Regulating Reactivity and Selectivity of a Dehydro-Diels-Alder Reaction of Vinyl Heteroarenes Informed by Mechanism and Application towards the Synthesis of Photovoltaic Materials

by

Joseph A. Winkelbauer

B.S. Chemistry, Grove City College, 2015

Submitted to the Graduate Faculty of the

Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

UNIVERSITY OF PITTSBURGH DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Joseph A. Winkelbauer

It was defended on

May 5, 2021

and approved by

Paul Floreancig, Professor, Department of Chemistry

Seth Horne, Associate Professor, Department of Chemistry

Stefan Bernhard, Professor, Department of Chemistry, Carnegie Mellon University

Dissertation Director: Kay M. Brummond, Professor, Department of Chemistry

Copyright © by Joseph A. Winkelbauer

2021

Regulating Reactivity and Selectivity of a Dehydro-Diels-Alder Reaction of

Vinyl Heteroarenes Informed by Mechanism and Application towards the Synthesis of

Photovoltaic Materials

Joseph A. Winkelbauer, PhD

University of Pittsburgh, 2021

Ring-fused heteroarenes are present in numerous natural products, FDA approved drugs,

agrochemicals, and recently, organic solar cells able to achieve record breaking power conversion

efficiencies. Access to these valuable compounds relies primarily on synthesis with dearomative

cycloadditions of heteroarenes emerging as an efficient strategy. Many of these reactions require

forceful conditions that utilize catalysts, acids and bases, or high temperatures to effect

dearomatization. We have developed an intramolecular dearomative didehydro-Diels-Alder

(DDDA) reaction which proceeds at temperatures as low as 60 °C with mild conditions, free of

additives or catalysts. The adduct of the dearomative cycloaddition, which has been isolated and

characterized, readily rearomatizes to either an isomerization product by way of a hydrogen

migration or an oxidation product by way of a dehydrogenation.

To determine the substrate dependent factors that control the dearomative cycloaddition,

kinetic studies were conducted with in situ reaction monitoring by ReactIR and afforded

experimental Gibbs free energies of activation which correlated well with DFT calculations to

reveal a highly asynchronous, concerted transition state. Aromaticity of the heteroarene, tether

composition, and dispersion interactions were identified as substrate dependent factors that affect

reactivity, establishing DFT calculations as a predictive tool in determining reactivity.

iv

For the first time, the 1,4-cyclohexadienyl DA adduct was isolated, characterized, and confirmed as the product of the dearomative cycloaddition with divergent reactivity from the adduct leading to formation of either oxidation or isomerization products. These divergent mechanisms were investigated, and product selectivity was enhanced with control over the reaction parameters. Experiments utilizing deuterium oxide or increased exposure to air revealed the isomerization products were formed by an intermolecular, ionic proton transfer, while oxidation products were formed by an oxygen promoted dehydrogenation. Selectivity for either product was enhanced through reaction parameters such as temperature, solvent polarity, concentration, atmosphere, and additives.

Insight into the mechanisms of dearomatization and product formation allowed us to enhance the reactivity and product selectivity of the dearomative DDDA reaction for vinyl heteroarenes which was then applied towards the synthesis of ladder-type heteroarenes for organic photovoltaic materials. We expect these mechanistic findings to lend insight into other dearomative processes in the future.

Table of Contents

Acknowledgmentsxxviii
1.0 Dearomative Cycloadditions of Vinylogous Heteroarenes
1.1 Valuable Synthetic Targets Containing Polycyclic Heteroarene Frameworks 1
1.2 Forcing Conditions Required in Dearomative Cycloaddition Processes 3
1.2.1 Acid Catalyzed Dearomative [4 +2] Cycloadditions of Vinyl Heteroarenes4
1.2.2 Base Mediated Dearomative Cycloadditions of Vinyl Heteroarenes7
1.2.3 Transition-Metal Catalyzed Dearomative Cycloadditions of Vinyl
Heteroarenes8
1.2.4 Organocatalyzed Dearomative Cycloadditions of Vinyl Heteroarenes10
1.2.5 Photoredox Catalyzed Dearomative Cycloadditions of Heteroarenes11
1.2.6 Electrochemical Dearomative Cycloadditions of Heteroarenes12
1.2.7 Thermal Dearomative Cycloadditions of Heteroarenes
1.2.8 Conclusions15
1.3 Dearomative Didehydro-Diels-Alder Reaction for Vinyl Heteroarenes 16
1.3.1 Dearomative Didehydro-Diels-Alder Reaction for Vinyl Heteroarenes16
1.3.2 Analogous Mechanistic Insight from Styryl Dearomative DDDA Reactions
19
1.4 Conclusions
2.0 Synthesis, Isolation and Characterization of the DA Adduct24
2.1 Synthesis and NMR Characterization of the DA Adduct
2.2 Synthesis and Characterization of the Deuterated DA Adduct XX

2.3 Confirmation of Stereochemistry via the DP4 Probability Method 32
2.4 Confirmation of the DA Adduct as the Common Intermediate to Formation of
Oxidation Product, Isomerization Product, and Cis-Diene
2.4.1 No Evidence of Oxidation Product Formation from Isomerization Product
35
2.4.2 Cis-Diene as a Rarely Observed Byproduct that Converts to Oxidation and
Isomerization Products37
2.5 Conclusions
2.6 Experimental
2.6.1 General Methods40
2.6.2 Dearomative DDDA Reaction of 1.59 in o-DCB41
2.6.3 Synthesis of the Dearomative DDDA Precursors41
2.6.3.1 General Procedure A: Conversion of Carboxaldehyde to α,β-
Unsaturated Ester41
2.6.3.2 General Procedure B: Conversion of α,β-Unsaturated Ester to Allylic
Alcohol 42
2.6.3.3 General Procedure C: Conversion of Allylic Alcohol to Alkynoate 42
2.6.4 Synthesis of the Dearomative DDDA Adducts as Mixtures with Products55
2.6.5 Deuterium Isotope Effect Observed in Parallel Reactions of 2.5 and 2.1961
2.6.6 DP4 Probability Measure Results and Analysis62
2.6.6.1 DP4 Analysis of the Experimental 2.6 NMR 63
2.6.6.2 DP4 Analysis of the Experimental 2.23 NMR 66
2.6.6.3 DP4 Analysis of the Experimental 2.7 NMR69

2.6.6.4 Assignment of Spartan Calculated and Experimental ¹ H and ¹³ C NMI
Resonances
2.6.7 Heating of 2.6 in DMF to Afford 2.8, 2.7, and 2.23
2.6.8 Under Aerobic Conditions, 2.6 Affords 2.8 at Room Temperature7
2.6.9 Stability of 2.7 under Thermal and Aerobic Conditions7
2.6.10 Heating of 2.5 in Acetonitrile to Afford 2.6, 2.23, 2.8, and 2.77
2.6.11 Synthesis of Cis-Diene7
2.6.12 Conversion of 2.23 to 2.8, 2.7, and Unknown at Room Temperature in CDC
8
3.0 Factors that Determine Reactivity for the Dearomative DA Cycloaddition 8
3.1 Determination of Reaction Rates and Half-Lives for Dearomative DDDA Precursor
by In Situ Reaction Monitoring with ReactIR8
3.2 Determination of Activation Energy and Pre-Exponential Factor via the Arrheniu
Equation 8.
3.3 Determination of Gibbs Free Energy of Activation, Enthalpy, and Entropy via th
Eyring Equation8
3.4 Analysis of Reactivity in Collaboration with DFT Computational Calculations 9
3.4.1 Determination of the Dearomative Cycloaddition Mechanism9
3.4.2 Gibbs Free Energies of Activation at the M06-2X/6-311+G(d,p)//M06-2X/6
31+G(d) Level of Theory as the Most Accurate to Experimental Energie
10
3.4.3 The Effect of Ground State Conformations on the Reactivity of th
Dearomative Cycloaddition Step

3.4.4 Stabilizing Dispersion Interactions	in the Dearomative Cycloaddition
Transition States	103
3.4.5 Effect of Heteroarene Aromaticity	on Reactivity of the Dearomative
Cycloaddition	106
3.5 Conclusions	111
3.6 Experimental	112
3.6.1 General Methods	112
3.6.2 Experimental Procedures for ReactIR	113
3.6.3 ReactIR Data Output and Rate Calcula	tions with GraphPad114
3.6.4 Specifications for Measuring Half-Live	s for DDDA Precursor115
3.6.5 Arrhenius Plots	117
3.6.6 Eyring Plots	119
3.6.7 Correlation Plots between DFT Compu	tational and Experimentally Derived
Gibbs Free Energies of Activation	121
4.0 Divergent Reactivity of the DA Adduct and R	Regulating the Selectivity for
Oxidation or Isomerization Products	124
4.1 Reaction Conditions that Affect Product Selec	tivity 124
4.1.1 Temperature Effect on the Dearomative	e DDDA Reaction Product Selectivity
	125
4.1.2 Concentration Effect on the Dearomativ	
	126
4.1.3 Solvent Effect on the Dearomative DDD	

4.1.4 Water Additive Effect on the Dearomative DDDA Reaction Product
Selectivity127
4.1.5 BHT Additive Effect on the Dearomative DDDA Reaction Product Selectivity
128
4.1.6 Atmosphere Effect on the Dearomative DDDA Reaction Product Selectivity
131
4.2 Substrate Identity Effect on the Dearomative DDDA Reaction Product Selectivity
4.3 Evidence for Oxidation Product Formation via Dehydrogenation of Diels-Alder
Adduct with Oxygen134
4.4 Evidence for Isomerization Product Formation via Proton Transfer of Diels-Alder
Adduct
4.5 Conclusions
4.6 Experimental
4.6.1 General Methods141
4.6.2 General Procedures for Dearomative DDDA Reactions142
4.6.2.1 General Procedure D: Dearomative DDDA Reaction – Conventional
Heating142
4.6.2.2 General Procedure E: Dearomative DDDA Reaction – Microwave
Heating142
4.6.3 Experiments Showing the Effect of Temperature143
4.6.4 Experiments Showing the Effect of Concentration145
4.6.5 Experiments Showing the Effect of Solvent Polarity

4.6.6 Experiments Showing the Effect of Water Additive146
4.6.7 Experiments Showing the Effect of BHT Additive147
4.6.8 Experiments Showing the Effect of Atmosphere152
4.6.9 Experiments as Evidence for Oxygen Mediated Dehydrogenation to
Oxidation Product153
4.6.10 Experiments as Evidence for Ionic Isomerization to Isomerization Product
155
5.0 Application of the Dearomative DDDA Reaction Towards the Synthesis of
Organic Solar Cell Materials157
5.1 Synthesis of Dearomative DDDA Reaction Oxidation Product via Ketone-Tethered
Precursors
5.2 Progress Towards the Synthesis of Ladder-Type Arene Materials for Organic Solar
Cells
5.3 Conclusions
5.4 Experimental
5.4.1 General Methods163
5.4.2 Synthesis of a Multi-Ring Ladder-Type Heteroarene164
5.4.3 Reaction of the Minor Diastereomer of 5.15 with Lawesson's Reagent179
Appendix A Compound Characterization Checklist181
Appendix B ¹ H and ¹³ C NMR Spectra of Synthetically Prepared Molecules 183
Appendix C ReactIR Data Output337
Dibliography 205

List of Tables

Table 2.1. ¹ H NMR characterization of the DA adducts in <i>o</i> -DCB by analogy to 2.6 29
Table 2.2. Computational and experimental $^{13}\mathrm{C}$ NMR resonances of the 2.6, 2.22, 2.23, 2.24,
and 2.7
Table 2.3. Computational and experimental ¹ H NMR resonances of the 2.6, 2.22, 2.23, 2.24,
and 2.7
Table 2.4. Resonances for 2.6
Table 2.5. Resonances for 2.23
Table 2.6. Resonances for 2.7
Table 2.7. Resonances for 2.22
Table 2.8. Resonances for 2.24 75
Table 3.1. Measured half-lives and rate constants for the dearomative DDDA reaction of the
thiophene and benzothiophene precursors
Table 3.2. Arrhenius trendline components as derived from the LINEST function and the
kinetic results derived from the trendline for each substrate
Table 3.3. Eyring trendline slope, y-intercept, and ${\bf R}^2$ as derived from the LINEST function
and the $\Delta H^{\ddagger}, \Delta S^{\ddagger},$ and ΔG^{\ddagger} values with their corresponding error
Table 3.4. DFT computationally derived Gibbs free energies of activation for the s-cis closed-
shell and s-trans open-shell transition states97
Table 3.5. Newly forming bond lengths in the asynchronous, concerted transition state of the
dearomative cycloaddition step

Table 3.6. NICS(1)zz aromaticity of the heteroarene for the dearomative cycloaddition
precursors and transition states 107
Table 4.1. Dearomative DDDA reaction of precursors with added BHT and affected produc
ratios130
Table 4.2. Ratio of compounds in 4.6.3 – Rxn 1
Table 4.3. Ratio of compounds in 4.6.7 – Rxn 1
Table 4.4. Ratio of compounds in 4.6.7 – Rxn 2
Table 4.5. Ratio of compounds in 4.6.7 – Rxn 3
Table 4.6. Ratio of compounsd in 4.6.7 – Rxn 4
Table 4.7. Ratio of compounds in 4.6.7 – Rxn 5
Table 4.8. Ratio of compounds in 4.6.7 – Rxn 6
Table 4.9. Ratio of compounds in 4.6.7 – Rxn 7
Table 4.10. Ratio of compounds in 4.6.7 – Rxn 8
Table 4.11. Ratio of compounds in 4.6.7 – Rxn 9
Table 4.12. Ratio of compounds in 4.6.7 – Rxn 10
Table 4.13. Ratio of compounds in 4.6.9 – Rxn 1

List of Figures

Figure 1.1. Marketed drugs containing heterocyclic frameworks of benzothiophenes or
indoles
Figure 1.2. Ladder-type conjugated polycyclic structure utilized in OPV solar-cells achieving
record-breaking PCE's of greater than 17%
Figure 1.3. Synthetic toolbox of forcing conditions for dearomative cycloaddition processes
4
Figure 2.1. Boat-like conformation of the DA adduct 2.6 with bis-allylic hydrogens in flagpole
positions
Figure 2.2. Possible regio- and steroisomers of the DA adduct analyzed by the DP4
probability method33
Figure 3.1. 1st order exponential decay of 2.5 at 90 °C
Figure 3.2. Representative Arrhenius plot and its relation to the Arrhenius equation 85
Figure 3.3. Representative Eyring plot and its relation to the Eyring equation
Figure 3.4. Proposed concerted and stepwise transition states as possible mechanisms for the
dearomative cycloaddition step93
Figure 3.5. Structures of 1.59, the concerted transition state, and the stepwise transition state
for the cycloaddition step of the dearomative DDDA reaction with structures
optimized by M06-2X/6-31+G(d) and B3LYP/6-31+G(d). Bond distances shown in
angstroms95

Figure 3.6. Average deviation of computational Gibbs free energies of activation from
experimental energies for both the concerted and stepwise reaction pathways at the
$M06\text{-}2X/6\text{-}311+G(d,p)//B3LYP/6\text{-}31+G(d)\ level\ of\ theory98$
Figure 3.7. Comparison of different levels of theories used to calculate $\Delta G^{\ddagger_{comp}}$ and their
accuracy to $\Delta G^{\ddagger}_{ ext{exp.}}$
Figure 3.8. Dispersion effect on the stabilization of the concerted cycloaddition transition
state
Figure 3.9. Correlation between $\Delta G^{\ddagger}_{\exp(s\text{-cis})}$, and both precursor and transition state
$NICS(1)_{zz}$ aromaticity values for ester-tethered substrates
Figure 3.10. Correlation between the $\Delta G^{\ddagger}_{comp(s\text{-}cis)}$ at the M06-2X/M06-2X level of theory and
the NICS(1)zz aromaticity calculation110
Figure 3.11. Eyring plot for the dearomative DDDA reaction of 1.59 using five different
reaction temperatures116
Figure 3.12. Eyring plot for the dearomative DDDA reaction of 1.59 using four different
reaction temperatures116
Figure 3.13. Arrhenius plot for the dearomative DDDA reaction of 1.50 117
Figure 3.14. Arrhenius plot for the dearomative DDDA reaction of 2.9 117
Figure 3.15. Arrhenius plot for the dearomative DDDA reaction of 1.59 118
Figure 3.16. Arrhenius plot for the dearomative DDDA reaction of 2.5
Figure 3.17. Eyring plot for the dearomative DDDA reaction of 1.50
Figure 3.18. Eyring plot for the dearomative DDDA reaction of 2.9 119
Figure 3.19. Eyring plot for the dearomative DDDA reaction of 1.59 120
Figure 3.20. Eyring plot for the dearomative DDDA reaction of 2.5

Figure 3.21. Correlation between the closed-shell transition state $\Delta G^{\ddagger}_{comp}$ v	with
B3LYP/B3LYP level of theory and the ΔG^\ddagger_{exp} with 3.5 outlier	121
Figure 3.22. Correlation between the closed-shell transition state $\Delta G^{\ddagger_{comp}}$ v	with
B3LYP/B3LYP level of theory and the $\Delta G^{\ddagger_{\text{exp}}}$ without 3.5 outlier	121
Figure 3.23. Correlation between the closed-shell transition state $\Delta G^{\ddagger_{comp}}$ with M06-2X/M	106
2X level of theory and the $\Delta G^{\ddagger_{exp}}$	122
Figure 3.24. Correlation between the closed-shell transition state $\Delta G^{\ddagger_{comp}}$ with M	106 -
2X/B3LYP level of theory and the $\Delta G^{\ddagger}_{exp}$	122
Figure 3.25. Correlation between the open-shell transition state $\Delta G^{\ddagger}_{comp}$ with M	106
2X/B3LYP level of theory and the $\Delta G^{\ddagger}_{exp}$	123
Figure 4.1. Ratio of oxidation product to isomerization product compared	to
computationally calculated BDE and acidity of the transferred proton of the Di	iels-
Alder adduct	134
Appendix Figure C.1. 1^{st} order exponential decay of 1.50 at 77 $^{\circ}$ C	337
Appendix Figure C.2. 1^{st} order exponential decay of 1.50 at 86 $^{\circ}$ C	343
Appendix Figure C.3. 1^{st} order exponential decay of 1.50 at 94 $^{\circ}$ C	346
Appendix Figure C.4. 1^{st} order exponential decay of 1.50 at 108 $^{\circ}$ C	348
Appendix Figure C.5. 1^{st} order exponential decay of 1.50 at 119 $^{\circ}$ C	350
Appendix Figure C.6. 1^{st} order exponential decay of 2.7 at 76 $^{\circ}$ C	352
Appendix Figure C.7. 1^{st} order exponential decay of 2.7 at 85 $^{\circ}$ C	357
Appendix Figure C.8. 1^{st} order exponential decay of 2.7 at 95 $^{\circ}$ C	360
Appendix Figure C.9. 1^{st} order exponential decay of 2.7 at 108 $^{\circ}$ C	362
Annendix Figure C 10, 1st order exponential decay of 2.7 at 113 °C	364

Appendix Figure C.11. 1st order exponential decay of 1.59 at 88 °C	366
Appendix Figure C.12. 1st order exponential decay of 1.59 at 98 °C	371
Appendix Figure C.13. 1st order exponential decay of 1.59 at 109 °C	375
Appendix Figure C.14. 1st order exponential decay of 1.59 at 121 $^{\circ}$ C	377
Appendix Figure C.15. 1st order exponential decay of 1.59 at 132 °C	379
Appendix Figure C.16. 1st order exponential decay of 2.5 at 73 °C	381
Appendix Figure C.17. 1st order exponential decay of 2.5 at 81 °C	386
Appendix Figure C.18. 1st order exponential decay of 2.5 at 90 °C	389
Appendix Figure C.19. 1st order exponential decay of 2.5 at 96 °C	391
Appendix Figure C.20. 1st order exponential decay of 2.5 at 106 °C	393

List of Schemes

Scheme 1.1. Lewis acid catalyzed dearomative [4 +2] cycloaddition of a 2-vinylindole 5
Scheme 1.2. Chiral rhodium catalyst utilized as a Lewis acid in a dearomative [4 + 2]
cycloaddition6
Scheme 1.3. Chiral holmium catalyst complex utilized as a Lewis acid in dearomative $\left[4+2\right]$
cycloadditions7
Scheme 1.4. Base mediated dearomative cycloaddition by sequential amide formation, [4 +
2] cycloaddition, and hydrogen-shift7
Scheme 1.5. Base generated oxyallyl cations as the dienophile for dearomative cycloadditions
with vinylindoles
Scheme 1.6. Gold catalyzed dearomative cycloadditions between allenamides and
vinylindoles9
Scheme 1.7. Dirhodium chiral catalyst promoted dearomative cycloaddition of vinyindoles
with vinyldiazoacetates9
Scheme 1.8. Synthesis of nitrohydrocarbazoles via organocatalyzed dearomative
cycloaddition reaction
Scheme 1.9. Secondary amine organocatalyst utilized in the dearomative cycloaddition of
propynal with 2-vinylindole11
Scheme 1.10. Photoactivate ruthenium catalyst for dearomative cycloaddition to oxazolo[3,2-
α] indolones
Scheme 1.11. Electrochemical dearomative cycloaddition of phenols and N -acetylindoles to
benzofuroindolines13

Scheme 1.12. Thermal dearomative cycloaddition of 2-vinylindoles with highly reactive
dienophiles
Scheme 1.13. Thermal dearomative cycloaddition of vinylimidazoles with highly reactive N -
phenylmaleimide14
Scheme 1.14. Intramolecular, thermal dearomative cycloaddition of vinylogous furans,
pyrroles, and thiophenes
Scheme 1.15. Oxidation and isomerization products accessible via the dearomative DDDA
reaction16
Scheme 1.16. First report of the dearomative DDDA reaction of vinyl heteroarenes 17
Scheme 1.17. Kanematsu's reported dearomative DDDA reaction for 2-vinylfurans and 2-
vinylpyrroles17
Scheme 1.18. Dearomative DDDA reaction of 3-vinylindoles with improved yields up to 99%
Scheme 1.19. Dearomative DDDA reaction of 4-vinylimidazole precursors
Scheme 1.20. Microwave assisted dearomative DDDA reaction with enhanced product
selectivity19
Scheme 1.21. Styryl dearomative DDDA reaction with DFT support for an asynchronous
concerted [4 + 2] Diels-Alder cycloaddition20
Scheme 1.22. Styryl dearomative DDDA reaction afforded isomerization product via an
intermolecular hydrogen atom abstraction and oxidation product via a concerted
intramolecular elimination of hydrogen gas22
Scheme 2.1. Dearomative DDDA reaction of 1.59 to afford mixture of adduct and products
25

Scheme 2.2. Synthesis of dearomative DDDA precursor 2.5 and adduct 2.6
Scheme 2.3. Dearomative DDDA reactions with observation and characterization of DA
adduct
Scheme 2.4. Synthesis of dearomative DDDA precursor 2.19 and adduct 2.20 31
Scheme 2.5. Observed deuterium isotope effect from parallel reactions of 2.5 and 2.19 32
Scheme 2.6. Formation of oxidation product, isomerization product, and 1,3-cyclohexadiene
product from the DA adduct34
Scheme 2.7. DFT energy diagram for the dearomative DDDA reaction of 2.5 at the M06/6-
311+G(d,p)/SMD(DMF)//B3LYP/6-31G(d) level of theory
Scheme 2.8. Formation of oxidation product 2.8 from DA adduct 2.6 at rt with bubbling air
Scheme 2.9. No conversion of isomerization product 2.7 to oxidation product 2.8 under
thermal conditions with bubbling air37
Scheme 2.10. Formation of cis-diene byproduct in acetonitrile with enhanced selectivity in
the presence of mole sieves
Scheme 2.11. Transformation of cis-diene into oxidation product, isomerization product, and
unidentified byproduct38
Scheme 3.1. Dearomative DDDA precursors selected for the reactivity study and analyzed
by in situ ReactIR monitoring of reaction progress82
Scheme 3.2. Rotational energy barriers required to attain the reactive s-cis conformer for
precursors 1.50, 2.9, and 1.59
Scheme 4.1. Dearomative DDDA reactions of 2.5 with varied temperatures and affected
product ratios 125

Scheme 4.2. Dearomative DDDA reaction of 2.5 with varied concentration and affected
product ratios126
Scheme 4.3. Dearomative DDDA reaction of 2.5 with varied solvent and affected product
ratios
Scheme 4.4. Dearomative DDDA reaction of 2.5 with added water and affected product ratios
Scheme 4.5. Dearomative DDDA reaction of 2.5 with air exposure and affected product ratios
Scheme 4.6. Formation of oxidation product through a oxygen mediated dehydrogenation
Scheme 4.7. Dearomative DDDA reaction of 2.5 in tol-d ₈ at 150 °C for 3 h 136
Scheme 4.8. Mechanism of deuterium incorporation observed in dearomative Diels-Alder
reactions with deuterium oxide present139
Scheme 5.1. Retrosynthetic route for organic solar cell materials via the dearomative DDDA
oxidation product158
Scheme 5.2. Synthesis of dearomative DDDA reaction oxidation product via the ketone-
tethered precursors159
Scheme 5.3. Oxidative coupling of DA oxidation product with dr of 39:61 161
Scheme 5.4. Synthesis of the polycyclic ladder-type arene with Lawesson's reagent 162

List of Equations

Equation 3.1. Arrhenius plot line equation8	6
Equation 3.2. Linear form of the Arrhenius equation 80	6
Equation 3.3. Activation energy8	6
Equation 3.4. Pre-exponential value 8	6
Equation 3.5. Rate of reaction at 363 K	6
Equation 3.6. Error for activation energy8	7
Equation 3.7. Error for pre-exponential value	7
Equation 3.8. Eyring plot line equation9	0
Equation 3.9. Linear form of the Eyring equation9	0
Equation 3.10. Enthalpy9	0
Equation 3.11. Entropy	0
Equation 3.12. Rate of reaction at 363 K90	0
Equation 3.13. Error for enthalpy9	0
Equation 3.14. Error for entropy9	0
Equation 3.15. Gibbs free energy of activation9	1
Equation 3.16. Error for Gibbs free energy of activation	1
Equation 3.17. Quadrature to calculate error for Gibbs free energy of activation 9	1

List of Abbreviations

 Δ heat

 ΔG^{\ddagger} Gibbs free energy of activation

 ΔH^{\ddagger} enthalpy of activation

 ΔS^{\ddagger} entropy of activation

¹H NMR proton nuclear magnetic resonance

¹³C NMR carbon nuclear magnetic resonance

Å angstrom

A pre-exponential factor

a.u. arbitrary units

Ac₂O acetic anhydride

AcOH acetic acid

A-D-A acceptor-donor-acceptor

Avg average

B y-intercept

BDE bond dissociation energy

BHT di-t-butylhydroxytoluene

Boc tert-butoxycarbonyl protecting group

Calc calculated

Cat catalyst

CDCl₃ chloroform-d

CFL compact fluorescent light

Comp computational

COSY correlated spectroscopy

D₂O deuterium oxide

DA Diels-Alder

DBU 1,8-diazabicyclo[5.4.0]undec-7-ene

DCE dichloroethane

DCM dichloromethane

DDDA didehydro-Diels-Alder

DFT density-functional theory

DI deionized

DIBAL diisobutylaluminum hydride

DIPEA *N,N*-diisopropylethylamine

Disp. dispersion

DMAP 4-dimethylaminopyridine

DMF *N,N*-dimethylformamide

dr diastereomeric ratio

E_a activation energy

EDCI *N*-(3-Dimethylaminopropyl)-*N*'-ethylcarbodiimide hydrochloride

ee enantiomeric excess

EI electron ionization

er enantiomeric ratio

ES electron spray

ESI electron spray ionization

Et₂O diethyl ether

EtOAc ethyl acetate

Exp experimental

FTMS Fourier transform ion cyclotron resonance mass spectrometer

h Planck's constant

h hours

H₂ molecular hydrogen

H₂O water

Hex n-hexane

HFIP hexafluoroisopropanol

HMBC heteronuclear multiple bond correlation

HRMS high resolution mass spectroscopy

HSQC heteronuclear single quantum correlation

HWE Horner-Wadsworth-Emmons

IR infrared

Isom isomerization product

k rate constant

k_B Boltzmann constant

LDA lithium diisopropylamide

LiAlD₄ lithium aluminum deuteride

LiAlH₄ lithium aluminum hydride

m slope

mA milliamps

MeCN acetonitrile

min minutes

MP melting point

MS mass spectroscopy

NICS nucleus-independent chemical shifts

NMR nuclear magnetic resonance

O₂ molecular oxygen

o-DCB *o*-dichlorobenzene

OPV organic photovoltaic

Oxid oxidation product

PCE power conversion efficiency

PhNO₂ nitrobenzene

ppm parts per million

R gas constant

R² R-squared

 R_f retention factor

rt room temperature

SMD solvation model based on density

T temperature

 $t_{1/2}$ half-life

TBA tribromoacetic acid

TFE tetrafluoroethanol

THF tetrahydrofuran

TLC thin layer chromatography

TOF time of flight

tol toluene

TS transition state

UV ultraviolet

 $\mu W \qquad \qquad microwave$

Acknowledgments

First, I would like to thank my family for their love and support during these past years of graduate school: my best friend and wife Carolyn who has motivated and encouraged me each day of my program, and our son Silas who has brought an incredible amount of joy to my life. My parents Norb and Kim, who raised me in love and wisdom. My father-in-law and mother-in-law Brian and Kelley who have loved me as their own. My sister Michelle as well as my brothers-in-law and sisters-in-law Calvin, Dan, Dave, Tim, Mallory, Caroline, and Audrey who have been my closest friends. Finally, my great-uncle Howard who has always supported me in my pursuit of education and science.

Next, I would like to thank my advisor, Prof. Kay Brummond who helped me to grow as a researcher and inspired me to strive for excellence in my scientific endeavors. Prof. Peng Liu who had patience and helped me to grow as a collaborator. I would also like to thank my committee members, Prof. Paul Floreancig, Prof. Seth Horne, and Prof. Stefan Bernhard for their help and support in my graduate education. I would like to acknowledge all the members of the Brummond research group, past and present, for their help, support, friendship, and comradery during my time at Pitt including Sarah Wells who introduced me to the research group, Paul Jackson, Lauren Burrows, Ashley Bober who mentored me in laboratory techniques and partnered with me on this research project, Humair Omar, Joe Burchick, a fellow nerd and mentor, Tugce Erbay, Dan Dempe, Eric Deihl, Mariah Meehan, Yifan Qi, Fatemeh Haghighi, and Maya Hayden.

I would like to thank our custodians, especially Tracy, not only for keeping our work area clean, but also for always having a kind word and smile every day. I would like to give special thanks to everyone at Grove City College who played a part in providing me with an exceptional

undergraduate education. Particularly Dr. Michael Falcetta and Dr. Charles Kriley who taught and mentored me in my first chemistry courses as well as my first research opportunities. I would also like to thank the church family and friends who have supported and encouraged me in the love of Christ through all of the mountains that I've faced these past years. Most of all, I thank my Lord and Savior Jesus Christ, my source of strength, who has shown me His great love and faithfulness.

1.0 Dearomative Cycloadditions of Vinylogous Heteroarenes

1.1 Valuable Synthetic Targets Containing Polycyclic Heteroarene Frameworks

Heteroarenes represent valuable scaffolds towards the synthesis of natural products, pharmaceuticals, pesticides, and other biologically active compounds.¹⁻⁵ Thiophenes as well as other sulfur based heteroarenes are especially valuable in medicinal chemistry as frameworks that are common in natural products and pharmaceuticals with therapeutic properties.⁶⁻⁹ Marketed drugs with benzothiophene frameworks include the asthma medication Zileuton (1.1), osteoporosis treatment Raloxifene (1.2), and antifungal Sertaconazole (1.3).¹⁰⁻¹² Marketed drugs containing thiophene frameworks include the anti-psychotic Olanzapine (1.4), glaucoma treatment Dorzolamide (1.5), and antiplatelet Clopidogrel (1.6).¹³⁻¹⁵

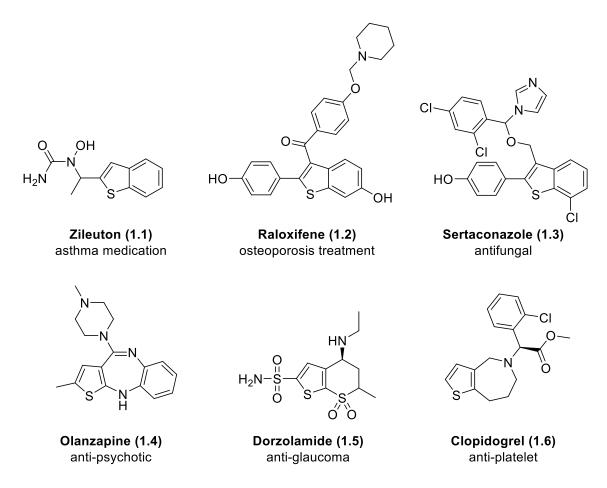


Figure 1.1. Marketed drugs containing heterocyclic frameworks of benzothiophenes or indoles

Recently, interest has grown in the application of heteroarenes towards ladder-type conjugated materials that have shown record breaking power conversion efficiencies (PCE) of greater than 17% in organic photovoltaic (OPV) solar-cells. Sulfur based heteroarenes in particular have found increasing success in the application towards these materials. For example, a record-performing OPV solar-cell was achieved by blending Acceptor-Donor-Acceptor (A–D–A) molecules (1.7) and electron donor molecules (1.8) with conjugated polymers, incorporated into a tandem cell (Figure 1.2). The value and importance of heteroarenes and their derivatives continues to grow, and access to these compounds relies heavily upon synthesis. 17-20

1.7 acceptor-donor-acceptor

Figure 1.2. Ladder-type conjugated polycyclic structure utilized in OPV solar-cells achieving record-breaking PCE's of greater than 17%

1.2 Forcing Conditions Required in Dearomative Cycloaddition Processes

Dearomative cycloadditions are emerging as a valuable strategy to build complex polycyclic heteroarene compounds. $^{21-28}$ Various new approaches have been developed to effect these cycloadditions, affording products in high yields and high stereoselectivity. Still, forcing conditions are required to activate the aromatic π -system of the heteroarene for the dearomative cycloaddition. This synthetic toolbox includes reaction conditions such as acid catalysis, base

mediation, transition-metal catalysis, organocatalysis, photoredox catalysis, electrochemistry, and thermal conditions that utilize either high temperatures or highly reactive dienophiles. In the following section, we discuss recent examples with high yields and stereoselectivity that highlight several of the more prominent dearomative strategies.

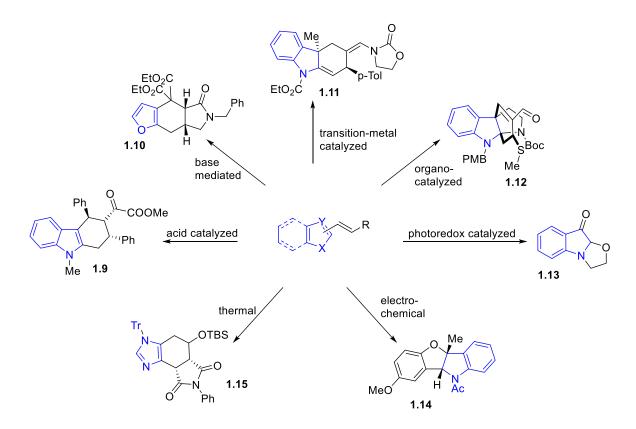
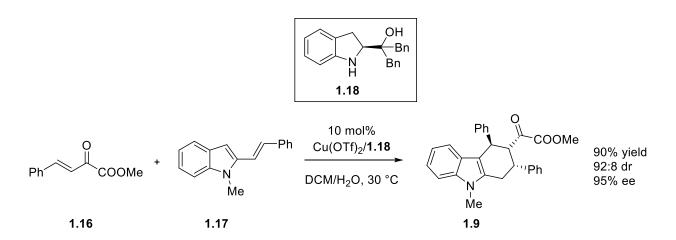



Figure 1.3. Synthetic toolbox of forcing conditions for dearomative cycloaddition processes

1.2.1 Acid Catalyzed Dearomative [4+2] Cycloadditions of Vinyl Heteroarenes

Acid catalysis for dearomative cycloadditions of vinyl heteroarenes often utilizes transition-metals that act as a Lewis acid to coordinate with and activate the dienophile in the DA cycloaddition. Transition-metals equipped with chiral ligands control stereoselectivity and impart chirality into the new polycyclic product. Ouyang et al synthesized highly functionalized

tetrahydrocarbazole **1.9** from 2-vinylindole **1.17** and β , γ -unsaturated α -ketoester **1.16** utilizing copper(II) triflate with chiral indolinylmethanol ligand **1.18** as the Lewis acid catalyst (Scheme 1.1).²⁹ Product was afforded in high yield of 90% good stereoselectivities with ee of 95% and dr 92:8. Based on product stereochemistry, the authors propose the reaction mechanism to be a concerted [4 + 2] cycloaddition. Whereas the initial cycloadduct and rearomatization process were not described, stereoselectivity in the product is attributed to a distorted octahedral transition state geometry of the copper complex coordinated to the β , γ -unsaturated α -ketoester **1.16** controlling both the facial and endo approach of 2-vinylindole **1.17**.

Scheme 1.1. Lewis acid catalyzed dearomative [4 +2] cycloaddition of a 2-vinylindole

Huang et al demonstrated the use of chiral rhodium(III) as a Lewis acid in the preparation of hydrocarbazole **1.21** from 3-vinylindole **1.19** and α ,β-unsaturated 2-acyl imidazole **1.20**. The hydrocarbazole **1.21** was afforded in excellent yield (99%), regioselectivity (99:1), diastereoselectivity (>50:1), and enantioselectivity (99%) under optimized conditions. Based on product stereoselectivity, the authors propose that the chiral octahedral rhodium catalyst activates the 2-acyl imidazole dienophile **1.20** via bidentate coordination to the oxygen of the carbonyl and

the unsubstituted nitrogen of the imidazole, increasing reactivity towards the [4+2] cycloaddition reaction with the 3-vinylindole **1.19**. Phenylbenzoxazole ligands impart chirality, sterically directing the facial approach of vinylindole **1.19** with an endo attack. Steric clashing between the Boc group on the indole and the isopropyl group on the imidazole effect the observed regioselectivity.

Scheme 1.2. Chiral rhodium catalyst utilized as a Lewis acid in a dearomative [4 + 2] cycloaddition

Lanthanide holmium has also been utilized as a chiral Lewis acid in catalytic and asymmetric dearomative cycloadditions. Harada et al synthesized substituted hydrocarbazole **1.24** from 3-vinylindole **1.22** and N-acyloxazolidinone **1.23**. They were able to synthesize product **1.24** with three chiral stereogenic centers in 99% yield and 94% ee. The authors proposed that the [4 + 2] cycloaddition proceeds through an eight coordinate holmium(III) catalyst complex, a conclusion supported by mass spectroscopy analysis. The complex activates the N-acyloxazolidinone **1.23** by bidentate coordination to both carbonyl oxygens. The thiourea side chain and naphthyl ring of the chiral ligands create a steric barrier which directs a single approach of the 3-vinylindole **1.22** to the dienophile **1.23** to effect the observed regio- and stereochemistry in the product by facial attack of the 3-vinylindole **1.22** with endo approach to the dienophile **1.23**.

TIPSO
$$\frac{5 \text{ mol } \%}{\text{Ho}(\text{NTf}_3)_3} / \text{TIPSO}$$
 $\frac{10 \text{ mol } \%}{\text{NO}_2\text{Ar}} + \frac{\text{CF}_3}{\text{NO}_2\text{S}} + \frac{\text{CF}_3}{\text{DCM}} + \frac{1.24}{\text{DCM}} + \frac{1.24}{\text{OC}_6\text{H}_4} + \frac{1.24}{\text{OC}_6\text{H}_4} + \frac{1.24}{\text{OC}_6\text{M}_4} + \frac{1.24}{\text{OC}_6\text{$

Scheme 1.3. Chiral holmium catalyst complex utilized as a Lewis acid in dearomative [4 + 2] cycloadditions

1.2.2 Base Mediated Dearomative Cycloadditions of Vinyl Heteroarenes

Dearomative cycloadditions of vinyl heteroarenes often utilizes basic conditions to initiate formation of a reactive dienophile from starting materials. Sugiura et al demonstrated such a reaction by reaction of 1,1,2-ethenetricarboxylic acid 1,1-diethyl ester **1.26** with E-3-(2-furyl)-2-propenylamine **1.25** under amide condensation conditions to afford cis-fused tricyclic compound **1.10** in moderate yield (78%).³² This reaction proceeds through a sequential amide formation, [4 + 2] cycloaddition, and hydrogen migration. The initial cycloadducts could be isolated and characterized but were found to decompose at room temperature.

Scheme 1.4. Base mediated dearomative cycloaddition by sequential amide formation, [4 + 2] cycloaddition, and hydrogen-shift

Basic conditions were also used to mediate the dearomative [4 + 3] cycloaddition of 2-vinylindole **1.27** with α -bromoketone **1.28** by in situ generation of oxyallyl cations, as performed by Pirovano et al.³³ Cyclohepta[b]indole derivative **1.29** was synthesized 72% yield and complete diastereoselectivity. The highly reactive oxyallyl cations are generated from α -bromoketone **1.28** in the presence of N,N-diisopropylethylamine (DIPEA) as base and perfluorinated solvent tetrafluoroethanol (TFE). Complete regio- and diastereoselectivity is observed in the product **1.29** which the authors attribute to endo approach in the [4 + 3] cycloaddition which could proceed either by a concerted or fast stepwise process.

Scheme 1.5. Base generated oxyallyl cations as the dienophile for dearomative cycloadditions with vinylindoles

1.2.3 Transition-Metal Catalyzed Dearomative Cycloadditions of Vinyl Heteroarenes

Transition-metals are used to effect dearomative cycloadditions with various types of dienophiles usually through stepwise mechanisms. Stereoselectivity can also be imparted to products with use of chiral ligands on the transition-metal catalysts. Rossi et al demonstrated gold-catalyzed synthesis of tetrahydrocarbazole **1.11** through dearomative [4 + 2] cycloadditions of substituted 2-vinylindole **1.30** with allenamide **1.31** in 85% yield and 96:4 enantiomeric ratio (er) with chiral Seg-Phos derivative ligands effecting stereoselectivity. The [4 + 2] cycloaddition

proceeds via a stepwise mechanism as supported by the author's previous reports.³⁵ The chiral gold catalyst coordinates with the allene **1.31** to promote a stepwise cyclization with the 2-vinylindole **1.30** where steric interactions effect the observed stereoselectivity in the product **1.11**.

Scheme 1.6. Gold catalyzed dearomative cycloadditions between allenamides and vinylindoles.

A chiral rhodium catalyst has been demonstrated to effect dearomative cycloadditions by Xu and coworkers.³⁶ Formal [4 + 3] cycloaddition of vinyindole **1.19** with vinyldiazoacetate **1.32** was effected with proline-derived dirhodium tetracarboxylate catalyst to access cyclohepta[*b*]indole **1.33** in 78% yield, >20:1 dr and 95% ee. The mechanism of the formal (4 + 3) cycloaddition proceeds by sequential asymmetric cyclopropanation of **1.32** and Cope rearrangement with the indole **1.19** promoted by the chiral rhodium catalyst which effects the observed enantioselectivity in the products **1.33** through the chiral ligands.

Scheme 1.7. Dirhodium chiral catalyst promoted dearomative cycloaddition of vinyindoles with vinyldiazoacetates

1.2.4 Organocatalyzed Dearomative Cycloadditions of Vinyl Heteroarenes

Organocatalyzed dearomative cycloadditions utilize specifically designed organic structures that activate starting materials for cycloaddition by reaction or interaction with Van der Waals forces. Yang et al utilize organocatalysis in the synthesis of nitrohydrocarbazole 1.36 from 3-vinylindole 1.34 and nitroolefin 1.35. A chiral tertiary amine thiourea catalyst was used to effect the reaction in high yields (72%) and good ee (84%). Based upon control experiments and DFT calculations, the authors proposed that the thiourea catalyst promotes reactivity of the [4+2] cycloaddition via double hydrogen bonding nitroolefin 1.35. This activates the dienophile for cycloaddition with the vinylindole 1.34 by an exo approach, enhancing the enantioselectivity of the reaction.

cat. = Ph
$$\frac{H}{N}$$
 $\frac{S}{N}$ NHAr $\frac{S}{N}$ $\frac{10 \text{ mol } \% \text{ cat.}}{N}$ $\frac{H_2O}{NO_2}$ $\frac{H_2O}{NO_2}$ $\frac{H_2O}{NO_2}$ $\frac{1.34}{NO_2}$ $\frac{1.35}{NO_2}$ $\frac{1.36}{NO_2}$

Scheme 1.8. Synthesis of nitrohydrocarbazoles via organocatalyzed dearomative cycloaddition reaction

Jones et al demonstrated a new organocatalytic DA and sequential amine cyclization affording tetracyclic carbazole frameworks **1.12** from propynal **1.38** and tryptamine derivative

1.37 in 87% yield and 88% ee in $.^{39}$ A chiral, secondary amine catalyst is utilized for a condensation reaction with the propynal **1.38** to afford an activated iminium ion which proceeds to the [4 + 2] cycloaddition with 2-vinylindole **1.37**. The authors propose, based upon the stereochemistry of the product, that steric interactions with the chiral catalyst increase selectivity for [4 + 2] cycloaddition in a regioselective manner to afford the DA adduct. Protonation of the enamine of the adduct facilitates an amine heterocyclization to deliver the product **1.12** and regenerate the organocatalyst.

Scheme 1.9. Secondary amine organocatalyst utilized in the dearomative cycloaddition of propynal with 2-vinylindole

1.2.5 Photoredox Catalyzed Dearomative Cycloadditions of Heteroarenes

Reactions of heteroarenes as the two-carbon component of photoredox catalyzed dearomative cycloadditions are well studied and found to be initiated by a variety of means including photoactivated transition-metals, Lewis acids, electron donor-acceptor complexes, arenophiles, or generation of reactive radical intermediates.²⁴ Reactions of vinyl heteroarenes as the four-carbon component of a dearomative cycloaddition have yet to be explored to such an

extent. Zhang et al utilized photoactivated ruthenium catalyst to initiate intramolecular dearomative cycloaddition of indole-tethered alcohol **1.39** to afford oxazolo[3,2-α]indolone **1.13** in good yield (68%) in acetonitrile (MeCN) with light from a 36W compact fluorescent light (CFL) bulb. ⁴⁰ Based upon experimental results and literature precedent, the authors propose that the photo-activated ruthenium(II) complex is used to effect a molecular oxygen induced single-electron oxidation of the indole **1.39** which undergoes cyclization via intramolecular nucleophilic attack.

Scheme 1.10. Photoactivate ruthenium catalyst for dearomative cycloaddition to oxazolo[3,2-α]indolones

1.2.6 Electrochemical Dearomative Cycloadditions of Heteroarenes

Heteroarenes, which typically have electron-rich characteristics, are able to be anodically oxidized to the corresponding radical cation which may react by a radical coupling pathway or nucleophilic addition transformation.²⁵ These two reaction pathways are well studied for dearomative reactions of heteroarenes, yet reactions of vinyl heteroarenes as the four-carbon component of a dearomative cycloaddition have yet to be explored to such an extent. Liu et al demonstrated the dearomative, electrooxidative [3 + 2] annulation between phenol **1.40** and *N*-acetylindole (**1.41**) to afford benzofuroindoline **1.15** in up to 99% yield for 23 substrates in hexafluoroisopropanol (HFIP) and dichloromethane (DCM).⁴¹ This [3 + 2] cyclization is accomplished through the single-electron-transfer oxidation of both the *p*-methoxylphenol (**1.40**)

and the *N*-acetylindole (**1.41**) by the anode followed by cross-coupling of the two radical intermediates to generate the final product **1.15**.

MeO

NeO

NeO

NeO

$$OH$$
 OH
 OH

Scheme 1.11. Electrochemical dearomative cycloaddition of phenols and N-acetylindoles to benzofuroindolines

1.2.7 Thermal Dearomative Cycloadditions of Heteroarenes

Due to the lack of a catalyst or reagent to activate substrates for dearomative cycloadditions, thermal dearomative cycloadditions of vinyl heteroarenes typically require either highly reactive dienophiles or elevated temperatures to effect dearomatization. Mohamed et al effected the dearomative cycloaddition of 2-vinylindole **1.42** to carbazole derivative **1.44** with reactive dienophiles such as fumaronitrile **1.43**, dimethyl fumarate, *N*-phenylmaleimide, 1,4-naphthoquinone, and dimethyl acetylenedicarboxylate.⁴² Carbazole derivative **1.44** was afforded under conditions of refluxing toluene in 60% yield. The authors do not report observing the DA adduct, nor do they explain how the isomerization product was formed.

Scheme 1.12. Thermal dearomative cycloaddition of 2-vinylindoles with highly reactive dienophiles

Cotterill et al also utilized a highly reactive dienophile in *N*-phenylmaleimide **1.46** to effect [4 + 2] dearomative cycloaddition with vinylimidazole **1.45** in refluxing toluene. The DA adduct of the cycloaddition was observed and reported for several substrates. In most cases, adducts rapidly underwent a [1,3]-hydrogen migration to products **1.16**. A mechanism was not proposed for this migration, yet the product **1.16** was found to proceed into domino reactions affording trityl migration and even Michael addition with *N*-phenylmaleimide leading to formation of complex molecule **1.47**.

Scheme 1.13. Thermal dearomative cycloaddition of vinylimidazoles with highly reactive N-phenylmaleimide

Previous researchers from our lab have published dearomative cycloadditions of vinylogous heteroarenes under thermal conditions with elevated reaction temperatures via microwave heating.⁴⁴ Vinylogous furans, pyrroles, and thiophenes underwent intramolecular dearomative cycloadditions to afford either benzofurans, indoles, and benzothiophenes or the

corresponding dihydroaromatic products. Depicted in Scheme 1.14 is 2-vinylthiophene **1.48** reacting to afford benzothiophene **1.49** in 86% yield. In most reactions, temperatures of 225 °C were utilized with select cases proceeding at temperatures as low as 120 °C. Solvent selection afforded affected product selectivity with nitrobenzene increasing selectivity for fully aromatic products and dimethylformamide (DMF) increasing selectivity for dihydroaromatic products.

TMS O PhNO₂
$$\mu$$
W, 225 °C S 86% yield 1.49

Scheme 1.14. Intramolecular, thermal dearomative cycloaddition of vinylogous furans, pyrroles, and thiophenes

1.2.8 Conclusions

Modern dearomative cycloadditions of vinyl heteroarenes have been employed through a variety of strategies to afford complex products in high yields and high stereoselectivity with efficient methods. The forcing conditions required to effect dearomatization often limit the substrate scope or cost efficiency of these reactions. Acid catalysis or base mediation strategies limit substrate functionality to that which is tolerant of these conditions. Transition-metal catalysis and organizatelysis strategies effect powerful stereochemical control that often require highly expensive catalysts and ligands to do so. Photoredox catalysis and electrochemical strategies are similarly powerful, yet literature examples for vinyl heteroarenes are currently lacking. Finally, thermal strategies often have a substrate scope limited by high temperatures or highly reactive dienophiles. Works utilizing these strategies ordinarily lack mechanistic analysis beyond proposed transition states based upon stereochemical outcomes.

1.3 Dearomative Didehydro-Diels-Alder Reaction for Vinyl Heteroarenes

The dearomative didehydro-Diels–Alder (DDDA) reaction for vinyl heteroarenes precursors affords access to both oxidation and isomerization products. Of all the dearomative cycloaddition strategies, the DDDA reaction is not limited by harsh reagents or expensive catalysts. Historically, the synthetic utility of this reaction has been limited by the low reactivity of the heteroarene precursors, requiring elevated reaction temperatures typically ≥130 °C, additives required to access oxidation products, and low afforded yields. Additionally, the mechanisms of the dearomative cycloaddition as well as the product formation mechanisms are not well understood.

Scheme 1.15. Oxidation and isomerization products accessible via the dearomative DDDA reaction

1.3.1 Dearomative Didehydro-Diels-Alder Reaction for Vinyl Heteroarenes

Klemm et al was the first to report the dearomative DDDA reaction for 2- and 3-vinylthiophenes under acidic conditions.⁴⁵ The 2-vinylthiophene **1.50** was refluxed in acetic anhydride to afford exclusively isomerization products **1.51** in relatively poor yield (24%). The

authors do not discuss the mechanisms by which the isomerization products are formed. Kanematsu et al reported dearomative DDDA reactions for 2-vinylfuran **1.52** as well as 2-vinylpyrroles. Isomerization products were afforded in moderate yield (<59%) but the mechanisms by which they are formed from DA adduct is not discussed. Oxidation product **1.53** was accessed only by utilizing oxidative 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) or Pd/C additives and was afforded in low yield (38%, Scheme 1.53).

Scheme 1.16. First report of the dearomative DDDA reaction of vinyl heteroarenes

Scheme 1.17. Kanematsu's reported dearomative DDDA reaction for 2-vinylfurans and 2-vinylpyrroles

Hajbi et al effected the dearomative DDDA reaction of 3-vinylindoles **1.54** at 150 °C heated by microwave heating in toluene, protected from light and under inert atmosphere, to afford isomerization products in high yields (up to 99%). Oxidation product **1.55** was accessed only with utilization of *o*-chloranil as an oxidant in up to 88% yields.⁴⁷ Observation of DA adduct was not reported by the authors, nor was a mechanism proposed for formation of products from adduct.

Scheme 1.18. Dearomative DDDA reaction of 3-vinylindoles with improved yields up to 99%

Dearomative DDDA reactions were demonstrated for 4-vinylimidazole **1.56** by Lima et al. 48 Isomerization product **1.57** was afforded by heating at 130 °C for 48 h in toluene in 84% yield. Oxidation product **1.58** was afforded upon reaction of isomerization product with oxidant manganese oxide in 89% yield. The authors do not report observation of DA adduct and do not discuss mechanisms for product formation.

Scheme 1.19. Dearomative DDDA reaction of 4-vinylimidazole precursors

As previously discussed, our research lab has published dearomative DDDA reactions of vinyl furans, pyrroles, and thiophene **1.59** which proceed under microwave heating temperatures of 225 °C with select cases proceeding at temperatures as low as 120 °C.⁴⁴ Selectivity for oxidation product **1.60** from 2-vinylthiophene **1.59** was enhanced in the presence of oxidant additive

nitrobenzene and afforded in 86% yield while selectivity for isomerization product **1.61** was enhanced by use of more polar solvents such as dimethylformamide (DMF) and afforded in 99% yield.

Scheme 1.20. Microwave assisted dearomative DDDA reaction with enhanced product selectivity

Literature examples have demonstrated use of the dearomative DDDA reaction offer a variety of heteroarenes with varied alkynyl tether compositions. Yet, overall, the utility of the reaction is often hindered by high temperatures above 130 °C, oxidizing additives required to afford oxidation product, and low yields. Furthermore, little is understood for the mechanisms of the dearomative cycloaddition and product formation steps as the DA adduct is rarely observed and has not been fully characterized.

1.3.2 Analogous Mechanistic Insight from Styryl Dearomative DDDA Reactions

There is a lack of literature on mechanistic studies of the dearomative DDDA reaction for vinyl heteroarenes, and as such, the mechanisms for the dearomative cycloaddition as well as

formation of oxidation and isomerization products are not well understood. The closest literature mechanistic studies are for the analogous intramolecular styryl dearomative DDDA reaction.

Andrus et al report the styryl **1.62** dearomative DDDA reaction at 160 °C for 2 h in benzonitrile solvent with 1.5 equivalents of di-t-butylhydroxytoluene (BHT) additive to afford isomerization products **1.63** and **1.64** in low yields (<56% combined). DFT analysis of the dearomative cycloaddition identified an asynchronous concerted [4 + 2] Diels—Alder transition state **1.65** as the lower energy pathway in comparison to singlet-open-shell diradical pathways, and polar pathways. DFT analysis of isomerization product **1.64** formation identified the mechanism to be a BHT assisted [1,3]-formal hydrogen shift, where BHT initiates the hydrogen atom abstraction from the adduct **1.66** and subsequent addition to the newly formed radical **1.68**.

Scheme 1.21. Styryl dearomative DDDA reaction with DFT support for an asynchronous concerted [4 + 2]

Diels-Alder cycloaddition

Kocsis et al from our research group also conducted intramolecular styryl **1.69** dearomative DDDA reactions to afford naphthalene (oxidation) **1.74** and dihydronapthalene (isomerization) **1.70** products under microwave heating. Deuterium-labeled cross-over experiments supported isomerization product formation occurring via an intermolecular hydrogen atom abstraction and subsequent addition. Triplet oxygen initiates the reaction by hydrogen atom abstraction of the trisallylic hydrogen in the DA adduct **1.71**. The newly formed radical **1.73** then abstracts the trisallylic proton of another equivalent of adduct to afford the isomerization product **1.70**. Oxidation product formation **1.74** was proposed to occur by the concerted intramolecular elimination of hydrogen gas, made possible by the close proximity of the flagpole hydrogens in the boat-like conformation of the adduct **1.71**. The elimination of H₂ gas was supported by experiments that quantified the gas by analysis of the reaction headspace with gas chromatography and detection of the resonance for H₂ gas in the reaction solution by ¹H NMR.

NTS
$$\frac{\Delta}{\text{DMF, }\mu\text{W}}$$
 NTS $\frac{\Delta}{\text{DMF, }\mu\text{W}}$ NTS $\frac{A}{\text{DMF, }\mu\text{W}}$ NTS $\frac{A}{\text{DMF,$

.....

Scheme 1.22. Styryl dearomative DDDA reaction afforded isomerization product via an intermolecular hydrogen atom abstraction and oxidation product via a concerted intramolecular elimination of hydrogen gas

Though these works are mechanistic analysis of the dearomative DDDA reaction, it is unclear to what extent these mechanisms are analogous to those for vinyl heteroarenes. Literature examples of the dearomative DDDA reaction for vinyl heteroarenes often afforded variable reactivity and product selectivity with changes in substrate. Further mechanistic studies are required to garner understanding of these reaction processes for vinyl heteroarenes.

1.4 Conclusions

Dearomative cycloadditions are emerging as efficient and effective strategies for accessing valuable, complex polycyclic heteroarene compounds. Yet, most strategies employ forcing conditions such as additives or catalysts to activate the aromatic π -system of the heteroarene for cycloaddition. Therefore, the substrate dependent factors that affect reactivity are often overlooked and understudied in lieu of these conditions. The thermal, intramolecular, dearomative DDDA reaction of vinyl heteroarenes exists as a potential alternative to dearomative reactions with forcing conditions, yet it is also plagued by high temperatures, low yields, and oxidants required to access fully aromatic products. These faults may be attributed to a lack of understanding for these reaction mechanisms as the DA adduct is not observed or fully characterized in literature examples. We propose that a mechanistic analysis of the dearomative DDDA reaction of vinyl heteroarenes would lead to increased synthetic utility and substrate scope for the reaction, as well as inform future dearomative processes.

2.0 Synthesis, Isolation and Characterization of the DA Adduct

With changes in substrate affording variable reactivity and product selectivity for the dearomative DDDA reaction of vinylogous heteroarenes, we sought to investigate the mechanisms of the dearomative cycloaddition as well as product formation steps for these substrates. We proposed the DA adduct to be the intermediate between cycloaddition and formation of either oxidation or isomerization products. Isolation and characterization of this adduct provided insight into our mechanism study. Formation of products solely from the adduct was also confirmed.

This chapter is based on results presented in: Winkelbauer J. A.; Bober A. E.; Brummond K. M., Regulating Divergent Product Selectivity of the Dearomative Didehydro-Diels-Alder Reaction through Mechanistic Insight. Manuscript in preparation, submission expected 2021.

2.1 Synthesis and NMR Characterization of the DA Adduct

The proposed, and later confirmed, DA adduct was first observed in the dearomative DDDA reaction of the ester-tethered 3-thiophene precursor **1.59** when heated for 15 min at 150 °C in deuterated *o*-dichlorobenzene (*o*-DCB-d₄) which afforded a ratio of 35:15:38:12 (precursor **1.59**:adduct **2.1**:isomerization product **1.61**:oxidation product **1.60**) as observed by comparing integrative values of a crude ¹H NMR spectrum.

Scheme 2.1. Dearomative DDDA reaction of 1.59 to afford mixture of adduct and products

We hypothesized that a benzofused heteroarene may lead to a more persistent DA adduct due to stabilization afforded by the intact aromatic benzene. To test this hypothesis, dearomative DDDA precursor **2.5** was prepared. Horner–Wadsworth–Emmons (HWE) reaction of benzo[b]thiophene-3-carboxaldehyde **2.2** with methyl-(triphenylphosphoranylidene) acetate afforded (E)-3-(benzo[b]thiophen-3-yl)acrylate **2.3** in 91% yield. Reduction of the methyl ester **2.3** with diisobutylaluminum hydride (DIBAL) afforded allyl alcohol **2.4** in 93% yield. Alcohol **2.4** was subjected to a Steglich esterification with 4-dimethylaminopyridine (DMAP), *N*-(3-dimethylaminopropyl)-*N*'-ethylcarbodiimide hydrochloride (EDCI•HCl) and phenylpropiolic acid to afford the dearomative DDDA precursor **2.5** in 91% yield. Heating the DA precursor **2.5** for 7 min at 150 °C in *o*-DCB-d₄ afforded the DA adduct **2.6**. Trace amounts of oxidized product were also present evidenced by ¹H NMR of the crude material. The yield was not determined as adduct **2.6** converted to oxidized product during purification by silica-gel column chromatography.

Scheme 2.2. Synthesis of dearomative DDDA precursor 2.5 and adduct 2.6

Structural confirmation of adduct **2.6** was accomplished with single (¹H and ¹³C) and multidimensional (COSY, HSQC, and HMBC) NMR techniques. The most diagnostic data related to the two bis-allylic hydrogens (H_A and H_C) identified as the resonances at 5.45 and 3.60 ppm, each showing ⁵J long-range couplings of 13.5 Hz. Durham and Studebaker have reported these longrange couplings as characteristic of 1,4-cyclohexadiene structures due to an adopted boat-like conformation with the bis-allylic hydrogens in axial positions (Figure 2.1).⁵¹

Figure 2.1. Boat-like conformation of the DA adduct 2.6 with bis-allylic hydrogens in flagpole positions

The coupling of the resonances at 5.45 and 3.60 ppm was confirmed by COSY NMR where the correlation was observed (see spectra in appendix B). HSQC NMR gave evidence that the resonances at 3.91 and 4.53 ppm are correlated to the same carbon with resonance at 68.6 ppm, and therefore, can be attributed to the methylene carbon. In HMBC NMR, the bis-allylic carbon

of proton H_A was observed to lack correlation to the methylene protons, indicative of the long spatial distance between these atoms.

DA precursors **1.59**, **2.9**, and **1.50** were synthesized by the same methodology and dearomative DDDA reactions were performed in order to characterize adduct for these substrates. 3-Vinylthiophene **1.59** heated for 15 min at 150 °C in *o*-DCB-d₄ afforded a ratio of 35:15:38:12 (**1.59**:2.1:1.61:1.60). 2-Vinylbenzothiophene **2.9** heated for 11 min at 150 °C in *o*-DCB afforded a ratio of 6:87:0:7 (**2.9**:2.10:2.11:2.12). 2-Vinylthiophene **1.50** heated for 15 min at 150 °C in *o*-DCB afforded a ratio of 16:65:9:10 (**1.50**:2.13:1.51:2.14). These adducts were observed as mixtures with precursor, oxidation product and isomerization products, and therefore, were identified and characterized by analogy to **2.6**.

Scheme 2.3. Dearomative DDDA reactions with observation and characterization of DA adduct

Table 2.1. ¹H NMR characterization of the DA adducts in o-DCB by analogy to 2.6

Adduct	Resonances	HA	Нв	Нс	HD	$\mathbf{H}_{\mathbf{E}}$
H _B H _C M _B H _D O O O O O O O O O O O O O O O O O O O	δ (ppm)	5.46	5.93	3.64	3.91	4.53
	multiplicity	dd	dd	dddd	dd	dd
	J (Hz)	3.5, 13.5	2.0, 3.5	2.0, 8.6, 10.4, 13.5	8.2, 10.4	8.2, 8.6
H _B H _C H _D O O O O O O O O O O O O O O O O O O O	δ (ppm)	5.30	5.50	3.52	3.82	4.48
	multiplicity	dd	dd	dddd	dd	dd
	J (Hz)	3.8, 14.8	2.1, 3.8	2.1, 8.9, 10.2, 14.8	8.2, 10.2	8.2, 8.9
Ph O O O O O O O O O O O O O O O O O O O	δ (ppm)	4.74	5.59	3.56	3.82	4.50
	multiplicity	dd	dd	dddd	dd	dd
	J (Hz)	3.3, 13.4	1.7, 3.4	1.7, 9.4, 9.4, 13.5	8.6, 9.4	8.6, 9.4
Ph O O O O O O O O O O O O O O O O O O O	δ (ppm)	4.42	5.51	3.45	3.79	4.45
	multiplicity	dd	d	dddd	dd	t
	J (Hz)	3.4, 15.0	3.4	1.9, 8.6, 9.6, 15.0	8.7, 9.7	8.7

Thus, benzofused precursor **2.5** was successfully synthesized, and DA adduct **2.6** was attained and characterized by the heating of **2.5** for 7 min at 150 °C in *o*-DCB-d₄. Heating of precursors **1.59**, **2.9**, and **1.50** under comparable conditions resulted in mixtures of products and incomplete conversion of starting material as detailed above. Yet, it is still unclear whether this is due to higher stability of **2.6** in comparison to the other adducts or perhaps higher energy barriers for conversion of **2.6** to products.

2.2 Synthesis and Characterization of the Deuterated DA Adduct XX

We postulated that persistence of the DA adduct may be further enhanced with deuteriums at the bis-allylic positions because of the increased bond strength of C-D compared to C-H. And due to the unusual nature of observing a ⁵*J* long-range coupling, we saw this as way to further confirm the structural assignment of the DA adduct **2.20** by ¹H NMR. To access this adduct, we first needed to prepare the dearomative DDDA precursor **2.19**.

Towards the synthesis of **2.19**, dehalogenation of 2,3-dibromo-benzo[*b*]thiophene **2.15** with zinc powder and acetic acid-d₇ installed the first deuterium with generation of 3-bromobenzo[*b*]thiophene-2-d **2.16** in 81% yield. Sonogashira coupling of **2.16** with propargyl alcohol afforded the corresponding propargyl alcohol **2.17** in 90% yield. **2.17** was reduced by lithium aluminum deuteride (LiAlD₄) to the allyl alcohol **2.18** in 88% yield, installing the second deuterium. Allyl alcohol **2.18** was subjected to a Steglich esterification with DMAP, EDCI•HCl and phenylpropiolic acid to afford the dearomative DDDA precursor **2.19** in 63% yield. Finally, the dearomative DDDA reaction of **2.19** for 90 min at 150 °C in *o*-DCB afforded **2.20** with minimal amounts of isomerization and oxidization product present (77%:5%:18%). The yield was not determined as adduct **2.20** converted to oxidized product during purification by silica-gel column chromatography.

Scheme 2.4. Synthesis of dearomative DDDA precursor 2.19 and adduct 2.20

As expected, the ¹H NMR of **2.20** lacked the corresponding bis-allylic proton resonances that appeared at 5.45 and 3.60 ppm for **2.6**. The appropriate coupling to neighboring protons was also non-existent in the ¹H NMR of **2.20**. This result aided in the confirmation of our NMR characterization.

Parallel dearomative DDDA reaction of **2.5** for 90 min at 150 °C in *o*-DCB afforded DA adduct **2.6** with a significant increase in the amounts of formed isomerization and oxidation products (41%:20%:39%, Scheme 2.5). Therefore, in parallel reactions, DA adduct **2.20** with deuterium at the bis-allylic positions existed as 77% of the product mixture in comparison to non-deuterated adduct **2.6** which existed as 41% of the product mixture. Deuteriums at the bis-allylic positions in the DA adduct did result in a more persistent adduct, likely due to increased bond strength of C-D compared to C-H. Therefore, the protons or deuteriums at the bis-allylic positions are likely involved in the rate determining step of product formation.

Scheme 2.5. Observed deuterium isotope effect from parallel reactions of 2.5 and 2.19

2.3 Confirmation of Stereochemistry via the DP4 Probability Method

DFT computations were utilized in the characterization of the DA adduct to confirm the stereochemistry of the synthesized adduct. First, we predicted that the cycloaddition would proceed via a concerted transition state, and therefore, the bis-allylic protons (H_A and H_C) of the 1,4-cyclohexadiene would have cis stereochemistry rather than trans. Trans bis-allylic protons would be indicative of a possible cycloaddition via a stepwise mechanism. Second, we proposed that the isolated and characterized product had the 1,4-cyclohexadiene regiochemistry of the DA adduct, yet 1,3-cyclohexadienes afforded via isomerization of the adduct could have similar ¹H NMR spectra to that of was isolated.

DFT calculations with EDF2/6-31G* geometry optimizations were used to generate predictive ¹H and ¹³C NMR spectra for the cis and trans 1,4-cyclohexadiene (**2.13** and **2.22**), the cis and trans 1,3-cyclohexadiene β to the ester (**2.23** and **2.24**), and the isomerization product (**2.7**). The DP4 probability method created by the Goodman group allowed us to compare these predictive ¹H and ¹³C NMR spectra to the experimental spectra of our substrates and calculate the percent probability of a match.⁵²

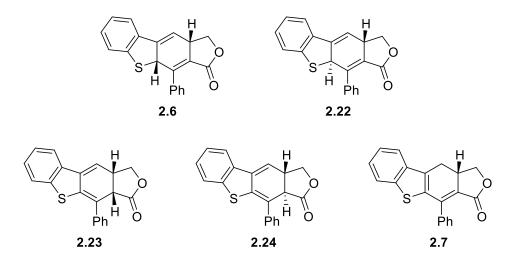
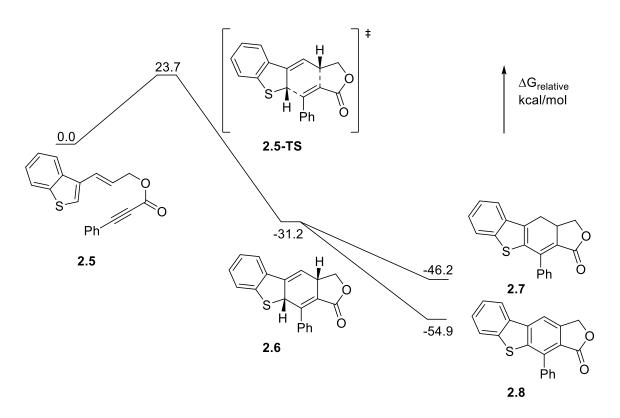


Figure 2.2. Possible regio- and steroisomers of the DA adduct analyzed by the DP4 probability method

The combined experimental ¹H and ¹³C NMR's of our proposed cis-1,4-cyclohexadiene DA adduct had a 99.9% match to the Spartan predicted NMR's for **2.13**. This method also gave confirmation of the assignment for two isomerization products from the adduct, **2.23** and **2.7**, whose isolation and characterization are described in section 2.4.2.

2.4 Confirmation of the DA Adduct as the Common Intermediate to Formation of Oxidation Product, Isomerization Product, and Cis-Diene


With isolated DA adduct in hand, we proposed that the adduct was the common intermediate from which oxidation and isomerization products were formed and not just a newly characterized byproduct. To test our hypothesis, isolated DA adduct would be subjected to dearomative DDDA conditions in order to observe if oxidation and isomerization products would be generated from the adduct. **2.5** was heated for 6 min at 150 °C in *o*-DCB to generate **2.6** with

trace formation of **2.8**. The *o*-DCB solvent was removed by high-vacuum, and the adduct was dissolved in DMF before heated for 5 min at 150 °C in the microwave reactor. This reaction of isolated adduct resulted in the formation of **2.8**, **2.7**, and **2.23** in a ratio of 18:52:30 respectively (see ¹H NMR in experimental section). Therefore, the oxidation product, isomerization product, and the cis-diene were all found to be generated directly from isolated DA adduct rather than precursor.

Scheme 2.6. Formation of oxidation product, isomerization product, and 1,3-cyclohexadiene product from the DA adduct

To better understand the product ratios, we investigated the ground state energies for **2.5**, **2.6**, **2.8**, and **2.7** and analyzed the dearomative cycloaddition energy of activation. These calculations were performed by our collaborator Elena Kusevska from the Peng Liu research group. DFT calculations were performed at the M06/6-311+G(d,p)/SMD(DMF)//B3LYP/6-31G(d) level of theory. Results showed a relatively low Gibbs free energy of activation of 23.7

kcal/mol for the dearomative DA cycloaddition step with an exergonic formation of adduct at - 31.2 kcal/mol relative to precursor. These ground state energies reveal a thermodynamic driving force towards adduct. Formation of oxidation product (-54.9 kcal/mol) and isomerization product (-46.2 kcal/mol) is also exergonic relative to precursor and suggests that product formation is irreversible.

Scheme 2.7. DFT energy diagram for the dearomative DDDA reaction of **2.5** at the M06/6-311+G(d,p)/SMD(DMF)//B3LYP/6-31G(d) level of theory

2.4.1 No Evidence of Oxidation Product Formation from Isomerization Product

We propose that oxidation product forms directly from the DA adduct and is not a product from oxidation of the isomerization product. To test this hypothesis, we sought to effect the

transformation of **2.6** to **2.8** with no formation of **2.7**. Additionally, we sought to subject **2.7** to those same reaction conditions in order to observe if there was any transformation of **2.7** to **2.8**. **2.5** was heated for 10 min at 150 °C in *o*-DCB to afford **2.6** with trace formation of **2.8**. The solution of **2.6** was allowed to cool to room temperature. Then, air was bubbled through the solution over the course of an hour affording **2.8** with trace amounts of **2.6** remaining (see ¹H NMR in experimental section). Thus, oxidation product forms readily from DA adduct at room temperature with an abundance of exposure to air and no evidence of isomerization product formation.

Scheme 2.8. Formation of oxidation product 2.8 from DA adduct 2.6 at rt with bubbling air

Additionally, a mixture of oxidation and isomerization products were subjected to conditions of bubbling air and heat in order to observe any transformation of isomerization product into oxidation product. Toluene-d₈ was chosen as a non-polar solvent that afforded trends of increased selectivity for oxidation product formation in dearomative DDDA reactions. A 31:69 mixture of 2.8:2.7 was dissolved in toluene-d₈ and subjected to heating via an oil bath at 50, 80 and 110 °C for 2 h increments. There was no observed change in the product ratios after any of the 2h increments (see ¹H NMR in experimental section). The solution was then subjected to bubbling air at room temperature for 2h, followed by bubbling air at 80 °C for 2h. There was also no observed change in the product ratios after either of the 2h increments with bubbling air. Therefore,

we propose that the isomerization product is a stable product that does not readily oxidize into oxidation product, but rather, oxidation is formed directly from the DA adduct.

Scheme 2.9. No conversion of isomerization product **2.7** to oxidation product **2.8** under thermal conditions with bubbling air

2.4.2 Cis-Diene as a Rarely Observed Byproduct that Converts to Oxidation and Isomerization Products

The cis-diene **2.23** is a byproduct of the dearomative DDDA reaction only found as a mixture with other products when polar solvents such as dimethylformamide or acetonitrile were used. Formation of cis-diene was observed when **2.5** was reacted for 5 min at 140 °C in freshly distilled acetonitrile using microwave heating to afford **2.6:2.8:2.7:2.23** in a ratio of 51:10:22:17 respectively. Repeating the reaction but with distilled acetonitrile solvent mixed with type 4Å mol sieves prior to the reaction afforded **2.6:2.8:2.7:2.23** in a ratio of 7:6:41:46. This enhanced selectivity for cis-diene and isomerization product in the presence of mol sieves suggests that the mol sieves are involved in the isomerization of the adduct to these products.

Scheme 2.10. Formation of cis-diene byproduct in acetonitrile with enhanced selectivity in the presence of mole sieves

Unlike the DA adduct, oxidation product, and isomerization product which have an equivalent R_f and are not separable by column chromatography, the cis-diene has a higher R_f and was isolated from the other products. Isolated cis-diene **2.23** dissolved in chloroform- d_1 at room temperature for 3 weeks afforded a mixture with a ratio of 25:34:29:12 (**2.23:2.8:2.7**:unidentified byproduct). Therefore, the cis-diene is considered an unstable byproduct of the dearomative DDDA reaction that converts to other products under the reaction conditions. Structural confirmation of the cis-diene was accomplished with single (1 H and 13 C) and multi-dimensional (COSY, HSQC, HMBC) NMR techniques as well as comparison to DFT predictive NMR via the DP4 probability method.

Scheme 2.11. Transformation of cis-diene into oxidation product, isomerization product, and unidentified byproduct

The resonances for the allylic protons observed at 3.75 and 3.85 ppm were confirmed by COSY NMR to be correlated to each other (see spectra in appendix B). HSQC NMR gave evidence

that the resonances at 4.63 and 4.54 ppm are correlated to the same carbon with resonance at 72.4 ppm, and therefore, can be attributed to the methylene carbon. In HMBC NMR, the resonance for the allylic proton α to the carbonyl is correlated to the carbonyl carbon, indicative of the short spatial distance between these atoms.

2.5 Conclusions

We established the DA adduct as the product of the dearomative cycloaddition step of the dearomative DDDA reaction and the pivotal intermediate on the reaction pathway to oxidation and isomerization product. This was accomplished by the synthesis and isolation of DA adduct 2.6 with structural confirmation by single and multidimensional NMR analysis, comparison to DFT predictive NMR through the DP4 probability method, and comparison to the synthesized adduct 2.20 with deuterium incorporation at the bis-allylic positions of the 1,4-cyclohexadiene. The DA adducts of precursors 1.59, 2.9, and 1.50 were synthesized and characterized by analogy, as the adducts were observed in mixtures of products. The oxidation product, isomerization product, and rarely observed cis-diene byproduct were established to be formed directly from DA adduct with no evidence for interconversion of isomerization product to oxidation product. This mechanistic understanding of the dearomative DDDA reaction is foundational to our efforts to enhance product selectivity and identify factors that control the reactivity of our substrates.

2.6 Experimental

2.6.1 General Methods

Unless otherwise indicated, all reactions were performed in flame-dried glassware under an air atmosphere and stirred with Teflon-coated magnetic stir bars. All commercially available compounds were purchased and used as received unless otherwise specified. Tetrahydrofuran (THF), diethyl ether (Et₂O), and dichloromethane (DCM) were purified by passing through alumina using a Sol-Tek ST-002 solvent purification system. Deuterated chloroform (CDCl₃) was dried over 4Å molecular sieves. Nitrogen gas was purchased from Matheson Tri Gas. Conventional heating was used for reactions that were monitored by ¹H NMR or performed open to the air. All microwave-mediated reactions were carried out using a Biotage Initiator Exp or Anton-Paar Monowave 300 microwave synthesizer. Purification of the compounds by flash column chromatography was performed using silica gel (40-63 µm particle size, 60 Å pore size). TLC analyses were performed on silica gel F₂₅₄ glass plates (250 µm thickness). ¹H NMR and ¹³C NMR spectra were recorded on Bruker Avance 300, 400, or 500 MHz spectrometers. Spectra were referenced to residual chloroform (7.26 ppm, ¹H; 77.16 ppm, ¹³C) or o-dichlorobenzene (6.93 ppm, ¹H; 130.04 ¹³C) unless otherwise specified. Chemical shifts are reported in ppm, multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet), and bs (broad singlet). Coupling constants, J, are reported in hertz (Hz). All NMR spectra were obtained at room temperature. IR spectra were obtained using a Nicolet Avatar E.S.P. 360 FT-IR. EI mass spectroscopy was performed on a Waters Micromass GCT high resolution mass spectrometer, while ES mass spectroscopy was performed on a Waters Q-TOF Ultima API, Micromass UK Limited high-resolution mass spectrometer.

2.6.2 Dearomative DDDA Reaction of 1.59 in o-DCB

Rxn 1. An oven-dried NMR tube was charged with dearomative DDDA precursor **1.59** (8 mg, 0.03 mmol) dissolved in *o*-DCB-d₄ (0.5 mL, 0.6 M) under an atmosphere of air. The NMR tube was sealed with a polypropylene cap and lowered into an oil bath preheated at 150 °C and heated for 15 min. The NMR tube was removed from the oil bath, rinsed with hexanes, and wiped with a ChemWipe before ¹H NMR was obtained. A 35:15:38:12 ratio of **1.59:2.1:1.61:1.60** was obtained. Ratios were determined by comparing the ¹H NMR resonances at 6.03 ppm (1H) for **1.59**, 5.50 ppm (1H) for **2.1**, 5.14 ppm (2H) for **1.60**, and 2.39 ppm (1H) for **1.61**.

2.6.3 Synthesis of the Dearomative DDDA Precursors

2.6.3.1 General Procedure A: Conversion of Carboxaldehyde to α,β-Unsaturated Ester

Prepared in the manner of Travas-Sejdic, et al.⁵³ A flame-dried, 2-necked, round-bottomed flask equipped with stir bar, condenser, septum, and nitrogen inlet needle, was charged with carboxaldehyde (1.0 equiv), THF (0.17 M), and methyl(triphenylphosphoranylidene) acetate (1.5 equiv), added in single portions by briefly removing the septum. The flask was placed in an oil bath and warmed to 60 °C. After 24 h, the reaction was judged complete evidenced by the disappearance of starting material by TLC. The stir bar was removed and the mixture was concentrated by rotary evaporation. The residue was purified by silica gel flash column chromatography.

2.6.3.2 General Procedure B: Conversion of α,β-Unsaturated Ester to Allylic Alcohol

Prepared in the manner of Brummond, et al.⁴⁴ A flame-dried, single-necked, round-bottomed flask equipped with stir bar, septum, and nitrogen inlet needle was charged with the α,β-unsaturated ester (1.0 equiv) dissolved in dichloromethane (0.020 M) via syringe. The flask was placed in a dry ice/acetone bath (-78 °C). After 5 min, diisobutylaluminium hydride (DIBAL, 1.0 M in toluene, 3.5 equiv) was added dropwise via syringe, and the reaction mixture was maintained at -78 °C. After 1 h, the reaction was judged complete evidenced by the disappearance of starting material by TLC. Aqueous sodium potassium tartrate (1.2 M) was added and the mixture was vigorously stirred at rt for ca. 16 h. The solution was transferred to a separatory funnel, and the flask was rinsed with dichloromethane and transferred to the separatory funnel. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (3x). The combined organic phase was washed with brine (1x), dried over magnesium sulfate, gravity filtered, and concentrated using rotary evaporation. The residue was purified by silica gel flash column chromatography.

2.6.3.3 General Procedure C: Conversion of Allylic Alcohol to Alkynoate

Prepared in the manner of Brummond, et al.⁴⁴ A flame-dried, single-necked, round-bottomed flask equipped with stir bar, septum, and nitrogen inlet, was charged with N,N-dimethylpyridin-4-amine (0.15 equiv) and phenylpropiolic acid (1.1 equiv) by briefly removing the septum. Allylic alcohol (1.0 equiv) was dissolved in dichloromethane (0.080 M) and added via syringe. N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (1.5 equiv) was added in one portion by briefly removing the septum and the resulting solution was maintained at rt. After 3 h, the reaction was judged complete evidenced by the disappearance of starting material by TLC.

