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University of Pittsburgh, 2021

Poor geometric quality is one of the main constraints that hinders the wide adoption

of reverse engineering (RE) and additive manufacturing (AM). RE models from a single

scan will most likely generate inaccurate representations of the original design due to the

uncertainties existing in individual parts and scanning procedures. On the other hand,

metrological methodologies for AM significantly differ from those for the traditional manu-

facturing processes. Conventional statistical methodologies overlook these three-dimensional

(3D) feature-independent processing techniques.

In this dissertation, we develop a novel statistical data analysis framework—volumetric

data analysis (VDA)—to deal with the uniqueness of both technologies. In general, this

framework also addresses the rising analytical needs of 3D geometric data. Through VDA, we

can simultaneously analyze the measured points on the outer surfaces and their relationships

to acquire manufacturing knowledge. The main goal of this dissertation is to apply the

proposed framework in multiple RE and AM applications related to their geometric quality

characteristics.

First, we demonstrate a novel estimator to increase the precision of RE-generated mod-

els. We built a Bayesian model with prior domain knowledge to model the landmarks’

uncertainty. We also proposed a bi-objective optimization model to answer the RE process-

planning questions, e.g., how many scans and parts are required to achieve the precision

requirements.

The second major contribution is a study of tolerance estimation procedure for the re-

manufacturing of legacy parts. We propose a systematic geometric inspection methodology

for the RE and AM systems. Moreover, based on the domain knowledge in production-

process design and planning, we developed methods to estimate empirical tolerances from a

small batch of legacy parts.
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The third major contribution of this dissertation is to design an automated variance mod-

eling algorithm for 3D scanners. The algorithm utilizes a physical object’s local geometric

descriptors and Bayesian extreme learning machines to predict the landmarks’ variances.

Lastly, we introduce the VDA framework to AM-oriented experimental analysis. Specif-

ically, we propose a high-dimensional hypothesis testing procedure to statistically compare

the geometric production accuracy under two AM process settings. We present new visu-

alization tools for deviation diagnostics to aid in interpreting and comparing the process

outputs.
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1.0 Introduction

1.1 Background

Reverse engineering (RE) and additive manufacturing (AM) play significant roles in

manufacturing industries. RE can transform a physical object from the physical or biological

spheres to the digital sphere. At the same time, AM can directly translate this digital model

to a physical or biological product. This combination is critical in the advancement of

Industrial 4.0, whose duty is to blur the lines among these spheres [191]. However, the lower

quality of models generated by RE or AM constrains the broader adoption of both by the

industry. One major bottleneck is the lack of suitable analytical methodologies to fit their

unique process characteristics.

The major research objective of this dissertation is to develop a novel analytical frame-

work to bridge this gap. This framework aims to analyze the geometric accuracy and preci-

sion for these models, physical or digital, created by RE or AM. More importantly, it can link

other advanced analytical methodologies and advanced manufacturing techniques for process

analysis and parameter optimization to improve their geometric quality characteristics.

1.1.1 Reverse Engineering

RE plays an important role in shortening the throughput time in the manufacturing

cycle. In manufacturing-related applications, RE is defined as a set of systematic pro-

cesses that extracts design information from an existing physical product [55]. Specifically,

geometric design information of mechanical parts is of great importance for redesign and

reengineering purposes and for providing re-manufacturing with a much easier solution [13].

The legacy parts in turbine manufacturing [112] and aerospace industries [52] need to be

reverse-engineered for repair or reproduction. In biomedicine, tissue, such as bone [37] or

tooth [25], can be easily scanned by RE and reproduced by AM for various applications [58],

such as education [155] or operative planning [142]. It is also more accessible for designers
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to start from a clay model in a mechanical design project [13]. After the design is tested or

optimized, the clay model is transformed into a computer-aided design (CAD) file through

RE for manufacturing process design and planning. RE needs can be categorized as follows

[55]:

• Design of new product: In most cases, design, especially for products designed from

model testing (streamlined design, turbine blade design, injection mold design, etc.) or

products with aesthetic lines or design, often starts from a physical prototype without

CAD information.

• Modification of existing products: Designs are often iteratively modified to get higher

functionality or performances. However, after modification, CAD models for the product

will not be available and need to be reverse engineered to store digital design data.

• Loss of product design data: In some instances, existing parts need to be re-manufactured;

however, the CAD model is no longer available, or the data file is corrupt.

• Verify the product: The RE system can extract the dimensional information of the part.

The comparison between the RE model and the design can determine the part’s deviation

for inspection purposes.

Figure 1 illustrates the main steps in a traditional manufacturing process and a RE-

embedded one. Traditional manufacturing processes, or forward manufacturing processes,

start from a design stage and then progress to the manufacturing of physical products. RE,

on the other hand, initiates from a physical object, not an original design. It then scans and

translates this object into a digital model for re-manufacturing this existing part. A critical

assumption under RE is that the physical part contains the major product specifications, such

as material, manufacturing process signature, geometric information, etc. The geometric

information is of the most interest and importance since it determines the tool selection,

production plan, and parameter design of the re-manufacturing processes. Digitization, the

first step of RE, translates the physical object from the physical world to the digital world by

surveying the surface points. The raw data format of the collected points is three-dimensional

(3D) point clouds. However, the CAD model is the de facto language utilized in the context

of a manufacturing system for communication and documentation. Therefore, RE can be
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Figure 1: Traditional vs. RE manufacturing processes.

broadly separated into two sequential steps: (1) to transform the object from the physical

sphere to the digital sphere and (2) to interface with other manufacturing processes, as shown

in Figure 2.

RE starts with geometric information collection or digitization processes to transform the

object from the physical world to the digital world. Traditionally, the name ”digitization”

comes from taking discrete points from 3D surfaces with specific machines, e.g., coordinate

measuring machine, laser beam, etc. However, with the emergence of new technologies, such

as stereo vision, machine vision techniques, and computed tomography, the digitization pro-

cess can be summarized as acquiring dimensional data from undefined surfaces, synonymous

with scanning. Recent research has focused on developing strategies, such as path planning

and sampling, to improve the precision of the scanning techniques, which are crucial for the

quality of the 3D model.

After digitizing the part, an essential process is to convert the point cloud to a geometric

form. This form should be compatible with the CAD platforms to interface with other man-

ufacturing processes. Without this conversion, data are just a sea of coordinates with little
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Figure 2: Conventional RE steps.

meaning. The data collected by digitization have random noises, which needs preprocessing

step to transform it into a usable format and exclude the outliers. Then, different surface

representations are available to describe the outside surface of the target. There are three

forms of representations: algebraic, parametric, and nonparametric. With each type of sur-

face representation, external surfaces can be fitted from data clouds; based on these surfaces,

a surface-based CAD model is available for subsequent processes. We combine these separate

processes as a way to interface with other manufacturing techniques. However, an automated

procedure of this integrated process with high precision remains a future challenge; although

the human eye and brain can easily identify the surfaces, they are not sensitive to a set of

sensors and an intelligent set of algorithms.

Even though the steps in Figure 2 seem sequential, the RE processes in practice are

cyclic, and several iterations may be required to achieve the final CAD model with high

accuracy and precision.
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1.1.2 Additive Manufacturing

AM, also known as 3D printing or rapid prototyping, is a set of manufacturing techniques

sharing a common basis by adding materials bottom-up. In 2012, the AM industry standard,

ASTM F2792 [78], determined to use additive manufacturing as the official term for all

technologies based on this layer-upon-layer manufacturing process. In this dissertation,

we follow the standard and adopt AM to describe this entire set of technologies. After

first introduced by Charles (Chuck) Hull in the 1980s [75], AM processes quickly gained

popularity in the defense, automobile, and aviation sectors to create part prototypes for

design improvement and validation. With the recent advancement of accuracy and expansion

of printable materials, AM could also make finished products for much broader industrial

applications. The revenue of AM products and services worldwide exceeded $7.3 billion in

2017 and more than doubled in 2020, with a surge to $35.6 billion by 2024 [176].

AM is an attractive manufacturing technology because of its design flexibility, ease of

access, and high customizability. Adding material layer-by-layer, AM can produce parts with

flexible geometric designs and intricate structures directly from the CAD design models.

Some issues in traditional manufacturing processes, such as complex process planning, time-

consuming design decomposition, and assembly, may become insignificant in AM processes.

Thus, AM is widely used in high value-added industries, including turbine manufacturing

[12, 174], aerospace [106, 166], and biomedicine [110, 80], whose designs are either highly

customized or extremely complicated.

The input of AM processes is usually CAD models. The most common model is the

STL (short for STereoLithography, Standard Triangle Language, or Standard Tessellation

Language). An STL file can be directly translated from other 3D CAD models drawn by the

designers or 3D point clouds generated by the RE process as an output. CAD models may

not exist in many applications, such as biomedicine or re-manufacturing of legacy parts.

Moreover, due to the high geometrical complexity in these applications, creating a CAD

model may take too much time for manual design—or not even be accessible. The capability

of manual design is also limited by the capacity of CAD packages and the accessibility of the

visualization, which makes the designs suboptimal. Therefore, RE is an essential companion

of AM and plays a vital role in many AM applications.
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The next step that includes material, process selection, and simulation is iterative or

parallel. The researchers and AM practitioners usually list critical properties that the final

products must satisfy beforehand, such as mechanical properties, bio-compatibility, and bio-

degradability. These properties, which dominate the material selection and structural design,

are verified by mechanical or biomechanical simulation. On the other hand, the materials

selected and the mechanical properties also determine the manufacturability for specific

AM processes. Even though the layer-by-layer printing of AM appears to be conceptually

straightforward and various printing options and techniques are now available, each of them

has different properties and material limitations due to their specific mechanism.

1.2 Research Motivation

This section presents the generic problems we identified in the current-state-of-the-art

development of RE and AM. The requirements for potential solutions to these problems

are analyzed and presented for methodology development in later chapters. We first clarify

the distinction between two RE-related definitions as well as their importance in practice.

This distinction raises important questions regarding the RE models’ accuracy, precision,

and tolerance design in a re-manufacturing system. Then, the unique features of AM are

analyzed in detail, which demands a unique set of AM-oriented metrology and analytical

tools.

1.2.1 The RE Process and RE Systems

RE is a broad definition and has various meanings in different contexts. In this dis-

sertation, we will first differentiate between two practical definitions based on the RE: RE

process (REP) and RE system (RES). REP is the one that most researchers and practition-

ers adopt; its objective is to accurately reconstruct the CAD model of one unique object

[55]. Therefore, REP takes one physical object as input and outputs a part-specific CAD

file. Next, REP can be integrated with other processes, such as redesign, re-manufacturing,
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Figure 3: Complete manufacturing/re-manufacturing process map.

and inspection. On the other side, RES is a manufacturing system that combines REP and

production systems for re-manufacturing purposes. Thus, RES takes physical parts as input,

but its outputs are the reproduced parts that should be qualified by the initial design.

Conventionally, researchers and practitioners treat REP as an independent information

extraction process. The 3D CAD model from one scan of a single part is often the practice

of any RE applications. This idea is reasonable for RE practices when only a unique part

or applications, such as inspection, exist. With high precision scanners and flexible surface

fitting algorithms, the model generated can be close to the scanned physical part. How-

ever, two significant questions emerge when considering RES from a systematic view. The

first is the complete manufacturing sequence, including the initial design and production

process, which is shown in Figure 3. Instead of being an independent process, REP in this

system is a manufacturing process that bridges the physical parts—the output of the ini-

tial production system, and the CAD model—the input of the subsequent re-manufacturing

process. Accordingly, REP’s variability would partially cause the final reproduced products

to deviate from the initial design. Even in some applications, such as biomedicine, where no

initial design is available, deviations from the physical parts, other than the ones from the

re-manufacturing process, exist due to REP. This type of variability is usually overlooked

and may cause concerns in tolerance analysis of multistage manufacturing processes.
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The second major issue is the re-manufacturing of mechanical parts, where an original

design exists but is unknown. In a manufacturing setting, qualified products should have

dimensions within the designed tolerance regions, while high-quality products are qualified

products whose dimensions are as close to the original design as possible [114]. Since the

objective of RES is to re-manufacture the parts for industrial applications, the recreated

products must be usable and with as high a quality as possible. However, usual RE appli-

cations tend to lack both the original design and the tolerance information. Current RE

practice relies on scanning a single part [100]. However, this part is just one realization

or one sample from the initial production process. The reconstructed CAD model only

represents the geometric information of the specific scanned object. Therefore, the model

generated by one scan of a single part always deviates from the initial design. The following

re-manufacturing process can further add variability to this CAD model, and the reproduced

products are easily out of tolerance. Yet, due to the missing tolerancing information, the

practitioners cannot determine whether the recreated parts are qualified. Although it is pos-

sible to make a tolerance redesign or tolerance stack-up analysis, both tasks are complicated

and time-consuming. Also, these approaches may call for a high precision re-manufacturing

process to produce qualified parts without an appropriate tolerance design.

In summary, our first research motivation lies in the different functionalities of RE. First,

RE is a manufacturing process that possesses variability. The process analysis and planning

of RES should consider tolerancing for REP. Second, RE is an information extraction technol-

ogy. If an original design of the parts of interest exists, RE’s final objective is to reconstruct

this design.

1.2.2 Dimensional Tolerance Issues

As shown above, RE is the first step of computer-aided manufacturing (CAM) and en-

gineering (CAE) and an important design task. In addition, RE is also treated as an input

to AM since the input for AM is CAD files and STL files, both of which are RE’s out-

put. Moving a physical part to a 3D printed part helps set up the process between RE and

AM and is a trend for future manufacturing and service industries. For example, in the
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healthcare industry, customized products, such as organs, stem cells, and tissues, can be

reverse-engineered through bioprinting techniques [185]. However, tolerance design, without

which the geometric design may diminish the product’s usefulness and functionality, must be

carefully observed throughout the whole process. The consensus is that the manufacturing

of the parts whose dimension is the same as the design is impossible; thus, manufacturing

two products that are the same is not achievable.

The entire process, including design, manufacturing, RE, and AM, is shown in Figure 4.

For example, a product whose size is A mm was designed for some specific purpose that

requires high precision with tolerance 2δ mm; therefore, the required output product should

be within A ± δ mm. After design and production, a manufacturing error is added to the

initial design A ± δM mm. An RE process is required to gain the design information when

the original design is unknown. After scanning, data processing, and generating a CAD file,

an RE error is added to the model, which results in the measure of A± δM ± δRE mm. The

CAD file is then used for AM. After reproduction, an error of AM, δAM , is also added to

the final product, whose measure is A± δM ± δRE ± δAM mm. The product’s final measure

is easily out of the range of the design requirements A ± δ mm, which makes the entire

reproduction process and final product ineffective.

Because of the highly unpredictable error in each step of the RE manufacturing process,

the superposition error often occurs and is not easy to solve. Therefore, process controlling

techniques should be investigated throughout the process to guarantee that the superposition

error can be managed under an appropriate tolerance level. A more robust system that

includes tolerance analysis and control techniques may be required to ensure the product is

deliverable, reproducible, and feasible for high-quality reproduction.

1.2.3 Metrology and Analysis for AM

The nature of AM—adding material layer-by-layer—makes it distinct from traditional

manufacturing processes. Traditional manufacturing processes can directly create features

on the bulk material. AM, on the other hand, decomposes the 3D design into many thin

layers. Then, these layers are sequentially printed along with the build orientation. In this
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Figure 4: Process flow for product reproduction with error superposition.

way, most of the features are ”byproducts” of this process—that the part surfaces are the

layers’ surrounding profiles. This property also correlated all features. Two types of feature

correlations are formed by these thin layers: (1) the outline of each thin layer can be part

of several features and (2) features with a different set of layers still correlate because of the

bottom-up fabrication process.

Traditional metrology techniques for manufacturing products are to measure the dimen-

sions of the features or surfaces. In profile monitoring, the 3D surface point cloud can be

used to analyze the shape of a freeform surface [189]. Thus, these metrology technologies

are usually feature- or surface-independent. They are suitable for the parts manufactured by

traditional manufacturing processes that could generate the features or surfaces. However,

these methods may not fit AM products due to the complex correlation structure of the

features. Also, the AM is known for the sophisticated shapes it can produce, which cannot

be analyzed using state-of-the-art metrology and analysis tools.

For example, to produce a box-shaped product, classical machining processes can directly

produce six flat outer surfaces. The surface dimensions can be fully described by measuring

a few points on each of them. Manual measurement or CMM can survey these points with
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high accuracy and precision. However, this type of measurement strategy is not appropriate

for the AM-created parts, as shown in Figure 5. In Figure 5 (a), the bottom and upper

surfaces of the products can be directly printed, while others are just the ”byproduct” of

the surrounding edges of the thin square plates. Therefore, measurements of the side surface

using the traditional CMM method only provide the dimensional information of, at most, a

few layers. Furthermore, in Figure 5(b), if the box-shaped part is built along an arbitrary

direction, CMM measurements could provide little information about the true dimensions

of any features. Therefore, the classic feature definitions can be problematic in the AM-

oriented metrology if we consider some unique AM process parameters, such as infill, printing

orientation, layer thickness, etc.

On the other hand, conventional analytical tools, such as the design of experiments

(DOE) [113] and statistical process control (SPC) [114], are usually based on the measure-

ment with a simple data structure. The methods are either univariate- or multivariate-based,

suitable for the data collected from traditional metrology tools. During the past decade, re-

searchers have proposed a branch of methodologies based on functional data analysis for

manufacturing process monitoring and improvement [40, 81, 89]. These methods treat sur-

faces as smooth functions and analyze them through their functional properties or dimen-

sional reduction techniques. However, the functional data analysis is limited to smooth 3D

surfaces, which are not suitable for AM with complex features and sophisticated dependency

structures.

Therefore, a new set of metrological and analytical techniques oriented towards AM

processes is urgently required. These techniques could analyze the point clouds collected

from AM-produced parts for process analysis, optimization, and monitoring.

1.3 Classification of Manufacturing Processes

RE and AM have a unique nature when compared to traditional manufacturing processes.

As shown in the previous discussion, the AM-created features may not be identified by the

3D printers. Instead, most features are ”byproducts” of the thin layers. A similar idea–that
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Figure 5: Major issue in dimensional metrology of simple box-shaped objects printed by

different build orientations: (a) if the build orientation is parallel to the vertical edges, the

side surfaces are the ”byproduct” of the surrounding edges of the layers, where the classic

CMM metrology only provides little dimensional information of a few layers and (b) if the

build orientation is an arbitrary direction, all the outer surfaces are ”byproduct,” and little

information about the true dimensions of any feature can be directly measured by the CMM.
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Figure 6: Three classes of manufacturing processes and their corresponding metrological and

analytical tools.

the scanners do not actively differentiate the features—applies to RE. Therefore, we propose

a novel way to classify manufacturing processes based on their corresponding metrological

and analytical methodologies: direct feature generation processes, semi-feature generation

processes, and volume generation processes (Figure 6).

Feature generation processes cover most of the current extensive machining processes.

These machining processes can directly generate the product features. For example, the

drilling process can generate hole features, while the surface milling process can generate flat

surfaces. In this category, traditional point-based metrology tools, such as gauge, or manual

CMM, are useful. Classical DOE methodologies, such as ANOVA, can be implemented

to seek the best production settings for the processes of this category; traditional process

monitoring techniques, such as X and S2 control charts [114], or profile monitoring [1, 36],

can be used to monitor and control the processes.

Volume generation processes, on the other hand, do not directly generate features. In-

stead, the processes create most of the features as ”byproducts.” All the AM and RE
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processes belong to this category. Based on this nature, 3D scans of the whole volume are a

better choice for metrology purposes. Moreover, whole-body point cloud analytical method-

ologies, such as the methodologies proposed in this study, are suitable for analyzing these

processes.

The semi-feature generation processes are in the middle of the feature and volume gen-

eration processes. The techniques generate all the features; however, the feature generations

are not independent. Die-related manufacturing, such as die-casting and die-forging, are in

this category. Both traditional metrology and 3D scans can be selected for different pur-

poses. Also, a mixture of both classical methodologies and our proposed framework could

work for this category.

1.4 Research Objectives

This study aims to develop a set of methodologies that can analyze the 3D point clouds

and improve the RE and AM processes’ geometric quality. Specific objectives are summarized

below:

• Develop a statistical framework that provides multiple point clouds with statistical an-

alyzability and mathematical tractability.

• Propose a set of novel methods under the above framework for more accurate RE and

re-manufacturing with cost-effective solutions.

– Provide a method to reconstruct a CAD model based on several scans of a unique

part or several scans of several parts, which is close to the dimension of the specific

part or original design with a low variance;

– Propose a process planning model that provides suggestions for the RE practitioners

to find the minimum number of required parts and scans to reconstruct the RE

model and achieve the predetermined precision requirements;

– Develop a technique that can estimate the initial tolerance design based on the

statistical analysis of several parts with the same design and the knowledge of the

original production system; and
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– Design an automated variance modeling technique to study the uncertainties of a

3D scanner.

• Develop a hypothesis testing procedure to analyze how the AM process parameter set-

tings affect the geometric production accuracy.

1.5 Summary and Thesis Outline

This chapter discusses the background and geometric quality issues in both RE and AM

processes. These problems seem to be independent of each other. However, they share some

similarities and are highly related. First of all, RE can be used as a metrology tool for

AM. Instead of surveying the profile data, RE can provide a complete description of the

AM-produced parts. Thus, if RE could generate a detailed point cloud with high precision,

the AM-produced products could be precisely described and measured. Secondly, the point

cloud is the de facto data type for analysis to survey the accuracy and precision or make

decisions regarding the RE process. Because the whole-body point cloud measured by RE

includes correlation structures of all the features for AM, it is more suitable to deal with the

whole-body point cloud for offline analysis and AM processes control. In summary, we plan

to build a statistical framework that can be used to deal with whole-body, or closed-shape,

3D point clouds.

In this proposal, Chapter 2 provides a summary of the literature about the advancement

in RE techniques as well as AM-oriented statistical tools. The first part of this chapter

presents the advancement of the current state-of-the-art methodologies in both hardware and

software that are applied in RE. The following part reviews AM techniques and quantitative

methods that are devoted to improving AM accuracy.

Chapter 3 proposes a new statistical framework—volumetric data analysis—which fo-

cuses on high-density 3D closed-shape point clouds, to achieve the objectives presented in

this chapter. General ideas and major components of this framework are discussed. The

concept of volumetric data analysis and related research are first summarized at an abstract

level for methodology development. Then, this chapter presents specific techniques for each

step in detail.
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Chapter 4 first applies the framework to generate the mean surface configuration based

on the data clouds collected from several scans and multiple parts, if any. A Bayesian model

with prior knowledge of production processes and scanners is built to model the uncertainty

and make the inference of this configuration. The marginal posterior of the mean surface

configuration outperforms the single scan model with lower variance, concentrating around

the physical object or the initial design. Furthermore, a bi-objective optimization model is

proposed to answer the RE process-planning questions, such as how many scans and parts

are required to achieve specific precision requirements.

A systematic geometric inspection and tolerance estimation methodology for the RE

system is offered in Chapter 5. We develop a set of tools to extract various geometric

dimensional values from the point clouds or the mean scan models of several scans for each

type of tolerances. Moreover, based on the domain knowledge in production process design

and planning, methods are developed to estimate empirical tolerances from a small batch of

legacy parts.

Chapter 6 develops an automated variance modeling algorithm that utilizes a physical

object’s local geometric features and Bayesian extreme learning machines (BELMs). Our

proposed ensemble and residual BELM-variants are trained by a scanning history composed

of multiple scans of other distinct objects. A new empirical Kullback-Leibler divergence

selects the specific scanning history that is geometrically similar to an object of interest.

Chapter 7 introduces the framework to AM-oriented metrological and experimental anal-

ysis. A high-dimensional hypothesis testing procedure is proposed to compare the geometric

production accuracy under two printing settings. New visualization tools for deviation diag-

nostics are presented to aid in interpreting and comparing the process outputs. The proposed

methods are illustrated with a real experiment to compare the printed parts’ accuracy under

different layer thicknesses in a filament deposition modeling printer.

Chapter 8 outlines the main conclusions and potential future directions from the current

study.
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2.0 Literature Review

This chapter reviews the body of knowledge regarding this dissertation’s two main

themes, e.g., RE and AM. The first part of this chapter (Sections 2.1, 2.2, and 2.3) reviews

the major advancement in the field of RE. It includes the literature review on digitization

technologies, RE modeling methodologies, and techniques to improve RE’s accuracy and pre-

cision. The second part (Sections 2.4 and 2.5) surveys the state-of-the-art AM processes and

the work of AM-oriented quality improvement tools. A significant portion of the remainder

of Chapter 2 appears in [55] and [58].

2.1 Digitization Techniques in RE

Current state-of-the-art RE techniques are reviewed in several papers [14, 38, 42, 55,

92, 160, 168]. In this dissertation, we focus on the RE techniques and procedures that

significantly affect the model accuracy and precision.

