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Abstract: Natural disasters are phenomena that can occur in any part of the world. They can cause
massive amounts of destruction and leave entire cities in great need of assistance. The ability to
quickly and accurately deliver aid to impacted areas is crucial toward not only saving time and
money, but, most importantly, lives. We present a deep learning-based computer vision model to
semantically infer the magnitude of damage to individual buildings after natural disasters using
pre- and post-disaster satellite images. This model helps alleviate a major bottleneck in disaster
management decision support by automating the analysis of the magnitude of damage to buildings
post-disaster. In this paper, we will show our methods and results for how we were able to obtain a
better performance than existing models, especially in moderate to significant magnitudes of damage,
along with ablation studies to show our methods and results for the importance and impact of
different training parameters in deep learning for satellite imagery. We were able to obtain an overall
F1 score of 0.868 with our methods.

Keywords: computer vision; artificial intelligence; disaster management; remote sensing; damage
magnitude; satellite imaging; buildings

1. Introduction

Emergency response teams draw from a large range of technical tools for the management of
natural disasters [1]. Among them, the use of satellite imagery has proven highly beneficial for collecting
the data required for driving detailed disaster management planning [2–4]. However, these satellites
can gather petabytes of data [5], which is significantly more information than humans can analyze
manually. Furthermore, manually analyzing such large volumes of data requires subject matter experts
to derive meaning from the data [6]. For this, advanced automated methods, mainly in computer
vision, are under development.

To alleviate the massive workload placed on humans for processing large amounts of satellite data,
computer vision has been employed to automate the detection of objects and conditions vital to disaster
management. However, despite this ability, the problem with current automated solutions is that
they are unable to detect all magnitudes of damage to buildings with a high degree of confidence [7].
Therefore, while a high level of automation is possible, the current methods provide solutions at a high
level of uncertainty. Furthermore, more can be done to take advantage of methods available prior to
and during training to develop better performing models for computer vision satellite imagery tasks.

To fill this gap (i.e., having a model that can confidently detect all magnitudes of damage to
buildings and appropriate methods prior to and during training to develop the best performing model),
we propose a deep learning-based computer vision model for detecting the magnitude of damage
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to buildings from pre- and post-disaster images. Figure 1 shows a pipeline with the model at its
core. The pipeline takes pre- and post-disaster images as input, semantically segments the buildings
from the images, classifies the magnitude of damage done to each building, and provides a damage
magnitude mask color-coded to label the damage detected to each building. This is novel in that current
approaches reported in the literature only address the existence or the non-existence of buildings after
a natural disaster or only analyze damage for a single disaster type [8,9].
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Advances in deep learning have driven computer vision to new levels of performance. The creation
of AlexNet, for example, noted a marked change in how computer vision tasks were approached [10],
and also noted a marked change where a deep learning-based computer vision model outperformed
humans on benchmark image classification tasks. For both reasons, in this paper, we propose using a
convolutional neural network (CNN). CNNs also afford us many methods to apply before and during
training. In our approach, we will use transfer learning, image augmentation, decaying learning rates,
and class weighting. We analyze the impact of each of these methods to determine the best performing
model through a series of ablation studies and experimentation.

The contribution of our paper is a deep learning-based computer vision model to semantically infer
the magnitude of damage to individual buildings after natural disasters from pre-and post-disaster
satellite images.

The rest of this paper will be structured as follows. We will provide a background of the problem
and some related works (Section 2). We will review the dataset we will be using for our work
(Section 3). We will describe the methods used for performing the work (Section 4). We will describe the
experiments we performed (Section 5). We will review the results we received from our experiments
(Section 6). We will discuss the results and provide analysis (Section 7). We will conclude our work
and discuss some future research directions (Section 8).

2. Background

Research in computer vision and artificial intelligence focused on remote sensing in disaster
management has produced a vast corpus of tools and algorithms [11] for providing the analysis and
interpretation of data needed by emergency responders. Models and algorithms to infer damage or
change have become increasingly popular in aiding decision support as the technology has grown
to support such computation. These models and algorithms are now able to accept a range of visual
inputs including satellite, drone, plane, and street view images, and can even fuse social media images
for their input sources. Processing of the data can be handled with methods ranging from specific
rule-based engines, to unsupervised learning techniques, to supervised machine learning techniques,
and, more recently, to deep learning techniques. The output of these methods can be utilized to provide
the information needed for disaster management decision support.

