
Secure, Reliable, and Energy-efficient Phase Change Main Memory

by

Stephen Longofono

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2021

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

Stephen Longofono

It was defended on

July 1, 2021

and approved by

Jingtong Hu, Ph.D., Assistant Professor, Dept. of Electrical and Computer Engineering

Feng Xiong, Ph.D., Assistant Professor, Dept. of Electrical and Computer Engineering

Alex K. Jones, Ph.D., Professor, Dept. of Electrical and Computer Engineering

ii

Copyright © by Stephen Longofono

2021

iii

Secure, Reliable, and Energy-efficient Phase Change Main Memory

Stephen Longofono, M.S.

University of Pittsburgh, 2021

Recent trends in supercomputing, shared cloud computing, and “big data” applications

are placing ever-greater demands on computing systems and their memories. Such applica-

tions can readily saturate memory bandwidth, and often operate on a working set which ex-

ceeds the capacity of modern DRAM packages. Unfortunately, this demand is not matched

by DRAM technology development. As Moore’s Law slows and Dennard Scaling stops,

further density improvements in DRAM and the underlying semiconductor devices are dif-

ficult [1]. In anticipation of this limitation, researchers have pursued emerging memory

technologies that promise higher density than conventional DRAM devices. One such tech-

nology in phase-change memory (PCM) is especially desirable due to its increased density

relative to DRAM. However, this nascent memory has outstanding challenges to overcome

before it is viable as a DRAM replacement. PCM devices have limited write endurance,

and can consume more energy than their DRAM counterparts, necessitating careful control

of how and how often they are written. A second challenge is the non-volatile nature of

PCM devices; many applications rely on the volatility of DRAM to protect security critical

applications and operating system address space between accesses and power cycles. An

obvious solution is to encrypt the memory, but the effective randomization of data is at odds

with techniques which reduce writes to the underlying memory. This body of work presents

three contributions for addressing all challenges simultaneously under the assumption that

encryption is required. Using an encryption and encoding technique called CASTLE &

TOWERs, PCM can be employed as main memory with up to 30× improvement in device

lifetime while opportunistically reducing dynamic energy. A second technique called MACE

marries encoding and traditional error-correction schemes providing up to 2.6× improvement

in device lifetime alongside a whole-lifetime energy evaluation framework to guide system

design. Finally, an architecture called WINDU is presented which supports the application

of encoding for an emerging encryption standard with an eye on energy efficiency. Together,

iv

these techniques advance the state-of-the-art, and offer a significant step toward the adoption

of PCM as a main memory.

v

Table of Contents

1.0 Introduction . 1

1.1 Contributions & Acknowledgements . 2

2.0 Background . 3

2.1 Phase Change Memory . 3

2.2 Error Correction Techniques . 5

2.3 Coset Encoding . 7

2.4 AES-Based Encryption . 9

2.4.1 AES in Galois-Counter-Mode . 12

2.4.2 The AES-XTS Encryption Algorithm 14

3.0 CASTLE & TOWERs . 17

3.1 CASTLE Counter-mode Encryption . 17

3.2 TOWERs . 20

3.2.1 Compression & Encoding of Encrypted Data 21

3.2.2 Multi-objective Coset Encoding . 23

3.3 Experimental Setup for CASTLE & TOWERs 26

3.4 Results . 30

3.4.1 CASTLE Study . 31

3.4.2 Coset Size Study . 33

3.4.3 Compressibility Study . 33

3.4.4 TOWER Multi-Objective Optimization 34

3.4.5 Lifetime Study . 37

3.4.6 Performance Study . 39

4.0 MACE WINDU . 42

4.1 MACE Encoding . 42

4.2 WINDU Architecture . 44

4.3 LARS Sustainability Analysis . 47

vi

4.4 Experimental Setup for MACE WINDU . 48

4.5 Results . 49

4.5.1 Compressibility and Coset Cardinality 49

4.5.2 Reliability and Lifetime . 50

4.5.3 Energy and Endurance . 51

4.5.4 Performance Impact . 52

4.5.5 LARS Whole-lifetime Energy Analysis 52

5.0 Conclusion & Future Work . 56

Bibliography . 59

vii

List of Tables

1 SPEC2017 benchmarks used to generate memory traces 26

2 Architecture parameters for performance study. 30

viii

List of Figures

1 A typical PCM cell design and its operation. 4

2 The four transformation steps used in each round of AES encryption. 10

3 AES Electronic Code Book mode. 11

4 AES Cipher Block Chain mode. 11

5 AES Galois counter-mode. 12

6 Counter-mode encryption diagram . 13

7 Example of XTS for block cipher encryption. 15

8 CASTLE fault example . 18

9 Block level CASTLE architecture. 19

10 TOWERs Flow Example . 21

11 Cell fault rate for different coefficients of variation. 29

12 CASTLE UBER . 31

13 CASTLE counter advances . 32

14 Coset size sweep . 34

15 Compressibility of SPEC2017 benchmarks . 34

16 Multi-objective optimization results . 35

17 Energy as PCM scales . 36

18 UBER using TOWERs and ECP-3 . 37

19 CASTLE & TOWERs lifetime . 38

20 Lifetime sensitivity study . 39

21 CASTLE & TOWERs IPC . 40

22 IPC scaling . 41

23 The MACE concept . 43

24 The WINDU concept . 45

25 MACE WINDU lifetime results . 50

26 MACE energy improvement . 51

ix

27 MACE WINDU IPC . 53

28 GreenChip analysis of MACE WINDU . 53

29 LARS analysis of MACE WINDU . 54

x

1.0 Introduction

The demands of “big-data” applications and the limitations of DRAM scaling necessi-

tate the development of denser emerging memory technologies to meet the needs of modern

computational workloads [2, 1, 3]. The first devices employing PCM are already coming

to market, signaling industry adoption and improving process development for large-scale

fabrication. PCM is the most promising replacement for DRAM, given its recent commer-

cial debut in a tiered memory behind conventional DRAM in the Intel Optane Intel Optane

Persistent Memory [4]. This combination of DRAM and PCM in the form of 3D X-Point

memory [5] bridges the gap between a purely PCM and a purely DRAM main memory to

benefit database, big-data analytics, content delivery, and virtual machine infrastructure ap-

plications. In addition to presenting a larger working set to such applications, the addition

of non-volatile memory in tiered systems allows more rapid reboot for servers and databases,

improving response time and performance across power cycles and outage events. However,

several challenges to its adoption as a main memory previously identified in the literature

remain unsolved—PCM devices have limited write endurance, an asymmetric and relatively

higher write energy compared to their DRAM counterparts. In the context of a shared com-

puting environment, the added constraint of data confidentiality defeats techniques designed

to reduce energy and exasperates cell wear. These issues persist in the Optane memory

modules, as evidenced by the reported per-cell endurance of circa 106 writes and the use

of AES-XTS encryption to protect private data across power cycles [4, 6]. While it can be

expected that the fabrication process will improve reliability and energy consumption with

later generations of the technology, these fundamental constraints of cell endurance and data

security must be addressed within the memory architecture.

1

1.1 Contributions & Acknowledgements

My work to date has focused on designs which can be implemented at the memory con-

troller level to reduce writes, mitigate wear-related faults, and opportunistically improve

dynamic energy in PCM devices. The contributions of this thesis address all of the above,

under the additional constraint that the memory be encrypted. Portions of this work repro-

duce text and images from my publications “A CASTLE with TOWERs for Reliable, Secure

PCM” [7], ©2020 IEEE, and “Toward Secure, Reliable, and Energy Efficient Phase-change

Main Memory with MACE” [8], ©2019 IEEE. Specifically, in this thesis I highlight my

contributions to these works:

• TOWERs, the first technique to combine compression and the Advanced Encryption

Standard (AES) [9] counter-mode encryption in order to find an optimal encoding for

data written to endurance-limited memory cells.

• MACE, a combination of encoding and traditional error-correction schemes to improve

overall memory lifetime in the context of AES-XTS encryption.

• WINDU, an architecture which supports encoding techniques such as MACE applied in

the context of AES-XTS encryption using lightweight compression to reduce overhead.

• LARS, a framework for evaluating the whole-life energy impact of systems using en-

durance limited memories, in collaboration with my co-author Donald Kline Jr.

The remainder of this thesis is organized as follows: In the following Chapter 2, I pro-

vide the necessary background material on PCM technology and its characteristics, error

correction schemes for conventional and emerging memories, encoding techniques and their

application to memory, encryption schemes based on the AES algorithm, and the pitfalls of

combining encryption with encoding. Chapter 3 discusses the CASTLE & TOWERs tech-

nique, our simulation framework, our experimental methodology, and the associated results.

Chapter 4 discusses the MACE and WINDU techniques, our simulation framework, our ex-

perimental methodology, and the associated results. Finally, Chapter 5 presents as summary

of these works and my contribution to the state-of-the-art, alongside directions of study for

future work.

2

2.0 Background

Endurance limited memories like PCM inevitably encounter endurance faults as their

cells approach their nominal lifetime in writes. Beyond basic wear-leveling, various existing

techniques developed for error correction and encoding on data channels have been applied

to PCM to mitigate these faults. In this chapter, I discuss the relevant characteristics of

PCM and its failure modes, alongside existing techniques which have been used to correct

errors (transient or otherwise) in conventional memory technologies. Following a discus-

sion of encoding, I present the basic operation of the AES algorithm, and its extensions in

Galois-Counter-Mode and AES-XTS. Finally, I present the repercussions of combining error

correction and encoding with encryption, motivating the need for techniques which account

for both.

2.1 Phase Change Memory

PCM is a resistive memory which encodes data in the phase of the material which com-

poses a PCM cell. Chalcogenides like Ge2Sb2Te5 exhibit a relatively high resistance when

in an amorphous phase, and a relatively low resistance when in a crystalline lattice phase.

Thus an access circuit may interpret the higher resistance phase as logical ‘0’ (RESET) and

the lower resistance phase as logical ‘1’ (SET). Figure 1a depicts a typical PCM cell design,

wherein the phase change material is embedded in a substrate and is manipulated via a

heater and a pair of conducting electrodes. When the potential across the electrodes exceeds

a switching threshold (determined by the choice of phase-change material), increased current

flows through the cell and induces Joule heating. When the cell exceeds its melting tempera-

ture (circa 600o C) it enters its amorphous state, where it can be held by abruptly removing

the potential across the cell. This programs the cell to its RESET state, as indicated by the

red pulse in Figure 1b. At the lower crystallization temperature range (circa 100-300o C),

the cell material tends to relax over time into a regular crystalline lattice. In practice, this

3

is achieved by applying a longer, lower-current SET pulse as depicted in blue in Figure 1b.

This interaction of time-under-temperature is an important area of research, since PCM cells

have been observed “drifting” toward the crystalline phase in practice at temperatures below

the crystallization temperature [10]. Some architecture designs target the drifting problem

specifically [11], but in general we must rely on error correction mechanisms to identify and

mitigate spurious phase change.

(a) Typical PCM cell architecture. (b) Programming a PCM cell.

Figure 1: A typical PCM cell design and its operation.

The choice of PCM material and cell design is another subject of much research, as it

impacts drifting, the speed of state changes, and the overall endurance of individual cells [12].

Novel cell and substrate designs target reduced thermal conductivity [13], and improved

switching characteristics [14], which support the scaling and performance goals required

to replace DRAM in the long term. However, the inherent limitation on cell endurance

persists—individual PCM cells can only be written circa 108 times before failing to reliably

switch.

A seminal study of PCM reliability classified two permanent failure modes: a failure

which results in permanent low-resistance state (SET failure) and a failure which results

in permanent high-resistance state (RESET failure) [15]. The former is characterized by

a cell remaining in the low-resistance crystalline state in spite of prolonged programming

pulses above the switching threshold, indicating that the switching threshold was no longer

4

permitting adequate current to melt the PCM material. Cells in this state exhibited depletion

of Ge and enrichment of Se near the heater element. This “phase-segregation” and field-

induced ion migration are indicated as the underlying causes of the SET failure mode [15, 16].

The second fault mode, RESET failure, is characterized by permanent high-resistance across

a PCM cell. Physical inspection of such cells reveals a physical separation (void) at the

interface of the heater and the phase change material, inhibiting current flow through the

cell and exhibiting a higher resistance than both SET and RESET states [15]. Both fault

modes become more common as cells age, commonly measured by the number of writes to

individual cells. Prototypes in the literature range report a nominal endurance of 104-1012

writes depending on the material, feature size, and operating conditions, with the most

recent commercially available devices rated to 106 writes [4].

The consensus among PCM reliability studies to date is that the extrema of tempera-

ture accelerates cell wear toward failure, especially the melting temperature applied during

a RESET operation. Programming PCM cells requires more time compared to DRAM, rep-

resenting a longer period of energy transfer to any given cell [17]. With improved process,

scaling, and more efficient cell designs, the overall time and energy required to program PCM

cells should reduce [14]. In the interim, reducing the writes and in turn energy transfer to

the cells can simultaneously improve the efficiency and lifetime of PCM devices. When cells

inevitably do fail, we must rely on error detection and correction techniques to prolong the

useful lifetime of memories built with PCM.

2.2 Error Correction Techniques

Error correction techniques are widely applied in noisy and unreliable channels to iden-

tify and correct spurious changes in the data. Most of these techniques were developed to

address transient faults in memories and communication channels, although they can obvi-

ously be applied to permanent or otherwise persistent faults in non-volatile memories. The

most ubiquitous class of error correction techniques are called error correcting codes (ECC),

which compute parity information on a message, and the concatenation of the message and

5

its parity form a code word. Modern storage devices typically employ Single-error-correction,

double-error-detection (SECDED) codes which are based on the overlapping parity set tech-

niques of Hamming codes [18]. A typical SECDED codeword consists of 64 data bits plus

eight bits of parity information to match the word size of conventional processors. As the

name implies, SECDED is capable of correcting a single bit in error, or detect (but not

locate) two bits in error per 72-bit codeword. Especially for non-volatile memories like hard

disks and flash, more sophisticated parity encoding schemes have been developed which

correct more bits per correction block, including Reed-Solomon codes [19], Bose-Chaudhuri-

Hocquenghem codes [20], and Low-density parity codes [21]. All of the above use more

complex representations of the underlying message in polynomials, enhancing the correction

capabilities at the expense of encoding latency and auxiliary storage associated with storing

parity information. Collectively, I will refer to this class of schemes for the remainder of this

text by ECCN, denoting an Error Correcting Code which can correct up to N bits in error

per correction block. In the context of DRAM and main memory, ECC1 (SECDED Ham-

ming codes) is the gold standard for comparison—commodity DRAM designs which provide

ECC already include additional capacity to store parity information, thus ECC1 correction

capability and overhead are a natural benchmark for error correction techniques.

