]*dat4anal.te[
,p+1] 
  } 
  dat4anal.f <- data.frame(case=dat4anal.te$case, new.marker.f=new.marker.las
so.cv) 
  v1.f <- dat4anal.f[dat4anal.f$case==1, -1] 
  v0.f <- dat4anal.f[dat4anal.f$case==0, -1] 
  etpf.lasso.f <- c(etpf.lasso.f, eTPF(0.1, v0.f, v1.f)) 
  eauc.lasso.f <- c(eauc.lasso.f, eAUC(v0.f, v1.f)) 
  new.marker.lasso <- c(new.marker.lasso, new.marker.lasso.cv) 
} 
mean(etpf.lasso.f) 
mean(eauc.lasso.f) 
set.seed(123) 
flds1 <- createFolds(1:167, k=10) 
flds0 <- createFolds(1:81, k=10) 
case.cv <- vector("numeric") 
for (f in 1:10) { 
  case.cv <- c(case.cv, c(case_1_lasso[flds1[[f]], 1], cont_0_lasso[flds0[[f]
], 1])) 
} 
biomarkers.lasso <- data.frame(case=case.cv, marker=new.marker.lasso) 
v1.lasso_cv <- biomarkers.lasso[biomarkers.lasso$case==1,2] 
v0.lasso_cv <- biomarkers.lasso[biomarkers.lasso$case==0,2] 
eAUC(v0.lasso_cv, v1.lasso_cv) 
eTPF(0.1, v0.lasso_cv, v1.lasso_cv) 

## implement a 10-fold cross-validation on ridge regression 
set.seed(123) 
flds1 <- createFolds(1:167, k=10) 
flds0 <- createFolds(1:81, k=10) 
new.marker.ridge <- vector("numeric") 
etpf.ridge.f <- vector("numeric") 
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eauc.ridge.f <- vector("numeric") 
for (f in 1:10){ 
  dat4anal.tr <- as.data.frame(rbind(case_1_cv[-flds1[[f]], ],  
                                     cont_0_cv[-flds0[[f]], ])) 
  x.tr <- model.matrix(case~., dat4anal.tr)[,-1] 
  y.tr <- dat4anal.tr$case 
  ridge.cv <- cv.glmnet(x.tr, y.tr, alpha=0, family = "binomial") 
  dat4anal.te <- as.data.frame(rbind(case_1_cv[flds1[[f]], ],  
                                     cont_0_cv [flds0[[f]], ])) 
  ridge.tr <- glmnet(x.tr, y.tr, alpha=0, lambda=ridge.cv$lambda.min) 
  betas.ridge.cv <- as.numeric(coef(ridge.tr))[-1] 
  new.marker.ridge.cv <- vector("numeric", length=nrow(dat4anal.te)) 
  for (p in 1:length(betas.ridge.cv)) { 
    new.marker.ridge.cv <- new.marker.ridge.cv + betas.ridge.cv [p]*dat4anal.
te[,p+1] 
  } 
  dat4anal.f <- data.frame(case=dat4anal.te$case, new.marker.f=new.marker.rid
ge.cv) 
  v1.f <- dat4anal.f[dat4anal.f$case==1, -1] 
  v0.f <- dat4anal.f[dat4anal.f$case==0, -1] 
  etpf.ridge.f <- c(etpf.ridge.f, eTPF(0.1, v0.f, v1.f)) 
  eauc.ridge.f <- c(eauc.ridge.f, eAUC(v0.f, v1.f)) 
  new.marker.ridge <- c(new.marker.ridge, new.marker.ridge.cv) 
} 
mean(etpf.ridge.f) 
mean(eauc.ridge.f) 
biomarkers.ridge <- data.frame(case=case.cv, marker=new.marker.ridge) 
head(biomarkers.ridge) 
v1.ridge_cv <- biomarkers.ridge[biomarkers.ridge$case==1,2] 
v0.ridge_cv <- biomarkers.ridge[biomarkers.ridge$case==0,2] 
eAUC(v0.ridge_cv, v1.ridge_cv) 
eTPF(0.1, v0.ridge_cv, v1.ridge_cv) 