The reaction mixture was transferred to a separatory funnel, and the flask was rinsed with dichloromethane and transferred to the separatory funnel. The solution was washed with deionized water and the aqueous layer was extracted with dichloromethane (3x). The combined organic layers were washed with brine (1x), dried over magnesium sulfate, gravity filtered, and concentrated using rotary evaporation. The residue was purified by silica gel flash column chromatography.

Methyl (*E*)-3-(benzo[*b*]thiophen-3-yl)acrylate (2.3). Follows General Procedure A. Benzo[*b*]thiophene-3-carboxaldehyde (1.0 g, 6.2 mmol), THF (36 mL), and methyl(triphenylphosphoranylidene) acetate (3.1 g, 9.3 mmol). The crude material was purified by flash column chromatography (20% EtOAc/Hex) to yield the title compound as a yellow solid (1.2 g, 91%). Compound **2.3** was previously prepared by Tay, et al.⁵⁴ Characterization data corresponds to the literature.

<u>Data 2.3</u> previously characterized

1H NMR (300 MHz, CDCl₃)

8.01 (d, J = 8.6 Hz, 1H), 7.97 (d, J = 16.4 Hz, 1H), 7.87 (d, J = 8.5 Hz, 1H), 7.75 (s, 1H), 7.46 (t, J = 7.0 Hz, 2H), 6.54 (d, J = 16.0 Hz, 1H) 3.84 (s, 3H) ppm. Water impurity at 1.56 ppm.

TLC $R_f = 0.31 (10\% \text{ EtOAc/Hex}) [\text{silica gel, UV}]$

(*E*)-3-(benzo[*b*]thiophen-3-yl)prop-2-en-1-ol (2.4). Follows General Procedure B. 2.3 (1.2 g, 5.5 mmol), DCM (28 mL), DIBAL (19 mL, 19 mmol), aq sodium potassium tartrate solution (1.2 M, 30 mL). The crude material was purified by flash column chromatography (40% EtOAc/Hex) to yield the title compound as a light-yellow liquid (970 mg, 93%). Compound 2.4 was previously prepared by Wang, et al.⁵⁵ Characterization data corresponds to the literature.

<u>Data 2.4</u> previously characterized

¹H NMR (300 MHz, CDCl₃)

7.91 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.44-7.35 (m, 3H), 6.91 (d, J = 16.0 Hz, 1H), 6.45 (dt, J = 5.7, 15.9 Hz, 1H), 4.37 (d, J = 5.2 Hz, 2H), 2.25 (s, 1H) ppm. DCM impurity at 5.30 ppm. EtOAC impurity at 2.05 ppm.

<u>TLC</u> $R_f = 0.30 (40\% \text{ EtOAc/Hex}) [\text{silica gel, UV}]$

(*E*)-3-(benzo[*b*]thiophen-3-yl)allyl 3-phenylpropiolate (2.5). Follows general procedure C: DMAP (13 mg, 0.10 mmol), 2.4 (100 mg, 0.53 mmol), phenylpropiolic acid (85 mg, 0.58 mmol), dichloromethane (10 mL), N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (150 mg, 0.79 mmol). The residue was purified by flash column chromatography (30% EtOAc/Hex) to yield the title compound as a yellow liquid (150 mg, 91%).

<u>Data</u> **2.5**

<u>1H NMR</u> (400 MHz, CDCl₃)

7.93 (d, J = 8.1 Hz, 1H), 7.87 (d, J = 8.1, 1H), 7.61 (dd, J = 7.0, 1.5 Hz, 2H), 7.50 (s, 1H), 7.48-7.35 (m, 5H), 7.00 (d, J = 15.9 Hz, 1H), 6.42 (dt, J = 15.8, 6.7 Hz, 1H), 5.0 (d, J = 6.4, 2H) ppm. Water impurity at 1.58 ppm (<0.4%). Grease impurity

13C NMR (100 MHz, CDCl₃)

at 0.10 ppm (<0.1%).

153.9, 140.5, 137.5, 133.1 (2C), 132.8, 130.8, 128.7 (2C), 127.7, 124.7, 124.5, 123.8, 123.6, 123.0, 122.0, 119.6, 86.8, 80.6, 66.8 ppm

 \underline{IR} (thin film)

3057, 2220, 1709, 1490, 1425, 1379, 1285, 1169, 961 cm⁻¹

 \underline{HRMS} (FTMS + p ESI)

 $[M + H]^+$ calcd for $C_{20}H_{15}O_2S$: 319.07928, found 319.07969

<u>TLC</u> $R_f = 0.65 (40\% \text{ EtOAc/Hex}) [\text{silica gel, UV}]$

Methyl (*E*)-3-(benzo[*b*]thiophen-2-yl)acrylate (2.25). Follows General Procedure A. Benzo[*b*]thiophene-2-carboxaldehyde (550 mg, 3.4 mmol), THF (20 mL), and methyl(triphenylphosphoranylidene) acetate (1.7 g, 5.1 mmol). The material was purified by flash column chromatography (20% EtOAc/Hex) to yield the title compound as a yellow solid (720 mg, 97%). Compound 2.25 was previously prepared by Werner, et al.⁵⁶ Characterization data corresponds to the literature.

Data **2.25** previously characterized

 $\frac{1}{1}$ H NMR (400 MHz, CDCl₃)

7.88 (d, J = 15.8 Hz, 1H), 7.81-7.73 (m, 2H), 7.45 (s, 1H), 7.40-7.32 (m, 2H), 6.30

(d, J = 15.7 Hz, 1H), 3.82 (s, 3H) ppm

TLC $R_f = 0.29$ (10% EtOAc/Hex) [silica gel, UV]

(*E*)-3-(benzo[*b*]thiophen-2-yl)prop-2-en-1-ol (2.26). Follows General Procedure B. 2.25 (710 mg, 3.3 mmol), DCM (30 mL), DIBAL (11 mL, 11 mmol), aq sodium potassium tartrate solution (1.2 M, 40 mL). The material was purified by flash column chromatography (40% EtOAc/Hex) to yield the title compound as a yellow solid (580 mg, 94%). Compound 2.26 was previously prepared by Shen, et al.⁵⁷ Characterization data corresponds to the literature.

<u>Data 2.26</u> previously characterized

7.78-7.65 (m, 2H), 7.34-7.27 (m, 2H), 7.14 (s, 1H), 6.85 (d, J = 15.7 Hz, 1H), 6.28 (dt, J = 15.6, 5.5 Hz, 1H), 4.34 (d, J = 5.5 Hz, 2H), 1.74 (s, 1H) ppm. EtOAc impurity at 2.05 ppm. Water impurity at 1.56 ppm.

TLC $R_f = 0.30 (40\% \text{ EtOAc/Hex}) [\text{silica gel, UV}]$

(*E*)-3-(benzo[*b*]thiophen-2-yl)allyl 3-phenylpropiolate (2.9). Follows General Procedure C: DMAP (39 mg, 0.32 mmol), 2.22 (300 mg, 1.6 mmol), phenylpropiolic acid (260 mg, 1.8 mmol), dichloromethane (24 mL), N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (460 mg, 2.4 mmol). The material was purified by flash column chromatography (30% EtOAc/Hex) to yield the title compound as a white solid (400 mg, 79%).

Data **2.9**

¹H NMR (400 MHz, CDCl₃)

7.79-7.68 (m, 2H), 7.61 (dd, J = 8.5, 1.6 Hz, 2H), 7.45 (t, J = 7.4 Hz, 1H), 7.38 (t, J = 7.9 Hz, 2H), 7.35-7.29 (m, 2H), 7.22 (s, 1H), 6.95 (d, J = 15.7 Hz, 1H), 6.24 (dt, J = 6.5, 15.6 Hz, 1H), 4.9 (dd, J = 6.5, 1.0 Hz, 2H) ppm. EtOAc impurity at 2.05 ppm (<0.4%). Water impurity at 1.56 ppm (<0.7%). Grease impurity at 1.26 ppm (<2.6%).

13C NMR (100 MHz, CDCl₃)

153.9, 141.2, 140.0, 139.3, 133.2 (2C), 130.9, 128.9, 128.7 (2C), 125.2, 124.7,

124.3 (2C), 123.8, 122.4, 119.6, 87.0, 80.5, 66.0 ppm

<u>IR</u> (thin film)

3405, 3063, 2947, 2221, 1696, 1643, 1488, 1444, 1374, 1284, 1171, 1097, 956, 728

cm⁻¹

 \underline{HRMS} (FTMS + p ESI)

 $[M + H]^+$ calcd for $C_{20}H_{15}O_2S$: 319.0787, found 319.0798

TLC $R_f = 0.66 (40\% \text{ EtOAc/Hex}) [\text{silica gel, UV}]$

MP 107.0 - 109.3 °C

(*E*)-3-(thiophen-2-yl)allyl 3-phenylpropiolate (1.50). Prepared as described by Brummond, et al.⁴⁴ Follows General Procedure C: DMAP (97 mg, 0.79 mmol), (E)-3-(thiophen-2-yl)prop-2-en-1-ol (555 mg, 3.96 mmol), phenylpropiolic acid (636 mg, 4.35 mmol), dichloromethane (66 mL), N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (1.14 g, 5.94 mmol). The material was purified by flash column chromatography (30% EtOAc/Hex) to yield the title compound as a white solid (798 mg, 75%). Compound 1.50 was previously prepared by Brummond, et al.⁴⁴ Characterization data corresponds to the literature.

<u>Data 1.50</u> previously characterized

7.60 (d, J = 7.1 Hz, 2H), 7.46 (tt, J = 6.7, 1.4 Hz, 1H), 7.38 (tt, J = 6.8, 1.1 Hz, 2H), 7.21 (d, J = 4.9 Hz, 1H), 7.02 (d, J = 3.5 Hz, 1H), 6.98 (dd, J = 5.1, 3.6, 1H), 6.86 (d, J = 15.6 Hz, 1H), 6.16 (dt, J = 6.6, 15.6 Hz, 1H), 4.9 (dd, J = 6.7, 1.1 Hz, 2H) ppm. DCM impurity at 5.30 ppm (<1.6%). Water impurity at 1.54 ppm (<0.6%).

TLC $R_f = 0.66 (40\% \text{ EtOAc/Hex}) [\text{silica gel, UV}]$

(*E*)-3-(thiophen-3-yl)allyl 3-phenylpropiolate (1.59). Prepared as described by Brummond, et al.⁴⁴ Follows General Procedure C: DMAP (11 mg, 0.090 mmol), (E)-3-(thiophen-3-yl)prop-2-en-1-ol (85 mg, 0.61 mmol), phenylpropiolic acid (100 mg, 0.70 mmol), dichloromethane (5.0 mL), N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (170 g, 0.91 mmol). The material was purified by flash column chromatography (30% EtOAc/Hex) to yield the title compound as a clear yellow liquid (130 mg, 82%). Compound 1.59 was previously prepared by Brummond, et al.⁴⁴ Characterization data corresponds to the literature.

<u>Data 1.59</u> previously characterized

<u>1H NMR</u> (400 MHz, CDCl₃)

7.59 (d, J = 7 Hz, 2H), 7.45 (tt, J = 7.5, 1.3 Hz, 1H), 7.37 (t, J = 7.8 Hz, 2H), 7.29 (dd, J = 3.5, 5.0 Hz 1H), 7.23 (d, J = 4.2 Hz, 2H), 6.74 (d, J = 15.7, 1H), 6.19 (dt, J = 15.8, 6.7 Hz, 1H), 4.86 (dd, J = 6.7, 1.1 Hz, 2H) ppm. EtOAc impurity at 2.05

ppm (<0.4%). Grease impurity at 1.26 ppm (<0.3%).

TLC $R_f = 0.70 (40\% \text{ EtOAc/Hex}) [\text{silica gel, UV}]$

3-bromobenzo[*b*]thiophene-2-d (2.16). Follows procedure described by Gronowitz. ⁵⁸ A 15 mL, two-necked, round-bottomed flask with stir bar, condenser, and septum, was charged with zinc powder (600 mg, 9.3 mmol, 3 equiv), acetic acid-d₇ (0.53 mL, 9.3 mmol, 3 equiv), and deionized water (5.0 mL, 0.60 M). The flask was lowered into a preheated oil bath at 100 °C. After 10 min, 2,3-dibromo-benzo[b]thiophene (900 mg, 3.1 mmol, 1 equiv) was added in one portion. After 3 h, the reaction showed complete consumption of starting material by GC. 2,3-dibromo-benzo[b] thiophene had a retention time of 12 min (185 °C) and product 3-bromobenzo[b]thiophene-2-d had a retention time of 9.8 min (150 °C) when the reaction solution is injected at a starting temperature of 80 °C with temperature ramping up to 300 °C at a rate of 15 °C per min. The column used was a Rtx-5 Crossbond (5% diphenyl – 95% dimethyl polysiloxane) 15 m, 0.25 mmID, 0.25 µm df. The solution was allowed to cool to rt and then transferred to a separatory funnel. The aqueous layer was extracted with diethyl ether (3 x 5 mL) and the combined organics were washed with brine, dried over magnesium sulfate, vacuum filtered, and concentrated using rotary evaporation to afford a light orange liquid. The material was purified by silica gel flash column chromatography (100% Hex) to afford the product as a light-yellow liquid (510 mg, 81%).

Data 2.16

1H NMR (300 MHz, CDCl₃)

 $8.00 \text{ (dd, } J = 7.8, 0.5 \text{ Hz, 1H)}, 7.93 \text{ (dd, } J = 8.2, 0.6 \text{ Hz, 1H)}, 7.57 \text{ (dt, } J = 7.1, 1.1 \text{$

Hz, 1H), 7.49 (dt, J = 7.6, 1.3 Hz, 1H) ppm. Water impurity at 1.56 ppm.

13C NMR (75 MHz, CDCl₃)

138.4, 137.4, 125.2, 124.9, 123.2 (t, J = 28.9 Hz), 123.0, 122.6, 107.6 ppm

<u>IR</u> (thin film)

3106, 3056, 2924, 2852, 2320, 1557, 1480, 1454, 1419, 1302, 1247, 1162, 1072

cm⁻¹

 $\underline{\mathsf{HRMS}}$ (TOF MS ES+)

[M] calcd for C₈H₄D₁SBr: 212.9360, found 212.9230 and 214.9210

TLC $R_f = 0.53 (100\% \text{ Hex}) [\text{silica gel, UV}]$

3-(benzo[*b***]thiophen-3-yl-2-d)prop-2-yn-1-ol (2.17).** Follows procedure described by Arsenyan, et al.⁵⁹ A flame-dried, 25 mL, two-necked, round-bottomed flask with stir bar, condenser, and septum, was flushed with nitrogen (3x) before charged with **2.16** (409 mg, 1.91 mmol, 1 equiv), propargyl alcohol (167 μL, 2.87 mmol, 1.5 equiv), tetrakis(triphenylphosphine) palladium(0) (22 mg, 0.020 mmol, 0.01 equiv), copper(I) iodide (15 mg, 0.08 mmol, 0.04 equiv), and deionized water (12 mL, 0.16 M) in one portion. The solution was degassed by bubbling N₂ through for 10

min. Pyrrolidine (240 μ L, 2.88 mmol, 2 equiv) was added dropwise via syringe, and the solution was lowered into a preheated oil bath at 75 °C. The reaction was maintained overnight before the solution was allowed to cool to rt and transferred to a separatory funnel. The aqueous layer was extracted with diethyl ether (3 x 10 mL) and the combined organics were washed with brine, dried over magnesium sulfate, vacuum filtered, and concentrated using rotary evaporation to afford a dark orange liquid. The oil was purified by silica gel flash column chromatography (30% EtOAc/Hex) to afford the product as a dark yellow, orange oil (325 mg, 90%).

Data 2.17

7.97 (d, J = 7.5 Hz, 1H), 7.83 (d, J = 7.5 Hz, 1H), 7.40 (p, J = 7.3 Hz, 2H), 4.62 (s,

2H), 3.11 (s, 1H) ppm. DCM impurity at 5.27 ppm. EtOAc impurity at 4.14, 2.07,

and 1.25 ppm.

13C NMR (125 MHz, CDCl₃)

139.1, 138.7, 130.3 (t, J = 27.9 Hz), 125.0, 124.7, 122.9, 122.6, 117.5, 90.0, 79.3,

51.5 ppm

<u>IR</u> (thin film)

3943, 3593, 3431, 3054, 2986, 2305, 1631, 1421, 1265, 1016 cm⁻¹

 \underline{HRMS} (FTMS + p ESI)

 $[M + H]^+$ calcd for $C_{11}H_8DOS$: 190.0431, found 190.0429

TLC $R_f = 0.27 (30\% \text{ EtOAc/Hex}) [\text{silica gel, UV}]$

(E)-3-(benzo[b]thiophen-3-yl-2-[2 H])prop-2-en-2-[2 H]-1-ol (2.18). Follows procedure by Kocsis, et al.⁵⁰ A flame-dried, 25 mL, two-necked, round-bottomed flask with stir bar, condenser, and septum, was charged with lithium aluminum deuteride (LAD, 114 mg, 2.72 mmol, 1.00 equiv). The apparatus was evacuated and filled with nitrogen (3 x). THF (7 mL, 0.370 M) was added via syringe and the solution was cooled in an ice-water bath. A separate flame-dried, 15-mL, roundbottomed flask with septum was charged with 3-(benzo[b]thiophen-3-yl-2-[2H])prop-2-yn-1-ol (3-2.17, 515 mg, 2.72 mmol, 1.00 equiv) and the flask was evacuated and filled with nitrogen (3 x). THF (4.00 mL, 0.700 M) was added via syringe and the solution was cooled in an ice-water bath. The solution of 2.17 was cannulated dropwise to the lithium aluminum deuteride solution. Additional THF (1 mL) was used to transfer the last traces of 2.17 to the reaction flask. The reaction was maintained at 0 °C in an ice-water bath. After 1 h, the reaction showed no further change as observed by TLC but didn't show complete consumption of starting material. The reaction solution was cannulated dropwise into a separate flask charged with ice-water (10 mL), equipped with a stir bar, and placed in an ice bath. Vigorous bubbling occurred during the transfer process. The solution was allowed to warm to rt after removing from the ice bath. The solution was extracted with diethyl ether (3 x 10 mL) and the combined organics were washed with brine, dried over magnesium sulfate, vacuum filtered, and concentrated using rotary evaporation to afford a yellow liquid. The residue was purified by flash column chromatography (5% ethyl ether/dichloromethane) to afford the product as a yellow liquid (426 mg, 88%) and starting material **2.17** (40 mg).

Data 2.18

1H NMR (300 MHz, CDCl₃)

7.92 - 7.85 (m, 2H), 7.43 - 7.34 (m, 2H), 6.87 (s, 1H), 4.36 (s, 2H), 2.23 (s, 1H)

ppm. DCM impurity at 5.30 ppm.

¹³C NMR (100 MHz, CDCl₃)

140.3, 137.6, 133.2, 129.9 (t, J = 23.4), 124.5, 124.3, 122.9 (2C), 122.0 (t, J = 27.8),

121.9, 63.5 ppm

<u>IR</u> (thin film)

3600, 3405, 3054, 2927, 2306, 1423, 1265 cm⁻¹

 \underline{HRMS} (FTMS + p ESI)

 $[MH - H_2O]^+$ calcd for $C_{11}H_7D_2S$: 175.0545, found 175.0542

TLC $R_f = 0.21$ (30% EtOAc/Hex) [silica gel, UV]

(*E*)-3-(benzo[*b*]thiophen-3-yl-2-d)allyl-2-d 3-phenylpropiolate (2.19). Follows General Procedure C: DMAP (108 mg, 0.882 mmol), 2.18 (424 mg, 2.21 mmol), phenylpropiolic acid (419 mg, 2.87 mmol), dichloromethane (16 mL), N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (634 mg, 3.31 mmol). The crude material was purified by flash column chromatography (20% EtOAc/Hex) to yield the title compound as a clear yellow liquid (254 mg, 63%).

Data 2.19

<u>1H NMR</u> (400 MHz, CDCl₃)

7.93 (d, J = 7.7 Hz, 1H), 7.87 (d, J = 7.7 Hz, 1H), 7.61 (m, 2H), 7.48 – 7.35 (m,

5H), 7.00 (s, 1H), 4.95 (s, 2H) ppm. DCM impurity at 5.30 ppm. EtOAc impurity

at 4.14, 2.06, and 1.27 ppm.

13C NMR (100 MHz, CDCl₃)

153.9, 140.4, 137.5, 133.1 (2C), 132.7, 130.8, 128.7 (2C), 127.6, 124.7, 124.5,

123.4 (t, J = 24.5 Hz), 123.4 (t, J = 22.2 Hz), 123.0, 122.0, 119.6, 86.8, 80.6, 66.7

ppm

<u>IR</u> (thin film)

3055, 2218, 1704, 1490, 1422, 1375, 1265, 1170, 962 cm⁻¹

 \underline{HRMS} (FTMS + p ESI)

 $[M+H]^+$ calcd for $C_{20}H_{13}D_2O_2S$: 321.09183, found 321.09261

<u>TLC</u> $R_f = 0.65 (40\% \text{ EtOAc/Hex}) [\text{silica gel, UV}]$

2.6.4 Synthesis of the Dearomative DDDA Adducts as Mixtures with Products

4-phenyl-4a,10a-dihydrobenzo[**4,5]thieno**[**2,3-f]isobenzofuran-3**(**1H)-one** (**2.6**) (**Table 2.1, entry 1**). An oven-dried NMR tube was charged with **2.5** (13 mg, 0.04 mmol) dissolved in odichlorobenzene (0.5 mL, 0.08 M). The NMR tube was sealed with a polypropylene cap and

lowered into a preheated oil bath at 150 °C. After 7 min, the NMR tube was removed from the oil bath, rinsed with hexanes, and wiped with a ChemWipe. A ratio of 91:9 (2.6:2.8) was afforded, and thus 2.6 was characterized as a mixture. Attempts to purify 2.6 by column chromatography led to conversion to products. The solution was analyzed by multi-dimensional NMR COSY, HSQC, and HMBC.

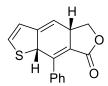
<u>Data</u> **2.6**

<u>1H NMR</u> (400 MHz, o-DCB-d₄) ppm

7.34 - 7.25 (m, 5H), 7.19 (d, J = 7 Hz, 1H), 7.04 (dt, J = 1.3, 7.3 Hz, 1H), 6.98 - 6.91 (m, 2H), 5.93 (dd, J = 2.0, 3.5 Hz, 1H), 5.46 (dd, J = 3.5, 13.5 Hz, 1H), 4.53 (dd, J = 8.6 Hz, 1H), 3.91 (dd, J = 8.2, 10.4 Hz, 1H), 3.67 - 3.57 (m, 1H) ppm

13C NMR (100 MHz, o-DCB-d₄)

166.2, 146.4, 143.5, 142.9, 136.2, 134.7, 129.5, 129.3, 129.0, 128.9, 128.2, 128.0, 124.8, 123.0, 122.4, 122.2, 114.8, 68.6, 55.5, 41.5 ppm


<u>IR</u> (thin film)

2978, 1756, 1455, 1354, 1223, 1060, 756, 700 cm⁻¹

 \underline{HRMS} (FTMS + p ESI)

 $[M+H]^+$ calcd for $C_{20}H_{13}O_2S$: 317.06308, found 317.06243 indicative of formation of oxidation product **2.5** under ionization conditions. 319.07787 was also found in 8% relative abundance, which is the correct mass for **2.6**

<u>TLC</u> $R_f = 0.44$ (40% ethyl acetate/hexanes) [silica gel, UV]

(4aS,8aR)-8-phenyl-4a,8a-dihydrothieno[2,3-f]isobenzofuran-7(5H)-one (2.1) (Table 2.1, entry 2). An oven-dried NMR tube was charged with dearomative DDDA precursor 1.59 (8 mg, 0.03 mmol) dissolved in *o*-DCB-d4 (0.5 mL, 0.06 M) under an atmosphere of air. The NMR tube was sealed with a polypropylene cap and lowered into an oil bath preheated at 150 °C and heated for 15 min. The NMR tube was removed from the oil bath, rinsed with hexanes, and wiped with a ChemWipe before ¹H NMR was obtained. A 35:15:38:12 ratio of 1.59:2.1:1.61:1.60 was obtained. Ratios were determined by comparing the ¹H NMR resonances at 6.03 ppm (1H) for 1.59, 5.50 ppm (1H) for 2.1, 5.14 ppm (2H) for 1.60, and 2.39 ppm (1H) for 1.61. Characterization of 2.1 by analogy to 2.6 can be found in Table 2.1. Attempts to purify 2.1 by column chromatography led to conversion to products.

Data **2.1**

5.50 (dd, J = 2.1, 3.8 Hz, 1H), 5.30 (dd, J = 3.8, 14.8 Hz, 1H), 4.48 (dd, J = 8.2, 8.9 Hz, 1H), 3.82 (dd, J = 8.2, 10.2 Hz, 1H), 3.57 – 3.47 (m, 1H) ppm. Resonances for aromatic protons overlapped with other resonances in the mixture and were not characterized.

(3aR,9bS)-10-phenyl-3a,9b-dihydrobenzo[4,5]thieno[2,3-f]isobenzofuran-1(3H)-one (2.10) (Table 2.1, entry 3). An oven-dried NMR tube was charged with dearomative DDDA precursor 2.9 (10 mg, 0.03 mmol) dissolved in *o*-DCB (0.5 mL, 0.06 M) under an atmosphere of air. The NMR tube was sealed with a polypropylene cap and lowered into an oil bath preheated at 150 °C and heated for 11 min. The NMR tube was removed from the oil bath, rinsed with hexanes, and wiped with a ChemWipe before ¹H NMR was obtained. A 6:87:0:7 ratio of 2.9:2.10:2.11:2.12 was obtained. Ratios were determined by comparing the ¹H NMR resonances at 4.81 ppm (2H) for 2.9, 5.59 ppm (1H) for 2.10, and 5.12 ppm (2H) for 2.12. Characterization of 2.10 by analogy to 2.6 can be found in Table 2.1. Attempts to purify 2.10 by column chromatography led to conversion to products.

Data **2.10**

<u>1H NMR</u> (500 MHz, o-DCB) ppm

5.59 (dd, J = 1.7, 3.4 Hz, 1H), 4.74 (dd, J = 3.3, 13.4 Hz, 1H), 4.50 (dd, J = 8.6, 9.4 Hz, 1H), 3.82 (dd, J = 8.6, 9.4 Hz, 1H), 3.60 – 3.50 (m, 1H) ppm. Resonances for aromatic protons overlapped with other resonances in the mixture and were not characterized.

(3aR,7aR)-4-phenyl-7,7a-dihydrothieno[2,3-f]isobenzofuran-5(3aH)-one (2.13) (Table 2.1, entry 4). An oven-dried NMR tube was charged with dearomative DDDA precursor 1.50 (10 mg, 0.04 mmol) dissolved in *o*-DCB (0.5 mL, 0.07 M) under an atmosphere of air. The NMR tube was sealed with a polypropylene cap and lowered into an oil bath preheated at 150 °C and heated for 15 min. The NMR tube was removed from the oil bath, rinsed with hexanes, and wiped with a ChemWipe before ¹H NMR was obtained. A 16:65:9:10 ratio of 1.50:2.13:1.51:2.14 was obtained. Ratios were determined by comparing the ¹H NMR resonances at 4.74 ppm (2H) for 1.50, 5.51 ppm (1H) for 2.13, 5.10 ppm (2H) for 2.14, and 2.51 ppm (1H) for 1.51. Characterization of 2.13 by analogy to 2.6 can be found in Table 2.1. Attempts to purify 2.13 by column chromatography led to conversion to products.

Data **2.13**

¹H NMR (500 MHz, o-DCB) ppm

5.51 (dd, J = 3.4 Hz, 1H), 4.42 (dd, J = 3.4, 15.0 Hz, 1H), 4.45 (dd, J = 8.7 Hz, 1H), 3.79 (dd, J = 8.7, 8.9 Hz, 1H), 3.51 – 3.39 (m, 1H) ppm. Resonances for aromatic protons overlapped with other resonances in the mixture and were not characterized.

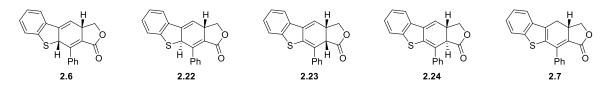
(4aR,10aS)-4-phenyl-4a,10a-dihydrobenzo[4,5]thieno[2,3-f]isobenzofuran-3(1H)-one-

4a,10a-d2 (**2.20**). A 1-mL, flame-dried, microwave vial with stir bar was charged with precursor **2.19** (24 mg, 0.075 mmol) dissolved in o-DCB (0.50 mL, 0.15 M). The vial was sealed with a crimp cap with Teflon-lined septum, wrapped in parafilm at the top, and lowered into a pre-heated oil bath at 150 °C. After 90 min, the solution was allowed to cool to room temperature before transferred to an NMR tube for NMR analysis. Product ratios were determined by comparing the resonance integrations for starting material, adduct, oxidized product, and isomerized product from the ¹H NMR of the crude reaction solution using No-D spectroscopy. A 0:77:18:5 ratio of **2.19:2.20:2.8:2.21** was obtained. Ratios were determined by comparing the ¹H NMR resonances at 4.54 ppm (1H) for **2.20**, 5.21 ppm (2H) for **2.8**, and 3.09 ppm (1H) for **2.21**.

Data **2.20**

 $\underline{^{1}\text{H NMR}}$ (500 MHz, o-DCB) ppm

5.95 (s, 1H), 4.54 (d, J = 8.9 Hz, 1H), 3.90 (d, J = 9.0 Hz, 1H) ppm. Resonances for aromatic protons overlapped with other resonances in the mixture and were not characterized.


2.6.5 Deuterium Isotope Effect Observed in Parallel Reactions of 2.5 and 2.19

Rxn 1. A 1-mL, flame-dried, microwave vial with stir bar was charged with precursor **2.5** (20 mg, 0.063 mmol) dissolved in o-dichlorobenzene (0.50 mL, 0.13 M). The vial was sealed with a crimp cap with Teflon-lined septum, wrapped in parafilm at the top, and lowered into a pre-heated oil bath at 150 °C. After 90 min, the solution was allowed to cool to room temperature before transferred to an NMR tube for NMR analysis. Product ratios were determined by comparing the resonance integrations for starting material, adduct, oxidized product, and isomerized product from the ¹H NMR of the crude reaction solution using No-D spectroscopy. A 0:41:39:20 ratio of **2.5**, **2.6**, **2.8**, and **2.7** was obtained. Ratios were determined by comparing the ¹H NMR resonances at 5.45 ppm (1H) for **2.6**, 5.21 ppm (2H) for **2.8**, and 2.79 ppm (1H) for **2.7**.

Rxn 2. A 1-mL, flame-dried, microwave vial with stir bar was charged with precursor 2.19 (24 mg, 0.075 mmol) dissolved in o-dichlorobenzene (0.50 mL, 0.15 M). The vial was sealed with a crimp cap with Teflon-lined septum, wrapped in parafilm at the top, and lowered into a pre-heated oil bath at 150 °C. After 90 min, the solution was allowed to cool to room temperature before transferred to an NMR tube for NMR analysis. Product ratios were determined by comparing the resonance integrations for starting material, adduct, oxidized product, and isomerized product from the ¹H NMR of the crude reaction solution using No-D spectroscopy. A 0:77:18:5 ratio of 2.19, 2.20, 2.8, and 2.21 was obtained. Ratios were determined by comparing the ¹H NMR resonances at 4.53 ppm (1H) for 2.20, 5.21 ppm (2H) for 2.8, and 3.09 ppm (1H) for 2.21.

2.6.6 DP4 Probability Measure Results and Analysis

Table 2.2. Computational and experimental ¹³C NMR resonances of the 2.6, 2.22, 2.23, 2.24, and 2.7

			Computatio	nal			Experime	ental
Entry	2.13	2.22	2.23	2.24	2.7	2.13	2.23	2.7
1	42.70	44.52	39.88	41.50	27.09	41.59	39.00	26.57
2	56.64	54.86	45.92	42.12	37.81	55.64	45.32	37.06
3	67.37	69.00	72.08	66.73	70.29	68.69	72.35	71.27
4	113.59	115.86	116.46	113.91	119.71	114.87	116.22	119.51
5	121.73	121.28	121.52	121.36	122.34	122.32	121.16	122.53
6	122.04	123.61	122.65	122.73	123.25	122.51	121.81	123.05
7	122.78	124.65	124.31	124.79	125.33	123.16	122.43	125.03
8	124.69	125.03	124.84	127.85	125.41	124.88	125.05	125.99
9	127.91	127.72	127.80	127.85	127.53	128.10	127.74	128.10
10	127.91	127.72	127.80	128.30	127.53	128.32	127.74	128.10
11	128.58	129.84	127.86	128.93	130.01	129.03	127.99	129.35
12	128.58	130.27	128.89	128.93	131.37	129.15	128.77	129.35
13	129.66	130.27	128.89	129.04	131.37	129.41	128.77	129.58
14	129.70	130.86	129.37	131.63	131.63	129.66	129.84	132.94
15	134.02	132.26	133.05	132.48	133.75	134.80	133.73	134.27
16	135.58	135.61	134.77	135.74	136.35	136.34	133.78	137.75
17	143.33	141.15	141.24	138.71	140.68	142.97	139.33	139.05
18	145.85	144.65	141.42	141.78	141.71	143.62	140.68	142.12
19	148.06	145.79	142.73	144.24	145.74	146.50	140.94	143.51
20	165.94	166.14	175.88	169.31	166.30	166.28	176.68	167.95

Table 2.3. Computational and experimental ¹H NMR resonances of the 2.6, 2.22, 2.23, 2.24, and 2.7

			Calculated				Experin	nental
Entry	2.13	2.22	2.23	2.24	2.7	2.13	2.23	2.7
1	3.92	3.83	3.40	3.40	2.78	3.38	3.75	2.80
2	3.92	4.40	3.66	3.46	3.04	3.66	3.85	3.43
3	4.44	4.41	4.47	4.02	3.55	4.28	4.54	3.68
4	6.15	6.01	4.59	4.29	3.91	5.21	4.62	4.15
5	6.17	6.30	6.13	6.44	4.58	5.69	6.19	4.80
6	7.06	7.10	7.11	7.12	7.39	6.68	7.14	7.38
7	7.11	7.19	7.22	7.21	7.41	6.71	7.25	7.43
8	7.21	7.26	7.25	7.25	7.44	6.79	7.26	7.45
9	7.35	7.37	7.30	7.35	7.44	6.94	7.32	7.46
10	7.41	7.42	7.40	7.40	7.47	7.02	7.43	7.47
11	7.41	7.42	7.40	7.40	7.63	7.04	7.44	7.48
12	7.42	7.46	7.42	7.46	7.64	7.06	7.50	7.49
13	7.48	7.79	7.90	7.54	7.71	7.07	7.69	7.77
14	7.48	7.79	7.90	7.54	7.71	7.08	7.69	7.77

2.6.6.1 DP4 Analysis of the Experimental 2.6 NMR

Assignment of experimental NMR resonances of proposed **2.6** isomer to calculated NMR resonances of each considered isomer.

261	(atom,	calc	evn	١٠
4. 0 (aiom,	carc,	CAP	,.

C1 42.7 41.59
C10 127.91 128.1
C11 128.58 129.15
C12 128.58 129.03
C13 129.66 129.41
C14 129.7 129.66
C15 134.02 134.8
C16 135.58 136.34
C17 143.33 142.97
C18 145.85 143.62
C19 148.06 146.5
C2 56.64 55.64
C20 165.94 166.28
C3 67.37 68.69
C4 113.59 114.87
C5 121.73 122.32
C6 122.04 122.51
C7 122.78 123.16
C8 124.69 124.88

C9 127.91 128.32 H1 3.92 3.66 H10 7.41 7.04 H11 7.41 7.02 H12 7.42 7.06 H13 7.48 7.08 H14 7.48 7.07 H2 3.92 3.38 H3 4.44 4.28 H4 6.15 5.21 H5 6.17 5.69 H6 7.06 6.68 H7 7.11 6.71 H8 7.21 6.79 H9 7.35 6.94

2.22 (atom, calc, exp):	010 101 10 10101
2.22 (atom, care, cap).	C18 134.69 136.34
C1 44.52 41.59	C19 136.94 143.62
C10 127.72 128.1	C2 47.55 55.64
C11 129.84 129.03	C20 166.82 166.28
C12 130.27 129.41	C3 70.96 68.69
C13 130.27 129.15	C4 112.84 114.87
C14 130.86 129.66	C5 115.31 122.32
C15 132.26 134.8	C6 116.26 122.51
C16 135.61 136.34	C7 120.4 124.88
C17 141.15 142.97	C8 117.92 123.16
C18 144.65 143.62	C9 121.41 129.03
C19 145.79 146.5	H1 3.4 3.38
C2 54.86 55.64	H10 7.4 7.04
C20 166.14 166.28	H11 7.4 7.02
C3 69.0 68.69	H12 7.42 7.06
C4 115.86 114.87	H13 7.9 7.08
C5 121.28 122.32	H14 7.9 7.07
C6 123.61 122.51	H2 3.66 3.66
C7 124.65 123.16	H3 4.47 4.28
C8 125.03 124.88	H4 4.59 5.21
C9 127.72 128.32	H5 6.13 5.69
H1 3.83 3.38	H6 7.11 6.68
H10 7.42 7.04	H7 7.22 6.71
H11 7.42 7.02	H8 7.25 6.79
H12 7.46 7.06	H9 7.3 6.94
H13 7.79 7.08	
H14 7.79 7.07	2.24 (atom, calc, exp):
H2 4.4 3.66	C1 41.5 41.59
H3 4.41 4.28	C10 128.3 128.32
H4 6.01 5.21	C11 128.93 129.15
U5 6 2 5 60	
H5 6.3 5.69	C12 128.93 129.03
H6 7.1 6.68	C13 129.04 129.41
H6 7.1 6.68	C13 129.04 129.41
H6 7.1 6.68 H7 7.19 6.71	C13 129.04 129.41 C14 131.63 129.66
H6 7.1 6.68 H7 7.19 6.71 H8 7.26 6.79	C13 129.04 129.41 C14 131.63 129.66 C15 132.48 134.8 C16 135.74 136.34
H6 7.1 6.68 H7 7.19 6.71 H8 7.26 6.79 H9 7.37 6.94	C13 129.04 129.41 C14 131.63 129.66 C15 132.48 134.8 C16 135.74 136.34 C17 138.71 142.97
H6 7.1 6.68 H7 7.19 6.71 H8 7.26 6.79 H9 7.37 6.94 2.23 (atom, calc, exp):	C13 129.04 129.41 C14 131.63 129.66 C15 132.48 134.8 C16 135.74 136.34 C17 138.71 142.97 C18 141.78 143.62
H6 7.1 6.68 H7 7.19 6.71 H8 7.26 6.79 H9 7.37 6.94 2.23 (atom, calc, exp): C1 41.59 41.59	C13 129.04 129.41 C14 131.63 129.66 C15 132.48 134.8 C16 135.74 136.34 C17 138.71 142.97 C18 141.78 143.62 C19 144.24 146.5
H6 7.1 6.68 H7 7.19 6.71 H8 7.26 6.79 H9 7.37 6.94 2.23 (atom, calc, exp): C1 41.59 41.59 C10 122.78 129.66	C13 129.04 129.41 C14 131.63 129.66 C15 132.48 134.8 C16 135.74 136.34 C17 138.71 142.97 C18 141.78 143.62 C19 144.24 146.5 C2 42.12 55.64
H6 7.1 6.68 H7 7.19 6.71 H8 7.26 6.79 H9 7.37 6.94 2.23 (atom, calc, exp): C1 41.59 41.59 C10 122.78 129.66 C11 121.02 128.1	C13 129.04 129.41 C14 131.63 129.66 C15 132.48 134.8 C16 135.74 136.34 C17 138.71 142.97 C18 141.78 143.62 C19 144.24 146.5 C2 42.12 55.64 C20 169.31 166.28
H6 7.1 6.68 H7 7.19 6.71 H8 7.26 6.79 H9 7.37 6.94 2.23 (atom, calc, exp): C1 41.59 41.59 C10 122.78 129.66 C11 121.02 128.1 C12 122.75 129.41	C13 129.04 129.41 C14 131.63 129.66 C15 132.48 134.8 C16 135.74 136.34 C17 138.71 142.97 C18 141.78 143.62 C19 144.24 146.5 C2 42.12 55.64 C20 169.31 166.28 C3 66.73 68.69
H6 7.1 6.68 H7 7.19 6.71 H8 7.26 6.79 H9 7.37 6.94 2.23 (atom, calc, exp): C1 41.59 41.59 C10 122.78 129.66 C11 121.02 128.1 C12 122.75 129.41 C13 121.09 128.32	C13 129.04 129.41 C14 131.63 129.66 C15 132.48 134.8 C16 135.74 136.34 C17 138.71 142.97 C18 141.78 143.62 C19 144.24 146.5 C2 42.12 55.64 C20 169.31 166.28 C3 66.73 68.69 C4 113.91 114.87
H6 7.1 6.68 H7 7.19 6.71 H8 7.26 6.79 H9 7.37 6.94 2.23 (atom, calc, exp): C1 41.59 41.59 C10 122.78 129.66 C11 121.02 128.1 C12 122.75 129.41 C13 121.09 128.32 C14 122.63 129.15	C13 129.04 129.41 C14 131.63 129.66 C15 132.48 134.8 C16 135.74 136.34 C17 138.71 142.97 C18 141.78 143.62 C19 144.24 146.5 C2 42.12 55.64 C20 169.31 166.28 C3 66.73 68.69
H6 7.1 6.68 H7 7.19 6.71 H8 7.26 6.79 H9 7.37 6.94 2.23 (atom, calc, exp): C1 41.59 41.59 C10 122.78 129.66 C11 121.02 128.1 C12 122.75 129.41 C13 121.09 128.32	C13 129.04 129.41 C14 131.63 129.66 C15 132.48 134.8 C16 135.74 136.34 C17 138.71 142.97 C18 141.78 143.62 C19 144.24 146.5 C2 42.12 55.64 C20 169.31 166.28 C3 66.73 68.69 C4 113.91 114.87
H6 7.1 6.68 H7 7.19 6.71 H8 7.26 6.79 H9 7.37 6.94 2.23 (atom, calc, exp): C1 41.59 41.59 C10 122.78 129.66 C11 121.02 128.1 C12 122.75 129.41 C13 121.09 128.32 C14 122.63 129.15 C15 126.96 134.8	C13 129.04 129.41 C14 131.63 129.66 C15 132.48 134.8 C16 135.74 136.34 C17 138.71 142.97 C18 141.78 143.62 C19 144.24 146.5 C2 42.12 55.64 C20 169.31 166.28 C3 66.73 68.69 C4 113.91 114.87 C5 121.36 122.32 C6 122.73 122.51
H6 7.1 6.68 H7 7.19 6.71 H8 7.26 6.79 H9 7.37 6.94 2.23 (atom, calc, exp): C1 41.59 41.59 C10 122.78 129.66 C11 121.02 128.1 C12 122.75 129.41 C13 121.09 128.32 C14 122.63 129.15 C15 126.96 134.8	C13 129.04 129.41 C14 131.63 129.66 C15 132.48 134.8 C16 135.74 136.34 C17 138.71 142.97 C18 141.78 143.62 C19 144.24 146.5 C2 42.12 55.64 C20 169.31 166.28 C3 66.73 68.69 C4 113.91 114.87 C5 121.36 122.32 C6 122.73 122.51

C9 127.85 124.88
H1 3.4 3.38
H10 7.4 7.04
H11 7.4 7.02
H12 7.46 7.06
H13 7.54 7.08
H14 7.54 7.07
H2 3.46 3.66
H3 4.02 4.28
H4 4.29 5.21
H5 6.44 5.69
H6 7.12 6.68
H7 7.21 6.71
H8 7.25 6.79
H9 7.35 6.94
2.7
(atom, calc, exp):
C1 27.09 41.59
C10 127.53 128.1
C11 130.01 129.03
C12 131.37 129.41
C13 131.37 129.15
C14 131.63 129.66
C15 133.75 134.8
C16 136.35 136.34
C17 140.68 142.97
C18 141.71 143.62
C19 145.74 146.5
C2 37.81 55.64
Warning: Error = 17.8 ppm
C20 166.3 166.28
C3 70.29 68.69
C4 119.71 114.87
C5 122.34 122.32 C6 123.25 122.51
C6 123.25 122.51 C7 125.33 123.16
C8 125.41 124.88
C9 127.53 128.32
H1 2.78 3.38
H10 7.47 7.02
T111

H11 7.63 7.04 H12 7.64 7.06 H13 7.71 7.08 H14 7.71 7.07 H2 3.04 3.66 H3 3.55 4.28 H4 3.91 5.21 H5 4.58 5.69 H6 7.39 6.68 H7 7.41 6.71 H8 7.44 6.94 H9 7.44 6.79 The results show the probability that the experimental NMR spectrum corresponds to the indicated calculated NMR spectrum. The DP4 probability calculation uses the DP4-database2 version of the database and uses the t distribution.

Results of DP4 using both carbon and proton data:

2.6: 99.9%

2.22: 0.1%

2.23: 0.0%

2.24: 0.0%

2.7: 0.0%

Results of DP4 using the carbon data only:

2.6: 95.4%

2.22: 4.6%

2.23: 0.0%

2.24: 0.0%

2.7: 0.0%

Results of DP4 using the proton data only:

2.6: 97.1%

2.22: 2.6%

2.23: 0.3%

2.24: 0.1%

2.7: 0.0%

2.6.6.2 DP4 Analysis of the Experimental 2.23 NMR

Assignment of experimental NMR resonances of proposed **2.23** isomer to calculated NMR resonances of each considered isomer.

2.6	(atom,	calc,	exp)):

C1 4	42.7 39.	.0
C10	127.91	127.74
C11	128.58	128.77
C12	128.58	127.99
C13	129.66	128.77
C14	129.7	129.84
C15	134.02	133.73
C16	135.58	133.78
C17	143.33	139.33

C18 145.85 140.68

C19 148.06 140.94

H11 7.41 7.43

H12 7.42 7.5 H13 7.48 7.69	Н9 7.37 7.32
H13 7.48 7.69 H14 7.48 7.69	2.23 (atom, calc, exp):
H2 3.92 3.75	C1 39.88 39.0
H3 4.44 4.54	C10 127.8 127.74
H4 6.15 4.62	C11 127.86 127.99
H5 6.17 6.19	C12 128.89 128.77
H6 7.06 7.14	C13 128.89 128.77
H7 7.11 7.25	C14 129.37 129.84
H8 7.21 7.26	C15 133.05 133.73
H9 7.35 7.32	C16 134.77 133.78
	C17 141.24 139.33
2.22 (atom, calc, exp):	C18 141.42 140.68
C1 44.52 39.0	C19 142.73 140.94
C10 127.72 127.74	C2 45.92 45.32
C11 129.84 127.99	C20 175.88 176.68
C12 130.27 128.77 C13 130.27 128.77	C3 72.08 72.35 C4 116.46 116.22
C13 130.27 128.77 C14 130.86 129.84	C4 110.40 110.22 C5 121.52 121.16
C14 130.60 129.64 C15 132.26 133.73	C6 122.65 121.81
C16 135.61 133.78	C7 124.31 122.43
C17 141.15 139.33	C8 124.84 125.05
C18 144.65 140.68	C9 127.8 127.74
C19 145.79 140.94	H1 3.4 3.75
C2 54.86 45.32	H10 7.4 7.44
C20 166.14 176.68	H11 7.4 7.43
C3 69.0 72.35	H12 7.42 7.5
C4 115.86 116.22	H13 7.9 7.69
C5 121.28 121.16	H14 7.9 7.69
C6 123.61 121.81	H2 3.66 3.85
C7 124.65 122.43	H3 4.47 4.54
C8 125.03 125.05	H4 4.59 4.62
C9 127.72 127.74	H5 6.13 6.19 H6 7.11 7.14
H1 3.83 3.75 H10 7.42 7.44	H7 7.22 7.25
H11 7.42 7.43	H8 7.25 7.26
H12 7.46 7.5	H9 7.3 7.32
H13 7.79 7.69	11) 7.3 7.32
H14 7.79 7.69	2.24 (atom, calc, exp):
H2 4.4 3.85	C1 41.5 39.0
H3 4.41 4.54	C10 128.3 127.74
H4 6.01 4.62	C11 128.93 128.77
H5 6.3 6.19	C12 128.93 127.99
H6 7.1 7.14	C13 129.04 128.77
H7 7.19 7.25	C14 131.63 129.84
H8 7.26 7.26	C15 132.48 133.73

C16 135.74 133.78	C12 131.37 128.77
C17 138.71 139.33	C13 131.37 128.77
C18 141.78 140.68	C14 131.63 129.84
C19 144.24 140.94	C15 133.75 133.73
C2 42.12 45.32	C16 136.35 133.78
C20 169.31 176.68	C17 140.68 139.33
C3 66.73 72.35	C18 141.71 140.68
C4 113.91 116.22	C19 145.74 140.94
C5 121.36 121.16	C2 37.81 45.32
C6 122.73 121.81	C20 166.3 176.68
C7 124.79 122.43	C3 70.29 72.35
C8 127.85 127.74	C4 119.71 116.22
C9 127.85 125.05	C5 122.34 121.16
H1 3.4 3.75	C6 123.25 121.81
H10 7.4 7.44	C7 125.33 122.43
H11 7.4 7.43	C8 125.41 125.05
H12 7.46 7.5	C9 127.53 127.74
H13 7.54 7.69	H1 2.78 3.75
H14 7.54 7.69	H10 7.47 7.43
H2 3.46 3.85	H11 7.63 7.44
H3 4.02 4.54	H12 7.64 7.5
H4 4.29 4.62	H13 7.71 7.69
H5 6.44 6.19	H14 7.71 7.69
H6 7.12 7.14	H2 3.04 3.85
H7 7.21 7.25	H3 3.55 4.54
H8 7.25 7.26	H4 3.91 4.62
H9 7.35 7.32	H5 4.58 6.19
15 7166 7162	H6 7.39 7.14
2.7 (atom, calc, exp):	H7 7.41 7.25
C1 27.09 39.0	H8 7.44 7.32
C10 127.53 127.74	H9 7.44 7.26
C11 130.01 127.99	

The results show the probability that the experimental NMR spectrum corresponds to the indicated calculated NMR spectrum. The DP4 probability calculation uses the DP4-database2 version of the database and uses the t distribution.

Results of DP4 using both carbon and proton data:

2.6: 0.0% **2.22**: 0.0% **2.23**: 100.0% **2.24**: 0.0% **2.7**: 0.0% Results of DP4 using the carbon data only:

2.6: 0.0% **2.22**: 0.0% **2.23**: 100.0% **2.24**: 0.0% **2.7**: 0.0%

Results of DP4 using the proton data only:

2.6: 0.0% **2.22**: 0.0% **2.23**: 71.9% **2.24**: 28.1% **2.7**: 0.0%

2.6.6.3 DP4 Analysis of the Experimental 2.7 NMR

Assignment of experimental NMR resonances of proposed **2.7** to calculated NMR resonances of each considered isomer.

2.6 (atom, calc, exp): C1 42.7 26.57 Warning: Error = 16.1 ppm C10 127.91 128.1 C11 128.58 129.35 C12 128.58 129.35 C13 129.66 129.58 C14 129.7 132.94 C15 134.02 134.27 C16 135.58 137.75 C17 143.33 139.05 C18 145.85 142.12 C19 148.06 143.51 C2 56.64 37.06 Warning: Error = 19.6 ppm C20 165.94 167.95 C3 67.37 71.27 C4 113.59 119.51 C5 121.73 122.53	H10 7.41 7.48 H11 7.41 7.47 H12 7.42 7.49 H13 7.48 7.77 H14 7.48 7.77 H2 3.92 2.8 H3 4.44 3.68 H4 6.15 4.15 H5 6.17 4.8 H6 7.06 7.38 H7 7.11 7.43 H8 7.21 7.45 H9 7.35 7.46 2.22 (atom, calc, exp): C1 44.52 26.57 Warning: Error = 18.0 ppm C10 127.72 128.1 C11 129.84 129.35 C12 130 27 129 58
C4 113.59 119.51	C10 127.72 128.1

C17 141.15 139.05	C6 116.26 123.05
C18 144.65 142.12	C7 120.4 125.99
C19 145.79 143.51	C8 117.92 125.03
C2 54.86 37.06	C9 121.41 129.35
Warning: Error = 17.8 ppm	H1 3.4 2.8
C20 166.14 167.95	H10 7.4 7.48
C3 69.0 71.27	H11 7.4 7.47
C4 115.86 119.51	H12 7.42 7.49
C5 121.28 122.53	H13 7.9 7.77
C6 123.61 123.05	H14 7.9 7.77
C7 124.65 125.03	H2 3.66 3.43
C8 125.03 125.99	H3 4.47 3.68
C9 127.72 128.1	H4 4.59 4.15
H1 3.83 2.8	H5 6.13 4.8
H10 7.42 7.48	H6 7.11 7.38
H11 7.42 7.47	H7 7.22 7.43
H12 7.46 7.49	H8 7.25 7.45
H13 7.79 7.77	H9 7.3 7.46
H14 7.79 7.77	2.24 (atom, calc, exp):
H2 4.4 3.43	C1 41.5 26.57
H3 4.41 3.68	C10 128.3 128.1
H4 6.01 4.15	C11 128.93 129.35
H5 6.3 4.8	C12 128.93 129.35
H6 7.1 7.38	C13 129.04 129.58
H7 7.19 7.43	C14 131.63 132.94
H8 7.26 7.45	C15 132.48 134.27
H9 7.37 7.46	C16 135.74 137.75
115 7.57 7.10	C17 138.71 139.05
2.23 (atom, calc, exp):	C18 141.78 142.12
C1 41.59 26.57	C19 144.24 143.51
Warning: Error = 15.0 ppm	C2 42.12 37.06
C10 122.78 132.94	C20 169.31 167.95
C11 121.02 128.1	C3 66.73 71.27
C12 122.75 129.58	C4 113.91 119.51
C13 121.09 128.1	C5 121.36 122.53
C14 122.63 129.35	C6 122.73 123.05
C15 126.96 134.27	C7 124.79 125.03
C16 135.31 139.05	C8 127.85 128.1
C17 141.35 143.51	C9 127.85 125.99
C18 134.69 137.75	H1 3.4 2.8
C19 136.94 142.12	H10 7.4 7.48
C2 47.55 37.06	H11 7.4 7.47
C20 166.82 167.95	H12 7.46 7.49
C3 70.96 71.27	H13 7.54 7.77
C4 112.84 119.51	H14 7.54 7.77
C5 115.31 122.53	H2 3.46 3.43
03 113.31 122.33	112 J.TU J.TJ

110 400 0 0	G00 1660 16707
H3 4.02 3.68	C20 166.3 167.95
H4 4.29 4.15	C3 70.29 71.27
H5 6.44 4.8	C4 119.71 119.51
H6 7.12 7.38	C5 122.34 122.53
H7 7.21 7.43	C6 123.25 123.05
H8 7.25 7.45	C7 125.33 125.03
H9 7.35 7.46	C8 125.41 125.99
	C9 127.53 128.1
2.7	H1 2.78 2.8
(atom, calc, exp):	H10 7.47 7.47
C1 27.09 26.57	H11 7.63 7.48
C10 127.53 128.1	H12 7.64 7.49
C11 130.01 129.35	H13 7.71 7.77
C12 131.37 129.58	H14 7.71 7.77
C13 131.37 129.35	H2 3.04 3.43
C14 131.63 132.94	H3 3.55 3.68
C15 133.75 134.27	H4 3.91 4.15
C16 136.35 137.75	H5 4.58 4.8
C17 140.68 139.05	H6 7.39 7.38
C18 141.71 142.12	H7 7.41 7.43
C19 145.74 143.51	H8 7.44 7.46
C2 37.81 37.06	H9 7.44 7.45

The results show the probability that the experimental NMR spectrum corresponds to the indicated calculated NMR spectrum. The DP4 probability calculation uses the DP4-database2 version of the database and uses the t distribution.

Results of DP4 using both carbon and proton data:

2.6: 0.0% **2.22**: 0.0% **2.23**: 0.0% **2.24**: 0.0% **2.7**: 100.0%

Results of DP4 using the carbon data only:

2.6: 0.0% **2.22**: 0.0% **2.23**: 0.0% **2.24**: 0.0% **2.7**: 100.0% Results of DP4 using the proton data only:

2.6: 0.0%

2.22: 0.0%

2.23: 0.0%

2.24: 0.0%

2.7: 100.0%

2.6.6.4 Assignment of Spartan Calculated and Experimental $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Resonances

Table 2.4. Resonances for 2.6

2.6		
	Calculated	Experimental
Carbons		
1	67.37	68.69
3	165.94	166.28
3a	122.04	122.51
4	148.06	146.50
4a	56.64	55.64
5a	143.33	142.97
6	122.78	123.16
7	129.66	129.41
8	124.69	124.88
9	121.73	122.32
9a	134.02	134.80
9b	145.85	143.62
10	113.59	114.87
10a	42.70	41.59
1'	135.58	136.34
2'	128.58	129.15
3'	127.91	128.10
4'	129.70	129.66
5'	127.91	128.32
6'	128.58	129.03
Protons		
6'-H	7.48	7.07
2'-H	7.48	7.08
4'-H	7.42	7.06
3'-H	7.41	7.02
5'-H	7.41	7.04
9-H	7.35	6.94
7-H	7.21	6.79
6-H	7.11	6.71
8-H	7.06	6.68
10-H	6.17	5.69
4a-H	6.15	5.21
1-Ha	4.44	4.28
1-Hb	3.92	3.66
10a-H	3.92	3.38

Table 2.5. Resonances for 2.23

2.23		
	Calculated	Experimental
Carbons		•
1	72.08	72.35
3	175.88	176.68
3a	45.92	45.32
4	124.31	122.43
4a	134.77	133.78
5a	141.24	140.94
6	122.65	121.81
7	129.37	129.84
8	124.84	125.05
9	121.52	121.16
9a	133.05	133.73
9b	142.73	140.68
10	116.46	116.22
10a	39.88	39.00
1'	141.42	139.33
2'	127.8	127.74
3'	128.89	128.77
4'	127.86	128.77
5'	128.89	127.99
6'	127.8	127.74
Protons		
2'-H	7.90	7.69
6'-H	7.90	7.69
9-H	7.42	7.50
3'-H	7.40	7.43
5'-H	7.40	7.44
4'-H	7.30	7.32
7-H	7.25	7.26
6-H	7.22	7.25
8-H	7.11	7.14
10-H	6.13	6.19
1-Hb	4.59	4.62
1-Ha	4.47	4.54
10a-H	3.66	3.85
3а-Н	3.40	3.75

Table 2.6. Resonances for 2.7

2.7		
	Calculated	Experimental
Carbons		<u></u>
1	70.29	71.27
3	166.30	167.95
3a	119.71	119.51
4	145.74	143.51
4a	141.71	142.12
5a	140.68	139.05
6	123.25	123.05
7	125.33	125.03
8	125.41	125.99
9	122.34	122.53
9a	136.35	137.75
9b	131.63	132.94
10	27.09	26.57
10a	37.81	37.06
1'	133.75	134.27
2'	131.37	129.35
3'	127.53	128.10
4'	130.01	129.35
5'	127.53	128.10
6'	131.37	129.58
Protons		
6'-H	7.71	7.77
2'-H	7.71	7.77
6-H	7.64	7.49
9-H	7.63	7.48
4'-H	7.47	7.47
5'-H	7.44	7.45
3'-H	7.44	7.46
8-H	7.41	7.43
7-H	7.39	7.38
1-Hb	4.58	4.80
1-Ha	3.91	4.15
10a-H	3.55	3.68
10-Ha	3.04	3.43
10-Hb	2.78	2.80

Table 2.7. Resonances for 2.22

2.22	
	Calculated
Carbons	
1	69.00
3	166.14
3a	124.65
4	145.79
4a	54.86
5a	141.15
6	123.61
7	129.84
8	125.03
9	121.28
9a	135.61
9b	144.65
10	115.86
10a	44.52
1'	132.26
2'	130.27
3'	127.72
4'	130.86
5'	127.72
6'	130.27
Protons	
6'-H	7.79
2'-H	7.79
4'-H	7.46
5'-H	7.42
3'-H	7.42
9-H	7.37
7-H	7.26
6-H	7.19
8-H	7.10
4a-H	6.30
10-H	6.01
1-Hb	4.41
10a-H	4.40
1-Ha	3.83

Table 2.8. Resonances for 2.24

2.24	
	Calculated
Carbons	
1	66.73
3	169.31
3a	41.50
4	131.63
4a	138.71
5a	141.78
6	122.73
7	129.04
8	124.79
9	121.36
9a	132.48
9b	144.24
10	113.91
10a	42.12
1'	135.74
2'	128.93
3'	127.85
4'	128.30
5'	127.85
6'	128.93
Protons	
6'-H	7.54
2'-H	7.54
9-H	7.46
5'-H	7.40
3'-H	7.40
4'-H	7.35
7-H	7.25
6-H	7.21
8-H	7.12
10-H	6.44
1-Hb	4.29
1-Ha	4.02
3а-Н	3.46
10a-H	3.40

2.6.7 Heating of 2.6 in DMF to Afford 2.8, 2.7, and 2.23

Rxn 1. An oven-dried NMR tube was charged with **2.5** (11 mg, 0.04 mmol) dissolved in o-DCB (0.5 mL, 0.08 M) under an atmosphere of air. The NMR tube was sealed with a polypropylene cap and lowered into a preheated oil bath at 150 °C. After 6 min, the reaction was paused for ¹H NMR analysis, and the NMR tube was rinsed with hexanes and wiped with a ChemWipe. **2.6** and **2.8** was afforded at a ratio of 95:5 as observed by No-D ¹H NMR. Ratios were determined by comparing the ¹H NMR resonance at 5.94 ppm (1H) for **2.6** to the resonance at 5.21 ppm (2H) for **2.8**. Solvent was removed under reduced pressure, and the crude residue was dissolved in DMF (0.5 mL). The solution was transferred to an oven-dried, 2-mL μW vial and capped with a Teflonlined septum crimp cap. The vial was irradiated by microwave at 150 °C for 5 min. The solvent was removed by high vacuum and the crude residue was dissolved in chloroform-d. The solution was transferred to an oven-dried NMR tube and analyzed by ¹H NMR. A ratio of 18:52:30 (**2.8**:2.7:2.23) was afforded with residual DMF present. Ratios were determined by comparing the ¹H NMR resonance at 6.20 ppm (1H) for **2.73**, 5.45 ppm (2H) for **2.8**, and 3.40 ppm (1H) for **2.77**.

2.6.8 Under Aerobic Conditions, 2.6 Affords 2.8 at Room Temperature

Rxn 1. An oven-dried NMR tube was charged with **2.5** (20 mg, 0.06 mmol) dissolved in o-DCB (0.5 mL, 0.13 M) under an atmosphere of air. The NMR tube was sealed with a polypropylene cap and lowered into a preheated oil bath at 150 °C. After 10 min, the reaction was paused for ¹H NMR analysis, and the NMR tube was rinsed with hexanes and wiped with a ChemWipe. **2.6** and **2.8** was afforded at a ratio of 96:4 as observed by No-D ¹H NMR. Ratios were determined by comparing the ¹H NMR resonance at 3.90 ppm (1H) for **2.6** to the resonance at 5.21 ppm (2H) for

2.8. The solution was transferred to an oven-dried, 2-mL μ W vial and capped with a Teflon-lined septum crimp cap and needle venting to the air. Air was bubbled through the solution. After 1 h, the solution was transferred to an oven-dried NMR tube for No-D 1 H NMR analysis. **2.8** was afforded exclusively.

2.6.9 Stability of 2.7 under Thermal and Aerobic Conditions

Rxn 1. An oven-dried NMR tube was charged with a mixture of **2.8** and **2.7** at a ratio of 31:69 (7) mg, 0.02 mmol) and mesitylene (1 μ L, 0.01 μ mol) dissolved in toluene-d₈ (0.5 mL, 0.13 M) under an atmosphere of air. Ratios were determined by comparing the ¹H NMR resonance at 4.51 ppm (2H) for 2.8 and 2.35 ppm (1H) for 2.7 to the resonance at 6.55 ppm (3H) for mesitylene. The NMR tube was sealed with a polypropylene cap and lowered into a preheated oil bath at 50 °C. After 2 h, the reaction was paused for ¹H NMR analysis, and the NMR tube was rinsed with hexanes and wiped with a ChemWipe. A ratio of 32:68 (2.8:2.7) was observed by crude ¹H NMR. The solution was lowered into a preheated oil bath at 80 °C. After 2 h, the reaction was paused for ¹H NMR analysis, and the NMR tube was rinsed with hexanes and wiped with a ChemWipe. A ratio of 32:68 (2.8:2.7) was observed by crude ¹H NMR. The solution was lowered into a preheated oil bath at 110 °C. After 2 h, the reaction was paused for ¹H NMR analysis, and the NMR tube was rinsed with hexanes and wiped with a ChemWipe. A ratio of 32:68 (2.8:2.7) was observed by crude ¹H NMR. The cap was removed, and air was bubbled through the solution at room temperature. After 2 h, the reaction was paused and a ratio of 32:68 (2.8:2.7) was observed by crude ¹H NMR analysis. The solution was lowered into a preheated oil bath at 80 °C and air was bubbled through the solution. After 2 h, the reaction was paused for ¹H NMR analysis, and the NMR tube was rinsed with hexanes and wiped with a ChemWipe. A ratio of 31:69 (2.8:2.7) was observed by crude ¹H NMR.

2.6.10 Heating of 2.5 in Acetonitrile to Afford 2.6, 2.23, 2.8, and 2.7

Rxn 1. An oven-dried, 0.5 mL microwave vial with stir bar was charged with 2.5 (12 mg, 0.04 mmol) dissolved in acetonitrile (0.5 mL 0.08 M). The vial was sealed with a Teflon-lined septum crimp cap and the solution was irradiated by microwave to 140 °C for 5 min. The solution was then transferred to a 25 mL round-bottom flask, and the solvent removed under reduced pressure to afford a yellow residue which was dissolved in chloroform-d under nitrogen. ¹H NMR in CDCl₃ showed a mixture of 2.8, 2.7, 2.6, and 2.23 (10:22:51:17, respectively). Ratios were determined by comparing the ¹H NMR resonance at 6.28 ppm (1H) for 2.6, 6.20 ppm (1H) for 2.23, 5.45 ppm (2H) for 2.8, and 3.44 ppm (1H) for 2.7.

Rxn 2. An oven-dried, 0.5 mL microwave vial with stir bar was charged with 2.5 (11 mg, 0.03 mmol) dissolved in distilled acetonitrile that was stored over molecular sieves (type 4Å, 8-12 mesh beads, grade 514) which contained pulverized mole sieves that gave the solution a slight cloudy appearance. The vial was sealed with a Teflon-lined septum crimp cap and the solution was irradiated by microwave to 140 °C for 5 min. The solution was then transferred to a 25 mL round-bottom flask, and the solvent removed under reduced pressure to afford a yellow residue which was dissolved in chloroform-d under nitrogen. ¹H NMR in CDCl₃ showed a mixture of 2.8, 2.7, 2.6, and 2.23 (6:41:7:46, respectively). Ratios were determined by comparing the ¹H NMR resonance at 6.28 ppm (1H) for 2.6, 6.20 ppm (1H) for 2.23, 5.45 ppm (2H) for 2.8, and 3.44 ppm (1H) for 2.7.

2.6.11 Synthesis of Cis-Diene

(3aS,10aS)-4-phenyl-3a,10a-dihydrobenzo[4,5]thieno[2,3-f]isobenzofuran-3(1H)-one (2.23).

An oven-dried, 0.5 mL microwave vial with stir bar was charged with **2.5** (11 mg, 0.03 mmol) dissolved in distilled acetonitrile that was stored over molecular sieves (type 4Å, 8-12 mesh beads, grade 514) which contained pulverized mole sieves that gave the solution a slight cloudy appearance. The vial was sealed with a Teflon-lined septum crimp cap and the solution was irradiated by microwave to 140 °C for 5 min. The solution was then transferred to a 25 mL round-bottom flask, and the solvent removed under reduced pressure to afford a yellow residue. The residue was purified by silica gel flash column chromatography (100% DCM) to afford the product as a light-yellow solid (5 mg, 42%).

Data 2.23

 1 H NMR (600 MHz, CDCl₃)

7.69 (d, J = 7.8 Hz, 2H), 7.50 (d, J = 7.8 Hz, 1H), 7.43 (t, J = 7.8 Hz, 2H), 7.31 (t, J = 7.4 Hz, 1H), 7.25 (q, J = 8.0, 14.3 Hz, 2H), 7.14 (dt, J = 1.9, 8.4 Hz, 1H), 6.19 (d, J = 3.7 Hz, 1H), 4.63 (dd, J = 5.7, 8.9 Hz, 1H), 4.54 (dd, J = 2.3, 9.1 Hz, 1H), 3.85 (m, 1H), 3.75 (d, J = 9.7 Hz, 1H) ppm. DCM impurity at 5.30 ppm. Water impurity at 1.56 ppm.

13C NMR (125 MHz, CDCl₃)

176.7, 140.9, 140.7, 139.3, 133.8, 133.7, 129.8, 128.8 (2C), 128.0, 127.7 (2C),

125.1, 122.4, 121.8, 121.2, 116.2, 72.4, 45.3, 39.0 ppm

<u>IR</u> (thin film)

3482, 3060, 2908, 2252, 1765, 1589, 1494, 1449, 1372, 1197, 1151, 1090, 1028,

988, 909, 830, 764, 732, 697 cm⁻¹

HRMS (FTMS + p ESI)

 $[M + H]^+$ calcd for $C_{20}H_{15}O_2S$: 319.07873, found 319.07817

317.06281 was also found in 50% relative abundance, indicative of formation of

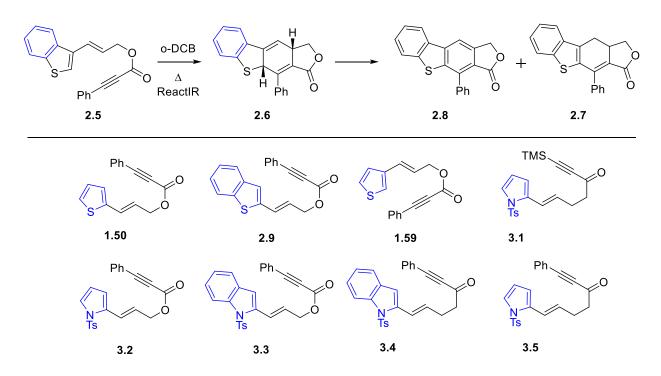
oxidation product 2.5 under ionization conditions

TLC $R_f = 0.37 (100\% DCM)$ [silica gel, UV]

2.6.12 Conversion of 2.23 to 2.8, 2.7, and Unknown at Room Temperature in CDCl₃

Rxn 1. An oven-dried NMR tube was charged with **2.23** (7 mg, 0.02 mmol) dissolved in CDCl₃ (0.5 mL, 0.04 M). The NMR tube was sealed with a polypropylene cap kept at room temperature for 3 weeks. The crude solution afforded a ratio of 25:34:29:12 (**2.23:2.8:2.7**:unknown). Ratios were determined by comparing the ¹H NMR resonance at 6.20 ppm (1H) for **2.23**, 5.45 ppm (2H) for **2.8**, 2.81 ppm (1H) for **2.7**, and 5.29 ppm for the unknown.

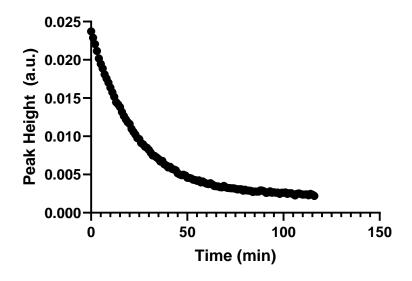
3.0 Factors that Determine Reactivity for the Dearomative DA Cycloaddition


Having established the DA adduct as the result of the dearomative cycloaddition step and the intermediate to the oxidation and isomerization products, we were poised to investigate the substrate dependent factors that determine reactivity for the cycloaddition step. We launched a cooperative investigation utilizing reactivity data from experimental rate studies and computationally calculated energies from our collaboration with Professor Peng Liu's research group of the University of Pittsburgh. Correlation of our experimentally derived Gibbs free energies of activation with density functional theory (DFT) calculations provided insight into the mechanistic pathway of Dearomatization and the substrate dependent factors that determine reactivity.

This chapter is based on results presented in: Winkelbauer J. A.; Bober A. E.; Qi X.; Kusevska E.; Liu P.; Brummond K. M., Mechanisms and origin of reactivity of dearomative didehydro-Diels–Alder reactions of heteroarenes. Manuscript in preparation, submission expected 2021.

3.1 Determination of Reaction Rates and Half-Lives for Dearomative DDDA Precursors by In Situ Reaction Monitoring with ReactIR

To derive experimental reactivity data for the dearomative DDDA reaction, rate experiments monitored in situ by ReactIR were performed and the resulting data was evaluated to determine activation energy (E_a) and Gibbs free energies of activation ($\Delta G^{\ddagger}_{exp}$). Nine precursors


(1.59, 2.5, 1.50, 2.9, 3.2, 3.3, 3.5, 3.4, and 3.1) were selected based on results showing dearomative DDDA reactions that occurred in high yield and at a range of reaction temperatures. These precursors were selected to evaluate the impact of the heteroarene identity, tether functionality and position on the heteroarene, and group on the alkyne terminus on reactivity. Synthesis, ReactIR experiments, and determination of reaction rate constant and half-lives for the pyrrole and indole precursors were performed by Brummond Lab member Ashley Bober and are not described herein. Synthesis of the thiophene and benzothiophene precursors was performed by the same method as 2.5 described previously in chapter 2.1.

Scheme 3.1. Dearomative DDDA precursors selected for the reactivity study and analyzed by in situ ReactIR monitoring of reaction progress

A minimum of five separate experiments were conducted for each dearomative DDDA precursor with each experiment having a unique reaction temperature. The recorded temperature

is the internal temperature of the solution as measured by the ReactIR probe. For each series of reactions, the oil bath temperature was increased by an increment of 10 °C; however, the increase in the oil bath temperature did not translate to the internal reaction temperature. Thus, the actual temperature difference between each experiment in the series is between 5-15 °C. The consumption of starting material was measured by the disappearance of the absorption at ~1280 cm⁻¹ which we propose may be the C-O bond stretching of the ester. Formation of oxidation and isomerization products was evidenced by the development of overlapping carbonyl absorptions at a higher frequency (~1760 cm⁻¹). The reaction was judged complete when the absorption at ~1280 cm⁻¹ showed no change in intensity for at least 30 min. Complete disappearance of starting material was confirmed by TLC. A trend for the consumption of starting material was extracted using the iC IR 7.0 software and measured using peak height with a two-point baseline after solvent subtraction was applied. The trend data were exported to iC Kinetics 5.0 software, and the consumption of starting material vs. time data was plotted using GraphPad Prism 7.0. The halflives and rate constants for each of the reactions were determined with GraphPad from a best-fit curve by plotting absorption intensity in arbitrary units relative to time in minutes (Figure 3.1). The data included by the best-fit curve contained 4-5 half-lives for each reaction. The selected reaction rate was first-order in substrate and an exponential one-phase decay nonlinear regression was applied to the data set, using a least square fit analysis. The half-lives and reaction rate constants for each experiment are reported in Table 3.1.

Figure 3.1. 1st order exponential decay of **2.5** at 90 °C

Table 3.1. Measured half-lives and rate constants for the dearomative DDDA reaction of the thiophene and benzothiophene precursors

Precursor	Entry	T (°C)	t _{1/2} (min)	k (s ⁻¹)
Ph	1	77	154	7.49E-05
	2	86	47	2.44E-04
S	3	94	28	4.16E-04
	4	108	12	9.31E-04
1.50	5	119	6	2.06E-03
Ph	6	76	140	8.23E-05
	7	85	63	1.83E-04
	8	95	23	5.06E-04
S > > 0	9	108	13	9.04E-04
2.9	10	113	8	1.36E-03
/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	11	88	91	1.27E-04
S	12	98	43	2.68E-04
Ph	13	109	16	7.41E-04
	14	121	7	1.63E-03
1.59	15	132	4	3.20E-03
	16	73	58	1.98E-04
S	17	81	28	4.09E-04
	18	90	16	7.18E-04
Ph T	19	96	9	1.28E-03
2.5	20	106	5	2.40E-03

$$\begin{split} T-temperature \\ t_{1/2}-half\text{-life} \\ k-rate \ constant \end{split}$$

3.2 Determination of Activation Energy and Pre-Exponential Factor via the Arrhenius Equation

To determine the DDDA activation energy (E_a) and pre-exponential factor (A) for each precursor, an Arrhenius plot was generated by plotting ln(k) against 1/T where k is the reaction rate constant in inverse seconds and T is the temperature in Kelvin.

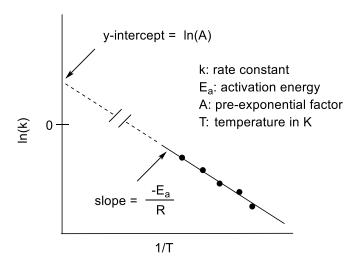


Figure 3.2. Representative Arrhenius plot and its relation to the Arrhenius equation

The Arrhenius plot afforded a trendline for the data with equation $y = m \cdot x + b$ (eq 3.1) where m is the slope of the line and b is the y-intercept. The trendline for the Arrhenius plot was generated by a linear regression analysis using the LINEST function in Microsoft Excel. The

LINEST function calculates a straight line that best fits our data by using the least squares method. The *const* value was set to TRUE so that the y-intercept would not be forced to equal zero. The *stats* value was set to TRUE so that the function output would include the linear regression statistics. The components of the trendline generated through the LINEST function include the slope, standard error for the slope, y-intercept, standard error for the y-intercept, R², and the y estimate standard error.

Equation 3.1. Arrhenius plot line equation

$$y = m \cdot x + b$$

where: y = ln(k); $m = slope = -E_a/R$; x = 1/T; b = y-intercept = ln(A)

We related eq 3.1 to the linear form of the Arrhenius equation $ln(k) = -E_a/(R \cdot T) + ln(A)$ (eq 3.2) where E_a is the activation energy in kcal/mol, R is the gas constant 0.001987 kcal/(mol·K), and A is the pre-exponential factor for the reaction in inverse seconds.

Equation 3.2. Linear form of the Arrhenius equation

$$ln(k) = -E_a/(R \bullet T) + ln(A)$$

Equation 3.3. Activation energy

$$E_a = -m \cdot R$$

Equation 3.4. Pre-exponential value

$$A = e^b$$

Equation 3.5. Rate of reaction at 363 K

$$k_{363} = e^{(m \cdot (1/363) + b)}$$

The error for E_a was calculated by substituting the slope with the slope error value, and the error for A was calculated by substituting the y-intercept with the y-intercept error value.

Equation 3.6. Error for activation energy

$$E_{a \text{ error}} = -m_{error} \cdot R$$

Equation 3.7. Error for pre-exponential value

$$A_{error} = e^{b \; error}$$

The activation energy, pre-exponential value, and the error for both were determined by these same methods for each dearomative DDDA precursor. Rate constants at 363 K were derived from the trendline as a means to compare rate constants across substrates. 363 K was chosen as a median temperature across all reaction temperatures.

Table 3.2. Arrhenius trendline components as derived from the LINEST function and the kinetic results derived from the trendline for each substrate

	1.50	2.9	1.59	2.5	3.2	3.3	3.5	3.4	3.1
Slope	-10229	-10016	-10881	-9886	-13397	-11653	-12837	-9248	-10028
Slope Standard Error	844	715	329	333	757	517	912	1025	837
Y-Intercept	20.0	19.4	21.2	20.1	31.0	26.4	28.0	18.1	18.2
Y-Intercept Standard Error	2.3	1.9	0.9	0.9	2.2	1.5	2.5	2.8	2.3
\mathbb{R}^2	0.980	0.985	0.997	0.997	0.987	0.994	0.980	0.953	0.980
Y Estimate Standard Error	0.21	0.16	0.08	0.07	0.20	0.11	0.17	0.20	0.15
k ₃₆₃ (s ⁻¹)	2.68E-04	2.73E-04	1.51E-04	7.74E-04	2.70E-03	3.46E-03	6.33E-04	6.03E-04	8.39E-05
E _a (kcal/mol)	20.3	19.9	21.6	19.6	26.62	23.16	25.51	18.38	19.93
E _{a error} (kcal/mol)	± 1.7	± 1.4	± 0.7	± 0.7	± 1.5	± 1.0	± 1.8	± 2.0	± 1.7
$A(s^{-1})$	4.63E+08	2.63E+08	1.57E+09	5.20E+08	2.88E+13	3.02E+11	1.44E+12	6.99E+07	8.34E+07
A _{error} (s ⁻¹)	± 9.8	± 7.0	± 2.4	± 2.5	± 9.1	± 4.5	± 12.6	± 17.0	± 10.3

3.3 Determination of Gibbs Free Energy of Activation, Enthalpy, and Entropy via the Eyring Equation

To determine the Gibbs free energy of activation, enthalpy, and entropy for each precursor, an Eyring plot was generated by plotting $ln(k \cdot h/(k_B \cdot T))$ against 1/T where k is the rate of the reaction in inverse seconds, h is Planck's constant = $6.63 \times 10^{-34} \, J \cdot s$, k_B is Boltzmann's constant = $1.38 \times 10^{-23} \, J \cdot K^{-1}$ and T is the temperature in Kelvin.

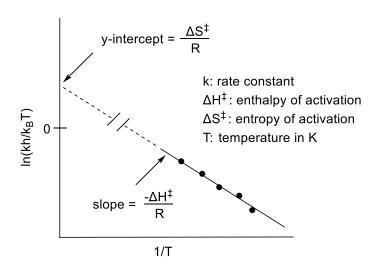


Figure 3.3. Representative Eyring plot and its relation to the Eyring equation

The Eyring plot affords a trendline for the data using the linear equation eq 3.8. Just as performed for the Arrhenius plots, the trendline for the Eyring plot was generated by a linear regression analysis using the LINEST function in Microsoft Excel. The LINEST function was set with the same parameters and output the same components of the trendline.

Equation 3.8. Eyring plot line equation

$$y = m \cdot x + b$$

where: $y = ln(k \cdot h/(k_B \cdot T))$; $m = slope = -\Delta H^{\ddagger}/R$; x = 1/T; b = y-intercept $= \Delta S^{\ddagger}/R$

We related eq 3.8 to the linear form of the Eyring equation $\ln(k \cdot h/(k_B \cdot T)) = -\Delta H^{\ddagger}/(R \cdot T) + \Delta S^{\ddagger}/R$ (eq 3.9) where ΔH^{\ddagger} is the enthalpy of the reaction in kcal/mol, R is the gas constant 0.001987 kcal/(mol • K), and ΔS^{\ddagger} is entropy of the reaction in kcal/mol.

