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Abstract 

Characterization of HIV-1 capsid-binding host proteins during infection 

 

Emerson Ailidh Boggs, MS 

 

University of Pittsburgh, 2021 

 

 

Abstract 

The human immunodeficiency virus type 1 (HIV-1) capsid is an assembly of over 1,500 

capsid (CA) monomers that encapsulates the viral RNA genome. After infection of the cell, this 

structure dissociates in a process termed uncoating to reveal the reverse transcribed genome that 

must be integrated into the host cell genome for productive infection. The HIV-1 capsid interacts 

with a number of host proteins during capsid trafficking and nuclear import in the cell. This study 

characterizes the importance of cellular localization of capsid-binding host proteins that have been 

implicated in HIV-1 infection. First, the microtubule motor protein kinesin, a mediator of capsid 

trafficking during disassembly, was depleted in cells, which was associated with inhibition of HIV-

1 infectivity. An inhibitable, fluorescently-tagged kinesin construct was successfully introduced 

into these kinesin-depleted cells. Second, the re-localization of cleavage and polyadenylation 

factor 6 (CPSF6) to the cytoplasm impacts HIV-1 capsid trafficking and infectivity. As cyclophilin 

A (CypA) binding was shown to prevent cytoplasmic CPSF6 binding to HIV-1 capsid, localization 

of CypA was evaluated and found to differ between HIV-1 target CD4+ T cells and macrophages, 

which correlates to disparate findings on capsid uncoating dynamics during infection of these cells. 
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1.0 Introduction 

1.1 History of HIV-1 

1.1.1 Epidemiology 

On June 5th, 1981, an unprecedented five cases of the exceedingly rare Pneumocystis 

jirovecci pneumonia (PJP), then misclassified as P. carinii pneumonia (PCP), were reported 

among men who have sex with men (MSM) in Los Angeles, California[2]. At this same time, Sandy 

Ford of the Center for Disease Control (CDC) Parasitic Diseases Division, the nation’s sole 

distributor of pentamidine isethionate, noted a concerning increase in demand for the orphan drug 

typically used to treat scarce, imported cases of African trypanosomiasis[3]. More concerning was 

the fact that these requests were coming from physicians treating PJP in adult male patients with 

no history of international travel. She ratcheted this information up the administrative ladder at the 

CDC, and in doing so unknowingly became the first person to alert the federal government to a 

then unappreciated incoming public health crisis. When New York City clinicians then reported 

what appeared to be clusters of Kaposi’s Sarcoma, a similarly rare cancer with no known infectious 

etiology[4], and more PJP in people who inject drugs (PWID)[5], the stage was set for the 

recognition of an extraordinary emergent infectious disease. Together, these findings ultimately 

represented the discovery of what we now call acquired immunodeficiency syndrome (AIDS): a 

pandemic the likes of which the modern world had never before encountered. 

In 2019, there were 1.7 million new documented cases of HIV-1 globally[6]. This 

represented a 23% decrease from 2010, but was still three times higher than the UNAIDS goal for 
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the end of the decade. More than half of these new infections occurred within well-defined risk 

groups and among their sexual partners, but distribution within these populations varies widely 

between regions. Nearly half of all new infections in Eastern Europe and central Asia were among 

PWID, but this risk group represented only 15% of new infections in western Europe and North 

America[6]. 

1.1.2 Virology 

1.1.2.1 Discovery of HIV and development of antiretroviral therapy 

Deeper investigation into AIDS became possible with the isolation of its causative agent, 

a novel retrovirus later named human immunodeficiency virus (HIV), by the research groups of 

Luc Montagnier of the French Pasteur Institute and Robert Gallo of the US National Cancer 

Institute (NCI) in 1983[7, 8]. The earliest pathogenic human retroviruses had been discovered not 

long before HIV; it was Robert Gallo himself that first reported the existence of human T-

lymphotropic virus (HTLV-I) in 1980, just three years prior[9]. Owing to this short record and the 

unique replication cycle of retroviruses, described in section 1.3, effective drugs to combat HIV 

infection were not readily available. Further complicating matters, the few human retroviruses 

known to the scientific community by 1983 caused cancer, not immunodeficiency. It was not until 

1987 that the U.S. Food and Drug Administration approved zidovudine (azydothimidine, or AZT), 

the world’s first ever drug for the treatment of retroviruses in humans[10]. HIV proved adept at 

escaping inhibition by monotherapies like AZT, so as new antiretroviral drugs (ARVs) were 

developed they were combined in a “cocktail” called combination antiretroviral therapy (ART)[11-

13]. It was this introduction of ART in the mid-1990s that shifted a diagnosis of HIV from being a 

certain death sentence to a manageable condition. 
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1.1.2.2 Origin of HIV 

Despite not being designated as a novel virus until the 1980s, phylogenetic analyses posit 

that the ape precursor to HIV spilled over into humans between 1915 and 1941[14]. The discovery 

of well-preserved, paraffin-embedded tissue in the Democratic Republic of the Congo allowed for 

genetic comparisons of HIV in samples from 1959 and 1960, well before recognition of AIDS in 

the United States. These experiments revealed that HIV sequences diverged considerably between 

samples collected in the mid-twentieth century, suggesting a significant history of evolution by 

that time[15]. Multiple cross-species transmissions of Simian Immunodeficiency Virus (SIV) to 

humans and between non-human primates have occurred[16], but a human exposure to chimpanzee 

SIV (SIVcpz) from bushmeat practices in Cameroon resulted in the predominant HIV-1 group M 

at the root of the AIDS epidemic[17, 18]. A separate spillover of sooty mangabey SIV (SIVsm) to 

humans resulted in the development of HIV-2, which remains largely restricted to west Africa, is 

more clinically mild, and will not be discussed here[19, 20]. 

1.2 HIV-1 Pathogenesis 

1.2.1 Transmission 

HIV-1 is transmitted through mucosal membrane contact with infected sexual fluids, direct 

introduction of virus into the bloodstream (namely by percutaneous inoculation), and vertically 

either through the placenta, exposure to maternal sexual fluids and/or blood during delivery, or 

consumption of infected breastmilk. In contrast to early conceptualizations of AIDS as a “gay 

cancer,” 48% of new HIV-1 infections are now among women globally, with the proportion in 
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sub-Saharan Africa being as high as 59%[21]. In the United States, ~85% of these new HIV-1 

infections among women are attributed to penile-vaginal intercourse[22]. Sexually transmitted 

diseases that result in genital ulceration or inflammation increase both transmissibility of and 

susceptibility to HIV-1[23, 24]. Mucosal membrane transmission occurs disproportionately among 

MSM due to a lack of self-lubrication of the anus. Investigations into condom adherence among 

MSM has thusly revealed proper lubricant selection and usage to be more important than condom 

thickness in preventing condom failure during anal sex[25].  

