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Abstract: Until the recent development of disease-modifying therapeutics, spinal muscular atrophy
(SMA) was considered a devastating neuromuscular disease with a poor prognosis for most affected
individuals. Symptoms generally present during early childhood and manifest as muscle weakness
and progressive paralysis, severely compromising the affected individual’s quality of life, indepen-
dence, and lifespan. SMA is most commonly caused by the inheritance of homozygously deleted
SMN1 alleles with retention of one or more copies of a paralog gene, SMN2, which inversely correlates
with disease severity. The recent advent and use of genetically targeted therapies have transformed
SMA into a prototype for monogenic disease treatment in the era of genetic medicine. Many SMA-
affected individuals receiving these therapies achieve traditionally unobtainable motor milestones
and survival rates as medicines drastically alter the natural progression of this disease. This review
discusses historical SMA progression and underlying disease mechanisms, highlights advances
made in therapeutic research, clinical trials, and FDA-approved medicines, and discusses possible
second-generation and complementary medicines as well as optimal temporal intervention windows
in order to optimize motor function and improve quality of life for all SMA-affected individuals.
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1. Genetics

Over the last 129 years, physicians and researchers have made substantial progress in
recognizing, understanding, and treating the autosomal recessive genetic disorder spinal
muscular atrophy (SMA). Although universally distinguishable by the pathological loss
of lower α-motoneurons (most often during infancy or adolescence), SMA-affected indi-
viduals can present with a clinically heterogenous spectrum of symptoms. The variable
presentation of symptoms undoubtedly obfuscated the recognition of the singular and
unifying etiology of this disorder for the first 100 years after initial documentation. Gener-
ally, motor symptoms appear as symmetrical, predominantly proximal and axial muscle
weakness and range from fatal somatic and respiratory paralysis to minor gait abnormal-
ities. In contrast to the diverse presentation of this disorder, SMA is simply a complex
manifestation of a relatively straightforward problem.

SMA is a monogenic, autosomal recessive disorder caused by the homozygous func-
tional loss or deletion of a 5q13 gene critical for viability of motoneurons (aptly named
survival motor neuron, or specifically in higher primates, SMN1) [1]. The absence of SMN
protein results in embryonic lethality [2]; thus, SMN is an essential protein for development.
A single copy of the SMN gene is phylogenetically conserved across most eukaryotes, but
humans are uniquely fortunate to possess a second SMN gene. The range in clinical symp-
toms is generally attributed to variable expression of this genetic paralog, survival motor
neuron 2 (SMN2). The paramount difference in the nucleotide sequence of SMN1 versus
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SMN2 is a translationally silent cytosine (C) to thymine (T) nucleotide transition at the
sixth position in SMN2 exon 7 [3,4]. This nucleotide transition modifies SMN2 pre-mRNA
splicing and promotes exon 7 exclusion from the mature transcript (Figure 1). SMN2 exon
7 skipping occurs because the C to T transition impedes an exonic splicing enhancer (ESE)
site to which SF2/ASF binds [5] and creates a novel exonic splicing silencer (ESS) site
to which the splicing factors hnRNP A1/A2 bind [6]. The alternatively spliced SMN∆7
protein is unstable, inefficiently self-oligomerizes and is subsequently degraded [7]. While
SMN1 selectively generates full-length SMN protein, only ~10 percent of protein produced
by SMN2 is full-length SMN, and the remaining 90 percent is the less-functional SMN∆7
splice variant that is rapidly eliminated. Due to the low production of functional SMN
protein, SMN2 can only partially compensate for loss of SMN1, and thus SMA arises from
a deficiency but not complete depletion of SMN protein.
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Figure 1. Differential pre-mRNA splicing of SMN1 and SMN2 genes. The SMN1 gene (right) effectively splices exon 7 into
the mature mRNA transcript, resulting in ~100% full-length SMN protein (blue full circles). In contrast, a C to T nucleotide
transition in exon 7 of the SMN2 gene (left; resulting in a U nucleotide in exon 7 pre-mRNA) causes ~90% of the mature
mRNA transcripts to lack exon 7 (pink incomplete circles). Without exon 7, the truncated protein (SMN∆7) is unstable,
ineffective at oligomerization, and consequently degraded.

Curiously, SMN2 copy number varies in the human population and ranges from 0 to
8 copies. This variability is likely due to the characteristic instability of the chromosome
5q13 region [8]. Each extra SMN2 copy at the SMN locus serves to bolster the amount
of functional, full-length SMN protein generated within a cell. This natural variability in
SMN2 expression in the absence of SMN1 permits the clinical SMA severity to exist along a
spectrum predominantly determined by SMN2 copy number [9–12].

2. Clinical Manifestations

Clinical features that define SMA include progressive muscle weakness, hypotonia,
and atrophy of skeletal muscle resulting from degeneration and loss of spinal motoneu-
rons [13,14]. Given the wide range of clinical phenotypes, SMA has been traditionally
classified into five categories (Type 0 to Type IV) based on age at symptom onset and high-
est motor milestone achieved (Table 1) [15–18]. Generally, the clinical subtype inversely
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correlates with SMN2 copy number and may provide physicians with some clinical insight
and prognostic information.

Table 1. Natural histories of Type 0–Type IV SMA.

SMA Type Age of
Symptom Onset

Defining Motor
Function Common Characteristics Life

Expectancy
SMN2 Copy

Number

Type 0 Prenatal Respiratory
support

- Reduced movement in utero
- Respiratory intervention usually needed

from birth
- Severe muscle weakness and hypotonia
- Areflexia
- Facial diplegia
- Joint contractures
- May have widespread systemic

dysfunction

<6 months 1

Type I 0–6 months Never sits
unsupported

- Poor head control
- Unable to sit without support
- Paradoxical breathing; respiratory failure
- Muscle weakness and hypotonia
- Areflexia or hyporeflexia
- May have bulbar involvement

<2 years 2

Type II 6–18 months Sits; never stands
independently

- Progressive muscle weakness and
hypotonia

- Hyporeflexia
- Respiratory dysfunction
- Musculoskeletal abnormalities
- Polyminimyoclonus

>2 years 2–3

Type III >18 months Walks

- Progressive muscle weakness and
hypotonia

- May lose ability to walk
- May develop polyminimyoclonus

Adult 3–4

Type IV >21 years All motor function
- Very mild but progressive muscle

weakness and hypotonia
- Gait abnormalities

Adult ≥4

The natural history of each clinical subtype (reviewed in [19]) is described as follows:
in all subtypes, proximal muscle groups are more affected than distal muscle groups,
with legs more affected than arms. The most severe form of SMA (Type 0) may present
with prenatal onset (reduced movement in utero) and newborns may be born unable to
swallow and breathe independently. These infants exhibit severe muscle weakness and
lack of tone, joint contractures, areflexia, bilateral facial paralysis and early respiratory
failure [20,21]. Outside of bulbar and spinal motoneuron dysfunction, thalamus, heart,
vasculature, and sensory system may also develop problems due to exceedingly low
systemic SMN levels [22–26]. Type 0 SMA patients carry a single copy of SMN2 and have
life expectancies of less than six months.

Approximately half of all SMA cases are classified as Type I (Werdnig–Hoffman dis-
ease). Infants with Type I SMA exhibit symptom onset prior to six months of age and are
unable sit unassisted due to proximal muscle weakness and hypotonia [27]. This weakness
manifests as a frog-leg posture, poor head control, paradoxical breathing, bulbar involve-
ment (tongue fasciculation and dysphagia), reduced or absent reflexes, and respiratory
failure before the age of two. Without respiratory, nutritional, or genetically targeted
interventions, life expectancy is less than two years of age [28]. Type I SMA patients
typically have two copies of SMN2. Although Type I SMA has the highest incidence of
the five clinical subtypes, milder forms of the disorder are historically more prevalent
in the population due to the increased lifespan of intermediate and mild SMA patients
(Type II–IV). However, the advent and use of genetically targeted therapies for SMA will
dramatically shift this distribution.

Patients with Type II SMA (Dubowitz disease) manifest motor symptoms between six
and 18 months of age. These patients may sit without assistance but do not independently
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stand or achieve ambulation [29]. Type II SMA patients display progressive proximal
muscle weakness, lack muscle tone, and present with diminished reflexes. Respiratory
dysfunction is common, and the development of scoliosis plus weakened intercostal
muscles can affect pulmonary function. Type II SMA patients develop hand tremors
(polyminimyoclonus), contractures, and occasionally ankylosis of the mandible [13]. These
patients typically have three copies of SMN2 and reduced life expectancy.

Patients with Type III SMA (Kugelberg–Welander disease) experience initial symptom
onset during early childhood but substantial loss of ambulation generally occurs during
puberty [30]. These individuals present with progressive proximal muscle weakness that is
greater in the legs than the arms, and may retain the ability to walk but with considerable
difficulty due to gait abnormalities and muscle atrophy/weakness [19]. However, some
of these patients irreversibly lose walking ability. Type III SMA patients may develop
polyminimyoclonus, but respiratory dysfunction and severe scoliosis are not components
of the clinical description. Patients typically have 3–4 copies of SMN2 and a normal or
near-normal life expectancy.

Lastly, patients with Type IV SMA (<5% of cases) develop symptoms in adulthood and
experience the mildest disease course (generally restricted to gait abnormalities), which
is attributed to them usually having ≥ 4 SMN2 copies [18,31]. While clinical subcatego-
rization of SMA is useful in guiding treatment strategies and management of medical and
developmental expectations, it is crucial to recognize that the clinical spectrum of SMA
severity exists on a continuum and that division into subtypes may not fully capture the
experience and expectations of patients, their families, and their health care providers. In
addition, the recent advancements in disease-modifying SMA therapies have substantially
altered the expectations of categorical patients, resulting in patients transcending subtypes.
As SMN-dependent and -independent therapies continue to improve and become widely
accessible to SMA patients, traditional classifications will need to be improved to capture
previously unidentifiable symptoms and outcome expectations revealed by prolonged
lifespans and improved motor function.

3. Impact of Motor Impairment on Quality of Life

SMA-affected individuals experience a slow and progressive decline in motor function
and report limitations arising from difficulties in mobility, daily activity, and pervasive
fatigue associated with deteriorating physical health [32,33]. Though the initial severity of
SMA symptoms (and thus the maximal motor functions achieved) is variable, depreciation
of function results in considerable physical disability for all SMA-affected individuals.
Inadequate motor function may require daily tasks to be performed by a caregiver in order
to help maintain or enhance an individual’s autonomy. These tasks include activities such
as meal preparation and hygiene maintenance and are usually informally provided by
relatives. One Spanish study evaluating the economic burden incurred by SMA-affected
individuals and their caregivers found that the invisible “cost” (compared to medical
cost) of informal caregiving accounts for more than two-thirds of the total annual cost
of healthcare associated with SMA [34]. This cost is one of the reasons why parents of
individuals with SMA declare that a critical gap in patient needs is the lack of support for
activities associated with daily living [35].