Equation 3.9. Linear form of the Eyring equation

$$ln(k \bullet h/(k_B \bullet T)) = -\Delta H^{\ddagger}/RT + \Delta S^{\ddagger}/R$$

Equation 3.10. Enthalpy

$$\Delta H^{\ddagger} = -m \cdot R$$

Equation 3.11. Entropy

$$\Delta S^{\ddagger} = b \cdot R$$

Equation 3.12. Rate of reaction at 363 K

$$k_{363} = k_B \cdot T \cdot e^{(m \cdot (1/363) + b)} / h$$

The error for ΔH^{\ddagger} can be calculated by substituting the slope with the slope error, and the error for ΔS^{\ddagger} can be calculated by substituting the y-intercept with the y-intercept error.

Equation 3.13. Error for enthalpy

$$\Delta H^{\ddagger}_{error} = -m_{error} \cdot R$$

Equation 3.14. Error for entropy

$$\Delta S^{\ddagger}_{error} = b_{error} \cdot R$$

Gibbs free energy of activation can be calculated with the equation $\Delta G^{\ddagger} = \Delta H^{\ddagger}$ - $\Delta S^{\ddagger}T$ (eq 3.15) at 363 K.

Equation 3.15. Gibbs free energy of activation

$$\Delta G^{\ddagger} = \Delta H^{\ddagger} - \Delta S^{\ddagger} \bullet T$$

The error for ΔG^{\ddagger} can be calculated by substituting ΔH^{\ddagger} and ΔS^{\ddagger} with the error for ΔH^{\ddagger} and ΔS^{\ddagger} at 363 K. Propagation of error through the result of a subtraction is done through quadrature.

Equation 3.16. Error for Gibbs free energy of activation

$$\Delta G^{\ddagger}_{error} = \Delta H^{\ddagger}_{error}$$
 - $\Delta S^{\ddagger}_{error}$ • T

Equation 3.17. Quadrature to calculate error for Gibbs free energy of activation

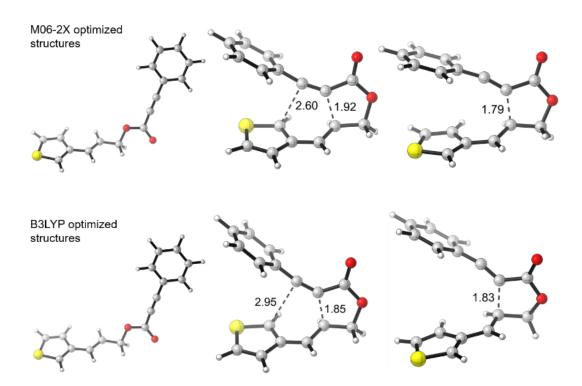
$$\Delta G^{\ddagger}_{error} = \sqrt{((\Delta H^{\ddagger}_{error})^2 + (\Delta S^{\ddagger}_{error} \cdot T)^2)}$$

The Gibbs free energy of activation, enthalpy, entropy, and the error for each were determined by these same methods for each dearomative DDDA precursor. Rate constants at 363 K as derived from the Eyring plot trendline remain unchanged and consistent to those derived from the Arrhenius plot trendline.

Table 3.3. Eyring trendline slope, y-intercept, and R^2 as derived from the LINEST function and the ΔH^{\ddagger} , ΔS^{\ddagger} , and ΔG^{\ddagger} values with their corresponding error

	1.50	2.9	1.59	2.5	3.2	3.3	3.5	3.4	3.1
Slope	-9859	-9649	-10499	-9524	-13053	-11309	-12475	-8882	-9668
Slope Standard Error	846	717	331	333	756	518	911	1027	837
Y-Intercept	-10.7	-11.3	-9.5	-10.6	0.4	-4.2	-2.7	-12.6	-12.4
Y-Intercept Standard Error	2.29	1.95	0.87	0.92	2.21	1.51	2.53	2.84	2.33
\mathbb{R}^2	0.978	0.984	0.997	0.996	0.987	0.994	0.979	0.949	0.978
Y Estimate Standard Error	0.21	0.16	0.08	0.07	0.20	0.11	0.17	0.20	0.15
$k_{363} (s^{-1})$	2.68E-04	2.73E-04	1.51E-04	7.74E-04	1.65E-03	2.70E-03	3.46E-03	6.33E-04	6.03E-04
ΔH^{\ddagger} (kcal/mol)	19.6	19.2	20.9	18.9	25.9	22.5	24.8	17.7	19.2
$\Delta H^{\ddagger}_{error}$ (kcal/mol)	± 1.7	± 1.4	± 0.7	± 0.7	± 1.5	± 1.0	± 1.8	± 2.0	± 1.7
ΔS^{\ddagger} (kcal/mol)	-2.10E-02	-2.20E-02	-1.90E-02	-2.10E-02	7.75E-04	-8.28E-03	-5.27E-03	-2.50E-02	-2.47E-02
$\Delta S^{\ddagger}_{error}$ (kcal/mol)	± 4.60 E-03	± 3.90E-03	±1.70E-03	±1.80E-03	$\pm 4.39E-03$	$\pm 3.00E-03$	$\pm 5.04E-03$	± 5.63 E-03	± 4.63 E-03
ΔG^{\ddagger} (kcal/mol)	27.3	27.3	27.7	26.6	25.7	25.5	26.7	26.7	28.2
$\Delta G^{\ddagger}_{error}$ (kcal/mol)	± 2.4	± 2.0	± 0.9	± 0.9	± 2.2	± 1.5	± 2.6	± 2.9	± 2.4

3.4 Analysis of Reactivity in Collaboration with DFT Computational Calculations


With experimental reactivity and rate data in hand, we sought to correlate our data with DFT computational calculations in order to derive the most likely mechanism of the dearomative cycloaddition step of the DDDA reaction, as well as determine which substrate dependent factors affect reactivity. All DFT computational calculations were performed by our collaborators Xiaotian Qi, Elena Kusevska, and Professor Peng Liu of the University of Pittsburgh.

3.4.1 Determination of the Dearomative Cycloaddition Mechanism

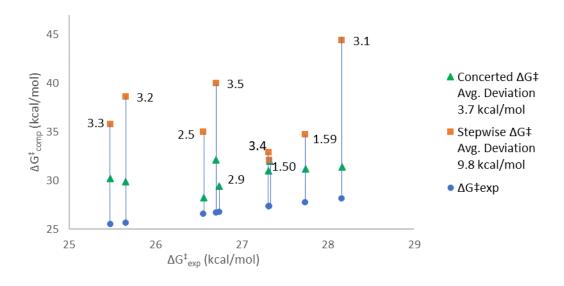
The thermal dearomative step of the DDDA reaction between the heterarenyl diene and the alkynyl dienophile is one that involves an initial [4 + 2] cycloaddition step to afford a 1,4-cyclohexadienyl intermediate. Mechanistically, the cycloaddition step may proceed via a concerted pathway with a six-membered, cyclic transition state or a stepwise pathway via a diradical intermediate (Figure 3.4).

Figure 3.4. Proposed concerted and stepwise transition states as possible mechanisms for the dearomative cycloaddition step

We proposed that correlating the computed Gibbs free energies of activation ($\Delta G^{\ddagger}_{comp}$) for the concerted and stepwise transition states with experimentally derived $\Delta G^{\ddagger}_{exp}$ would help to elucidate the preferred mechanism. The $\Delta G^{\ddagger}_{comp}$ for both the stepwise and concerted reaction pathways were calculated for all nine DDDA precursors. M06-2X/6-311+G(d,p) single point energies were derived with both M06-2X/6-31+G(d) and B3LYP/6-31+G(d) structure optimization, and B3LYP/6-311+G(d,p) single point energies were derived with B3LYP/6-31+G(d) structure optimization. The SMD solvation model with o-DCB as the chosen solvent was used for the geometry optimizations as well as the single point energy calculations to match the experimental solvent. The computational Gibbs free energies of activation also include a thermal correction to 363 K which was the median experimental temperature. Example structure optimizations of 1.59 and the concerted and stepwise transition states with both M06-2X/6-31+G(d) and B3LYP/6-31+G(d) structure optimization are shown (Figure 3.5).

Figure 3.5. Structures of **1.59**, the concerted transition state, and the stepwise transition state for the cycloaddition step of the dearomative DDDA reaction with structures optimized by M06-2X/6-31+G(d) and B3LYP/6-31+G(d).

Bond distances shown in angstroms.


The closed-shell transition state with the s-cis conformer of the vinyl heteroarene, utilized in the concerted pathway, was located for each dearomative DDDA precursor. The open-shell transition state with the s-trans conformer of the vinyl heteroarene, utilized in the stepwise pathway, was not able to be located for **1.50**, **2.9**, **3.5**, or **3.1** for the M06-2X/6-311+G(d,p) single point energies with M06-2X/6-31+G(d) geometry optimizations. The s-trans open-shell transition state was not able to be located for **3.4** at any of the attempted levels of theory. The s-cis open-shell transition state was also considered but could not be located at either level of theory for all precursors. For these cases where the transition states were not able to be located, the geometry would collapse to the s-cis closed-shell transition state, suggesting that they do not exist as

stationary points on the potential energy surfaces for the dearomative DDDA reactions. The Gibbs free energies of activation for all precursors are summarized in Table 3.4.

Table 3.4. DFT computationally derived Gibbs free energies of activation for the s-cis closed-shell and s-trans open-shell transition states

	1.50	2.9	1.59	2.5	3.2	3.3	3.5	3.4	3.1
experimental ΔG [‡] (kcal/mol)	27.3	27.3	27.7	26.6	25.7	25.5	26.7	26.7	28.2
ΔG^{\ddagger} s-cis closed-shell (kcal/mol)									
B3LYP/6-311+G(d,p)//B3LYP/6-31+G(d)	32.4	32.2	33.1	30.6	30.6	30.2	34.7	30.9	34.7
M06-2X/6-311+G(d,p)//M06-2X/6-31+G(d)	30.2	28.8	30.2	28.8	29.2	26.2	28.1	28.3	29.5
M06-2X/6-311+G(d,p)//B3LYP/6-31+G(d)	32.0	31.0	31.2	28.2	29.9	30.2	32.1	29.4	31.4
ΔG^{\ddagger} s-trans open-shell (kcal/mol)									
B3LYP/6-311+G(d,p)//B3LYP/6-31+G(d)	30.2	30.9	33.0	33.3	36.5	35.8	44.0	-	44.0
M06-2X/6-311+G(d,p)//M06-2X/6-31+G(d)	_	_	33.2	35.3	36.6	33.9	_	_	_
M06-2X/6-311+G(d,p)//B3LYP/6-31+G(d)	32.1	32.9	34.7	35.0	38.6	35.8	40.0	-	44.4

The mechanism of the dearomative cycloaddition was determined to be the concerted pathway due to the s-cis closed-shell transition state being lower in energy than the open-shell transition states for all precursors. Additionally, the concerted pathway had a smaller average deviation of computed activation energies from the experimentally derived activation free energies than the stepwise pathway at the M06-2X/6-311+G(d,p)//B3LYP/6-31+G(d) level of theory. The average deviations were 3.7 and 9.8 kcal/mol for the concerted and stepwise pathways, respectively. The closed-shell and open-shell transition states were compared with the M06-2X/6-311+G(d,p) single point energies and B3LYP/6-31+G(d) geometry optimizations as the M06-2X/6-311+G(d,p) single point energies include dispersion corrections that B3LYP/6-311+G(d,p) lacks, and several open-shell transition states were not able to be located with M06-2X/6-31+G(d) geometry optimizations.

Figure 3.6. Average deviation of computational Gibbs free energies of activation from experimental energies for both the concerted and stepwise reaction pathways at the M06-2X/6-311+G(d,p)//B3LYP/6-31+G(d) level of theory

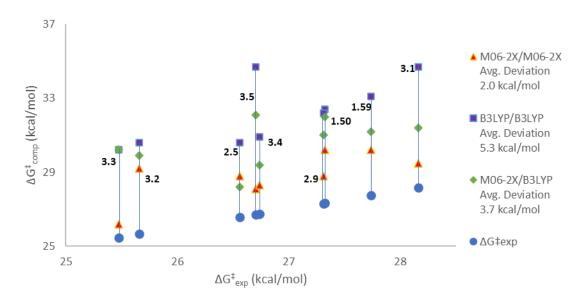

Analysis of the newly formed bond lengths in the concerted pathway for the dearomative cycloaddition step led to the discovery that the mechanism proceeds through an early and highly asynchronous concerted transition state. The degree of asynchronicity of the transition state was observed by the measurement of the newly forming bond lengths. These lengths were compared for both the M06-2X/6-31+G(d) and B3LYP/6-31+G(d) structure optimizations and are summarized in Table 3.5. Both levels of theory showed that the bond length for lactone formation was significantly shorter than the bond length between the heteroarene and the alkyne, indicative of the highly asynchronous concerted dearomative DDDA transition state (Figure 3.5). Overall, the M06-2X/6-31+G(d) level of theory showed a more synchronous TS structure with a difference in bond lengths of 0.53–0.81 Å compared to the B3LYP/6-31+G(d) level of theory which showed a difference in bond lengths of 0.88–1.32 Å. The B3LYP/6-31+G(d) level of theory lacks an accurate description for dispersion forces which may be responsible for the predicted longer bond forming distances between the heteroarene and the alkyne. The bond length differences found with the M06-2X/6-31+G(d) level of theory are comparable to the differences in bond length of ~0.8 Å found in the concerted asynchronous transitions state for the styryl Diels-Alder reactions. ⁴⁹ This early transition state leads to less distortion of the heteroarene and a relatively small decrease of aromaticity from the precursor suggesting that substrate dependent factors such as aromaticity and electronic properties may have a reduced impact on reactivity.

Table 3.5. Newly forming bond lengths in the asynchronous, concerted transition state of the dearomative cycloaddition step

	1.50	2.9	1.59	2.5	3.2	3.3	3.5	3.4	3.1
1st formed bond length M06-2X/6-31+G(d) (Å)	1.88	1.94	1.92	1.94	1.88	1.95	1.92	1.98	1.95
2nd formed bond length M06-2X/6-31+ $G(d)$ (Å)	2.65	2.64	2.60	2.62	2.69	2.64	2.56	2.51	2.48
1st formed bond length B3LYP/6-31+G(d) (Å)	1.82	1.85	1.85	1.89	1.83	1.87	1.85	1.89	1.86
2nd formed bond length B3LYP/6-31+G(d) (Å)	3.14	3.14	2.95	2.94	3.15	3.08	2.97	2.93	2.74

3.4.2 Gibbs Free Energies of Activation at the M06-2X/6-311+G(d,p)//M06-2X/6-31+G(d)Level of Theory as the Most Accurate to Experimental Energies

With the asynchronous, concerted reaction pathway as the proposed mechanism for the dearomative cycloaddition, we then sought to evaluate which level of theory would afford computational Gibbs free energies of activation ($\Delta G^{\ddagger}_{comp}$) that would be the most accurate to experimental energies (ΔG^{\dagger}_{exp}) and thus the best predictive tool (Figure 3.7). The M06-2X/6-311+G(d,p)//M06-2X/6-31+G(d) level of theory provided the best agreement to experiments with an average overestimation from $\Delta G^{\ddagger}_{exp}$ of 2.0 kcal/mol and had a moderate correlation to $\Delta G^{\ddagger}_{exp}$ $(R^2 = 0.48)$. The B3LYP/6-311+G(d,p)//B3LYP/6-31+G(d) level of theory provided a worse agreement to experiments with an average overestimation from $\Delta G^{\ddagger}_{exp}$ of 5.3 kcal/mol yet had significantly improved correlation to $\Delta G^{\ddagger}_{exp}$ (R² = 0.84) when **3.5** was removed as an outlier. The M06-2X/6-311+G(d,p)//B3LYP/6-31+G(d) level of theory provided an average overestimation from $\Delta G^{\ddagger}_{exp}$ of 3.7 kcal/mol and had a poor correlation to $\Delta G^{\ddagger}_{exp}$ (R² = 0.23). Overall, the M06-2X/6-311+G(d,p)//M06-2X/6-31+G(d) level of theory was established to be a more reliable level of theory for prediction of the absolute activation energies of the concerted dearomative cycloaddition. However, the B3LYP/6-311+G(d,p)//B3LYP/6-31+G(d) level of theory can still be used to predict the relative reactivity trend of different precursors.

Figure 3.7. Comparison of different levels of theories used to calculate $\Delta G^{\ddagger}_{comp}$ and their accuracy to $\Delta G^{\ddagger}_{exp}$.

3.4.3 The Effect of Ground State Conformations on the Reactivity of the Dearomative Cycloaddition Step

We next sought to determine the substrate dependent factors that contribute to reactivity. The first to be evaluated was the energy required to access the reactive s-cis conformation of the vinyl heteroarene. M06-2X/6-31+G(d) geometry optimizations of the dearomative DDDA precursors were analyzed to determine the lowest energy rotamer for the precursors studied. Most afforded the *s*-cis rotamer as the lowest energy conformer in the ground state. The exceptions being **1.50**, **2.9**, and **1.59** for which the *s*-trans rotamer is 1.1, 1.5, and 0.7 kcal/mol more stable than the corresponding *s*-cis rotamer, respectively (Scheme 3.2). Therefore, the energy required to attain the reactive s-cis conformation from the unreactive s-trans does contribute to the overall energy barrier of the dearomative cycloaddition. This additional required energy is not present for the other dearomative DDDA precursors, thus **1.50**, **2.9**, and **1.59** have consequentially higher Gibbs free energies of activation than the other substrates.

Ph
$$\Delta G = 1.1$$

1.50
S-trans

Ph $\Delta G = 1.5$

1.50
S-cis

Ph $\Delta G = 1.5$

2.7
S-trans

AG = 0.7
S-cis

1.59
S-cis

1.59
S-cis

Scheme 3.2. Rotational energy barriers required to attain the reactive *s*-cis conformer for precursors **1.50**, **2.9**, and **1.59**

3.4.4 Stabilizing Dispersion Interactions in the Dearomative Cycloaddition Transition States

Experimentally, the precursors with phenyl substitution on the terminus of the alkyne are more reactive than **3.1** with TMS substitution on the terminus of the alkyne. This result may be indicative of a π/π -stacking type interaction occurring between the heteroarene and the phenyl on the terminus of the alkyne. The relatively long forming C–C bond distances in the asynchronous, concerted transition state place the arene rings at a distance where the stacking would be possible. Cooperative dispersion interactions between dienes and dienophiles in the transition state have

been shown in previous studies by Houk et al to increase stabilization by up to 10 kcal/mol in Diels–Alder reactions. ⁶⁰ To investigate these effects in our dearomative cycloaddition, London dispersion energies (ΔE_{disp}) between the heteroarene and the phenyl group in the transition state were calculated. The dispersion energy in the transition state for **3.1** (ΔE_{disp} = -12.9 kcal/mol) was found to be less stabilizing than that of **3.5** (ΔE_{disp} = -16.7 kcal/mol) by 3.8 kcal/mol. Though the calculated dispersion energies follow the reactivity trend, the lower reactivity of **3.1** may also be due to destabilizing steric interactions between the TMS group and the heteroarene rather than a lack of π -stabilizing interactions in the transition state.

Therefore, the dispersion interaction in the transition state of **2.9** was contrasted with an analogous concerted transition state of **2.9** containing a methyl substituted alkyne **2.9-Me** rather than the phenyl substitution (Figure 3.8). ΔE_{disp} between the highlighted heteroarene and phenyl moieties in the transition state of **2.9** was calculated to be -15.2 kcal/mol which was 4.2 kcal/mol higher than that of the analogous transition state with the methyl substituted alkyne ($\Delta E_{disp} = -11.0$ kcal/mol). These results demonstrate the stabilizing dispersion interactions present between the heteroarene and the phenyl terminus of the alkyne.

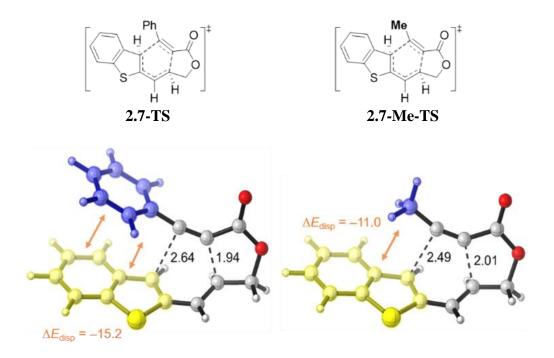


Figure 3.8. Dispersion effect on the stabilization of the concerted cycloaddition transition state

Optimized structures of transition states also show that there is a more favored π - π stacking interaction between the phenyl alkyne terminus and the benzo-fused heteroarenes in comparison to the non-benzo-fused heteroarenes. In each case, the benzo-fused precursors afforded transition states with greater stabilizing dispersion energies than their non-benzo-fused counterparts. **2.9**, **2.5**, **3.3**, and **3.4** (-15.2, -12.0, -21.1, and -21.3 kcal/mol) each had a dispersion stabilization energy that was lower than the non-benzo-fused **1.50**, **1.59**, **3.2**, and **3.5** (-11.0, -11.7, -16.1, and -16.7 kcal/mol) respectively. The presence of the benzene fused to the heteroarene likely affords an increase in the stabilizing π - π stacking interaction.

3.4.5 Effect of Heteroarene Aromaticity on Reactivity of the Dearomative Cycloaddition

To determine the effect that aromaticity of the heteroarene has on the reactivity of the dearomative cycloaddition, experimentally derived Gibbs free energies of activation were compared to the computationally derived aromaticity of the heteroarenes. Aromaticity was calculated using nucleus-independent chemicals shift (NICS) which is the negative of the magnetic shielding at a given point, using the NICS(1)zz method. The NICS(1)zz values were calculated by the placement of a ghost atom 1 Å above the heterocyclic ring for each precursor and their respective concerted transition state. These aromaticity calculations are summarized in Table 3.6. The NICS(1)zz values of the dearomative cycloaddition precursors are close to those of their respective transition states, indicative of a relatively small decrease of aromaticity of the heteroarene in the transition states. This is consistent with the proposed early, asynchronous transition state where the forming C-C bond between the heteroarene and the alkyne is longer than that of the forming lactone C-C bond.

Table 3.6. NICS(1)zz aromaticity of the heteroarene for the dearomative cycloaddition precursors and transition states

	1.50	2.9	1.59	2.5	3.2	3.3	3.5	3.4	3.1
experimental ΔG [‡] (kcal/mol)	27.3	27.3	27.7	26.6	25.7	25.5	26.7	26.7	28.2
experimental $\Delta G^{\ddagger}_{exp(s-cis)}$ (kcal/mol)	26.2	25.8	27.0	26.6	25.7	25.5	26.7	26.7	28.2
precursor NICS(1)zz (ppm) M06-2X/M06-2X	-27.8	-21.8	-28.8	-25.1	-25.1	-20.7	-25.8	-20.0	-25.5
transition state NICS(1)zz (ppm) M06-2X/M06-2X	-28.0	-20.8	-29.0	-22.8	-24.0	-17.9	-23.2	-16.3	-23.5

We then sought to isolate the contribution that heteroarene aromaticity had on the Gibbs free energy of activation to see the effect of aromaticity on reactivity. Tether composition affects the Gibbs free energy of activation due to the additional conformational mobility of a ketone-tethered precursor over that of an ester-tethered precursor. Therefore, only ester-tethered substrates were considered to eliminate this contribution in our analysis. As described previously, the ground state conformer for the precursors is the reactive s-cis conformation for all substrates except 2.9, 1.50, and 1.59 which have the s-trans conformation. Therefore, the $\Delta G^{\ddagger}_{exp}$ for 2.9, 1.50, and 1.59 was adjusted by subtracting the computed energy difference between the s-trans and s-cis conformers (1.5, 1.1, and 0.7 kcal/mol, respectively). These adjusted Gibbs free energies of activation, denoted as $\Delta G^{\ddagger}_{exp(s-cis)}$, are used in our comparison to reflect the reactivities of the reactive s-cis conformer of each precursor.

Therefore, the NICS(1)zz aromaticity of the heteroarene in the ester-tethered precursors and concerted transition states were plotted against the adjusted Gibbs free energies of activation, $\Delta G^{\ddagger}_{exp(s-cis)}$. The precursors afforded a correlation with $R^2 = 0.63$ for the trendline, and the transition states afforded a correlation with $R^2 = 0.56$ for the trendline (Figure 3.9). Aromaticity of the heteroarene in the precursor afforded a better correlation to the Gibbs free energy of activation than the aromaticity in the transition state, so that transition state calculations may not be necessary to use aromaticity as a predictive tool for reactivity. The positive correlation between aromaticity of the heteroarene and the Gibbs free energy of activation suggests that aromaticity is one of several influencing factors that control reactivity. For example, C3-substituted **1.59** (-28.8 ppm) and **2.5** (-25.1 ppm) are more aromatic than the corresponding C2-substituted **1.50** (-27.8 ppm) and **2.9** (-21.8 ppm). Consequentially, **1.59** and **2.5** (27.0 and 26.6 kcal/mol) have higher $\Delta G^{\ddagger}_{exp(s-cis)}$ than **1.50** and **2.9** (26.2 and 25.8 kcal/mol), respectively.

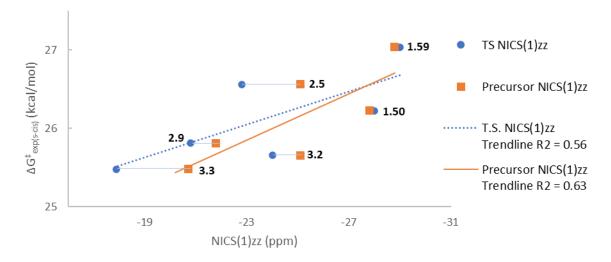


Figure 3.9. Correlation between $\Delta G^{\ddagger}_{\exp(s\text{-cis})}$, and both precursor and transition state NICS(1)_{zz} aromaticity values for ester-tethered substrates

NICS(1)zz aromaticity of the heteroarene in the ester-tethered precursors and concerted transition states were plotted against the adjusted computational Gibbs free energies of activation, $\Delta G^{\ddagger}_{comp(s\text{-}cis)}$ as well, and afforded improved correlation. The precursors afforded a correlation with $R^2 = 0.88$ for the trendline, and the transition states afforded a correlation with $R^2 = 0.85$ for the trendline (Figure 3.10). The improved correlation for the computed Gibbs free energies of activation over the experimental energies is attributed to the lack of experimental error. As with experimental energies, aromaticity of the heteroarene in the precursor afforded a better correlation to the Gibbs free energy of activation than the aromaticity in the transition state. The positive correlation between aromaticity of the heteroarene and the computed Gibbs free energy of activation with improved correlation is in agreement with the correlation with experimental energies that aromaticity is one of several influencing factors that affects reactivity.

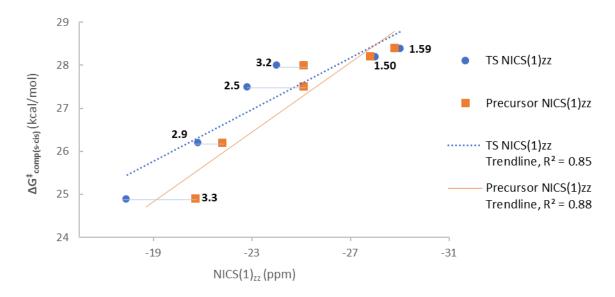


Figure 3.10. Correlation between the $\Delta G^{\ddagger}_{comp(s-cis)}$ at the M06-2X/M06-2X level of theory and the NICS(1)zz aromaticity calculation

However, the dearomative cycloaddition appears to lack sensitivity to the effect that the fused benzene ring has on the aromaticity of the heteroarene. Benzo-fused heteroarenes **2.9**, **2.5**, and **3.3** are less aromatic than their non-benzo-fused counterparts **1.50**, **1.59**, and **3.2**, yet the reaction rate of the dearomative cycloaddition for the benzo-fused heteroarenes is only accelerated by a factor of 1.02, 5.13, and 1.28-fold, respectively. This rate enhancement is relatively small when compared to the 400,000-fold rate enhancement observed in the Diels-Alder reaction between naphthalene and tetracyanoethylene over that of benzene and teracyanoethylene. The lack of sensitivity to heteroarene aromaticity is consistent with the proposed early transition state that retains the aromaticity of the heteroarenes. Therefore, a broad range of heteroarenes with varied levels of aromaticity may be used as precursors for the dearomative DDDA reaction.

3.5 Conclusions

We established that the dearomative cycloaddition step of the dearomative DDDA reaction proceeds through a highly asynchronous, closed-shell, concerted transition state where the fivemembered ring is formed to a greater degree than the six-membered ring. This was accomplished through a cooperative investigation incorporating experimentally derived kinetic data with computational DFT analysis to afford a deeper mechanistic understanding of the dearomative cycloaddition step and the substrate dependent factors that determine reactivity. Dearomative DDDA reactions were monitored in situ with ReactIR to afford kinetic reactivity data including Gibbs free energies of activation. These experimental energies were correlated with computational DFT calculated Gibbs free energies of activation. M06-2X/6-311+G(d,p)//M06-2X/6-31+G(d) level of theory afforded the most accurate computational energies of those tested while B3LYP/6-311+G(d,p)/B3LYP/6-31+G(d) level of theory had improved correlation to experimental energies and may be useful in the prediction of relative reactivity trends for different precursors. NICS(1)zz aromaticity calculations have a positive correlation with experimental Gibbs free energies of activation, yet the impacts on Gibbs free energies of activation are less than a few kcal/mol which is in agreement with the early transition state. Stabilizing dispersion interactions between the phenyl terminus of the alkyne and the heteroarenes were observed. The energy required to attain the reactive s-cis conformation of the vinyl heteroarene from the unreactive s-trans conformation was also found to contribute to the overall energy barrier of the dearomative cycloaddition. These results serve to benchmark DFT computation as a predictive tool in reactivity determination for the dearomative cycloaddition and to lend insight into the substrate dependent factors that control reactivity for this and other dearomative processes.

3.6 Experimental

3.6.1 General Methods

Unless otherwise indicated, all reactions were performed in flame-dried glassware under an air atmosphere and stirred with Teflon-coated magnetic stir bars. All commercially available compounds were purchased and used as received unless otherwise specified. Tetrahydrofuran (THF) was purified by passing through alumina using the Sol-Tek ST002 solvent purification system. Deuterated chloroform (CDCl₃) was passed over 3 Å molecular sieves. Nitrogen gas was purchased from Matheson Tri Gas. Purification of compounds by flash column chromatography was performed using silica gel (40-63 µm particle size, 60 Å pore size). TLC analyses were performed on silica gel F₂₅₄ glass-backed plates (250 µm thickness). ¹H NMR and ¹³C NMR spectra were recorded on Bruker Avance 300, 400, or 500 MHz spectrometers. Spectra were referenced to residual chloroform (7.26 ppm, 1 H; 77.16 ppm, 13 C). Chemical shifts (δ) are reported in ppm and multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), and m (multiplet). Coupling constants, J, are reported in hertz (Hz). All NMR spectra were obtained at room temperature. Compound characterization IR spectra were obtained using a Nicolet Avatar E.S.P. 360 FT-IR. ReactIR spectra were obtained using a Mettler Toledo ReactIR 45M with a silicone probe (SiComp, 9.5 x 1.5 mm AgX Fiber, Resistive Temperature Device). EI mass spectroscopy was performed on a Waters Micromass GCT high resolution mass spectrometer, while ES mass spectroscopy was performed on a Waters Q-TOF Ultima API, Micromass UK Limited high-resolution mass spectrometer.

3.6.2 Experimental Procedures for ReactIR

The dewar of the ReactIR 45M was filled with liquid nitrogen and the instrument was switched on 2 h prior to experiment. A 10 mL, 2-necked, heart-shaped flask equipped with a stir bar (flea sized) was fitted with the 9.5 mm silicone ReactIR probe via a 14/20 Teflon adapter. The tip of the probe was carefully positioned slightly above the stir bar through the center neck, and a 14/20 glass stopper was inserted into the side neck. The flask was clamped directly above a preheated oil-bath, while cautiously moving the fiber arm so as to avoid excessive bending. The iC IR 4.0 was used for data collection. The data collection frequency was set to 30 s, 1 min, or 3 min, depending upon predetermined reaction time and the temperature was monitored via the ReactIR probe. The alignment and clean steps were performed, and if necessary, the probe tip was cleaned by temporarily removing from the flask and gently wiping with an acetone soaked Kimwipe. A background scan in air was collected. The glass stopper was temporarily removed and odichlorobenzene (o-DCB, 1 mL) was added in a single portion via syringe-the probe tip must be immersed in o-DCB. The pre-heated oil bath was raised to the flask. Once the internal temperature reached equilibria as evidenced by the readout, the glass stopper was temporarily removed, and a solution of precursor (20 mg) diluted in o-DCB (0.5 mL) was added in a single portion via syringe. At this point, the reaction solution contained 20 mg of precursor dissolved in 1.5 mL (2.0 g) o-DCB affording a weight percent of 1.0%, well above the 0.1% detection limit of the ReactIR infrared absorber. The reaction progress was monitored by disappearance of starting material as observed by a decreasing peak height for a particular absorption attributed to the starting material an absorption identified by the iC IR software to afford the best trend. Complete disappearance of starting material was confirmed by TLC. A trend for the consumption of starting material was extracted using the iC IR 7.0 software and measured using peak height with a two-point baseline

after solvent subtraction was applied. The trend data were exported to iC Kinetics 5.0 software, and the consumption of starting material vs. time data was plotted using GraphPad Prism 7.0. The reaction displayed first-order kinetics for the substrate. An exponential one-phase decay nonlinear regression was applied to the data set, using a least squares fit analysis.

3.6.3 ReactIR Data Output and Rate Calculations with GraphPad

As described in the experiment procedure, each ReactIR experiment began with a period where the probe recorded the absorption of background air or solvent during temperature equilibration, before starting material was added to the reaction vessel. All data recorded by the probe before the addition of starting material was considered irrelevant to the experiment. Therefore, the plots of consumption of starting material over time were set so that the introduction of starting material to the reaction has a time point of zero, and the probe recordings before that point were discarded and not displayed. Probe recordings after the point of five half-lives were also discarded and not displayed so as to eliminate error from the decomposition of products after the consumption of starting material was complete.

Plots of consumption of starting material over time are displayed as peak height vs. duration of the experiment. Peak height is recorded by the iC IR software with arbitrary units (a.u.). The GraphPad data output is displayed below the plot of consumption of starting material and represents the statistics for the one phase decay nonlinear regression. Y0 is the Y value when the time is zero. The plateau is the Y value at an infinite time. K is the rate constant expressed in inverse minutes. Tau is the reciprocal of K. The half-life is displayed as determined by $\ln(2)/K$. The span is the difference between Y0 and the plateau. The 95% confidence interval is also displayed for the previous statistics. Statistics related to the goodness of the fit are given, including

the degrees of freedom, R^2 value, sum of squares, and the standard error of estimate (Sy.x). The only constraint imposed upon the one phase decay nonlinear regression is that the rate is greater than zero.

The data points for each ReactIR experiment and the corresponding plot and GraphPad output have been recorded and can be found in Appendix C.

3.6.4 Specifications for Measuring Half-Lives for DDDA Precursor

A minimum of five separate experiments were conducted for each DDDA precursor with each experiment having a unique reaction temperature. A significant improvement to the trendline fit was not observed beyond four data points for either the Eyring or Arrhenius plots. For example, Figure 3.11 shows an Eyring plot of **1.59** using five different reactions temperatures with an R^2 = 0.997 while Figure 3.12 shows a plot with four reactions with the same fit (R^2 = 0.997). The recorded temperature is the internal temperature of the solution as measured by the ReactIR probe. For each series of reactions, the oil bath temperature was increased by an increment of 10 °C; however, the increase in the oil bath temperature did not translate to the internal reaction temperature. Thus, the actual temperature difference between each experiment in the series is between 5–15 °C.

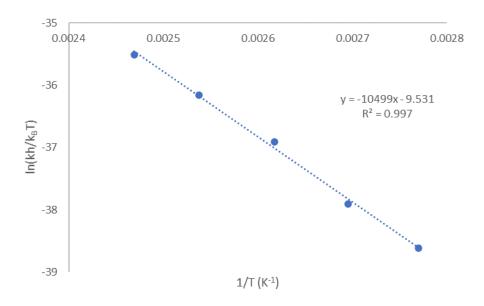


Figure 3.11. Eyring plot for the dearomative DDDA reaction of 1.59 using five different reaction temperatures

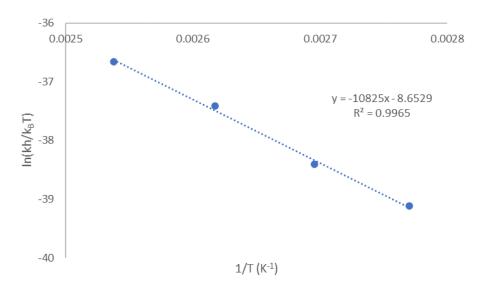


Figure 3.12. Eyring plot for the dearomative DDDA reaction of 1.59 using four different reaction temperatures

3.6.5 Arrhenius Plots

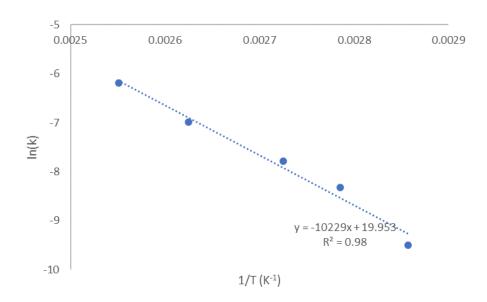


Figure 3.13. Arrhenius plot for the dearomative DDDA reaction of 1.50

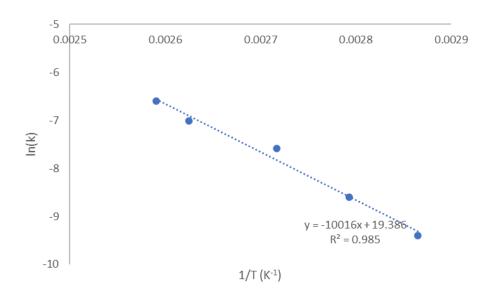


Figure 3.14. Arrhenius plot for the dearomative DDDA reaction of 2.9

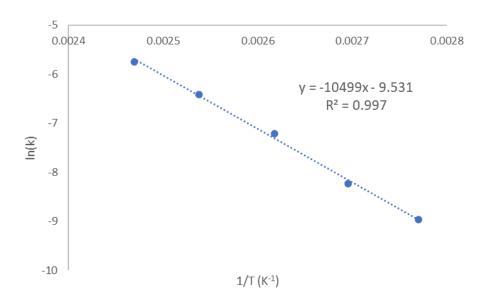


Figure 3.15. Arrhenius plot for the dearomative DDDA reaction of 1.59

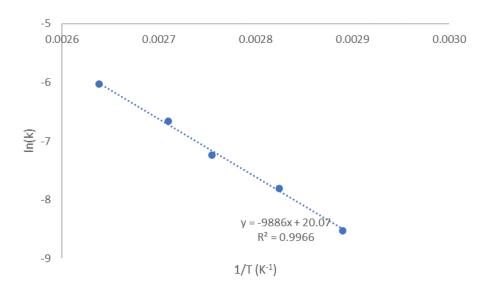


Figure 3.16. Arrhenius plot for the dearomative DDDA reaction of 2.5

3.6.6 Eyring Plots

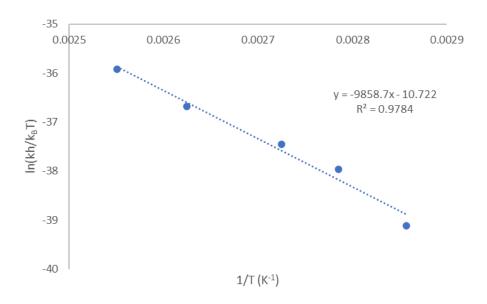


Figure 3.17. Eyring plot for the dearomative DDDA reaction of 1.50

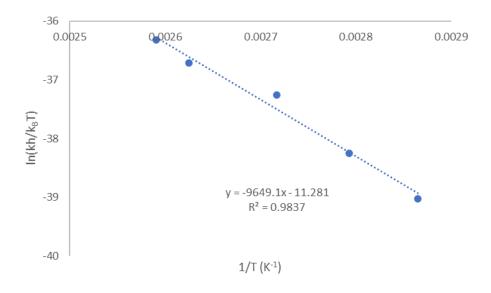


Figure 3.18. Eyring plot for the dearomative DDDA reaction of 2.9

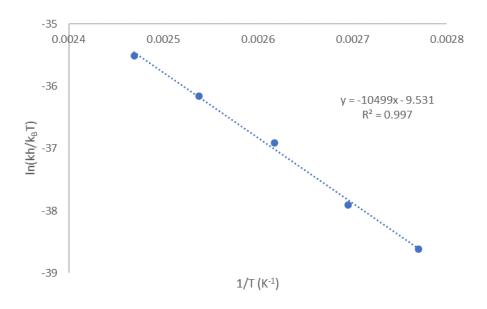


Figure 3.19. Eyring plot for the dearomative DDDA reaction of 1.59

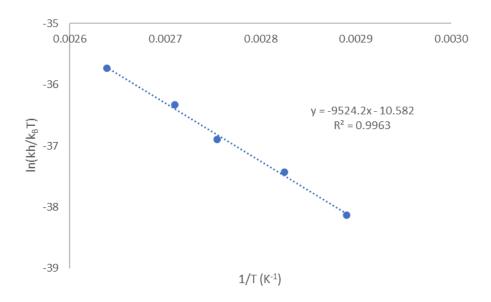


Figure 3.20. Eyring plot for the dearomative DDDA reaction of 2.5

3.6.7 Correlation Plots between DFT Computational and Experimentally Derived Gibbs Free Energies of Activation

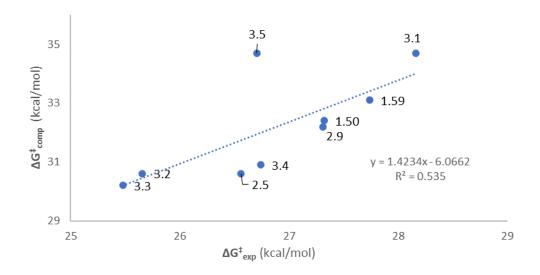


Figure 3.21. Correlation between the closed-shell transition state $\Delta G^{\ddagger}_{comp}$ with B3LYP/B3LYP level of theory and the $\Delta G^{\ddagger}_{exp}$ with 3.5 outlier

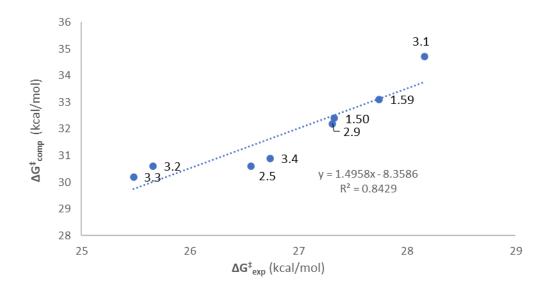


Figure 3.22. Correlation between the closed-shell transition state $\Delta G^{\ddagger}_{comp}$ with B3LYP/B3LYP level of theory and the $\Delta G^{\ddagger}_{exp}$ without 3.5 outlier

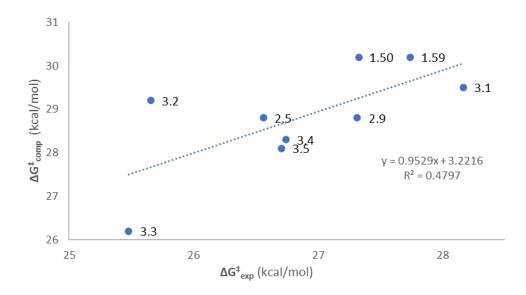


Figure 3.23. Correlation between the closed-shell transition state $\Delta G^{\ddagger}_{comp}$ with M06-2X/M06-2X level of theory and the $\Delta G^{\ddagger}_{exp}$

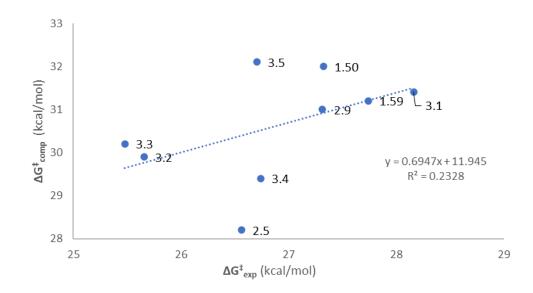


Figure 3.24. Correlation between the closed-shell transition state $\Delta G^{\ddagger}_{comp}$ with M06-2X/B3LYP level of theory and the $\Delta G^{\ddagger}_{exp}$

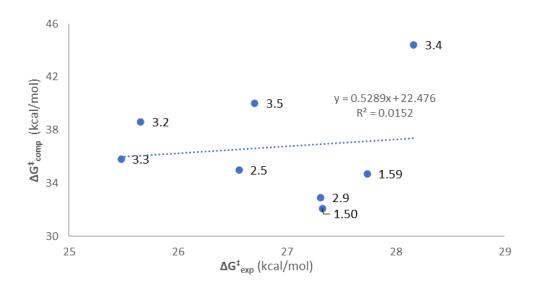


Figure 3.25. Correlation between the open-shell transition state $\Delta G^{\ddagger}_{comp}$ with M06-2X/B3LYP level of theory and the $\Delta G^{\ddagger}_{exp}$

4.0 Divergent Reactivity of the DA Adduct and Regulating the Selectivity for Oxidation or Isomerization Products

Having established the DA adduct to be on the pathway to both the oxidation and isomerization products, we were poised to investigate the mechanisms for their formation from adduct. We launched an investigation where dearomative DDDA conditions were systematically varied to identify how different reaction parameters affected product selectivity as a way to gain insight into the mechanisms of product formation. In turn, this information is used to regulate the dearomative DDDA reaction selectivity for either the oxidation or isomerization product.

This chapter is based on results presented in: Winkelbauer J. A.; Bober A. E.; Brummond K. M., Regulating Divergent Product Selectivity of the Dearomative Didehydro-Diels-Alder Reaction through Mechanistic Insight. Manuscript in preparation, submission expected 2021.

4.1 Reaction Conditions that Affect Product Selectivity

The following effects of varied reaction conditions on the product selectivity of the dearomative DDDA reaction were observed as trends across multiple experiments and are herein reported with limited examples for direct comparison of the observed effects.

4.1.1 Temperature Effect on the Dearomative DDDA Reaction Product Selectivity

To determine the effect that temperature has on the product selectivity of the dearomative DDDA reaction of **2.5**, reaction temperatures were systematically varied, and product ratios were measured. Benzothiophene precursor **2.5** heated for 3 days at 60 °C in *o*-DCB afforded only **2.8**. The reaction progress and product ratios were monitored by ¹H NMR (see NMR overlay in experimental section). **2.19** for 2 h at 150 °C in *o*-DCB afforded a mixture of products with a 74:26 ratio of **2.8**:2.21 along with a large quantity of adduct **2.20** remaining. Performing this same reaction at 180 °C resulted in an increased presence of isomerization product. Reaction of **2.19** heated for 2 h at 180 °C in *o*-DCB afforded a 45:55 ratio of products **2.8**:2.21 with significantly less adduct **2.20** remaining. These three experiments demonstrate that reaction temperature has a significant impact on product ratios. Selectivity for the isomerization product increases at higher temperatures but a mixture of oxidation and isomerization products are afforded. The oxidation product is afforded exclusively at low temperature.

entry	precursor	Т	t	Ratio			Oxid:Isom	
		(°C)	(h)	precursor	adduct	oxid.	isom.	
1	2.5	60	72	0	0	100	0	100:0
2	2.19	150	2	0	65	26	9	74:26
3	2.19	180	2	0	33	30	37	45:55

Scheme 4.1. Dearomative DDDA reactions of 2.5 with varied temperatures and affected product ratios

4.1.2 Concentration Effect on the Dearomative DDDA Reaction Product Selectivity

To determine the effect that reaction concentration has on the product selectivity of the dearomative DDDA reaction of 2.5, reaction concentrations were systematically varied, and product ratios were measured. DDDA precursor 2.5 was heated for 20 min at 225 °C in o-DCB via microwave heating at a concentration of 0.06 M affording a mixture of products with a 88:12 ratio of 2.8:2.7 and some adduct 2.6 remaining. Reaction of 2.5 heated for 20 min at 225 °C in o-DCB via microwave at a concentration of 0.12 M afforded a 77:23 ratio of products 2.8:2.7 with some adduct remaining. These two experiments demonstrate that product ratios vary with changes in reaction concentration. A doubling of the reaction concentration resulted in a modest increase in the isomerization product.

Scheme 4.2. Dearomative DDDA reaction of 2.5 with varied concentration and affected product ratios

4.1.3 Solvent Effect on the Dearomative DDDA Reaction Product Selectivity

To determine the effect that solvent has on the product selectivity of the dearomative DDDA reaction of **2.5**, reaction solvents with different dielectric constants (ϵ) were applied and product ratios were measured. **2.19** was heated for 2 h at 150 °C in o-DCB (ϵ = 9.9) and afforded

a mixture of products in a 74:26 ratio of **2.8:2.21** with considerable adduct **2.6** remaining. **2.5** heated for 3 h at 150 °C in DMF-d₇ (ε = 36.7) afforded a 23:77 ratio of **2.8:2.7** with no adduct remaining. Heating **2.5** in acetonitrile (ε = 37.5) for 5 min at 150 °C afforded a 7:93 ratio of **2.8:2.7** with a considerable amount of adduct remaining. These three experiments demonstrate that product ratios for the dearomative DDDA reaction of **2.5** vary with changes in solvent dielectric constant. Selectivity for the isomerization product shows a modest increase as the solvent dielectric constant is increased.

Scheme 4.3. Dearomative DDDA reaction of 2.5 with varied solvent and affected product ratios

0

45

51

7:93

4.1.4 Water Additive Effect on the Dearomative DDDA Reaction Product Selectivity

MeCN

3

2.5

DDDA reaction of **2.5**, water was added to increase the dielectric constant of the reaction media and product ratios were measured. **2.5** heated for 3 h at 150 °C in DMF-d₇ afforded a mixture of products with a 23:77 ratio of **2.8**:2.7. Reaction of **2.5** heated for 3 h at 150 °C in D₂O/DMF-d₇ (10% v/v) afforded a 9:91 ratio of products **2.8**:2.21. These two experiments demonstrate that product ratios for the dearomative DDDA reaction of **2.5** vary with the presence of water.

Selectivity for the isomerization product shows a modest increase in the presence of water. The most striking observation is the isolation of isomerization product **4.1** with deuterium incorporation. This finding is discussed further in section 4.4.

Scheme 4.4. Dearomative DDDA reaction of 2.5 with added water and affected product ratios

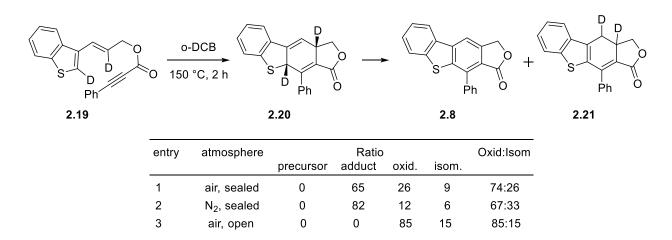
4.1.5 BHT Additive Effect on the Dearomative DDDA Reaction Product Selectivity

To determine the effect that a radical inhibitor has on the product selectivity of the dearomative cycloaddition of **2.5**, **1.59**, **2.9**, and **1.50**, 3,5-di-tert-4-butylhydroxytoluene (BHT) was added and product ratios were measured and compared to parallel reactions without BHT. Four separate reactions of precursors **2.5**, **1.59**, **2.9**, and **1.50** were heated for 18 h at 110 °C in toluene-d₈ within an NMR tube (entries 1, 3, 5, and 7, Table 4.1). Reactions were then performed under the same conditions but with 1 equivalent of added BHT (entries 2, 4, 6, and 8). Both sets of reactions were monitored at the 3, 8, and 18 h timepoints by pausing the reaction for ¹H NMR analysis of the crude solution. Yields and ratios were determined by comparing ¹H NMR resonances of substrates to a mesitylene internal standard. **2.5** showed complete selectivity for oxidation product under both sets of conditions (entries 1 and 2). **1.59**, **2.9**, and **1.50** all showed a

marked increase in isomerization product in the presence of BHT (compare entries 3–8). These four sets of experiments demonstrate that product ratios for the dearonative DDDA reaction of vary with the presence of BHT. Selectivity for the isomerization product shows a modest increase in the presence of BHT.

Table 4.1. Dearomative DDDA reaction of precursors with added BHT and affected product ratios

Entry	Precursor	Solvent/ Additive	Oxid:Isom	Yield (%)
1	2.5	Tol-d ₈	100:0	94
2	2.5	Tol-d ₈ BHT (1 equiv)	100:0	89
3	1.59	$Tol-d_8$	52:48	72
4	1.59	Tol-d ₈ BHT (1 equiv)	29:71	84
5	2.9	$Tol-d_8$	76:24	97
6	2.9	Tol-d ₈ BHT (1 equiv)	67:33	88
7	1.50	$Tol-d_8$	93:7	90
8	1.50	Tol-d ₈ BHT (1 equiv)	67:33	83


Additionally, the ratio of adduct observed at the 3 h timepoint was significantly increased for reactions that included BHT. Reaction of **2.5** showed an increase of adduct from 43% to 70% at the 3 h timepoint with BHT added (see experimental section 4.6.7). Reaction of **1.59** showed an increase from 5% to 12% with BHT added. Reaction of **2.9** showed an increase of adduct from 3% to 56% at the 3 h timepoint with BHT added, and reaction of **1.50** showed an increase from 2% to 32% with BHT added. These experiments demonstrate that BHT slows conversion of adduct to products as evidenced by an increased ratio of adduct at the 3 h timepoint.

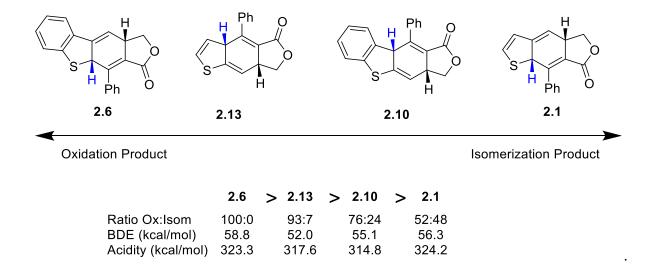
The reactions of **2.5** in toluene-d₈ at 110 °C with and without BHT additive (entries 1 and 2, Table 4.1) afforded exclusively oxidation product **2.8**. To determine the effect of BHT additive on the product selectivity, these two reactions were repeated in *o*-DCB-d₄ at 150 °C. Reaction of **2.5** in *o*-DCB-d₄ at 150 °C without BHT additive afforded a ratio of 82:18 oxidation to isomerization product. Reaction of **2.5** in *o*-DCB-d₄ at 150 °C with 1 equivalent of BHT additive afforded a ratio of 77:23 oxidation to isomerization product. Presence of BHT additive afforded a small increase in formation of isomerization product under these conditions for **2.5** in comparison to the other precursors. It remains unclear as to why the addition of BHT had less of an impact on product selectivity for dearomative DDDA reaction of **2.5**.

4.1.6 Atmosphere Effect on the Dearomative DDDA Reaction Product Selectivity

To determine the effect that atmosphere has on the product selectivity of the dearomative cycloaddition of **2.5**, the reaction atmosphere was varied, and product ratios were measured. **2.19** heated for 2 h at 150 °C in *o*-DCB, sealed via a screw-top vial under air, afforded a mixture of products with a 65:26:9 ratio of **2.20:2.8:2.21**. A repeat of this reaction under an atmosphere of nitrogen afforded a mixture of products with a 82:12:6 ratio of **2.20:2.8:2.21**. Reaction of **2.19**

heated for 2 h at 150 °C in *o*-DCB, open to air via a 16-gauge needle, afforded a mixture of products with a 85:15 ratio of **2.8:2.21** and no remaining adduct present. Replacing the air atmosphere with one of nitrogen afforded an increased accumulation of adduct as conversion to oxidation product was slowed. Reaction that was open to air afforded an increase in the conversion of adduct to oxidation product. Selectivity for the oxidation product shows an atmosphere with increased exposure to air.

Scheme 4.5. Dearomative DDDA reaction of 2.5 with air exposure and affected product ratios


4.2 Substrate Identity Effect on the Dearomative DDDA Reaction Product Selectivity

To determine the effect that the tether attachment point has on the product selectivity of the dearomative cycloaddition, substrates **2.5**, **1.59**, **2.9**, and **1.50** were reacted under identical condition and product ratios were measured. In identical reactions, **2.5**, **1.59**, **2.9**, and **1.50** were heated for 18 h at 110 °C in toluene-d₈ (Table 4.1, entries 1, 3, 5, and 7). Reaction of **2.5** afforded a higher ratio of oxidation to isomerization products than **2.9**, yet reaction of **1.59** afforded a lower

ratio of oxidation to isomerization products than **1.50**. Tether position did not show a clear effect on product ratios for these precursors.

Comparison of the same set of reactions also showed the effect of heteroarene-fused benzene ring on the product selectivity. Reaction of **2.5** afforded a higher ratio of oxidation to isomerization products than **1.59**, yet reaction of **2.9** afforded a lower ratio of oxidation to isomerization products than **1.50**. The presence of a fused benzene ring did not show a clear effect on product ratios for these precursors.

Relative product selectivity based upon the ratio of oxidation to isomerization products was then compared to computational gas phase bond dissociation energies (BDE's) and acidities for the bisallylic hydrogen nearest the heteroarene in the adduct. These calculations were performed at the (u)M06-2X/6-311+g(d,p)//(u)M06-2X/6-31+g(d) level of theory by our collaborator Elena Kusevska from the Peng Liu research group. No correlation was found between the experimental product ratios and the calculated BDE's or acidities at this level of theory. These preliminary computational analyses are insufficient to predict experimental dearomative DDDA product ratios and therefore suggest that computational transition state analysis for the product formation steps would be necessary in order to use computational calculations as a predictive tool for determination of product selectivity.

Figure 4.1. Ratio of oxidation product to isomerization product compared to computationally calculated BDE and acidity of the transferred proton of the Diels-Alder adduct

4.3 Evidence for Oxidation Product Formation via Dehydrogenation of Diels-Alder Adduct with Oxygen

As previously discussed, Diels-Alder adduct at room temperature, in *o*-DCB with air bubbled through for 1 h afforded complete selectivity for oxidation product (see section 2.4.1). Also, no evidence was observed for transformation of isomerization product into oxidation product under thermal conditions with or without enhanced exposure to air. These results support the hypothesis that formation of oxidation product is dependent on the presence of molecular oxygen. This is markedly different than the styrenyl dearomative DDDA reaction previously reported by Kocsis which afforded oxidation product and also detected evolved hydrogen gas in both aerobic and anaerobic conditions (see section 1.3.2).⁵⁰ The dearomative DDDA reaction of vinyl heteroarenes does not appear to involve release of hydrogen gas akin to the styrenyl dearomative DDDA reaction but rather produces oxidation product by an atmosphere dependent

dehydrogenation pathway similar to that described by Hendry for the oxidation of 1,4-cyclohexadiene to benzene.⁶² This pathway may be initiated by triplet molecular oxygen and then propagated by hydroperoxyl radicals which Hoffman and coworkers have found to be far more reactive.⁶³ These formed peroxides may then decompose into water and molecular oxygen.

Scheme 4.6. Formation of oxidation product through a oxygen mediated dehydrogenation

Reactions to monitor for the evolution of hydrogen gas as a product in the formation of oxidation product afforded no detection of H₂ gas. These experiments include seeking a detectable H₂ gas resonance in the ¹H NMR of reactions that afforded oxidation product, as well as seeking a detectable presence of H₂ gas in the headspace of a sealed vial reaction that afforded oxidation product. To check for the evolution of hydrogen gas as a product of oxidation product formation, ¹H NMR was analyzed for the reaction of **2.5** at 150 °C in *o*-DCB-d₄ after 3 and 8 hours (Scheme 4.7). After the reaction was completed, H₂ gas was bubbled through the solution for 2 min. and ¹H NMR was performed to observe the resonance for H₂ gas at 4.53 ppm. The solution was then bubbled through with argon gas far 2 min. and ¹H NMR was performed to observe the disappearance of the resonance for H₂ gas at 4.53 ppm. These experiments confirmed the ¹H NMR chemical shift for H₂ gas in *o*-DCB-d₄ to be 4.53 ppm. A resonance is observed at 4.53 ppm in the ¹H NMR at the 8 h timepoint, but the integration of that resonance remains consistent after

bubbling of argon gas through the solution, confirming the resonance to not be H₂ but rather a decomposition or unknown byproduct. The ¹H NMR for this reaction at the 3 h timepoint afforded a 17:65:18 ratio of **2.6:2.8:2.7**, but no resonance was observed for H₂ gas. This experiment was performed under the same reaction conditions in which H₂ gas was observed by ¹H NMR in dearomative DDDA reactions of styrene substrates.⁵⁰ The resonance for H₂ gas when bubbled through a solution of toluene-d₈ was observed to appear at 4.51 ppm by ¹H NMR. ¹H NMR was analyzed for the reaction of **2.5** at 110 °C in toluene-d₈ after 3, 8, and 18 hours, as well as the parallel reactions of **1.59**, **2.9**, and **1.50** (Table 4.1, see experimental section for NMR spectra). No H₂ gas was observed in the reaction solution by ¹H NMR for any substrate at any timepoint.

Scheme 4.7. Dearomative DDDA reaction of 2.5 in tol-d₈ at 150 °C for 3 h

To check the reaction headspace for evolved hydrogen gas, two sealed vial reactions were performed. **2.5**, sealed in a vial under air was heated for 90 min at 150 °C in *o*-DCB and afforded a 41:39:20 ratio of **2.6:2.8:2.7**. The vial was allowed to cool to room temperature and the headspace of the reaction was analyzed with no detection of hydrogen gas. The same experiment was repeated with precursor **2.19** and afforded a 77:18:5 ratio of **2.6:2.8:2.21**. No deuterium gas was detected in the reaction headspace for this reaction. For both reactions, the detection of evolved gas is inconclusive due to the limited amount of oxidation product that was formed. Yet, the formation of oxidation product was dramatically reduced in the sealed conditions with

comparison to the reaction with air bubbled through, presumably due to the limited amount of air available in the sealed vessel.

The higher ratio of oxidation product found when the reaction has an increased exposed to air is a result of the increased exposure to oxygen from the air. Likewise, reactions at lower temperatures, concentrations, and longer durations allow for increased exposure to air which affords a higher ratio of oxidation product. This mechanism differs from those of styrenyl precursors, which selectively provided oxidized product at elevated temperatures. For most cases, the conversion of adduct to oxidation product is slowed in the presence of BHT and the ratio of oxidation product to isomerization product decreases which provides evidence that this transformation of adduct to oxidation product involves a radical process (see section 4.1.5). The presence of BHT in the reaction slows the dehydrogenation of adduct by acting as a radical scavenger for either oxygen in the solution or hydrogen atom abstracted adduct, thus slowing the formation of oxidation product.

4.4 Evidence for Isomerization Product Formation via Proton Transfer of Diels-Alder Adduct

Deuterium incorporation was observed when D_2O was introduced as an additive in dearomative DDDA reaction of **2.5**. Reaction of **2.5** heated for 3 h at 150 °C in D_2O/DMF (10% v/v) afforded predominantly isomerization product **4.1** with 76% deuterium incorporation at the X position as well as some **2.8** (91:9 respectively, Scheme 4.8). Deuterium incorporation was determined by comparing the integral intensities of resonances H_C at 3.70 ppm and H_A at 2.82

ppm. Product **4.1** was afforded as a single diastereomer and the stereochemistry shown was determined by the disappearance of the splitting for H_A ($J^{AC} = 17.3 \text{ Hz}$).

We proposed that deuterium incorporation into isomerization product in the presence of D_2O would also occur with other precursors and in less nonpolar solvents. Dearomative DDDA reaction of **1.59** was performed in toluene with added D_2O rather than in DMF. Reaction of **1.59** heated for 18 h at 110 °C in D_2O /toluene (5% v/v) afforded a ratio of 83:17 of oxidation product to isomerization product in 53% yield. Deuterium incorporation was observed in the isomerization product and was determined by comparing the integral intensities of resonances X_A at 3.14 ppm, X_B at 2.70 ppm, and a methylene hydrogen of the lactone at 4.72 ppm. Product **4.3** was afforded as a mixture of diastereomers with overall deuterium incorporation of 53% at X_A and 40% at X_B .

Scheme 4.8. Mechanism of deuterium incorporation observed in dearomative Diels-Alder reactions with deuterium oxide present

The deuterium incorporation found in the isomerization product support formation of the product by an intermolecular, ionic proton transfer. Deuterium incorporation via a radical mechanism would be unlikely due to unfavorable generation of a hydroxyl radical. Deprotonation of the bis-allylic C–H_A of **2.6** affords the resonance-stabilized anion **4.2** that reacts with D₂O to afford **4.1**. The orbital alignment of bis-allylic hydrogen H_A with the π -orbitals of the adjacent α , β -unsaturated lactone enhances the acidity of the adduct. Selectivity for deuteration at the concave face is attributed to the steric incumbrance posed by H_C at the ring-fusion.

Enhanced selectivity for isomerization product was found in reactions with elevated temperatures and higher concentrations, likely due to increased intermolecular collisions necessary for the proton transfer. Reactions in solvents of higher polarity also afforded enhanced selectivity for isomerization product, most likely due to improved stabilization of an ionic intermediate. Finally, water, as an additive, acts as a more sterically accessible proton source for protonation of the ionic intermediate to afford enhanced selectivity for isomerization product.

4.5 Conclusions

We established that the dearomative DDDA reaction proceeds to either oxidation or isomerization products from the DA adduct via divergent mechanistic pathways with reaction conditions of temperature, concentration, solvent polarity, atmosphere, and mild additives as factors that control product selectivity. Reaction of DA adduct with bubbling air at room temperature supports the formation of oxidation product by an oxygen effected dehydrogenation of the adduct. Formation of isomerization product by an intermolecular, ionic proton transfer is supported by reactions where deuteron abstraction from D₂O affords deuterium incorporation into the isomerization product. Selectivity for the oxidation product was enhanced with reaction conditions of lower temperatures, non-polar solvents, lower concentrations, and increased exposure to air. Selectivity for the isomerization product was enhanced with conditions of higher temperatures, polar solvents, higher concentrations, water or BHT additives, and decreased exposure to air. Our mechanistic analysis of the dearomative DDDA reaction of heteroarenes has afforded improved understanding of its divergent mechanisms of reactivity and has allowed us to

determine the factors which control product selectivity. These findings enable us to enhance the scope and utility of this reaction for these and future substrates.

4.6 Experimental

4.6.1 General Methods

Unless otherwise indicated, all reactions were performed in flame-dried glassware under an air atmosphere and stirred with Teflon-coated magnetic stir bars. All commercially available compounds were purchased and used as received unless otherwise specified. Tetrahydrofuran (THF), diethyl ether (Et₂O), and dichloromethane (DCM) were purified by passing through alumina using a Sol-Tek ST-002 solvent purification system. Deuterated chloroform (CDCl₃) was dried over 4Å molecular sieves. Nitrogen gas was purchased from Matheson Tri Gas. Conventional heating was used for reactions that were monitored by ¹H NMR or performed open to the air. All microwave-mediated reactions were carried out using a Biotage Initiator Exp or Anton-Paar Monowave 300 microwave synthesizer. Purification of the compounds by flash column chromatography was performed using silica gel (40-63 µm particle size, 60 Å pore size). TLC analyses were performed on silica gel F₂₅₄ glass plates (250 µm thickness). ¹H NMR and ¹³C NMR spectra were recorded on Bruker Avance 300, 400, or 500 MHz spectrometers. Spectra were referenced to residual chloroform (7.26 ppm, ¹H; 77.16 ppm, ¹³C) or o-dichlorobenzene (6.93 ppm, ¹H; 130.04 ¹³C) unless otherwise specified. Chemical shifts are reported in ppm, multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet), and bs (broad singlet). Coupling constants, J, are reported in hertz (Hz). All NMR spectra were obtained at room

temperature. IR spectra were obtained using a Nicolet Avatar E.S.P. 360 FT-IR. EI mass spectroscopy was performed on a Waters Micromass GCT high resolution mass spectrometer, while ES mass spectroscopy was performed on a Waters Q-TOF Ultima API, Micromass UK Limited high-resolution mass spectrometer.

4.6.2 General Procedures for Dearomative DDDA Reactions

4.6.2.1 General Procedure D: Dearomative DDDA Reaction – Conventional Heating

An oven-dried NMR tube was charged with dearomative DDDA precursor (1 equiv) dissolved in solvent under an atmosphere of air. In some cases, butylated hydroxytoluene (BHT), deuterium oxide (D₂O), or water was added. In some cases, an internal standard of mesitylene was added to calculate an NMR yield. The NMR tube was sealed with a polypropylene cap and lowered into a preheated oil bath. Reaction progress was monitored by ¹H NMR by comparing the resonance integrations for starting material, adduct, oxidized product, and isomerized product at different time points. The reaction was paused for ¹H NMR analysis. The NMR tube was removed from the oil bath, rinsed with hexanes, and wiped with a ChemWipe. After obtaining an NMR spectrum, the tube was returned to the oil bath. Reaction time does not include the time required to obtain NMR spectrum at each time point (~15-20 min each). All yields are unoptimized.

4.6.2.2 General Procedure E: Dearomative DDDA Reaction – Microwave Heating

An oven-dried microwave vial equipped with a stir bar was charged with dearomative DDDA precursor (1 equiv) dissolved in solvent under an atmosphere of air. The vial was sealed with a Teflon-lined septum crimp cap and was heated in a Biotage Initiator Exp or Anton-Paar

Monowave 300 microwave synthesizer. The microwave parameters were set to variable power, constant temperature, fixed hold time set to on, and absorption set to "normal" for nonpolar solvents (o-DCB, DCE, CDCl₃) or "high" for polar solvents (acetonitrile, DMF). Product ratios were determined by comparing the resonance integrations for starting material, adduct, oxidized product, and isomerized product from the ¹H NMR of the reaction solution using No-D spectroscopy, ⁶⁴ or by removing the solvent and re-dissolving in CDCl₃. Volatile solvents (DCE) were removed by rotary evaporation, o-DCB and PhNO₂ were removed by passing the reaction solution through a plug of silica gel with hexanes as eluent, and DMF was removed through aqueous extraction. All yields are unoptimized.

4.6.3 Experiments Showing the Effect of Temperature

Rxn 1. Follows General Procedure D. Precursor **2.5** (7 mg, 0.02 mmol) and mesitylene (3 μL, 0.02 mmol) in o-DCB-d₄ (0.5 mL, 0.04M) was heated at 60 °C for 66 h. A 0:0:100:0 ratio of **2.5**, **2.6**, **2.8**, and **2.7** was obtained in 58% NMR yield based upon the mesitylene internal standard. Ratios were determined by comparing the ¹H NMR resonances at 6.63 ppm (1H) for **2.5**, 5.46 ppm (1H) for **2.6**, and 5.21 ppm (2H) for **2.8** to the resonance at 6.64 ppm for mesitylene.

Table 4.2. Ratio of compounds in 4.6.3 – Rxn 1

Time (h)	2.5	2.6	2.8	2.7	Yield (%)
0	100	0	0	0	100
2	89	6	5	0	102
4	86	5	10	0	99
9	69	6	25	0	82
20	41	6	52	0	71
32	21	4	74	0	74
44	9	3	87	0	65
55	0	0	100	0	55

66	0	0	100	0	58

Rxn 2. A 1-mL screw-top flask with septum lid and stir bar was charged with precursor 2.19 (24 mg, 0.075 mmol) dissolved in o-dichlorobenzene (0.50 mL, 0.15 M) and sealed with a Teflon-lined septum screw cap under air. The solution was lowered into a pre-heated oil bath at 150 °C. After 2 h, the the solution was allowed to cool to room temperature, then transferred to an NMR tube for ¹H NMR analysis. Product ratios were determined by comparing the resonance integrations for starting material, adduct, oxidized product, and isomerized product from the ¹H NMR of the crude reaction solution using No-D spectroscopy. A 0:65:26:9 ratio of 2.19, 2.20, 2.8, and 2.21 was obtained. Ratios were determined by comparing the ¹H NMR resonances at 4.56 ppm (1H) for 2.6, 5.21 ppm (2H) for 2.8, and 2.49 ppm (1H) for 2.7. An unknown impurity identified by the resonance at 5.04 ppm exists in the starting material and persisted through the reaction to completion.

Rxn 3. Follows General Procedure D. Precursor **2.19** (22 mg, 0.069 mmol) in o-DCB (0.50 mL, 0.14 M) was heated at 180 °C for 120 min. A 0:33:30:37 ratio of **2.19**, **2.20**, **2.8**, and **2.21** was obtained. Ratios were determined by comparing the ¹H NMR resonances at 4.56 ppm (1H) for **2.6**, 5.21 ppm (2H) for **2.8**, and 2.49 ppm (1H) for **2.7.** An unknown impurity identified by the resonance at 5.04 ppm exists in the starting material and persisted through the reaction to completion.

4.6.4 Experiments Showing the Effect of Concentration

Rxn 1. Follows General Procedure E. Precursor **2.5** (19 mg, 0.060 mmol) in o-DCB (1.0 mL, 0.060 M) was heated at 225 °C for 20 min. A 0:8:81:11 ratio of **2.5**, **2.6**, **2.8**, and **2.7** was obtained. Ratios were determined by comparing the ¹H NMR resonances at 6.27 ppm (1H) for **2.6**, 5.44 ppm (2H) for **2.8**, and 2.79 ppm (1H) for **2.7**.

Rxn 2. Follows General Procedure E. Precursor 2.5 (39 mg, 0.12 mmol) in o-DCB (1.0 mL, 0.12 M) was heated at 225 °C for 20 min. A 0:14:66:20 ratio of 2.5, 2.6, 2.8, and 2.7 was obtained. Ratios were determined by comparing the ¹H NMR resonances at 6.27 ppm (1H) for 2.6, 5.44 ppm (2H) for 2.8, and 2.79 ppm (1H) for 2.7.

4.6.5 Experiments Showing the Effect of Solvent Polarity

Rxn 1. A 1-mL screw-top flask with septum lid and stir bar was charged with precursor 2.19 (24 mg, 0.075 mmol) dissolved in o-dichlorobenzene (0.50 mL, 0.15 M) and sealed with a Teflon-lined septum screw cap under air. The solution was lowered into a pre-heated oil bath at 150 °C. After 2 h, the the solution was allowed to cool to room temperature, then transferred to an NMR tube for ¹H NMR analysis. Product ratios were determined by comparing the resonance integrations for starting material, adduct, oxidized product, and isomerized product from the ¹H NMR of the crude reaction solution using No-D spectroscopy. A 0:65:26:9 ratio of 2.19, 2.20, 2.8, and 2.21 was obtained. Ratios were determined by comparing the ¹H NMR resonances at 4.56 ppm (1H) for 2.6, 5.21 ppm (2H) for 2.8, and 2.49 ppm (1H) for 2.7. An unknown impurity identified

by the resonance at 5.04 ppm exists in the starting material and persisted through the reaction to completion.

Rxn 2. Follows General Procedure D. Precursor **2.5** (10 mg, 0.031 mmol) in DMF-d₇ (0.50 mL, 0.060 M), sealed under an atmosphere of air, was heated at 150 °C for 180 min. A 0:0:23:77 ratio of **2.5**, **2.6**, **2.8**, and **2.7** was obtained in 60% isolated yield. Ratios were determined by comparing the ¹H NMR resonances at 5.46 ppm (2H) for **2.8**, and 4.84 ppm (1H) for **2.7**.

Rxn 3. Follows General Procedure D. Precursor **2.5** (6 mg, 0.02 mmol) in CH₃CN (0.5 mL, 0.04 M) was heated at 150 °C for 5 min. A 0:45:4:51 ratio of **2.5**, **2.6**, **2.8**, and **2.7** was obtained. Ratios were determined by comparing the ¹H NMR resonances at 6.20 ppm (1H) for **2.6**, 5.46 ppm (2H) for **2.8**, and 2.81 ppm (1H) for **2.7**.

4.6.6 Experiments Showing the Effect of Water Additive

Rxn 1. Follows General Procedure D. Precursor **2.5** (10 mg, 0.031 mmol) in DMF-d₇ (0.50 mL, 0.060 M), sealed under an atmosphere of air, was heated at 150 °C for 180 min. A 0:0:23:77 ratio of **2.5**, **2.6**, **2.8**, and **2.7** was obtained in 60% isolated yield. Ratios were determined by comparing the ¹H NMR resonances at 5.46 ppm (2H) for **2.8**, and 4.84 ppm (1H) for **2.7**.

Rxn 2. Follows General Procedure D. Precursor **2.5** (10 mg, 0.032 mmol) and D₂O (0.050 mL, 2.8 mmol) in DMF (0.45 mL, 0.60 M) was heated at 150 °C for 180 min. A 0:0:9:91 ratio of **2.5**, **2.6**, **2.8** and **4.1** was obtained in 50% yield. The isomerization product was observed to have 76%

deuterium incorporation. Ratios were determined by comparing the ¹H NMR resonances at 5.46 ppm (2H) for **2.8**, and 2.81 ppm (1H) for **2.7**.

4.6.7 Experiments Showing the Effect of BHT Additive

Rxn 1. Follows General Procedure D. Precursor **2.5** (6 mg, 0.02 mmol) and mesitylene (3 μL, 0.02 mmol) in toluene-d₈ (0.5 mL, 0.04M) was heated at 110 °C for 18 h. The experiment was paused briefly at the 3 h and 8 h time points for ¹H NMR analysis. A final ratio 0:0:100:0 of **2.5**, **2.6**, **2.8**, and **2.7** was obtained in 89% yield based on internal standard. Ratios were determined by comparing the ¹H NMR resonances at 6.07 ppm (1H) for **2.5**, 5.08 ppm (1H) for **2.6**, and 4.63 ppm (2H) for **2.8** to the resonance at 6.67 ppm for mesitylene.

Table 4.3. Ratio of compounds in 4.6.7 – Rxn 1

Time (h)	2.5	2.6	2.8	2.7	Yield (%)
3	0	43	57	0	100
8	0	0	100	0	91
18	0	0	100	0	94

Rxn 2. Follows General Procedure D. Precursor **2.5** (6 mg, 0.02 mmol), BHT (4 mg, 0.02 mmol), and mesitylene (3 μL, 0.02 mmol) in toluene-d₈ (0.5 mL, 0.04M) was heated at 110 °C for 18 h. The experiment was paused briefly at the 3 h and 8 h time points for ¹H NMR analysis. A final ratio 0:0:100:0 of **2.5**, **2.6**, **2.8**, and **2.7** was obtained in 96% yield based on internal standard. Ratios were determined by comparing the ¹H NMR resonances at 6.07 ppm (1H) for **2.5**, 5.08 ppm (1H) for **2.6**, and 4.63 ppm (2H) for **2.8** to the resonance at 6.67 ppm for mesitylene.

Table 4.4. Ratio of compounds in 4.6.7 – Rxn 2

Time (h)	2.5	2.6	2.8	2.7	Yield (%)
3	0	70	30	0	100
8	0	0	100	0	86
18	0	0	100	0	89

Rxn 3. Follows General Procedure D. Precursor **1.59** (6 mg, 0.02 mmol) and mesitylene (3 μL, 0.02 mmol) in toluene-d₈ (0.5 mL, 0.04M) was heated at 110 °C for 18 h. The experiment was paused briefly at the 3 h and 8 h time points for ¹H NMR analysis. A final ratio 5:0:49:46 of **1.59**, **2.1**, **1.60**, and **1.61** was obtained in 70% yield based on internal standard. Ratios were determined by comparing the ¹H NMR resonances at 5.84 ppm (1H) for **1.59**, 3.30 ppm (1H) for **2.1**, 4.56 ppm (2H) for **1.60**, and 3.24 ppm (1H) for **1.61** to the resonance at 6.67 ppm for mesitylene.

Table 4.5. Ratio of compounds in 4.6.7 – Rxn 3

Time (h)	1.59	2.1	1.60	1.61	Yield (%)
3	65	5	20	10	93
8	31	0	38	31	81
18	5	0	49	46	72

Rxn 4. Follows General Procedure D. Precursor **1.59** (6 mg, 0.02 mmol), BHT (4 mg, 0.02 mmol), and mesitylene (3 μL, 0.02 mmol) in toluene-d₈ (0.5 mL, 0.04M) was heated at 110 °C for 18 h. The experiment was paused briefly at the 3 h and 8 h time points for ¹H NMR analysis. A final ratio 0:0:29:71 of **1.59**, **2.1**, **1.60**, and **1.61** was obtained in 85% yield based on internal standard. Ratios were determined by comparing the ¹H NMR resonances at 5.84 ppm (1H) for **1.59**, 3.30 ppm (1H) for **2.1**, 4.56 ppm (2H) for **1.60**, and 3.24 ppm (1H) for **1.61** to the resonance at 6.67 ppm for mesitylene.

Table 4.6. Ratio of compounsd in 4.6.7 – Rxn 4

Time (h)	1.59	2.1	1.60	1.61	Yield (%)
3	58	12	7	23	101
8	23	0	17	60	93
18	0	0	29	71	84

Rxn 5. Follows General Procedure D. Precursor 2.9 (6 mg, 0.02 mmol) and mesitylene (3 μL, 0.02 mmol) in toluene-d₈ (0.5 mL, 0.04M) was heated at 110 °C for 18 h. The experiment was paused briefly at the 3 h and 8 h time points for ¹H NMR analysis. A final ratio 0:0:76:24 of 2.9, 2.10, 2.12, and 2.11 was obtained in 97% yield based on internal standard. Ratios were determined by comparing the ¹H NMR resonances at 6.0 ppm (1H) for 2.9, 5.08 ppm (1H) for 2.10, 4.48 ppm (2H) for 2.12, and 2.74 ppm (1H) for 2.11 to the resonance at 6.67 ppm for mesitylene.

Table 4.7. Ratio of compounds in 4.6.7 – Rxn 5

Time (h)	2.9	2.10	2.12	2.11	Yield (%)
3	14	3	72	11	127
8	0	0	76	24	95
18	0	0	76	24	97

Rxn 6. Follows General Procedure D. Precursor **2.9** (6 mg, 0.02 mmol), BHT (4 mg, 0.02 mmol), and mesitylene (3 μL, 0.02 mmol) in toluene-d₈ (0.5 mL, 0.04M) was heated at 110 °C for 18 h. The experiment was paused briefly at the 3 h and 8 h time points for ¹H NMR analysis. A final ratio 0:0:67:33 of **2.9**, **2.10**, **2.12**, and **2.11** was obtained in 91% yield based on internal standard. Ratios were determined by comparing the ¹H NMR resonances at 6.0 ppm (1H) for **2.9**, 5.08 ppm

(1H) for **2.10**, 4.47 ppm (2H) for **2.12**, and 2.90 ppm (1H) for **2.11** to the resonance at 6.67 ppm for mesitylene.

Table 4.8. Ratio of compounds in 4.6.7 – Rxn 6

Time (h)	2.9	2.10	2.12	2.11	Yield (%)
3	13	56	28	2	97
8	0	0	66	34	92
18	0	0	67	33	88

Rxn 7. Follows General Procedure D. Precursor **1.50** (6 mg, 0.02 mmol) and mesitylene (3 μL, 0.02 mmol) in toluene-d₈ (0.5 mL, 0.04M) was heated at 110 °C for 18 h. The experiment was paused briefly at the 3 h and 8 h time points for ¹H NMR analysis. A final ratio 0:0:93:7 of **1.50**, **2.13**, **2.14**, and **1.51** was obtained in 87% yield based on internal standard. Ratios were determined by comparing the ¹H NMR resonances at 5.93 ppm (1H) for **1.50**, 5.14 ppm (1H) for **2.13**, 4.47 ppm (2H) for **2.14**, and 3.17 ppm (1H) for **1.51** to the resonance at 6.67 ppm for mesitylene.