Accurate geometric data collection, also known as digitization, is invariably the starting

point and a critical step for every RE process. Digitization is a process that collects the data

of surfaces of the objects and converts them to a digital form. As the first stage of reverse

engineering, digitization processes have severe impacts on each subsequent step’s accuracy

and precision via the point clouds. Also, the digitization step requires more time when

compared to the steps after it since the following steps involve a set of computer algorithms,

which is usually faster. Therefore, to get the data points with high accuracy, high precision,

and fast speed, digitization techniques have attracted much interest from researchers during

the past few decades.

Effective digitization can be achieved by employing several different techniques. Each

uses a physical mechanism to either directly or indirectly acquire the coordinates of specific

part features. Figure 7 presents the taxonomy of currently available technologies. These

technologies can be broadly classified into three categories based on whether physical contact

appears on the target’s surface or volume: contact, non-contact, and hybrid methods.
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Figure 7: Taxonomy of reverse engineering techniques.

As a more traditional method when compared to non-contact methods, contact methods

have been utilized for several decades. These methods require mechanical contact between

the interested surfaces and a measuring device, usually using a contact probe or stylus.

Contact measurements tend to obtain more accuracy, higher precision, and higher quality of

surface finish but are more time-consuming.

Compared to the probe or stylus to contact the surface, non-contact methods do not

have mechanical contact with the part to be studied. This class of techniques typically uses

a medium, such as light, laser, sound, magnetic fields, or X-rays, as the tool for deducing

surface information. There are two subgroups of the non-contact methods: active and passive
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techniques. Compared to the contact method, the non-contact methods require less time

for the scanning process; however, these methods cannot measure hollow structures or small

features on the surface of transparent materials.

2.1.1 Contact Methods: Manual Measurement

The contact methods can be traced back to manual measurement ages that occurred

around half-a-century ago. Several critical dimensions across the parts are identified by

experienced workers and then can be used for blueprint drawings. The instruments include

calipers, measuring gages, angle finders, etc. With the development of computer-aided design

systems, key points from the measurement of a surface can be entered into a CAD system,

wherein curves and surfaces that interpolate these points can be generated, followed by

the generation of a 3D CAD model. The manual measurement process is flexible since

the workers can determine the key points by experience. However, the disadvantages are

significant: the poor accuracy and precision of measurement because of subjectivity, the

limitation of the form of surface or object, and the tremendous level of person-hours required.

This manual method is rarely used today for a reverse engineering process but might help

generate constraints in surface fitting steps.

2.1.2 Contact Methods: Coordinate Measuring Machine

Introduced as a machine for part dimensional inspection in the early 1960s, CMM is the

first and still one of the most popular RE digitizers. This device uses contact stylus to mea-

sure spatial points on a workpiece’s surface and then translate it into a three-dimensional

Cartesian coordinate system. The contact stylus is generally a highly sensitive pressure

sensing device triggered by any contact with the part surfaces. Three issues of a CMM that

determine its measuring performance (i.e., accuracy, flexibility, measurable workpiece di-

mension, the throughput of measuring process, and costs) are types of configuration, control

types, and fixture designs (Figure 8).
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Figure 8: Fishbone diagram of casual factors of CMM measuring performance.

CMM machines have been well researched in efforts to improve their performance. Some

researchers develop CMM planning algorithms to avoid the collision of CMM probes [4, 103].

ElKott and Veldhuis [46] and Yu et al. [186] propose adaptive sampling methods to scan

freeform surfaces using CMM. However, most of the inspection methods are CAD-correlated.

A trend of CAD-free, automation inspection path planning of CMM has emerged; this path

planning first appeared in the area of freeform surface inspection. Chiang and Chen [30]

propose a surface skinning method, incorporating an iterative procedure for the reverse

engineering of sculptured surfaces. Li et al. [99] and Li and Nomula [98] generate methods

of both CAD-guided and non-CAD-guided to increase the accuracy of CMM in measuring

external profiles of porous objects.

2.1.3 Contact Methods: Numeric Control-Based Machine

Because the price of CMM is prohibitive, researchers and practitioners intended to find

a substitution that could be modified into scanning equipment. The numerical control (NC)

based machine was introduced in the 1940s and 1950s; its intention was to mount existing
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tools on a programmable motor for automated manufacturing. Using an NC-based machine

mounted with the stylus is a practical solution since NC-based machines are widely used in

industries that are easily programmed. Furthermore, an NC-based machine is easily changed

with current-state-of-the-art scanning techniques [28, 148], and up-to-date path planning

algorithms [111].

2.1.4 Non-Contact Active Methods: Triangulation

Triangulation is a well-established active technology for accurate geometric data ac-

quisition based on the principle of triangulating a measurement point on the part from a

well-designed system, including a source and a detector. Both single light triangulators and

laser strips share the same underlying principles. Figure 9 shows a typical system configura-

tion. Points PL and PC are the exit pinpoints of the laser source and the camera’s entrance

pupils. S ′ is the point reflected from point S of the object. Also, the angle between the

points and the rotary table axes is known as α. Therefore, we have

zs =
d l

B′S ′ + l tan(θ)
(2-1)

and

xs = zs tan(θ), (2-2)

where zs and xs are x- and z-coordinates of the point S in 3D coordinate system, d is the

distance between PL and PC , θ is the angle between the laser beam and predefined z axis,

and l is the distance between pupil and camera [16].

The scanning process starts from either the bottom layer of the part and proceeds up-

wards to each layer or from a vertical line layer before proceeding either right or left to each

layer with user-defined intervals. Therefore, when the scanning process is complete, the data

are a collection of the points’ locations organized with equal interval cross-sectional layers,

which can be used for further processing. Generally, laser-scanning technologies can produce

accurate data repeatable to less than 0.001-inch [37]. Also, the laser scanner is the most

common method used in reverse engineering applications because, relative to other methods,

it is fast and robust [51, 105].

21



Figure 9: Representation of the triangulation principle.

2.1.5 Non-Contact Active Methods: Structured Light

Systems based on structured light share the same active approach as mentioned in trian-

gulators. Instead of a single beam or strip of light, structured light involves projecting light

patterns onto a surface; the surface’s geometric information can be generated by analyzing

the resulting patterns projected on the video camera. The projection of different patterns in

terms of accuracy and throughput time has been extensively studied. Le Moigne and Wax-

man [94, 95] use multi-resolution grid pattern light projected on the objects for robot vision.

Morita et al. [116] proposed a pattern made from an M-array, which is a two-dimensional

(2D) extension of an M-sequence, to correct pattern disorders. Maruyama and Abe [108]

present a method for acquiring range data by projecting multiple slits with random cuts.

Also, some researchers [154, 158] have explored the projection of fringe patterns, which are

particularly suitable to maximize the resolution of measurement with a faster speed.
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2.1.6 Non-Contact Active Methods: Shape-from-Shadows

The shape-from-shadows method is a variant of the structured light approach. Instead of

obtaining geometric information through analyzing the reflection of patterned light projected

onto unknown parts, the 3D model can be rebuilt by capturing and analyzing the shadow

of a predefined object projected onto the target with moving light [47, 187]. Despite its low

cost and simple equipment benefits, this method is rarely used in the RE field because of its

low accuracy and precision.

2.1.7 Non-Contact Active Methods: Shape-from-Shading

Similar to the shape-from-shadows technique, the shape-from-shading approach also uses

the shadow phenomena to obtain geometric information. However, the shape-from-shading

requires directly projecting light onto the object of interest, which will generate shading onto

the background. The shading on the target surface will change according to the varying

position of the light source. A thorough review of algorithms able to extract the shape

information from this type of method can be found in the reference [69]. Nevertheless, this

approach has shortcomings in the accuracy obtained, especially for a small scale of target

and in the presence of external factors that influence the reflectance of surfaces [175].

2.1.8 Non-Contact Active Methods: Medical Imaging

Magnetic resonance imaging (MRI) and computed tomography (CT) are utilized to ac-

quire geometric information for biomedical purposes. MRI is a versatile, powerful, and

sensitive tool that incorporates the principles of nuclear magnetic resonance. This process

utilizes the absorption and emission of energy by atomic nuclei in a surrounding magnetic

field to generate thin-section images of any part of the body, like organs, bones, and liga-

ments, from any angle and direction. The quality of the image under MRI is closely related

to the strength of the magnetic field. However, due to the magnetic field setting, measuring

any metallic object is potentially inapplicable.
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On the other hand, a CT scanner is another tool for viewing the human body’s internal

structure that can scan metallic subjects [104]. Its fundamental principle is to send a thin

X-ray beam at the target from multiple angles measuring the varying amounts of X-ray

beams after attenuating by different densities from the opposite side. Both the MRI and CT

can now acquire high accuracy and can solve difficulties when measuring the target’s holes

or internal structures; however, the cost of these imaging techniques can be prohibitive.

2.1.9 Non-Contact Passive Methods: Stereo Scanning

Stereo scanning is the process of acquiring geometric data of an object by concurrently

integrating the photographs captured by two or more cameras from different perspectives.

With the same principle of triangulation, stereo scanning requires no additional equipment,

e.g., specific light sources, except for cameras, which give it advantages such as simplicity

and low cost. However, stereo scanning often requires human participation or enormous

computational efforts to identify the image pairs’ common points to reconstruct the 3D

model. A significant amount of research has been published in the area of stereo scanning

[161]. Considerable advancements have enabled the development of new algorithms and the

augmentation of existing algorithms to produce more accurate results and achieve real-time

performance in obtaining these results. However, because of this method’s mechanism, its

data quality depends heavily on the surface texture’s sharpness, which is affected by surface

reflectance. Stereo scanning has significant applications in areas that do not require high

precision acquisition data, like computer vision or robotics; its fast feature detection is more

critical in motion planning or collision avoidance.

2.1.10 Non-Contact Passive Methods: Texture Gradients

The main idea behind surface reconstruction through texture gradients is based on two

facts: (1) the further away from an object one is, the smoother its surface will appear to

be and (2) the image of certain texture elements (texels) relates to the surface orientation

[157]. Therefore, the distance of certain texels from a known viewpoint can be estimated

by inspecting the perceived texture at that distance. This method has simple, low-cost

equipment requirements. However, it has a limited performance on accuracy and precision.
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2.1.11 Non-Contact Passive Methods: Shape-from-Focus

Shape-from-focus techniques utilize the focal properties of a lens to determine the depth

and range information of the target [119]. A lens is employed as a range finder through the

”depth of field” phenomenon. The image is blurred when it is located to a distance propor-

tional between the target and the in-focus object plane. This technique has evolved from

a passive approach to an active scanning technique to improve its resolution and accuracy.

However, this method is still inadequate for commercial reverse engineering systems due to

its low accuracy and non-uniform spatial resolution.

2.1.12 Hybrid Methods

Each of the methodologies detailed earlier has both pros and cons. For example, con-

tact digitizers, e.g., can provide accurate and reliable measurement results through CMMs.

Their data acquisition processes require much time due to inefficient planning; these contact

digitizers also depend upon human intervention. Non-contact digitizers, on the other hand,

are capable of medium to high-speed data generation and significant time reduction, but

the level of accuracy is comparatively lower than that of contact ones. Hybrid methods

meet the increasing requirements of both fast scanning speed and high measurement accu-

racy, together with the flexibility and high level of automation of the digitization process.

These methods, which incorporate two or more digitization methods to provide ”smart” path

planning with a high-speed and high precision, are increasingly applied to the RE field.

2.2 Interfacing Reverse Engineering with Other Manufacturing Processes

RE systems’ real power and flexibility lie in their capability to combine other manufac-

turing processes to reproduce the products through CAD/CAM platforms. The digitization

processes will result in a ”raw” data cloud acquired through a reverse engineering system;

however, this data cloud must be ”massaged,” including preprocessing and transforming into

specific forms to be used by computer platforms [13]. At the beginning of the massaging
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process, the raw data should be smoothed and the outliers removed. The data cloud is then

typically transformed into a specific format that a CAD system can identify. The language

of CAD is geometric-based.

Three primary modeling techniques are widely used: wire-frame modeling, surface mod-

eling, and solid modeling [183]. Wire-frame, the first-developed and most basic method, is

stored in a data file as a collection of points, lines, and types of curves. This method, which

requires a low volume of data storage, was used for data reduction for RE systems [117];

however, wire-frame modeling techniques cannot fully satisfy the increasing demand for cus-

tomizable, complex designs and freeform objects. Furthermore, because reverse-engineering

includes the digitization of the target object’s surfaces, surface modeling techniques, which

primarily consist of a set of faces, are more versatile and flexible, with the ability to model

the edges and surfaces.

Multiple options for surface modeling from data clouds exist. Polygonal meshes offer the

simplest option. The main idea for polygonal meshes is to convert the discrete data clouds

into piecewise smooth, continuous models through small patches. Polygonal meshes are

important in computer graphics and animations because of their simplicity and flexibility,

especially for freeform surfaces [7, 91]. However, small gaps between surface patches exist

due to missing scanned data, especially when scanning a complex part, like cavities, where

it is impossible to acquire all parts of scanned surfaces. Various hole-filling algorithms are

found in archival journals [32, 39, 85, 101].

Another major option is the curve and surface fitting of the point cloud data. Chivate

and Jablokow [31] provide a thorough but not up-to-date overview of surface representa-

tions and fitting mechanisms. In general, surface representations can be divided into two

categories: algebraic forms and parametric forms. Algebraic forms assume that the target

surface can be represented by an implicit equation f(x, y, z) = 0 in 3-space or by a homo-

geneous polynomial equation f(x, y, z, w) = 0 in a 4-space [17]. Under this representation,

algorithms, such as least-squares fitting or least median of squares, deal with computing

the equation’s coefficients. However, due to the global form in the algebraic function, any

modification of the data set would cause refitting of the whole surface.
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Another type of surface or curve representation form is the parametric form, including

Bézier’s and B-spline, and non-uniform rational basis spline (NURBS) surfaces or curves.

This category is called parametric form because the surfaces or curves are represented in

terms of two parameters—u and v. The main differences among the above three repre-

sentations lie in the basic functions. Specifically, Bézier’s surface/curve utilizes Bernstein

polynomials as its basis function; B-spline surface/curve uses polynomials as its basis func-

tion defined over a knot vector; NURBS surface/curve employ rational polynomials as its

basis function. Fitting data cloud into these three surface representations has attracted a

lot of interest [50, 77, 107, 143, 165].

With the state-of-the-art surface fitting algorithms, surface models generated from mea-

sured data can be obtained. A surface model inside CAD platforms can be rendered into a

solid model; its versatility allows it to be used with finite-element analysis, fluid flow analysis,

and numerical control-part programming for CAM.

2.3 Techniques for Accurate RE

The techniques that could improve RE’s accuracy can be broadly divided into point cloud

level and model generation level improvements. The point cloud level techniques are usually

the methodologies that reduce the error and variation in the surveyed data coordinates. As

the first step in RE, point clouds’ accuracy profoundly affects the following steps and the final

model. This type of method usually improves the accuracy from the scanners’ point of view

since the point clouds are their direct outputs. One primary idea is to integrate two types of

scanners—a less accurate one with low resolution and an accurate one with high resolution

known as hybrid digitization techniques [55]. The less accurate scanners are superior in

scanning speed, which can be used for process planning, while the high accurate scanners

are used to extract precise geometrical information. Current research on hybrid methods

of RE primarily focuses on sensor selection, scanning path planning, and coordinate system

unification. Methods are proposed by researchers, such as Bradley and Chan [18], Carbone

et al. [22], Li and Wei [100], Motavalli et al. [118], and S ladek et al. [151], to integrate
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non-contact scanning techniques onto a CMM; the non-contact methods are used for path

planning and the CMM is followed for accuracy data collection. Chan et al. [26] introduce a

multi-sensor approach for rapid digitization by integrating a CCD camera for path planning

and a laser scanner for accurate data collection. Li et al. [96] present a tactile-optical system

where a tactile probe was used to compensate the data from a laser line scanner. Lu and

Wang [105] mount the point laser probe next to CMM to scan the next path and provide

path planning for the contact scanning probe.

Another method for accuracy improvement at point cloud level is scanner calibration.

The principal idea is to use a highly accurate point cloud to calibrate the less accurate

one. Bešić et al. [11] find the bias term between CMM and laser scanner and calibrate

the point cloud through compensation of the bias. Xia et al. [182] propose a Bayesian

hierarchical model to integrate two misaligned point clouds collected from two scanners with

different resolutions. Later, Colosimo et al. [35] solve a similar problem using the Gaussian

process model. Recently, Wang and Fugee [171] used a Bayesian generative model and

high-resolution metrology data to calibrate the point cloud collected by the low-resolution

scanner. In summary, the calibration problem is close to the generalized regression problem

in statistical learning, where the response is the accurate point clouds with high resolution,

and the predictor is the one with lower resolution and accuracy. A major assumption in this

field is that the CMM can provide highly accurate measurements. In a real application, the

accuracy of a CMM is measured through calipers for standard dimensions, while the variation

for calipers is quantified as a univariate variable and analyzed by gauge repeatability and

reproducibility (R&R) analysis [21]. Thus, the variation for such point clouds still exists,

and no current available methods can analyze or make inferences for their variability.

On the other hand, the point cloud needs to be transformed into a CAD format for

redesign or reproduction. The polygonal mesh model is one of the widely-used outputs, as

shown in Section 2.2. However, this method suffers from two significant problems. First,

if small gaps between surface patches exist due to the scanner’s limitations, such as the

area near sharp edges, it is impossible to generate a closed surface model for redesign and

re-manufacturing. Second, since the polygons constitute the surrounding surfaces, the gen-

erated outer surfaces are not smooth. Another class of methods is to fit the point clouds
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to parametric surfaces if the operators could identify the types of surfaces. However, the

surfaces are limited to only a few types because of the parametric functional form. Nonpara-

metric methods are introduced to the 3D scanning field to solve this problem. Roca-Pardiñas

et al. [137] use a kernel smoother to reconstruct one feature from point clouds. Del Castillo

et al. [41] propose a geodesic Gaussian process to fit the freeform surface, which also filters

the measurement noise and provides the inferential capability to the surface.

The parametric models are as flexible as the polygonal meshes while providing smooth

surfaces. Fitting point clouds into these forms have attracted much attention. Ma and Kruth

[107] propose a NURBS surface fitting scheme based on singular value decomposition (SVD).

A functional neural network is proposed to fit the point cloud to B-spline surfaces [44] and,

later, Bézier’s surfaces [76]. The same group also suggests a particle swarm optimization

algorithm to reconstruct a NURBS surface for a given point cloud [51]. Sarfraz [143] and

Sarfraz and Raza [144] offer evolutionary heuristic techniques to solve the curve-fitting prob-

lem using NURBS. Still, all the surface algorithms are suitable for a single point-cloud. If

there are multiple scans of the same part, the only option is to register the point clouds

and perform the surface fitting for the registered point cloud. Thus, these methods cannot

analyze the variational behavior among scans or parts or provide an accurate estimator other

than the single scan of a single part model. However, these surface fitting algorithms provide

a continuous surface fitting for the discretized point cloud, which can be used to generate

landmarks in our framework construction.

2.3.1 Tolerancing in RE

Following the RE-generated model, the re-manufacturing processes are utilized to repro-

duce the part. Traditional manufacturing processes, such as machining, have been developed

for mass production; thus, their high setup costs can be split into a large number of produced

parts [15]. However, in a re-manufacturing setting, where the batch of products is usually

small, the setup costs for traditional manufacturing could be prohibitive. Moreover, each of

the features is created by a specific tool because of the specially designed tools. Sophisticated

and time-consuming process planning may be required for re-manufacturing processes [102],
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which could further increase the time and cost. AM, on the other hand, is more versatile

for small batch production. It could directly create the parts with complex features from

the CAD model without complicated setup and process planning. Therefore, AM is a more

suitable option for small batch and highly customizable parts reproduction.

Significant issues can be raised in RE- and AM-embedded re-manufacturing systems

because of their primary objective, i.e., reproducing parts qualified by original equipment

manufacturer (OEM) specifications. The current practice of RE only focuses on reconstruct-

ing the nominal design by scanning the physical object without assigning any tolerance to

the feature and dimension. Other types of design information are also essential components

of the product and manufacturing design [183]. Geometric dimensioning and tolerancing

(GD&T) specification is one of the most critical pieces of information that dominates both

the manufacturing process selection, planning, and part inspection [146]. Tolerance is a

major OEM geometric specification that is often overlooked [55]. Even though the nominal

design is of great importance, tolerance specification within CAD design is also critical for

designing and planning manufacturing processes [67, 68]. Tolerances are assigned to the

feature dimensions to enable them to fit into an assembly. According to engineering drawing

standard [124], tolerances are required to be assigned to each of the feature dimensions in

the design to avoid confusion in both the design and manufacturing departments. Moreover,

qualified parts are ones whose geometric dimensions should be at least within the original

GD&T specification for application purposes. However, most of the design information is

either missing or inaccessible in RE embedded re-manufacturing applications.

Little research has been developed to deal with this issue. Jamshidi et al. [79] propose

a method to approximate the tolerance region by collecting information about the original

manufacturing processes by examining the parts’ surface finish. Even though the surface sig-

nature could provide information about the manufacturing processes, the process variations

are related to the process parameter settings and process planning, which are unknown and

difficult to estimate. Kaisarlis et al. [87] present the idea of a knowledge-based system based

on several GD&T standards with functional requirements. Later, the same group proposes

a method for positional tolerance assignment [86]. It was clear to the authors estimating

the GD&T specifications that there is a research gap that needs to be bridged in current

RE-embedded re-manufacturing systems.
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2.4 Additive Manufacturing Processes

2.4.1 Stereolithography

Stereolithography (SLA) was developed in the mid-1980s by Charles (Chuck) Hull [75].

It makes use of radiation curable resins, or photopolymers, to create solid objects by additive

successive 2D layers that build on each other. The liquid materials undergo a sequence of a

photopolymerization process, which is a curable chemical reaction, to become a solid object

(Figure 10). Various types of radiation are available for SLA, such as gamma rays, X-rays,

UV light, etc., while the materials are limited to photopolymers, which can be expensive.

SLAs generate accurate physical objects with smooth surface finishes, but due to the liquid

nature of photopolymers, the support structure must be carefully designed to hold the printed

parts.

2.4.2 Selective Laser Sintering

Selective Laser Sintering (SLS), shown in Figure 11, is also called the powder bed fusion

process and uses a CO2 laser as the thermal source for inducing fusion between powder

particles [3]. Instead of liquid resins like SLA, the thin layers of powder are spread across

the build bed by a roller, which provides proper support to the printed parts. Thus, there

is no need for support structures in the design. Also, this fusion process can print various

materials, such as metal, plastic, ceramic, etc. However, these fused small particles can

cause rough surface finishes on the printed parts. Thus, post-processing is often required for

the SLS process. Also, preheating the powder bed is always helpful to improve the fusion

process, which may cause the powder particles to become sticky and, further, diminish the

accuracy of the SLS process when compared to SLA and other AM techniques.

2.4.3 Inkjet Printing

Inkjet printing is one of the least expensive and most simple AM techniques [150]. This

process uses a printer head to create tiny ink droplets or continuous filament onto a powder
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Figure 10: Mechanism of the SLA (stereolithography) processes.

bed (Figure 12). After deposition, the inks are transformed and then solidify to achieve

the desired properties of the finished products. The transformation is primarily due to the

surrounding natural environment and the ink properties; however, post-processing steps,

such as heating, are also required. Since inkjet printing relies on a power bed like the SLS,

there is no need for a designed support structure. However, the introduction of ink materials

eliminates the ”fusion” process, and the process lacks accuracy.

One exciting application of inkjet printing in medicine is to print organs due to the sim-

plicity of mechanism and flexibility. Instead of binding ink, the printer head can print living

cells onto a biological scaffold to generate organs or cell cultures [121]. Furthermore, inkjet

printing also provides the possibility of personalized medicine and accurate drug delivery.
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Figure 11: Mechanism of the SLS (selective laser sintering) processes.

2.4.4 Extrusion-Based System

The extrusion-based system, shown in Figure 13, forces the material from the reservoir

through a heated nozzle to generate a semi-solid state material filament and to fully solidify

on the target surface [61]. Materials including acrylonitrile butadiene styrene and other ther-

moplastics are typically used for extrusion-based systems. One example of an extrusion-based

system is fused-deposition modeling (FDM). Overall, the extrusion-based system does not

have fine detail and good mechanical properties of the other AM techniques and, therefore,

requires post-processing for good surface finishes. Also, unlike the SLS and inkjet printing,

which are powder-bed-based methodologies, an extrusion-based system requires a support

structure to prevent model collapse. However, the lower price of this system has given it

popularity in medical applications. Beyond printing biomaterial, an extrusion-based system

can also directly print cells or multicellular systems through the high-viscosity cell-laden

hydrogels for various medical purposes.
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Figure 12: Mechanism of the inkjet printing processes.

2.5 AM-Oriented Accuracy Improvement Tools

The first AM technique, stereolithography, was invented in the 1980s. With decades of

expansion, the AM family has expanded to several techniques with many classes of materials

[61]. However, the accuracy of AM still has not achieved the industrial requirements, which

prevents its broader adoption. Therefore, part of the AM community has shifted its focus

from technology development to product quality improvement [33].