In addition to motor impairment, patients also report emotional difficulties, which
thus far lack effective interventions. These difficulties are due in part to the immense
psychosocial burdens experienced by those living with SMA. In addition to the need
to make difficult treatment choices, stress, limitations on social activities, and a lack of
independence, the pervasive fear of losing functional ability significantly contributes
to substantial negative mental health experienced by patients and their families [36].
When surveyed on which tasks would meaningfully improve quality of life, SMA patients
reported that improved ability to do daily tasks such as eating, bathing, grooming, using
the restroom, independent transfers to and from wheelchairs, being able to spend time
independently, and typing on keyboards would be immensely beneficial [37]. The ability to
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independently perform these often-underappreciated motor tasks should be a goal for the
treatment of SMA, and small changes may be sufficient to significantly improve quality of
life. Patient, caregiver, and clinician perspectives indicate that even minor improvements
in motor function would constitute a meaningful change in disorder outcome [38].

Until the recent development of genetic therapies, management of SMA was tradi-
tionally limited to long-term and multi-disciplinary medical, nutritional, and supportive
care [39–42] to alter the natural disorder progression. The advancement of genetic therapies
is reshaping the therapeutic environment by mitigating the need for invasive ventilation
and extensive medical care, ameliorating progressive motor degeneration, and extending
lifespan. However, key outcomes of clinical trials and therapeutic use indicate that impair-
ments in motor function persist in some patient populations [43–49]. Additionally, not all
patient populations are currently able to access or receive genetic therapies. Advances in
supportive and therapeutic care have changed the diagnosis of SMA from devastating to
hopeful, but complementary treatment approaches are required to further improve the
quality of life experienced by SMA-affected individuals and their caregivers.

4. The SMN Protein

The SMN protein is ubiquitously expressed in eukaryotic cells, with the highest
levels of expression in brain, liver, kidney, and spinal cord cells and moderate levels of
expression in cardiac and skeletal muscle cells [50,51]. The full-length human SMN protein
is comprised of 294 amino acids, has a molecular weight of 38 kDa, and contains four
protein domains (reviewed in [52]): (1) an N-terminal lysine-rich domain (encoded by exons
2A and 2B) responsible for GEMIN2 and nucleic acid binding; (2) a central Tudor domain
(encoded by exon 3) that mediates numerous interactions with arginine-glycine (RG)-rich
proteins such as one family of core small nuclear ribonucleoproteins (snRNPs) called
“Sm” proteins [53] (named by their reactivity with autoantibodies of the Sm serotype from
patients with systemic lupus erythematosus [54]); (3) a C-terminal proline-rich domain
(encoded by exons 4–6) that is responsible for binding profilin proteins; and (4) a tyrosine-
glycine (YG) box (encoded by exon 6) that, along with the last sixteen residues encoded
by exon 7, mediates SMN self-oligomerization [7]. Most of these protein domains are
conserved amongst vertebrates. Interestingly, it was recently shown that removal of SMN
exon 2B can result in a functional SMN protein that restores snRNP function and rescues
cell lethality [55]. This implies that GEMIN2 binding is further refined to SMN exon 2A [55].

SMN exhibits both cytoplasmic and nuclear subcellular localization where the protein
serves several proposed functions (Figure 2). SMN is a crucial component of snRNP biogene-
sis [56–58]. snRNPs are RNA–protein complexes that are critical constituents of spliceosomes,
which recognize and remove introns from pre-mRNA. Cytoplasmic SMN acts in conjunction
with GEMIN2-8 and UNR-interacting protein (UNRIP) as the SMN complex to load Sm
proteins into a heptameric ring structure on small nuclear RNA (snRNA) [57,59–69]. After
further snRNP processing, the SMN complex (still associated with the snRNP molecule)
binds snurportin and importin and is transported into the nucleus. The SMN complex
and associated snRNP molecules localize to Cajal bodies where snRNP maturation is com-
pleted. Other studies suggest that SMN may have numerous additional functions in RNA
metabolism, protein homeostasis, and cytoskeletal dynamics (reviewed in [52,70,71]).
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though which roles are associated with which specific pathologies are unclear. SMN functions in RNA metabolism, protein
homeostasis, and cytoskeleton dynamics. SMN plays additional roles in axonal transport of mRNA and synaptic vesicles,
axiogenesis, and axon pathfinding. At the neuromuscular synapse, SMN is involved in actin dynamics, vesicle release and
recycling, and neuromuscular junction (NMJ) maturation and repair. These cellular functions of SMN have been thoroughly
discussed elsewhere [52,56,70–74].

While the canonical and most defined role of SMN is snRNP assembly in the soma,
several studies have proposed additional, non-canonical roles outside of the soma. In
axons, SMN modulates axiogenesis and axonal pathfinding [72], and is involved in axonal
transport of mRNA and synaptic vesicles [75–78]. At the synapse, SMN is involved in local
translation of cytoskeletal proteins within presynaptic compartments [78,79]. At the growth
cone and synaptic terminal of motoneurons, SMN regulates endocytosis and cytoskeleton
activity through its interaction with profilins, a family of proteins regulating actin dynam-
ics [78,80–82] and through this interaction has been proposed to regulate the change in
ratio of G-actin to F-actin [83], a critical feature for neurite outgrowth [84]. After neuro-
muscular synapses have matured, SMN contributes to compensatory axonal sprouting
following motor nerve injury [85]. It is prudent to note that it remains unclear how these
proposed, non-canonical roles of SMN potentially contribute to SMA pathogenesis and
symptomology, and more investigation is necessary to definitively understand the extent to
which, if any, these potential non-splicing functions of SMN influence the SMA phenotype.

Although additional function(s) of SMN beyond its role in spliceosomal assembly are
still debated, the fact that spinal motoneurons are preferentially susceptible to degeneration
and death in response to SMN deficiency is quite clear. This has been firmly established
through a series of genetic studies in which Smn levels are either specifically reduced or
increased within motoneurons [86–90]. However, molecular mechanisms explaining the
preferential vulnerability of spinal motoneurons to SMN deficiency are unknown. Three
major hypotheses have been posited [71,72,91]. First, SMN deficiency may disrupt splicing
of transcripts specifically essential for the function and survival of spinal motoneurons.
This notion is supported by studies demonstrating that SMN deficiency differentially
alters the snRNA composition of snRNPs across tissue types, which leads to tissue-specific
patterns of alternative splicing [92,93]. Second, of all cell types, spinal motoneurons may
be most sensitive to systemic splicing defects induced by SMN deficiency. It is possible
that the requirement for SMN is uniquely high in spinal motoneurons, and thus even
small reductions in SMN result in a deficiency leading to preferential vulnerability to
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degeneration. Third, SMN may have special spinal motoneuron-specific function(s) that
render these cells particularly susceptible to neurodegeneration as a consequence of SMN
deficiency.

5. Temporal Requirements of SMN

In humans and mammals, SMN expression levels are highest during embryonic
and early postnatal development, sharply followed by a decrease to a basal level that
is maintained throughout life (Figure 3) [94,95]. However, the complex mechanisms
regulating this dynamic expression are not well understood. Peak SMN protein levels in the
spinal cord are highest during the developmental window of axon sprouting from the spinal
cord during early embryogenesis [96,97] and coincide with the onset of myelination [94].
In mice, maximal SMN expression occurs during embryonic day (E)10–13 to permit the
growth and pathfinding of motoneuron growth cones to contact target muscles [97]. SMN
undergoes an initial decline in expression between E14 and E19, after the developmental
period of motoneuron innervation of muscle fiber endplates [98]. A secondary decline
occurs between postnatal day (P)5 and P15 [99], which coincides with the time frame of
neuromuscular junction (NMJ) maturation and stabilization.
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Transgenic and conditional transgenic mouse models of SMA have greatly elucidated
temporal and spatial requirements for SMN. For a detailed review of SMA animal models
and their uses, we refer readers to Burghes et al. (2017) [100]. Briefly, increasing neuronal
SMN levels (4-fold by E15) using a prion (PrP)-SMN cDNA transgene corrects the SMA
phenotype seen in severe SMA mice [101], suggesting that elevated neuronal SMN ex-
pression is required during the perinatal developmental period. Indeed, restoring Smn
expression during the early symptomatic period (P4-P8, but not P10) rescues neuromuscu-
lar pathology and motor function in mice co-expressing a ubiquitous Cre transgene and
Smn-inducible alleles (SmnRes/Res) on the severe SMN∆7 SMA background [95]. Le et al.
(2011) were the first group to demonstrate the phenomenon that earlier SMN induction is
most effective [102]. A tetracycline inducible expression system on the SMN∆7 SMA mouse
background was used to rescue SMN levels in SMA mice during both embryonic (E13) and
neonatal periods (P0-1; P2); embryonic and early neonatal (P0-1) SMN induction robustly
rescued the neuromuscular phenotype of SMA mice, while P2 induction did not [102].
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Interestingly, discontinuation of SMN induction at P28 in perinatally rescued weanlings
did not cause overt neuromuscular phenotypes in adulthood (one month later) [102].

These findings are supported by the work of Kariya et al. (2014), who used an inducible
Cre-loxP estrogen receptor (ER) transgenic system to deplete Smn levels ubiquitously at
various postnatal time points in mice homozygously expressing the SmnF7 floxed allele
and SMN2 transgene; the switch from Smn requirement to insensitivity occurs abruptly
at P17 [85]. This time point coincides with the end of presynaptic NMJ maturation [103]
and a relative decline in the activity of Smn in assembling snRNP particles in mouse
spinal cord tissue [94]. By P20, low levels of SMN (which are satisfied by two copies
of SMN2 in a mouse model) adequately maintain mature neuromuscular synapses [85].
Indeed, Smn depletion had minimal consequences throughout adulthood, except for
mild neuromuscular histopathology later in life, and reduced regenerative capability in
response to nerve and muscle injury [85]. Thus, increased SMN dosage is required for
neuromuscular maturation, as well as regeneration or repair pathways later in life. Taken
together, these studies illuminate the crucial requirement for high SMN expression during
the time frame of neuromuscular maturation. The need for SMN to maintain neuromuscular
integrity suggests that curative therapies should be delivered during the critical stages of
neuromuscular maturation in order to prevent the establishment of irreversible defects that
result in lifelong neuromuscular impairment.