Table 4.9. Ratio of compounds in 4.6.7 – Rxn 7

Time (h)	1.50	2.13	2.14	1.51	Yield (%)
3	35	2	58	4	118
8	6	0	88	7	101
18	0	0	93	7	90

Rxn 8. Follows General Procedure D. Precursor **1.50** (6 mg, 0.02 mmol), BHT (4 mg, 0.02 mmol), and mesitylene (3 μL, 0.02 mmol) in toluene-d₈ (0.5 mL, 0.04M) was heated at 110 °C for 18 h. The experiment was paused briefly at the 3 h and 8 h time points for ¹H NMR analysis. A final ratio 0:0:70:30 of **1.50**, **2.13**, **2.14**, and **1.51** was obtained in 91% yield based on internal standard. Ratios were determined by comparing the ¹H NMR resonances at 5.90 ppm (1H) for **1.50**, 6.65

ppm (1H) for **2.13**, 4.48 ppm (2H) for **2.14**, and 3.15 ppm (1H) for **1.51** to the resonance at 6.67 ppm for mesitylene.

Table 4.10. Ratio of compounds in 4.6.7 – Rxn 8

Time (h)	1.50	2.13	2.14	1.51	Yield (%)
3	35	32	22	11	125
8	8	11	54	27	100
18	0	0	70	30	83

Rxn 9. Follows General Procedure D. Precursor **2.5** (10 mg, 0.03 mmol) and mesitylene (3 μL, 0.02 mmol) in *o*-DCB-d₄ (0.5 mL, 0.06M) was heated at 150 °C for 8 h. The experiment was paused briefly at the 3 h time point for ¹H NMR analysis. A final ratio 0:0:82:18 of **2.5**, **2.6**, **2.8**, and **2.7** was obtained in 93% yield based on internal standard. Ratios were determined by comparing the ¹H NMR resonances at 6.27 ppm (1H) for **2.5**, 5.94 ppm (1H) for **2.6**, 5.22 ppm (2H) for **2.8**, 3.31 ppm (1H) for **2.7** to the resonance at 6.63 ppm for mesitylene.

Table 4.11. Ratio of compounds in 4.6.7 – Rxn 9

Time (h)	2.5	2.6	2.8	2.7	Yield (%)
3	0	17	65	18	93
8	0	0	82	18	93

Rxn 10. Follows General Procedure D. Precursor **2.5** (10 mg, 0.03 mmol), BHT (7 mg, 0.03 mmol), and mesitylene (3 μL, 0.02 mmol) in *o*-DCB-d₄ (0.5 mL, 0.06M) was heated at 150 °C for 8 h. The experiment was paused briefly at the 3 h time point for ¹H NMR analysis. A final ratio 0:0:77:23 of **2.5**, **2.6**, **2.8**, and **2.7** was obtained in 53% yield based on internal standard. Ratios were determined by comparing the ¹H NMR resonances at 6.27 ppm (1H) for **2.5**, 5.94 ppm (1H) for **2.6**, 5.22 ppm (2H) for **2.8**, 3.31 ppm (1H) for **2.7** to the resonance at 6.63 ppm for mesitylene.

Table 4.12. Ratio of compounds in 4.6.7 – Rxn 10

Time (h)	2.5	2.6	2.8	2.7	Yield (%)
3	0	17	52	31	96
8	0	0	77	23	83

4.6.8 Experiments Showing the Effect of Atmosphere

Rxn 1. A 1-mL screw-top flask with septum lid and stir bar was charged with precursor 2.19 (24 mg, 0.075 mmol) dissolved in o-dichlorobenzene (0.50 mL, 0.15 M) and sealed with a Teflon-lined septum screw cap under air. The solution was lowered into a pre-heated oil bath at 150 °C. After 2 h, the the solution was allowed to cool to room temperature, then transferred to an NMR tube for ¹H NMR analysis. Product ratios were determined by comparing the resonance integrations for starting material, adduct, oxidized product, and isomerized product from the ¹H NMR of the crude reaction solution using No-D spectroscopy. A 0:65:26:9 ratio of 2.19, 2.20, 2.8, and 2.21 was obtained. Ratios were determined by comparing the ¹H NMR resonances at 4.56 ppm (1H) for 2.6, 5.21 ppm (2H) for 2.8, and 2.49 ppm (1H) for 2.7. An unknown impurity identified by the resonance at 5.04 ppm exists in the starting material and persisted through the reaction to completion.

Rxn 2. A 1-mL, screw-top vial with Teflon-lined septum screw cap and stir bar was charged with precursor **2.5** (23 mg, 0.072 mmol) dissolved in o-dichlorobenzene (0.50 mL, 0.14 M). The solution was degassed by bubbling N₂ through a needle into the solution and venting through an outlet needle. The vial was lowered into a preheated oil bath at 150 °C. After 2 h, the solution was

allowed to cool to rt before being transferred to an NMR tube for analysis. Product ratios were determined by comparing the resonance integrations for starting material, adduct, oxidized product, and isomerized product from the ¹H NMR of the reaction solution using No-D spectroscopy. A 0:82:12:6 ratio of **2.5**, **2.6**, **2.8**, and **2.7** was obtained. Ratios were determined by comparing the ¹H NMR resonances at 5.93 ppm (1H) for **2.6**, 5.21 ppm (2H) for **2.8**, and 2.49 ppm (1H) for **2.7**.

Rxn 3. A flame-dried, 5-mL, single-necked, pear-shaped flask equipped with a condenser, septum, and stir bar was charged with precursor **2.5** (23 mg, 0.072 mmol) dissolved in o-dichlorobenzene (0.50 mL, 0.14 M). A 16-gauge needle was inserted into the septum and left open to the air. The flask was lowered into a preheated oil bath at 150 °C. After 2 h, the solution was allowed to cool to room temperature before transferred to an NMR tube for NMR analysis. Product ratios were determined by comparing the resonance integrations for starting material, adduct, oxidized product, and isomerized product from the ¹H NMR of the reaction solution using No-D spectroscopy. A 0:0:85:15 ratio of **2.5**, **2.6**, **2.8**, and **2.7** was obtained. Ratios were determined by comparing the ¹H NMR resonances at 5.21 ppm (2H) for **2.8**, and 2.49 ppm (1H) for **2.7**.

4.6.9 Experiments as Evidence for Oxygen Mediated Dehydrogenation to Oxidation Product

Rxn 1. Follows General Procedure D. Precursor **2.5** (10 mg, 0.03 mmol) and mesitylene (3 μL, 0.02 mmol) in *o*-DCB-d₄ (0.5 mL, 0.06M) was heated at 150 °C for 8 h. The experiment was paused briefly at the 3 h time point for ¹H NMR analysis. A final ratio 0:0:82:18 of **2.5**, **2.6**, **2.8**, and **2.7** was obtained in 53% yield based on internal standard. Ratios were determined by

comparing the ¹H NMR resonances at 6.27 ppm (1H) for **2.5**, 5.94 ppm (1H) for **2.6**, 5.22 ppm (2H) for **2.8**, 3.31 ppm (1H) for **2.7** to the resonance at 6.63 ppm for mesitylene. After the reaction was completed, H₂ gas was bubbled through the solution for 2 min. and ¹H NMR was performed to observe the appearance of the resonance for H₂ gas at 4.53 ppm. The solution was then bubbled through with argon gas far 2 min. and ¹H NMR was performed to observe the disappearance of the resonance for H₂ gas at 4.53 ppm.

Table 4.13. Ratio of compounds in 4.6.9 – Rxn 1

Time (h)	2.5	2.6	2.8	2.7	Yield (%)
3	0	17	65	18	93
8	0	0	82	18	93

Rxn 2. A 1-mL, flame-dried, microwave vial with stir bar was charged with precursor **2.5** (20 mg, 0.063 mmol) dissolved in o-dichlorobenzene (0.50 mL, 0.13 M). The vial was sealed with a crimp cap with Teflon-lined septum, wrapped in parafilm at the top, and lowered into a pre-heated oil bath at 150 °C. After 90 min, the solution was allowed to cool to room temperature before transferred to an NMR tube for NMR analysis. Product ratios were determined by comparing the resonance integrations for starting material, adduct, oxidized product, and isomerized product from the ¹H NMR of the crude reaction solution using No-D spectroscopy. A 0:41:39:20 ratio of **2.5**, **2.6**, **2.8**, and **2.7** was obtained. Ratios were determined by comparing the ¹H NMR resonances at 5.45 ppm (1H) for **2.6**, 5.21 ppm (2H) for **2.8**, and 2.79 ppm (1H) for **2.7**.

Rxn 3. A 1-mL, flame-dried, microwave vial with stir bar was charged with precursor **2.19** (24 mg, 0.075 mmol) dissolved in o-dichlorobenzene (0.50 mL, 0.15 M). The vial was sealed with a

crimp cap with Teflon-lined septum, wrapped in parafilm at the top, and lowered into a pre-heated oil bath at 150 °C. After 90 min, the solution was allowed to cool to room temperature before transferred to an NMR tube for NMR analysis. Product ratios were determined by comparing the resonance integrations for starting material, adduct, oxidized product, and isomerized product from the ¹H NMR of the crude reaction solution using No-D spectroscopy. A 0:77:18:5 ratio of **2.19**, **2.20**, **2.8**, and **2.21** was obtained. Ratios were determined by comparing the ¹H NMR resonances at 4.53 ppm (1H) for **2.20**, 5.21 ppm (2H) for **2.8**, and 3.09 ppm (1H) for **2.21**.

4.6.10 Experiments as Evidence for Ionic Isomerization to Isomerization Product

Rxn 1. Follows General Procedure D. Precursor 2.5 (10 mg, 0.032 mmol) and D₂O (0.050 mL, 2.8 mmol) in DMF (0.45 mL, 0.60 M) was heated at 150 °C for 180 min. A 0:0:9:91 ratio of 2.5, 2.6, 2.8 and 4.1 was obtained in 50% yield. Ratios were determined by comparing the ¹H NMR resonances at 5.46 ppm (2H) for 2.8, and 2.81 ppm (1H) for 2.7. Deuterium incorporation was determined by comparing the integral intensities of resonances at 3.70 ppm and at 2.82 ppm. The isomerization product was observed to have 76% deuterium incorporation evidenced by the resonance at 2.82 ppm.

Rxn 2. A 2-mL, oven-dried microwave vial with stir bar was charged with **1.59** (15 mg, 0.06 mmol) in toluene (1207 μ L) under an atmosphere of air. D₂O (64 μ L, 3.2 mmol) was added via syringe to form a biphasic mixture. The vial was sealed with a Teflon-lined septum crimp cap and lowered into an oil bath preheated to 110 °C. After 18 h, the solution was allowed to cool to rt and concentrated by rotary evaporation. The residue was purified by silica gel flash column chromatography (40% EtOAc/Hex) to yield an 83:17 ratio of **1.60** to **4.3** (8 mg, 53%) with

recovered starting material (4 mg, 27%). Deuterium incorporation was determined by comparing the integral intensities of resonances at 3.15 ppm, 2.70 ppm, and 4.72 ppm. The isomerization product was observed to have 53% deuterium incorporation evidenced by the resonance at 3.15 ppm and 40% for the proton at 2.70 ppm.

5.0 Application of the Dearomative DDDA Reaction Towards the Synthesis of Organic Solar Cell Materials

Recently, interest has grown in the application of heteroarenes towards ladder-type conjugated ring systems as materials for organic photovoltaic solar cells. Multi-fused ladder-type arenes have recently reached record-breaking power conversion efficiencies (PCE) in organic photovoltaic solar-cells. We sought to apply our dearomative DDDA reaction to the generation of uniquely substituted ladder-type arenes.

5.1 Synthesis of Dearomative DDDA Reaction Oxidation Product via Ketone-Tethered Precursors

We proposed accessing these ladder-type arenes for organic solar cells via the oxidation product of the dearomative DDDA reaction. Halogenation of the external benzene rings of the ladder-type arene would afford a handle for polymerization or functionalization. Dialkylation of the methylene carbons on the arene would increase solubility while formation of the ladder-type arene would be accomplished by thiophene formation via the 1,4-diketone. Synthesis of the 1,4-diketone would be accomplished by the oxidative coupling of oxidation product from the dearomative DDDA reaction of ketone-tethered precursor affording a 2-cyclopentenone rather than the lactone afforded from ester-tethered precursors.

Scheme 5.1. Retrosynthetic route for organic solar cell materials via the dearomative DDDA oxidation product

To this end, we set out to test the feasibility of the dearomative DDDA reaction as a way to access the oxidation product **5.5**. Benzo[*b*]thiophene-2-carbaldehyde **5.6** was subjected to Grignard reaction with vinyl magnesium bromide to afford allyl alcohol **5.7** in 70% yield. Reaction of allyl alcohol **5.7** to the Eschenmoser-Claisen rearrangement afforded the amide **5.8** in 88% yield. Reaction of amide **5.8** with the appropriate alkyne affords dearomative DDDA precursors **5.9** in 94% yield, **5.10** in 98% yield, and **5.11** in 86% yield.

Scheme 5.2. Synthesis of dearomative DDDA reaction oxidation product via the ketone-tethered precursors

5.9 was heated via microwave irration for 3 min at 225 °C in 50% v/v nitrobenzene/o-DCB to afford exclusively the oxidation product 5.12 in 55% yield. The nitrobenzene was difficult to separate from 5.12 in the purification step, thus other conditions were employed for formation of 5.13 and 5.14. Oxidation product 5.12 was extremely insoluble in a number of solvents, i.e., hexanes, acetonitrile, and methanol, thus, was not taken on to the oxidative coupling reaction. To access a more soluble oxidation product from the dearomative DDDA reaction, precursors 5.10 and 5.11 were prepared. 5.10 heated for 48 h at 150 °C in o-DCB, open to air, afforded oxidation product 5.13 in 45% yield. The nitrobenzene was difficult to separate from product 5.12 in purification, thus the slower conditions incorporating bubbled air were employed for formation of 5.13. Precursor 5.11 heated for 24 h at 130 °C in o-DCB, open to air, afforded oxidation product 5.14 in 84% yield.

The synthesis of oxidation products **5.13** and **5.14** from the dearomative DDDA reaction was accomplished with complete selectivity. Enhanced selectivity for oxidation product was

^{*} A = 1:1 nitrobenzene:o-DCB, sealed, under air, 225 °C, 3 min, to afford **5.12**; B = o-DCB, open to air, 150 °C, 48h, to afford **5.13**; C = o-DCB, open to air, 130 °C, 24h, to afford **5.14**

obtained through our new knowledge of the reaction conditions that affect product selectivity.

Reaction conditions employed lower temperatures, a relatively non-polar solvent, and increased exposure to air via continuous bubbling through the reaction solution.

5.2 Progress Towards the Synthesis of Ladder-Type Arene Materials for Organic Solar Cells

With oxidation product in hand, our next steps were to apply our product of the dearomative DDDA reaction to the formation of a multi-fused ladder-type arene with conjugation across multiple rings. Oxidative coupling with phenyl substituted **5.12** and alkyl substituted **5.13** was unsuccessful as **5.12** proved insoluble in multiple solvents and reaction of **5.13** led to decomposition and retention of starting material. The insolubility of **5.12** may be due to favorable self-coordination because of strong intermolecular π - π dispersion interactions between aromatic rings. The decomposition of **5.13** under the basic reaction conditions may be due to competing deprotonation at the α position of the alkyl chain rather than desired deprotonation at the alpha position of the cyclopentenone. Evidence for the acidity of the protons at the α position of the alkyl chain can be observed in the ¹H NMR of **5.13** (see appendix B) where the resonance for those protons is shifted downfield to 3.8 ppm due to anisotropy effects from the nearby carbonyl. The resonance is also broadened, potentially due to tautomerization to the enol effecting an exchange broadening.

Oxidative coupling of **5.14** with LDA and CuCl₂ afforded **5.15** in 39% yield (59% based on recovered starting material, Scheme 5.3). Starting material **5.14** was recovered even when 5 equivalents of LDA and CuCl₂ were utilized. Optimization of this step would be vital to the make

this synthetic route pragmatic. Cis and trans diastereomers of **5.15** for the protons α to the ketones (Scheme 5.3) were isolated and characterized separately as they were separable by flash column chromatography with an afforded diastereomeric ratio (dr) of 39:61. In literature, the diastereomer oxidative coupling products of 1-indanone are identified but not reported as separable, and they are instead characterized as a mixture. ^{65, 66} The cis (R,S) and trans (S,S) stereochemistry for the two diastereomers of **5.15** was not determined or assigned between the isolated products. Determination of stereochemistry may be possible in the future as the cis diastereomer is a meso compound, thus optically inactive, and should be distinguishable from the optically active trans diastereomer via polarimetry. Recrystallization of the isolated diastereomers has not been attempted, thus far, but may also possible as both were isolated as solids. Determination of stereochemistry could then be conducted via x-ray crystallography.

$$\frac{\text{Ar} \quad \text{O} \quad \text{O} \quad \text{Ar}}{\text{2. CuCl}_2, \, \text{DMF} \, -78 \, ^{\circ}\text{C}}$$

$$\frac{\text{5.14, Ar} = \text{p-C}_6\text{H}_4\text{nBu}}{\text{dr: } 39:61}$$

$$\frac{\text{Ar} \quad \text{O} \quad \text{O} \quad \text{Ar}}{\text{H} \quad \text{O} \quad \text{O} \quad \text{Ar}}$$

$$\text{cis (R,S) diastereomer}$$

$$\frac{\text{Ar} \quad \text{O} \quad \text{O} \quad \text{Ar}}{\text{H} \quad \text{H} \quad \text{S}}$$

Scheme 5.3. Oxidative coupling of DA oxidation product with dr of 39:61

Reaction of **5.15** with Lawesson's reagent to afford the ladder-type arene **5.16** was performed separately for both diastereomers. The major diastereomer of **5.15** when reacted with

Lawesson's reagent in refluxing toluene afforded the ladder-type arene **5.16** in 62% yield (Scheme 5.4). The minor diastereomer of **5.15**, when reacted under the same conditions, did not afford any formation of product **5.16**, but 69% of the starting material **5.15** was recovered. It has yet to be determined as to why the minor diastereomer did not afford product under the same conditions that were successful for the major diastereomer. Recrystallization of **5.16** was attempted by dissolving in a minimal amount of dichloromethane, followed by dilution with n-heptane, and monitoring for crystal formation over the course of days at room temperature and at 0 °C in the laboratory freezer. All recrystallization attempts thus far have been unsuccessful.

Scheme 5.4. Synthesis of the polycyclic ladder-type arene with Lawesson's reagent

Future steps include alkylation of the methylene carbons to increase solubility of the product **5.17** followed by halogenation of the external benzene rings to provide handles for future functionalization or polymerization reactions. Once the feasibility of these future steps is established, Prof. Hutchison from the University of Pittsburgh will assist with a target selection process utilizing computational examination of a wide array of virtual compounds accessible using the proposed dearomative DDDA chemistry.

5.3 Conclusions

We established the dearomative DDDA reaction of vinyl heteroarenes as a key step in the synthesis of novel multi-ring ladder-type arenes which may be used as photovoltaic materials for organic solar cells. The ladder-type arene was successfully synthesized via oxidative coupling and thiophene formation from the oxidation product of the dearomative DDDA reaction. Oxidation product of the ketone-tethered precursor was generated selectively through mild manipulation of the reaction parameters as discovered in our studies. We hope that these novel, linearly fused ladder-type structures will enhance our understanding of photovoltaic materials and lead to improved efficiency in organic solar cells.

5.4 Experimental

5.4.1 General Methods

Unless otherwise indicated, all reactions were performed in flame-dried glassware under an air atmosphere and stirred with Teflon-coated magnetic stir bars. All commercially available compounds were purchased and used as received unless otherwise specified. Tetrahydrofuran (THF), diethyl ether (Et₂O), and dichloromethane (DCM) were purified by passing through alumina using a Sol-Tek ST-002 solvent purification system. Deuterated chloroform (CDCl₃) was dried over 4Å molecular sieves. Nitrogen gas was purchased from Matheson Tri Gas. Conventional heating was used for reactions that were monitored by ¹H NMR or performed open to the air. All microwave-mediated reactions were carried out using a Biotage Initiator Exp or Anton-Paar

Monowave 300 microwave synthesizer. Purification of the compounds by flash column chromatography was performed using silica gel (40-63 μm particle size, 60 Å pore size). TLC analyses were performed on silica gel F₂₅₄ glass plates (250 μm thickness). ¹H NMR and ¹³C NMR spectra were recorded on Bruker Avance 300, 400, or 500 MHz spectrometers. Spectra were referenced to residual chloroform (7.26 ppm, ¹H; 77.16 ppm, ¹³C) or *o*-dichlorobenzene (6.93 ppm, ¹H; 130.04 ¹³C) unless otherwise specified. Chemical shifts are reported in ppm, multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet), and bs (broad singlet). Coupling constants, *J*, are reported in hertz (Hz). All NMR spectra were obtained at room temperature. IR spectra were obtained using a Nicolet Avatar E.S.P. 360 FT-IR. EI mass spectroscopy was performed on a Waters Micromass GCT high resolution mass spectrometer, while ES mass spectroscopy was performed on a Waters Q-TOF Ultima API, Micromass UK Limited high-resolution mass spectrometer.

5.4.2 Synthesis of a Multi-Ring Ladder-Type Heteroarene

1-(benzo[b]thiophen-2-yl)prop-2-en-1-ol (5.7). A flame-dried, single-necked, 100-mL, round-bottomed flask equipped with a stir bar, septum, and a nitrogen inlet adaptor was charged with benzo[b]thiophene-2-carboxaldehyde (500 mg, 3.08 mmol) dissolved in THF (37.8 mL, 0.08 M) via syringe. The flask was placed in an ice/water bath (0 °C) and after 5 min, vinyl magnesium bromide (6.2 mL of a 1 M solution in THF, 6.16 mmol) was added dropwise by syringe. The solution was allowed to warm to rt over 1 h. After the complete disappearance of starting material

as observed by TLC, sat'd aqueous ammonium chloride (10.0 mL) was added to the flask all at once. The mixture was transferred to a separatory funnel, the layers separated, and the aqueous phase was extracted with ethyl acetate (10 mL x 3). The combined organic phase was washed with brine (10 mL), dried over magnesium sulfate, gravity filtered, and concentrated using rotary evaporation. The resulting brown oil was purified by flash column chromatography (20% ethyl acetate/hexanes) to yield the title compound as a yellow liquid (407 mg, 70%). Compound **5.7** was previously prepared by Wang et al.⁶⁷ Characterization data corresponds to the literature.

Data **5.7**

 1 H NMR (300 MHz, CDCl₃)

7.82 (dd, J = 7.4, 1.6 Hz, 1H), 7.73 (dd, J = 6.4, 2.0 Hz, 1H), 7.37-7.27 (m, 2H),

7.21 (s, 1H), 6.23-6.12 (m, 1H), 5.54-5.43 (m, 2H), 5.31 (d, J = 10.4, 1H), 2.26 (t,

J = 4.5 Hz, 1H) ppm. EtOAc impurity at 4.12, 2.05, and 1.25 ppm.

TLC $R_f = 0.57$ (40% ethyl acetate/hexanes) [silica gel, UV]

$$S$$
NMe₂

(E)-5-(benzo[b]thiophen-2-yl)-*N*,*N*-dimethylpent-4-enamide (5.8). A flame-dried, two-necked, 50-mL, round-bottomed flask equipped with a stir bar, septum, condenser, and a nitrogen inlet adaptor was charged with allyl alcohol 5.7 (780 mg, 4.10 mmol) dissolved in toluene (16.0 mL, 0.26 M) via syringe. *N*,*N*-dimethylacetamide dimethyl acetal (1.5 mL, 10.26 mmol) was added via syringe in one portion. The flask was placed in an oil bath at 115 °C, and the solution was heated to reflux for 2 h until the complete disappearance of starting material was observed by TLC. The

flask was removed from the oil bath and the solution was allowed to cool to rt. The solution was concentrated under rotary evaporation. The resulting oil was purified by flash column chromatography (80% ethyl acetate/hexanes) to yield the title compound as a light-yellow solid (935 mg, 88%).

Data **5.8**

1H NMR (300 MHz, CDCl₃)

7.76-7.70 (m, 1H), 7.67-7.61 (m, 1H), 7.32-7.22 (m, 2H), 7.06 (s, 1H), 6.66 (d, *J*

= 15.4 Hz, 1H), 6.19 (dt, J = 15.5, 6.8 Hz, 1H), 2.99 (d, J = 13.5 Hz, 6H), 2.63-2.45

(m, 4H) ppm. DCM impurity at 5.30 ppm.

13C NMR (75 MHz, CDCl₃)

172.0, 142.9, 140.3, 138.7, 132.4, 124.8, 124.5, 124.4, 123.3, 122.2, 121.7, 37.3,

35.6, 32.9, 28.6 ppm

<u>IR</u> (thin film)

2926, 1777, 1643, 1494, 1401, 1264, 1141, 955, 749 cm⁻¹

 \underline{HRMS} (FTMS + p ESI)

 $[M + H]^+$ Calcd for C₁₅H₁₈ONS 260.1104; Found 260.1098

<u>TLC</u> $R_f = 0.30$ (80% ethyl acetate/hexanes) [silica gel, UV]

<u>MP</u> $88.0 - 91.6 \,^{\circ}\text{C}$

(E)-7-(benzo[b]thiophen-2-yl)-1-phenylhept-6-en-1-yn-3-one (5.9). A flame-dried, 25-mL, round-bottomed, single-necked flask equipped with stir bar, septum, and a nitrogen inlet adapter was charged with phenylacetylene (0.31 mL, 2.85 mmol) followed by THF (5.0 mL) via syringe. The flask was placed in a dry ice/acetone bath (-78 °C). After 10 min, n-butyllithium (1.58 mL of a 1.6 M solution in hexanes, 2.53 mmol) was added via syringe in one portion. After 5 min, boron trifluoride diethyl etherate (0.33 mL, 2.69 mmol) was added via syringe in one portion. After 15 min, amide 5.8 (410 mg, 1.58 mmol) diluted in THF (5 mL) was added in one portion via syringe. Upon disappearance of starting material as observed by TLC, a second portion of boron trifluoride diethyl etherate (0.33 mL, 2.53 mmol) was added followed by acetic acid (0.15 mL, 2.69 mmol), each were added via syringe in a single portion. The solution was allowed to warm in a brine/ice bath to -20 °C over the course of 1 h. Sat'd. aqueous ammonium chloride (8 mL) was added in one portion and the mixture was transferred to a separatory funnel. The aqueous layer was extracted with ethyl acetate (8 mL x 3). The combined organic layers were dried over magnesium sulfate, gravity filtered, and concentrated under rotary evaporation. The resulting brown oil was purified by flash column chromatography (20% ethyl acetate/hexanes) to yield the title compound as a brown oil (471 mg, 94%).

Data **5.9**

¹H NMR (300 MHz, CDCl₃)

7.73 (dd, J = 3.0, 6.6 Hz, 1H), 7.66 (dd, J = 2.4, 5.8 Hz, 1H), 7.59 (dt, J = 1.5, 7.0 Hz, 2H), 7.50-7.35 (m, 3H), 7.33-7.24 (m, 2H), 7.08 (s, 1H), 6.69 (d, J = 15.5 Hz, 1H), 6.7 (dt, J = 6.9, 15.6 Hz, 1H), 2.89 (t, J = 7.2 Hz, 2H), 2.67 (q, J = 7.5 Hz, 2H) ppm. Water impurity at 1.57 ppm.

13C NMR (75 MHz, CDCl₃)

186.8, 142.6, 140.2, 138.8, 133.2 (2C), 130.9 (2C), 128.8 (2C), 125.3, 124.6, 124.5,

123.4, 122.3, 122.0, 120.0, 91.4, 87.9, 44.8, 27.4 ppm

<u>IR</u> (thin film)

3403, 3058, 2925, 2200, 1708, 1671, 1582, 1449, 1320, 1272, 1098, 752, 696 cm⁻¹

HRMS (FTMS + p ESI)

 $[M + H]^+$ Calcd for $C_{21}H_{17}OS$ 317.0994; Found 317.0986

<u>TLC</u> $R_f = 0.77 \text{ (40\% ethyl acetate/hexanes) [silica gel, UV]}$

(E)-1-(benzo[b]thiophen-2-yl)pentadec-1-en-6-yn-5-one (5.10). A flame-dried, 25-mL, round-bottomed, single-necked flask equipped with stir bar, septum, and a nitrogen needle inlet was charged with 1-decyne (0.38 mL, 2.03 mmol) followed by THF (3.8 mL) via syringe. The flask was placed in a dry ice/acetone bath (-78 °C). After 10 min, n-butyllithium (1.16 mL of a 1.6 M solution in hexanes, 1.80 mmol) was added via syringe in one portion. After 5 min, boron trifluoride diethyl etherate (0.24 mL, 1.91 mmol) was added via syringe in one portion. After 15 min, amide 5.8 (292 mg, 1.13 mmol) diluted in THF (3.8 mL) was added in one portion via syringe. Upon disappearance of starting material as observed by TLC, a second portion of boron trifluoride diethyl etherate (0.24 mL, 1.91 mmol) was added followed by acetic acid (0.12 mL, 1.91 mmol), each were added via syringe in a single portion. The solution was allowed to warm in a brine/ice bath to -20 °C over the course of 1 h. Sat'd. aqueous ammonium chloride (8 mL) was added in one portion and the mixture was transferred to a separatory funnel. The aqueous layer was extracted

with ethyl acetate (8 mL x 3). The combined organic layers were dried over magnesium sulfate, gravity filtered, and concentrated under rotary evaporation. The resulting oil was purified by flash column chromatography (20% ethyl acetate/hexanes) to yield the title compound as a yellow solid (388 mg, 98%).

Data **5.10**

 1 H NMR (500 MHz, CDCl₃)

7.73 (dd, J = 1.1, 7.4 Hz, 1H), 7.65 (dd, J = 1.7, 6.7 Hz, 1H), 7.31-7.25 (m, 2H), 7.06 (s, 1H), 6.65 (d, J = 15.7 Hz, 1H), 6.13 (dt, J = 6.8, 15.4 Hz, 1H), 2.74 (t, J = 7.3 Hz, 2H), 2.59 (q, J = 6.9 Hz, 2H), 2.37 (t, J = 7.2 Hz, 2H), 1.58 (quint, J = 7.2 Hz, 2H), 1.40 (quint, J = 7.6 Hz, 2H), 1.32-1.25 (m, 9H), 0.89 (t, J = 6.6 Hz, 3H) ppm. EtOAc impurity at 4.12 and 2.05 ppm.

13C NMR (125 MHz, CDCl₃)

187.0, 142.7, 140.3, 138.8, 131.1, 125.2, 124.6, 124.5, 123.4, 122.3, 121.9, 95.3, 81.0, 44.8, 31.9, 29.2, 29.1, 29.0, 27.9, 27.4, 22.8, 19.1, 14.2 ppm

 \underline{IR} (thin film)

2924, 2855, 2210, 1671, 1434, 1307, 1238, 1155, 953, 808, 745, 724, 674 cm⁻¹

HRMS (FTMS + p ESI)

 $[M + H]^+$ Calcd for $C_{23}H_{29}OS$ 353.1934; Found 353.1926

TLC $R_f = 0.72$ (40% ethyl acetate/hexanes) [silica gel, UV]

<u>MP</u> $35.9 - 37.1 \,^{\circ}\text{C}$

(E)-7-(benzo[b]thiophen-2-yl)-1-(4-butylphenyl)hept-6-en-1-yn-3-one (5.11). A flame-dried, 25-mL, round-bottomed, single-necked flask equipped with stir bar, septum, and a nitrogen inlet adapter was charged with 1-butyl-4-ethynylbenzene (0.36 mL, 2.08 mmol) followed by THF (4.5 mL) via syringe. The flask was placed in a dry ice/acetone bath (-78 °C). After 10 min, nbutyllithium (1.6 mL of a 1.6 M solution in hexanes, 1.85 mmol) was added via syringe in one portion. After 5 min, boron trifluoride diethyl etherate (0.24 mL, 1.97 mmol) was added via syringe in one portion. After 15 min, amide 5.8 (300 mg, 1.16 mmol) diluted in THF (4.5 mL) was added in one portion via syringe. Upon disappearance of starting material as observed by TLC, a second portion of boron trifluoride diethyl etherate (0.24 mL, 1.97 mmol) was added followed by acetic acid (0.12 mL, 1.97 mmol), each were added via syringe in a single portion. The solution was allowed to warm in a brine/ice bath to -20 °C over the course of 1 h. Sat'd. aqueous ammonium chloride (8 mL) was added in one portion and the mixture was transferred to a separatory funnel. The aqueous layer was extracted with ethyl acetate (8 mL x 3). The combined organic layers were dried over magnesium sulfate, gravity filtered, and concentrated under rotary evaporation. The resulting oil was purified by flash column chromatography (10% ethyl acetate/hexanes) to yield the title compound as a yellow liquid (361 mg, 84%).

Data **5.11**

<u>1H NMR</u> (400 MHz, CDCl₃)

7.74 (dd, J = 1.7, 7.0 Hz, 1H), 7.66 (dd, J = 1.8, 6.4 Hz, 1H), 7.50 (d, J = 8.2 Hz, 2H), 7.32-7.24 (m, 2H), 7.20 (d, J = 8.1 Hz, 2H), 7.07 (s, 1H), 6.69 (d, J = 15.6 Hz, 1H), 6.17 (dt, J = 6.8, 15.4 Hz, 1H), 2.88 (t, J = 7.3 Hz, 2H), 2.66 (q, J = 7.9 Hz, 4H), 1.64-1.56 (m, 2H), 1.40-1.30 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H) ppm

¹³C NMR (100 MHz, CDCl₃)

186.9, 146.6, 142.7, 140.2, 138.8, 133.3 (2C), 131.0, 128.9 (2C), 125.3, 124.6, 124.5, 123.4, 122.3, 122.0, 117.0, 92.2, 87.7, 44.8, 35.9, 33.3, 27.4, 22.4, 14.0 ppm

<u>IR</u> (thin film)

3402, 3057, 2926, 2859, 2200, 1709, 1671, 1581, 1449, 1321, 1272, 1099, 753, 695 cm⁻¹

HRMS (TOF MS ES+)

 $[M + H]^+$ Calcd for $C_{25}H_{25}OS$ 373.1626; Found 373.1630

<u>TLC</u> $R_f = 0.37$ (10% ethyl acetate/hexanes) [silica gel, UV]

10-phenyl-2,3-dihydro-1H-benzo[b]indeno[5,6-d]thiophen-1-one (5.12). An oven-dried, 20-mL microwave vial with stir bar was charged with **5.9** (451 mg, 1.43 mmol) dissolved in a 1:1 solution of nitrobenzene : *o*-DCB (20 mL). The vial was sealed with a Teflon-lined septum crimp cap and the solution was heated to 225 °C in a Biotage Initiator microwave reactor for 3 min. The solution was then allowed to cool to room temperature before being transferred directly to a silica gel column for flash column chromatography (100% hexanes, followed by 100% ethyl acetate). The title compound was afforded as a red solid (246 mg, 55%).

Data **5.12**

1H NMR (300 MHz, CDCl₃)

7.93 (s, 1H), 7.78 (d, J = 8.0 Hz 1H), 7.57 (t, J = 3.5 Hz, 3H), 7.38-7.31 (m 3H),

7.09-7.02 (m, 1H), 6.74 (d, J = 8.3 Hz, 1H), 3.29-3.22 (m, 2H), 2.76-2.70 (m, 2H)

ppm. DCM impurity at 5.30 ppm. Impurities at 2.5 - 0.7 ppm.

13C NMR (75 MHz, CDCl₃)

205.0, 152.5, 146.9, 139.6, 137.7, 137.3, 135.5, 133.4, 131.4, 129.0 (2C), 128.4

(2C), 128.2, 126.8, 125.4, 124.5, 122.7, 119.6, 37.6, 25.0 ppm

<u>IR</u> (thin film)

3064, 2859, 1703, 1580, 1494, 1428, 1323, 1237, 1183, 1117, 1032, 851, 739, 695,

520 cm⁻¹

HRMS (FTMS + p ESI)

 $[M + H]^+$ Calcd for $C_{21}H_{15}OS$ 315.0838; Found 315.0834

<u>TLC</u> $R_f = 0.54$ (40% ethyl acetate/hexanes) [silica gel, UV]

MP Decomposes to black residue 258.2 – 261.3 °C

10-octyl-2,3-dihydro-1H-benzo[b]indeno[5,6-d]thiophen-1-one (**5.13**). An oven-dried single-necked, 5-mL, round-bottomed flask with stir bar, condenser, and septum was charged with **5.10** (20 mg, 0.06 mmol) dissolved in o-dichlorobenzene (0.5 mL). A 16-gauge needle was inserted into the septum and left open to the air. The flask was lowered into a preheated oil bath at 150 °C.

and stirred for 2 days. Upon disappearance of starting material as observed by TLC, the solution was allowed to cool to room temperature. The crude solution was transferred directly to a silica gel column and purified by flash column chromatography (80% dichloromethane/hexanes) to yield the title compound as an orange solid (9 mg, 45%).

Data **5.13**

 1 H NMR (400 MHz, CDCl₃)

8.31 (dd, J = 1.5, 6.8 Hz, 1H), 7.84 (dd, J = 1.9, 6.8 Hz, 1H), 7.71 (s, 1H), 7.52-

7.44 (m, 2H), 3.79 (bs, 2H), 3.15 (t, J = 6.0 Hz, 2H), 2.76 (t, J = 6.7 Hz, 2H), 1.79-

1.70 (quint, J = 8.0 Hz, 2H), 1.62 (quint, J = 7.4 Hz, 2H), 1.45-1.25 (m, 9H), 0.89

(t, J = 7.0 Hz, 3H) ppm

13C NMR (125 MHz, CDCl₃)

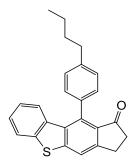
207.1, 153.1, 147.2, 142.2, 139.6, 135.7, 133.2, 131.1, 126.4, 125.3, 125.0, 123.1,

117.9, 37.9, 32.0, 30.2, 29.6, 29.4, 29.3, 27.8, 24.7, 22.8, 14.3 ppm

<u>IR</u> (thin film)

2923, 2854, 2211, 1699, 1583, 1449, 1325, 1226, 1143, 1081, 1035, 953, 856, 740

506 cm⁻¹


HRMS

(FTMS + p ESI)

 $[M + H]^+$ Calcd for C₂₃H₂₇OS 351.1777; Found 351.1770

<u>TLC</u> $R_f = 0.48$ (80% dichloromethane/hexanes) [silica gel, UV]

<u>MP</u> 87.5 - 89.5 °C

10-(4-butylphenyl)-2,3-dihydro-1H-benzo[b]indeno[5,6-d]thiophen-1-one (5.14). An ovendried single-necked, 25-mL, round-bottomed flask with stir bar, condenser, and septum was charged with **5.11** (305 mg, 0.82 mmol) dissolved in o-dichlorobenzene (18.0 mL). A 16-gauge needle was inserted into the septum and left open to the air. The flask was lowered into a preheated oil bath at 130 °C and heated for 24 h. Upon disappearance of starting material as observed by TLC, the solution was allowed to cool to room temperature. The *o*-DCB solvent was removed by adding the solution to a silica gel plug and flushing the plug with hexanes. The crude product was then removed from the silica plug with ethyl acetate. The crude product dissolved in ethyl acetate was concentrated under rotary evaporation. The resulting crude solid was purified by flash column chromatography (10% ethyl acetate/hexanes) to yield the title compound as a yellow solid (260 mg, 86%).

Data **5.14**

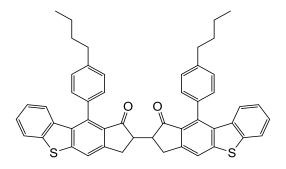
7.91 (s, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 7.9 Hz, 2H), 7.34 (dt, J = 0.9, 7.3 Hz, 1H), 7.24 (d, J = 8.1 Hz, 2H), 7.04 (dt, J = 1.2, 7.8 Hz, 1H), 6.74 (d, J = 8.3 Hz, 1H), 3.25 (t, J = 6.0 Hz, 2H), 2.79 (t, J = 7.6 Hz, 2H), 2.74-2.71 (m, 2H), 1.79-1.72 (m, 2H), 1.50-1.42 (m, 2H), 1.00 (t, J = 7.3 Hz, 3H) ppm. Impurities at 2.9, 2.4, and 1.2 ppm.

13C NMR (125 MHz, CDCl₃)

205.1, 152.5, 146.8, 142.7, 139.6, 138.1, 135.7, 134.5, 133.6, 131.5, 129.1 (2C),

128.1 (2C), 126.7, 125.5, 124.4, 122.7, 119.5, 37.6, 35.7, 33.6, 25.0, 22.5, 14.2 ppm

<u>IR</u> (thin film)


3055, 2926, 2858, 1709, 1580, 1432, 1321, 1182, 1117, 1030, 857, 774, 743 cm⁻¹

HRMS (TOF MS ES+)

 $[M + H]^+$ Calcd for $C_{25}H_{23}OS$ 371.1470; Found 371.1448

<u>TLC</u> $R_f = 0.16$ (10% ethyl acetate/hexanes) [silica gel, UV]

<u>MP</u> 132.4 − 135.3 °C

10,10'-bis(4-butylphenyl)-2,2',3,3'-tetrahydro-1H,1'H-[2,2'-bibenzo[b]indeno[5,6-

d]thiophene]-1,1'-dione (5.15). A flame-dried single-necked, 25-mL, round-bottomed flask with stir bar, septum, and a nitrogen inlet needle was charged with THF (1.7 mL), lowered into a dry ice/acetone bath, and cooled for 5 min. LDA (1.35 mL, 1 M in hexanes/THF) was added to the solution dropwise by syringe. 5.14 (100 mg, 0.27 mmol) dissolved in THF (2.0 mL), in a separate round-bottomed flask under nitrogen, was canulated to the LDA solution dropwise via syringe. The solution was maintained at -78 °C for 30 min. Copper(II) chloride (182 mg, 1.35 mmol) dissolved in distilled DMF (4.6 mL), in a separate round-bottomed flask under nitrogen, was canulated to the reaction solution dropwise via syringe. The solution was maintained at -78 °C for

an additional 1 h. The reaction solution was then cannulated to sat. aqueous ammonium chloride (15 mL) at room temperature, in a 50-mL round-bottomed flask, with septum under air. The aqueous layer was extracted with ethyl acetate (10 mL x 3). The combined organic layers were dried over magnesium sulfate, gravity filtered, and concentrated under rotary evaporation. The resulting crude residue purified by flash column chromatography (60% was dichloromethane/hexanes). Cis and trans diastereomers for the protons α to the ketones were isolated and characterized separately as they were separable by flash column chromatography. The afforded a dr of 39:61 (15 mg of the minor diastereomer and 24 mg of the major diastereomer) with both compounds yielded as a yellow solid (39 mg combined, 39% yield, 59% brsm).

Data 5.15 Minor Diastereomer

¹H NMR (400 MHz, CDCl₃)

7.89 (s, 2H), 7.79 (d, J = 8.3 Hz, 2H), 7.41-7.34 (m, 6H), 7.29 (dd, J = 1.6, 7.8 Hz, 2H), 7.19 (dd, J = 1.8, 7.6 Hz, 2H), 7.07 (dt, J = 0.9, 7.4 Hz, 2H), 6.81 (d, J = 8.3 Hz, 2H), 4.59 (q, J = 4.8 Hz, 2H), 3.88 (q, J = 7.8 Hz, 2H), 3.44-3.38 (m, 2H), 2.79 (t, J = 7.8 Hz, 4H), 1.79-1.71 (m, 4H), 1.51-1.41 (m, 4H), 1.00 (t, J = 7.3 Hz, 6H) ppm. Impurity of the major diastereomer present at 3.3 and 3.1 ppm. EtOAc impurity at 4.12 and 2.05 ppm. Water impurity at 1.55 ppm.

13C NMR (100 MHz, CDCl₃)

197.3 (2C), 148.3 (2C), 147.5 (2C), 143.2 (2C), 139.5 (2C), 139.3 (2C), 135.3 (2C), 134.4 (2C), 133.6 (2C), 129.2 (2C), 129.1 (2C), 128.4 (2C), 128.3 (2C), 127.8 (2C), 127.1 (2C), 125.6 (2C), 124.7 (2C), 122.7 (2C), 119.1 (2C), 57.3 (2C), 36.7 (2C), 35.7 (2C), 33.7 (2C), 22.5 (2C), 14.2 (2C) ppm

<u>IR</u> (thin film)

3334, 3056, 2859, 1667, 1610, 1516, 1433, 1225, 1087, 1005, 954, 838, 743, 565 cm⁻¹

HRMS (FTMS + p ESI)

 $[M + H]^+$ Calcd for $C_{50}H_{43}O_2S_2$ 739.2699; Found 739.2674

<u>TLC</u> $R_f = 0.72$ (80% dichloromethane/hexanes) [silica gel, UV]

MP $94.2 - 96.0 \,^{\circ}\text{C}$

Data **5.15** Major Diastereomer

7.86 (s, 2H), 7.76 (d, J = 8.0 Hz, 2H), 7.36-7.30 (m, 6H), 7.27 (dd, J = 2.2, 6.6 Hz, 2H), 7.19 (dd, J = 2.2, 8.4 Hz, 2H), 7.02 (dt, J = 0.9, 7.2 Hz, 2H), 6.68 (d, J = 8.2 Hz, 2H), 3.52 (dd, J = 7.5, 16.8 Hz, 2H), 3.27 (dd, J = 4.6, 16.9 Hz, 2H), 3.18 (quint, J = 6.1 Hz, 2H), 2.76 (t, J = 7.7 Hz, 4H), 1.73 (quint, J = 7.4 Hz, 4H), 1.50-1.40 (m, 4H), 0.99 (t, J = 7.3 Hz, 6H) ppm. DCM impurity at 5.30 ppm. EtOAc impurity at 4.12 and 2.05 ppm.

13C NMR (100 MHz, CDCl₃)

204.4 (2C), 150.6 (2C), 146.8 (2C), 142.7 (2C), 139.5 (2C), 138.1 (2C), 135.6 (2C), 134.4 (2C), 133.8 (2C), 131.2 (2C), 129.1 (2C), 129.1 (2C), 128.5 (2C), 128.0 (2C), 126.7 (2C), 125.5 (2C), 124.4 (2C), 122.7 (2C), 119.2 (2C), 49.6 (2C), 35.7 (2C), 33.6 (2C), 30.5 (2C), 22.5 (2C), 14.2 (2C) ppm

<u>IR</u> (thin film)

3334, 3056, 2859, 1667, 1610, 1516, 1433, 1225, 1087, 1005, 954, 838, 743, 565 cm⁻¹

HRMS (FTMS + p ESI)

 $[M + H]^+$ Calcd for $C_{50}H_{43}O_2S_2$ 739.2699; Found 739.2675

TLC $R_f = 0.66$ (80% dichloromethane/hexanes) [silica gel, UV]

<u>MP</u> 94.0 − 96.6 °C

Tris-thiophene polycyclic ladder-type heteroarene (5.16). A flame-dried single-necked, 5-mL, round-bottomed flask with stir bar, septum, condenser and a nitrogen inlet needle was charged with the isolated major diastereomer of 5.15 (13 mg, 0.02 mmol) dissolved in THF (1.5 mL). Lawesson's reagent (14 mg, 0.04 mmol) was added to the solution all at once. The flask was lowered into a preheated oil bath at 110 °C and refluxed for 24 h. The solution was allowed to cool to room temperature, and the toluene was removed under rotary evaporation. The resulting crude residue was purified by flash column chromatography (20% ethyl acetate/hexanes) to yield the title compound as a brown solid (8 mg, 62% yield).

Data **5.16**

 7.85 (s, 2H), 7.77 (d, J = 7.9 Hz, 2H), 7.33 (d, J = 7.9 Hz, 4H), 7.30-7.25 (m, 6H), 7.01 (dt, J = 0.9, 7.2 Hz, 2H), 6.81 (d, J = 8.2 Hz, 2H), 3.77 (s, 4H), 2.87 (t, J = 7.6 Hz, 4H), 1.87-1.80 (m, 4H), 1.61-1.52 (m, 4H), 1.11 (t, J = 7.4 Hz, 6H) ppm. Grease impurity at 1.11 and 1.09 ppm.

¹³C NMR (100 MHz, CDCl₃)

146.6 (2C), 144.4 (2C), 142.9 (2C), 140.8 (2C), 139.8 (2C), 137.3 (2C), 136.7 (2C), 136.1 (2C), 135.8 (2C), 132.5 (2C), 129.9 (2C), 129.4 (4C), 129.2 (4C), 125.7 (2C), 124.8 (2C), 123.8 (2C), 122.7 (2C), 118.3 (2C), 36.0 (2C), 33.9 (2C), 32.9 (2C), 22.7 (2C), 14.3 (2C) ppm

IR (thin film)

3055, 2857, 2926, 2857, 1713, 1586, 1510, 1461, 1298, 1260, 1111, 1069, 848, 746, 531 cm⁻¹

HRMS (FTMS + p ESI)

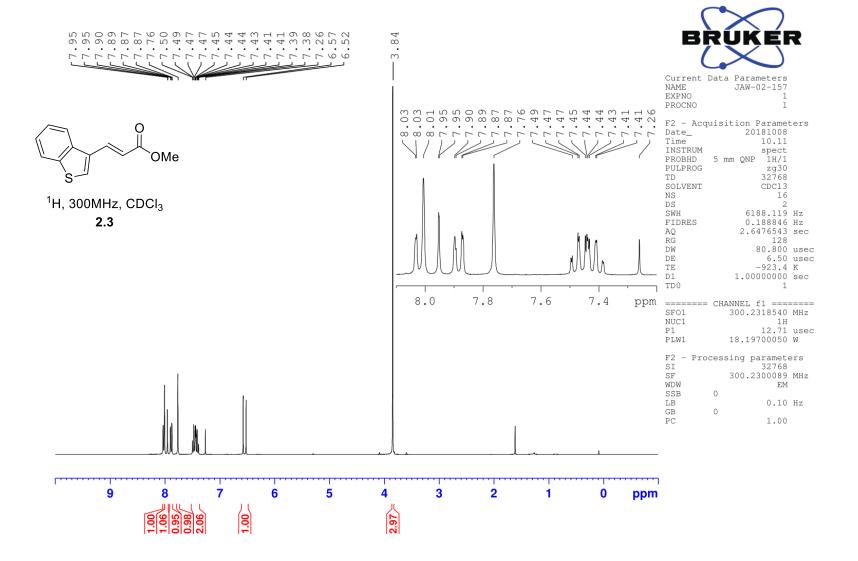
 $[M + H]^+$ Calcd for C₅₀H₄₀S₃ 736.2287; Found 736.2276

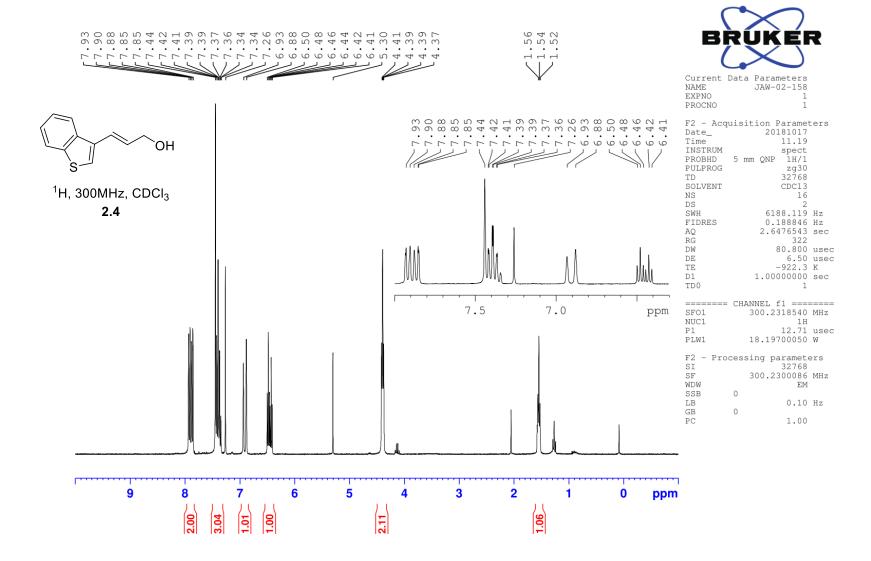
<u>TLC</u> $R_f = 0.52$ (20% ethyl acetate/hexanes) [silica gel, UV]

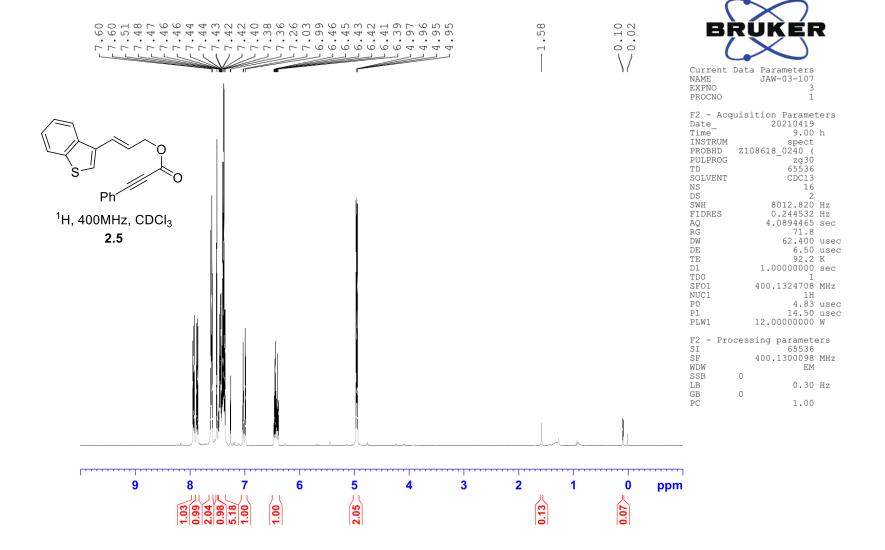
MP Decomposes to black residue 175.9 – 179.8 °C

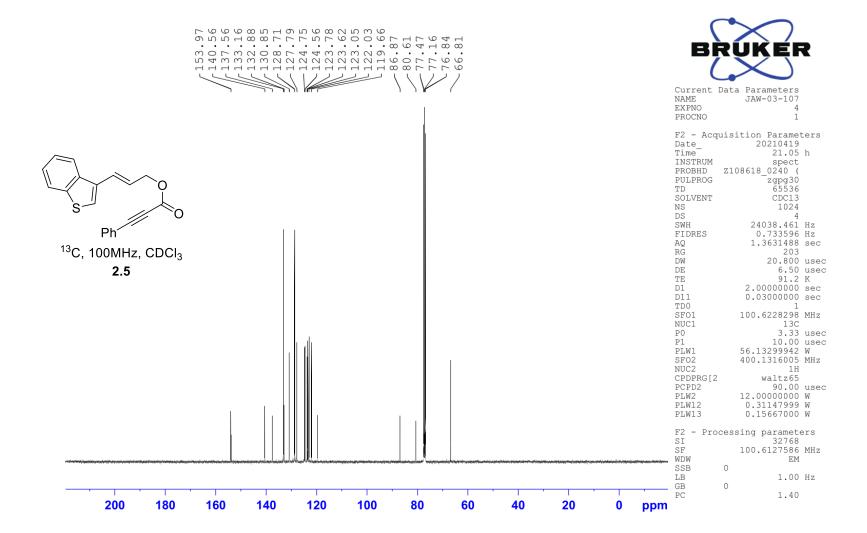
5.4.3 Reaction of the Minor Diastercomer of 5.15 with Lawesson's Reagent

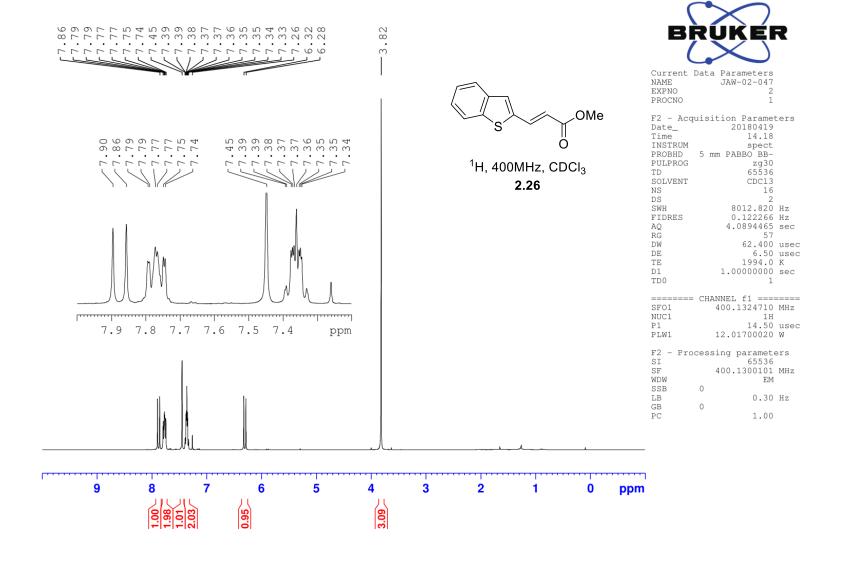
A flame-dried single-necked, 5-mL, round-bottomed flask with stir bar, septum, condenser and a nitrogen inlet needle was charged with the isolated minor diastereomer of **5.15** (13 mg, 0.02 mmol) dissolved in THF (1.5 mL). Lawesson's reagent (14 mg, 0.04 mmol) was added to the solution all at once. The flask was lowered into a preheated oil bath at 110 °C and refluxed for 24 h. The solution was allowed to cool to room temperature, and the toluene was removed under

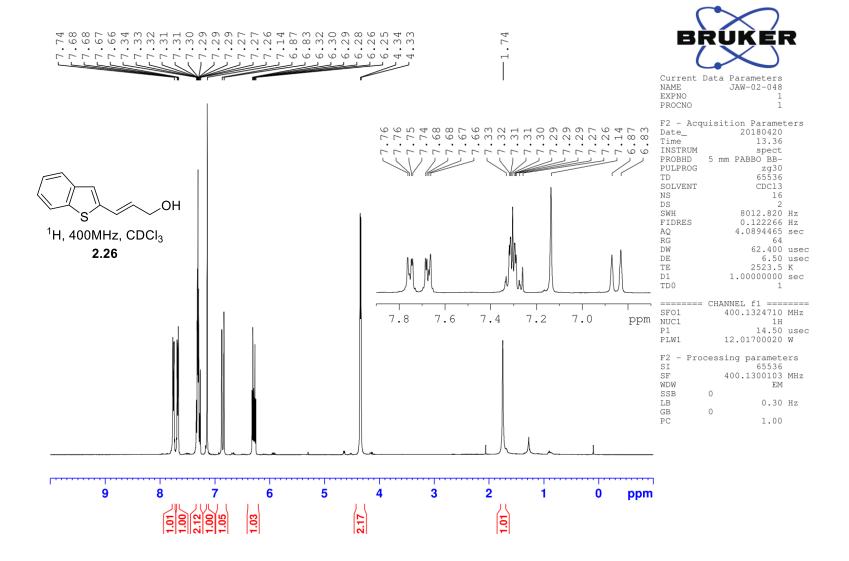

rotary evaporation. The resulting crude residue was purified by flash column chromatography (20% ethyl acetate/hexanes) and 69% of the starting material was recovered (9 mg) with no product formation.

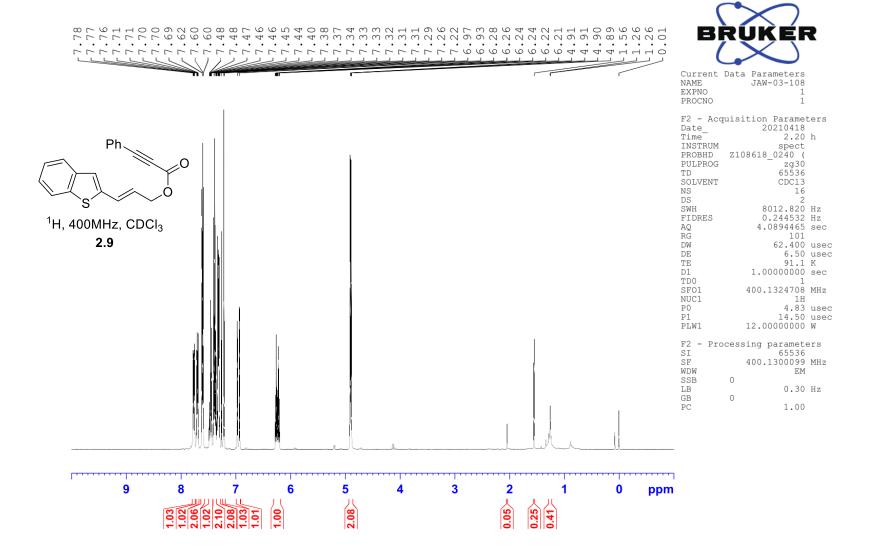

Appendix A Compound Characterization Checklist

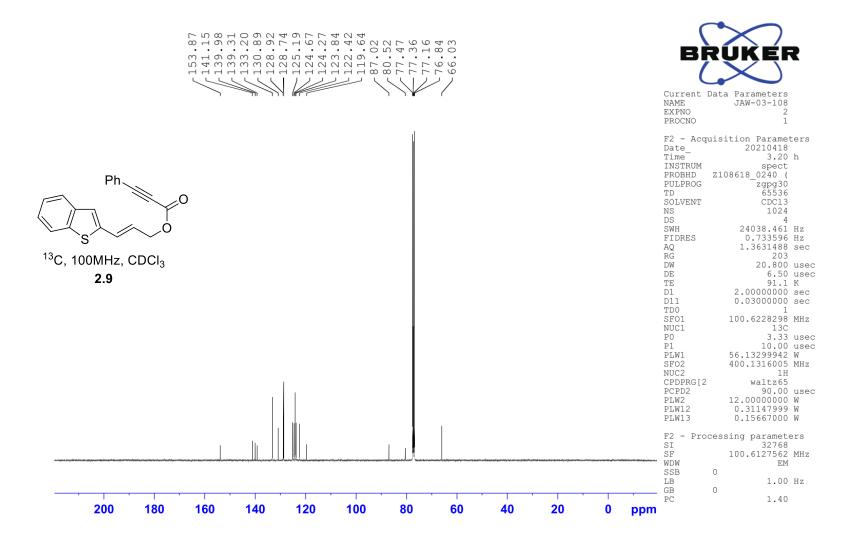

COMPOUN	D			IDENTITY											PURITY					COMPUTATIONAL DATA in SI*			AUTHOR REMARKS
Compound, structure, or table-entry number	44	t 488	LOW W	eldri e	nd per	state UN	Weld Weld	NAME OF THE PROPERTY OF THE PR	C WHE CHAR	nid .	Accurate intestinguation and the copy of this art the copy of the									Indes of Linative Indes of Lina			
2.3		X	X	X			X							X	X								
2.4		X	X	X			X							X	X								
2.5	X		Х	X	X		X	X		X				X	Х			\perp					
2.25		X	Х	X			X							X	Х			\perp					
2.26		X	Х	X			X							X	X			\Box					
2.9	X		Х	X	X		X	X		X				X	X			\Box					
1.50		X	Х	X			X							X	X								
1.59		X	X	X			X							X	X								
2.16	X		Х	X	X		X	X		X				X	X								
2.17	X		X	X	X		X	X		X				X	X								
2.18	Х		Х	Х	Х		Х	X		X				Х	Х								
2.19	X		X	X	X		X	X		X				X	X								
2.6	X		Х	X	X		X	X		X				X	X								

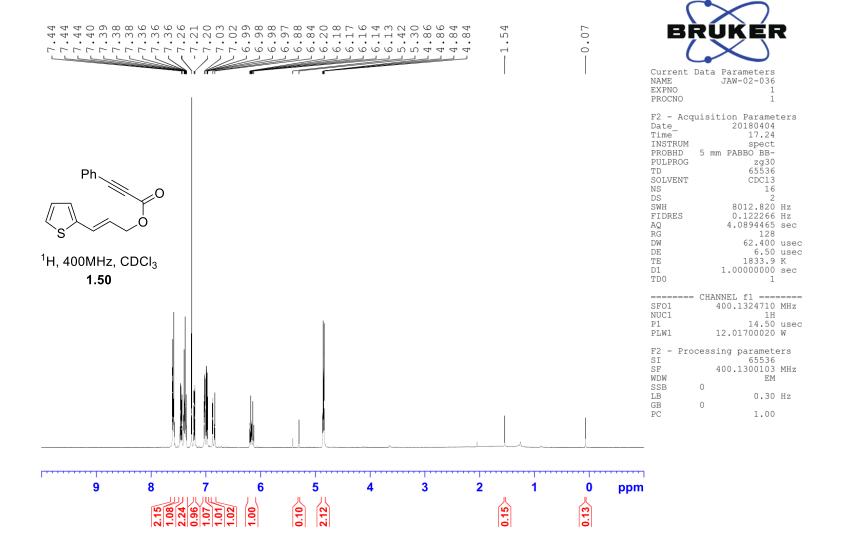

COMPOUN	D		IDENTITY											PURITY COMPUTAT							AUTHOR REMARKS	
Compound, structure, or table-entry number	44	8n +	TOWN Weight and percentage vield in pange if cryst. solid										antion +									Trates of 1.matrit Trates
2.23	X		^	^	X		^	X		X				^	^	\perp	\perp		Ш	_		
5.7		X	X	X		-	X							X	X			\perp	Ш			
5.8	X		X	X	X	-	X	X		X				X	X				Ш			
5.9	X		X	X	X		X	X		X				X	X				Ш			
5.10	X		X	X	X		Χ	X		X				X	X							
5.11	X		X	X	X		Χ	X		X				X	X							
5.12	X		X	X	X		x	X		X				X	X							
5.13	X		X	X	X		X	X		X				X	X							
5.14	Х		X	X	X		X	X		X				X	X							
5.15	х		X	X	Х		x	Х		X				Х	X							
5.16	X		X	X	X		X	X		X				X	X							

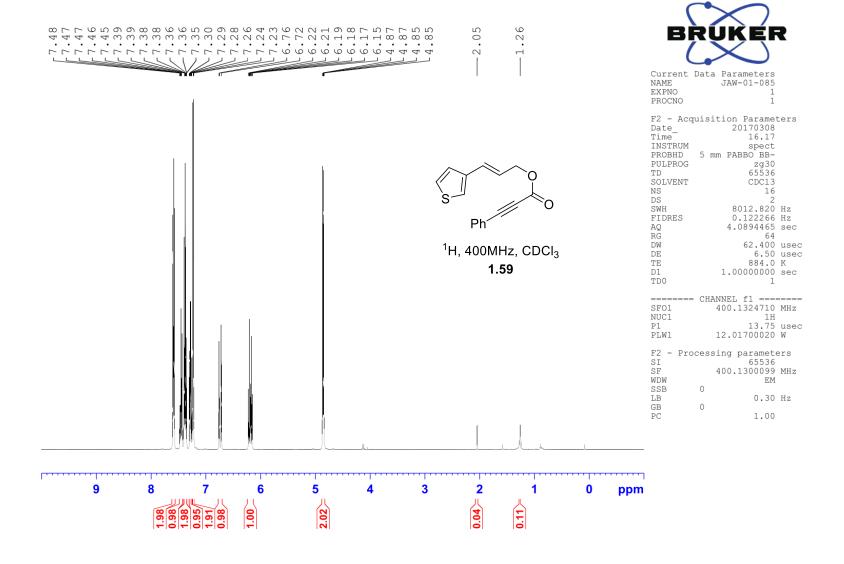

Appendix B $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of Synthetically Prepared Molecules

