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Abstract: The most common feedback displays in the fMRI environment are visual, e.g., in which
participants try to increase or decrease the level of a thermometer. However, haptic feedback
is increasingly valued in computer interaction tasks, particularly for real-time fMRI feedback.
fMRI-neurofeedback is a clinical intervention that has not yet taken advantage of this trend. Here we
describe a low-cost, user-friendly, MR-compatible system that can provide graded haptic vibrotactile
stimulation in an initial application to fMRI neurofeedback. We also present a feasibility demonstration
showing that we could successfully set up the system and obtain data in the context of a neurofeedback
paradigm. We conclude that vibrotactile stimulation using this low-cost system is a viable method of
feedback presentation, and encourage neurofeedback researchers to incorporate this type of feedback
into their studies.
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1. Introduction

Haptic, or tactile, feedback is an increasingly common modality for interacting with computer
systems given its potential to increase learning [1,2], particularly in virtual reality clinical contexts [3],
to provide analogs of real-world experiences [4], and to provide physiologically reactive stimulation [5].
For all of these reasons, haptic feedback systems have been implemented for mechanistic studies
using neuroimaging [6-9], particularly including devices that include vibrotactile stimulation [9-13].
Neurofeedback, in which individuals learn to manipulate brain function, has specifically been shown
to benefit from such vibrotactile haptic feedback [14-17]; biofeedback studies more generally have
also shown the benefits of this vibratory modality [18]. There are many neuroimaging methods for
which haptic feedback could be applicable [19]; here we focus on fMRI, in which, despite a number of
proofs-of-concept, vibrotactile stimulation during fMRI is not yet common [20]. Here, we consider
the application of vibrotactile stimulation specifically for fMRI neurofeedback as an example domain
in which to overcome the commonly perceived obstacles to its implementation.

Real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) is becoming
a commonly used tool to manipulate hemodynamic activity, with the goals of both better understanding
brain-behavior/cognition relationships as well as creating new interventions for clinical illnesses [20-22].
In a typical neurofeedback setup, participants are instructed to increase or decrease a feedback signal
presented to them. This signal is generated by extracting images from the MR scanner, analyzing
activity or connectivity in specific brain regions online, and quantifying this activity to a simple
feedback signal (most commonly a single value). The most commonly used feedback modality is
a visual display [22]. While a large variety of displays have been used (including computer games,
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brain activation maps and social reinforcement; see [22]), the most commonly used visual display is
a thermometer.

We have conducted several studies with the goal of training participants to increase
hemodynamic activity in their amygdala while recalling positive autobiographical memories [23-25].
These studies have demonstrated that both healthy and depressed participants can increase their
amygdala hemodynamic response during positive memory recall, and this has large effects on
depressive symptoms and processing biases [25,26]. While participants are generally successful in
the neurofeedback task, many comment that they wished they could have closed their eyes during
the feedback so as to more fully immerse themselves in the memories. Haptic feedback would solve
this issue, and indeed would be especially useful for paradigms that involve savoring or rumination.
Haptic feedback also offers a method for probing touch senses, such as c-afferent fibers (rather than
just visual), and offers an alternative for those who are visually-impaired.

Haptic feedback may remain rare in fMRI studies, particularly fMRI neurofeedback, because
fMRI-compatible haptic systems are often high-cost or are perceived to be too niche or complicated for
easy implementation by non-engineers. For example, many of the primary publications cited above
use custom systems and are published in engineering journals. The publicly available systems tend
to be much more complex and sensitive than what is needed for a simple vibrotactile stimulation
or neurofeedback, wherein the primary requirement is to be able to sense different amplitudes or
frequencies of stimulation. Here, our goals are to describe how a non-engineer can build a simple
fMRI-compatible haptic feedback system for under USD 150 in approximately 2 h, and to show
the feasibility of using this system in the context of a real-time fMRI neurofeedback protocol in a case
series with N = 3. Our specific questions included (1) whether, in a small sample, neurofeedback
effects could be detected with haptic as well as visual stimulation (i.e., non-inferiority), (2) whether
the effect of the haptic stimulation, in the absence of neurofeedback, would likely occlude other signals
in areas of interest (here, the amygdala and intraparietal sulcus (IPS)), and (3) whether the effect of
haptic stimulation would be detectable in regions associated with responses to somatic stimuli (insula
and somatosensory cortex) to validate the interpretation of question 2. These questions are important
to answer given the wealth of data suggesting that haptic neurofeedback could offer advantages that
visual feedback cannot, e.g., allowing participants to close their eyes in the scanner and having inherent
primary hedonic features.