Our understanding of SMN temporal requirements mostly comes from mouse studies,
but perhaps the most important preclinical study comes from the porcine model of SMA,
as it closely resembles SMA patients. It is the only available large animal model to study
SMA pathologies and therapeutics, with a size relative to human infants [104]. The pig
SMA model was created by developing a shRNA that selectively knocked down porcine
SMN levels to those observed in SMA spinal cord samples. The pigs developed a clear
SMA phenotype at one month of age that mirrored human SMA patients and included
muscle weakness with reduced electrophysiological markers of compound muscle action
potential (CMAP) and motor unit number estimation (MUNE) [104]. Rescue studies to
address temporal requirements of SMN were achieved by delivering scAAV9-SMN the
day after injection of scAAV9-shRNA targeting pig SMN. The pigs in this presymptomatic
paradigm were completely rescued; the weakness and electrophysiological parameters
were corrected. When scAAV9-SMN was given at symptom onset, substantial but not
complete correction was observed, and there was variation in the degree of correction
when the pig had more advanced symptoms. It was found that CMAP was preserved but
MUNE and motoneuron counts were not. Collectively, this study demonstrated several
important points: (1) that the observed porcine SMA phenotypes were SMN dependent
and could be rescued if given scAAV9-SMN presymptomatically, and (2) major phenotypic
improvements and halted disease progression may still be achieved if given scAAV9-
SMN early in symptomology. As expected, diminished MUNE and motoneuron loss
were not rescued by postsymptomatic scAAV9-SMN treatment in these instances, since
once motoneurons have been lost they cannot be replaced. Early symptomatic treatment
suggests the potential for stabilization and some NMJ sprouting to occur, as observed in
this study by maintenance of the CMAP [104].

6. Lower α-Motoneuron Pathologies

Development of SMA mouse models has permitted critical research on SMA disease
mechanisms. In particular, mouse models have allowed for the comparison of muscles
that are either vulnerable or resistant to denervation, which has provided insight into the
mechanisms regulating motoneuron degeneration [86,105–111]. SMN deficiency within
the lower motoneuron circuitry induces abnormalities in SMA model mice that ultimately
result in the degeneration of vulnerable spinal motoneurons and subsequent skeletal
muscle weakness [112].
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6.1. Motoneuron Somas

Early in the disease process, many cellular functions and molecular signaling path-
ways have been shown to be dysregulated in SMN-deficient mouse spinal cord tissue
and laser-captured motoneurons. Transcripts associated with translation, rRNA binding,
ubiquitin homeostasis and oxidative phosphorylation are downregulated in laser-captured,
preferentially vulnerable motoneurons from the Smn2B/− mouse model of intermediate
SMA at a time point prior to denervation and soma loss [113]. In addition, transcripts asso-
ciated with cell death are upregulated, particularly those involved in p53 signaling [113].
Compared to laser-captured motoneurons innervating relatively resistant muscles, pref-
erentially vulnerable Smn2B/− motoneurons downregulate transcripts associated with
DNA repair [113]. Similarly, intron retention, DNA damage, and p53 pathway activation
are detected in spinal cord tissue 30 days postinduction of SMN depletion in antisense
oligonucleotide-based inducible SMA mice [114]. Apoptosis is not observed at this time
point, indicating that these changes also precede cell death [114].

A recent study by Nichterwitz et al. (2020) [115] determined that p53 pathway ac-
tivation occurs in both resistant (ocular) and vulnerable (spinal) somatic motoneurons
microdissected by laser capture from SMN∆7 mice, indicating cellular stress in both
populations. However, resistant (ocular) motoneurons exhibited decreased expression of
pro-apoptotic genes, increased expression of survival factors, and upregulation of pathways
involved in neurotransmission, neurite outgrowth, and axon regeneration. In contrast, vul-
nerable (spinal) motoneurons upregulated genes related to axon degeneration and axonal
transport deficits [115]. Doktor et al. (2017) performed RNA sequencing on symptomatic
Taiwanese SMA mice (a severe SMA mouse model) at P5, an age preceding spinal motoneu-
ron loss [116,117]. In this study, U12-dependent intron retention was detected in all SMA
tissues examined, indicative of global splicing aberrations. Gene ontology enrichment
analysis revealed downregulation of angiogenesis in all tissues (spinal cord, brain, liver,
and skeletal muscle), likely reflecting growth factor depletion. Additionally, differentially
expressed genes in spinal cord tissue were associated with cell division and axon guidance
functions [116]. Splicing defects were assessed in greater detail by Huo et al. (2014), who
used microarrays to monitor splicing at exon–exon junctions and identified strong posi-
tive and negative splicing events occurring in laser-captured lumbar motoneurons from
severe SMA mice (Smn−/−; SMN2+/+) at time points just preceding spinal motoneuron
death (P3-P4) [118]. These findings were validated in neuroblastoma NB2a cells subjected
to RNA interference-mediated Smn knockdown. Differentially spliced transcripts were
associated with cellular and developmental neuronal functions, transcription, and growth
control, as well as RNA metabolism [118]. Interestingly, widespread alternative splicing
aberrations only arise in the late stages of the disease [119]. Taken together, transcriptional
profiling of SMA mouse motoneuron and spinal cord tissues highlight early alterations in
a variety of molecular pathways, including those associated with neuronal development,
RNA metabolism, DNA damage, and cell death.

Concurrent with these molecular signaling changes, early functional pathologies of
spinal motoneurons include hyperexcitability (hyperpolarized voltage threshold for action
potential firing) [86,120,121] and reduced proprioceptive synaptic input onto spinal mo-
toneurons [86,87,120,122]. Proprioceptive afferents sense the position of muscles in relation
to the trunk [123,124] and contribute significant afferent input to modulate motoneuron
firing to regulate muscle tone, which is critical for postural control [125,126]. These alter-
ations precede spinal motoneuron loss. The molecular mechanisms evoking distinct spinal
motoneuron death in SMA remain unresolved [127]. While the c-Jun N-terminal kinase
(JNK)/c-jun signaling axis and the p53 signaling pathway have been implicated in severe
SMA mouse models [128–130], the molecular mechanisms carrying out spinal motoneuron
loss in SMA are likely complex, potentially context dependent, and may differ based on
disease severity of the SMA model [131,132].
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6.2. Motoneuron Terminals

Insight into neuromuscular pathology was largely made possible by the advent of SMA
mouse models, which have demonstrated that early neuromuscular junction (NMJ) pathol-
ogy is a hallmark feature of SMA. Defects at the NMJ include neurofilament accumulation
in motor axons (predominantly in its phosphorylated form) [133–135], and fewer active
zones [136,137], synaptic vesicles [77,135–137], and vesicle release sensors [77,138]. In addi-
tion, motor nerve terminals have fewer mitochondria [135,137,139], which is thought to be
due to defects in transport [140,141] and consequently affect microtubule maturation [137].
Other key pathologies include motor end plate immaturity [26,134,135,142], neuromuscular
transmission deficits [122,135,138,143,144], dysregulated calcium homeostasis [143,145],
and ultimately denervation of vulnerable motoneurons [98].

Several thorough investigations of early embryonic development using SMA model
mice suggest that the neuromuscular system, even in the most vulnerable muscles, un-
dergoes relatively normal establishment [98,146,147], indicating that the deterioration of
NMJs after birth occurs in the absence of major developmental disturbances [146,147]. This
evidence suggests that denervation is a consequence of a failure to maintain the synapse
rather than from defective axonal pathfinding and/or endplate innervation, and that de-
fects arise during postcontact neuromuscular maturation [134]. The extent of denervation
is variable but primarily distinguishable by muscle group. For example, severe denervation
(>50%) appears predominantly in vulnerable axial and appendicular muscles, while other
muscles are mildly or entirely resistant to denervation at end stage disease in SMN∆7
severe SMA model mice [98]. It is important to note, however, that patterns of denervation
differ amongst severe SMA mouse models; for example, Taiwanese SMA mice develop less
extensive denervation than SMN∆7 mice [98,148]. Studies investigating motoneuron/NMJ
vulnerability in SMA mouse models reported no correlation between susceptibility to
denervation and muscle location, muscle fiber type, nerve bundle length, NMJ size, axonal
branching patterns, pruning rates, or Schwann cell expression [98,149].

7. Other Cell and Tissue Types Vulnerable to SMN Deficiency
7.1. Skeletal Muscle

Although primary deficits in SMA are caused by motoneuron-autonomous patholo-
gies, there is mounting evidence that intrinsic muscle defects may also occur, though this
phenomenon is debated. An early study by Braun et al. (1995) demonstrated that Type
I and II (but not Type III) SMA patient-derived myofibers degenerate after one to three
weeks in a co-culture with wild type fetal rat spinal cord explants [150], suggesting that
SMN might have a muscle-specific role that is disrupted when SMN levels are exceptionally
low in these cells. Supporting this hypothesis are the observations that, firstly, the Smn
complex (without any associated snRNPs) localizes to the sarcomeric z-disc in striated
mouse myofibrils purified from mechanically isolated myofibers [151]. However, it is
important to recognize that differences in tissue preparation methods implemented prior
to immunostaining for Smn in myofibrils may impact staining (e.g., using mechanically
isolated myofibers then myofibril purification vs. intact muscle cryosections). Secondly,
Berciano et al. (2020) demonstrated that hypertrophied (non-denervated) human Type I
SMA myofibers exhibit myofibrillar ultrastructural damage and mislocalization of SMN
from I-bands and M-bands to z-discs [152]. Lastly, Kim et al. (2020) have recently shown
that on the background of low human SMN expression to avoid the complete absence
of Smn (which is fatal), skeletal muscle-specific Smn depletion in mice (achieved using
a MyoD-iCre driver to diminish SMN levels similar to that in Smn−/−; SMN2+/+ mice) in-
duces morphological alterations to myofibers and NMJs, alters ex vivo force, impairs motor
function by 6–7 months of age, and reduces lifespan [153]. However, an earlier study by
Iyer et al. (2015) [154] used a myogenic factor 5 (Myf5)-Cre driver to lower SMN expression
in skeletal muscle to levels similar to SMN∆7 SMA mice, thus generating higher muscle
SMN levels than those used in the Kim et al. (2020) study [153] described above. They
found no muscle phenotype, weakness or reduced ex vivo force production at eight weeks
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of age [154]. It is unknown whether neuromuscular pathologies would have developed
with increased age, as no later time points were examined. Hence, skeletal muscle cells,
just like all cell other types, have an inherent SMN requirement for normal function. This
issue of primary muscle dysfunction will ultimately be illuminated in the future from SMA
patients identified through newborn screening whom receive nusinersen treatment that is
restricted to the CNS prior to symptomology versus those whom receive SMN-inducing
therapies that target the whole body (described in Section 8).