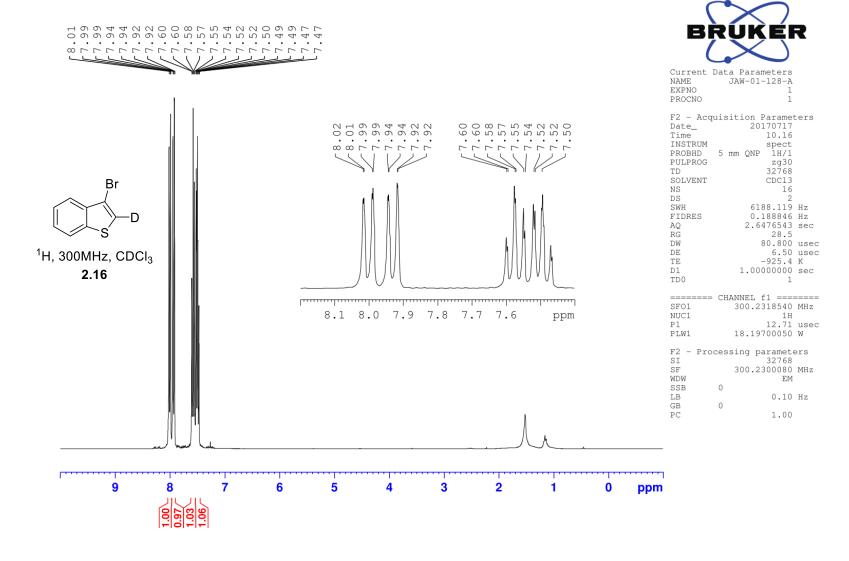


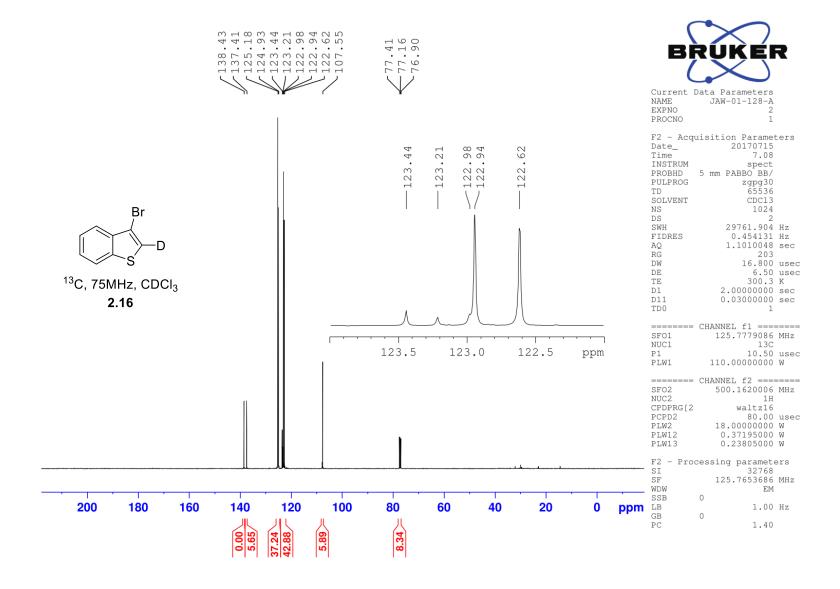


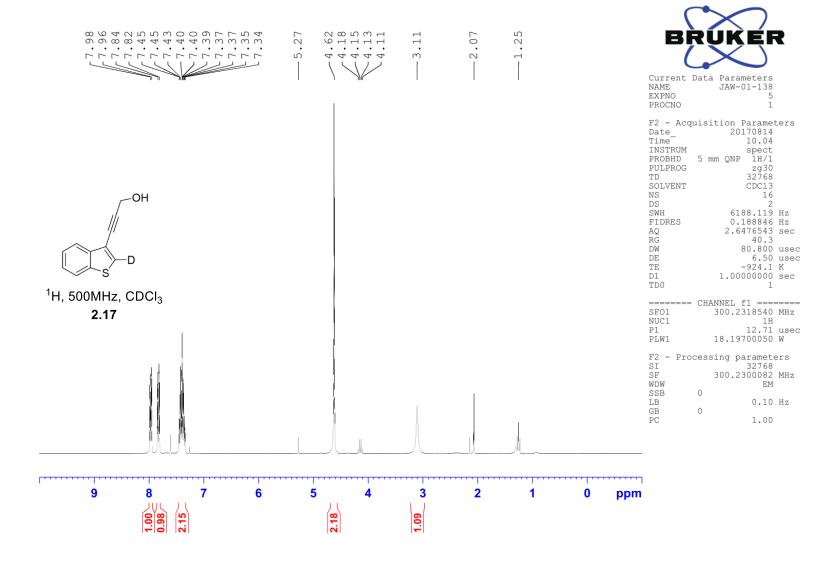


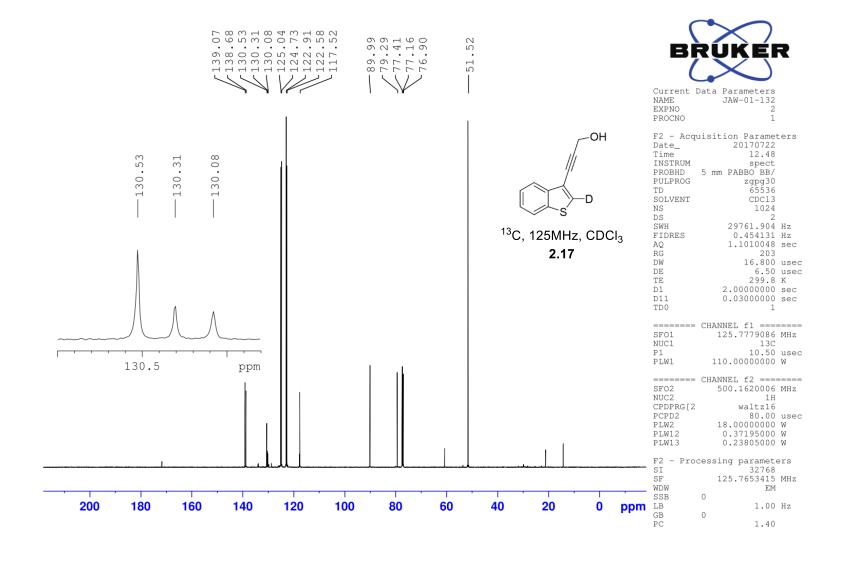


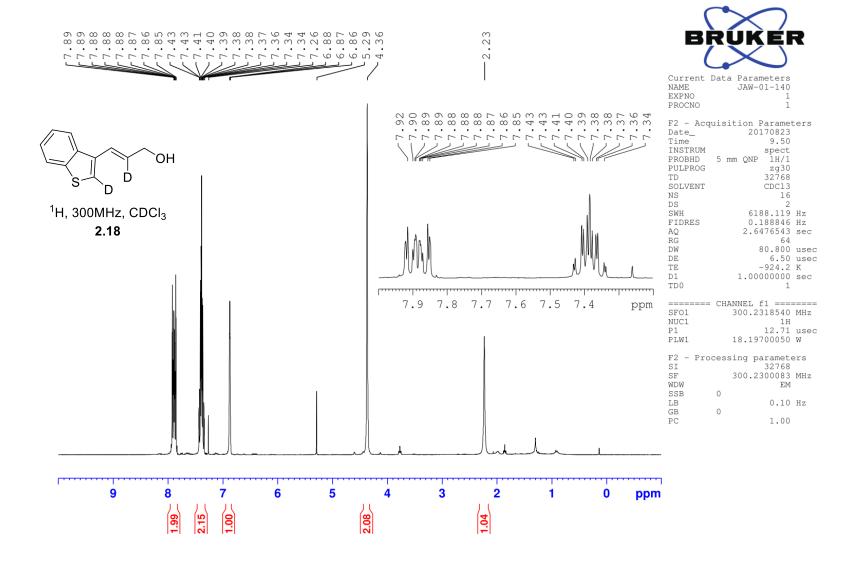


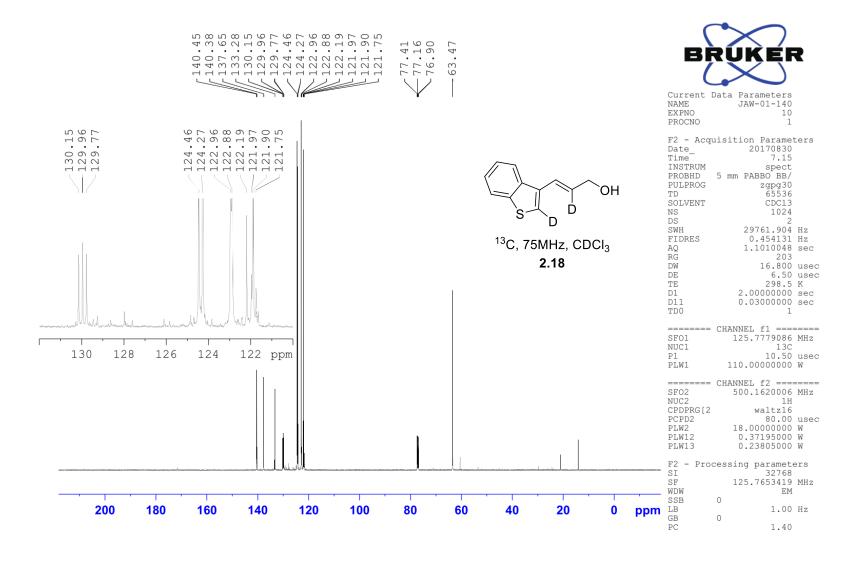


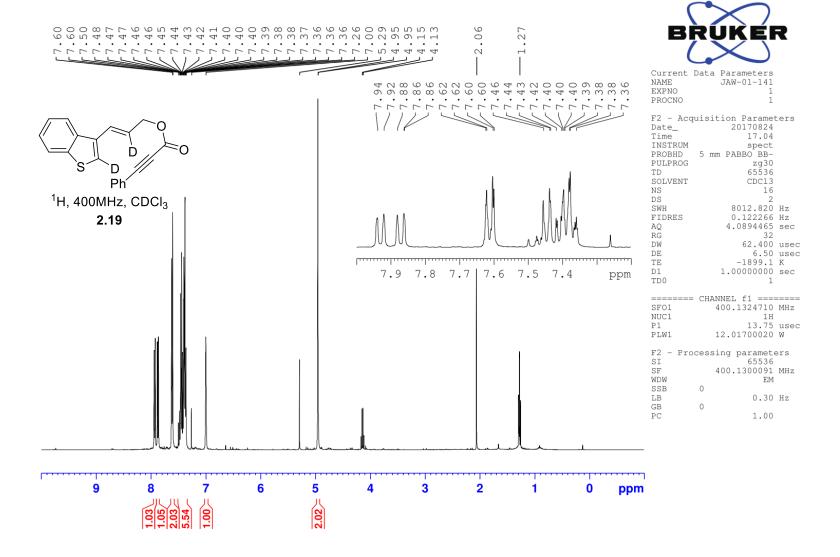


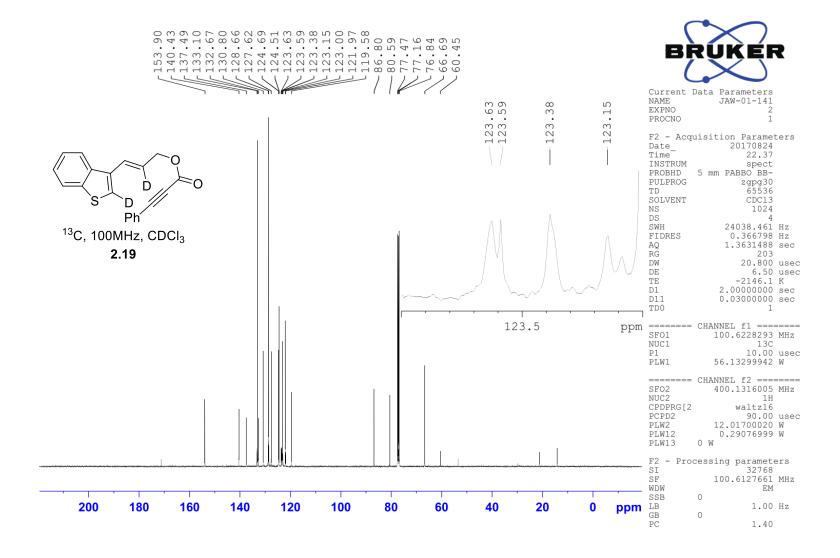


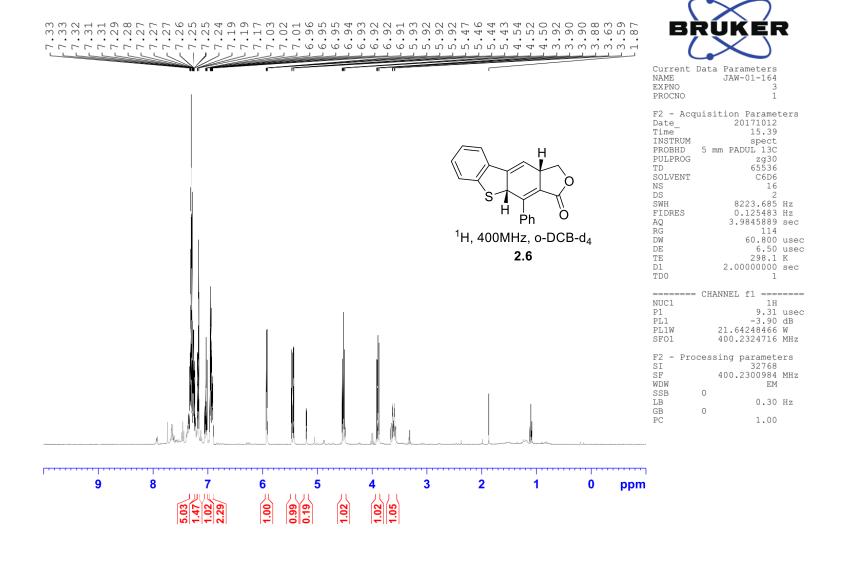


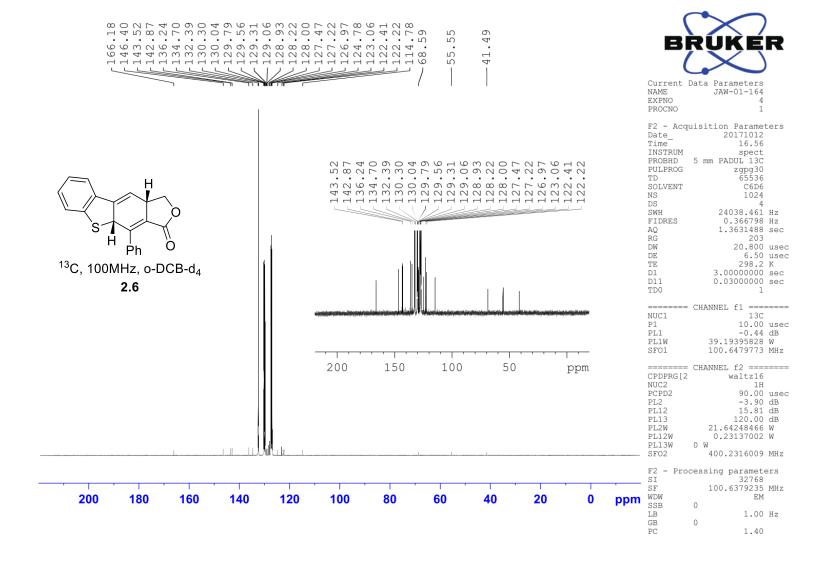


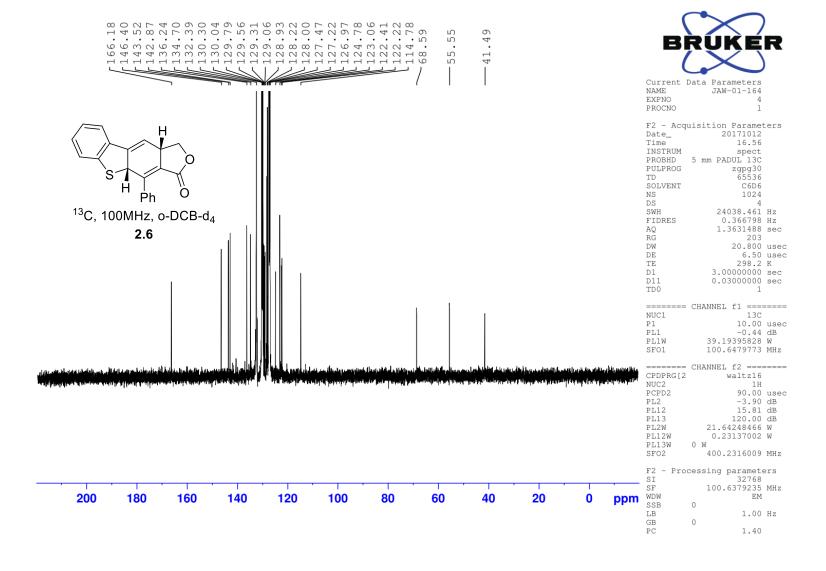


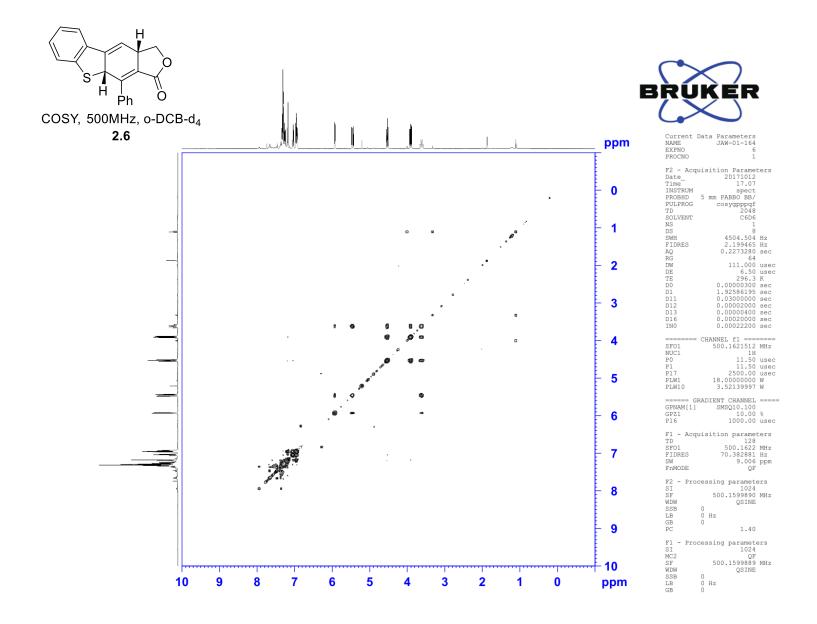


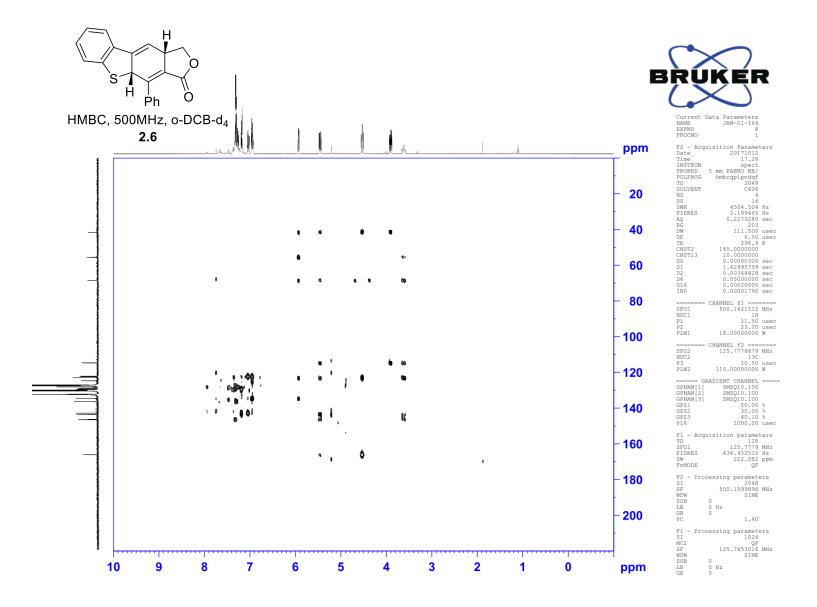


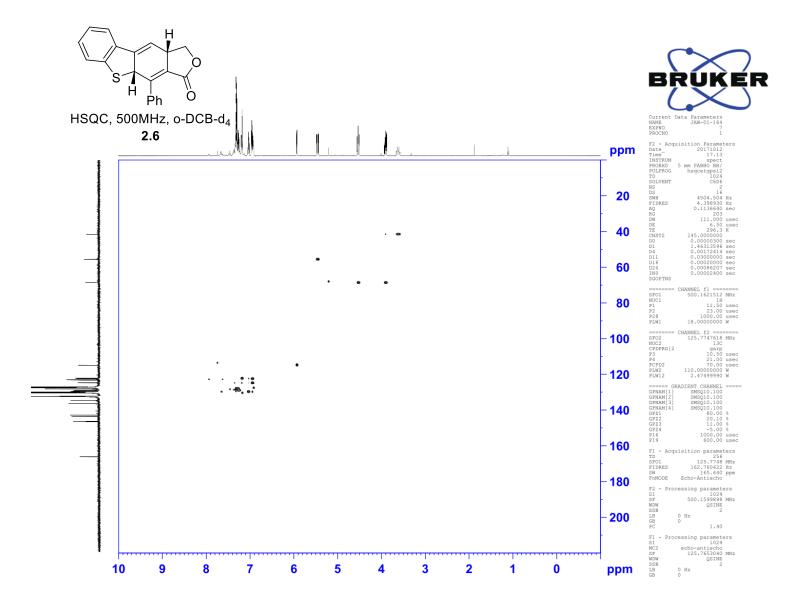


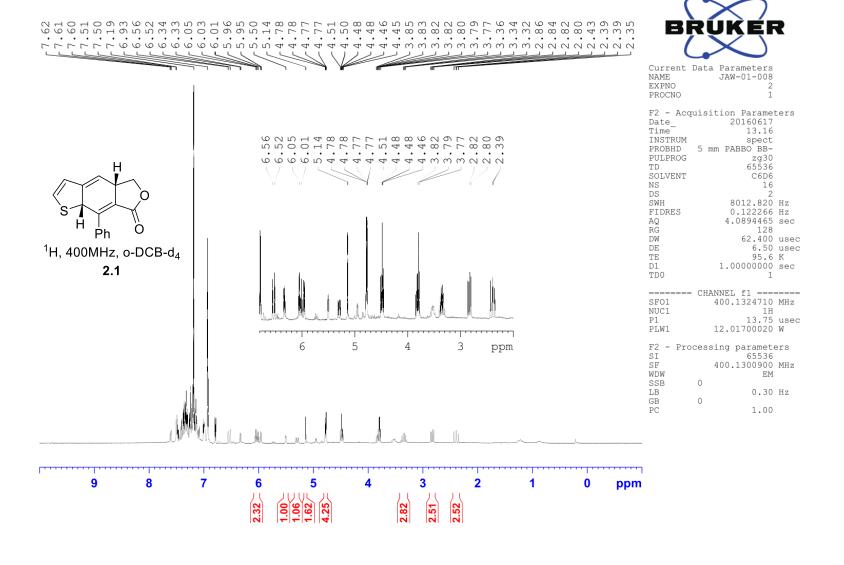


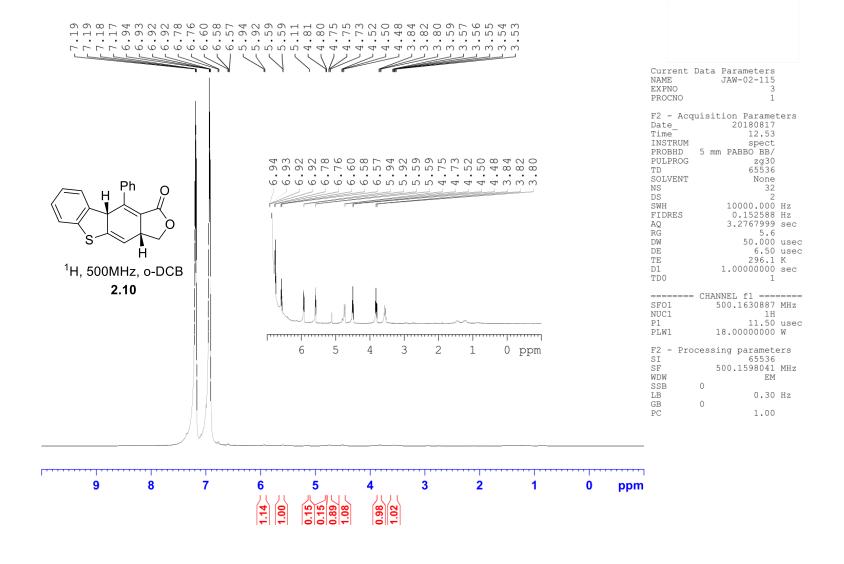


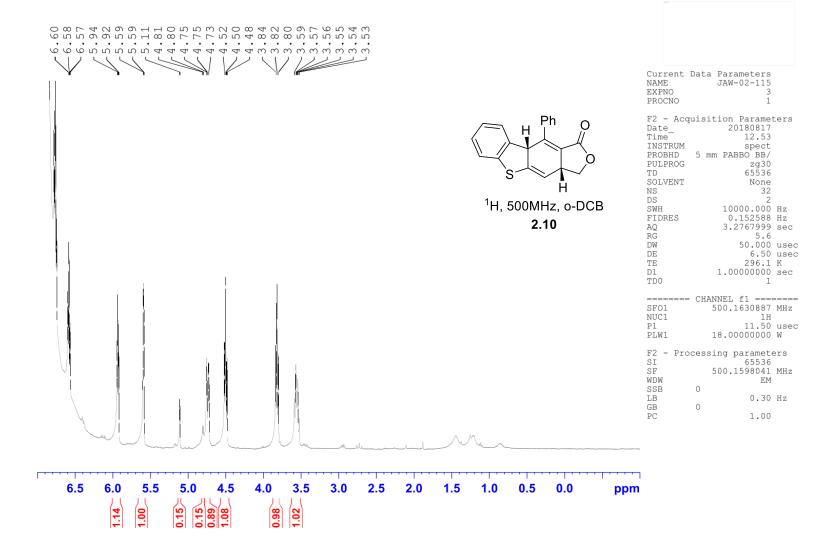


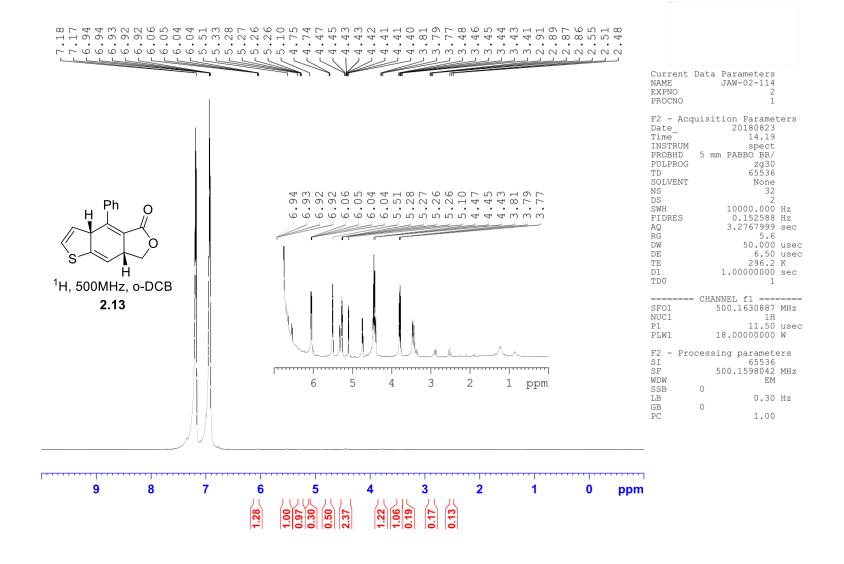


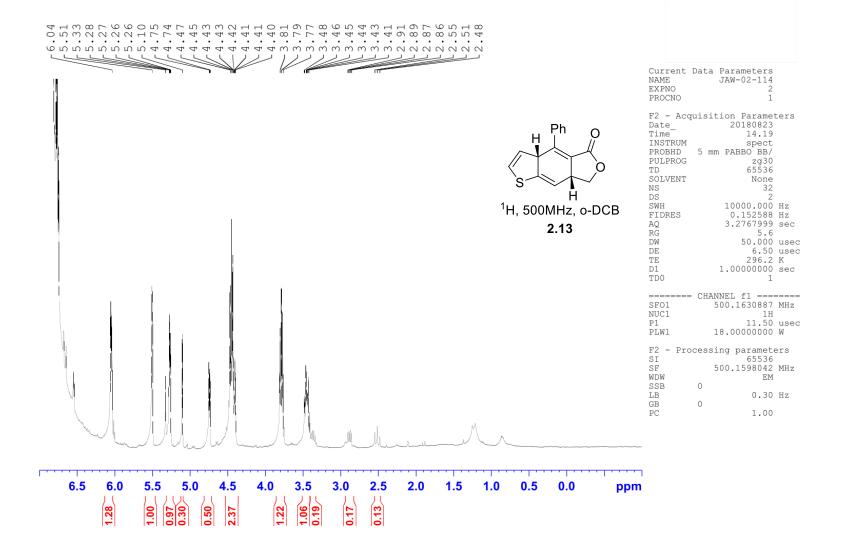


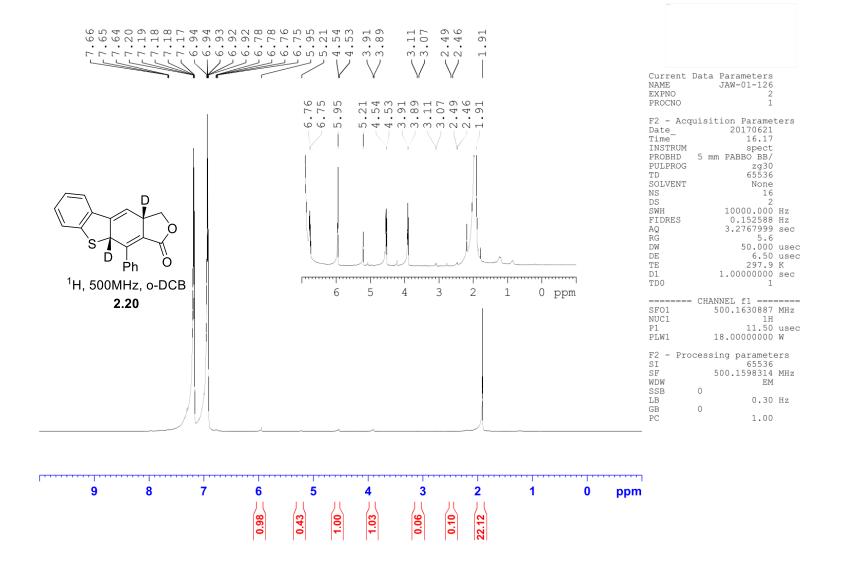


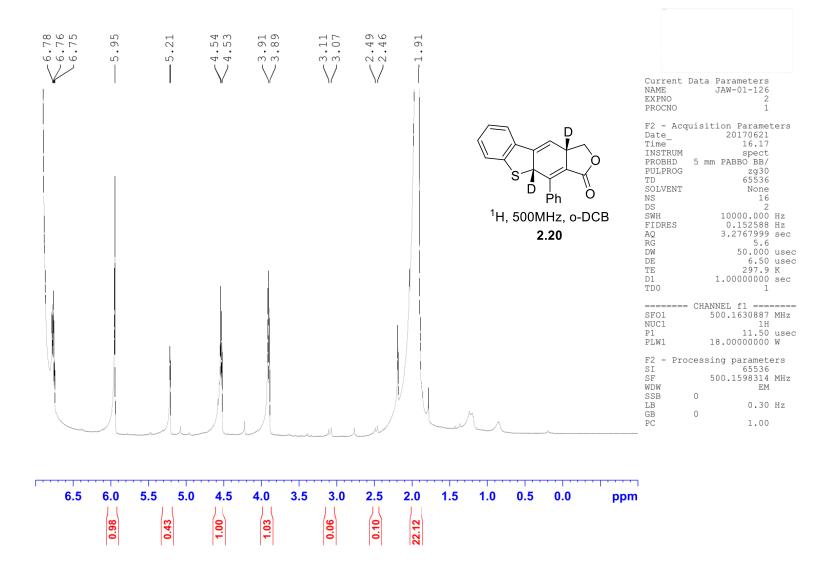


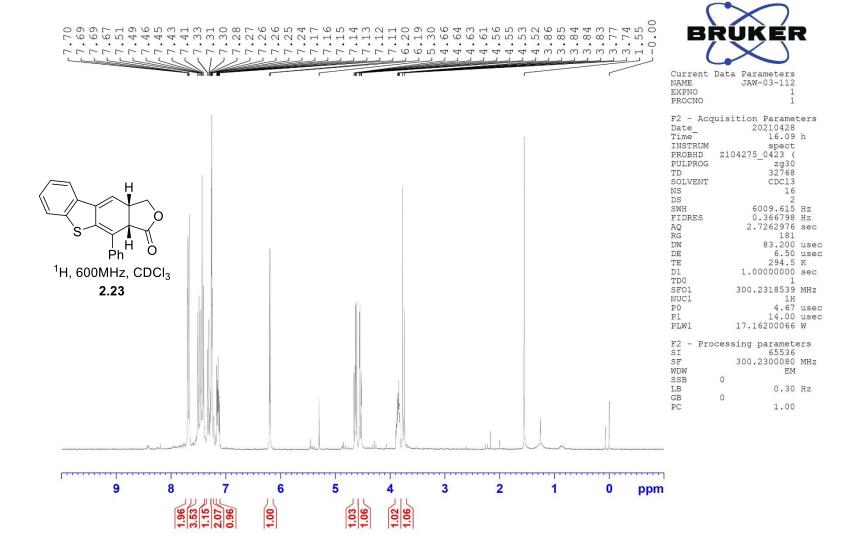


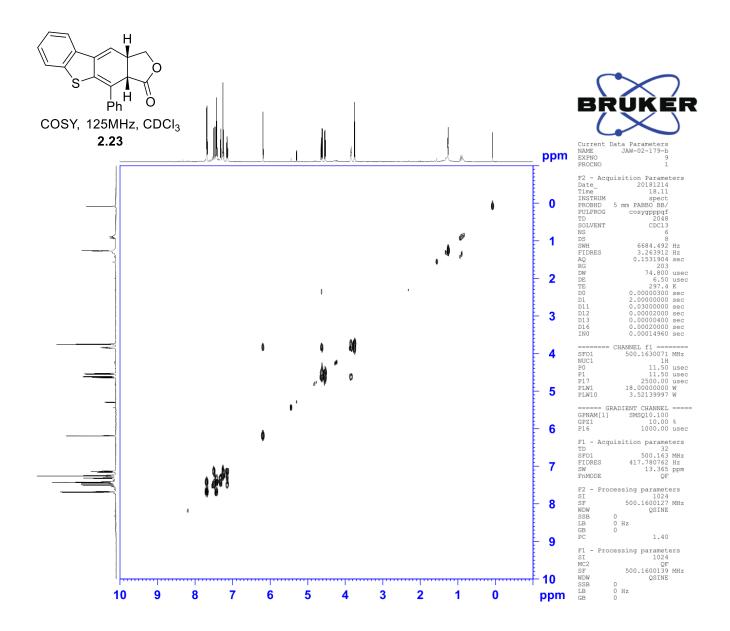


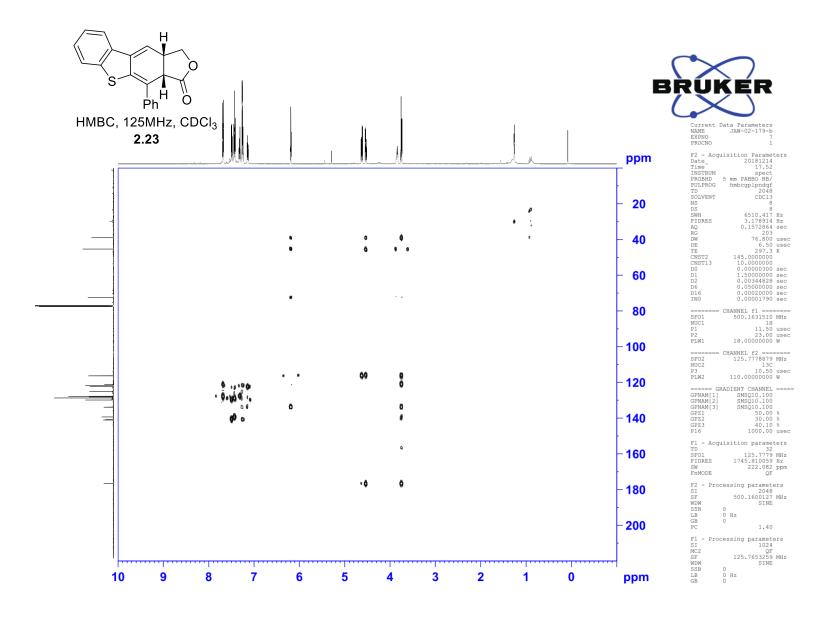


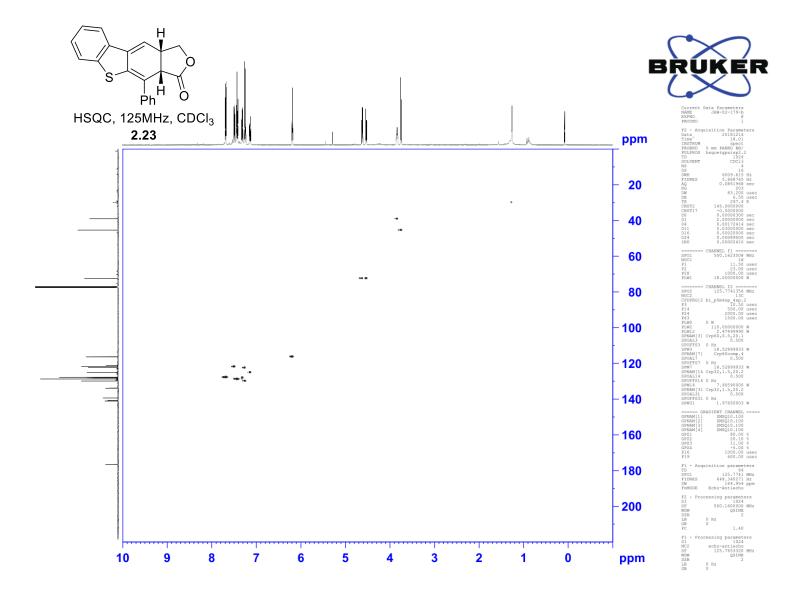


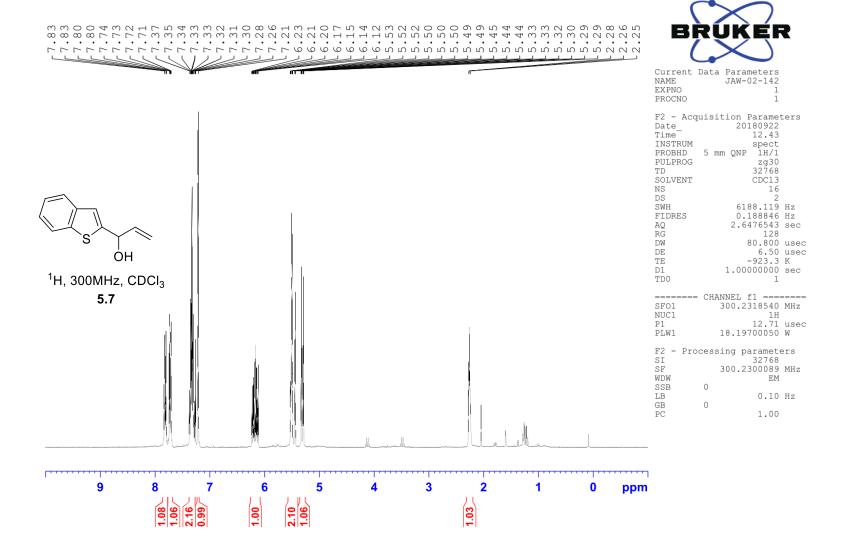


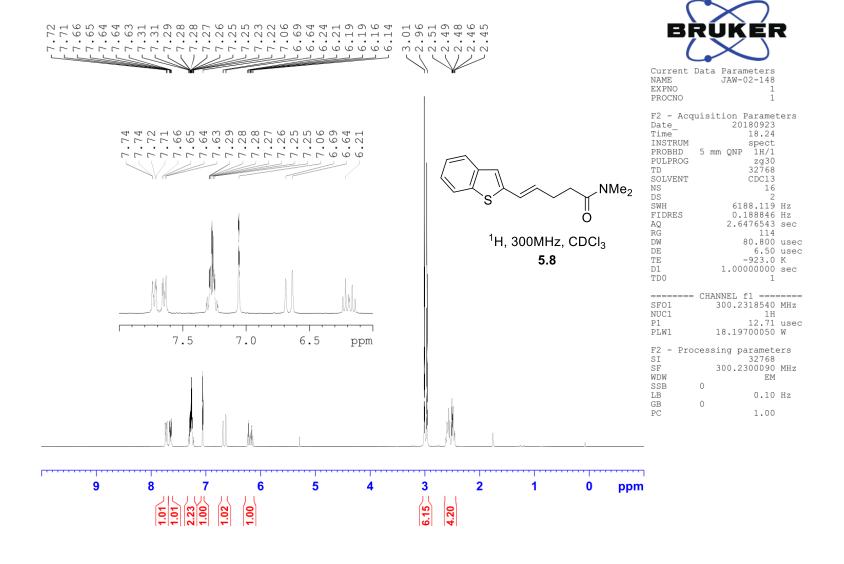


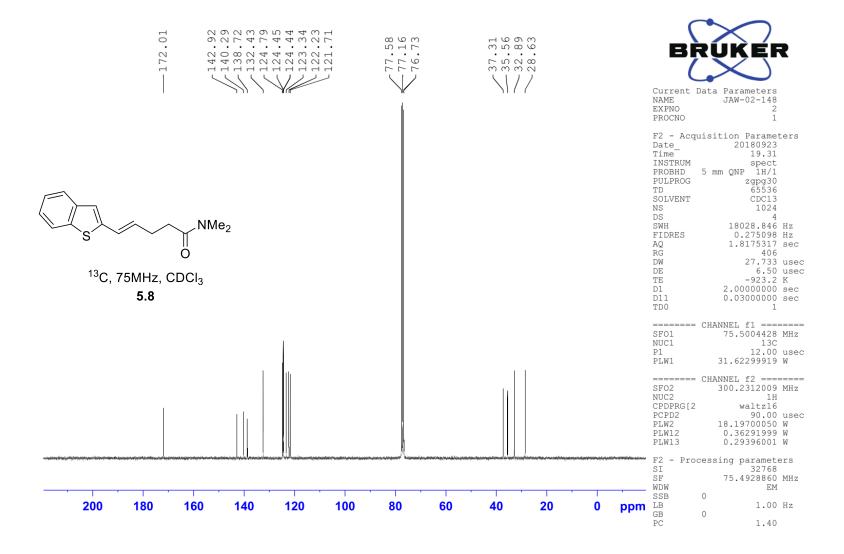


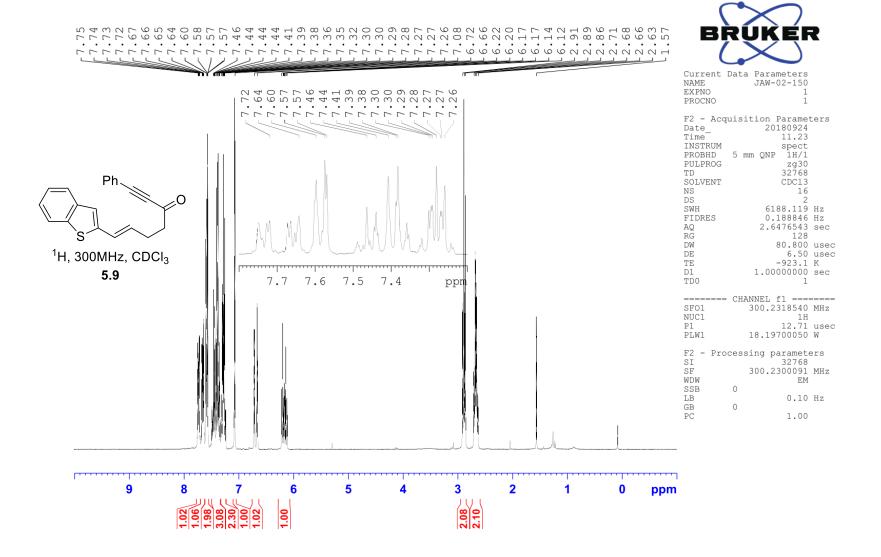


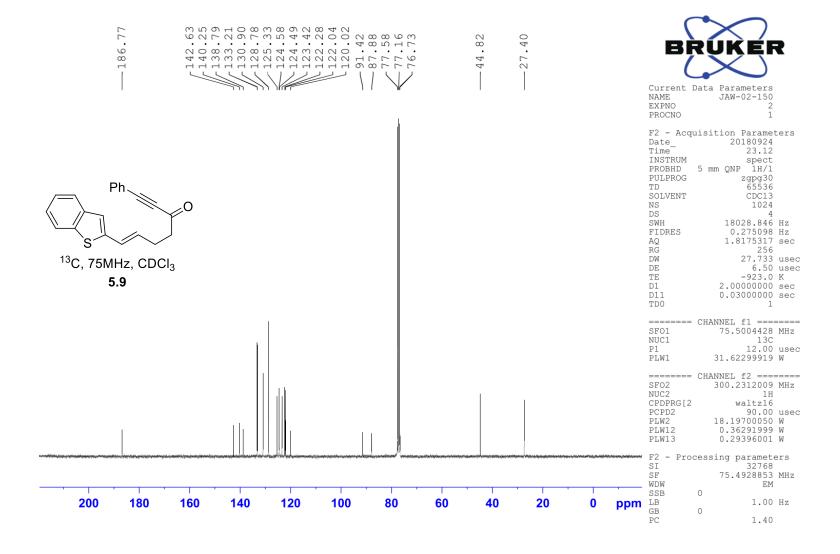


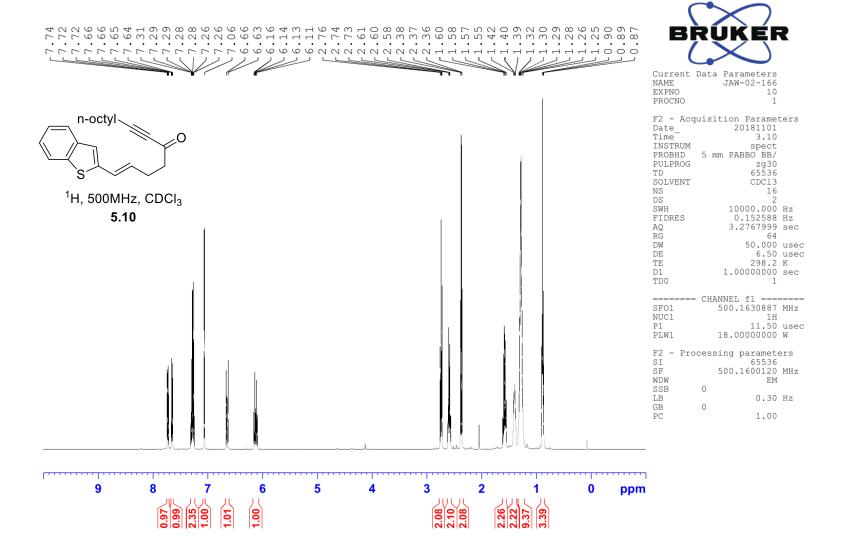


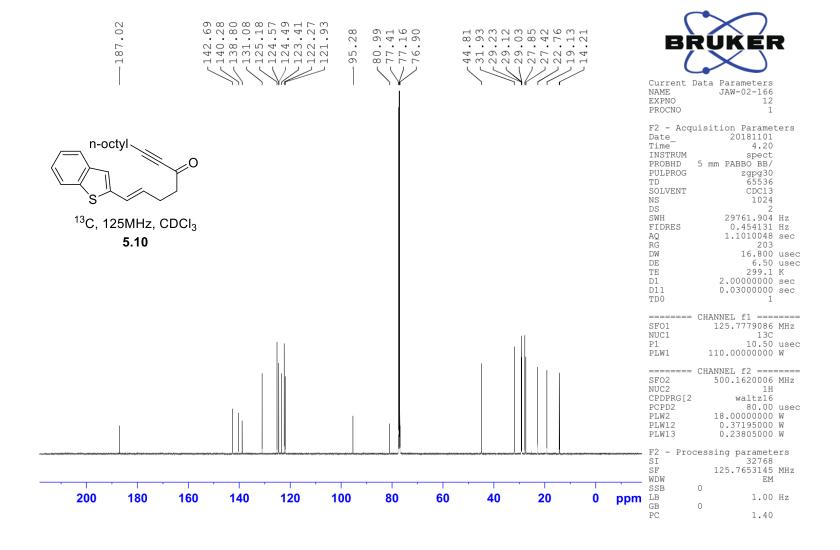


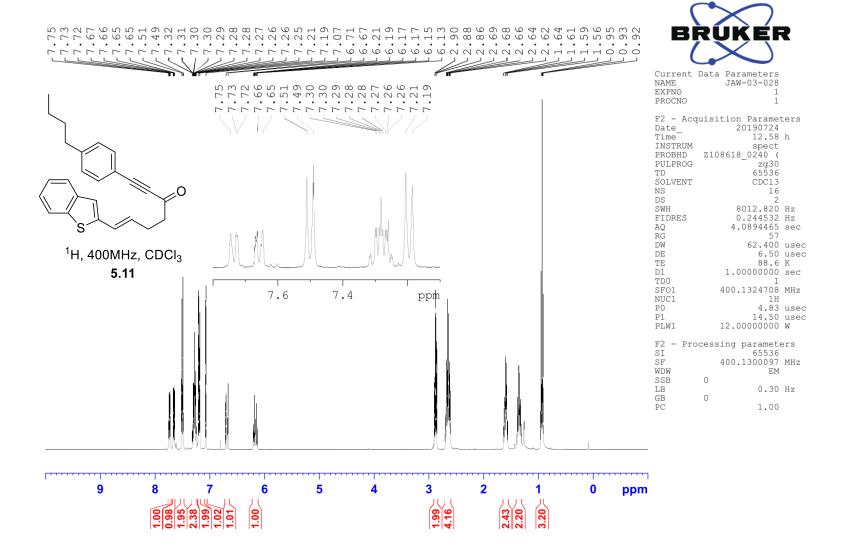


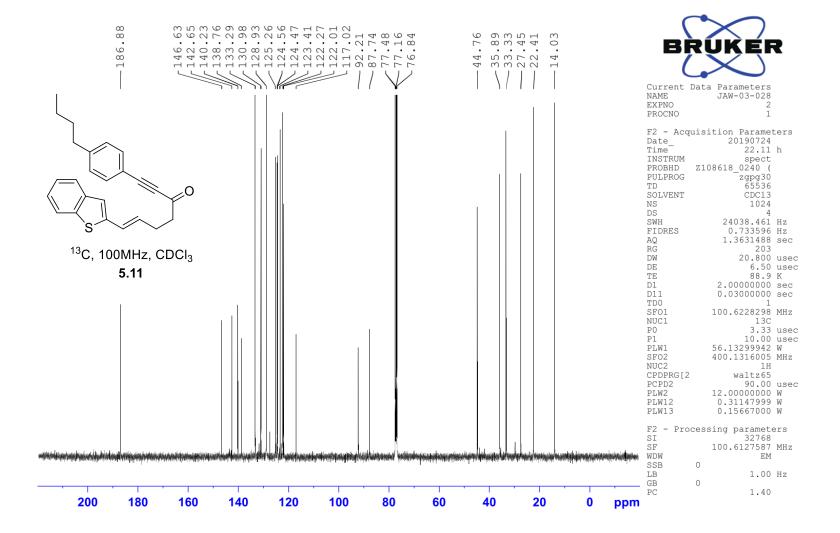


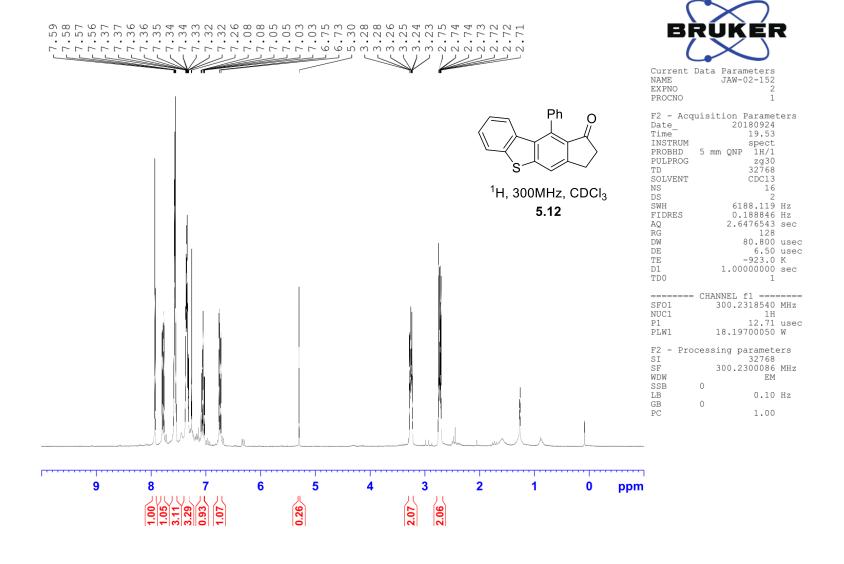


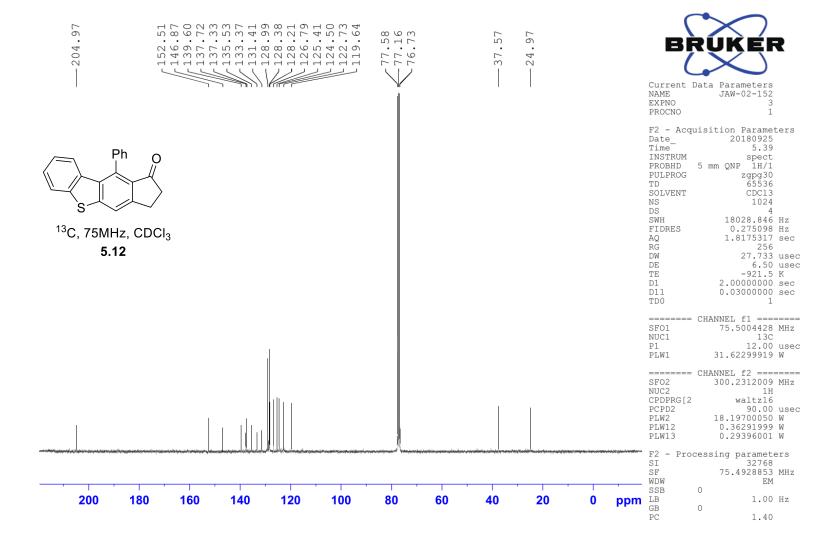


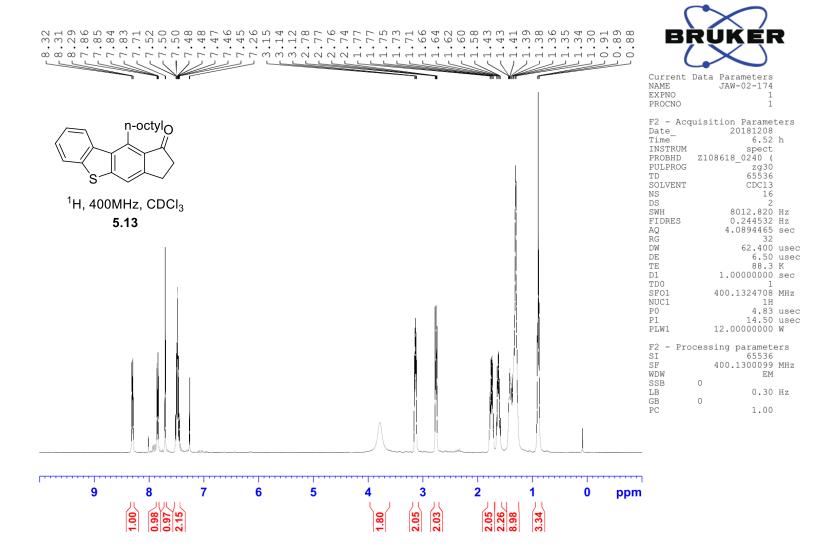


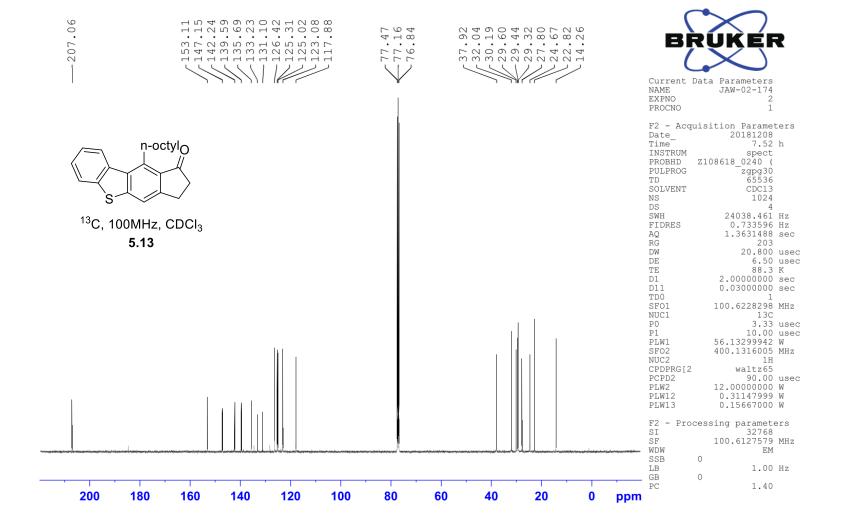


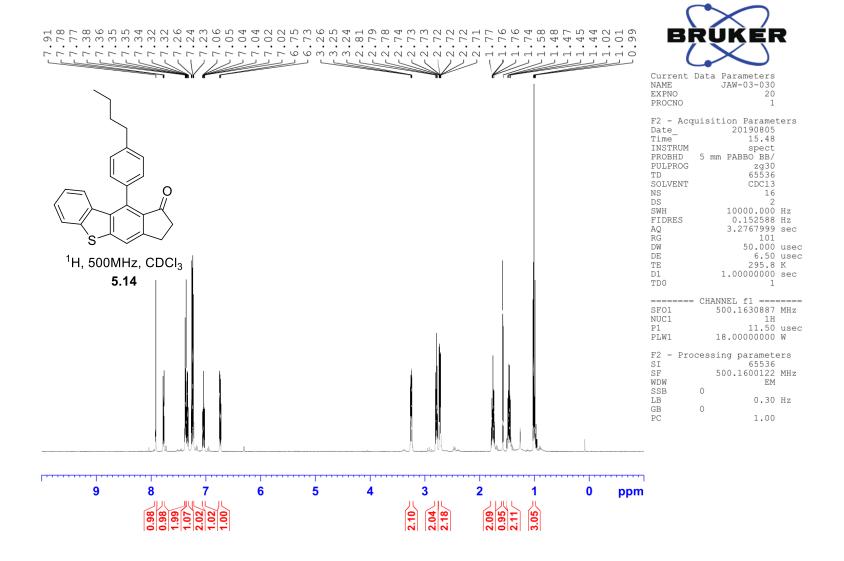


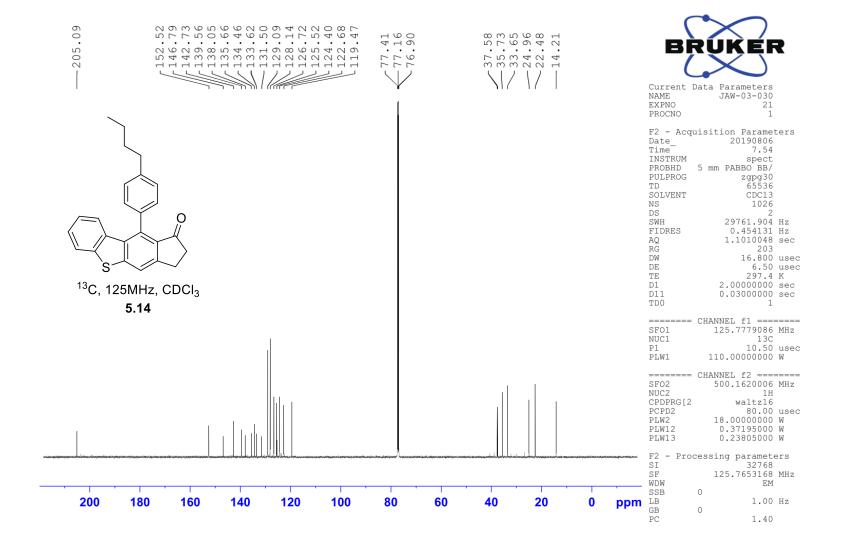


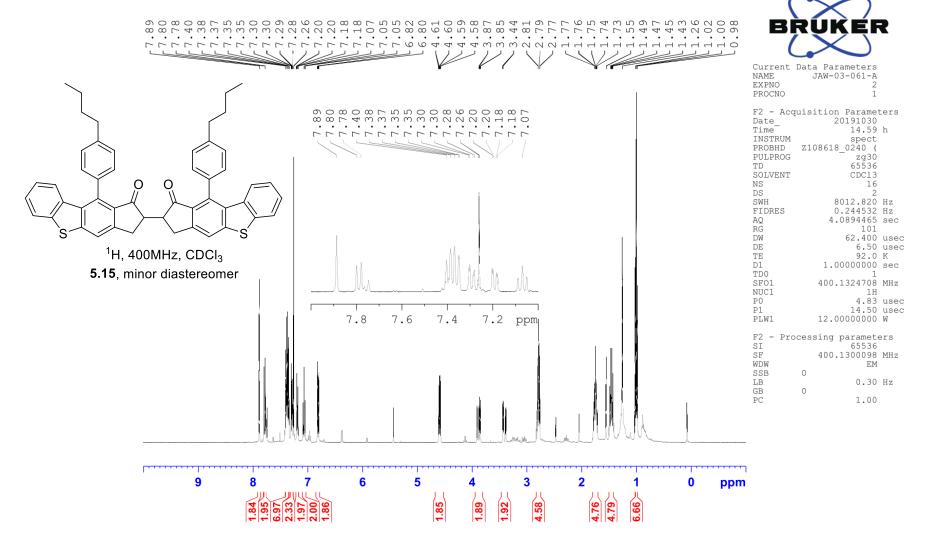


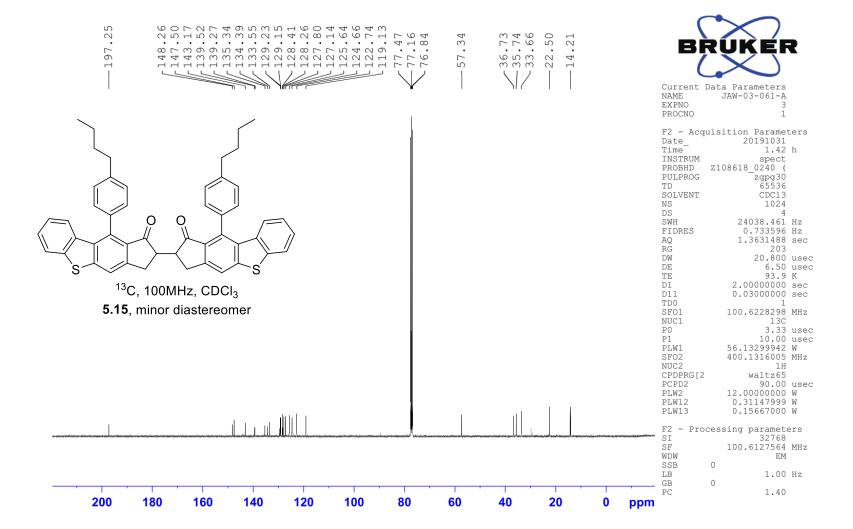


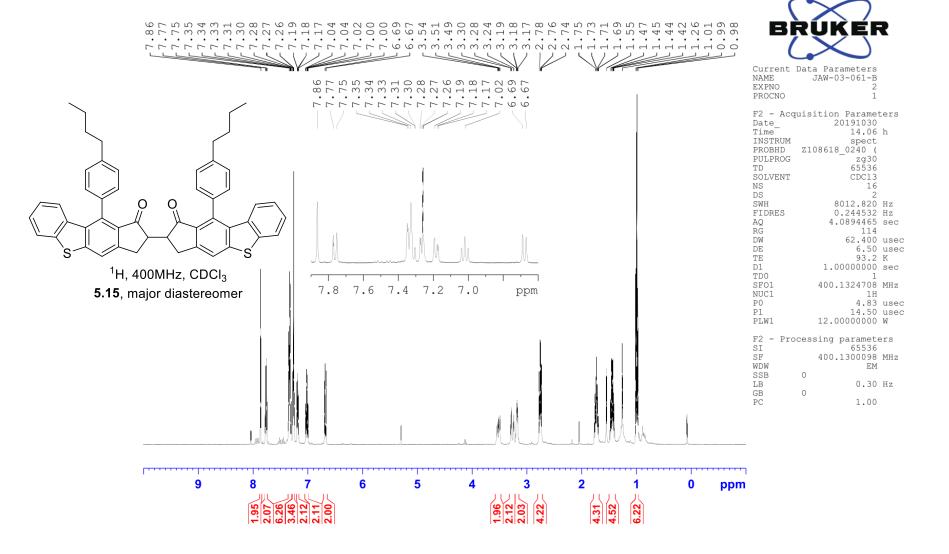


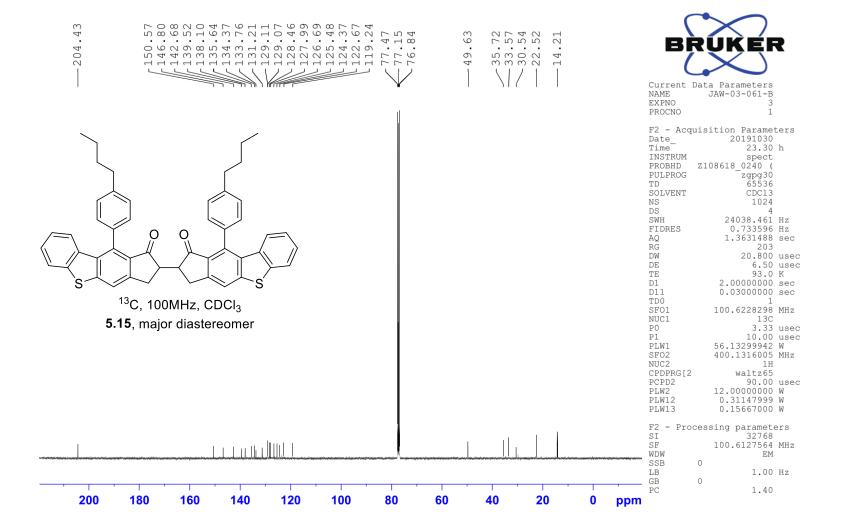


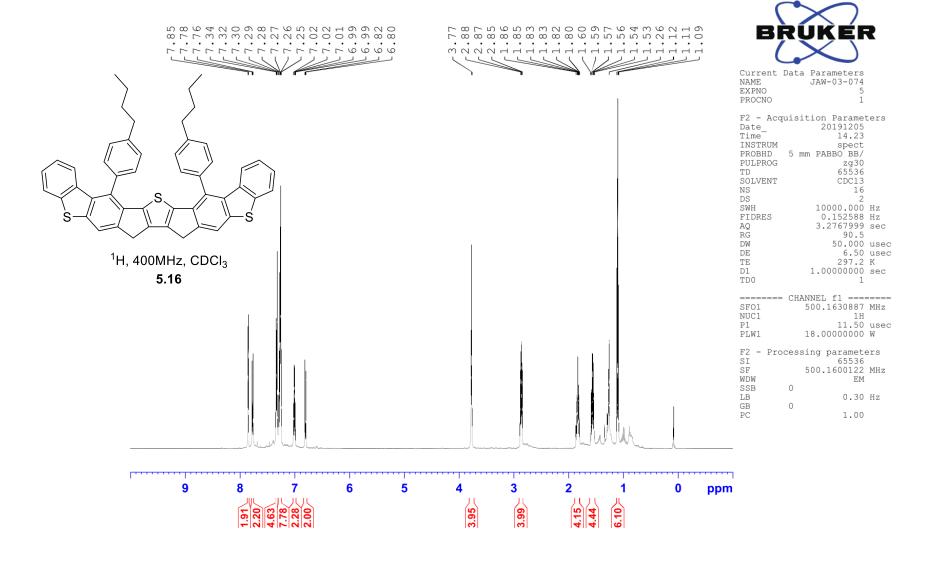


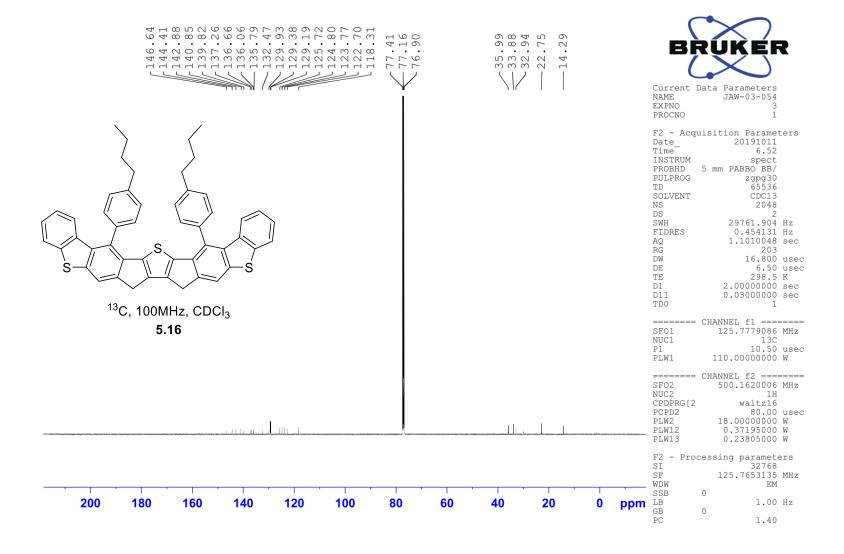


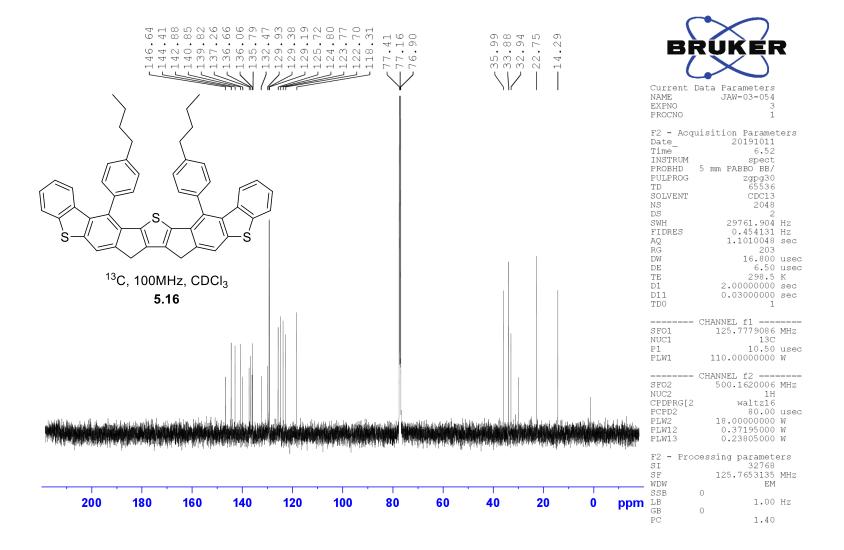


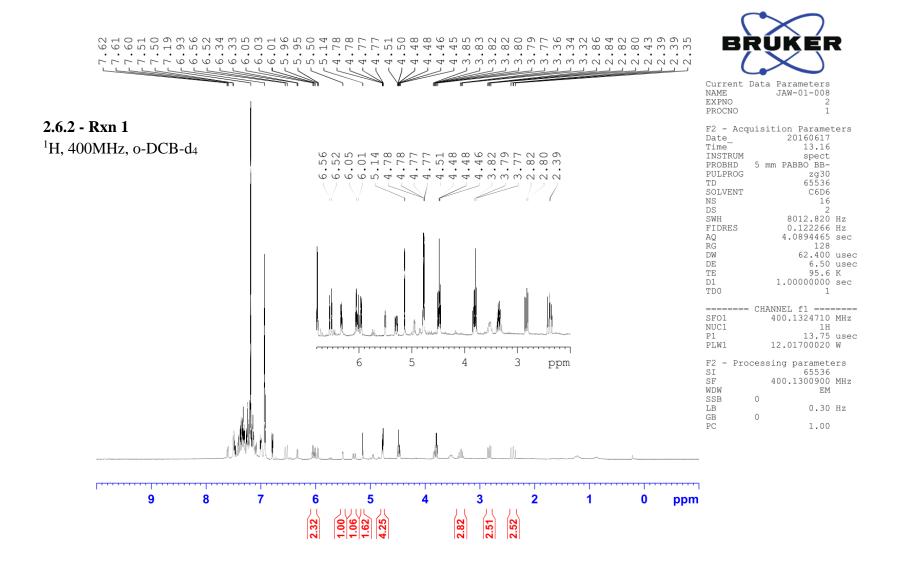


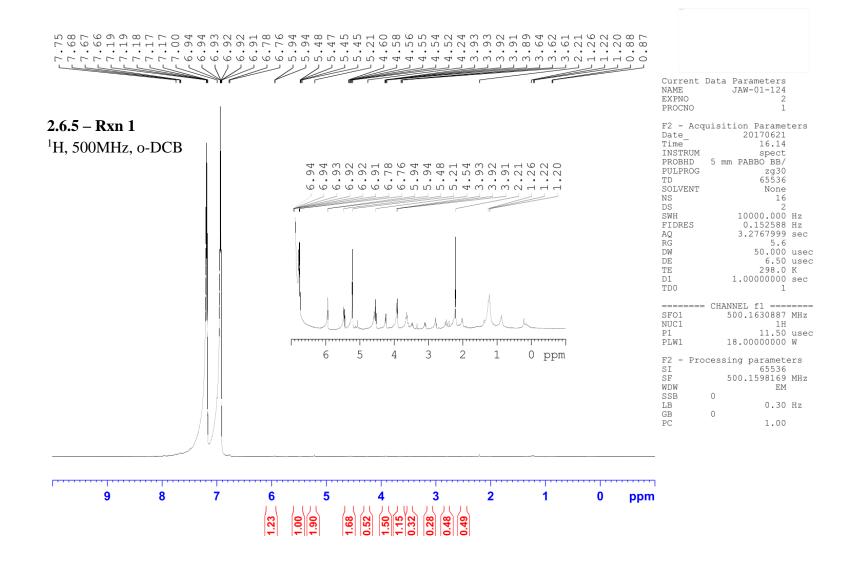


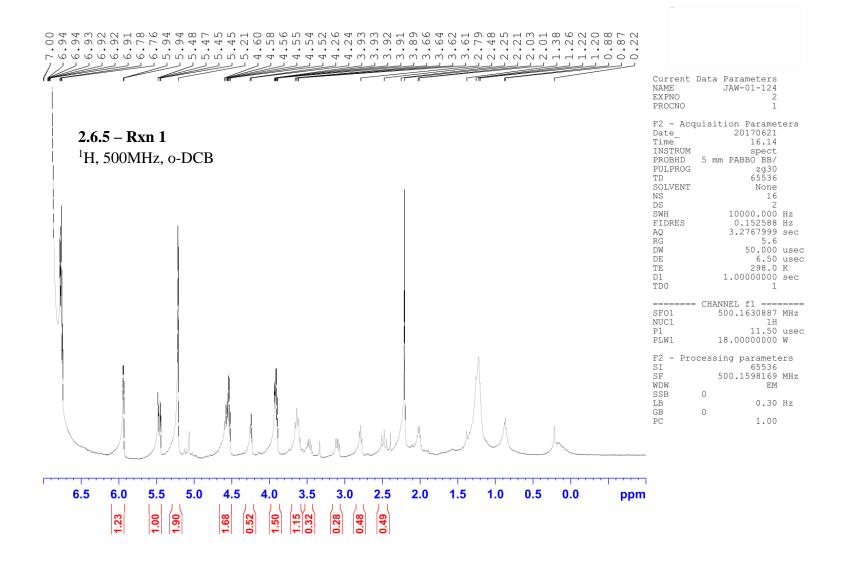


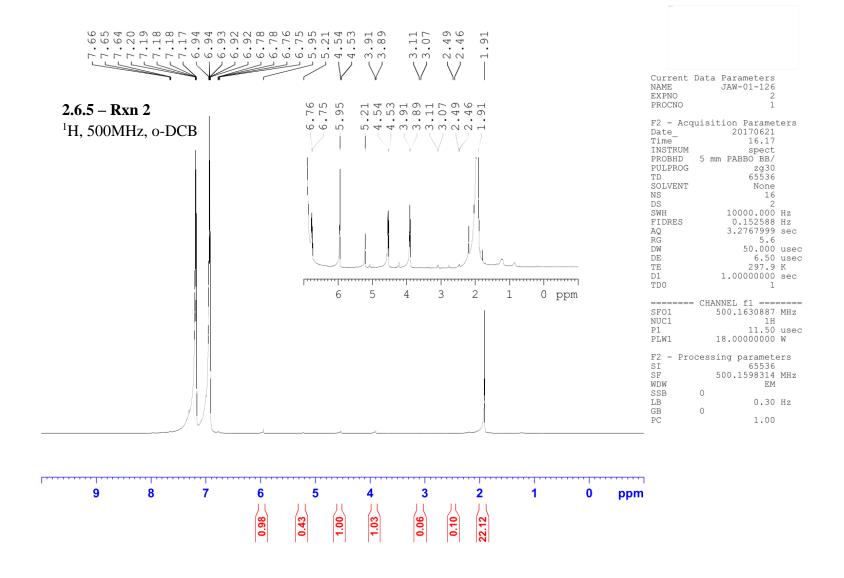


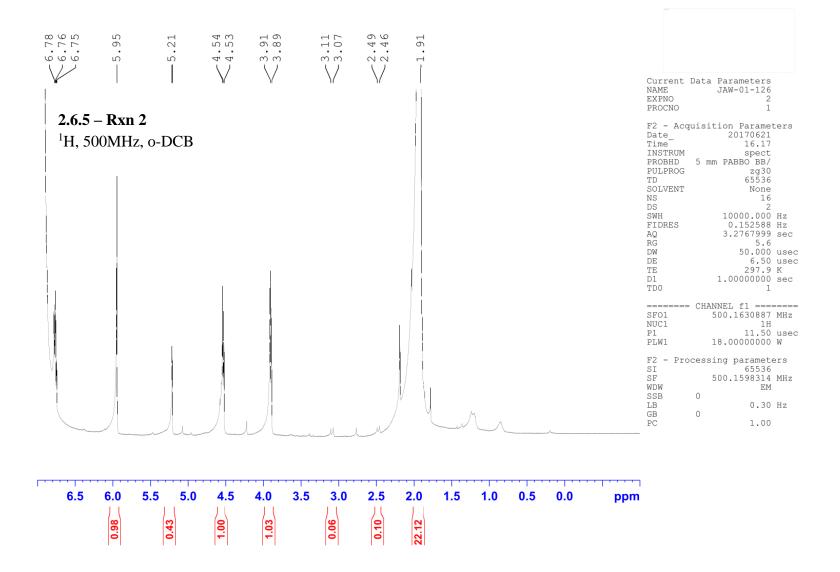




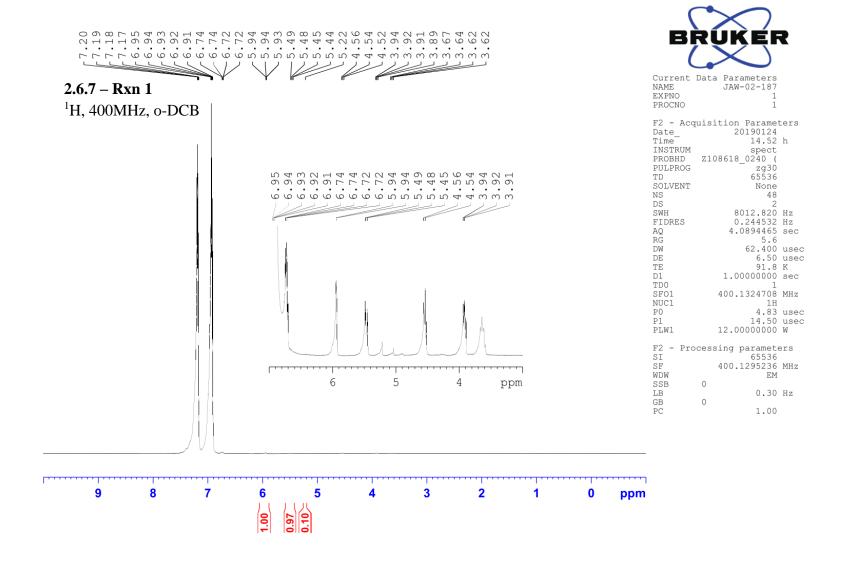


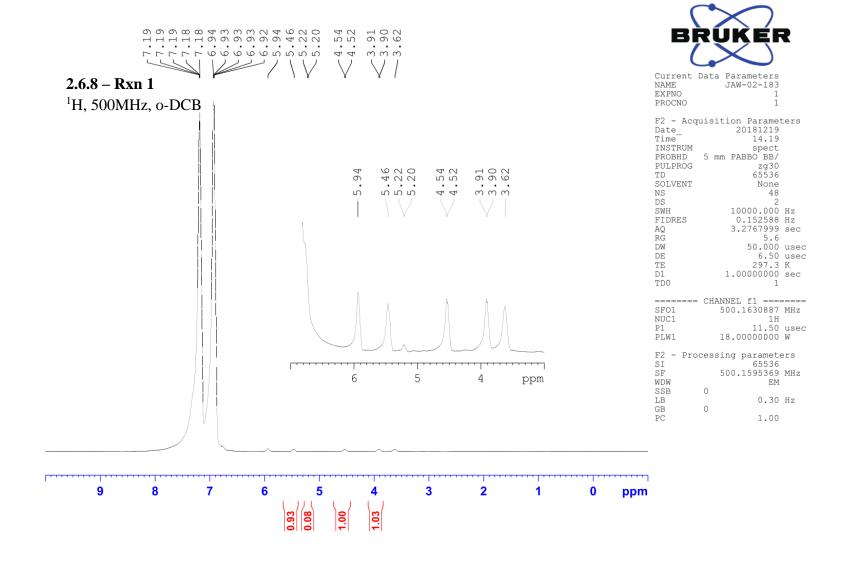


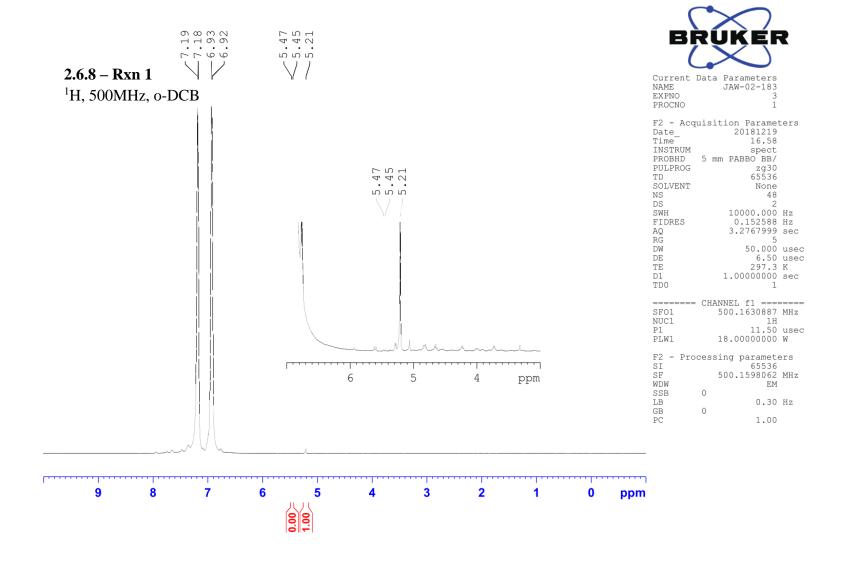


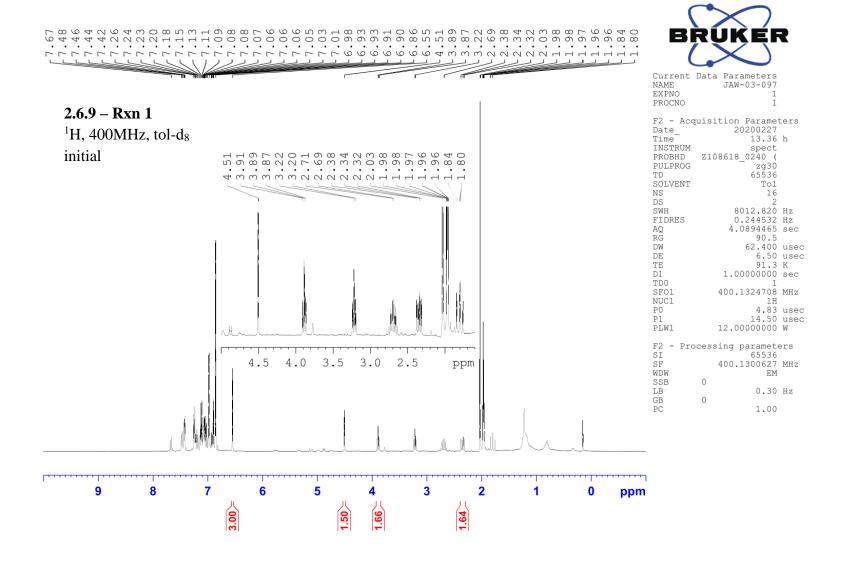


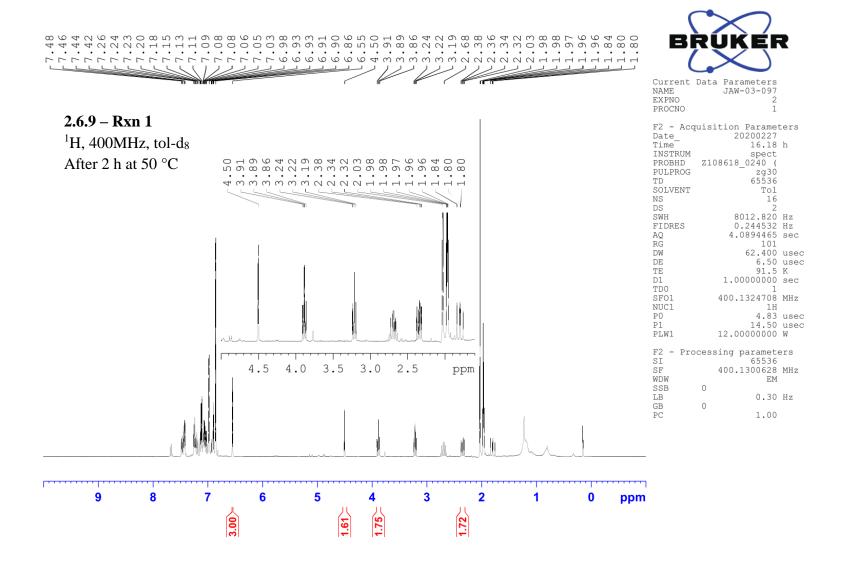


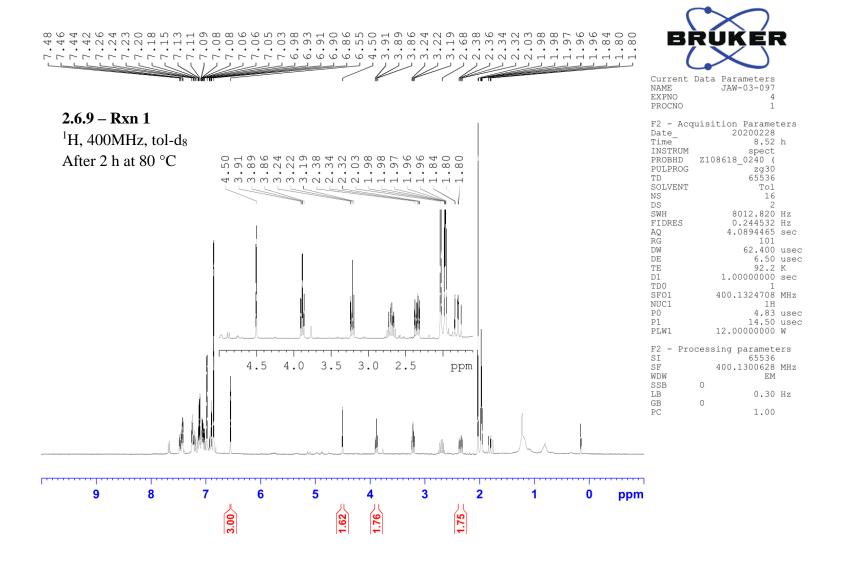


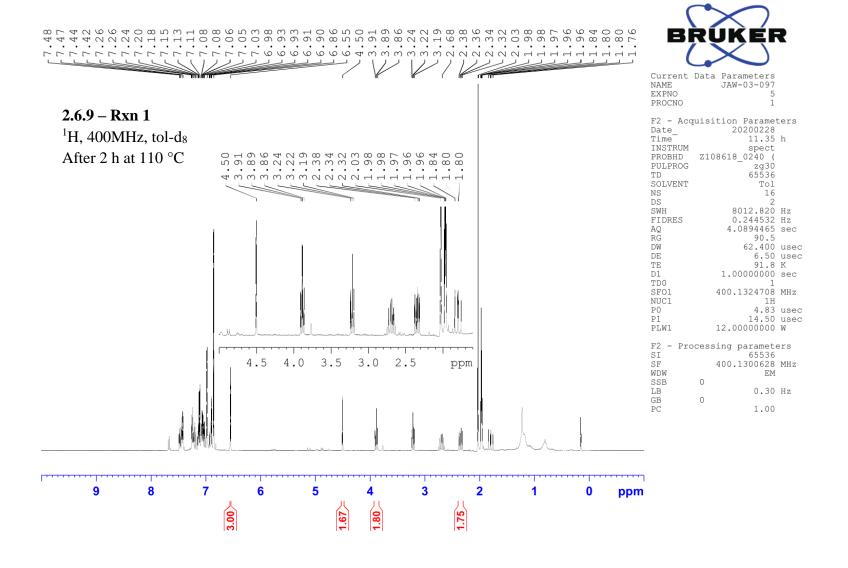


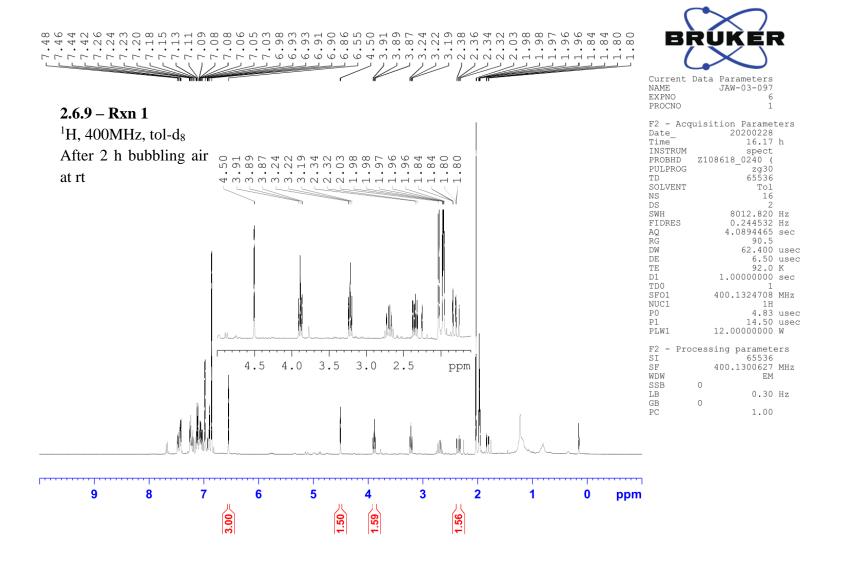


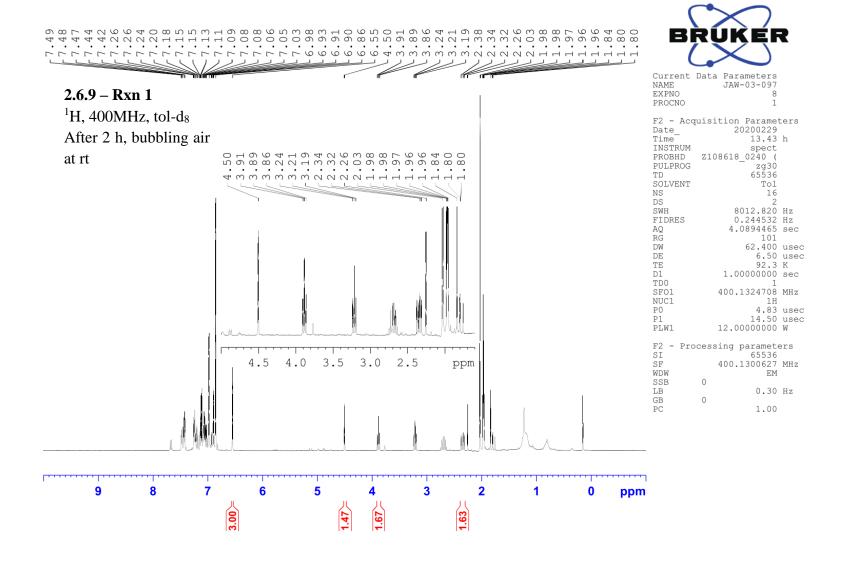


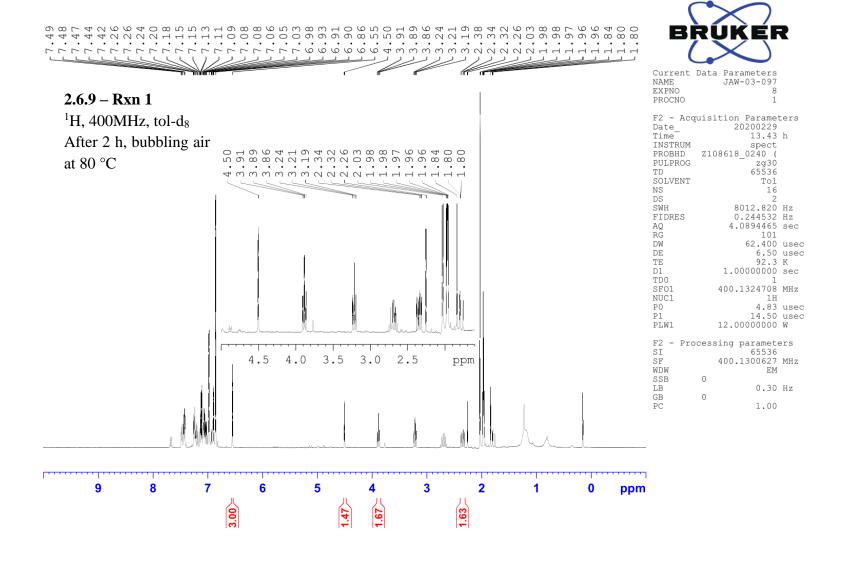


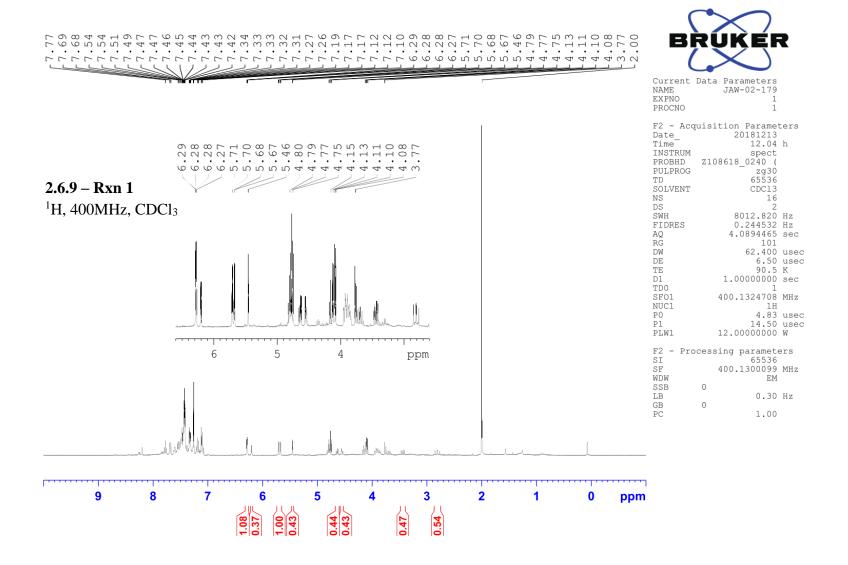


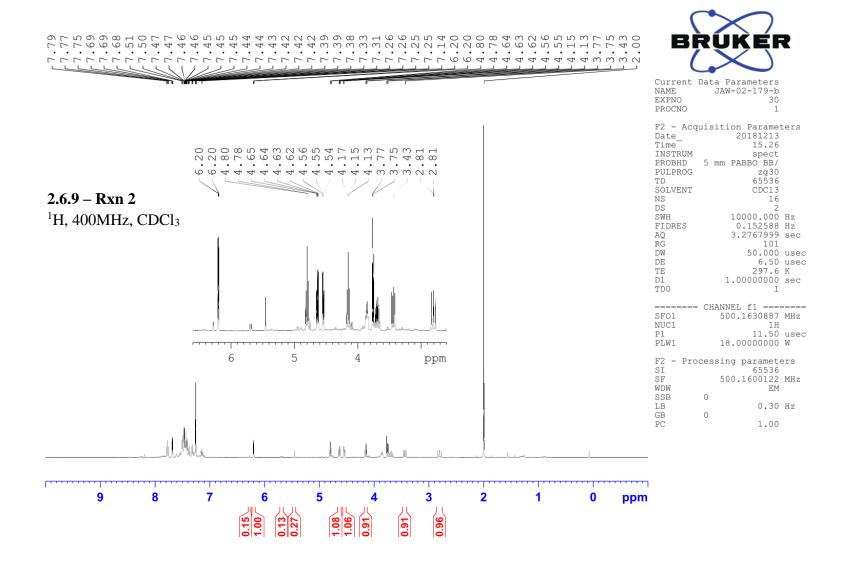


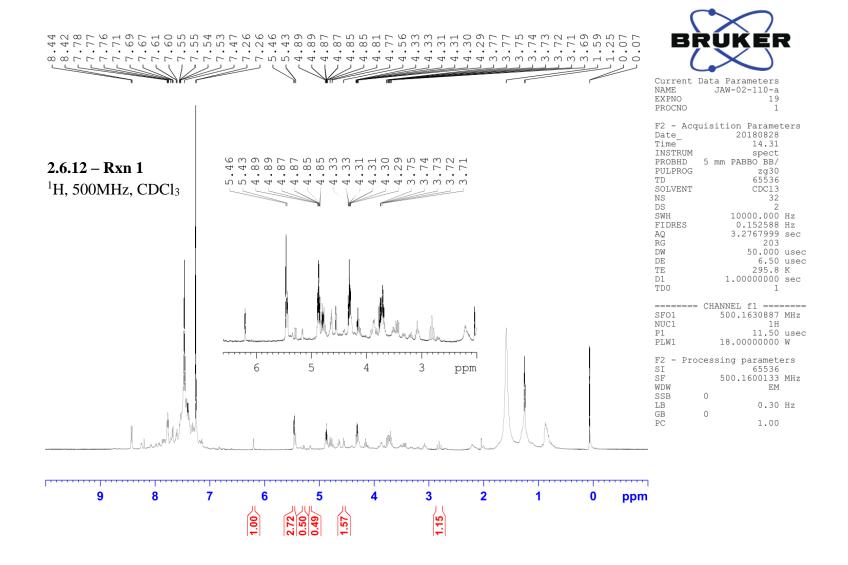


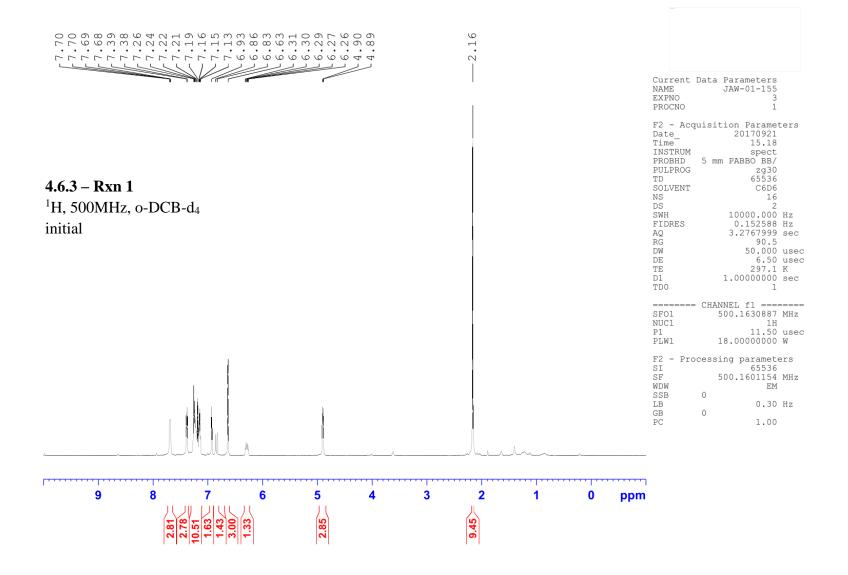


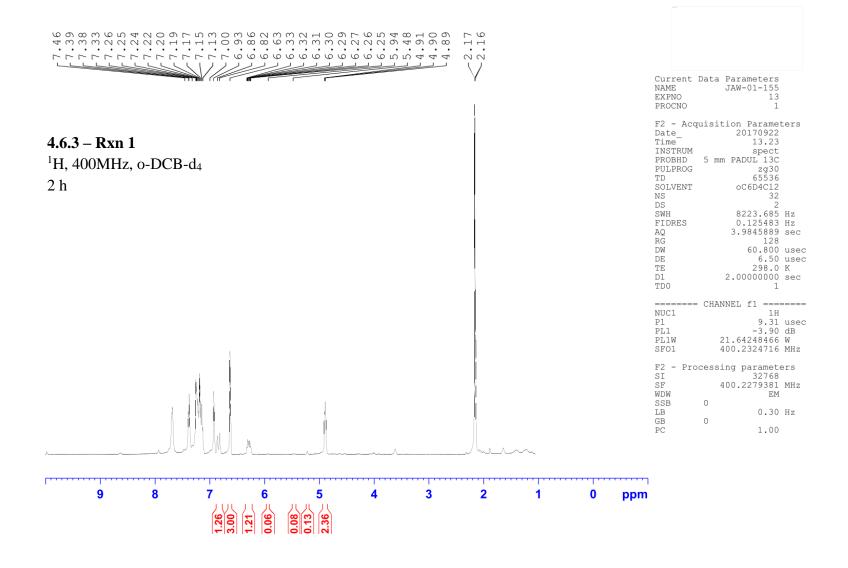


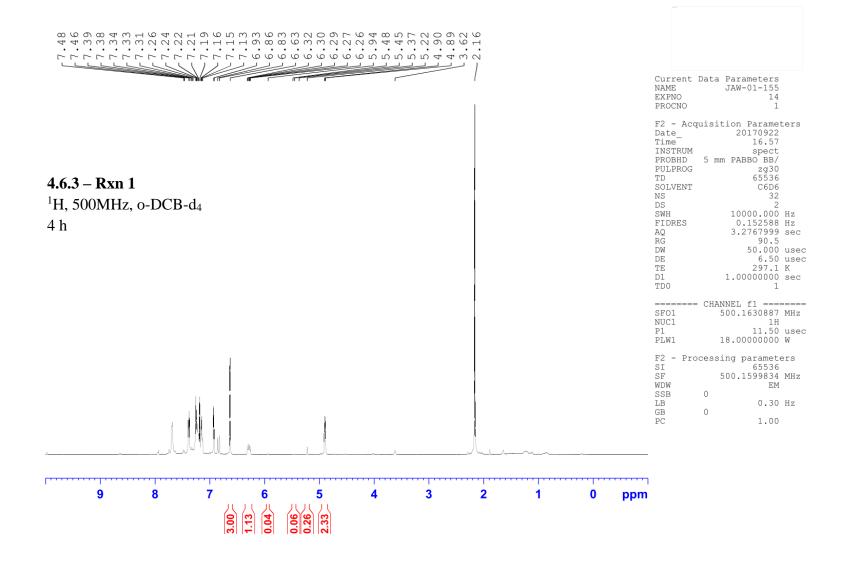


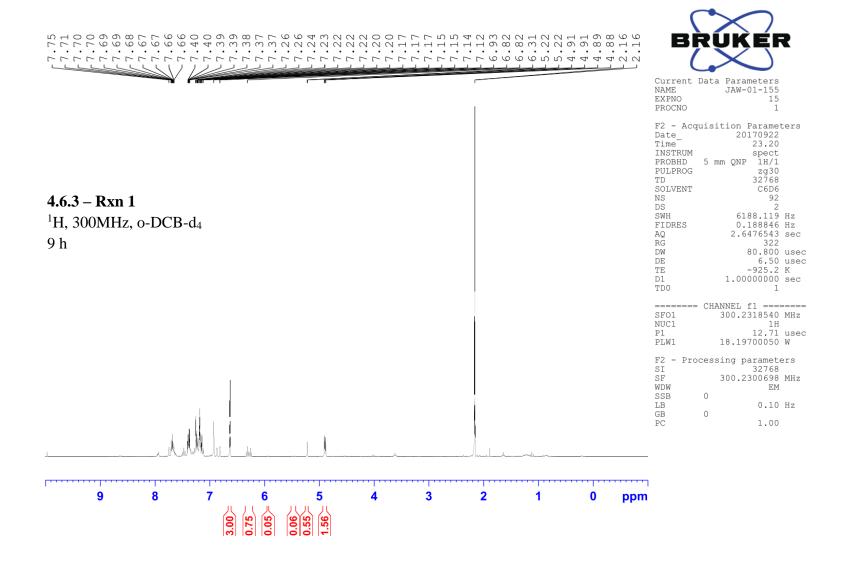


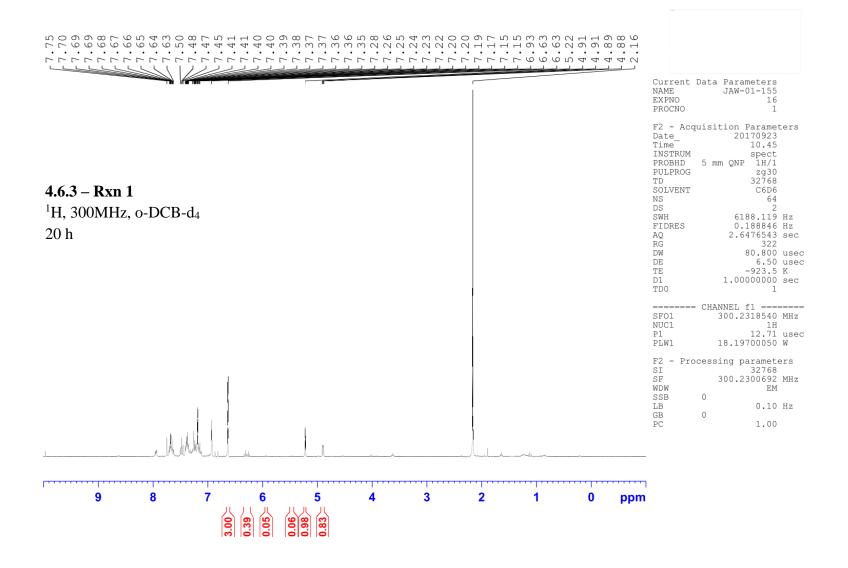


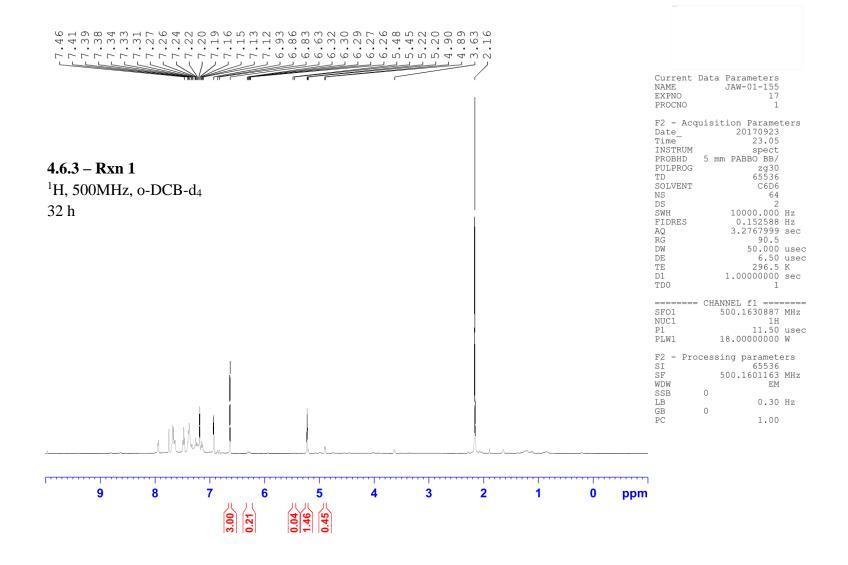


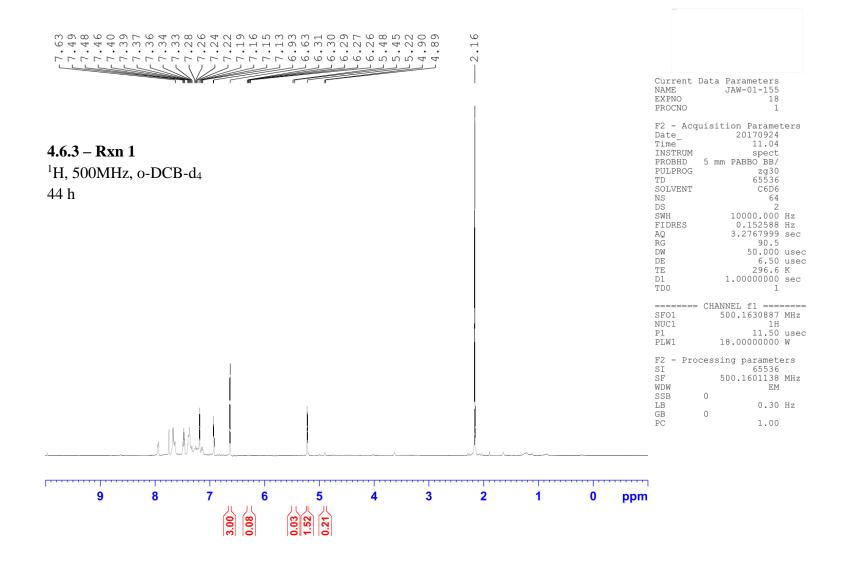


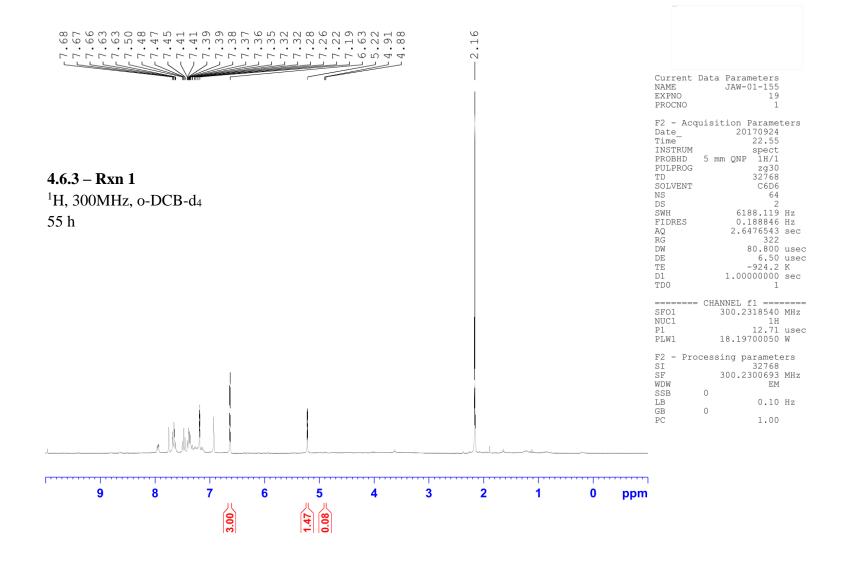


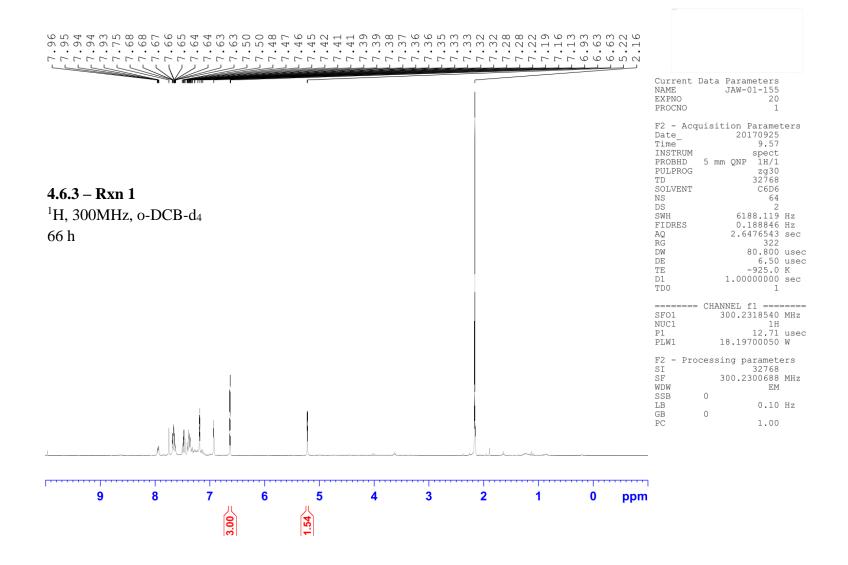


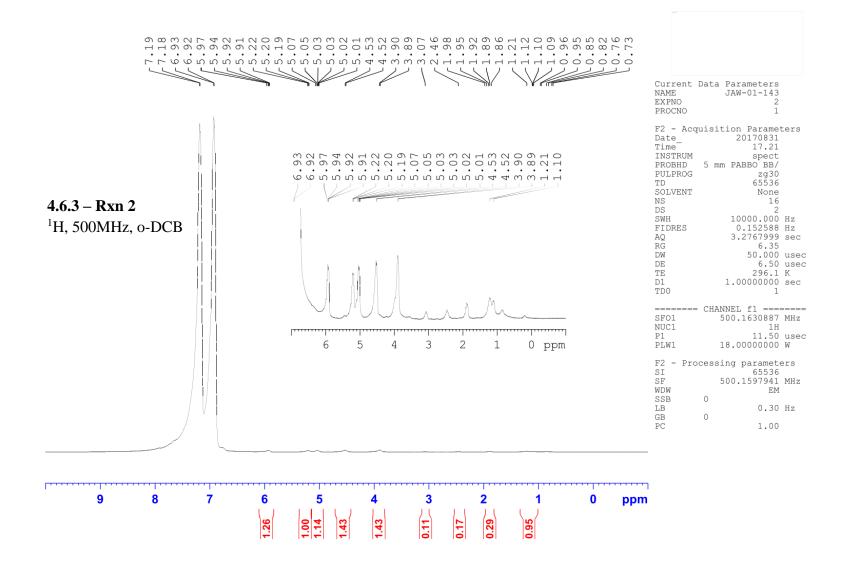


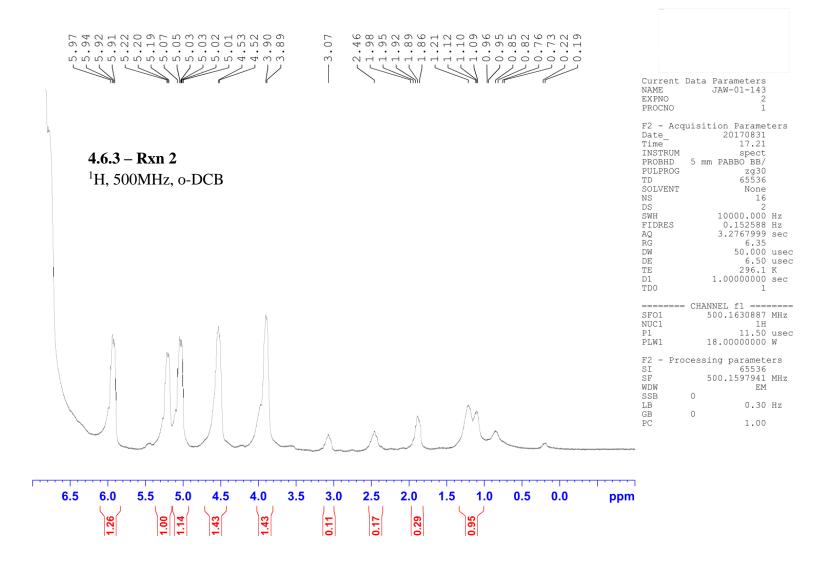


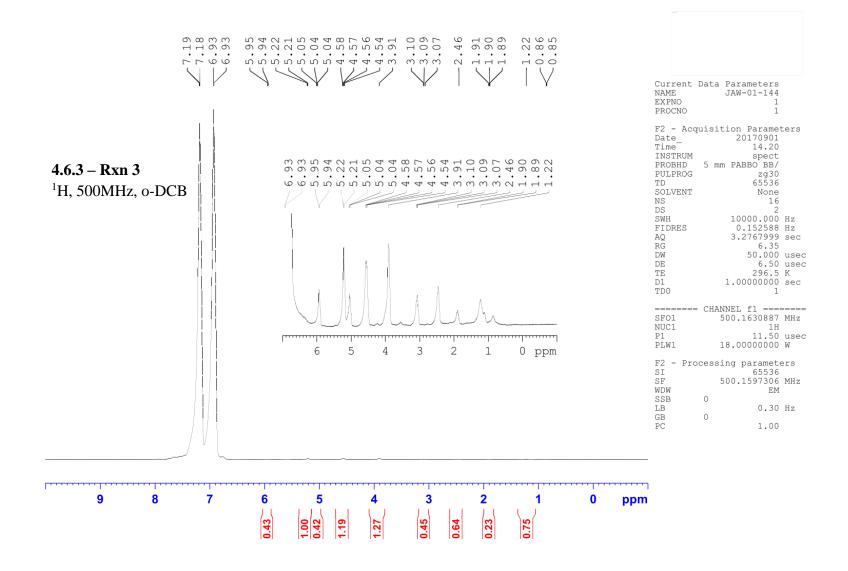


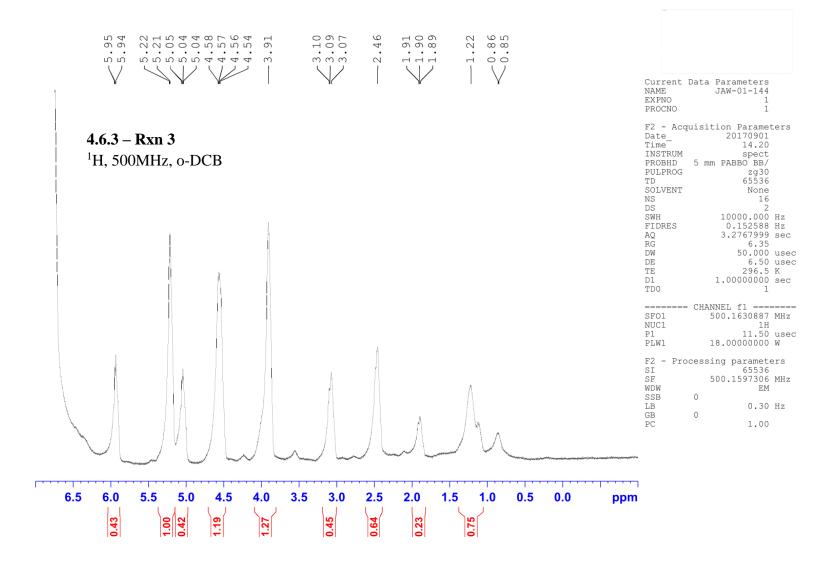


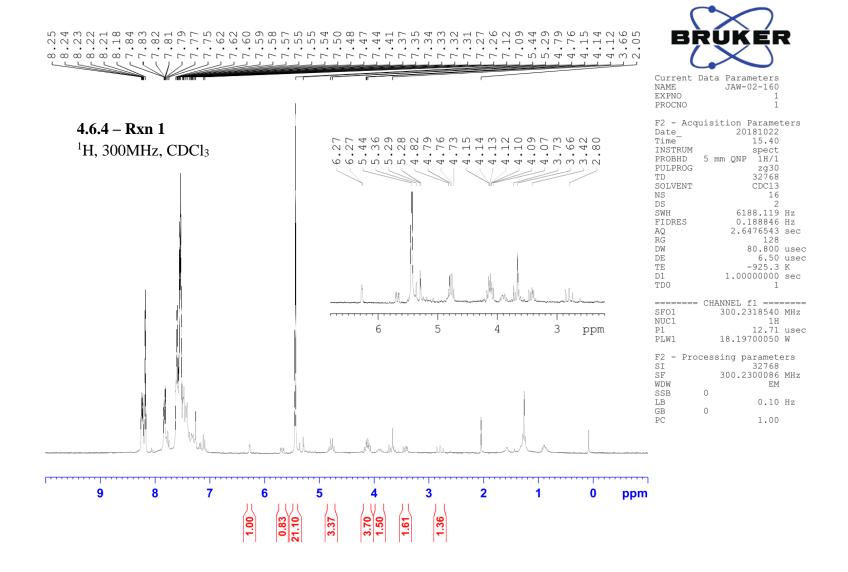


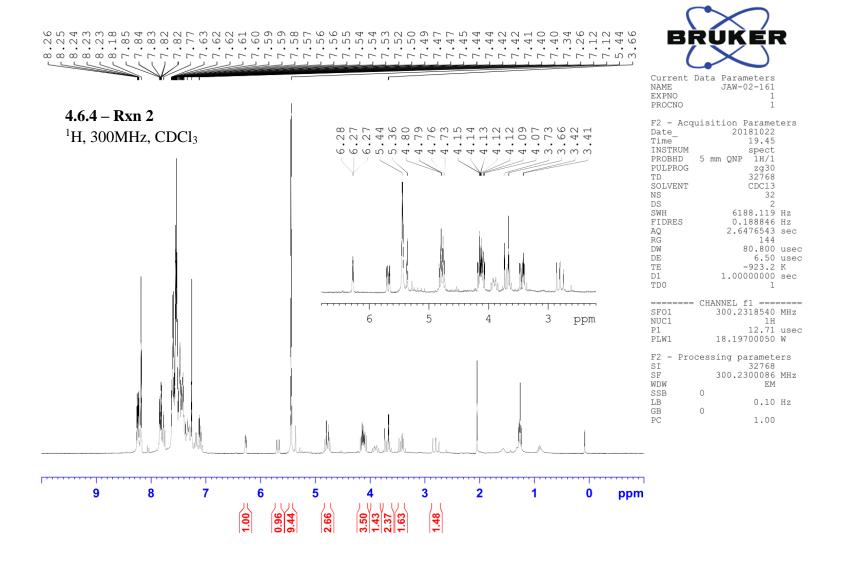


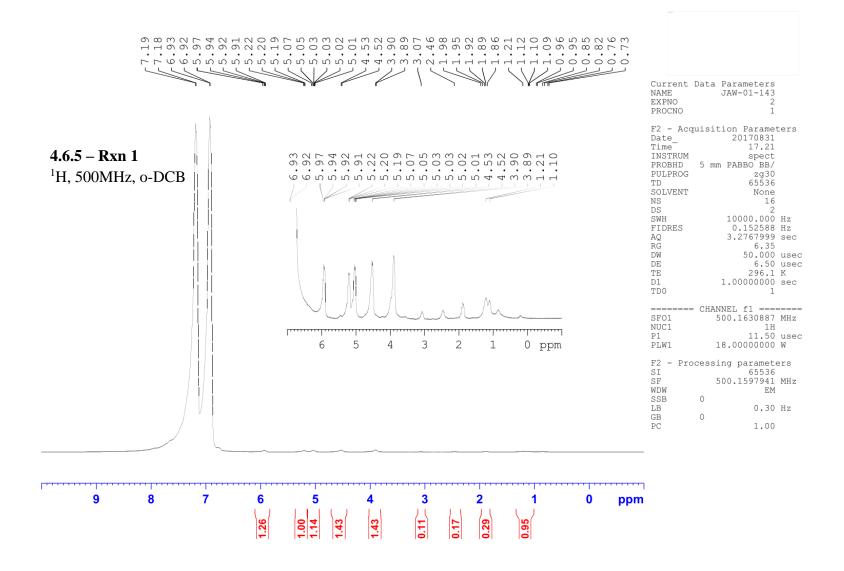


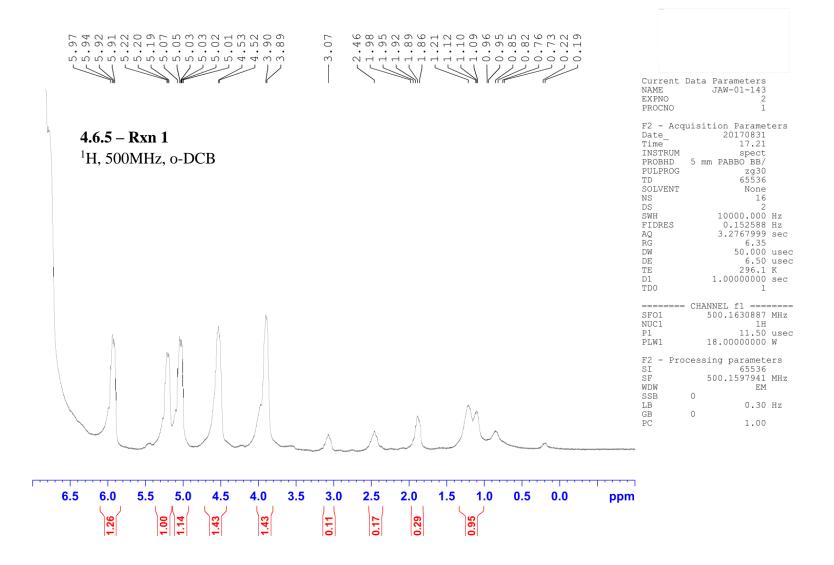


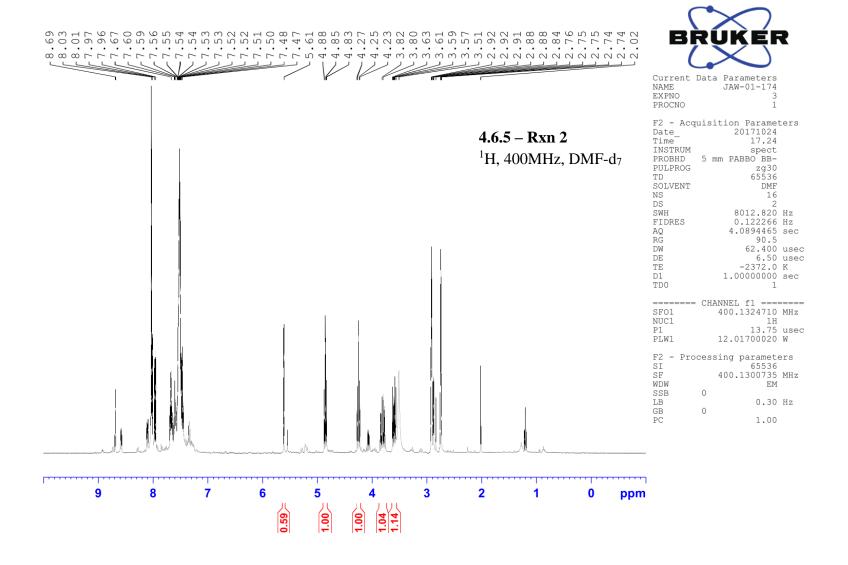


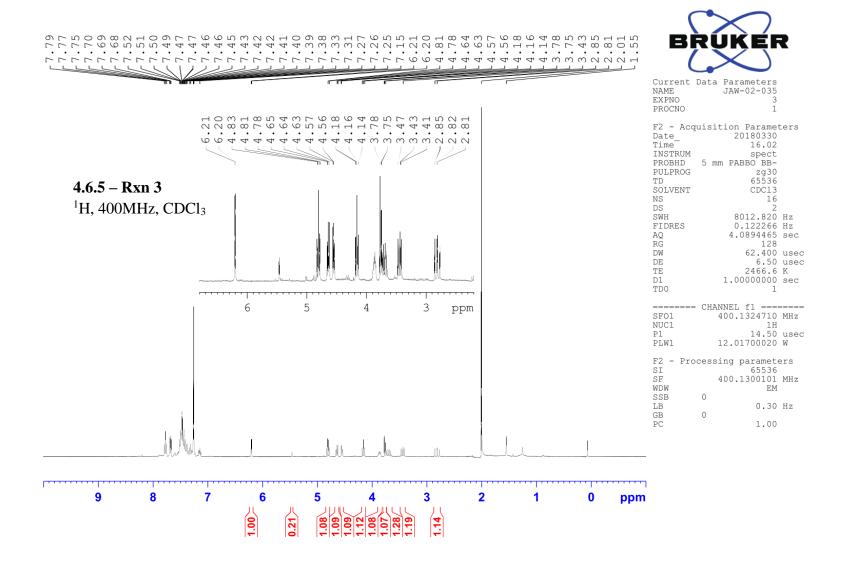


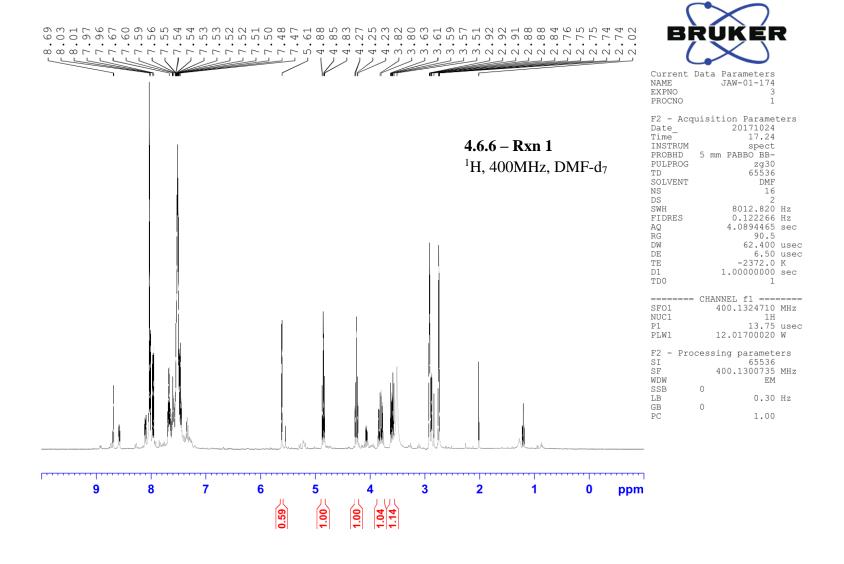


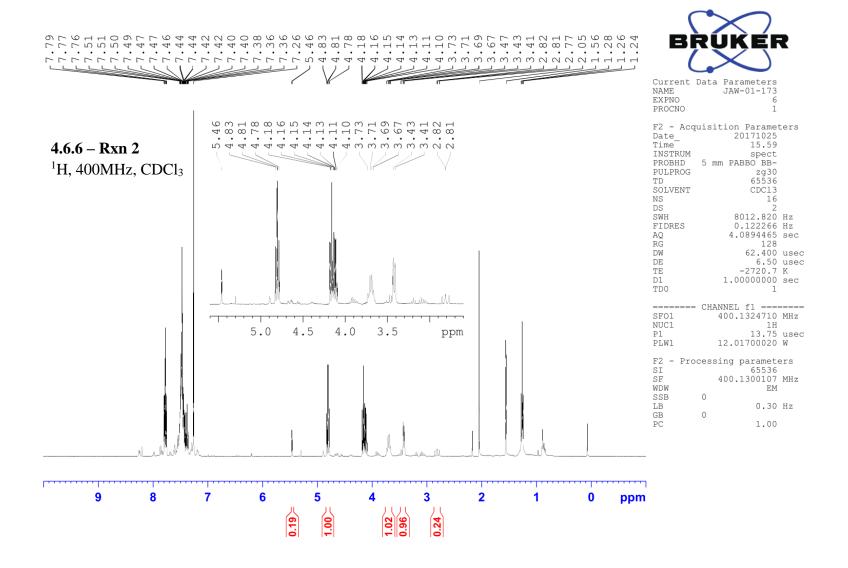


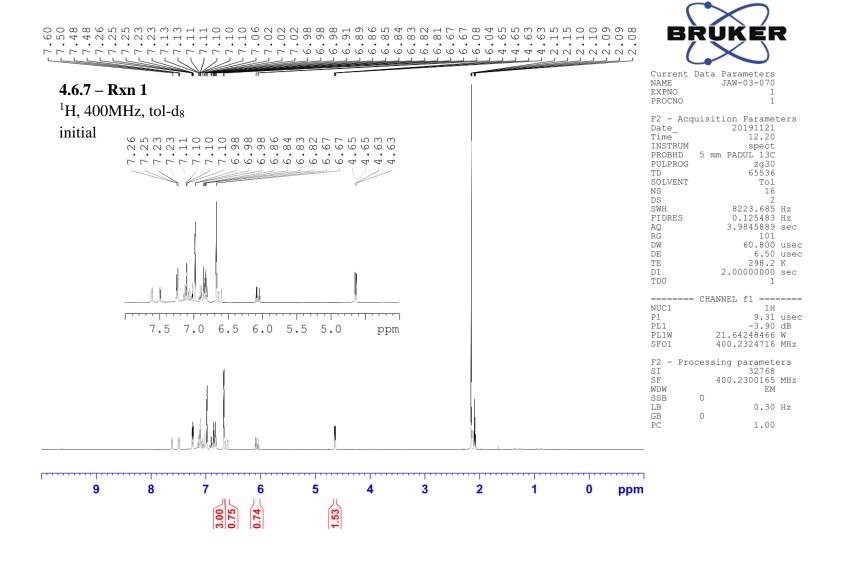


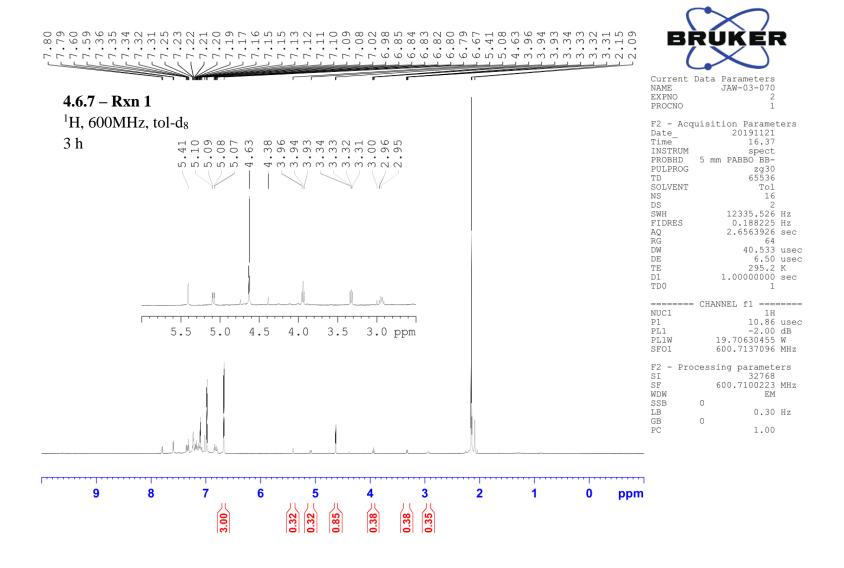


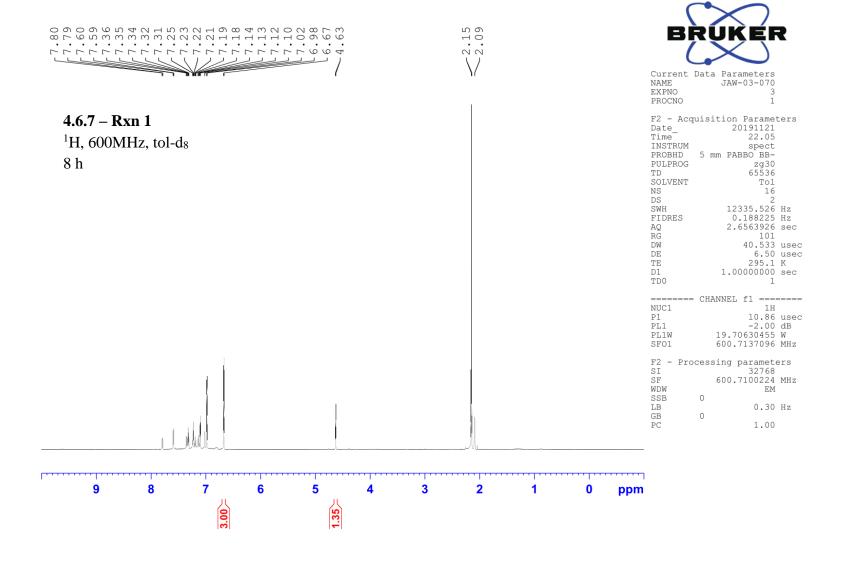


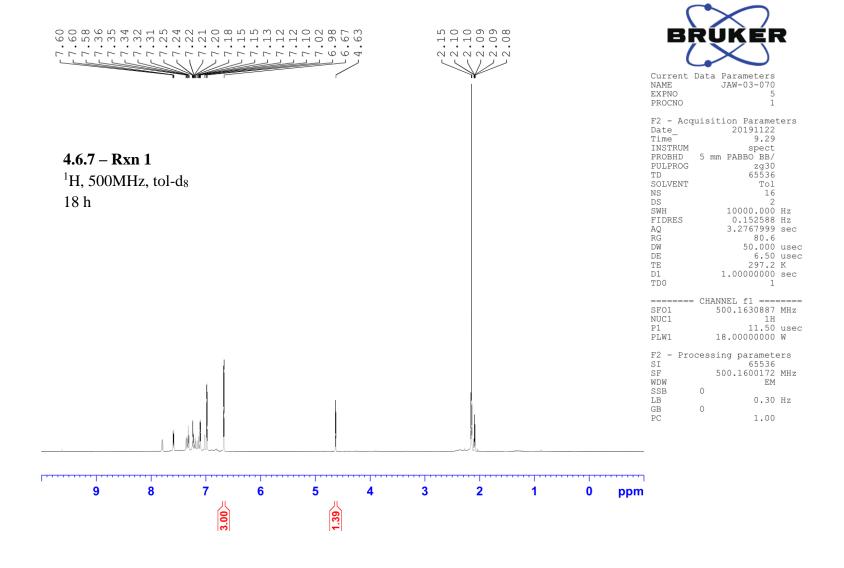


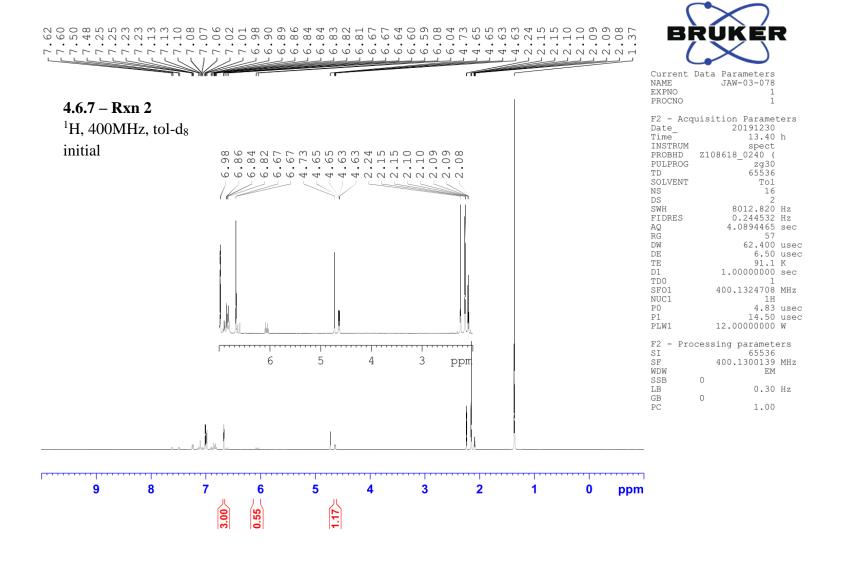


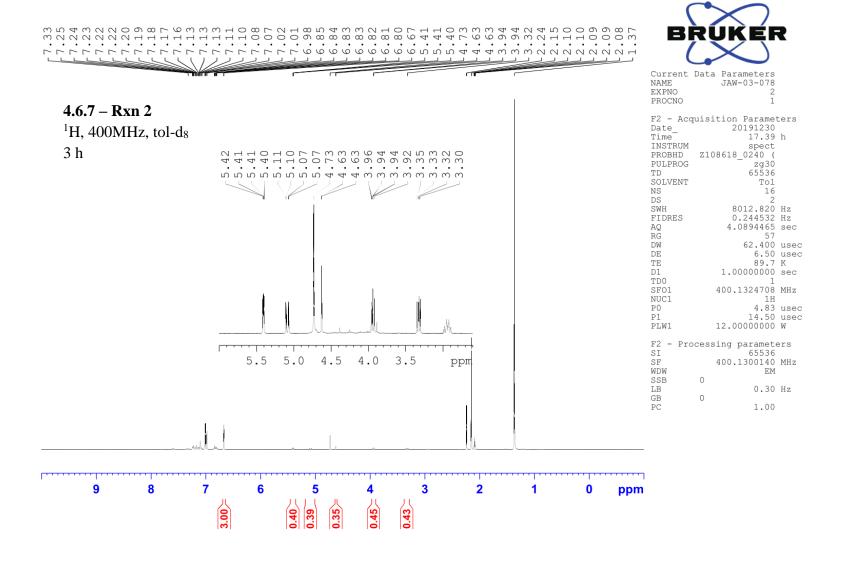


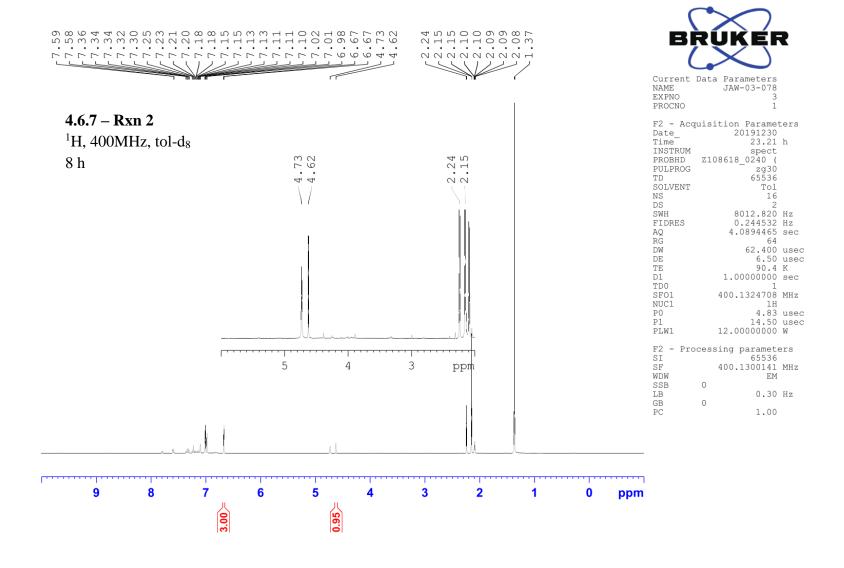


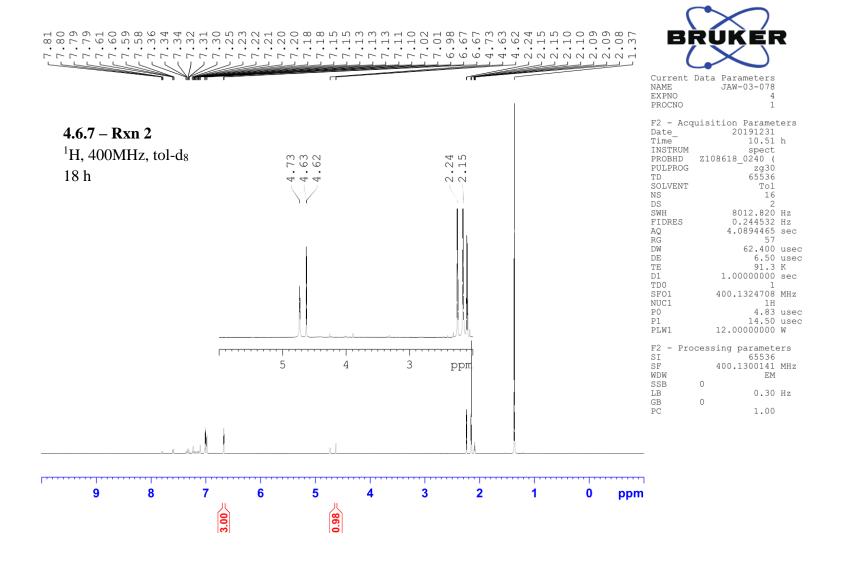


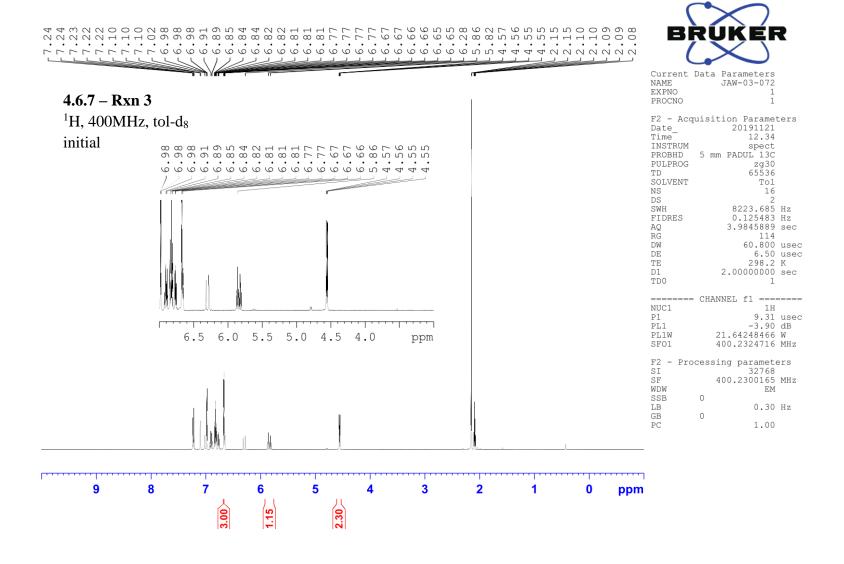


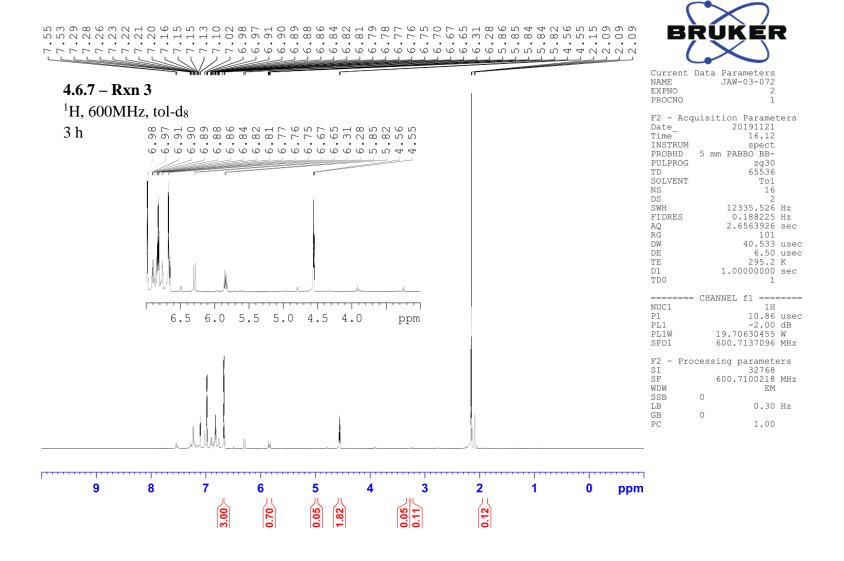


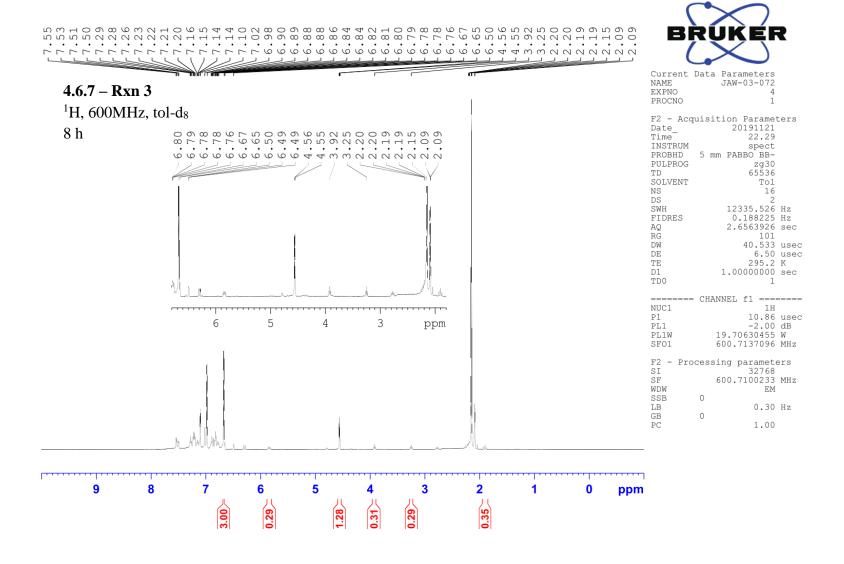


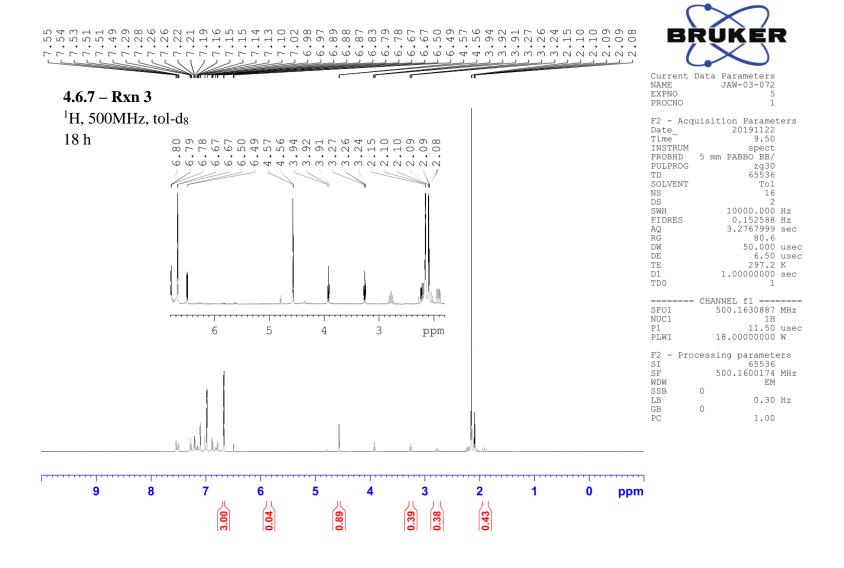


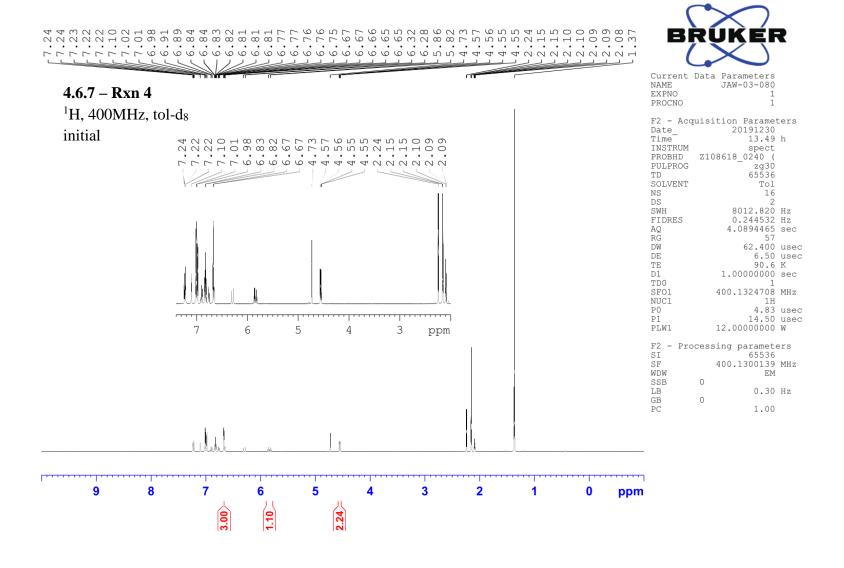


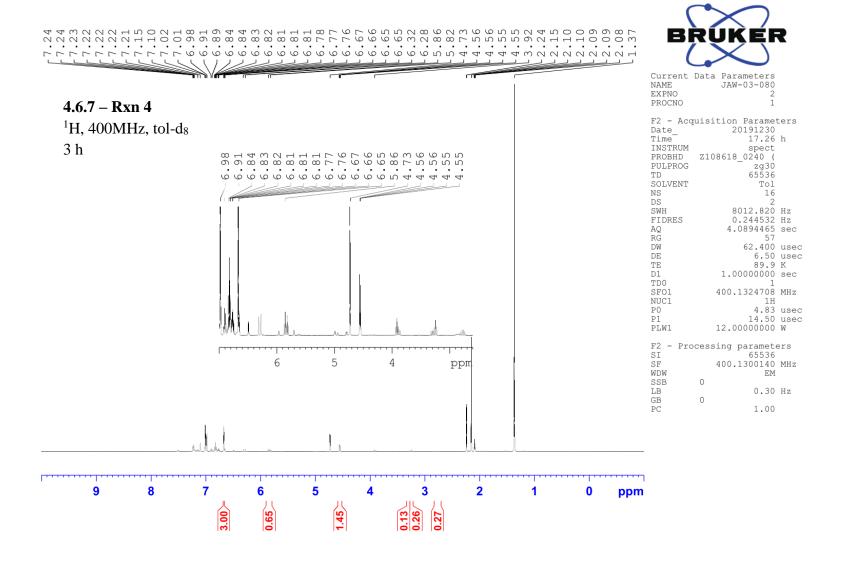


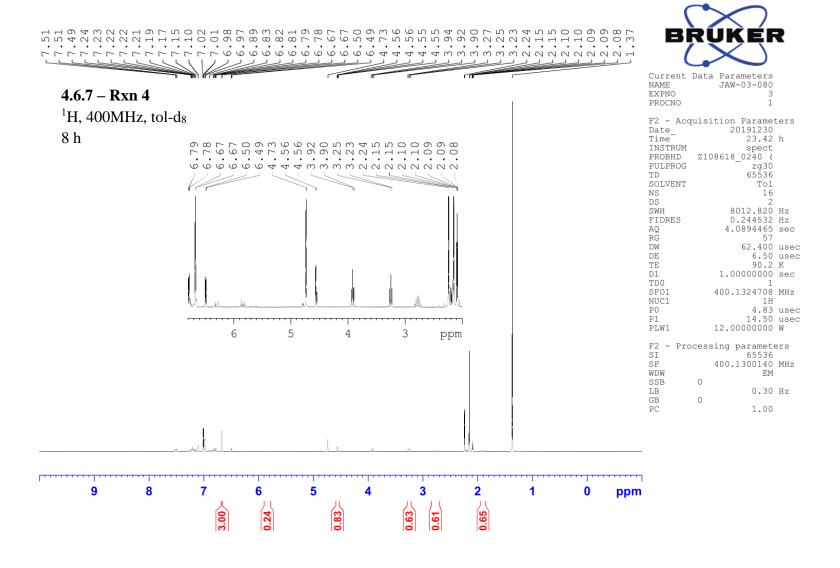


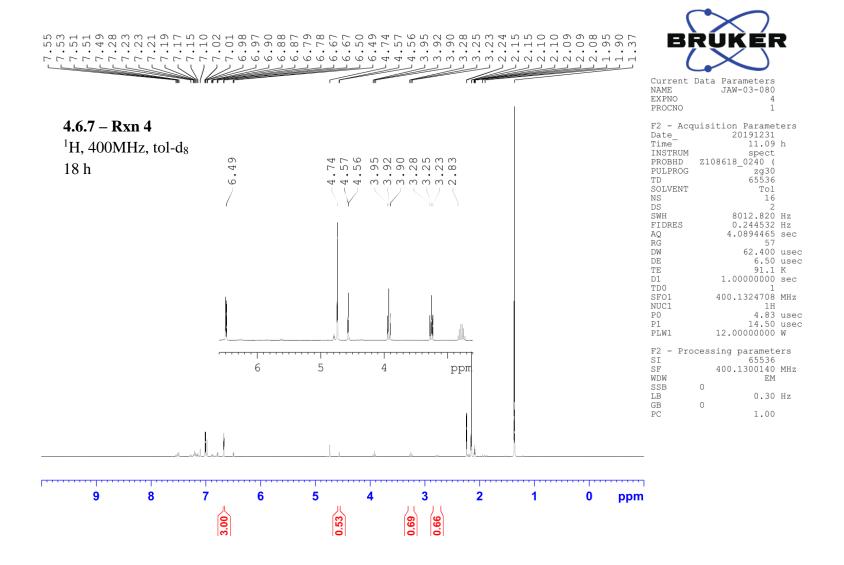


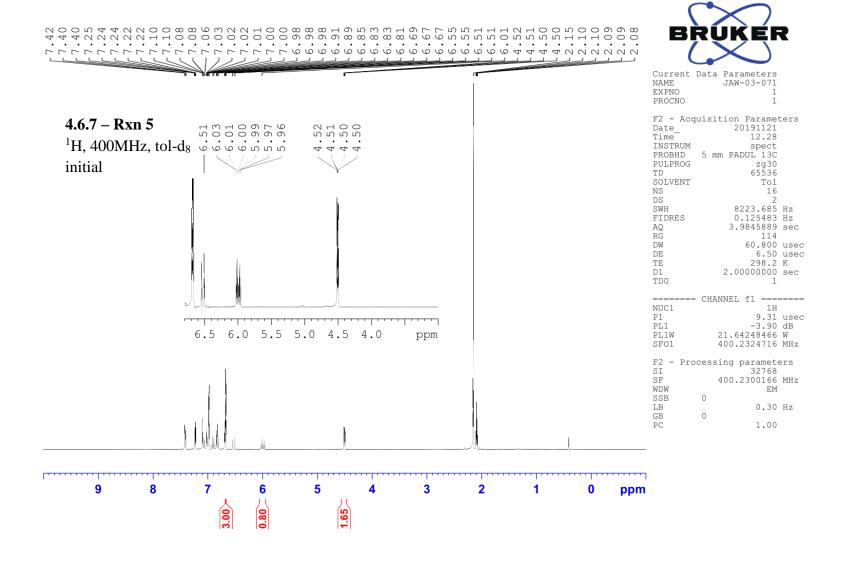


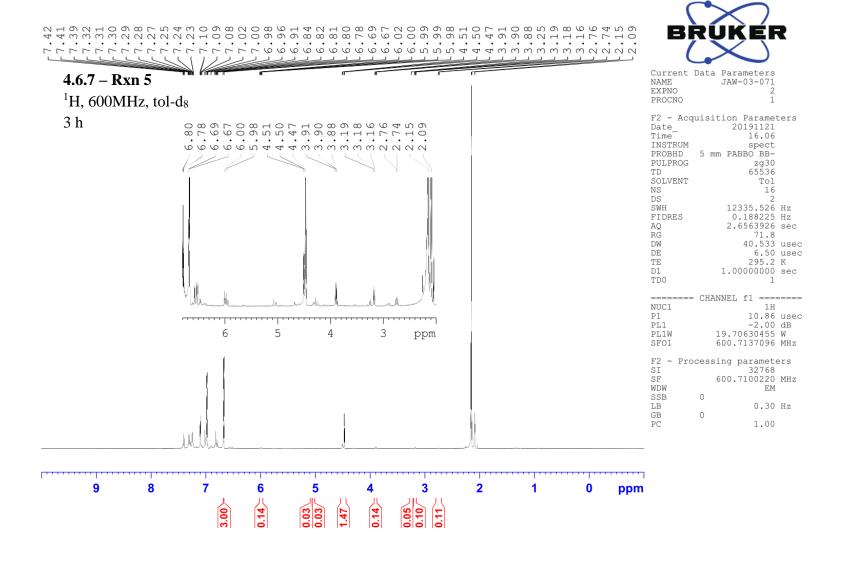


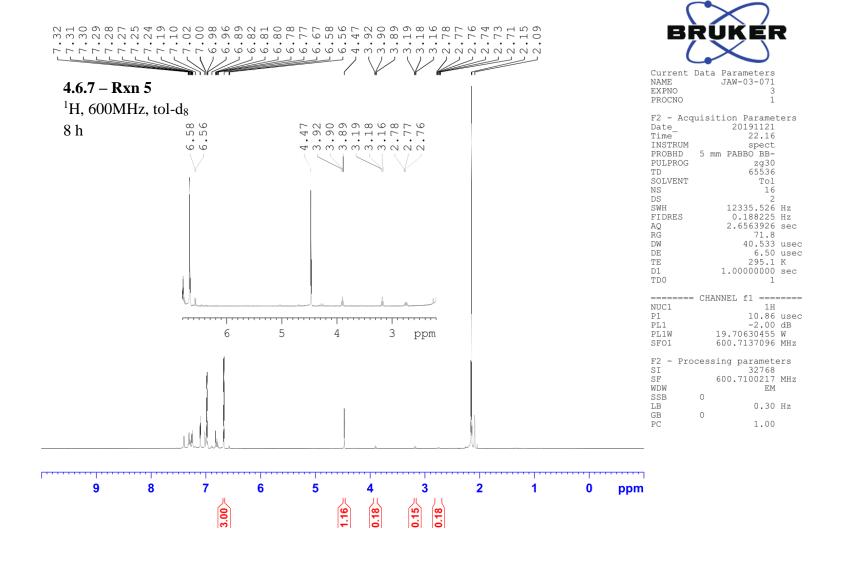


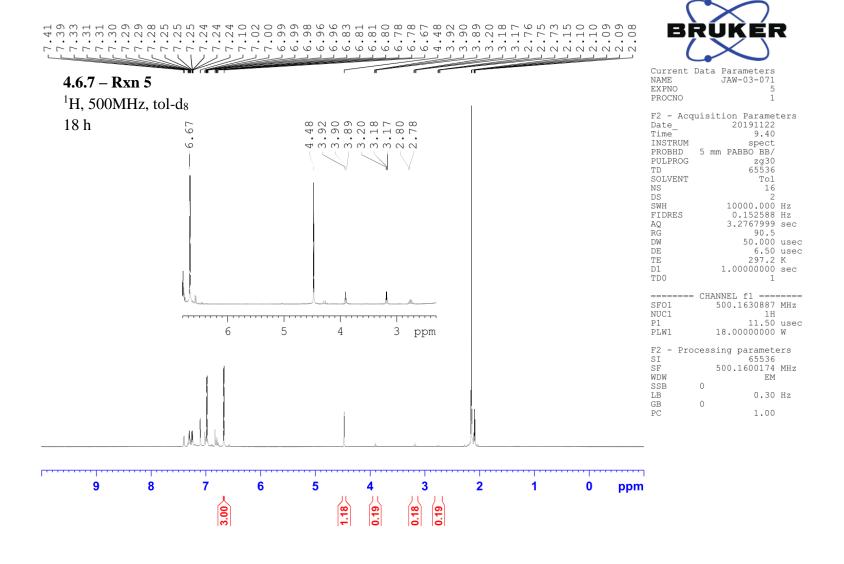


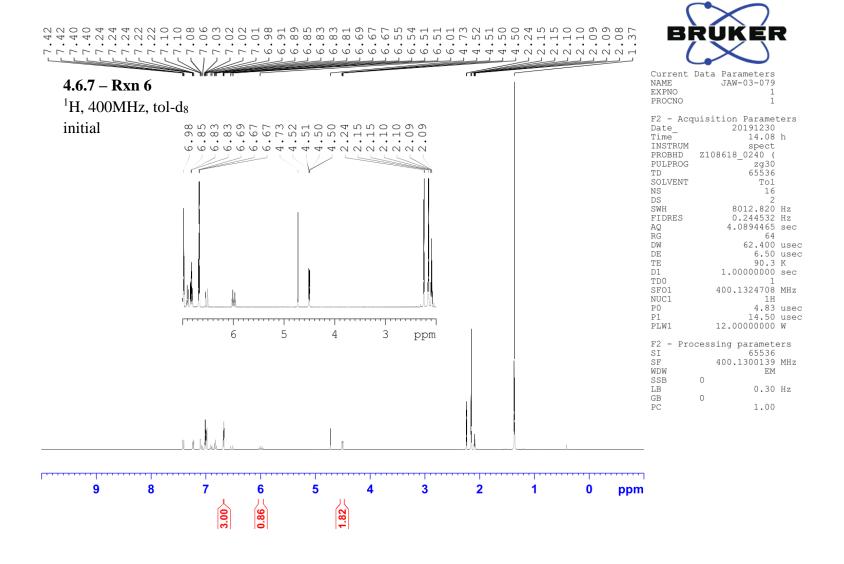


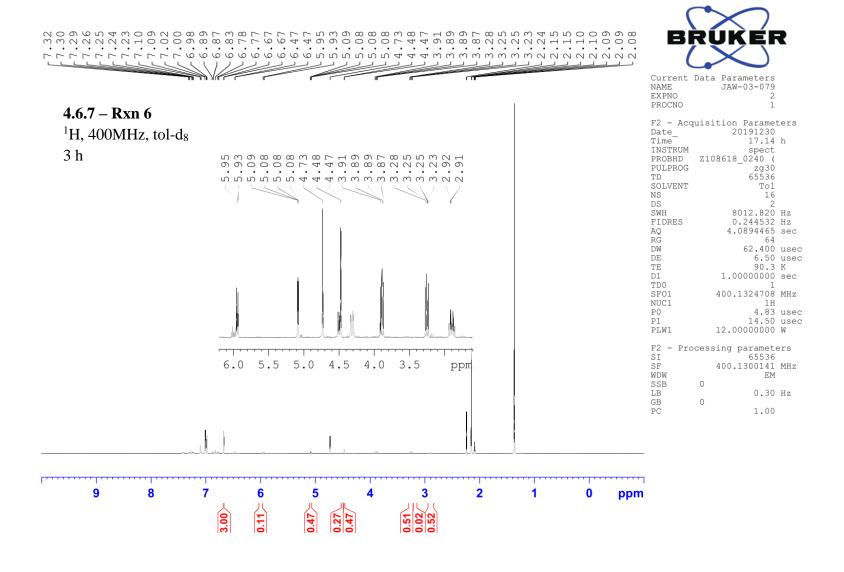


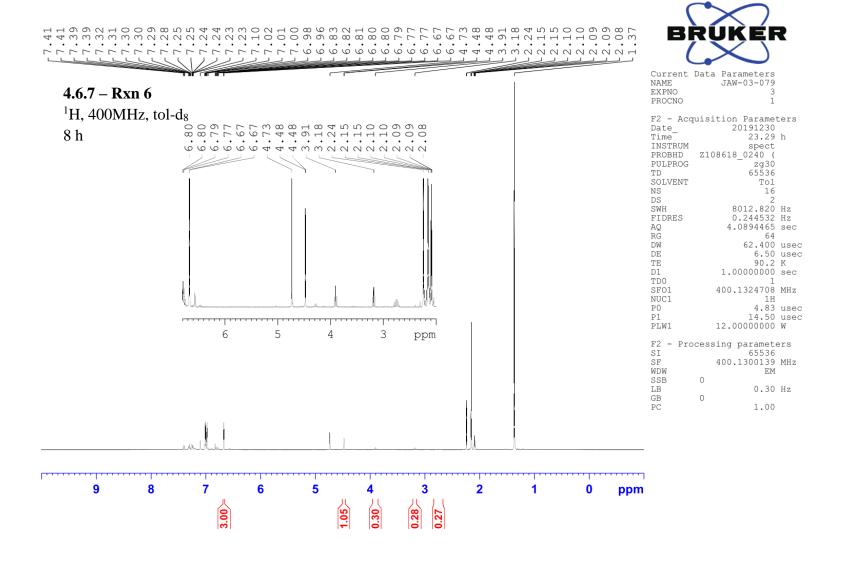


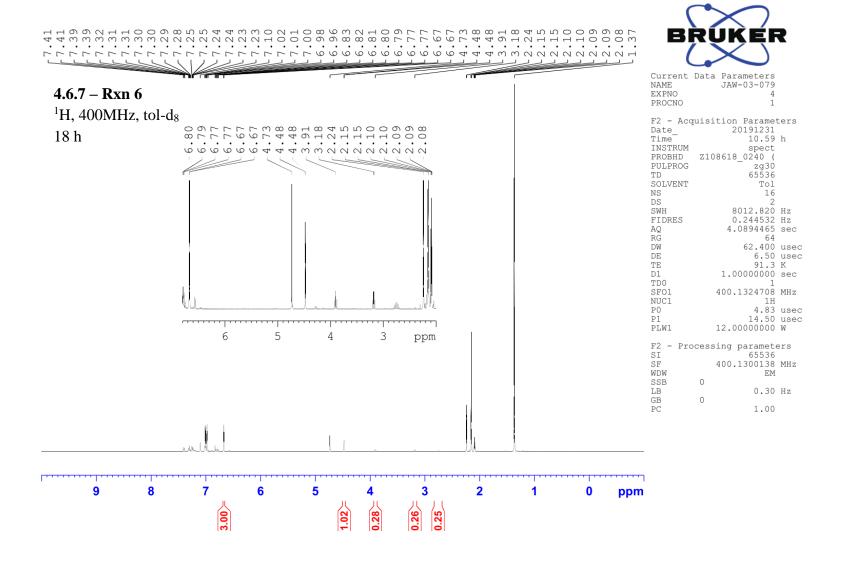


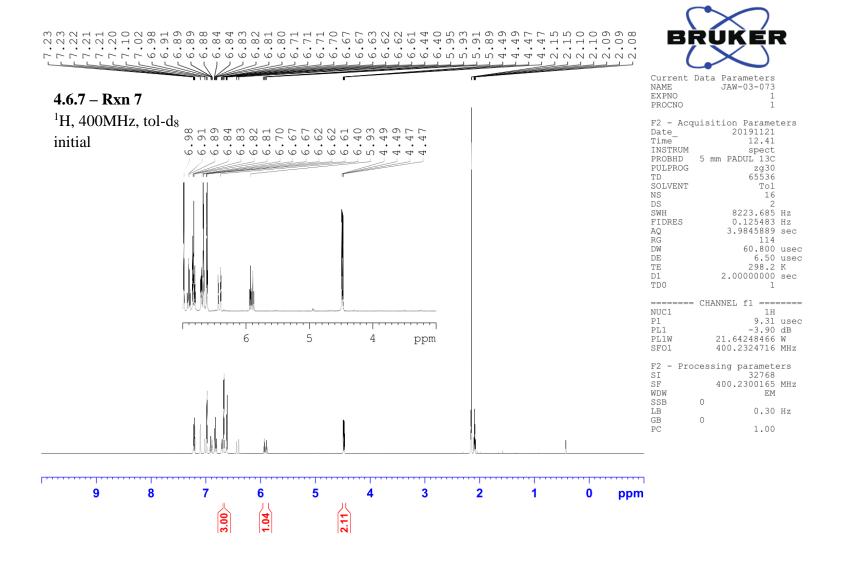


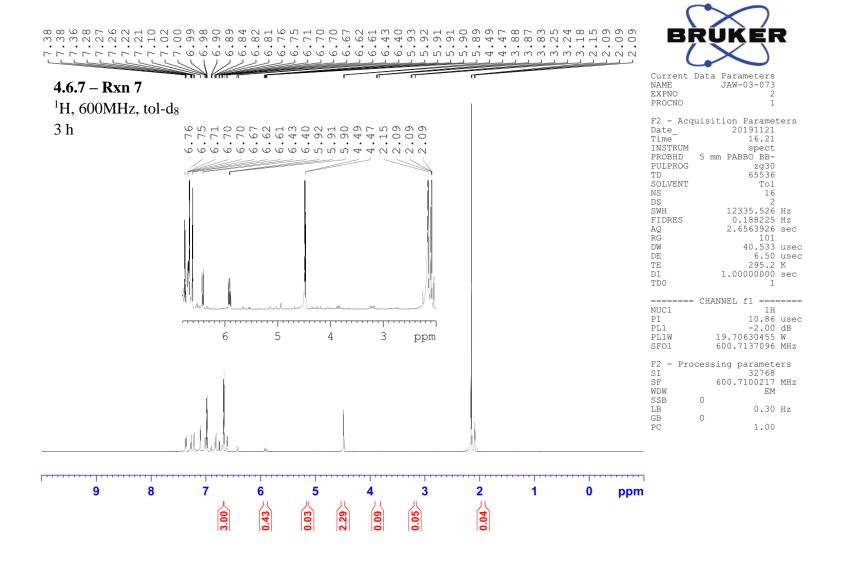


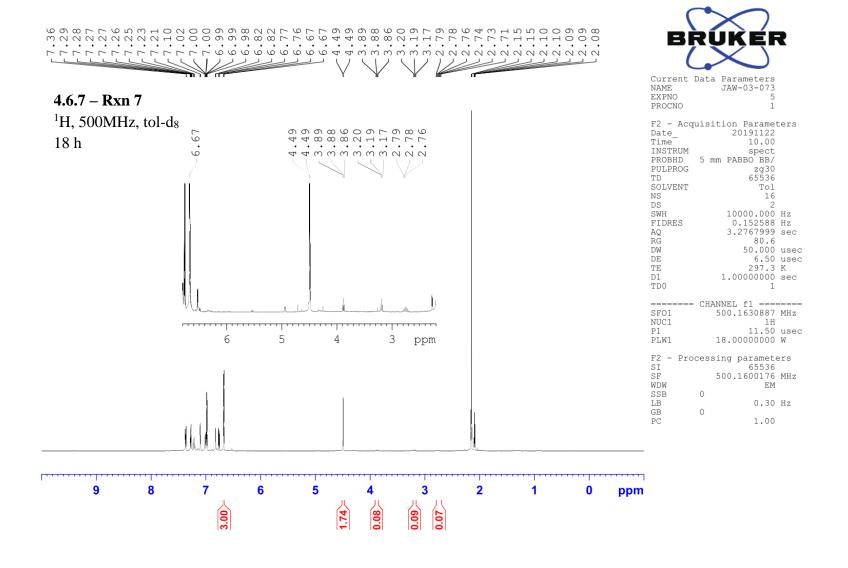


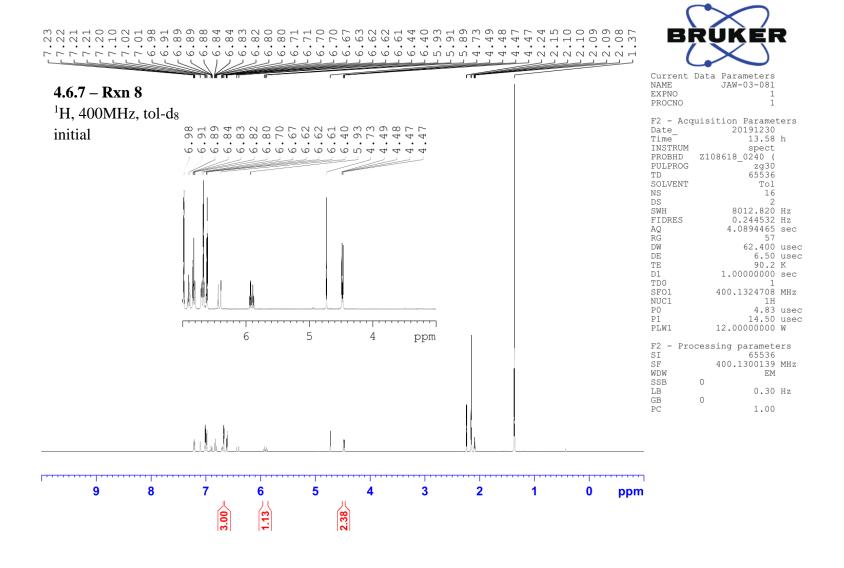


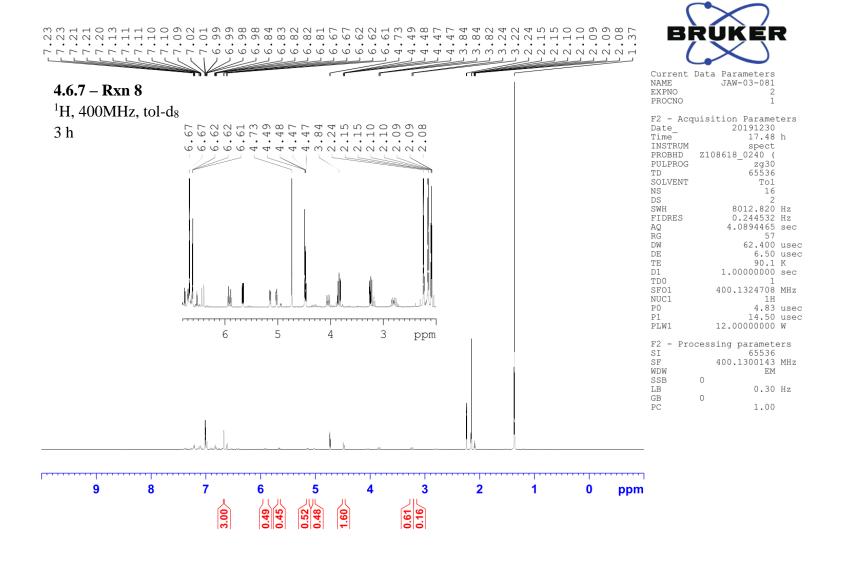


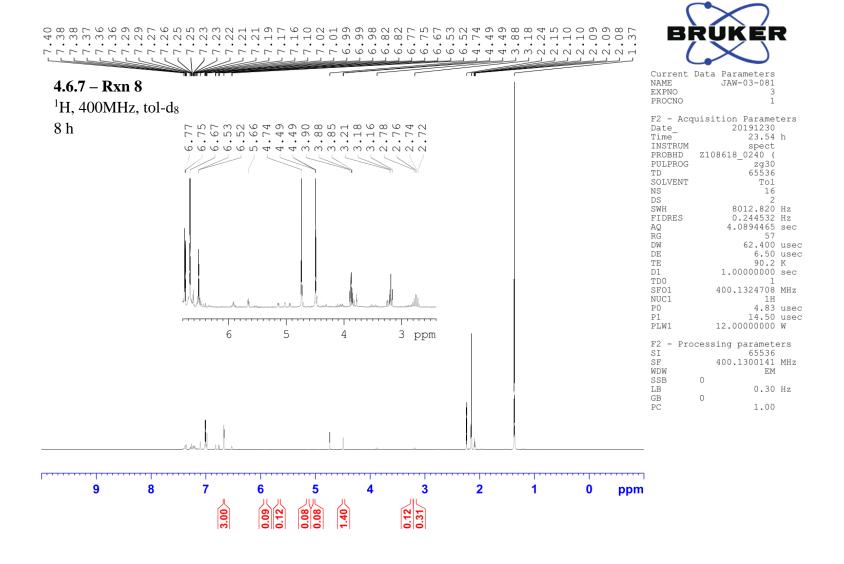


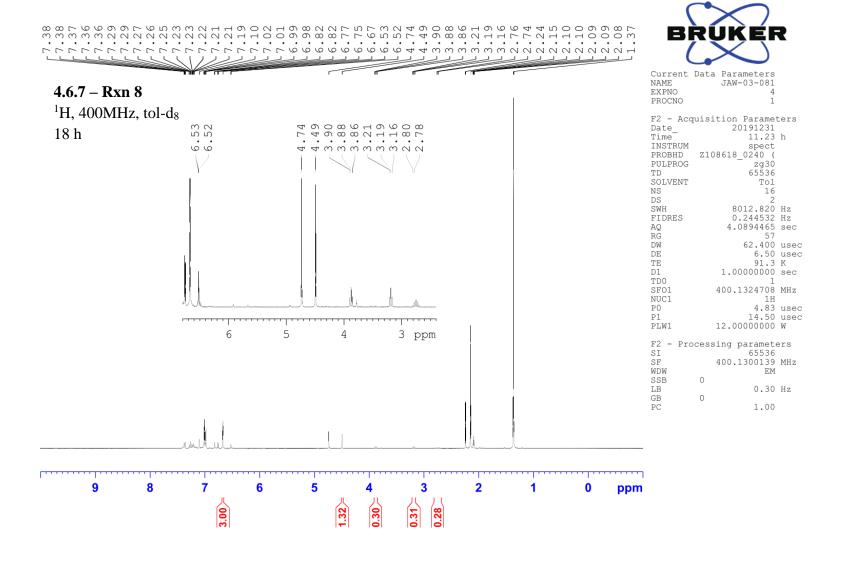


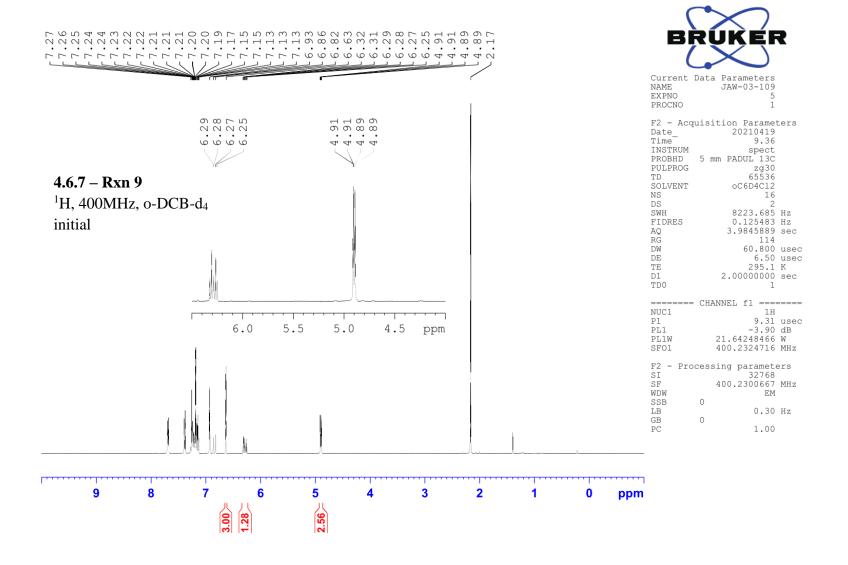


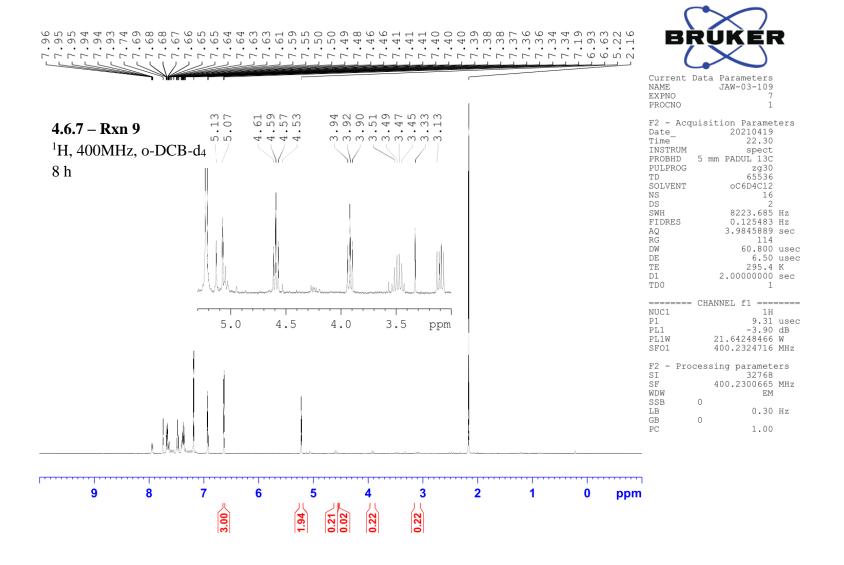


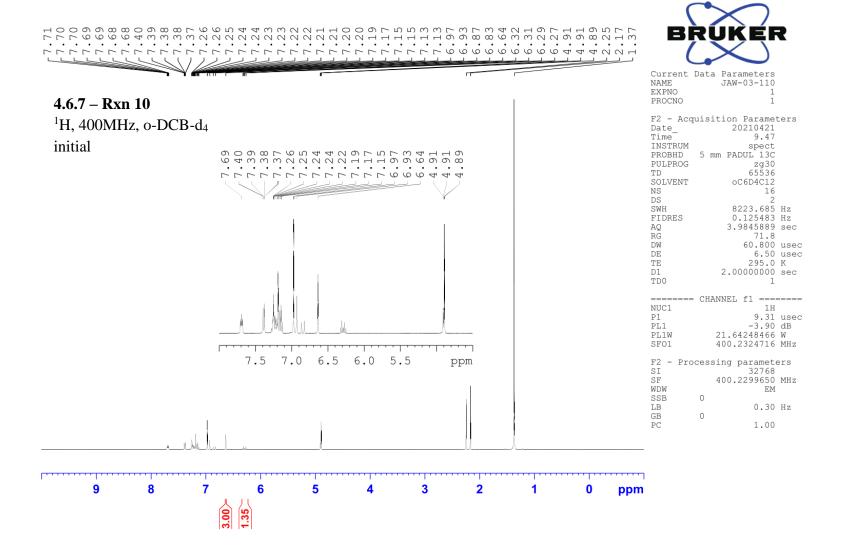


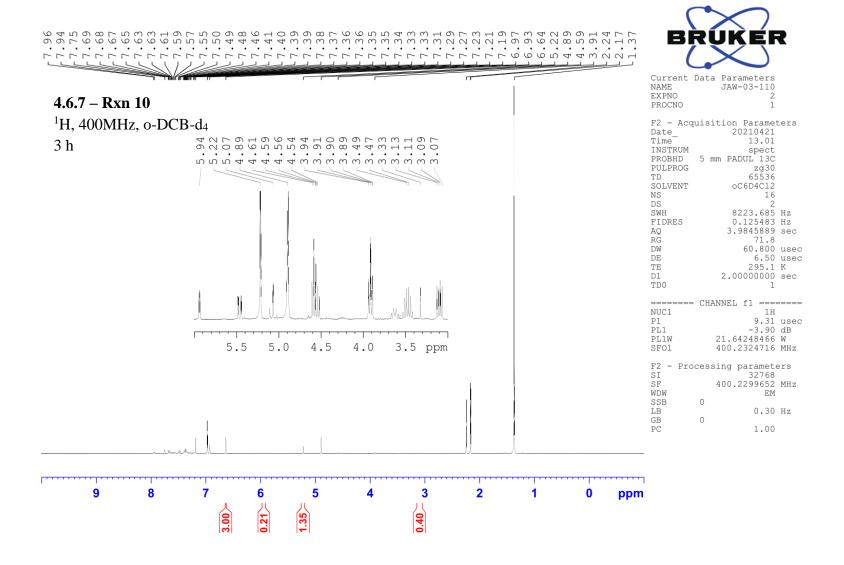


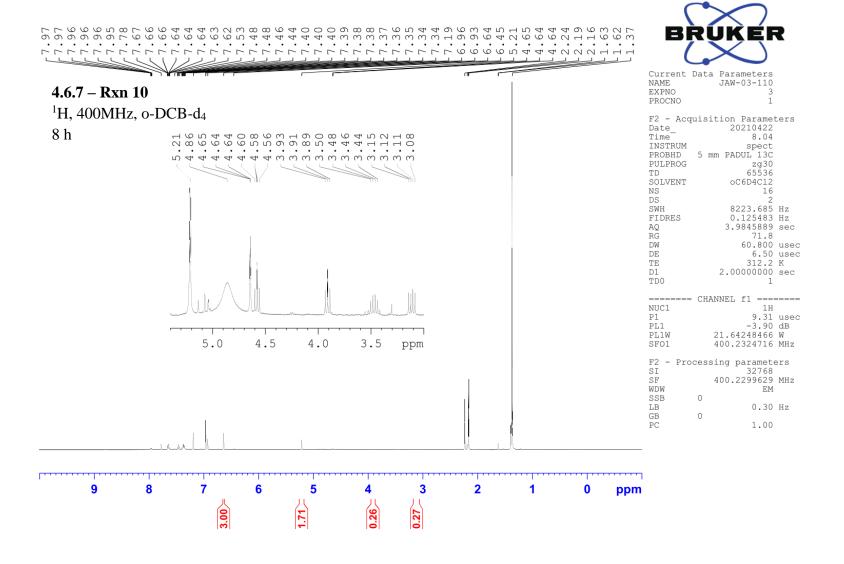


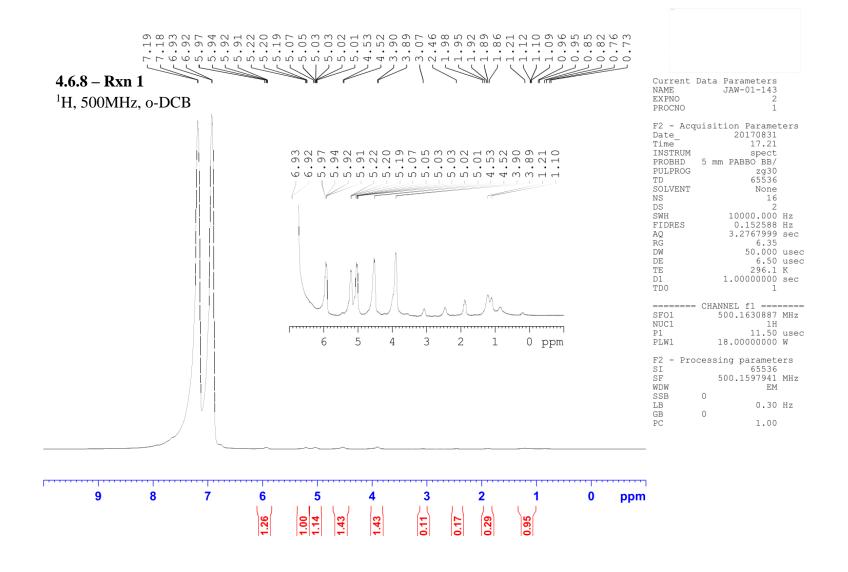


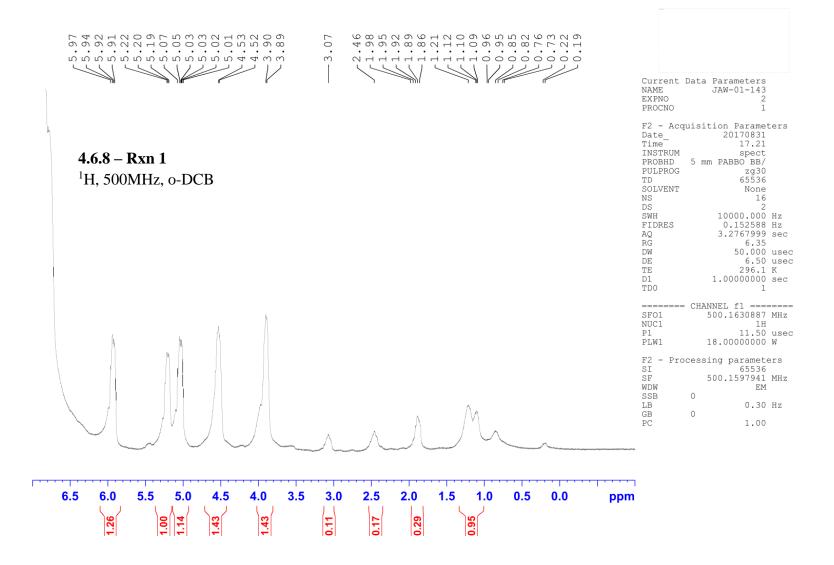


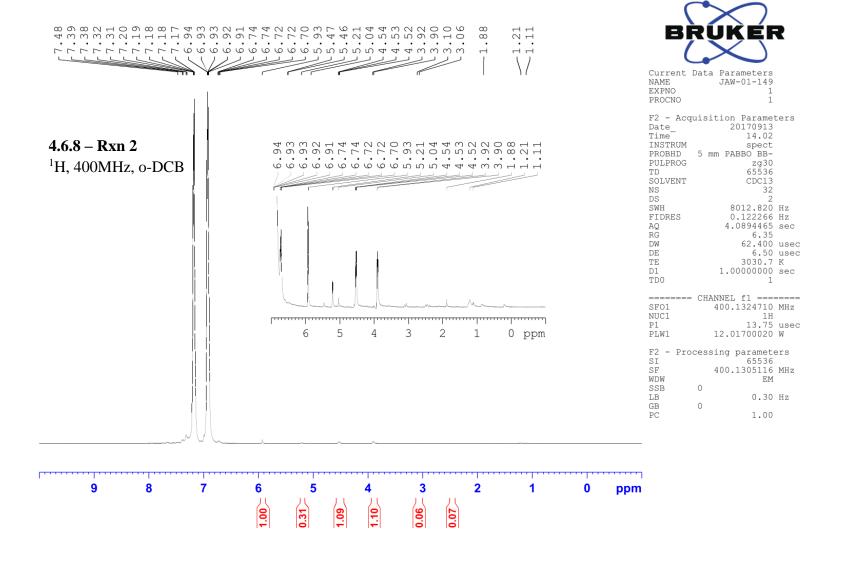


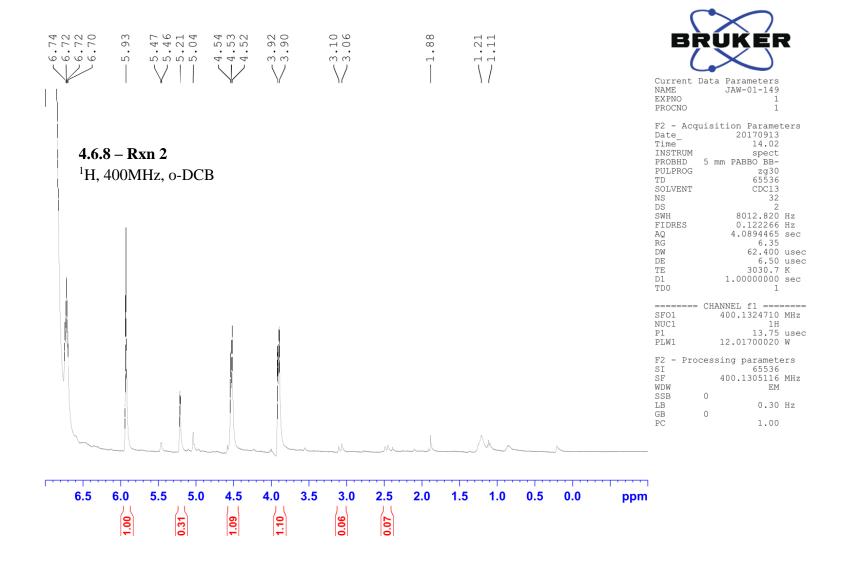


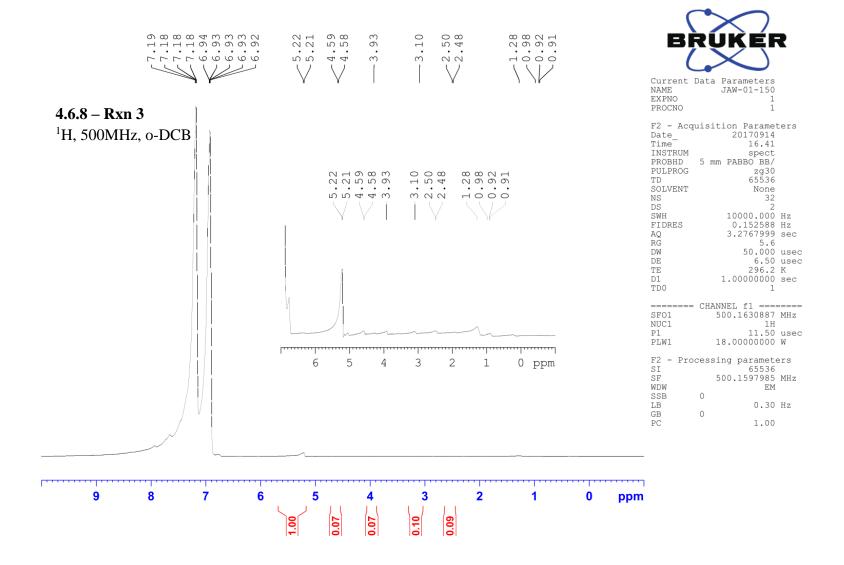


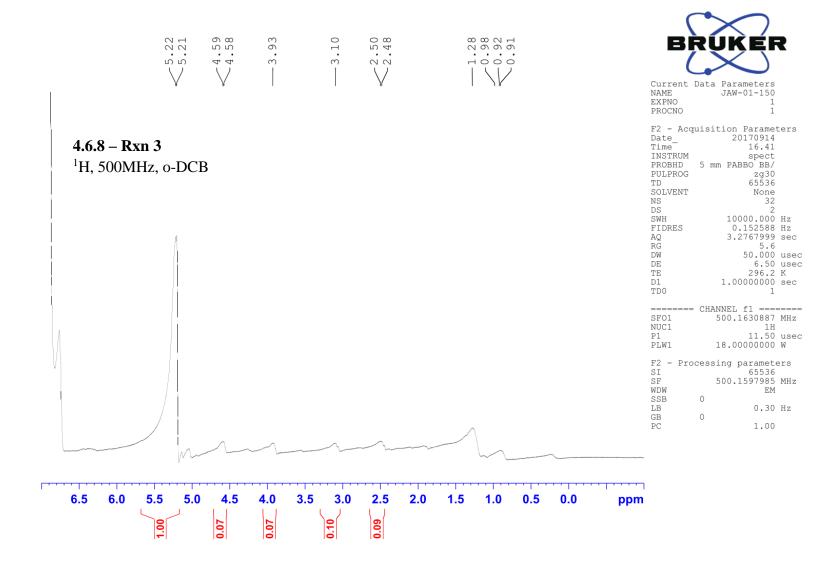


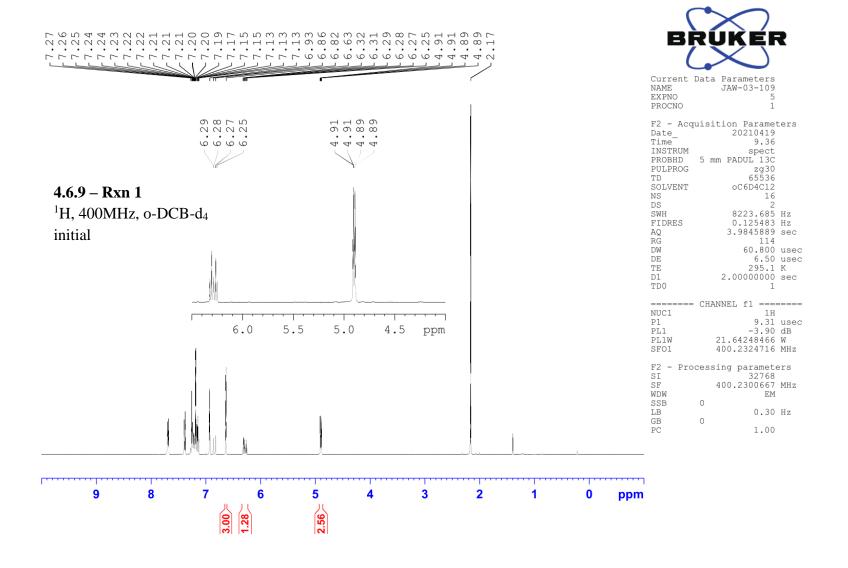


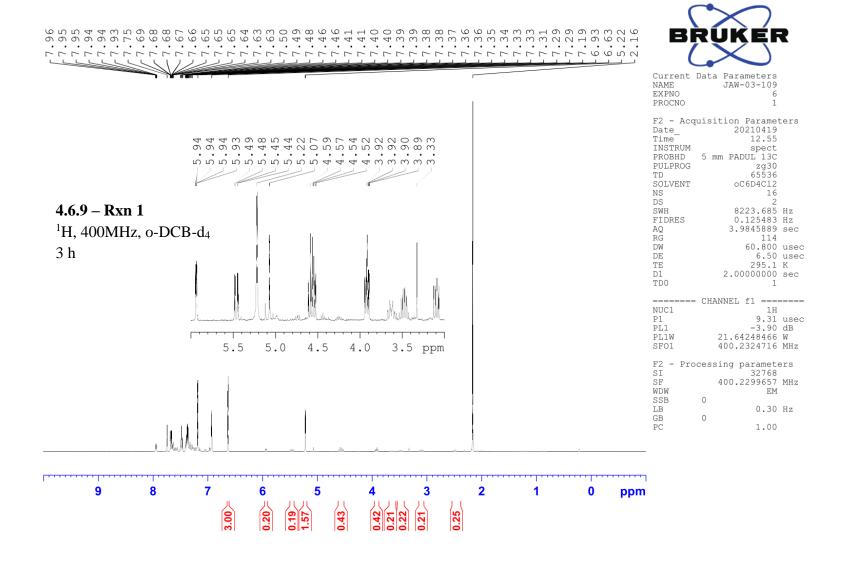


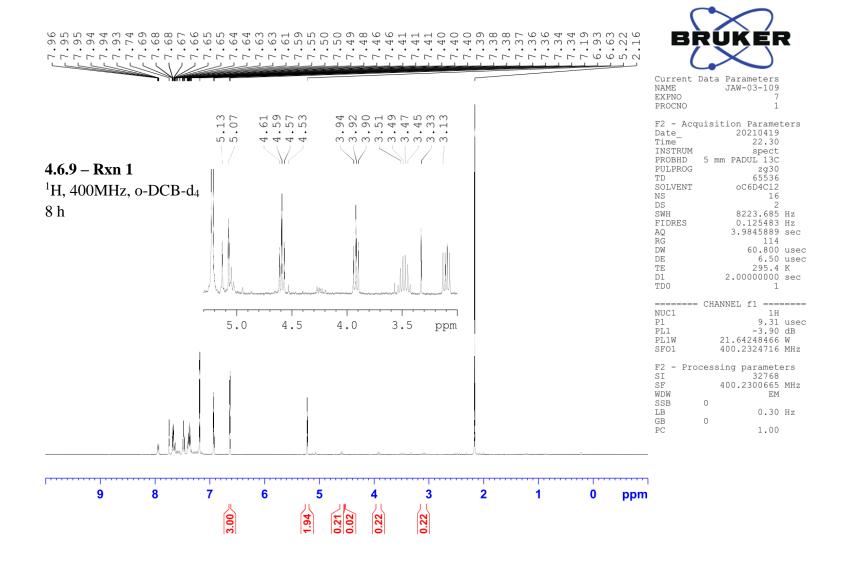


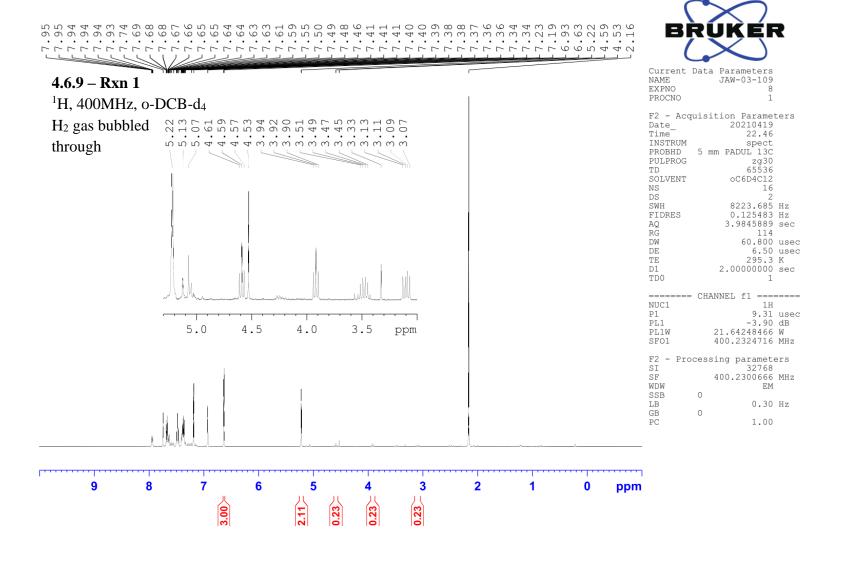


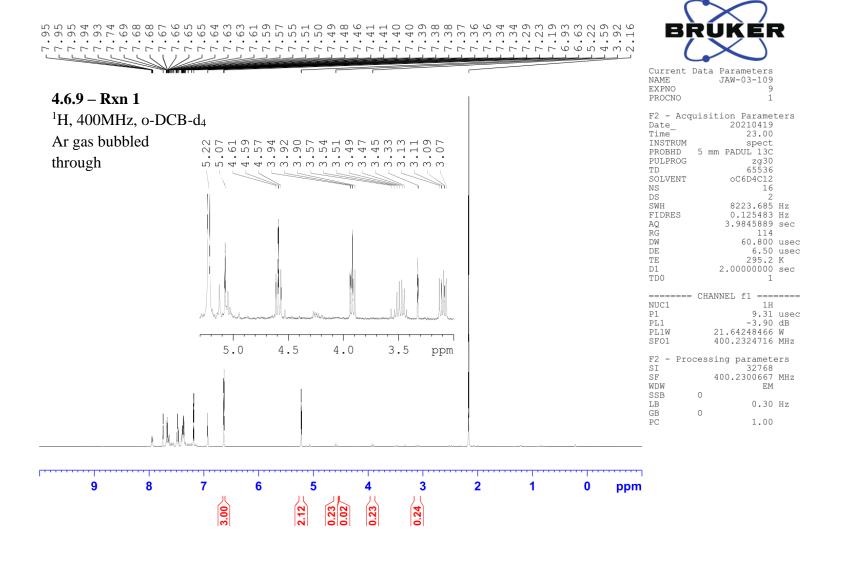


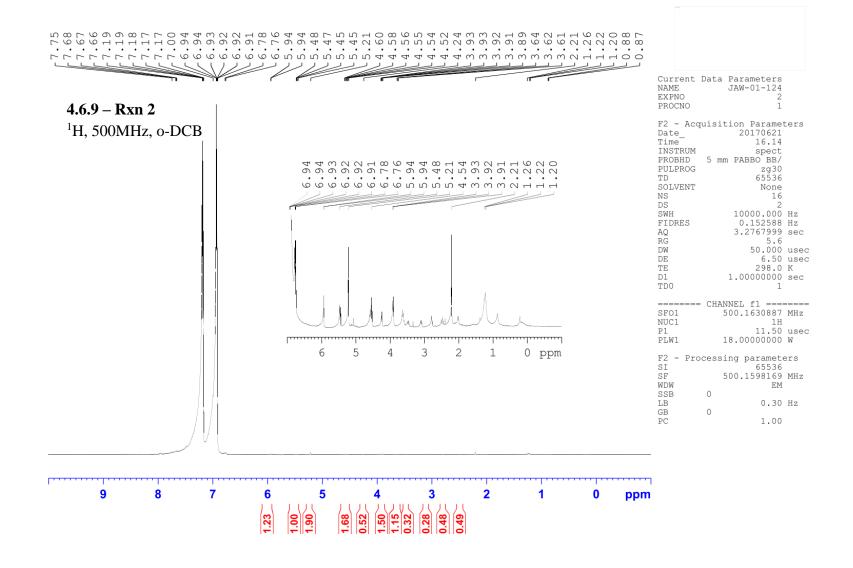


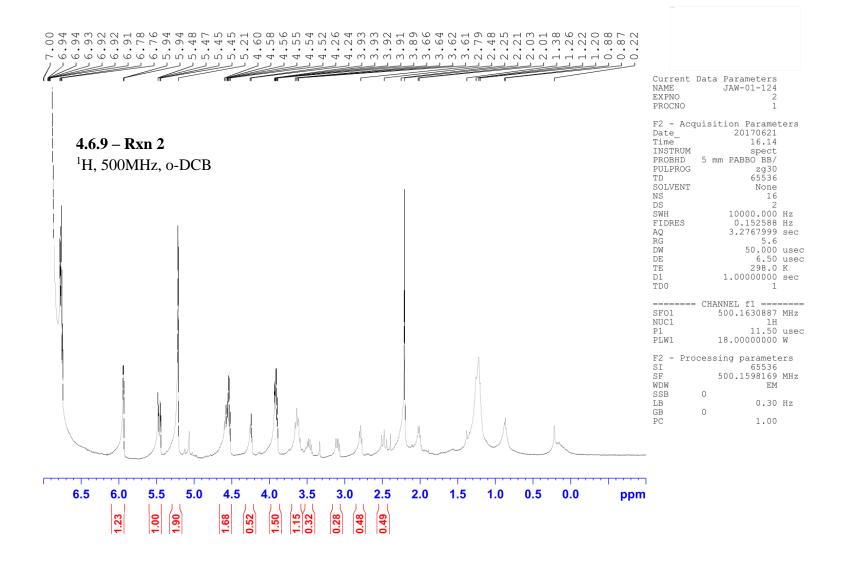


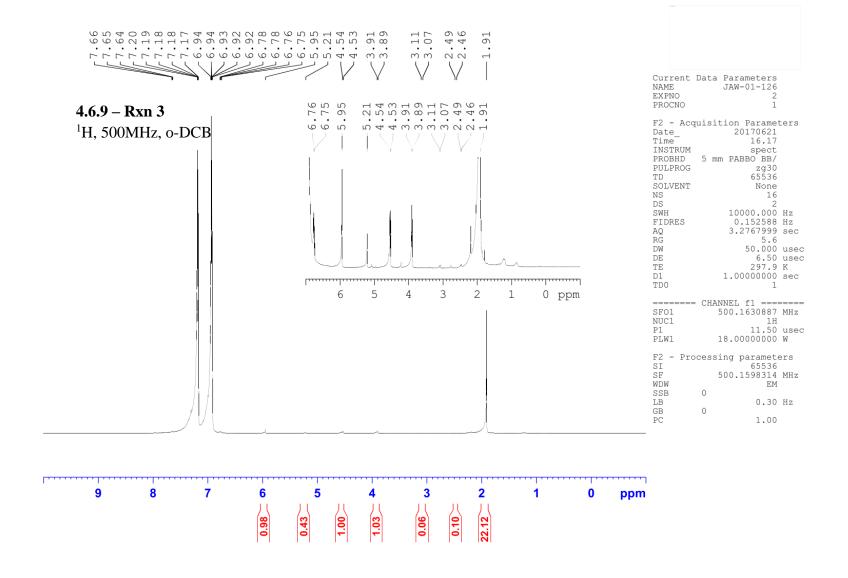


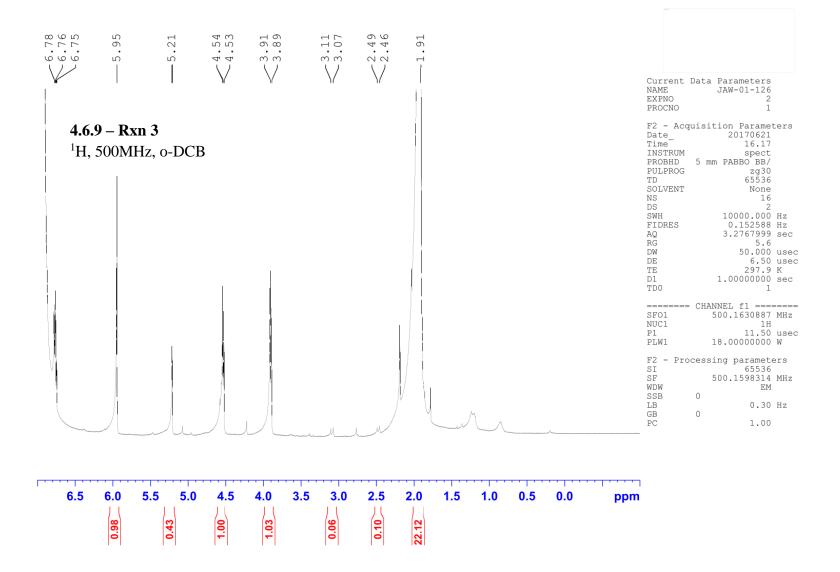


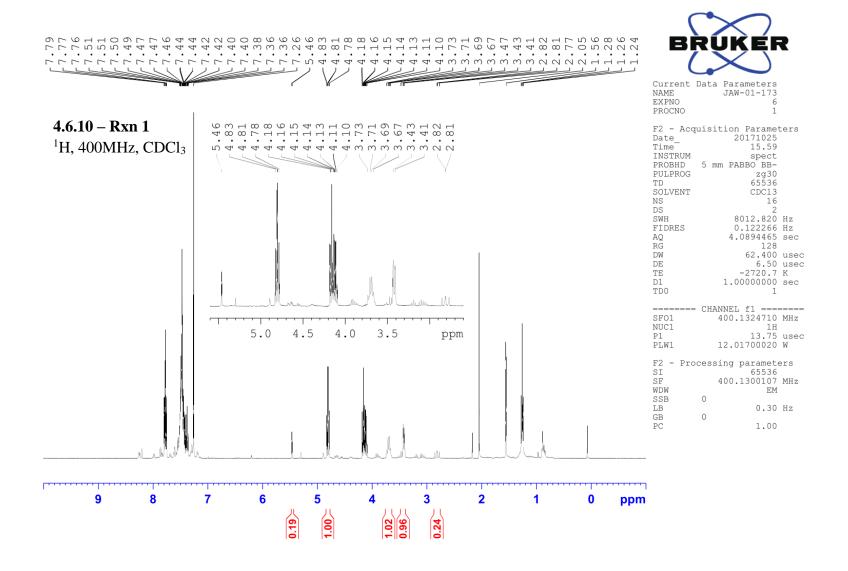


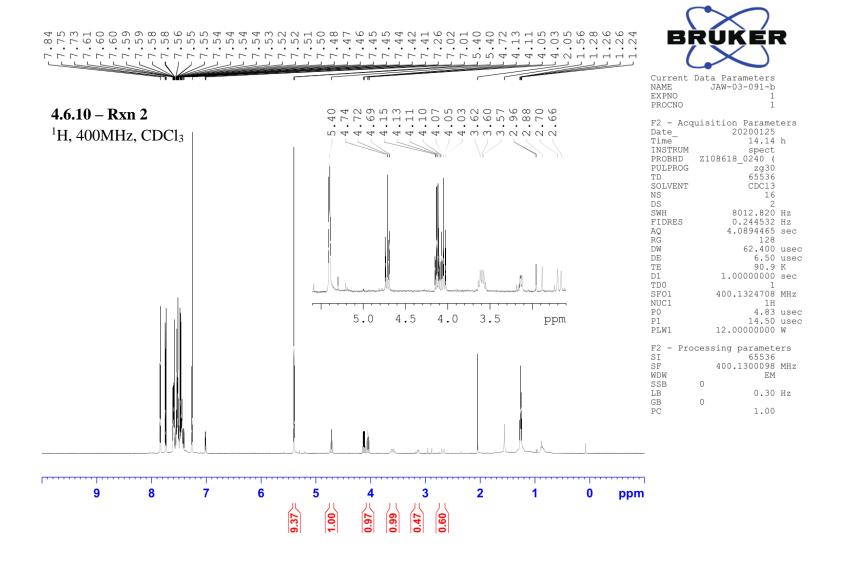


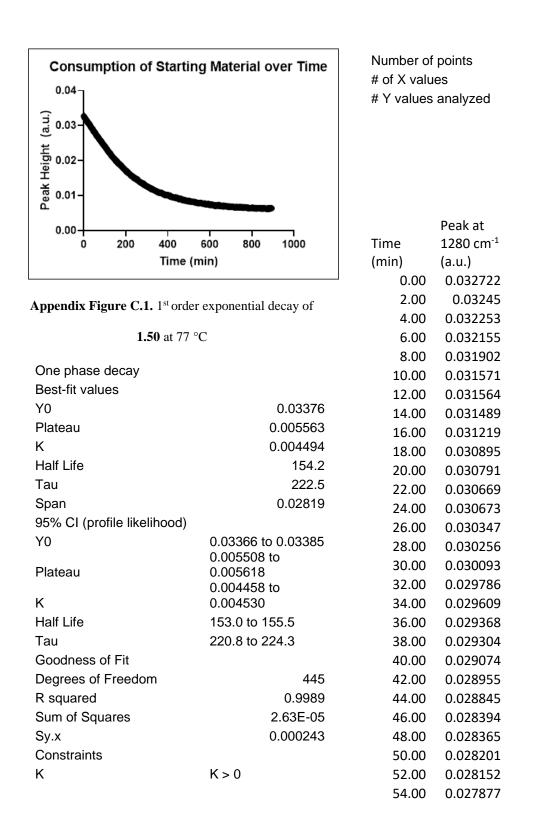












Appendix C ReactIR Data Output

56.00	0.027773	146.00	0.020566
58.00	0.027425	148.00	0.020451
60.00	0.027183	150.00	0.020196
62.00	0.027141	152.00	0.019963
64.00	0.026852	154.00	0.019791
66.00	0.026869	156.03	0.019923
68.00	0.026757	158.00	0.01981
70.00	0.02657	160.00	0.019524
72.00	0.02629	162.00	0.019291
74.00	0.026002	164.00	0.019325
76.00	0.025977	166.00	0.019086
78.00	0.025886	168.00	0.019166
80.00	0.025762	170.00	0.018986
82.00	0.025407	172.00	0.018797
84.00	0.025473	174.05	0.018749
86.00	0.025106	176.00	0.018684
88.00	0.024981	178.00	0.018608
90.00	0.024806	180.00	0.01828
92.00	0.024654	182.00	0.018167
94.00	0.024579	184.00	0.018141
96.00	0.02427	186.00	0.017993
98.00	0.024223	188.00	0.017856
100.00	0.024181	190.00	0.017728
102.00	0.023927	192.00	0.017643
104.03	0.023725	194.00	0.017486
106.00	0.023534	196.00	0.017354
108.00	0.023368	198.00	0.017281
110.00	0.023291	200.00	0.017145
112.00	0.022954	202.00	0.016899
114.00	0.022939	204.00	0.017012
116.00	0.022691	206.00	0.016687
118.00	0.022462	208.00	0.016823
120.00	0.022429	210.05	0.016614
122.00	0.022253	212.00	0.016459
124.00	0.022156	214.00	0.016365
126.00	0.022051	216.00	0.016415
128.00	0.021865	218.00	0.016232
130.00	0.021458	220.05	0.016063
132.00	0.021459	222.00	0.015945
134.05	0.021361	224.00	0.015684
136.00	0.0211	226.00	0.015746
138.00	0.02098	228.00	0.015706
140.00	0.020878	230.00	0.015477
142.00	0.020706	232.00	0.015351
144.00	0.020515	234.00	0.015451

236.00	0.015356	326.00	0.011752
238.00	0.015032	328.00	0.011771
240.00	0.015209	330.00	0.011799
242.00	0.014961	332.00	0.011729
244.00	0.014941	334.00	0.01156
246.00	0.014883	336.00	0.011644
248.00	0.014795	338.00	0.011411
250.00	0.014597	340.00	0.01137
252.00	0.014516	342.00	0.011426
254.00	0.014762	344.05	0.011363
256.00	0.014466	346.00	0.011367
258.00	0.014293	348.00	0.011092
260.00	0.014233	350.00	0.01114
262.00	0.01421	352.00	0.010993
264.00	0.014038	354.00	0.011003
266.00	0.013902	356.00	0.010977
268.00	0.01378	358.00	0.010789
270.00	0.01385	360.00	0.01082
272.00	0.013676	362.00	0.010872
274.00	0.013665	364.00	0.010836
276.00	0.013559	366.00	0.010904
278.00	0.013593	368.00	0.010767
280.00	0.01338	370.00	0.010642
282.00	0.013277	372.00	0.010757
284.00	0.013492	374.00	0.010587
286.00	0.013072	376.00	0.010552
288.00	0.013197	378.00	0.010506
290.00	0.01309	380.00	0.010453
292.00	0.013016	382.00	0.010247
294.00	0.012826	384.00	0.010299
296.03	0.012867	386.00	0.01035
298.00	0.012699	388.02	0.010141
300.00	0.012728	390.03	0.010047
302.00	0.012647	392.00	0.010217
304.00	0.012521	394.00	0.010171
306.00	0.012453	396.00	0.010267
308.00	0.012376	398.00	0.010264
310.00	0.01235	400.00	0.010113
312.00	0.012252	402.00	0.010092
314.02	0.01227	404.00	0.009947
316.00	0.012057	406.00	0.009912
318.00	0.012091	408.00	0.009894
320.00	0.012084	410.00	0.010048
322.00	0.011831	412.00	0.009694
324.00	0.011955	414.00	0.009753

416.02	0.009607	506.00	0.008366
418.00	0.009604	508.00	0.0083
420.00	0.00964	510.00	0.008283
422.00	0.009564	512.00	0.008264
424.00	0.009507	514.00	0.008196
426.00	0.009653	516.00	0.008232
428.00	0.009463	518.00	0.008209
430.00	0.009436	520.00	0.008199
432.00	0.009372	522.00	0.008162
434.00	0.009359	524.00	0.008238
436.00	0.009501	526.00	0.008167
438.00	0.009386	528.00	0.00817
440.00	0.0093	530.05	0.008134
442.00	0.009493	532.00	0.007947
444.00	0.009247	534.00	0.00804
446.00	0.009211	536.00	0.008099
448.00	0.009329	538.00	0.008
450.00	0.009143	540.00	0.007925
452.00	0.008936	542.00	0.007979
454.00	0.008991	544.00	0.00777
456.00	0.009015	546.00	0.00793
458.00	0.009042	548.00	0.00791
460.00	0.009152	550.00	0.007796
462.00	0.009008	552.00	0.007894
464.00	0.009009	554.00	0.007877
466.00	0.008868	556.00	0.007985
468.00	0.008749	558.00	0.007904
470.00	0.008805	560.00	0.007765
472.00	0.008674	562.00	0.007749
474.00	0.008845	564.00	0.007744
476.00	0.008692	566.00	0.0077
478.00	0.008698	568.00	0.007668
480.00	0.008722	570.05	0.007691
482.00	0.008526	572.00	0.007704
484.00	0.008618	574.00	0.007819
486.00	0.008691	576.00	0.00768
488.00	0.008563	578.00	0.007605
490.00	0.008611	580.00	0.007453
492.00	0.008574	582.00	0.007544
494.00	0.008408	584.00	0.007587
496.00	0.008435	586.00	0.007693
498.00	0.008311	588.00	0.007621
500.00	0.00843	590.00	0.007499
502.00	0.00855	592.00	0.007425
504.00	0.008341	594.00	0.007684

596.00	0.007351	686.00	0.006855
598.00	0.007486	688.00	0.006929
600.00	0.007315	690.00	0.006715
602.00	0.007447	692.00	0.006954
604.00	0.007438	694.00	0.006896
606.00	0.007244	696.00	0.006771
608.00	0.007504	698.00	0.006713
610.00	0.007459	700.00	0.006834
612.00	0.007315	702.00	0.006819
614.00	0.007292	704.00	0.006888
616.00	0.007235	706.00	0.006801
618.00	0.007283	708.00	0.006709
620.00	0.007366	710.00	0.006858
622.00	0.007125	712.00	0.006799
624.00	0.007199	714.00	0.006758
626.00	0.007022	716.05	0.006794
628.05	0.007063	718.00	0.006599
630.03	0.007219	720.00	0.006707
632.00	0.007278	722.00	0.006615
634.00	0.007213	724.00	0.006657
636.00	0.007187	726.00	0.006808
638.00	0.007041	728.02	0.006635
640.00	0.007136	730.00	0.006718
642.00	0.007381	732.00	0.006657
644.00	0.007267	734.00	0.006779
646.00	0.00717	736.00	0.006779
648.00	0.007018	738.00	0.006556
650.00	0.007024	740.00	0.00666
652.00	0.007183	742.00	0.006638
654.00	0.006962	744.00	0.006818
656.00	0.006993	746.00	0.006658
658.00	0.007107	748.00	0.006572
660.00	0.006948	750.00	0.00661
662.00	0.006888	752.00	0.006694
664.00	0.006914	754.00	0.006797
666.00	0.007167	756.00	0.006475
668.00	0.006883	758.00	0.006571
670.03	0.007048	760.00	0.006626
672.00	0.006998	762.00	0.006596
674.00	0.006903	764.00	0.00651
676.05	0.006987	766.00	0.006748
678.00	0.007013	768.00	0.006516
680.00	0.006871	770.00	0.006582
682.00	0.006942	772.00	0.006567
684.00	0.006911	774.00	0.006563

776.00	0.006593	866.00	0.006348
778.00	0.006648	868.00	0.006295
780.00	0.006558	870.00	0.006214
782.00	0.006342	872.00	0.006218
784.00	0.006529	874.00	0.006119
786.00	0.00659	876.00	0.006417
788.00	0.006423	878.00	0.006176
790.00	0.006437	880.00	0.006416
792.00	0.006432	882.00	0.006413
794.00	0.006432	884.00	0.00632
796.00	0.006375	886.00	0.006231
798.00	0.006499	888.00	0.006341
800.00	0.006556	890.00	0.006437
802.00	0.00645	892.00	0.006358
804.00	0.006589	894.00	0.006375
806.00	0.006672		
808.00	0.0064		
810.00	0.006301		
812.00	0.00652		
814.00	0.00642		
816.00	0.006356		
818.00	0.006435		
820.00	0.006254		
822.00	0.006371		
824.00	0.006424		
826.00	0.006355		
828.05	0.006316		
830.00	0.006431		
832.00	0.006499		
834.00	0.006371		
836.00	0.006386		
838.00	0.006343		
840.00	0.006473		
842.00	0.006311		
844.00	0.006262		
846.00	0.006393		
848.00	0.006247		
850.02	0.006308		
852.00	0.006315		
854.00	0.00629		
856.05	0.006451		
858.00	0.006234		
860.00	0.006389		
862.00	0.006424		
864.00	0.006359		

Consum	ption o	f Starti	ing Ma	terial o	ver Time
0.04					
Peak Height (a.u.) -20.0 ak -10.0 be					
0.00	-		-	1	
0	100	200	300	400	500
Time (min)					

Appendix Figure C.2.	1st order	exponential	decay of
----------------------	-----------	-------------	----------

 	aı	α	°C

			00.00	0.00000
One phase decay			26.00	0.023392
Best-fit values		•	28.00	0.022983
Y0	0.02477		30.00	0.022267
	0.03177		32.00	0.021731
Plateau	0.004558	;	34.00	0.021401
K	0.01466		36.00	0.020912
Half Life	47.28	;	38.00	0.020136
Tau	68.21		40.00	0.019742
