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Zhenwei Zhang, PhD

University of Pittsburgh, 2021

Videofluoroscopic swallow studies are widely used in clinical and research settings to

assess swallow function and to determine physiological impairments, diet recommendations,

and treatment goals for people with dysphagia. It can be used to analyze biomechanical

events of swallowing, to differentiate between normal and disordered swallow function. It is

also important for clinicians to understand the association between various possible physio-

logical measures and penetration-aspiration, in order to determine the boundary values for

these measures that can be validated for impaired swallows. In recent years, deep learning

technique have achieved tremendous success in various medical imaging applications, includ-

ing, but not limited to brain studies, disease diagnosis and prevention. In this dissertation

research, we attempted to further this research in two key areas. First, we evaluated the

potential association between the trajectory of hyoid bone movement and the risk of airway

penetration and aspiration during VFSS examination using generalized estimation equations.

In addition, the model was built based on aspects of hyoid bone displacement to predict the

extent of airway penetration. Second, we aimed to explore the potentials of deep learning

techniques to address different dysphagia problems. These algorithms to automatically eval-

uate and assess VFSS dysphagia studies are highly sought after in the dysphagia clinical

and scientific communities. To demonstrate the feasibility of deep learning techniques on

VFSS, we computed and compared the state of art object detection networks for hyoid bone

tracking algorithm, which was the first attempt to utilize deep learning techniques in the

VFSS field. In physiologic measurements, scaling of images based on length of vertebrae

bodies to compensate for size differences among different patients is a crucial component

of the analysis. In order to detect key anatomical points needed for a routine swallowing

assessment in real-time, we presented a novel two-stage convolutional neural network trained

with missing annotations to localize and measure length of the vertebral bodies. Finally, we
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sought to measure the amount of residue remained in vallecular area. We implemented an

ensemble method with several networks to segment and calculate the residue scale.
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1.0 Introduction

1.1 Motivation

1.1.1 Definition of Dysphagia

Swallowing difficulty, also called dysphagia, describes any swallowing dysfunction [51,

65, 176, 186] that causes subjective discomfort or objective difficulty in the formation or

transportation of a bolus safely and completely from mouth to stomach without entering

the airway [50]. It usually occurs in patients who suffer from a variety of neurological dis-

orders (such as stroke, brain tumors, Parkinson’s disease and dementia), mouth or neck

cancer, throat pouches and different types of infections. It also appears in the patients who

have weak muscular conditions which result in the inability to relax during the swallowing

process. Dysphagia may present in many different ways, these sign and symptoms include

having pain during swallowing, difficulty to swallowing, and unexpected weight loss. Patients

may have to cut food into small pieces to avoid these swallowing troubles. Furthermore, pa-

tients may experience drooling, regurgitation, coughing or gagging during swallowing, which

largely decreases the quality of life. Dysphagia can be classified into two main categories:

oropharyngeal dysphagia [235], and esophageal dysphagia [123]. Oropharyngeal dysphagia

[1] describes the swallowing problems that happen in the mouth or throat. This includes the

lips, the tongues, the oral cavity, the pharynx, the airway, and the esophagus and sphincters.

Patients may have the sensation of foods passing through the trachea or up the nose. The

main reason of this problem is due to the weakness of muscle which make it difficult to form

boluses and move it from mouth to throat. Esophageal dysphagia describes the problems

in the esophagus. Patients may have the sensation of foods sticking under the throat or

chest. One major concern of dysphagia is aspiration of food or liquid during the swallowing

process, which may cause these boluses to pass the vocal folds in the airway and into respi-

ratory system which leads to obstruction and pneumonia [169]. These phenomena directly

endanger patients’ life, and is a major cause of death in Parkinson’s disease [267].
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1.1.2 Incidence and Prevalence in United States

Dysphagia is a sorely neglected disorder that impacts millions of Americans every year.

It can occur in all age ranges, but appears more commonly among elder patients. In the

United States, approximately 4% of adults have swallowing related issues annually [28].

Investigations have estimated that around 9.44 million adults had a swallowing problem

in the United States with 40% being male and 60% being female [28]. In the literature,

adult dysphagia has been reported as high as 20% of the population over age 50 years

[208]. The increasing age causes changes in anatomy and neural or muscular mechanisms,

resulting in loss of functions that affect the swallowing process. Dysphagia appears commonly

among people admitted into hospitals or nursing care facilities. It is estimated that 12%-

13% of patients in short-term care hospitals and around 60% of nursing home occupants

have swallowing difficulties [52]. Approximately half of Americans over 60 will suffer from

dysphagia [167]. Among all the causes of dysphagia, stroke is the most commonly reported

etiology (11.2%), followed by other neurological causes (7.2%) and head and neck cancer

(4.9%) [28]. Dysphagia is present in above half of stroke patients and head and neck cancer

radiation therapy patients [167, 191]. Dysphagia is frequent and clinically relevant in PD

patients and multiple sclerosis patients. More than 80% of patients develop a swallowing

impairment during the course of their disease [177], and dysphagia occurs in one third of

multiple sclerosis patients, who are potentially at risk for aspiration and malnutrition during

swallowing [205].

Despite swallowing problems significantly impacting workday and daily life, only a rela-

tive minority of affected patients seek professional treatments. Studies estimated that only

22.7% of patients with swallowing problems saw a professional health care professional [28].

The exact number of patients is difficult to calculate as the first step in evaluating dysphagia

is to recognize the problem and some patients are not aware that they are experiencing swal-

lowing difficulty. This phenomenon is called silent aspiration, which is poorly investigated in

the related research area. Investigations have showed that about 30% of dysphagia patients

aspirated silently [212]. Furthermore, many symptoms associated with swallowing difficulty

are poorly recognized by nurses and physician staff who are not dysphagia clinicians. The
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standard of care for these patients across institutional settings remains highly variable as

each patient has different requirements for liquid thickness and food consistency [24], and

also due to the unavailability of trained clinicians in underserved settings.

Although dysphagia usually occurs in elder population, it can be present in younger

populations as well, particularly in infants with specific developmental and medical disorders.

Causes of pediatric dysphagia can exist alone or combine with other medical conditions such

as neurological disorders, prematurity, failure to thrive and brain injury [208]. The report

showed that the prevalence of pediatric dysphagia is increasing due to high survival rates of

children born prematurely [17]. It is estimated that feeding problems occur in 25% - 45%

of typical developing children and 30% - 80% of children with developmental disorders. As

children can not communicate their problems efficiently as an adults, there is a high risk

that their conditions remain undiagnosed [195].

1.1.3 Impact on Hospital Resources and Cost of Treatment

Swallowing difficulty has a significant impact on health care in hospital and nursing

facilities. According to the National Hospital Discharge Survey (2005 - 2006), there were

about 271,983 (0.35%) hospital admissions in United States associated with dysphagia, with

a total of 77 million hospitalizations during that period [8]. The costs of health care increase

due to extended hospital stays, need for expensive respiratory, emergency room visits or

nutritional support [138]. The report showed that only 14% of stroke patient with dysphagia

required more than 7 days of hospitalization [8]. Patients with dysphagia have about a 40%

increase in length of hospital stay in all age groups, with an estimated cost $ 547 million

per year. The average one-year medical health care cost for patients with dysphagia post

ischemic stroke was $4510 higher than patients without dysphagia [32]. It is reported that

the total enteral cost for feeding supplies is over $670 million in 2003, which is about 6%

of the total Medicare budget for that year. In 2007, there were over 188,000 percutaneous

endoscopic gastronomy placement procedures and 68% of the procedures were for patients

age 65 years or older [69]. The population over 65 years is expected to double by 2050, which

will result in a dramatic impact on hospital resource and health care [219].
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Figure 1: Midsagittal view of head and neck [231]

1.2 Anatomy and Physiology

1.2.1 Stages of Deglutition and Safe Swallowing

Swallowing is an essential motor activity needed for proper daily nutrition and hydration

in humans. It is considered a complex neurological process as it involves multiple central

and peripheral subsystems to accomplish the swallowing task in one to two seconds. There

are few investigations on swallowing compared to other fundamental motor activities such

as locomotion or mastication due to the complexity of the motor pattern associated with

the greater number of muscles and cranial nerves [70]. The important structure related to

swallowing activity is shown in figure 1.
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Swallowing is separated into four main stages in order to describe the numerous events

during a relatively short duration. These stages include the oral preparatory stage, oral

transit stage, pharyngeal stage and esophageal stage [51, 65, 176, 186]. The first stage of

swallowing is oral preparatory stage, which is a totally voluntary event [100]. During the first

stage, food is reduced and formed into a soft consistency called bolus by being chewed, and

mixed. In this phase, the formed bolus is shaped and positioned within the mid-line groove

of the tongue and in spoon-like depression of the mid tongue [62]. The soft palate depresses

toward the base of the tongue to seal off the oral cavity posteriorly, preventing the spillage

of liquid or food into oropharynx, which is important for airway protection [70]. Then the

posterior part of the tongue elevates against the soft palate and pushes downward, which

keeps the bolus in the mouth and entry into the pharynx. The tongue plays an essential role

in both the oral preparatory phase and the oral transit phase.

The second stage of swallowing is the oral transit phase. It starts when the tongue

compresses the bolus against the palate to propel the bolus posteriorly into the pharynx

[70]. In this stage, several events occur together to increase the volume of the pharynx for

the bolus to pass into the oropharynx. The soft palate is elevated and the nasal cavity is

sealed off from oropharynx [70]. The tongue moves upward and backward when the bolus

is conveyed into the hypopharynx [100]. The upward and forward movements of hyoid bone

elevates the larynx, which serves to expand the pharynx in the sagittal plane and protects

the airway. The pharyngeal levators shorten length, may also increase transverse diameter

of the pharynx [62].

The third stage of swallowing is pharyngeal phase, which is an involuntary independent

event [39]. The pharyngeal phase is the shortest and the most complex phase in the whole

swallowing process, occurring within a second [162]. The general definition of the beginning

of pharyngeal phase is the moment the bolus enters the oropharynx [33]. However, the exact

initiation of this phase is slightly different due to bolus characteristics and swallowing pattern

[27]. For example, the pharyngeal phase begins before the head of bolus enters the pharyngeal

in healthy young individuals while it starts after the bolus head enters the pharynx in older

individuals. A normal pharyngeal phase includes palatal closure, bolus passage through the

pharynx, glottal closure to prevent aspiration and upper esophageal sphincter (UES) opening
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Figure 2: Four swallowing phases and associated neuromuscular action [162]

[100]. During this phase, the oropharynx is blocked by the tongue, nasopharynx is sealed

by the soft palate and proximal pharyngeal wall, laryngeal vestibule is covered by epiglottis

and laryngeal opening are closed by the vocal cords and arytenoids [82]. The muscles of

the larynx (lateral cricoarytenoid, transverse arytenoid, and thyroarytenoid muscles) close

the vocal folds and cease the aspiration. The pharyngeal constrictor contractions, creating

a peristaltic wave to push the bolus to the UES. When the bolus reaches the UES, the

cricopharyngeus muscle relaxes and allows it to pass into the digestive system.

The last stage is esophageal phase, which starts after the bolus passes the UES. The

esophagus is a tubular structure connecting the lower part of UES to the lower esophageal

sphincter which prevents regurgitation from the stomach. The esophagus relaxes as the bolus

enters, the large parts of the bolus then move into the stomach due to gravity while other

bolus may be transported to the stomach by peristaltic contraction [82]. During this stage,

all structures move from their positions during the previous phase return to their initial

position. In a healthy adult, it take about 8 to 13 second to transport a bolus from UES to

the stomach [162].
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1.2.2 Methods of Swallowing Assessment

Clinical non-instrumental examination, also called “bedside” examination, plays an im-

portant role in dysphagia assessment. This method aims to observe the presence of signs and

symptoms of dysphagia during a patients’ swallow by considering the factors such as fatigue

during the meal, posture, positioning and environmental conditions. These non-instrumental

methods are highly varied in design, targeted groups, and assessment domains [92]. Many

of these assessments have issues like the misinterpretation of results and inconsistent use

because of the lack of instruction for use and interpretation for assessment scores. In the

daily clinical setting, the 3-oz water swallow test, the Toronto Bedside Swallowing Screening

test, and the Standardized Swallowing Assessment are all considered to be clinically useful

among other tests [260, 171]. The main procedures of non-instrumental swallowing assess-

ment are divided into several steps [17]. The first step concerns the investigation of general

conditions, which includes patient’s generic data, breathing condition and functionality, nu-

tritional situation and duration of meal, quality of phonation and speech articulation, review

of medical records, and social environment. Beside these factors, neurologic diagnosis, neu-

ropsychologic conditions and communicative level for neurologic patients are considered in

the first step assessment as well. The second step of assessment is the morphodynamic

evaluation, which contains the following evaluations: structural assessment of lips (kissing,

opening and closing), jaw, tongue (motility, protrusion and backwards pushing), soft palate

(check sufflating), larynx (elevation of the larynx) and the muscular control of the head.

Non-instrumental assessment provides many useful information for clinicians to diagnose

oral dysphagia. However, this assessment can only provide limited information and accu-

racy, and as a result, clinicians often over-estimate the severity of pharyngeal dysphagia

[67]. Furthermore, clinicians could not obtain the information about aspiration and other

physiologic problems in the pharyngeal phase. Instrumental assessment is the only method

which can directly observe these events. Non-instrumental evaluation may serve as a tool for

determining the potential requirements for additional instrumental evaluation and specifying

the clinical questions to be answered by these instrumental tests.
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There are many instrumental diagnostic techniques applied for swallowing disorders,

including videofluoroscopy, ultrasound, manometry, manofluorography, scintigraphy, and

fiberoptic endoscopic evaluation (FEES). Other advanced techniques, including functional

magnetic resonance imaging (fMRI), positron emission tomography (PET), electroencepha-

lography (MEG), and electroencephalography (EEG), investigate the relationship between

brain activities and dysphagia. Clinicians use these techniques to assess swallowing physiol-

ogy in patients who have the symptoms of swallowing disorders and estimate the degree of

swallowing impairment.

The American Speech-Language-Hearing Association (ASHA) suggests that a clinical-

instrumental examination of swallowing should reveal several physiology events [188]. These

events include organic and functional alterations in involved structures, the degree of efficacy

of swallowing in each stage, co-ordination between breathing and swallowing, and protection

of airways during swallowing. Furthermore, ASHA also suggests to detect and quantify the

penetration of boluses in the tracheal-bronchial passage.

Among the various techniques, there are two principal imaging instrumental examina-

tions widely used in daily diagnosis and treatment of dysphagia: video fluoroscopic swal-

lowing studies (VFSS), commonly called modified barium swallow studies, and fiberoptic

endoscopic evaluation of swallowing (FEES). A complete swallowing investigation should

be viewed from different planes to have a better treatment program. These planes include

the coronal plane (front to back), transverse plane (upper to lower) and sagittal plane (left

to right) [247]. FEES can provide transverse views of the larynx during the swallowing,

while fluoroscopy can study swallowing from any of these planes. During VFSS, a patient

is seated before an X-ray machine and instructed to swallow different liquids and/or food

mixed with barium [215]. Typically, the swallowing assessment is carried out by a radiolo-

gist, a speech-language pathologist or another specialist [170]. By observing biomechanical

functions of the numerous oropharyngeal structures such as the hyoid bone, larynx, tongue,

and esophageal sphincter that lead to bolus flow such as the flow of these radio-opaque

boluses through the upper aerodigestive tract, clinicians are able to observe the effects of

various bolus textures, bolus volumes, and compensatory strategies on swallowing physiol-

ogy [156, 255]. These biomechanical events are used by clinicians to evaluate the integrity of
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Figure 3: Examples of videofluoroscopic images in a healthy volunteer (a) and a patient showing
an aspiration (b) [49]

neuromuscular function and the coordination of events in order to determine the safety and

efficiency of each swallow observed during the examination. According to Logemann, there

are four main purposes to using radiographic assessment [247]: (1) to measure the speed of

swallowing; (2) to measure the efficiency of swallowing; (3) to examine the effectiveness of

rehabilitation strategies; (4) to define the movement patterns. VFSS also detects the pres-

ence, exact time, and depth of airway laryngeal penetration and tracheal aspiration during

a swallow, which assists clinicians in identifying the causes of aspirations and can identify

appropriate interventions to minimize or eliminate airway compromise during swallowing.

Figure 3 illustrates the equipment for VFSS investigations and images acquired from the

equipment.

The primary disadvantage of VFSS is x-ray radiation. Each individual has to be verified

if they have undergone other x-rays in the past year as exposure to radiation is cumulative.

Patients receive excessive amount of radiation under extended or repeated use of VFSS.

Therefore, investigations of patients swallowing varieties of food with several attempts of

different volumes, variety and consistency is limited. According to the National Institutes of

Health (NIH) Guidelines for Radiation Safety, the maximum exposure for adults over age 18

years is 5 rem/year for all diagnostic purposes [247]. These guidelines also suggest that the

maximum permissible radiation to any tissue is 3 rem in a 13 week time span. The resolution

of the images is related to the dose area product. Higher doses can generate a better

resolution and the balance between image quality and dose exposure has to be considered.
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In the case of swallowing studies, the radiation exposure is limited to 270 to 660 mrad/study.

The other disadvantages include difficulty accessing these equipment and limitations from

patient’s conditions. Dysphagia commonly appears in patients with neurological disorders or

other patients already admitted in the acute care facilities [78]. These patients may not have

the physical or mental ability to complete the whole videofluoroscopy examination procedure

as it requires patients to follow complex orders [25].

Beside VFSS, FEES is another popular method to evaluate swallowing disorders [188].

FEES examination has an important advantage when compared to VFSS examination: easy

to implement, well tolerated, less costly and possible to implement in bed examinations.

It has become the first choice in Europe when the patients are required to have an instru-

mental examination. FEES is performed with a fiberoptic rhinopharyngoscope to study the

swallowing physiology and physiopathology of certain stages of swallowing, particularly for

pharyngeal stage. Instead of using an x-ray imaging machine, the speech-language patholo-

gist can directly observe the patients’ anatomy of swallowing through a small camera [25].

FEES examinations provide the details of the relative functions of the upper airways and

upper digestive tract. It also allows examiners to see smaller details as well as the colors

of tissues, which can not be achieved by VFSS. FEES also provides important information

for diagnosis decision making. It also can test laryngeal sensitivity by using the tip of the

rhinopharyngoscope to stimulate the various pharyngeal-laryngeal areas. Furthermore, it

offers the possibility to evaluate the presence, degree and type of dysphagia and it is also

applied to establish the best way of feeding, advise diets and plan other diagnostic investi-

gations [10].

Both methods have limitations that preclude identification of all components of dys-

phagia, however, both are considered as close to a gold standard as is available. VFSS is

ubiquitous and has been considered the gold standard in the study of swallowing. It plays key

roles in the diagnosis of dysphagia and revealing the presence of underlying biomechanical

causes of aspiration [53, 226]. Compared to VFSS, FEES has several limitations in dysphagia

diagnosis. The small camera has a limited field of view, thus it can’t observe the whole swal-

lowing process simultaneously and only a limited section of anatomy is visible at one time

[112]. Clinicians can determine which parts of the patient’s swallowing are not functioning
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properly through VFSS and determine whether patients aspirate or not during swallowing

and also how significantly they aspirate. Another limitation of FEES is that the camera

can be placed in a limited area during swallow: FEES cannot address oral and esophageal

stages; it is particularly applied to observe swallow physiology during the pharyngeal stage.

Though VFSS and FEES are currently the most common techniques accepted in the

daily diagnosis of swallowing disorder, they are not the only screening techniques in clinical

practice or research area. There are also screening methods for swallowing disorders in

clinical environments such as electromyography (EMG) and cervical auscultation. EMG is

a simple method to apply: electrodes are placed on patient’s neck and provide electrical

information about muscle activity in real-time during a swallow [259]. The ideal hypotheses

is that compared to the recording from a healthy subject, the signal will significantly change

in some clinical way if the muscles related to swallowing can not work well [61]. However,

the limitation of EMG is due to the indirect description of swallowing, lack of knowledge

about factors affecting the signal, and the anatomy and physiology of the head and neck

musculature. Current techniques do not allow the separation of isolated muscle information

of speech musculature, however, it may be used for between-condition or between-group

comparisons. Cervical auscultation is a listening device which is used to record swallow

sounds and airway sounds [31, 140]. These devices, including stethoscope, microphone,

accelerometer or Doppler sonar, are placed over the patient’s thyroid cartilage and examiners

listens to the various sounds produced during patient’s swallow. This method is mainly used

to assess the relationships of swallowing sound components and physiology events during

the pharyngeal phase, as well as the interaction with breathing. The goal is to use the

difference of these signals between healthy swallows and unsafe swallows to help clinicians

make decisions. The advantage of this method is that it is easy to perform and can be applied

in any age groups. However, in the current condition, the accuracies and reproducibility

of this technique are still unreliable [139]. The connections between the swallow sound

components and physiological events of pharyngeal phage are still lacking of strong evidence.
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1.3 Directions and Goals

Over 16 million people in the USA and over 40 million people in Europe suffer from

a swallowing disorder [270]. Patients with severe dysphagia has a high morality rate, and

about 40,000 people die every year in the United States because of aspiration pneumonia,

which is believed to be the result from dysphagia [265]. VFSS was considered the gold stan-

dard for studies on swallowing disorders due to its wide use in the evaluation of dysphagia.

This technique can make measurements more precise as clinicians can analyze the images

frame-by-frame, which increase intra and inter rater reliability [111]. A standardized VFSS

recording protocol was developed for the VFSS study analysis [196]; a range of software ap-

plications use a standard plane to correct head positions and magnification, several of them

are allowed to mark the well-defined anatomic reference points of interest [155, 210]. The

major steps of these applications include digitization, identification of reference points and

anatomical points of interest.