2.5.1 Shape-Based Statistical Techniques for Manufacturing Processes

In the literature, geometric data are often treated as profile data in the field of SPC or

shape data in statistical shape analysis (SSA) [43]. Most of the studies in production analysis

or quality engineering utilize profile monitoring to deal with point clouds of 2D profiles or 3D

surfaces [34, 82, 129]. Profile monitoring is one subject of the multivariate statistical process

control method. Its main idea is to use a parametric or nonparametric model to describe the
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Figure 13: Mechanism of the extrusion-based printing processes.

point cloud in a functional form. The geometric data first train a model; then, multivariate

SPC methods can be applied based on the monitoring of the model parameters. If both the

response and covariates are coordinates or shape-related 3D data, the response can be one of

the coordinates, and the others can be utilized as the covariates. Detailed reviews on profile

monitoring can be found in [120, 178, 179].

Nevertheless, there are limitations to these techniques when applied to the AM-created

parts. First, profile monitoring requires an assumption of a functional form between the

response variable and covariates. However, in terms of AM inspection, our objective is to

make the inference of or monitor the whole-body point clouds collected from the product.

These point clouds are closed-shaped based on the assumption that the functional form can

be invalid. Second, profile monitoring can only be applied to 2D or 3D surfaces, where the

correlation between features is underestimated. Therefore, profile monitoring or functional

data analysis may not be appropriate for the analysis of AM processes.
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The other field of methods is based on SSA. Del Castillo and Colosimo [23] first in-

troduce SSA-based analysis of variance technique to manufacturing applications for process

improvement. Their technique is based on the shape data obtained by measuring the parts

at specific landmarks or correspondence points among objects. However, there are limita-

tions to this methodology when applied in high-precision manufacturing applications. First,

the landmarks should be found and matched for each target product. In SSA, these points

are either manually selected and matched or generated based on the domain knowledge.

However, thousands to millions of points are surveyed from the RE process based on ran-

dom sampling procedures, within which the landmarks are difficult to find. Second, the

shapes’ similarity is free of rotation, translation, and isometric scaling effects in SSA. For a

manufacturing setting, even though rotation and translation will not influence the quality of

the final products, the scaling factors and the dimensions of a feature are essential quality

characteristics.

Other models, such as the Gaussian process models [34], are more flexible in dealing

with surface fitting problems regarding the geometric data. However, these models, again,

are used for surface data instead of point clouds. Moreover, the Gaussian process models

may be infeasible to handle point cloud data collected from RE because of their prohibitive

computational cost for large data sets.

2.5.2 Statistical Geometric Quality Engineering Techniques in AM

AM-oriented statistical analysis has attracted much attention during the past few years.

In this research, we only focus on offline analysis and monitoring for the geometric aspects

of AM. One of the most active fields in AM accuracy improvement includes CAD model

compensation schemes. Tong et al. [163] and Tong et al. [162] are the pioneers in this

field. However, their compensation scheme only considers the three-coordinate directions

independently, which is not consistent with the manufacturing process. To solve this issue,

Huang et al. [74] and Jin et al. [83] use a polar coordinate system to develop a compensation

scheme for layer shrinkage, which is more consistent with the AM processes. Later, Sabbaghi

et al. [139] consider the interference behavior for the compensation of the thin circular plate
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to further improve the compensation performance. In addition, the same group [140] built

a Bayesian model to extend the compensation scheme to general shapes, such as polygons.

Sabbaghi and Huang [141] proposed using transfer learning that enables deviation models

to transfer across processes with limited runs. Other models, such as the Gaussian process

[29], are also proposed for prediction and compensation of the in-plane shape deviations.

While these methods are suitable for layer-wise compensation, they overlook the inter-layer

dependency.

On the other hand, continuous production becomes a vital trend in the AM commu-

nity. Process monitoring, control, and optimization are critical components for inline AM

process-quality engineering. However, few studies focusing on this area have been developed.

Recently, Zang and Qiu [189, 190] have offered novel Phase I/II monitoring schemes for the

nonlinear profile data collected from AM. Their algorithm combines the essences of both

conventional profile-monitoring methods and SSA. However, this study fails to capture the

unique character of the AM process. Instead of producing profiles or features, AM directly

creates the products by adding material layer by layer. Even though their methodology is

close to SSA, the grids generated in their model are not landmarks. This algorithm uses

equally spaced points, which cannot guarantee the same number of corresponding points for

all surfaces.

2.6 Summary

This chapter provides a review of the RE and AM techniques. It also highlights the major

advancements in the current state-of-the-art techniques for geometric quality improvement

and monitoring. However, a significant research gap exists in applying the currently available

methodologies to RE and AM because of their unique processing characteristics. Therefore,

there is an urgent need to develop a framework capable of bridging the gap between the

whole body of point clouds and advanced analytical toolsets. In the next chapter, a novel

volumetric data analysis framework is developed to model and analyze these 3D point clouds

collected from RE or AM.
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3.0 Volumetric Data Analysis: The Framework

In this chapter, a novel volumetric data analysis (VDA) framework is proposed to model

the uncertainties of the 3D point clouds. The general flow of the VDA framework is shown

in Figure 14. The VDA framework is based on a similar foundation as the classic SSA

framework, whose key idea is briefly reviewed in this chapter. The core differences between

the two frameworks are presented in Section 3.1. Next, the technical details of the VDA

framework are discussed. Section 3.2 develops the landmark generation algorithms, which

automatically transform multiple unstructured point clouds into landmark configurations.

These landmarks possess two main properties: corresponding relationship and high volume.

Section 3.3 presents the registration step in the framework. The registration algorithms play

two important roles in the VDA framework: (1) they align the point clouds by removing

the translational and rotational factors and (2) they transform the landmarks from the

configuration space to the size-and-shape space. Section 3.4 provides the proven statistical

properties of the landmarks in this space and builds the data models for the registered

configurations. Lastly, Section 3.5 discusses the considerations regarding the density of the

generated landmarks. A significant portion of the remainder of Chapter 3 appears in [57]

and [60].

3.1 Statistical Shape Analysis

Many statistical modeling and inferential techniques are applied in RE and AM, such as

regression analysis and classic analysis of variance for a univariate or multivariate response.

For example, NURBS are widely utilized to model smooth surfaces from point clouds [192].

These regression methods are flexible in that they can fit a wide range of smooth or piece-

wise smooth surfaces. However, regression-based methods usually focus on a single surface

or feature but overlook the relationship among features. The parts’ functionality in a man-

ufacturing setting is determined by both the feature design and, more importantly, their
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Figure 14: Flow chart of general volumetric data analysis framework.

spatial relationships. Also, as the features are ”byproducts” of the AM processes, regres-

sion methods can provide little information about the fabrication process, as presented in

1.3. Variations are unavoidable in AM-created parts because of the uncertainties in the

fabrication processes. Thus, multiple AM-created parts should be considered to understand

process variations and make statistical inferences. Classic methodologies, such as functional

analysis, could be utilized to analyze or monitor the variations in the parameters in the re-

gression models of parametric forms. However, the nonparametric models, such as B-spline

or NURBS, can be involved in such an analysis.

SSA, on the other hand, is more suitable for the analysis of point-cloud-based data. The

landmarks that are the points of correspondence among objects are utilized as the geometric

descriptor to bridge the gap between shape space and the multivariate statistical method-

ologies [43]. With multivariate analysis, the uncertainties of both the individual points and

their correlation are analyzed simultaneously, without any parametric assumptions on the

shape’s form. The general SSA methodologies assume the landmarks are either given or ex-

tracted from the shape by the experts. The landmarks utilized in SSA are usually manually

selected by domain knowledge. Therefore, the number of landmarks is often at a small level.

With the advancement of high-resolution cameras and scanning technologies, the number of

surveyed points increases exponentially. However, only a few selected or inferential points

are utilized as the landmarks for analysis due to the different research interests. Therefore,

the configurations’ dimensions, the matrices whose rows are the 2D or 3D coordinates of the

landmarks, are usually small.

Then, the sample configurations are registered and transformed into the shape space by

removing the size, translational, and rotational factors. In SSA, the widely used method is
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Table 1: Comparisons of the interested problems between the SSA and the VDA frameworks.

Framework Number of landmarks Major focus

VDA Large (> 104) High-dimensional 3D size-and-shape space

SSA Small to medium (10− 102) 2D shape space

the general Procrustes analysis (GPA) [43]. Even though other popular registration methods

are available, such as iterative closest points, GPA offers the theoretical foundation for the

following statistical analysis by providing analytically tractable distributions of the registered

configurations in the shape space. When the size is essential in the analysis, GPA can be

modified only to remove the translational and rotational factors, which becomes the partial

Procrustes analysis. The configurations are then transformed into the size-and-shape space.

However, this space is underdeveloped, especially the 3D size-and-shape space, when com-

pared to the high-dimensional spherical shape space. Statistical inferential techniques, such

as hypothesis testing and regression analysis, can be applied to the registered configurations

within the shape space.

When compared to the SSA framework, the VDA shares similar steps (Figure 14). How-

ever, the size of the part is also an important quality characteristic. Therefore, instead of

dealing with the shape space, the primary focus of the VDA is to make statistical inferences

in the 3D size-and-shape space. Furthermore, because of the flexible shape designs and the

complicated fabrication process of the AM, a large number of landmarks can provide a more

detailed geometric description of the AM-created parts. As a result, the dimension of the

3D size-and-shape space is much higher when compared to that of the classic SSA problems.

The comparison between the two frameworks is summarized in Table 1.
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3.2 Landmark Generation

Both SSA and VDA frameworks rely on the definition of landmarks. Landmarks are

defined as the points on each object with correspondence between and within populations

[43]. For example, in applications, landmarks often possess domain-specific meanings, which

are known as scientific landmarks. Another way to select landmarks relies on mathematical

or geometrical properties, such as high curvature points or extreme points. This type of

landmark is called mathematical landmarks; it is widely used in computer vision or image

recognition. Pseudo-landmarks are usually the points that locate between scientific or math-

ematical landmarks. While these landmarks may not possess any interpretable meanings,

they do provide more geometrical details of the objects. Configuration, or configuration

matrix, is the matrix whose rows are the 3D coordinates of these landmarks. Thus, each

configuration provides a complete description of the size and shape of the object of inter-

est. Since the main objective of SSA is to analyze how the shape changes or to identify

different shapes, the number of rows for the configuration matrix is generally small—usually

tens, or, at most, thousands. Del Castillo and Colosimo [23] first introduced SSA to the

manufacturing community. They proposed SSA-based tests to analyze a lathe-turning pro-

cess. However, their analysis cannot be easily generalized to other manufacturing processes.

The machined parts they selected have circular profiles. Due to the invariant property, all

circles are similar, allowing for the landmarks to be generated by uniform angle sampling.

This landmark generation strategy is not suitable for designs other than a cylinder or ball.

Another strategy is to take equal distance points on a surface proposed by Zang and Qiu

[189]. Although the surface types do not limit this method, the one-on-one correspondence

restriction cannot be ensured.

In summary, three problems emerge if we utilize the landmark generation techniques in

SSA as the solution to the geometric quality issues in an advanced manufacturing setting.

First, the points on the point cloud are almost randomly distributed on the surface. Even

though a CMM machine could plan an equal distance scanning grid, the points still lack

correspondence between scans or parts because of random starting points or part position.

Second, the mathematical landmarks are not suitable since 3D scanners are of low fidelity
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when scanning the vertices or edges [168]. Because of the scanning mechanism, the points

near the vertices or edges, especially the sharp ones, cannot be digitized as accurately as the

points on a smooth surface. Choosing meaningful geometric landmarks, such as vertices or

pseudo-landmarks along the edges, may deteriorate the following analysis. Third, the devia-

tions among manufactured parts are generally minor and sometimes located in random areas

within each feature. Therefore, the analysis that relies on a small number of landmarks can

be unreliable and insensitive to local deviation—and cannot meet the high accuracy require-

ments in an industrial setting. Therefore, many in-feature or in-surface pseudo-landmarks

are required for RE and AM applications to provide a detailed description of the objects.

However, it can be time-consuming to select a massive number of landmarks, and the current

landmark generation algorithms are usually suitable for mathematical landmarks. In this

section, we propose two classes of automatic pseudo-landmark generation algorithms. Both

can start from either point cloud files or STL files. Since the landmark types do not affect

the following analysis, we do not differentiate the landmarks from the pseudo-landmarks.

A general landmark generation algorithm should satisfy two major requirements:

• The generated points should be of correspondence among different scans, and

• The generated points should locate on the surface defined by the original point clouds.

3.2.1 Feature-wise Characteristic Plane Projection Algorithm

The first type of landmark generation algorithm is the feature-wise characteristic plane

projection (F-CPP). The basic logic behind the proposed algorithm is to generate landmarks

with a hierarchical correspondence structure. Among the well-segmented point clouds, each

point cloud is separated into several subsets, called features [126]. It is easy to see that these

features are one-on-one correspondence across all scans. Therefore, the landmark-generation

problem can be simplified to generate landmarks for each feature. Without loss of generality,

the features are assumed to be any surfaces—flat, curved, or, in general, freeform surfaces.

The primary idea is to generate a grid of points on a unique plane to the feature, named

characteristic plane (CP), and then find the coordinates of the corresponding grid points

on the surface. Figure 15 presents the procedures of the F-CPP algorithm. The first and
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Figure 15: Feature-wise characteristic plane projection algorithms: (a) supporting plane

projection and (b) principal component plane projection.

most crucial step is to find the CP for the feature. CP has two types: supporting plane

and principal component plane. In the supporting plane, all the feature points are above,

while the sum distance to the plain is minimized. This plane should be unique to the feature

because of the minimization problem. However, the orientation of this plain can be sensitive

to the boundary points. This issue could potentially cause correspondence distortion. The

principal component (PC) plane, on the other hand, is more robust to the noise. Let A be

a k × 3 matrix containing all x-, y-, and z-coordinates of k measured points on the feature.

First, the matrix Γ with columns of the eigenvectors of ATA is calculated. These three

eigenvectors represent the most, second, and least variation directions of the point clouds

[169]. Since the noise within the point clouds is much smaller than the design variation, these

three directions should be almost identical among different scans. Thus, if the point clouds

are surveyed uniformly on the surface, these three eigenvectors are unique characteristics

of the target feature and robust to the noises. If the point densities are not uniform on
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the surface, subsampling algorithms with equal distance can provide a more robust solution.

One particular case is that the feature is symmetric about the feature axis. These symmetric

features may cause the eigenvectors to differ in direction among the point clouds. In this

case, a part posture can be predetermined to guide the PC directions. This coordinate

system does not need to be precise, but the axis directions should be similar among point

clouds.

Then, a rectangular envelope that covers all projections of the corresponding feature

point clouds can be found on the CP plane. For calculation simplicity, the whole point cloud

is rotated towards the CP plane. The sides of the rectangular envelope are parallel to the x-

or y-axis. The side lengths are the range of x and y values for the projection points. Next, a

well-defined grid is generated within this rectangular envelope. Finally, the surface points of

the corresponding grid points can be predicted using surface fitting techniques. Theoretically,

any surface-fitting algorithms can be selected as long as they provide a continuous feature

surface. In this dissertation, we adopt the Nadaraya-Watson local constant kernel (NWLCK)

smoother, since it is superior in terms of computational efficiency [134]. The NWLCK

smoother for z-coordinate, zi, of grid points (xi, yi), i = 1, . . . , k, where k is the number of

grid points, is

ẑi =

∑
{j:(A1j ,A2j)∈Ω(xi,yi)}

A3jK ((A1j − xi)/h, (A2j − yi)/h)

∑
{j:(A1j ,A2j)∈Ω(xi,yi)}

K ((A1j − xi)/h, (A2j − yi)/h)
. (3-1)

where h > 0 is the predetermined bandwidth, Ω (xi, yi) is the circular neighborhood of

location (xi, yi) whose radius is h, and K is a 2D circular symmetric kernel function, such

as flat kernel or Gaussian kernel.

After applying the F-CPP to all segmented features and stacking all the feature-wise

landmarks to a matrix, the configuration that fully describes the part is created. One

potential issue that could diminish the correspondence structure is that the landmarks may

locate in the blank area on the projection plane. The grid points located in the empty spaces

among all configurations can be safely ignored by setting the z-value to null and will not

affect the correspondence. However, some grid points, especially those near the projection
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profile, may not have value among all point clouds. This phenomenon can block the following

analysis since the configuration matrices of different scans or parts have varying dimensions.

Therefore, if the rows with null z-values can be found in one configuration matrix, all the

corresponding rows should be removed from the entire configuration matrices. Even though

this procedure may lead to the missing of many landmarks in certain regions, it will not

significantly affect the analysis for several reasons. First, these landmarks usually lie around

the vertices or boundaries, where the accuracy is comparatively lower and unreliable for

either CMMs and laser scanners [53]. Second, to preserve the accuracy of original point

clouds, many pseudo-landmarks are generated, while the points without correspondence

usually appear on the boundary of the parts. The number of these points is relatively trivial

compared to the total number of landmarks.

3.2.2 Bread Slicer Algorithm (BSA)

Another way to generate pseudo-landmarks is inspired by the guided bread slicer. Instead

of performing surface fitting and feature segmentation, the raw STL file can be used here.

It is widely used in RE and AM and is capable of describing complex shapes. An STL file

describes the surface through a set of triangles with unit normals, flexible and native to CAD

packages. The STL model can accurately describe complex geometric objects, such as the

bone or teeth. Since features may not be well-defined in complex shapes, F-CPP may not

be suitable for generating landmarks.

Figure 16 illustrates the main idea of the bread slicer algorithm. The primary strategy

is similar to the hierarchical correspondence decomposition in F-CPP. Instead of generating

a 2D envelope for projection points, we find a 3D bounding box for each point cloud. Then,

the cubic envelope is cut along one or all three predetermined side directions into slices. The

spacing for the slices is proportional to the side length of that direction. Each slice contains a

rectangle from the cubic envelope and a profile of the scan from the STL file. Next, lines that

are parallel to both the length and the width of the rectangle are generated. The distance

between the adjacent parallels should be proportional to the corresponding length or width.

The landmarks are generated by the crosses of these parallels and the profile outline. Instead
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Figure 16: Bread slicer algorithm.

of the correspondence between feature grids, these pseudo-landmarks are indexed through

the slice order, parallel order, and the cross order from a predefined orientation, e.g., from

left to right. The pseudo-landmarks from different point clouds are of correspondence if their

indices are the same.

The enclosing box should be unique to the entire point cloud, which maintains the

correspondence of the landmarks. Instead of a rectangle in 2D space, one idea is a 3D cubic

envelope with a minimum volume covering the whole point cloud. The 3D cubic envelope

can be found by [125], which is an O(n3) algorithm. Again, this algorithm is sensitive to

the randomness of the points located on the box surfaces. Another approach is to generate

the box constructed by the three principal components of the point clouds. As the principal

component plane, the box formed by principal components is unique to the point clouds.

More importantly, this method is computationally more efficient and robust to the noise in

the point clouds since the design shape dominates the variation.
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Unlike the direct correspondence between corresponding grid points, the landmarks gen-

erated by BSA are corresponding through indices. The first two indices—slice order and

parallel order—are guaranteed to have correspondence, while it is potentially problematic

for the cross order when missing points on some scans. The ”or” logic proposed in F-CPP

cannot be applied to this situation since the boundaries here are surfaces in original point

clouds. Removing the entire parallels from all scans, at least one of which is not consistent

with the others, may make the configurations insensitive to local variations. Thus, the best

way is to remove the corresponding crosses that are missing from the profiles. However, the

indices only record the cross orders, which makes the removal process impossible to perform.

Luckily, one facet of the crosses can simplify the analysis: the numbers of crosses generated

by a parallel and the profile are always even. The profiles determine the boundary between

material and empty space, and the rectangular envelope covers the whole profile. A line en-

ters the material area from the space for general profile shapes, which causes a landmark. A

second cross must then exist from the material area since the rectangular envelope is always

located in the empty area. Therefore, the entering crosses and existing crosses always come

in pairs. Assume the number of crosses formed by one line and the profile is 2m. Next, the

parallel can be divided into m equally spaced segments by m − 1 points. In this way, the

pairs of crosses can be indexed by the nearest breakpoint. If one pair of crosses is missing

from one scan, then the corresponding crosses with the same index should be removed from

other scans. Finally, it can be ensured that the generated pseudo-landmarks among all scans

are of correspondence.

3.2.3 Comparison of F-CPP and BSA

Both F-CPP and BSA can be used to automatically generate many pseudo-landmarks.

The underlying ideas for both algorithms are similar. First, separate the unordered point

clouds into small subsets of correspondence that are much easier to manipulate. Then, gen-

erate the landmarks at the same relative location in matching subsets. However, subset

separation mechanisms are quite different. F-CPP treats every single feature as a subset,

while BSA uses sliced profiles. Thus, each of these approaches has advantages and disad-

vantages; because of their mechanism, they are suitable for different applications.
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Since F-CPP generates landmarks separately for each feature, it is superior in accuracy.

For example, if the machining process produces the part, each feature is created individually.

The random errors can be divided into two levels: feature-level deviation and local error. If

BSA is applied to generate landmarks, the feature-level deviation, such as feature dislocation,

may cause correspondence disorder or may miss many landmarks. Also, since the features are

generated individually, it is more suitable for feature-wise landmark generation. However,

F-CPP is not suitable for complex shapes, such as bone or teeth, where the features are

not well-defined. Furthermore, F-CPP consumes a considerable amount of computational

resources if complicated shapes appear.

On the other hand, BSA is a more general algorithm compared to F-CPP. The box

envelope is theoretically general for any shapes, and it can process any 3D shapes without

considering features. Also, BSA is more computationally efficient than F-CPP. Therefore,

BSA is suitable for complex-shaped products or freeform parts.

In summary, if the product is produced by traditional manufacturing processes or has

simple features, such as application of RE for re-manufacturing, F-CPP is a better choice;

if the part has a complex shape structure, such as biomedical applications or AM-produced

parts, BSA is the one to be selected.

3.3 Registration Algorithm

The point cloud generation algorithms help to generate a large set of well-structured

landmarks. Let X be a k × m configuration matrix, where m = 3, containing the 3D

coordinates of all k landmarks. In conventional landmark-based SSA, the shape is defined by

the remaining geometric information in X when translation, size, and rotation are removed.

On the other hand, the size and shape of the configuration matrix X contains complete

information in X when translation and rotation are removed from X. The majority of the

SSA theories and methodologies rely on the shape space. However, the accuracy of size

is also an important quality factor in manufacturing processes. The definition of size and

shape is more suitable for our applications. Therefore, the raw configurations need to be
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transformed into size-and-shape space. This process is also known as registration in other

fields, such as computer vision, computational geometry.

In this section, two registration algorithms, partial Procrustes analysis and datum-guided

registration, are discussed. The SSA community develops partial Procrustes analysis to

map X to size-and-shape space, where statistical properties have been studied [43]. This

algorithm is suitable for AM process analysis and RE process without datum constraints

since the landmarks as a whole can be registered and analyzed. However, in traditional

manufacturing processes, parts are produced and measured by fixing the datum features.

Therefore, it is reasonable to register the configurations by aligning the datum features. In

this case, we developed a modified version of the partial Procrustes analysis.

3.3.1 Partial Procrustes Registration Algorithm

A point cloud registration algorithm is usually required after the landmark generation

step to remove the translational and rotational factors. Partial Procrustes analysis (PPA) is

a registration algorithm that is widely used in SSA research. Let Xi be the ith configuration,

the matrix whose rows are the coordinates of the landmarks, for i = 1, . . . , n. The PPA can

be formulated to solve the following minimization problem:

GP = inf
Γi,γi,µ

n∑
i=1

||(XiΓi + 1kγ
T
i )− µ||2 (3-2)

where GP is called the Procrustes distance, Γi is 3D rotation matrix, 1k is a vector of k

ones, γi is the location parameter, for i = 1, . . . , n, and µ is the sample mean configuration.

PPA is a particular case of the generalized Procrustes analysis which is developed by Gower

and Ten Berge [159], which includes an extra step to remove the scaling factor. The PPA

algorithm proceeds as follows to solve the above least squares problem:

1. Center the configuration to remove location. The centering process can be done by

multiplying each configuration matrix with a Helmert submatrix H [43],

XP
i = HXi. (3-3)
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The specific Helmert submatrix that we utilize is the (k − 1)× k matrix whose jth row

is (hj, . . . , hj,−jhj, 0, . . . , 0), where hj = −{j(j + 1)}−1/2 is repeated j times, and the

remaining entries consist of one occurrence of −jhj and (k − j − 1) zeros.

2. For the ith configuration matrix, let

X̄(i) =
1

n− 1

∑
j 6=i

XP
j (3-4)

3. Do ordinary Procrustest registration (OPR), involving only rotation, of XP
i ’s onto X̄(i)

to generate new XP
i for all i.

