

Title Page

A Distributed Approach for Robust, Scalable, and Flexible Dynamic Ridesharing

by

Hadi Hajari

Submitted to the Graduate Faculty of the

School of Computing and Information in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2021

 ii

Committee Page

UNIVERSITY OF PITTSBURGH

SCHOOL OF COMPUTING AND INFORMATION

This dissertation was presented

by

Hadi Hajari

It was defended on

May 19, 2021

and approved by

Dr. Paul Munro, Associate Professor, School of Computing and Information, University of

Pittsburgh

Dr. Michael Lewis, Professor, School of Computing and Information, University of Pittsburgh

Dr. Zachary Rubinstein, Principal Project Scientist, Robotics Institute, Carnegie Mellon

University

Dissertation Director: Dr. Hassan Karimi, Professor, School of Computing and Information,

University of Pittsburgh

 iii

Copyright © by Hadi Hajari

2021

 iv

Abstract

A Distributed Approach for Robust, Scalable, and Flexible Dynamic Ridesharing

Hadi Hajari, PhD

University of Pittsburgh, 2021

This dissertation provides a solution to dynamic ridesharing problem, a NP-hard

optimization problem, where a fleet of vehicles move on a road network and ridesharing requests

arrive continuously. The goal is to optimally assign vehicles to requests with the objective of

minimizing total travel distance of vehicles and satisfying constraints such as vehicles’ capacity

and time window for pick-up and drop-off locations. The dominant approach for solving dynamic

ridesharing problem is centralized approach that is intractable when size of the problem grows,

thus not scalable. To address scalability, a novel agent-based representation of the problem, along

with a set of algorithms to solve the problem, is proposed. Besides being scalable, the proposed

approach is flexible and, compared to centralized approach, more robust, i.e., vehicle agents can

handle changes in the network dynamically (e.g., in case of a vehicle breakdown) without need to

re-start the operation, and individual vehicle failure will not affect the process of decision-making,

respectively. In the decentralized approach the underlying combinatorial optimization is

formulated as a distributed optimization problem and is decomposed into multiple subproblems

using spectral graph theory. Each subproblem is formulated as DCOP (Distributed Constraint

Optimization Problem) based on a factor graph representation, including a group of cooperative

agents that work together to take an optimal (or near-optimal) joint action. Then a min-sum

algorithm is used on the factor graph to solve the DCOP. A simulator is implemented to empirically

evaluate the proposed approach and benchmark it against two alternative approaches, solutions

obtained by ILP (Integer Linear Programming) and a greedy heuristic algorithm. The results show

 v

that the decentralized approach scales well with different number of vehicle agents, capacity of

vehicle agents, and number of requests and outperforms: (a) the greedy heuristic algorithm in terms

of solution quality and (b) the ILP in terms of execution time.

 vi

Table of Contents

Preface ... xi

1.0 Introduction ... 1

1.1 Terminologies .. 5

1.2 Motivation ... 6

1.3 Proposed Research ... 8

1.4 Contributions .. 9

1.5 Structure of the Dissertation ... 10

2.0 Background ... 11

2.1 Centralized Approach .. 11

2.1.1 System Objects Module ...13

2.1.2 Data Module ...13

2.1.3 Algorithm Module ..14

2.1.4 Optimization Module ...17

2.2 Analysis .. 19

3.0 Dynamic Ridesharing ... 22

3.1 Dynamic Dial-a-Ride Problem (DDARP) ... 23

3.2 Agent-based Approach ... 28

3.3 Other Ridesharing Systems ... 31

4.0 Proposed Research .. 40

4.1 Assumptions .. 42

4.2 Problem Formulation and Definitions .. 42

 vii

4.3 Methodology .. 46

4.3.1 Decentralized Approach ..46

4.3.2 Coordination Graph and Decomposition ...47

4.3.3 Spectral Graph Theory ..51

4.3.4 Allocation of Requests to Subproblems..58

4.3.5 Solving Subproblems ...63

4.3.5.1 Intra-Partition Problem Formulation .. 64

4.3.5.2 Min-Sum Algorithm .. 69

5.0 Evaluation .. 78

5.1 Data for Experiments ... 78

5.2 Simulator ... 80

5.3 Validation and Evaluation Results .. 81

5.3.1 Validation ..84

5.3.2 Evaluation Results ..89

5.4 Analysis of Evaluation Results .. 94

5.5 Limitation .. 97

6.0 Summary, Conclusion, and Future Research Direction ... 100

6.1 Summary ... 100

6.2 Conclusion ... 101

6.3 Future Research Direction ... 102

Bibliography .. 104

 viii

List of Tables

Table 1 Analogy between dynamic ridesharing problem and different VRP variants. 23

Table 2 Classification of the papers with respect to the type of solution approach applied 25

Table 3 An example of agent_request matrix... 48

Table 4 An example of exchanging messages from function to variable and from variable to

function .. 76

Table 5 Decomposition of five vehicle agents with different structures and similarities and

with varying time intervals and number of requests. (TI=Time Interval, CG=Coordination

Graph) .. 83

Table 6 Experimental Results (TI=Time Interval, GR=Greedy, RT=Running Time,

OV=Objective Value) ... 89

Table 7 ILP vs min-sum algorithm ... 98

Table 8 Comparison of the centralized and decentralized approaches. 102

 ix

List of Figures

Figure 1 New York City yellow cab taxi records in different hours in February 2016 5

Figure 2 Centralized approach in dynamic ridesharing systems ... 12

Figure 3 An illustration of rescheduling in a dynamic ridesharing system. (a) current route

of a vehicle for serving two passengers and a new request with pick-up location P3 and

drop-off location D3. (b) new route of the vehicle after rescheduling. 16

Figure 4 An example of queueing approach in ridesharing problem. The numbers on links

are travel times for vehicles-requests (Ayala et al., 2018). .. 18

Figure 5 An example of batch assignment .. 19

Figure 6 An overall illustration of the global objective function’s decomposition 44

Figure 7 Overview illustration of the decentralized approach ... 46

Figure 8 Hypergraph representation of agent-request .. 48

Figure 9 Overview of the decomposition algorithm ... 49

Figure 10 Serving dependent requests together with cost of 90 versus separately with cost of

140... 61

Figure 11 An example of allocating requests to partitions .. 63

Figure 12 Cooperative agents to solve subproblem in each partition 64

Figure 13 Different DCOP representations .. 67

Figure 14 Taxonomy of DCOP algorithms ... 69

Figure 15 (a) An example of assignment problem in a partition (b) domain of each agent’s

variable (c) function values of each agent ... 75

Figure 16 An example of a grid with two agents and four requests 81

file://///Volumes/UBUNTU%2016_0/Dissertation_Hadi_Hajari_V6.docx%23_Toc80387515
file://///Volumes/UBUNTU%2016_0/Dissertation_Hadi_Hajari_V6.docx%23_Toc80387520
file://///Volumes/UBUNTU%2016_0/Dissertation_Hadi_Hajari_V6.docx%23_Toc80387521
file://///Volumes/UBUNTU%2016_0/Dissertation_Hadi_Hajari_V6.docx%23_Toc80387522
file://///Volumes/UBUNTU%2016_0/Dissertation_Hadi_Hajari_V6.docx%23_Toc80387523
file://///Volumes/UBUNTU%2016_0/Dissertation_Hadi_Hajari_V6.docx%23_Toc80387524
file://///Volumes/UBUNTU%2016_0/Dissertation_Hadi_Hajari_V6.docx%23_Toc80387524
file://///Volumes/UBUNTU%2016_0/Dissertation_Hadi_Hajari_V6.docx%23_Toc80387525
file://///Volumes/UBUNTU%2016_0/Dissertation_Hadi_Hajari_V6.docx%23_Toc80387526
file://///Volumes/UBUNTU%2016_0/Dissertation_Hadi_Hajari_V6.docx%23_Toc80387528
file://///Volumes/UBUNTU%2016_0/Dissertation_Hadi_Hajari_V6.docx%23_Toc80387529
file://///Volumes/UBUNTU%2016_0/Dissertation_Hadi_Hajari_V6.docx%23_Toc80387529
file://///Volumes/UBUNTU%2016_0/Dissertation_Hadi_Hajari_V6.docx%23_Toc80387530

 x

Figure 17 An overview of the experiment design ... 86

Figure 18 Objective values obtained from ILP, Greedy and three decomposition methods 92

Figure 19 Running time obtained from ILP, Greedy and three decomposition methods 93

Figure 20 Objective value obtained from Greedy algorithm with different number of

requests and agents ... 93

Figure 21 Running time obtained from Greedy algorithm with different number of requests

and agents .. 94

file://///Volumes/UBUNTU%2016_0/Dissertation_Hadi_Hajari_V6.docx%23_Toc80387531
file://///Volumes/UBUNTU%2016_0/Dissertation_Hadi_Hajari_V6.docx%23_Toc80387532
file://///Volumes/UBUNTU%2016_0/Dissertation_Hadi_Hajari_V6.docx%23_Toc80387533
file://///Volumes/UBUNTU%2016_0/Dissertation_Hadi_Hajari_V6.docx%23_Toc80387534
file://///Volumes/UBUNTU%2016_0/Dissertation_Hadi_Hajari_V6.docx%23_Toc80387534
file://///Volumes/UBUNTU%2016_0/Dissertation_Hadi_Hajari_V6.docx%23_Toc80387535
file://///Volumes/UBUNTU%2016_0/Dissertation_Hadi_Hajari_V6.docx%23_Toc80387535

 xi

Preface

I would like to thank my advisor, Dr. Hassan Karimi, for his support and allowing me to

keep doing research on my idea. He always showed great passion, both in in-person meetings and

lab meetings, for discussing different aspects of my dissertation.

I also wish to thank the rest of my dissertation committee, Dr. Paul Munro, Dr. Michael

Lewis, and Dr. Zachary Rubinstein for their invaluable help, guidance, and constructive feedback.