## implement a 10-fold cross-validation on maxTPR 
set.seed(123) 
flds1 <- createFolds(1:167, k=10) 
flds0 <- createFolds(1:81, k=10) 
new.marker.maxTPR <- vector("numeric") 
etpf.maxTPR.f <- vector("numeric") 
eauc.maxTPR.f <- vector("numeric") 
for (f in 1:10) { 
  dat4anal.tr <- as.data.frame(rbind(case_1_cv[-flds1[[f]], ],  
                                     cont_0_cv[-flds0[[f]], ])) 
  fit.rlogit.tr <- rlogit(case~.,dat4anal.tr) 
  if (fit.rlogit.tr$convergence) { 
    beta.init.tr <- fit.rlogit.tr$coef[-1] 
  } else { 
    beta.init.tr <- rep(1, ncol(dat4anal.tr)-1) 
  } 
  n1 <- nrow(case_1_maxTPR[-flds1[[f]], ]) 
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  n2 <- nrow(cont_0_maxTPR[-flds0[[f]], ]) 
  n <- nrow(dat4anal.tr) 
  predictors.tr <- model.matrix(case~., dat4anal.tr)[,-1] 
  Y.tr <- dat4anal.tr$case 
  Xint.tr <- calXdiff(predictors.tr, Y.tr, d=length(beta.init.tr)) 
  x_diff.tr <- Xint.tr[[1]] 
  h.tr <- n^(-1/2)*sd(drop(x_diff.tr%*%normsq(beta.init.tr))) 
  fit.tr <- maxTPR(data=dat4anal.tr, tval=0.1, approxh=h.tr) 
  betas.maxTPR.cv <- as.numeric(fit.tr$sTPRrslt[3:17]) 
  dat4anal.te <- as.data.frame(rbind(case_1_cv[flds1[[f]], ],  
                                     cont_0_cv[flds0[[f]], ])) 
  new.marker.maxTPR.cv <- vector("numeric", length=nrow(dat4anal.te)) 
  for (p in 1:length(betas.maxTPR.cv)) { 
    new.marker.maxTPR.cv <- new.marker.maxTPR.cv+betas.maxTPR.cv[p]*dat4anal.
te[,p+1] 
  } 
  dat4anal.f <- data.frame(case=dat4anal.te$case, new.marker.f=new.marker.max
TPR.cv) 
  v1.f <- dat4anal.f[dat4anal.f$case==1, -1] 
  v0.f <- dat4anal.f[dat4anal.f$case==0, -1] 
  etpf.maxTPR.f <- c(etpf.maxTPR.f, eTPF(0.1, v0.f, v1.f)) 
  eauc.maxTPR.f <- c(eauc.maxTPR.f, eAUC(v0.f, v1.f)) 
  new.marker.maxTPR <- c(new.marker.maxTPR, new.marker.maxTPR.cv) 
} 
mean(etpf.maxTPR.f) 
mean(eauc.maxTPR.f) 
biomarkers.maxTPR <- data.frame(case=case.cv, marker=new.marker.maxTPR) 
v1.maxTPR_cv <- biomarkers.maxTPR[biomarkers.maxTPR$case==1,2] 
v0.maxTPR_cv <- biomarkers.maxTPR[biomarkers.maxTPR$case==0,2] 
eAUC(v0.maxTPR_cv, v1.maxTPR_cv) 
eTPF(0.1, v0.maxTPR_cv, v1.maxTPR_cv) 