4. Repeat steps 2 and 3 until GP converge.

In the algorithm, the OPR is a simplified version of PPA that only registers one con-

figuration, X1, onto another one, X2, whose locations have been removed. The objective of

OPR is to solve

min
Γ
||X2 −X1Γ||2. (3-5)

This problem is well studied by Horn et al. [70] and Goodall [63]. The minimizer is given

by Γ̂ = UV T , where U and V can be obtained through the following singular value decom-

position problem,
XT

2 X1

||X1||||X2||
= V ΛUT . (3-6)

The PPA algorithm possesses many advantages. First, the PPA algorithm usually con-

verges in a few steps. The computational speed for this algorithm is very fast. Even though

the configuration dimension is high in AM applications, the registration step for the con-

figurations usually takes only a few seconds on a regular personal computer. Second, the

configurations registered by the PPA algorithm have nice statistical distribution approxima-

tions. When the variations of the landmarks are small, Goodall and Mardia [64] provide a

normality approximation of the PPA-registered configurations coordinate-wise independence.

This approximation will be utilized as the theoretical foundation for statistical inference in

VDA.
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3.3.2 Datum-Guided Registration Algorithm

In a manufacturing setting, parts are produced and inspected by fixing the defined da-

tum features in traditional manufacturing, especially machining processes [128]. The datum

features define a reference system for machining or metrology by restricting the degrees of

freedom, which plays a critical role in drawing, tolerancing, and measuring. Therefore, it is

reasonable to register the whole landmarks by aligning the datum for near-real practice solu-

tions. Identifying the datum features is part-dependent and requires design and engineering

knowledge, which is omitted here.

In order to register the entire set of landmarks by datum features, we first split each

configuration matrix Xi into two configurations: the one containing the rows of all landmarks

of the datum features, Xid, and the one including the remaining rows, Xif . Then, we

apply the conventional PPA to Xid’s to find the rotation parameters, Γi’s, and translation

parameters, γi’s, by solving,

Gdp = inf
Γi,γi,µ

n∑
i=1

‖
(
XidΓi + 1kγ

T
i

)
− µ‖2. (3-7)

Next, the Γi’s and γi’s can be applied to Xif ’s. Therefore, all the configuration matrices

are registered through the datum features. A modified version of PPA—datum guided PPA

(DGPPA) algorithm—is shown as follow:

1. Center the configurations to remove the location of Xid’s by a centering matrix C using

XP
id = CXid = HTHXid,

where H is a Helmert submatrix.

2. Remove translations for Xif ’s,

XP
if = Xif −

(
Xid −XP

id

)
= Xif − (I − C)Xid.

3. For the i th datum configuration matrix, let

X(id) =
1

n− 1

∑
j 6=i

XP
jd.
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4. Perform OPR, involving only rotation, of XP
id’s onto X(id) to generate new XP

id for all i.

Record the minimizers, Γ̂i’s,

XP
id ← Γ̂iX

P
id, i = 1, . . . , n.

5. Apply Γ̂i to the corresponding XP
if to generate new XP

if for all i,

XP
if ← Γ̂iX

P
if , i = 1, . . . , n.

6. Repeat steps 2 to 5 until Gdp converge.

7. Stack XP
id and XP

if to get the registered configuration matrix XP
i .

If DGPPA is implemented to register all configurations from a sample, the mean scan

configuration can be calculated by

X =
1

n

n∑
i=1

XP
i . (3-8)

3.4 Distribution of the Configurations

The distribution is required to understand and investigate the configurations’ statistical

properties for making inferences in the later chapters. The distribution, together with its

inference, of the configurations, which are matrices, can be generally complex, such as tensor-

based statistical models [184, 188]. In shape analysis, for high-dimensional size-and-shape

space, if the landmark-wise variance is small, each row of the configuration approximates

an independent multivariate normal random variable [43]. Thus, the coordinates, or the

three columns of the configurations, can be seen as independently distributed. Assume Xi’s,

i = 1, . . . , n, are configurations from the same population. Let Xi(x), Xi(y), and Xi(z)

represent the columns of the ith configuration after registration, corresponding to x-, y-,

and z-coordinates, and let X = {X1, X1, . . . , Xn} be the set containing all the surveyed
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point clouds. Therefore, the basic models of the configurations for each of the coordinate

are as follows:

Xi(x) ∼ MN (µx,Σx) , (3-9a)

Xi(y) ∼ MN (µy,Σy) , (3-9b)

Xi(z) ∼ MN (µz,Σz) , (3-9c)

where MN represents the multivariate normal distribution, µx, µy, and µz are column vectors

of length k and Σx, Σy, and Σz are k × k covariance matrices for each of the x-, y, and z-

coordinates.

3.5 The Density of Landmarks

One hyperparameter that is worth mentioning in the VDA framework is the number of

generated landmarks—the density of landmarks. In Section 3.2, the landmarks are generated

by a grid in F-CPP or slices in BSA, whose width is proportional to the sides. The density of

the grid points also determines the precision and resolution of the generated digital model.

Denser grid design usually provides a high precision mean model with more details. In our

study, we recommend that the grid width be close to the resolutions of the scanner or re-

manufacturing process, e.g., AM. A sequential point selection method, such as model-based

design [66], can be utilized to add details to the configurations by minimizing the predictive

uncertainty.
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4.0 Process Planning in Reverse Engineering

In this chapter, we utilize the VDA framework proposed in Chapter 3 to develop a

Bayesian model for the configurations in the size-and-shape space and make decisions for

the planning of RE processes. The proposed estimator based on the several scans of multiple

parts (SSMP) outperforms the one created by the one scan of a single part (OSSP) procedure.

Next, this estimator is utilized to answer critical RE process-planning questions, such as

how many scans and parts are required to achieve predetermined precision requirements.

The remainder of this chapter is organized as follows. In Section 4.1, a Bayesian model

incorporating production and scanning knowledge is built to model the statistical properties

of the configurations. Next, we propose the process-planning problem as a bi-objective

minimization problem with precision requirement constraints in Section 4.2. Section 4.3

presents simulation studies and two industrial cases to verify the proposed framework and

to illustrate the practical implementations. This chapter concludes with a summary of the

presented application. The remainder of this chapter can be found in [60].

4.1 Bayesian Model and Estimation for Original Design

The configurations’ distribution is required to understand and investigate the statistical

properties of the mean-scan and the mean-part models for original design estimation. We

assume that several parts based on the same design are available, and the distribution of the

mean-part configuration is derived as the general model. For unique objects, the production-

related components can be removed from this general model to get the mean-scan model.

One critical fact is that the numbers of available parts and scans are usually constrained due

to budget limitations or time constraints. The sample sizes for either the multiple-scan or

the multiple-part projects are small in practice. Therefore, the knowledge of the production

systems and the scanner’s specifications is incorporated into a Bayesian model for the more

accurate inference of the distributions based on small sample sizes.

54



Let Xij(x), Xij(y), and Xij(z) represent the columns of the configurations for the jth

scan of the ith part after registration, i = 1, . . . ,m, j = 1, . . . , n, corresponding to x-, y-, and

z-coordinates, and let X = {X11, X12, . . . , Xmn} be the set containing all the surveyed point

clouds. Based on the distribution of the registered configuration presented in Chapter 3, the

likelihood models of the configurations for each of the coordinate are as follows:

Xij(x) | µx,Σx ∼ MN (µx,Σx) , (4-1a)

Xij(y) | µy,Σy ∼ MN (µy,Σy) , (4-1b)

Xij(z) | µz,Σz ∼ MN (µz,Σz) , (4-1c)

where µx, µy, and µz are column vectors of length k, and Σx, Σy, and Σz are k×k covariance

matrices for each of the x-, y-, and z-coordinates. The prior distributions of these parameters

are designed in a ”weakly” informative fashion:

p(µx,Σx) ∝ |Σx|−k−2 exp

(
−1

2
tr

(
t2p + t2s

3
Σ−1
x

))
(4-2a)

p(µy,Σy) ∝ |Σy|−k−2 exp

(
−1

2
tr

(
t2p + t2s

3
Σ−1
y

))
(4-2b)

p(µz,Σz) ∝ |Σz|−k−2 exp

(
−1

2
tr

(
t2p + t2s

3
Σ−1
z

))
(4-2c)

where tr(·) represents the trace of matrices, and ts and tp represent the standard deviations

of the scanner and original production processes, if any, surveyed or derived from domain

knowledge, such as past experiences, pre-experimental trials, or equipment manuals. For

example, the repeatability or maximum deviation are usually reported in the manuals of the

CMM or the laser scanner, which is approximately three times the corresponding standard

deviations. Jamshidi et al. [79] establish a relationship between the geometric hints in the

physical machined parts, such as surface textures, and their corresponding machining pro-

cesses for tolerance estimation. In Chapter 5, we propose a framework to extract geometric

dimensioning information from the multiple point clouds, together with the process-control

knowledge, to estimate the original tolerance design. Combined with this field knowledge, or

prior knowledge in the Bayesian modeling, the estimated distributions of the coordinates are
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more suitable for limited samples, e.g., available parts or a small number of scans. Therefore,

the corresponding posterior distributions can be written as follows:

p(µx,Σx | X (x)) ∝ |Σx|−k−2−mn/2 exp

{
−1

2
tr

[
Σ−1
x

(
t2p + t2s

3
Ik + S0x

)]}
, (4-3a)

p(µy,Σy | X (y)) ∝ |Σy|−k−2−mn/2 exp

{
−1

2
tr

[
Σ−1
y

(
t2p + t2s

3
Ik + S0y

)]}
, (4-3b)

p(µz,Σz | X (z)) ∝ |Σz|−k−2−mn/2 exp

{
−1

2
tr

[
Σ−1
z

(
t2p + t2s

3
Ik + S0z

)]}
, (4-3c)

where Ik is the k× k identity matrix, and S0x, S0y, and S0z are the sums of squares matrices

with respect to the means of the corresponding coordinates,

S0x =
m∑
i=1

n∑
j=1

(Xij(x)− µx) (Xij(x)− µx)T , (4-4a)

S0y =
m∑
i=1

n∑
j=1

(Xij(y)− µy) (Xij(y)− µy)T , (4-4b)

S0z =
m∑
i=1

n∑
j=1

(Xij(z)− µz) (Xij(z)− µz)T . (4-4c)

To evaluate the precision of these estimators, we are more interested in the marginal

distribution of the mean configuration µ, whose columns are µx, µy, and µz, respectively.

The corresponding posterior marginal distributions for the mean vectors can be derived and

written as follows:

µx | X (x) ∼ tmn+3

(
X(x),

(t2p + t2s)/3 · Ik + Sxx

mn(mn+ 3)

)
, (4-5a)

µy | X (y) ∼ tmn+3

(
X(y),

(t2p + t2s)/3 · Ik + Syy

mn(mn+ 3)

)
, (4-5b)

µz | X (z) ∼ tmn+3

(
X(z),

(t2p + t2s)/3 · Ik + Szz

mn(mn+ 3)

)
, (4-5c)
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where tmn+3 is the multivariate t distribution with mn + 3 degrees of freedom, and Sxx,

Syy and Szz are the sums of squares matrices with respect to the sample means of the

corresponding coordinates,

Sxx =
m∑
i=1

n∑
j=1

(
Xij(x)−X(x)

) (
Xij(x)−X(x)

)T
, (4-6a)

Syy =
m∑
i=1

n∑
j=1

(
Xij(y)−X(y)

) (
Xij(y)−X(y)

)T
, (4-6b)

Szz =
m∑
i=1

n∑
j=1

(
Xij(z)−X(z)

) (
Xij(z)−X(z)

)T
, (4-6c)

and X is the mean configuration from the above PPA or DGPPA algorithms.

So far, the Bayesian models for the SSMP procedure, where several parts are available

(m > 2), have been built, and the posterior marginal distribution of the general mean part

configuration has been derived. As for the unique part cases, which only require several

scans, the results can be easily derived by setting m = 1 and tp = 0 in the Equation 4-5.

4.2 Process Planning for Effective RE

4.2.1 Process-Planning Model

It has been shown in Equation 4-5 that the posterior mean part configuration has a

lower variance as the numbers of parts and scans increase. A further question can be raised:

How many scans n and parts m are required to achieve certain precision requirements? In a

RE project, the major resources consumed by the practitioners, other than the cost of the

scanning hardware or software, are the costs related to either purchase or find the available

legacy parts and the time spent on the scanning project. In other words, the two objectives

we consider in the context of implementing a general RE project is the minimization of both

the number of parts and the number of scans for each part:
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min
m

m (4-7a)

min
n

n (4-7b)

where m is the number of required parts, and n is the number of scans for each part.

The above objectives are subject to several groups of constraints, which result from the

practical requirements on the precision of the models:

1. The precision requirements for the mean scan configuration have limits on the number

of scans. According to the marginal posterior distributions in Equation 4-3, increasing

the number of scans could lower the variance of the mean configuration. The number of

scans for each of the objects can be limited by an upper scanning precision requirement, δ,

which is designed or predetermined by the project requirements or application standards.

Therefore, the mean scan configuration precision constraint should be included in the

model:

max
i∈{1,...,k}

(
q
[(

Λn,1
x,i + Λn,1

y,i + Λn,1
z,i

)]1/2) ≤ δ, (4-8)

where Λn,1
x,i , Λn,1

y,i , and Λn,1
z,i are (i, i)th elements of the covariance matrices of the three

coordinates, Λn,m
x , Λn,m

y , and Λn,m
z are calculated in Equation 4-5 by setting m = 1, and

q is the coefficient that is corresponding to the credible band width of the point-wise

posterior marginal distribution of the mean configuration. Based on our experience, q

value selected between the interval [2, 3] is recommended.

2. After observing m parts, each of which has n scans, the precision requirements for the

mean part configuration have a limit on the total number of scans, mn. Similar to the

above constraint, the total number of scans for m objects can be limited by an upper-

precision requirement of the final RE model, ε, which is also designed or predetermined

by the application of the RE model. Therefore, the precision constraints of the mean-part

configuration should be included in the following model:

max
i∈{1,...,k}

(
q ·
[(

Λn,m
x,i + Λn,m

y,i + Λn,m
z,i

)]1/2) ≤ ε. (4-9)
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One point worth mentioning is that the value of δ should be much smaller than the value

of ε so that δ << ε. The reason is a two-folded one. First, there are two sources of

variations in the mean part configuration, while only one of them exists in the mean

scan one. We will come back to this one later—that the sum of squares in the covariance

matrices of the posterior marginal distribution can be decomposed into two components.

The other reason stems from a practical perspective. When the scanner is selected for an

RE project or metrology purposes, the scanner should have much higher precision than

the production processes. Otherwise, the metrological conclusion made by this scanner

is not valid.

3. The values of the numbers of scans and parts should be integers in practice,

m,n ∈ Z+. (4-10)

Notice that the model constraints are both nonconvex and approximately biquadratic to

m and n. Combined with integer requirements, this model seems to be hard to solve at first

glance. Therefore, before solving this minimization problem, some practical issues need to

be considered, which could simplify this model.

The first thing that needs to be noticed is that, since the process plans are designed after

the practitioners collect a few scans of some parts, the posterior marginal distributions of

the optimal n and m are unknown in advance. In practice, one part is selected to be scanned

multiple times at first. Assume s scans of the first part are already collected and that their

corresponding sum of squares, Ssxx, S
s
yy, and SSzz, can be calculated according to Eqaution 4-6

by setting m = 1. As for the variances of n scans, they can be approximated by

Λn,1
x ≈ Λs→n

x =
(t2s)/3 · Ik + n/s · Ssxx

n(n+ 3)
, (4-11a)

Λn,1
y ≈ Λs→n

y =
(t2s)/3 · Ik + n/s · Ssyy

n(n+ 3)
, (4-11b)

Λn,1
z ≈ Λs→n

z =
(t2s)/3 · Ik + n/s · Sszz

n(n+ 3)
. (4-11c)
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On the other hand, to approximate the variances of m parts after collecting p parts (p ≤ m),

we need to first decompose the total sums of squares in Equation 4-6 as

Sxx = n · SPx + SSx (4-12a)

= n ·
m∑
i=1

(
X i(x)−X(x)

) (
X i(x)−X(x)

)T
+

n∑
i=1

m∑
j=1

(
Xij(x)−X i(x)

) (
Xij(x)−X i(x)

)T
, (4-12b)

Syy = n · SPy + SSy (4-12c)

= n ·
m∑
i=1

(
X i(y)−X(y)

) (
X i(y)−X(y)

)T
+

n∑
i=1

m∑
j=1

(
Xij(y)−X i(y)

) (
Xij(y)−X i(y)

)T
, (4-12d)

Szz = n · SPz + SSz (4-12e)

= n ·
m∑
i=1

(
X i(x)−X(z)

) (
X i(z)−X(z)

)T
+

n∑
i=1

m∑
j=1

(
Xij(z)−X i(z)

) (
Xij(z)−X i(z)

)T
, (4-12f)

where X i(x), X i(y), and X i(z) are the coordinate vectors of the scan-mean configuration

of the part i, and SP and SS are the between-part and between-scan sums of squares.

Since the scanning precision is controlled at a much smaller level at the first constraint, the

between-scan sums of squares are negligible components in the posterior covariance matrices

when compared to the between-part variance part. It is valid in real practice that the RE

practitioners should select a CMM or scanner, which has higher precision than the process

generating the parts (tp >> ts). Therefore, our posterior marginal distribution, Equation 4-

5, for the mean part model can be approximated here by

µx | X (x) ≈ tm+3

(
X(x),

t2p/3 · Ik + SPx

m(m+ 3)

)
, (4-13a)

µy | X (y) ≈ tm+3

(
X(y),

t2p/3 · Ik + SPy

m(m+ 3)

)
, (4-13b)

µz | X (z) ≈ tm+3

(
X(z),

t2p/3 · Ik + SPz

m(m+ 3)

)
. (4-13c)
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In other words, we can treat the mean scan configurations as the ”observations” for the

Bayesian models, and Equation 4-13 is the corresponding posterior marginal distribution of

the mean. In practice, the decomposition, SP and SS components in Equation 4-12, can

also be applied to check the above assumption, tp >> ts, using the analysis of variance

techniques [114].

Similar to the case of multiple scans, assume p parts, each of which is scanned n times

to achieve the required precision, are already collected, and the corresponding between-part

sum of squares, SP p
x , SP p

y , and SP p
z , can be calculated according to Equation 4-13. The

variances of m parts can be approximated by

Λn,m
x ≈ Λp→m

x =
t2p/3 · Ik +m/p · SP p

x

m(m+ 3)
, (4-14a)

Λn,m
y ≈ Λp→m

y =
t2p/3 · Ik +m/p · SP p

y

m(m+ 3)
, (4-14b)

Λn,m
z ≈ Λp→m

z =
t2p/3 · Ik +m/p · SP p

z

m(m+ 3)
. (4-14c)

In summary, the RE process planning problem is modeling into an integer programming

model with linear objectives and nonlinear constraints:

min
m

m (4-15a)

min
n

n (4-15b)

s.t. max
i

(q · [Λs→n
i ]1/2) ≤ δ (4-15c)

max
j

(q ·
[
Λp→m
j

]1/2
) ≤ ε (4-15d)

m,n ∈ Z+, (4-15e)

where Λs→n
i is the (i, i) element of the matrix Λs→n = Λs→n

x + Λs→n
y + Λs→n

z , and Λp→m
j is the

(i, i)th element of the matrix Λp→m = Λp→m
x + Λp→m

y + Λp→m
z .
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4.2.2 Algorithm to Solve the Planning Model

To solve the above RE process planning model (Equation 4-15), we need to change the

form of the model constraints. First of all, the maximization constraints can be remodeled

as

q2 · Λs→n
i ≤ δ2, ∀ i = 1, . . . , k (4-16a)

q2 · Λp→m
j ≤ ε2, ∀j = 1, . . . , k (4-16b)

Next, the definitions of the covariance matrices are plugged in and the constraints, after

modification, can be written as

s.t. n2 + ain− bi ≥ 0, ∀ i = 1, . . . , k (4-17a)

m2 + cim− di ≥ 0, ∀ i = 1, . . . , k (4-17b)

where the coefficients ai = 3 − q2
(
Ssx,i + Ssy,i + Ssz,i

)
/(sδ2), bi = q2t2s/δ

2, ci = 3 − (SP p
x,i +

SP p
y,i + SP p

z,i)/(pε
2), di = q2t2p/ε

2, and Ss,px,i , S
s,p
y,i , and Ss,pz,i are the (i, i)th elements of the

matrices Ss,px , Ss,py , and Ss,pz . It is easy to see that both constraints have a quadratic form

with respect to variables n and m, independently. Therefore, the constraints 4-17a and 4-17b

are equivalent to

n ≥
−ai +

√
a2
i + 4bi

2
or n ≤

−ai −
√
a2
i + 4bi

2
, (4-18a)

m ≥
−ci +

√
c2
i + 4di

2
or m ≤

−ci −
√
c2
i + 4di

2
. (4-18b)

Furthermore, it is worth noticing that bi and di are always positive. This makes the values

of
−ai−
√
a2i +4bi

2
and

−ci−
√
c2i +4di

2
negative ones, and their corresponding constraints can be

dropped. Therefore, the optimization problem can be further reduced to the following model:
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min
m

m (4-19a)

min
n

n (4-19b)

s.t. n ≥ max
i∈{1,...,k}

−ai +
√
a2
i + 4bi

2
(4-19c)

m ≥ max
j∈{1,...,k}

−ci +
√
c2
i + 4di

2
(4-19d)

m,n ∈ Z+. (4-19e)

Then, after reformatting the formulae, this model can be solved analytically, such that

n = dmaxi∈{1,...,k}

(
−ai +

√
a2
i + 4bi

)
/2e and m = dmaxj∈{1,...,k}

(
−ci +

√
c2
i + 4di

)
/2e.

For applications, such as biomedicine, culture heritage, etc., where the part is unique,

the model can be reduced to discover the required number of scans by dropping the objective

and the constraints corresponding to m. Since n can be determined independently from m,

the number of scans is just dmaxi∈{1,...,k}

(
−ai +

√
a2
i + 4bi

)
/2e in the above model.

4.3 Validations and Case Studies

4.3.1 Simulation Experiment

We now illustrate and validate the VDA framework mentioned above and process plan-

ning with a simulated hemispherical design. Configurations are simulated from a design

with a hemispherical shape, whose radius is 20 millimeters (mm). The case in which one

unique object is available is first studied. A multiple-scan procedure is implemented to

construct a mean-scan configuration to achieve high precision. Assume the standard de-

viation for each of the points collected by the emulated scanner is ts = 0.01 mm. Then,

N(0, 0.012/3) independent and identically distributed (i.i.d.) errors in the unit of mm are

added to each coordinate of the landmarks to emulate the random error in the scanning

process. There are 100 layers in total, while 50 landmarks are simulated on each layer.

The simulation experiment is designed in a sequential fashion so that the optimal number
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Figure 17: Process planning results of the simulation experiment that the multiple scans for

a single hemispherical part are planned at three δ values: 0.01, 0.005, and 0.003 mm. The

simulation experiment is replicated 30 times for each setting.

of scans is calculated by solving Equation 4-15 after each simulated scan is obtained, with

30 replications. The emulated scanning process stops once the optimal number of scans

is reached or, in other words, the current number of scans is greater than or equal to the

optimal number. The process-planning model’s performance is evaluated by setting the δ

value, or the precision of the mean-scan configuration, at three different levels: 0.01 mm,

0.005 mm, and 0.003 mm. Simulation results are presented in Figure 17. As the number of

scans increases, the mean scan configuration moves closer to the nominal design regarding
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Figure 18: Process-planning results for multiple scans of a single hemispherical part with

three different prior settings of ts: 0.01, 0.002, and 0.02.

the maximum deviation among all the corresponding points. Furthermore, this result verifies

that the process-planning model could provide an accurate number of scans to achieve the

target precision requirement. One interesting observation is that the decay is not linear in

the maximum deviation to the increase of the scan number. The mean scan configuration

has a fast precision improvement at the early stage when the number of scans is small; as

the number of scans increases, the rate of the improvement tends to flatten. Even though

the mean-scan configuration can improve the precision by increasing the number of scans,

each scanner has a precision ”limit” due to the constrained resources.

Moreover, the prior information on the scanner variances, ts, in the Bayesian model

(Equation 4-2), is also evaluated using three values: the designed variance for the emulated

scanner (0.01), a smaller value (0.002), and a larger value (0.02). The δ value is controlled

at 0.01 mm. With the same stopping criteria as shown above, the result is presented in

Figure 18. This prior information, ts, could influence the optimal number of scans. If the
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ts value is much smaller than the true scanner variance, it has a risk of early stopping that

leaves the model precision unsatisfied. On the other hand, if the ts value is large, then it

may require more scans for the RE project to reach the precision requirement. Therefore, a

careful precision analysis of the utilized scanner, together with the precision specification in

the scanner’s manual, is recommended for ts value determination. However, this prior infor-

mation could fade out as the number of scans increases. The sum of square components in

the covariance becomes more important, reflecting the scanner’s ”true” covariance structure.