Following initial introduction of HIV-1 to abrasions in the mucosal epithelium, the time 

between infection of the first cell to detection of virus in the bloodstream is referred to as the 

eclipse phase. This period can last anywhere from 7-21 days[26], after which HIV-1 will have 

established a systemic, self-propagating infection. HIV-1 first infects resting CD4+ T cells in the 

sub-mucosa[27, 28]. When these infected founder cells expand and migrate to the draining lymph 

nodes, where circulating T cells mature as part of the adaptive immune response, the virus is 

disseminated to a high-density population of target cells[29]. Once HIV-infected T cells are 

activated in the lymph node, they are directed throughout the body, allowing the virus to circulate 

widely[29]. Dendritic cells (DCs) near the point of viral entry are also capable of endocytosing viral 

particles and delivering them to lymph nodes[30]. It remains unclear whether DCs themselves are 

productively infected, but DCs exposed to HIV-1 efficiently infect CD4+ T cells in co-culture, 

making them important in at least the enhancement of infection[31]. Macrophages are additional 

HIV-1 target cells present in the genital mucosa[32], but little is known about their role in early 

infection. As with DCs, HIV-infected macrophages are capable of transmitting virus to T cells 

through cell-to-cell contacts during normal immunological interactions[33]. 
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Once within the bloodstream, HIV-1 enters a target cell by binding of the viral glycoprotein 

gp120 to the host cell surface CD4 receptor in conjunction with a coreceptor, usually CCR5 and/or 

CXCR4. CD4+ T cells are frequently referred to as “helper” T cells due to their roles in activating 

multiple arms of the host immune response[34]. As such, the host immune system is profoundly 

impaired in their absence[35]. Even prior to cell death, HIV-infected CD4+ T cells are highly 

dysfunctional[36]. 90% of viruses isolated immediately following primary infection are CCR5-

tropic[37], while the gradual rise in the proportion of R4-tropic virus over time is associated with 

declining numbers of CD4+ T cells and progression to disease[38]. As CCR5 is expressed 

predominantly on memory CD4+ T cells but CCR5 and CXCR4 are both present on naïve T cells, 

this co-receptor adaptation allows for viral infection of the naïve subset[39]. Alongside this switch 

in co-receptor usage, the virus evolves the ability to infect cells expressing relatively lower levels 

of CD4, like macrophages[40]. Unlike CD4+ T cells, little cytopathic effect is observed in HIV-1 

infection of macrophages[41], allowing them to sustain production of virus over long periods of 

time[42]. 

1.2.1.1 Prevention 

In the same way that ARVs must be combined for successful retroviral suppression, 

retroviral prevention should incorporate both sociobehavioral and biochemical methods[43]. 

Behavioral adaptations to limit the transmission of HIV-1 include but are not limited to the 

consistent usage of condoms, a reduction in the number of sexual partners, and a decrease in the 

incidence of “high-risk” sexual activities. These changes were demonstrated to significantly abate 

local rates of HIV-1 transmission as early as 1986[44]. In Thailand’s 100% Condom Programme, 

when usage of condoms among sex workers rose from 10% in 1989 to > 90% in 2003, there was 

a corresponding 50% decrease in the incidence of HIV-1 among the group[45]. On the contrary, 
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PWID are still woefully underserved in terms of HIV-1 prevention. The most significant danger 

of injecting drug use in terms of HIV-1 transmission is the re-use of contaminated equipment 

between PWID. The establishment of needle and syringe exchange programs that provide sterile 

equipment is globally associated with a decrease in rates of transmission, but these programs 

remain extremely controversial[46]. 

The benefits of prophylactic ARVs were first observed in preventing transmission of SIV 

in macaques[47]. Since then, this approach has been extended to HIV-1 uninfected people in high 

risk groups. Prior to migration of infected cells to lymph nodes, HIV-1 replicates locally and at 

low levels in an “intraepithelial pocket” of target cells within the sub-mucosa at the site of entry[48, 

49]. It is this brief hiatus that is targeted by preexposure prophylaxis (PrEP). ARVs utilized in PrEP 

protocols have largely been drawn from those developed for the treatment of HIV-1 infection, as 

desirable drug characteristics overlap between the two. This dual-potential for the use of novel 

ARVs in PrEP is especially important for therapeutics targeting pre-integration events of the HIV-

1 replication cycle, which could hypothetically prevent the expansion of infected founder cells and 

the establishment of a latent reservoir, as discussed in 1.3. 

1.2.2 Clinical disease 

1.2.2.1 Acute stage 

Soon after infection, patients experience a self-limiting period of non-specific, flu-like 

symptoms. Viremia peaks during this introductory illness, then falls to a set-point as symptoms 

diminish. Despite this high viremia representing an ideal opportunity for the detection of 

circulating HIV-1, screening is rarely performed at this point in the absence of risk factors. While 

viremia can be a predictor of time from infection to development of AIDS[50, 51], peak and set point 
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viral concentration in the blood paint an incomplete picture and there is not a distinctly reliable 

correlation[52]. Following the resolution of this early illness, host CD4+ T cells will decline in the 

absence ART. 

1.2.2.2 Chronic stage 

The descent from initial HIV-1 infection to AIDS is highly variable but generally slow. 

The average time from infection to development of disease is approximately ten years without 

therapy[53], but “rapid progressors” develop disease within 2-3 years of exposure and “long-term 

non-progressors” can maintain normal CD4+ T cell counts for over twenty years[54]. This lengthy 

incubation period led to the early misconception that the virus lies latent for long periods following 

infection, when in reality HIV-1 replicates and depletes CD4+ T cells continuously prior to the 

development of symptoms[54, 55]. During sub-clinical infection, rates of viral replication are 

controlled by a silent immunological arms race wherein the immune system produces cellular and 

humoral responses to inhibit the virus and HIV-1 mutates rapidly to escape them[56]. During this 

clinical latency, HIV-1 establishes a reservoir of cells with the potential to continue producing 

infectious viral particles for long periods of time, as detailed in 1.3.5. 

1.2.2.3 AIDS 

AIDS-defining illnesses typically begin to appear when patient CD4+ T cell counts fall 

below 200 cells/μL. Since the early identification of PJP and Kaposi’s sarcoma in infected persons, 

opportunistic infections with Toxoplasma gondii, Mycobacterium tuberculosis (often 

disseminated), cytomegalovirus, Cryptococcus neoformans, and scores of others are now likewise 

considered hallmarks of the disease. These diagnoses are more easily prevented in the era of ART 

as people can live for decades with HIV-1 without ever progressing to AIDS, but chronic 
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complications are associated with long-term infection. Current research on long-term 

complications of HIV-1 infection includes investigation into an increased risk of chronic hepatitis, 

neurodegeneration, and cardiovascular disease among infected persons[57]. 

1.3 HIV-1 Biology 

The inner workings of retroviruses first began to be elucidated in the 1960s. When 

Baltimore and Temin independently described an RNA-dependent DNA polymerase in oncogenic 

RNA viruses[58, 59], it was an upheaval of the contemporary understanding of genetics. Prior to this, 

the central dogma of molecular biology had posited that genetic information was transferred 

strictly in one direction from deoxyribonucleic acid (DNA), to ribonucleic acid (RNA), and then 

to operative protein[60]. Conflictingly, Baltimore and Temin demonstrated that both Rous sarcoma 

virus and Rauscher murine leukemia virus converted their RNA genomes into DNA genomes 

within the host cell during infection using an enzyme known now as reverse transcriptase (RT). 

1.3.1 Entry 

To gain access to the interior of the host cell, the enveloped HIV-1 particle must first make 

contact with the host cell surface[61]. This interface is comprised of the HIV-1 Env glycoprotein 

trimer binding to host cell receptors and co-receptors[62]. The outer gp120 subunit of Env binds to 

cellular CD4 and induces a conformational change that then allows for gp120 binding to co-

receptors CCR5 and/or CXCR4[63, 64]. Once bound to CD4 through the gp120 peptide, the gp41 

fusion peptide of Env pierces the host cell membrane to tether the viral particle to the target cell. 
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This juncture induces a conformational change in gp41 that allows for the formation of a gp41 six-

bundle helix, which physically brings the viral membrane and host plasma membrane into close 

enough proximity to fashion a fusion pore[65]. At this point the viral membrane fuses with the host 

cell membrane, allowing for the deposition of the viral capsid into the cytoplasm[66]. 

1.3.2 Trafficking 

1.3.2.1 The host cytoskeletal architecture 

Popular illustrations of the cell depict the cytoplasm as a wide, open expanse occasionally 

interrupted by organelles. In reality, it is crowded and dense[67]. Because of this, only small cargo, 

such as individual proteins, can diffuse unassisted throughout the cell. Larger cargo, like vesicles, 

organelles, the HIV-1 capsid and that of other viruses, must hijack the host cell highway system 

of the cytoskeleton to make their way towards the interior of the cell[68-70]. 

The cytoskeleton is a dynamic network of structures that provide the cell with physical 

rigidity, facilitate intracellular trafficking, and mediate cellular stability and translocation during 

division. This network is composed of microtubules, actin filaments, and intermediate filaments. 