The hyoid bone, a radiographically landmark indicating excursion of the hyolaryngeal

complex (HLC), has been shown in numerous kinematic analysis to move both upward and

forward, in patterns that vary slightly from person to person, then return to the starting

position when muscular contractions subside [103]. The onset of hyoid bone displacement

initiates the pharyngeal phase of swallowing [279]. This displacement pattern reconfigures

the upper aerodigestive tract to facilitate closure of the laryngeal vestibule and in the pres-

ence of neutrally modulated relaxation of the upper esophageal sphincter (UES), applies

traction to the anterior wall of the UES facilitating, opening the esophagus in order for food

to be delivered into the esophagus and subsequently the stomach. Inadequate anterior hyoid

displacement leads to impaired laryngeal vestibule closure and inadequate traction forces on

the UES which when combined can lead to airway penetration and incomplete opening of

the UES. As a result, evaluation of anterior hyoid excursion from VFSS images is consid-

ered important in evaluating the nature of the swallowing impairment and extent to which

impaired excursion of the HLC contributes to airway compromise, inefficient clearance into

the esophagus, post-swallow pharyngeal residue caused by separation of the bolus due to

premature UES closure which can subsequently be aspirated after the swallow [170].
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The hyoid bone displacement is influenced by various factors such that bolus character-

istics, age, gender and etiology of dysphagia. The displacement of the hyoid bone shows

the importance of penetration and aspiration evaluation [101]. However, the biomechanical

analysis of the hyoid bone is still limited, further investigations associated with hyoid bone

are required. On the other hand, VFSS is a powerful examination that offers possibility

to reveal the anatomy during swallowing. However, VFSS examination requires experts to

guide the examination. The presence of a speech pathologist is highly recommended not only

to guide the radiologist performing VFSS, but also to modify the examination procedure to

obtain more detailed information. Software applications help clinicians and researchers for

the further study of swallowing after examination. However, in most cases, a complete

biomechanical analysis is not always performed because of clinician lack of experience or un-

availability of a qualified examiner. In addition, experts have to spend lots of time checking

frame by frame to determine the exact time of swallowing event happened and also manually

select the points of interest before they output these numeric results for the investigations.

Furthermore, the analysis requires intra and inter rater reliability testing, which causes many

repeated and useless workloads.

In addition to physiologic measurements, scaling of images to compensate for size dif-

ferences among different patients is a crucial component of the analysis that enables each

patient’s swallowing function to be compared to norms that would be expected of a healthy

person of the same size. For example, Seo & Molfenter developed a method of scaling im-

ages by using the distance between antero-inferior margin of the second and fourth cervical

vertebral bodies, in order to correct influence from patient head movement and participant

size [185, 233]. Without scaling, the distance of structural displacements can be over- or

under-estimated, leading to inaccurate diagnosis. In practice, each of these landmarks is

manually marked on VFSS images, not in real-time but following the examination to serve

as the anatomic scalar.

A better understanding of swallowing biomechanical analysis and a faster way to analyze

the VFSS images would be beneficial to the general public. Ideally, these objectively analyze

should be automated and applied aside VFSS equipment during the patient’s examinations.

Examiners can easily get the points of interests in the real-time during examination, which
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can help them make quick and accurate decisions. At the moment, we feel that some research

interests related to the hyoid bone still require investigation, including the relationship be-

tween hyoid bone trajectory, penetration and aspiration in a whole swallow process, and

whether we can predict the aspiration based on the trajectory information. Furthermore,

machine learning techniques such as regression models has the potential to analyze these po-

tential relations. In addition, machine learning techniques such as support vector machine,

neural network, and random forest have shown huge success in other biomedical research

fields [77]. The VFSS images contain huge amounts of information. Whether this image

information can be applied to answer different clinical dysphagia questions is a relatively

new research directions.

1.4 Dissertation Scope

In order to have the most reliable results in the computer-assisted system, it is impor-

tant to manually analyze the data in the VFSS images at the first step. Each frame of

images has been manually marked including location of hyoid bone, and cervical vertebrae.

Work has been done with these hyoid bone data, investigating the association between fea-

tures extracted from hyoid bone trajectory and the penetration and aspiration event using

regression models. The penetration and aspiration were widely investigated by controlling

the age, gender, bolus viscosity and head position [7, 36, 76]. However, the other factors

influencing the penetration and aspiration are still limited. Through this investigation, we

want to know how the trajectory influences the penetration and aspiration scale during a

whole swallow process. After investigating the association between the hyoid bone and the

penetration-aspiration, an important part of the investigation is to discover whether we can

use trajectory information to predict the penetration and aspiration based on the results

of association. A good understanding of hyoid bone trajectory for patients with different

penetration and aspiration scale could potentially lead to the development of a classification

method which can help in the diagnosis of dysphagia.
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In addition, we want to develop an algorithm that allows the detection of key components

in the VFSS images. These findings can potentially help clinicians and researchers easily get

the information they want. Since machine learning techniques are hot topics in the recent

computer vision field, we want to employ techniques, such as deep learning, in order to

localize the hyoid bone position from a random frame, automatically segment the cervical

vertebrae which can help to build a reference coordinate more efficiently. Deep learning is

a powerful tool which can extract complex patterns from massive volumes of data without

direct human input [189]. Beside the detection of key points in the video frames, we also

plan to use neural network techniques to build an application which can automatically clip

the videos to only contain the swallow. Clinicians can benefit from this application instead of

manually checking frame by frame to verify the starting point and end point of each swallow.

Furthermore, the machine learning techniques may participate in the score measurement,

the residual score, %(C2 − C4)2 residue scale measure the amount of residue occupying

pharyngeal space, which is an important scale for swallowing research and diagnosis.

1.5 Main Contributions

We hypothesize that it is possible to automatically identify important components in

VFSS images acquired from patients who have undergone the VFSS instrumental evaluation.

We suggest that this process can be automated and implemented with existing diagnosis

techniques to help clinician make decisions more easily and accurately. To address these

goals, the following key topics will be completed in this project.

� Investigate the association between trajectory features extracted from hyoid bone motion

during the swallow and penetration-aspiration scale

� Investigate the possibility of using hyoid bone trajectory features and patient’s personal

information to predict the penetration-aspiration scale

� Develop an algorithm to automatically identify and localize the hyoid bone in the VFSS

video sequence using neural network techniques
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� Develop an algorithm to automatically segment the 2nd and 4th tail of cervical vertebrae

in each frame for VFSS video instead of manually segmenting

� Develop an algorithm to automatically mark the residual score for the given VFSS image

1.6 Dissertation Organization

Chapter 2 explores the background of machine learning and its application in radiology

imaging field to understand the principles discussed in the later chapters. Chapter 3 provides

an overview of the topics covered in this manuscript. Chapter 4 discusses our attempt to

discover the association between hyoid bone movement features and penetration/aspiration

scale. Chapter 5 offers similar material, but presents the prediction of penetration-aspiration

scale using generalized estimating equations. Chapter 6 introduced the hyoid bone tracking

algorithm in VFSS using deep learning techniques. Chapter 7 and Chapter 8 present the

automatic vertebrae localization and vallecular residue segmentation. Combining two net-

works, we achieved promising results on %(C2−C4)2 residue measurement scale estimation.

Last chapter concludes our research and provide insight for possible avenues of research for

future studies in this field.
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2.0 Background

The majority of this chapter has been previously published in and reprinted with permis-

sion from [310]. Zhenwei Zhang and Ervin Sejdić. Radiological images and machine learning:

trends, perspectives, and prospects. Computers in biology and medicine, 108:354–370, 2019

Radiological imaging has become indispensable in assisting medical experts in clinical

diagnosis, treatments, and research studies. Technological advancements in radiology have

enabled higher imaging resolutions for visualization of small structures and abnormalities

in the body. As the broader use of radiologic image analysis increases the workload for

radiologists, the development of intelligent computer-aided systems for automated image

analysis becomes essential. The goals of computer-aided systems are to achieve faster and

more accurate results in handling large volumes of radiological imaging. The rapid expansion

in machine learning algorithms have make these kinds of computer-aided systems possible.

2.1 Machine Learning in Radiology

In recent years, machine learning algorithms have become very effective tools for the

analysis of medical images in many radiology applications [289]. These algorithms are able

to extract multiple details from medical images without an understanding of where useful

information may be coded in images [228]. Computer-aided systems based on machine

learning help radiologists to make informed decisions while interpreting these images [289].

2.1.1 Types of Learning

Depending on the utilization of labels in training data, machine learning algorithms can

be divided into supervised learning, unsupervised learning, and semi-supervised learning.

Supervised-learning is the most common form in machine learning [128]. Data is usually

collected and labeled in categories, as the purpose of supervised learning is to find an appro-
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priate input-output function from training data, which generalizes well against the testing

data. We can compute an objective function to measure the error between the desired pattern

and output score. In general, many scientific contributions focus on finding a suitable ob-

jective function with adjustable parameters. The supervised learning method is widely used

in classification and regression. Unsupervised learning is used for data without correspond-

ing label information [57]. The purpose of unsupervised learning is to discover the hidden

structure or distribution of data. Algorithms discover potential patterns in the data, which

differ from supervised learning. Approaches using unsupervised learning include clustering

and blind signal separation techniques such as principle component analysis and independent

component analysis. The idea of semi-supervised learning is somewhere between supervised

learning and unsupervised-learning [178, 314]. Semi-supervised learning uses a small amount

of labeled data and a large amount of unlabeled data during a training phase. One idea of

semi-supervised learning is that it begins with a small set of labeled data and augments the

training data size by gradually labeling unlabeled data. This method is typically utilized in

cases where labeled data sets are relatively rare or difficult to acquire.

2.1.2 Feature Selection

Feature extraction and representation is a crucial step in medical image processing. With

the development of modern medical techniques, higher resolution and more features have

become obtainable to feed the classifiers; however, this is an obstacle for machine learning

techniques in achieving an optimal solution using high dimensional features. Great inter-

est exists in extracting and identifying reliable features from radiological images to improve

classification performance [40, 127]. Several methods exist for extraction of features from

medical images including region-based features, shape-based features, texture-based features,

and bag-of-words features [278, 104, 296, 273, 295, 214, 174]. The performance of most im-

age retrieval systems is dependent on the use of these features. Table 1 shows the summary

of image features used in radiological image analysis. Color features are one of the most

important features of images including RGB, histogram [304], color moments [198] and color

coherence vector. Texture features are measured from a group of pixels, which is useful in
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Table 1: A summary of image features used in ML systems

Features Examples

Color Invariant from different size and direction Histogram [252, 87, 301]

Shape Binary representation of images Sphericity [301, 60]

Texture Description of image structure, randomness, linearity, Haralick’s features [266, 60]

roughness, granulation, and homogeneity Gabor features [113, 315, 134]

Co-occurrence [187]

Curvelet-based [59, 234]

Wavelet-based [201, 165]

Local Description of local image information using region, Local binary pattern [301]

object of interest, corners, or edges Scale invariant feature transform [15, 132, 6]

Speed up robust features [283, 6]

Other Other methods to extract image features CNN [253]

characterization of a wide range of images. The Gabor filter is the most common method

for texture extraction [273]. Scale invariant feature transform and speed up robust features

algorithm are two popular methods for scale and rotation invariant feature detector and

descriptor in computer vision [109]. Different types of images have significant contrast vari-

ation, thus visual features such as color, shape and texture are not enough to classify images

easily. Thus high-level features are useful to overcome the intensity variations in different

types of images and the extract suitable information from these images. How to select ideal

features that can reflect the contents of images as useful as possible remains a challenging

problem in machine learning.

2.1.3 Overview of Machine Learning Methods

Machine learning has been developing rapidly in recent years, and it is impossible to cover

all recently-developed techniques in one section. In this section, we will review the most

commonly used machine learning methods in radiology, such as linear models, the support

vector machine, decision tree learning, ensemble classifier, as well as neural networks and

deep learning. This section provides a general description of machine learning techniques

that will be helpful to understand their applications in the field of radiology, as described in

subsequent sections.
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(a) (b)

Figure 4: Basic idea of linear classification and non-linear classification, (a) linear case (b) non
linear case. The linear model uses linear functions to separate the data yet is not suitable for
non-linear cases. SVM is one way to separate non-linear models using different kernel functions.

2.1.3.1 Linear Models for Regression and Classification

The purpose of regression is to predict the value from the given input features, whereas

the purpose of classification is to assign input x to one of the predefined classes [29]. Com-

monly used linear models include linear regression, Fisher’s linear discriminant (LDA), and

logistic regression. The simplest linear models establish a linear relationship among in-

put variables. Given xi, i = 1, 2, 3..., N , the input feature vector, the output y(x, ω) =

ω0 +
∑N

i=1 ωNxN . Logistic regression is the most basic classifier, it predicts the probability

that an input x belongs to a class (class 1), versus the probability of another class (class 0).

The basic idea of logistic regression is that we learn the logistic function of the form:

P (y = 1|x) =
1

1 + exp(−ωTx)
(2.1)

where x is the input vector and ω is a weight vector for input. The logistic function is a

continuous function and can turn any input from negative infinity to positive infinity into

an output that is always between zero and one [58]. Fig. 4 illustrates linear and non-linear

separable cases for a dataset.
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2.1.3.2 Support Vector Machine

Support vector machines (SVM) are kernel-based supervised learning techniques widely

used for classification and regression [29, 268]. The basic idea of SVM is to find an optimal

hyperplane for linear separable patterns. It attempts to maximize the geometric margin

on the training set and minimize the training error. Then, a kernel function is introduced

for non-linearly separable cases by mapping original data into a new space. A two-class

classification problem was used in many research cases. xi, i = 1, 2, ..., N are feature vectors

of the training set X, and of corresponding class indicator yi ∈ {−1,+1}. The goal of SVM

is to construct a classifier in the form of:

y(x) = sign[
Ns∑
i=1

λiyiK(xi, x) + ω0] (2.2)

The function K(xi, x) is called the kernel function and many pattern recognition and re-

gression model were developed around their different mathematical properties. SVM with a

linear kernel equation is computationally faster than SVM with quadratic kernel functions.

SVM models using fewer but more significant features are most likely robust and less prone

to overfitting [276].

2.1.3.3 Decision Tree Learning

Decision trees are one of the most popular classification approaches in machine learning

[158]. The decision tree consists of a “root”, ”leaves”, and internal nodes [222, 21, 249].

The node “root” has no incoming edges, “leaves” only have incoming edges but no outgoing

edges, and the rest are internal nodes. The internal nodes use certain features to split the

instance space into two or more subspaces. Each leaf represents one class. The leaf may

represent the most appropriate target value or indicate the probability of the target having

a certain value. Fig. 5 is an example for the decision tree model. Decision trees are capable

of handling datasets that may have missing values and errors, however, this method may

overfit training data and add irrelevant features. In radiological image analysis, decision

trees are usually ensembled to form random forests for prediction and classification.
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Figure 5: A medical example of decision trees. In this example, patients are classified into two
classes: high risk and low risk. The features include blood pressures, age, etc. In this case, the
classification tree operates similarly to a clinician’s examination process.

2.1.3.4 Ensemble Learning

Ensemble learning combines multiple classifiers and applies voting algorithms to achieve

a final classification, with popular ensemble approaches including boosting and bagging [26].

Fig. 6 shows the basic idea of ensemble learning. In boosting, extra weight is given to the

incorrectly predicted points, a set of weak classifiers are applied to deal with data in the

training phase, and the final prediction is derived from the weighted inputs resulting from

the outputs of the weak classifiers. In bagging, the sub-classifier is independently constructed

using a bootstrap sample of the data set and a majority voting method is taken for the final

prediction [146]. The random forests are an ensemble learning method that consist of a

multitude of decision trees. In standard tree construction, the node is split using the best

split among all features. In a random forest, the node is split among a random subset of

features. The random forest is one of the most powerful machine learning predictors used

in detection, classification, and segmentation [277], particularly for brain [317, 80] and heart

[229, 137] images.
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Figure 6: The concept of ensemble learning: an ensemble classifier is made up of several sub-
classifiers, the final output is combined with outputs from these sub classifiers and their weights.

2.1.3.5 Neural Networks and Deep Learning

Deep learning is a relatively new paradigm in machine learning, which can learn effective

features directly from the data for classification and detection purposes [238, 246]. Deep

learning avoids designing specific features from the data, which is its main advantage in

comparison with other machine learning methods. Some outstanding frameworks such as

the restricted Boltzmann machine [227], convolutional neural networks (CNNs) [130] and

sparse autoencoder have proven useful tools in many applications such as Alzheimer’s disease

diagnosis [261], segmentation [207], and tissue classification [54]. CNNs have a large number

of parameters, which requires huge volumes of labeled training data. This requirement

makes the training of CNNs from medical images difficult due to the difficulty of acquiring

a database with labeled data [239]. However, several studies use CNNs to extract features

for medical images and achieve good performance in classification [280, 46].

2.1.4 Evaluating Machine Learning Techniques

The goal of applying machine learning is to predict or classify diseases and produce useful

results that the physician may rely on. Single training and testing on data sets may not yield

a meaningful idea of the accuracy of an algorithm. Cross validation reduces the variance of

accuracy scores by ensuring that each data instance is used for both training and testing
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Figure 7: The dice similarity coefficient represents spatial overlap.

an equal number of times. Cross-validation method randomly splits data into k subsets and

hold out each one while training on the rest.

The dice similarity coefficient is used in segmentation, as it measures the spatial overlap

between two segmented target regions [318]. A and B are target regions or volumes, and the

dice similarity coefficient is defined as the ratio of their intersection to the average [217]:

DSC(A,B) =
2(A ∩ B)

A + B
(2.3)

The dice similarity coefficient has a value of 0 for no overlap and 1 when perfect agreement

is present. Fig. 7 illustrates the dice similarity coefficient with different overlap.

The goal of a computer-aided diagnosis system is to detect as many true positives as

possible and minimize the detection of false positives. Sensitivity is defined as the proportion

of patients labeled with diseases who are shown to have a disease. Specificity is the proportion

of subjects labeled healthy who are tested healthy. They can be written as:

sensitivity =
True Positive

True Positive + False Negative
(2.4)

specificity =
True Negative

True Negative + False Positive
(2.5)

Some popular performance measures used to measure performance include the area under

the receiver operating characteristic (ROC) and the top precision value. ROC curves describe
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the relationship between sensitivity and specificity. The top precision value is defined as the

portion of top-ranked relevant images out of all relevant database images [174, 143].

2.2 Application of Machine Learning in Radiology

2.2.1 Segmentation

The accuracy of segmentation in medical imaging applications affects diagnoses and

treatments [83]. For example, MRI segmentation, such as tissue segmentation, helps to

understand the progression and prognosis of diseases such Alzheimer’s disease, Parkinson’s

disease, and multiple sclerosis. Medical image segmentation also plays an important role in

many computer-aided systems and image retrieval systems [294]. Medical images contain

many normal structures such as organs, bones, fat and muscles and abnormal structures

such as fractures and tumors. The techniques applied in radiological image segmentation are

specific to the type of body part, application, and clinical requirements [237]. In addition,

the accuracy of medical segmentation suffers from several artifacts: noise, partial volume

effects, bias field, insufficient resolution, anatomic variability, and complexity [182, 181, 271,

206, 289]. Table 2 is a summary of current studies in medical image segmentation.

Shape segmentation based on X-rays is seldom done due to difficulty in practice despite

its usefulness. Typical X-ray segmentation includes landmark detection and shape regular-

ization [148]. Chen et al. proposed to improve the prediction of individual landmarks by

jointly estimating displacements from all patches and considering both the training data

and geometric constraints on the test data [41]. They generated the shape contour using the

sparse composition model for landmark position regularization.

Manual segmentation is the gold standard to determine the morphology of the brain

region, however it depends on the experience of clinicians and is very time-consuming [228].

The whole-brain automatic classification methods are essential for improving the diagnosis

analysis and for the reproducibility of large-scale clinical studies. Brain extraction from MRI

is crucial in neuroimaging research. Kleesiek segmented the brain and non-brain tissues by
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Table 2: Overview of segmentation methods for different radiological images

image types # images goal methods Dice coefficients

[225] MRI (T1-weighted) 12 Brain tissue Sparse dictio-

nary learning

0.91 (Gray matter)

0.87 (White matter)

[179]
MRI (T1-weighted, T2-weighted,

fluid-attenuated inversion recovery and diffusion weighted)
36 Stroke lesion Random forest 0.82

[22] CT 42 Liver tumor Random

forests & su-

pervoxels

0.93

[144] CT 30 Liver tumor Convolutional

neural net-

work

0.84

[152] MRI 70 Knee Multi-atlas

context forests

0.97 (Bone)

0.81 (Cartilage)

[275] CT 150 Multi-organ Discriminative

dictionary

learning

0.90 (Liver)

0.88 (Kidney)

0.55 (Pancreas)

0.92 (Spleen)

[305] MRI (T1-weighted, T2-weighted, diffusion-weighted) 10 Brain tissue Deep convolu-

tional neural

networks

0.95 (Gray matter)

0.86 (White matter)

[224] CT 82 Pancreas Deep neural

network

0.72

[84] MRI (T1-weighted) 30 Stroke lesion Gaussian

naive Bayes

classification

0.81

[240] MRI (T2-weighted) 12 Brain lesion Artificial neu-

ral network

0.79

[88] MRI (T2-weighted) 66 Prostate Sparse auto-

encoder &

sparse patch

matching

0.88

[18] MRI (T2-weighted) 45 Left ventricle Convolutional

neural net-

work &

stacked-

auto-encoder

0.97

[117] MRI (T1-weighted, T2-weighted) 53 Brain tumor Convolutional

neural net-

work

0.95

[281] CT 73 Lung texture Convolutional

restricted

Boltzmann

machines

0.74

[180] MRI (T1-weighted, T2-weighted) 57 Brain segmentation Convolutional

neural net-

work

0.86

[168] 4D-CT 22 Brain tissue SVM
0.79 (Gray matter)

0.81 (White matter)

[90] MRI (T1-weighted, T2-weighted) 65 Brain lesion 2 pathway

convolutional

neural net-

work

0.79

[97] CT 42 Liver tumor Convolutional

neural net-

work

0.97
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feeding data to a neural network with 7 convolutional hidden layers and one convolutional

soft-max output layer [117]. They trained the network using stochastic gradient descent, the

methods of which can be applied on any single image modality or combination of several

modalities with varying size. Brain MRI segmentation done for lesion detection is a prelimi-

nary and important step in effective disease diagnosis and treatment. Mitra et al. proposed

an automated method to segment ischemic lesions, white matter and other secondary le-

sions. They used Bayesian-Markov random field classification first for informative sampling

of the lesion class both during the training and testing phases and then used random forest

to refine the segmentation from the multimodal MRI data [179]. Maier et al. proposed an

automated method to locate, segment and quantify the sub-acute ischemic stroke lesion from

T1-weighted and diffusion-weighted sequence data [166], with their proposition based on the

extra tree forest, which is well performed from noisy training data and robust against over-

fitting. However, their method can only deal with the T1-weighted and diffusion-weighted

data sequences and high quality images. Griffis proposed a supervised learning method that

automatically delineates stroke lesions using naive Bayes classification in single T1-weighted

MRI sequence data [84]. Their approach focuses on using single scan data in order to save

time and money, which detects direct lesion effects and has a better performance than man-

ual delineation. However it showed limitations for subtle white matter lesions due to lack

of image information. Si proposed a semi-automatic method to classify the pixels of brain

MRI into lesioned and healthy tissues by use of an artificial neural network with gray levels

and statistical features as input [240]. Their segmentation results show better performance

than k-means. Yoo segmented multiple sclerosis lesions in multi-3D MR images from unsu-

pervised features [302]. Features were extracted from T2-weighted and proton density MR

images using a deep relief network and a random forest was built for the supervised classifi-

cation. Roy used sparse dictionary learning that learns relevant patches from the atlas [225].