2. Materials and Methods

2.1. Haptic Setup for MRI

The goal for the MRI haptic setup is to stay within the budget and capabilities of
a technically-interested undergraduate who has no special electrical skills. Typical MRI software
geared to either provoke different levels of reactivity or for neurofeedback provides a numeric output,
based on some neural activity, that is commonly used to create visual feedback. This value can also be
scaled to operate haptic feedback representing the strength of desired haptic stimulation (e.g., higher
when activity is higher). Specifically, that number can be translated into vibration. In addition, metals
cannot safely exist in the scanner environment. To address this constraint, this vibration is generated
outside the scanner, and a rigid form transmits the vibration into the scanner bore. The system thus has
three parts: a controller (Arduino microcontroller), a vibrating element (vibrating motor), and a way to
get the vibration from outside the scanner to inside the scanner (PVC tubing). Each of these elements
is described below. Supplementary Materials Figure S1 contains our full parts list with information
about at least one source from which each piece can be ordered.

Controller (USD 50)—Arduino Uno (~USD 25; Arduino LLC, Boston, MA, USA) and an Adafruitmotor
shield (~USD 20; Arduino LLC, Boston, MA, USA) (Figure 1, which shows our vibration-controller
setup as we assembled it). We have used both the original Arduino Motor Shield (which one can buy
pre-assembled) and the Adafruit Motor Shield v2. The Adafruit may be supported for longer, but requires
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some soldering for connections to be robust. In addition, wires will need to be screwed into the Arduino,
which could go right to what you use to generate the vibration signal. Alternatively, and easier to take
apart, the wires from the Adafruit can be converted to end with a Radio Corporation of American (RCA)
jack that is commonly included in consumer audio equipment. Such pre-assembled RCA to screw terminal
adapters are inexpensive (~USD 7) and require no soldering (Figure 2a). The motor shield also requires
a power source. We use an external 5 volt 2 Amp direct current power supply (~USD 8). These standard
plugs can be purchased, then the ends cut off, wires stripped, and wires run into the motor shield’s power
input receptacles (Figure 2b). To preserve robustness in the scanning environment, we hot glued over all
of the screw terminals once the relevant wires were connected.

Figure 1. Equipment to produce vibrational stimuli—as assembled. Computer is connected, via USB, to
an Arduino Uno with an Adafruit Motor shield (bottom). The motor outputs are connected to an RCA
jack for ease of disassembly (center), which is connected, via another RCA jack (center), to a motor,
which is inserted and glued into a PVC tube (top left) in the control room. This setup is sufficient to
produce vibrations through the length of the PVC tube when they are triggered by the computer.

b)

c)

Figure 2. Equipment to produce vibrational stimuli—in parts. (a) Computer is connected, via USB, to
an Arduino Uno with an Adafruit Motor shield. (b) The motor shield is powered externally by a 6V
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1A AC to DC power source. We added RCA jacks to the power source and Arduino (in A) for easy
assembly/disassembly. (c) The motor outputs of the Arduino are connected, via RCA jacks, to a 3V
motor, which is inserted and glued into a PVC tube (Side and top views shown).