I had several fruitful meetings with the committee to discuss my work in detail, which helped me

a lot shape my research.

I am also grateful to have benefited from constant effort of the staff in School of Computing

and Information at the University of Pittsburgh, especially Patricia Markham, Corey James, Brandi

Belleau, and Wesley Lipschultz.

Lastly, I am indebted to my family who has always supported and encouraged me and has

been my guiding light throughout my life.

 1

1.0 Introduction

As urbanization contributes to the well-beings of societies, more people continually move

from rural to urban areas. Nonetheless, urbanization comes with many new challenges in cities

such as increased demand on transport infrastructure, increased traffic congestion, increased fuel

consumption, and increased level of greenhouse gases (Zheng et al., 2014). These challenges are

being addressed by advancements in transportation infrastructures, e.g., intelligent transportation

systems (ITS), and vehicle technology, in particular electric cars and autonomous vehicles (AVs).

Next generation of transportation is being envisioned in different ways, including but not

limited to autonomy and shared mobility. The technology of AVs has been anticipated to perform

in a shared mode similar to sharing commutes with ridesharing (Gerte et al., 2018). Shared

autonomous vehicles (SAVs) or driverless taxis, as an innovative transportation mode, is among

the new visions focused on mobility that would enhance the future of transportation (Hyland &

Mahmassani, 2017; Fagnant et al., 2015). Today, ridesharing is growing in popularity because not

only does it have a paramount importance in saving fuel consumption, reducing the need for

parking, and improving traffic flow (Kelly, 2007; Morency, 2007; Chan & Shaheen, 2012), but it

also fills the gap in places within a city where public transportations are not well supported

(Ghoseiri et al., 2011). Fagnant and Kockelman (2018) conducted ridesharing simulations and

showed that ridesharing can reduce trip costs, reduce vehicle miles traveled (VMT), and improve

service time (ride time plus wait time) for SAV users. Another simulation study confirms that

SAVs can reduce fleet size, wait time, operations cost, and CO2 emissions in comparison with a

non-sharing strategy (Liu et al., 2018). Ridesharing, thus, improves the efficiency of transportation

 2

systems where people are provided with choices that are beneficial at both individual and society

levels.

Besides the benefits that ridesharing offers, ridesharing is becoming an attractive mode of

transportation by many people primarily due to computing and technological advancements in

intelligent phones, ridesharing apps, and social networks. Applications like UberPOOL and Lyft

Carpool developed by ridesharing companies, Uber and Lyft, respectively, have recently attracted

a large and growing number of customers. Gerte et al. (2018) highlighted the dramatic growth in

ridesharing services and demonstrated the widespread adoption of ridesharing as a key principle

of the future mobility management.

Conceptually, ridesharing refers to sharing of empty car seats between individuals who

have similar itineraries and time schedules in any means of transportation such as truck, van,

vehicle, or taxi to split travel costs (e.g., gas, toll, and parking fees) (Furuhata et al., 2013). In this

mode of transportation, usually a company (e.g., yellow cab company) owns a fleet of vehicles to

provide rides to the customers rather than independent private cars. Basically, there are two types

of ridesharing (Bullo et al., 2011): static ridesharing in which the demands are known in advance

and matching vehicles, riders, and routes scheduling happen before the trips start; dynamic

ridesharing in which the requests arrive continuously and the system needs to match and arrange

the trips with available vehicles in real time. Route-planning and scheduling algorithms in dynamic

ridesharing are more complex than in static one because the algorithms must be efficient enough

to solve the underlying optimization problem in real time while satisfying the constraints of both

the new requests and the requests already confirmed by riders. Route-planning algorithms in static

ridesharing are not applicable to real-time matching in dynamic ridesharing since vehicles and

 3

demands are highly dynamic (in space and time) in the latter case (Shen et al., 2016). This

dissertation focuses on dynamic ridesharing due to the increased demand for it.

The central idea to solve dynamic ridesharing problem is the development of optimization

models and efficient algorithms for optimally matching vehicles and riders in real time. The

problem can be formulated as other classic problems in operations research (OR) such as dynamic

dial-a-ride problem (DDARP) that is NP-hard (Baugh et al., 1998). Dynamic ridesharing problem

has been extensively studied, but it is still a challenging research topic because existing approaches

do not adequately scale up. Figure 1 shows the number of requests submitted by yellow cabs’

riders in New York City in different hours in February 2016 (New York City Yellow Taxi Trip,

2016). Assuming that the demands within hours of days are uniformly distributed, the range of

submitted requests in rush hours is around 280 to 400 requests per minute which shows a high

degree of dynamism in the system. This huge number of requests per minute with hundreds or

thousands of service vehicles and the real-time nature of decision making for the problem requires

large-scale optimization that is a challenging task.

Scalability in dynamic ridesharing is still an open topic in OR and has gained popularity in

recent years while the enabling technologies are becoming available (Lowalekar et al., 2019;

Schwarting et al., 2018; Agatz et al., 2016; Agatz et al., 2012; Nourinejad & Roorda, 2016; Ota et

al., 2015; Mallus et al., 2017; D’Orey et al., 2012). Furthermore, (1.1) proves that the scale of the

problem escalates exponentially as dimensions of the problem increase. Problem’s dimensions are

number of requests coming to the system 𝑛, number of vehicles in the fleet 𝑣 and their capacities

𝑐. In (1.1) three different scenarios, where number of requests are equal, greater, or less than

number of empty seats, are considered.

 4

Besides not being scalable, the existing approaches are not flexible, i.e., they cannot

efficiently handle changes when unexpected situations occur (e.g., in case of adding or removing

a vehicle). Also, building fault-tolerant centralized ridesharing systems is more challenging and

costly that building fault-tolerant decentralized ridesharing systems in that in the former one single

decision-maker is responsible for all the tasks in the operation where the latter for a much smaller

set of tasks.

From the above observational evidences, this dissertation states the following hypothesis:

Hypothesis: A decentralized approach to ridesharing problem addresses the issues of

scalability, flexibility, and robustness in dynamic ridesharing.

Taking the decentralized approach requires the development of new models and algorithms

and testing them by using two metrics: solution quality (e.g., minimizing total travel distance of

vehicle agents) and running time. With these two metrics, the main features (Section 1.2) of the

proposed approach can be quantified. For example, to test the flexibility of the proposed approach,

at the time of decision making more active vehicle agents can be added to the fleet to serve

remaining requests in the pool without need to solve the underlying optimization problem from

scratch, which usually happens in the centralized approach. Similar to adding vehicle agents to the

fleet to test the flexibility, some vehicle agents can be removed from the fleet at the time of decision

making and see how it does affect the solution quality and running time. The benchmark (exact

solution) for evaluating solution quality in both centralized and decentralized approaches can be

obtained by solving the optimization problem using integer linear programming (ILP).

 5

1.1 Terminologies

In this section, I define the terms that I will frequently use in this dissertation.

Time of day

N
u

m
b

er
 o

f
re

q
u
e
st

s

 Figure 1 New York City yellow cab taxi records in different hours in February 2016

𝑓(𝑛, 𝑣, 𝑐) =

{

 (

𝑛
𝑐
) (
𝑛 − 𝑐
𝑐

) (
𝑛 − 2𝑐
𝑐

)… (
𝑐
𝑐
) =

𝑛!

𝑐!×𝑣
~𝑂(𝑛𝑛−𝑐), 𝑖𝑓

𝑛

𝑐
= 𝑣

(
𝑛
𝑐
) (
𝑛 − 𝑐
𝑐

)…(𝑛 −
(𝑣 − 1)𝑐
𝑐

) =
𝑛!

𝑐!×𝑣×(𝑛−𝑣𝑐)!
~𝑂(𝑛𝑣𝑐), 𝑖𝑓

𝑛

𝑐
> 𝑣

(
𝑣
𝑚
) (
𝑛
𝑐
) (
𝑛 − 𝑐
𝑐

)…(
𝑐
𝑐
) =

𝑣!

𝑚!×(𝑣−𝑚)!
×

𝑛!

𝑐!×𝑚
~𝑂(𝑣𝑚𝑛𝑛−𝑐), 𝑖𝑓

𝑛

𝑐
= 𝑚 < 𝑣

 (1.01)

 6

 Intelligent vehicle or decision maker is an object that has computing power to do

computation independently (e.g., computing bids) and make decisions independently or

jointly through interaction with other agents.

 Capacity of a vehicle agent is the maximum number of passengers that a vehicle agent can

serve.

 Centralized or single-agent approach refers to a system that only has one decision maker

at the heart of the system to complete the given task.

 Decentralized, distributed, or multi-agent approach refers to a system that consists of

multiple decision makers to complete the given task.

 Customer, requester, user, or rider is a person who needs to get a ride through submitting

a request to the system.

1.2 Motivation

Based on the shortcomings of existing dynamic ridesharing systems and the observational

evidence outlined above, this dissertation introduces a novel paradigm in solving dynamic

ridesharing problem where a team of agents (decision makers) will be coordinated effectively to

service incoming requests. Since the nature of ridesharing problem is dynamic in terms of spatio-

temporal location of requests and vehicle agents’ trajectories, the features of the proposed

approach can properly address the dynamic conditions. These features are:

 Scalability. This dissertation hypothesizes that decentralized ridesharing systems are

scalable because multiple decision makers can solve a given task more efficiently than a

single agent can when the problem scales up.

 7

 Flexibility. This dissertation hypothesizes that decentralized ridesharing systems are

flexible in that decision makers can be added to or removed from the systems dynamically

without interruption in the operation. In a centralized approach, adding/removing agents

requires a re-start of the system.

 Robustness. This dissertation hypothesizes that decentralized ridesharing systems are

more robust than centralized ones. In decentralized ridesharing systems, failure of one

single decision maker affects the operation locally and not the overall operation. Building

fault-tolerant decentralized ridesharing systems is less challenging and costly than building

centralized ridesharing systems; in case of failure, the centralized approach must handle

several computational challenges, incurs time delay due to synchronization between nodes,

and requires data integrity checks due to redundant and inconsistent data.