In their method, statistical priors are used to localize tissues with similar intensities. The

segmentation of early-brain tissues is more difficult than adult brains due to the lower tissue

contrast [142]. Multiple image modalities provide complementary information for insuffi-

cient tissue contrast [286]. Zhang et al. [305] showed that fractional anisotropy images are

more powerful in distinguishing gray matter and white matter, and that T2-weighted images
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Figure 8: Instead of standard random forest, Laplacian Forests use guided bagging by creating
subtrees with neighboring images on the Laplacian eigenmap. If the black cross is the test image,
only neighboring trees are required for a test image [159].

have higher performance in capturing cerebrospinal fluid. They proposed a CNN method

combining these multiple modality image data to improve segmentation performance.

Segmentation is also applied to identify other structures, such as organs, bones, mus-

cles, and fractures. Lombaert et al. improved the random decision trees model by using

guided bagging approaches for training images and non-uniform tree weighting during test-

ing [159]. The use of a guided bagging strategy considers the affinities between images and,

producing more related image information for tree model and have larger improvements

in accuracy of kidneys segmentation, Fig. 8 compares the standard random forests and

Laplacian forests. Conze proposed a semi-automatic liver tumor segmentation combining a

simple linear iterative clustering super pixel algorithm and random forest, which considers

the inter-dependencies among voxels [22]. The multi-phase cluster-wise features extracted

in their approach are more robust for a random forest. Tong et al. proposed an automated

method for multi-organ segmentation (liver, kidneys, pancreas, and spleen) using dictionary

learning and a sparse coding technique [275]. The atlases selected against which to segment

the images highly influence the performance of multi-based methods [5]. To deal with the

high inter-subject variation in CT images, they applied a voxel-wise local atlas selection

strategy to improve performance. The analysis of the knee also plays an important role in

clinical assessment and surgical planning of the disease. The cartilage is typically small and

the segmentation results of Haar-like operators are often unreliable in extracting context

28



Figure 9: Sedai et al. proposed a shape regression method for right ventricle segmentation [232].
Their method more accurately segmented the right ventricle and outperformed the multi-atlas
label fusion method. The yellow contour is automatic segmentation and the red contour is manual
segmentation.

features. To overcome these limitations, Liu proposed a novel method using a multi-atlas

context forest, which segments bones first and then cartilage [152]. They trained classi-

fiers using appearance features and context features to align the expert segmentation of the

atlases in each iteration.

Right ventricle structure segmentation in MRI is an essential task for investigating most

cardiac disorders. The main challenge of this task is the large shape variation among dif-

ferent patients [232]. Sedai proposed a segmentation method using shape regression for the

right ventricle in cardiac MRI. Their results are shown in Fig. 9. They applied gradient

boosted regression to regress multidimensional right ventricle shape landmarks from image

appearance, which consider correlations between landmarks. Their method minimizes the

shape alignment error over training data and shows better segmentation performance than

multi-atlas-label-fusion based segmentation methods.

Identification of intervertebral discs is an important process for diagnosis and operation

planning of spine pathologies. An automated method to localize and segment interverte-

bral discs from MRI was proposed in [42]. They used unified regression and classification

framework to estimate displacements for image points or voxels and achieved good results.

Image quality limits the extraction of features from the radiology images, and in many

cases such as brain boundary segmentation, the data is by nature of low contrast and both

resolution and partial volume effects influence the definition of boundaries [291]. Extrac-

tion of useful features from low quality images is one good way to handle this issue. Some
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research focuses on different modalities to get complementary information, however it is

difficult and inconvenient to apply different testing methods on patients. Multi-modality

radiological approaches, including MRI, PET are acquired to provide complementary in-

formation for Alzheimer’s disease diagnosis [108, 311, 274] and stroke segmentation [179].

In stroke segmentation, more information about the extent of infarcted territory and the

anatomical location is found in diffusion-weighted [38], T2-weighted and fluid-attenuated

inversion recovery are used to delineate the final lesion volume [293]. In brain segmentation,

some approaches used multiple MRI modalities (T1-weighted, T2-weighted, fluid-attenuated

inversion recovery, diffusion-weighted images) to achieve optimal performance [179, 166],

however, due to time and monetary reasons, only a single anatomical scan is generally taken.

In segmentation, the accuracy of the system is difficult to measure and compare, one reason

being that the “ground truth” varies based on the guidelines specified for manual delineation

by different experts [71]. Moreover, in medical analysis, accurate manually labeled data and

high quality data is difficult and expensive to obtain [94].

2.2.2 Computer Aided Diagnosis

Promising results have been published dealing with computer aided diagnosis (CAD)

systems in applications such as lesions [193, 300], epidural masses [149], fractures [297], as well

as degenerative disease [272] and cancer detection. CAD is a software tool that can detect,

mark, and assess potential pathologies for radiologists to help improve identification accuracy

in the case of data overload and human resource limitation. The analysis, quantification,

and categorization of images with these methods is an important technique, which can

improve patient safety and care. Many researchers have shown promising CAD system

results. However, to meet clinical requirements, the performance of systems still needs to

be improved [135]. The main steps of CAD systems are the training phase and testing

phase. Fisher’s linear discriminant, Bayesian methods, artificial neural network, and SVM

are widely used as classifiers in CAD applications [299, 298]. Table 3 summarizes some

current CAD investigations with machine learning techniques.
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Table 3: A summary of recent CAD studies.
AUC = area under curve; ROC = receiver operating cruve; TP = true positive rate; MAE = mean
average error

year image type # cases disease results keywords

[202] 2014 mammography 956 Breast cancer AUC:0.81 Combination of classifiers

[105] 2014 mammography 500 Breast cancer AUC: 0.91 Naive Bayes classification

[276] 2014 MRI 81 Cervical cancer Accuracy:0.69 Texture features, SVM

[263] 2015 mammography 340 Breast cancer AUC:0.73 Texture features, SVM

[203] 2015 mammography 772 Breast cancer AUC:0.89 Feature selection method

[288] 2015 CT 750 Lung AUC:0.98 Structured SVM

[12] 2015 X-ray 5440 Lung Accuracy:0.92 SVM

[81] 2015 MRI 83 Pediatric cardiomyopathy Accuracy:0.81 Bayesian rule learning

[14] 2016 mammography 736 Breast cancer AUC:0.82 CNN

[243] 2016 mammography 2604 Breast cancer AUC:0.93 Adaptive wavelet neural network

[45] 2016 ultrasound 520 Breast lesions Accuracy:0.82 Stacked denoising auto-encoder

[213] 2016 ultrasound 95 Liver lesions Accuracy:0.87 SVM

[35] 2016 CT 104 Vertebral body fractures TP:0.81 SVM

[66] 2016 CT 409 Wrist, radius, ulna fractures ROC:0.89 Random forest

[121] 2017 mammography 45000 Breast cancer AUC:0.906 CNN

[154] 2017 CT 1012 Lung cancer Sensitivity: 0.89 ANN

[175] 2017 CT 52 Teeth Accuracy: 0.888 CNN

[172] 2017 CT 344 Prostate cancer ROC: 0.8 CNN

[248] 2017 X-ray 1391 Bone age MAE: 0.8 CNN

Breast cancer is one of the most common cancers in the world. Currently, about one in

ten women suffer from it, and early diagnosis and treatment of breast cancer could increase

the chance of survival significantly [131]. Mammography, thermography, and ultrasound

imagery are the most common techniques used to identify breast cancer [163]. Among these

techniques, mammography is the best approach to detect breast cancer in its early stages

and features indicating abnormalities can be extracted directly from medical images [192].

Masses and micro calcifications are two main indicators of breast cancer. The identification

of benign and malignant masses is the core principle for using mammography as a means

to diagnose breast cancer [106]. Perez et al. developed machine learning classifiers that

combine suitable feature selection methods with different machine learning techniques [202].

The feature selection methods include chi-square discretization, information gain, one rule,

relief and u-test based filter. Then, they improved their feature selection algorithm called

uFilter, which ranks features in a descending manner [203]. Their method was effective

for different datasets and reduced the number of employed features without decreasing the

classification performances.

The SVM classifier is widely used in breast cancer diagnosis with different feature extrac-

tion methods, such as wavelet features, gray-level-co-occurrence matrix features, intensity
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features, and some other texture features [264, 263]. Arevalo et al. trained an SVM model

that integrated 1 and 2 layer CNN for supervised feature learning [14, 13]. Similarly, Jiao

et al. trained two SVM classifiers using deep features extracted from two different layers of

CNN networks [107]. The method they proposed is less time-consuming and uses less stor-

age space. Xie et al. proposed a classification method based on SVM and extreme learning

for the feature selection, and the use of extreme learning for classification reduced compu-

tational cost [295]. An automated CAD system was proposed combing the content-based

image retrieval to detect masses in [105]. The main idea of their approach is to use scale in-

variant feature transform features to match query mammogram and exemplar masses in the

database, and then uses naive Bayes classification and thresholded maps to detect masses.

In their method, the computational cost is low because there is no sliding window-based

scanning. A semi-supervised algorithm is proposed to deal with a large amount of unla-

beled data with CNN approaches [262]. Their approaches using unlabeled data increased

the overall accuracy, rather than just using labeled data.

Besides in breast cancer diagnosis, CAD is also widely studied in other diseases such as

cervical cancer, lesion detection, traumatic spine and vertebral fractures. Torheim et al. used

gray-level-co-occurrence matrices based textural features from dynamic contrast enhanced

MRI as explanatory variables for SVM classification to predict cervical cancer [276]. Wang

improved the performance of lung lesion detection from CT images by using 3D matrix

patterns-based SVM with latent variables. Their study focused on detecting lung lesions

that had irregular shape and low-intensity, rather than the nodules, which provides a new

thought for detection of lung lesions [288]. Traumatic spine injuries are common, which are

associated with neurologic deficits [11]. An accurate, rapid, and detailed injury diagnosis is

important for the treatment decisions. Burns proposed a fully automated system that detects

and localizes thoracic and lumbar vertebral fractures in CT images [35]. They extracted 28

features from the cortical shell as computed by an SVM classifier. This approach divided

a large complex problem into small, modular pieces for fracture detection, which reduces

program complexity. However, their approach relies on an essential element (Denis ‘middle

column’) and is specific to detection of fracture discontinuities on vertebral body cortices.
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There are many advantages to using machine learning techniques in CAD systems. The

first advantage of machine learning is its accurate and robust performance in many radiology

studies. In certain research, CAD systems have reached perfect accuracy e.g, over 99% in

oral cancer detection [72], which is comparable to manual diagnosis. Moreover, CAD system

can perform well and produce robust results with large amounts of data at any time and in

any space. Manual diagnosis results may be affected by fatigue, reading time, and emotion

on the part of the practitioner, while CAD systems perform more consistently than humans.

The second advantage of applying machine learning is saving time. Many radiology analyses

require experienced radiologists and are usually very time consuming. With the help of

machine learning systems, the diagnosis can be finalized in a very short time. The software

developed for breast cancer prediction [199] can review charts 30 times faster than humans

can. With the help of machine learning, radiologists may no longer spend time on these time-

consuming analyses. Another example is that the suggested approach in breast diagnosis is

double reading of mammograms by two radiologists. However, the cost and workload are

very high [202]. With the help of a CAD system, only one radiologist is needed instead of

two, which could help to increase the survival rate among women in a cost-effective manner

[19].

2.2.3 Image Retrieval

With the increased use of modern medical diagnostic techniques, there are numbers of

medical images stored in hospital archives. Manual annotation and attribution of these im-

ages becomes impractical [102]. Picture archiving and communication systems have been

widely introduced in many hospitals. However, most of these systems only contain tex-

tual information with limited functionalities [124]. To find similar patient cases, physicians

usually look for images pathologically similar to the given image. Picture archiving and

communication systems could retrieve images based on keywords, however these images may

not be directly useful in helping to making clinical decisions. Systems based on semantic an-

notations also depend on the description of image content, which is linked to user experience

and differs from experts to experts. Different from traditional image search systems, which
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Figure 10: The method for retrieving images using Local wavelet pattern features and similarity
measurement. All retrieved images are from the same category, achieving 100 % precision in this
example [64].

are based on matching keywords and image tags, content-based image retrieval extracts rich

contents from images and searches for other images with similar contents. Content-based im-

age retrieval is becoming important for the medical image databases, which may potentially

become efficient tools of anatomical and functional information for diagnostic, educational,

and research purposes [292]. Table 4 lists current investigations on image retrieval. The

main steps of content-based image retrieval are image visual extraction and use of similarity

functions [95]. As an example, local wavelet pattern features are applied in Fig. 10 for

different image category retrieval.

Recently, similarity or distance learning is a hot topic in the machine learning field, with

traditional choices including the Euclidean distance function, x2 square distance function,

Mahalanobis distance, l1 norm distance function [174], maximum likelihood approach [303]

and Bayes ensemble [68]. Kurtz proposed an approach that includes evaluation of semantic

features using hierarchical semantic-based distance and retrieves images based on seman-

tic relations [125] Then, they extended this approach to a semantic framework that learns

image description of each term using Riesz wavelets and SVM. Image based and semantic

similarities using dissimilarity measurements are under consideration for use in describing

the image content [126]. Their method can automatically annotate the content of radiology

images, and the use of hierarchical semantic-based distance distance shows a lower computa-
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Table 4: A summary of recent image retrieval research using machine learning techniques

year image types # images results keywords

[126] 2014 CT 72 AUC:0.93 Riesz wavelets, hierarchical semantic-based

distance

[75] 2015 MRI 30 Accuracy:0.88 Partial least square discriminant analysis,

principal component analysis

[64] 2015 CT
EXACT09:40

TCIA: 604

Precision:

0.88
Local wavelet pattern

[37] 2015 Multimodality
ImageCLEF:

10 thousand
MAP:0.29 Deep Boltzmann machine

[284] 2015 MRI OASIS:421 Precision: 0.48 Local binary patterns, gray-level-co-

occurrence matrices

[251] 2016 X-ray & CT ImageCLEF:5400 Accuracy:0.98 Sparse representation, online dictionary

learning

[174] 2016 Multimodality

Indoor:15620,

Caltech256:30670,

Corel5000:5000,

ImageCLEF:2785

Top precision:

0.36
Support top irrelevant machine

tional cost. Meng et al. proposed a novel similarity learning algorithm which focused on top

precision and the l2 norm, in which they considered a top precision performance measure in

the loss function, which is different from traditional similarity learning that only maximizes

the margin [174].

Several image retrieval systems are based on an online dictionary learning method. The

main advantage of an online dictionary learning system is the computational time, as learned

dictionaries are used to represent the dataset in a sparse model, which is an effective tool for

representing data [211]. A method using online dictionary learning and its features extracted

by multi-scale wavelet packet decomposition from different types of images is proposed in

[250]. Srinivas et al. proposed a medical image classification approach using online dictionary

learning with edge and patch based features to distinguish 18 categories [251].

Ahn developed a robust method to improve X-ray image classification [4]. A fusion

strategy is proposed that combines domain transferred convolutional neural networks and

sparse spatial pyramid classification. The combined method performs better than the single

method used. Faria et al. proposed a retrieval method for brain MRI images. They captured

anatomical features from T1-weighted images using least-square discriminant analysis and

principal component analysis and performed a search for images between healthy controls

and patients with primary progressive aphasia [75].
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Besides the existing steps, semi-supervised and unsupervised learning methods were de-

veloped for image retrieval as well. An unsupervised image retrieval based on clustering

method using K-SVD is proposed in [252]. The main idea of this approach is to execute

iterations between grouping similar images into clusters and generating a dictionary for clus-

ters until clusters converge. The advantage of their method is that it requires no training

data for classification and is not restricted to a specific context. As labeled data is limited,

Herrera proposed a semi-supervised learning method for image classification using k-nearest

neighbors to expand the training data set and a random forest for final classification [94].

2.2.4 Brain Functional Studies and Neurological Diseases

The majority of brain related studies include two main steps: (1) extraction and selec-

tion of features from medical images such as MRI (2) designing a supervised classifier for

the different prediction and classification stages. In brain image diagnosis, a large number of

features can be extracted from brain regions related to the nature of pathological changes.

However, it is challenging to design an effective classifier with these features [150, 47]. Corti-

cal thickness [118], volume of brain structures [48], and voxel tissue probability maps around

certain regions of interest [74] are popular choices for feature extraction [43]. Different MRI

modalities such as T1-weighted or fluid-attenuated inversion recovery imaging contain huge

amounts of information, which may be noisy and too large of inputs for a supervised classifi-

cation [240]. Furthermore, not all image features are useful for the specific classification, and

for the limitations of a data set, therefore using all features may influence the performance

of a single global classifier. Therefore, an effective feature fusion strategy is necessary and

important for neuroimaging analysis and classification.

Brain metastasis is one of the most common forms of brain tumor and application of

multi-parametric MRI and PET images is a popular method to differentiate metastatic from

radiation necrosis [114, 127]. Larroza et al. developed a classification model of brain metasta-

sis and radiation necrosis in contrast-enhanced T1-weighted images. Features were extracted

by texture analysis and reduced by using a linear SVM model that provided better perfor-

mance for classification [127]. Ahmed applied an automated approach to detect neocortical
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structural lesions, which contained five surface-based MRI features and combined them in a

logistic regression [2]. To deal with imbalance issues, they used a “bagging” approach and

an iterative-reweighted least squares algorithm. The base-level classifier was trained on all

the minority class instances and the same size of random data from majority class instances.

Focal cortical dysplasia leads to abnormality of the structure of the cerebral cortex, which

is a common cause of epilepsy [30]. Hong proposed a machine learning technique combining

surface-based analysis in patients with a subtype of focal cortical dysplasia [96]. Their auto-

mated approach used features of Focal cortical dysplasia morphology and intensities, Fisher’s

linear discriminant was applied as a classifier to identify Focal cortical dysplasia in patients.

In recent years, various machine learning methods have been designed for identification of

clinical status and analysis of complex patterns in neuroimaging data [55].

Neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s Disease are

widely studied with the support of machine learning. The neurodegeneration begins be-

fore the onset of diseases; medical treatment is more effective if it is detected in early stage.

Parkinson’s disease is the most common degenerative movement disorder and its diag-

nosis in early-stage is still a challenge [204]. Among the various forms of Parkinsonism,

progressive superanuclear palsy is one of the most difficult to be identified from Parkinson’s

in early disease stages [79]. Salvatore et al. proposed a supervised method to classify con-

trol subjects, progressive supranuclear palsy patients, and Parkinson’s disease patients with

features extracted by principal component analysis from T1-weighted sequences and SVM.

The accuracy of discrimination of Parkinson’s disease and progressive supranuclear palsy is

above 90% [228]. Fig. 11 uses color scale to express the importance of each region during

classification. To improve the performance of classifying Parkinson’s disease patients, Singh

proposed an unsupervised feature extraction method from a T1-weighted sequence by us-

ing a Kohonen self-organizing map algorithm. With the least square SVM, the accuracy of

identifying the affected area in Parkinson’s disease is up to 99% [242].

Alzheimer’s disease is estimated to affect around 5.4 million patients in America, and

is the most common form of dementia among the elderly population [9, 272]. Alzheimer’s

disease leads to the loss of cognitive function and death in elderly people. Liu proposed

a classification framework that works on different image modality for the classification of
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Figure 11: Salvatore et al. [228] proposed a supervised learning method to identify PD and PSP
using MR images. The figures show maps of voxel-based pattern distribution of brain structural
differences. The color scale express the importance of each voxel in SVM classification.

Alzheimer’s disease patients [150]. Their method contains level classifiers: low-level clas-

sifiers that use different types of low-level features from patches, high-level classifiers that

combine coarse-scale imaging features in each patch and outputs of low-level classifiers, as

well as a final ensemble classification that combines the decisions of a high-level classifier

with a weighted voting strategy. Their algorithm structure is shown in Fig. 12. Zhu et

al. focused on the identification of Alzheimer’s disease patients with multi-view or visual

features of image data. They proposed several feature selection approaches for Alzheimer’s

disease classification. They integrated subspace learning into a sparse least square regres-

sion framework for multi-classification in 2014 [312]. Then, they mapped the histogram

of oriented gradient features (which are diverse) onto a region of interest features (which

is robust to noise), which provided complementary information for features and enhanced

disease status identification performance [313]. Bron proposed a feature selection method

based on the SVM significance value [34]. The significance value (p-value) serves to quantify

the contribution of each feature to the SVM classifier and is used to reduce features. Chen

developed a framework using patch extraction and a deep network based feature through

a stacked denoising sparse autoencoder, which makes the input data points more linearly

separable in SVM [43]. The diagnosis of Alzheimer’s disease patients and its early stage,
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Figure 12: Flow chart of the hierarchical classification algorithm proposed in [150], the low-level
classifiers are used to transform imaging and spatial-correlation features from the local patch,
and the output of these low-level classifiers is integrated into high-level classifiers with coarse-scale
imaging features. The final classification is achieved by ensemble outputs from high-level classifiers.

mild cognitive impairment is important for treatment. In the early stages of Alzheimer’s

disease, it is difficult to predict whether mild cognitive impairment subjects will progress

to Alzheimer’s disease in the future. Liu proposed an inherent structure guided multi-view

learning method to classify Alzheimer’s disease and mild cognitive impairment patients [151].

They extracted 1500 features from gray matter density and multi task feature selection was

applied to reduce the dimension, followed by an ensemble classification method using mul-

tiple SVM classifiers. Some researchers are interested in mapping and reducing features by

combining a lasso regression and principle analysis component. Huang proposed to use a

soft-split random forest to predict clinical scores in Alzheimer’s disease patients [99]. In their

method, lasso regression is applied to map MRI features and then features are reduced by

principle component analysis. Li combines principle component analysis, the lasso method,

and a deep learning framework to extract features by fusing information from MRI and

PET images and classified Alzheimer’s disease/mild cognitive impairment patients by SVM

[141]. A method using correlated information from different types of data was proposed in

[44]. They developed a multimodal multi-label feature selection method based on a sparse
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multi-label group Lasso method to capture informative features from multi-domain data and

multimodal regression and classification to predict clinical scores in Alzheimer’s disease pa-

tients. In [141], high accuracy results were obtained from Alzheimer’s disease/healthy and

mild cognitive impairment/healthy classification. However, accuracies in classifying mild

cognitive impairment as converted to Alzheimer’s disease are very low (57.4%), which is

little higher than majority classification. Komlagan developed an ensemble learning method

using gray matter for a weak classifier and selecting the most relevant sub-ensembles through

sparse logistic regression [119]. They trained a global linear SVM classifier for the final classi-

fication. Combining high quality biomarkers with advanced learning methods makes results

comparable to those of multi-modality methods. Tab. 5 summarizes recent research on

Alzheimer’s disease classification.