Pointer-based error correction techniques leverage the same auxiliary capacity to instead

store replacement bits for persistent faults in the correction block, alongside a pointer to the

bit address of the faulty location within that block. Error Correcting Pointers [22] operate

on groups of 512 bits, storing N pointers of length log2(512) bits alongside a replacement bit

for each known faulty location, for a total of 10 auxiliary bits required for each correctable

error per block. ECP is more flexible than ECC1 in that it can handle cases where more than

two faults occur within the same correction block, for example if certain rows or columns of

memory exhibit spatial correlation of faults due to process variation [23, 24, 25]. However,

the fact that ECP must use its own pointers to correct faults in the auxiliary space can

quickly degrade the correction capability of the block. Similarly to ECCN, for the remainder

of this text I will refer to this technique by ECPN, where N indicates how many pointers

(and correctable errors) are associated with each correction block.

6

An important consideration when mitigating persistent faults is the state of the faulty

cell. For memories using DRAM, a faulty cell would either fail to charge or fail to hold its

charge—in both cases, reading the cell would yield logical ‘0’ at the sense amplifier. For

PCM, depending on which failure mode occurred first, reading a faulty cell could result in

logical ‘1’ (SET failure) or logical ‘0’ (RESET failure). In both cases, the fact that these

“stuck” cells can still produce a value when read offers an opportunity to improve fault

mitigation. If a SET failure occurs, and a ‘1’ is to be written to that cell, then there is

no error, and we call that cell “stuck-at-right” (SA-R). If instead a ‘0’ is to be written to

that cell, then the fault creates an error, and we call that cell “stuck-at-wrong”(SA-W). In

the context of the above error correction schemes, fault tolerance can be improved provided

there is a way to identify and track persistent faults as they develop. To this end, several

schemes have been introduced in the literature to identify faults and encode them into a

fault map [26, 27, 28]. For the remainder of this work, I assume that such a mechanism is

in place.

Both of the above error correction schemes are widely employed to mitigate faults in

non-volatile memories, but there are more general transformations of data which can be

employed to a similar effect. In the next section, I present the concept of coset encoding and

its common uses in write reduction and error correction.

2.3 Coset Encoding

Sets of codes collectively referred to as Cosets are used to modify data (typically via XOR)

to match a desired pattern before writing it to some media. In the context of this work,

the most relevant target is reducing writes and masking endurance faults, although these

techniques are general enough to target arbitrary optimization goals such as reducing specific

data symbols, reducing dynamic energy, or reducing changes of data values. As I will show in

Chapters 3 and 4, choosing a coset approach which provides many candidate transformations

can evaluate multiple objectives at once; if there are more than one transformation which

meet a primary objective such as masking faults, a secondary objective such as energy

7

reduction can be applied to select the best coset. One of the most simple applications of

coset transformation is to invert data. Data Bus Inversion (DBI) [29] was developed to

reduce energy associated with data transmission over high-speed bus lines, but the approach

is functionally equivalent to reducing writes in a memory. If the data block being written

would result in more than half of all cells changing state, then simply inverting the data

before writing it reduces changes and in turn wear on the underlying memory.

The block inversion approach belongs to a class of geometric error correction schemes

which reinterpret blocks of data as flattened matrices, which are then separated into parti-

tions that can be inverted to mask the effects of persistently faulty cells. Flip-N-Write [30]

adapts DBI to memory applications with finer-granularity correction blocks. SAFER [31]

uses a similar structure to ECP to point to specific partitions and indicate if they should be

inverted. This basic idea is extended by AEGIS [32] to allow more sophisticated partitioning

schemes, improving the likelihood that faults will fall in different partitions which in turn

improves the likelihood that inverting partitions can mask two or more faults. Of course,

there are tradeoffs to consider in how partition membership and inversion are encoded, but

depending on the fault tolerance needs of the system, this increased auxiliary overhead may

be acceptable.

The aforementioned coset techniques are most effective when data exhibit patterns, i.e.,

data are biased toward specific values. For example, binary representations of integers such

as two’s complement tend to use less than the full range of the bits allocated, resulting in

the most significant bits being all ‘0’ or all ‘1’ most of the time. In this case, simply applying

DBI at the granularity of half the word size will effectively reduce writes to upper half of

the memory cells in each word.

Unfortunately, in the context of encrypted non-volatile memory, the patterns which make

these techniques effective are removed. Private user data, security-critical operating system

code, and sensitive authentication tokens might exist in main memory at any given time,

necessitating encryption to protect data in the event of power disruption or side-channel at-

tack. One of the primary goals of encryption is data confidentiality: by design, the encrypted

version of any message should not reveal any information about the message itself. Thus

if we employ encryption, we must adopt coset techniques which account for the apparent

8

randomness of encrypted data. To this end, the use of random cosets can be effective [33, 34].

Consider the ideal case where every word of length N has an equal probability of ‘0’ or ‘1’

for each bit. Thus in any given word, the probability of exactly x bits changing follows

a Bernoulli distribution, which can be computed directly as a special case of the binomial

distribution:

P (x) =

(
N

x

)
· 0.5x · 0.5N−x (1)

The closed-form expression for the expected value of bit changes is given by N · p, where

here N represents the length of the data block in bits and p = 0.5 represents the probability

that any given bit will be changed during a write. Thus on average, we expect an equal

number of bits to change in any given word when both the existing and new data are unbiased.

This result is the theoretical basis for the poor performance of inversion techniques under

effectively randomized data. Previous study demonstrated that for unbiased, effectively

random data, using pseudorandom-valued cosets consistently outperforms techniques which

target biased data [34]. This motivates the use of encrypted data and other artifacts of the

encryption process as cosets in Chapters 3 and 4.

In the next section, the basic concepts of AES encryption and its common applications

in AES-GCM and AES-XTS are presented alongside their relative strengths and weaknesses

for use with non-volatile memory.

2.4 AES-Based Encryption

The Advanced Encryption Standard (AES) [9] was introduced in 2001 as the standard

cipher for cryptography, based on the Rijndael algorithm published in a prior work [35].

AES is a symmetric key algorithm wherein a secret input key (128, 192, or 256 bits long)

is distributed to approved parties, which is used along with 128-bit blocks of plaintext data

as input to produce 128-bit blocks of encrypted ciphertext as output. The algorithm itself

consists of several rounds with four distinct steps which transform each of the 16 bytes in

the 128-bit input:

9

• Substitute Bytes: each byte of input is used to index a lookup table, implementing a

nonlinear transformation as shown in Figure 2a.

• Shift Rows: each row i in a 4x4 row-major matrix of the input is barrel shifted by i byte

positions as shown in Figure 2b.

• Mix Columns: The 4x4 row-major matrix of the input is multiplied by a fixed transfor-

mation matrix to implement an invertible linear transformation on its columns as shown

in Figure 2c.

• Add Round Key: The secret key and the round number k is used to generate a round

key. This round key is applied via bitwise XOR to the input data as shown in Figure 2d.

(a) AES substitute bytes step using a pre-
generated lookup table.

(b) AES shift rows step.

(c) AES mix columns step via matrix multi-
ply with transform c(x)

(d) AES add round key step via XOR.

Figure 2: The four transformation steps used in each round of AES encryption.

The various steps are repeated for each of {10, 12, 14} rounds for {128, 192, 256}-bit

keys, respectively, where the input of the first round is the plaintext data and the input of

subsequent rounds is the output of the previous round. Each step is invertible, thus the

10

decryption process is the same but with all rounds and steps applied in reverse order, using

the secret key and the ciphertext as the initial input. However, to sufficiently disperse data

which may span many encryption blocks, AES is commonly used in Cipher Block Chain

(CBC) mode.

Figure 3: AES Electronic Code Book mode.

Figure 4: AES Cipher Block Chain mode.

If each block is encrypted independently (commonly referred to as Electronic Code Book

(ECB) mode, see Figure 3), patterns in the data are exposed in the output. The reason for

this is that for any given plaintext and secret key pair, the output of the AES algorithm

is deterministic. Thus if there are patterns in the data which span the length of the 128-

bit encryption block size, those patterns will persist as their encrypted ciphertexts will be

identical. To remedy this, CBC mode replaces the input to encryption block i by the

11

ciphertext of block (i − 1) XOR’d with the plaintext of block i as shown in Figure 4. With

proper padding to a multiple of the 128-bit block size, this ensures that data dispersion is not

sensitive to the size of the input data. This approach is well-suited for encrypting streams

of data, but limits the amount of parallelization that can be applied. As an alternative for

performance-sensitive applications, Galois counter-mode [36](GCM) was developed.

2.4.1 AES in Galois-Counter-Mode

Figure 5 shows the basic operation of AES-GCM. For each encryption block, a counter is

maintained, which is concatenated with a nonce value to form the input of the AES algorithm

in ECB mode along with the secret key. The output of the AES algorithm is commonly

called the one-time-pad (OTP), which is then applied via XOR to the corresponding block of

plaintext to produce the ciphertext output. Decryption follows this process in reverse, where

the counter value is read to reproduce the OTP, which is then XOR’d with the ciphertext to

recover the plaintext.

Figure 5: AES Galois counter-mode.

This approach is “embarrassingly parallel,” making it desirable for high-bandwidth appli-

cations like encrypting memory. However, in order to maintain the security of this approach,

it is critical that the nonce values must never be reused. If a malicious actor knew that a

nonce value was reused, they can encrypt a known plaintext and greatly reduce the search

space for the output of the AES block. Likewise, it is important that the counter values be

long enough that they cannot easily be saturated, which is equivalent to reusing a counter.

12

Block	
Cipher	

Memory
Controller

Address

Counter

Key

Memory	Row	 Counter	

Encryption

Data to Write
(plaintext)

Written Data
(ciphertext)

Read Data
(ciphertext)

Decryption
(OTP)

Figure 6: counter-mode encryption in the memory controller. Reproduced from [7], ©2020

IEEE

Memory systems which implement AES-GCM typically adopt an architecture as shown

in Figure 6. The counter sits alongside the encrypted data in memory, which is manipulated

and used with hardware-implemented AES to implement AES-GCM within the memory

controller. With careful coordination of write queues, the AES block latency can be pipelined

to take advantage of parallelism.

Unfortunately, the encryption process complicates its use with non-volatile memories.

As noted in Section 2.3, encryption removes any patterns in the data, making it difficult to

reduce writes by encoding or differential write. Likewise, encodings which target reducing

energy-intensive symbols are defeated by the apparent randomness of the ciphertext being

written back to memory. Every bit in memory has an equal likelihood of being ‘0’ or ‘1’, as

does the new data being written, so on average we expect half of the bits to change in any

given write.

DEUCE, or Dual Counter Encryption [37], attempts to overcome this by introducing the

concept of an epoch, such that at the beginning of the epoch, the encrypted row is written

directly, but thereafter only dirty words are encrypted and rewritten with a subcounter.

SECRET or Smartly EnCRypted Energy EfficienT non-volatile memories [38] improves upon

DEUCE by allocating a dedicated “sub-counter” for data blocks within the row. The sub-

counter maintains independent count values for each block within an epoch. When a sub-

counter saturates, the epoch ends—the main counter is advanced, all sub-counters are reset,

13

the entire row is encrypted, and the result written with the new count value. SECRET

addresses reliability by allocating ECP per row to tolerate faults. DEUCE does not consider

reliability and SECRET provides significant savings over DEUCE at the cost of additional

sub-counter bits [38].

Another work proposes using the counter value to track how often cells have been writ-

ten. As the counter approaches the rated endurance of the PCM cell, more capable error

correction schemes are activated to prolong the useful life of the memory [39]. CASTLE &

TOWERs is complementary to this approach as it reduces wear throughout the memory life-

time, prolonging the interval of time in which the lower-overhead ECC is used or helping to

achieve a particular uncorrectable bit-error rate (UBER) with a lower overall ECC storage.

Another approach is to co-design the encryption scheme and the wear-leveling scheme of the

memory controller. A smaller counter can be used in tandem with the physical address if

that address will only be written some fixed amount of times before remapping, resulting in

improved overhead and latency [40]. Again, CASTLE & TOWERs is complementary since

its reliability and energy advantages can be realized within a small window of writes to any

given address.

These techniques collectively improve the performance of encrypted main memory sys-

tems, but other approaches have been standardized for non-volatile and hybrid memory

systems to improve security at rest. In the next section, we describe the AES-XTS algo-

rithm which was originally designed for hard disk encryption, and later adapted for use in

commercial PCM [6].

2.4.2 The AES-XTS Encryption Algorithm

AES-CBC provides data confidentiality, but can be manipulated—if it is possible for

a malicious actor to know parts of the plaintext data, say shared information on a system

which always uses encryption, then the attacker can inject their own plaintext into alternating

blocks of memory using a Malleability Attack [41]. For storage-class memories, the strategy

adopted as the standard to mitigate such attacks is XOR-Encrypt-XOR Tweakable block

cipher with ciphertext Stealing (XTS) [42]. This standard is combined with an existing block

14

cipher encryption algorithm (i.e., AES) to ensure that data cannot be modified undetected

in secure systems. This is especially important for storage-class memories, where some data

accesses may be few and far between, and both confidentiality and authenticity of data must

be guaranteed.

Figure 7: Example of XTS for block cipher encryption.

The key mechanisms of AES-XTS are an XOR operation before and after encryption—the

XEX portion—and the use of part of the ciphertext in the last block’s input—the ciphtertext

stealing. Figure 7 depicts the basic architecture of XTS systems. Two keys are used for

separate block cipher encryptions: one to generate a OTP from an initial value, fed forward

to all encryption blocks (KEY2 in Figure 7), and a second for use in encryption between the

XOR operations (KEY1 in Figure 7). Usually this is implemented with a single symmetric

key (e.g., 256-bit) split in half. The initial value is an arbitrary non-negative integer, but

is essentially a constant function of the address being encrypted.

The first iteration of XEX was based on AES-GCM to exploit its performance benefits.

However, vulnerabilities in this approach [43] necessitated the addition of a “tweaking”

adjustment represented by the chain of multiplications by α in Figure 7. To support arbitrary

data block sizes, the ciphertext-stealing approach was added, which pads the final encryption

block input by a portion of the penultimate encryption block output, as shown in red. The

resultant algorithm was adopted as a standard for disk encryption where data access control

15

or authentication via data expansion methods is not feasible [44].

Unfortunately, the additional transformations of the XEX and tweaking steps combined

with the chaining of the final two blocks of the ciphertext-stealing step complicate the effi-

cient application of cosets. MACE and its supporting architecture WINDU were designed

to overcome these complications, providing an adjustable balance among write reduction,

energy reduction, and performance.

In the next chapter, I present the concepts of CASTLE counter-mode encryption, my

contribution TOWERs to efficiently encode encrypted data, and how they are used together

to reduce cell writes, mitigate endurance faults, and reduce energy in encrypted memories

using PCM technology.