 Heterogeneity. Vehicle agents in the multi-agent approach can be heterogeneous with

respect to capacity. This heterogeneity does not affect the overall performance of the

system unlike the single agent approach in which increased capacity, as one dimension of

the problem, would degrade the performance.

Besides the benefits that the multi-agent approach can bring in solving ridesharing

problem, it has its own challenges as follows.

 Design of distributed algorithms to effectively solve the ridesharing problem in hand.

 Coordination between vehicle agents in a decentralized manner is a challenge since there

is no central controller in the system. Building a graph decomposition technique,

considering the density and size of the graph is important. The provided solution must be

supported theoretically and scales well as the number of vehicle agents increases.

 8

 Development of an efficient algorithm that guarantees convergence for real-time decision

making in each partition.

1.3 Proposed Research

Disruptive technologies in IoT and automotive industry, particularly autonomous vehicles,

is the motivation behind proposing a multi-agent approach to solve inherently distributed

ridesharing problem. In this respect, this dissertation formulates this spatio-temporal resource

allocation problem as a decentralized optimization and design distributed algorithms to obtain

optimal or at least near-optimal solutions. This dissertation takes a decentralized optimization

approach to address dynamic ridesharing problem where the global objective function is to

minimize the total travel distance of the vehicle agents. In the proposed approach, the global

objective function is decomposed into a sum of local loss functions where each is only known to

one particular vehicle agent. The local constraints of each local objective function are: capacity of

each vehicle agent and time windows for each request’s pick-up and drop-off locations. It is

assumed that in the proposed decentralized approach, the agents have computing resources and

can work cooperatively to minimize total travel distance.

There are three different types of agents in the decentralized approach: users, dispatcher,

and decision makers. Users send their requests to the dispatcher and the dispatcher passes all the

requests to the decision makers. Each decision maker individually computes bid for the requests

that they can serve, considering capacity constraint and time windows for existing and new

requests. Once the dispatcher receives the bids from decision makers, it constructs the coordination

graph between decision makers based on their similarity and decomposes the graph into several

 9

partitions. Then the dispatcher allocates requests to each partition and sends this information to

the decision makers in the corresponding partitions. In each partition, decision makers work

together jointly to decide which requests should be served by which decision maker. The final

assignment in each partition will be issued to the dispatcher and the users will be notified if their

requests are accepted or rejected. More detail of the proposed approach along with the set of

algorithms will be discussed in Chapter 4.0.

1.4 Contributions

This dissertation addresses the proposed hypothesis (Section 1) by introducing a novel

perspective for solving ridesharing problem using decentralized approach with the following

contributions:

 An objective function that is suitable for building a distributed optimization model

 An algorithm for decomposing the coordination graph for tasks distribution and

coordination between vehicle agents

 An optimization model to allocate requests to each subproblem

 Formulation of subproblems using factor graph

 Design and development of an algorithm to do inference in the factor graph in order to

solve each subproblem

 Implementation of a simulation to test the proposed approach

 10

1.5 Structure of the Dissertation

This dissertation presents a novel paradigm to dynamic ridesharing problem where the

optimization model along with the algorithms make the ridesharing system scalable, robust, and

flexible. Chapter 2.0 explains the centralized ridesharing as it is the dominant approach in the

literature, followed by providing a comprehensive background to dynamic ridesharing problem

from perspectives of transportation, robotics and operations research in Chapter 3.0. Chapter 4.0

describes the proposed optimization model and the algorithms to solve dynamic ridesharing

problem. Chapter 5.0 presents and analyzes the experimental results to show the workability of the

proposed approach along with the limitations of this work. Finally, this dissertation concludes in

Chapter 6.0 with a summary of this research towards a description of future work.

 11

2.0 Background

Since the centralized approach is the dominant paradigm for solving dynamic ridesharing

problem in the literature, Section 2.1 explains its main components, i.e., Systems Objects, Data,

Algorithm, and Optimization. Then Section 2.2 analyzes different characteristics of the centralized

approach along with its advantages and disadvantages in dealing with a large-scale ridesharing

problem.

2.1 Centralized Approach

The centralized approach has a single-agent decision maker at the heart of the system and

contains these modules: Systems Objects module (Section 2.1.1), Data module (Section 2.1.2),

Algorithm module (Section 2.1.3), and Optimization module (Section 2.1.4). Figure 2 illustrates a

high-level view of the centralized approach and how its modules interact with each other in a

dynamic ridesharing system. In this approach, each vehicle is connected to a common cloud via

the Internet or an intranet to take advantage of the high-performance computing and large-storage

capacity of the cloud. The cloud hosts all the required resources with no duplication, including the

street network database and the program code for optimization, among other functionalities, and

is responsible for all computations. As shown in Figure 2, a rider upon submitting a ridesharing

request to the system receives a response from the system (decision maker) after schedules and

routes for corresponding vehicles are updated. The response to the user comprises the vehicle ID

and the estimated pick-up time or a reject response in case the system could not match a vehicle

 12

to the request. We analyze the features of the centralized approach and discuss its shortcomings in

the remainder of this chapter.

Figure 2 Centralized approach in dynamic ridesharing systems

 13

2.1.1 System Objects Module

In a ridesharing system, there are two sets of objects: users and vehicles. The users use a

mobile or web application to submit requests in real time to the system, consisting of pick-up

location, drop-off location, number of passengers, time window for pick-up location that defines

the time interval when the user should be picked up at the origin and time window for drop-off

location that defines the time interval when the user should be dropped off at the destination. The

last two items specify the constraints of each request which are required to be met in solving

ridesharing problem. Moreover, dynamic ridesharing problem must take into account the number

of vehicles servicing over a street network (finding a vehicle for each request) by dispatching

vehicles with the purpose of minimizing or maximizing an objective function and satisfying a set

of constraints (Section 2.1.4 is devoted to the discussion of objective functions and constraints). It

is important to note that the fleet of vehicles can be heterogeneous in terms of having different

capacities and/or accessibility for various needs such as individuals using wheelchairs requesting

rides. The vehicles upload their time-stamped locations to the system frequently so that the

decision maker knows where each vehicle is during a period of time for finding matches between

vehicles and riders.

2.1.2 Data Module

The database in the Data module contains all the required data for making ridesharing

decisions and includes a street network (represented as a graph) for finding routes, traffic data for

handling stochasticity about travel times in the street network, and other static and dynamic data

about each vehicle such as ID (static), capacity (static), current location and time (dynamic),

 14

updated schedule and route for new requests (dynamic), and number of empty seats (dynamic).

The Algorithm module utilizes the data in this database to perform various functions such as

finding optimal paths over the network, selecting candidate vehicles, and updating vehicles’

schedules once new requests are submitted.

Travel time is essential for routing and in the absence of traffic information less reliable

routes may be found. However, while incorporating real-time traffic information leads to finding

more optimal routes, real-time routing is computationally expensive (Ma et al., 2013), which is

why most works in the literature take a pre-computed shortest path approach to overcome the time

issue.

2.1.3 Algorithm Module

This module encompasses three submodules: routing, filtering, and scheduling. The

routing submodule is responsible for computing the optimal travel time between pairs of locations

on the street network. Applying existing real-time techniques, e.g., the technique by Delling et al.

(2009), can efficiently compute the shortest path in real time and applying non-real-time existing

techniques, e.g., the proposed method in T-Share (Ma et al., 2013), can approximate the distance

of the shortest path by partitioning the street network into grid cells and determining the shortest

path for each anchor node (the nearest node in the road network to the geographical center of the

cell) pair; however, the distance accuracy in this technique highly depends on the selected grid

size.

The aim of filtering submodule is to efficiently select a set of candidate vehicles that can

serve new requests, satisfying the constraints of each candidate vehicle’s capacity and time

windows for pick-up and drop-off locations. Obviously, going through each vehicle locally to

 15

match a ride request when there are many vehicles is computationally inefficient. To address this

inefficiency issue, spatial data structures such as R-tree (Guttman, 1984), KD-tree (Jon Louis

Bentley, 1990), R+-tree (Sellis et al., 1987), R*-tree (Kriegel et al., 1990), and Quad-tree (Bentley

& Finkel, 1974) have been considered. However, these data structures may not be suitable for a

large-scale dynamic ridesharing problem because of high cost of handling dynamism associated

with vehicles and updating indices (Xia & Prabhakar, 2003; Lee et al., 2003). Research, e.g., see

Ma et al. (2013) and Shen et al. (2016), focused on developing speed-up techniques to reduce the

search space of the problem by pruning the potential vehicles to pick up a ride request. In such

techniques, the street network is partitioned into a set of grid cells in which each cell gi stores the

following static and dynamic data: a list of other ascending temporally-ordered grid cells traveled

to gi (static); a list of other ascending spatially-ordered grid cells traveled to gi (static); and a list

of all vehicles scheduled to enter gi in the next few hours (dynamic).

After reducing the search space by the filtering submodule and choosing a set of candidate

vehicles, to reschedule the route of each candidate vehicle and check the contribution of each

vehicle to the objective function, satisfying the constraints (e.g., time windows for pick-up and

drop-off locations) of both the new request and the existing rides, the scheduling submodule is

invoked. A ride in dynamic ridesharing must start from the pick-up location and move to the drop-

off location and the shortest path between each pair of pick-up and drop-off locations is computed

by the routing submodule. Figure 3 illustrates the functionality of the scheduling submodule in

dynamic ridesharing. In panel (a), a vehicle has a schedule to pick up a passenger C1 at P1, drop

C1 at D1, pick up passenger C2 at P2 and drop C2 at D2. When a new request with origin P3 and

destination D3 arrives, rescheduling is needed. Panel (b) shows the result of rescheduling, a new

route and the sequence of serving the passengers.

 16

a b

Figure 3 An illustration of rescheduling in a dynamic ridesharing system. (a) current route of a vehicle for

serving two passengers and a new request with pick-up location P3 and drop-off location D3. (b) new route of

the vehicle after rescheduling.