While movement of the HIV-1 capsid along actin filaments has been observed, actin-mediated 

trafficking appears to occur only in unpredictable, short bursts[71, 72]. Rather, the HIV-1 capsid 

travels consistently and over long distances along microtubules during cytoplasmic transit to the 

nucleus[71, 72].  

1.3.2.2 Motor proteins and viral transit 

Disruption of microtubule function with nocodazole treatment impairs HIV-1 trafficking 

and results in an accumulation of HIV-1 capsids at the cell periphery[72-74]. While microtubules 
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provide the scaffolding for intracellular movement, motor proteins must “walk” along them to 

carry cargo. Motor proteins dynein and kinesin facilitate microtubule-mediated trafficking of cargo 

to (retrograde) and from (anterograde) the microtubule organizing center (MTOC) abutting the 

outer nuclear membrane, respectively[75]. The earliest live cell observations of HIV-1 trafficking 

noted a “distinct back and forth behavior” wherein the capsid containing a fluorescently labeled 

protein would unpredictably switch between inward and outward movement during overall inward 

movement towards the nucleus[71]. Later studies confirmed that unidirectional post-entry 

movement of the HIV-1 capsid depends on the activity of both dynein and kinesin[76]. 

Other viruses also utilize motor proteins of opposing directionality to facilitate transit in 

one overall direction. The herpes simplex virus type I (HSV-I) capsid has been shown to bind 

kinesin and dynein simultaneously[77], which then mediate its disassembly through a physical “tug-

of-war” mechanism[78]. Kinesin interactions with the HSV-1 capsid are also required for disruption 

of the organization of nuclear pore complexes (NPCs) to accommodate nuclear docking[79]. For 

adenoviruses, kinesin binding to capsid is required for final disassembly of the capsid at the 

NPC[79]. Similarly, kinesin heavy chain (KIF5B) interaction with the HIV-1 capsid has been shown 

to re-localize Nup358, a nucleoporin in the NPC that is required for nuclear entry[80], but much of 

the requirement for KIF5B in HIV-1 infection remains unknown. Methods used to investigate 

these mechanisms in DNA viruses have been made possible by an intricate composition of their 

capsid structures. Because the HIV-1 capsid is relatively fragile and does not tolerate mutations[81, 

82], these methods are not readily transferrable and novel strategies are needed 

Capsid uncoating is a spatiotemporally dependent process, meaning that uncoating 

occurring either too swiftly or too slowly is unfavorable to infection[83]. As the capsid itself can be 

recognized by host innate immune effectors, so this perfect “sweet-spot” time and location for 
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HIV-1 uncoating is critical for limiting these interactions[84-86]. Production of viral DNA is 

similarly dependent on uncoating kinetics, as CA mutants that alter core stability also impair rates 

of reverse transcription[81, 82, 87]. The kinetics of uncoating are influenced not only by the 

surrounding cellular environment, discussed in 1.4.3, but also by structural changes within the 

capsid. Indeed, inhibiting reverse transcription precludes uncoating and results in an accumulation 

of intact capsids at or around the nuclear membrane[88].  

1.3.3 Nuclear import 

While some viruses require the breakdown of the nuclear membrane seen in an actively 

dividing cell to enter the nucleus, HIV-1 and other lentiviruses can infect non-dividing cells in a 

manner mediated by capsid[89, 90]. Historically, it was thought that the ~60 nm diameter of the intact 

HIV-1 capsid required full dissociation of the structure prior to transit of the viral DNA genome 

through a ~30 nm nuclear pore[91, 92]. In line with this, decades of studies reflected a wholly 

cytoplasmic model of uncoating. Recently, mounting evidence contradicts this long-held dogma, 

and suggests that uncoating of the HIV-1 capsid completes within the host cell nucleus[93-96]. The 

proposition that an intact or mostly intact conical capsid may be present at or even transported 

through the nuclear pore represents a remarkable paradigm shift within the field, but the exact 

nature of HIV-1 capsid uncoating is still unclear. 

The most thoroughly described nucleoporins that mediate HIV-1 nuclear import are the 

cytoplasmic leaflet Nup358[97] (also referred to as RANBP2) and intra-nuclear Nup153[98], both of 

which bind directly to HIV-1 capsid. Depletion of transportin-3 (TNPO3) restricts HIV-1 nuclear 

import, though this is likely an indirect influence owing to its interaction with second host factor 

CPSF6, as discussed in 1.4.3.2. Interestingly, the requirement of Nup358, Nup153, and TNPO3 
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for HIV-1 nuclear import can all be subverted by a mutation in capsid[99]. This suggests the 

existence of at least one redundant, unidentified pathway for HIV-1 nuclear import. Other 

nucleoporins, such as Nup214 and Nup98, have been implicated in the regulation of HIV-1 nuclear 

import but their precise role has yet to be described[97, 100]. 

1.3.4 Reverse transcription 

The retroviral RNA genome is converted into double-stranded DNA by reverse 

transcription, which is catalyzed by reverse transcriptase (RT). Encapsulation of RT and the viral 

genome within the capsid allows for the spatial apposition necessary to keep the enzyme near its 

genomic substrate[101]. Reverse transcription begins within an intact capsid and partly mediates 

uncoating by applying pressure to the capsid lattice during the accumulation of rigid DNA[87, 102]. 

Early products of reverse transcription can be detected in vitro even when only disassembled 

patches of hexameric capsid lattice are present, indicating that the capsid shell itself is vital for 

initiation of reverse transcription[103].  

RT both synthesizes DNA from the viral RNA template and then degrades that same RNA 

from the ensuing RNA:DNA duplex[104]. Two copies of the HIV-1 RNA genome are contained 

within one capsid, and RT can switch templates during reverse transcription. HIV-1 sequences 

vary widely within individuals[105]. When distinct genomes are incorporated within the same 

capsid, template-switching during reverse transcription can produce chimeric, recombinant viruses 

with new capabilities of evading the host immune response[106]. In addition to the relatively high 

rate of mutation brought on by the infidelity of RT, host cytidine deaminases in the APOBEC3 

family induce hypermutations during this process[107-110].  
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1.3.5 Integration 

In the second characteristic step of the retroviral replication cycle, the reverse transcribed 

HIV-1 genome is integrated into the host cell genome, permitting persistence of this provirus for 

the lifespan of the cell. Similar to reverse transcription, integration of the DNA HIV-1 genome is 

accomplished by the viral enzyme integrase (IN). Ordinarily, HIV-1 IN processes both ends of the 

viral genome and preferentially integrates it in gene-dense sites of active transcription within the 

host genome[111]. Positioning of these integration events is facilitated by host proteins lens 

epithelium-derived growth factor / transcriptional coactivator p75 (LEDGF/p75)[112, 113] and 

CPSF6[114]. As current research into a functional cure for HIV-1 includes targeting of proviruses, 

understanding integration sites is critical. 

Cells containing proviral sequences retain the ability to produce infectious viral particles 

upon induction and are collectively referred to as the latent reservoir[115, 116]. This reservoir is 

largely comprised of memory CD4+ T cells, and normal activation of these cells can reverse said 

latency[117].  Less than 1% of these proviruses can be stimulated to produce infectious viral particles 

under optimal conditions in vitro[118], but the potential for latently infected cells to re-activate 

requires people living with HIV-1 to adhere to ART permanently. 

1.3.6 Assembly, budding, and maturation 

Integration of the reverse transcribed HIV-1 DNA genome allows the proviral sequence to 

be insidiously transcribed and translated by the host cell replication machinery[119, 120]. HIV-1 gene 

expression is regulated, however, by the two viral proteins Tat and Rev. Retroviruses contain their 

own promoter sequence, a long terminal repeat (LTR), but Tat is required for LTR-driven 
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transcription[121, 122]. Tat binding to the transactivation-responsive region (TAR) sequence within 

the LTR RNA[123] recruits cellular P-TEFb, part of the host cell transcription complex, to nascent 

transcripts as an activator of elongation[124, 125]. In the absence of this interaction, transcription is 

non-processive. HIV-1 transcripts can be multiply or singly spliced or unspliced[126]. Unspliced 

viral transcripts are exported by a mechanism facilitated by the viral protein Rev[127].  