16

3.0 CASTLE & TOWERs

“Counter Advance for Secure, Tailored Lifetime Extension” (CASTLE) is a technique

which uses artifacts of the encryption process to extend the lifetime of encrypted PCM.

CASTLE and its primary mechanism counter advance are based on AES counter-mode en-

cryption: Each memory row has a counter value used to generate a OTP, which is subdivided

into sub-counters associated with blocks of memory within the row. By incrementing sub-

counters independently, a set of OTPs can be generated on a per-block basis. Using these

blocks and the coset transformation techniques described in Section 2.3, CASTLE can mask

stuck-at faults and prolong the lifetime of the memory.

“Techniques for Optimizing Wear and Energy Reduction” (TOWERs) is a novel encoding

technique which leverages random cosets and compression to improve fault tolerance and

reduce dynamic energy. Since counter-mode encryption preserves the plaintext until the

final step of XOR by the OTP, TOWERs can apply lightweight compression to create space

for encoding auxiliary information required by cosets. This allows TOWERs to efficiently

evaluate several candidate words for writeback, which are then optimized for write reduction,

fault tolerance, and energy reduction. Together with CASTLE, TOWERs can dramatically

improve memory lifetime while opportunistically reducing energy.

Portions of this chapter reproduce text and images with permission from my publication

“A CASTLE with TOWERs for Reliable, Secure PCM” [7] ©2020 IEEE. The concept

“counter advance” and the derived technique CASTLE are presented herein for reference,

but these are attributed to my co-author Donald Kline Jr. as an extension of a previous

publication [45].

3.1 CASTLE Counter-mode Encryption

CASTLE’s primary mechanism counter advance leverages the property that encryption

of plaintext with a new counter generates a new random ciphertext. Recall that in the

17

event of a PCM endurance failure, data which matches the stuck-at value is SA-R and data

opposed to the stuck-at value is SA-W. When writing a ciphertext candidate in the presence

of stuck-at faults, each faulty cell has a 50% probability of being SA-R, and similar for SA-

W. Thus, by incrementing the counter, it is possible to improve fault tolerance by finding a

ciphertext candidate that maximizes SA-Rs.

Consider the example in Figure 8 for a row with two stuck-at faults such that, given the

ciphertext, the first is SA-R and the second is SA-W. Advancing the counter (Counter+1)

resulted in the first fault becoming SA-W and the second becoming SA-R. This is due to the

property that each fault in each ciphertext candidate has a 50% chance to be SA-R, but is

equally likely to be SA-W. Advancing the counter again (Counter+2) was unlucky, resulting

in two SA-Ws. The probability of finding an error-free candidate with f faults is 2−f , or 25%

for f=2, which required multiple advancements in the example. Both word-level encryption

and error correction can dramatically reduce the number of advancements to find an error-

free candidate. For example, with single bit error correction (e.g., ECP-1), the example of

Figure 8 would have been successful without counter advancement. If SECRET is used with

independent sub-counters per block and assuming all blocks were dirty, blocks zero to two

would have been written with Counter and block three would have used Counter+1. Since

a sub-counter exists for each block, only the sub-counter for block three would be advanced.

The application of CASTLE with block level encryption and error correction is shown

in Figure 9. Figure 9a expands on Figure 6 with sub-counters per 128-bit block in the style

Block0	 Block1	 Block2	 Block3	 Counter	

Block0	 Block1	 Block2	 Block3	 Counter+1	

Word3	 Word3	

Word3	 Word3	

Block0	 Block1	 Block2	 Block3	 Counter+2	 Word3	 Word3	

Block0	 Block1	 Block2	 Block3	 Counter+k	 Word3	 Word3	

Figure 8: CASTLE example for one memory line. Green indicates a SA-R fault and orange

a SA-W fault. Purple blocks are error free and red blocks contain an error.

18

128-bit	
AES	

128-bit	
AES	

128-bit	
AES	

128-bit	
AES	

Key

Block0	 Block1	 Block2	 Block3	 Counter	

M
em

or
y

C

on
tro

lle
r

c0	c1	c2	c3	

C
ounter(s)

Addr

(a) Encrypting individual blocks with sub-counters.

Write

Encrypt	

Write	

E	<	T	

c+1	

Y

N
c	<	w	

Failure

N Y

Counter (c)

Success

Best?	

Save	Best	

Y

Best	<	
ECP	

N

N

Y

(b) ECP encoding flow.

Figure 9: Block level CASTLE architecture.

of SECRET [38]. CASTLE applied in this context examines the stuck-at bits independently

between blocks and only advances the counter when SA-W bits appear. Stuck-at faults can

be determined by storing and reading patterns of all ‘1’s and ‘0’s or using a fault cache [31]

or fault map [27]. It is straightforward to extend block-level encryption with ECC as the

parity bits (e.g., SECDED [64,72] ECC) would not cross block boundaries. In this case,

CASTLE could protect fewer SA-W errors and allow ECC protection to correct others at

the cost of reduced transient error protection.

ECP, in contrast, uses pointers that are shared by the blocks of a given row. Block-level

CASTLE offers the trade off of using a pointer or advancing the counter to mitigate a fault.

Using a pointer will reduce the availability of pointers to tolerate faults in other blocks. The

algorithm for selecting the appropriate write candidate for ECP with CASTLE is shown in

Figure 9b. Since auxiliary bits for ECC parity or ECP are designated per-row and must

be stored in plaintext form, CASTLE does not interfere with the operation of either error

mitigation technique.

Assuming a counter advancement epoch window w where w = 2b and b is the number

of bits for each sub-counter, w serves as a threshold of how many counter values will be

explored to accomplish a particular write successfully. If the encrypted data experiences E

errors (i.e., SA-Ws) but E is less than a threshold T , the write proceeds with the current

counter value c. Otherwise, if this is the “best” candidate seen so far (i.e., fewest SA-Ws),

it is retained. If c is still within the epoch w, c is incremented and the next candidate is

19

evaluated. If c reaches the limit of the epoch without finding a candidate within the error

threshold, the best candidate is written if sufficient ECP pointers are available, otherwise

the write fails. In our evaluation we consider two schemes: the counter minimization (CM)

approach sets T to the number of available ECP pointers, allowing a write to proceed with

the minimum counter value that discovers a possible solution, while the pointer minimization

(PM) approach sets T=1 requiring a fault free solution to write immediately.

In the next section, I present the concept of TOWERs, how it leverages compression to

reduce overhead associated with coset encoding, and how it is used to improve lifetime and

dynamic energy in encrypted PCM.

3.2 TOWERs

Due to the encryption process, the output written back to memory has been effectively

randomized; any existing similarities in the plaintext data will be obscured and distributed

among the bits of the ciphertext by the encryption method. CASTLE leverages this property

to generate new storage candidates that better match the faulty PCM cells. However, this

randomness presents two challenges. The first challenge is that these randomized storage val-

ues defeat techniques which rely on similarity. The second challenge is that the randomness

incurs more bit changes, in turn increasing write energy and accelerating wear.

One strategy to minimize the resulting bits written to preserve endurance (and minimize

dynamic energy) is to use cosets to encode the data before writing it back, as presented

in Section 2.3. This applies for plaintext data that has similarity [46], apparently random

data [47], and hybrid data that contains both [34]. This strategy can similarly be an effective

way to extend the lifetime of a memory in the face of stuck-at bits. In the context of encrypted

data, the use of a biased code which performs well for plaintext will not benefit, and may

even hamper encoding goals. For strictly unbiased random data, it is more effective to use

a random code [34].

Unfortunately, employing cosets of any kind introduces additional overhead bits which

are necessary to encode the specific coset candidate applied to each word. These bits consume

20

the available capacity for users or the error correction scheme, and writing these bits may

degrade the energy benefit. One method to mitigate this overhead is to leverage lightweight

compression of the data and make room for storing these auxiliary bits in the cache line

itself.

3.2.1 Compression & Encoding of Encrypted Data

Several such compression schemes have been proposed, which typically leverage common

patterns of the data for their compression [46, 48]. The challenge for encrypted data is that

it will not exhibit these patterns required for effective compression. Instead, data can be

compressed prior to encryption. The coset can then be applied to the compressed data and

the reclaimed space can be used to store the encoding. Using block-cipher encryption, each

coset candidate must then be passed through the cipher to create a candidate for writing.

For N cosets applied over M blocks, (N − 1) ·M additional encryptions would be required

to generate and select the best coset candidate, which is not scalable.

Original Data d

Compressed
Data d'

Coset c

W = d' XOR c

W with encoding
bits

Cosets[i]
Index i

Cosets
31..0

base2()

AES OTP

AES
Encrypt()

Row Address &
Counter

Figure 10: Generating a writeback candidate for TOWER using the counter-mode AES

output, the compressible plaintext data, and a table of coset codes.

In counter-mode encryption, as shown in Figure 6, the AES block cipher block is gener-

ated once per cache line and applied via the OTP. Thus, each encoded coset candidate can

21

be encrypted with the cost of a single XOR operation, allowing us to utilize the compression

and encryption in the same process. Figure 10 demonstrates this process: First, the data d

is compressed to to yield the compressed data d′ in dark blue and the reclaimed bits shown

in light blue. Next, in parallel, each coset candidate (yellow) is applied to a compressed word

via XOR (green), and appended with the binary coset ID (lightgreen→red). Finally, the AES

OTP is applied, also via XOR (gray), and the resulting data is evaluated for writeback.

The effectiveness of TOWERs relies on compressibility of the words within the cache line.

In contrast with general compression needs, here compression coverage is more important

than compression ratio. Compression coverage is the percentage of cache line writes that can

be encoded in compressed form, which is distinct from compression ratio which describes

the ratio of data length before and after compression. To achieve a higher coverage, I

implemented a relaxed version of MTC [48] which only attempted to recover five bits per

word for all compression cases. Standard MTC attempts to discover if the most significant

eight bits of each word in a cache line are either (1) uniform (all 1’s or 0’s) or (2) identical for

each word in the line. Because of the needs of our encoding, we relax this to only requiring

the leading six bits to be uniform or identical across all words of the line. This scheme

requires two auxiliary bits per cache line to signify that the cache line was compressible and

to encode which compression scheme was applied.

Given a particular coset, a encrypted coset candidate can be selected to optimize one

of many factors such as energy [47, 46] and endurance, among others. Given that the

primary concern for PCM is to maximize fault tolerance, the most appropriate candidate

for writeback is one where the count of SA-W bits is minimized, to maximize the likelihood

that the remaining faults can be addressed by the error correction scheme.

However, given the limited endurance of the memory, during the memory lifetime, the

fault rate will change and the number of stuck-at bits encountered will increase. This will

reduce the probability of any given coset to correct the SA-W bits, and in turn reduce the

number of candidates available. Thus, during the portion of the lifetime where there are

multiple acceptable fault tolerance candidates, there is an opportunity to employ coset tech-

niques to improve endurance and potentially also reduce energy. Rather than simply choose

the first acceptable candidate, we propose selecting the best candidate more intelligently.

22

Just as differential write extends the PCM lifetime by reducing the stress on endurance [49],

selecting the best coset candidate that mitigates faults and optimizes endurance can sim-

ilarly improve lifetime. Furthermore, since RESETs require more energy than SETs [17],

and are more detrimental to the endurance of PCM, we benefit from a reduction of RESET

operations.

If multiple candidates are available that either minimize SA-Ws, or that have SA-Ws

that can all be addressed by error correction, a candidate can be selected that also optimizes

other metrics. This multi-objective coset optimization approach is discussed in the next

section.

3.2.2 Multi-objective Coset Encoding

Among the acceptable candidates from a fault tolerance perspective, we can define the

best candidate in terms of a secondary optimization parameter. In this context, the count

of RESETS incurred (or the differential write energy required) could be used to rank coset

candidates with the same fault tolerance. At any given time, there may be multiple solutions

which meet the SA-W constraint. However, determining the optimal coset candidate is cost-

prohibitive. Instead, we adopt a heuristic to pare down the candidates based on SA-W

minimization. In the case of a tie, the coset candidate that also minimizes the secondary

metric, in this case endurance—modeled as the number of RESET bits—can be selected.

We can improve on this approach if we relax the reliability constraint. If the number

of SA-W bits that can be corrected by the memory controller’s correction scheme is higher

than the number of faults encountered, it may be reasonable to accept a higher number of

faults if we have an overall improvement in the secondary metric. For example, if there were

five SA-W faults in a cache line, for a memory controller using ECP-6, then the pool of

acceptable writeback candidates could be extended to include those with six SA-W bits, but

only if the impact of utilizing those extra encoding bits results in a net decrease in RESETs.

Algorithm 1 conceptually defines the heuristic. For each word we track two fault classes,

the minimum and second minimum number of faults across all the coset candidates. Within

each class, the best coset is selected such that the overall cost of the secondary parameter

23

Data: cosets[N], best coset b, next best coset nb

1 for c ∈ cosets do

2 if countSAW(c) < countSAW(b) then

3 nb←− b

4 b←− c

5 else if countSAW(c) == countSAW(b) then

6 if cost(c) < cost(b) then

7 b←− c

8 end

9 else if countSAW(c) < countSAW(nb) then

10 nb←− c

11 else if countSAW(c) == countSAW(nb) then

12 if cost(c) < cost(nb) then

13 nb←− c

14 end

15 end

Algorithm 1: Selecting a coset candidate for each word

is minimized. Both a best and next best coset candidate are tracked at the word level. In

particular, lines 2-4 check to see if the current evaluated candidate has better SA-W than

the current best candidate, and if so keeps this as the new best candidate and demotes the

previous best candidate to next best. Lines 5-8 check and keep the current candidate if it

has the same SA-W bits and a better secondary cost function. Lines 9-10 keep the candidate

as the next best candidate if it has less SA-W than the previous next best candidate. Lines

11-13 keep the candidate as the next best candidate if it has the same SA-W but a better

secondary cost as the previous next best candidate. The algorithm can be applied in parallel

over all words in a cache line, and the testing procedure can use a tree-wise reduction to

obtain the top two coset candidates for each word.

24

For the secondary cost metric to overcome the increase in SA-Ws, the benefit of selecting

a coset candidate with more SA-W bits should outweigh the cost of using the additional

correction bits. Consider the case of RESET bits for minimizing endurance. For a 512-bit

cache line, ECP requires nine bits of address plus one bit as a spare. We assume that the

address bits and spare bit have an equal likelihood of being ‘1’ or ‘0’ for any given fault.

Thus, using an ECP entry will require writing half of those bits on average. Likewise, there

is a 50% chance that the replacement bit already matches the value it is to store. Of the

50% of correction bits changing, on average half will be SETs and half RESETs. So for a

cache line of n bits, we can define a threshold T which captures the number of RESETs that

must be reduced by the coset as:

T =

⌈
1 + log2(n)

4

⌉
·RESETs (2)

If average energy was to be the secondary metric we would replace RESETs in Eq. 2

with (ESET +ERESET) where ESET and ERESET are the energy cost in joules for a SET and

RESET operation, respectively. If we can observe an endurance improvement (or energy

reduction) greater than this threshold by some margin, we expect to see an improvement by

switching to a coset code which results in the additional SA-W bit(s).