Identifying damage to buildings automatically from satellite images is a particularly rich field of
research in remote sensing [4,8,12–14]. In the work of Bai et al. [14], a U-net based algorithm is used to
accept pre- and post-disaster satellite images where the output is a damage detection segmentation
mask. This mask provides a pixel-level classification of where buildings were either washed away,
collapsed, or still standing after a Tsunami. As washed away and collapsed cases both no longer exist,
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this model can classify undamaged and destroyed buildings for a single disaster type with 70.9%
accuracy. Cao et al. [13] used post-disaster images of buildings after a hurricane already extracted
from satellite images to classify the images as damaged or undamaged using a Lenet-5-inspired CNN.
They were able to achieve a 97% accuracy, but a higher accuracy is to be expected if part of the pipeline
does not require identifying buildings. Doshi et al. [4] is a multi-disaster example using both flood and
fire-based disasters. They used CNNs to create segmentation masks where buildings stand in pre-
and post-disaster satellite images. They then took the delta of the masks to establish a change mask.
Finally, they took the ratio of changed vs. unchanged pixels to establish a quantitative change ration.
While this algorithm can create a true quantitative value between zero to one, it indicates changes to an
area and not to specific buildings. Tu et al. [12] is one of the few examples that did not use a neural
network. Instead, they used a visual bag-of-words method to create a feature-based representation of
small regions in the before- and after-disaster satellite images, concatenated them, and used an SVM to
make a prediction of damaged or not damaged for the small region based on the concatenated feature
representations. They were able to achieve a 91.7% accuracy, but like Cao et al. [13], their work assumed
knowing where buildings are. The small regions selected are not guaranteed to contain buildings at all.
Lastly, Xu et al. [8] used a CNN-based architecture to detect damaged and undamaged buildings due
to earthquakes. In their method, they segmented out buildings from pre- and post-disaster images
and passed them into their algorithm. The algorithm extracted features of the pre- and post-disaster
images, computed the delta between them, and predicted damaged or not damaged based on the delta
with an AUC of 0.8302.

As mentioned in the introduction, the large strides made in deep learning-based computer
vision models have made them a prime candidate for utilization in remote sensing and disaster
management. Deep learning methods have been the top performers in many vision recognition
tasks [15,16]. Deep learning-based methods have been shown to outperform [17–19] other methods
in the remote sensing and disaster management space as well, including rule-based/ontological
methods [6], clustering/bag-of-words methods [20], and machine learning-based methods [12]. Many of
the current deep learning-based methods in the literature [7,8,13] operate on variations in CNNs.
This enables them to take advantage of many powerful tools available in deep learning including image
segmentation, transfer learning, class weighting, and decaying learning rates. Therefore, as part of our
work, we will explore primary methods for improving the performance of and tuning such methods.

A significant advantage of CNNs is their ability to handle multi-class classification within a single
model. This is another distinguishing feature between them and other methods that have been utilized
in remote sensing and disaster management. Despite this, multi-class classification models for inferring
damage magnitude are currently non-existent or, at best, limited in what they offer. [14] conceptualize
a framework that would incorporate major damage, moderate damage, minor damage, no damage,
washed away, and collapsed semantic labels. However, they only experimented with washed away,
collapsed, and survived building classifications. While this is more than a binary comparison, it does
not provide a measure of magnitude. The classes can simply be inferred by where a building was
(label 1), where nothing is now (label 2), where a pile of rubble exist now (label 3), or where a building
remains. The framework lacks the ability to determine the degree of damage to buildings that they
conceptually outlined in the beginning of the paper. They also use accuracy as their measurement,
which has been shown to be an inappropriate performance metric [7] as class sizes are so imbalanced in
most disaster assessment cases and artificially inflate the accuracy percentage. [7] provide multi-class
labels for damage magnitude (i.e., no damage, some damage, significant damage, and destroyed) and
correctly choose the F1 score as their metric. However, the model is put forth as a proof of concept to
complement the data model they present and only identifies no damage and destroyed cases with a
significant degree of certainty.

To develop a model that could potentially be used in decision support, disaster managers require
a model that can both provide multiple degrees of magnitude and do so with a moderate to high
degree of certainty. This is a difficult task as degrees of magnitude between undamaged and destroyed
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buildings are subjective, and cases that border between two degrees of magnitude can mislead a model
and complicate training [7]. The model we will develop will be trained on a satellite image dataset [21]
with ground truth labels for no damage, some damage, moderate damage, and destroyed buildings.
We will then use this model in a framework to provide these degrees of magnitude for buildings in a
separate testing dataset with a moderate to high degree of certainty.