Egress of the HIV-1 particle is coordinated by the Gag polyprotein, which consists of the 

structural proteins CA, nucleocapsid (NC), and matrix (MA). The pol gene, encoding the viral 

enzymes RT, IN, and protease (PR), is translated following a frameshift as the larger Gag-Pol 

polyprotein[128]. Assembly of the HIV-1 particle takes place at the host membrane, where direct 

interactions between Gag, other viral proteins, and the viral genome bring virion contents together. 

During budding from the cell, PR cleaves the HIV-1 polyproteins to produce an infectious, mature 

particle. This processing of the Gag polyprotein allows for the formation of the HIV-1 capsid by 

its constituent CA protein. 

1.4 The HIV-1 Capsid 

1.4.1 Capsid structure 

The HIV-1 capsid is comprised of only the capsid (CA) subunit protein (Fig 1). 

Approximately 1,500 monomers coalesce into an enclosed lattice of roughly 250 hexamers and 12 

pentamers to encapsulate two copies of the viral RNA genome, unique retroviral proteins, such as 

RT and IN, and a select few host proteins[129, 130]. The differential placement of these pentamers 

on opposite ends of the capsid is responsible for the asymmetrical, “fullerene cone” shape of the 
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structure[131]. Each hexamer contains a pore for the import of external materials, most notably 

dNTPs necessary for reverse transcription[132]. 

 

Figure 1: Structure of HIV-1 Capsid.  ~250 CA hexamers (orange) come together with 12 pentamers (yellow) in a 

lattice to form the distinct chrysalis-shaped HIV-1 capsid. Reprinted with permission from Novikova, M., Zhang, Y., 

Freed, E.O. et al. Multiple Roles of HIV-1 Capsid during the Virus Replication Cycle. Virol. Sin. 34, 119–134 (2019). 

1.4.2 Capsid function 

The HIV-1 capsid impacts all steps of the post-entry replication cycle. Owing to the unique 

replication cycle of retroviruses, multiple components necessary for HIV-1 replication are not 

found within the target cell. Because retroviruses need to bring in their own replication machinery, 

these materials must be kept from diffusing aimlessly into the cytoplasm. The capsid shell, for 

example, provides the physical constraints necessary to keep RT in close proximity to its viral 

genome substrate[101]. The physical barrier provided by the capsid additionally protects the 

recognizably “non-self” contents within from detection by cellular immune sensors[133, 134]. 

Reverse transcription and uncoating are intrinsically tied, with the initiation of reverse 

transcription facilitating capsid disassembly[135, 136] and the capsid lattice itself serving as an 

initiator of reverse transcription[103]. Lastly, capsid is the major viral determinant of nuclear 

import.[137] 
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1.4.3 Host factor involvement in HIV-1 capsid-dependent processes 

1.4.3.1 CypA 

CypA is a host peptidylprolyl isomerase first implicated in HIV-1 infection nearly thirty 

years ago[138, 139]. Despite this early discovery, the exact role of CypA in HIV-1 infection has 

remained elusive in large part due to the cell-type dependence of experimental results regarding 

the protein. On the CA monomer, CypA catalyzes the isomerization of the peptide bond joining 

residues G89 and P90[139, 140]. Single amino acid substitutions G89V and P90A mutants abolish 

CypA binding and, in turn, diminish infectivity in most cells[141-143]. CypA was first identified as 

a target of the existing immunosuppressant drug cyclosporine A (CsA)[144], which can be used to 

inhibit CypA interaction with HIV-1 capsid in infected cells[138]. CypA has been shown to impact 

all post-entry events of HIV-1 replication, but results concerning interactions between CypA and 

the HIV-1 capsid have been conflicting. CypA has been demonstrated to both stabilize capsids[145] 

and destabilize CA tubes in vitro[146]. Because the presence of CypA in target cells, not producer 

cells, determines its impact on infectivity, it is thought that differential levels of CypA expression 

between cell types could be to blame for the protein’s divergent influence[147, 148]. In support of 

this idea, decreasing the level of CypA present in in vitro assays can lead to CypA stabilization of 

HIV-1 CA assemblies[146]. The impact of CypA on nuclear import is of major consequence given 

recent results suggesting that an intact or mostly intact HIV-1 conical capsid could be traversing 

the nuclear pore. HIV-1 relies on specific nuclear pore proteins, most notably Nup358 and Nup153, 

to facilitate nuclear entry. The disruption of CypA binding to capsid undermines the dependence 

of HIV-1 on both Nup358[149] and Nup153[98], allowing nuclear entry to proceed through a 

presently unknown pathway independent of both.  



 17 

CypA interactions with the capsid affect intracellular innate immune recognition of HIV-

1. Infectivity of CypA-independent CA mutants G89V and P90A HIV-1 are not inhibited by 

myxovirus resistance protein B (MxB), which is encoded by an IFN-stimulated gene that restricts 

nuclear entry of WT HIV-1[85, 86]. HIV-1 also exploits CypA to protect the capsid from recognition 

by tripartite motif containing protein 5 (TRIM5α), which restricts infection[150].  Binding of CypA 

to the HIV-1 capsid sterically hinders binding of TRIM5α, and depletion of TRIM5α is sufficient 

to rescue the reduced infectivity of G89V and P90A HIV-1 in primary CD4+ T cells [151, 152]. 

1.4.3.2 CPSF6 

CPSF6 is a mediator of mRNA processing found predominantly within the cell nucleus 

under normal conditions[153]. This localization is due to binding of CPSF6 to the nucleocytoplasmic 

shuttle protein TNPO3 through its C-terminal arginine and serine-rich (R/S) domain[154, 155].  

CPSF6 binds directly to and disrupts CA tubes in vitro[73, 99, 156, 157]. A truncated form of CPSF6 at 

amino acid 358 that lacks the R/S domain, CPSF6-358, diminishes binding to TNPO3[99]. It was 

demonstrated that in the absence of TNPO3 binding, CPSF6-358 was distributed throughout the 

cytoplasm and inhibited HIV-1 infectivity by blocking nuclear entry[99]. Production of HIV-1 in 

cells expressing CPSF6-358 selected for the CPSF6-independent N74D CA mutant[99], which 

infected cells independently of Nup358 and Nup153[98, 149, 158]. N74D HIV-1 infection is normal in 

HeLa cells but impaired in macrophages[158] Dependence of HIV-1 infection on TNPO3 has been 

noted in multiple instances, but CPSF6-independent capsid mutant N74D is insensitive to TNPO3 

depletion[99], suggesting that the impact of TNPO3 on infectivity is indirect and requires CPSF6. 

Depletion of CPSF6 does not inhibit HIV-1 infectivity in most cells but does decrease the amount 

of CA that co-localizes with nuclear viral DNA and shifts integration into heterochromatin[114, 159, 

160].  



 18 

1.4.3.3 The CypA-CPSF6 connection 

Our lab has shown that cells expressing full-length CPSF6 contain perinuclear CPSF6 

puncta within the cytoplasm[73]. During HIV-1 infection, these CPSF6 puncta form higher-order 

complexes around the HIV-1 capsid and co-traffic with it along microtubules[73]. Loss of capsid 

binding to CypA with either G89V and P90A capsid mutants or CsA treatment increases both the 

size and number of these CPSF6 complexes, suggesting that CypA interactions with the capsid 

prevent CPSF6 binding[73]. Similar results were observed for CPSF6-358[157].  