The rescheduling problem can be addressed by one of two methods: (i) insert the new

request at any position in the current schedule without altering the order of existing locations; this

is known as insertion heuristic method. To insert a new request into the current route with n stops

(pick-up and drop-off locations), there are (n+1) (n+2)/2 schedule alternatives. This method is

widely used in the literature (e.g., Huang et al., 2013; Coslovich et al., 2006; Jaw et al., 1986)

because it is not computationally expensive. (ii) construct an entirely new schedule and solve an

instance of the open-loop TSP (Traveling Salesman Problem) with time window that is

computationally expensive (with complexity of O(n!)). For vehicles with lower capacity, the

problem can be formulated as ILP (Reinelt, 1994) and solved by applying an exhaustive search

using a branch-and-bound technique (Kalantari et al., 1985). Most studies have addressed the

problem of vehicles with large capacity by developing approximation and heuristic techniques

(e.g., insertion heuristics) to provide real-time solutions at the cost of optimality. Example heuristic

solutions are Christofides (Christofides & Eilon, 1969), Lin-Kernighan (Lin & Kernighan, 1973),

b

 17

modified version of Lin-Kernighan (Helsgaun, 2000), tabu search (Tsubakitani & Evans, 1998),

or Simulated Annealing (Song et al., 2003).

2.1.4 Optimization Module

The optimization module finds an optimal solution to the problem by identifying the

candidate vehicle, among all candidates that the scheduling submodule evaluated for contribution

to the objective function, which best meets the request. The optimization module is the core of

ridesharing solution by performing a matching function that assigns vehicles to the requests with

the aim of optimizing an objective function. The ridesharing models consider one or a weighted

combination of the following cost functions when determining rideshare matches (Agatz et al.,

2012): minimizing total distances or travel times by all vehicles over the street network;

minimizing the vehicles’ detours; minimizing cost to the passengers; and maximizing number of

successful rideshare requests. These objective functions take a variety of different constraints such

as capacity of vehicles, desired departure or drop-off time specified by users, or travel cost.

The assignment task depends on how the optimization problem deals with the incoming

requests. Basically, there are two research direction in addressing the assignment problem:

queueing (first-come-first-served) and batch assignment. In queueing approach, popular for

solving assignment problems, all trip requests are considered in chronological order. Note that this

is a greedy strategy and may not provide a global optimal solution since the approach does not

consider all the possible combinations of trip requests to be shared. By applying the queuing

approach in Figure 4 where request 1 arrives before request 2 and vehicles cannot serve both

requests simultaneously, the optimization module assigns vehicle 1 to request 1 with cost of 20

and vehicle 2 to request 2 with cost of 90, providing an overall cost of 110. According to (Ayala

 18

et al., 2017), this type of vehicle-request assignment fits Nash equilibrium (Nash, 1950). In the

example in Figure 4, assigning request 1 to vehicle 1 is the best option for vehicle 1 since its travel

time to request 2 is longer and vehicle 2 cannot get request 1 to decrease its travel time because

vehicle 1 is closer to request 1. Here, the vehicles are acting selfishly for their own benefits instead

of trying to optimize the overall performance. While matching vehicles to requests with the

queuing approach is efficient in solving the underlying combinatorial optimization problem, it

does so at the cost of optimality.

Figure 4 An example of queueing approach in ridesharing problem. The numbers on links are travel times

for vehicles-requests (Ayala et al., 2018).

As illustrated in Figure 4, the Nash equilibrium assignment is not optimal because a better

solution with total cost of 90 can be obtained by matching vehicle 2 to request 1 and vehicle 1 to

request 2. This optimum plan is achievable only if the incoming requests are pooled together and

then assigned to all vehicles in a given interval. In the batch assignment approach (Figure 5), given

a set of requests and a set of vehicles with many-to-many relationship, the goal is to compute the

optimal assignment of requests to vehicles that minimizes or maximizes the objective function.

Note that each vehicle might be able to service a set of requests together, so more nodes will be

added to the bipartite graph represented in Figure 5. Obtaining close-to-optimal solution in a large-

 19

scale dynamic ridesharing problem is the main motivation behind using the batch assignment

approach instead of the queuing approach, though the batch assignment approach is an NP-hard

problem. This means that a solution to this large-scale combinatorial optimization problem with

reasonable response time can be provided by heuristics and/or approximate approaches (e.g.,

Liebling, 1987).

Figure 5 An example of batch assignment

2.2 Analysis

As discussed earlier, in the centralized approach it is assumed that the data module has the

most updated information about vehicles, requiring vehicles to share their status, i.e., IDs and

spatial locations, with the central system frequently (e.g., every 10 seconds), which is usually

costly. This sharing information in the centralized approach can be seen as a trade-off between

cost of sharing and loss of efficiency when information is not shared. This information is crucial

 20

for the algorithm module to process incoming requests efficiently and select candidate vehicles

that are suitable for serving them.

Like all real-time systems, ridesharing systems must be designed to incur zero downtime,

i.e., they must be fault-tolerant. In a centralized ridesharing system, if the single-agent decision

maker fails, the entire system becomes unavailable interrupting the ridesharing service. Building

fault-tolerant ridesharing systems is not trivial as providing extra hardware and multiple versions

of the same modules, a common approach in building fault-tolerant systems, leads to time delay

due to synchronization between nodes and data integrity checks due to multiple copies of data and

redundant data.

The two key questions concerning the time performance of the optimization module in the

centralized approach are: (a) Are the algorithms scalable? and (b) Does adding computing

resources address the scalability issue? Assuming each vehicle is equipped with sufficient

computing power, parallel computation is possible in a way that each vehicle can locally solve the

problem in the Scheduling submodule. Nevertheless, dedicating a VM (Virtual Machine) to each

vehicle in the cloud makes this assumption unrealistic due to existence of thousands of vehicles in

the fleet, which continues to increase steadily in rush hours and may cause the cloud infrastructure

to reach its limits. On the other hand, in off-hours when the demand for vehicles is low, many of

these VMs with dedicated CPU, memory, and storage would be idle. Obviously, this is not a cost-

effective way of utilizing resources in the cloud where detecting these idle VMs for recycling their

resources and dynamic VM allocation (Saraswathi et al., 2015; Xiao et al., 2013) will add

complexity to the underlying optimization problem.

As a single-agent decision maker at the heart of the system, finding a near global optimal

solution to the underlying optimization problem is the only option. The optimization problem in

 21

the batch assignment approach can be easily intractable as the input size of the problem, such as

adding more requests to the pool or adding vehicles to the fleet, for example, in rush hours,

increases. One way to address the scalability issue with a reasonable time performance is to

formulate the problem as an ILP and take a parallel computing approach. There are some studies

(e.g., Ralphs, 2006; Barreto & Bauer, 2010) that address parallelization of branch-and-bound

algorithm for solving ILP. There also exist state-of-the-art ILP solvers such as Mosek (Mosek

optimization solver, 2019), CPLEX (CPLEX optimizer, 2019), or Gurobi (Gurobi optimizer,

2019), which can be used as a black box and implemented in parallel computing environments.

However, the effect of task decomposition and inter-processor coordination in the design of

scalable parallel branch-and-abound algorithms and efficient usage of additional processors may

be a barrier to acceptance of this approach in solving the large-scale optimization problem in real

time (Bader et al., 2005; Herrera et al., 2017).

 22

3.0 Dynamic Ridesharing

It is now informative to examine in detail existing solution approaches in the literature that

can be applied to dynamic ridesharing problem. There are different classes of solution approaches

to the vehicle routing problem, including dynamic vehicle routing problem with time window

(DVRPTW), dynamic pick-up and delivery problem (DPDP), dynamic dial-a-ride problem

(DDARP), and multiple travelling salesman problem with time window (MTSPTW). Table 1

makes an analogy between different classes of VRP and dynamic ridesharing problem. Among

these classes of VRP, the solution to class DDARP can be applied to dynamic ridesharing problem

due to the similarities in the mathematical formulation of the problem and the constraints which

are: a) vehicles with finite capacities; b) passenger’s request with a pair of pick-up and drop-off

locations; and c) passenger’s request with time windows for pick-up and drop-off locations. In the

DVRPTW, the vehicles’ routes start and end at a depot where the concept of pick-up and delivery

point is released (Pillac et al., 2013). The MTSPTW attempts at finding a set of optimal vehicles’

routes within a specific time window. In this type of problem, the concept of dynamism does not

exist, the capacity constraint of vehicles is released, and similar to DVRPTW, paired pick-up and

drop-off locations’ constraint is released (Krishnamurti, 2002). DPDP’s formulation is suitable for

the problems where the requests are placed for objects transportation such as parcels or letters,

time windows are not tight when they are present, and there are no capacity constraints (Berbeglia

et al., 2010). Basically, in the DDARP, as a special case of DPDP, vehicles start/end their routes

from/at different depots (or single depot), users’ requests are broadcast during the operation, and

users need to be transported between pairs of pick-up and drop-off locations with the aim of finding

a set of optimal routes for vehicles that minimize distance with constraints such as time windows

 23

for each request (Parragh et al., 2008). In the DDARP, vehicles can arrive at pick-up locations

before the beginning of the time window but not later than the end of the time window. By an

analogy, this is also valid for the pick-up and drop-off time windows constraint in dynamic

ridesharing problem. Due to these close relationships between dynamic ridesharing problem and

the DDARP, this chapter summarizes that part of the literature that addresses the DDARP. In the

remainder of this chapter, the representative papers that propose novel mechanisms for solving

dynamic ridesharing problem are discussed.

Table 1 Analogy between dynamic ridesharing problem and different VRP variants.