We are also interested in re-manufacturing cases where multiple legacy parts of the same

design exist. The simulated design is similar to the above hemispherical shape. Relatively

large noises are generated from i.i.d. N(0, 0.12/3) in unit of mm for each simulated circular

layer to emulate the variance caused by manufacturing process with variance tp = 0.1.

Simulated samples are also generated in a serial manner, similar to the real practice that the

parts are collected and scanned sequentially. Similarly, N(0, 0.012/3) i.i.d errors are added

to each coordinate of the landmarks to emulate the random error in the scanning process.

The performance of the process planning model is evaluated at δ = 0.01 and three ε values—

0.1 mm, 0.05 mm, and 0.03 mm. The decision on the required number of parts is again

made sequentially; for each replication, the project stops if the optimal target numbers of

parts are reached. The simulation results are presented in Figure 19. The results are similar

to those of the previous simulation on multiple scans. As the number of collected parts

increases, the mean part configuration becomes closer to the design. Again, the relationship

between precision, or the maximum deviations, and the part number is not linear. Another

observation is that the proposed process-planning model works well when ε is controlled at a

medium-to-large value; for a very small ε, compared with the process variation, an excessive

number of parts may be required. This phenomenon is also caused by the shape of the

decay function; at the tails of this decay, the shape becomes flat and very sensitive to little

changes. With the optimized number of parts, the mean part model could reach the precision

constraints with a few more scans. This validates our approximation of the posterior marginal

distribution in Equation 4-13. However, since the process-planning model, Equation 4-19, is

solved sequentially so that the number of scans for each part is solved first, we recommend

in practical applications to control the scanning precision δ at a much smaller level than the
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Figure 19: Process-planning results of the simulation experiment that the multiple scans of

multiple parts with the same hemispherical design are planned at three ε values: 0.1, 0.05,

and 0.03 mm and fixed δ value, 0.01. The simulation experiment is replicated 30 times for

each setting.

final model precision ε to avoid excessive part requirement (recommended that δ is selected

to be about 1/5 or 1/10 of ε). Otherwise, because the number of scans is optimized at first, as

long as the scan-precision constraint is met, it may require many more parts to compensate

for the precision constraints on the mean part configurations.

tp value is also controlled at three levels—0.2, 0.1, and 0.02—for the sensitivity study of

the prior information in the Bayesian modeling. Results are presented in Figure 20. If the
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Figure 20: Process-planning results for multiple scans of several hemispherical parts with

the same design at three different prior settings of tp: 0.1, 0.2, and 0.02.

tp value is set to be small, it has a risk of early stopping that the model precision can be

lower than the requirement. Yet, if the tp value is large, redundant parts are required, which

increase resource consumption. Therefore, a careful precision analysis of the production

variances based on the available parts or using the geometric hints is recommended for tp

value determination.

4.3.2 Unique Freeform Part

An arbitrary unique freeform object, shown in Figure 21, is printed by the LulzBot TAZ

3D printer (Figure 22(b)), an FDM machine, using gold metallic 2.85 mm polymer. The part

is unique because the printed part is of high variability, which causes the part to deviate from

the initial design and result in making the actual dimensions unknown. Therefore, multiple

scans are required to meet certain predetermined precision. The point-cloud samples are

collected through 25 independent sequential scans of the objects using the FARO Platinum
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Figure 21: The design and the physical part of the freeform object.

8’ Arm Laser Scanner (Figure 22(a)). According to the scanner’s manual, the standard

deviation ts is about 0.05 mm, which can be used as the prior information to our process

planning model. Since only the freeform surface is of interest and the bottom of the object is

a flat surface, the support surface method can be implemented as CP to generate landmarks.

The object does not have a datum feature; therefore, a PPA algorithm is implemented to

register the generated landmarks, which can be used for the following analysis. The results

of process planning are shown in Table 2, where the value δ is controlled at four levels. From

the results, it can be easily seen that the number of scans is required to be higher when

the predetermined scan precision is smaller, which is similar to the above simulation results.

Also, the optimal number of scans is not linear to δ that, for high precision requirements,

such as δ ≤ 0.005 mm, requires over 73 scans.

To see the performance of the mean-scan configurations over the different scan numbers,

a ”true” model of the object needs to be acquired. A mean-scan configuration based on

another independent 25 scans is treated as the benchmark configuration. Both the Procrustes

distance and the maximum deviation are utilized to measure the difference between the
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Figure 22: Experimental equipment: (a) FARO Platinum 8’ Arm Laser Scanner; (b) LulzBot

TAZ 3D printer.

Table 2: Optimal calculated number of scans to meet the predetermined precision levels for

unique freeform part.

Predetermined Scan Precision δ (mm) Optimal Number of Scans n

0.05 2

0.03 4

0.01 27

0.005 104

benchmark and the mean-scan configurations over various scan numbers, as presented in

Figure 23. The mean-scan configurations are built through a permuted scan order procedure

with 30 replications. Both the Procrustes distances and the maximum deviations between

the benchmark model and the mean scan configuration, as well as the confidence bandwidth,
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Figure 23: The Procrustes distance and maximum deviation between the mean part con-

figurations with different number of scans and the mean configuration from 25 independent

scans for the freeform part in Figure 21.

become smaller as the number of scans increases. However, the trends are not linear in the

number of scans. It can be seen that after about 12 scans, the trends in both figures tend to

be flat; with more scans, the mean scan configurations do not improve significantly. Table 2

also illustrates this behavior. When the precision is controlled by less than 0.03 mm, the

required number of scans increases exponentially.

4.3.3 Multiple Mechanical Parts

Another case study is based on RE for the re-manufacturing of legacy parts. Five me-

chanical parts were collected from the University of Pittsburgh’s Manufacturing Assistance

Center (MAC). Trainees from MAC using numerical control machines manufactured the me-

chanical parts. The CAD design and the raw point cloud and generated landmarks of the

parts are shown in Figure 24 and Figure 25, respectively. After inspection, all the parts are

within the tolerance requirements, identified as qualified parts. Due to the high precision

of the numerical control machines, Renishaw Cyclone Touch Probe Scanner, a CMM, was

used to survey the surface points. According to the manual, CMM’s repeatability is 5 µm,
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Figure 24: The original CAD design of the collected machined parts.

which implies that ts ≈ 0.005/3 mm. The point clouds from multi-view were registered

and segmented using Geomagic Studio 2014. Since the digitization tools perform poorly

near the sharp edges or vertices, the points near the edges are manually removed from the

point clouds to prevent them from affecting the results. The edges and vertices are then

interpolated through parametric surface-fitting algorithms. The PC plane is used in F-CPP

to generate landmarks for each of the thirteen surfaces of the part. According to the de-

sign in Figure 24, the left, bottom, and back surfaces are the datum features. Then, the

entire landmarks are registered using DGPPA by the ones on the datum features. Next, the

registered whole-body landmarks can be used for process planning. The prior information

of the machining processes is derived from Chapter 5, where detailed tolerance analysis is

presented and summarized in Table 3. According to the table, tp is selected to be about

0.0405 mm, since the maximum deviation is considered in our model.
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Figure 25: Raw-point cloud and generated landmarks of a machined part.

The process planning results are shown in Table 4. Only one scan is required for each part

when the scanning precision is controlled at 0.005 mm. Therefore, mean scan configurations

generated by three CMM scans, for conservative purposes, are accurate enough for controlling

the scanning precision at 0.005 mm or lower when the number of parts is small and the part

configuration constraint is controlled at relatively loose levels. In this case, the major source

of variation in the mean part configuration is introduced through the original manufacturing

process. The number of parts required tends to be large if the part precision is determined

to be small.

On the other hand, the numbers of required parts calculated by the proposed process-

planning model have a similar pattern to the simulation study. When the controlled precision

value is smaller than or equal to 0.03, more than 33 parts need to be collected to reach the

requirement. In real practice, the number of available legacy parts is usually small, for

example, five in our case study. To collect extra parts in some cases could require excessive

resources.

Since the initial design is known, the true configuration can be formulated according

to the CAD design. The Procrustes distance and maximum deviation between the mean

part configurations and the true configuration are shown in Figure 26. Both trends become
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Table 3: Production variances for each of the tolerancing features.

Tolerancing Feature Standard Deviation of Dimensions

Size 1 0.0152

size 2 0.0001

Size 3 0.0003

Size 4 0.0001

Size 5 0.0047

Size 6 0.0051

Size 7 0.0014

Size 8 0.0027

Size 9 0.0030

Perp 1 0.0004

Perp 2 0.0022

Coplanar 0.0038

Angular 0.0405

Location 0.0098

Table 4: Optimal calculated number of scans to meet the predetermined precision levels for

machined parts (scan precision δ controlled at 0.005 mm; each part is scanned three times).

Predetermined Part Optimal Number of Optimal Number of

Precision (mm) Required Parts m Required Scans n

0.15 3 1

0.1 10 1

0.05 46 1

0.03 132 1
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Figure 26: The Procrustes distance and maximum deviation between the mean part con-

figurations with a different number of parts and the true configuration for the machined

part.

tighter with lower variance as the number of parts increases. Since the mean dimensions

may deviate from the true design in a real production system, the Procrustes distance and

the maximum deviation tend to converge to non-zero constants. This off-targeting behavior

exists ubiquitously in the analysis of the production systems [180]. For RE applications,

where the true design is unknown, the mean part configuration still provides a more robust

estimator than any single-part model. A small point worth noticing is the maximum devia-

tion for a single part in Figure 26. The mean and confidence band show that the maximum

deviation of each part is between (0.19, 0.24) mm (or (0.0075, 0.0095) inch), which is out of

the maximum tolerance in the design (Figure 24). Although DGPPA aligns the configura-

tions by registering the datum features, the registration is based on the sum-of-squares-loss

(Procrustes distance). Therefore, the resulting registered configurations do not minimize

the maximum deviations among them. On the other hand, the tolerance design is based on

the ASME Y14.5 standard, where the Taylor, or envelope, principle and ideal datum feature

principle are defined. Therefore, the mean part configuration of the mechanical parts, even if

it is a good estimator of the true design from the statistical point of view, cannot be directly

used for tolerancing applications, such as tolerance estimation in [55].
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Figure 27: Process map of the process planning model presented in Chapter 4.

4.4 Summary and Conclusions

This chapter utilizes the VDA framework to create a new estimator with a smaller vari-

ance of the original design through scanning multiple parts with the same design, if any,

and multiple times for each of them, as shown in Figure 27. This framework can be directly

used in various applications, such as legacy parts re-manufacturing, producing customized

prostheses, etc. A Bayesian model with ”weakly” informative priors from the manufacturing

and metrology domain knowledge is built for the mean configurations to describe the statis-

tical properties. As one application of VDA, we describe a RE process-planning model based

on the Bayesian posterior marginal distribution of the mean configurations after observing

multiple point clouds. By controlling the precision requirements at both scanning and part

levels, the optimization model provides an optimal required scan and part number for RE

practitioners.

The types of manufacturing applications we studied focus on the products close to the

original design with a small variance factor, which forms the framework’s basic assumption.

Simulation studies are presented to verify the performance of the proposed method. Two

real case studies illustrate how to implement this framework and show that the mean scan

and part configurations concentrate around the true object/design with lower variance. This

framework addresses the major concerns for the precision of RE in real applications.

76



One area of future work lies in real applications. In the case study, we observe that the

precision improvement in both the mean-scan configuration and the mean-part configuration

is not linear to the number of scans. On the one hand, if the controlled precision is not well-

selected, the process planning model may provide unreasonably large numbers of scans and

parts. On the other hand, in real practice, the sample of available parts is usually small,

which may not reach the planned number. We are developing a method to quantify the

tolerance for mean scan and part configuration and integrate them into the tolerance stack-

up analysis for re-manufacturing to solve these issues.
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5.0 Tolerance Estimation for Reverse Engineering Based-Re-Manufacturing

Systems

Tolerances are critical to the product’s design, manufacturing, and quality. However,

tolerances are often overlooked in a reverse engineering (RE) process for industrial applica-

tions, especially in legacy parts or spare parts re-manufacturing. Ignoring tolerances could

either unnecessarily call for high precision re-manufacturing processes or make the repro-

duced parts unqualified. In this chapter, Section 5.1 first proposes a general routine for

estimation of the tolerance based on the dimensions of several physical parts with the same

design and the knowledge of production-process analysis. Next, we review and classify the

tolerance classes defined in GD&T standards and develop the approaches to extract dimen-

sions from the point cloud for each tolerancing type for both tolerance estimation and AM

inspection purposes. The performance of the proposed framework is verified and evaluated

via an RE case study. Tolerance-estimation results based on a small batch of machined parts

are compared with their known tolerancing specifications with a discussion on the proposed

method in Section 5.3. Finally, this chapter concludes with a discussion on how to choose

an estimation routine in real practice. The tolerance-estimation method proposed here plays

two important roles in this dissertation. First, as shown above, it helps to estimate the

tolerance design for re-manufacturing and complete the design information for RE. In addi-

tion, this method also provides a rough estimation of the variance of the original production

process. This variance estimation can be utilized for the accurate process planning presented

in Chapter 4. The remainder of this chapter appears in [56].

5.1 A Methodological Framework for Tolerance Estimation

The concept of tolerancing stems back to the beginning of mass production. Due to the

limitations of machining processes and specific functionality requirements, complex designs

are usually decomposed to a set of simple designs for multistage machining processes [172], or
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simple parts and sub-assemblies for cost-saving purposes, such as simple process planning or

part interchangeability [20]. With an increasing interest in global mass production during the

past few decades, various topics have been developed along each manufacturing stage, such

as tolerance analysis and tolerance allocation. Hong and Chang [68] provide a thorough

review of each topic of tolerance research. However, all the topics are developed for the

traditional manufacturing processes, from design and manufacturing to inspection. RE is

a ”non-traditional” manufacturing process that, instead of adding value to the materials,

transforms the physical parts back to the digital world to estimate the original unknown

design. Therefore, tolerance estimation can be seen as an inverse problem of classic tolerance

topics. Previous research on tolerance analysis or synthesis usually transforms the dimensions

of the actual feature into a new space for analytical convenience [109, 146, 147]. Two

significant issues exist in these models when applied to RE research: (1) these models were

developed for either tolerance stack-up analysis or assembly simulation purposes, which are

not usually consistent with the GD&T standards and (2) a major foundation of most models

is the assumption of known design, which is critical to the properties of the analytical spaces,

such as T-Map® [6]. Little design information is known about RE applications other than

the physical parts. Therefore, the tolerance information needs to be inferred directly from

the point cloud. Recently, Schleich and Wartzack [146, 147] and Polini and Corrado [133]

have proposed the concept of skin-model shapes for tolerance analysis and, generally, digital

twin analysis. Their method simulates the point cloud from the CAD model and performs

tolerancing studies, such as tolerance evaluation, assembly simulation, on the simulated

points.

In production systems, the manufacturing processes are usually selected and planned

based on the geometric and tolerance designs. Thus, to estimate tolerances from physical

parts, the latent relationship between the tolerance specification and the parts’ dimensions

should be first set up. First, the original tolerance design determines the process planning

and inspection processes. A primary assumption of this study is that all the dimensions

of the parts are within the original tolerance specifications. Since all the parts are either

collected from the original vendor or disassembled from the products, they pass the inspec-

tion or quality assurance by the manufacturer. Therefore, the regions determined by the
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upper and lower boundaries of the examined dimensional values should be at least within

the original tolerance specifications. However, this type of estimation is conservative in

that the estimated tolerance regions might be too narrow, which could unnecessarily call

for high-precision re-manufacturing processes. Due to the variable nature of the original

manufacturing processes, each dimension of the produced part can be modeled as a random

variable. Boundary estimators are also random variables determined by both the part’s di-

mensional value and the number of available parts. The number of available parts in an RE

practice is usually small due to either the budget constraints or the parts’ availability. In

this case, this type of empirical tolerances may not be an accurate estimator of the original

tolerance design.

One possible extension of the boundary estimator relies on the variable nature of the

dimensional values. If a feature can be evaluated through a dimensional value, then this

feature dimension can be modeled as a random variable whose distribution is controlled by

the geometric design and the original manufacturing system. Here, the feature size in the

American Society of Mechanical Engineers Y14.5 [123] standard is excluded since it is defined

as the envelope of the feature instead of a specific dimensional value. This particular case will

be discussed in the following section. Because of the variable nature of the dimensions, the

manufacturers usually implement either the six-sigma (6σ) policy or the process capability

ratio (PCR) policy for process design and planning. If the dimensional variable follows a

univariate distribution, the region limited by the six standard deviations from the mean of

the distribution could control the defective rate at a small level. Following this policy, the 6σ

region of the dimension produced by the original manufacturing process should be within the

tolerance specification [181]. Since the standard deviation of the actual process is unknown,

it could be estimated from the parts’ dimensions. Two standard deviation estimators are

available to find the 6σ region based on different sample sizes [114]. One is based on sample

range statistics if the sample size is less than 10. The other one is the square root of the

sample variance if the sample size is relatively large.
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Furthermore, another widely used process-control policy is based on PCR [88, 27], which

is used extensively in manufacturing industries for process parameter and tolerance design

[170]. The classic PCR, Cp, is defined as

Cp =
USL− LSL

6σ
(5-1)

where USL and LSL are the upper and lower specification limits, respectively, and the

USL − LSL is the width between the tolerance limits. Even though other more advanced

process capability ratios, such as Cpk, Cpc, etc., are available, these indices were developed

to be more sensitive to the off-center processes or the non-normal distributions. Kotz and

Johnson [90] provide a detailed review paper on this topic. However, in our situation, the

original design is unknown, and information about whether the process is off-center or has

a non-normal distribution is missing. Therefore, the Cp index is the only one that can be

used in this case with the following assumptions:

• The dimension of interest has a normal distribution;

• The original manufacturing processes that produce the part is in statistical control; and

• The process means are located at the centers of the lower and upper specification limits.

With the σ estimation methods shown above, the width of the tolerance region, T , can

be estimated by

T = 6σCp, (5-2)

and the value of Cp can be assumed to have a standard value in industrial applications, such

as 1.33 or higher [114]. The normality assumption in the Cp index is strong. A nonparametric

version has been proposed by Polansky to relax such an assumption [131, 132]. The key idea

is to inspect the probability p that is

p = P (X > USL or X < LSL), (5-3)

where X is the random variable representing the quality characteristic of the feature of

interest. Without the normality assumption, the distribution of the random variable X is

estimated by the inspected values from the created parts using nonparametric methods, e.g.,

kernel smoothers. Even though the parametric-distribution assumption can be relaxed, the
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nonparametric methods require a relatively large sample size to enjoy the nice asymptotic

property for estimation. In the RE-embedded re-manufacturing applications, the number of

available parts is usually small. Therefore, nonparametric methods may not be appropriate

for our study.

5.2 Dimension Evaluation Algorithms for Tolerance Estimation

In Section 5.1, the methodology to estimate original tolerance design based on parts

dimensions is proposed. Evaluating the dimensions from the point cloud is critical for both

tolerance estimation and quality assurance for AM-created parts. Since the engineering

design and inspection rely on tolerance specification from a GD&T standard, the dimen-

sion evaluation procedures also follow the standard. Two GD&T standards that are widely

adopted around the world are the ASME Y14.5-2009 [123] and the International Organiza-

tion for Standardization Geometrical Product Specification (ISO GPS) standards (ISO/TC

213). Tolerances can be broadly divided into six categories based on their definitions [68]:

size/dimensional tolerance, form tolerance, location tolerance, orientation tolerance, profile

tolerance, and runout tolerance, where the last five are known as geometric tolerances. For

reverse engineering applications, only the first four types of tolerances are considered in this

study. The profile-tolerancing zone is defined as the equal distance region around the design

surface, which is usually unknown in RE applications. Further, the runout tolerance is often

related to a rotational feature concerning the datum axis, which is either hard for the 3D

scanner to capture or not scannable. As a result, this study omits these two tolerancing

types.

Algorithms to extract dimensions related to all the other four tolerances from the point

cloud will be briefly discussed in this section. First, algorithms for extracting dimensional

values related to size/dimensional tolerances are proposed based on both ASME and ISO

standards. Then, the algorithm to set up the datum system is discussed. Next, algorithms

extracting dimensional values related to the other three geometric tolerances—form, location,

and orientation tolerances—are presented based on their specific datums.
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5.2.1 Size/Dimensional Tolerance

The dimensional tolerance or fit is used in ISO standards to define the limiting region for

feature size. It is both critical and ubiquitous in GD&T standards. In ASME Y14.5-2009,

the terminology with a similar purpose is size tolerancing. In this class of tolerance, two

major types of features are considered: the planar feature, whose size is the distance between

two planar features, and a cylindrical feature, whose size is the cylinder’s radius of interest.

The definition of size tolerance is one of the significant differences between ASME and

ISO standards. This difference is rooted in the inspection preferences of the manufacturing

industries in North America and Europe. In North America, where the concept of mass pro-

duction was developed, individual gauges are designed to test whether parts are intolerance

for time-saving purposes, while in Europe, a CMM is widely adopted for inspection because

of its versatility and flexibility. As a result, the ASME standard relies on the Taylor prin-

ciple or envelope principle, often referred to as a preference for the ”hard-gauge” standard.

Therefore, ASME Y14.5-2009 considers the control of all points on the surface or a feature

using the envelope or the maximum and least material conditions (MMC and LMC). In

other words, the ASME standard requires calculating an envelope that covers all points on

the feature. From the mathematical definition point of view, the MMC and LMC correspond

to the envelopes covering the features with minimax and maximin distances. In inspection,

both the minimum and maximum material conditions should be located within the tolerance

region for the qualified parts. The algorithm to extract the sizes of the planar feature and

cylindrical feature from the point cloud is illustrated in Figures 28 (a) and (b), respectively.

For the planar feature, the convex hulls of both planes are computed via algorithms, such as

the QuickHull algorithm [10]. Then, let fijk be the facet of the convex hull ms determined

by point i, j, and k on plane Ps, where s ∈ {1, 2}. The MMC and LMC for the planar

feature can be computed by

MMC = min
s∈{1,2}, t∈{1,2}\s

min
fijk∈Ps

max
p∈Pt

d(fijk, p), (5-4)

LMC = max
s∈{1,2},t∈{1,2}\s

max
fijk∈Ps

min
p∈Pt

d(fijk, p), (5-5)
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where d(f, a) is the Euclidean distance between plane f and point a. It is relatively diffi-

cult to extract the cylindrical feature for the MMC and LMC. In this study, a heuristic

method—the least-squares algorithm—is implemented to calculate both boundaries, shown

in Figure 28 (b). First, all the points of the cylindrical feature are projected to the 2D

plane. The least-squares fitting algorithm is applied to the projected points to find both the

centroid and the mean radius. Then, the values for MMC and LMC are the maximum and

minimum distance between the projected points and the least-squares centroid.

Since the size tolerances are measured and represented through MMC and LMC, no

dimensional values are directly extracted if ASME Y14.5-2009 is selected as the GD&T

standard. Therefore, both the 6σ and PCR methods cannot be applied to this case. For-

tunately, MMC and LMC are very sensitive to the outliers, and, therefore, the estimated

tolerance would not be too narrow for re-manufacturing.

However, the ISO standards focus on the least-squares size of a feature known as ”CMM

Friendly.” The algorithms for both the planar feature and the cylindrical feature are pre-

sented in Figures 28 (c) and (d). For the planar feature, the least-squares fitting algorithm

is applied to one of the planes. Then, the dimension of the planar feature is the average

of the distances between the fitted plane and the points on the other plane. In the case of

cylindrical features, the algorithm is the least-squares fitting in the ASME method. Instead

of finding the envelopes, the fitted mean radius is the size of the cylindrical feature. Unlike

the ASME’s philosophy, the sizes extracted according to ISO standards are usually robust

to the outliers, making the boundaries of the surveyed dimensions comparatively tight. Yet,

since the direct dimensions are provided by the ISO algorithms, 6σ and PCR methods can

be implemented to further expand the estimated region.

5.2.2 Establishing the Datums

A datum plays a critical role in the following geometric tolerances, including form, loca-

tion, orientation, and profile tolerances, from both the definition and inspection perspective.

Since trivial differences exist between ASME and ISO standards, from now on, the definitions

from ASME Y14.5-2009 [123] and ASME Y14.5.1M-1994 [122], the Mathematical Definition
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Figure 28: Methods to estimate tolerance of size from the point clouds: (a) extracting MMC

and LMC for planar feature based on ASME Y14.5; (b) extracting MMC and LMC for

circular or cylindrical feature based on ASME Y14.5; (c) extracting dimensional value for

planar feature based on ISO standards; and (d) extracting dimensional value for circular or

cylindrical feature based on ISO standards.

of Dimensioning and Tolerancing Principles, are utilized for datum frame establishing and

dimension extracting. As for ISO standards, interested readers could refer to the work pro-

posed by Schleich and Warzach [147], which is a similar but different framework to evaluate

tolerances for skin model shape.
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The concept of datum was developed to constrain the degrees of freedom of the parts

for manufacturing and inspection purposes. In practice, the datum is usually established

by attaching the part to a stable piece of equipment, such as the machine table or surface

plates; in GD&T standards, it is presented as the datum feature simulator, which refers to

ideal planes, points, or axes. Since the reverse engineering model in this study is either based

on the whole-body scan or the mean configuration of several scans, the definition of a datum

feature simulator is utilized to establish datums. Because the original process equipment

is missing, the actual supporting structures and contact points are unknown. Therefore,

the datum feature simulator is a more comprehensive and reasonable choice. Furthermore,

choosing datum features heavily depends on the part designs and domain knowledge, and

automated datum selection is still of research interest. In this study, we assume the datum

features have been chosen. The plane-type datum features are considered in this study for

reverse engineering applications.