Span	0.02722		42.00	0.019346
95% CI (profile likel	ihood)		44.00	0.018898
Y0	0.03167 to 0.03187		46.00	0.018662
D	0.004521 to		48.05	0.018002
Plateau	0.004594			
K	0.01456 to 0.01476		50.00	0.017825
Half Life	46.95 to 47.61		52.00	0.017356
Tau	67.73 to 68.69		54.00	0.017052
Goodness of Fit		;	56.00	0.016767
Degrees of	100	!	58.00	0.016322
Freedom	189	(60.00	0.015886
R squared	0.9995	(62.00	0.015591
Sum of Squares	4.01E-06	(64.00	0.015279
Sy.x	0.000146	(66.00	0.014909
Constraints		(68.00	0.014831
K	K > 0		70.00	0.014329
			72.00	0.014064
Number of points			74.05	0.013794
# of X values	192		76.00	0.013704
# Y values			78.00	0.013306
analyzed	192		80.00	0.013300
			82.00	
		•	5Z.UU	0.01275

Peak at 1280 cm⁻¹

(a.u.)

0.031035 0.030557

0.030033

0.029388

0.028667

0.02801

0.027309

0.026761

0.02608

0.025594

0.024872

0.024389

0.023834

Time (min)

0.00

2.004.03

6.00

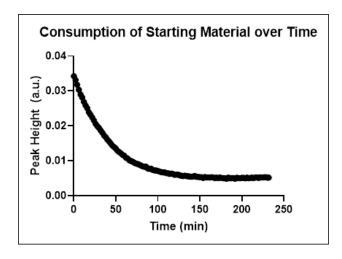
8.00

10.00

12.00

14.00

16.00


18.00

20.00

22.00

84.00	0.012403	174.00	0.006613
86.00	0.012267	176.00	0.0066
88.00	0.011886	178.00	0.006455
90.00	0.011915	180.00	0.006281
92.00	0.011552	182.00	0.006186
94.00	0.011288	184.00	0.00644
96.00	0.011066	186.00	0.006343
98.00	0.011081	188.00	0.00631
100.00	0.010966	190.00	0.006144
102.00	0.010674	192.00	0.00632
104.03	0.010373	194.00	0.00618
106.00	0.01024	196.00	0.00587
108.00	0.009901	198.00	0.005906
110.00	0.00993	200.00	0.005924
112.00	0.009788	202.00	0.005841
114.03	0.009526	204.00	0.005821
116.00	0.009402	206.00	0.005924
118.03	0.009412	208.00	0.005655
120.00	0.009081	210.00	0.005629
122.00	0.008929	212.00	0.005523
124.00	0.009031	214.00	0.005733
126.00	0.008887	216.00	0.005643
128.00	0.008679	218.00	0.005656
130.00	0.008461	220.00	0.005734
132.00	0.008394	222.00	0.005558
134.00	0.008397	224.03	0.005452
136.00	0.00831	226.00	0.005554
138.00	0.007902	228.05	0.005464
140.00	0.008152	230.00	0.005469
142.00	0.00793	232.00	0.00534
144.03	0.007709	234.00	0.005258
146.00	0.007707	236.00	0.005299
148.00	0.007603	238.00	0.0055
150.00	0.00751	240.00	0.005306
152.00	0.007391	242.00	0.005323
154.00	0.007295	244.03	0.005285
156.00	0.007192	246.00	0.00528
158.00	0.007256	248.00	0.005208
160.00	0.006932	250.00	0.005169
162.00	0.006911	252.00	0.005068
164.00	0.006859	254.00	0.005185
166.00	0.006667	256.00	0.005148
168.00	0.006734	258.05	0.005024
170.00	0.006754	260.00	0.005192
172.00	0.00669	262.00	0.005017

264.02	0.004999	354.00	0.004852
266.00	0.005123	356.00	0.004814
268.00	0.005129	358.00	0.004857
270.00	0.004944	360.00	0.004802
272.00	0.005034	362.00	0.005
274.00	0.005042	364.03	0.005043
276.00	0.005098	366.00	0.004726
278.00	0.004974	368.00	0.004607
280.00	0.005017	370.00	0.004818
282.00	0.005051	372.00	0.004903
284.03	0.00498	374.00	0.004843
286.00	0.005042	376.00	0.005033
288.00	0.004929	378.00	0.004717
290.00	0.004873	380.00	0.004909
292.00	0.004955	382.00	0.004985
294.03	0.00474		
296.00	0.00489		
298.00	0.004855		
300.00	0.004968		
302.00	0.004964		
304.00	0.004816		
306.00	0.004773		
308.00	0.00479		
310.00	0.004849		
312.00	0.004734		
314.00	0.004963		
316.00	0.004873		
318.00	0.004943		
320.00	0.004994		
322.00	0.004883		
324.00	0.004886		
326.00	0.004747		
328.00	0.00485		
330.00	0.004893		
332.00	0.004899		
334.03	0.004928		
336.00	0.00474		
338.00	0.004828		
340.00	0.00475		
342.00	0.004844		
344.00	0.004925		
346.00	0.004887		
348.00	0.004774		
350.00	0.004873		
352.00	0.004823		

Appendix Figure C.3. 1st order exponential decay of

			0.0=0000
Appendix Figure C.	3. 1 st order exponential decay of	15.98	0.025039
	-	18.00	0.023881
1.	. 50 at 94 °C	19.98	0.023171
One phase deserv		22.00	0.022385
One phase decay Best-fit values		24.00	0.021557
Y0	0.02477	25.98	0.020585
Plateau	0.03477 0.004734	28.00	0.019932
K		29.98	0.019433
• •	0.02497	32.00	0.018673
Half Life	27.76	34.02	0.018048
Tau	40.05	35.98	0.017259
Span	0.03004	38.00	0.0168
95% CI (profile like	,	39.98	0.016093
Y0	0.03459 to 0.03496 0.004667 to	42.00	0.015552
Plateau	0.004801	44.00	0.01494
K	0.02467 to 0.02527	45.98	0.014317
Half Life	27.43 to 28.10	48.00	0.013942
Tau	39.58 to 40.53	49.98	0.013515
Goodness of Fit		52.00	0.012875
Degrees of		54.00	0.012504
Freedom	114	55.98	0.012152
R squared	0.9992	58.00	0.011704
Sum of Squares	5.31E-06	59.98	0.011479
Sy.x	0.000216	62.00	0.010891
Constraints		63.98	0.0107
K	K > 0	66.00	0.010164
		68.00	0.009959
Number of points		69.98	0.009765
# of X values	117	72.00	0.009464
# Y values	117	73.98	0.0092
analyzed	117	76.00	0.00909
		78.00	0.008889

(a.u.)

Time (min)

0.00

1.98

4.00

6.03

8.00

9.98

12.00

14.00

1280 cm⁻¹

0.034248

0.033186

0.031772

0.03035

0.029015

0.028162

0.026884

79.98	0.008662	169.98	0.005173
82.00	0.008428	171.98	0.005045
83.98	0.008283	174.00	0.00521
86.00	0.008307	175.98	0.005081
88.00	0.007818	178.00	0.005001
89.98	0.007676	180.00	0.004997
92.00	0.00774	181.98	0.004882
93.98	0.007369	184.00	0.005169
96.00	0.007254	185.98	0.004977
98.00	0.007208	188.00	0.005041
99.98	0.007124	190.00	0.005048
102.00	0.00692	191.98	0.00487
103.98	0.006772	194.00	0.005134
106.00	0.006694	196.03	0.005042
108.00	0.006684	197.98	0.005009
109.98	0.006499	200.00	0.005133
112.00	0.006455	201.98	0.005116
113.98	0.00624	204.00	0.004987
115.98	0.006352	206.00	0.005192
118.00	0.006215	207.98	0.005028
119.98	0.00599	210.00	0.005082
122.00	0.006034	211.98	0.005176
124.00	0.006057	214.00	0.005059
125.98	0.005848	216.00	0.00522
128.00	0.005703	217.98	0.005213
130.00	0.005621	220.00	0.005108
131.98	0.005747	221.98	0.005234
134.00	0.005618	223.98	0.005201
135.98	0.005593	226.00	0.005264
137.98	0.005496	227.98	0.005328
140.00	0.005463	230.00	0.005169
141.98	0.005514	232.00	0.00517
144.00	0.005646		
146.00	0.005433		
147.98	0.005376		
150.00	0.005312		
152.00	0.005281		
153.98	0.005091		
156.00	0.005357		
157.98	0.005219		
160.00	0.005245		
162.00	0.005221		
164.02	0.005278		
165.98	0.005215		
168.00	0.005043		

Consumption of	Starting Material over Time	Time	Peak at 1280 cm ⁻¹
0.047		Time (min)	
- I		0.00	(a.u.) 0.028111
a. 0.03		0.00	0.02724
ig 0.02-		2.03	0.02724
至 0.02		3.02	0.02380
Peak Height (a.u.)		4.02	0.02338
<u> </u>		5.00	0.02338
0.00	, , , , , , , , , , , , , , , , , , , 	5.98	0.02130
0 .	Time (min)	7.03	0.02150
	,,	8.03	0.01939
nnandir Fia C	1 1st order exponential J	9.00	0.01333
Appenaix Figure C.	4. 1 st order exponential decay of	10.00	0.017
1.	.50 at 108 °C	10.98	0.01714
		12.00	0.0161
One phase decay		12.98	0.01548
Best-fit values		14.00	0.01488
Y0	0.0286	15.00	0.01423
Plateau	0.003099	15.98	0.01347
K	0.05587	17.03	0.0129
Half Life	12.41	18.00	0.01244
Tau	17.9	19.00	0.01194
Span	0.0255	20.00	0.01142
95% CI (profile like	<i>'</i>	21.00	0.01102
Y0	0.02847 to 0.02873	21.98	0.01056
Plateau	0.003051 to 0.003147	23.00	0.01029
K	0.05532 to 0.05643	24.00	0.0099
Half Life	12.28 to 12.53	25.00	0.0094
Tau	17.72 to 18.08	26.00	0.00898
Goodness of Fit		27.00	0.00880
Degrees of		27.98	0.0084
Freedom	99	29.00	0.00796
R squared	0.9995	30.00	0.00766
Sum of Squares	1.96E-06	31.00	0.00769
Sy.x	0.000141	32.00	0.00724
Constraints		32.98	0.00714
K	K > 0	34.00	0.00680
		35.00	0.00661
Number of points		35.98	0.00679
# of V volues	400		

102

102

of X values # Y values

analyzed

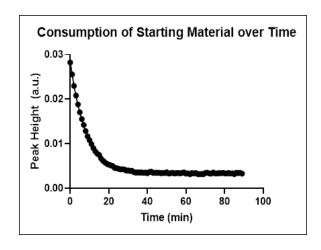
0.006348

0.006121

0.005997

0.005886

0.005721


37.00 38.00

39.00

40.02

41.98	0.005442	8
43.00	0.005393	8
44.00	0.004962	8'
45.00	0.004969	8'
45.98	0.004814	9
47.03	0.004945	9
48.03	0.004798	9.
49.00	0.004973	9.
49.98	0.0045	9.
51.00	0.004528	9.
51.98	0.004428	9
53.00	0.004379	9
54.00	0.004268	9
54.98	0.004215	9
56.00	0.004235	10
57.00	0.004087	
58.00	0.003895	
59.00	0.004057	
59.98	0.003871	
61.00	0.003739	
61.98	0.003913	
63.00	0.003551	
64.00	0.003546	
64.98	0.003783	
66.00	0.003844	
67.03	0.003813	
68.00	0.003644	
69.00	0.00336	
70.03	0.003705	
71.02	0.003485	
72.02	0.003729	
73.02	0.00348	
74.00	0.003228	
74.98	0.003627	
76.00	0.003351	
76.98	0.003586	
78.00	0.003343	
79.00	0.003474	
79.98	0.00346	
81.00	0.003522	
82.02	0.003493	
83.00	0.00356	
84.00	0.00322	
85.00	0.003394	
86.00	0.003343	

0.003366 0.003373 0.003332 0.003426 0.003367 0.003063 0.003267 0.003267 0.003285 0.003279 0.003274 0.003203 0.003445

Appendix Figure C.5. 1st order exponential decay of

	= 4 of 1	7.00	0.011211
Appendix Figure C.	5. 1st order exponential decay of	8.00	0.012829
1.	50 at 119 °C	9.00	0.011662
		10.00	0.010789
One phase decay		11.00	0.00992
Best-fit values		11.98	0.009033
Y0	0.0285	13.00	0.008295
Plateau	0.003339	14.00	0.007773
K	0.1234	15.00	0.007498
Half Life	5.619	15.98	0.006684
Tau	8.107	17.00	0.00617
Span	0.02516	18.00	0.005802
95% CI (profile like	elihood)	19.00	0.005489
Y0	0.02835 to 0.02866	19.98	0.00532
DI. (0.003306 to	21.00	0.005131
Plateau	0.003372	22.00	0.005011
K	0.1221 to 0.1246	23.00	0.004581
Half Life	5.561 to 5.677	23.98	0.004521
Tau	8.023 to 8.191	25.00	0.004393
Goodness of Fit Degrees of		26.00	0.004258
Freedom	87	27.00	0.004285
R squared	0.9994	28.00	0.004209
Sum of Squares	1.35E-06	29.00	0.003982
Sy.x	0.000125	30.00	0.004024
Constraints		31.00	0.003888
K	K > 0	32.00	0.003901
		33.00	0.003619
Number of points		34.00	0.003531
# of X values	90	35.00	0.00355
# Y values		36.00	0.003548
analyzed	90	37.00	0.003568
		38.00	0.003467
		38.98	0.003525

(a.u.)

Time (min)

0.00

1.00

1.98

3.00

4.00

4.98

6.00

7.00

1279 cm⁻¹

0.028225

0.025561

0.022977

0.02081

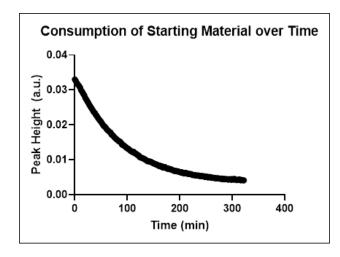
0.018812

0.017063

0.015545

40.00	0.003392	85.00	0.003181
41.00	0.003654	86.00	0.003482
42.00	0.003706	87.00	0.003404
42.98	0.003458	87.98	0.003493
44.00	0.003505	89.00	0.003286
45.00	0.003499		
46.00	0.003478		
47.00	0.00339		
47.98	0.003444		
49.00	0.003446		
50.00	0.003582		
51.00	0.00331		
51.98	0.00339		
53.00	0.003481		
54.00	0.003349		
55.00	0.003424		
55.98	0.003437		
57.03	0.003366		
58.00	0.003482		
59.00	0.003558		
59.98	0.003295		
61.00	0.003355		
62.00	0.00315		
63.00	0.003421		
63.98	0.003352		
65.00	0.003409		
66.00	0.003213		
66.98	0.003194		
68.00	0.003222		
69.00	0.003176		
70.00	0.003452		
70.98	0.003524		
72.00	0.003345		
73.05	0.003292		
74.00	0.003542		
74.98	0.003368		
76.00	0.003338		
77.00	0.003424		
78.00	0.003396		
79.00	0.003453		
80.00	0.003364		
81.00	0.003348		
82.00	0.003432		
83.00	0.003339		
83.98	0.003373		

2.7 76 °C


Company tion of	Otantin - Matarial array Time		
_	Starting Material over Time		
0.04			Peak at
(i) 0.03		Time	1284 cm ⁻¹
Peak Height (a.u.)		(min)	(a.u.)
		0.00	0.033199
¥		2.00	0.032622
등 0.01-		3.98	0.032326
0.00		6.00	0.032122
0 200	400 600 800	7.98	0.031736
	Time (min)	10.00	0.031715
		11.98	0.031259
Appendix Figure C.	6. 1 st order exponential decay of	14.00	0.030996
11 8	1	16.00	0.030836
2	2.7 at 76 °C	17.98	0.030265
		20.00	0.030113
One phase decay		21.98	0.029902
Best-fit values		24.00	0.029465
Y0	0.03299	25.98	0.029321
Plateau	0.003348	27.98	0.029146
K	0.004941	30.03	0.028961
Half Life	140.3	31.98	0.028549
Tau	202.4	34.00	0.028458
Span	0.02964	35.98	0.028082
95% CI (profile like	· ·	38.00	0.027804
Y0	0.03293 to 0.03304	39.98	0.027531
Plateau	0.003303 to 0.003393	42.00	0.027218
Tateau	0.004914 to	44.00	0.02711
K	0.004967	45.98	0.026845
Half Life	139.5 to 141.1	48.00	0.026624
Tau	201.3 to 203.5	49.98	0.026429
Goodness of Fit		52.00	0.026195
Degrees of	000	54.00	0.026028
Freedom	339	56.00	0.025695
R squared	0.9997	57.98	0.025649
Sum of Squares	6.12E-06	60.03	0.025391
Sy.x	0.000134	62.00	0.025255
Constraints		64.00	0.02491
K	K > 0	66.00	0.024711
		67.98	0.024427
Number of points		70.00	0.024497
# of X values	342	71.98	0.024174
# Y values analyzed	342	74.00	0.023998
andiyzou	0 1 2		

75.98	0.023712	166.00	0.016671
78.00	0.023292	167.98	0.016212
79.98	0.023342	170.03	0.016064
82.00	0.023101	171.98	0.015919
84.00	0.022921	174.00	0.015825
85.98	0.022905	176.00	0.015669
88.03	0.022556	177.98	0.015697
89.98	0.022267	180.00	0.015419
92.00	0.02228	182.03	0.015344
93.98	0.021996	184.00	0.015239
96.00	0.022064	185.98	0.015017
98.00	0.021858	188.00	0.014983
99.98	0.021577	190.00	0.014933
102.00	0.021458	191.98	0.014778
103.98	0.021232	194.00	0.014738
106.00	0.020971	195.98	0.014592
107.98	0.020773	198.00	0.014378
110.00	0.020868	199.98	0.014315
111.98	0.02065	202.00	0.014265
114.00	0.020375	203.98	0.014049
116.00	0.020225	206.03	0.013884
118.00	0.019967	207.98	0.013773
120.00	0.019848	210.03	0.013763
121.98	0.019809	212.00	0.013588
124.00	0.019544	213.98	0.013383
125.98	0.019466	216.00	0.01333
128.00	0.019316	217.98	0.013265
130.02	0.019015	220.00	0.013167
132.00	0.01893	222.00	0.013111
134.00	0.018875	223.98	0.012997
135.98	0.018547	226.00	0.013008
138.00	0.018417	227.98	0.012712
139.98	0.018305	230.00	0.01273
142.00	0.018138	231.98	0.012598
143.98	0.018172	234.00	0.012465
146.00	0.017899	235.98	0.01241
148.00	0.017691	237.98	0.0123
150.00	0.017657	240.03	0.012266
152.00	0.017598	241.98	0.012044
153.98	0.017359	244.00	0.012092
156.00	0.017085	245.98	0.01192
158.03	0.017006	248.00	0.01202
160.00	0.016961	250.00	0.011854
161.98	0.016709	251.98	0.011654
163.98	0.016774	254.00	0.011612

255.98	0.011626	346.00	0.008725
258.00	0.011357	348.00	0.008754
259.98	0.011356	349.98	0.008557
262.00	0.011375	352.00	0.008659
263.98	0.011111	354.00	0.008563
266.00	0.011005	355.98	0.008575
268.00	0.011045	358.00	0.008476
269.98	0.011018	359.98	0.008399
272.00	0.010856	362.05	0.008304
273.98	0.010768	364.00	0.008248
276.00	0.010821	365.98	0.008301
278.00	0.010654	367.98	0.008316