Enhanced SMN expression precedes both myoblast fusion into myotubes and motor
end plate innervation, raising the question of whether SMN-deficient skeletal muscle ex-
hibits abnormal myogenesis [155]. Several in vitro studies have demonstrated impaired
myogenesis induced by SMN deficiency. When Smn levels are decreased in a mouse
myoblast cell line, observed defects include reduced myoblast cell proliferation and im-
paired myoblast fusion into multi-nucleated myotubes [156]. Fusion deficits recapitulate
observations made in myoblast cultures derived from severe SMA mouse models and from
Type I SMA patients (but not from individuals with milder forms of SMA) [157–159].

Important experimental details should be considered when interpreting studies on
intrinsic muscle defects in SMA. These include species-specific differences between humans
and mice, which likely include discrepancies in typical/required SMN dosage, as well
as the specific SMA mouse models utilized (as each express different SMN dosages most
likely due to position effects of transgene integration sites and/or promoters used). This
leads to differences in SMA disease severity of functionally Smn-null mice homozygously
expressing the transgenic SMN2 allele. An example of this discrepancy is the transgenic
SMN2 line 89 (TgSMN2-Ahmb89), which is driven by the human SMN2 promoter sequence
and results in a very severe phenotype [111], versus a transgenic SMN2 allele, which is
under the control of murine Smn promoter and results in a mild phenotype [160].

7.2. Schwann Cells

A loss of non-myelinating Schwann cells may also influence neuromuscular pathology.
Perisynaptic Schwann cells are reduced in number in SMA model mice in vulnerable and
resistant muscles [136], fail to completely cover endplate sites [161], and express fewer key
proteins required to generate the peripheral extracellular matrix [162,163]. Furthermore,
selective restoration of SMN in Schwann cells improves neuromuscular function [163].

7.3. Astrocytes

In addition to muscles and motoneurons, SMN deficiency affects astrocytic function,
which likely influences SMA pathogenesis in severe cases. Postmortem analysis of SMA
patient spinal cord tissue reveals astrogliosis [164], and cultured astrocytes differenti-
ated from SMA patient-derived iPSCs exhibit morphological and functional alterations
consistent with astrocytic activation [165]. Reactive astrocytes were also observed in
SMN∆7 mouse spinal cords at ages preceding spinal motoneuron loss [165]. Critically,
astrocyte-specific SMN repletion attenuates denervation, partially mitigates stripping of
proprioceptive synapses onto spinal motoneurons and greatly enhances survival of Smn2B/−

mice; repletion of SMN in SMN∆7 mice also enhances survival, although this benefit was
moderate [164]. Additionally, abnormal calcium regulation and reduced growth factor
production has been observed in SMN-deficient astrocytes [165]. Overall, an emerging
body of work indicates that low SMN levels in astrocytes located in the spinal cord may
contribute to SMA disease onset and/or progression.

7.4. Heart

Low SMN levels may induce dysfunction in cell types beyond the neuromuscular
system. In exceptional cases, which comprise infants with the most severe form of SMA
(Type 0), defects in fetal cardiac development have been reported [25]. The most common
abnormality is septal and cardiac outflow tract defects, which may contribute to rare but
reported distal necrosis [166,167]. Additionally, benign cardiac arrhythmias have been
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reported in patients with milder forms of SMA [168], although these rhythmic abnormalities
may be a consequence of physical inactivity and trunk muscle weakness [169]. Although
anatomical and functional cardiac defects are not often observed in SMA patients, they are
pervasive in severe SMA mouse models [106,170–179].

7.5. Additional Susceptible Cell and Tissue Types

A variable degree of thalamic dysfunction [180] and thalamic neuronal degeneration
and gliosis has also been reported in severe SMA patients at end stage of the disorder [26].
Additionally, other abnormalities have been reported, including abnormalities in auto-
nomic, sensory, gastrointestinal, and endocrine systems [22,24,26,181–184]. In animal
models, a number of organ phenotypes have been noted, including abnormalities in car-
diac, lymphatic, kidney, liver, pancreas, spleen, vasculature, bone and connective tissues
(thoroughly reviewed in Yeo and Darras (2020) [185]). These non-canonical pathologies
are generally only reported in patients with the most severe forms of SMA, suggesting
that even low expression levels of SMN (achieved by 2–3 functional copies of SMN2) is
sufficient for vitality in these tissues.

Use of SMN-based genetic therapies in humans may uncover pathology in non-
motor systems, particularly in severe SMA patients who would otherwise experience
a robust motor phenotype and gravely shortened lifespan that could obfuscate other
organ impairments not readily apparent during the natural disease progression. Now that
disease-modifying therapies are available to treat primary SMA pathologies (e.g., spinal
motoneuron dysfunction and loss), secondary defects arising from chronic SMN deficiency
in untargeted peripheral tissues may emerge. Future clinical research that follows Type
I patients receiving FDA-approved therapies that target the central nervous system (via
antisense oligonucleotides) versus the whole body (by gene therapy or oral small molecule)
will shed light on the importance of SMN-deficient peripheral cell types in human SMA.

8. The Quest for Effective SMA Therapies: FDA-Approved SMN-Dependent
Therapeutics

The last decade of preclinical research searching for SMA treatments has resulted
in significant advancements in our understanding of the biologic, cellular, and genetic
mechanisms underlying SMA. Despite this knowledge, several challenges have made
drug development difficult. SMA comprises a broad spectrum of phenotypes, with a
large population developing an onset of symptoms during infancy. Additionally, thera-
peutic treatment must be able to effectively target disease-relevant tissue (such as lower
α-motoneuron somata in the central nervous system and NMJs in the peripheral nervous
system). Genotype/phenotype studies in humans and preclinical investigations have
shown that the best therapeutic approach to preventing or improving disease progression
is through increasing functional SMN levels. Animal model studies suggest that even a rel-
atively modest increase in SMN, when given early enough, produces clinically meaningful
improvements [104,186–189]. Notably, despite early intervention being crucial for optimal
improvement, animal models suggest that restoration of SMN later in life may still provide
some therapeutic benefit [95,104]. Notwithstanding these temporal and cell type-specific
challenges, the first FDA-approved, SMN-based treatment became available in December
2016, and in the four years since this approval, several other promising candidates and two
more FDA-approved therapies have followed (Figure 4).
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causes transduced cells to transcribe full-length SMN cDNA.

Several SMN-based therapeutic approaches have been investigated to upregulate func-
tional SMN protein. Examples of therapeutic approaches include targeting SMN2 splicing
(antisense oligonucleotides and other small molecules), transcription (histone deacetylase
inhibitors, hydroxyurea, lncRNA-targeting oligonucleotides, prolactin, and quinazoline),
translation (Indoprofen, aminoglycosides), as well as stabilization of SMN transcript or
protein (Celecoxib) and the insertion of SMN genes (adeno-associated viral and lentiviral
vectors) [190,191]. Currently, three SMA-modifying therapies have been approved by the
FDA (detailed in the following sections), and thus far, all SMN-based approaches have
similarly altered the disorder progression and outcome of SMA-affected individuals. These
types of therapies are currently the best method to prevent motoneuron degeneration (if
administered early enough); however, they may not be entirely curative for all patients re-
ceiving treatment. While most patients who receive presymptomatic SMN-based treatment
remarkably achieve motor skills in the normal developmental range [192], there remains a
population of SMA-affected individuals who would benefit from additional treatments to
address persistent dysfunction. This population includes patients who have one SMN2
copy, patients with two SMN2 copies but experience suboptimal motor development, or
patients who receive postsymptomatic treatment (when substantial motoneuron death has
already occurred). These individuals will likely require additional treatment strategies to
improve residual motor dysfunction.

8.1. Nusinersen: An Antisense Oligonucleotide (ASO)

The endogenous presence of a paralog gene that produces the necessary protein
has made SMN2 an ideal therapeutic target. If splicing of SMN2 is corrected to produce
a greater percentage of full-length SMN protein (similar to levels produced by SMN1),
symptoms of SMA can be alleviated. The first FDA-approved therapy for SMA uses an
ASO under the generic name nusinersen (brand name Spinraza®). Nusinersen uses a
synthetic strand of nucleic acids linked together with a 2′O-methoxyethyl backbone that
functions by recognizing and binding to cellular RNA to correct gene splicing. Nusinersen
uses Watson–Crick pairing to specifically bind the intronic splicing silencer-N1 (ISS-N1)
sequence in SMN2, which is a major inhibitory element regulating the splicing of exon 7.
ISS-N1 has proven to be a model target for ASOs to increase the ratio of full-length SMN
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protein derived from SMN2 transcripts, as ISS-N1 inhibition results in the inclusion of exon
7 in mature SMN2 transcripts [193,194].

ASOs are endocytosed by cells upon intrathecal administration, though the mech-
anisms regulating absorption are poorly understood. Upon entrance to the cell body,
nusinersen ASOs enter the nucleus where they bind to SMN2 pre-mRNA transcripts to
correct exon 7 splicing and thus increase full-length SMN levels (Figure 4B). Nusinersen
has drastically altered the outcome and progression of this previously unmodifiable neuro-
muscular disorder [195], and current efforts are underway to improve ASO penetration,
durability, and therapeutic safety and efficacy profiles.

Preclinical studies in mice have shown that administration of ASOs targeting ISS-N1
is sufficient to mitigate neuromuscular pathology and greatly improve survival and motor
function in a time- and dose-dependent manner [173,188,189,196–198]. In non-human
primates, a single intrathecal bolus injection of nusinersen was observed to be widely
distributed throughout the spinal cord, and predominantly accumulated in small and
large cell bodies of the grey matter (consistent with neural and glial cell targeting) [199].
When administered to Taiwanese Type III SMA (Smn−/−; SMN2+/+) mice, ASO-induced
SMN2 splicing changes were still detectable after six months [199], suggesting that the long
half-life of the drug permits several months between treatments for SMA patients [200].
Indeed, patient autopsy results demonstrate that intrathecal delivery of nusinersen elevates
SMN2 mRNA exon 7 inclusion in neurons and other cell types in the spinal cord [201].

Clinical studies of nusinersen in all types of SMA patients showed encouraging ef-
ficacy, tolerability, and pharmacology consistent with its intended mechanism of action.
Intrathecal injections were well tolerated and improved motor function in a majority of
treated patients [44,46,200]. Type I SMA patients had remarkably improved lifespans
compared to what would have been normally expected from the natural history of the dis-
order, and patients experienced fewer respiratory complications requiring ventilation [46].
More historical data are necessary to determine lifespan benefits of individuals with less
severe forms of SMA. Type I SMA patients receiving nusinersen therapy achieved motor
milestones that are unprecedented in the natural disorder progression, and many achieved
these skills within normal time frames of motor development [46].

Patients with later-onset SMA that have received nusinersen therapy report a better
quality of life, and caregivers of these patients also report a decreased impact of caring
burden in addition to a greater quality of life [202]. Adult patients receiving nusinersen
therapy experienced a stabilization of motor function or a reduction in symptom severity,
though this improvement was not observed in all patients [203,204]. In further support
of the limited benefit of delayed nusinersen treatment, Arnold et al. (2016) demonstrated
that neuromuscular deficits persist in SMN∆7 mice treated with ASOs at P4-6 [205]. The
persistence of motor impairment suggests that neuromuscular function is a promising
target for additive pharmacological interventions, particularly for patients that receive
SMN-based treatment during adulthood.