3. Dataset

The data used in this research are composed of high-resolution satellite images collected as part
of the Maxar/DigitalGlobe data program [22]. The aim of this program is to supply satellite imagery
and data to aid in response and recovery after natural disasters. To do this, the program maintains an
open imagery database of satellite images that covers disasters from 2010 to the present for all types of
major natural disasters world-wide. To date, the database contains collected images and data from
over 50 natural disasters, which is openly available to the public.

The dataset used in this work was compiled from the images in the Maxar/DigitalGlobe open data
program. Images from 17 different disasters were selected. This dataset is unique from other datasets
utilized in automated building damage assessment for several reasons. First, the spatial resolution for
all satellite images in the dataset is under one meter. This is multiple times higher than other datasets
currently available to the public. This dataset also covers multiple types of disasters, including images
and data from earthquakes, tsunamis, floods, volcanic eruptions, wildfires, and wind. To the best
of our knowledge, other openly available datasets only cover a single disaster type. This creates a
great opportunity for developing models that can scale across different disaster types. In addition to
disaster types, the dataset also features a diverse set of locations. Included in this set are images and
data for disasters in the United States, Mexico, Guatemala, Portugal, Indonesia, India, and Australia.
Figure 2 shows an example of one such before- and after-disaster image pair. This provides unique
opportunities in disaster model development for two important reasons. First, building construction
varies greatly in different parts of the world. Second, different locations vary greatly in density of
buildings. Included in this dataset are images with no buildings at all, which provides data to train for
the negative case, which is not offered by all datasets. These opportunities can greatly assist in creating
a significantly more robust model that other datasets would allow.
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from our pipeline.

An important contribution the developers of the dataset created when compiling it is the joint
damage scale [7]. The description for each damage classification as provided by the creators of the
dataset can be found in Table 1. The joint damage scale is a method for semantically rating the
magnitude of damage to buildings across multiple types of disasters. This is an important contribution
as it provides a means for equating the degree of damage to buildings regardless of the type of damage
they have received. The joint damage scale uses 0 for no damage; 1 for minor damage such as some fire,
water, or structural damage; 2 for major damage such as significant fire, water, or structural damage;
and 3 for destroyed in cases where the building was scorched, collapsed, flooded, or missing completely.
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This scale was created in collaboration with the National Aeronautics and Space Administration
(NASA), the California Department of Forestry and Fire Protection (CAL FIRE), the Federal Emergency
Management Agency (FEMA), and the California Air National Guard [7].

Table 1. Joint damage scale classifications.

Classification Description

No damage No damage indicated
Some damage Minor damage such as some fire, water, or structural damage

Moderate damage Major damage such as significant fire, water, or structural damage
Destroyed Building scorched, collapsed, flooded, or missing completely

The dataset was manually compiled and annotated in collaboration with the California Governor’s
Office of Emergency Services (Cal OES), FEMA, the United States Geological Survey (USGS),
the Carnegie Mellon University (CMU) Software Engineering Institute, the National Security Innovation
Network, NASA, Cal FIRE, the California National Guard (Cal Guard), and the National Geospatial
Intelligence Agency [21]. The dataset was ultimately called “xBD: A Dataset for Assessing Building
Damage from Satellite Imagery” and is hosted and freely available by the Carnegie Mellon University
Software engineering Institute. It covers an area of over 45,000 sq km and has annotations for over
850,000 buildings. Each building has a ground truth polygon that outlines its location in the image, and
a ground truth label that assigns the building a semantic label from the joint damage scale. All images
in this dataset were taken between 2011 and 2018.

4. Materials and Methods

The contribution of our paper is a deep learning-based computer vision model to semantically
infer the magnitude of damage to individual buildings after natural disaster from pre- and post-disaster
satellite images. This model fits into a larger pipeline that allows us to identify buildings from satellite
images, infer the damage magnitude, and display the results for all buildings within the satellite image.
This pipeline is composed of our best performing model, which we will call the classification model,
a segmentation model that is used for identifying each building within the satellite images, and some
image-based utility functions to adjust the inputs and outputs of the classification and segmentation
models for each step in the pipeline appropriately.