Besides the disease studies, some research work applied machine learning techniques to

understand the brain’s functional network architecture. Smyser compared the fMRI data

from 50 preterm-born and 50 term-born infants using SVM [245]. Their results show that

inter and intra hemispheric functional connections throughout the brain are stronger in full-

term infants. Their findings might be helpful for the development of models for defining

indices of brain maturation.
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Table 5: Recent studies on Alzheimer’s diseases. NC: normal; AD: Alzheimer’s disease; pMCI: progressive mild cognitive impairment;
sMCI: stable mild cognitive impairment

year databses image # image types classification gruops accuracy keywords

[274] 2014 ADNI 834 MRI
AD vs. NC 89%

Multiple instance learning
pMCI vs. sMCI 70%

[312] 2014 ADNI 202 MRI+PET
AD vs. MCI vs. NC 73.35% Sparse discrimination feature selection

AD vs. pMCI vs. sMCI vs. NC 61.06%

[85] 2014 ADNI 1071 MRI
AD vs. NC 89%

Manifold and transfer learning
pMCI vs. sMCI 73%

[119] 2014 ADNI 814 MRI pMCI vs. sMCI 75.6% Gray matter grading, weak-classifier fu-

sion

[151] 2015 ADNI 459 MRI

AD vs. NC 93.83%

Hierarchial fusion of featurespMCI vs. sMCI 80.9%

pMCI vs. NC 89.09%

[44] 2015 ADNI 202 PET+ MRI pMCI vs. sMCI 78.7% Multimodel multi-label transfer learning

[313] 2015 ADNI 830 MRI

AD vs. NC 91.31%

HoG mappingMCI vs. NC 78.07%

pMCI vs. sMCI 75.54%

[113] 2016 OASIS 416 MRI AD vs. NC 80.76% Gabor filter

[230] 2016 ADNI 416 MRI AD vs. NC vs. MCI 89.1 % CNN

[161] 2016 Self-collected 67 MRI AD vs. NC 96.77% SVM

[16] 2016 Dartmouth College 116 MRI AD vs. NC 97.14% Feature ranking selection
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Figure 13: A new method using a regression forest based framework to predict standard-dose PET
images [110]. The figures compare their new method and sparse representation method on two
different subjects in the first and second rows. The new method outperforms the sparse technique
in this compassion.

2.2.5 Image Registration

PET is a molecular imaging technique which is widely used in clinical cancer diagnosis.

It produces 3D images, which can reflect tissue metabolic activity in the human body [221].

Low-dose PET images are widely used in clinical applications. However, the image quality

is proportional to the dose injected and imaging time. Thus, a great deal of effort has been

made to improve PET image quality.

Kang proposed a regression forest based approach to predict standard-dose PET images

from low-dose PET and multimodal MRI images, [110], their results are shown in Fig. 13.

They used a regression forest as their non-linear prediction model and features from local

intensity patches of MRI data and low-dose PET. Meanwhile, Wang used a mapping-based

sparse representation approach for prediction [290]. They used a graph-based distribution

mapping method to reduce the patch distribution differences between MRI and low-dose

PET and constructed a patch selection based dictionary learning method to predict standard-

dose PET. Both methods performed better when compared with a path-based sparse model.

Huynh predicted CT images from MRI data using a structured random forest instead of

a classical random forest [277]. A structured random forest is an extension of a random

forest, which predicts structured output instead of scalar outputs [120, 63]. Characterizing

the information obtained from multiple sources improves prediction of performance.
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3.0 Areas of Investigation

Our literature review of machine learning techniques has noted several important ap-

plication fields related to radiology imaging.The majority of researchers focus on imaging

data associated with diagnosing the brain, breast, lung. Studies of videofluorosocpic image

remains undeveloped. We identified six key areas of investigation which we feel would be

beneficial to the swallowing study field. The following sections present each topic, explain

the reasons of importance, and explain the strategies that will be used.

3.1 Association between Hyoid Bone and Penetration / Aspiration

3.1.1 Motivation

Hyoid bone displacement influences epiglottis inversion, laryngeal elevation, and cricopha-

ryngeal muscle opening, which is considered important for the penetration and aspiration

[101]. Some work has been done to investigate the factors which influence the penetration-

aspiration scale [279]. These factors are independent controlled variables, including age,

swallow position, volume and viscosity. However, the investigation between penetration-

aspiration and hyoid bone, one of key component in VFSS, is still limited. In order to better

understand the swallowing and the factors influencing its function, we must first study hyoid

bone motion which may be one of factor that has association with swallow mechanism.

3.1.2 Plan of Action

The first step is to manually collect information of hyoid motion during each swallow

process. In the VFSS video sequence, experts manually checked the beginning and ending

frame of each swallow. We define the moment when hyoid bone moves upward as the

beginning time and the moment when the hyoid bone arrived at the lowest position as the

ending time. In each frame, we marked the location of 2nd, 3rd and 4th cervical vertebrae.
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Furthermore, we marked the anterior and posterior part of the hyoid bone. The features

containing the clinical meanings were extracted for further investigation. What remains to

be done is to apply relevant statistical analysis techniques to determine which features from

hyoid bone motion show importance. Factors such as the maximum displacement of hyoid

bone and the average speed of the motion is included in the analysis. Additional factors

such as subject’s age, gender, the viscosity of the bolus, the volume of the bolus, the head

position during the swallowing is also added in the investigation as necessary.

3.2 Prediction Penetration-Aspiration Scale based on Hyoid Bone Motion

3.2.1 Motivation

The detection of penetration and aspiration is important for the daily clinical settings.

Knowing whether the hyoid bone motion can be used to predict penetration and aspiration

would still be beneficial to clinical examination activities. In the previous investigations, we

studied important hyoid bone motion features associate with the penetration and aspiration

event. In this study, we are going to determine whether the hyoid bone motion features can

be applied to the prediction of penetration and aspiration event.

3.2.2 Plan of Action

Data from past studies is available and each swallow is marked by the penetration-

aspiration scale. Similar to the previous studies, the factors such as patient’s gender, age,

head position, the volume of the bolus and the viscosity of the bolus is considered as the

additional independent variables in the model. The statistical model is built based on the

hyoid bone motion features and these additional variables, to investigate whether there are

ways to predict the level of penetration/aspiration.
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3.3 Identification and Localization of Hyoid Bone in Videofluoroscopy

3.3.1 Motivation

The hyoid bone is one of the key components that clinicians examine in the videoflu-

oroscopy study. During the examination, researchers usually manually annotate points of

interest frame by frame to have the location information. This process is very time-consuming

and it causes inter and intra reliability variation among the landmarks annotated by different

examiners. A detailed and quantitative system is required to help examiners make a quicker

decision. Several tracking methods have been proposed in previous contributions, however,

none of them can annotate automatically, and researchers have to manually annotate points

of interest in the first few frames and check these points work well on the following video

sequence. It is necessary to develop a method to automatically recognize the location of the

hyoid bone. If such a method can be established, it could provide a great convenience for

dysphagia assessment.

3.3.2 Plan of Action

We have data from 266 patients who performed several swallows during examination. The

data annotation process has been done as a part of the previous study, and the annotations

of the hyoid bone in the VFSS image are available for use. The goal of this study is to use

object detection methods to identify and locate the position of the hyoid bone. As this is the

first study working on the hyoid bone segmentation, we examine the performance of state-

of-art methods which have achieved good performance in the object detection and computer

vision field. The popular methods include single shot multibox detection (SSD), you just look

once (YOLO), and Faster-RCNN. These methods are built based on pre-trained deep neural

networks, including VGGNet, ResNet and ZFNet, which are powerful techniques extracting

the features from images. For each method, the mean average precision will be calculated

and then compared for different image conditions.

45



3.4 Automatically Annotation for Vertebrae

3.4.1 Motivation

For a long time, medical experts have had to manually measure parameters and points

of interest in VFSS images. The disadvantage of this work is obvious: time-consuming,

imprecise and subjective. With increase use of VFSS studies, these heavy annotation tasks

require more manpower, becoming the obstacle of limited diagnosis resources. If points

of interest are marked automatically by the computer-assist system, it will be easier for

clinicians and experts to deal with large numbers of diagnosis daily in the clinical and research

practice. Vertebrae annotation is an important process during VFSS studies. Experts usually

take the 2nd and 4th vertebrae as references to measure the different key components during

one swallow. For example, the line through the tail of c2 and c4 is usually set as y-axis of the

new coordinate and the hyoid bone motion can be measured and adjusted based on the new

coordinate, which allows further investigations. Several contributions worked on vertebrae

region segmentation for the vertebrae related disease diagnosis. The work on annotating the

point of vertebrae is limited and requires further investigation.

3.4.2 Plan of Action

Data has been collected and the location of vertebrae has been annotated. Several deep

learning network have achieved outstanding performance for point and line detection in

natural images such as the face and street scene [116, 218]. However, few of them were

applied on the medical dataset as medical images have a set of challenges to overcome. Here,

we showed that a novel machine learning algorithm can with high accuracy automatically

detect key anatomical points needed for a routine swallowing assessment in real-time. We

trained a novel two-stage convolutional neural network to localize and measure the vertebral

bodies using 1436 swallowing videofluoroscopy from 265 patients. We compared the model

performance on C2,C3,C4 points detection between one-stage model and two stage model.

In addition, We compared the reliability between model and human raters, and showed a

high reliability not only on our five-pixel errors, but also on reliability score.
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3.5 Automatic Measurement of Residue Scale

3.5.1 Motivation

The vallecular residue is considered to be an indicator of OPD and is generally included

in assessment. The vallecula is a bilateral space between the base of the tongue and the

epiglottis. Material may be retained in these spaces due to suboptimal contact between base

of tongue and posterior pharyngeal wall and reduced lingual propulsion force generation

[282]. This type of residue may lead to an increase in risk of aspiration because it may

enter the airway directly once protective mechanisms return to baseline after the swallow.

Several methods have been developed and investigated to evaluate the post-swallow residue

in VFSS. However, the major of these methods rate pharyngeal residue based on observation;

%(C2−C4)2 measurement scale is one of two well-established, quantitative scales of vallecular

[183, 200, 258]. Currently, researchers use image analysis software tools, such as ImageJ, to

implement this quantitative residue measurement. As this scale is a novel measurement,

no previous literatures have worked on it on the semi-automatic or automatic estimate this

scale. In addition, the judgment made by researchers are time-consuming and subjective. It

would be important to develop an algorithm which can measure %(C2−C4)2 measurement

scale automatically based on the frame we provided.

3.5.2 Plan of Action

We selected the qualified frames that contains the vallecular residue after the each swal-

low. Then the trained expert manually annotated the residue area using Matlab and cal-

culated their corresponded %(C2 − C4)2 measurement scale. There are several popular

segmentation networks used in various scenario such as medical applications, street view

applications and sports. In this study, we compared the performance of four state of art net-

works in the field, including U-Net, ATTU-Net, SQ-Net, and SegNet. In this study, we focus

on comparison of the reliability between human raters and model predictions. We also com-

bined the our previous vertebrae landmark localization networks to estimate %(C2 − C4)2

measurement scale.

47



4.0 Association between Hyoid Bone and Penetration / Aspiration

The content of this chapter is currently under review with SN APPLIED SCIENCES.

Zhenwei Zhang, Atsuko Kurosu, James Coyle, Subashan Perera, and Ervin Sejdić. A gen-

eralized equation approach for hyoid bone displacement and penetration-aspiration scale

analysis. 2021

4.1 Motivation

We sought to investigate the motion of the hyoid bone by analyzing trajectory features

during swallowing in 265 patients with dysphagia. We are looking at not only kinematic

motions but also mathematical features of the displacements in order to determine whether

there are relationships between characteristics of hyoid bone trajectory and a score on the

penetration and aspiration (PA) scale [223]. We hypothesized that hyoid trajectory features

would differentiate between normal PA scores (score of 1-2) and abnormal PA scale scores

(scores of 3-8). A generalized estimate equation model was built to test our hypothesis

based on trajectories extracted from VFSS images during various swallowing tasks. If these

findings are confirmed, the analysis of hyoid trajectory patterns would be a useful additional

component to judge the nature of penetration and aspiration in patients with dysphagia, and

inform clinicians as to appropriate interventions to restore more normal HLC displacement

during swallowing.
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4.2 Methods

4.2.1 Data Acquisition

265 patients with clinical suspicion of dysphagia underwent videofluoroscopic examina-

tion at the Presbyterian University Hospital of the University of Pittsburgh Medical Center

(Pittsburgh, Pennsylvania) in the study. The protocol for this study was approved by the In-

stitutional Review Board at University of Pittsburgh and all participants provided informed

consent. The average age of the subjects was 64.833 ± 13.56 years old, and the age range

was from 19 to 94. There were 48 patients with stroke and 217 patients with non-stroke

etiology. Patients with tracheostomy or anatomic disruption or abnormalities of the head

and neck were excluded. Patients swallowed boluses of liquids of different consistencies and

volumes as well as cookies during VFSS. The number and order of the swallow trials for

each consistency and volume were determined by the examining clinician based on the pa-

tient’s history and clinical evaluation observations. These liquids included thin liquid barium

(Varibar Thin Liquid with < 5 cPs viscosity) and nectar-thick liquid (Varibar Nectar with

about 300 cPs viscosity). 1136 swallows were evaluated in the lateral/sagittal plane with

neutral head position though 252 swallows were performed in a head-neck flexion position

(chin down). Patients swallowed boluses administered by a spoon in 3-5mL volumes, or

self-administered boluses from a cup at a self-selected, comfortable volume.

Fluoroscopy was set at 30 pulses per second (full motion) and video images were acquired

at 60 frames per second by a video card (AccuStream Express HD, Foresight Imaging,

Chelmsford, MA) and recorded to a hard drive with a LabVIEW program. The videos were

made into two-dimensional digital movie clips of 720 x 1080 resolution, and in our study, we

down-sampled it to 30 frames/second to eliminate duplicated frames.

4.2.2 Image Analysis

Each video sequence contained one swallow which was defined as the duration between

the frame at which the head of the bolus reached the lower mandibular margin to when the

tailing end (tail) of the bolus passed the upper esophageal sphincter (UES). The anterior and
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(a) Markers for anterior hyoid bone, posterior hy-
oid bone, C2 tail, C4 tail and C3

(b) Coordinate established based on the C2-C4

Figure 14: The figures illustrates the markers for hyoid bone, C2, C3, C4 and how to establish the
coordinate for hyoid bone trajectory

posterior projections of the body of the hyoid bone were marked in each video frame using

MATLAB (R2015b, The MathWorks, Inc., Natick, MA, USA), as shown in Fig. 14. To

create the coordinate system which normalized the motion points from different subjects of

different sizes, we defined the border of anterior-inferior of the fourth cervical vertebral body

as the origin, and defined the straight line connecting this origin and the anterior-inferior

corner of the second cervical vertebra as the y-axis. The straight line perpendicular to the

y-axis and intersecting with the origin is defined as the x-axis [184]. All distance numbers

were measured as the actual distance in image pixels. In order to normalize participants of

different heights to a common anatomic referent, the distance between the anterior-inferior

and the anterior-superior corners of the third cervical vertebra is set as our reference scale,

which we refer to as the length of C3. Then we used the length of C3 to normalize the

coordinate.

Blinded to the hyoid trajectory results, the presence/degree of penetration/aspiration

from the 1434 swallows were identified by using an 8-point PA scale another trained judge

[223]. Among these swallows, 1129 swallows have PA scores of 1 or 2 and 304 swallows have

PA scores greater or equal to 3. The mean and standard deviation of PA scores of these

subjects are 2.117 ± 1.580.
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To evaluate the reliability of the swallowing analysis, 100 swallow cases were utilized.

Experts analyzed the same cases and their results are compared. Furthermore, the inter-rate

reliability were tested as well, experts analyze the same case several months later to ensure

less difference among different markers and time period.

4.2.3 Feature Extraction

We constructed six discrete series to represent the change of hyoid bone motion trajec-

tory: the changes along the x- and y axis of the anterior/ and posterior inferior margin

landmark of the body of the hyoid bone, the changes along the y-axis of the anterior and

posterior margin of hyoid bone, and the distance series of anterior superior/and posterior

margin of hyoid bone. The distance series was constructed from the Euclidian distance be-

tween every point and the starting points. This series shows how consecutive points move

closer or farther from the reference point. The distance series can be written as:

Di =

√√√√ 2∑
j=1

(Xij −X0j)2 (4.1)

In our investigations, independent variables of each VFSS examination such as patient’s

age, bolus viscosity and size based on whether spoon or cup was used to administer the bolus,

were used. Furthermore, to capture the key statistical differences between series, several

features were extracted. Each of the features are described in the following subsections.

• length of the series x

• mean of the series x̄

• number of values in x that are lower/higher than x̄

• distance of the longest consecutive subsequence in x that is smaller/larger than x̄

• minimum/maximum number in x

• the position at which the minimum/maximum number occurs in the series

• median of the series

• standard deviation

• duration length of series between minimum point to maximum point
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• the sum over the absolute difference between subsequent time series values:

n−1∑
i=1

|xi+1 − xi| (4.2)

• mean of the absolute value of consecutive changes in the series x:

1

n

n−1∑
i=1

|xi+1 − xi| (4.3)

• skewness quantifies how symmetrical the amplitude distribution is, this feature can be

computed as follows:
1
n

∑n
i=1(xi − x̄)3

[ 1
n−1

∑n
i=1(xi − x̄)2]

3
2

(4.4)

• kurtosis measures whether the distribution is peaked or flat relative to a normal dis-

tribution, it can be expressed as follows:

1
n

∑n
i=1(xi − x̄)4

[ 1
n

∑n
i=1(xi − x̄)2]2

(4.5)

4.2.4 Statistical Analysis

A generalized estimating equations (GEE) model is popularly applied for clustered data

in clinical studies. It is an extension of quasi-likelihood approach [89]. The method was

employed to construct a function of the feature set to match the outcome. The data are

assumed to be dependent within subjects and independent between subjects. This model is

quite useful with longitudinal data, which account the correlations between repeated mea-

sures on the same participant [316]. A GEE model assumes a relationship between E(Y ) and

V ar(Y ) rather than a specific probability distribution for Y . A GEE model provides a best

guess for the variance-covariance structure (Y1, Y2, ..., YT ) by a linear predictor linking each

marginal mean [244]. Yit represents the category for each subject i, measured at different

time points t. The working correlation matrix is applied to make a guess for the correlation

structure among Yt. Exchangeable correlation structure is applied here, which is a useful

structure when correlations are small, which treats Corr(Yis, Yit) as identical for all pairs s

and t. The GEE model assumes a probability distribution for each marginal distribution and
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provides reasonable estimates and standard errors. The GEE model estimates are obtained

by using an iterative algorithm as there are no closed-form solutions.

In our studies, PA scores have a skewed non-normal distribution and our data consists

of multiple swallows from each participant, making common statistical techniques such as

(generalized) linear models and classification/regression trees not readily applicable. There-

fore, we employed GEE model with low (1-2) or high (3-8) PA scores as the dichotomous

dependent variable, a binomial distribution, a logit link function and an exchangeable work-

ing correlation structure to predict the probability of a high PA score. Age, swallow type,

viscosity, volume/utensil, and head position were used in the model as independent variables

based on face validity. In addition, we used an independent variable forward selection ap-

proach to identify a parsimonious set of trajectory variables using a criterion of p=0.05 entry

into the model. Using the final model, we obtained odds ratios, and their 95% confidence

intervals and statistical significance for each independent variable. Also, to assess the con-

cordance between predicted and observed high PA scores, we created subgroups of swallows

based on the predicted probability deciles, and examined the actual observed percentage of

high PA score swallows within each decile. SAS® version 9.3 (SAS Institute, Inc., Cary,

North Carolina) was used for all statistical analyses with GENMOD procedure for obtaining

the main results.

4.3 Results

The generalized estimating equation is built to estimate the relation between various

features and PA scores. Table 11 shows the clinical information of the patients and swallows.

In the examination, subjects swallow different volumes of food and clinicians changed the

viscosity and patient’s head position in the examination. That explains the unbalanced

data for the viscosity and head position. Patients usually start by swallowing the smaller

thin liquid bolus with neutral head position and change to other viscosity depending on

clinical need. Table 7 provides an overview of the contribution of important variables with

entry criterion 0.05, based on model estimate, odd ratio, and p-value. The independent
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Table 6: Clinical information of the patients and swallows. multiple(1) indicates the first swallow
in the multiple swallow and multiple(2) indicates the subsequent swallows.

Age 64.83±13.56 Total swallows 1434

Gender viscosity

male 155 thin 879

female 110 nectar 405

Utensil pudding 94

spoon 594 cookie 42

cup 832 not recorded 14

not recorded 8 Type

Head position single 498

neutral 1136 multiple (1) 360

chin down 252 multiple (2) 534

not recorded 46 not recorded 42

characteristics forced into the model, regardless of their p-value, are basic information data:

age, swallow type, viscosity, utensil, sex, head position and swallow duration. Patients may

have multiple swallows during the examination when some of bolus remains in the oral cavity

or pharynx after first swallow. We indicate multiple(1) for the first swallow and multiple(2)

for the following swallows. Table 7 indicates the important features with a p-value less

than 0.05, providing strong contributions to the model related to the PA score. Patient

and swallow condition independent variables of older age, first multiple swallow, and thin

liquid viscosity, were significantly associated with higher PA scores, and the hyoid horizontal

displacement independent variable was also significantly associated with PA scores .
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Table 7: Generalized equation model with forward selection with 0.05 entry criterion

Parameter Estimate P value Odds ratio Odds ratio lower Odds ratio higher

age 0.0265 0.0178 1.03 1.00 1.05

type: single -0.4435 0.0708 0.64 0.40 1.04

type: multiple(1) 0.4545 0.0040 1.58 1.16 2.15

type: multiple(2) 0.0000 . 1.00 1.00 1.00

sex: male 0.1398 0.6998 1.15 0.57 2.34

sex: female 0.0000 . 1.00 1.00 1.00

viscosity: thin 1.2862 0.0096 3.62 1.37 9.58

viscosity: nectar 0.7049 0.1664 2.02 0.75 5.49

viscosity: pudding -0.5334 0.3789 0.59 0.18 1.92

viscosity: cookie 0.0000 . 1.00 1.00 1.00

utensil: spoon 0.1622 0.3538 1.18 0.83 1.66

utensil: cup 0.0000 . 1.00 1.00 1.00

head position: neutral 0.0994 0.7104 1.18 0.65 1.87

head position: chin down 0.0000 . 1.00 1.00 1.00

swallow duration -0.0004 0.9549 1.00 0.99 1.01

maximum displacement in horizontal direction -0.0583 0.0064 0.94 0.90 0.98

4.4 Discussion

In the present study, we sought to investigate whether there is any relationship between

hyoid bone displacement features and examination condition variables on airway protection

as measured by the PA scale. We evaluated not only the maximal distance and velocity of

the hyoid bone, but also other features extracted from the trajectory of hyoid bone. We

focused the information, such as age, bolus volume, swallow type (single/multiple), and

head position as the necessary variables in the GEE model, and we used forward selection

to choose the important variables for the model prediction. Our results demonstrated that

the hyoid bone displacement features were significantly related to PA scores. First, we will

discuss the significant trajectory features related to PA scores. Then, we will discuss and

compare the findings of basic variables with other contributions.