1.4.3.4 Motor protein complexes 

Upon fusion with the host cell membrane, the HIV-1 capsid travels along microtubules to 

the nucleus[71, 72]. Depletion of microtubules and inhibition of microtubule-mediated trafficking 

with nocodazole treatment both perturb HIV-1 infectivity[76, 161]. Motor proteins kinesin and dynein 

are responsible for movement of cargo along microtubules to and from the MTOC abutting the 

nucleus, respectively[75]. Counterintuitively, both kinesin and dynein are required for successful 

HIV-1 uncoating, which occurs as the capsid moves unidirectionally towards the cell interior[76, 

162]. More recently, dynein adaptor protein bicaudal D2 (BICD2) and kinesin-1 adaptor fasiculation 

and elongation factor ζ (FEZ1) have been implicated in promoting HIV-1 microtubule trafficking 

in a motor protein-dependent manner[163, 164].  

 

1.4.4 Public health significance: Capsid as a drug target 

While the advent of ART has greatly improved the prognosis of people living with HIV-1 

in terms of both chronic viremia and progression to AIDS[165], the timely discovery of new 



 19 

potential targets for HIV-1 treatment is essential to competing with the rapid pace of antiretroviral 

resistance[166].  

As detailed herein, the HIV-1 capsid influences all post-entry events of the HIV-1 

replication cycle. The capsid protects its contents from detection by immune sensors[133, 134], 

prevents unique retroviral material from diffusing away from the virus[101], is essential for the 

initiation of reverse transcription[103], and is the major determinant of nuclear import[137]. Targeting 

events prior to nuclear entry for inhibition of HIV-1 could prevent integration and, in turn, the 

establishment of a latent reservoir. Unlike enzymatic targets, which have proven to be capable of 

adapting functionality when circumventing ARV activity, the capsid is extremely intolerant of 

even single amino acid substitutions[81, 82]. The number of different viral processes influenced by 

capsid function and the fragility of the capsid-encoding sequence make it an increasingly desirable 

target for the development of new antiretroviral compounds as complications from conventional 

drugs continue to arise[167]. 

Capsid inhibitors in development aim to disrupt capsid stability directly or indirectly by 

inhibiting binding to essential host proteins. Many promising small molecules specifically interfere 

with interactions between the HIV-1 capsid and CPSF6. Within the laboratory, small molecule PF-

3450074 (PF74) occupies the HIV-1 capsid binding site to CPSF6 and Nup153 and interferes with 

uncoating[168-170]. Previously, the largest barrier to the translation of capsid inhibitors like PF74 to 

clinical application has been prohibitive toxicity and bioavailability. GS-6207, a small molecule 

that contains the PF74 scaffold, has demonstrated potent efficacy in a phase I clinical trial as a 

long-acting therapeutic in the treatment of HIV-1[171]. As CPSF6 has proven to be a viable mediator 

of capsid inhibition, insights into how CPSF6 interacts with the capsid can theoretically aid in  the 

drug development process. Defining interactions between the capsid and KIF5B could likewise 
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disrupt binding and allow for investigation into mechanisms that inhibit the arrival of the HIV-1 

PIC at the nuclear membrane. 
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2.0 Statement of Project and Specific Aims 

Upon fusion with the host cell membrane, the HIV-1 particle deposits its capsid within the 

cytoplasm. Transit of the HIV-1 capsid towards the nucleus is facilitated by motor proteins dynein 

and kinesin, both of which are required for successful capsid uncoating[76]. During infection, 

kinesin heavy chain KIF5B interacts with nuclear pore complex (NPC) components critical for 

HIV-1 nuclear entry in a capsid-dependent manner[80]. Despite canonically mediating transport of 

cargo away from the nucleus, kinesin has been implicated as a regulator of both capsid dissociation 

and nuclear entry during overall inward movement of other viruses[172]. Depletion of KIF5B is 

known to abrogate HIV-1 infection, but the mechanism by which this occurs remains unclear. 

While trafficking along microtubules to the cell nucleus, the HIV-1 capsid interacts with 

cytoplasmic host proteins as it disassembles, including CPSF6[73, 99]. Point and truncation mutants 

that disrupt CPSF6 binding to TNPO3 increase cytoplasmic expression of the protein and inhibit 

HIV-1 nuclear entry[99, 155]. Our lab has shown that CypA[138] influences cytoplasmic CPSF6 

interactions with the HIV-1 capsid[73, 157]. Because HIV-1 uncoating is a spatiotemporally 

dependent process critical to productive infection, the cellular staging of interactions between the 

HIV-1 capsid, CypA, and CPSF6 is of great import but remains to be clearly defined. 

AIM 1: Examine requirement for KIF5B in HIV-1 capsid microtubule trafficking and 

nuclear import. To determine whether motor proteins that canonically traffic cargo away from 

the cell interior are involved in HIV-1 capsid trafficking to the nucleus, we will evaluate the effect 

of a fluorescently-tagged, inhibitable kinesin family member, KIF5C, on HIV-1 microtubule 

trafficking[173]. Expression of this construct in infected cells will allow for the visualization of 

HIV-1 trafficking in live cell microscopy. Furthermore, inhibition of the motor activity of this 
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construct during live cell analysis will allow for real time visualization of the role of KIF5 in HIV-

1 trafficking. 

AIM 2: Visualize the localization of HIV-1 CA-binding host proteins within cells and 

quantify their impacts on infectivity. Fluorescently tagged full-length, point, or truncation 

mutants of CPSF6 will be expressed in cells using a lentiviral vector. These cells will allow for the 

visualization of CPSF6 localization using confocal microscopy and for the examination of WT and 

N74D HIV-1 infectivity using a luciferase reporter virus. Fluorescent antibody staining will then 

be employed to visualize the distribution of CypA, endogenous CPSF6, and microtubules in HeLa 

cells, SupT1 CD4+ T cells, and primary human macrophages. 
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3.0 Materials and Methods 

3.1 Cells 

HeLa cells and HEK293T cells were cultured in Dulbecco’s modified Eagle medium 

(DMEM; Thermo Fisher Scientific) supplemented with 10% fetal bovine serum (FBS; Atlanta 

Biologicals), 100 U/ml penicillin, 100 μg/ml streptomycin, and 2 mM L-glutamine (PSG; Thermo 

Fisher Scientific). SupT1 cells were cultured in RPMI 1640 medium (Thermo Fisher Scientific) 

with 10% FBS, and PSG. Human peripheral blood mononuclear cells (PBMC) were isolated from 

leukapheresis obtained from the Central Blood Bank (Pittsburgh, PA) using Ficoll-Paque Plus (GE 

Healthcare) density gradient centrifugation. CD14+ monocytes were isolated from PBMC using 

human anti-CD14 magnetic beads with LS Columns (Miltenyi Biotec). CD14+ monocytes were 

differentiated into monocyte-derived macrophages (MDMs) in RPMI 1640 medium supplemented 

with 10% FBS, PSG, and 50 ng/ml recombinant granulocyte–macrophage colony-stimulating 

factor (R&D Systems) for 7 days. All cells were incubated at 37° C with 5% CO2. 

3.2 Viruses 

WT and N74D replication-defective HIV-1NL4-3 encoding luciferase in place of nef and 

pseudotyped with VSV-G were produced by transfection of HEK 293T cells with pNLdE-luc, pL-

VSV-G, and pVpr-pcs-mRuby3-IN at a weight ratio of 5:5:1. Replication-defective lentiviruses 

encoding fluorescently-tagged CPSF6 were produced by transfection of HEK 293T with lentiviral 
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plasmid pSICO encoding CPSF6 fused to iRFP670 (iRFP), a packaging plasmid, and pL-VSV-G 

at a weight ratio of 4:3:1. Both transfections were performed with Lipofectamine 2000 (Thermo 

Fisher Scientific) according to manufacturer protocol. Transfectant media was removed after 8h, 

at which point samples were incubated in fresh media for 48h. Media was then spun down at 300 

g x 10min to remove cell debris, and resulting supernatant was processed through a 0.45 M filter 

for collection of virus. Viruses were quantified by p24 ELISA (Xpress Bio). 