The above treatment trials outline the effect of nusinersen treatment postsymptomat-
ically. An interim report of the NURTURE study, an ongoing, open-label, multi-site
single-arm, Phase 2 trial, which enrolled and treated SMA patients in infancy while they
were presymptomatic, illustrates the importance of proactive treatment with nusinersen as
soon as possible after establishing an SMA genetic diagnosis [192]. Infants enrolled in NUR-
TURE were ≤6 weeks of age at first dose and, based on SMN2 copy number and expected
concordance of phenotype with an affected sibling(s), were predicted to have type I or II
SMA (15 children with 2 SMN2 copies and 10 children with 3 SMN2 copies). At a median
2.9 yrs of follow up, all patients were alive without requirement of permanent ventilation,
which directly opposes the natural history of untreated Type I SMA infants. Motor function
was assessed using several assays, including crawling, sitting, standing, and walking (with
or without assistance). All 3-copy SMN2 patients (10/10) achieved motor milestones in
timelines consistent with normal development, and all patients achieved independent sit-
ting. A majority of 2-copy SMN2 patients achieved motor skills unexpected in the natural



Brain Sci. 2021, 11, 194 15 of 39

history of the disease, though more difficult tasks, such as standing or walking alone, were
not achieved by all children in this interim report (3/15, or 20%). However, the remaining
80% of 2-copy SMN2 patients were able to stand or walk, though only 27–40% of patients
(4/12 stand alone, and 6/15 walk alone) achieved this during normal developmental time
frames. [192]. Essentially, all of the study trial result outcomes: (1) exceeded those of
participants’ SMA-affected siblings who had not received this early treatment; (2) exceeded
expectations based on the natural history of SMA; and (3) treatment benefits exceeded
those observed when treatment is initiated in the symptomatic period. Additionally, on
a molecular level, phosphorylated neurofilament heavy chain (p-NF-H) levels have been
shown to be a potential biomarker of disease severity and treatment response in SMA
patients who received nusinersen treatment symptomatically [192,206,207]. pNF-H is a
neuron-specific cytoskeletal structural protein that is released into the CSF and plasma
when axonal damage occurs [208]. The presymptomatic NURTURE trial demonstrated
increased pNF-H levels at baseline patient identification [192], indicating that the disease is
biologically active, warranting early treatment. Like the other trials [206,207], pNF-H levels
rapidly declined postnusinersen treatment and then stabilized to a lower plateau level [192].
Collectively, these results highlight the need for early population-based newborn screening
for SMA and initiation of treatment as soon as possible thereafter with SMN-inducing
therapies. Furthermore, these results suggest that some 2-copy SMN2 patients (particularly
those who struggle to achieve the ability to stand or walk unassisted) would benefit from
an additional, SMN-independent therapy that specifically targets neuromuscular function.

Despite immense benefits that alter the natural history of SMA, the use of nusinersen
for the treatment of SMA is not without challenges. Intrathecal administration is relatively
invasive, requiring sedation or anesthesia, and can be particularly problematic in young
patients or patients with scoliosis. Since ASOs have a limited penetrability of the blood–
brain barrier, direct administration into the cerebrospinal fluid is required to achieve
endocytosis into motoneuron somata. Additionally, intrathecally administered ASOs have
poor peripheral penetrance [209]; the clinical implications of which (if any) remain to be
determined as nusinersen-treated individuals continue to age. Potential risks of treatment
with nusinersen are thrombocytopenia and coagulation abnormalities, as well as renal
toxicity [210].

In the United States, nusinersen is currently approved for the treatment of any patient
with biallelic mutations or deletions of SMN1 [211]. During the first year of treatment,
nusinersen is estimated to cost $750,000 for the six recommended doses. Thereafter, the
medication costs $375,000 for the recommended three maintenance doses per year. No ces-
sation of annual treatments is recommended per se, unless the patients (or their caregivers)
elect not to continue treatment.

8.2. Onasemnogene Abeparvovec-Xioi: A Self-Complimentary Adeno-Associated Virus (scAAV9)

The second approved therapy for SMA utilizes recombinant adeno-associated viral
vectors to target the central underlying deficiency that causes SMA (Figure 4E). Onasemno-
gene abeparvovec-xioi (previously known as AVXS-101, and now as the brand name
Zolgensma®, and hereafter referred to as onasemnogene-xioi) is available to patients un-
der 2 years of age (and not exceeding 13.5 kg) with biallelic mutations or deletions of
SMN1. Onasemnogene-xioi is a self-complementary adeno-associated viral vector serotype
9 (AAV-9) carrying human full-length SMN cDNA under control of the hybrid CMV en-
hancer/chicken β-actin promoter. Upon intravenous delivery, the non-replicating scAAV9
crosses the blood–brain barrier into the central nervous system, where it is endocytosed by
cells, including motoneurons, and trafficked to the nucleus. Once in the nucleus, the virus
uncoats and transduces the host cell to transcribe its double-stranded DNA unit (full-length
SMN cDNA) [212]. This medication requires a single intravenous administration over a
period of 60 min to achieve therapeutic benefit.

Targeting of cells within the central nervous system is achieved by the use of the
AAV9 serotype, which has been shown to efficiently transduce neurons and glia in rodents,
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pigs, and non-human primates [104,187,213–215]. However, transduction efficiency is age
dependent and varies between species and cell types. Studies in neonatal mice have demon-
strated that peripheral administration of GFP-tagged scAAV9 with a chicken β-actin hybrid
promoter transduced 60% of motoneurons, and was measurable 20 days after intravenous
injection [215]. Using this vector for SMN gene replacement in SMN∆7 neonates rescues
motor function, neuromuscular physiology, and survival, while intravenous administra-
tion to P10 SMN∆7 mice yields limited benefits [187], supporting the established crucial
need for early intervention. In addition to disease progression prior to treatment, this
result is also attributed to an age-related switch in transduction efficiency from neurons
to glia in mice [215]. This age-dependent switch in transduction efficacy does not appear
to occur in larger mammals [104,216]. Using a novel porcine model of SMA, Duque et al.
(2015) elegantly demonstrated that intrathecal delivery of scAAV9-SMN corrected SMA
phenotypes when given early (presymptomatically), but was not completely curative when
delivered at symptom onset (but it did halt disease progression), due to motoneuron loss
that had already occurred prior to treatment [104]. When scAAV9-GFP was tested in new-
born (P0–P90) and 3-year-old cynomolgus macaques, systemically administered scAAV9
crossed the blood–brain barrier and robustly transduced spinal motoneurons, brain cells
(in particular, glial cells), and skeletal muscle (though more so in the young animals) [213].
3-year-old macaques had less frequent GFP+ expression in spinal motoneurons compared
to newborns [213], although possibly due to a dosing difference. Collectively, these studies
suggest that through an intravenous route, onasemnogene-xioi administration to SMA pa-
tients may have restricted benefits to phenotype when administered postsymptomatically,
primarily due to inability to recover motoneurons that have already been lost.

Clinical trials of onasemnogene-xioi have demonstrated a remarkable improvement
of motor function in SMA patients when treated presymptomatically. Patients with three
copies of SMN2 achieved motor skills within normal age ranges of acquisition. In com-
parison, a majority (but not all) of patients with two copies of SMN2 also achieved motor
milestones within normal ranges. A long-term follow up of patients who were treated
postsymptomatically showed that no patients lost any achieved motor skills, which is
a stark contrast to the natural history of this disorder. The most commonly achieved
motor milestone included head control, rolling from back to side, and sitting unsupported
for more than 30 s. However, less than half of the patients receiving postsymptomatic
intervention achieved advanced motor skills such as walking or standing (supported or
unsupported) [217]. Additionally, onasemnogene-xioi dramatically improved respiratory
function regardless of pre or postsymptomatic administration. In comparison, over 90% of
patients with severe forms of SMA not receiving SMN-based therapy require permanent
ventilation by their second birthday.

While gene therapy has remarkably changed the field of SMA treatment, use of
onasemnogene-xioi is not without potential drawbacks. The inherited prevalence of
maternally-derived (though potentially transient) neutralizing antibodies to AAV9 may
restrict the use of this type of therapy in a minority of SMA-affected individuals due to
the risk of rendering the viral vector ineffective [218,219]. Furthermore, gene transfer does
not permit dose cessation if a safety issue arises. In particular, onasemnogene-xioi has a
potential risk of serious liver complications, and requires monitoring of liver function prior
to and for at least 3 months after infusion [220]. Thrombocytopenia and elevated troponin-I
are also potential risks, requiring platelet counts and troponin-I levels to be monitored
before and after treatment [220]. Additionally, unlike antisense oligonucleotides that target
the endogenous SMN2 gene(s), AAV9 vectors do not have an inherent ceiling of SMN
upregulation. A final consideration should also be given to the potentially prohibitive
cost of onasemnogene-xioi—at $2.1 million for a single dose, this medication is currently
(January 2021) the world’s most expensive drug [221].
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8.3. Risdiplam: An Oral, Brain-Penetrant Small Molecule

The most recently approved therapy for SMA is EvrysdiTM (risdiplam), which is a
daily, orally bioavailable small molecule that is brain penetrant. Similar to nusinersen,
risdiplam is an SMN2 exon 7 splice modifier (Figure 4C). This molecule promotes exon 7
inclusion by binding to two sites in SMN2 pre-mRNA: the 5′ splice site (5′ss) of intron 7 and
the exonic splicing enhancer 2 (ESE2) of exon 7. This binding stabilizes a ribonucleoprotein
(RNP) complex that is critical to the specificity of this small molecule for SMN2 over other
genes [222]. Risdiplam has been approved by the FDA for all SMA patients 2 months or
older, and clinical trial results show significant improvement in motor function and SMN
levels, with the most notable benefits in younger patients [223–225]. Approximately 90% of
Type I SMA patients were alive after 12 months of treatment (and reached 15 months of age
or older), and none required permanent ventilation at 28 months of age [226]. Remarkably,
41% of treated Type I SMA infants achieved unsupported sitting for 5+ s [226]. Type II–III
SMA patients also experienced significant and sustained improvements in motor function
compared to placebo-treated controls after 12 months of risdiplam treatment [226].