We tested the features extracted from the motion of the hyoid bone and variables such

as age, bolus volume, viscosity, and head position. From the GEE model, we found that

the maximum displacement of anterior-inferior hyoid bone has significant relation to the PA

score: the decrease of the displacement will lead to higher PA score. Other features extracted

from the hyoid bone displacement didn’t show any significant association with the PA score.

Our results agrees with the Steele et al. study that indicated that occurrence of higher PA

scale scores were found in swallows with reduced anterior hyoid movement when the hyoid
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displacement measurements were normalized by the C2-C4 distance [256]. On the other

hand, our results do not agree with the Kim et al. study that reported there was no differ-

ence on the maximum anterior displacement of hyoid between aspirators and non-aspirators

in patients with stroke [115]. The results do not agree with the Molfenter et al. study

that reported no difference on hyoid displacements between aspirators and non-aspirators in

patents with stroke with the anatomically normalized units [184]. Seo et al. also indicated

there was no relationship on the actual and normalized hyoid displacements between stroke

patients with and without penetration/aspiration [233]. Steele et al. suggested the C2-C4

vertebral distance should be used to normalize the hyoid displacement measurements in or-

der to account for individual anatomical size differences [257]. The anatomically normalized

unit C3 was used in the Kim and McCullough study, and they tracked the superior-anterior

of the hyoid bone, this methodological difference may explain the discrepancy in our results

and the study by Kim and McCullough. However, both the Molfenter and Steele and Seo

et al. studies used the normalized measurements. This discrepancy may indicate the vari-

ability in the hyoid displacement measurements [184]; further investigations are needed to

clarify this disagreement. It is worth noting that previous studies categorized patients who

showed aspiration at least on one swallow was identified as aspirators. Instead of separating

patients into two groups, i.e., either aspirators or non-aspirators, our study investigated the

relationship between the hyoid and the PA scale at the swallow level. It is worthwhile to

evaluate each swallow level in order to account for variability in hyoid displacement within

individuals, as well as to determine whether the deployed research methods are capable

of detecting relationships between hyoid movement patterns and airway protection during

swallowing, since the frequency and severity of laryngeal penetration and/or aspiration are

key diagnostic factors leading toward appropriate interventions to mitigate the effects of

dysphagia.

Age is a significant influence on PA scores (p value < 0.05). We found that the risk of

penetration increased 5% as age increases one year. This finding matches the results from

several previous studies [36]. Daggett et al. found that the percentage of penetration and

aspiration dramatically increased with healthy subjects over 50 years old [56]. Steele et al.

[257] reported that individuals over the age of 80 years old had more risk for penetration
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and aspiration. Differing from our findings, Allen et al. [7] reported that increasing age was

not associated with more incidences of penetration. Robbins et al. also concluded that age

was associated with higher PA scores – only one of their healthy elderly subjects aspirated

while no aspiration was seen in the young and middle-aged groups.

Volume was not significantly related to PA scores (p value >> 0.05) according to our

results. Several contributions showed the similar findings in the bolus impact on PA scores

when bolus volume was less than 20 mL. Park et al. investigated the relationship between

the pharyngeal and bolus volume to check whether there are influences between penetra-

tion/aspiration and increased bolus volume for stroke patients [197]. They examined 10

patients with different volumes and showed that increased volume did not affect the pen-

etration and aspiration status. Hedstrom et al. [93] obtained very similar results to ours

in their studies with 38 patients. On the other hand, Butler et al. [36] studied 76 healthy

older subjects and demonstrated that the bolus volume over 20 ml yielded higher risk of

penetration and aspiration than the 10 ml bolus volume. However unlike our study, these

studies used exact bolus volumes which do not account for variations in patient aerodigestive

tract size.

Our results shows that thin liquid has the highest risk to higher PA score, followed by

nectar, cookie and pudding, which matches the previous findings. Several previous studies

showed that thicker bolus generally resulted in lower PA scores, both in healthy group and

patient group. Rofes et al. studied 146 subjects with different viscosities: thin, nectar,

and thick. Their results showed that PA scores were reduced when using thicker viscosities

[220]. Daggett et al. found that the frequency of penetration was significantly less during

swallows of the thick viscosities across all age groups evaluated [56]. Newman et al. [190]

collected 33 articles related to the effect of bolus viscosity and indicated that increasing the

viscosity of the bolus will lead to a safer swallow and thickening liquids are considered as

the practice of choice for many clinicians to manage dysphagia. Logemann et al. in a study

of 711 patients with dysphagia due to Parkinson’s disease or dementia, similarly found that

thin-liquid aspirators had nearly 50 % reduction in aspiration with the thickest of liquids

they administered [157].
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The head position, neutral or chin down, showed no statistical significant association

to PA scores (p value >> 0.05) while there is a trend that chin down position has less

risk of penetration. Swallowing in the “chin-down” position narrows the airway entrance

and therefore has traditionally been considered to reduce the risk of aspiration [236, 20].

On the other hand, several contributions showed that head position were not significantly

related to aspiration, which matches our findings. Shanahan et al. [236] investigated 30

neurologically impaired patients for different postures, discovering that half of their patients

could benefit from a “chin-down” position and those who still had the aspiration issues

in a “chin down” position were younger, and continued to aspirate because accumulated

hypopharyngeal residue overflowed from the pyriform sinuses into the airway rather than

aspirating a portion of the swallowed bolus during the swallow. The kinematics of different

structures in “chin-down” (comfortable chin down position) and “chin-tuck” (strict chin

down) postures were investigated in [136], where Leigh et al. studied the swallowing cases

from 40 healthy patients and showed that there were no significant differences among postures

in maximal vertical displacement. The “chin down” position had no significant effect on hyoid

bone movement, while the “chin tuck” posture influenced horizontal hyoid bone movement.

In this investigation, we have several limitations that might be considered in the future

study. In [136], “chin down” posture can be separated into “comfortable” and “strict”,

which show different mechanisms. However, our data was collected and judged by different

clinicians, only “chin down” term was applied, which may result in unstandardized effects on

swallowing. In [194], Okada et al. revealed that clinicians may have different understandings

of the same posture, or single-term “chin down” to represent two different postures. More

investigations related to kinematics and aspiration could be done depending on the different

head and neck position. Another potential limitation is that we did not strictly measure

bolus volumes that were administered to patients. In clinical practice, a spoon and a cup

are two common utensils to feed the patients during VFSS, and during eating and drinking,

people do not measure specific volumes when self feeding with a spoon or drinking from

a cup – they self administer volumes that are comfortable. Furthermore, C3 was applied

for a distance marker in our investigation while different distance markers were applied in

different contributions. For example, in [136], the diameter of a coin is set as the reference
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rule, the coordinate was adjusted based on the coin diameter, and then normalized to the

same scale. Rules based on different normalization methods should be investigated.

4.5 Conclusion

This study employed the generalized estimating equation model to investigate the associ-

ation between the hyoid bone displacement and penetration and aspiration. We have shown

that the maximum displacement of the anterior-inferior hyoid bone landmark is significantly

related to PA scores. Reduced maximum anterior displacement of the hyolaryngeal complex

leads to higher PA score. Furthermore, age has relation to PA scores while volume, viscosity,

and head position show weak associations to penetration-aspiration. These findings suggest

that analysis of the trajectory of the hyoid bone could provide useful diagnostic information

toward identifying patients with an elevated risk of penetration and aspiration. Further

investigations based on the hyoid trajectory including other hyoid landmarks and hyoid

rotational patterns should be performed to improve our understanding of the relationship

between hyoid movement and risks of penetration and aspiration.
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5.0 Prediction Penetration Aspiration Scale based on Hyoid Bone Motion

The majority of this chapter has been previously published in and reprinted with permis-

sion from [309]. Zhenwei Zhang, Subashan Perera, Cara Donohue, Atsuko Kurosu, Amanda S

Mahoney, James L Coyle, and Ervin Sejdić. The prediction of risk of penetration–aspiration

via hyoid bone displacement features. Dysphagia, 35(1):66–72, 2020

5.1 Motivation

In this investigation, we sought to use maximum displacement of anterior-inferior of hyoid

bone in horizontal direction and other variables such as age, bolus volume, and viscosity to

predict the risk of penetration and aspiration during swallowing. Our hypothesis is that

generalized estimation equations model can correctly indicate whether the penetration or

aspiration occurs or not based on these variables. A generalized estimate equation model

was built to test our hypothesis based on trajectories extracted from VFSS images during

various swallowing tasks. The model based on hyoid bone motion with good performance

would be a useful additional tool to help the experts to diagnose penetration and aspiration

in patients with dysphagia.

5.2 Methods

5.2.1 Data Acquisition

In this investigation, we considered the image data from 265 patients who underwent

videofluoscopic examination at the Presbyterian University Hospital of the University of

Pittsburgh Medical Center (Pittsburgh, Pennsylvania). The protocol for this study was

approved by the Institutional Review Board at University of Pittsburgh and all participants
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agreed and signed informed consent. The data applied in this study was obtained from the

videofluoroscopic swallow study exam under the guidance of at least one speech language

pathologist. 48 patients with stroke and 217 patients with non-stoke etiology participate

in this study. The age range of the subjects was from 19 to 94 and the average age was

64.833 ± 13.56 years old. We exclude patients with tracheostomy or anatomic disruption

or abnormalities of the head and neck in this study. Patients followed the instruction of

clinicians to swallow boluses of liquids of different consistencies and volumes as well as

cookies in VFSS exam. The speech pathologist determined the number and order of the

swallow trials for each consistency and volume according to the patients’ condition and the

clinical indications. Measurements in this study were made during the swallowing of thin

liquid (Varibar Thin Liquid with < 5 cPs viscosity), nectar-thick liquid (Varibar Nectar with

about 300 cPs viscosity). Patients swallowed boluses in two types of utensils: a spoon in 3-

5mL volumes, or a cup of a self-selected, comfortable volume. Patients primarily kept neutral

head position during swallowing and depending on clinician’s request, some of swallows were

performed in a head-neck flexion position (chin down).

Fluoroscopy was set at 30 pulses per second (full motion) and the swallow study images

were recorded on high quality at 60 frames per second by a video card (AccuStream Express

HD, Foresight Imaging, Chelmsford, MA) and later captured digitally into a hard drive with

a LabVIEW computer software program. All videos were obtained from lateral view and the

resolution of video clips were made into 720 x 1080. Finally, the videos were down-sampled

into 30 frames/second to eliminate duplicated frames.

5.2.2 Image Analysis

The experts who are with dysphagia research experience measured the points of interest

by using MATLAB (R2015b, The MathWorks, Inc., Natick, MA, USA). The onset of each

video was defined as the moment when the bolus head arrives at the lower mandibula margin.

The termination of each video was defined as the moment when the hyoid bone returned to

its lowest position after the bolus passed the UES. We obtained over 3000 video clips which

contain one swallow using this criterion. Over half of the clips has the issues of poor image
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(a) Markers for anterior hyoid bone, posterior hy-
oid bone, C2 tail, C4 tail and C3

(b) Coordinate established based on the C2-C4

Figure 15: The landmarks for hyoid bone, C2, C3, C4 and established coordinate.

quality or interest of points obstructed by the shoulder or other medical equipment which

results the tracking frame by frame impossible. The final video data set used for analysis

included 1434 swallow video clips. As shown in Fig. 15, the experts tracked the following

points of interest in each video frame: (1) anterior inferior corner of C2 vertebra; (2) anterior

inferior corner of C4 vertebra; (3) anterior inferior corner of the hyoid bone; (4) posterior

superior corner of the hyoid bone; (5) anterior inferior corner of C3 vertebra; (6) anterior

superior corner of C3 vertebra. A coordinate system is created normalize the motion points

from different subjects. we defined (2) as the origin, and defined the straight line connecting

(2) and (1) as the y-axis. The x-axis is defined the horizontal line perpendicular to the y-axis

and intersecting with (2). In order to normalize patients with different heights to a common

anatomic referent, the anatomical scaling factor for displacement measure was defined as

the length between (5) and (6): length of C3 vertebra. We used the actual distance in

image pixels for all distance numbers. In the previous contribution, we showed that the

maximum displacement of hyoid bone in horizontal direction has strong association with the

penetration and aspiration. Thus, we extracted the maximum distance from the hyoid bone

trajectory in horizontal direction in this investigation.

We used an 8-point PA scale [223] to identify the degree of penetration/aspiration from

the 1434. Among these swallows, 1129 swallows have PA scores of 1 or 2 and 304 swallows
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have PA scores greater or equal to 3. To evaluate the reliability of the swallowing analysis,

10 swallow cases were utilized. Three experts analyzed the same cases and their results are

compared. Furthermore, the inter-rate reliability was tested as well, experts analyze the

same case 1 month later to ensure less difference among different markers and time period.

5.2.3 Statistical Analysis

SAS r version 9.3 (SAS Institute, Inc., Cary, North Carolina) was used for all statistical

analyses with the GENMOD procedure for obtaining the main results. A dichotomous (nor-

mal; disordered) operational definition of PAS scores (1-2, and 3-8 respectively) was used for

analyses, because there was a skewed distribution of PAS scores. Logistic regression models

that are typically used with dichotomous data could not be used, because the independence

criterion was not met due to having multiple swallows in the data set from each patient.

Therefore, a GEE model [287] with a binomial distribution, a logit link function, and an

exchangeable working correlation structure (which is an extension of a logistic regression

model suitable for analyzing auto-correlated data) was used. Age, gender, swallow type

(single/multiple 1/multiple 2), viscosity (thin/nectar/pudding/cookie), utensil (cup/spoon),

head position (neutral/chin down), and swallow duration were used as forced-in independent

variables based on face validity and prior knowledge of their dependence on PAS scores. In

addition to these independent variables, we examined various aspects of hyoid bone displace-

ment using a forward selection strategy with an entry criterion of p <0.05. The measurement

of these landmarks (superior hyoid hone and anterior hyoid bone) includes maximal displace-

ment, maximal peak position, velocity, acceleration and duration in horizontal and vertical

direction. To assess the predicted and observed disordered PAS scores, we created a contin-

gency table based on the predicted probability deciles. The deciles were formed by sorting

and separating the predicted probabilities into ten subgroups based on each patient’s risk

profile, from lowest to highest risk (1-10). We examined the observed percentage of disor-

dered PAS swallows (3-8) within each decile compared to the predicted percentage according

to the model. See Appendix A for the predictive model.
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Table 8: Statistics and characteristics of patients involved in the investigation

Features Frequency(%) Features Frequency(%)

PA

1 687(47.94%)

Viscosity&Volume

thin liquid by teaspoon 264(18.4%)

2 442(30.84%) thin liquid by cup 614(42.8%)

3 138(9.63%) not recorded utensil with nectar 1(0.007%)

4 48(3.35%) nectar by teaspoon 195(13.6%)

5 29(2.02%) nectar by cup sip 209(14.6%)

6 33(2.30%) pudding by spoon 94(6.6%)

7 23(1.61%) cookie 42(2.9%)

8 33(2.30%)
Gender

male 155(58.49%)

Type

single 498(34.73%) female 110(41.51%)

multiple(1) 360(25.10%)

Head Position

neutral 1136(79.22%)

multiple(2) 534(37.24%) chin down 252(17.57%)

not record 42(2.93%) not record 46(3.21%)

5.3 Results

Table 8 illustrates the descriptive statistics and participant characteristics. The swal-

low analysis data was presented in this study for 1433 swallows from 265 distinct patients.

Ninety-one swallows were excluded from the analysis due to missing information or incorrect

recording. The age range of the subjects was from 19 to 94 and the average ± standard

variation age was 64.8 ± 13.6 years. 1129 swallows had PA scores of 1 or 2 and 304 swallows

had PA scores greater or equal to 3.

Table 7 illustrates the statistical results of focused-in clinical variables and aspects of

hyoid bone displacement that met the 0.05 entry criterion for the model. Clinical variables

shown in Table 7 were forced-in to the model with forward selection. Maximum anterior-

horizontal hyoid bone displacement was the only aspect of hyoid bone displacement that was

significantly predictive of normal versus disordered PAS scores and included in the model.

Patient age was significantly predictive of normal versus disordered PAS scores, although

the confidence interval included OR = 1.00. For each additional year of age, the odds

of a disordered PAS score increased by 3% (OR=1.03, 95% C.I. = 1.00 1.05; p=0.0178).

There was a trend toward a single swallow being less likely (36%) to have a disordered

PAS score compared to multiple swallows, (OR=.64, 95% C.I. =.40-1.04; p=0.0708). Two

swallows per bolus (multiple 1) was significantly more likely to have a disordered PAS score

(OR=1.58, 95% C.I = 1.16 2.15; p=0.0040) than more than two swallows per bolus (multiple

2). There was strong evidence that swallows of thin liquid had a significantly greater odds
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of a disordered PAS score than a cookie swallow (OR=3.62, 95% C.I. = 1.37 9.58; p=0.0096

). The model predicted the risk of penetration and aspiration for each patient based on

the variables included in the model. Table 3 shows the predicted probability of having a

disordered PAS score in each decile compared to the observed percentage of disordered PAS

scores in each decile. For instance, as shown in the table, the predicted probability for decile

1 indicates that 0-7% of the swallows will be disordered. The predictive model effectively

captured patient risk profiles for this decile because 6.72% of the swallows had a disordered

PAS score. Similar observations can be made for deciles 2, 4, 8, and 9. Deciles 3, 5, 6,

7, and 10 captured the increasing probability trend of penetration and aspiration, although

the observed percentage of swallows with disordered PAS scores were slightly outside of the

predicted ranges.

5.4 Discussion

This study found that a predictive model that included maximum anterior-horizontal

hyoid bone displacement and other variables known to affect penetration and aspiration risk

can reasonably predict the risk of penetration and aspiration in patients with dysphagia.

While this predictive model accurately captured the increasing probability trend of penetra-

tion and aspiration risk of patients, the predicted and observed probabilities did not always

match. Current clinical practice is for clinicians to assess physiological impairments of swal-

lowing and reduced airway protection by subjectively interpreting VF images. However, one

limitation of using VF as an assessment tool is that aspiration may not be observed during

VF due to the time constraints of the examination to minimize radiation exposure. Creating

a predictive model based on objective measurements of physiological swallowing events, such

as the measurements of hyoid bone displacement that were used in this study, would allow

clinicians to more accurately capture patient risk profiles of penetration and aspiration. This

model could be used to improve assessment of swallow function, effectively track progress

in therapy, and proactively and objectively identify physiologic markers of elevated risk of

adverse events that occur secondary to dysphagia, such as aspiration pneumonia.
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Table 9: Predicted probability decile cut-off and observed percentage based on the model ( * ac-
tual% of swallows with disordered PA scores was within the predicted probability range based on
hyoid displacement features)

Predicted Probability

Decile

Predicted Percentage of

High PA swallows

Number of

Swallows

Actual Number (Percentage) of

High PA Swallows

1 0.0 − 7.0 134 9(6.72)*

2 7.0 − 10.4 134 13(9.70) *

3 10.4 − 13.9 134 20(14.93)

4 13.9 − 16.9 135 21(15.67)*

5 16.9 − 19.7 134 21(15.56)

6 19.7 − 22.8 134 37(27.61)

7 22.8 − 25.7 134 27(20.15)

8 25.7 − 30.0 134 38(28.36)*

9 30.0 − 36.4 134 41(30.60)*

10 36.4 − 100 135 44(32.59)
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5.5 Limitation

The GEE model in this study used anterior-horizontal hyoid bone displacement and

other independent variables to reasonably predict penetration and aspiration risk for patients

with dysphagia. However, swallowing and airway protection are complex, multifactorial

processes. It is probable that the variables included in this model are not the only predictors

of aspiration. One limitation of the current predictive model is that it underestimates the

risk of penetration and aspiration for patients with disordered PAS scores. The predictive

model will likely be improved by including other swallow kinematic measurements.

5.6 Conclusion

This research work developed a preliminary GEE model that can reasonably predict pen-

etration and aspiration risk for patients with dysphagia. This is an important and necessary

first step toward developing a more sophisticated and accurate predictive model that can be

used in clinical settings. In the future, clinicians could use a predictive model based on phys-

iological aspects of swallow function to calculate penetration and aspiration risk profiles for

patients by entering patient specific information into the equation. By objectively determin-

ing patient risk profiles, clinicians could develop individualized treatment plans to prevent

adverse outcomes (i.e. dehydration, malnutrition, and aspiration pneumonia) based on risk

severity level, and objectively track the effectiveness of dysphagia treatment on functional pa-

tient outcome measures. Future research should examine the predictive ability of additional

swallow kinematic measures on penetration and aspiration risk in patients with dysphagia.

Variables such as hyoid bone velocity, initiation of the pharyngeal swallow, laryngeal eleva-

tion, laryngeal vestibular closure, UES duration, and other physiological parameters related

to swallow function should be investigated. Including these kinematic events in the pre-

dictive model may increase the model’s predictive value, which would further improve its

clinical application.
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6.0 Identification and Localization of Hyoid Bone in Videofluoroscopy

The majority of this chapter has been previously published in and reprinted with per-

mission from [306]. Zhenwei Zhang, James L Coyle, and Ervin Sejdić. Automatic hyoid bone

detection in fluoroscopic images using deep learning. Scientific Reports, 8(1):12310, 2018

6.1 Motivation

In the previous contributions, users had to manually mark region of interest in the

first frames for the hyoid bone motion tracking. Furthermore, in their studies, the images

evaluated are quite limited which cannot cover all the patients’ cases. Therefore, in this

study, we sought to develop a software platform that can localize the region of interest

containing the hyoid bone in the alternative frames from the video with the help of objection

detection method based on CNN. Our hypothesis is that the detection algorithm can detect

the location of hyoid bone with high performance. State-of-art methods were applied in the

investigation and we evaluated the performance of these detection algorithms by comparing

the ‘ground truth’ manually segmented and the detected regions. Detection of hyoid bone

localization accurately could help clinicians for a quicker diagnosis and to develop a fully

automatic hyoid bone tracking system.