Instead of defining a specific plane as the datum, multiple valid datums could be estab-

lished from a datum feature. For example, if a planar feature is chosen as the datum feature,

then the set containing all the planes defined by at least three points on the feature, and

above which the entire point cloud lies, can be defined as a candidate datum set. The facet

subset of the convex hull of the datum feature, which satisfies the above condition, is the

minimum candidate datum set. The QuickHull [10] algorithm can be applied to determine

the minimum convex hull. Then, the candidate datum set could be established through

iteratively screening the facets by checking whether the point-to-facet direction is opposite

to the out-of-material direction of the datum feature. Next, following the minimax and

maximin conditions defined by the target tolerance, a specific datum and its corresponding

dimensions could be found.

Since each datum establishes and fixes 3 degrees of freedom, a datum reference frame

is required to remove all 6 degrees of freedom for manufacturing and inspection purposes,

including translations in the x-, y-, and z-directions and rotations around them. One possible

practice is to define three planar datum features to establish the datum reference frame. Like

the candidate datum set, the candidate datum reference frame set can be established, within

which the actual datum reference frame can be determined by the minimax or maximin
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condition for a specific tolerance type. The three planar datum features are ranked as

primary, secondary, and tertiary datum features, respectively. The secondary datum is

constrained to be perpendicular to the primary one, while the tertiary datum is defined to

be orthogonal to both the primary and secondary datums. Therefore, within the tolerance

estimation study, the candidate reference frame set can be found by finding the primary

candidate datum set. For each primary datum candidate, the corresponding datum reference

frame candidate is unique since the secondary and tertiary datums are restricted by the

mutual orthogonal conditions and the points supporting constraints defined for datums.

Specifically, the algorithm for the datum reference frame is as follow:

1. Apply the QuickHull algorithm to find the convex hull of the points corresponding to

the predetermined primary datum feature;

2. Find the subset of the facets of the convex hull, F , within which the whole point cloud

is on one side of the facet; and

3. For each component, f1i, of F :

a. Find the plane f2i with respect to the predetermined secondary datum feature, which

is perpendicular to f1i;

b. Find the plane f3 with respect to the predetermined tertiary datum feature, which

is perpendicular to f1i and f2i; and

c. Append f1i, f2i, f3i) to the set D.

Then, the set D is the candidate reference frame set. Next, the algorithm to extract dimen-

sional values for each type of geometric tolerances is discussed. From now on, let F and D

be the candidate datum set for a specific datum feature and candidate reference frame set,

respectively, which the application context determines.

5.2.3 Tolerance of Form: Straightness and Flatness

Four types of form tolerances are defined in ASME Y14.5-2009: straightness, flatness,

circularity, and cylindricity. The definition and algorithms to find ”dimensions” from the

point cloud for each type will be given in this section. Since ”dimensional” values or the
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Figure 29: Extracting dimensional values to estimate the tolerance of straightness or flatness

in 3D and 2D views.

deviations corresponding to all four tolerances can be extracted from the point cloud, both

6σ and PCR estimation methods could be applied.

The definition of straightness tolerance is given as a tolerance zone within which all the

surveyed surface points should lie, as shown in Figure 29. In contrast, the flatness tolerance

is defined by two parallel planes that cover the points of the planar feature. Theoretically,

straightness refers to the properties of a line; in practice, such a line is ill-defined. Therefore,

the evaluation algorithms for both types of tolerances have no significant differences. A

convex hull of the plane needs to be computed to access either tolerance via the QuickHull

algorithm. Then, the dimensional value is the minimax distance between each facet and the

feature points.
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5.2.4 Tolerance of Form: Circularity and Cylindricity

Similar to the relationship between straightness and flatness, circularity is defined on

a circular profile, while cylindricity considers the 3D volume. Since the actual rotational

axis is unknown, the deviations regarding the circularity and cylindricity could be com-

puted similarly by calculating the envelopes for the circular feature discussed in the previous

section.

5.2.5 Tolerance of Orientation: Parallelism

Parallelism, perpendicularity, and angularity are three major tolerances defined in both

ISO and ASME GD&T standards. Each of these tolerances determines a specific orientation

posture of the planar surface with respect to the datums. Algorithms to extract dimensional

values from the point cloud are proposed in this section based on the definition of each type

of tolerance that can be applied to estimate designed tolerances via 6σ or PCR methods.

Parallelism represents the equidistance condition of the planar surface to its correspond-

ing datum, as shown in Figure 30. According to the standard, the tolerance zone is the

minimax distance of two planes parallel to the datum feature and covers all the feature

points. Based on the definition, the dimensional value of parallelism xp for a specific feature

can be calculated via

xp = min
f∈F

max
i,j∈P
|d(f, i)− d(f, j)|, (5-6)

where d(f, a) is the Euclidean distance between plane f and point a, and P is the set of

points in the feature of interest.

5.2.6 Tolerance of Orientation: Perpendicularity

Perpendicularity represents the ”right-angular” condition between the planar surface

and the datum, as shown in Figure 31. The width of the tolerance zone is described by

the distance of two parallel planes that are orthogonal to the datum. The points on the

surface of interest are first projected to the 2D Euclidean space determined by the datum(s)

associated with the feature and the datum that is assumed to be parallel to the feature. The

89



Figure 30: Extracting dimensional values to estimate tolerance of parallelism in 3D and 2D

views.

dimensional value is the minimax distance of the points along the axis with respect to the

original datum candidate set.

5.2.7 Tolerance of Orientation: Angularity

Perpendicularity is a particular case of angularity, within which the angle between the

feature and datum is designed to be a right angle. Therefore, a similar dimensional value

extraction algorithm can be applied to find the deviation region. However, unlike perpendic-

ularity, the nominal angle between a feature and its associated datum is unknown in reverse

engineering applications. Since the mean-part model proposed in Chapter 4 is an unbiased

estimator to the nominal design with a lower variance, the angle value in the mean part

model could be an estimator to the unknown design angle. Therefore, the first step is to find

the mean part model through several scans of multiple parts. Next, the mean feature land-

marks are projected to the 2D Euclidean space determined by the corresponding datums.

With the least-squares fitting, the designed angle could be estimated by the angle between

the fitted line and the datum.
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Figure 31: Extracting dimensional values to estimate tolerance of perpendicularity in 3D

and 2D views.

Following a similar step as with perpendicularity, the points associated with the feature

are projected to the 2D space for each point cloud. The dimensional value of angularity

is the minimax distance between the envelope, determined by the angle estimator and the

projected points with respect to the datum candidate set.

5.2.8 Tolerance of Location

Locational tolerancing is represented by a zone that constrains the range of an estimated

centerline or axis—or center plane. Based on this definition, the primary job of estimating the

dimensional value for locational tolerance is to determine the center axis or the center plane.

The center axis of the cylindrical feature could be found through the least-squares fitting, as

mentioned in the previous section. To infer the center plane, the points on the joint planar

features that constrain the planar feature of interest are projected to the corresponding

datum. By taking the boundary points on both of the least-squares lines, the center plane

becomes the plane that passes the center of the points of both boundaries while remaining

perpendicular to the projected plane. For both cases, finding deviation values of locational

tolerance can be reduced to the parallelism problem between the center axis or plane and its

associated datum.
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Table 5: Designed tolerance regions versus the empirical tolerance regions, in inches, esti-

mated by tolerance-inferencing methods based on ASME standard (Feature size/dimensional

tolerance).

Tolerancing Feature True Tolerance ASME Estimator

Size 1 (0.185, 0.189) (0.18513, 0.18895)

Size 2 (1.489, 1.491) (1.48996, 1.49017)

Size 3 (0.549, 0.551) (0.54998, 0.55000)

Size 4 (0.374, 0.376) (0.37449, 0.37534)

Size 5 (0.989, 0.991) (0.98940, 0.99086)

Size 6 (0.989, 0.991) (0.98969, 0.99097)

Size 7 (1.874, 1.876) (1.87480, 1.87508)

Size 8 (0.374, 0.376) (0.37429, 0.37529)

Size 9 (0.249, 0.251) (0.24920, 0.24989)

5.3 Case Study

We conducted a case study to validate the proposed tolerance estimation method. We

estimated the feature tolerances based on a small batch of machine parts and, we then

compared our findings with the design tolerance specifications.

The same five mechanical parts, whose design is shown in Figure 24, were collected from

MAC as shown in Section 4.3.3. All the dimensions and tolerances are specified in inches,

and ASME Y14.5-2009 is used for the GD&T design. Trainees from MAC manufactured the

mechanical parts using numerical control machining equipment. According to their design

specification, all the parts pass the inspection using a manual CMM. Renishaw Cyclone

Touch Probe Scanner was used to survey the surface points for high precision points collection

for reverse engineering practice. The point clouds from multi-view were registered and

segmented using Geomagic Studio 2014. Since the probe of the CMM cannot accurately

survey the points along the sharp edges or near the vertices, the points near the boundaries
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Table 6: Empirical tolerance regions, in inches, estimated by different tolerance inferencing

methods based on ISO standards (feature size/dimensional tolerance).

Tolerancing Feature ISO Range Estimator ISO 6σ Estimator ISO PCR Estimator

Size 1 (0.18590, 0.18869) (0.18549, 0.18909) (0.18490, 0.18969)

Size 2 (1.48978, 1.49018) (1.48973, 1.49024) (1.48964, 1.49032)

Size 3 (0.54999, 0.55000) (0.54999, 0.55000) (0.54999, 0.55000)

Size 4 (0.37491, 0.37507) (0.37489, 0.37509) (0.37486, 0.37512)

Size 5 (0.98976, 0.99063) (0.98964, 0.99075) (0.98946, 0.99094)

Size 6 (0.98985, 0.99079) (0.98972, 0.99092) (0.98952, 0.99112)

Size 7 (1.87485, 1.87511) (1.87481, 1.87515) (1.87475, 1.87520)

Size 8 (0.37464, 0.37514) (0.37457, 0.37521) (0.37447, 0.37532)

Size 9 (0.24932, 0.24959) (0.24911, 0.24982) (0.24899, 0.24994)

are manually removed from the point clouds. However, for tolerance estimation purposes, the

edges and vertices are interpolated through parametric surface-fitting algorithms. Each of

the five parts is scanned twice, and the mean-scan configurations are calculated through the

DGPPA method proposed in Chapter 3 to represent the accurate point cloud of the parts.

The measurement error of the CMM, which is much smaller than the variation between

parts, can be roughly estimated by the DGPPA method. Therefore, the measurement error

can be ignored in the tolerance estimation study of the original manufacturing processes.

According to Figure 24, nine size tolerances and five geometric tolerances are specified

in the original design. Even though the coplanar type of tolerance in the design is under

the profile type tolerances that are not discussed in this chapter, both features are planar

features, and this tolerance can be solved similarly as the parallelism. In this chapter, our

major focus is on the tolerance estimation inconsistent with the ASME standards. As a

comparison, the dimensional value extraction methods using ISO philosophy, or the squared

loss method, are also presented as a comparison purpose. This method, similar to the skin

model shape study [146], is briefly discussed in previous sections. This study extends this
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Table 7: The ratio of the design tolerance region ”explained” by inferencing tolerance re-

gion (feature size/dimensional tolerance). ‘-‘ in the table represents the tolerance estimator

located outside the designed tolerance.

Tolerancing ASME ISO Range ISO 6σ ISO PCR

Feature Estimator Estimator Estimator Estimator

Size 1 95.50% 69.75% 90.05% -

Size 2 10.50% 20.00% 25.50% 34.00%

Size 3 1.00% 0.05% 0.05% 0.05%

Size 4 42.50% 8.00% 10.35% 13.00%

Size 5 73.00% 43.50% 55.50% 74.00%

Size 6 64.00% 47.00% 60.00% 80.00%

Size 7 14.00% 13.00% 17.00% 22.50%

Size 8 50.00% 25.00% 32.00% 42.50%

Size 9 34.50% 13.50% 17.75% 23.75%

method to the tolerance estimation methods by incorporating manufacturing processes and

inspection knowledge. The estimated tolerances for both classes using methods proposed in

this chapter are represented in Tables 5 and 6 for size tolerances, and Table 8 for geometric

tolerances. Since the original tolerance is known, the ratios between the estimated tolerance

widths and the original tolerance widths are illustrated in Table 7 and Table 9 for comparative

purposes.

5.3.1 Discussion

In the case study, the results of size tolerances based on ASME and ISO standards are

presented. As discussed in the previous section, ASME Y14.5-2009 is a ”hard-gauge” stan-

dard sensitive to the outliers, while ISO standards are more robust since least squares are

often implemented for dimension extraction. This phenomenon is verified in Table 1. Com-
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Table 8: True tolerance regions versus the empirical tolerance regions, in inches, estimated

by different tolerance inferencing methods (datum-related tolerance).

Tolerance Type True Tolerance Range Estimator 6σ Estimator PCI Estimator

Perp 1 0.001 8.6568× 10−5 1.0959× 10−4 1.4575× 10−4

Perp 2 0.001 3.6724× 10−4 5.305× 10−4 3.989× 10−4

Coplanar 0.001 6.1425× 10−4 9.0126× 10−4 0.00120

Angular 0.010 0.00847 0.00956 0.01005

Location 0.003 0.00233 0.00232 0.00309

pared to the range tolerance estimations, the ranges based on ISO standards are universally

narrower than the ASME estimated ranges. The least-squares are more robust to the out-

liers than the range statistics. With a small sample size, the least-squares fitted values have

relatively lower variance and centering around the mean. Moreover, in actual practice, the

6σ policy or PCR policy is often implemented to control the manufacturing process based

on ISO standards. With the assumption on both 6σ or PCR policies, the estimated ranges

are close to the performance of the ASME method. However, since the parts are manu-

factured by trainees and inspection is conducted under ASME GD&T specification, some

of the PCR-based estimators are outside the designed tolerance range. Therefore, if the

parts can be assumed to be produced under ASME Y14.5-2009, the ASME-based estimator

could perform better by conservatively providing a wider tolerance region. However, if the

parts are produced under the ISO standards, the PCR-based estimators could provide a

wider tolerance region to reduce production costs. More importantly, this framework pro-

vides an opportunity for the AM processes, which usually create parts with more significant

variations, to re-manufacture the legacy parts with acceptable quality.

Since the dimensional values or deviations in the geometric tolerances can be directly

extracted from the point cloud, both the 6σ method and the PCR method provide a wider

empirical tolerance range than the range method. Because the parts are not produced by a

manufacturing vendor, the process is not under statistical control. The major assumptions
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Table 9: The ratio of the designed tolerance region ”explained” by inferencing tolerance

region (datum related tolerance). ‘-‘ in the table represents the tolerance estimator located

outside the designed tolerance.

Tolerance Type Range Estimator 6σ Estimator PCI Estimator

Perp 1 8.66% 10.96% 14.56%

Perp 2 36.72% 53.05% 39.89%

Coplanar 61.43% 90.13% -

Angular 84.7% 95.6% -

Position 77.67% 77.33% -

for the PCR method are violated, which makes most of its estimations invalid. In this

case, empirical tolerances estimated by the 6σ method are more conservative than those

for the PCR method and broader compared to those for the range estimator. However,

the tolerances estimated by the PCR method are closer to the true tolerance in terms of

value. Even though the estimated tolerances are a little wider than the designed ones, their

differences are almost negligible. Therefore, the PCR method is still a better choice when

our objective is to reduce reproduction cost and provide products with acceptable quality,

while the reproduced products using the 6σ method are of higher quality.

5.4 Summary and Conclusions

Re-manufacturing has attracted increasing research interest because of its sustainability.

This chapter introduces a toolset to complete the tolerance information for re-manufacturing

systems when the original design is missing or inaccessible, as shown in Figure 32. This

toolset estimates the tolerance design using the knowledge of production system control

and inspection. Both ASME’s and ISO’s GD&T standards are considered for tolerance

estimation. Furthermore, algorithms are developed to transform the point clouds to the
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Figure 32: Process map of the tolerance estimation algorithm presented in Chapter 5.

specific dimensional values according to the standards. This toolset can be directly applied to

re-manufacturing applications for legacy parts or spare parts reproduction process planning

and inspection. The proposed methods are validated and evaluated through a case study of

genuine machined parts. The empirical tolerance regions for different tolerancing types are

close to the designed region.

AM is often used in the re-manufacturing system because of its flexibility and cost-saving

for small-batch reproduction. The layer-by-layer fabrication nature makes the metrology

method of AM drastically different from the traditional way. The algorithm for extracting

dimensional values can inspect the AM-created parts for inspection and quality assurance.

However, since the primary objective of the presented work focuses on tolerance esti-

mation for RE applications, algorithms for dimensional value extraction are not thorough.

Specifically, we concentrate on tolerances regarding planar and cylindrical features; in our

future work, we will consider other tolerancing types, such as profile and runout tolerances,

which are also important. Furthermore, as shown in Section 5.1, current methodologies heav-

ily rely on the normality assumption. However, the current-state-of-the-art nonparametric

methods cannot be directly applied to our study since only a few parts are available in RE

practices. One of the potential solutions is incorporating engineering knowledge into the

nonparametric methodologies to speed up its convergence or relax these requirements using

Bayesian methods.

97



6.0 Automated Variance Modeling for 3D Point Cloud

In Chapters 4 and 5, we address the process-planning problem in RE and discuss the

methodologies to complete the tolerance information for RE-embedded re-manufacturing.

We further observe that the variational behavior of the 3D scanners plays a critical role

in both studies. Specifically, the accuracy of the prior information, or the variance of the

scanner, in the Bayesian modeling determines the performance for process planning. In the

tolerance estimation method, the scanning variance heavily influences the estimated width

of the tolerance region. This chapter proposes an automated variance modeling procedure

to predict the landmark variances based on geometric features. In Section 6.2, we first

discuss the selection of geometric inputs for our automated variance prediction algorithm

and procedures that transform the raw-point clouds to these inputs. In Sections 6.3 and

6.4, we present our algorithm in detail, including the components and structures of the

Bayesian extreme learning machine (BELM) and the metric for the scanning history that

we recommend to select an appropriate object from previous multiple scan experiments to

achieve better predictive performance. Our case study is in Section 6.5. We conclude this

chapter with remarks and a preview of future research directions in Section 6.6. Similar to

Chapter 5, the presented variance modeling methodology plays two roles in this dissertation.

It can be an independent algorithm for analysis and modeling the variational behavior of a

targeting scanner. It can also complement the RE process-planning algorithm presented in

Chapter 4 to learn and model the prior information regarding the 3D scanner. The remainder

of this chapter appears in [59].

6.1 Introduction

From the RE and metrology perspectives, it is critical to perform statistical inferences

on point-cloud data to model the variation in the deviations of the data from initial designs.

Several challenges arise in RE and metrological analysis for AM due to the flexible design
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features and complex shapes inherent in the freeform objects of interest for these technolo-

gies. Two important challenges are (1) that existing analytical methods and metrology tools

cannot provide detailed descriptions of objects of interest and (2) that they can be time-

consuming. Methods such as measurement system analysis (MSA) [152] and gauge R&R

[164, 115] studies analyze point-cloud data by modeling them as univariate or multivari-

ate random variables; these methods are designed for data collected via classical metrology

tools, such as manual coordinate measuring machines or gauges. These methods and tools are

suitable for traditional manufacturing systems, in which constraints in design software often

impose restrictions for a product design and manufacturing hardware [135]. One example

of a product design restriction, which arises due to constraints in computational and visual

capabilities [168], is introduced by using the primitive features involved in classical CAD

packages. Traditional manufacturing processes can typically only produce such primitive

features, and at best, can fabricate an approximation of freeform shapes via complex path

planning [102]. The resulting metrology or inspection techniques for the fabricated products

usually focus on accurately measuring shape dimensions through either a small number of

points on the product or parametric fitting. However, these tools are not appropriate for the

objects or designs of interest in RE and AM because their shapes (especially for freeform

products) are not fully described or measured in this manner. In addition, since nearly all

outer surfaces of additively manufactured parts are composed of the boundaries of a stack

of layers of material, if only a small number of points are measured, then the measurements

would provide an incomplete description of the products. Fast non-contact scanning tech-

niques such as laser scanner [149] and photogrammetry [136] technologies have recently been

developed to enable the rapid extraction of geometric information on objects. In contrast to

the previously described classical tools, these non-contact techniques usually survey many

points and construct point-cloud data in less time [13]. However, the complex structure and

high volume of such data make the direct application of classical MSA and Gauge R&R

techniques difficult. Variance modeling of point-cloud data remains an important issue for

such applications as repetitive metrology design [24] and RE process planning in Chapter 4.

Recently developed approaches for RE and metrology analysis for AM do not satisfacto-

rily address the previously described challenge. Wang and Tsung [171] developed a Bayesian
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generative modeling technique to address the calibration problem for a low-resolution scan-

ner, considering both variance and bias for the scanner. However, their study focused only

on the deviations and randomness of in-plane, or 2D, scanning profiles in the x-y plane,

whereas variations in the z direction can be more severe in practice [41, 145]. Furthermore,

their method highlighted the calibration of a specific shape profile based on a high-resolution

system, while the application of the calibration model to other shapes of interest may require

involved shape approximation methods [73]. Del Castillo et al. [41] modeled the point-cloud

data of features using a geodesic Gaussian process that can account for pointwise random-

ness. However, the objective of their model was on surface fitting, not variance modeling.

There is a significant trade-off between the number of initiation scans and the analytical

performance of the variance estimator under their method.

An essential requirement for specifying variance models for point-cloud data is categoriz-

ing sources of variations. Point-cloud data incorporate three sources of information: objects

of interest, scanner hardware, and measurement environment. Previous research primarily

focused on noise arising from the hardware and measurement environments [62]. However,

any data point is generated through interactions between the scanner and the object, in

addition to the environment. For example, in laser scanning, the points received on the

detector come from the laser source via reflection on the surface of the object [55], so that

the variance of the surveyed point is strongly related to the object. The above three sources

of information involve many distinct factors. Examples of such factors for a laser scanner ap-

pear in Figure 33. Some of these factors are usually controlled for metrology practices (e.g.,

environment and scanner hardware factors), whereas others are usually identical or similar

for the same application purposes or AM processes (e.g., materials and colors). Creehan and

Bidanda [37] conducted a fractional factorial experiment to investigate various RE settings

(in terms of both hardware and software) and identified settings for optimum point-cloud

data quality. One of the critical factors they identified is orientation, which essentially de-

scribes the impact of geometric shape on point-cloud variance. Ultimately, the geometric

design and position of an object of interest relative to the scanner are two critical factors in

variance modeling.
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Figure 33: Fishbone diagram of a sample of factors related to the measured objects, scanning

hardware, and environments that could influence the variance of a laser scanner.

We develop an algorithm for modeling the variance of point-cloud data based on a scan-

ning history. Our algorithm utilizes the VDA framework to process point-cloud data for

variance modeling. Two essential factors utilized in our algorithm are object shape designs

and the interaction of object surface and the light source. Our algorithm is efficiently trained

on high volume point-cloud data via a combination of Bayesian extreme learning machines

(BELM) [48, 71] and a new empirical Kullback-Leibler divergence we developed to select

the training set for the BELMs according to the scanning history of those objects that

are geometrically similar to the object of interest. Moreover, two novel structural variants,

ensemble- and residual-BELMs, are proposed to improve the prediction performance of the

BELM algorithm. Significant applications of this algorithm include repetitive metrology

design and RE process planning, and are illustrated by a case study that we conduct on

variance modeling for additively-manufactured products.
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6.2 Variance Modeling Algorithm

6.2.1 Components of the Algorithm

Our variance modeling algorithm consists of three essential components. First is the

specification of the geometric features that can be used to model landmark variance and

extraction of these features from point-cloud data. The second is the use of BELMs to

model the relationships between the geometric features and landmark variances. The third

is our new empirical Kullback-Leibler divergence for selecting a scanning history to train

BELMs and yield improved variance predictions for objects of interest. Details on these

components are provided in the remainder of this chapter.