Risdiplam has a list price of $340,000 per year for patients weighing 20+ kg, with the
price adjusted for patients under this weight limit. Risdiplam is an attractive competitor to
nusinersen and onasemnogene-xioi not just due to its lower price but also because of the
convenience of at-home administration, as risdiplam can be swallowed as a flavored liquid
or given in a feeding tube. Since a large percentage of SMA patients (particularly Type II
SMA) experience severe scoliosis (which can complicate or deter intrathecal administration),
patients, families, and health care providers may favor the use of an orally administered
drug. Additionally, this method of administration permits risdiplam to be bioavailable in
peripheral systems, in comparison to the limited ability of centrally administered treatments
to reach peripheral organs [227]. Bioavailability in the periphery may mitigate emergence of
potential secondary defects arising from SMN deficiency in peripheral tissues. More clinical
research is necessary to compare the short- and long-term tolerability, safety, effectiveness,
and peripheral distribution of risdiplam, nusinersen and onasemnogene-xioi therapies.

8.4. Cost–Benefit Considerations for Approved SMN-Based Therapies

While many American insurance companies have decided to cover SMN-based ther-
apies, some companies have implemented stricter guidelines for patient eligibility than
recommended by the FDA, such as age limitations or the requirement of symptom mani-
festation prior to treatment coverage [228]. These company-imposed restrictions are driven
by the high drug price tag. Additionally, outside the United States, widespread approval
for use of nusinersen as a therapy for SMA has been slow, primarily hampered by the high
drug price [229].

For example, a recent survey indicated that insurance approval is a critical barrier
to accessing nusinersen, especially among adult patients [230], as ~25% of respondents
declare insurance ineligibility as one the reasons for not currently receiving nusinersen
treatment. This self-reported barrier supports the notion that insurance-dictated eligibility
can limit or delay treatment. In particular, adults with SMA may have already experienced
significant motoneuron death, and additional delays in treatment may severely restrict any
therapeutic benefit of SMN-based therapy.

The high cost of these drugs does not include the additional and substantial medical
costs associated with treatment (including but not restricted to medical appointments and
follow ups, administration costs, income loss due to illness or time off work, and other “in-
visible” costs incurred by caregivers). One survey reports that, on average, patients and/or
caregivers drive 3.52 h (2 h median) to nusinersen administration centers [230], which
demonstrates that significant resources (such as time and/or vehicle access requirements)
are required to pursue treatment. These “invisible” costs are important to consider for
health care providers and SMA-affected individuals (including caregivers) when deciding
which treatment(s) to pursue.
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Comparing treatment costs across patient populations is not straightforward, as two
factors can influence the overall cost of medication. First, differences in dosing (single
versus multiple) will dictate medical cost, though this cost may be difficult to determine as
there is no recommended cessation of either risdiplam or nusinersen. Second, overall cost
is also dependent on when the individual starts receiving treatment. Despite these compli-
cations in determining cost–benefit outcomes, some analyses have been made assessing the
value of nusinersen and onasemnogene-xioi. A report released by the Institute for Clinical
and Economic Review comparing the quality-adjusted life-year (which compares drug
price tag to benefits in disease burden, assessing both quality and quantity of life) suggests
that the nusinersen list price should be discounted 10-fold, and the onasemnogene-xioi list
price should be discounted 2-fold [231,232]. At the time of these studies, risdiplam had
yet to be approved by the FDA and was thus not evaluated. Now, with risdiplam’s FDA
approval and its lower pricing, this drug may competitively drive drug costs lower for
nusinersen, onasemnogene-xioi, and future disease-modifying therapies.

9. The Quest for Additional SMA Therapies: SMN-Independent Therapeutics

SMN-based therapies remain at the forefront for SMA treatment strategies, but not
all patients receiving SMN-dependent medicine experience full symptomatic relief. Fur-
thermore, not all individuals with biallelic SMN1 mutations/deletions are eligible for
insurance coverage of genetically targeted therapies. The risk of potentially serious adverse
side effects has resulted in a debate about treating presymptomatic infants with four or
more copies of SMN2 [233,234]. However, individuals with four copies may still develop
motor dysfunction [235] and thus would benefit from SMN-based therapies. Nonetheless,
complex treatment decisions require parents to balance potential risks, cost, and acces-
sibility. Additionally, insurance companies may restrict eligibility for costly SMN-based
treatments, which may impact the decision of whether to treat presymptomatic individuals
with 4 SMN2 copies. Another SMA population that has been questioned for eligibility of
SMN-based treatment(s) is adults that have already experienced significant motoneuron
loss, who may not extensively benefit from SMN-based therapeutic approaches. For these
reasons, an extensive number of SMN-independent therapeutic strategies have been inves-
tigated, which target a wide range of affected cells to protect and improve function. Ideally,
these therapeutic strategies will be available to patients across the SMA spectrum and used
in tandem with SMN-dependent approaches.

9.1. Neuroprotective Strategies

Neuroprotective strategies encompass SMN-independent treatments that are targeted
to prevent dysfunction in motoneurons and associated circuitry. While several neuropro-
tective treatments have been previously attempted in other neurodegenerative diseases,
such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS),
relatively poor outcomes of clinical trials have limited widespread investigation of neuro-
protective agents for SMA. Neurodegeneration is a complex, multi-cellular process and,
consequently, targeting single cell pathways contributing to death or survival may not be
sufficient to halt or improve disease progression. Therefore, any employed neuroprotective
strategies would likely require complementary SMN-targeted treatments to derive benefits.

There are two neuroprotective agents that have been approved for use in other diseases
that have been tested for efficacy in SMA patients. Gabapentin, an anticonvulsant used
to treat neuropathic pain and restless leg syndrome, has been evaluated due to its ability
to decrease glutamate signaling and thus decrease excitotoxicity. However, two large
clinical trials composed of Type II–III SMA patients demonstrated minimal effects on motor
function [49,236,237]. Another drug, riluzole, has been used to treat ALS patients with
some benefits. ALS patients receiving this drug have lifespans extended by 2–3 months,
though with no benefit to motoneuron function. Use of riluzole in SMA animal models
appeared promising, where it was able to improve neuromuscular defects in a C. elegans
model [238], and lifespan and cytoskeletal organization in a mouse model [239]. However,
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a small clinical trial comprising 10 Type I SMA infants (7 riluzole-treated, 3 placebo-
treated) was cut short due to lack of improvement in motor milestones, though the small
cohort underpowered statistical assessment. A second clinical trial (Clinicaltrials.gov:
NCT00774423) evaluated the effects of 50 mg of riluzole in Type II–III SMA patients, which
has been shown to be a sufficient dose for pharmacokinetic exposure in younger SMA
patients [240]. However, results of this trial have yet to be published (as of December 2020).

One neuroprotective approach that has been evaluated in SMA animal models utilizes
enhancers or mimetics of neurotrophic factors. More than a dozen endogenous trophic
factors have been discovered to modulate motoneuron survival in vitro, including but not
limited to brain-derived neurotrophic factor (BDNF), neurotrophin-3, vascular endothelial
growth factor, glial cell-derived growth factor (GDNF), ciliary neurotrophic factor (CDNF),
agrin, and insulin-like growth factor-1 (IGF-1). Historically, BDNF, GDNF, and CDNF have
been extensively investigated to prevent motoneuron degeneration and improve motor
function [241–247]. However, much of the work in the SMA field has focused on IGF-1,
BDNF, and agrin.

Low levels of IGF-1 have been detected in severe SMA mouse models, which are
restored to normal levels upon correction of SMN levels [173,248]. Overexpression or
mimetic administration of IGF-1 to SMN∆7 mice improves lumbar motoneuron degenera-
tion, cardiac defects, skeletal myofiber size, and motor function, but has limited benefit to
survival [179,248–250]. Administration of AAV-driven IGF-1 into deep cerebellar nuclei of
intermediate SMA model mice improves motoneuron degeneration but has no effect on
neuromuscular pathology [251]. These studies indicate that IGF-1 may be a potential target
for neuroprotective approaches, but is likely to have restricted benefits if used without
complementary treatment(s).

The effects of BDNF have also been explored in developing motoneuron cultures and
SMA models. Through its mechanism of action on TrkB receptors, BDNF application aug-
ments calcium transients via increased Cav2.2 clustering, and improves F-actin assembly
and growth cone formation in motoneurons in vitro [252], suggesting that some of the
developmental defects seen in SMA model cultured motoneurons [145] and mice [253]
are consequences of reduced BDNF-mediated trophic support. SMN-regulated BDNF
expression has also been explored in SMA model NSC-34 motoneuron-like cells. Smn
deficiency results in the downregulation of the Akt signaling pathway [254], which is
regulated downstream by BDNF binding to TrkB [255]. Application of loganin (a neuro-
protective iridoid glycoside) to NSC-34 cells increased neurite length, cell viability, and
Smn expression, upregulated BDNF and activated the Akt pathway in these cells. Loganin
administration to SMN∆7 mice improved motor function and mildly improved lifespan,
and blockade of the IGF-1 receptor attenuated the protective effects of loganin [254].

The neural form of agrin (z+ agrin) is another trophic factor that is significantly
reduced in SMA model mice [256]. Administration of NT-1654, a cleavage-resistant splice
variant of z+ agrin with synaptogenic properties, significantly improved motor function
and neuromuscular pathology [257]. The mechanism(s) regulating the reduction in trophic
factors in SMN-deficient systems requires additional investigation, but nevertheless may
be therapeutic targets to improve the integrity of motor circuits.

Finally, the neuroprotective agent olesoxime, which has been shown to promote
neuronal survival in cultured cells deprived of trophic factors [258], demonstrated no
significant benefit to Type II–III SMA patients in the OLEOS clinical trials [259]. This further
supports the conclusion that neuroprotective strategies are unlikely to ameliorate motor
dysfunction when used alone, and thus require a combinational approach to maximize
therapeutic benefit.

9.2. Muscle-Directed Strategies

Given the intrinsic role of SMN in neuromuscular development, strategies that en-
hance muscle function have been extensively explored. One of the most investigated targets
with promising results in milder SMA mouse models or as a complementary treatment
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to severe SMA mouse models receiving SMN-based therapy has been the inhibition of
myostatin. Myostatin is a member of the transforming growth factor B superfamily, and is
predominantly synthesized and expressed in skeletal muscle. Myostatin acts as an endoge-
nous negative regulator of skeletal muscle growth and size [260–262], and is neutralized by
the autocrine glycoprotein follistatin and myostatin propeptide [263]. Studies evaluating
the benefits of recombinant follistatin administration to SMN∆7 mice observed improve-
ments in lifespan, motor function, and motoneuron death [264]. However, studies directly
inactivating myostatin in SMN∆7 mice did not significantly ameliorate motor function,
fiber size, or survival [265,266], likely due to the rapid disease progression in this mouse
model. Nonetheless, myostatin inhibition may still provide therapeutic benefit in milder
forms of the disorder and when provided in combination with SMN-based genetic thera-
pies: one study evaluating AAV-driven myostatin inhibition in SMN∆7 mice treated with
SMN-based ASOs observed improvements in weight gain, motor function and endurance,
survival, proprioceptive synapses onto motoneurons, as well as mitigated neuromuscular
pathology [267]. Another study evaluating myostatin inhibition in mild SMA model mice
(generated by treatment with a suboptimal dose of an SMN2-splicing modifier) demon-
strated efficacy in late disease stages [268]. Myostatin is the therapeutic target for SRK-015,
which is a monoclonal antibody that blocks the activation of the latent form of myostatin
rather than inhibiting the mature myostatin form or blocking its receptor [269]. Preclinical
studies in a pharmacologically induced SMA mouse model have shown that both early and
late administration of muSRK-015P (a suboptimal variant of SRK-015) increases muscle
mass and motor function [270]. A clinical trial is underway assessing the benefits of intra-
venously administered SRK-015 for Type II–III patients (Clinicaltrials.gov, NCT03921528),
primarily for use as a complement to SMN-based therapy. This treatment is one of the first
muscle-directed therapies to improve muscle atrophy in SMA mouse models of varying
disease severity.