## implement a 10-fold cross-validation on SAUC 
set.seed(123) 
flds1 <- createFolds(1:167, k=10) 
flds0 <- createFolds(1:81, k=10) 
new.marker.nr  <- vector("numeric") 
etpf.nr.f <- vector("numeric") 
eauc.nr.f <- vector("numeric") 
for (f in 1:10) { 
  dat4anal.tr <- as.data.frame(rbind(case_1_cv[-flds1[[f]], ],  
                                    cont_0_cv[-flds0[[f]], ])) 
  fit.tr <- sauc.phi(case~., dat=dat4anal.tr) 
  betas.nr.cv <- fit.tr$coefficients 
  dat4anal.te <- as.data.frame(rbind(case_1_cv[flds1[[f]], ],  
                                     cont_0_cv[flds0[[f]], ])) 
  new.marker.nr.cv <- vector("numeric", length=dim(dat4anal.te)[1]) 
  for (p in 1:length(betas.nr.cv)) { 
    new.marker.nr.cv <- new.marker.nr.cv+betas.nr.cv[p]*dat4anal.te[,p+1] 
  } 
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  dat4anal.f <- data.frame(case=dat4anal.te$case, new.marker.f=new.marker.nr.
cv) 
  v1.f <- dat4anal.f[dat4anal.f$case==1, -1] 
  v0.f <- dat4anal.f[dat4anal.f$case==0, -1] 
  etpf.nr.f <- c(etpf.nr.f, eTPF(0.1, v0.f, v1.f)) 
  eauc.nr.f <- c(eauc.nr.f, eAUC(v0.f, v1.f)) 
  new.marker.nr <- c(new.marker.nr, new.marker.nr.cv) 
} 
mean(etpf.nr.f) 
mean(eauc.nr.f) 
biomarkers.nr <- data.frame(case=case.cv, marker=new.marker.nr) 
v1.nr_cv <- biomarkers.nr[biomarkers.nr$case==1,2] 
v0.nr_cv <- biomarkers.nr[biomarkers.nr$case==0,2] 
eAUC(v0.nr_cv, v1.nr_cv) 
eTPF(0.1, v0.nr_cv, v1.nr_cv) 

## random forests 
prostate_rf <- biomarkers_t 
prostate_rf$case <- factor(prostate_rf$case, levels=c("1","0")) 
fit.rf <- AUCRF(case~., data=prostate_rf) 
set.seed(123) 
fit.rfcv <- AUCRFcv(fit.rf, nCV=10, M=1) 
rfcv.prediction <- predict(fit.rfcv$RFopt, type="vote")[,1] 
rf.case <- prostate_rf$case 
rf_cv.roc <- roc(rfcv.prediction, rf.case) 
rfcv.tpr <-  data.frame(tpr=rfcv.roc$tpr, fpr=rfcv.roc$fpr) 
rfcv.tpr 
auc(rf_cv.roc) 

## implement a 10-fold cross-validation on random forests 
set.seed(123) 
flds1 <- createFolds(1:167, k=10) 
flds0 <- createFolds(168:248, k=10) 
case.1.rf <- prostate_rf[biomarkers_t$case==1,] 
cont.0.rf <- prostate_rf[biomarkers_t$case==0,] 
test.prediction <- vector("numeric") 
for (f in 1:10) { 
  dat4train <- as.data.frame(rbind(case.1.rf[-flds1[[f]],],  
                                   cont.0.rf[-flds0[[f]],])) 
  dat4test <- as.data.frame(rbind(case.1.rf[flds1[[f]],],  
                                  cont.0.rf[flds0[[f]],])) 
  train.fit <- randomForest(case~., data=dat4train, importance=TRUE) 
  test.prediction <- c(test.prediction,  
                       predict(train.fit, newdata=dat4test, type="vote")[,1]) 
} 
prostate.prediction <- vector("numeric", length=248) 
for (o in 1:248) { 
  prostate.prediction[as.numeric(names(test.prediction)[o])] <- test.predicti
on[o] 
} 
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names(prostate.prediction) <- as.character(c(1:248)) 
prostate_rfcv <- roc(prostate.prediction, prostate_rf$case) 
auc(prostate_rfcv) 
rfcv.tpr <-  data.frame(tpr=prostate_rfcv$tpr, fpr=prostate_rfcv$fpr) 
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