6.2.2 Geometric Features for Landmarks

The variance of each point on an object is strongly affected by the object’s geometric

features and its interactions with the light source or ambient light. Although parts can range

across an infinite variety of designs in principle, the nature of non-contact scanners implies

that only local geometric information affects the variance of a point on a part. In the specific

case of a laser scanner, the shape of the local area in which the laser is projected significantly

impacts the variability of the extracted point coordinates. The randomness corresponds to

the basic mechanism of a general laser scanner for inferring the coordinates of a point on the

object surface by receiving the reflection of the laser strip projected on the camera receiver

(Figure 34). The Law of Reflection states that the angle of incidence θi should equal the

angle of reflection θr [130]. Therefore, if the incident laser is nearly orthogonal to the normal

direction for a point, it becomes difficult to capture its reflection by the camera, increasing

the measurement variance. Furthermore, it is difficult to accurately measure high curvature

points via the laser stripe. The reason is that high curvature points are generally located in

small regions that are difficult to capture by the laser strips; also, the tangent planes and

normals of these points are relatively more sensitive to noise due to the high curvature.

To account for each landmark’s local shape information for modeling variance, we include

predictor variables that capture the local geometric features of the normal direction and
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Figure 34: Mechanism of a laser scanner with a single laser strip. Here, PS is the tangent

plane of the surface at point S, and nS indicates the normal direction. The incident angle

θi equals the reflection angle θr.

curvature for each point. These variables can be found in CAD models. However, RE and

metrology are highly object-dependent, and the combination of the lack of CAD models and

the presence of local deviations on the parts can be problematic. Therefore, we first need to

estimate these part-specific local geometric predictor variables in our algorithm. We proceed

to describe the normal direction and curvature variables in more detail.

Two characteristics of the 3D normal direction vector—the angle θ between it and the

z-axis and the normal of the scanning platform—directly impact scanning variability. As

such, we incorporate only these two characteristics of the normal direction into variance

models. The direction of the normal affects the incidence and reflection directions of the

light source. As we assume the object is fixed on the scanning platform, the z-axis of the

platform corresponds to the vector (0, 0, 1). If a large angle exists between the point’s normal

direction vector and the z-axis, then capturing the point will be difficult, and its variance
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should be large. Alternatively, if a small angle exists between the normal direction vector

and the z-axis, then capturing the point will be easier, and its variance should be small. RE

or metrology software typically provides information on the normal of the screening platform

in their output files. However, this information may not be sufficient for modeling variance

in our context because the landmarks we consider are actively generated, and they may

not correspond to landmarks in the original point-cloud data. Also, the normal direction

predetermined by the scanner is usually facing either into or out of the material; hence, it

may not differentiate between convex and concave features. For these reasons, the normal

directions for the landmarks must still be estimated. In our algorithm, we infer the normal

direction for each landmark by performing a PCA on its neighboring points selected using the

fixed-radius nearest neighbors algorithm [138]. We recognize that the estimation problem is

equivalent to inferring the normal of a plane tangent to the surface at the given point and that

the tangent plane can be approximated via the least-squares fitting of the neighboring points.

The accuracy of the approximated normal is closely related to the area of the neighborhood,

with smaller areas providing more accurate estimation in general. The raw-point cloud data

usually possess high-point density compared to the landmarks generated based on the grid

structure, so we utilized the raw-point cloud data to estimate the normal directions. This

estimation is accomplished by first calculating for each landmark i the 3× 3 local covariance

matrix Ci = ||Ωi||−1
0

∑
{j:pj∈Ωi}(pj − p̄i)(pj − p̄i)

T, where Ωi is the neighborhood of landmark

i, the pj ∈ R3 are from the raw-point cloud data, and p̄i is the centroid for points in Ωi. After

Ci is calculated, we then obtain all of its eigenvalues λ1i ≥ λ2i ≥ λ3i, and the corresponding

eigenvectors w1i, w2i, w3i. Finally, w1i and w2i determine the tangent plane, and w3i is the

estimate of the normal direction vector for landmark i.

Curvature is a geometric measure that describes how much a curve or surface deviates

from a line or a plane, respectively. Variables based on curvature are widely used in RE

and computer vision for registration and segmentation due to their robustness to noise, and

translational and rotational invariances [53, 5]. Because we only consider discretized points,

in this article, ”curvature” refers to the curvature of a curve at a point. For illustrative

curvatures in 2D, we note that the curvature of any point on a circle is the reciprocal of

its radius, the curvature of a point on a straight line is zero, and the curvature of the
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intersection point for two lines is infinite. Curvature is not uniquely defined in 3D because

infinitely many curves can pass through a point on a surface. Two commonly used curvature

measures in 3D are the Gaussian and the mean curvatures, defined respectively as G = κ1κ2

and H = (κ1 + κ2)/2 in terms of the maximum and minimum values of all the curvatures

as denoted by κ1 and κ2, respectively. Estimation of Gaussian and mean curvatures yields

information on a local surface containing the surface change in a small region but not on

an individual point. Therefore, we utilize the rate of the local curvature change νi for each

landmark i in our algorithm, where this quantity is defined as νi = λ3i/(λ1i + λ2i + λ3i) in

terms of the previously defined eigenvalues.

6.3 Variance Modeling via Bayesian Extreme Learning Machines

Our models for the relationships between variances and predictor variables that capture

local geometric features for landmarks in point cloud data are of the general form

tij = fj(cos(θi), νi) + εij, (6-1)

where i = 1, . . . , k is the index for landmarks, j ∈ {x, y, z} indicates whether the x-, y-, or z-

coordinate is under consideration, tij = log(σ2
ij) is the outcome variable that corresponds to

the logarithmic transformation of the variance for coordinate j of landmark i, θi is the angle

between the normal direction vector of landmark i and the z-axis, νi is the rate of the local

curvature change of landmark i, and the error terms εij are independent N(0, τ 2) random

variables. To fit such a model, we enter an estimate of σ2
ij obtained from the point-cloud

data into equation (6-1). Specifying regression models for the fj can be difficult in general.

Flexible classes of models, such as Gaussian processes or neural networks, can instead be

used to model complex trends in the fj [93]. However, the high volume of landmarks results

in standard implementations of these models incurring the prohibitive computational time

and costs [173]. Hence, we utilize BELMs—a class of single-hidden layer feedforward neural

networks (SLFNs)—to model the fj (Figure 35). Bayesian extreme learning machines are

universal approximators [71], and their predictive performances have been demonstrated to
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Figure 35: An example of the structure of a standard SLFN.

be comparable to those of Gaussian processes and neural networks [71, 72, 153]. These facts

accordingly motivate our choice of BELMs to model variance. Further details on our BELMs

are presented below.

Extreme learning machines (ELMs) were developed by [71] to increase the learning speed

of SLFNs. In contrast to standard neural networks and their traditionally slow and iterative

gradient-based learning algorithms, in an ELM, the input weights for the SLFN are randomly

assigned, and the fitting process is performed only on the output weights. To formally

describe this, let yi ∈ R be the outcome and xi ∈ Rp be the vector containing the values of

p predictors for observation i = 1, 2, . . . , n. Then the ELM model with m hidden neurons is

yi =
m∑
q=1

βq g(ω0q + xTi ωq) + εi, (6-2)

where the errors terms εi are independent N(0, τ 2) random variables, ω0q ∈ R and ωq ∈

Rp are the random intercept weight and the random vector of input weights, respectively,

for neuron q, βq is the output weight for neuron q that is to be inferred from the data,

106



and the function g : R → R is the activation function. The random input weights are

drawn from either the Uniform(−1, 1) or the standard N(0, 1) distributions. Many activation

functions can be utilized, such as the sigmoid function, rectified linear unit, and radial basis

functions [65]. We adopt the hyperbolic tangent function g(x) = (ex−e−x)/(ex+e−x) in our

algorithm. In general, ELMs possess an advantage over traditional neural networks in that

they reduce computational costs and identifiability issues through the random assignment

of input weights and instead focus on output weights. They are fitted according to a linear

regression model on the outcome values and (random) hidden neurons, and they possess an

additional advantage of enjoying the computational time of linear regression. An ELM is

a universal approximator; with a sufficiently large number of hidden neurons, it can learn

complex functional forms with similar predictive performances as other neural networks [72].

A disadvantage of ELMs that arises from their random assignment of input weights

is the potentially high probability of saturation of hidden neurons. Saturation here refers

to the activation function for a hidden neuron returning a relatively constant value for a

range of inputs [48]. Multicollinearity among the random neurons will arise in the case

of saturation, which results in increased prediction variance. Saturation in ELMs can be

mitigated by fitting BELMs instead—specifically, by placing normal priors on the output

weights βq and fitting the corresponding Bayesian model. This BELM, which also corre-

sponds to Bayesian ridge regression, effectively shrinks the output weights for the saturated

neurons. [48] proposed a new class of BELMs that involve tuning the bounds of the uniform

distributions for the input weights to further improve upon standard BELMs in terms of

eliminating saturation issues. In this new class of BELMs, the input weights are sampled to

yield a high probability that the input values of the activation functions are in the unsatu-

rated region (e.g., in the interval (−2.5, 2.5) for the hyperbolic tangent activation function).

We accomplish this tuning by sampling the intercepts ω0q from Uniform(−1, 1) sampling

each random weight ωjq from the Uniform(−5αj/(2maxj), 5αj/(2maxj)) distribution, where

αj = sdj/(
∑p

l=1 sdl), with sdj denoting the standard deviation of the values of predictor j

and maxj denoting the maximum absolute value of predictor j.

Thus, similar to the work of [48], our algorithm utilizes a BELM with the previously

described scaled sampling strategy for the input weights to model the relationships between
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the local geometric features and the variances for landmarks in point-cloud data. For each

landmark i = 1, . . . , k, we let xi = (cos(θi), νi) denote its predictors as in equation (6-1).

For each hidden neuron q = 1, 2, . . . ,m, we draw the input weights ω0q and ωq based on our

scaled sampling strategy. We let H be the k×m matrix whose (i, q) entry is g(ω0q + xTi ωq).

Our variance model is then

tj = Hβ + εj, (6-3)

where tj = (t1j, . . . , tkj) is the vector of the natural logarithms of the landmark variances for

coordinate j ∈ {x, y, z}, β ∈ Rm is the vector of output weights that are to be inferred, and εj

is the vector of error terms that are independent and identically distributed N(0, τ 2) random

variables with unknown variance τ 2. Our prior probability density function on the unknown

parameters is p(β, τ 2 | η2) ∝ τ−2η−m exp{−βTβ/(2η2)}, and our hyperprior distribution on

η2 is the Inverse-Gamma density p(η2) ∝ η−6 exp(−0.01η−2). The joint posterior distribution

of the unknown parameters can be calculated in a straightforward manner using a Gibbs

sampling algorithm [54].

However, the performance of the BELM is constrained by its simple structure. The

complex nonlinear relationship between the outcome and predictors can be hard to model

due to the single-layer structure. Inspired by machine learning algorithms, we propose two

structural variants of the BELM model to improve nonlinear approximation performance

and lower the prediction variance.

6.3.1 Ensemble Bayesian Extreme Learning Machine

Ensemble methods are machine learning algorithms that integrate multiple learning mod-

els to have better predict performance than single ones. For example, the random forests

algorithm combines many decision trees with a small number of branches, which reduces the

overfitting of the decision trees and provides more accurate predictions [19]. With a similar

spirit, we propose an ensemble version of the BELM, named ensemble Bayesian extreme

learning machine (E-BELM), which is shown in Figure 36. The primary reason to utilize the

ensemble method is to enhance the accuracy of predictive performance. Since the BELM is

a ”black-box” model, the model can be easily overfitted, within which the input weights are
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Figure 36: An example of the structure of an E-BELM.

randomly assigned. Using the ensemble method, much smaller BELMs with a small number

of hidden layers are trained, which tend to be less overfitted, and the predictions are the

combined effect of all the BELMs with relatively smaller variance.

6.3.2 Residual Bayesian Extreme Learning Machine

Another way to improve the BELM algorithm is to build a sequence of models—residual

Bayesian extreme learning machine (Res-BELM)—as a generalized additive model, shown in

Figure 37. The BELM models are stacked up and trained sequentially. The response values

utilized for training each set of models are the residuals from previously trained models.

That is, for the ith BELM model, the training response values are y −
∑i−1

j=1 ŷj, where

y = {y1, y2, . . . , yn} is the observed outcomes and ŷj is the predictions of the jth BELM

model. The Bayesian setup of the BELM provides a ridge effect to mitigate overfitting for a

single BELM; however, it also deteriorates the model performance because of the randomly

assigned input layer. Res-BELM adds multiple Bayesian neural networks to fit different

patterns instead of increasing the number of hidden nodes, which prevents overfitting for

any of the models and increases overall predictive performance.

109



Figure 37: An example of the structure of an Res-BELM.

Two BELM architectures, E-BELM and Res-BELM, are proposed based on two different

points of view to solve different issues: E-BELM is based on the ensemble method to prevent

overfitting; Res-BELM is based on the idea of generalized additive models to improve the

fitting performance. However, they share a common idea—integrating multiple BELMs to

provide predictions. Each of these two architectures has different sets of hyper-parameters,

e.g., the number of ensemble samples for the E-BELM and the number of stack-up models

in the Res-BELM. These hyper-parameters for both architectures can be determined using

cross-validation methods [49].

6.4 Selection of Scanning History for Training Variance Model

Multiple scans of objects must be performed to form the training data for a BELM

variance model. In general, the scanning history should satisfy three conditions: (1) the
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scanner hardware is fixed, (2) the metrology environment is under control, and (3) the

previous parts’ materials and colors are similar. Dedicated and independent scanning trials

could be conducted, or previously recorded scans of the same objects could be used for

the training data, so long as the above three conditions are satisfied. An important issue

that arises from the availability of multiple scanning records is selecting an appropriate

scanning history to improve landmark variance predictions for an object of interest. If the

training data and the object have similar joint distributions of the geometric features (e.g.,

if the scanning history is geometrically similar to the target object), we expect the variance

model to yield a good predictive performance. Also, as a BELM’s random selection of input

weights can result in interpolation and extrapolation issues if the scanning history is missing

geometric feature values that appear in the object of interest, then the variance prediction

can be adversely affected.

Our algorithm selects a scanning history by a measure that compares the distributions

of two random variables. Two common measures that have previously been utilized for this

purpose are Wasserstein distance [167] and Kullback-Leibler (KL) divergence [45]. The

first focuses on the similarity in the ”shapes” of two distributions and is not sensitive

to the missing parameter regions. KL divergence from distribution Q to P is defined as

DKL(P || Q) =
∑

x∈Θ P (x)log{P (x)/Q(x)}, where Θ is their shared parameter space. In

our context, P is the distribution of the geometric features for previous parts in the scan-

ning history, and Q is the distribution of the geometric features for the target part. In

this definition, Q(x) = 0 always implies P (x) = 0 for any x ∈ Θ. Moreover, if P (x) = 0,

the contribution of this term is trivial because limz→0+ z log(z) = 0, where z represents the

distribution function of P . Therefore, KL divergence is not sensitive to missing values in

the distribution Q. Our algorithm measures the discrepancy between the geometric feature

spaces of a scanning history and an object of interest using an empirical KL divergence

with a penalty on missing values. In contrast to the classic application of KL divergence,

in which parametric distributions are assumed in advance for both P and Q, the densities

of the predictors need to be estimated in our setting. Histograms and kernel density es-

timators constitute two widely used density estimation methods. Although kernel density

estimators provide favorable properties (e.g., smoothness and continuity), in our context, the
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KL divergence must be integrated over the feature space, which is computationally difficult.

Histograms are much easier to compute and implement, so we utilize them to calculate our

empirical KL divergence.

The implementation of our method proceeds via three steps. First, for each of the two

geometric features, the predictor values range is separated into l bins. Second, the empirical

distributions of the two geometric features are captured by the frequency of the number

of values located in each of the l2 bins. Finally, the empirical KL divergence for variance

prediction is calculated as

MDKL(P || Q) =
∑

{x∈Θ}∩{x:Q(x)6=0}

[
P (x)log

{
P (x)

Q(x)

}
I{P (x) 6= 0}+ ψ(Q(x))I{P (x) 6= 0}

]
,

(6-4)

where Θ is the set containing all l2 bins, I(·) is the indicator function, P and Q are the

histograms of the predictor variables in the scanning history and the target object, respec-

tively, and ψ(Q(x)) is the penalty function with respect to the density of Q(x). The penalty

function in equation (6-4) should be selected to satisfy the following three conditions: (1)

when Q(x) = 0, the penalty ψ(Q(x)) = 0; (2) the penalty function ψ should be a monotone

decreasing with respect to the density of Q; and (3) the supremum of ψ(Q(x)) should be

less than or equal to the infimum of other values that contribute to the KL divergence in

the parameter space, i.e.,

sup
{x∈Θ}∩{x:Q(x)6=0∩P (x)6=0}

ψ(Q(x)) ≤ inf
{x∈Θ}∩{x:Q(x)6=0∩P (x)6=0}

P (x)log

{
P (x)

Q(x)

}
. (6-5)

The first two conditions are straightforward to interpret and justify. The third condition and

equation (6-4) ensure that the penalty values will not be overwhelmed by the other values. A

straightforward example of a penalty function that satisfies all three conditions is the linear

penalty function ψ(Q(x)) = s Q(x), where s ∈ R is a fixed value chosen according to the

third condition. If MDKL(P || Q) is close to zero in this case, then the scanning history

has a predictor distribution close to the object of interest and, therefore, is recommended

for training the BELM models. Also, if MDKL(P || Q) is far from 0, then the scanning

history may have some missing predictor values compared to the target object, and thus is

not recommended for training the BELM models.
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In practice, we also recommend that the number of bins for the modified empirical KL

divergence be chosen as argmax
l
|MDKL(P l || Ql

1)−MDKL(P l || Ql
2)|, where Ql

1 and Ql
2 are

the predictors’ histograms of two training objects with l bins, and P l is the histogram of the

test object. This problem can be solved by screening a range of bin numbers.

6.5 Case Study of Variance Modeling for Additive Manufacturing Point

Cloud Data

Our case study of the variance modeling algorithm involves a freeform additively man-

ufactured object and different scanning histories, with four total additively-manufactured

products considered (Figure 38). All four products were created by LulzBot TAZ 3D printer

(Figure 22(b)) that utilized a gold metallic 2.85 mm polymer. The freeform object with

two hills and one valley in the right panel of Figure 38 is the test object, which we refer

to as ”Test.” The half-ball shape (referred to as ”Half Ball”), the freeform with only one

hill (referred to as ”Freeform 1”), and the freeform with two hills that are flatter than those

in Test and one valley (referred to as ”Freeform 2”) constitute the entire scanning history.

Each of the four objects is scanned 30 times using one FARO Platinum 8’ Arm Laser Scanner

(Figure 22(a)) to obtain the landmarks’ variances. A 0.5 mm thin plate is incorporated in

each CAD model to remove noise from printing and scanning. The multiple scans yield vari-

ance estimates (i.e., sample variances) for the landmarks’ coordinates, and these estimates

are taken as the outcomes. The distributions of the coordinate variances of each object are

shown in Figure 39, 40, 41, and 42.

We generate the objects’ landmarks by the supporting plane version of F-CPP. Approx-

imately 30, 000-50, 000 landmarks are generated for each object. The objects’ configurations

are aligned by the registration of the landmarks’ projections onto the supporting plane. We

then calculate the variances for each landmark’s coordinates. To extract the landmarks’ geo-

metric features, we utilize the original point cloud to train the fixed-radius nearest neighbors

algorithm and apply the local PCA to the landmarks’ neighbors to approximate the normal

vectors and curvature change rates, as described in Section 6.2.2. This same procedure was
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Figure 38: The training and test CAD models and physical objects considered in our case

study. The CAD model for a product is to the left of the actual printed product’s picture.

applied to all four objects. All landmarks for each training object were used to form the

training data set for the single BELM, E-BELM, and Res-BELM models. Each BELM model

utilized the hyperbolic tangent function as the activation function. The single BELM model

has 50 hidden neurons. The E-BELM model had three layers for each of the 50 ensemble

samples. The Res-BELM had 20 layers for each of the five stack-up BELM models. All these

hyper-parameters are determined using the cross-validation technique [49].
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Figure 39: The variance distributions for each coordinate of the Test object.
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Figure 40: The variance distributions for each coordinate of the Half Ball object.
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Figure 41: The variance distributions for each coordinate of the Freeform 1 object.
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Figure 42: The variance distributions for each coordinate of the Freeform 2 object.
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Tables 10, 11, and 12 contain the comparisons between the results obtained from our

algorithms based on different scanning histories and those obtained from pre-experiment

multiple initial scan trials in Chapter 4. A sampling method was utilized to compute the

performances of the estimators obtained from multiple scans. First, c configurations, for

c = 2, 3, 4, 5, were selected without replacement from the 30 total scans. Second, the PPA

algorithm was performed on the selected configurations. Finally, the variances were estimated

via the range statistics [114, p. 237] for each landmark. These comparisons are formally based

on root mean square error (RMSE) as defined by

RMSEj =

√√√√√√
k∑
i=1

(σ2
ij − σ̂2

ij)
2

k
, (6-6)

where σ2
ij denotes the observed sample variance of landmark i for coordinate j ∈ {x, y, z} of

the test shape, and σ̂2
ij = exp(t̂ij) is its corresponding prediction, with t̂ij being the predicted

value from the BELM model for coordinate j.

The prediction error and its standard deviation of the z-coordinate are significantly

higher than those of the x- and y-coordinates since the magnitude of the z-coordinate vari-

ances is greater than that of the other two coordinates [41, 145], which corresponds to the

greater importance of predicting z-coordinate variance in RE and metrology process planning

(Chapter 4). Furthermore, Freeform 1 and Freeform 2 yield better variance model perfor-

mance than those obtained from the small number of initiation scans and those obtained

from the BELM models trained by Half Ball (which exhibits comparatively worse perfor-

mance). These results can be explained by examining the geometric features’ distributions

(Figure 43). Specifically, the shapes of the distributions for both features of Freeform 1

and Freeform 2 are much closer to those for the Test object, which indicates their expected

better performance than the Half Ball. In addition, the ranges of both features for the Half

Ball are smaller and more concentrated than those for the Test object, which indicates the

increased possibility of extrapolation error for the trained BELM model. Furthermore, the

empirical KL divergences under different numbers of bins (Table 13 and Figure 44) indicate

that the Half Ball object should behave much worse than the Freeform 1 and 2 objects in

terms of predicting variances for the Test object. Finally, we note that Freeform 1 has a
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Table 10: Comparison of RMSEs (in mm) for x-coordinate variance prediction based on the

three BELM architectures and multiple initiation scans involving 30 replicate scans.

Estimation Method Training History RMSE (Mean) RMSE (Standard Deviation)

Multiple Initiation Two 0.0346 0.0294

Scans Three 0.0331 0.0190

Four 0.0316 0.0166

Five 0.0391 0.0111

Single BELM Half Ball 0.0120 0.0033

Freeform 1 0.0017 0.0002

Freeform 2 0.0017 2.6401× 10−6

E-BELM Half Ball 0.0019 0.0002

Freeform 1 0.0014 6.2491× 10−5

Freeform 2 0.0017 6.3368× 10−7

Res-BELM Half Ball 0.0071 0.0018

Freeform 1 0.0019 0.0003

Freeform 2 0.0017 2.5983× 10−6

value closer to 0; therefore, the BELM model trained by this object is expected to yield a

better variance modeling performance for the Test object. This conclusion can be verified

by an examination of Table 12. These observations further support the conclusion that the

Half Ball should not be chosen as the scanning history.

According to the RSME results in Tables 10, 11, and 12, Freeform 1 only performs

significantly better in the variance estimation of the z-coordinate. This phenomenon can be

explained by Figure 44, where the empirical KL divergence values for this training object are

very close and related to the choice of the number of bins. As a result, no major difference

should be expected between these two objects. This conclusion is verified with the number

of bins l = 30 (Table 13 and Figure 44).
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Table 11: Comparison of RMSEs (in mm) for y-coordinate variance prediction based on the

three BELM architectures and multiple initiation scans involving 30 replicate scans.

Estimation Method Training History RMSE (Mean) RMSE (Standard Deviation)

Multiple Initiation Two 0.0565 0.0360

Scans Three 0.0463 0.0217

Four 0.0451 0.0168

Five 0.0401 0.0142

Single BELM Half Ball 0.0309 0.0016

Freeform 1 0.0034 8.7623× 10−6

Freeform 2 0.0032 8.5538× 10−5

E-BELM Half Ball 0.0031 3.3726× 10−5

Freeform 1 0.0034 6.2605× 10−6

Freeform 2 0.0032 1.0992× 10−5

Res-BELM Half Ball 0.0033 3.0234× 10−5

Freeform 1 0.0033 9.9568× 10−6

Freeform 2 0.0033 0.0001

Lastly, we observe that the E-BELM and Res-BELM models outperform the single BELM

model. These two models have similar RSME results (Tables 10, 11, and 12), while the E-

BELM provides a relatively smaller prediction variance. Even for the Half Ball, which

has extensive extrapolation areas according to Table 13, both models can provide stable

predictions with tolerable accuracy compared to the single BELM.
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Table 12: Comparison of RMSEs (in mm) for z-coordinate variance prediction based on the

three BELM architectures and multiple initiation scans, involving 30 replicate scans.