279.98	0.010696	370.00	0.008272
282.00	0.010552	371.98	0.008257
283.98	0.01041	374.00	0.007983
286.00	0.010434	376.00	0.008075
288.00	0.010382	378.00	0.007987
289.98	0.010304	380.03	0.007962
292.05	0.010216	382.00	0.007707
293.98	0.010186	383.98	0.007827
296.00	0.010192	385.98	0.007851
298.03	0.009988	388.00	0.007948
299.98	0.009966	389.98	0.007681
302.00	0.00984	391.98	0.007793
303.98	0.01004	394.00	0.007826
306.00	0.0098	395.98	0.007777
307.98	0.009744	398.03	0.007694
310.00	0.009695	400.00	0.007538
312.00	0.009662	401.98	0.007515
313.98	0.009517	404.00	0.007583
316.00	0.009353	405.98	0.007556
317.98	0.009433	407.98	0.007556
320.00	0.009205	410.00	0.007364
322.00	0.009275	411.98	0.007442
323.98	0.00928	414.00	0.007355
326.00	0.009218	416.00	0.007301
328.00	0.009347	417.98	0.007285
329.98	0.009069	420.00	0.007362
332.00	0.009204	421.98	0.007203
333.98	0.00904	423.98	0.007142
336.00	0.008897	426.03	0.006977
338.00	0.009054	428.00	0.007014
339.98	0.008937	430.00	0.007185
342.00	0.008858	431.98	0.006967
343.98	0.00884	433.98	0.006926

436.00	0.00691	526.00	0.005484
437.98	0.006833	527.98	0.00563
440.00	0.006827	530.00	0.00552
442.00	0.006728	532.00	0.005426
443.98	0.006719	533.98	0.00542
446.00	0.006884	536.00	0.005557
447.98	0.006798	537.98	0.005261
450.03	0.006792	539.98	0.005364
452.00	0.006628	542.00	0.00529
453.98	0.006654	543.98	0.005332
456.00	0.006697	546.00	0.00526
457.98	0.006564	548.05	0.005205
460.00	0.00658	549.98	0.005207
462.00	0.006485	552.00	0.005287
463.98	0.006436	553.98	0.005264
466.00	0.006398	555.98	0.005096
467.98	0.006326	558.00	0.005166
470.00	0.006345	559.98	0.005244
472.03	0.006362	562.00	0.005235
473.98	0.006437	564.00	0.005116
476.00	0.006311	566.03	0.00517
477.98	0.006291	568.00	0.005098
480.00	0.006205	569.98	0.005027
481.98	0.006279	571.98	0.005211
484.00	0.006237	574.00	0.005049
485.98	0.006132	575.98	0.00498
488.00	0.006094	577.98	0.005023
490.05	0.00622	580.00	0.005013
491.98	0.005999	581.98	0.004882
494.00	0.005919	584.00	0.004707
495.98	0.005951	586.00	0.004694
498.00	0.005911	587.98	0.004908
500.00	0.005903	589.98	0.004697
502.03	0.005779	592.00	0.004915
504.00	0.005886	593.98	0.004642
505.98	0.005829	596.03	0.004872
507.98	0.005724	598.00	0.004811
510.00	0.005754	599.98	0.004849
511.98	0.005704	601.98	0.004753
514.00	0.005577	604.00	0.004772
516.00	0.005577	605.98	0.004809
517.98	0.00573	607.98	0.004868
520.03	0.005511	610.00	0.004739
521.98	0.005486	611.98	0.004645
523.98	0.005561	613.98	0.004761

616.00	0.00471
617.98	0.004703
619.98	0.004634
622.00	0.004713
623.98	0.004444
626.00	0.004751
628.00	0.004579
629.98	0.004625
632.00	0.004713
634.00	0.004659
635.98	0.004669
638.00	0.004667
640.00	0.004672
641.98	0.004613
644.00	0.004688
645.98	0.004551
648.00	0.004387
650.00	0.004598
651.98	0.004371
653.98	0.004466
656.00	0.004567
657.98	0.004503
660.03	0.004515
662.00	0.004453
663.98	0.004425
666.03	0.004499
668.00	0.004375
669.98	0.004383
672.00	0.004451
673.98	0.004291
675.98	0.004381
678.00	0.004359
679.98	0.004228
682.00	0.00429

Appendix Figure C.7. 1st order exponential decay of

Appendix Figure C.	7. 1st order exponential decay of	15.98	0.028947
		17.98	0.028504
2	. 7 at 85 °C	19.98	0.027753
0		22.00	0.027252
One phase decay		23.98	0.026743
Best-fit values	0.0000	25.98	0.026264
Y0	0.03369	27.98	0.025693
Plateau	0.003168	29.98	0.025231
K	0.011	31.98	0.024761
Half Life	63.04	33.98	0.024282
Tau	90.94	35.98	0.023732
Span	0.03052	38.00	0.023436
95% CI (profile like	,	39.98	0.022905
Y0	0.03361 to 0.03377	41.98	0.022546
Plateau	0.003112 to 0.003223	44.00	0.02201
K	0.01092 to 0.01107	45.98	0.021666
Half Life	62.62 to 63.46	47.98	0.021204
Tau	90.34 to 91.55	49.98	0.020921
Goodness of Fit	30.04 to 31.00	51.98	0.020405
Degrees of		53.98	0.019936
Freedom	159	55.98	0.019585
R squared	0.9998	57.98	0.01943
Sum of Squares	2.39E-06	59.98	0.018936
Sy.x	0.000123	61.98	0.018547
Constraints		63.98	0.018334
K	K > 0	66.00	0.017936
		68.03	0.017825
Number of points		69.98	0.017233
# of X values	162	71.98	0.017099
# Y values		73.98	0.016758
analyzed	162	75.98	0.016345
		78.02	0.016074
		70.02	3.010074

(a.u.)

Time (min)

> 0.00 1.98

> 3.98

5.98

7.98

10.03

11.98

13.98

1283 cm⁻¹

0.033009

0.032598

0.03201

0.03157

0.031221

0.030691

0.029961

79.98	0.015815	169.98	0.007931
82.00	0.015592	171.98	0.007913
83.98	0.015288	173.98	0.007601
86.00	0.015208	175.98	0.007464
88.00	0.01487	177.98	0.007527
89.98	0.014345	179.98	0.007328
92.00	0.014228	181.98	0.007338
93.98	0.01404	183.98	0.007202
95.98	0.013779	185.98	0.007053
98.03	0.013518	187.98	0.006966
99.98	0.013291	189.98	0.006786
101.98	0.013134	192.00	0.006849
103.98	0.012922	193.98	0.006723
105.98	0.012577	195.98	0.006698
107.98	0.012456	197.98	0.006622
109.98	0.01221	199.98	0.006488
111.98	0.012305	202.03	0.006348
114.00	0.01189	203.98	0.00645
115.98	0.011804	205.98	0.006261
117.98	0.011606	207.98	0.006089
119.98	0.011282	209.98	0.006215
121.98	0.0112	211.98	0.006235
123.98	0.010728	213.98	0.006016
125.98	0.010636	215.98	0.006017
127.98	0.010535	217.98	0.005951
129.98	0.010408	219.98	0.005904
132.00	0.010268	221.98	0.005886
133.98	0.010036	223.98	0.00565
135.98	0.009926	225.98	0.005661
138.00	0.009623	228.02	0.005623
139.98	0.009575	229.98	0.005544
141.98	0.009565	231.98	0.005505
143.98	0.009461	233.98	0.005479
145.98	0.009339	235.98	0.005501
147.98	0.009117	237.98	0.005351
150.00	0.009011	239.98	0.005284
152.00	0.008816	242.05	0.005369
153.98	0.00875	243.98	0.005261
155.98	0.00866	245.98	0.005288
157.98	0.008486	247.98	0.005082
159.98	0.008264	249.98	0.005176
161.98	0.008349	251.98	0.005134
163.98	0.008037	253.98	0.004963
165.98	0.008157	255.98	0.005094
167.98	0.007787	257.98	0.005061

51 32 03 02 23 84 71 75 02 39 41
03 02 23 84 71 75 02 39
02 23 84 71 75 02 39 41
23 84 71 75 02 39
84 71 75 02 39 41
71 75 02 39 41
75 02 39 41
02 39 41
39 41
41
80
97
19
82
36
04
80
97
92
89
03
41
32
09
31
14
42
27
53
61
06

			over Time
1	1	1	
50	100 Time (min)		200
			1 1 50 100 150 Time (min)

Appendix Figure C.8. 1st order exponential decay of

2.7	at	95	°C
-----	----	----	----

4.	7 at 95°C	
One phase decay		
Best-fit values		
Y0	0.03221	
Plateau	0.002406	
K	0.03037	
Half Life	22.82	
Tau	32.92	
Span	0.02981	
95% CI (profile likeli	hood)	
Y0	0.03206 to 0.03237	
Dietecu	0.002343 to 0.002468	
Plateau K	0.002468 0.03005 to 0.03070	
Half Life	22.58 to 23.06	
Tau		
Goodness of Fit	32.58 to 33.27	
Degrees of		
Freedom	57	
R squared	0.9997	
Sum of Squares	1.04E-06	
Sy.x	0.000135	
Constraints		
K	K > 0	
Number of points		
# of X values	60	
# Y values	22	
analyzed	60	

	Peak at
Time	1282 cm ⁻¹
(min)	(a.u.)
0.00	0.031919
3.00	0.031919
6.00	0.029384
9.05	0.025112
12.00	0.023126
15.00	0.021493
18.00	0.019935
21.02	0.018321
24.00	0.016911
27.00	0.015649
30.00	0.014522
33.00	0.01344
36.00	0.012512
39.00	0.011429
42.00	0.010803
45.00	0.010028
48.00	0.009333
51.00	0.008663
54.02	0.00817
57.00	0.007591
60.00	0.007202
63.00	0.006693
66.00	0.006286
69.00	0.006001
72.00	0.005512
75.00	0.005254
78.02	0.00515
81.00	0.00466
84.02	0.004436
87.00	0.004542
90.00	0.004252
93.00	0.004111
96.00	0.003964
99.00	0.003792
102.00	0.003562
105.02	0.00363
108.00	0.003588
111.02	0.00328
114.00	0.003253
117.00	0.003287
120.00	0.003231
123.00	0.003257

126.00	0.003068
129.00	0.002956
132.00	0.002952
135.00	0.00279
138.00	0.002904
141.00	0.002908
144.02	0.002753
147.00	0.002752
150.00	0.002846
153.00	0.002901
156.00	0.002661
159.00	0.002708
162.00	0.002821
165.00	0.002708
168.00	0.002645
171.02	0.002765
174.00	0.00263
177.00	0.002749

0.04¬	ion or Stari	ting Material	over time
(a.u.)			
-10.00 Peak Height			
¥			
0.01-			
0.00			
0	50	100	150
	Time	e (min)	

27	04	11	vo	00
2.7	aı	10	ю	

2	.7 at 108 °C	11.00	0.01696
0 1 1		12.00	0.0159
One phase decay		13.00	0.015234
Best-fit values		14.02	0.014409
Y0	0.02904	15.00	0.013616
Plateau	0.001611	16.05	0.012824
K	0.05423	17.00	0.011898
Half Life	12.78	18.00	0.011503
Tau	18.44	19.00	0.011062
Span	0.02743	20.00	0.010412
95% CI (profile like	elihood)	21.00	0.009796
Y0	0.02887 to 0.02922	22.00	0.009564
Dietecu	0.001554 to	23.00	0.009362
Plateau	0.001668	24.00	0.008965
K	0.05359 to 0.05489	25.00	0.008715
Half Life	12.63 to 12.93	26.00	0.008336
Tau	18.22 to 18.66		
Goodness of Fit		27.00 28.00	0.008 0.007724
Degrees of Freedom	115		
R squared	0.9991	29.00	0.007464
Sum of Squares	4.36E-06	30.00	0.007378
•	0.000195	31.00	0.006843
Sy.x	0.000195	32.00	0.006584
Constraints	1/ 0	33.00	0.006466
K	K > 0	34.00	0.006138
		35.00	0.006064
Number of points		36.00	0.005577
# of X values	118	37.00	0.005305
# Y values	118	38.00	0.005179
analyzed	110	39.02	0.004944
		40.00	0.004882
		41.00	0.004914

Peak at 1281 cm⁻¹

(a.u.)

0.028602

0.027335

0.026118

0.024847

0.023897

0.022861

0.021923

0.020644

0.019895

0.018544

0.01792

Time (min)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

42.00	0.004591	87.00	0.001974
43.00	0.004444	88.00	0.001942
44.00	0.00427	89.00	0.00188
45.00	0.003839	90.00	0.001964
46.00	0.003838	91.00	0.001759
47.00	0.003588	92.00	0.001678
48.00	0.003527	93.00	0.001829
49.00	0.003468	94.00	0.00179
50.00	0.003428	95.00	0.001882
51.00	0.003228	96.00	0.001891
52.00	0.003409	97.00	0.001728
53.00	0.003281	98.00	0.001696
54.00	0.003069	99.00	0.001972
55.00	0.002869	100.00	0.001793
56.00	0.003011	101.00	0.001697
57.00	0.002899	102.00	0.001667
58.00	0.002447	103.00	0.001694
59.00	0.00259	104.00	0.001743
60.00	0.002729	105.00	0.001843
61.00	0.002696	106.00	0.001683
62.00	0.002457	107.00	0.00162
63.00	0.002229	108.00	0.001668
64.00	0.002577	109.00	0.001755
65.00	0.002365	110.00	0.001528
66.02	0.002201	111.00	0.001634
67.02	0.002358	112.00	0.001744
68.00	0.002277	113.00	0.001731
69.00	0.002111	114.00	0.001567
70.00	0.00211	115.00	0.001341
71.02	0.002299	116.00	0.001588
72.02	0.002225	117.00	0.00181
73.00	0.002233		
74.00	0.002164		
75.00	0.002075		
76.00	0.001979		
77.00	0.00204		
78.00	0.002037		
79.00	0.001829		
80.00	0.001879		
81.00	0.001989		
82.00	0.001961		
83.00	0.002001		
84.00	0.001822		
85.00	0.00188		
86.00	0.00181		

Consum	ption o	of Starti	ing Ma	terial o	ver Time
\					
E E					
Peak Height (a.u.)					
ght					
Ē ,,, '	\				
호 0.01-	\				
ď	•				
0.00					<u> </u>
0	20	40	60	80	100
		Time	(min)		

Appendix Figure C.10.	1st order e	xponential decay
-----------------------	-------------	------------------

Appendix Figure C.	cay 3.0	0.011101	
	-	10.00	0.013328
of 2	2.7 at 113 °C	11.0	0.012251
0		12.0	0.011137
One phase decay		13.0	3 0.010283
Best-fit values		14.0	2 0.009464
Y0	0.02738	15.0	0.008881
Plateau	0.000936	16.0	0.0082
K	0.0817	17.0	0.007555
Half Life	8.484	18.0	2 0.007011
Tau	12.24	19.0	0 0.006471
Span	0.02644	20.0	0.005905
95% CI (profile likel	,	21.0	3 0.005254
Y0	0.02700 to 0.02776	22.0	0.004937
Plateau	0.0008268 to 0.001044	23.0	0 0.004571
K	0.07968 to 0.08377	24.0	0.004219
Half Life	8.275 to 8.699	25.0	0.003912
Tau	11.94 to 12.55	26.0	0.003556
Goodness of Fit		27.0	0.003483
Degrees of		28.0	0.003077
Freedom	86	29.0	0.002893
R squared	0.9968	30.0	0.002776
Sum of Squares	1.08E-05	31.0	0.002581
Sy.x	0.000354	32.0	0.002291
Constraints		33.0	0.002315
K	K > 0	34.0	0.002157
		35.0	0.00231
Number of points		36.0	2 0.00205
# of X values	89	37.0	0.002137
# Y values	89	38.0	0.001968
analyzed	09	39.0	0.00178
		40.0	2 0.001804
		41.0	0.001469

Peak at 1282 cm⁻¹

(a.u.)

0.025508

0.025143 0.02351

0.021824

0.020361

0.018793

0.017703

0.01644

0.015294

0.014181

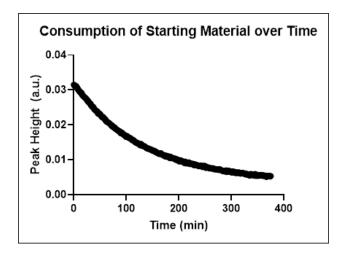
Time (min)

0.00

1.00

2.003.02

4.00


5.00

6.00

7.00

8.00

42.00	0.00157	87.00	0.001253
43.00	0.001606	88.00	0.001208
44.00	0.001488		
45.00	0.001468		
46.00	0.001558		
47.00	0.001447		
48.00	0.001352		
49.02	0.001549		
50.00	0.001344		
51.00	0.00121		
52.00	0.001358		
53.02	0.001344		
54.00	0.001251		
55.00	0.001222		
56.00	0.00131		
57.00	0.001284		
58.02	0.00131		
59.00	0.001202		
60.00	0.001164		
61.00	0.001164		
62.02	0.001173		
63.00	0.001353		
64.00	0.001075		
65.00	0.001214		
66.02	0.001201		
67.00	0.001161		
68.00	0.001438		
69.00	0.001105		
70.02	0.001181		
71.00	0.001115		
72.00	0.001106		
73.00	0.001156		
74.00	0.001106		
75.00	0.001245		
76.00	0.001244		
77.00	0.001223		
78.00	0.001164		
79.00	0.00111		
80.00	0.001235		
81.00	0.001125		
82.00	0.001223		
83.00	0.001169		
84.00	0.001113		
85.00	0.001096		
86.00	0.001238		

Appendix Figure C.11. 1st order exponential decay

Appendix Figure C.	ay 6.00	0.030204	
	-	9.00	0.02996
of i	1.59 at 88 °C	10.00	0.029698
Our days have		11.00	0.029615
One phase decay		12.00	0.029526
Best-fit values	0.00407	13.00	0.02912
Y0	0.03187	14.00	0.029186
Plateau	0.003693	15.00	0.029127
K	0.007641	16.00	0.02854
Half Life	90.71	17.00	0.028504
Tau	130.9	18.00	0.028173
Span	0.02818	19.00	0.028193
95% CI (profile likelihood)		20.00	0.027951
Y0	0.03182 to 0.03192	21.00	0.027843
Plateau	0.003638 to 0.003747	22.00	0.027692
. Idiodd	0.007596 to	23.00	0.027655
K	0.007687	24.00	0.027303
Half Life	90.17 to 91.26	25.00	0.027297
Tau	130.1 to 131.7	26.00	0.026828
Goodness of Fit		27.00	0.026955
Degrees of	272	28.00	0.02649
Freedom	373	29.00	0.02651
R squared	0.9997	30.00	0.026235
Sum of Squares	6.62E-06	31.00	0.026088
Sy.x	0.000133	32.00	0.026042
Constraints	17 0	33.00	0.025524
K	K > 0	34.00	0.025442
M		35.05	0.025241
Number of points	070	36.00	0.025029
# of X values # Y values	376	37.00	0.025168
analyzed	376	38.00	0.024837
,		39.00	0.024465

(a.u.)