4.1. Classification Model

As stated above, the job of the classification model that we propose is to infer the magnitude of
damage to individual buildings after natural disasters. This is done by placing a deep learning-based
computer vision model at the core of the model that applies labels to each building entered into the
model from the joint damage scale discussed in the data section above. The best performing model
was trained, validated, and tested using the deep learning algorithm along with the dataset described
above in our data section. There are several key elements that are central to the training, validation,
and testing for developing the best performing model, and we believe that they are important for any
computer vision model being used for multi-class classification in satellite imagery. These elements
include proper deep learning algorithm selection, transfer learning, class weighting, decaying learning
rates, and image augmentation.

The deep learning algorithms we evaluated are all variations of classification-based neural network
algorithms. Neural networks have been shown [17–19] to outperform prior methods in metrics such as
F1 score and accuracy in classification tasks for very high-resolution satellite imagery. They are also
able to collect information and draw inferences on data automatically that would otherwise require lots
of manual work and subject matter expertise via other methods [6,12,20]. The algorithms evaluated
were AlexNet, VGG, DenseNet, GoogLeNet, and ResNet. ResNet, in particular, is commonly cited in
the literature [7] as a popular algorithm for computer vision-based tasks, including aerial imagery.
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These algorithms, all developed recently (between 2012 to 2016), have been shown to be competitive
compared to other algorithms in standard computer vision classification benchmarks [23], and are
readily available for utilization as part of the PyTorch library [24]. Another important advantage of the
chosen algorithms is that PyTorch allows us to automatically pretrain the networks using networks
trained on the ImageNet dataset [25]. This enables us to take advantage of transfer learning techniques
from models that were carefully crafted on millions of precisely annotated images, including images
of buildings.

Class weighting is a crucial element to consider whenever the classes in the ground truth do not
contain an even distribution of samples. In the case of our data, the no damage semantic classification
has more than eight times as many samples as any other classification. This creates a large class
imbalance that can significantly bias a model toward the no damage classification. In order to resolve
this issue, class weighting is applied before training to rebalance the samples so classes with a larger
number of samples do not impact the model more than classes with less samples. To accomplish this,
we used Equation (1) [26] to create a vector of weights and apply them to the losses generated from
each class during training to remove the bias incurred by uneven class sample sizes. These weights
were applied to the predicted values from the network during training to adjust the loss from the
network accordingly for imbalanced classes.

class_weights =
num_samples

num_classes ∗ num_samples_per_class
(1)

Image augmentation is a proven technique [20] utilized in computer vision classification model
training, but it has been underutilized in computer vision classification model training for satellite
imaging. Many examples exist where no augmentation was used [17,19] and many more where only
a few augmentation techniques were applied [8,16,27]. However, in deep learning libraries such as
PyTorch, multiple more functions exist that allow for augmentations in a single line of code [28].
For our training, we utilized random cropping, random resizing, horizontal flipping, and vertical
flipping techniques. The algorithm begins by selecting a random area between 8 and 100% of the total
image and crops it to keep only the selected area. This is a technique commonly applied in computer
vision [20]. It then resizes the cropped area to 224 × 224 pixels and chooses randomly whether to flip
the image along the horizontal axis. Therefore, if a model is trained over 100 epochs, each sample is
likely augmented in 100 slightly different ways during training, and the model is taught to recognize
the ground truth for that sample from 100 different vantage points. This provides a robustness to the
model that is missing from other satellite image classification models in the literature. It is highly
beneficial toward preventing overfitting of a model as augmentations make the model learn more
generalized features of the images on which it is training.

The last key element to highlight that is not in the literature for deep learning-based computer vision
classification models for inference on satellite images is decaying learning rates [29]. Decaying learning
rates is common practice in neural network algorithms, particularly in cases where stochastic gradient
descent and standard loss optimization are utilized, yet this is not addressed in the literature. This is
an important step in the backpropagation of many computer vision-based deep learning algorithms,
especially for models trained over many epochs, as it helps adjust the step size accordingly during
backpropagation while training a model. Without this technique, a model is likely to plateau at a local
minimum instead of converging to a global minimum, hence producing suboptimal model performance.

4.2. Segmentation Model

The segmentation model utilized for the pipeline in our experimentation is a fork of a building
segmentation model [30] adapted from the U-Net architecture [31] as part of the SpaceNet data
challenge [32]. The architecture for this is a fully connected network [33]. Therefore, the images
inserted into this network are down-sampled to semantically classify the most salient features in the
image and then up-sampled to semantically segment all the pixels in the image from those salient
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features. The down-sampling happens through a series of convolutional, pooling, and activation
layers common to all CNNs, but is then followed by a series of deconvolutional and unpooling layers
to provide the final semantic segmentation. The output of this process will provide a mask that is a
prediction provided by the network as to whether each pixel in the image is part of a building or part
of the background. This prediction is evaluated by the intersection over union (IOU) of the prediction
and ground truth, as shown in Equation (2). The IOU is used to determine the loss of the network for
each round of training and backpropagated through the network using stochastic gradient descent.