Problem Dynamism

Vehicle’s

capacity

Paired pick-up and

drop-off

Time window

Dynamic

Ridesharing

DVRPTW

MTSPTW

DPDP

DDARP

3.1 Dynamic Dial-a-Ride Problem (DDARP)

The era of big data, technological advances in communication channels, and rapid rise in

computing power have shifted the line of DARP research toward dynamic DARP to address

various aspects of real-time planning and decision-making process such as developing efficient

 24

on-line optimization algorithms and improvement of solution qualities. The static version of DARP

has been extensively studied in the literature, starting with the work of Jaw et al. (1986). However,

only a small body of research in the literature is focused on developing solutions to dynamic DARP

with time windows. Similar to other variants of VRP, DDARP is a complex combinatorial

optimization problem and finding an optimal solution to it is a NP-hard problem. Current solution

approaches range from exact methods such as branch-and-cut algorithm to custom-designed

heuristics and meta heuristics such as insertion heuristics and tabu search. The main issue with

exact algorithms is that they are computationally expensive even with small size instances of the

problem which makes it inapplicable in a dynamic environment with real-time decision making.

Having focused the attention on the solution approaches to the dynamic and deterministic DARP,

size of the problem at hand, efficiency and applicability of the algorithms in real-world scenarios,

the intent is not to provide a comprehensive survey of existing solutions to different variants of

DARP (static or dynamic, stochastic or deterministic) and interested readers are referred to the

surveys by (Cordeau & Laporte, 2007; Molenbruch et al., 2017; Ho et al., 2018).

Table 2 outlines the detailed classification scheme of all approaches as presented in this

dissertation.

 25

Table 2 Classification of the papers with respect to the type of solution approach applied

3.1. DDARP

Teodorovic and Radivojevic (2000), Attanasio et al. (2004), Berbeglia et al. (2012), Santos

and Xavier (2015), Rubinstein et al. (2012)

3.2. Agent-based Approach

Fischer et al. (1996), Perugini et al. (2003), Mes et al. (2007), Kleiner et al. (2011), Nourinejad

and Roorda (2016), Coltin & Veloso (2014), Asghari et al. (2016)

3.3. Other Ridesharing Systems

Cao et al. (2015), Alarabi et al. (2016), Cici et al. (2015), Agatz et al. (2011), Huang et al.

(2013), Schreieck et al. (2016), Gao et al. (2017), Jia et al. (2017), Jung et al. (2016), Ma et al.

(2013), Ma et al. (2015), Shen et al. (2016), Shemshadi et al. (2014), Hosni et al. (2014),

Najmi et al. (2017), Ota et al. (2015), Mallus et al. (2017), Alonso-mora et al. (2018),

Simonetto et al. (2019), Lowalekar et al., 2019

Teodorovic and Radivojevic (2000) developed a fuzzy logic approach to solve the dynamic

version of the DARP in which all calculations related to the vehicles and passengers waiting times

were performed using fuzzy arithmetic. They proposed nine fuzzy rules based on additional

vehicles distance, vehicles waiting time, and dispatcher’s preference to insert and assign a new

request to one of the vehicles’ routes with the greatest value of dispatcher’s preference strength.

They tested the developed algorithms on several numerical examples with generating 900 requests

in the 5 a.m.-11 p.m. interval with a fleet of 30 vehicles and capacity of 10. Coslovich et al. (2006)

developed a two-phase heuristic algorithm based on route perturbations to insert a new request

into the previously planned route of a vehicle. The new requests follow a priority first-come-first-

 26

served rule. In the first phase (off-line phase), the algorithm creates a feasible neighborhood using

2-opt arc swap. Given a feasible neighborhood of the current solution, the second phase (on-line

phase) tries to insert the new request into the current route with the purpose of minimizing the

level of dissatisfaction (excess ride time). In their DDARP, there are a predefined set of pick-up

and delivery stops and capacity constraint of vehicles is not considered. They tested their

algorithms on different instances of the problem where at most 50 new requests were presented

during the execution.

Attanasio et al. (2004) proposed several parallel implementations of tabu search heuristic

to DDARP with the aim of decreasing the running time of the sequential tabu search algorithm. In

their formulation, requests are served in a first-come-first-served fashion and the objective function

is to accept as many new requests as possible while satisfying time windows and vehicles’ capacity

constraints. They tested their approach on synthetic and real data in which around 150 requests

were submitted dynamically during the operation. Also, a hybrid algorithm, combining a tabu

search heuristic and an exact constraint programming algorithm, was developed in (Berbeglia et

al., 2012) to solve the DDARP with the same objective as Attanasio et al. (2004). They tested their

algorithm on different sets of synthetic and real-life instances, considering 13 vehicles with

maximum capacity of eight and up to 200 requests. Santos and Xavier (2015) incorporated pricing

decisions in their objective function besides maximizing the number of served requests when

modeling static and dynamic version of the DARP as a combinatorial optimization problem. They

proposed a heuristic method called GRASP (greedy randomized adaptive search procedure) with

path relinking to solve the underlying optimization problem in a large scale. One issue with this

method is that if there are already customers onboard a vehicle, the new request can only be added

after the drop-off point of the last passenger. This process is necessary to keep the price invariant

 27

for the existing passengers. They ran a simulation to evaluate the performance of the proposed

method on a real data set for the city of São Paulo. In the dynamic version of the problem, 1,333

new vehicles per hour with maximum capacity of four and 54 new requests per minute were

considered.

Finally, from a robotics perspective, Rubinstein et al. (2012) solved the dynamic

oversubscribed DARP with the aim of minimizing vehicle’s travel distance by presenting an

iterative repair-based search technique called Generalized Task Swap (GTS) for incrementally

integrating new requests into the existing schedules. In the oversubscribed DARP, the service

quality constraints (e.g., time window) are relaxed when not all requests can be serviced within

their constraints. They conducted several experiments on both synthetic benchmark problem and

real-life paratransit scheduling problem to evaluate the performance of GTS. In the synthetic data

set, all the instances had at most 96 requests with vehicle capacity of 6 where the maximum CPU

time for GTS was around 10 seconds. The real-world problem was at a larger scale consisting of

30 to 50 heterogeneous vehicles with maximum capacity of 14 servicing up to 900 requests for a

day.

The aforementioned approaches can be used to find solutions to small and medium size

instances of the DDARP in a reasonable amount of time; however, there are some areas for further

examination. First, the applicability of the proposed techniques to deal with large-scale

optimization problem with a high degree of dynamism, explained earlier, need to be investigated.

Second, in all cases, a queuing approach has been used in serving the new requests; see Section

2.1.4 for a discussion of the pros and cons of this approach. Third, the quality of solutions in these

approaches is not known, i.e., how far the objective value of a solution is from the optimal value.

 28

3.2 Agent-based Approach

The literature includes several papers that have taken a multi-agent approach in

transportation scheduling problem where each vehicle as an agent can schedule its own route,

calculate the cost needed to serve a new request, and propose an offer (bid) to a centralized server

(auctioneer) who eventually makes the decision and assigns the new request to a specific vehicle.

This process can be seen as a market-like negotiation mechanism (auction) in which the auctioneer

auctions a new request to all the vehicles to see if any of them is able to add it to its schedule. Each

vehicle then checks if the new request can be fit into its schedule, considering the constraints of

the problem (time windows and capacity). If so, each vehicle computes its bid (the additional cost

of adding the new request into its current schedule) and sends the bid to the auctioneer. Then the

auctioneer allocates the new request to the vehicle with the smallest bid, if any. A summary of

some multi-agent approaches, where agents play a game and are competitive and self-interested

without considering any cooperation between themselves in solving the problem, is given below.

The Contract Net Protocol (CNP) (Smith, 1980), one of the oldest task-sharing protocols

in a distributed system, has been used in several studies to cope with dynamic scheduling problem

in the transportation application. Fischer et al. (1996) and Perugini et al. (2003) conducted two of

the earliest studies in the transportation domain by tackling the dynamic scheduling problem as a

multi-agent system and developed an extension of CNP to deal with task decomposition and task

allocation in a shipping company system.

Besides CNP, auction-based methods have been widely adopted for use in robotics for task

and resource allocation to robots in dynamic environments. Second-price sealed-bid auction (a.k.a.

Vickrey auction), the most commonly used single-item auction type among the other three

(English auction, Dutch auction, sealed first-price auction), provides a mechanism for allocating a

 29

single item to one of the bidders in a multi-agent system. Bidders simultaneously submit their bid

for the item in a sealed envelope (unaware of the others’ bids) to win the item. Interested readers

are referred to the book by Cramton et al. (2006) for a detailed discussion about the topic.

Mes et al. (2007) developed a multi-agent system using the auction mechanism to address

the real-time scheduling problem of allocating trucks to dynamic transportation orders with time

windows. They implemented both insertion heuristic and exact algorithms based on TSP as the

internal scheduling for each vehicle and used Vickrey auction mechanism to assign an incoming

order to a vehicle. The work by Kleiner et al. (2011) is the first to present a multi-agent system for

solving dynamic ridesharing problem using Vickrey auction mechanism. In this system, the

requests are considered sequentially where only one rider can share a ride with a single driver with

the goal of minimizing the total travel distance of vehicles and maximizing the number of ride-

matches. They simulated an environment with up to 50 vehicles and 50 customers to test the

performance of the system. They computed the optimal solution of the problem by solving

maximum weighted bipartite matching problem and used it as a baseline to validate the system.

Experimental results showed that the outcome is very close to the optimal solution; however, the

work lacks a large-scale experiment to prove the performance of the proposed technique.

Nourinejad and Roorda (2016) proposed a decentralized matching model based on agents to reduce

extensive computation time and provide a near-optimal solution in a single-driver single-passenger

dynamic ridesharing problem. They partitioned the space based on the geographic locations of the

participants (riders and drivers). They used Vickrey auction mechanism to assign a driver to the

new request and validated the efficiency of the proposed method by the solution obtained from

integer programming.