Another muscle-centric approach utilizes fast skeletal muscle troponin activators.
Troponin complexes regulate contraction in skeletal and cardiac muscles. Fast skeletal tro-
ponin activators increase calcium affinity of the troponin-tropomyosin regulatory complex,
which results in the sensitization of the sarcomere to calcium concentrations and improves
skeletal muscle contractility and muscle performance. Force–calcium and force–frequency
relationships are shifted leftward by troponin activation. Thus, increased contractility
is observed even with inadequate neural signaling because these activators amplify the
response of the muscle to submaximal nerve stimulation [271]. Reldesemtiv (CK-2127107),
a second-generation fast skeletal troponin activator, has been shown to increase force
production by the tibialis anterior upon transcutaneous deep fibular nerve stimulation in
healthy adults [272]. Combinatorial treatment of Taiwanese SMA model mice with SMN-
based genetic therapeutics and reldesemtiv enhanced the force produced by in vivo plantar
flexion more than either SMN upregulator alone [273,274]; however, these preclinical data
are currently unpublished. Clinical trials for Reldesemtiv have completed phase 2 of clinical
trials (Clinicaltrials.gov, NCT02644668), but a literature summary of results have not yet
been published (as of December 2020).

9.3. Drugs Targeting Neuromuscular Function

Despite our superficial understanding of the mechanisms regulating NMJ breakdown,
a large and reproducible body of evidence supports the notion that neuromuscular junc-
tions undoubtedly contribute to the disease pathogenesis in SMA. Reduced neuromuscular
transmission and increased NMJ failure is characteristic of the SMA phenotype and has
led to the testing of drugs that improve neuromuscular communication. However, few
drugs have provided symptomatic relief for SMA patients. Pyridostigmine, an acetyl-
cholinesterase inhibiter canonically prescribed to patients with myasthenia gravis, was
reported to increase stamina in 2 of 4 Type II–III SMA patients [275]. Though limited, this
positive finding supported the evaluation of pyridostigmine in a clinical trial comprised of
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patients with Type II–IV SMA living in the Netherlands (Clinicaltrials.gov: NCT02941328).
While the trial was completed in 2018, results have yet to be published (as of January 2021).

Similarly, the voltage-gated potassium channel antagonist 3,4-diaminopyridine (3,4-
DAP) is also undergoing two clinical trials for patients with Type III SMA (Clinicaltrials.
gov: NCT03781479, NCT03819660). 3,4-DAP is canonically prescribed to patients with
Lambert-Eaton myasthenic syndrome (LEMS), which is a neuromuscular disorder similarly
characterized by a reduction in presynaptic calcium influx and reduced neurotransmitter
release. However, dose-dependent side effects of 3,4-DAP (caused by blood–brain barrier
penetration) limit symptomatic relief in patients with LEMS, so it is possible that patients
with SMA will similarly experience limited benefits with 3,4-DAP. Another similar voltage-
gated potassium channel-blocking drug being tested in clinical trials is 4-aminopyridine
(4-AP; Clinicaltrials.gov: NCT01645787). 4-AP has traditionally been used to treat patients
with multiple sclerosis due to its more efficacious penetrance of the blood–brain barrier
compared to 3,4-DAP; however, similar to 3,4-DAP, 4-AP has dose-dependent side effects
that restrict the use of an optimal dosage for motoneuron function. Results from these
clinical trials have also not yet been published [49]. Similar to other SMN-independent
approaches discussed in this review, these neuromuscular-targeted medications are unlikely
to immensely benefit SMA patients when used as a stand-alone therapy. In particular,
these drug interventions occur after the critical period of neurotransmission-regulated NMJ
development, and thus are unlikely to reverse established neuromuscular defects [276].
However, if neuromuscular-targeted medicines are utilized during the critical period of
NMJ development, they may provide long-term and substantial therapeutic benefits, as
described below.

One recent investigation by Tejero et al. (2020) [253] investigated the effect of (R)-
Roscovitine, a cdk-5 inhibitor with positive allosteric effects on voltage-gated calcium
channels (Cav2.1-Cav2.2), on SMA pathology during motoneuron development. Applica-
tion of (R)-Roscovitine to SMA motoneuron cultures increased Cav2.2 channel clustering,
spontaneous calcium transients, elongated axons, and improved neurotransmission [253].
Axonal elongation was similar when motoneuron cultures were exposed to a derivative of
(R)-Roscovitine, GV-58, which is a molecule with more potent Cav2.1-2.2 effects and no
significant cdk activity at physiological ATP levels [277]. Additionally, systemic administra-
tion of (R)-Roscovitine to pregnant dams (E11.5-17.5) significantly increased the lifespan of
SMN∆7 mice. This lifespan benefit was independent of effects on cdks, as (S)-Roscovitine
(which lacks Cav2 activity but retains cdk-5 inhibition) did not improve lifespan [253].

Another preclinical study evaluated the effect of GV-58 alone, or in combination with
3,4-DAP, which has been shown to synergistically increase neuromuscular transmission
in Lambert Eaton myasthenic syndrome-affected NMJs [278]. The use of both GV-58 with
3,4-DAP restored neuromuscular transmission to control levels in ex vivo neuromuscular
junctions in SMN∆7 mice, but GV-58 alone was sufficient if the mice had been treated with
ISS-N1 ASOs at birth. Similar results were observed in vivo, when measuring changes in
muscle strength after an acute subcutaneous administration of GV-58 and 3,4-DAP to P10
SMN∆7 pups. Untreated SMN∆7 mice maximally benefited from the combination of GV-58
and 3,4-DAP, while ASO-treated SMN∆7 mice maximally benefitted from GV-58 alone
(with no additive benefit of 3,4-DAP) [279,280]. Results from these studies suggest that
targeting calcium homeostasis in developing motor nerve terminals may remarkably alter
neuromuscular dysfunction and enhance motor ability, and can be used to complement
SMN-dependent approaches.

9.4. Endogenous SMN-Independent Protective Modifiers

An attractive target for additive therapies includes endogenous disease modifiers, but
the last decade of research has produced controversial and perplexing observations. Family
studies indicate that the SMN2 gene is the main modifier of the SMA phenotype, where
more SMN2 copies equate to a milder phenotype, but this observation is not absolute,
and other modifiers exist both within and outside of the SMN2 region [9,11,12,281–296].

Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
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Transcriptome-wide differential expression analysis of genes from SMA-discordant fam-
ilies have elucidated endogenous protective modifiers of the SMA phenotype in some
individuals, but these modifiers are not ubiquitously associated with phenotypic improve-
ment across all SMA patients [282,294,297] Curiously, several of these putative modifiers
function by sensing or regulating calcium. These positive modifiers include plastin 3
(PLS3) [80,290,298], neurocalcin delta (NCALD) [299], and calcineurin-like EF-hand protein
1 (CHP1) [300].

Some have proposed that the downregulation of the neurocalcin delta (NCALD)
gene is a protective modifier of the SMA phenotype. NCALD functions as a neuronal
calcium sensor to negatively regulate endocytosis. Heterozygous knockdown of NCALD
improves endocytosis in fibroblasts derived from SMA patients. Knockdown also improves
axon elongation and NMJ size in severe and mild SMA model mice, and accelerates
neuromuscular maturation and improves motor function in intermediate SMA model mice.
Additionally, suppression of NCALD improves proprioceptive contacts onto motoneuron
somas [299]. A dual approach to treating SMA has been evaluated by combining SMN-
increasing ASOs and NCALD-reducing ASOs in severe SMA model mice. Compound
muscle action potentials, motor unit numbers, muscle fiber size, and grip strength were
preserved when these two treatments were combined, compared to the use of SMN-ASOs
alone [301]. Whether the endocytosis alterations (and thus ASO uptake into cells) resultant
from NCALD downregulation contributes to the phenotypic improvement is unclear,
however. In contrast to these positive modifying results, one investigation observed no
association of NCALD and phenotypic modification unless multiple mutations of NCALD
coincided to possibly create a cryptic splice site [294]. Thus, it is possible that NCALD-
regulated modification is not widely applicable to most SMA-affected individuals with
discordant phenotypes to SMN2 copy numbers.

PLS3 was the first reported positive modifier of the SMA phenotype, and was found
to be highly upregulated in differentiated motoneurons obtained from fibroblasts of dis-
cordant siblings [290]. This report found that high levels of PLS3 protected individuals
with 3–4 copies of SMN2 from SMA onset even in the presence of biallelic SMN1 dele-
tion [290]. However, other studies debate the applicability of PLS3 protection across a
large patient population. One recent publication utilized next-generation sequencing to
evaluate PLS3 variants and found no correlation of PLS3 variants and phenotype, suggest-
ing that PLS3-driven phenotypic modification may only occur in a small population of
patients [297].