3.3 siRNA Transfection 

HeLa cells were incubated overnight in a 24-well dish. 300 ng of either KIF5B siRNA or 

control RLuc siRNA (Millipore-Sigma, EHU060991 and EHURLUC MISSION® esiRNA) were 

transfected into the cells using Oligofectamine™ Stealth™/siRNA Transfection (Thermo Fisher 

Scientific). After incubating at 37° C for 4h, reactions were quenched via the addition of DMEM 

containing 30% FBS. HeLa cells treated with no siRNA were treated with Oligofectamine™ 

Transfection Reagent, kept in serum-free media, and quenched with 30% FBS DMEM at same 

time points as siRNA-treated cells. This procedure was repeated the following day, then cells were 

incubated for 72h prior to assessment of knock down (KD) via western blot. 

3.4 Western Blot 

Untreated and siRNA-treated HeLa cells were centrifuged at 300 x g for 10min and frozen 

at -80° C. Pellets were lysed in RIPA buffer (Boston BioProducts) and lysates were clarified by 
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centrifugation at 17,000 x g for 15min. An equal number of lysed cells or total lysate protein were 

added to 4X XT Sample Buffer (Bio-Rad) with 5% β-mercaptoethanol (β-ME) and boiled at 100° 

C for 5min. Samples and Spectra™ Multicolor Broad Range Protein Ladder (Thermo Fisher 

Scientific) were run on a 10% Criterion™ Tris-HCL Protein Gel (Bio-Rad) at 150V for 1h in Tris-

Glycine buffer containing 1% SDS (Bio-Rad). Proteins were transferred to nitrocellulose using a 

semi-dry transfer apparatus (Fisher-Scientific) for a total of ~1400 mAh/cm2 overnight. 

Membranes were blocked for 1h at room temperature in 5% milk in PBS containing 0.1% Tween-

20 (PBST) before incubating in primary rabbit anti-KIF5B (Abcam, ab167429) or mouse anti-β-

actin (Sigma-Aldrich, A5441) for 1h. The membrane was washed three times in 5% milk in PBST 

for 15min each before secondary anti-mouse IgG or anti-rabbit IgG conjugated with horseradish 

peroxidase (Cell Signaling, #7076S  and Sigma-Aldrich, AP132P) was added for 45min. The 

membrane was washed three times in PBST for 15min each, processed in SuperSignal West Pico 

Chemiluminescent substrate (Thermo Fisher Scientific) for 5 min, and exposed on Amersham 

Hyperfilm (GE). Knockdown was quantified by comparing average mean gray value between 

lanes on a film scan converted to 8-bit using ImageJ. 

3.5 Plasmid DNA Transfection 

KIF5B-KD, RLuc siRNA-treated, or untreated HeLa cells were plated in DMEM 

containing 10% FBS without antibiotics in a 24-well dish. They were transfected 16h later with 

0.8μg plasmid encoding DmrB-KIF5C-mNeon at a 1:2 ratio with Lipofectamine 2000 

Transfection Reagent. Opti-MEM I Reduced Serum Media containing this transfectant mixture 
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was applied to samples and incubated for 6h. After 72h, transfection efficiency was measured by 

flow cytometry. 

3.6 Flow Cytometry 

Cells were trypsinized at 37° C for 5min. This reaction was quenched with an equal volume 

of 2% fetal bovine serum (FBS) in PBS. This cell mixture was fixed in a final concentration of 2% 

PFA. Samples were then assessed on a BD Accuri™ C6 Plus Flow Cytometer. Dead cells and cell 

debris were gated out using a FSC/SSC dot plot, and fluorescence in the FITC channel was 

measured to assess mNeon expression in live cells. This mNeon expression was then compared 

between DmrB-KIF5C-mNeon transfected cells and un-transfected cells using FlowJo. 

3.7 Luciferase Assay 

In Aim 1, HeLa cells were seeded in a 24-well dish and transduced with equal p24 amounts 

of WT or N74D HIV-1, both encoding luciferase, the following day. In Aim 2, untreated HeLa 

cells or siRNA-treated HeLa cells were transduced with equal p24 amounts WT HIV-1 encoding 

luciferase. Virus media was removed 2hr post-infection, and cells were incubated in fresh media 

for 48h. Cells were lysed and assessed for luciferase production (Promega) on a BioTek Synergy 

2 Multi-Mode Microplate Reader by measuring luminescence. 
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3.8 Immunofluorescence Sample Preparation 

HeLa cells or macrophages were plated within the glass insert of Mat-Tek dishes overnight. 

The next day, samples were fixed with 2% paraformaldehyde (PFA) in phosphate-buffered saline 

(PBS) and then permeabilized with 1% Triton-X 100 in PBS for 15min each. Fixed and 

permeabilized samples were blocked in either 20% bovine serum albumin (BSA) or 5% normal 

donkey serum (NDS) diluted in PBS supplemented with 0.5% BSA (PBB) for 45min. Primary 

antibodies for mouse anti-CypA (AbCam, ab58144), rabbit anti-CPSF6 (Novus Biologicals, 

NBP1-851676), and/or rabbit anti-α tubulin (acetyl-K40) (AbCam, ab179484) in PBB were added 

to samples for 1h. Samples were washed five times in PBB. Cells were incubated in secondary 

antibody solutions in PBB for 1h in the dark and again washed five times with PBB. Finally, cells 

were stained with Hoescht at a concentration of 1:2000 for 15min, washed three times with PBS 

to remove any residual serum, and mounted with gelvatol to a coverslip. 

3.9 Immunofluorescence Microscopy 

A Nikon Ti inverted confocal microscope was used to acquire 3D stacks images of fixed 

samples with a 100X 1.49 NA oil-immersion objective. LU-NV laser launch (Nikon) was used to 

emit lasers at 405 nm, 488 nm, 561 nm, and 640 nm. Fields of view were randomly chosen by 

quick scanning in the Hoechst channel. ND Acquisition in Elements (Nikon) was applied to collect 

3D multi-channel imaging (1024 x 1024 pixels) with 2X line averaging. Images of 488 nm and 

561 nm channels were acquired by GaAsP detectors (Nikon). 3D stacks were acquired with 0.125-
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0.250 μm step intervals to cover the entire cell volume (6-10 μm) with a motorized piezo Z stage 

(Nikon).  
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4.0 Results 

The work described below is comprised of unpublished results (Aim 1) and data adapted 

from the following publication (Aim 2): 

Zhong Z, Ning J, Boggs EA, Jang S, Wallace C, Telmer C, Bruchez MP, Ahn J, 

Engelman AN, Zhang P, Watkins SC, Ambrose Z. Cytoplasmic CPSF6 regulates HIV-1 

capsid trafficking and infection in a cyclophilin A-dependent manner, mBio 2021, 

12:e3142-20. 

 

All work was performed by me, with the exception of the SupT1 cell imaging in Figure 8. 
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4.1 AIM 1: Examine requirement for KIF5B in HIV-1 capsid microtubule trafficking and 

nuclear import 

 

Figure 2: Aim 1 Experimental Design.  A) KIF5B will be depleted from HeLa cells and HIV-1 infection will be 

assessed. B) A plasmid encoding inhibitable KIF5C-mNeon will be transfected into cells. C) KIF5C-mNeon motor 

activity in transfected cells will be inhibited by treatment with a small molecule. (D) HIV-1 trafficking will be 

evaluated using live cell microscopy in these different conditions. Created with BioRender.com. 