 30

Coltin & Veloso (2014) formulated dynamic ridesharing problem differently with the

objective of minimizing total travel distance and transfer cost in which passengers are able to

transfer between multiple vehicles, meaning that a driver delivers a passenger to a transfer point

and then another vehicle picks the passenger up. They developed three algorithms with different

quality and running time to solve the problem: an auction-based algorithm, a greedy heuristic

algorithm, and a graph-based search algorithm. They tested the performance of the algorithms on

synthetic and real datasets with up to 80 vehicles and 100 passengers, and the result showed that

the greedy algorithm outperforms the others.

Asghari et al. (2016) proposed a distributed auction-based framework, called APART

(Auction-based Price-Aware Real-time), to solve real-time ridesharing problem with the objective

of maximizing the drivers’ revenue and satisfying monetary constraints of passengers. In APART,

a server plays the role of central auctioneer where bidders (drivers) and goods (requests) participate

in a sealed-bid auction, i.e., the drivers submit their bids to the server simultaneously and no driver

is aware of other drivers’ bids. Finally, the server chooses the bidder with the highest bid as winner

and matches the new request with the corresponding driver. The bidding process uses a queue-

based method in which the bidding process will be performed once a new request comes in. They

tested their framework on New York City taxi dataset with thousands of drivers and hundreds of

tasks per second.

As a multi-agent approach, the auction strategy is easy to implement and parallelizable

among the vehicles to compute and place their bids. Moreover, in terms of response time of

providing service to a new request and scalability with adding drivers, the auction-based approach

is effective in dynamic environments. However, in terms of solution quality, the auction strategy

 31

does not guarantee an optimal allocation in competitive environments as long as the incoming

requests are served based on first-come-first-served fashion (cf. Section 2.1.4).

3.3 Other Ridesharing Systems

This section introduces state-of-the-art ridesharing systems developed in the last decade

and focuses on the techniques each system uses and their scalability. Although several techniques

concerning different aspects of the ridesharing problem, such as various algorithms, constraints

and objective functions, have been proposed, this strand of research is still in its infancy to create

a balance between optimality and tractability. The purpose of this section is to shed sufficient light

on the current solution approaches to the large-scale dynamic ridesharing problem.

In a simplified version of a dynamic ridesharing system, two papers by Cao et al. (2015)

and Alarabi et al. (2016) presented SHAREK as a scalable ridesharing service for matching a rider

to a specific driver who can satisfy the constraints of maximum price and maximum wait time for

pick-up. SHAREK processes the incoming requests one-by-one in a temporal sequence and

assumes that each driver has known origins and destinations and can share a ride with only one

passenger. The drivers do not continually drive on the road and are signed off from the system

once they reach their destinations. An environment over the area of San Francisco was simulated

by producing a synthetic dataset with 10,000 drivers and 1,000 requests to evaluate the efficiency

and scalability of SHAREK. In a similar setting, Cici et al. (2015) designed a dynamic ridesharing

system in which the matching problem is formulated as a maximum cardinality matching in a

bipartite graph between drivers and new requests.

 32

Agatz et al. (2011) developed a single-ride-single-trip ridesharing system as a multi-

objective optimization model with the aim of minimizing total miles traversed by all vehicles as

well as individual travel costs. In a centralized environment, they decomposed passengers and cars

into two sets of vertices in a bipartite graph and applied the rolling horizon approach to provide

high quality solution to dynamic ridesharing problem. They tested the proposed model through a

simulation in metropolitan Atlanta.

Huang et al. (2013) developed two sets of algorithms to solve ridesharing problem: branch-

and-bound for static version of the problem, and kinetic tree structure for dynamic version of the

problem. Branch-and-bound and integer programming techniques do not consider the dynamic

nature of ridesharing problem where new requests arrive at the server continuously. The main issue

with these techniques is that by inserting new requests into existing pick-up and drop-off locations

the process of rescheduling must re-start from the beginning. For this, they take the kinetic tree

approach to address dynamic ridesharing problem. A grid-based indexing method is used to filter

out the vehicles that cannot provide service to a new request within the wait time constraint. They

tested the proposed algorithm on Shanghai dataset with maximum number of 20,000 taxis with

capacity of four.

Schreieck et al. (2016) presented an efficient algorithm for matching ride offers and ride

requests in dynamic ridesharing problem using inverted data structure. The limitation of this work

is that they did not test the algorithm on a realistic dataset to measure the efficiency of the proposed

algorithm. Also, their approach uses Google geocoding service which has restriction upon

executing certain number of requests per minute, so in real-world applications with large number

of rides offers and requests, this approach is not applicable (Google geocoding API, 2020).

 33

Gao et al. (2017) presented algorithms to dynamic ridesharing problem with the aim of

maximizing average satisfaction. They developed two algorithms: searching and scheduling. The

first algorithm uses a binary search strategy to reduce size of candidate cars in a linear time by

only looking at pick-up and drop-off time constraint. The second algorithm checks all constraints

and finds a car that maximizes average satisfaction and satisfies all constraints (detour and

capacity). To improve the computing speed of the shortest path algorithm, they approximated the

distance by partitioning the area into grids and measuring the grid distance. This approach works

at the cost of accuracy of the estimated travel time. They evaluated the system in Beijing Chaoyang

district, containing 33,000 taxis and 101,952 trips per day.

The paper by (Jia et al., 2017) presented algorithms to solve ridesharing problem in both

offline and online modes together in a two-sided market, i.e., workers and customers both

benefiting from the ridesharing system. Offline mode happens when all travel plans are known in

advance while online mode requires to match a car to a request in real time where requests come

to the system continuously. Two objective functions are maximized in their model: customers’

social welfare and profits of cars. They proposed an approximation algorithm and two heuristic

algorithms (nearest drivers and maximum marginal value) for solving the problem in offline and

online mode, respectively. In offline mode, the problem is transferred to the multiple disjoint path

(MDP) problem with the aim of finding weighted node-disjoint path in a directed acyclic graph.

Their offline algorithm provides a good solution, but it cannot be applicable to the online setting

due to lack of information about all tasks in advance. In online mode, the platform considers the

tasks one by one based on their arrival time and the quality of the solution is not mentioned. They

conducted experiments in the city of Porto, Portugal with 442 taxis including their full-year

trajectories.

 34

Jung et al. (2016) presented a type of ridesharing system that specifically prevents

excessive passenger detours. They developed three different algorithms to solve the dynamic

ridesharing problem: Nearest Vehicle Dispatch (NVD) that matches the new request to the closest

geographically available car from the new passenger’s pick-up location, Insertion Heuristic (IS)

that considers all feasible vehicles based on satisfying time window and capacity constraint and

then assigns the best available vehicle to the new request, and Hybrid Simulated Annealing (HSA)

that considers all new requests at the same time and applies SA to solve the underlying

optimization problem. Given the limited computational time in dynamic ridesharing systems, the

quality of the solution obtained by the proposed algorithms remains unknown. Through a

simulation study in the city of Seoul, considering a fleet of 600 four-seater vehicles and up to

18,000 requests, the results showed that HSA outperforms the other algorithms and is a suitable

solution for maximizing the efficiency of dynamic ridesharing systems.

Three studies by (Ma et al., 2013), (Ma et al., 2015), and (Shen et al., 2016) solve a large-

scale dynamic ridesharing problem with the aim of vehicles’ total travel distance minimization. In

the first step, the problem is scaled down by a searching algorithm that returns a list of candidate

cars which can satisfy the new ride. Then in the second step, a scheduling algorithm inserts the

new request into all candidate cars’ schedules to select a car with minimal additional travel

distance. The scheduling algorithm in this step satisfies constraints (e.g., pick-up and drop-off time

constraint, and detour constraint) of the existing requests as well as the new request. Another work

by Shemshadi et al. (2014) proposed a framework, MARS (multi-agent ridesharing system), where

the efficiency of taxi searching is improved through a decremented search approach. They tested

the proposed approach for the city of Beijing with around 10,000 taxicabs and 6,200 requests and

compared their approach’s performance with the taxi search algorithm developed in T-Share.

 35

Hosni et al. (2014) formulated the shared-taxi problem as a mixed integer programming

model where vehicles can have different capacities and the requests are served one-by-one upon

arrival. Then they presented two approaches to solve the optimization problem: a) a Lagrangian

decomposition approach which decomposed the problem into T (number of taxis) subproblems

that can be solved in parallel and b) a heuristic approach for finding good solutions within a

reasonable amount of computational time. The proposed heuristic algorithm finds the minimum

cost route for each taxi that includes the existing passengers and the new request; then the new

request is assigned to a taxi with the lowest incremental cost. They tested the performance of the

proposed approaches on different sets of instances in both dynamic and static settings of the

problem. Their experiments in dynamic setting that consisted of 50 taxis with maximum capacity

of 4 and 200 passengers showed that approach (a) is not applicable in solving dynamic settings of

the problem due to its high computational time; however, the heuristic algorithm was efficient in

providing good quality solutions in running within 50s. The solution from approach (a) served as

a benchmark to validate the solution quality obtained from approach (b). Najmi et al. (2017)

developed a method for static and dynamic ridesharing problem using rolling horizon approach to

match drivers to requests in real time. The optimization problem in their work has different

objective functions: maximizing total distance proximity, maximizing total number of matches,

maximizing total net distance savings, and maximizing total adjusted distance proximity. Also,

they present a heuristic method to cluster the requests in order to improve the efficiency of the

algorithms in large-scale ridesharing problem. Their proposed method and algorithms were tested

for the Melbourne dataset.

Ota et al. (2015) developed a simulation framework combined with parallelization to make

it scalable for large-scale taxi ridesharing services and implemented the simulation model with

 36

Hadoop’s MapReduce. Their simulation used over 150 million trips and ran in 10 minutes with a

1200-core cluster. The proposed optimization algorithm uses a queueing approach without

considering all the possible combinations of trips to be shared, so a global optimal solution cannot

be reached. To show the effectiveness of the framework, they applied the model and algorithms to

New York City taxi data.