Software—The Arduino is a microcontroller, which must be loaded with a program that allows it
to be controlled by a computer. Software that uploads firmware from any computer to the Arduino
is freely available (Arduino 1.8.13, Arduino, Boston, MA, USA). Examples of motor control programs
to upload are numerous and freely available. We have provided Matlab software (Matlab R2018b,
Mathworks, Natick, MA, USA) for neurofeedback control, which interfaces with the Turbo-BrainVoyager™
neurofeedback module (Turbo Brain Voyager 4.0, Brain Innovations, Maastricht, The Netherlands),
and which uses the default Arduino control software for Matlab, at https://www.mathworks.com/
matlabcentral/fileexchange/74339-haptic-feedback-for-turbo-brainvoyager. This software assumes that
Turbo-BrainVoyager™ creates a file representing the level of activity in a region of interest at each
repetition time (TR) within a known range. The software continuously polls for the existence of such
a file, and when a new file is found, generates a vibration of corresponding intensity. Open source options
for neurofeedback software, for example Open NFT, could also be used. GNU Octave (GNU 5.2.0, GNU
Operating System, Boston, MA, USA) could be used as an open source alternative to Matlab.

Vibrating Element (USD 30)—Any 3-5 volt DC vibrating motor should yield sufficient vibration
to be felt at the scanner bore. We used a uxcell 5 volt DC, 3200 revolutions per minute motor (USD 6).
From this motor we connected its wires (solder or hot glue can connect these) to the RCA female plug
(see above). We mounted the motor and wires inside a piece of 1” pvc through which we drilled a hole
for the wires, and hot glued the motor in place, leaving sufficient unglued area for air circulation to
account for heating in the motor (Figure 2c).

Tube to transfer vibration to the subject (USD 30)—To get from a typical MRI control room, through
the waveguide, to our scanner bore, we use approximately 30 feet of 1 inch PVC tube (USD 15). We included
angle couplings to navigate around the room’s objects as necessary. The length and topology for a given
scanner will depend on measurements specific to the users’ scanning environment. If the PVC touches
the waveguide, some of the vibration being transmitted will be lost/dampened. To reduce the loss of
vibratory energy, we suspend the PVC through the waveguide from the scanner room ceiling (Figure 3a)
using string, paracord, or medical tape (USD < 10) (Figure 3b). The participant may receive the vibration
by adding any number of coverings or endpoints to the PVC tubing, e.g., allowing a participant to hold
a tennis ball with a hole into which the PVC tube is inserted (Figure 3c).

Design alternatives: We have explored many design alternatives to the current system. Prause et al.
(2012) [13] used a system with an air compressor, tubing and an air-powered imbalanced turbine in lieu
of the vibrating motor and PVC [12]. This system worked well for us, but was much louder and had
less power. For applications which do not require graded vibration, but rather can use a simple on—off
switch, a simpler approach can work to achieve even stronger haptic feedback. In lieu of the motor
shield and motor, the Arduino’s digital outputs and ground can be connected to a controllable outlet
power relay (IoT Power Relay available from AdaFruit for USD 25), into which many commercially
available vibrating devices can be attached (e.g., personal massager with a reducing coupler for the head
or a sheet pad sander, for which copper brackets can be screwed into the sander plate and around
the PVC to tightly and stably connect to the PVC tube (Figure S2)). Arduino code for these applications
is available from GJS by request.
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Suspension

Figure 3. (a) PVC tubing suspended within the waveguide with medical tape so as not to touch
the waveguide’s edges. (b) Extension of PVC tube from the control room to the scanner bore showing
the paracord from the scanning room ceiling used to suspend the tubing; (c) optional tennis ball for
subject to hold.