 

Trafficking of the HIV-1 capsid to the host cell nucleus requires dynein and kinesin, motor 

proteins of opposing directionality[76]. KIF5B has been shown to be involved in both capsid 

uncoating[76] and nuclear docking[80], but its exact role in HIV-1 trafficking remains unclear. To 

investigate the requirement for KIF5 in HIV-1 trafficking and infection, we chose to express 

fluorescently labeled KIF5C containing the DmrB domain, which becomes homodimerized within 

minutes after exposure to a rapamycin analog (DmrB-KIF5C-mNeon)[173]. Dimerization of the 
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DmrB domain leads to inhibition of kinesin movement on microtubules, which would allow 

evaluation of its effect on HIV-1 capsid microtubule trafficking. KIF5C is a kinesin heavy chain 

paralogue typically found in neurons, which was utilized as KIF5B was not found to be 

inhibitable[173]. As KIF5B is the predominant kinesin motor component in HeLa cells and has been 

more extensively studied in HIV-1 infection, the ability of the HIV-1 capsid to utilize KIF5C 

would first need to be assessed. A set of experiments were designed to deplete KIF5B in HeLa 

cells and replace with DmrB-KIF5C-mNeon to determine its effect on HIV-1 infection and 

trafficking (Fig 2).  

First, KIF5B expression was depleted by transfecting different amounts of KIF5B-

targeting siRNA (150, 200, 250, and 300 ng) into HeLa cells. To detect potential non-specific 

silencing and to control for any impact of the transfection process on KIF5B expression, a separate 

population of cells were transfected in parallel with siRNA targeting Renilla luciferase (RLuc), 

which is not expressed in mammalian cells or by our luciferase reporter HIV-1. Cells were 

collected at 24h, 48h, and 72h post-transfection and assayed for KIF5B expression by western blot. 

β-actin was included as a control to ensure that equal cell lysates were loaded in each lane. As no 

reduction in KIF5B expression was detected after a single siRNA transfection (data not shown), 

HeLa cells were transfected with 300ng KIF5B siRNA twice, 24h apart. KIF5B depletion was 

observed at 72h post-second transfection by KIF5-targeting siRNA and not by the control siRNA 

(Fig 3A, B).  

To assess whether KIF5B depletion inhibited HIV-1 infectivity, KIF5B knock down (KD), 

control siRNA-treated, or untreated HeLa cells were infected with 10ng equivalent of HIV-1 

encoding a luciferase reporter. After 72h, cells were lysed and examined for luciferase expression. 
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KIF5B KD significantly inhibited HIV-1 infectivity, whereas control siRNA did not (Fig 3C). Our 

results are consistent with those previously reported[76].   

 

 

Figure 3: Depletion of KIF5B Inhibits HIV-1 Infectivity.  A) KIF5B depletion by siRNA transfection in HeLa cells 

was confirmed by western Blot. β-actin is included as a loading control. B) Quantification in western blot results are 

shown. C) HeLa cells treated with no siRNA, control siRNA, or KIF5B siRNA were infected with WT HIV-1 that 

expresses luciferase. Infection was measured by detection of luciferase (relative light units). Error bars represent 

standard deviations in duplicate infections. Statistics performed by GraphPad PRISM with unpaired t-tests between 
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columns, where P values  <0.05 were deemed statistically significant. * designates P = 0.01 to 0.05 and ** designates 

P = 0.01 to 0.001. 

 

To investigate whether inhibitable KIF5C-mNeon could rescue infection in cells depleted 

of KIF5B, a plasmid encoding DmrB-KIF5C-mNeon was transfected into untreated HeLa cells, 

control siRNA-treated cells, and KIF5B KD cells. The fluorescent mNeon reporter can be 

measured via flow cytometry to assess transfection efficiency. Flow cytometry revealed that cells 

successfully expressed mNeon at 72h after transfection (Fig 4). Surprisingly, inhibitable KIF5C-

mNeon expression resulted in no HIV-1 infection regardless of KIF5B depletion after multiple 

attempts (data not shown). Ongoing studies are underway to determine how KIF5C-mNeon 

overexpression in HeLa inhibits HIV-1. 

 

 

Figure 4: Transfection of KIF5C-mNeon into HeLa Cells.  Relative mNeon intensity was detected and compared 

in HeLa cells containing no fluorescent reporter and HeLa cells transfected with 0.8μg of DmrB-KIF5C-mNeon. 

  



 34 

4.2 AIM 2: Visualize the localization of HIV-1 capsid-binding host proteins within cells and 

quantify their impacts on infectivity 

Our lab previously identified the presence of full-length CPSF6 puncta within the host cell 

cytoplasm and observed that these puncta co-traffic along microtubules with the WT HIV-1 capsid, 

but not the CPSF6-independent N74D mutant[73]. To further investigate interactions between the 

HIV-1 capsid and cytoplasmic CPSF6, point and truncation mutants known to shift cellular 

distribution of CPSF6 were produced. Alteration of four critical, positively-charged amino acids 

(K547, R549, R559 and R561) within the RS domain to negatively-charged glutamic acid (CPSF6-

4Glu) and truncation of CPSF6 at residue 358 (CPSF6-358) upstream of the RS domain (Fig 5) 

lead to reduced TNPO3 interaction, decreased nuclear localization of CPSF6 and restricted WT 

HIV-1 infectivity at the step of nuclear entry[99, 155]. We previously demonstrated that CPSF6-358 

restricted HIV-1 nuclear entry by a reduction in the accumulation of 2-LTR circles, an abortive 

product of unintegrated viral DNA, within the nucleus[99]. Expression of iRFP670 tagged CPSF6-

4Glu or CPSF6-358 in HeLa cells shifted expression of fluorescently labeled CPSF6 to the 

cytoplasm (Fig 6A). Restriction of infectivity corresponded to a roughly proportional degree of 

cytoplasmic CPSF6 expression (Fig 6B, 6C). N74D HIV-1, which does not bind to CPSF6, was 

not restricted by any mutant (Fig 6C). Alteration of WT HIV-1 complex trafficking increased with 

greater cytoplasmic localization (data not shown)[73].  
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Figure 5: Locations of CPSF6 Mutations.  The CPSF6 arginine/serine (RS)-rich domain is the binding domain for 

the karyopherin TNPO3. CPSF6-4-Glu has 4 amino acid substitutions in the RS domain, while CPSF6-358 has a 

truncation upstream of the RS domain. These mutant CPSF6 proteins have diminished binding to TNPO3. The proline-

rich domain includes the binding domain for HIV-1 capsid, which is maintained by all mutants. 
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Figure 6: Localizations and Infectivity of CPSF6 Mutations.  A) CPSF6 constructs were fused to iRFP and 

expressed in HeLa cells. Mutations in or truncations of the CPSF6 RS domain produce a phenotype with more 

cytoplasmic expression. B) The ratio of nuclear to cytoplasmic expression of fluorescently tagged CPSF6 was 

quantified. C) HeLa cells expressing fluorescently tagged CPSF6 or CPSF6 mutants were infected with WT HIV-1 or 

N74D HIV-1 that express luciferase. Infection was measured by detection of luciferase (relative light units). Error 
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bars represent standard deviations in duplicate infections. Unpaired t-tests were performed to compare infection in 

cells expressing different CPSF6 constructs. * designates p = 0.01 to 0.05 and ** designates p = 0.01 to 0.001. 

 

Full-length CPSF6 binds to WT HIV-1 capsid but not to that of the N74D mutant during 

infection [73, 157]. Our laboratory showed that when CypA binding to capsid is inhibited by treatment 

of infected cells with CsA, both the frequency and volume of these CPSF6-capsid complexes 

increase in a dose-dependent fashion[73, 157]. CsA treatment of cells infected with CypA-

independent G89V HIV-1 produced no difference in CPSF6 complexes[73]. Accordingly, fewer 

puncta were seen in cells infected with HIV-1 labeled with CypA-DsRed, a CypA construct that 

oligomerizes upon the capsid[73]. In vitro CA tubular assemblies incubated with fluorescently 

labeled CypA bound less CPSF6 than CA tubes incubated in a control buffer (data not shown) [73]. 

Incubation with CsA prevented CypA binding to CA tubes, which resulted in more CPSF6 binding. 

Altogether, these results indicate that CypA binding to HIV-1 capsid prevents CPSF6 from binding 

to capsid. 