PLS3 is located on chromosome Xq23 and is a calcium-dependent F-actin-bundling
protein that modulates the cytoskeleton, axonal growth and migration, vesicle traffick-
ing, endocytosis, and regulates the ratio of G-actin to F-actin [302–305]. One study ob-
served that overexpression of PLS3 improved the survival of mild and severe SMA model
mice [298,302,306], while overexpression in SMN-deficient motoneurons and SMA mor-
pholino zebrafish restored axonal growth and motor function [290,302,307]. It is noteworthy
to repeat, however, that axon growth defects are not observed in SMA model mice [146,147]
and thus putative modifiers likely do not alter axonal growth in humans. At the level of
the spinal cord, PLS3 overexpression increased motoneuron soma size and the number
of proprioceptive synapses in SMA model mice [80]. At the NMJ, PLS3 upregulation
corresponded with augmented neurotransmission [80], restored endplate and muscle fiber
size, improved vesicle trafficking and nerve terminal accumulation, restored endocytosis
and actin dynamics, and increased the number of terminal active zones of SMA model
mice and zebrafish [80,298,307]. Additionally, PLS3 was found to stabilize synaptic inner-
vation, resulting in delayed axonal pruning in NMJs of SMA mice [80], thus improving
the weakened nerve–muscle connection characteristic of SMA. Additionally, a study per-
formed by Alrafiah et al. (2018) also observed reduced axonal defects in PLS3-upregulated
motoneuron cultures, as well as improvements in lifespan of SMN∆7 mice after PLS3
upregulation, although they did not observe sustained improvement in weight gain [302].
In contrast to these variable but positive benefits, however, an investigation by McGovern
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et al. (2015) observed no benefit to neuromuscular function, weight, lifespan or pheno-
type after PLS3 upregulation in SMN∆7 mice [308]; Bowerman et al. (2009) also did not
observe phenotypic improvement associated with elevated PLS3 levels [81]. Interestingly,
Kaifer et al. (2017) observed benefits of PLS3 upregulation in mild SMA mouse models
but not in severe SMN∆7 mice [306]. The debate regarding PLS3 as a protective modifier
remains unresolved, and further studies are required to understand which mechanism(s)
or pathway(s) associated with PLS3 may modify the SMA phenotype.

PLS3 has several binding partners, one of which is the calcineurin inhibitor CHP1.
CHP1 dephosphorylates proteins involved with calcineurin phosphatase activity and has
elevated expression in SMA model mice. Knockdown of CHP1 restored axonal growth
in Smn-depleted NCS34 motoneuron-like cells, SMA model zebrafish, and primary SMA
model mouse motoneuron cultures [300]. In SMA model mice treated with SMN-based
ASOs, CHP1 reduction prolonged survival, improved electrophysiological defects, NMJ
growth and maturation, and muscle fiber size in comparison to the effects of ASOs alone.
In addition to CHP1, PLS3 also binds to coronin-1C (a protein encoded by the CORO1C
gene) in a calcium-dependent manner to mediate endocytosis and actin dynamics [298].
This evidence suggests that actin dynamics in motoneurons is a calcium-dependent process
that strongly modulates disease pathogenesis by increasing neuromuscular function and
stabilizing motoneuron circuitry.

9.5. Physical Therapy Strategies

The benefits of exercise have been evaluated in SMA model mice and SMA-affected
individuals. In intermediate SMA model mice, elevated levels of full-length Smn have
been observed after either acute or chronic exercise [309,310]. Chronic exercise signifi-
cantly improved motoneuron maturation and soma loss in the lumbar spinal cord [311]
and extended lifespan [310], suggesting that exercise can mitigate pathology and disease
progression. Elevated levels of IGF-1 have been observed after exercise in SMA mice,
potentially providing neuroprotective support through a trophic action rather than through
muscle size improvement [312]. However, these trophic and SMN upregulation benefits
were not observed in Type II patients performing arm cycling exercises [313]. Other studies
evaluating the benefits of physical exercise in mild SMA model mice found improvements
in glucose homeostasis, oxygen consumption, and muscle mitochondria function [314],
especially when the exercise was high intensity. Chronic exercise in these mice improved
muscle fatigue, neuromuscular excitability, and increased the resistance of muscles to
damage [315].

Evaluation of exercise in patients has been primarily reported on Type II–III SMA
patients not receiving SMN-based therapies. Rehabilitative interventions for SMA-affected
individuals include physical therapy, strengthening and balance exercises, aquatic therapy,
and physical activity. Most published reports on the benefits of exercise have been indi-
vidual case studies [316], although some clinical trials have been initiated. For example,
cycle ergometer training in Type III SMA patients has been demonstrated to improve oxida-
tive capacity but induces significant fatigue [317]. Other programs have utilized at-home
strength and aerobic exercise trainings to improve motor function, strength, fatigue, and
cardiovascular fitness in patients. Benefits of these exercises (in particular, aerobic exercise)
have been difficult to assess due to a high drop-out rate [318]. However, exercise through
sport activity has been shown to significantly improve self-esteem and identity, reduce
depression, and result in a greater quality of life for patients with neuromuscular disorders,
including SMA-affected individuals [319]. With new FDA-approved SMN-based therapies
improving the ability of SMA-affected individuals to participate in activity that demands
endurance, strength, and motor skills, exercise may be an excellent, low-cost and accessible
method to improve the negative psychological and emotional aspects of SMA.
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9.6. Biomedical Devices

Advances in biomedical devices have shown that some SMA-affected individuals may
benefit from use of orthoses (externally applied devices designed to improve muscular
function), such as robotic exoskeletons. These devices improve quality of life for peo-
ple with muscular diseases [320–324], including SMA. One study demonstrated positive
effects on range of motion and performance of daily living activities of SMA-affected
individuals [322]. Orthotic-assisted enhancement of motor function correlated with higher
self-esteem, increased participation in school, and more social interaction [322], which
result in a better quality of life. Another biomedical device, the robotic stretcher, leverages
the retained function of limited digit movements to improve the operation of a motorized
wheelchair, thus bettering independent maneuvering [325]. These devices have the abil-
ity to improve motor function for individuals who either do not experience significant
improvement of motor function through other therapeutic means or are unable to utilize
other treatments due to established weakness or paralysis, or due to lack of access. It will
be interesting to see how these devices might further benefit the SMA population when
used in conjunction with SMN-based genetic therapies.

10. Future Directions for SMA Therapies

The long-term success of SMA therapy depends on the extent of improvement and
permanency of recovery. For most individuals, the best therapy to salvage motor function
and lifespan will be SMN dependent. This conclusion is supported by compelling and
vast evidence from animal models and patients demonstrating that SMN is crucial for
motoneurons, and that restoration of SMN at any time point can provide (albeit sometimes
limited) benefits to motor function. Current FDA-approved therapies for SMA (nusinersen,
onasemnogene-xioi, and risdiplam) do not fully rescue motor impairment or develop-
ment for all patients, particularly those who have only one copy of SMN2 or receive
postsymptomatic treatment. Additionally, patients who are either ineligible for, or do not
receive, SMN-based treatment (due to cost, availability, access, or condition) will require
SMN-independent strategies to improve quality of life through better motor function.

Muscle strength and endurance (and consequently motor skill) are driven by neu-
romuscular activity. Motor skills permit the performance of activities required for daily
living, including wheelchair mobility, daily tasks such as food preparation or hygienic
practices, and the use of a keyboard and mouse. The ability to perform these activities
would provide meaningful clinical improvement to patients and their caregivers [35,38].
SMN-based therapy is a remarkable start to improving motor function, but patients that
respond suboptimally to treatment would benefit from complementary, SMN-independent
medicine to further improve motor skills.

Finding a Cure through Complementary Treatment: NMJs Are Crucial Targets

Numerous reports demonstrate that NMJ instability is a crucial component of SMA
pathogenesis [85,122,135,143,145,147,253,257,326,327], and evidence suggests that neuro-
muscular weakness persists after SMN-based treatment [46,279,280,327–330]. The potential
discovery of SMA phenotypic modifiers further support the notion that the protection
of NMJs can significantly modify disease progression [290,299,300]. Additionally, embry-
onic intervention to protect developing NMJs can improve the postnatal phenotype [253],
suggesting that perinatal development is a critical window for optimal therapeutic benefit.

There remains a gap in effective SMA therapies that directly protect neuromuscular
function despite the potential to drastically improve patient fatigue, independence, and
quality of life [38]. For patients who receive suboptimal motor benefits from SMN-based
medicines, protecting and improving neuromuscular function will be critical. One of
the populations most vulnerable to persistent NMJ dysfunction after SMN-dependent
treatments are adult SMA patients, as it is likely that some motoneuron loss has already
occurred by the time SMN-based treatment is initiated.
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One recent study that supports the need for NMJ-targeted treatment evaluated neuro-
muscular function after nusinersen treatment of adult SMA patients. Arnold and colleagues
utilized repetitive nerve stimulation (3 Hz) and measured compound muscle action po-
tential (CMAP) decrement to determine neuromuscular function. The investigators found
that a large proportion of ambulatory and non-ambulatory adult SMA patients had im-
proved CMAP amplitudes after 10–14 months of nusinersen treatment, but maintained
a CMAP decrement (>10% at 3 Hz) upon repetitive nerve stimulation [330], indicating
that neuromuscular transmission defects persist after nusinersen treatment. Additionally,
the investigators observed a correlation between CMAP decrement and motor function
(measured using 6 min walk test and fatigue, elbow extension/flexion, shoulder abduc-
tion and revised upper limb module). These data suggest that neuromuscular defects in
adult SMA patients constitute a secondary pathology that is not improved by SMN-based
strategies. One possible explanation for this observation is that neuromuscular denervation
persists after SMN restoration but can be compensated for by collateral sprouting. Addi-
tionally, the investigators did not observe a correlation between CMAP decrement and
disease severity (ambulatory or non-ambulatory function), duration of disease (years since
symptom onset), or patient age [330]. Thus, individual differences in NMJ transmission
may be an SMN-independent modifier of disease phenotype [330]. Understanding the
mechanisms underlying neuromuscular dysfunction will be crucial for restoring motor
ability and strength in patients receiving SMN-based therapy.

Similar results investigating neuromuscular pathology before and after ISS-N1 ASO
treatment have also been observed in SMN∆7 mice. One study noted a similar persistence
of CMAP decrement (measured during adulthood) after P4 ASO treatment in SMN∆7
mice [330]. Another study demonstrated that P0-1 ASO treatment of SMN∆7 mice did not
restore neuromuscular transmission in a highly vulnerable muscle (transverse abdominis).
Furthermore, the investigators also observed that increased presynaptic transmitter release
(via drug-induced augmented calcium influx into motor nerve terminals) in vivo resulted
in greater in vivo muscle strength in SMN∆7 mice [279,280], further supporting the notion
that neuromuscular transmission correlates with motor function in SMA. Together, these
studies indicate that established neuromuscular pathology is unlikely to be reversed by
SMN-based medicine and thus complementary therapies are needed to optimally stabilize
and strengthen neuromuscular connections and thus maximize motor ability. This goal
might be achieved by use of drugs that increase presynaptic neurotransmitter release, alter
postsynaptic excitability, and/or enhance response to neurotransmitter, which can increase
neurotrophic support [331] as well as increase the number of NMJs firing for a particular
stimulus rate and consequently induce stronger muscle contractions.

As individuals receiving SMN-based therapy(s) progress past natural disorder out-
comes, new insight will potentially reveal previously obfuscated or residual pathologies
that require targeted treatments to improve quality of life. In order to develop a therapeutic
cure for SMA, complementary SMN-dependent and -independent treatment strategies are
necessary to address all aspects of SMA pathology to improve quality of life across the
lifespan of SMA-affected individuals.
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