6.2 Material and Methods

6.2.1 Data Collection

In this investigation, 265 patients with swallowing difficulty underwent videofluoscopic

examination at the Presbyterian University Hospital of the University of Pittsburgh Medical

Center (Pittsburgh, Pennsylvania). The protocol for this study was approved by the Insti-
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tutional Review Board at University of Pittsburgh and all participants provided informed

consent. The age range of these subjects was from 19 to 94, and the average age of them

was 64.833 ± 13.56 years old. Patients swallowed boluses of liquids of different consistencies

and volumes as well as cookies during their VFSS examination. The amounts and viscosity

they swallowed was judged by clinicians based on factors such as patients’ history and the

clinical indications. These liquids included thin liquid (Varibar Thin Liquid with < 5 cPs

viscosity), nectar-thick liquid (Varibar Nectar with about 300 cPs viscosity). The position

of patients during swallowing was primarily neutral head position though some swallows

were performed in a head-neck flexion position. Patients swallowed boluses in a spoon which

contains 3-5mL volumes, or self-administered boluses form a cup, which contains 10-20mL

volumes. Fluoroscopy was set at 30 pulses per second (full motion) and video images were

acquired at 60 frames per second by a video card (AccuStream Express HD, Foresight Imag-

ing, Chelmsford, MA) and collected into a hard drive with a LabVIEW program. The videos

were two-dimensional digital movie clips of 720 x 1080 resolution, and in this investigation,

we down-sampled it to 30 frames/second to eliminate duplicated frames.

6.2.2 Methods

In this investigation, our solution is to build a detection system based on the single

shot multibox detector, which is one of the most popular detection algorithm in recent

years. The SSD algorithm can generate high detection performance at the cost of high

computational complexity. Thus, we also evaluate the performance of several other state-

of-art detection methods, i.e., Faster-RCNN and YOLOv2, for the results comparison. The

following paragraphs describe the approach in SSD, the data set ground truth creation and

the training and testing details.

6.2.2.1 Network Architecture

Machine learning has been widely used in medical image and videos to help users to

better understand the properties of these data [285]. Neural network is one of the popular

type of machine learning models. The basic idea of neural network is to multiply the input
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data with layers of weighted connections. Deep neural networks is a typical architecture of

neural networks, which is constructed by multiple layers. Each layer implements a series of

convolution operator on input, followed by a non-linear activation function, such as logistic

function or rectified linear unit (Relu). Then pooling layer is applied to reduce the size of

features to the following layers [129]. Popular fully convolutional networks for image tasks

includes AlexNet [122], GoogleNet [269], VGG net [241] and Residual Net [91].

The SSD is a feed-forward convolutional neural network built on image classification

neural network, called base network, such as VGGNet, ZFNet or ResNet [153]. Additional 8

convolutional feature layers are added after these base networks replacing the last few layers

of the base networks. The size of these layers decreased progressively and used as output

layers for prediction of detections at multiple resolutions. SSD integrated both higher and

lower feature layers, as the lower layers contain better location information and the higher

layers have more image details [160]. The images are divided into different sizes of grid sizes

which is associated to default bounding boxes. The correspondence between the position

of default box and the feature cell are fixed. SSD predicts the objects based on default

boxes instead of predicting the bounding boxes directly. The default boxes are assigned with

different scales and aspect ratios, which provide information of different object scales. The

scale of each feature map is manually designed as:

sk = smin +
smax − smin
m− 1

(k − 1), k ∈ [1,m] (6.1)

where m is the number of feature maps used for prediction. smin is 0.2 and smax is 0.9.

Each feature map cell corresponds to 6 default boxes, which are assigned with different

aspect ratios, which are denoted as αγ = {1, 2, 3, 1
2
, 1
3
}. The width and height of the default

box is computed as wαk = sk
√
αγ and hαk = sk/

√
αγ. For the aspect ratio of 1, another scale

s′k =
√
sksk+1 is added for the default box as well. The center of each default box is set at

( i+0.5
|fk|

, j+0.5
|fk|

) , and |fk| is the size of k-th feature map. By using these default boxes with

various scales and aspect ratios from all locations of added feature maps, SSD predictions

can covers different input sizes and shapes. Fig. 16 illustrates the idea of default boxes.

A set of convolutional filters are applied to the added features layers to perform the

bounding box regression and category classification. For each feature layer of size m × n
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Figure 16: The idea of default boxes applied in SSD. For each default box, the offsets and confidence
for categories are predicted.

with p channels, a 3 × 3 × p small kernel filter are applied to produce one value at each

feature map cell, where the outputs are classification scores as well as the offsets relative to

the bounding box shape.

The label of SSD include the class and the offsets from the default boxes. The default

boxes is matched with ground truth if their intersection over union (IOU) is over 0.5. IOU

is defined as Area of Overlap/Area of Union. The loss function of SSD combine a softmax

loss for the confidence loss and a Smooth L1 loss for localization loss. The overall objective

loss function is

Ltot =
1

N
(Lconf + αLloc) (6.2)

where N is the number of matched default boxes and α is set to 1 by cross-validation. The

SSD framework is shown in Fig. 17. For more details of the SSD network and loss function

please refer to [153].

6.2.2.2 Training and Testing

We annotate the hyoid bone location (coordinate of left corner, height and width) in

the frames of each videos as ground truth. These ground truth annotations for the hyoid

bone locations were obtained by the experts. To evaluate the reliability of the swallowing
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analysis, 10 swallow cases were utilized. Three experts analyzed the same cases and their

results are compared. Furthermore, the inter-rate reliability were tested as well, experts

analyze the same case 1 month later to ensure less difference among different markers and

time period. The data is randomly separated based on the patients. 70% of patients were

split into training data which contains 30000 frames with annotations, while 30 % of patients

were split into test data which contains 18000 frames. The investigation shows that SSD

provides a better overall accuracy using ResNet-101 as base network compared to VGGNet-

16 [98]. Thus, we choose VGG-16 and ResNet-101 as base networks, and consider two image

resolutions for inputs: 300 × 300 and 500 × 500. We compare models trained on both base

networks and both resolutions inputs. The input with size 500 × 500 should provide the

better performance as more details can be detected in higher resolution images. However,

larger image size increase the computation time.

6.2.2.3 Evaluation of Accuracy

The performance of the detection module is measured by mean average precision (mAP),

which which is the most commonly used evaluation method for object detection. Average

precision estimated whether detected bounding boxes match the corresponding ground truth.

Mean average precision is the area below the precision-recall curve, which integrates preci-

sion and recall and varies from 0 to 1. As we have just one class to classify here, mean

average precision is exactly the average precision for hyoid bone class. The bounding box

is labeled as true positive if IoU is greater than 0.5. Precision evaluates the fraction of

true positive bounding box over all predictions and recall evaluates the fraction of the true

positive detected bounding boxes among all ground truths.

6.3 Results

Tab. 10 shows results of the state-of-art published methods on our VFSS image dataset.

In global, SSD method outperforms the results produced by YOLOv2 and Faster-RCNN.
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Figure 17: Architecture of Single shot multibox detector

Table 10: Comparison of mAP with different models

Model mean average precision

YOLOv2 33.10%

Faster-RCNN + ZF 69.01%

SSD300-VGG 84.37%

SSD300-ResNet 79.25%

SSD500-VGG 89.14%

SSD500-ResNet 89.03%
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hyoid

Figure 18: The identification of hyoid bone using different methods: ground truth (yellow), SSD500-
VGG (orange), Faster-RCNN (red), and YOLOv2 (pink)

Among SSD method, VGGNet with input size of 500 × 500 produced the best result com-

pared to ResNet and input size with 300 × 300. The mAP of SSD500-VGGNet is 89.14%,

which is 0.11% better than using ResNet-101 as base network and 4.77% better than us-

ing smaller image input size. Fig. 17 shows the example results by manual segmentation,

SSD500-VGGNet, Faster-RCNN and YOLOv2. We select two different cases as example,

patient swallowed the bolus in neutral head position and chin down position. In the ground

truth, the bounding box is used to locate the hyoid bone location as most of the object

detection method using bounding box to locate and classify the content inside it. In the

example case, all of 3 tested method showed a good result, detecting the hyoid bone location

successfully. However, it can been clearly seen that Faster-RCNN method produced two

regions of interest that it considers as the hyoid bone with very close confidence score.

Fig. 19 illustrate results using SSD500-VGGNet method with different hyoid bone loca-

tion, under the mandible, behind the mandible, and the results with different image qualities.

From these results, SSD500-VGGNet showed stable detection result, clearly finding the hyoid
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bone. The hyoid bone is hidden behind the mandible in the case (a) and (b), the algorithm

detect the hyoid bone with a relative low confidence score while It perform well in the case

(c) and (d) where the hyoid bone present under the mandible.

Fig. 20 shows the change of training loss function and the performance on test data

during the SSD500-VGGNet model training. From these figures, we can learn how the

performance of the model change during the training. The loss function has dramatically

decreased in the first 10000 iteration and then the loss function only have very slight decrease

in the following training iteration. On the other hand, the performance model arrived at 87

% mAP at first 10000 iteration, than it has slight variance in the further training iteration

and than reached around 89%.

6.4 Discussion

In this investigation, we aimed to detect the location of the hyoid bone in the videofluoro-

scopic images without any human intervention. The hyoid bone is one of the key important

components in the daily dysphagia assessment, whose motion is related with the severity

of dysphagia and treatment effect. Manually tracking hyoid bone data from VFSS is still

the golden standard accepted by experts and clinicians. However, manually segmentation

and annotation is very time-consuming and unreliable. The valid hyoid bone motion data

can be applied in further investigations such as statistical methods and classification based

on machine learning. A quantitative and qualified computer-aided system is highly required

in this field. In the dysphagia research field, limited contribution works on the hyoid bone

semi-automatically tracking which requires the manually region selection by the experts in

the first step. The automatic localization of hyoid bone can help researchers for a more

efficient study. We are going to discuss the performance of each method and the possible

reasons that may influence the results in the following paragraphs.

We examined the performance of different object detection methods (Faster-RCNN,

YOLOv2, and SSD) on locating hyoid bone in our own VFSS images dataset. For the

deep architecture, we employ the medium-size network VGGNet and the relative larger-size
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(a) (b)

(c) (d)

Figure 19: Results on different image conditions using SSD500-VGGNet: (a)(b) hyoid bone hide
behind mandible (c)(d) hyoid bone is slightly blurred during motion
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(a) (b)

Figure 20: The influence of training iteration in the SSD500-VGG model (a) training loss vs. train-
ing iteration (b) performance on test data vs. training iteration

network ResNet 101 for the SSD, a small network ZFNet for Faster-RCNN. YOLOv2 is from

the original Darknet model [216]. The SSD500-VGGNet achieves good results than other

CNN based models, which can be considered as the most suitable method for the hyoid bone

detection in the VFSS images. It is not surprising that YOLO achieve the worst performance

on the VFSS data. Hyoid bone can be considered as the small objects in the images while

YOLOv2 is a fast object detection method but is weak for the small object detection as

it applies global features for the detection which can’t get enough details of small object.

SSD500 is better than SSD 300 in all settings by using ResNet-101 or VGGNet-16. The rea-

sons might be follows. SSD resizes the input images to the fix size: SSD300 resize the images

into 300 × 300 while SSD500 resize them into 500 × 500. In SSD300, as the image is resized

into smaller size, each cell in the feature map can cover a relative larger area than those in

SSD500. Since the hyoid bone is very small in the image, SSD300 may not learn the details

of the hyoid bone, which leads to the worse performance. Furthermore, ResNet reached the

similar mAP compared to VGGNet in SSD500 while it has worse performance in SSD300.

This interesting observation may be explained based on the model structure. ResNet-101 is

a neural network with 101 layers, while VGG-16 only has 16 layers. The similar results in

SSD500 may indicate that both network provide detailed information for the added features.

As ResNet is a more complex model, it may overfit for the size of input 300 × 300, which
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leads to the lower detection results. SSD method is a powerful tool to detect the hyoid bone

location, however, training SSD model with ResNet-101 and VGGNet with larger input size

is very time-consuming. We implemented our algorithms on GPU NVIDIA Tesla M40, it

took over one week to train the SSD500-VGG16 models and SSD500 with ResNet-101 took

much longer time while Faster-RCNN took only one day as ZFNet is a small neural network.

Hyoid moves upward and forward during patient’s swallow. It will move and be hidden

in the mandible sometimes. As the mandible represents a dark region in the image, it is

quite difficult for the clinician to find the hyoid bone directly. In general, experts have to

compare frame by frame to check whether there is some changes around the mandible in

order to determine the location of the hyoid bone. The result in Fig. 19 (a) and (b) shows

the detection of hyoid bone. Although the confidence score is low, it still can be considered

as a huge success as even the experts may not find the hyoid bone location. (c) and (d) are

the examples of blurred hyoid bone. The hyoid bone may be blurred when it moves quickly

between two frames, the algorithm can detect this kind of case with very high confidence

score.

X-ray image varies from the quality as the clinicians always control the dose in order to

let the patients receive as few dose as possible. Thus, as shown in the Fig. 19, the brightness,

the contrast of each x-ray images are different. X-ray contains many useful information, but

it lose many of them due to these operations. As shown in the Fig. 21, the SSD method

detect the hyoid bone location with very low confidence score or totally can’t detect the hyoid

bone location. It is like a guess when humans locates these cases. We know the location of

the hyoid bone as the pre-knowledge, and seek to find the target around the possible location

and eliminate the impossible region one by one. The object detection algorithm classify the

regions based on the default boxes, which is a direct way to make the decision and can’t

make full use of the information outside information.

The paper [98] indicated that Faster-RCNN with inception ResNet v2 has the best object

detection results comparing to the other modern object detection method. Furthermore,

several researches focus on the small object detection such as feature pyramid network [147],

which might be the further research interest to increase the detection performance of the

hyoid bone. On the clinical side, future work should investigate on automatic segmentation
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(a) (b)

Figure 21: The cases which algorithm didn’t detect the hyoid bone (a) the case with low confidence
score (b) the case totally not detected

of hyoid bone areas and extract more useful information such as anterior and anterior part

of the hyoid bone in video sequence. Moreover, since we showed that SSD detection method

can solve the hyoid bone detection problem, we would also like to explore the possibility to

detect other key components in the videofluoroscopy images. Given that millions of VFSS

studies implemented, high-accuracy component detection can save experts considerable time

during their diagnosis.

6.5 Conclusion

In this work, we have investigated the hyoid bone detection in the videofluoroscopy

images using deep learning approach. We considered 1434 swallow with VFSS videos as

our dataset. The hyoid bone location is manually annotated in each frame of videos. We

consider each frame as the single sample, and trained 70% of frames using current state-of-
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art object detection method. The SSD-500 model can track the location of the hyoid bone

on each frame accurately while the hyoid bone motion information can help for physiological

analysis. We believed that this proposed model has the potential to improve the diagnosis

assessment of dysphagia in the near future.
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7.0 Automatic Annotation of Cervical Vertebrae in Videofluoroscopy Images

via Deep Learning

The content of this chapter is currently under review with Medical Image Analysis.

Zhenwei Zhang, Shitong Mao, James Coyle, and Ervin Sejdić. Automatic annotation of

cervical vertebrae in videofluoroscopy images via deep learning. 2021

7.1 Motivation

The purpose of this study is to demonstrate how deep learning neural networks can

achieve unprecedented accuracies in anatomical landmark localization that can change the

clinical assessment of dysphagia. Most importantly, our models maintain excellent perfor-

mance even when validated on an independent test dataset, demonstrating its robustness

and the generalizability needed for clinical settings. Specifically we present an investigation

of deep learning in identifying the necessary anatomic scalar, the distance between the 2nd

and 4th cervical vertebral bodies used to correct for size differences among patients, on all

frames of a VFSS examination. We further sought to investigate how closely individual

vertebral lengths (e.g,, C3 alone) corresponded to the longer C2-C4 segment currently used

in kinematic analysis but whose most inferior landmark may not always be visible in VFSS

images due to patient posture.

7.2 Methods

7.2.1 Videofluoroscopic Swallow Study Dataset

Our dataset was collected from 265 patients with swallowing difficulty and 70 healthy

volunteers who underwent videofluoroscopic examination at the Presbyterian University Hos-
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pital of the University of Pittsburgh Medical Center (Pittsburgh, Pennsylvania, USA). The

Institutional Review Board at the University of Pittsburgh approved the protocol of this

study and all participants provided informed the consent. We didn’t use statistical methods

to predetermine sample size or subject age range. In this preliminary feasibility study, a

convenience sample was used because there are no data upon which to base power calcula-

tions for sample size. The age range of these subjects was from 19 to 94, and the average

age was 64.83 ± 13.56 years old. All experiments in this data collection were performed

in accordance with relevant guidelines and regulations. Participants in this study include

During the VFSS examination, patients were required to swallow liquid boluses of various

consistencies and volumes as well as pureed food and cookies, all containing barium. A

standard data collection protocol was not followed for the patient data set. Instead, clin-

icians who conducted the VF modified the protocol for the administration of boluses (e.g.

number of swallows, bolus consistencies, bolus volume and patient’s head position) based

on clinical appropriateness. The following consistencies were used in our studies: Varibar

(Bracco Diagnostics, Inc.) thin liquid (<5cPs viscosity), Varibar nectar (300 cPs viscosity),

Varibar pudding (5000 cPs viscosity), and Keebler Sandies Mini Simply Shortbread Cook-

ies (Kellogg Sales Company). Patients swallowed liquid boluses administered from a spoon

containing 3-5mL volumes for all consistencies, or self-administered liquid boluses from a

cup containing in patient self-selected, comfortable volumes between 10-20mL. Pudding and

solids were administered from a spoon.

In our investigation, the videofluoroscopy system were set at 30 pulses per second (full

motion). The first dataset consisting of 265 patients was collected from 2012 to 2015 using

Ultimax system (Toshiba, Tustin, CA) and the second dataset of 70 volunteers was acquired

through Precision 500D system (GE Healthcare, LLC, Waukesha, WI) from 2018 to 2019.

Video images were acquired at 60 frames per second by a video card (AccuStream Express

HD, Foresight Imaging, Chelmsford, MA) and recorded into a hard drive with a LabVIEW

program. The first dataset was captured with 720 x 1080 resolution in real time while the

second dataset was captured with 1280 x 1024. Due to poor image quality or obstruction of

the fourth vertebrae by the shoulder or other medical equipment, over half of swallow videos

were not ideal for marking the points and our data set included 1518 swallow video clips.
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Human experts who were trained as previously described in swallow kinematic analysis

identified anatomical points of interest (second vertebra and fourth vertebra) in 1518 swallow

videos and annotated the landmark frame by frame in MATLAB (R2015b, The MathWorks,

Inc., Natick, MA, USA). In addition, the head and tail of third vertebra were labeled on

only first three frames of each subjects. Each swallow was segmented to include ll activity

beginning with the frame in which the head of the bolus reached the lower mandibular margin

to when the tail end of the bolus passed through the upper esophageal sphincter (UES).

10% of the videos were randomly selected for ongoing inter- and intra-rater reliability tests

to maintain intraclass correlation coefficient over 0.9 to avoid judgment drift over time.

7.2.2 Image Preprocessing and Data Augmentation

The total number of frames extracted from videos with annotations is 59810 images for

our dataset. As we only collected the data from 335 subjects, the head position and image

condition of VFSS images from the same patient were quite similar. The problem with the

data set from the limited patients is that the trained model may suffer from overfitting and

would not generalize to test dataset. The data augmentation is well accepted practice to

directly augment the input data to the model to increase the variety of perturbations in

training data information, which more stringently trains the algorithms in detecting events

during various common clinical testing conditions. In our dataset, we preprocessed the

images from each patient. The augmentation methods included: random flipping half of

images horizontally, rotating the images from -45 degree to 45 degree, shearing all images

by -10 to 10 degrees, random cropping or padding 75% to 125% to original images, and

changing the brightness of the images by multiplying 0.8 to 1.2. After data augmentation,

all of augmented images still contain the C2 - C4 landmarks and the total number of the

training images remains unchanged. The deep learning networks highly require computation

resources, we resized the input images into 448 × 448 considering the model training time.

The original landmark point is shifted with respect to the image center, and normalized by

(w, h) as given by:

(x′i, y
′
i) = (

xi − 0.5w

w
,
yi − 0.5h

h
) (7.1)

83



where (xi, yi) are given ground truth coordinate of landmark points and (x′i, y
′
i) are normal-

ized and centered coordinates, treated as labels for networks training.

7.2.3 Overview of Model Development

Convolutional neural networks are commonly applied in medical imaging field, which can

be used to discover the subtle patterns in a dataset. The main architecture tested in this

study was a convolutional neural networks which used ResNet blocks followed by two convo-

lutional layers. We implemented a two-stage networks architecture for vertebrae landmark

detection. The basic idea of our two-stage network was inspired by [164]. In our design, the

netwroks consist of two stages, the global detection network and the local detection network.

The global stage provides the rough detection results of vertebrae locations and crops the

vertebrae regions. We employed a CNN structure, which contains ResNet block, as our lo-

calization model to predict the coarse locations. ResNet block is popular architecture that

makes use of the idea of ’short connection’, skipping one or several layers and carrying input

to the output, which allows to prevent vanishing gradient problem and fasten the training of

the networks. We adopt the structure of ResNet-50 in global stage, which performs identity

mapping for shortcut connections. We adjusted the last fully connected layer, which was

originally designed for classification, to predict the vertebrae region.

Due to the various shape of vertebrae across the population, the global network may not

capture all the variations of these difference, especially for the edge and the order of the

vertebrae. To overcome the errors of local parts, we introduce the local network for the finer

landmark localization, which is essential for accuracy improvement. Images are cropped via

the prediction results from the global stage network, then scaled and fed into the local stage

network. Similar with the global stage network, we adopt ResNet-34 structure, with the

last fully connected layer adjusted to directly regress the landmark locations on the input

images. The inverse transformation function is applied to map the predicted points to the

original image.

Normalization is widely adopted techniques that enables more stable and faster training

of deep learning models. In our study, we found that the switchable normalization showed
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better performance than batch normalization layers in ResNet blocks in the training phase.

Switchable normalization combines batch normalization, layer normalization and instance

normalization using weight average, which allows the custom choice of normalization de-

pending on the depth of the layer and training batch size (Fig. 22). Batch normalization

was proposed and widely implemented in ResNet and similar convolutional network architec-

ture. It reduces internal covariate shift by using mini-batch mean and variance to normalize

each mini-batch of data. The normalized version of a mini-batch of inputs {x1, ..., xm} is

computed as follows:

x̂i =
xi − µ√
σ2 + ε

with µ =
1

m

m∑
i=1

xi σ2 =
1

m

m∑
i=1

(xi− µ)2 (7.2)

The layer normalization normalizes features within each sample, instead of normalizing across

samples. The layer normalization is computed over all hidden units (H) in the same layer:

µl =
1

H

H∑
i=1

ali σ2 =
1

H

H∑
i=1

(ali − µl)2 (7.3)

Similar to layer normalization, instance normalization normalizes features within channels.