To further examine the interplay between cytoplasmic CPSF6 and CypA during infection, 

we sought to illustrate the cellular distribution of CypA. As expected, endogenous CPSF6 was 

expressed predominantly in the nucleus (Fig 7). Surprisingly, endogenous CypA, which is 

abundantly expressed in cells, was excluded from both the nucleus and the adjacent perinuclear 

regions in HeLa cells (Fig 7). A similar pattern of CypA expression was observed SupT1 CD4+ T 

cells, a more relevant cell line for HIV-1 infection (Fig 8). This physiologic reason for this 

expression pattern is unknown. We hypothesized that the perinuclear region that lacked CypA 

localization may correspond to the MTOC. Therefore, CypA and tubulin expression were 

evaluated in HeLa and SupT1 cells. As expected, the perinuclear region of CypA exclusion showed 

high tubulin expression in both cell types, suggesting it is indeed the MTOC (Fig 8).  
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 We similarly visualized localization of endogenous CypA in primary human macrophages, 

another HIV-1 target cell. The nuclear exclusion of CypA encountered in HeLa cells and SupT1 

CD4+ T cells was not recapitulated in MDM, in which CypA was expressed in the nucleus, 

distributed evenly throughout the cytoplasm, and concentrated in patches at the cell periphery (Fig 

9). These cell-type dependent results on CypA localization correlate to recently observed findings 

on differential capsid uncoating dynamics between HeLa cells, CD4+ T cells, and macrophages. 
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Figure 7: Localization of CypA in HeLa.  HeLa cells were stained with A) nuclear marker Hoechst (blue) and with 

antibodies to B) CypA (red) and C) CPSF6 (green). D) Mid-section images reveal a lack of CypA expression in the 

nucleus and perinuclear region as indicated by white arrows. 
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Figure 8: Perinuclear Exclusion of CypA in HeLa and SupT1 Cells.  HeLa and SupT1 CD4+ T cells were stained 

with Hoechst and antibodies for CypA (red) and tubulin (green). 
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Figure 9: Localization of CypA in Macrophages.  Primary human MDMs were fluorescently stained with Hoechst 

(blue) and an antibody recognizing CypA (red). 
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5.0 Discussion 

The first human ARV, AZT, was licensed for the treatment of HIV-1 just 34 years ago. By 

2019, 67% of people living with HIV were receiving ART[6]. This rapid expansion in access to 

ARVs has been accompanied by a correspondingly rapid increase in the rates of drug resistance 

due to improper adherence. Variants of HIV-1 resistant to first-line drugs are widespread enough 

that up to 26% of people living with HIV-1 initiating ART for the first time exhibited pre-treatment 

resistance in 2019[174]. Because the delicate HIV-1 capsid is intolerant to many point mutations, it 

could represent a novel opportunity for the development of drugs that limit the infectious potential 

of escape mutants. A capsid inhibitor, GS-6207, was recently shown to inhibit capsid binding to 

both CPSF6 and Nup153, produced escape mutants either unfit for infection or sensitive to other 

ARVs, and significantly reduced viremia in recipients when administered as a once-monthly 

injection in a phase I clinical trial[171]. None of the mutations associated with escape from GS-6207 

function were identified in ART-naïve people living with HIV-1[175]. As suboptimal adherence to 

ART regimens that rely on daily dosing is associated with a decrease in ART efficacy and 

increased development of ARV resistance, long-acting agents like GS-6207 hold additional 

promise [176]. Furthermore, as capsid plays an indispensable role in all steps of the HIV-1 

replication cycle prior to gene expression, capsid inhibitors targeting post-entry events could 

potentially prevent establishment of the HIV-1 reservoir that requires life-long adherence to ART 

to prevent AIDS. 

Depletion of KIF5B has been shown to inhibit HIV-1 infection[76], but little is known about 

the mechanism by which this occurs. The reliance of other viruses on KIF5B is due to impact of 

the motor protein on both capsid disassembly and docking of capsid at nuclear pores required for 
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viral nuclear entry[77, 79]. Here we sought to assess the viability of employing an inhibitable, 

fluorescent construct containing KIF5C, a kinesin heavy chain isoform typically found in neuronal 

cells, for directly studying the role of KIF5 in HIV-1 capsid trafficking. Application of a rapamycin 

analog to single molecule samples containing processive DmrB-KIF5C-mNeon immediately 

inhibits motility along microtubules[173]. Perhaps more importantly, this cessation of motor activity 

can be observed in real time upon small molecule treatment of samples being examined for normal 

secretory pathway trafficking during live cell imaging[173]. The results herein illustrate a successful 

depletion of KIF5B from HeLa cells with a resultant inhibition of HIV-1 infectivity, and confirm 

that DmrB-KIF5C-mNeon can successfully be transfected into KIF5B-KD cells. To our 

knowledge, further development of a system in which this construct is functionally expressed in 

HIV-1 target cells would represent the first application of an inhibitable motor protein to the study 

of viral trafficking.  

Unfortunately, DmrB-KIFC-mNeon  inhibited HIV-1 infection regardless of KIF5B KD. 

This may be due to overexpression of KIF5 driving cellular trafficking predominantly toward the 

cell periphery, including incoming HIV-1 capsid via VSV-G pseudotyping. To explore this 

possibility, experiments could examine the localization of kinesin-trafficked cargo, such as 

endosomes, within cells expressing DmrB-KIF5C-mNeon. Once working, future studies 

employing DmrB-KIF5C-mNeon could investigate the relationship between the kinesin heavy 

chain, the HIV-1 capsid, and the impact of this interaction on the vital stages of uncoating and 

nuclear entry in the HIV-1 life cycle.  

During motor protein-mediated transit along microtubules, the HIV-1 capsid co-traffics 

with host protein CPSF6[73]. Truncation or point mutants of CPSF6 within or upstream of its 

nuclear localization signal increased expression in the cytoplasm relative to full-length CPSF6, 
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which was directly correlated with a reduction in WT but not CPSF6-independent N74D HIV-1 

infectivity. Binding of cytoplasmic CPSF6 mutants to the HIV-1 capsid causes premature capsid 

permeabilization[157], and we have shown that CypA binding to capsid prevents this interaction in 

vitro[73]. In HeLa cells and CD4+ T cells, CypA was found to be excluded from both the nucleus 

and perinuclear MTOC, while full-length CPSF6 was predominantly nuclear. However, in primary 

macrophages CypA was found throughout both the nucleus and cytoplasm as well as in patches at 

the cellular periphery.  

Increased nuclear CypA expression in primary macrophages but not HeLa or CD4+ T cells 

corresponds to differences that have been observed in HIV-1 capsid trafficking and infectivity. For 

example, co-localization of CA staining with nuclear HIV-1 PICs is markedly more pronounced 

in MDMs than HeLa cells[160, 177]. The presence of CypA in the nucleus of MDMs may make it so 

that CypA protects the capsid from CPSF6 binding-induced disruption for longer periods, allowing 

for the detection of more CA within the nucleus. Others have recently found that binding of CypA 

to capsid hinders binding of capsid-destabilizing factor TRIM5α in primary CD4+ T cells and 

MDMs, which thusly inhibits TRIM5α-mediated triggering of type I interferon responses[151, 152]. 

Interactions between CypA and cytoplasmic host factors could influence the integrity of the core 

upon arrival at the nuclear membrane and, in turn, could have significant implications for a recently 

proposed model of nuclear uncoating[93-96]. While intact HIV-1 capsids have recently been 

visualized inside NPCs in a CD4+ T cell line[96], it is not clear if some permeabilization or loss of 

CA can occur in the cytoplasm. Uncoating of the HIV-1 capsid within the host cell nucleus would 

require the careful import of an intact or nearly-intact capsid through the NPC. The spatial staging 

of interactions between the HIV-1 capsid, restrictive host factors, and protective host factors 

preceding nuclear docking is of utmost import in this framework. Future studies into nuclear 
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uncoating should incorporate this meticulously orchestrated network of protein-protein 

interactions when investigating cell type dependence. 
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