Estimation Method Training History RMSE (Mean) RMSE (Standard Deviation)

Multiple Initiation Two 0.1694 0.0504

Scans Three 0.1470 0.0327

Four 0.1632 0.0256

Five 0.1324 0.0237

Single BELM Half Ball 0.5242 0.0857

Freeform 1 0.0048 0.0002

Freeform 2 0.0063 0.0004

E-BELM Half Ball 0.0239 0.0027

Freeform 1 0.0034 5.1544× 10−5

Freeform 2 0.0050 8.8159× 10−5

Res-BELM Half Ball 0.0085 0.0008

Freeform 1 0.0046 0.0002

Freeform 2 0.0062 0.0004

6.6 Concluding Remarks

We presented an algorithm for variance modeling of 3D point-cloud data, as shown

in Figure 45. Under the structure of the landmarks in VDA, our algorithm models the

landmarks’ variances as a function of two geometric features: the angle for the normal

direction vector and the curvature change rate. The models utilized in our algorithm are

structural variants of the BELM model: E-BELM and Res-BELM. An essential component

in our algorithm is our new metric on point-cloud data that enables us to select scanning

history for improved variance modeling.
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Figure 43: Empirical distributions of the geometric features for both the Test and training

objects: (a) the rate of curvature change and (b) the cosine of the angles between landmarks’

normal and the normal of the scanning platform, (0, 0, 1).

Table 13: Values of the empirical KL divergence between the Test object and different choices

of scanning histories, with penalty s = 1000 and number of bins l = 30.

Training Objects Empirical KL Divergence

Half Ball -466.3029

Freeform 1 -1.8424

Freeform 2 -24.2890

In contrast to the pre-experiment scanning procedure or prior knowledge in Chapter 4,

our empirical KL divergence method can directly utilize one scan model to automatically

perform variance modeling. The proposed history selection algorithm could be employed to

find appropriate training objects to yield high prediction performance. Ultimately, our usage

of local geometric descriptors as regressors in our model plays a critical role in enabling au-

tomated deviation modeling across various geometric specifications. Any RE and metrology
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Figure 44: Empirical KL divergence for three scanning histories under different numbers of

bins l = 5, 10, . . . , 40.

experiments could be recorded and summarized as a training model for future applications.

Furthermore, the two structural variants, the E-BELM and Res-BELM, outperform the

original BELM model, providing more accurate predictions with lower prediction variances.

Our algorithm is an extension of the current VDA framework. Instead of analyzing an

entire configuration, as in classical statistical shape analysis applications, the landmark-

wise analysis is connected to local geometric information. Our proposed methodology can

be widely used for RE and metrology applications, such as repetitive measurement process

planning and scanning process capability analysis. For example, in place of multiple pre-

experiment scans, only one single-scan is required as the input to the RE process planning

model to develop the repetitive measurement plans. Furthermore, the design-independent

feature of our algorithm can be generalized to analyze general 3D point cloud data. Al-

though we only focused on variance modeling, other outcomes can be considered for our

algorithm. Our methodology can be applied for applications such as scanner calibration

and AM compensation schemes, whose factors of interest can be related to local geometric

information.
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Figure 45: Process map of the point-cloud variance modeling technique presented in Chap-

ter 6.

125



7.0 Geometric Accuracy Analysis for AM: A Comparative Study

In this chapter, we utilize the VDA framework to analyze the effect of process parameters

on the accuracy of the AM fabricated parts. This framework bridges the gap between

3D point-cloud data and statistical inferential techniques to learn AM process knowledge

from the printed parts. A novel projection-based statistic is proposed in Section 7.1 for

comparative study under two different AM process settings. Section 7.2 presents simulated

results to show the statistical power of the proposed test statistic. An actual experiment is

designed in Section 7.3 to compare the geometric accuracy of the part samples printed under

two levels of layer thickness using the FDM process. The remainder of this chapter can be

found in [57].

7.1 A Two-Sample Comparative Study

This study focuses on developing a hypothesis testing scheme for two sample mean con-

figurations under the VDA umbrella. Hypothesis testing is critical in statistical methodology

development, especially the ones in quality engineering. Specifically, DOE techniques utilize

hypothesis testing to compare experimental outcomes and discover the critical process pa-

rameters; SPC techniques use hypothesis testing to detect the shift in continuous production

processes.

7.1.1 Data Model for the Configurations

To analyze the landmarks under different AM process settings, we first need to build

an observation model for the configurations. After performing the landmark generation and

registration steps in the VDA framework, the registered landmarks are transformed into

the size-and-shape space, where the translational and rotational factors are removed from

the configurations. A data model for the configurations needs to be set up to separate the
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different sources of variations. Considering the point clouds collected from the 3D scanner,

the uncertainty in the data comes from three major sources: (1) the variations in the AM

process and different process settings; (2) the scanning and measurement process; and (3) the

interference between the object and the scanner. Therefore, the data model can be written

as

X = µAM + ε, (7-1)

where µAM = µ+δAM that µ is the true design configuration and δAM is the deviation caused

by the process setting, and ε = εAM + εRE + εI that εAM , εRE, and εI are the noise terms

caused by the AM, RE, and interference, respectively.

7.1.2 Hypothesis Testing Scheme

Assume the configurations collected from two different AM process settings are random

matrices. The first moment, the mean, of a random matrix describes the center of location

for a random variable. Therefore, the equality of the means indicates the distributions

are centered around the same region in the parameter space. For AM-created parts, if

the parts produced by two-process settings have the same mean, these parameter settings

could produce the same accuracy. Then, the decision-making regarding process settings can

be determined solely based on the time or cost considerations. Otherwise, a setting that

provides the products with higher accuracy is preferable.

Suppose the two configuration variables can be characterized by their means, X ∼

F (·, µ1) and Y ∼ G(·, µ2), where µ1, µ2 ∈ Rk×3 are the mean configurations. The hypothesis

of comparing mean configurations can be stated as

H0 : µ1 = µ2

Ha : µ1 6= µ2. (7-2)

Since µ1 and µ2 are k×3 matrices, testing the matrix hypothesis is cumbersome. One widely

used hypothesis testing scheme is the Goodall’s F statistic in SSA [63]. However, the two

degrees of freedom of this F statistic are q and (2n − 2)q, where n is the sample size for
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both configuration samples, and q = 3k − 7, where k is the number of landmarks. As k

becomes larger, both degrees of freedom increase linearly with respect to k. Therefore, in

a high dimensional setting, Goodall’s F statistic may not be sensitive to small deviation

or even inaccessible. Luckily, the approximation after PPA proposed by [64] provides the

independence of the coordinates for each landmark, as shown in Chapter 3. Therefore,

testing the hypothesis in equation 7-2 is equivalent to test

H0 : vec(µ1) = vec(µ2)

Ha : vec(µ1) 6= vec(µ2). (7-3)

Testing the equality of mean configurations is equivalent to testing the hypothesis of a pair

of high-dimensional mean vectors. High-dimensional inference regarding mean vectors has

attracted lots of research interest during the past decades. Several major techniques have

been developed in this area for hypothesis testing purposes. One major field is the extension

of the traditional Hotelling’s T 2 [156] test statistic in high-dimensional parameter space.

The key idea is to construct the statistic based on the Euclidean norm of the difference in

sample means with excellent asymptotic properties. One representative work is proposed by

Bai and Saranadasa [9]. However, a significant constraint of this methodology is that strict

assumptions are required on either the sample size or covariance structure.

Another methodology is the projection-based test statistic. For p ≤ 3k, consider a matrix

Γ ∈ Rp×3k with full row rank. In this case, the difference in means, vec(µ1) − vec(µ2), is

equal to zero if and only if Γ(vec(µ1)−vec(µ2)) = 0. That is, the hypothesis in lower column

dimension space of Γ is equivalent to the original hypothesis. Then, the hypothesis can be

rewritten as

H0 : Γ vec(µ1) = Γ vec(µ2)

Ha : Γ vec(µ1) 6= Γ vec(µ2). (7-4)

The equivalence holds for any matrices Γ with full row rank satisfying p ≤ 3k. There is

a large collection of matrices that satisfy this condition. One natural choice of such Γ is the

first p principal components calculated from the pooled sample covariance matrix
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S =
1

2n− 2

{ n∑
i=1

(
vec(Xi)− vec(X̄)

) (
vec(Xi)− vec(X̄)

)T
+

n∑
i=1

(
vec(Yi)− vec(Ȳ )

) (
vec(Yi)− vec(Ȳ )

)T}
(7-5)

using PCA. In equation 7-5, Xi’s and Yi’s, i = 1, . . . , n, are the registered configurations

after performing the PPA algorithm, X̄ = 1
n

∑n
i=1Xi and Ȳ = 1

n

∑n
i=1 Yi are the sample

mean configurations. The calculation of PCA is well-studied in [2, 84, 177].

Following the projection, we can calculate the Hotelling’s T 2 statistic using the projected

data,

T 2
p =

2n− p− 1

(2n− 2)p

n2

2n

p∑
j=1

(X̄∗j − Ȳ ∗j )2

λj
, (7-6)

where X∗i = ΓTXi and Y ∗j = ΓTYj, the columns of Γ are the first p principal components

of the pooled sample covariance matrix, and λj is the jth eigenvalues. For any k ≤ p,

the null distribution of T 2 will be Fp,2n−p−1. Suppose the significance level is controlled at

α. Then, if T 2 > Fp,2n−p−1(α), we could reject the null hypothesis and concludes that the

AM process parameter affects the geometric accuracy of the produced parts; otherwise, the

process parameter may not affect the parts’ geometric quality.

7.2 Power Analysis

Statistical power is the probability that a test procedure will detect an effect, given

that this effect truly exists. It is usually utilized to either determine the sample size for a

predetermined power level or compare the sensitivity among different testing procedures for

a given sample size. In the AM applications, various sources of variations are presented in

the registered configurations offered in the previous sections. These variations are usually

given in significant quantities and could potentially be detrimental to the significance of the

test. Therefore, a hypothesis testing that is more sensitive to the difference in means is

preferable. In other words, the test procedure with a higher power in small sample sizes is
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necessary for the AM applications. We study the statistical performance of the following

four methods used to determine the difference in geometric accuracy of the configuration

samples: (1) the projection-based test (Section 7.1); (2) the Goodall’s F test proposed in

[43]; (3) the permutation test based on Goodall’s F statistic (based on 100 permutations)

[23]; and (4) the Bai-Saranadasa’s test statistic [9]. Configurations are simulated from a

half-ball-shaped design. In the AM processes, the shape of a circular layer could be changed

to a less circular profile because of layer warping [127] or thermal shrinkage [74]. A sine noise

with period 2π and amplitude δ is added to the circular layer simulating this phenomenon,

whose shape is close to the results in [48]. One hundred fifty layers are simulated, while the

sine noise is only simulated on the layers in the range of 30-60 and 100-120. Fifty landmarks

are simulated on each layer. A sequence of δ values is tested to simulate the power curve.

Rather than a constant error, the amplitude δ is assumed to be a multiple of w of the ratio

σ/Ri as in [23], where σ is the standard deviation of the random noise, and Ri is the radius

of the ith layer. Thus, the amplitude shift is given by δ = wσ/R. The values tested for w

are in the range of [0, 3.25], with a 0.25 step size.

Twenty parts (n = 20) are simulated at the amplitude level of 0 and δ. For each value of

the w multiplier, 100 simulations are performed, and i.i.d. errors with N(0, σ2) distribution

are added to each coordinate of the landmarks. The desired level of significance α is set at

5%. A value of σ = 0.1 and R0 = 20 is used to generate the plot, as shown in Figure 46.

From Figure 46, it is obvious that Bai-Saranadasa’s test statistic cannot detect differences

in simulated configurations. The low power is probably caused by the violation of its strict

model assumptions. Furthermore, the performance of the projection-based test is bad with

a smaller number of components (p = 3). However, when p = 3, its performance is close to

Goodall’s F test and the permutation test. With the increase of p, the projection-based test

scheme outperforms these classic shape-based test procedures. The projection-based test

achieves the desired α level and has a probability of difference detection that is much higher

than that of the traditional methodologies.
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Figure 46: Power results for simulated Half-Ball configurations (α = 0.5) for the comparative

study based on the sine form noise on 30-60 and 100-120 layers.

7.3 Case Study: Layer Thickness

Layer thickness, θ, is a unique process parameter of AM processes. The values of layer

thickness heavily affect the production time of the AM processes. For a fixed design, the

greater the value of layer thickness, the smaller the number of layers that need to be printed.

Since the printing time of each layer is almost identical for different layer thicknesses, it

can be sharply reduced with larger layer thicknesses. However, this could cause the sacrifice

of the resolution of the final production. Therefore, it is important to know how the layer
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Table 14: Results for FDM printing experiments with batch size 5, where θ denotes the layer

thickness (in mm); t represents the printing time (in hour); and GP and ∆ are the Procrustes

distance (in mm2) and maximum deviation (in mm), respectively.

θ t GP ∆

0.18 8:42 451.2676 0.2951

0.38 4:38 110.3738 0.1244

thickness affects the geometric accuracy of the AM-created parts. More importantly, it is

critical to determine the optimal layer thickness to meet the accuracy requirements and

shorten the production time.

An experiment is designed to test whether the layer thickness could affect the accuracy

and, if so, which setting is preferable. Specifically, a half-ball-shaped design is selected for the

experiment. The LulzBot TAZ printer (Figure 22(b)) is utilized to perform the experiment

using a 2.85 mm gold metallic polymer filament. A two-level of layer thickness, 0.18 mm

and 0.38 mm, are selected for a comparative study. For each level, 20 samples are created,

which are printed in four batches. The printed samples are scanned by FARO Platinum

8’ Arm Laser Scanner (Figure 22(a)). The p value is calculated by the projection-based

testing procedure, whose value is 3.5527× 10−15. The result shows that there is a significant

difference regarding the geometric accuracy for these two levels.

To further discover which printing setting provides the products with higher geometric

accuracy, the mean configurations for both settings are compared with the configuration

from the design. Table 14 reports both Procrustes distance and maximum deviation values.

It shows that the parts printed under θ = 0.38 mm are much closer to the design than the

0.18 mm ones. The result is somewhat counterintuitive but still reasonable. Even though the

design printed with a smaller layer thickness could provide a better resolution, the number

of layers is almost doubled compared to θ = 0.38. With more layers, if each real layer

thickness is modeled as a random variable with a small constant deviation, the variance and

cumulative deviation of the overall height of θ = 0.18 would be much higher. Therefore, the

vertical deviation and variance may cause a larger deviation from the design.
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Table 15: Comparisons between the points collected from the Renishaw CMM machine

(CMM) and the laser scanner (LS), where sGp = Gp/n is the average of the standardized

Procrustes distance (in mm2) of each setting and∆ is the average of the maximum deviation

(in mm) of each setting.

θ sGP (LS) sGP (CMM) ∆(LS) ∆(CMM)

0.18 0.0605 0.0577 0.2951 0.2540

0.38 0.0148 0.0135 0.1244 0.0976

The Renishaw Cyclone Touch Probe Scanner is utilized to measure the AM-created

objects under these two settings. The average of the standardized Procrustes distance,

sGp = Gp/n, where n is the number of landmarks or points, and the average of the maximum

deviation is utilized as the measures to compare the points collected by the CMM and the

laser scanner, which is shown in Table 15. As for the point clouds surveyed by the laser

scanner, 7450 landmarks are generated for analysis compared to the 225 surveyed points by

CMM.

7.3.1 Visualization Diagnostics

One of the major contributions of the VDA is to provide one-on-one correspondence

of the landmarks among point clouds. Therefore, the deviation of the mean configuration

of each process setting from the design could be directly visualized with little effort. The

deviation plots of both settings are shown in Figure 47. The landmarks are generated

through a support plane projection algorithm (Figure 15), so the deviations along the x-

and y-direction can be negligible. According to the plot, it is obvious that the deviations

of the 0.18 mm setting are more smoothly changed when compared to the ones of 0.38 mm.

However, the overall deviation of 0.38 mm seems to be much smaller.

Furthermore, it can be seen that large deviations can be identified around the middle

in the height of both parts. This phenomenon is possibly caused by the change of material
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Figure 47: Visualization of the pointwise deviations: (1) 0.18 mm and (2) 0.38 mm.

behavior or the change of infill by the printer. Since the design is half-ball-shaped objects,

the angle between the point-wise normal direction and builds orientation, φ, ranges from 0°

to 90°. Due to gravity, the materials tend to have a sink effect after 45 degrees. AM packages

usually solve this problem by changing the infill rate or pattern, which could potentially cause

the deviation. On the other hand, the effectiveness of this algorithm on increasing geometric

accuracy is also unknown. More designed experiments are required to further investigate

the causality of this behavior and find the solutions to improve the geometric accuracy. In

summary, this diagnostic tool could provide both researchers and practitioners with direct

visualization capability for knowledge discovery and process analysis.
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Figure 48: Process map of the two-sample high-dimensional hypothesis testing procedure in

the size-and-shape space presented in Chapter 7.

7.4 Summary and Conclusions

In this chapter, a high-dimensional test procedure in a low-dimensional projection space

is proposed to compare the part accuracy under different AM process settings. The process

map of this test procedure is presented in Figure 48. Power analysis is presented to show that

the proposed testing scheme is much more powerful and sensitive than other procedures. A

practical experiment is discussed for the analysis of layer thickness. One important finding

is that, even though a small layer thickness could provide the parts with high resolution, it

may not necessarily provide more accurate parts when compared to large layer thickness. In

addition, a simple deviation diagnostic tool is proposed to visualize the deviation pattern

for knowledge discovery and process analysis.
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8.0 Conclusions and Future Work

8.1 Concluding Remarks

The primary contribution of this study is to link current advanced analytical method-

ologies and advanced manufacturing processes, e.g., RE and AM. This dissertation bridges

the gap by introducing a novel statistical framework, VDA, that extends the current point-

based or profile-based inspection and analytical tools to deal with 3D closed-shape point

clouds. Auto landmark generation algorithms are developed while maintaining the precision

requirements for manufacturing. Modern statistical methodologies, such as statistical shape

analysis, statistical learning, and high dimensional statistical techniques, are first introduced

into the field of advanced manufacturing processes through this framework.

The proposed framework is utilized to solve several critical research problems in RE and

AM. A novel method to (re)construct a more accurate description of the initial design by sev-

eral scans of multiple parts occurs in Chapter 4. Furthermore, a unique registration method

that mimics the original design, production, and quality inspection processes is introduced

for better RE precision. This research expands RE’s definition from an isolated information

extraction process to a more general 3D ”manufacturing process” that connects the physi-

cal objects and re-manufacturing processes through producing CAD models. Therefore, the

complete re-manufacturing system analysis should incorporate the tolerancing and process

planning for REP to produce more accurate products.

The presented method can solve the critical process-planning problems in RE, e.g., how

many scans and parts are required to meet the predetermined precision requirements for RE

practitioners. A tolerance-inference strategy is proposed to extract more design and produc-

tion information for re-manufacturing process design and quality assurance. Furthermore,

a unique variance-prediction technique is introduced to utilize machine learning algorithms,

together with local geometric descriptors, to model the variability behavior of a given scan-

ner. Two structural variants of the BELM are proposed with more accurate prediction

performance. It is worth noting that both the tolerance-estimation methodology and the
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variance-modeling algorithm presented in Chapters 5 and 6, respectively, can be utilized in

two ways. On the one hand, either can be implemented as an independent procedure for

purposes such as re-manufacturing or scanning-process planning. On the other hand, they

are also a nice complement to the RE process-planning model as prior information in the

Bayesian modeling of the configurations.

Even more importantly, the VDA framework provides an opportunity to analyze unique

AM characteristics, such as printing orientation and layer thickness, which are not possible for

traditional techniques. As a first step, Chapter 7 introduces a high-dimensional hypothesis

testing procedure to the VDA framework to compare the accuracy of the parts printed under

different AM process settings. Therefore, this study is transformative because it integrates

this novel statistical framework into classical analysis tools, such as experimental design tools,

optimization models, and SPC methods, for better decision-making and process planning of

advanced manufacturing processes. Expansions to other modern statistical methods, such

as efficient experimental design strategy and SPC methods, could be developed along this

direction to push forward the AM technology.

RE and AM are emerging manufacturing technologies that have a substantial impact on

shortening life cycles and more flexible designs for new products and personalization man-

ufacturing. We have a responsibility to advance the boundary of the current development

in RE and AM based on their unique process characteristics. Also, it would be best to

bridge the uniqueness of these modern manufacturing processes and the ample analytical

tools available for traditional manufacturing processes. To address this challenge, we pro-

pose a novel framework in place of the multivariate or functional data analysis framework

for a better understanding of 3D closed-shape point clouds. Manufacturing practitioners can

directly implement the proposed methodologies to increase both the variety and quality of

their products by using the combination of RE and AM. Using our framework, advanced

manufacturing researchers and practitioners can design efficient process design and planning,

engage in better decision-making, and implement effective control strategies to increase rev-

enue and provide high-quality AM or re-manufacturing products.
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8.2 Future Work

There are several lines of future work that can be raised based on this research. Potential

research areas are presented as follows:

1. In Chapter 4, the design estimation procedure focused on using mechanical parts to

estimate the original design. The configuration model considers the original produc-

tion error and scanning error. As for some applications, especially legacy products re-

manufacturing, the parts may have been under heavy usage, which makes them either

degraded, worn, or even broken. In such cases, the landmarks should be generated for

each RE model created by ”repair” algorithms [8, 97], and then the original design should

be estimated through the VDA framework applied to the ”repaired” configuration. In

this case, expert knowledge, including design intention and process knowledge, com-

bining with machine learning techniques, can be utilized to design reconstruction and

re-manufacturing process planning.

2. Another potential improvement of the current tolerance-estimation method in Chapter 5

is incorporating the domain knowledge of assembly. The presented work concentrates on

the estimation of the parts with the same design. However, the original tolerance de-

signs, especially the one related to the mating features, also take the assemble capability

into consideration. By incorporating the empirical tolerances for their counterparts, the

estimated tolerances are likely to be more robust.

3. One of the major advantages of AM is its capability to produce parts with complex

designs, which are usually constrained by traditional manufacturing systems. There-

fore, instead of solely producing parts, the assemblies could be directly printed via AM

through part consolidation. Low quality, high cost, and substantial time consumptions

are the significant drawbacks of AM processes that prevent them from broader industrial

applications. However, if the parts are integrated through part consolidation, the toler-

ance regions for the assemblies are comparatively larger than each of the sub-assemblies

because of the stack-up effect. On the other hand, part consolidation could avoid the

production costs for each sub-assembly and the assembly cost. One of our ongoing

research topics is to develop a framework—named reducing assembly tolerance analysis
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(RATA)—to analyze and estimate the tolerance design for part consolidation. Therefore,

another line of future work will focus on extending the presented framework to tolerance

design and estimation for consolidated legacy parts to further make decisions regarding

process selection and planning for consolidated parts re-manufacturing applications.

4. New directions of research can be developed based on our algorithm for variance modeling

of point-cloud data. One involves further extensions of the idea of virtual metrology. Two

major research topics in both RE and metrology are measurement planning, in which

the objective is to automate the scanning process while providing a precise description

of the object, and multi-resolution scanning data fusion or calibration, in which the

objective is to reduce time or cost requirements for high accuracy and precision scanning.

Our variance modeling algorithm effectively attempts to merge both research topics to

identify a common solution. A set of virtual measured points can be simulated according

to the designed or RE-generated CAD model, together with the variance model trained

by the scanning history. Therefore, instead of time-consuming physical measurements,

such a virtual measurement system could quickly identify high variance regions that may

require additional, high precision measurement. Another area of future research is to

incorporate the tolerances for the RE process into the general tolerance stack-up analysis

in a re-manufacturing setting. Current RE practice assumes that the RE-generated

model is the ”true” description of the object of interest. However, we demonstrated

that point-wise variance exists and could cause deviations between the actual object and

the RE-generated model. In the biomedical or aviation industries, it could be necessary

to incorporate the tolerance for RE processes in the entire (re)manufacturing process

planning.

5. Our future research will also focus on expanding the current hypothesis testing procedure

to general experimental settings with multiple factors, e.g., the effects of the interaction

between layer thickness and build-orientation regarding the part accuracy. VDA provides

a scientific path to analyze AM process parameters, while traditional methods may not

be appropriate. Also, each component of the VDA framework will be investigated in

detail. Although the current research focuses on applying the parts produced by the

FDM process, the VDA framework, in general, can be applied to analyze the parts
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created by metal AM processes. In this case, one of the future topics will increase the

power for even higher dimensional configurations to deal with the significant amount of

the measurement error due to high roughness in the AM-created metal parts.

Even though the analysis of high dimensional geometric data, e.g., 3D point clouds,

is still at an early age, the VDA framework provides a new way of thinking about the

analysis of manufacturing processes and processing the product’s geometric data. The point

cloud can be analyzed in a more reasonable way by using this framework when compared to

classical feature or profile-based analysis. The VDA framework also provides the possibility

to analyze and compare the accuracy and precision of the 3D scanners to bridge the gap

between high dimensional 3D point clouds and statistical inferential techniques, such as

analysis of variance, statistical process monitoring, and machine learning, for process analysis

and improvement.
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