2.2. Procedure

To assess the feasibility of the system for fMRI neurofeedback, three medically healthy individuals
performed neurofeedback with alternating runs of vibration off and on (Subject 1, F, age 36; Subject
2, F, age 23; Subject 3, M, age 34). Written informed consent was obtained from the participants.
The study was approved by the University of Pittsburgh Institutional Review Board (Identification
Code STUDY19050176) and carried out in accordance with the Declaration of Helsinki for experiments
involving humans. We used the commercially available Turbo-BrainVoyager™ software for real-time
imaging and processing. The rtfMRI-nf procedure consisted of five fMRI runs each lasting 8 min and 40
s, a baseline run in which no neurofeedback information was provided, and four training runs. During
training runs 1 and 3, no vibration was provided and the standard thermometer was used, while in
runs 2 and 4 the thermometer was visible and vibration feedback was also provided. This design
has been published previously and fully described elsewhere [22,23]. Briefly, all runs consisted of
alternating blocks of Rest (5 40 s blocks), Count Backwards (4 40 s blocks of counting backwards from
300 by an integer), and Happy/Regulate (4 40 s blocks). During the Happy condition, participants
were instructed to silently recall and contemplate positive autobiographical memories while also
attempting to increase the level of the thermometer and/or the strength of the vibration felt. An empty
thermometer was displayed during the Count and Rest conditions and no vibration was felt.

The neurofeedback signal for each Happy block was computed as the fMRI percent signal change
relative to the average fMRI signal for the preceding Rest block. This was provided as output over
every 2 s window during happy recall and presented to the participant both visually (thermometer)
and haptically (vibration) to their right hand. To reduce fluctuations due to noise in the fMRI signal,
the thermometer level and strength of vibration was computed at every time point as a moving
average of the current and two preceding values. These percent signal change values obtained
during neurofeedback were averaged over each run and used as a performance measure (the signal
the participants received). These values were used to compare amygdala activity during vibration on
vs. off, as we were interested in how vibration affected the signal being trained. To examine differences
between the vibration on and off conditions, we performed an area under the curve (AUC) test of
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the mean of the vibration on condition (minus the preceding rest run) versus the no vibration condition
(minus the preceding rest run).

The amygdala region-of-interest was defined as a sphere of 7 mm radius centered at —21, -5, 16
in the stereotaxic array of Talairach and Tournoux, and was transformed to the EPI image space using
each subject’s high-resolution MPRAGE structural data. The resulting region-of-interest in the EPI
space contained approximately 140 voxels. We performed a visual inspection of the regions-of-interest
prior to the start of neurofeedback. No adjustments were performed as a result of visual inspection.

After the feedback task was complete, the participants received variable vibration that was not
associated with their own amygdala activity. Specifically, each received the neurofeedback vibration
of another participant during an 8 min 40 s resting state run, during which the instructions were to
simply relax and not think of anything in particular. This was done to examine whether the amygdala
was activated by vibration in the absence of a task. This yoked sham neurofeedback signal was created
from the first training run of a female subject from another study with depression who completed our
standard fMRI-neurofeedback paradigm. The first training run was selected so as to have the most
variance in the vibration, as this was the run from that study wherein the participants were just
beginning to learn how to effectively control the signal.

fMRI was conducted on a 3 T Siemens Prisma scanner with a 64-channel head coil. A single-shot
gradient-recalled EPI sequence with GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA)
was employed for fMRI. The following EPI imaging parameters were used: FOV/slice = 260/2.9 mm,
interleaved slices per volume = 34, slice thickness = 2.9 mm, repetition/echo time TR/TE = 2000/30 ms,
GRAPPA acceleration factor = 2 in the phase encoding (anterior-posterior) direction, flip angle = 90°,
number of volumes = 263, voxel size = 2 X 2 X 2.9 mm. A Tl-weighted magnetization-prepared
rapid gradient-echo (MPRAGE) sequence with GRAPPA was used to provide an anatomical reference
for the fMRI analysis. It had the following parameters: FOV = 256 mm, slices per slab = 208, slice
thickness = 0.80 mm, voxel size = 0.8 X 0.8 X 0.8 mm TR/TE = 2400/2.24 ms, GRAPPA acceleration
factor = 2, flip angle = 8°.

fMRI analysis for the resting state data was performed using AFNI (http://afni.nimh.nih.gov/afni).
The single-subject analysis steps consisted of slice timing correction, within-subject realignment,
coregistration between anatomical and functional images, spatial normalization to the stereotaxic array
of Talairach and Tournoux, spatial smoothing (Gaussian kernel, 4 mm full width at half maximum),
and finally the voxel time series were low pass filtered (cutoff 0.10 Hz).