In a study by Mallus et al. (2017), a new platform for dynamic ridesharing problem called

CLACSOON was developed. In this platform drivers avoid taking a detour whenever possible in

a way that users can walk to reach the driver along his/her route. They proposed a route matching

algorithm with three functionalities: temporal matching in which for each new request the system

checks whether a time constraint is satisfied for the existing requests in a trip; geographical

matching in which a matching between a driver and a rider is evaluated based on the distance from

the path; cost function evaluation which calculates the cost for a shared trip between each driver

and rider. Through simulations, this platform was tested in the area of Cagliari with up to 2,500

users and time window of 4 hours.

All the existing ridesharing systems described above, with an exception to the third

algorithm in Jung et al. (2016), have served the incoming requests based on first-come first-serve

scheme. The earlier discussions concisely explained the advantages and disadvantages of dealing

with requests in the queuing mode in terms of computation time and solution quality. To the best

of this work’s knowledge, only three studies, Alonso-mora et al. (2018), Lowalekar et al. (2019)

and similarly Simonetto et al. (2019), solve the dynamic ridesharing problem with batch

assignment. In Alonso-mora et al. (2018), the authors built a deterministic optimization model and

developed algorithms for a large-scale ridesharing problem in order to match large groups of rides

to a fleet of shared vehicles in real time. The objective function is to minimize delays of requests,

 37

i.e., minimizing time between drop-off time and the earliest possible time that the destination could

be reached as well as minimizing the number of rejected requests. They leveraged pairwise

shareability graph for assigning trips to vehicles and formulated the matching problem as an ILP.

They used a state-of-the-art solver, MOSEK, to solve the ILP. Their proposed framework also

considers the rebalancing problem in a dynamic ridesharing system which means how to distribute

the idle vehicles to high demand areas. They conducted a simulation in the area of Manhattan,

including 200,000 requests and a fleet of up to 3,000 vehicles of capacity 10. The results showed

the efficiency of the algorithms in providing a solution to different settings of the problem (number

of vehicles, number of requests, time window constraint); however, the work has some

shortcomings as follows. In several parts of the framework, a number of limits are considered to

reach a real-time performance but all at the cost of optimal solutions. For example, setting timeout

per vehicle to explore candidate trips for each vehicle and add edges in constructing RTV-graph

(request-trip-vehicle), stopping the solver in solving the ILP after spending a specific amount of

time before convergence of the algorithm, or setting a limit on the number of vehicles eligible for

servicing a request. Specifying these timeouts is useful in keeping the running time of the

algorithms short, but it negatively affects the solution quality when the input size of the problem

(number of requests, number of vehicles and their capacities) increases. Hence, the main issue with

this work is its lack of validation, meaning that the optimality of the final solution is not known at

different scales of the problem. One way to resolve the scalability issue is using techniques to

parallelize the computational workload in a centralized approach (see Chapter 2.0) or employ

decentralization of the decision-making process. The mathematical formulation in Lowalekar et

al. (2019) is similar to Alonso-mora et al. (2018) in terms of constructing RTV graph, but the

objective function is to maximize number of served requests. Similar to these works, this

 38

dissertation processes the requests using batch assignment; yet, the proposed formulation in this

dissertation differs from these other works in that the objective function is to minimize total

distance travelled by all vehicles to serve the requests in the pool.

In summary, from the above discussions and analysis, the shortcomings of the centralized

approach are:

 Inherent to the centralized approach, making decision in real time will be intractable when

the size (number of vehicles, capacity of vehicles, number of requests) of the problem

increases.

 Due to the high degree of dynamism in dynamic ridesharing problem, the centralized

approach is not flexible in handling a large amount of changes in the environment when

some vehicles should be added to or removed from the system.

 The centralized approach demands a heavy communication requirement, i.e., the vehicles

must frequently (e.g., every 10 seconds) communicate with the central decision maker to

update their status (spatio-temporal locations).

 The centralized approach is not robust because if the single agent decision maker fails, the

entire system fails.

 In the centralized approach, the developed models assign requests to vehicles based on

first-in-first-out scheme which provides a solution quickly but not necessarily optimal. See

Section 2.1.4 for more details on this.

Considering the challenges with ridesharing problem and the shortcomings of the current

approaches, this dissertation proposes an approach based on cooperative decision making in a

decentralized multi-agent system with the aim of tackling scalability, flexibility, and robustness

 39

issues along with finding a tradeoff between optimality of assignment and computational

complexity.

 40

4.0 Proposed Research

Disruptive technologies in IoT and automotive industry, particularly autonomous vehicles,

is the motivation behind proposing a multi-agent approach to solve inherently distributed

ridesharing problem. In this respect, this dissertation formulates this spatio-temporal resource

allocation problem as a decentralized optimization, designs and develops a set of algorithms to

obtain optimal or at least near-optimal solutions. Note that this multi-agent approach is different

from other multi-agent approaches applied to transportation, including those discussed in Section

3.2, in which a single-agent decision maker decides which requests should be assigned to which

vehicles. This chapter presents a decentralized optimization approach to address dynamic

ridesharing problem where the global objective function is to minimize the total travel distance of

the agents. In the proposed approach, the global objective function is decomposed into a sum of

local loss functions where each is only known to one particular agent. Each local objective function

must satisfy a set of local constraints, i.e., capacity of each agent and time windows for each

request’s pick-up and drop-off locations. All requests are known to all agents in each round (a

reference to every new instance of the problem that the algorithms execute) and each agent will

exchange and align its decision with the agents identified as similar.

The proposed multi-agent approach consists of multiple cooperative decision-makers,

homogeneous and/or heterogeneous agents in terms of capacity, and has the following

characteristics: (a) each vehicle as an agent has computing resources to perform computation on

its own; (b) each agent receives a portion of the entire information for decision making; (c) the

agents communicate with each other and exchange messages; and (d) there is no central controller

 41

and the decision-making process is completely decentralized among the agents in which they

jointly solve the given matching task.

The proposed decentralized approach has three types of agents:

 User is a person requesting a ride by submitting a request to the dispatcher agent.

 Dispatcher is an automated unit with computational and communication resources,

performing two major roles. One is acting as a mediator between the user and the vehicles,

i.e., it receives requests from users, keeps them in the pool based on a hyperparameter

defined in the system (a specific amount of time or a specific number of requests) and

dispatching them to the decision makers. After solving the given matching problem by the

decision makers, it notifies the users of success or rejection of their requests. Another is

acting as a coordinator between the decision makers, by constructing a coordination graph

between the decision makers based on their similarity, to identify which decision makers

should coordinate their actions. The action space in the coordination graph is exponential

in the number of requests, vehicles and their capacities; therefore, to address scalability, a

graph decomposition is proposed to reduce the complexity of the matching problem to find

efficient solution.

 Vehicle is an agent with computational and communication resources and performs two

sets of tasks: local and cooperative.

Local. Each vehicle performs its own local tasks including scheduling and

routing upon receipt of new requests from the dispatcher. Each vehicle computes its

own utility values (e.g., travel distance by serving a request) for each request or

combination of requests that they can serve, taking into account the time window and

capacity constraints.

 42

Cooperative. After constructing the coordination graph by the dispatcher agent

based on the similarity between the decision makers, each vehicle knows the other

vehicles with which they should interact to fulfil their joint tasks. With this, all the

linked vehicles jointly solve the matching problem and assign user(s) to vehicle(s). This

is accomplished by optimizing an objective function, e.g., minimizing travel distance

by vehicles. After the final assignment, the vehicles submit their decisions to the

dispatcher agent.

4.1 Assumptions

This dissertation makes the following assumptions:

 the entire operation (global and local decisions) is automated and there is no human

involved in decision making;

 each agent is equipped with sufficient computing resources to performing its own

computation; and

 each agent is able to communicate with other agents, when needed, using a reliable

communication mechanism.

4.2 Problem Formulation and Definitions

Given a road network as a graph 𝐺(𝑉, 𝐸,𝑊), consisting of vertices, edges, and weights for

each edge, function 𝑐(𝑝, 𝑑) computes the shortest path from 𝑝 to 𝑑 on the road network.

 43

A request is a tuple of 𝑟 = (𝑝, 𝑑, 𝑡𝑤𝑝, 𝑡𝑤𝑑, 𝑞), where 𝑝 is pick-up location, 𝑑 is drop-off

location, 𝑡𝑤𝑝 is hard time window for pick-up, 𝑡𝑤𝑑 is hard time window for drop-off, and 𝑞 is

number of passengers.

A schedule is an ordered set of locations on the road network, 𝑠 = {𝑙, 𝑝3, 𝑝2, 𝑑1, 𝑑3, 𝑑2},

where the first element shows the current location of the vehicle agent and the rest of the elements

indicate the schedule of the vehicle agent for picking up and/or dropping off passengers.

A path is an ordered set of vertices on the road network, 𝑝 = {𝑙, 𝑣1, 𝑣2, 𝑣3, 𝑣4}, indicating

the set of vertices (from shortest path) that a vehicle agent needs to traverse based on its schedule.

Similarity between two vehicle agents, as seen in (4.1), is a reference to a situation where

after satisfying the problem’s constraints, such as time window and capacity by each decision

maker, there is at least one request that can be served by the two vehicle agents. Suppose 𝐵𝑖 and

𝐵𝑗 are two row vectors with an arbitrary size representing the requests that can be served by vehicle

agents 𝑖 and 𝑗, respectively. The similarity between these two vehicle agents is defined as:

 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑖, 𝑗) = ∃ 𝑏 𝑖𝑛 𝐵𝑖|𝑏 ∈ 𝐵𝑗 = |𝐵𝑖 ∩ 𝐵𝑗| ≥ 1 (4.1)

Consider a network of 𝑚 homogeneous and/or heterogeneous agents labeled by 𝐴 =

{1,2, … ,𝑚}, each with a capacity of 𝑐 = {𝑐𝑎𝑝1, 𝑐𝑎𝑝2, … , 𝑐𝑎𝑝𝑚}, the global objective function is to

minimize total travel distance of the agents 𝐷𝑖 on the road network (4.2). Consider a graph G(R,A)

where R is the set of requests as nodes and A is the set of edges associated with travel cost between

each pair of requests.