There is the potential to end up with more SA-W bits per cache line than the error

correction scheme can correct with Algorithm 1. In a reasonable worst case, we expect one

additional SA-W per word, which means eight additional SA-W bits per 512-bit cache line.

To avoid this situation, if the selected next best candidates would cause the write to fail

(more total SA-W than the correction scheme can correct), then only the best candidates

are chosen. This will allow the algorithm to opportunistically reduce the secondary cost,

while avoiding taking on more SA-W bits than the correction scheme can support. In this

way, coset techniques can be applied to encrypted data to mitigate stuck-at faults while

reducing wear and energy consumption.

25

3.3 Experimental Setup for CASTLE & TOWERs

To evaluate CASTLE and TOWERs we created a modified Pintool [50] to monitor all

writebacks encountered at the lowest-level, unified cache. Using the instrumentation, Pin

was attached to runs of individual SPEC2017 benchmarks [51], extracting the address and

data of 512-bit cache lines as they were evicted. The aforementioned benchmarks were

selected to be representative of general contemporary and future workloads. Among the

SPEC2017 benchmark suite, the benchmarks in Table 1 provide excellent coverage of the

full suite by virtue of their similarity to the remaining benchmarks[52]. Also included were

any benchmarks which exhibited a relatively high percentage of load and store operations.

All benchmarks were compiled using the SPEC base and speed metrics, and executed using

reference workloads. SPECCPU 2017 workloads were selected over 2018 IaaS Cloud bench-

marks for this experiment as the former was found to be more appropriate for testing and

evaluating a single server instance [53].

Table 1: SPEC2017 benchmarks used to generate memory traces

Benchmark Application Domain

602.gcc s, 600.perlbench s Compiler

625.x264 s,657.xz s Compression

605.mcf s Combinatorial Optimization

620.omnetpp s DE Simulation

623.xalancbmk s Document Processing

603.bwaves s, 619.lbm s Fluid Dynamics

621.wrf s Climatology

631.deepsjeng s, 641.leela s AI

When testing the reliability of proposed and existing correction schemes at fixed fault

rates, we used tools from PREMSim [54] to generate fault snapshots, which matched five

predefined fault incidence rates: 10−2, 10−3, 10−4, 10−5, and 10−6. These fault snapshots

represent different points along the lifetime of the memory. They describe faulty bits stuck

26

at ‘0’ or ‘1,’ and use a Bayesian distribution to mimic the impact of process variation with

spatial correlation of faults [25]. Each fault snapshot was prepared for a 2GB memory,

where fault locations are specified at the bit level (row i, column j). Under simulation, fault

vectors were created from the fault snapshot for each cache line writeback based on the trace

address.

To evaluate the effectiveness of CASTLE and the counter advance concept, SECRET was

used as the comparison baseline [38] assuming three bits were allocated as a sub-counter for

each block, setting w = 8. Note, SECRET assumes ECP-6, which we assume for the baseline

unless otherwise stated. Snapshots of high cell failure rates (10−3 and 10−2) representing later

points during the memory lifetime were used as stimuli for counter advance. A “word-level”

64-bit block size was selected to match the word size in modern architectures.

As noted in Section 3.4.3, the effectiveness of TOWERs relies on compressibility of the

words within the cache line. To determine the compression coverage of a given cache line

writeback, we applied our relaxed version of MTC [48] to compress writebacks generated

from each of the workloads to completion. We also determined smaller 1M and 5M access

windows during each workload that best matched the overall compressibility of the workload.

These sample windows were used for TOWER experiments that evaluated the impact of coset

encoding. When using TOWER with a compressible cache line, we have the potential to

utilize different numbers of coset codes. Depending on the compression ratio, the reclaimed

bits m can encode 2m codes. A larger number of coset codes provides more opportunities

for fault correction, but we expect diminishing returns beyond a certain number of codes.

To determine the appropriate number of codes to use, memory traces were evaluated using

sets where m ∈ 2..7, i.e., sets of 4 to 128 code words. Randomly generated cosets were used

to generate writeback candidates across 1M representative cache line writes, and the mean

across benchmarks was used to assess tradespace between coset size and SA-W reduction.

The cosets in TOWER are not only beneficial for reliability. As described in Section 3.2.2,

memory traces were evaluated via Algorithm 1 to optimize SA-W bits as a primary opti-

mization objective, and then either differential write energy or RESETs as a secondary

optimization objective. To assess which of these secondary objectives was most beneficial,

we observed SA-W bits, total write energy, and the total count of RESETs, over 5M cache

27

line writebacks. A set of 31 pseudo-randomly generated coset codes were fixed for the dura-

tion of the experiment. An identity code of all ‘0’s was used to allow the cache lines to be

written back relatively unperturbed. For each writeback, the control case applies baseline

SECRET, which uses counter-mode encryption to the plaintext data, then evaluates the

above criteria on the dirty words requiring writeback. The experimental case first attempts

to compress the plaintext input via our relaxed MTC [48]. If the line is not compressible,

the writeback is processed as with the control case. Otherwise, a coset is selected via Algo-

rithm 1, the best coset is applied, the counter-mode encryption is applied, the coset ID is

encoded in the reclaimed bits, and finally the above criteria are evaluated. In both cases,

a randomly-initialized memory tracks the last data written back to each address, such that

the differential write energy is accurate. Note, if MTC changes compression methods, all

words are considered dirty and must be written.

In order to understand the impact of PCM feature size on write energy, we tracked the

number of SET and RESET operations incurred for each of the workloads both with and

without CASTLE with TOWERs. Using the reported [55] and derived [17] write energy

parameters for existing and future feature size, this permits a comparison of how the scal-

ing of write energy influences the effectiveness of the secondary optimization parameter in

TOWERs.

To estimate the overhead of the coset approach, Verilog implementations and ROM look-

up tables were synthesized using Synopsys Design Compiler targeting 22nm technology and

CACTI [56] was used to model and estimate SRAM storage, following a similar methodology

in the literature [57].

To experimentally evaluate the effect of our techniques on PCM lifetimes, our lifetime

study examined improvements compared to SECRET and encrypted data protected with

AEGIS. We assumed that the distribution of cell lifetime in PCM followed a normal distri-

bution with spatial correlation of faults [24, 25], with a mean failure rate of 108 writes [32, 58].

We assumed a base coefficient of variation of 0.2 [32, 58]. We also conducted a sensitivity

study with higher variations of 0.25 and 0.3 to approximate the effect of scaling on process

variation. As process variation increases with scaling, the memory will incur cell faults more

quickly and better error correction will be necessary to maintain effective lifetimes. The co-

28

Figure 11: Cell fault rate for different coefficients of variation.

efficient of variation of cell failure distribution is a commonly used representation of process

variation, as shown in Figure 11, where with increasing process variation 10−2 fault rates

will be approached with fewer writes. The lifetime study occurred on a 1MB segment of the

memory with 4kB pages, consistent with prior work [58] with memory row sizes of 512 bits.

We assumed a perfectly uniform wear-leveling approach where each address receives an equal

amount of writes, which serves as an approximation for proposals in the literature which ap-

proach [59, 60] or exceed [58] this standard. Wear leveling is combined with differential

write to reduce the frequency of cells written for each operation. Under these conditions, the

simulations continuously issue writes to memories protected by the techniques under study,

until there are four rows with unrecoverable faults [59], which delineates the memory lifetime

such that we can determine their lifetime improvement. The results shown are an average

of 10 lifetime experiments.

Finally, to model the performance impact of CASTLE and TOWERs compared to the

SECRET baseline, we used the SNIPER full-system simulator [62] with the parameters

shown in Table 2. To understand the impacts of PCM device parameters on performance and

energy we reported results for a device at 90nm [55]. We also conducted sensitivity studies for

29

Table 2: Architecture parameters for performance study.

CPU Cache

4 out-of-order cores Private L1 32kB inst., 32kB data

4 issue width, 4GHz clock Private L2 256kB/core

28nm technology Associativity: 8 (L1 data and L2)

1GHz frequency Block size: 64B

Memory: PCM

512-bit row, 64-bit words, 2GB main memory

2 channels, 1 rank/channel, 8 banks/rank

4 AES units, 111ns delay [61]

TOWER+32 cosets encode/decode: 2.63ns/0.89ns [46]

energy savings and performance impact for 180nm, 90nm, 45nm, 32nm, and 28nm using PCM

devices reported in the literature [55, 17] and modeled using peripheral circuitry reported

by NVSim [63].To model a system employing CASTLE and TOWER, we used estimates of

encryption delay from [61] and estimates of coset delay from the hardware implementation

study, assuming up to four AES operations could be performed simultaneously.

3.4 Results

Based on the experimental setup described in Section 3.3, we conducted detailed evalu-

ations of CASTLE and TOWERs individually to see the impact of each contribution. We

then combined them together to evaluate a full system benefit.

30

3.4.1 CASTLE Study

Figure 12 shows a summary of the uncorrectable bit error rate, defined as the number of

bit errors that occur per bit written, for both row (CASTLEr) and block-level (CASTLEw)

encryption with different strengths of error correction used to protect the data and counter

bits. With no error correction, word-level CASTLE (CASTLEw) provides two orders of

magnitude improvement in UBER compared to word-level encryption alone for as high as a

10−3 cell failure rate. As error correction is employed the improvement is amplified, providing

3–5 orders of magnitude improvement by introducing one ECP pointer (ECP-1). At a

cell failure rate of 10−3, an UBER of ≤10−11 required only ECP-4 for word and row CA.

Employing PM reduced the requirement to ECP-3. In contrast, SECRET, which includes

ECP-6, can only achieve a 4 · 10−10 UBER.

1E-11
1E-09
1E-07
1E-05
1E-03
1E-01

None ECC1 ECP1 ECP2 ECP3 ECP4 ECP5 ECP6 None ECC1 ECP1 ECP2 ECP3 ECP4 ECP5 ECP6 None ECC1 ECP1 ECP2 ECP3 ECP4 ECP5 ECP6

1E-03 1E-02 1E-02 (8 Epochs)

UB
ER

Row Encryption CASTLEr Secret CASTLEw

Figure 12: UBER for various error rates. CASTLE explores one epoch (w=8), except where

noted. CASTLEw+ECP is reported for CM with an error bar indicating PM.

At a cell failure rate of 10−2, unsurprisingly, UBER is drastically reduced. Using ECP-

6, CASTLE achieves almost a 10−9 UBER versus 10−6 for SECRET. Relaxing CASTLE

to explore eight epochs allowed CASTLEw with PM to function at a <10−11 UBER with

ECP-4 and higher. This indicates that while a device might operate using the CM approach

initially to minimize counter advancements, it could switch into PM and expand the searching

window for gracefully degraded operation when the cell failure rate became sufficiently high.

CASTLE is sensitive to block size. Small block sizes increase the flexibility to eliminate

faults. A sensitivity study indicates CASTLE is nearly as effective for 64-bit blocks as 32-bit

blocks. 128-bit blocks have a noticeable degradation (0.5-1 orders of magnitude UBER),

particularly with ECC and ECP, however, the CASTLE improvements are still dramatic.

31

A logical concern about CASTLE is the impact to performance from evaluating multiple

ciphertext candidates and the potential to saturate the encryption counter more quickly.

Figure 13 shows the number of counter increments per write operation. Word-level encryp-

tion naturally reduces the average counter advancements per write (A) to A=0.96 compared

to the row-level baseline of A=1, as each write only advances the dirty words’ sub-counters.

This provides sufficient “room” for word-level fault-induced counter advancements for lower

fault rates (e.g., ≤10−4) without exceeding the row-level counter lifetime.

At 10−3, for ECP ≥3, A<1. At 10−2 there are significant fault-induced counter ad-

vancements, owing to gracefully degraded operation. However, increasing the number of

epochs searched for larger numbers of ECP pointers, especially ECP-6, provides significant

improvements in protection, with only slight increases to A. To achieve an UBER of 10−11

with ECP-3 only requires A=1.07 after a cell failure rate of 10−2.

0.8

1.3

1.8

2.3

2.8

3.3

None ECC1 ECP1 ECP2 ECP3 ECP4 ECP5 ECP6 None ECC1 ECP1 ECP2 ECP3 ECP4 ECP5 ECP6 None ECC1 ECP1 ECP2 ECP3 ECP4 ECP5 ECP6

1E-03 1E-02 1E-02(8 Epochs)

Co
un

te
rs

 A
dv

an
ce

d
Pe

r W
rit

e

CASTLEr Word Encryption CASTLEw

7.6 6.63.8 3.6 3.5

SECRET

Figure 13: Counters advanced per write at various error rates. CASTLE explores one epoch

(w=8) except where noted. CASTLEw+ECP is reported for CM with an error bar indicating

PM. Row Encryption is always unity.

As this gracefully degraded mode would only occur very late in the memory lifetime,

these counter advancements would only saturate the counter nominally sooner and minimally

increase encryption energy, while extending the usable life dramatically. If the system is reset

with a new encryption key or the data is moved for another reason (e.g., wear-leveling [40]),

the counter can also be reset. The performance impact is studied in detail in Section 3.4.6.

Counter-mode encryption has a downside that it requires the storage of a counter for

each row. Unfortunately, this overhead cannot be eliminated for counter-mode encryption.

32

However, the storage dedicated to the per-word sub-counters, initially proposed by SE-

CRET [38] to reduce energy and improve endurance, could be retargeted to improve fault

tolerance. This storage would be insufficient to add additional ECC, but could add two

additional ECP pointers. This comparison is shown in Figures. 12 and 13 by comparing

CASTLEw with ECPN to CASTLEr with ECPN+2. The results indicate that for lower

fault rates, CASTLEr would provide an advantage in fault tolerance at the cost of increased

energy and reduced endurance. As the fault rate increases, CASTLEw in PM mode is more

fault tolerant while maintaining energy and endurance benefits over CASTLEr.

3.4.2 Coset Size Study

Figure 14 depicts the mean count of SA-W bits as the number of coset codes is swept

from 4 to 128 for a fault incidence rate of 10−2. Similar results were obtained for 10−3 down

to 10−6. The plot represents the mean of 1M cache line writebacks across the SPEC2017

benchmarks. The curve exhibits diminishing returns for a count of cosets beyond 32, with the

knee between 16 and 32 cosets. This aligns well with the amount of encoding bits recovered

under MTC; all compression methods recover at least five bits per word. We conclude that

a coset of 32 codes is ideal for applying the compression-optimized coset approach.