Standard general linear model (GLM) analysis was applied with the following regressors included
in the GLM model: two block stimulus conditions for the vibration analysis (on and off), six
motion parameters as nuisance covariates to take into account possible artifacts caused by head
motion, and five polynomial terms for modeling the baseline. The regressors were convolved with
the canonical hemodynamic response function provided with Analysis of Functional Neurolmages
(AFNI, Washington, DC, USA). The hemodynamic response estimates (GLM £ coefficients) were
computed for each voxel within the amygdala, intraparietal sulcus, insula, and postcentral gyrus
regions of interest (ROIs) using the 3dDeconvolve AFNI program and then converted to percent signal
changes for vibration on versus off. The voxel-wise percent signal change data were averaged within
each ROL

3. Results

3.1. Q1: Can Neurofeedback Effects Be Detected with Haptic Stimulation? Analysis of Amygdala Reactivity
with vs. without Haptic Feedback

Table 1 shows the average amygdala values calculated on-line by Turbo-BrainVoyager™ for
the Happy—Rest condition during each run and Figure 4 shows the AUC for each subject. For each
participant, the observed amygdala feedback signal was higher with either type of feedback compared
to the baseline (visual vs. baseline #(2) = 3.62, p = 0.06, d = 2.69; haptic vs. baseline (t(2) = 5.91, p = 0.03,
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d = 3.82). There was a moderate effect size for the effect of vibration, compared to visual stimulation
only, across participants (d = 0.44) that was non-significant due to the small sample (£(2) = 0.54, p = 0.62).

Table 1. Amygdala Hemodynamic Activity during Neurofeedback during Vibration vs.

Visual Feedback.
Subjectl  Subject2  Subject3  Overall Mean
Baseline -0.41 -0.10 -0.18 -0.23
Visual Run 1 0.26 0.58 0.03 0.29
Haptic Run 1 0.33 0.51 0.22 0.35
Visual Run 2 0.55 0.76 0.17 0.49
Haptic Run 2 0.61 0.99 0.40 0.67
Mean Visual All Runs 0.41 0.67 0.10 0.39
Mean Haptic All Runs 0.47 0.75 0.31 0.51
Subject 1 Subject 2 Subject 3
= 8 No Haptic = 4 No Haptic = “ Notiepss
g 5 Haptic g Haptic g 2l Haptic |
£ ol iz &
£, £ £o
=] q 0 g
2 ‘v ] g2
52 ] 2/ K
®, B g
£ - 2
. 1.0 15 én 2.5 '1-c 3-5 -\ﬁ ; g \-u ~-5 z-u 2-5 30 A.s 40 6! 7 '
i ? e ’ it 5 10 15 20 25 30 35 40
seconds
AUC test: t(18)=1.41, p=0.18, AUC test: t(18)=0.93, p=0.36, AUC test: t(18)=0.86, p=0.40
D(s)=3.31(5.15), d=0.64 D(s)=2.21(5.20), d=0.42 D(s)-2.03(5.19), d=039

Figure 4. Time course of amygdala activity during neurofeedback training versus the preceding rest
period with vibration on and off for each participant. Red area = significant difference at p < 0.05;
Yellow area = significant difference at p < 0.10.

3.2. Q2: Does Haptic Stimuliation Occlude Effects of Interest? Resting BOLD Response with vs. without
Haptic Stimulation in Neurofeedback Regions for Which Detection of Haptic Stimuliation Would Be
Problamatic (Amygdala, Intraparietal Sulcus)

Amygdala Activity: Table 2 shows the average amygdala values for haptic on-haptic off during
an 8 min 40 s eyes open resting state run. The percent signal change between the two conditions was
very small (one-sample t-test comparing mean to 0 change; mean = 0.005; £(2) = 0.31, p = 0.78) and was
not in a consistent direction, and the difference between on and off showed a very small effect size
(d =0.01).