IOU =
area(prediction ∩ ground_truth)
area(prediction ∪ ground_truth)

(2)

4.3. Pipeline

As mentioned above, the pipeline is composed of the trained segmentation model, trained
classification mode, and some utility functions to adjust the input and output of the models appropriately
to produce our final inferred visual magnitude assessment result. Therefore, to perform a magnitude
assessment inference, the pipeline begins with entering the before-disaster image into the segmentation
model to find the buildings, passing the segmentation mask (location of the buildings) with the
corresponding after-disaster image to the classification model, and finally using the results to display
our visual representation (Figure 1).

The building segmentation process uses the trained segmentation model at its core.
The before-disaster satellite image is entered as input into the model. The model will then perform a
pixel-wise segmentation on the image to identify all the pixels in the image that belong to buildings.
Once this is established, the segmentation process will generate corresponding polygons that will
bound the identified building pixels so that we have an accurate representation of where all the
buildings are located. These polygons will then be used in conjunction with the after-disaster images as
input into the classification model. We will use the polygons to locate the buildings in the after-disaster
images, and the classification model will provide a damage magnitude label to the buildings. The final
output will be the mask with the magnitude of damage to buildings classified by lighter to darker
shades of gray as the magnitude of damage increases (Figure 1).

The classification process uses the trained classification model at its core. The polygons from
the segmentation process and the corresponding after-disaster images are passed into the process.
The polygons are used to extract the sub images of each building from the after-disaster images.
Each extracted sub-image is then fed into our trained classification model and a semantic label is
inferred from each sub-image from the set of ground truth labels that exist in the dataset from the
joint damage scale. The inferred semantic label and polygon are then stored in a file. The labels and
polygons are then read from the file and pieced back together into a new image so that they can be
color-coded by magnitude to provide an overall representation of the inferred magnitude of damage to
all buildings within the image.

5. Experiments

We discuss model training for neural network algorithms through high-level and low-level
experiments. There are important differences to note between the high- and low-level experiments.
In the high-level experiments, the emphasis is on selecting which algorithm and parameters to use
for training; no emphasis is placed on tuning. The F1 scores for the high-level experiments are
recorded at the aggregate level and are also not split into individual damage magnitude classifications.
The results of these high-level experiments help us understand which algorithms and parameters
are effective. In the low-level experiments, the emphasis is algorithm tuning and more finite details.
We focus on selecting the best training parameter values for the best performing algorithms from our
high-level experiments. In the low-level experiments, we record F1 scores for each individual class
as we want low-level details for selecting the final best performing model from these experiments.
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For the high-level experiments, we evaluate five different CNN classification algorithms with a smaller
dataset to evaluate their performance and perform several rounds of high-level parameter tuning.
This allows us to try many options as training and testing of the resulting models can be performed
in under an hour on the Google Colab cloud server environment with GPU hardware acceleration.
For the low-level experiments, we took the top performing algorithms from our initial training and
ran them on the full dataset with fine parameter tuning. Training against the whole dataset required
an entire day of training, so opportunities to change models and parameters were limited. Finally,
we placed the top model into the larger pipeline for final model evaluation so we could measure how
the model impacted the overall performance of the pipeline.

5.1. High-Level Experiments

As mentioned in our methods section, we selected AlexNet, VGG, DenseNet, GoogLeNet,
and ResNet as the algorithms to evaluate our semantic classification model. These are all recent
algorithms [23] that can be adapted to work well in computer vision satellite object classification tasks
and are readily available in Pytorch [24]. They also fully take advantage of developments in deep
learning as described in our related works section and can be used to fill the current gaps that exist in
the literature for inferring damage magnitude from satellite images. All of these models also come with
the option to apply pretrained weights to them from models carefully trained on the ImageNet [25]
dataset. As mentioned in our methods section above, this enables us to take advantage of transfer
learning techniques from models that were carefully crafted on millions of precisely annotated images,
including images of buildings [25].