The loss function was defined as Euclidean loss for landmark location prediction, which

is computed from

loss =
1

2

i=1∑
N

((x̂i − x′i)2 + (ŷi − y′i)2) (7.4)

where (x̂i, ŷi) are landmark location predicted by the network. We computed the loss function

on the training and validation data, and we selected the model with best loss function score on

validation dataset as our final model. We fine-tune the ResNet via transfer-learning and also

trained networks from the scratch. The advantages of normalization layers is to regularize

the model, reduce the overfitting and improve the model performance. Normalization layers

change the distribution in network weights during training.
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Figure 22: Switchable normalization Switchable normalization combines batch normalization,
layer normalization and instance normalization using weighted average the means and variances.
It allows networks to find the suitable ratios among three normalizations for each layer during
training.

7.2.4 Training Two-Stage Network Model

In this investigation, two datasets were utilized in the model training and evaluation.

The first data was collected from 265 patients using Ultimax system, with 70% of subjects

for training, 30% for validation. An extra independent data collected from 70 volunteers

was applied for the final testing. We ensure that no person in the training group is in the

validation and test group to make it a truly independent group. In the original paper, the

ResNet block utilized the batch-normalization layer. In our model, we implement and tested

the residual block using switchable normalization instead of batch-normalization layer. The

training curve of batch-normalization and switchable normalization is listed in supplemental

files. We trained our two-level neural network models via fine-tune of original ResNet and

fully trained switchable ResNet block. The model that performs best on the validation

dataset is selected for testing. The switchable normalization showed slight better accuracy

compared to the transfer fine-tuning using original ResNet structure. In this study, training

and Testing procedures were implemented using Pytorch on the NVIDIA Tesla M40 GPU. We

utilized Xavier initialization to initialize weights in the networks, and we used exponential

decay learning rate starting from 0.01 and the learning rate was scale by 0.95 after each

epoch. The whole-images were resize into 448 ×448 and the models were trained over 80

epochs on the first patient dataset with 80 % for training and 20 % for validation. Due to

the limitation of C3 annotations, we trained first stage network only with C2 and C4 labels,

then the second network were trained with all annotations.
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Figure 23: Data acquisition and annotation procedure Our dataset included annotated swal-
lows collected from 335 subjects for the model training and evaluation. Video clips were recorded
directly during VFSS examination. C2, C3, C4 vertebra locations were manually labeled by one
main experienced expert during analysis. Inter-rater reliability test was implemented one month
later and intra-rater reliability was tested with two other raters to ensure the accuracy of the judg-
ment.

7.2.5 Testing and Analysis

Once the model finished the training, the evaluation of model was implemented on the

testing dataset, which independent and not included in the training dataset. All parameters

in the models were frozen and we predict landmark points by a forward-pass through the

networks. As we rescaled and shifted the landmark points during training phase, these points

should be scaled and shifted back to the original image coordinates:

(xi, yi) = (x̂′iw + 0.5w, ŷ′iw + 0.5w) (7.5)

The purpose of this study is to locate the key points of vertebrae in the videofluoroscopic

images, whose information can be used as an important reference in clinical kinematic anal-

ysis. First, we evaluate the mean and standard deviation of location pixel difference between

ground truth and points predicted by the models. We also evaluate the percentage of pixel

difference compared to whole image size. In addition, we checked how the results were af-

fected when various normalization layers and different input size were applied during model

training. We asked three well-trained pathologists to manually label the C2, C4 landmarks

points, comparing the results tolerance within human and the error range between humans
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and machine predictions. Vertebrae information are used to build a coordinate for kine-

matic analysis in dysphagia field. To evaluate the performance of model, we calculated and

compared the ratio of C2, C4 unit, and angle of C2-C4 coordinate. The ratio of C2-C4 is

calculated by predicted C2-C4 length over annotated C2-C4 length. The angle of C2-C4

indicates angle between vector of predicted C2-C4 and vector of annotated C2-C4.

7.3 Results

We demonstrated an automated pipeline to measure the location, length and orientation

of several cervical vertebrae in videofluoroscopic images. First, experienced raters conducted

manual anatomic annotation of frame-by-frame videofluoroscopic data, which was collected

from 265 subjects with suspected dysphagia and 70 healthy participants (Method). Raters

annotated the location of antero-inferior corner of C2, and the anterior-superior and anterior

inferior corners of the C3 and C4 vertebral bodies, as shown in Fig. 23. These measurements

served as the ground truth for determining the length of this vertebral axis. Given an input

image, the first step is to crop the image by removing the patient information and baffle region

(black regions shown in Fig. 23) around the patient’s neck region which was used to reduce

the radiation during examination. Then the cropped region is scaled to a fixed size and fed

into a two-stage network (Fig. 24). The convolutional networks were trained to learn features

and patterns from images and mathematically describe the relationship between human

annotations and the input images. After training the networks, these parameters were frozen

in order to make the prediction on the validation dataset and the test dataset. The first stage

network predicted the coarse location of vertebrae landmark regions and the second network

finely improved the landmark regions. The model performance is evaluated by measuring

mean localization distance, length ratio and angle error. Localization distance measures the

actual distance in pixels between predicted landmark coordinates and the labeled landmark

coordinates. Length ratio measures the ratio between predicted C3/C2-C4 length and the

labeled length while the angle error measures the angles between predicted C3/C2-C4 vector

and manually labeled vector. These two metrics are important parameters in the dysphagia
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Figure 24: The pipeline of the proposed two-stage network architecture for vertebrae
landmark localization First, a new input image is preprocessed to remove the patient information
and dark regions in the videofluoroscopy image. After preprocessing process, the input image is
fed into the first stage of the network to achieve the coarse detection, which allows to crop the
image for finer detection. Then, the cropped image, which covers the vertebrae region, is fed into
the local stage network for a better landmark localization. The output vectors from the network,
which indicates the location of the vertebrae in the cropped image, are projected back to the initial
image. The two-stage network consists of several ResNet blocks in each stage network. The first
stage network follows the idea of ResNet50 while ResNet34 structure is implement in the second
stage network. The ResNet block include several Convolutional layers, followed by normalization
layers and a rectified linear unit(ReLU), then an extra identity map create a shortcut between input
layer and output layer of the block. Different from the traditional ResNet block, we implemented
switchable normalization layers instead of batch normalization layers, which allows to adaptively
switch among various normalization techniques.
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analysis, which are widely used to reduce the bias among population in decision making.

Thus, we mainly focus on the accuracy of length and orientation measurement.

In the experiment, the model was trained using swallows from 265 consenting patient

subjects, and then tested on the second dataset from 70 additional healthy volunteers, which

were treated as unseen samples for the deep learning model to evaluate generalization. No-

tably, our second data was collected three years later and used a different videofluoroscopy

machine, which can present the challenge of the invariant performance of our method on

vertebrae location given different imaging resources.

In this study, the performance of our model referred to how closely the predicted vertebral

locations corresponded to human judgment. An example of a continuous swallowing video

captured at 30 images per second, is shown in Fig. 25(a). At each time point, the two-stage

model localizes the location of C2, C3 and C4 vertebra. The images on the left show the

ground truth and the frame with the largest distance error in vertical direction and the

right images right images are those with largest localization error in horizontal direction.

Overall, the location results from our model for one subject are reliable. Fig. 25(b) presents

several location detection results on the test dataset, with orange for the ground truth,

blue for the first stage results and red for our model’s final results. The model was applied

to the testing set, an independent dataset involving 70 subjects, and mean localization

distance (MLD) achieved 4.20 ± 5.54 pixels. In order to verify the advantages of using two-

stage networks, we compared the results with the model which uses ResNet50 for training.

ResNet50 architecture led to a MLD at 7.44 ± 5.38 pixels. The summaries of localization

distance distribution in testing the dataset compared to the human raters’ annotations is

shown in Fig. 26(b). As there were no established gold standard or previous experiences

that could inform our methods. Regarding the acceptable localization distance tolerance,

we chose 1 % of the whole image size as our criteria (i.e error less than 5 pixels range). The

percentage of acceptable predicted locations via ResNet50 is 49.66% while the two-stage

networks gave 87.36 %. The variability across multiple raters is unavoidable due to the

limited quality of VFSS images, which is why the reliability test is deployed in routinely

in research and routine clinical practice. In this study, the overall kappa ICC between two

human raters and between the rater and the model both achieved over 0.9, showing that our
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Ground Truth ResNet-50 Two-stage model

(a) (b)

Figure 25: Landmark localization results demonstrating the two-level model’s robust-
ness to variations among patients (a) localization results predicted on a continuous swallowing
video. Blue lines indicate the prediction from predictions, which show larger error variance com-
paring to red lines (the two-stage model), demonstrating the benefit of our model. Left images
illustrates the largest error in y direction and the right images corresponds to the x direction. (b)
Examples of the selected videofluoroscopic images with manually annotations, predictions from
ResNet50 (first stage) and final prediction results. Note how the second stage achieved invariance
to the scale and is able to perform localization despite head pose, vertebrae shape and lighting for
different individuals.
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model is comparable to human raters. Fig. 26(a) compared the model’s predictions errors

and one human rater judgment bias on the test data. Ninety percent of the predicted data

shows comparable predictions to the second rater judgment while the model still has about

5% of results which demonstrated larger locations errors than the likely errors produced by

the human rater during the manual annotation process.

Compared to the exact location of vertebrae, estimating the cervical vertebrae length and

orientation is highly desired in the clinical settings as these information are usually served

as patient-specific criterion referenced correction factor. In our study, we measured the

length between C2-C4 and the length of C3 unit. Fig.26 (c) and (d) present the length ratio

distribution and angle error distribution between estimated cervical vector and label vector

respectively. The mean estimated length ratio from ResNet50 is 1.04 ± 0.09 and 45.95% of

them are located in the length ratio range 0.95 to 1.05 while 93.76 % of predictions from

two-stage model are located in the same range with mean estimated length ratio 0.99 ± 0.04.

The mean absolute angle errors from ResNet 50 is 0.06 ± 0.05 rads and 0.03 ± 0.03 rads for

our two-stage model.

To evaluate the performance of the model, we implemented 5-fold cross-validation on

patient data and tested each model on healthy data as well. Table 11 presents the MLD,

angle error and C2-C4 length ratio for each fold. The average of MLD is 4.07 pixels on patient

group and 4.67 pixels on healthy group. The results indicate that the model generalized well

on both data set while they were collected from two different video fluoroscopic machines.

7.4 Discussion

This study is the first step toward a fully automatic diagnostic image analysis system

based upon computational methods, rapidly offering the vertebral scaling information that

facilitates objective and accurate measurement in real time. The finding that our two-stage

model could accurately and autonomously determine the anatomic scalar necessary for ac-

curate measurements kinematic sets the stage for advancing automated analysis methods

from VFSS images. The potential for speeding VFSS interpretations with automated data
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Figure 26: Human judgment and landmark localization results(a) The curve indicates the
accumulative sum of locations distance errors. Yellow line indicates pixel distances between two
human rater judgment and orange line indicates pixel distances between model prediction and one
of human raters. (b) Distribution of localization distance errors between predicted and labeled
annotation from first stage network and second stage network (c) Length ratio between predicted
C2-C4 vector length and the manual annotation (d) Angle errors between predicted vector and
manual annotation

Table 11: Model performance with 5-fold cross validation The performance of the model
was evaluated with 5-fold cross-validation and each trained model was also tested on the healthy
data set.

Patient Data Healthy Data

MLD Angle Error Length Ratio MLD Angle Error Length Ratio

fold1 4.19 ± 4.77 0.04 ± 0.05 1.02 ± 0.04 4.14 ± 5.65 0.03 ± 0.04 1.00 ± 0.05

fold2 4.00 ± 4.26 0.03 ± 0.04 1.01 ± 0.04 4.54 ± 5.66 0.04 ± 0.04 1.00 ± 0.03

fold3 4.13 ± 4.51 0.03 ± 0.05 1.03 ± 0.04 5.37 ± 7.76 0.04 ± 0.04 1.00 ± 0.05

fold4 4.17 ± 6.64 0.02 ± 0.02 0.99 ± 0.03 4.85 ± 5.68 0.05 ± 0.04 0.99 ± 0.05

fold5 3.82 ± 4.90 0.03 ± 0.07 1.00 ± 0.03 4.49 ± 5.44 0.04 ± 0.03 1.01 ± 0.06
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reduction methods while maintaining precise measurement is broad can improve the con-

sistency of interpretations of VFSS images by providing standard measurements of swallow

physiology that lower subjectivity in judgment leading to interventions for dysphagia. In

current clinical setting, the importance of an anatomic scalar in VFSS measurement cannot

be understated. Given the differences in the sizes of different patients and the direct associa-

tion between a person’s height and the dimensions of the upper aerodigestive tract [256], the

ability to equalize measurements for differences in patient size provides the ability to com-

pare results across patients of different dimensions. Moreover, real-time scaling of images

provides immediate raw data for clinical interpretations which accelerates decision-making

and increases efficiency of clinical workflow. In dysphagia diagnosis, the use of the vertebral

scalar serves as the reference scale for linear measurements commonly used to infer about the

nature of a patient’s swallowing disorder (e.g., hyoid bone displacement, upper esophageal

sphincter opening) that are the basis for determining appropriate treatments and judging

the effects of those treatments objectively [185]. In turn, researchers investigating differences

in swallow physiology in different disease states, and generation of population-based against

which to compare patient function in disease states, provides for accurate determination of

the magnitude of various kinematic impairments and a roadmap for determining the success

or failure of treatments that restore that function.

Our two-level framework demonstrates the efficacy of using a large dataset and deep

learning architectures for vertebrae landmark localization in videofluoroscopy images. Unlike

previous semi-automation attempts for dysphagia keypoints [133], we conducted our model

on a relatively large dataset, including over 300 subjects. Compared to other studies, we

included the subjects across the adult age span varying from 19 to 94 years old and included

both people with dysphagia and healthy subjects, showing the robustness of the algorithms.

Additionally, our dataset not only collected single swallows, but also multiple sequential

swallows and swallows in neutral and chin down head positions, all factors that are known

to alter judgment of kinematic events when there is large scale motion of the patient during

testing. Such diverse dataset prompted us to utilize deep learning approaches, avoiding the

attempts of unstable, less powerful traditional image processing methods and classifiers.
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Traditional image processing methods focuses on matching local edge and corner features.

However, specific frames are rendered unmeasurable with these methods due to noisy edge

and corner information in cases of patient motion during the exam, and the effect of the

flowing bolus through the video field, influencing the performance of feature matching. In

addition, these corner and edge features are influenced by image quality and various vertebral

shape across different subjects. To overcome these limits and accurately detect the vertebrae

shape with various location and edge shape, we adopted the two level framework in our study,

which leverages deep learning technology and learns coarse representation from the VFSS

dataset, followed by fine learning from the sub-regions to localize the keypoints on vertebrae.

The coarse detection provides the approximate region of interest which contains C2, C3, C4

vertebrae information, removing the irrelevant information and also reducing the burden of

computation for the second stage network. As shown in Fig. 25(b), the second stage network

well improved the detection performance from the first network, which shows the importance

of the usage of local network structure.

In this study, we have also demonstrated that the current framework can cope with the

vertebral locations from videofluoroscopic images via two different videofluoroscopy systems

and perform better than transfer learning techniques. Our framework was built based on

ResNet-like structures with switchable-normalization, which is beneficial to the model gener-

alization and stability. To compare the performance, we also trained our model using transfer

learning techniques via the pre-trained network on Image-Net, a huge image database which

contains various natural images. Transfer learning is a popular method that allows deep

learning transferred the pre-knowledges to the new dataset, usually lower training burden

and achieve better results. However, our results suggested that the usage of ResNet with

switchable normalization instead of batch normalization and training the network from the

scratch shows better performance to transfer learning techniques. Shown in the supplement

figure, switchable normalization trained from scratch converged better than transfer learning

with batch normalization . Furthermore, deeper ResNet structure proved a better accuracy.

Our study has some limitations, notably for the size of individual subjects and imaging

resources. While our dataset is relatively large in the dysphagia community, it is still small

compared to the popular medical imaging research on organs such as brain and lungs. The
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Figure 27: Failure cases on testing dataset Blue dots: predictions from one stage network.
Green dots: C3 prediction from two stage networks. Red dots: C2, C4 tail edge detection from two
statge networks. While two stage networks shows better results in numerical errors, we still can
find that the landmark predictions are shifted when subjects are in a extreme posture or with an
abnormal vertebra shape.

sample in this study may not be inclusive of the entire range of variety of anatomic informa-

tion, which resulted in mis-localization in several cases. As shown in the figure 27, blue dots

are the predictions from first stage network, and red/green dots are from second stage net-

work. While second network improved the predictions from first network, its prediction were

shifted in both case (a) and (b). In case (a), the C2 and C3 vertebrae contacted in the image

due patient’s head direction. The model correctly predicted the C2 tail but not other points.

In case (b), the model failed to predict C4 tail due to abnormal C4 and C5 structure. The

deep networks not only learned the features from the input image itself and the connection

between input and output, they are able to learn the potential relationship between outputs,

which might be the reason for this shifted wrong predictions. These abnormal cases such as

abnormal bone shape (e.g., cervical osteophytes), postoperative anatomic disruption (e.g.,

anterior cervical fusion with graft or hardware), altered spinal configuration (e.g., kyphosis,

excessive lordosis), or presence of feeding tubes or tracheostomies, provide direction for fu-

ture research in model training that leads to better generalization of our model across more

patient populations. We expect that the model performance will increase as more subjects
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are included and images are collected from multiple videofluoroscopic machines. On the other

hand, other techniques such as multi-stage networks and cascade network have been pro-

posed in facial detection and pose estimation [145, 73]. These methods are not constrained

by the global and local networks and use several networks to improve landmark locations

step by step and may provide advantages that improve detection. However, whether these

architectures can improve the performance for the VFSS detection with a larger dataset can

improve the performance for the VFSS detection remains an opening question.

In the future, we would ideally extend the localization to other landmarks commonly con-

sidered in dysphagia studies (e.g., hyoid bone, arytenoid cartilages, valleculae, and epiglottis)

as well as other parameters for swallow measurements. By extending our framework to study

a wider range of features and providing a quantitative assessment in swallow videos, we hope

that this deep learning approach is able to aid language pathologists’ routine evaluation by

automating some aspects of daily data analysis. This will enable clinicians to allocate their

limited clinical resources on higher-level interpretations of the measurements to provide

top-of-license services rather than spending valuable time performing the rote measurement

necessary for these interpretations. We also hope that our framework could play an impor-

tant role in research in order to develop more precise benchmarks for separating disordered

from typical function that aids clinical interpretations, and in characterizing the properties

of dysphagia in various disease states.

7.5 Conclusion

In this research, we introduced a deep learning neural network-based method for anatomic

landmarks localization in videofluoroscopic images. We showed that our two-stage framework

are are able to accurately estimate the length and angle of cervical vertebrae. We believe

that deep learning approach will lead to automation of kinematic analysis that could speed

up time to diagnosis and treatment.
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8.0 Deep Learning-based Auto-Segmentation and Evaluation of Vallecular

Residue in Videofluoroscopy

8.1 Motivation

Pharyngeal residue is widely considered as an indicator of swallow impairment in videoflu-

oroscopic studies. The volume of residue indicates potential risk for penetration-aspiration

on subsequent swallows while the accuracy and measurement guidelines of residue volume

estimation varies significantly among human judges and facilities. Here, we present a ma-

chine learning algorithm that can efficiently identify the residue area remaining in vallecula

and provide a normalized residue score to support clinical decision making. Here, we demon-

strate how machine learning techniques can contribute to OPD assessment methods by using

the strategies based on deep convolutional neural networks that achieves promising accuracy

on vallecular residue measurement. These measurements are intended for use by speech-

language pathologists (SLP) to help quantify certain aspects of VFSS interpretation. Most

importantly, our models maintain the good performance when validated on a test dataset

which is comparable to the manual labeling from experienced SLPs.

8.2 Methods

8.2.1 Videofluoroscopic Dataset Collection

Our dataset was collected from patients with swallowing difficulty who underwent vide-

ofluoroscopic examination at the Presbyterian University Hospital of the University of Pitts-

burgh Medical Center (Pittsburgh, Pennsylvania, USA). The Institutional Review Board at

the University of Pittsburgh approved the protocol of this study and all participants were in-

formed and signed the consent. The data collection in this experiments as performance under

the relevant guidelines and regulations. The subjects are required to swallow barium liquid
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during VFSS examination. These liquid contains various consistencies and volumes which

was decided based on clinical hypotheses and patient’s clinical presentation and symptoms of

dysphagia. Subjects swallowed 3-5ml liquid bolus from a spoon, or self-selected comfortable

volumes for one swallow from a cup containing 10-20 ml liquid. The following consistencies

were used in our VFSS studies: E-Z-EM Canada, Inc. Varibar thin (Bracco Diagnostics, Inc.)

(<5cPs viscosity), Varibar nectar (300 cPs viscosity), Varibar pudding (5000 cPs viscosity),

and Keebler Sandies Mini Simply Shortbread Cookies (Kellogg Sales Company).

In this study, a LabVIEW program recorded data acquired by a video card (AccuStream

Express HD, Foresight Imaging, Chelmsford, MA) from X-ray machine (Ultimax system,

Toshiba, Tustin, CA). VFSS was collected at 30 pulses per second and video clips were

recorded at 60 frames per second. The VFSS videos were recorded with 720 x 1080 resolution

in real time. Human experts were trained to determine the exact frame that contains the

post-swallow vallecular residue and annotated the residue area remained in vallecular using

segmentation tool in MATLAB (The MathWorks, Inc., Natick, MA, USA). The segmentation

of vallecular residue follows the guideline described in [200]. The final annotations include

185 post-swallow cases. 10% of images were randomly selected for inter/intra-rater reliability

test with intraclass correlation coefficient to avoid judgment drift.

8.2.2 %(C2− 4)2 Measure Scale for Valleculae Residue

The presence of valleculae residue is an important indicators to understand the associated

risk of penetration and aspiration in the subsequent swallows. Steele et al. proposed and

recommended a pixel-based quantitative measurement called %(C2−C4)2 for valid, reliable

and precise pharyngeal residue measurement [254] to estimate the residue severity. Their

results showed that the risk of penetration and aspiration is extremely higher when %(C2−

C4)2 > 3%. In this study, we follow the findings from Steele’s group, using 3% as cut-points

of %(C2− 4) measurement scales to evaluate our model performance. This scalar calculated

the residue in C2-C4 units. An example of evaluation of vallecular residue and its %(c2− 4)

measurements is shown in Fig 31.
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8.2.3 Annotation Principles and Quality Control

Human experts trained in swallow kinematic analysis were split into three groups for

our data annotations. In each swallow video, one single frame was picked up based on the

following rules: 1) post-swallow valleculae residue exists after the swallow. 2) frame was

picked up when the hyoid bone returned to its rest position and valleculae is open to the

largest space. The reliability test was perform among three experts with maximum of three

frames differences in the video between two selected frames. The 2nd and 4nd vertebrae

was manually marked by another three well-trained annotators with interclass correlation

coefficient greater than 0.9. Residue area were labeled by two SLPs. In this study, we

randomly selected 10 % of the frames and conducted both inter and intra reliability test for

three types of annotations to ensure the robustness and high accuracy of manual labeling.