Intraparietal Sulcus Activity: We also examined the BOLD response in the control region we used
in our other neurofeedback experiments, which was the left horizontal segment of the intraparietal
sulcus (defined as a 7 mm sphere centered at (—42, —48, 48) in the stereotaxic array of Talairach
and Tournoux). As can be seen in Table 2, the difference between the two conditions was very small
(one-sample t-test comparing mean to 0 change; mean = —0.0004; t = 0.22 p = 0.98), not in a consistent
direction, and had a very small effect size (d = 0.001).

3.3. Q3: Are Effects of Haptic Stimuliation Detecable? Resting BOLD Response with vs. without Haptic
Stimulation in Regions Where Detection of Haptic Stimuliation Is Expected (Insula, Somatosensory Cortex)

Insula and Somatosensory Activity: We examined the BOLD response in two regions in which we
expected to see greater activity when vibration was on versus off—the insula and the somatosensory
cortex (postcentral gyrus). As can be seen in Table 2, in both regions bilaterally, there was increased
activity when vibration was on relative to when it was off (fs > 9.47, ps < 0.001, ds > 6.86).
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Table 2. Regional Hemodynamic Activity during Rest with Vibration On vs. Off.

% Signal Change Vibration On—Off

Left Left Left Right
Intraparietal LeftInsula  RightInsula Somatosensory Somatosensory
Amygdala
Sulcus Cortex Cortex
Subject 1 0.01 0.02 0.34 0.19 0.30 0.29
Subject 2 -0.01 -0.01 0.28 0.27 0.36 0.36
Subject 3 0.01 -0.01 0.19 0.20 0.26 0.29

4. Discussion

We have responded to multiple theoretical papers suggesting that haptic fMRI neurofeedback
could be of interest in terms of constructing a low-cost, reproducible, portable system for providing
haptic feedback during rtfMRI-nf training. We made use of relatively inexpensive components that are
available to consumers. The produced haptic stimulation—here vibration—has sufficient displacement
and magnitude to be strongly felt while allowing for gradations indicating the amount of hemodynamic
activity. The total cost was USD 130.

These feasibility data indicate that participants can increase their amygdala signal during
positive autobiographical memory recall relative to a rest baseline to a similar extent when vibratory
feedback is provided as when visual feedback alone is provided. Future studies should examine
whether neurofeedback performance is superior with haptic relative to visual feedback. Furthermore,
vibration alone during rest did not change the activity in the regions of interest for our neurofeedback
studies, but did change activity in the regions we would expect to be responsive to vibration (insula
and somatosensory cortex). This suggests that vibratory feedback is appropriate for neurofeedback
studies targeting regions involved in emotion regulation, but caution should be used when the target is
a region that is also sensitive to interoceptive signals, such as the insula, as it is possible that the effects
of vibration could interfere with neurofeedback learning.

This work is a first step in bringing haptic feedback to rt-fMRI. Haptic feedback is likely to vary
in its effect on results. In particular, different patterns and locations of vibration are well known to
be experienced as emotionally positive or negative [27], to have different neural correlates, e.g., [9],
and to have different physiological effects (e.g., whereas body vibration in the 6-10 Hz range is
associated with increased indicators of sympathetic tone [28], vibration in the 89 Hz range on the face is
associated with increased parasympathetic tone [29]). Thus, research establishing parameters for how
haptic neurofeedback is used is a prudent next-step and a future direction of our research. Of course,
larger studies in non-biased samples with a randomized block design are needed. The importance of
the current work is to establish that these next steps are worth taking.

5. Conclusions

In conclusion, we have demonstrated that vibration during fMRI neurofeedback is well motivated,
affordable, easy to implement, feasible to use, and is likely to yield interpretable results which are
at least comparable to current neurofeedback methods, allow participants to close their eyes, and are
not compromised by producing spurious brain activity. In our future rtfMRI neurofeedback studies,
we plan to incorporate this haptic feedback.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3425/10/11/790/s1,
Figure S1: Haptic Part List: full parts list with information about at least once source from which each piece can be
ordered; Figure S2: Design Alternatives for the Haptic Setup.
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