The data we utilized were a small random subset from the xDB [7] dataset. We chose random
samples from each of the 17 different disasters uniformly. In all, we used 1000 training images,
400 validation images and 400 testing images. Each set had an equal number of images from each of
the no damage, some damage, significant damage, and destroyed classification labels. Therefore, in our
high-level training, no class weighting was required, and we could iterate through experiments quickly.

For the models, some parameters remained static. This choice was made for several parameters to
either provide an equal comparison between models, limit the amount of time required for training
and inference, or by convention. All models used cross-entropy to measure their loss and stochastic
gradient descent to converge to a global minimum. Setting these metrics across all models allowed
us to equally compare their outcomes and is also a convention in computer vision. All models were
trained over 50 epochs with a 32-image batch size. This allowed us to create models that performed
better than prior models in the literature [7] but could still be run quickly enough that we could execute
many tests successively.

Of the parameters we changed, we spent the most time studying the impact that different image
augmentation and learning rate techniques had on the model training process. These were parameters
that we could quickly change and had a visible impact we could measure in the training loss over the
first few epochs of training. We did not have to wait for all the training to complete to see if the change
made a positive impact in training performance. We could not find works that included extensive
use of these parameters in the literature, yet found the parameters to be the most significant ones
outside of transfer learning for developing strong predictive models for semantic inference of damage
magnitude in satellite imaging. In our experiments, we utilized decaying learning rates. This allowed
us to decrease the step in the stochastic gradient descent procedure accordingly as we trained to avoid
overshooting a global minimum and not converging. We started with a learning rate between 0.01
and 0.001 and divided the learning rate by 10 somewhere between one and four times over an entire
training sequence. We adjusted the image augmentation procedure as outlined in our methods section.

5.2. Low-Level Experiments

Our low-level experimentation was like our high-level experimentation. For our detailed
experimentation, we only compared the GoogleNet and ResNet algorithms. We again opted to
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pretrain the models to take advantage of transfer learning techniques. We also chose to continue using
cross-entropy loss and stochastic gradient descent both to compare the algorithms equally and as a
matter of convention. We continued to use the same image augmentation techniques for this round of
experimentation as well.

We used the entire dataset for these experiments. In all, we had 114,000 training images,
24,400 validation images and 24,400 testing images. In each of the training, validation, and testing
sets, there were eight times as many samples in the no damage category as any other category, so class
weighting was applied for this experimentation as outlined in our methods section.

We also changed some of the other parameters accordingly. We raised the number of epochs to
100 and raised the batch size to 64. The former was to perform more robust training across all the
samples, the latter to help expedite training so all training could be performed in the 12 h window
allotted for running experiments on the server we used. We also chose to set the decaying learning rate
to start at 0.01 and be divided by 10 a total of four times over the course of each experiment.

After completing our low-level experimentation, we placed the model we developed from the
GoogleNet algorithm in our pipeline. We tested the complete pipeline using over 200 full satellite
images of 1024 × 1024 pixels each. The pipeline was able to detect and semantically label the buildings
appropriately and produce the desired damage magnitude images as outlined in our methods section.
An example is shown in Figure 2.

6. Results

We chose to use the F1 score to measure the performance of our experiments. This choice is
consistent with the literature [4,7] for inference of damage from natyral disasters. In most cases,
the number of samples in the undamaged classes were multiple times larger than the samples in the
classes that represented damage classes in the literature [7]. This also held true for the dataset we used,
where there were more than twice as many samples in the undamaged class than all the other classes
containing some level of damage combined. This imbalance causes an issue when using metrics such
as accuracy, which are known to be impacted by imbalanced class sizes and create inflated results as
a consequence.

6.1. High-Level Experimentation

Table 2 shows the results of the initial training we performed to determine the effects of
applying transfer learning, decaying learning rates, and image augmentation while training models.
We performed these experiments using the ResNet algorithm. As all the subsequent training we
perform in the high-level experimentation is done with CNN-based models, we would expect the
application of these methods to behave similarly across all of them. Our baseline model includes all
three methods, where all other models have had one of the three methods not applied to show how
performance was impacted.

Table 2. Training with different parameters.

Experiment F1 Score Precision Recall

Baseline 0.699 0.710 0.695
No Decay 0.639 0.639 0.640

No Augmentation 0.643 0.643 0.645
No Pretraining 0.547 0.552 0.545

Table 3 provides the metrics for all the CNN algorithms we evaluated in our high-level experiments.
The last row labeled “time” indicates the number of seconds on average the given algorithm required
to process a single batch during the training phase. This is important not only for training a model
but is a direct reflection on how long the model will require to infer the magnitude of damage to a
building as well, its real-time performance. All other columns indicate the metrics aggregated for all
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four ground truth labels based on the weighted average. All models were trained with the transfer
learning, decaying learning rates, and image augmentation parameters included.