8.2.4 Dataset Augmentation Principles

In this investigation, the residue frame was selected from the swallow videos by experts.

The total number of frames extracted from our swallow video dataset with residue annota-

tions is 172 images. Due to the limitation of dataset size, the trained model may suffer a

lot from overfitting and poorly generalization on a test dataset. Thus, data augmentation,

a well accepted practice, was implemented to augment the variety of training image data to

reduce the overfitting. We preprocessed the selected frames as follows: random flipping half

of frames horizontally, randomly cropping the images containing the residue area, rotating

the images from 45 degree to 45 degree, and changing the image brightness by multiplying

0.8 to 1.2. To reduce computational burdens, we resized our residue images into 224 x 224

in model training and deployment.
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Figure 28: Flowchart of data collection, selection and annotation (a) Flowchart demon-
strates data collection and selection. VFSS were conducted on 265 subjects suspected of dysphagia.
Each subject followed instructions to swallow various consistencies and volumes of liquids within
the context of routine clinical care. Video recordings that were included in analysis included clear
imaging of an entire, single swallow, as defined as the bolus crossing the ramus of the mandible
until the hyoid bone returned to rest. Frames were selected by ensuring that the second and fourth
vertebrae were visible and the primary bolus was no longer present in the video. 172 swallow cases
met the inclusion criteria for this study. (b) This flowchart presents the annotation procedures and
a priori reliability testing before the model training. The residue frame was picked from the videos
when vallecula was open to its largest space. These frames were selected by a trained expert in
these methods, with a second rater completing reliability of these selections for 10% of the sample.
Another set of experts marked vertebral locations, using the same reliability procedures. In this
study, 10% of the videos and images are randomly selected for inter and intra reliability tests for
all three annotation procedures to ensure the robustness and credence for those assessments.
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8.3 Overview of Deep Convolutional Network

8.3.1 Motivation for Transfer learning

As the scale of radiology examinations and studies continue to grow, more and more data

are being generated. Transfer learning has become an important step in radiology imaging

applications. The basic concept behind transfer learning in deep learning techniques is taking

the knowledge acquired from one particular domain and applying them to another specific

task. Studies shows that small data regime benefits from the transfer learning techniques

largely on deep architecture sizes [209]. A popular method of transfer learning is to take

an existing architecture with pretrained weights on a well-known large dataset and then

fine-tuning the model on the new medical imaging data. Prominent investigations have used

this methodology by training architectures like ResNet, DenseNet, VGGNet on X-rays [86],

mammography [173], and MRI studies [3]. In this investigation, the total amount of our

dataset is far smaller than the large dataset such as COCO, and ImageNet. Considering the

nature of our images: videofluoroscopic images are radiological images, which may not hold

similar features as natural images from ImageNet, we chose radiological data stored on The

Cancer Imaging Archive (TCIA) [23] instead to pretrain our models.

8.3.2 Segmentation Networks

Several convolutional network architectures were trained (UNet, ATT UNet, SQNet, and

SegNet). Beyond these, we also implement the ensemble strategies with the idea of super-

pixel on trained networks. Principles of trained networks are outlined in appendix 2. The

transfer learning strategy with the initial trained weights on TCIA dataset was used for

four model architectures. All the weights were further fine-tuned completely on our residue

image dataset. The purpose of these models training is to segment the residue area in the

videofluoroscopic frame and return the shape and pixel-based area surface to the clinicians.

Four models were fine-tuned separately on the binary pixel-level classification task with two

classes: residue area or not. We have selected the frame that contained the after-swallow

residue and the clean swallow frames without remained residue were not selected as it’s
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Data

Total 172

Train 103(60%)

Test1 34(20%)

Test2 35(20%)

Demographics

Age in years 68.00±14.16

Sex (male) 125(72.6%)

%(c2-c4) scale (>0.03%) 84 (48.8%)

Experiment settings

Utensil (spoon) 103  (59.8%)

Viscosity

thin 59 (34.3%)

nectar 68(39.5%)

pudding, cookie 34(25.8%)

0 20 40 60

>3% <=3%Test2

Test1
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(a) (b)

(c)

(d)

(e)

Figure 29: Composition of dataset (a) Total dataset consists of 172 swallow cases that were
deeply annotated with regard to the residue area and vertebrae locations. We split the data into
train (103), test 1 (34) in training and test 2 (33) for independent testing (b) Composition of
data cohorts to which %(C2 − C4) measure scale are available. (c) Histogram of age associated
to 172 selected swallows. (d) Examples of frame with the post-swallow residue, green indicates
%(C2− C4) measure scale less than 0.03% and red indicates the scale greater than 0.03% (higher
risk of post-swallow penetration and aspiration). (e) Image crops containing the residue area and
the manual annotation of region of interest.
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obvious for clinicians to conclude during the swallow examination and it also facilitates

the training process. As mentioned in previous sections, data augmentation techniques

were implemented in our four model training stage, which achieved slightly better accuracy

empirically. Then the ensemble strategy was applied on output from four models. We

segmented the image into super-pixels using simple linear iterative clustering method, then

implemented the majority voting strategy on outputs of four models and superpixel methods

for the final segmentation. We trained our models using combination of dice loss and focal

loss function. The model weights were optimized by gradient descent with momentum.

After training, the performance was evaluated and reported using validation dataset

(test1) and an extra test dataset (test2). No modifications were made to our models when

evaluating on our test dataset. We derived receiver operator and recall curve at several

threshold of probability prediction. We also derived dice coefficient and segment accuracy

at 0.5 as probability cut-off of each model. Dice coefficient is defined as 2 x overlap area

divided by the total number of pixel area in both segmentation. Segment accuracy is defined

as the true positive percentage of the residue segmentation.

8.3.3 Development of Residue Grading Algorithm

Our goal is to provide residue details to clinicians in an efficient way. %(C2 − C4)

measurement scale is considers as an important scale in residue estimation. The residue

pixel area and the length of vertebrae are required to compute the score of this scale. In

our previous study, we developed two-stage network to localize the key points of vertebrae,

then estimate the length between C2 and C4 as reference. %(C2−C4) measurement scale is

calculated by the outcome of our segment networks and the vertebrae localization networks.

We selected 0.03 % as our cut-off to distinguish safe swallows and swallows having higher

risk of residue penetration/aspiration. We computed the receiver operator and recall curve

at several threshold for segmentation network. The sensitivity and specificity is also derived

by using manual labeled C2-C4 vertebrae length and predicted vertebrae length.
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P1 P2

P1 0.79 ± 0.20

P2 0.76 ± 0.10 0.76 ± 0.10

Test1 Test2

Dice Segment Accuracy Dice Segment Accuracy

UNet 0.62 ± 0.24 0.63 ± 0.29 0.65 ± 0.21 0.63 ± 0.24

SegNet 0.66 ± 0.20 0.67 ± 0.24 0.67 ± 0.19 0.65 ± 0.22

SQNet 0.66 ± 0.20 0.67 ± 0.24 0.68 ± 0.14 0.71 ± 0.17

ATT_UNet 0.68 ± 0.20 0.67 ± 0.23 0.63 ± 0.23

Ensemble 0.68 ± 0.20 0.68 ± 0.24 0.72 ± 0.17 0.70 ± 0.19

UNet SQNet SegNet
ATT 

UNet

Output Output Output Output

Superpixel & 
Ensemble

Input: 
224 x 224

(a) (d)

(e)
(b)
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Figure 30: Flowchart of segmentation networks and their performance (a) Computational
pipeline of segmentation networks. A given whole image is preprocessed and resized to fix sizes.
Four CNNs based architectures predict the probability of residue area for each image. The final
predictions are aggregated into a single prediction at each pixel by taking majority regions from
super-pixel output. (b) The dice coefficient test on residue segmentation between two human expert
raters (inter and intra test). (c) Table of segmentation performance from our architectures. (d)
ROC curves of our models on test 1 data and test 2 data.
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8.3.4 Environment

All the deep learning models were written, trained and deployed using Pytorch libraries

in Python 3.6 environment. Our trainings and testings were implemented on a single work-

station with Nvidia M60 card (24Gb).

8.3.5 Patient Characteristics

Fig 30(a) summarizes the clinical characteristics of each cohort. There are 172 swallows

frames in total which qualified for our post-swallow residue selection rules. This study

included subjects from 19 to 94 with mean age 68 ± 14.16. The age distribution of subjects is

illustrated in Fig. 29(b). Subjects were instructed to swallow barium of various consistencies

during the examination. The majority of swallows were administered with a spoon (5ml)

and the others were taken by cup (20ml). The viscosities included thin liquid (59), nectar-

thickened liquid (68), pudding and cookie (34). Among all swallows, 84 cases showed higher

%(C2 − C4)2 residue measurement scale (> 0.03%). To optimize the clinical utility of our

algorithms, we included all swallow cases in our swallow studies, including various surgical

procedures and clinical diagnoses (e.g., stroke, brain injury, neurodegenerative diseases).

8.3.6 Overview of Data

The flowchart of data selection is described in Fig. 28(a). Our full dataset of VFSS

recordings were collected from 265 suspected dysphagia subjects from 2012 to 2018, which

contains 3142 clear swallow recordings. The calculation of %(C2−C4) residue measurement

scale requires clear annotation of vertebrae and residue area; therefore, only frames with

clear C2 to C4 vertebrae edges without obstacles were selected. As previously described, a

group of experts determined frame with post-swallow residue in vallecular area. This process

resulted in 172 cases with clear C2 to C4 vertebrae and measurable residue. To ensure the

reliability of the frame selection and data annotations, several reliability testing measures

were completed during the annotation process, as shown in Fig. 28(b). More details of

reliability process and their corresponding scores are listed in the Methods section. Fig
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UNet ATT_Unet SegNet SQNet Ensemble

Sensitivity 
(labeled vetebrae) 0.79 0.87 0.91 0.87 0.92

Specificity
(labeled vetebrae) 0.72 0.81 0.82 0.45 0.72

Sensitivity 
(predicted vetebrae) 0.79 0.87 0.91 0.87 0.92

Specificity
(predicted vetebrae) 0.72 0.81 0.82 0.45 0.72

C2

C4

Input: 
224 x 224

Input: 
224 x 224

TCGA-LGG Dataset

Residue Dataset

Pre-train Model

Transfer Learning

Segmentation Network

Landmark Network

Scale Calculation 
and 
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(b)

(a) (c)
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Figure 31: Flowchart of %(C2− C4) measure scale prediction algorithms and their per-
formance (a) Flowchart of over all system, the residue frame was passed into segmentation network
for residue part segmentation and landmark network for vertebrae localization, then the outputs
were calculated for %(C2 − C4) measure scale. (b) An example image showing present vallecular
residue after a complete swallow. [left] Residue area and tail edges of 2nd and 4th cervical spine
was rated by experts. [right] The length of the 2nd to 4th cervical spine (C2-C4) was measured
in pixels. Then, the vallecular residue area was calculated as a percentage of the squared C2-C4
reference scalar. (c) Performance of models on %(C2−C4) measure scale (d)(e) Comparison table
of models between manually labeled vertebrae locations and predicted ones.
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29(d) presented several example frames with two different scales, which is challenging for

clinicians to reliably judge the amount of retained residue visually. We then split the data

into train, test1 and test2 cohorts. Fig. 29(b) shows the distribution of residue scale in each

cohort.

8.3.7 Segmentation Performance using Various Networks

We first trained each segmentation network via transfer learning on training and vali-

dation (test 1) dataset, then tested their performance on test 2 dataset. We computed the

dice coefficient and segment accuracy for the models and compared to the expert raters as

reference standards. First, we examined the bias between human raters in this segmentation

tasks before the model implementation. Fig. 30(b) summarized the bias between two human

raters to demonstrate the accuracy of segmentation networks. The dice coefficient metric

was conducted between two raters (inter) and raters themselves (intra) on randomly selected

20 residue frames. The inter-rater dice score within raters was 0.76 ± 0.10 and intra-rater

reliability score was 0.79 ± 0.2 and 0.76 ± 0.10. Of note, the inter score was calculated

based on the first initial segmentation results from two raters, and two raters segmented the

same frames 2 weeks later for the intra score test.

Fig. 30 demonstrated that our ensemble methods achieved highly accurate residue seg-

mentation results compared to expert clinicians. Fig. 30(d) shows the ROC curves for each

segmentation networks against reference standard. Fig. 30(c) summarized dice coefficient

and segment accuracy for each network on test 1 and test 2 dataset. Although ATT UNet

outperformed the other networks on test 1 dataset, but we observed that four networks

have a wide variability in performance on test 2 dataset, reflecting a poor generalizability.

Compared to using independent architecture, the ensemble strategy show a more stable gen-

eralization, which used the four deep networks and superpixel segmentation to create an

ensemble model based on the vote count and average of probability outcomes.
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8.3.8 Residue Scale Classification

To explore the performance of our model in residue estimation, we calculated %(C2−C4)2

residue measurement with vertebral length and segmented vallecular residue area. As demon-

strated in Fig. 31(b), the residue scale is estimated by the area of residue and square of C2-C4

vertebrae length. Fig. 31(a) presented a full flow-chart that how we arrived %(C2 − C4)

residue measurement scale. The residue area was predicted by the segmentation networks

we mentioned in previous section, and we predicted the vertebrae edge point location in

the frame using a localization network from our previous study. Fig. 31(c) shows the ROC

curves for residue scale classification with each segmentation network. We chose 0.03% as

cut-off value for residue scale , Fig. 31(d) presented the sensitivity and specificity for this

classification. To show the performance of localization network, we present both results with

vertebrae length from manual annotation and network predictions.

8.4 Discussion

This investigation provides a novel input to the application of machine learning algo-

rithms for OPD assessment, in particular, for highly reliable segmentation of vallecular

residue area and grading of %(C2 − C4) residue measurement scale. Our findings show

that our complex deep learning models achieved promising results on a small residue dataset

by introducing the transfer learning techniques. On the independent dataset, our final deep

learning ensemble classifier achieved 94 % of accuracy compared to human raters on residue

area segmentation (0.72 vs 0.76 in dice coefficient performance). Moreover, it achieved a

high sensitivity in residue scale estimation while maintaining high specificity.

Furthermore, this study demonstrated clinically meaningful results in measuring the

area of the vallecula. Steele et al. firstly introduced %(c2 − c4) vallecular residue scale

measurement and compared the measurement accuracy against Normalized Residue Ratio

Scale for vallecular residue estimation and demonstrated higher accuracy for vallecula residue

ratings [258]. Intraclass coefficient reliability is widely accepted in swallowing research, as
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Original ATT_UNet SegNet SQNet UNetGround Truth Ensemble

Figure 32: An example of segmentation outputs from our tested models From left to right:
original image, human annotation, ATT Unet, SegNet, SQNet, UNet, and ensemble method.
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demonstrated by its inclusion in similar measurements such as the Modified Barium Swallow

Impairment Profile, hyoid bone point tracking, residue scale ratings, and upper esophageal

sphincter diameter. Similar in Steele’s study, they conducted intraclass correlation for relia-

bility on pixel-based residue scale measurement. For other methods of measurement, such as

manual segmentation in biomedical imaging, indicated dice coefficient or segment accuracy

score is the preferred modality. Here, we provided an insight to the dice coefficient results

when human raters were trained and confirmed with high intraclass correlation score. In

this study, our experts were trained with high intraclass correlation score (≥0.9) while the

overlap in pixel-level didn’t reach the same level of reliability score. We suggest more discus-

sions on this finding, a high score criteria may not correspond to another evaluation criteria,

should we introduce other evaluation criteria from a new field to ensure a better reliability.

The evaluation of post-swallow residue in OPD assessment is currently constrained by

interpretation turnaround time. In addition, the related training is challenging to imple-

ment with respect tot reliability and agreement, and variants between institutions. Steele et

al. claimed that one of five measurements of vallecular residue suffered from overestimate

and underestimate. In contrast, the method we proposed here is only limited by compu-

tational resources and related cost considerations. Although the exact cut-off of residue

measurement has not been fully established in clinical practice, our technique demonstrated

good performance on both segmentation areas and one of most widely accepted thresholds

of residue scale, showing robustness of our models to different practical choice. A strength

of our methods is the implementation of several different strategies for the improvement

of residue area segmentation. Although this strategy necessitates additional computational

power increments for the hardware, they provided a valuable output to the segmentation

accuracy. As shown in the Methods and Results sections, four networks were trained in the

same parameter settings. However their performance was not robust on two datasets. As

shown in figure 32, although the residue is very small area, and the models show different

output specifically in edge and tiny connection points. Our ensemble method combines the

four networks and super-pixels, an unsupervised segmentation method, and decreases the

variance among outputs, which shows a better generalization compared to single network.

We compared both manually-labeled and model-predicted C2-C4 length in the %(c2− c4)2
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residue scale. These showed that our landmark network in a previous study had perfectly

commensurate performance also compared to the human raters. The ensemble method that

showed best overall performance also showed the highest sensitivity rate compared to other

methods, while its specificity was lower than other networks. It remains unclear whether

sensitivity or specificity plays a more clinically significant role in residue scale diagnosis.

Additional clinical application is needed to strengthen and refine these methods.

Despite supportive results, our study had some limitations. First, the number of patients

and the residue cases was limited. A large swallowing dataset was collected with 3142 swal-

lows; however, only 172 swallows met the inclusion criteria for measurable vallecular residue.

Furthermore, patients with OPD of heterogeneous etiology may have confounding contribu-

tors to post-swallow residue. While the usage of transfer learning techniques contributes to

the high performance of the model, a larger dataset is highly expected to enrich the image

features and facilitate improved generalization of the models. Another limitation in these

early stages is that the residue frames were determined by human experts first then the

model was used on those frames. In addition, the images used to train the CNN are selected

with known post-swallow residue areas, which is not always the case in a clinical scenario.

Supplementary technique for residue frames selection is a part of necessary future directions

where the ultimate goal is a fully automated assessment system. Finally, the focus of this ap-

proach was comparing the performance of our classifiers against experienced clinicians in our

group. It is unknown whether our model is affected by the aforementioned judgment bias.

More training and testing are required including annotations from experts with different

background to reduce bias, improve the model performance, and promote generalization.

8.5 Conclusion

In this study, we developed precise deep learning based models for the analysis of VFSS

images in patients with suspected OPD, which has the potential to reach commensurate

accuracy to expert human judges. Our approach provides clinically-relevant information

regarding vallecular residue, which enables SLPs making appropriate recommendations based
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on quantifiable data that may be compared and analyzed systematically. Further data

collection and validation in real-world clinical diagnostic work flow is anticipated as a future

direction.
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9.0 Conclusion and Future Directions

9.1 Conclusion

Oropharyngeal dysphagia poses serious health risks to people who suffer from stroke,

head and neck cancer, older adults with multiple medical conditions, prematurely born in-

fants and children with neurological, airway and developmental disorders. Despite current

VFSS providing real-time visualization of swallowing during consumption of various con-

sistencies, the kinematic analysis such as hyoid bone movement and penetration-aspiration

are still under investigated. In addition, attempts to quantify and measure these kinematic

parameters and events of swallowing using an computer-assisted system have been limited.

As a result, developing an automatic segmentation and annotation system with high accu-

racy, but also can be deployed easily in the clinical practice has the potential to further

research studies and daily diagnosis. The research described in this manuscript attempted

to advance the use of machine learning and deep learning techniques in kinematic analysis

and automated assessment. While some contributions have been made on this topic, pass

research mainly included semi-automatic methods, which requires the human intervention or

verification. The in-depth investigation and increasing usage of machine learning and deep

learning techniques leads to the automation of image-based processing including segmen-

tation, annotation and classification. In this manuscript, we attempted to use generalized

equation to investigate kinematic features such hyoid bone movement features as input and

penetration-aspiration scale as output, that revealed the significant association between max-

imum hyoid bone displacement and penetration/aspiration. Besides the statistical analyze,

we also sought to provide methods to detect, segment and classify the kinematic parameters

from VFSS images using state of art network architectures.

Ultimately, we achieved our stated goals successfully. We were able to track the hyoid

bone in VFSS with high accuracy using object detection networks. We were also able to

localize the vertebrae edge points (C2, C3, C4) with missing annotations in training data.

Both of methods shows high reliability compared to human raters. Furthermore, we seg-
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mented the vallecular residue and estimated the %(C2 − C4) measurement scale with high

sensitivities and specificity. Specially, the %(C2−C4) measurement scale consists of residue

area and vertebrae edge points detection, which utilized the previous vertebrae networks,

proving the robustness of models in kinematic analysis. All of these research justify out

key points: that the deep learning techniques can play an important role in automation of

dysphagia assessment like other computer-assisted medical imaging applications.

9.2 Future Directions

There are several directions that would be meaningful to investigate in future studies.

First, one of the most challenging and important topics in swallowing study is the time-sink

in determining kinematic biomarkers and when four swallow phases start and end. Similar

to our previous work such as vertebrae detection and hyoid bone tracking, experts tend to

go through each frame from the video clips to determine each swallow phase which needs the

tracking of the movement of bolus and several kinematic biomarkers. For example, the onset

movement of hyoid bone leads to the start of pharyngeal phase and the closing of upper

esophageal sphincter indicates the end of pharyngeal phase and start of esophageal phase.

It may bee worth investigating various algorithms and their understandings on these events

such as swallowing phase detection, opening/closing of UES. In this work, the relationship

between hyoid bone movement and penetration/aspiration has been investigated and an

algorithm was presented for hyoid bone tracking in video clips. It is worth investigating

using different kinds of deep learning algorithms to automatically classify the severity of PA

scales in swallowing video clips.

Second, it would also be useful to refine the methods in this work in future studies. The

algorithms presented in this work have shown prominent performance and demonstrated the

potential validity. However, there is still gap between what has been achieved here and a clin-

ical assessment and environment. The model requires more evaluation and validation across

various facilities and clinical settings. Besides the validation purpose, it’s also interesting to

investigating the model robustness when the training data are noisy/incorrect labels due to
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different level of expertise from various annotators. Furthermore, the data and labels may

be highly imbalanced. For example, in our dataset, only 1 % of swallow videos are diagnosed

with aspiration (PA scale > 6). How to deal with imbalanced data and insufficient data is

an important direction for further model validation.

Finally, our ultimate goal is to develop an fully automatic assessment system. The

results presented in this work are only a small portion of this system. It’s critical to consider

the computational limitations and robustness of the whole system when these methods are

merged together. Several models with different architectures were investigated in this work,

being able to build one or reduced model that can achieve all these tasks would provide great

benefits to the study of swallowing assessment.
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