3.4.3 Compressibility Study

Figure 15 depicts the compressibility of the SPEC2017 benchmarks using MTC. Each

benchmark was evaluated for the first 5 · 109 cache lines or until the end of the trace was

reached. Several of the benchmarks exhibit high compression coverage, which is promising

for the application of TOWERs. Under simulation, the number of cache lines was restricted

to a representative sample of 5M cache line writes. Compressibility is relevant because the

ratio of compressible lines is directly proportional to how often cosets can be applied. We

thus expect to see a proportionally smaller improvement over the control case for workloads

which are less compressible.

33

20 40 60 80 100 120
Number of Coset Codes

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

M
ea

n
 S

A
-W

10 -4 SA-W vs. Coset Size

Figure 14: SA-W Bits vs. Number of Coset Codes, evaluated over 1M representative write-

backs at a fault rate of 10−2.

0
10
20
30
40
50
60
70
80
90

100

perl gcc

bwave
s

mcf lbm

omnetp wrf
xal

an
c

x2
64

deepsj
leela xz

Co
m

pr
es

sib
le

 C
ac

he
 Li

ne
s

(p
er

ce
nt

)

Experimental Sample, 5M Lines Full Trace

Figure 15: Compressibility of cache lines in the SPEC2017 traces, for the full trace and the

sample under test.

3.4.4 TOWER Multi-Objective Optimization

To evaluate the effectiveness of TOWER, we consider first its impact on energy and

endurance. Figure 16 depicts the change in differential write energy and of RESETs as

34

a percentage of the baseline of SECRET for each benchmark, using a fault rate of 10−4.

Each experiment first optimized for SA-W bits, and then optimized for either differential

write energy or RESETs (as a proxy for endurance). Note SECRET achieves an average

46% reduction in write energy compared to row-level encryption, including encrypted data

protected by partition-and-flip approaches such as AEGIS. As expected, we observe that the

improvements follow the compressibility trends of Figure 15, as TOWER only operates on

compressible rows. We also observe that optimizing for RESETS and for differential write

energy produces comparable results for overall differential write energy, likely due to the

higher energy of RESETs versus SETs [17]. We ran identical experiments for different fault

rates (10−2 to 10−6) and numbers of pointers (ECP-1 to ECP-6) and the trends are similar

to the results from Figure 16.

60%

70%

80%

90%

100%

perl gc
c

bwave
s

m
cf

lb
m

om
netp wrf

xa
lan

c
x2

64

deepsj
leela xz

g.
m

ean

Pe
rc

en
t

Re
la

ti
ve

 t
o

SE
CR

ET

Write energy, optimized for energy Write energy, optimized for RESETs

RESET count, optimized for energy RESET count, optimized for RESETs

Figure 16: Change in RESETs (endurance) and write energy (lower is better) relative to

SECRET at a fault rate of 10−4.

Using reported and derived energy parameters for PCM at various feature sizes from

180nm down to 28nm [17, 55], we conducted a write energy sensitivity study on our optimized

write energy as feature size scales1. Figure 17 reports CASTLE with TOWERs written

energy reduction normalized to a control without optimization for a fault incidence rate of

10−4, with RESET reduction as the secondary optimization parameter. Generally, the study

indicates that the improvements from TOWERs remains highly correlated to the compression

ratio and that the different devices does not dramatically change the trend. The older feature

1Three devices at 180nm, 90nm, and 32nm were modeled using reported parameters [17, 55]. Results for
45nm and 28nm were reported by scaling the 32nm device [17].

35

sizes 180nm and 90nm tend to show slightly lower benefit than the newer feature sizes from

45nm down to 28nm. This is due to a slightly higher ratio of SET energy to RESET energy

at 180nm and 90nm (circa 0.7). This ratio improves for the smaller feature sizes (circa 0.5),

resulting in a slightly better overall write energy reduction.

0.7

0.8

0.9

1.0

N
o

rm
al

iz
ed

 W
ri

te
 E

n
er

gy

180nm 90nm 45nm 32nm 28nm

Figure 17: Write energy vs. feature size at a fault rate of 10−4. Values are normalized to the

control case (unprotected, encrypted writeback), with reduction of RESETs as the secondary

optimization parameter.

We then considered the hardware required to realize these improvements. The auxiliary

bits for multi-objective optimization compose an area overhead of 0.039mm2, or <2.5% per

GB in commercial PCM with a density of 0.64GB/mm2 [5]. The coset encoding delay and

power are 1.07ns and 15.8mW, while decoding is 0.35ns and 1.5mW. This is <1% of the

write and read latency and power, respectively, for PCM reported by NVSim [63], <0.1%

of the values reported for Optane DIMMs and is consistent with other results found in the

literature [46, 57].

Of course, the primary goal of TOWER is to reduce the number of SA-W bits. To this

end, Figure 18 demonstrates that the coset approach is effective at reducing SA-Ws when the

data can be compressed. For a SECRET-like encrypted memory system using ECP-3, when

applying TOWERs, highly compressible benchmarks like bwaves, mcf, and lbm achieve an

improvement of several orders of magnitude for higher fault rates. There were comparatively

fewer, if any, SA-W bits for the lower fault incidence rates and higher ECP protection, which

is why ECP-3 is shown. When there were SA-W faults that ECP alone could not resolve,

36

1.E-10
1.E-09
1.E-08
1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00

perl gcc

bwave
s

mcf lbm

omnetp wrf
xal

an
c

x2
64

deepsj
leela xz

U
BE

R

Fault Rate 1e-2 Fault Rate 1e-3 Fault Rate 1e-4 Fault Rate 1e-5

Figure 18: UBER using TOWERs and ECP-3, using RESETs as a secondary optimization

parameter.

TOWERs effectively masked these faults and in turn reduced the UBER. Moreover, for fault

rates lower than 10−5 all potential faults were eliminated.

3.4.5 Lifetime Study

Figure 19 shows the relative lifetime improvement of various correction schemes compared

to ECC-1 at approximately the same overheads of ECC-1 (and ECP-6). CASTLEr refers to

row-based CASTLE, and CASTLEw refers to word-based CASTLE. On average, ECP-6’s

benefits over unprotected and ECC1 are 70× and 4.4×. With the inclusion of SECRET,

which includes ECP-6 but reduces the RESETs per write, this benefit over ECC1 increases

to 6.4×. In this evaluation we also included an iso-area comparison with AEGIS, which can

correct a guaranteed 11 faults compared to six for ECP-6. As a result, AEGIS provides a

12.4× improvement over ECC1 and a 1.9× improvement over SECRET.

The addition of CASTLEw achieves over 30× lifetime compared to ECC1, a 4.7× im-

provement over SECRET and 2.4× improvement over AEGIS. Further, the lifetime results

highlight the benefits of TOWER: in the best cases with very high compression, adding

TOWER to CASTLEw can achieve over 900× and 80× the lifetime compared to an un-

37

0

10

20

30

40

50

bwaves deepsjeng gcc lbm leela mcf omnetpp perl wrf x264 xalancbmk xz average

Li
fe

tim
e

(W
rit

es
)

N
or

m
al

ize
d

to
 E

CC
1

ECP6 SECRET AEGIS TOWER+ECP6 CASTLEr + ECP6 CASTLEw + ECP4 CASTLEr + TOWER+ ECP6 CASTLEr + TOWER + ECP4

84 79 83

Figure 19: Lifetime (writes until failure) for an 1MB memory with mean cell lifetime of 108

writes, with 0.2 CoV. These results assume perfect wear-leveling. Note that all CASTLE

and TOWER results shown here, like SECRET, include subcounters to minimize writes to

clean words. SECRET bar includes ECP-6.

protected system and ECC-1, respectively. On average across the representative SPEC2017

benchmarks, this improvement for CASTLEw and TOWERS over ECC-1, SECRET, and

AEGIS is 45×, 7.1×, and 3.7×, respectively, providing a 1.5× improvement over CASTLEw

alone.

Figure 20 presents a sensitivity study of the lifetime improvements of CASTLE+TOWER

over increasing coefficient of variation and different area overhead. The height of the orange

bars represent the additional writes the schemes enable before failure, while the line chart

represents improvement over iso-area SECRET (the ratio of the orange bars over the blue

bars). Looking at the figure, increasing the CoV decreases the overall lifetime and the raw

improvements over SECRET alone, while raising the relative improvement over SECRET.

This indicates that while the benefits of both SECRET and our proposed schemes deteriorate

in lifetime as CoV increases, CASTLE and TOWERs deteriorate more slowly than SECRET,

gaining increased relative lifetime as variation increases. At 12% area overhead, the relative

improvement over iso-area SECRET for CASTLEw+TOWER increases from 7.1× to 8.2×

(0.25 CoV) and 9.8× (0.3 CoV). However, for systems with more constrained area overhead

(8% area), this improvement range can be as high as from 8.5× (0.2 CoV) to 13.8× (0.3

CoV) compared to iso-area SECRET.

38

0
2
4
6
8
10
12
14
16

0
1E+09
2E+09
3E+09
4E+09
5E+09
6E+09
7E+09
8E+09
9E+09
1E+10

0.2
cov

0.25
cov

0.3
cov

0.2
cov

0.25
cov

0.3
cov

0.2
cov

0.25
cov

0.3
cov

0.2
cov

0.25
cov

0.3
cov

0.2
cov

0.25
cov

0.3
cov

0.2
cov

0.25
cov

0.3
cov

0.2
cov

0.25
cov

0.3
cov

0.2
cov

0.25
cov

0.3
cov

0.2
cov

0.25
cov

0.3
cov

ECP4 + TOWER ECP4 +
CASTLEr+Tower

ECP2 +
CASTLEw+Tower

ECP5 + TOWER ECP5 +
CASTLEr+Tower

ECP3 +
CASTLEw+Tower

ECP6 + TOWER ECP6 +
CASTLEr+Tower

ECP4 +
CASTLEw+Tower

8% overhead 10% overhead 12% overhead

Ra
tio

 to
 S

EC
RE

T

Li
fe

tim
e

(W
ri

te
s)

SECRET Additional Gain Ratio

Figure 20: Lifetime added to iso-area ECP (stacked bar), as well as the ratio of lifetime to

iso-area ECP (lines) for variable cov and area overhead (SPEC2017). Note that all CASTLE

and TOWER results shown here, like SECRET, include subcounters to minimize writes to

clean words.

3.4.6 Performance Study

The IPC results for counter-mode encryption using the baseline of SECRET are shown

in Figure 21. At 10−4 weak cell rate, using CASTLE is rarely necessary, and thus the IPC

impact is negligible. Adding TOWER to CASTLE at 10−4 weak cell rate reduces the IPC

on average by 0.53%, but provides gains in endurance and energy as discussed in previous

sections.

Moving to the 10−2 weak cell rate, the counters must be advanced more frequently, and as

a result the IPC of CASTLE reduces by 0.42%. Adding TOWERs further reduces the IPC,

for a total of 0.72% on average. The worst-case IPC degradation of CASTLE+TOWER at

a 10−2 rate is less than 3%, and this fault rate only occurs at the end of life, demonstrating

that the performance gracefully degrades as the memory becomes more faulty. One noteable

result is for the benchmark xalancbmk, which is the only benchmark with CASTLE having

a lower IPC than CASTLE+TOWER. This is due to the higher number of advancements

required on average, which penalizes IPC more evaluating coset candidates.

39

0.9

0.92

0.94

0.96

0.98

1

perl gcc

bwave
s

mcf lbm

omnetpp wrf

xa
lancb

mk
x2

64

deepsje
ng

leela xz

ave
rage

IP
C

Re
la

tiv
e

to
 S

EC
RE

T

CASTLEw (10⁻⁴)

CASTLEw+TOWER (10⁻⁴)

CASTLEw (10⁻²)

CASTLEw+TOWER (10⁻²)

Figure 21: IPC relative to a system using SECRET for various configurations of CASTLEw

with ECP-4, with and without TOWER.

We also conducted a sensitivity study across different devices using features sizes from

180nm down to 28nm. These results are shown in Figure 22 for CASTLEw+TOWER at

a fault rate of 10−4 normalized to SECRET. Across the different feature sizes, we see little

change in the overall IPC, indicating that the scale of change in write latencies across feature

sizes is not appreciably different and the variation from an IPC of 1 is largely due to noise in

the simulator. The only benchmark which did not follow this trend was xz. This benchmark

is particularly sensitive to variations in the miss rate of the L1 TLB, and is among the

poorest performers in branch prediction [52]. Over several trials, the L1 miss rate varied by

as much as 10× between the CASTLEw + TOWER and SECRET performance, amplifying

the latency of write operations beyond the relatively small changes associated with the

different protection techniques.

In summary, CASTLE leverages the nature of block cipher encryption to improve relia-

bility for systems that use in-memory encryption in memory with endurance limitations that

manifest as stuck-at values. In particular, CASTLE provides 30×, 4.7×, and 2.4× longer

lifetime than SECDED ECC; SECRET, which uses six ECP pointers; and AEGIS, which

has a correction guarantee of 11 faults, respectively. CASTLE can also be used to reduce

error correction overhead, achieving a similar protection as five ECP pointers with only a

single pointer at moderate fault rates. Furthermore, CASTLE can maintain an UBER of

at least 10−11 with the same error correction as the leading related work, SECRET [38], for

extremely high fault rates of 10−2. In contrast, SECRET can only achieve an UBER of 10−6.

40

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

IP
C

 R
el

at
iv

e
to

 S
EC

R
ET

180 nm 90 nm 45 nm 32 nm 28nm

Figure 22: IPC of CASTLEw+TOWER at 10−4 fault rate relative to SECRET for various

feature sizes.

TOWERs is, to our knowledge, the first scheme providing lightweight compression on

encrypted data. Using the reclaimed bits from compression, TOWERs applies a coset on

the encrypted data to further improve fault tolerance while also improving energy and en-

durance. TOWERs provides an additional lifetime benefit of 1.5× over CASTLE, which

can reach 2.9× improvement for highly compressible benchmarks. Across the SPEC 2017

workloads, TOWERs reduces energy over SECRET by about 14%, which results in a cumu-

lative improvement in energy of 54% over an encrypted baseline, including one protected by

a partition-and-flip fault tolerance technique, such as AEGIS.

In the next chapter, I present my work on a similar approach to fault tolerance and energy

reduction in MACE WINDU. These techniques are specifically tuned to PCM using AES-

XTS encryption, and serve as an illustrative example of how lifetime energy consumption

can be assessed and analyzed to guide memory system design.

41

4.0 MACE WINDU

“Memory AES-XTS Cosets with Energy-efficiency” (MACE) was designed to extend the

lifetime of PCM with in-memory encryption using cosets to generate alternate candidates for

writebacks. Using a similar approach to that of TOWERs, MACE can mask faults associ-

ated with stuck bits, and opportunistically reduce write energy as a secondary optimization

parameter. As with CASTLE & TOWERs, MACE is complementary with existing error

correction techniques, and provides opportunities to finely tune the tradeoff of cosets and

error correction to meet the needs of the system at hand. In support of MACE, I present

“Word-based, Interleaved, Nonessential-bit Decomposition Utility” (WINDU) which lever-

ages lightweight compression in order to store MACE auxiliary bits in reclaimed space.