Table 3. Training with different algorithms.

Metric AlexNet DenseNet GoogLeNet ResNet VGG

F1 Score 0.607 0.659 0.701 0.701 0.686
Precision 0.610 0.659 0.702 0.705 0.691

Recall 0.605 0.660 0.700 0.700 0.685
Time 0.219 0.857 0.234 0.864 0.626

6.2. Low-Level Experimentation

Table 4 provides the metrics for the detailed experiments we performed on the two best performing
algorithms from our high-level experiments. The “class” column indicates “all” for the cases where we
used the weighted average metric to measure the aggregate performance of all four classes. All other
cases are labeled with the performance of the individual class directly. The “time” row again measures
the number, of seconds, on average the given algorithm required to process an image during the training
phase. ResNet had an equal or better metric in ten of the sixteen metrics in Table 4. For this reason,
we used ResNet for the top performing model and for our pipeline experimentation in Section 6.3.

Table 4. Low-level experimentation.

Metric Category GoogLeNet ResNet

F1 Score All 0.868 0.868
F1 Score No Damage 0.927 0.924
F1 Score Some Damage 0.592 0.587
F1 Score Moderate Damage 0.716 0.721
F1 Score Destroyed 0.811 0.814
Precision All 0.888 0.889
Precision No Damage 0.977 0.98
Precision Some Damage 0.489 0.478
Precision Moderate Damage 0.665 0.666
Precision Destroyed 0.770 0.772

Recall All 0.858 0.855
Recall No Damage 0.881 0.874
Recall Some Damage 0.749 0.760
Recall Moderate Damage 0.773 0.785
Recall Destroyed 0.858 0.862
Time All 0.227 0.388

6.3. Pipeline Experimentation

Figure 2 shows the results our final ResNet model produced when incorporated into the pipeline.
The lightest shade of gray represents the buildings that were not damaged, the two darker shades of
gray represent buildings with some damage and significant damage, and black represents buildings
that were destroyed. Figure 3 displays the training and testing loss during our final experiments.
In Figure 3, we show we were able to perform well in both training and testing phases and did not
encounter overfitting in the best performing model. Additionally, we can see in Figure 4 that for all
damage magnitude levels, we were able to perform well above random selection.
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7. Discussion

7.1. High-Level Experimentation Analysis

As expected, transfer learning, decaying learning rates, and image augmentation helped to create
a better model. Transfer learning had the largest effect on the resulting performance in our high-level
experimentation. Transfer learning had the effect of enabling models to be more robust as a result
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of the model having already received training on millions of images from the ImageNet dataset,
which included images of buildings. In this way, the best performing model was already primed to
better distinguish between the shapes, colors, textures, and other features that delineated our samples
into their respective classes. For similar reasons, image augmentation also proved to provide significant
benefits. As a result of the cropping, zooming, and flipping methods we employed, the model was
trained on a slightly different variant of the image at each epoch. For our high-level experimentation,
this means that the model was trained on 50 variants of all 1000 training images. This has a large
multiplicative effect and, again, greatly adds to the robustness of the model. Lastly, for any model
trained with stochastic gradient descent, which most models use [19,34,35], decaying learning rates
will boost performance, as shown by our experiments. Without decaying learning rates, the stochastic
gradient descent process runs a greater risk of taking too large of a step near the minimum solution
and consequently stepping over it. This leads to a situation where the minimum can be continually
over-stepped and never reached, hence creating a situation where convergence is not reached during
training and the resulting model has poorer performance. This becomes even more important as the
number of epochs is raised for more sophisticated training.

Another gap in the literature is the utilization of a classification algorithm with no justification for
their choice in selecting it. We avoided this issue in our work as demonstrated in Table 3. Because
AlexNet is a predecessor to all the other algorithms we tested, it is not surprising that it had the lowest
metrics in all categories. It is worth noting that it does run the fastest, however, so in cases where speed
is of the essence, AlexNet still has value. We assume that we could achieve better performance out
of both DenseNet and VGG with more individualized tuning, and they are popular options in the
literature [13,27], but in an effort to keep parameters similar between algorithms so we could evaluate
the algorithms equally, we did not dig deeply into individualized parameter tuning at this stage in our
experimentation. This left us with both GoogleNet and ResNet as our top performers. ResNet did
perform better, but it also took significantly longer to train. It is again a case where which algorithm to
use will depend on the value placed on speed vs. performance metrics.