Time (min)

0.00 1.00

2.00

3.02

4.00

5.00

6.00

7.00

8.00

1282 cm⁻¹

0.031504

0.03125

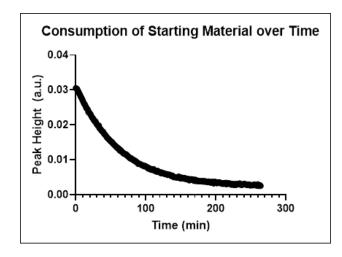
0.031245

0.031238

0.031081

0.031005

0.030752


0.030319

40.00	0.024379	85.00	0.018254
41.00	0.024216	86.00	0.0182
42.00	0.02413	87.02	0.018053
43.00	0.023904	88.00	0.018112
44.00	0.023893	89.00	0.017643
45.00	0.023855	90.00	0.017629
46.00	0.023228	91.00	0.017782
47.05	0.023234	92.00	0.017702
48.00	0.02314	93.00	0.017581
49.00	0.023123	94.00	0.01726
50.00	0.023153	95.00	0.017219
51.00	0.022815	96.00	0.017193
52.00	0.022541	97.00	0.017064
53.00	0.022393	98.00	0.016921
54.00	0.02216	99.00	0.016593
55.00	0.022217	100.00	0.016835
56.00	0.022254	101.00	0.016697
57.00	0.021968	102.00	0.016755
58.05	0.021776	103.00	0.016513
59.00	0.021537	104.00	0.016361
60.00	0.02162	105.00	0.016314
61.00	0.021193	106.00	0.016227
62.00	0.020953	107.00	0.016209
63.00	0.020993	108.00	0.016182
64.00	0.02078	109.00	0.015948
65.00	0.020877	110.00	0.015949
66.00	0.020662	111.00	0.015626
67.00	0.0205	112.00	0.015639
68.00	0.020413	113.00	0.015686
69.00	0.020437	114.00	0.01561
70.00	0.020152	115.00	0.015357
71.00	0.019913	116.00	0.015252
72.00	0.019775	117.00	0.015027
73.00	0.019588	118.00	0.015054
74.00	0.019708	119.00	0.014882
75.00	0.019381	120.00	0.014871
76.00	0.019287	121.00	0.014701
77.00	0.019193	122.00	0.014785
78.00	0.019238	123.00	0.014662
79.00	0.018904	124.00	0.01457
80.00	0.018826	125.00	0.014555
81.00	0.01878	126.00	0.01416
82.00	0.018579	127.00	0.014315
83.00	0.018542	128.02	0.014542
84.02	0.018466	129.00	0.014236

130.00	0.014237	175.00	0.010925
131.00	0.014002	176.00	0.011181
132.00	0.013886	177.00	0.011047
133.00	0.013785	178.00	0.010999
134.00	0.01385	179.00	0.01087
135.00	0.013896	180.00	0.010765
136.00	0.013652	181.03	0.010994
137.00	0.013662	182.00	0.010794
138.00	0.013397	183.00	0.010496
139.03	0.013429	184.00	0.010874
140.00	0.013213	185.00	0.010506
141.00	0.013322	186.00	0.010646
142.00	0.013179	187.00	0.010443
143.00	0.013212	188.00	0.010484
144.00	0.013038	189.03	0.010464
145.00	0.013079	190.00	0.010499
146.02	0.012872	191.00	0.010358
147.00	0.01299	192.05	0.010292
148.00	0.012823	193.00	0.010228
149.00	0.012793	194.00	0.00998
150.00	0.012594	195.00	0.010285
151.00	0.012672	196.00	0.010019
152.00	0.012559	197.00	0.010026
153.02	0.01247	198.00	0.009979
154.00	0.01247	199.00	0.010002
155.00	0.012451	200.00	0.009554
156.00	0.012166	201.00	0.009749
157.00	0.012217	202.00	0.009574
158.00	0.012147	203.02	0.009806
159.00	0.012024	204.00	0.009599
160.00	0.011846	205.00	0.009745
161.00	0.011903	206.00	0.009586
162.00	0.011718	207.00	0.009557
163.00	0.01184	208.00	0.009487
164.00	0.011658	209.00	0.00941
165.00	0.011694	210.00	0.009067
166.00	0.011882	211.00	0.009365
167.00	0.011565	212.00	0.009479
168.00	0.011495	213.00	0.009322
169.00	0.011425	214.00	0.008959
170.00	0.011435	215.00	0.009082
171.00	0.011249	216.00	0.00918
172.00	0.011127	217.00	0.009141
173.00	0.01118	218.00	0.008916
174.00	0.011182	219.00	0.009269

220.00	0.008952	265.00	0.007547
221.00	0.008811	266.00	0.007366
222.00	0.008771	267.00	0.007499
223.00	0.008906	268.00	0.007283
224.00	0.00881	269.02	0.007188
225.00	0.008735	270.00	0.007282
226.00	0.008868	271.00	0.007311
227.00	0.008752	272.00	0.007269
228.00	0.008664	273.00	0.007267
229.00	0.008434	274.00	0.007223
230.00	0.008737	275.00	0.007304
231.00	0.008499	276.00	0.007083
232.00	0.00838	277.00	0.00719
233.00	0.00854	278.00	0.007205
234.00	0.008443	279.00	0.007226
235.00	0.008452	280.00	0.007096
236.00	0.008367	281.00	0.006984
237.00	0.008302	282.00	0.006858
238.00	0.00816	283.00	0.006913
239.00	0.008253	284.00	0.006812
240.00	0.008214	285.00	0.006815
241.00	0.008356	286.00	0.006694
242.00	0.008311	287.00	0.006868
243.00	0.008227	288.00	0.006754
244.02	0.008257	289.00	0.00669
245.00	0.007904	290.00	0.006976
246.00	0.008255	291.00	0.006501
247.00	0.008105	292.00	0.006801
248.00	0.007986	293.00	0.006784
249.00	0.008276	294.00	0.006603
250.00	0.008149	295.00	0.006931
251.00	0.00773	296.00	0.006645
252.00	0.008001	297.02	0.006678
253.00	0.007717	298.00	0.006591
254.00	0.007812	299.03	0.00656
255.00	0.007818	300.00	0.006382
256.00	0.007732	301.00	0.006342
257.00	0.007793	302.00	0.006663
258.00	0.007681	303.00	0.006529
259.00	0.007507	304.00	0.006343
260.00	0.007577	305.00	0.006586
261.00	0.00754	306.00	0.006508
262.02	0.007535	307.02	0.006395
263.00	0.007509	308.00	0.00617
264.00	0.00762	309.00	0.006355

310.00	0.006411		355.00	0.00558
311.00	0.006245		356.00	0.005448
312.00	0.006233		357.00	0.005645
313.00	0.006273		358.00	0.005491
314.00	0.006429		359.00	0.005507
315.00	0.006299		360.00	0.005433
316.00	0.006155		361.00	0.005577
317.00	0.006085		362.05	0.005428
318.00	0.00605		363.00	0.005459
319.00	0.006154		364.00	0.005353
320.00	0.006255		365.00	0.005297
321.00	0.006162		366.00	0.005443
322.00	0.006257		367.05	0.005082
323.03	0.006078		368.00	0.005298
324.00	0.005996		369.03	0.005398
325.00	0.005969		370.00	0.005374
326.00	0.006005		371.00	0.005416
327.00	0.006092		372.00	0.005355
328.00	0.005786		373.00	0.005269
329.00	0.005982		374.00	0.005232
330.00	0.005775		375.00	0.005347
331.00	0.005813			
332.00	0.005825			
333.05	0.005842			
334.00	0.005501			
335.00	0.005569			
336.00	0.005548			
337.00	0.00594			
338.02	0.005785			
339.00	0.005773			
340.00	0.005645			
341.00	0.005706			
342.00	0.005512			
343.00	0.005673			
344.00	0.005695			
345.00	0.005906			
346.00	0.00541			
347.00	0.005791			
348.00	0.005447			
349.00	0.005643			
350.00	0.005592			
351.00	0.005367			
352.00	0.005538			
353.00	0.005611			
354.02	0.005546			

Appendix Figure C.12. 1	1 st order exponential decay	
--------------------------------	---	--

Appendix Figure C.	12. 1 order exponential dec	ay 6.00	0.027733
••	•	9.00	0.027343
of 1	.59 at 98 °C	9.98	0.026919
0		11.00	0.026404
One phase decay		12.00	0.026025
Best-fit values		13.00	0.025784
Y0	0.03117	14.00	0.025304
Plateau	0.00225	15.00	0.024792
K	0.01605	16.00	0.024678
Half Life	43.18	17.00	0.024399
Tau	62.3	17.98	0.02364
Span	0.02892	19.00	0.023604
95% CI (profile likel		20.00	0.023238
Y0	0.03110 to 0.03124	21.00	0.023054
Plateau	0.002212 to 0.002288	22.00	0.022565
K	0.01596 to 0.01614	23.00	0.0222
Half Life	42.94 to 43.43	24.00	0.021931
Tau	61.95 to 62.65	25.00	0.021704
Goodness of Fit	01.00 to 02.00	25.98	0.021234
Degrees of		27.00	0.021055
Freedom	262	28.02	0.021054
R squared	0.9997	28.98	0.020558
Sum of Squares	4.83E-06	30.00	0.020108
Sy.x	0.000136	31.00	0.020011
Constraints		32.00	0.019605
K	K > 0	33.00	0.019796
		33.98	0.019033
Number of points		35.00	0.0188
# of X values	265	36.00	0.018643
# Y values	205	36.98	0.018253
analyzed	265	38.00	0.018113
		39.00	0.018038

(a.u.)

Time (min)

0.00

1.00

1.98

3.00

4.00

5.00

6.00

7.00

8.00

1280 cm⁻¹

0.030556

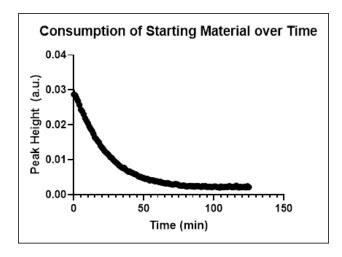
0.030255

0.030322

0.029739

0.029364

0.028939


0.028546

0.028083

40.00	0.017555	85.00	0.009513
41.00	0.017318	86.00	0.009537
41.98	0.01719	86.98	0.00951
43.00	0.016866	88.00	0.009166
44.00	0.016543	89.00	0.008828
44.98	0.016308	89.98	0.008906
46.00	0.016082	91.00	0.008845
47.00	0.015947	92.00	0.008765
48.00	0.015666	92.98	0.008772
49.00	0.015485	94.00	0.008482
50.03	0.015236	95.00	0.008484
51.00	0.015114	95.98	0.008381
52.00	0.015019	97.00	0.008156
52.98	0.014604	98.00	0.008285
54.00	0.014488	99.00	0.008202
55.00	0.014236	100.00	0.008104
56.03	0.014031	101.00	0.007892
57.00	0.013923	102.00	0.007885
58.00	0.013568	103.00	0.007549
59.00	0.013572	104.00	0.007483
60.00	0.013235	105.00	0.0076
61.00	0.013277	106.00	0.007299
62.00	0.012931	107.00	0.007307
63.00	0.012589	107.98	0.007206
64.00	0.012784	109.00	0.007088
65.00	0.012408	110.00	0.007172
66.02	0.012333	111.00	0.007343
67.00	0.01206	112.00	0.006942
68.03	0.01181	112.98	0.006858
69.00	0.011807	114.00	0.006797
69.98	0.011754	115.00	0.006615
71.00	0.011558	115.98	0.006846
72.00	0.011599	117.00	0.00682
73.02	0.01119	118.00	0.006561
74.00	0.011162	118.98	0.006443
75.00	0.010979	120.00	0.006483
75.98	0.010709	121.00	0.006419
77.00	0.010547	121.98	0.006133
78.00	0.010356	123.00	0.006318
79.00	0.010458	124.00	0.006068
80.00	0.010285	125.00	0.006147
81.00	0.010062	126.00	0.006085
82.00	0.009952	127.00	0.005935
83.00	0.009819	128.00	0.005903
84.00	0.009817	129.00	0.005923

130.00	0.005871	175.00	0.003834
131.00	0.005656	176.00	0.003961
132.00	0.005732	177.02	0.003836
133.00	0.005731	177.98	0.003856
134.00	0.005718	179.00	0.00389
135.00	0.005605	180.00	0.003775
136.00	0.005373	181.00	0.003917
137.02	0.005357	182.00	0.003851
138.00	0.005477	183.00	0.003712
138.98	0.005192	184.00	0.003896
140.00	0.005011	185.00	0.003776
141.00	0.005036	186.00	0.00382
141.98	0.004919	187.00	0.003653
143.00	0.004981	188.00	0.003707
144.00	0.004916	189.00	0.003735
145.00	0.005054	190.00	0.003771
145.98	0.004986	191.00	0.003638
147.00	0.005187	192.00	0.003474
148.00	0.004817	193.00	0.003517
149.00	0.004689	194.00	0.00358
150.00	0.004939	195.00	0.003753
151.00	0.004829	196.00	0.003361
152.00	0.004661	197.00	0.003259
153.00	0.004824	198.00	0.003527
154.00	0.004738	199.00	0.003707
155.00	0.004585	200.05	0.00349
156.00	0.004757	201.00	0.003315
157.00	0.004526	202.00	0.003316
158.00	0.004522	203.00	0.003418
159.00	0.004392	204.00	0.003536
160.00	0.00448	205.00	0.00354
161.00	0.004501	206.02	0.003431
162.00	0.004102	207.00	0.003254
163.00	0.004209	207.98	0.003247
164.00	0.004347	209.00	0.00336
165.00	0.004438	210.00	0.003096
166.00	0.00425	210.98	0.003264
167.00	0.004303	212.00	0.003249
168.00	0.004233	213.00	0.003164
169.00	0.003953	214.00	0.003412
170.00	0.00429	214.98	0.003017
171.00	0.004238	216.00	0.003301
172.00	0.003913	217.00	0.003075
173.00	0.004095	218.02	0.003245
174.00	0.003974	219.00	0.003247

220.00 0.003202 221.00 0.003122 222.00 0.002864 223.00 0.003027 224.00 0.003086 225.00 0.002879 226.00 0.003018 227.03 0.003018 228.00 0.003078 229.98 0.002865 231.00 0.003097 231.98 0.003007 233.00 0.002948 234.00 0.002947 235.00 0.002955 236.05 0.002853 237.00 0.002971 238.00 0.002944 240.00 0.003085 241.00 0.002934 243.00 0.002934 243.00 0.002934 245.00 0.002812 245.00 0.002812 245.00 0.002812 245.00 0.002811 250.98 0.002801 250.00 0.002701 250.98 0.002805 250.00 0.002772 253.00 0.002786		
222.00 0.002864 223.00 0.003027 224.00 0.003086 225.00 0.002879 226.00 0.002786 227.03 0.003018 228.00 0.002828 229.98 0.002865 231.00 0.003007 231.98 0.003007 235.00 0.002948 234.00 0.002955 236.05 0.002853 237.00 0.002771 238.00 0.002984 239.00 0.002984 239.00 0.002984 239.00 0.002984 240.00 0.003085 241.00 0.003085 241.00 0.002944 245.00 0.002812 245.00 0.002812 245.00 0.002812 245.00 0.002814 245.98 0.002941 247.00 0.002868 249.00 0.002701 250.98 0.002701 250.99 <t< td=""><td>220.00</td><td>0.003202</td></t<>	220.00	0.003202
223.00 0.003027 224.00 0.003086 225.00 0.002879 226.00 0.002786 227.03 0.003018 228.00 0.002828 229.98 0.002865 231.00 0.003097 231.98 0.003007 233.00 0.002948 234.00 0.002955 236.05 0.002853 237.00 0.002771 238.00 0.002944 240.00 0.003085 241.00 0.002944 240.00 0.003085 241.00 0.002934 243.00 0.002934 245.00 0.002941 245.98 0.002941 247.00 0.002812 245.00 0.002814 245.98 0.002941 247.00 0.002701 250.98 0.002701 250.98 0.002851 250.00 0.00277 253.00 0.002786 257.00 0.002786 257.00 0.002786 2	221.00	0.003122
223.00 0.003027 224.00 0.003086 225.00 0.002879 226.00 0.002786 227.03 0.003018 228.00 0.002828 229.98 0.002865 231.00 0.003097 231.98 0.003007 233.00 0.002948 234.00 0.002955 236.05 0.002853 237.00 0.002771 238.00 0.002944 240.00 0.003085 241.00 0.002944 240.00 0.003085 241.00 0.002934 243.00 0.002934 245.00 0.002941 245.98 0.002941 247.00 0.002812 245.00 0.002814 245.98 0.002941 247.00 0.002701 250.98 0.002701 250.98 0.002851 250.00 0.00277 253.00 0.002786 257.00 0.002786 257.00 0.002786 2	222.00	0.002864
225.00 0.002879 226.00 0.002786 227.03 0.003018 228.00 0.002828 229.98 0.002865 231.00 0.003097 231.98 0.003007 233.00 0.002948 234.00 0.002955 236.05 0.002853 237.00 0.002771 238.00 0.002984 239.00 0.002944 240.00 0.003085 241.00 0.002944 245.00 0.002934 243.00 0.002934 245.00 0.002941 245.98 0.002941 245.98 0.002941 247.00 0.002814 245.98 0.002941 247.00 0.00281 249.00 0.002868 249.00 0.002701 250.98 0.002871 255.00 0.00277 253.00 0.00277 254.00 0.002851 257.00 0.002786 257.00 0.002786 257		0.003027
225.00 0.002879 226.00 0.002786 227.03 0.003018 228.00 0.002828 229.98 0.002865 231.00 0.003097 231.98 0.003007 233.00 0.002948 234.00 0.002955 236.05 0.002853 237.00 0.002771 238.00 0.002984 239.00 0.002944 240.00 0.003085 241.00 0.002944 245.00 0.002934 243.00 0.002934 245.00 0.002941 245.98 0.002941 245.98 0.002941 247.00 0.002814 245.98 0.002941 247.00 0.00281 249.00 0.002868 249.00 0.002701 250.98 0.002871 255.00 0.00277 253.00 0.00277 254.00 0.002851 257.00 0.002786 257.00 0.002786 257		0.003086
226.00 0.002786 227.03 0.003018 228.00 0.003078 229.00 0.002828 229.98 0.002865 231.00 0.003097 231.98 0.003007 233.00 0.002948 234.00 0.002955 236.05 0.002853 237.00 0.002771 238.00 0.002944 240.00 0.003085 241.00 0.003121 242.00 0.002934 243.00 0.002934 243.00 0.002934 245.00 0.002812 245.00 0.002812 245.00 0.002814 247.00 0.002814 247.00 0.002814 247.00 0.002868 249.00 0.002868 249.00 0.002701 250.98 0.002701 250.98 0.00277 253.00 0.00277 255.00 0.002786 257.00 0.002786 257.00 0.002786 25		0.00000
227.03 0.003018 228.00 0.003078 229.00 0.002828 229.98 0.002865 231.00 0.003007 231.98 0.003007 233.00 0.002948 234.00 0.002955 236.05 0.002853 237.00 0.002771 238.00 0.002984 239.00 0.002944 240.00 0.003085 241.00 0.002934 243.00 0.002963 244.00 0.002963 244.00 0.002812 245.00 0.002814 245.98 0.002941 247.00 0.002911 248.05 0.002868 249.00 0.00265 250.00 0.002701 250.98 0.002811 252.00 0.00277 253.00 0.002851 255.00 0.002895 256.00 0.002786 257.00 0.002786 257.00		
228.00 0.003078 229.00 0.002828 229.98 0.002865 231.00 0.003097 231.98 0.003007 233.00 0.002948 234.00 0.002955 236.05 0.002853 237.00 0.002771 238.00 0.002984 239.00 0.002944 240.00 0.003085 241.00 0.002934 243.00 0.002934 243.00 0.002941 245.98 0.002941 245.98 0.002941 247.00 0.002812 245.00 0.002814 245.98 0.002941 245.98 0.002941 245.98 0.002941 245.00 0.00265 250.00 0.002701 250.98 0.00271 253.00 0.00277 253.00 0.00277 254.00 0.002786 257.00 0.002786 257.00 0.002786 259.00 0.002786 259.		
229.00 0.002828 229.98 0.002865 231.00 0.003097 231.98 0.003007 233.00 0.002948 234.00 0.002955 236.05 0.002853 237.00 0.002771 238.00 0.002944 240.00 0.003085 241.00 0.002934 243.00 0.002934 243.00 0.002934 245.00 0.002812 245.00 0.002814 245.98 0.002941 247.00 0.002814 245.98 0.002941 247.00 0.002868 249.00 0.002868 249.00 0.002868 249.00 0.002701 250.98 0.002701 250.98 0.00277 253.00 0.002851 255.00 0.002786 257.00 0.002786 257.00 0.002786 257.00 0.002786 259.00 0.002786 259.00 0.002786 2		
229.98 0.002865 231.00 0.003097 231.98 0.003007 233.00 0.002948 234.00 0.002955 236.05 0.002853 237.00 0.002771 238.00 0.002984 239.00 0.002944 240.00 0.003085 241.00 0.002934 243.00 0.002963 244.00 0.002812 245.00 0.002812 245.00 0.002814 245.98 0.002941 247.00 0.002911 248.05 0.002868 249.00 0.00265 250.00 0.002701 250.98 0.002811 252.00 0.00277 253.00 0.002851 255.00 0.002851 255.00 0.002786 257.00 0.002786 257.00 0.002786 257.00 0.002786 257.00 0.002786 259.00		
231.00 0.003097 231.98 0.003007 233.00 0.002948 234.00 0.002955 236.05 0.002853 237.00 0.002771 238.00 0.002984 239.00 0.002944 240.00 0.003085 241.00 0.002934 243.00 0.002934 245.00 0.002963 244.00 0.002812 245.00 0.002814 245.98 0.002941 247.00 0.002868 249.00 0.002868 249.00 0.002868 249.00 0.002701 250.98 0.002811 252.00 0.00277 253.00 0.002679 254.00 0.002895 255.00 0.002786 257.00 0.002786 257.00 0.002786 259.00 0.002786 259.00 0.002786 260.00 0.002533 261.00 0.002722 263.00 0.002712 <td></td> <td></td>		
231.98 0.003007 233.00 0.002948 234.00 0.003247 235.00 0.002955 236.05 0.002853 237.00 0.002971 238.00 0.002944 239.00 0.002944 240.00 0.003085 241.00 0.002934 243.00 0.002934 245.00 0.002812 245.00 0.002814 245.98 0.002941 247.00 0.002911 248.05 0.002868 249.00 0.002868 249.00 0.002868 249.00 0.002701 250.98 0.002811 252.00 0.00277 253.00 0.002851 255.00 0.002895 256.00 0.002786 257.00 0.002788 258.00 0.002786 259.00 0.002786 259.00 0.002786 260.00 0.002533 261.00 0.002533 261.98 0.002722 2		
233.00 0.002948 234.00 0.003247 235.00 0.002955 236.05 0.002853 237.00 0.002771 238.00 0.002984 239.00 0.002944 240.00 0.003085 241.00 0.002934 243.00 0.002963 244.00 0.002812 245.98 0.002941 247.00 0.002911 248.05 0.002868 249.00 0.00265 250.00 0.002701 250.98 0.002811 252.00 0.00277 253.00 0.002679 254.00 0.002851 255.00 0.002786 257.00 0.002788 258.00 0.002788 259.00 0.002786 259.00 0.002786 260.00 0.002533 261.00 0.002722 263.00 0.002712		
234.00 0.003247 235.00 0.002955 236.05 0.002853 237.00 0.002771 238.00 0.002944 239.00 0.003085 241.00 0.003121 242.00 0.002934 243.00 0.002963 244.00 0.002812 245.00 0.002814 245.98 0.002941 247.00 0.002911 248.05 0.002868 249.00 0.00265 250.00 0.002701 250.98 0.002811 252.00 0.00277 253.00 0.002679 254.00 0.002895 255.00 0.002786 257.00 0.002788 258.00 0.002788 259.00 0.002766 260.00 0.002533 261.00 0.002712 263.00 0.002712		
235.00 0.002955 236.05 0.002853 237.00 0.002771 238.00 0.002984 239.00 0.002944 240.00 0.003085 241.00 0.002934 243.00 0.002963 244.00 0.002812 245.98 0.002941 247.00 0.002911 248.05 0.002868 249.00 0.00265 250.00 0.002701 250.98 0.002811 252.00 0.00277 253.00 0.002679 254.00 0.002851 255.00 0.002786 257.00 0.002788 258.00 0.002788 259.00 0.002786 259.00 0.002766 260.00 0.002533 261.98 0.002712		
236.05 0.002853 237.00 0.002771 238.00 0.002984 239.00 0.002944 240.00 0.003085 241.00 0.002934 243.00 0.002963 244.00 0.002812 245.00 0.002814 245.98 0.002941 247.00 0.002911 248.05 0.002868 249.00 0.00265 250.00 0.002701 250.98 0.002811 252.00 0.00277 253.00 0.002851 255.00 0.002895 256.00 0.002786 257.00 0.002788 258.00 0.002786 259.00 0.002786 259.00 0.002786 260.00 0.002533 261.98 0.002722 263.00 0.002712		
237.00 0.002771 238.00 0.002984 239.00 0.002944 240.00 0.003085 241.00 0.002934 243.00 0.002963 244.00 0.002812 245.00 0.002814 245.98 0.002941 247.00 0.002911 248.05 0.002868 249.00 0.00265 250.00 0.002701 250.98 0.002811 252.00 0.00277 253.00 0.002679 254.00 0.002895 255.00 0.002786 257.00 0.002788 258.00 0.002786 259.00 0.002766 260.00 0.002533 261.00 0.002722 263.00 0.002712		0.002000
238.00 0.002984 239.00 0.002944 240.00 0.003085 241.00 0.002934 242.00 0.002963 244.00 0.002812 245.00 0.002814 245.98 0.002941 247.00 0.002911 248.05 0.002868 249.00 0.00265 250.98 0.002701 250.98 0.00277 253.00 0.002679 254.00 0.002851 255.00 0.002895 256.00 0.002786 257.00 0.002788 258.00 0.002788 259.00 0.002766 260.00 0.002533 261.98 0.002712	236.05	0.002853
239.00 0.002944 240.00 0.003085 241.00 0.002934 243.00 0.002963 244.00 0.002812 245.00 0.002814 245.98 0.002941 247.00 0.002868 249.00 0.00265 250.00 0.002701 250.98 0.002811 252.00 0.00277 253.00 0.002679 254.00 0.002895 255.00 0.002786 257.00 0.002788 258.00 0.002788 259.00 0.002766 260.00 0.002533 261.00 0.002712 263.00 0.002712	237.00	0.002771
240.00 0.003085 241.00 0.003121 242.00 0.002934 243.00 0.002963 244.00 0.002812 245.00 0.002941 247.00 0.002941 247.00 0.002868 249.00 0.00265 250.00 0.002701 250.98 0.002811 252.00 0.00277 253.00 0.002679 254.00 0.002895 255.00 0.002786 257.00 0.002788 258.00 0.002788 259.00 0.002766 260.00 0.002533 261.00 0.002722 263.00 0.002712	238.00	0.002984
241.000.003121242.000.002934243.000.002963244.000.002812245.000.002814245.980.002941247.000.002911248.050.002868249.000.002701250.980.002811252.000.00277253.000.002679254.000.002851255.000.002895256.000.002788257.000.002788258.000.002788259.000.002766260.000.002993261.000.002722263.000.002712	239.00	0.002944
242.000.002934243.000.002963244.000.002812245.000.002814245.980.002941247.000.002911248.050.002868249.000.00265250.000.002701250.980.002811252.000.00277253.000.002679254.000.002851255.000.002895256.000.002786257.000.002788258.000.002788259.000.002766260.000.002993261.000.002722263.000.002712	240.00	0.003085
243.000.002963244.000.002812245.000.002814245.980.002941247.000.002911248.050.002868249.000.00265250.000.002701250.980.002811252.000.00277253.000.002679254.000.002851255.000.002895256.000.002786257.000.002788258.000.002788259.000.002766260.000.002993261.000.002722263.000.002712	241.00	0.003121
244.00 0.002812 245.00 0.002814 245.98 0.002941 247.00 0.002911 248.05 0.002868 249.00 0.002701 250.98 0.002811 252.00 0.00277 253.00 0.002679 254.00 0.002851 255.00 0.002895 256.00 0.002788 257.00 0.002788 258.00 0.002605 259.00 0.002766 260.00 0.002533 261.98 0.002722 263.00 0.002712	242.00	0.002934
245.000.002814245.980.002941247.000.002911248.050.002868249.000.00265250.000.002701250.980.002811252.000.002679254.000.002851255.000.002895256.000.002786257.000.002788258.000.002788259.000.002766260.000.002993261.000.002722263.000.002712	243.00	0.002963
245.980.002941247.000.002911248.050.002868249.000.00265250.000.002701250.980.002811252.000.00277253.000.002679254.000.002851255.000.002895256.000.002786257.000.002788258.000.002605259.000.002766260.000.002993261.000.002533261.980.002712	244.00	0.002812
247.000.002911248.050.002868249.000.00265250.000.002701250.980.002811252.000.002679254.000.002851255.000.002895256.000.002786257.000.002788258.000.002605259.000.002766260.000.002993261.000.002722263.000.002712	245.00	0.002814
248.05 0.002868 249.00 0.00265 250.00 0.002701 250.98 0.002811 252.00 0.00277 253.00 0.002679 254.00 0.002851 255.00 0.002786 257.00 0.002788 258.00 0.002605 259.00 0.002766 260.00 0.002533 261.98 0.002722 263.00 0.002712	245.98	0.002941
249.00 0.00265 250.00 0.002701 250.98 0.002811 252.00 0.00277 253.00 0.002679 254.00 0.002851 255.00 0.002895 256.00 0.002786 257.00 0.002788 258.00 0.002605 259.00 0.002766 260.00 0.002533 261.98 0.002722 263.00 0.002712		0.002911
250.00 0.002701 250.98 0.002811 252.00 0.00277 253.00 0.002679 254.00 0.002851 255.00 0.002895 256.00 0.002786 257.00 0.002788 258.00 0.002605 259.00 0.002766 260.00 0.002993 261.00 0.002722 263.00 0.002712	248.05	0.002868
250.00 0.002701 250.98 0.002811 252.00 0.00277 253.00 0.002679 254.00 0.002851 255.00 0.002895 256.00 0.002786 257.00 0.002788 258.00 0.002605 259.00 0.002766 260.00 0.002993 261.00 0.002722 263.00 0.002712	249.00	0.00265
250.98 0.002811 252.00 0.00277 253.00 0.002679 254.00 0.002851 255.00 0.002895 256.00 0.002786 257.00 0.002788 258.00 0.002605 259.00 0.002766 260.00 0.002993 261.00 0.002722 263.00 0.002712		
252.000.00277253.000.002679254.000.002851255.000.002895256.000.002786257.000.002788258.000.002605259.000.002766260.000.002993261.000.002533261.980.002722263.000.002712		
253.000.002679254.000.002851255.000.002895256.000.002786257.000.002788258.000.002605259.000.002766260.000.002993261.000.002533261.980.002722263.000.002712		
254.000.002851255.000.002895256.000.002786257.000.002788258.000.002605259.000.002766260.000.002993261.000.002533261.980.002722263.000.002712		
255.000.002895256.000.002786257.000.002788258.000.002605259.000.002766260.000.002993261.000.002533261.980.002722263.000.002712		
256.000.002786257.000.002788258.000.002605259.000.002766260.000.002993261.000.002533261.980.002722263.000.002712		
257.000.002788258.000.002605259.000.002766260.000.002993261.000.002533261.980.002722263.000.002712		
258.00 0.002605 259.00 0.002766 260.00 0.002993 261.00 0.002533 261.98 0.002722 263.00 0.002712		
259.00 0.002766 260.00 0.002993 261.00 0.002533 261.98 0.002722 263.00 0.002712		
260.000.002993261.000.002533261.980.002722263.000.002712		
261.00 0.002533 261.98 0.002722 263.00 0.002712		
261.98 0.002722 263.00 0.002712		
263.00 0.002712		
263.98 0.002532	263.00	0.002712
	263.98	0.002532

Appendix Figure C.13. 1st order exponential decay

Appendix rigure C.	13. 1 Order exponential dec	ay 0.02	0.02133
	-	9.00	0.021179
of 1	.59 at 109 °C	10.00	0.020473
One phase deserv		11.00	0.019551
One phase decay		12.00	0.018843
Best-fit values	0.00040	13.00	0.018305
Y0	0.03019	14.00	0.017431
Plateau	0.001863	15.00	0.016394
K	0.04444	16.00	0.015946
Half Life	15.6	17.00	0.015399
Tau	22.5	18.00	0.014961
Span	0.02832	19.00	0.014088
95% CI (profile like	·	20.00	0.013554
Y0	0.02998 to 0.03039 0.001788 to	21.00	0.013094
Plateau	0.001768 to	22.00	0.012471
K	0.04383 to 0.04505	23.00	0.012097
Half Life	15.39 to 15.82	24.00	0.01176
Tau	22.20 to 22.82	25.00	0.011323
Goodness of Fit		26.00	0.010749
Degrees of		27.03	0.010576
Freedom	123	28.00	0.010041
R squared	0.9988	29.00	0.009629
Sum of Squares	7.24E-06	30.00	0.009269
Sy.x	0.000243	31.00	0.008939
Constraints		32.00	0.008528
K	K > 0	33.00	0.008135
		34.00	0.007841
Number of points		35.00	0.007607
# of X values	126	36.00	
# Y values	400	37.00	0.00719
analyzed	126	38.00	0.006858
		39.00	0.006547

(a.u.)

Time (min)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.02

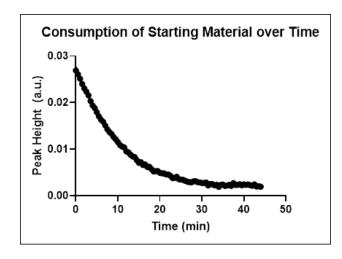
1281 cm⁻¹

0.028714

0.028493

0.027616

0.026768


0.025716

0.024385

0.023897

0.023004

40.00	0.00666	9F 00	0.002476
40.00 41.00	0.00666 0.006349	85.00 86.00	0.002476 0.002291
42.00	0.006349	87.00	0.002231
43.00	0.005952	88.00	0.002474
44.00	0.005932	89.00	0.002433
45.00	0.005682	90.00	0.002448
46.00	0.005082	91.00	0.002381
47.00	0.005237	92.00	0.002212
	0.005084		0.002468
48.00 49.00	0.003103	93.00 94.00	0.002306
50.00	0.004785	95.00	0.002409
51.00	0.004783	96.00	0.002212
52.00	0.004533	97.00	0.002239
53.00	0.004623	98.00	0.002313
54.00			
	0.004095 0.00423	99.00	0.002167 0.002364
55.00		100.00	
56.00	0.004105 0.004082	101.00	0.002374
57.00		102.00	0.00219
58.00	0.003784	103.00	0.002147
59.00	0.003877	104.00	0.002027
60.00	0.003775	105.00	0.002367
61.05	0.0036	106.00	0.002157
62.00	0.003708	107.00	0.002214
63.00	0.003398	108.00	0.002168
64.00	0.003393	109.00	0.002301
65.00	0.003241	110.00	0.002191
66.00	0.003231	111.00	0.002492
67.00	0.003394	112.00	0.002301
68.00	0.003106	113.00	0.002106
69.00	0.003051	114.00	0.002234
70.00	0.002921	115.00	0.002218
71.00	0.002891	116.00	0.002612
72.00	0.003065	117.00	0.002219
73.00	0.003063	118.00	0.00205
74.00	0.002987	119.00	0.002287
75.00	0.002672	120.00	0.002156
76.00	0.002585	121.00	0.002143
77.00	0.002548	122.00	0.002305
78.00	0.002644	123.00	0.002089
79.00	0.002633	124.00	0.002445
80.00	0.002398	125.00	0.002149
81.00	0.002392		
82.00	0.002444		
83.00	0.002565		
84.00	0.002416		

Appendix Figure C.14. 1 st order expon
--

C 1	FO + 101 0C		
of 1	.59 at 121 °C	5.00	0.017912
One phase decay		5.50	0.017023
Best-fit values		6.00	0.016307
	0.00704	6.50	0.015899
Y0	0.02781	7.00	0.015087
Plateau	0.001448	7.50	0.014255
K	0.09781	8.00	0.013666
Half Life	7.087	8.50	0.013252
Tau	10.22	9.02	0.012587
Span	0.02636	9.50	0.012114
95% CI (profile like	,	10.00	0.011511
Y0	0.02755 to 0.02807	10.50	0.010878
Plateau	0.001309 to 0.001584	11.00	0.010569
K	0.09565 to 0.09999	11.50	0.010383
Half Life	6.932 to 7.247	12.00	0.009526
Tau	10.00 to 10.45	12.50	0.009319
Goodness of Fit		13.00	0.008801
Degrees of		13.50	0.008427
Freedom	86	14.00	0.008324
R squared	0.9982	14.50	0.007632
Sum of Squares	7.32E-06	15.00	0.007052
Sy.x	0.000292	15.50	0.007184
Constraints		16.00	0.006593
K	K > 0	16.50	0.006702
		17.00	0.006199
Number of points		17.50	0.006204
# of X values	89	18.00	0.005706
# Y values	89	18.50	0.005201
analyzed	09	19.00	0.00525
		19.50	0.005287

Peak at

(a.u.)

Time (min)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

1280 cm⁻¹

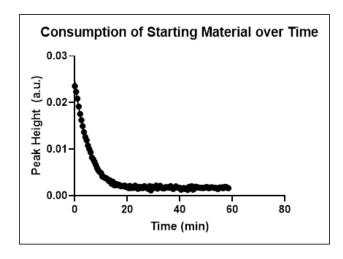
0.026924

0.026095

0.025125

0.024022

0.023069


0.022365

0.021563

0.020341

0.019378

20.00	0.004007		42.50	0.002442
20.00 20.50	0.004907 0.004804		42.50	0.002443
	0.004804		43.00	0.00199
21.00			43.50	
21.50	0.004571		44.00	0.001926
22.00	0.00457			
22.50	0.004278			
23.00	0.003781			
23.50	0.003828			
24.00	0.004057			
24.50	0.003561			
25.00	0.003459			
25.50	0.003411			
26.00	0.003202			
26.50	0.003049			
27.00	0.002924			
27.50	0.002879			
28.00	0.003097			
28.50	0.003111			
29.00	0.002918			
29.50	0.002854			
30.00	0.002742			
30.50	0.00274			
31.00	0.002847			
31.50	0.002195			
32.00	0.002524			
32.50	0.002496			
33.00	0.002236			
33.53	0.00233			
34.03	0.001878			
34.52	0.002311			
34.98	0.002415			
35.50	0.002108			
36.00	0.002176			
36.50	0.002342			
37.00	0.002123			
37.50	0.002721			
38.00	0.002317			
38.50	0.002333			
39.00	0.00247			
39.50	0.002247			
40.00	0.002439			
40.50	0.002337			
41.00	0.002413			
41.50	0.002254			
42.00	0.002145			

Appendix Figure C.15.	1st order	exponential deca	ay
-----------------------	-----------	------------------	----

of 1 .	. 59 at 132 °C	5.00	0.010783
One phase desay		5.50	0.010039
One phase decay		6.00	0.009313
Best-fit values	0.0047	6.50	0.008212
Y0	0.0247	7.00	0.007868
Plateau	0.00161	7.50	0.007276
K	0.1922	8.00	0.006578
Half Life	3.607	8.50	0.005908
Tau	5.203	9.00	0.005417
Span	0.02309	9.50	0.005062
95% CI (profile like		10.00	0.004872
Y0	0.02438 to 0.02501 0.001546 to	10.50	0.004124
Plateau	0.001673	11.03	0.00403
K	0.1880 to 0.1965	11.50	0.003822
Half Life	3.528 to 3.687	12.00	0.003758
Tau	5.090 to 5.319	12.50	0.003505
Goodness of Fit		13.00	0.003142
Degrees of		13.50	0.003273
Freedom	115	14.00	0.002571
R squared	0.9964	14.50	0.003006
Sum of Squares	9.14E-06	15.00	0.002271
Sy.x	0.000282	15.50	0.00223
Constraints		16.00	0.00249
K	K > 0	16.50	0.002282
		17.02	0.002303
Number of points		17.52	0.002035
# of X values	118	18.02	0.002083
# Y values	118	18.50	0.002036
analyzed	110	19.00	0.002185
		19.50	0.001867

Peak at

(a.u.)

Time (min)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

1278 cm⁻¹

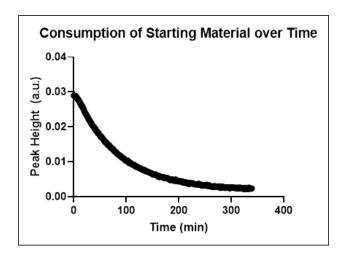
0.023538

0.02234

0.020874

0.019154

0.017555


0.016225

0.01493

0.013653

0.01261

20.00	0.001945	42.50	0.001545
20.52	0.001649	43.00	0.001227
21.00	0.002124	43.50	0.001906
21.50	0.001659	44.00	0.001647
22.00	0.001726	44.50	0.002046
22.50	0.001677	45.00	0.001312
23.00	0.00215	45.50	0.001495
23.50	0.001863	46.00	0.001949
24.00	0.00149	46.50	0.001842
24.50	0.001901	47.00	0.001795
25.00	0.001636	47.50	0.001711
25.50	0.001843	48.00	0.001723
26.00	0.001671	48.50	0.001688
26.50	0.002074	49.00	0.001656
27.00	0.001817	49.50	0.001719
27.50	0.001699	50.00	0.001843
28.00	0.001446	50.50	0.001834
28.50	0.002064	51.00	0.001616
29.00	0.001139	51.50	0.0017
29.50	0.001933	52.00	0.0018
30.00	0.001693	52.50	0.00177
30.50	0.001761	53.00	0.001692
31.00	0.002176	53.50	0.001713
31.50	0.001502	54.00	0.001581
32.00	0.001785	54.50	0.00141
32.50	0.002141	55.00	0.001731
33.00	0.001726	55.50	0.001783
33.50	0.001592	56.00	0.00178
34.00	0.001556	56.50	0.001583
34.52	0.001828	57.00	0.001884
35.00	0.001748	57.52	0.00189
35.50	0.001836	58.02	0.001741
36.00	0.001711	58.52	0.001607
36.50	0.002061		
37.00	0.001644		
37.50	0.001432		
38.00	0.001786		
38.50	0.002002		
39.00	0.001771		
39.50	0.00168		
40.00	0.001694		
40.50	0.001282		
41.00	0.001524		
41.50	0.001651		
42.00	0.001472		

Appendix Figure C.16.	1st order	exponential decay
------------------------------	-----------	-------------------

	-	9.00	0.027584
of	2.5 at 73 °C	10.00	0.027516
One phase decay		11.00	0.02713
One phase decay		12.02	0.026757
Best-fit values	0.00000	13.02	0.026773
Y0	0.03032	14.02	0.026156
Plateau	0.001773	15.05	0.025994
K	0.0119	16.00	0.025993
Half Life	58.24	17.00	0.025476
Tau	84.02	18.02	0.025279
Span	0.02855	19.00	0.025006
95% CI (profile like	•	20.00	0.024444
Y0	0.03024 to 0.03040 0.001728 to	21.00	0.024229
Plateau	0.00172810	22.00	0.023857
K	0.01182 to 0.01198	23.00	0.023707
Half Life	57.86 to 58.62	24.00	0.023427
Tau	83.48 to 84.57	25.02	0.023123
Goodness of Fit		26.00	0.022842
Degrees of		27.00	0.02272
Freedom	337	28.00	0.022283
R squared	0.9995	29.00	0.022038
Sum of Squares	9.81E-06	30.00	0.021763
Sy.x	0.000171	31.02	0.021621
Constraints		32.00	0.021351
K	K > 0	33.00	0.020923
		34.03	0.020904
Number of points		35.03	0.020448
# of X values	340	36.00	0.02031
# Y values		37.00	0.020159
analyzed	340	38.02	0.020042
		39.03	0.019594

(a.u.)

Time (min)

0.00

1.00

2.00

3.00

4.00

5.02

6.00

7.00

8.00

1284 cm⁻¹

0.028924

0.028987

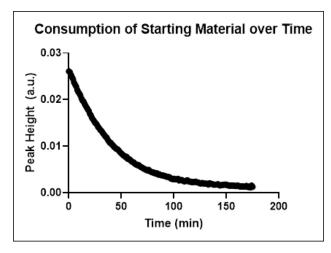
0.028907

0.028734

0.028824

0.028524

0.028188


0.028174

40.02	0.019644	85.02	0.012143
41.00	0.01941	86.00	0.011948
42.00	0.018921	87.00	0.011895
43.00	0.018913	88.05	0.011668
44.02	0.018736	89.02	0.0116
45.00	0.018416	90.02	0.011611
46.00	0.018108	91.00	0.011286
47.00	0.018226	92.00	0.011118
48.00	0.017988	93.05	0.011229
49.00	0.017723	94.00	0.011077
50.00	0.017504	95.02	0.010968
51.02	0.01713	96.00	0.010797
52.00	0.017286	97.00	0.010652
53.00	0.017036	98.00	0.01039
54.00	0.016813	99.00	0.010278
55.00	0.016728	100.00	0.010351
56.00	0.016382	101.00	0.010298
57.02	0.016368	102.02	0.01015
58.00	0.016085	103.00	0.010348
59.00	0.015682	104.00	0.009975
60.02	0.015792	105.00	0.009652
61.00	0.015474	106.00	0.009812
62.00	0.015582	107.00	0.009654
63.02	0.015231	108.02	0.009726
64.02	0.015016	109.00	0.009407
65.00	0.014743	110.00	0.009379
66.00	0.014925	111.00	0.009269
67.00	0.014613	112.00	0.0092
68.00	0.014602	113.00	0.009229
69.00	0.014393	114.02	0.008988
70.03	0.014002	115.00	0.009138
71.00	0.013918	116.00	0.008944
72.00	0.013942	117.00	0.008873
73.00	0.01387	118.03	0.008543
74.00	0.013637	119.00	0.008697
75.00	0.013687	120.00	0.008657
76.02	0.013157	121.02	0.008581
77.00	0.0132	122.00	0.008492
78.00	0.013059	123.00	0.008333
79.02	0.013	124.00	0.008267
80.00	0.012738	125.00	0.008163
81.00	0.012545	126.00	0.008104
82.02	0.012518	127.02	0.008071
83.00	0.012258	128.03	0.008023
84.02	0.012153	129.00	0.007977

130.00	0.007702	175.05	0.005353
131.00	0.007799	176.00	0.005423
132.00	0.007614	177.00	0.005391
133.02	0.007757	178.03	0.005307
134.02	0.007663	179.03	0.005304
135.02	0.007526	180.00	0.005103
136.00	0.00755	181.02	0.005117
137.00	0.007275	182.00	0.005043
138.00	0.007321	183.00	0.004752
139.03	0.007305	184.00	0.004767
140.03	0.00715	185.00	0.00499
141.02	0.007093	186.00	0.004977
142.00	0.007095	187.02	0.00477
143.00	0.007028	188.03	0.004742
144.05	0.006969	189.00	0.004895
145.00	0.006908	190.00	0.004865
146.00	0.00676	191.00	0.004535
147.02	0.006675	192.00	0.004627
148.00	0.006784	193.02	0.004901
149.00	0.006695	194.00	0.004916
150.00	0.006391	195.00	0.004507
151.00	0.006476	196.00	0.004579
152.00	0.006453	197.00	0.004451
153.02	0.006432	198.00	0.004551
154.00	0.006383	199.03	0.004395
155.00	0.006279	200.05	0.004414
156.02	0.006369	201.03	0.004395
157.00	0.006249	202.00	0.004472
158.02	0.006076	203.03	0.004453
159.00	0.006095	204.03	0.004261
160.02	0.005745	205.02	0.004172
161.00	0.006005	206.00	0.004149
162.00	0.005979	207.02	0.004369
163.00	0.005591	208.00	0.004078
164.00	0.005837	209.00	0.00407
165.05	0.005714	210.00	0.004116
166.00	0.00568	211.00	0.00394
167.02	0.005674	212.02	0.004201
168.00	0.005656	213.00	0.004134
169.05	0.0055	214.00	0.004052
170.05	0.00565	215.00	0.003942
171.00	0.005417	216.00	0.003918
172.00	0.005547	217.00	0.003729
173.02	0.005338	218.00	0.003936
174.00	0.005295	219.02	0.003975

220.00	0.003603	265.02	0.003051
221.00	0.00386	266.00	0.002994
222.00	0.003862	267.02	0.00282
223.05	0.003848	268.00	0.00306
224.00	0.003807	269.00	0.002982
225.02	0.00383	270.05	0.002869
226.00	0.003775	271.03	0.002906
227.00	0.003841	272.00	0.002862
228.00	0.003636	273.07	0.002928
229.02	0.003538	274.07	0.002895
230.00	0.003655	275.00	0.002902
231.00	0.003557	276.00	0.002776
232.07	0.003521	277.00	0.002969
233.02	0.00353	278.00	0.00273
234.00	0.003508	279.00	0.002531
235.05	0.003492	280.02	0.002671
236.00	0.003612	281.00	0.002872
237.02	0.003671	282.00	0.002954
238.00	0.003409	283.00	0.002788
239.02	0.003682	284.00	0.002627
240.03	0.003434	285.00	0.002716
241.00	0.003308	286.00	0.002772
242.00	0.003292	287.02	0.00269
243.00	0.003399	288.02	0.002477
244.00	0.00321	289.02	0.002585
245.05	0.003375	290.00	0.002641
246.00	0.003258	291.00	0.00261
247.02	0.003349	292.00	0.002699
248.00	0.003194	293.00	0.002569
249.05	0.003364	294.03	0.002646
250.00	0.003267	295.00	0.002606
251.00	0.003189	296.00	0.002416
252.00	0.003241	297.00	0.002716
253.02	0.003463	298.00	0.002463
254.02	0.003226	299.02	0.002608
255.00	0.003037	300.00	0.002639
256.00	0.003131	301.02	0.002521
257.00	0.003334	302.00	0.002634
258.00	0.002981	303.02	0.002688
259.02	0.003017	304.00	0.002568
260.02	0.003067	305.00	0.002476
261.00	0.00318	306.02	0.002503
262.00	0.002835	307.00	0.002568
263.00	0.002859	308.00	0.002436
264.00	0.002938	309.00	0.002509

310.02	0.002599
311.00	0.002556
312.00	0.002316
313.02	0.002504
314.00	0.002562
315.00	0.002606
316.00	0.002381
317.00	0.002576
318.00	0.002528
319.02	0.00252
320.00	0.002421
321.00	0.002393
322.00	0.002326
323.00	0.002412
324.00	0.002146
325.00	0.002279
326.02	0.002536
327.00	0.002212
328.00	0.002319
329.00	0.002419
330.03	0.002519
331.00	0.002176
332.00	0.002196
333.05	0.002437
334.02	0.002628
335.00	0.002355
336.00	0.002306
337.00	0.002296
338.00	0.002276
339.00	0.002381

		0.00	0.0202
		7.00	0.022796
Appendix Figure C.	8.00	0.022097	
	• • • • • • • •	8.98	0.021673
of	2.5 at 81 °C	10.00	0.021304
One phase decay		10.98	0.020942
Best-fit values		12.00	0.020273
Y0	0.02687	13.00	0.019779
Plateau	0.00859	14.00	0.019595
K	0.000659	15.00	0.019105
Half Life	28.27	15.98	0.018705
		17.00	0.018285
Tau	40.78	18.00	0.017905
Span	0.02601	19.00	0.01757
95% CI (profile like	,	20.00	0.016969
Y0	0.02677 to 0.02697 0.0008063 to	21.00	0.0166
Plateau	0.0009120	21.98	0.016124
K	0.02431 to 0.02474	23.00	0.01573
Half Life	28.02 to 28.52	24.00	0.015414
Tau	40.43 to 41.14	25.05	0.014987
Goodness of Fit		25.98	0.014884
Degrees of		27.00	0.014521
Freedom	173	27.98	0.014075
R squared	0.9995	29.00	0.013839
Sum of Squares	4.24E-06	30.00	0.013472
Sy.x	0.000157	31.00	0.013302
Constraints		32.00	0.012967
K	K > 0	32.98	0.012637
		34.00	0.012328
Number of points		35.00	0.012017
# of X values	176	36.00	0.011867
# Y values	176	37.00	0.01135
analyzed	170	38.00	0.011091
		38.98	0.010743

(a.u.)

Time

(min) 0.00

1.00 2.00

3.00

4.00

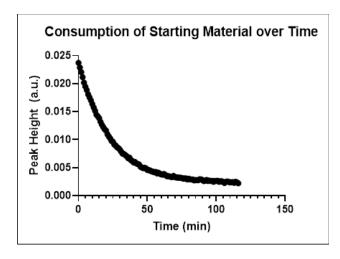
4.98

6.00

1284 cm⁻¹

0.026063 0.025905

0.025346


0.024838

0.024408

0.023693

40.00	0.010706	85.00	0.003882
41.00	0.010348	86.00	0.003982
42.00	0.010221	87.00	0.003803
43.00	0.009808	88.00	0.003755
44.00	0.009721	88.98	0.003706
44.98	0.009473	90.00	0.00372
46.00	0.009388	91.00	0.00358
47.00	0.009202	92.00	0.003558
48.00	0.008909	93.00	0.003425
49.00	0.008632	93.98	0.003417
50.00	0.008438	95.00	0.003386
50.98	0.008228	96.00	0.003304
52.00	0.007983	97.00	0.003028
53.00	0.007921	98.00	0.003022
54.00	0.007638	98.98	0.002888
55.00	0.007745	100.00	0.003017
55.98	0.007292	101.00	0.002857
57.00	0.007217	102.00	0.00285
58.02	0.007172	102.98	0.00289
59.00	0.006854	104.00	0.002979
59.98	0.006744	105.00	0.002617
61.00	0.006541	106.00	0.002732
61.98	0.006524	107.00	0.002729
63.00	0.006182	107.98	0.002707
64.00	0.006119	109.00	0.002484
65.03	0.005917	109.98	0.002457
66.00	0.005957	111.00	0.002465
66.98	0.005891	112.00	0.002635
68.00	0.005588	113.00	0.002687
69.00	0.005487	114.00	0.002442
70.00	0.005396	114.98	0.00237
71.00	0.005181	116.00	0.00239
72.00	0.005118	117.00	0.002255
72.98	0.005001	118.00	0.002234
74.00	0.00484	119.00	0.002341
75.00	0.004776	120.00	0.002321
76.00	0.004931	120.98	0.002383
76.98	0.004666	122.00	0.002243
78.00	0.004516	123.00	0.002172
79.00	0.004441	124.00	0.002142
80.00	0.004309	125.00	0.001986
81.00	0.004329	126.00	0.001978
81.98	0.004151	127.00	0.002112
83.00	0.004117	128.00	0.002021
83.98	0.004193	129.03	0.001933

130.03	0.001963	175.03	0.001255
131.02	0.001974		
132.00	0.001913		
132.98	0.001725		
134.00	0.002047		
135.00	0.001952		
136.00	0.001876		
136.98	0.001828		
138.00	0.001706		
138.98	0.001733		
140.00	0.001748		
141.00	0.001756		
142.00	0.00184		
143.00	0.001668		
143.98	0.001525		
145.00	0.001635		
146.00	0.001646		
147.00	0.001728		
148.00	0.001685		
148.98	0.00178		
150.00	0.001729		
151.00	0.001567		
152.00	0.001623		
153.00	0.001482		
153.98	0.001541		
155.00	0.001522		
156.00	0.001539		
157.00	0.001503		
158.00	0.001429		
158.98	0.001501		
160.00	0.001411		
161.00	0.001542		
162.00	0.001432		
163.00	0.001314		
163.98	0.001304		
165.00	0.001401		
166.00	0.001324		
167.00	0.001293		
168.00	0.001321		
169.05	0.001485		
170.05	0.001259		
171.03	0.001201		
172.00	0.001367		
173.00	0.001112		
174.00	0.001568		

Appendix Figure C.18.	1st order	exponential (decay
-----------------------	-----------	---------------	-------

Appendix Figure C.	18. 1 order exponential deca	y 0.00	0.017544
	•	9.00	0.01702
of 2	2.5 at 90 °C	10.00	0.016363
One phase deserv		11.00	0.015767
One phase decay Best-fit values		12.00	0.015165
	0.00004	13.00	0.014443
Y0	0.02381	14.02	0.014187
Plateau	0.002239	15.00	0.013813
K	0.04311	16.00	0.013182
Half Life	16.08	17.00	0.01266
Tau	23.2	18.00	0.012228
Span	0.02157	19.02	0.011834
95% CI (profile likel		20.00	0.011621
Y0	0.02372 to 0.02389 0.002203 to	21.00	0.010968
Plateau	0.002203 to	22.00	0.010576
K	0.04276 to 0.04346	23.00	0.010214
Half Life	15.95 to 16.21	24.00	0.009763
Tau	23.01 to 23.39	25.00	0.009641
Goodness of Fit		26.00	0.009121
Degrees of		27.00	0.008957
Freedom	114	28.00	0.008629
R squared	0.9997	29.00	0.008498
Sum of Squares	1.17E-06	30.00	0.008219
Sy.x	0.000101	31.00	0.007844
Constraints		32.00	0.0075
K	K > 0	33.02	0.00742
		34.00	0.007247
Number of points		35.00	0.007021
# of X values	117	36.00	0.006693
# Y values	117	37.00	0.006789
analyzed	117	38.00	0.006342
		39.00	0.006203

(a.u.)

Time (min)

0.00

1.00

2.00

3.00

4.05

5.00

6.02

7.00

8.00

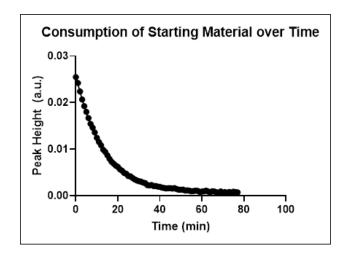
1283 cm⁻¹

0.023711

0.022877

0.022056

0.021157


0.020176

0.01947

0.018872

0.018086

40.00	0.005918	85.00	0.002778
41.00	0.006018	86.02	0.00277
42.00	0.00573	87.00	0.002752
43.00	0.005654	88.00	0.002935
44.00	0.005557	89.00	0.002892
45.00	0.005166	90.00	0.002789
46.00	0.005005	91.05	0.002591
47.00	0.004908	92.05	0.002649
48.02	0.004979	93.00	0.002811
49.00	0.004862	94.00	0.002618
50.00	0.004569	95.00	0.002674
51.00	0.00456	96.02	0.002611
52.00	0.004489	97.00	0.002639
53.02	0.00433	98.02	0.002479
54.00	0.004281	99.00	0.002621
55.00	0.004186	100.00	0.002618
56.00	0.004249	101.00	0.002646
57.05	0.003973	102.00	0.002474
58.00	0.004088	103.00	0.002545
59.00	0.003935	104.00	0.002555
60.00	0.003795	105.00	0.002429
61.00	0.003737	106.00	0.002253
62.00	0.003872	107.00	0.002471
63.02	0.003691	108.00	0.002536
64.00	0.003482	109.00	0.002443
65.00	0.003463	110.02	0.002356
66.00	0.00345	111.00	0.002388
67.02	0.003352	112.00	0.002412
68.00	0.003325	113.00	0.002277
69.00	0.00351	114.00	0.002465
70.00	0.003322	115.00	0.002361
71.00	0.003242	116.00	0.00219
72.00	0.003222		
73.02	0.003201		
74.00	0.003202		
75.00	0.003127		
76.00	0.003049		
77.03	0.003069		
78.00	0.003065		
79.00	0.002895		
80.00	0.003016		
81.00	0.002916		
82.00	0.002877		
83.00	0.002872		
84.00	0.002709		

Appendix Figure C.19.	1 st order	exponential	decay
-----------------------	-----------------------	-------------	-------

of	2.5	at	96	$^{\circ}C$

of 2	2.5 at 96 °C	10	.00 0.01244
One phase deserv		11	.00 0.01154
One phase decay		12	.00 0.010836
Best-fit values		13	.00 0.009895
Y0	0.02592	14	.00 0.009411
Plateau	0.000674	15	.00 0.008691
K	0.0767	16	.00 0.007936
Half Life	9.037		.00 0.00728
Tau	13.04		.00 0.006877
Span	0.02524		.05 0.00646
95% CI (profile like)	ihood)		.03 0.006199
Y0	0.02579 to 0.02605		.00 0.005658
Dietagu	0.0006280 to		.00 0.005358
Plateau K	0.0007205		.00 0.004892
	0.07594 to 0.07746		.00 0.004714
Half Life	8.948 to 9.128		.00 0.004714
Tau	12.91 to 13.17		.02 0.004208
Goodness of Fit Degrees of			.00 0.00382
Freedom	75		
R squared	0.9996		.00 0.003515
Sum of Squares	1.12E-06		.00 0.00328
Sy.x	0.000122		.05 0.003109
Constraints	0.000122		.00 0.003036
K	K > 0		.00 0.002822
n.	K > U		.00 0.00272
N		34	.00 0.002289
Number of points		35	.02 0.002223
# of X values	78	36	.02 0.002278
# Y values analyzed	78	37	.00 0.002075
ariary 200	70	38	.00 0.002094
		39	.00 0.001962

(a.u.)

Time (min)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

1284 cm⁻¹

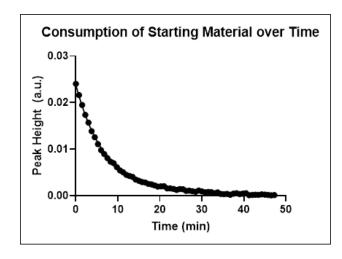
0.025499

0.024202

0.022398

0.020664

0.019229


0.018014

0.016699

0.015436

0.014614

40.00	0.001918
41.00	0.001745
42.00	0.001659
43.00	0.001573
44.00	0.001601
45.00	0.001603
46.00	0.001528
47.00	0.00163
48.05	0.001421
49.00	0.00131
50.00	0.001291
51.00	0.001313
52.00	0.001123
53.00	0.001152
54.00	0.001097
55.00	0.000953
56.02	0.001024
57.00	0.001099
58.00	0.001036
59.00	0.000824
60.03	0.00089
61.00	0.000945
62.00	0.001088
63.00	0.000894
64.00	0.000762
65.00	0.000957
66.02	0.000881
67.00	0.000701
68.00	0.000722
69.00	0.000913
70.00	0.000651
71.00	0.000799
72.00	0.000524
73.00	0.000821
74.00	0.000661
75.00	0.000868
76.02	0.000793
77.00	0.000702

Appendix Figur	e C.20.	1st order	exponential	decay
-----------------------	---------	-----------	-------------	-------

Appendix rigure C.	20. 1 order exponential dec	cay 0.00	0.003700
	-	6.77	0.008965
of 2	5 at 106 °C	7.50	0.008086
One phase decay		8.27	0.007319
One phase decay Best-fit values		9.00	0.006981
Y0	0.02384	9.75	0.006125
Plateau	0.00042	10.50	0.005443
K	0.00042	11.25	0.005033
		12.00	0.004476
Half Life	4.811	12.75	0.004249
Tau	6.94	13.50	0.004032
Span	0.02342	14.25	0.00346
95% CI (profile likel	•	15.00	0.00322
Y0	0.02357 to 0.02412 0.0003323 to	15.75	0.002941
Plateau	0.0005065	16.50	0.002827
K	0.1409 to 0.1474	17.25	0.002527
Half Life	4.704 to 4.921	18.00	0.002439
Tau	6.786 to 7.099	18.75	0.002213
Goodness of Fit		19.50	0.001967
Degrees of		20.25	0.002002
Freedom	61	21.00	0.002048
R squared	0.9985	21.77	0.001558
Sum of Squares	3.11E-06	22.50	0.001558
Sy.x	0.000226	23.25	0.001466
Constraints		24.00	0.001235
K	K > 0	24.75	0.001425
		25.50	0.001394
Number of points		26.27	0.001037
# of X values	64	27.00	0.00108
# Y values analyzed	64	27.75	0.000971
anaryzeu	04	28.50	0.00083
		29.25	0.001117

(a.u.)

Time (min)

0.00

0.75

1.50

2.25

3.00

3.75

4.50

5.25

6.00

1285 cm⁻¹

0.024033

0.021623

0.019497

0.017366

0.015722

0.013856

0.012562

0.011079

30.00	0.000903	39.75	0.000431
30.75	0.000733	40.50	0.000546
31.50	0.000804	41.25	0.000124
32.25	0.000768	42.00	0.000173
33.05	0.000529	42.75	0.000221
33.75	0.000724	43.50	0.000192
34.50	0.00039	44.25	0.000298
35.25	0.000346	45.00	0.000245
36.00	0.000379	45.75	0.000155
36.75	0.000213	46.50	0.0000835
37.50	0.000433	47.25	0.000129
38.25	0.000532		
39.00	0.00037		

Bibliography

- 1. Jampilek, J., Heterocycles in Medicinal Chemistry. *Molecules* **2019**, 24 (21).
- 2. Davison, E. K.; Sperry, J., Natural Products with Heteroatom-Rich Ring Systems. *Journal of Natural Products* **2017**, *80* (11), 3060-3079.
- 3. Ciufolini, M. A., Synthetic studies on heterocyclic natural products. *Il Farmaco* **2005**, *60* (8), 627-641.
- 4. Heravi, M. M.; Ahmadi, T.; Ghavidel, M.; Heidari, B.; Hamidi, H., Recent applications of the hetero Diels–Alder reaction in the total synthesis of natural products. *RSC Advances* **2015**, *5* (123), 101999-102075.
- 5. Eguchi, S., Recent Progress in the Synthesis of Heterocyclic Natural Products by the Staudinger/Intramolecular aza-Wittig Reaction. *ChemInform* **2005**, *36*.
- 6. Lahsasni, S.; Al-Hemyari, D. A. M.; Ghabbour, H. A.; Mabkhoot, Y. N.; Aleanizy, F. S.; Alothman, A. A.; Almarhoon, Z. M., Synthesis, Characterization, and Antibacterial and Anti-Inflammatory Activities of New Pyrimidine and Thiophene Derivatives. *Journal of Chemistry* **2018**, *2018*, 8536063.
- 7. Shah, R.; Verma, P. K., Therapeutic importance of synthetic thiophene. *Chemistry Central Journal* **2018**, *12* (1), 137.
- 8. Pathania, S.; Narang, R. K.; Rawal, R. K., Role of sulphur-heterocycles in medicinal chemistry: An update. *European Journal of Medicinal Chemistry* **2019**, *180*, 486-508.
- 9. Keri, R. S.; Chand, K.; Budagumpi, S.; Balappa Somappa, S.; Patil, S. A.; Nagaraja, B. M., An overview of benzo[b]thiophene-based medicinal chemistry. *European Journal of Medicinal Chemistry* **2017**, *138* (Supplement C), 1002-1033.
- 10. Khovidhunkit, W.; Shoback, D. M., CLinical effects of raloxifene hydrochloride in women. *Annals of Internal Medicine* **1999**, *130* (5), 431-439.
- 11. Berger, W.; De Chandt, M. T. M.; Cairns, C. B., Zileuton: clinical implications of 5-Lipoxygenase inhibition in severe airway disease. *International Journal of Clinical Practice* **2007**, *61* (4), 663-676.
- 12. Croxtall, J. D.; Plosker, G. L., Sertaconazole. *Drugs* **2009**, *69* (3), 339-359.
- 13. Tohen, M.; Vieta, E.; Calabrese, J.; Ketter, T. A.; Sachs, G.; Bowden, C.; Mitchell, P. B.; Centorrino, F.; Risser, R.; Baker, R. W.; Evans, A. R.; Beymer, K.; Dubé, S.; Tollefson, G. D.; Breier, A., Efficacy of Olanzapine and Olanzapine-Fluoxetine

- Combination in the Treatment of Bipolar I Depression. *Archives of General Psychiatry* **2003**, *60* (11), 1079-1088.
- 14. Harris, A.; Arend, O.; Arend, S.; Martin, B., Effects of topical dorzolamide on retinal and retrobulbar hemodynamics. *Acta Ophthalmologica Scandinavica* **1996**, *74* (6), 569-572.
- 15. Gurbel, P. A.; Tantry, U. S., Clopidogrel resistance? *Thrombosis Research* **2007**, *120* (3), 311-321.
- 16. Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; Yip, H.-L.; Cao, Y.; Chen, Y., Organic and solution-processed tandem solar cells with 17.3% efficiency. *Science* **2018**, *361* (6407), 1094-1098.
- 17. Di Carlo Rasi, D.; Janssen, R. A. J., Advances in Solution-Processed Multijunction Organic Solar Cells. *Advanced Materials* **2019**, *31* (10), 1806499.
- 18. Chen, J.; Yang, K.; Zhou, X.; Guo, X., Ladder-Type Heteroarene-Based Organic Semiconductors. *Chemistry An Asian Journal* **2018**, *13* (18), 2587-2600.
- 19. He, D.; Zhao, F.; Jiang, L.; Wang, C., A–D–A small molecule acceptors with ladder-type arenes for organic solar cells. *Journal of Materials Chemistry A* **2018**, *6* (19), 8839-8854.
- 20. Wu, J.-S.; Cheng, S.-W.; Cheng, Y.-J.; Hsu, C.-S., Donor–acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells. *Chemical Society Reviews* **2015**, *44* (5), 1113-1154.
- 21. Roche, S. P.; Porco Jr., J. A., Dearomatization Strategies in the Synthesis of Complex Natural Products. *Angewandte Chemie International Edition* **2011**, *50* (18), 4068-4093.
- 22. Wang, Z., Palladium-catalyzed asymmetric dearomative cyclization in natural product synthesis. *Organic & Biomolecular Chemistry* **2020**, *18* (23), 4354-4370.
- 23. Zi, W.; Zuo, Z.; Ma, D., Intramolecular Dearomative Oxidative Coupling of Indoles: A Unified Strategy for the Total Synthesis of Indoline Alkaloids. *Accounts of Chemical Research* **2015**, *48* (3), 702-711.
- 24. Okumura, M.; Sarlah, D., Visible-Light-Induced Dearomatizations. *European Journal of Organic Chemistry* **2020**, 2020 (10), 1259-1273.
- 25. Lv, S.; Zhang, G.; Chen, J.; Gao, W., Electrochemical Dearomatization: Evolution from Chemicals to Traceless Electrons. *Advanced Synthesis & Catalysis* **2020**, *362* (3), 462-477.
- 26. Zheng, L.; Hua, R., Recent Advances in Construction of Polycyclic Natural Product Scaffolds via One-Pot Reactions Involving Alkyne Annulation. *Frontiers in Chemistry* **2020**, *8*, 906.
- 27. Zhuo, C.-X.; Zhang, W.; You, S.-L., Catalytic Asymmetric Dearomatization Reactions. *Angewandte Chemie International Edition* **2012**, *51* (51), 12662-12686.

- 28. Ding, Q.; Zhou, X.; Fan, R., Recent advances in dearomatization of heteroaromatic compounds. *Organic & Biomolecular Chemistry* **2014**, *12* (27), 4807-4815.
- 29. Ouyang, B.; Yu, T.; Luo, R.; Lu, G., The asymmetric Cu(ii)–indolinylmethanol complex catalyzed Diels–Alder reaction of 2-vinylindoles with β,γ-unsaturated α-ketoesters: an efficient route to functionalized tetrahydrocarbazoles. *Organic & Biomolecular Chemistry* **2014**, *12* (24), 4172-4176.
- 30. Huang, Y.; Song, L.; Gong, L.; Meggers, E., Asymmetric Synthesis of Hydrocarbazoles Catalyzed by an Octahedral Chiral-at-Rhodium Lewis Acid. *Chemistry An Asian Journal* **2015**, *10* (12), 2738-2743.
- 31. Harada, S.; Morikawa, T.; Nishida, A., Chiral Holmium Complex-Catalyzed Diels—Alder Reaction of Silyloxyvinylindoles: Stereoselective Synthesis of Hydrocarbazoles. *Organic Letters* **2013**, *15* (20), 5314-5317.
- 32. Sugiura, H.; Yamazaki, S.; Ogawa, A., Sequential Intramolecular Diels—Alder Reaction of 3-Heteroaryl-2-propenylamides of Ethenetricarboxylate. *Journal of Heterocyclic Chemistry* **2019**, *56* (9), 2592-2603.
- 33. Pirovano, V.; Brambilla, E.; Moretti, A.; Rizzato, S.; Abbiati, G.; Nava, D.; Rossi, E., Synthesis of Cyclohepta[b]indoles by (4 + 3) Cycloaddition of 2-Vinylindoles or 4H-Furo[3,2-b]indoles with Oxyallyl Cations. *The Journal of Organic Chemistry* **2020**, *85* (5), 3265-3276.
- 34. Pirovano, V.; Borri, M.; Abbiati, G.; Rizzato, S.; Rossi, E., Gold(I)-Catalyzed Enantioselective Synthesis of Tetrahydrocarbazoles through Dearomative [4+2] Cycloadditions of 3/2-Substituted 2/3-Vinylindoles. *Advanced Synthesis & Catalysis* **2017**, 359 (11), 1912-1918.
- 35. Pirovano, V.; Decataldo, L.; Rossi, E.; Vicente, R., Gold-catalyzed synthesis of tetrahydrocarbazole derivatives through an intermolecular cycloaddition of vinyl indoles and N-allenamides. *Chemical Communications* **2013**, *49* (34), 3594-3596.
- 36. Xu, G.; Chen, L.; Sun, J., Rhodium-Catalyzed Asymmetric Dearomative [4 + 3]-Cycloaddition of Vinylindoles with Vinyldiazoacetates: Access to Cyclohepta[b]indoles. *Organic Letters* **2018**, *20* (11), 3408-3412.
- 37. Tu, M.-S.; Chen, K.-W.; Wu, P.; Zhang, Y.-C.; Liu, X.-Q.; Shi, F., Advances in organocatalytic asymmetric reactions of vinylindoles: powerful access to enantioenriched indole derivatives. *Organic Chemistry Frontiers* **2021**.
- 38. Yang, X.; Zhou, Y.-H.; Yang, H.; Wang, S.-S.; Ouyang, Q.; Luo, Q.-L.; Guo, Q.-X., Asymmetric Diels—Alder Reaction of 3-Vinylindoles and Nitroolefins Promoted by Multiple Hydrogen Bonds. *Organic Letters* **2019**, *21* (4), 1161-1164.

- 39. Jones, S. B.; Simmons, B.; MacMillan, D. W. C., Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine. *Journal of the American Chemical Society* **2009**, *131* (38), 13606-13607.
- 40. Zhang, M.; Duan, Y.; Li, W.; Cheng, Y.; Zhu, C., Visible-light-induced aerobic dearomative reaction of indole derivatives: access to heterocycle fused or spirocyclo indolones. *Chemical Communications* **2016**, *52* (26), 4761-4763.
- 41. Liu, K.; Tang, S.; Huang, P.; Lei, A., External oxidant-free electrooxidative [3+2] annulation between phenol and indole derivatives. *Nat Commun* **2017**, 8 (1), 775-775.
- 42. Mohamed, Y. A. M.; Inagaki, F.; Takahashi, R.; Mukai, C., A new procedure for the preparation of 2-vinylindoles and their [4+2] cycloaddition reaction. *Tetrahedron* **2011**, *67* (29), 5133-5141.
- 43. Cotterill, L. J.; Harrington, R. W.; Clegg, W.; Hall, M. J., Thermal 1,3-Trityl Migrations in Diels—Alder Domino Reactions of 1-Trityl-4-vinyl-1H-imidazoles. *The Journal of Organic Chemistry* **2010**, *75* (13), 4604-4607.
- 44. Bober, A. E.; Proto, J. T.; Brummond, K. M., Intramolecular Didehydro-Diels-Alder Reaction for the Synthesis of Benzo- and Dihydrobenzo-Fused Heterocycles. *Organic Letters* **2017**, *19* (7), 1500-1503.
- 45. Klemm, L. H.; Gopinath, K. W., Intramolecular diels-alder cyclization into the thiophene ring. *Journal of Heterocyclic Chemistry* **1965**, *2* (3), 225-227.
- 46. Hayakawa, K.; Yodo, M.; Ohsuki, S.; Kanematsu, K., Novel bicycloannulation via tandem vinylation and intramolecular Diels-Alder reaction of five-membered heterocycles: a new approach to construction of psoralen and azapsoralen. *Journal of the American Chemical Society* **1984**, *106* (22), 6735-6740.
- 47. Hajbi, Y.; Neagoie, C.; Biannic, B.; Chilloux, A.; Vedrenne, E.; Baldeyrou, B.; Bailly, C.; Mérour, J.-Y.; Rosca, S.; Routier, S.; Lansiaux, A., Synthesis and biological activities of new furo[3,4-b]carbazoles: Potential topoisomerase II inhibitors. *European Journal of Medicinal Chemistry* **2010**, *45* (11), 5428-5437.
- 48. Lima, H. M.; Sivappa, R.; Yousufuddin, M.; Lovely, C. J., Total Synthesis of 7'-Desmethylkealiiquinone, 4'-Desmethoxykealiiquinone, and 2-Deoxykealiiquinone. *The Journal of Organic Chemistry* **2014**, 79 (6), 2481-2490.
- 49. Saavedra, D. I.; Rencher, B. D.; Kwon, D.-H.; Smith, S. J.; Ess, D. H.; Andrus, M. B., Synthesis and Computational Studies Demonstrate the Utility of an Intramolecular Styryl Diels—Alder Reaction and Di-t-butylhydroxytoluene Assisted [1,3]-Shift to Construct Anticancer dl-Deoxypodophyllotoxin. *The Journal of Organic Chemistry* **2018**, 83 (4), 2018-2026.

- 50. Kocsis, L. S.; Kagalwala, H. N.; Mutto, S.; Godugu, B.; Bernhard, S.; Tantillo, D. J.; Brummond, K. M., Mechanistic Insight into the Dehydro-Diels-Alder Reaction of Styrene-Ynes. *The Journal of Organic Chemistry* **2015**, *80* (23), 11686-11698.
- 51. Durham, L. J.; Studebaker, J.; Perkins, M. J., Long-range coupling in the proton magnetic resonance spectra of 1,4-dihydrobenzenes. *Chemical Communications (London)* **1965**, (19), 456-457.
- 52. Smith, S. G.; Goodman, J. M., Assigning Stereochemistry to Single Diastereoisomers by GIAO NMR Calculation: The DP4 Probability. *Journal of the American Chemical Society* **2010**, *132* (37), 12946-12959.
- 53. Peng, H.; Soeller, C.; Travas-Sejdic, J., Novel Conducting Polymers for DNA Sensing. *Macromolecules* **2007**, *40* (4), 909-914.
- 54. Tay, D. W.; Jong, H.; Lim, Y. H.; Wu, W.; Chew, X.; Robins, E. G.; Johannes, C. W., Palladium-meta-Terarylphosphine Catalyst for the Mizoroki–Heck Reaction of (Hetero)Aryl Bromides and Functional Olefins. *The Journal of Organic Chemistry* **2015**, 80 (8), 4054-4063.
- 55. Yang, B.; Wang, Z.-X., Synthesis of Allylsilanes via Nickel-Catalyzed Cross-Coupling of Silicon Nucleophiles with Allyl Alcohols. *Organic Letters* **2019**, *21* (19), 7965-7969.
- 56. Werner, T.; Hoffmann, M.; Deshmukh, S., Phospholane-Catalyzed Wittig Reaction. *European Journal of Organic Chemistry* **2015**, 2015 (15), 3286-3295.
- 57. Guo, Y.; Shen, Z., Palladium-catalyzed allylic C–H oxidation under simple operation and mild conditions. *Organic & Biomolecular Chemistry* **2019**, *17* (12), 3103-3107.
- 58. Gronowitz, S.; Raznikiewicz, T., 3-Bromothiophene. *Organic Syntheses* **1964**, *44*, 9.
- 59. Paegle, E.; Belyakov, S.; Arsenyan, P., An Approach to the Selenobromination of Aryl(thienyl)alkynes: Access to 3-Bromobenzo[b]selenophenes and Selenophenothiophenes. *European Journal of Organic Chemistry* **2014**, *2014* (18), 3831-3840.
- 60. Dieckmann, A.; Houk, K. N., Elucidation of Strong Cooperative Effects Caused by Dispersion Interactions in a Recognition-Mediated Diels-Alder Reaction. *Journal of Chemical Theory and Computation* **2012**, *8* (12), 5064-5071.
- 61. Litvinov, G. G. I. V. D. K. E. A. K. L. N. P. E. A. B. D. B. K. I. A., Diels-Alder reaction between naphthalene and N-phenylmaleimide under ambient and high pressure conditions. *Arkivoc* **2005**, *2004* (12), 70-79.
- 62. Hendry, D. G.; Schuetzle, D., Reactions of hydroperoxy radicals. Liquid-phase oxidation of 1,4-cyclohexadiene. *Journal of the American Chemical Society* **1975**, 97 (24), 7123-7127.

- 63. Borden, W. T.; Hoffmann, R.; Stuyver, T.; Chen, B., Dioxygen: What Makes This Triplet Diradical Kinetically Persistent? *Journal of the American Chemical Society* **2017**, *139* (26), 9010-9018.
- 64. Hoye, T. R.; Eklov, B. M.; Ryba, T. D.; Voloshin, M.; Yao, L. J., No-D NMR (No-Deuterium Proton NMR) Spectroscopy: A Simple Yet Powerful Method for Analyzing Reaction and Reagent Solutions. *Org. Lett.* **2004**, *6* (6), 953-956.
- 65. Chen, C.-H.; Cheng, Y.-J.; Dubosc, M.; Hsieh, C.-H.; Chu, C.-C.; Hsu, C.-S., Alternating and Diblock Donor–Acceptor Conjugated Polymers Based on Diindeno[1,2-b:2',1'-d]thiophene Structure: Synthesis, Characterization, and Photovoltaic Applications. *Chemistry An Asian Journal* **2010**, *5* (12), 2483-2492.
- 66. Baierweck, P.; Simmross, U.; Müllen, K., Biindenyls, Biindenylides, and Diindeno-Fused Heterocycles from Oxidative Coupling of 1- and 2-Indanone. *Chemische Berichte* **1988**, *121* (12), 2195-2200.
- Wang, G.; Gan, Y.; Liu, Y., Nickel-Catalyzed Direct Coupling of Allylic Alcohols with Organoboron Reagents. *Chinese Journal of Chemistry* **2018**, *36* (10), 916-920.