Portions of this chapter reproduce text and images with permission from my publication

“Toward Secure, Reliable, and Energy Efficient Phase-change Main Memory with MACE” [8]

©2019 IEEE.

4.1 MACE Encoding

The leading fault tolerance approaches for in-memory encryption operate in concert with

ECP. SECRET [38] adds additional auxiliary capacity to store ECP pointers directly while

counter advance (used for CASTLE) uses the AES block-cipher itself to generate cosets on

demand when the correction capability is exceeded [7]. However, this approach relies on the

fact that the counter used in AES-GCM and CASTLE will produce a new random value

every time; for unbiased data, a random coset will be more effective than a fixed or biased

one [47, 34]. In contrast, AES-XTS will generate its OTP from an initial value based on

the address, but that value is invariant for the block being encrypted. Thus, the leading

approach in CASTLE is not a practical approach for mitigating endurance faults. Thus we

fall back to the prior approach of appending auxiliary space to the end of each memory row

for ECP as shown in Figure 23.

42

Plaintext

AES-XTS AES-XTS AES-XTS AES-XTS

Ciphertext ECP (a)

Coset Enc. Coset Enc. Coset Enc. Coset Enc.
(b)ECPCoset Aux.MACE

Figure 23: AES-XTS encryption with (a) ECP fault tolerance and (b) MACE fault tolerance.

MACE leverages the idea that random cosets can be effective to optimize codewords for

a particular criterion [47, 34] including minimizing SA-W data [64, 33]. MACE, shown in

Figure 23(b), takes the ciphertext and conducts coset encoding for reliability using a set

of randomly generated coset candidates [47]. The binary ID of the coset candidate that

minimizes SA-Ws is stored as auxiliary information. To retain a near-iso-area overhead,

coset auxiliary bits (dark purple) may replace bits that would have been allocated for ECP

(light purple). Any remaining SA-W bits after coset encoding are corrected by the remaining

ECP. Thus an acceptable writeback candidate will reduce the number of SA-Ws such that

pointer fault tolerance can handle them.

We see from Figure 23 that cosets are applied locally to blocks smaller than the row,

but pointers are global for the row. To maximize fault tolerance it is desirable to locally

minimize SA-Ws in each word. As discussed in Section 2.3, in-memory encryption defeats

locality-based techniques to reduce bit changes. However, early in the memory lifetime, there

is low pressure on fault tolerance. Thus, MACE can apply a secondary optimization metric

such as flip minimization, improving energy and endurance.

MACE uses the same approach as TOWERs to apply a multi-objective cost function

for coset selection. Assuming some method of distinguishing SA-R and SA-W faults, there

may be several candidates which minimize errors, which can then be optimized according to

a secondary metric such as energy reduction. As with CASTLE and SECRET, we assume

43

that writes are only committed for dirty words. However, if all the available candidates fail

to reduce the number of faults to the correction capacity, the entire row can be re-encoded

by the best coset to potentially free another pointer for use in the word being written. This

progressively more conservative approach allows Algorithm 1 to opportunistically reduce the

secondary cost while avoiding taking on more SA-W bits than the correction scheme can

support.

Coset effectiveness improves as the codes are applied to smaller sub-row blocks or the

number of codes per block increases, both at the expense of increased auxiliary bits. TOW-

ERs and previous work have explored compression to create space for auxiliary bits within

the data block to mitigate this overhead [46, 48]. AES-XTS’s block-cipher encryption of

data makes efficiently storing auxiliary data in the space reclaimed by compression appar-

ently intractable; for counter-mode-based encryption the bits reclaimed by compression can

simply be overwritten because the encryption is applied via XOR with the OTP. Unfortu-

nately, AES-XTS introduces a block cipher encryption between the OTP steps, diffusing

information from every bit of the input to every bit of the output. Rather than simply pay

the penalty of reserving additional capacity for coset ID encoding, I developed WINDU.

4.2 WINDU Architecture

Applying lightweight compression to reclaim space for storing auxiliary bits representing

the coset encoding is non-trivial for AES-XTS. In MACE, cosets are applied after encryp-

tion due to the simple XOR function required to generate each write candidate. Lightweight

compression must be completed prior to encryption as it leverages similarity in the data,

which is destroyed by the encryption process. Thus, if the coset can be applied prior to

encryption, each the coset candidate can be generated from the compressed word using the

XOR function and concatenated with the auxiliary value, which is stored in the reclaimed bits.

While this is practical for a OTP, it is impractical for AES-XTS, because each candidate

must be encrypted separately with an expensive block-cipher operation.

44

Thus, to leverage reclaimed space from lightweight compression for storing MACE aux-

iliary information, we propose the Word-based Interleaved Nonessential-bit Decomposition

Utility (WINDU), shown in Figure 24. MTC lightweight compression [48] is applied to each

word in the memory row to recover 5-7 bits per word, shown as white boxes. As with TOW-

ERs, MTC techniques are selected for their simplicity and compression coverage; matching

bits in the leading byte of each word are readily identified and apply to a large proportion

of data. The compressed data is then repacked toward the MSB, to absorb the reclaimed

space and clustering the unused bits at the end of the row. AES-XTS then proceeds as in

Figure 23 with the exception of the tail of the blue data and the reclaimed space. After the

MACE cosets are determined for the encrypted data, their auxiliary encoding is added to

the reclaimed space of the last block, encrypted, and then passed through the coset function

with auxiliary data stored externally.

MTC
Compress

MTC
Compress

MTC
Compress

MTC
Compress

Figure 24: Applying WINDU to a cache line before writeback. Each word in the line is

compressed, the compressed data is packed into the MSBs of the cache line, and then each

word in the resultant line is assessed to determine the best coset to apply.

This approach requires only log2(n) + 2 bits to encode the coset codeword, where n

is the number of coset candidates and the remaining two bits indicate one of three MTC

compression states for the row (“01,” “10,” or “11”) or that the row is uncompressed (“00”).

For 512-bit rows, 64-bit words, and 32-bits cosets per word, the encoding bits will only

45

consume 35 of the 40 bits reclaimed by compression. If the seven external auxiliary bits

are protected with ECP-1, this is adds four additional bits (three address bits plus one

replacement bit), requiring a total of 11 bits, which is 2.2% of the total row as overhead. Thus,

MACE WINDU essentially repurposes the bits of one pointer for this encoding. Compared to

MACE, this a significant area advantage, as 32 cosets would require reclaiming four pointers.

We can improve on this overhead by storing the compression bits in the reclaimed space.

We can also leverage parallel AES units and multi-stage coset encoding to reduce this further.

For a 512-bit row with 128-bit encryption blocks, the system needs at least four AES units.

Using these units in parallel, we can create four candidate parents (first stage) by encoding

pre-encryption candidate with a unique two-bit value in the remaining reclaimed bits. This

will generate four uniquely encrypted words. Using eight vector MACE post-encryption

cosets on each parent candidate (second stage) generates 32 unique candidates, while needing

to store only the single three-bit ID of the coset applied. With eight parallel AES units,

the reclaimed bits are entirely filled and only two external bits are needed. These remaining

≤3 bits can be protected through triple-modular redundancy, requiring a total of 9 (or 6)

auxiliary bits (1.8% or 1.2% overhead) and reclaiming only 1 pointer.

There are performance ramifications for not enforcing word alignment in memory. For

all but the most significant word (MSW), the compressed data must be packed such that it

will cross a word boundary. Since all the encoding for the MSWs is stored in the LSW, every

access requires decoding and decrypting the final word. In the worst case, we need to access

three words for every transaction: the words on either side of the boundary the compressed

data crosses, and the final word to retrieve the encoding information. For memory systems

which employ critical word first and early restart, applying WINDU will incur this additional

access penalty. For a 512-bit row size using 64-bit words, assuming that the word accesses

are evenly distributed, we expect that transactions on the first and last word will require

accessing two words and for the remaining words accessing three words, with an expected

value of 2· 2
8
+3· 6

8
= 2.75 word accesses per word transaction. Another potential performance

issue is the latency associated with serializing the encryption of the final word. This roughly

doubles the latency associated with encryption. However, WINDU provides comparable

coset protection while reclaiming three fewer pointers than MACE alone.

46

4.3 LARS Sustainability Analysis

Prior work in GreenChip [65] developed the indifference analysis shown in Equation 3

where Mi is the embodied (i.e., manufacturing) energy and Pi is the operational power of

system i. It is sufficiently flexible for different holistic sustainability evaluations, when system

reliability is constant between design choices. However, when evaluating an approach like

MACE, different configurations will have an impact on lifetime due to memory wearout—

different points in the tradespace of using auxiliary space for ECP versus MACE will impact

dynamic energy and cumulative energy consumed by the system. If a system has lower

use-phase energy and lower embodied energy, but it must be replaced every month, this

replacement embodied energy should be taken into account when comparing it with another

system. Thus, we proposed an extension to indifference theory called “Lifetime Amortized

Replacement for Servers” (LARS) indifference analysis.

tI =
M1−M0

P0−P1

(3)

Ai =
Mi

Li

=
Mi ·Wi

WBFi

(4)

tILARS
=

M1 −M0

(P0+A0)−(P1+A1)
(5)

The fundamental difference between LARS indifference analysis and prior sustainability

indifference analysis [65] is the inclusion of amortized embodied energy of replacements

reflected in Eq. 5. In Eq. 3, the indifference point reports the time it takes for a system with

lower operational power to save the equivalent energy of the larger embodied energy from

more complicated manufacturing. However, when the mean-time-to-failure (MTTF) interval

lapses for one system prior to the indifference time, traditional analysis is less meaningful.

With LARS indifference analysis, we consider replacement embodied energy as a cost per

time shown in Eq. 4, in a similar fashion to operational power. Ai is the embodied energy,

Mi, divided by the lifetime, Li, for a system i. Li can be determined as the ratio of writes

before failure WBFi to the write velocity (writes per second) Wi of system i. The LARS

47

comparison assumes two systems under comparison operate until failure, are replaced with

the same system, and the cycle continues indefinitely. Essentially, the LARS indifference

time now considers replacement cycle along with embodied energy, operational energy, and

usage scenario.

4.4 Experimental Setup for MACE WINDU

To evaluate MACE and MACE WINDU, we created a modified Pintool [50] to monitor

all memory writes (cache writebacks) encountered at the lowest-level, unified cache. The

provided cache monitoring instrumentation was adapted to extract the address and data of

512-bit cache lines as they were evicted. This instrumentation was attached to execution

runs of a selection of the SPEC2017 benchmarks. The benchmarks listed in Table 1 were

selected for their representative coverage of the rest of the suite [52] and augmented with

any benchmarks which exhibited a relatively high percentage of memory operations. All

benchmarks were compiled using the SPEC base and speed metrics to incur higher memory

use, and executed with reference workloads.

As with CASTLE & TOWERs, to evaluate reliability, fault maps were generated to

match incidence rates of 10−5...10−2, representing high to extreme cases of cell failure. Each

of the fault maps specifies permanently failed bits as stuck-at ‘0’ or stuck-at ‘1,’ identified by

their bitwise row and column position in a 2GB memory. A Bayesian distribution was used

to approximate the spatial correlation of faults [25]. Under simulation, the fault maps were

used to generate fault vectors for each cache line writeback based on the trace address of

the benchmark under test. For lifetimes, cells were assumed to have an average of 108 write

cycles before failure following a standard distribution [66, 32, 58] with a pessimistic coefficient

of variation (CoV) of 0.25 [32, 58] and perfectly uniform wear-leveling [58] consistent with

many proposals in the literature [59, 60, 58]. Experimental results represent an average over

10 experiments.

To evaluate the overall performance impact of MACE WINDU in the context of AES-XTS

protection, we used the SNIPER full-system simulator [62] to monitor performance for each

48

of the selected benchmarks. The simulation system parameters are shown identical to those

used in the evaluation of CASTLE & TOWERs as shown in Table 2. For this experiment, it

was assumed that a parallel hardware implementation of AES-XTS was used, and that the

latency of AES-XTS encryption is double that of an AES block-cipher. To model the latency

of coset encoding/decoding, we used parameters from a hardware simulation presented in

previous work on coset encoding [46].

4.5 Results

Based on the experimental setup described in Section 4.4, we conducted detailed evalu-

ations of MACE and MACE WINDU with various configurations of external auxiliary bits

and ECP to understand the impact of our contributions.

4.5.1 Compressibility and Coset Cardinality

MACE WINDU can only be applied when all the words within each cache line are

compressible. Thus, we explored compression coverage, measured as the ratio of compressible

cache lines written to all cache lines written, for a modified version of MTC [48]. As with

our evaluation for the CASTLE & TOWERs work, we found that most workloads exhibited

high compression coverage, especially after an initial warm-up period. This study is identical

to that presented in Section 3.4.2, shown in Figure 14.

To guide the selection of the cardinality of the coset, denoted with m bits to generate 2m

candidates, we studied m ∈ {2, 3, ..., 7}. The coset included 2m − 1 pseudo random vectors

and the identity vector. Using a fault incidence rate of 10−2, A representative subset of 1M

cache line writebacks was evaluated for each benchmark, and arithmetic mean of the total

SA-W bits encountered was recorded. The results indicate a diminishing return for more

than 32 cosets (m = 5), with the knee of the curve between 16 and 32 cosets. Given the

amount of bits reclaimed per word by MTC of five bits, we conclude that 32 cosets is the

ideal cardinality in terms of efficacy of MACE and efficient use of reclaimed bit area for

49

WINDU, and assume this number of cosets for the remaining experiments. This study is

identical to that presented in Section 3.4.3, shown in Figure 14.

4.5.2 Reliability and Lifetime

0.0E+00

4.0E+09

8.0E+09

1.2E+10

1.6E+10

2.0E+10

perl gcc bwaves mcf lbm omnetpp wrf xalancbmk x264 deepsjeng leela xz geomean

Li
fe

tim
e

(W
rit

es
)

ISO-Area Comparison, Wear-leveled benchmarks

ECP6 MACE 8,3
MACE 16,2 MACE 32,2
MACE WINDU (ECP6) MACE WINDU (MACE 32,2)

3.3 3.9
4.2 4.9

3.0 4.0

Figure 25: Mean lifetime writes for various combinations of ECP-N, MACE, and WINDU

applied to the benchmarks under test. Assuming iso-area configuration, we compare ECP-6,

MACE alone with 8, 16, and 32 cosets, and WINDU with either ECP-5 or MACE. For

the latter, WINDU is applied to compressible lines, and either ECP-6 or ECP-2 + MACE

otherwise.