7.2. Low-Level Experimentation Analysis

As mentioned in the methods section, for the low-level experimentation, the main changes we
made were that we increased from using 1000 training images to 114,000 training images, and we
increased from 50 epochs to 100 epochs. We also increased from two steps to four steps when
decaying the learning rate, but this was simply because we doubled the number of epochs for training.
This changed our training time from under an hour to about twelve hours. This increase in performance
between our high-level and low-level experiments is to be expected given the increase in samples and
training resources provided.

We also noticed in our testing that the best performing model did not perform as well on the
“some damage” and “moderate damage” cases. This result agrees with the observations discovered
in [7], yet we were able to create models that achieved stronger predictive power across all classes
than they were able to achieve as well. As mentioned before, the “some damage” and “moderate
damage” cases are more subjective by their very nature compared to the “no damage” and “destroyed.”
They include attributes such as some vs. moderate fire or water damage, which are hard to delineate
from a machine or human perspective. These subjective measures can have a lot of room for overlap,
which can create a lot of samples that are on the border between classes and would lower the reliability
of the human annotated labels. By consequence, this also leaves more room for error for our trained
model as well compared to the more definitive “no damage” and “destroyed” cases.

Between the algorithms we compared in our detailed experimentation, we can see that neither
significantly outperformed the other in any metric. There is less than a percent difference between
the models in all metrics recorded except for three of them, which are all still under 2%. The largest
differences were between the metrics recorded for the recall in the “some damage” and “moderate
damage” categories, where ResNet achieved higher metrics than GoogLeNet. This demonstrates
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another example where the “some damage” and “moderate” created the greatest challenges for the
models we tested. It is worth noting that the ResNet took over 40% longer to process each image on
average than the GoogLeNet algorithm. However, it is also important to note that we performed our
training on the Google CoLabs servers.

8. Conclusions and Future Research Directions

In this work, we have developed a deep learning-based computer vision model to semantically
infer the magnitude of damage to individual buildings after natural disasters from pre- and post-disaster
satellite images. This is novel compared to other models in the literature as they do not provide any
measure for the degree of damage magnitude to buildings from natural disasters. They only provide
labels to tell whether a building still exists after a disaster.

Of equal importance, we outlined parameters that have a large impact in model training,
particularly when using deep learning-based techniques in computer vision to generate models for
inferring damage from satellite images. We found image augmentation, decaying learning rates, and
transfer learning to be of high importance. This does not discount the importance of other often
neglected parameters such as initial deep learning algorithm selection.

We believe that this work will pave the way for continued research in the automated assessment
of damage magnitude with deep learning-based computer vision techniques. These techniques are
perfectly poised to alleviate the barrier of entry imposed by other techniques requiring specialty
knowledge or tools. They also alleviate many of the complicated steps required by other methods to
expedite the creation of models and simplify design. In this way, one can create the solutions that will
best aid the quick decision making and planning required in disaster management.

Now that we have proven we can predict the magnitude of damage to buildings with a moderate
to high degree of certainty, there are several logical next steps. The first step would be to change our
metric from the F1 score to the mean average precision (maP). We used F1 score for this work because
it is the metric commonly used in the literature, and we wanted to use a metric that would provide a
direct comparison between our work and others. However, in semantic segmentation-based models
like ours, the maP is a significantly more common metric, and one that provides a better measurement
of performance. In addition to measuring how well we can label buildings, the maP also measures
how well we are able to locate the buildings. This will provide more meaningful information for
determining the model that performs best as we are performing our training cycles.

Another opportunity exists in additional data. The dataset [21] only contains a subset of the
satellite images from the original source [22]. Therefore, opportunities to extract additional training
data potentially exist from these sets so we can make a stronger model. The authors of the dataset have
also released an additional dataset since our experiments that we could also use for additional training.

Lastly, more complex models may prove beneficial now that we have developed a baseline model.
The baseline model performs classification of damage magnitude based on the after-disaster image.
More advanced algorithms exist that can provide sequential comparisons of images to learn better
representations of change between images. Work with Siamese networks to directly enter and compare
pre- and post-disaster images in the same network would be a logic first step in this direction.
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