To evaluate the effect of MACE on PCM lifetime, iso-area configurations of MACE and

MACE WINDU were compared to the baseline of ECP-6 [38] when protecting a simulated

memory system to failure. Each experiment continually issued writes until the simulation

recorded four cache line writebacks with unrecoverable bit errors [59].

Figure 25 reports the results. MACE with eight cosets and three pointers (MACE 8,3)1,2

performs poorly, but increasing to 16 cosets while losing one pointer (MACE 16,2)1,2 slightly

outperforms ECP. With evenly distributed faults, the probability of failure is similar for both

approaches. However, the spatial correlation of faults sees more instances where there are

more faults than ECP can correct, and the additional cosets outperform the ECP.

1Coset auxiliary bits are protected with a single ECP-style pointer.
2An uncorrected stuck-at failure in the coset bits does not result in a failure, but reduces the number of

coset candidates by half, decreasing effectiveness.

50

Increasing to 32 cosets is the best MACE-only configuration as it retains the same number

of pointers (MACE 32,2)2. Thus, from here on, MACE assumes MACE 32,2 unless specified.

MACE WINDU, which reverts to ECP-6 when no compression is possible improves over

MACE on average, but this improvement is not consistent for all applications. However,

when MACE WINDU reverts to MACE without compression, there is improvement for all

compressible benchmarks. MACE WINDU with ECP or MACE 32,2 provides an average

lifetime improvement of 2× and 2.6× over ECP, respectively and 40% and 81%, respectively

over MACE. This shows that MACE WINDU can improve fault tolerance over MACE in an

iso-area setting.

0%

20%

40%

60%

80%

100%

perl gcc

bwave
s

mcf lbm

omnetp wrf
xal

an
c

x2
64

deepsj
leela xz

g.
mean

MACE

Re
la

tiv
e

to
 E

CP
6

Write Energy (Energy 2nd Obj.) Write Energy (Endurance 2nd Obj.)
RESETs (Energy 2nd Obj.) RESETs (Endurance 2nd Obj.)

Figure 26: Improvement in differential write energy and endurance (RESETs) relative to

ECP. MACE 32,2, invariant of compressibility, summarized with a single entry. Incidence

fault rate of 10−2.

4.5.3 Energy and Endurance

To evaluate the impact of the MACE approach we conducted an energy and endurance

evaluation, including the bit changes associated with writing auxiliary bits. Figure 26 depicts

the improvement in differential write energy and count of RESET operations, expressed as

a percentage, normalized to ECP only (control) for each benchmark using MACE WINDU,

assuming a fault incidence rate of 10−2. A similar calculation was done for MACE. As

51

MACE is invariant to compression, the energy and endurance calculation is similar for each

benchmark and is summarized in the single MACE entry in the figure.

As expected, MACE WINDU improvement tracks workload compressibility. Further-

more, there is minimal distinction between optimizing energy or endurance, as both benefit

from minimizing bit changes. MACE improves over MACE WINDU in cases where the

compressibility is moderate to low but has a disadvantage in terms of storage overhead. We

explore this further in Section 4.5.5.

4.5.4 Performance Impact

To evaluate the impact of MACE WINDU on performance, IPC was measured for AES-

XTS+ECP versus AES-XTS+MACE WINDU. Note, AES-XTS+MACE is similar to AES-

XTS+ECP because MACE does not significantly impact the read critical path delay like

MACE WINDU. Figure 27 shows the results, normalized to AES-XTS+ECP, using a fault

incidence rate of 10−2. As expected, we can see a general trend that more compressible

workloads tend to have reduced IPC, owing to the additional overhead for applying and

evaluating coset candidates. This pattern is perturbed somewhat by the proportion of mem-

ory instructions in each workload. However, the performance penalty never exceeds the

energy saved (Figure 26), so the additional runtime for any given task will still save overall

memory energy.

4.5.5 LARS Whole-lifetime Energy Analysis

Based on the results of the lifetime and energy studies, a sustainability analysis was

conducted using a modified version of the GreenChip [65] tool to include LARS indifference

analysis. The observed lifetimes for each of the configurations were used alongside esti-

mates of both embodied and operational energy consumption to evaluate the lifetime energy

footprint.

Figures 28a, 28b, 28c show indifference point plots, calculated using Eq. 3 for (a) ECP-

6 versus MACE 32,6 (32 cosets, 6 pointers), (b) MACE WINDU (MW), which reverts to

MACE 32,2 when compression is not possible, versus MACE 32,6 for a 1TB memory, and

52

0.75

0.8

0.85

0.9

0.95

1

perl gcc

bwave
s

mcf lbm

omnetpp wrf

xal
an

cb
mk

x2
64

deepsje
ng

leela xz
mean

N
or

m
ai

liz
ed

 IP
C

Figure 27: Simulated IPC for MACE WINDU, normalized to ECP-6, using a fault incidence

rate of 10−2.

(a) ECP vs.
MACE

(b) MW vs.
MACE

(c) MW vs. MACE
(4TB)

Figure 28: Indifference points (tI) for the traditional GreenChip tool for ECP-6, MACE

32,6, and MACE WINDU (MACE 32,2) for 1TB PCM, except where noted.

(c) the same MW versus MACE comparison for a 4TB memory. Note, the MACE configura-

tion consistently has a larger area overhead, i.e., embodied energy, with a lower operational

energy. The figures highlight a range of usage scenarios for blade servers, from from 95% up-

time and low utilization (underloaded cloud) to similar uptime and high utilization (heavily

loaded cloud or supercomputer).

53

(a) ECP vs.
MACE

(b) MW vs.
MACE

(c) MW vs. MACE
(4TB)

Figure 29: LARS indifference points (tI) for the GreenChip tool for ECP-6, MACE 32,6,

and MACE WINDU (MACE 32,2) for 1TB PCM, except where noted.

Figure 28a indicates that MACE requires ≥29 years to recoup the additional embodied

costs from the area overheads. Similarly, Figures 28b and 28c show MACE requires 2.1-7.3

years and 4.3-17.5 years, reflecting highest to lowest activity, for 1TB and 4TB memories,

respectively.

Recalling from Section 4.5.5, that Eq. 3 does not accurately reflect indifference when

reliability and replacement cycle are a function of the system comparison. Figure 29 shows

the same comparison as Figure 28, except using Eq. 5 which takes into account amortized

embodied energy from replacements (Eq. 4). The biggest change is in Figure 29a, where in-

difference time of 29 years drops to <5 months, and low utilization approaching ∞ becomes

<18 months. The MW versus MACE comparisons show similar adjustments where Fig-

ures 29b and 29c report 1.3-4.5 years and 2.0-7.1 years, respectively, reflecting approximately

60% and 2× lower indifference time for 1TB and 4TB memories, respectively. Clearly, from

Figure 29, MACE is the considerably more sustainable choice than ECP, but the choice of

MACE WINDU versus MACE is more dependent on system configurations. MACE WINDU

is more sustainable for moderate to large memories with MACE being more attractive for

very large memories. This suggests a tradeoff between total capacity, effective capacity (total

capacity less correction overhead), and activity ratio of a server.

54

Together, MACE and WINDU demonstrate improved lifetime and reduced energy con-

sumption when applied to encrypted non-volatile memories. MACE readily generates write-

back candidates with fewer SA-W faults, and opportunistically reduces dynamic energy by

15% on average. The addition of WINDU allows the technique to be applied within the

existing error correction overhead, to achieve upwards of 2.6× improvement in lifetime over

ECP-6. The LARS indifference analysis extends the indifference analysis of GreenChip to in-

clude the memory lifetime. This permits a holistic study of the tradespace between activity,

capacity, and correction overhead in the context of non-volatile memories.

In the final chapter, I present a summary of my contributions to date and how my body

of work supports the goals of this thesis, alongside directions for future study.

55

5.0 Conclusion & Future Work

CASTLE and TOWERs [7], of which TOWERs and the simulation/evaluation work are

my primary contributions, can achieve an average lifetime improvement of over 45× com-

pared to SECDED ECC, 7.1× compared to SECRET, and 3.6× compared to the leading

partition-and-flip fault-tolerance approach (AEGIS) for the same area overhead. CASTLE

leverages the counter-mode encryption process to improve reliability in the presence of en-

durance faults. TOWERs for CASTLE improve reliability as well as energy for encrypted

data through a novel application of compression and encoding. CASTLE and TOWERs

are compatible with error-correction codes (ECC) and error correction pointers (ECP), the

standard for mitigating endurance faults in PCM. Together, they represent an immediately

applicable technique which meets the goals of this thesis using the state-of-the-art PCM

technology.

I designed MACE and WINDU [8] for PCM in a high-capacity cloud computing context,

for which AES-XTS encryption has been established as the de facto standard for data confi-

dentiality. In this setting, MACE improves the lifetime and dynamic energy of PCM by up

to 2.6× and 15%, respectively. The WINDU architecture leverages lightweight in-memory

compression akin to TOWERs to reduce the auxliary overhead of the MACE technique.

The addition of WINDU allows the technique to be applied within the existing error cor-

rection overhead—I have shown that MACE WINDU can achieve better fault tolerance and

endurance than ECP alone for the same area overhead. For workloads that exhibit low com-

pressibility, MACE makes more effective use of overhead than ECP, and secures an energy

benefit. To more thoroughly explore the cradle-to-grave energy consumption of a system,

which is especially salient to system designers of cloud computing servers, I co-designed

the LARS indifference analysis approach. This holistic view of lifetime energy consumption

accounts for replacement of failed memory devices informs system design and memory selec-

tion. The LARS indifference analysis demonstrates that the endurance and energy benefits

of MACE and MACE-WINDU are realized on a relatively short time scale, and illustrates

situations where server utilization and total storage capacity favor one or the other.

56

In future work, all of the above techniques could be evaluated in concert with other fault

tolerance techniques. The fault tolerance benefit of my work is agnostic to the secondary fault

tolerance approach with which they are combined. Although this study uses ECP, which

was inherited by building upon SECRET, in principle, CASTLE and TOWERs or MACE

can be combined with a partition-and-flip fault tolerance approach like AEGIS, which could

increase the lifetime further. Similar studies of iso-area lifetime and energy improvements

could compare any such fault mitigation scheme.

Using AEGIS with SECRET, and by extension word level CASTLE and TOWERs,

creates an undesirable side effect. While ECP correction can be localized to the encrypted

word, AEGIS requires bit changes throughout the row, disrupting SECRET’s benefit of

only writing dirty words. New faults often require AEGIS to restore flipped groups of the

current partition and flip bits of a new partition, impacting SECRET’s energy savings.

TOWERs could partially mitigate this overhead, by extending the coset selection heuristic

(Algorithm 1) beyond the word to the entire row. We hope to study this in future work. Of

course, the row version of CASTLE and TOWER can use AEGIS without these concerns.

Moreover, iso-area word-level CASTLE and TOWERs (ECP-6) improves lifetime by 3.7×

with a 54% energy reduction compared to AEGIS, showing the efficacy of the CASTLE and

TOWERs approach.

With continued process development and scaling, the access time for PCM is expected

to improve. Beyond process maturation, novel cell designs, material selection, and alternate

access circuits (e.g., optically-switched PCM films [67], carbon nanotube access [14]) are

promising approaches to reducing the relatively high write latency of PCM cells. In the

interim, my work could incorporate additional techniques to improve the access latency at

the memory controller and cache level. My work to date assumes the the memory controller

and how it accesses the underlying PCM is opaque to the cache and other upstream units.

With specific knowledge of what data are dirty, the load on the memory transaction queues,

and the parameters of the encryption process, there is an opportunity to improve the overall

average memory access time of a PCM main memory unit. This is a departure from the

DRAM-compatible designs in the literature to date, but such work is a necessary step to

establishing PCM as a standalone main memory.

57

The continued demand for denser, faster, and more energy-efficient memory systems is

driving research of emerging memory technologies to overcome the limitations of DRAM.

Already, PCM is emerging as a potential unified memory which can act as both main mem-

ory and storage-class memory. However, its outstanding challenges in reliability, energy

efficiency, and security must be resolved before PCM is a viable candidate. In my body of

work, I have drawn attention these three inseparable design concerns as the most pressing

challenges to overcome. This thesis presents two approaches which address these concerns si-

multaneously, prepared for the context of standardized in-memory encryption and evaluated

under representative modern workloads. Together, these techniques advance the state-of-

the-art and represent a step toward the adoption of PCM as a main memory technology.

58

Bibliography

[1] L. Johnsson and G. Netzer, “The impact of Moore's Law and loss of Dennard scaling:
Are DSP SoCs an energy efficient alternative to x86 SoCs?,” Journal of Physics:
Conference Series, Vol. 762, p. 012022, oct 2016.

[2] O. Villa, D. R. Johnson, M. Oconnor, E. Bolotin, D. Nellans, J. Luitjens,
N. Sakharnykh, P. Wang, P. Micikevicius, A. Scudiero, et al., “Scaling the power
wall: a path to exascale,” SC’14: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 830–841, IEEE,
2014.

[3] S. A. McKee, “Reflections on the memory wall,” Proceedings of the 1st conference on
Computing frontiers, p. 162, 2004.

[4] Intel Corporation, “Product Brief: Achieve Greater Insight from Your Data with Intel
Optane Persistent Memory,” Tech. Rep., Intel Corporation, March 2021.

[5] J. Choe, “Intel 3D XPoint Memory Die Removed from Intel Optane™ PCM (Phase
Change Memory).”

[6] Intel Corporation, “336907-002US: Memory Encryption Technologies Specification,”
Tech. Rep., Intel Corporation, Santa Clara, CA, United States, 2019.

[7] S. Longofono, D. Kline, R. G. Melhem, and A. K. Jones, “A CASTLE with TOWERs
for Reliable, Secure PCM,” IEEE Transactions on Computers, pp. 1–1, 2020.

[8] S. Longofono, D. Kline, R. Melhem, and A. K. Jones, “Toward Secure, Reliable, and
Energy Efficient Phase-change Main Memory with MACE,” 2019 Tenth International
Green and Sustainable Computing Conference (IGSC), pp. 1–8, 2019.

[9] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback, and J. Dray,
“Advanced Encryption Standard (AES),” 2001-11-26 2001.

[10] D. Ielmini, D. Sharma, S. Lavizzari, and A. L. Lacaita, “Reliability Impact of
Chalcogenide-Structure Relaxation in Phase-Change Memory (PCM) Cells—Part I:
Experimental Study,” IEEE Transactions on Electron Devices, Vol. 56, No. 5, No. 5,
pp. 1070–1077, 2009.

59

[11] W. Zhang and T. Li, “Helmet: A resistance drift resilient architecture for multi-level
cell phase change memory system,” 2011 IEEE/IFIP 41st International Conference
on Dependable Systems Networks (DSN), pp. 197–208, 2011.

[12] H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi,
and K. E. Goodson, “Phase Change Memory,” Proceedings of the IEEE, Vol. 98,
No. 12, pp. 2201–2227, Dec 2010.

[13] S. Yoo, H. D. Lee, S. Lee, H. Choi, and T. Kim, “Electro-Thermal Model for Thermal
Disturbance in Cross-Point Phase-Change Memory,” IEEE Transactions on Electron
Devices, Vol. 67, No. 4, No. 4, pp. 1454–1459, 2020.

[14] F. Xiong, Scaling study of phase change memory using carbon nanotube electrodes.
PhD thesis, University of Illinois, Urbana-Champaign, IL, 2014.

[15] Kinarn Kim and Su Jin Ahn, “Reliability investigations for manufacturable high den-
sity PRAM,” 2005 IEEE International Reliability Physics Symposium, 2005. Proceed-
ings. 43rd Annual., pp. 157–162, 2005.

[16] S. Lee, J. Jeong, T. S. Lee, W. M. Kim, and B. Cheong, “A Study on the Fail-
ure Mechanism of a Phase-Change Memory in Write/Erase Cycling,” IEEE Electron
Device Letters, Vol. 30, No. 5, No. 5, pp. 448–450, 2009.

[17] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A Durable and Energy Efficient Main
Memory Using Phase Change Memory Technology,” Proceedings of the 36th Annual
International Symposium on Computer Architecture, ISCA ’09, (New York, NY, USA),
p. 14–23, Association for Computing Machinery, 2009.

[18] R. W. Hamming, “Error detecting and error correcting codes,” Bell Labs Technical
Journal, Vol. 29, No. 2, No. 2, pp. 147–160, 1950.

[19] S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite Fields,” Journal of
the Society for Industrial and Applied Mathematics, Vol. 8, No. 2, No. 2, pp. 300–304,
1960.

[20] R. Bose and D. Ray-Chaudhuri, “On a class of error correcting binary group codes,”
Information and Control, Vol. 3, No. 1, No. 1, pp. 68–79, 1960.

[21] R. Gallager, “Low-density parity-check codes,” IRE Transactions on Information The-
ory, Vol. 8, No. 1, No. 1, pp. 21–28, 1962.

60

[22] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ECP, not ECC, for hard
failures in resistive memories,” ACM SIGARCH Computer Architecture News, Vol. 38-
3, pp. 141–152, ACM, 2010.

[23] K. Kim, “Technology for sub-50nm DRAM and NAND flash manufacturing,” IEEE
InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., pp. 323–326,
Dec 2005.

[24] T. Yuan, S. Z. Ramadan, and S. J. Bae, “Yield prediction for integrated circuits man-
ufacturing through hierarchical Bayesian modeling of spatial defects,” Transactions
on Reliability 2011, Vol. 60, No. 4, No. 4, pp. 729–741, 2011.

[25] Z. Al Ars, DRAM fault analysis and test generation. TU Delft, Delft University of
Technology, 2005.

[26] D. Kline, R. Melhem, and A. K. Jones, “Sustainable fault management and error
correction for next-generation main memories,” 2017 Eighth International Green and
Sustainable Computing Conference (IGSC), pp. 1–6, 2017.

[27] D. Kline, J. Zhang, R. Melhem, and A. K. Jones, “FLOWER and FaME: A Low
Overhead Bit-Level Fault-map and Fault-Tolerance Approach for Deeply Scaled Mem-
ories,” 2020 IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), pp. 356–368, 2020.

[28] S. Longofono, D. Kline, R. Melhem, and A. K. Jones, “Predicting and mitigating
single-event upsets in DRAM using HOTH,” Microelectronics Reliability, Vol. 117,
p. 114024, 2021.

[29] T. M. Hollis, “Data Bus Inversion in High-Speed Memory Applications,” IEEE Trans-
actions on Circuits and Systems II: Express Briefs, Vol. 56, No. 4, No. 4, pp. 300–304,
2009.

[30] S. Cho and H. Lee, “Flip-N-Write: A simple deterministic technique to improve
PRAM write performance, energy and endurance,” 2009 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 347–357, 2009.

[31] N. H. Seong, D. H. Woo, V. Srinivasan, J. A. Rivers, and H.-H. S. Lee, “SAFER:
Stuck-at-fault error recovery for memories,” MICRO, pp. 115–124, 2010.

61

[32] J. Fan, S. Jiang, J. Shu, Y. Zhang, and W. Zhen, “Aegis: Partitioning data block for
efficient recovery of stuck-at-faults in phase change memory,” MICRO, pp. 433–444,
2013.

[33] A. N. Jacobvitz, R. Calderbank, and D. J. Sorin, “Coset coding to extend the life-
time of memory,” 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA), pp. 222–233, 2013.

[34] S. M. Seyedzadeh, R. Maddah, D. Kline, A. K. Jones, and R. Melhem, “Improving
Bit Flip Reduction for Biased and Random Data,” IEEE Transactions on Computers,
Vol. 65, No. 11, pp. 3345–3356, Nov 2016.

[35] J. Daeman and V. Rijmen, “The Block Cipher Rijndael,” Lecture Notes in Computer
Science, Vol. 1820, 2000.

[36] M. Dworkin, “Special Publication 800-38A: Recommendation for block cipher modes
of operation,” 2001.

[37] V. Young, P. J. Nair, and M. K. Qureshi, “DEUCE: Write-Efficient Encryption for
Non-Volatile Memories,” ASPLOS, 2015.

[38] S. Swami, J. Rakshit, and K. Mohanram, “SECRET: Smartly EnCRypted Energy
EfficienT Non-Volatile Memories,” DAC, 2016.

[39] J. Kong and H. Zhou, “Improving privacy and lifetime of PCM-based main memory,”
DSN, pp. 333–342, June 2010.

[40] F. Huang, D. Feng, Y. Hua, and W. Zhou, “A wear-leveling-aware counter mode for
data encryption in non-volatile memories,” DATE, 2017.

[41] C. Fruhwirth, “New methods in hard disk encryption,” Tech. Rep., Vienna Institute
of Technology, 2005.

[42] M. Dworkin, “Recommendation for Block Cipher Modes of Operation: the XTS-AES
Mode for Confidentiality on Storage Devices,” Tech. Rep. SP 800-38E, NIST, 2010.

[43] K. Minematsu, “Improved Security Analysis of XEX and LRW Modes,” Lecture Notes
in Computer Science, Vol. 4356, 2006.

62

[44] M. Ball, “Follow-Up on NIST‘s Consideration of XTS-AES,” 2009.

[45] D. Kline, R. Melhem, and A. K. Jones, “Counter Advance for Reliable Encryption in
Phase Change Memory,” IEEE Computer Architecture Letters, Vol. 17, No. 2, No. 2,
pp. 209–212, 2018.

[46] S. M. Seyedzadeh, A. K. Jones, and R. G. Melhem, “Enabling Fine-Grain
Restricted Coset Coding Through Word-Level Compression for PCM,” CoRR,
Vol. abs/1711.08572, 2017.

[47] S. M. Seyedzadeh, R. Maddah, A. Jones, and R. Melhem, “PRES: Pseudo-random
Encoding Scheme to Increase the Bit Flip Reduction in the Memory,” Proceedings of
the 52Nd Annual Design Automation Conference, DAC ’15, (New York, NY, USA),
pp. 23:1–23:6, ACM, 2015.

[48] S. M. Seyedzadeh, R. Melhem, and A. Jones, “Improving Sustainability Through Dis-
turbance Crosstalk Mitigation in Deeply Scaled Phase-change Memory,” 2018 Ninth
International Green and Sustainable Computing Conference (IGSC), Oct 2018.

[49] J. Li and K. Mohanram, “Write-once-memory-code phase change memory,” 2014 De-
sign, Automation Test in Europe Conference Exhibition (DATE), pp. 1–6, March
2014.

[50] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation,” Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’05, (New York, NY,
USA), pp. 190–200, ACM, 2005.

[51] “Overview-SPECCPU2017.” https://www.spec.org/cpu2017/Docs/overview.

html, 2019. Accessed: 2017-03-25.

[52] R. Panda, S. Song, J. Dean, and L. K. John, “Wait of a Decade: Did SPEC CPU
2017 Broaden the Performance Horizon?,” 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp. 271–282, Feb 2018.

[53] “Benchmark Overview - SPEC Cloud IaaS 2018.” https://www.spec.org/cloud_

iaas2018/faqs.html. Accessed: 2019-11-12.

63

https://www.spec.org/cpu2017/Docs/overview.html
https://www.spec.org/cpu2017/Docs/overview.html
https://www.spec.org/cloud_iaas2018/faqs.html
https://www.spec.org/cloud_iaas2018/faqs.html

[54] D. Kline, S. Longofono, S. Ollivier, E. Higgins, R. Melhem, and A. K. Jones, “PREM-
Sim: A Resilience Framework for Modeling Traditional and Emerging Memory Relia-
bility,” 2019 IEEE 27th International Symposium on Modeling, Analysis, and Simu-
lation of Computer and Telecommunication Systems (MASCOTS), pp. 396–409, Oct
2019.

[55] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change Memory
as a Scalable Dram Alternative,” SIGARCH Comput. Archit. News, Vol. 37, No. 3,
p. 2–13, June 2009.

[56] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0: A tool to
model large caches,” HP laboratories, pp. 22–31, 2009.

[57] S. Wang and E. Ipek, “Reducing data movement energy via online data clustering
and encoding,” The 49th Annual IEEE/ACM International Symposium on Microar-
chitecture, p. 32, IEEE Press, 2016.

[58] J. Zhang, D. Kline, L. Fang, R. Melhem, and A. K. Jones, “RETROFIT: Fault-Aware
Wear Leveling,” IEEE Computer Architecture Letters, Vol. 17, No. 2, pp. 167–170,
July 2018.

[59] M. K. Qureshi et al., “Enhancing lifetime and security of phase change memories via
Start-Gap wear leveling,” MICRO, Vol. 14, p. 23, 2009.

[60] J. Yun, S. Lee, and S. Yoo, “Dynamic wear leveling for phase-change memories with
endurance variations,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 23, No. 9, No. 9, pp. 1604–1615, 2015.

[61] L. Namdeo and H. Nautiyal, “Performance Analysis of Advanced Encryption Standard
on FPGA,” International Journal of Computer Applications, Vol. 153, No. 6, No. 6,
2016.

[62] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An Evaluation of
High-Level Mechanistic Core Models,” ACM Transactions on Architecture and Code
Optimization (TACO), 2014.

[63] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level performance,
energy, and area model for emerging nonvolatile memory,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 31, No. 7, No. 7,
pp. 994–1007, 2012.

64

[64] A. N. Jacobvitz, R. Calderbank, and D. J. Sorin, Writing Cosets of a Convolutional
Code to Increase the Lifetime of Flash Memory. 50th Annual IEEE Allerton Con-
ference on Communication, Control,and Computing, University of Illinois Urbana-
Champaign, 2012.

[65] D. Kline, N. Parshook, , E. Brunvand, R. Melhem, P. K. Chrysanthis, and A. K. Jones,
“Holistically evaluating the environmental impacts in modern computing systems,”
IGSC, pp. 1–8, Nov 2016.

[66] C. J. Xue, G. Sun, Y. Zhang, J. J. Yang, Y. Chen, and H. Li, “Emerging non-volatile
memories: opportunities and challenges,” CODES+ISSS, pp. 325–334, IEEE, 2011.

[67] M. L. Gallo and A. Sebastian, “An overview of phase-change memory device physics,”
Journal of Physics D: Applied Physics, Vol. 53, No. 21, p. 213002, mar 2020.

65

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. SPEC2017 benchmarks used to generate memory traces
	2. Architecture parameters for performance study.

	List of Figures
	1. A typical PCM cell design and its operation.
	(a). Typical PCM cell architecture.
	(b). Programming a PCM cell.
	2. The four transformation steps used in each round of AES encryption.
	(a). AES Substitute Bytes Step
	(b). AES Shift Rows Step
	(c). AES Mix Columns Step
	(d). AES Add Round Key Step
	3. AES Electronic Code Book mode.
	4. AES Cipher Block Chain mode.
	5. AES Galois counter-mode.
	6. Counter-mode encryption diagram
	7. Example of XTS for block cipher encryption.
	8. CASTLE fault example
	9. Block level CASTLE architecture.
	(a). Encrypting individual blocks with sub-counters.
	(b). ECP encoding flow.
	10. TOWERs Flow Example
	11. Cell fault rate for different coefficients of variation.
	12. CASTLE UBER
	13. CASTLE counter advances
	14. Coset size sweep
	15. Compressibility of SPEC2017 benchmarks
	16. Multi-objective optimization results
	17. Energy as PCM scales
	18. UBER using TOWERs and ECP-3
	19. CASTLE & TOWERs lifetime
	20. Lifetime sensitivity study
	21. CASTLE & TOWERs IPC
	22. IPC scaling
	23. The MACE concept
	24. The WINDU concept
	25. MACE WINDU lifetime results
	26. MACE energy improvement
	27. MACE WINDU IPC
	28. GreenChip analysis of MACE WINDU
	(a). ECP vs. MACE
	(b). MW vs. MACE
	(c). MW vs. MACE (4TB)
	29. LARS analysis of MACE WINDU
	(a). ECP vs. MACE
	(b). MW vs. MACE
	(c). MW vs. MACE (4TB)

	1.0 Introduction
	1.1 Contributions & Acknowledgements

	2.0 Background
	2.1 Phase Change Memory
	2.2 Error Correction Techniques
	2.3 Coset Encoding
	2.4 AES-Based Encryption
	2.4.1 AES in Galois-Counter-Mode
	2.4.2 The AES-XTS Encryption Algorithm

	3.0 CASTLE & TOWERs
	3.1 CASTLE Counter-mode Encryption
	3.2 TOWERs
	3.2.1 Compression & Encoding of Encrypted Data
	3.2.2 Multi-objective Coset Encoding

	3.3 Experimental Setup for CASTLE & TOWERs
	3.4 Results
	3.4.1 CASTLE Study
	3.4.2 Coset Size Study
	3.4.3 Compressibility Study
	3.4.4 TOWER Multi-Objective Optimization
	3.4.5 Lifetime Study
	3.4.6 Performance Study

	4.0 MACE WINDU
	4.1 MACE Encoding
	4.2 WINDU Architecture
	4.3 LARS Sustainability Analysis
	4.4 Experimental Setup for MACE WINDU
	4.5 Results
	4.5.1 Compressibility and Coset Cardinality
	4.5.2 Reliability and Lifetime
	4.5.3 Energy and Endurance
	4.5.4 Performance Impact
	4.5.5 LARS Whole-lifetime Energy Analysis

	5.0 Conclusion & Future Work
	Bibliography