𝑀𝑖𝑛 𝐹(𝑥) = ∑∑∑𝑥𝑖𝑗𝑘𝑒𝑗𝑘
𝑘∈𝑅𝑗∈𝑅𝑖∈𝑚

=∑∑𝑥1𝑗𝑘𝑒𝑗𝑘
𝑘∈𝑅𝑗∈𝑅

+⋯+∑∑𝑥𝑚𝑗𝑘𝑒𝑗𝑘
𝑘∈𝑅𝑗∈𝑅

= 𝐹1(𝑥) + ⋯+ 𝐹𝑚(𝑥) (4. 2)

 44

The aim is to decompose the objective function in (4.2) into a set of 𝑚 loss functions

{𝐹1(𝑥), 𝐹2(𝑥), … , 𝐹𝑚(𝑥)} where each loss function as shown in (4.3) is equivalent to an instance

of open-loop TSP problem. For example, in Figure 6 a group of agents (six agents) cooperate with

each other to solve the underlying optimization problem.

The constraints that each vehicle agent must locally satisfy, as formulated in (4.4), are:

number of passengers that should be less than or equal to its capacity; each request is served exactly

one time; pick-up time and drop-off time for the existing requests and new requests that should be

served within the specified time window. Finding an optimal value for 𝐹𝑖(𝑥) depends on the

vehicle agent’s capacity. For vehicle agents with a small capacity, an optimal value can be obtained

by an exhaustive search, but for larger capacities, efficient algorithms such as heuristic at the cost

of optimality, are needed. In (4.4) and (4.5), 𝑡𝑟, 𝑡𝑝, 𝑡𝑑 , 𝑡𝑑
∗ indicate time of the request, pick-up time,

and drop-off time, respectively; and 𝑡𝑑
∗ is the earliest possible time at which the drop-off location

Min F(x)

F1(x)

F2(x)

F3(x)

F4(x)

F5(x)

F6(x)

Figure 6 An overall illustration of the global objective function’s decomposition

 45

would be reached. Note that 𝑡𝑟, 𝑡𝑝, 𝑡𝑑 , and 𝑡𝑑
∗ are absolute times while 𝑡𝑤𝑝 and 𝑡𝑤𝑑 are relative

times. c(p,d) is the travel cost between pick-up and drop-off location of a request.

𝑀𝑖𝑛 𝐹𝑖(𝑥) =∑∑𝑥𝑗𝑘𝑒𝑗𝑘
𝑘∈𝑅𝑗∈𝑅

 (4. 3)

𝑆. 𝑇.

{

 ∑∑𝑥𝑗𝑘

𝑘∈𝑅𝑗∈𝑅

≤ 𝑐𝑎𝑝

∑𝑥𝑗𝑘
𝑗∈𝑅

= 1 𝑘 ∈ 𝑅

∑𝑥𝑗𝑘 = 1 𝑗 ∈ 𝑅

𝑘∈𝑅

𝑡𝑟 ≤ 𝑡𝑝 ≤ 𝑡𝑟 + 𝑡𝑤𝑝
𝑡𝑑
∗ ≤ 𝑡𝑑 ≤ 𝑡𝑑

∗ + 𝑡𝑤𝑑
𝑥𝑗𝑘 ∈ {0,1}

 (4. 4)

 𝑡𝑑
∗ = 𝑡𝑟 + 𝑐(𝑝, 𝑑) (4. 5)

This dissertation uses batch assignment mode (for more detail, see Section 2.1.4), i.e.,

given a set of requests 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑛} in the pool and a network of vehicle agents 𝐴 with regard

to their current schedule and path, with the goal of optimally assign requests to vehicle agents in a

way that minimizes the cost functions 𝐹𝑖(𝑥) and satisfies constraints in (4.4). In each round, some

requests may be rejected due to lack of enough empty seats or to inability to satisfy the requests’

constraints. The system keeps all the rejected requests in the pool and reconsiders them in the next.

 46

4.3 Methodology

This section explains the proposed multi-agent approach in detail and discusses a set of

algorithms to solve the optimization problem introduced in the previous section. Figure 7

illustrates a high-level view of the proposed decentralized approach in which the vehicles agents

form a mobile multi-agent network.

4.3.1 Decentralized Approach

Given a set of requests 𝑅 in the pool and a set of vehicle agents 𝐴 at their current schedule,

in each round the proposed distributed solution follows these steps to assign requests to agents:

1) Dispatcher agent sends requests 𝑅 in the pool to all Vehicles agents 𝐴.

2) Each Vehicle agent 𝐴𝑖, considering its capacity and time constraints of the new and existing

requests, solves an instance of open-loop TSP for all requests and returns bids to Dispatcher

agent.

Figure 7 Overview illustration of the decentralized approach

 47

3) Dispatcher agent aggregates bids, forms coordination graph between Vehicles agents and

analyzes it to decompose the overall set of Vehicles agents into subsets.

4) Dispatcher agent solves an instance of bin packing or multiple knapsack problem to

allocate requests to each subset.

5) Dispatcher agent sends a set of requests to the corresponding Vehicles agents in each

subset.

6) Each subset of Vehicles agents solves its own subproblem through negotiation and sends

the final decisions back to Dispatcher agent. At the end of negotiation, each Vehicle agent

updates its schedule accordingly.

7) Dispatcher agent notifies users whether their requests have been accepted or rejected and

if accepted, which Vehicle agent is assigned to serve it.

4.3.2 Coordination Graph and Decomposition

This section thoroughly explains Step 3 of the proposed approach, which is one of the

major decisions. Each vehicle agent locally solves the scheduling problem with one of the heuristic

or exact algorithms discussed in Section 2.1.3, satisfying the constraints of capacity and time

window of the onboard passengers and the new requests. This work computes an exact solution to

open-loop TSP. The time complexity for computing the bids for each agent is O(Rc(p!)) where R,

c, and p are the number of requests in the pool, the number of vehicle agent’s empty seats, and the

number of points in the schedule of the vehicle agent, respectively. Dispatcher agent receives the

bids from each vehicle agent and constructs the agent_request matrix. For instance, in Table 3

vehicle agent 1 can provide a service to request 1, request 2, request 3, and both requests 1 and 2.

Dispatcher agent constructs a coordination graph in the form of a hypergraph where each node

 48

represents a decision maker, and an hyperedge indicates which vehicle agents can serve a request

(Figure 8).

Table 3 An example of agent_request matrix

 req1 req2 req3 req4 req1,2 req5

A1 a1 a2 a3 a4

A2 a5 a6 a7 a8

A3

a9 a10

A4 a11 a12 a13

A5 a14 a15

The decomposition algorithm that I propose here is to convert the hypergraph into a simple

graph and then construct Laplacian matrix from it and apply spectral clustering theory for

A1 A2

A3

A4
A5

r1 r2 r3

r5

r1,2

r4

Figure 8 Hypergraph representation of agent-request

B =

 49

decomposition. After forming the agent_request matrix, dispatcher agent constructs the similarity

matrix between agents by calculating cosine similarity between each pair of vehicle agents.

Similarity graph is an undirected weighted graph and accordingly similarity matrix is symmetric

with size of 𝑚 ∗ 𝑚 where 𝑚 is the number of vehicle agents. Figure 9 shows the main steps of the

decomposition algorithm which takes agent_request matrix as input and divides the vehicle agents

into subsets.

Agent_request matrix

Similarity matrix

Adjacency matrix Degree matrix

Laplacian matrix

Normalized Laplacian

Decomposition

Figure 9 Overview of the decomposition algorithm

 50

𝐵𝑖𝑗 = {
𝑎 𝑎 ∈ 𝑅+

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 j ∈ {1,2, … , 𝑛}, 𝑖 ∈ {1,2, … ,𝑚} (4. 6)

0 ≤ cos (𝜃𝑖𝑗) =
𝐵𝑖. 𝐵𝑗
|𝐵𝑖| |𝐵𝑗|

≤ 1 (4. 7)

Each element in 𝐵𝑖𝑗 (4.6) shows the cost that vehicle agent 𝑖 serves request 𝑗. Each row

vector in matrix B (agent_request matrix) has size of 𝑛 = ∑ (
𝑅
𝑘
) = 𝑂(𝑅𝑐)𝑐

𝑘=1 that is equal to total

possible number of combinations of requests. R and c are the number of requests in the pool and

the number of vehicle agent’s empty seats, respectively. The height of matrix B is the number of

vehicle agents in the system. Since similarity matrix is symmetric, dispatcher agent needs to

perform (𝑚2 −𝑚)/2 comparisons between vehicle agents and calculate similarity by (4.7). Note

that the value of similarities is in [0,1] because all values in matrix B are non-negative, i.e., in 𝑅+.

The dynamic of the environment continuously changes over time due to changes in both

the spatio-temporal distribution of the requests and vehicle agents’ trajectories. Consequently, the

structure of the hypergraph dynamically changes as well once the system processes a new set of

requests in the pool. Analyzing different decomposition results based on different structures of the

coordination graph is a big challenge and an active area of research (Gottlob & Greco, 2013). The

hypergraph must be appropriately decomposed so that computational efficiency, convergence and

quality of the solution in each subgraph are theoretically guaranteed. Obviously, this

decomposition provides a suboptimal solution to the global optimization problem but significantly

reduces the complexity of the problem and makes it tractable.

 51

4.3.3 Spectral Graph Theory

This section describes how this dissertation benefits from graph Laplacian and spectral

clustering method, which is a well-established method for graph decomposition in terms of theory

and practicality, to identify group of vehicle agents with high similarity; for further details see

(Von Luxburg, 2007). The intuition behind the similarity graph and spectral clustering is that given

a set of vehicle agents 𝐴 = {𝐴1, 𝐴2, … 𝐴𝑚} and notion of similarity between each pair of vehicle

agents, the goal is to partition the vehicle agents into several subsets in such a way that vehicle

agents in the same subset are similar and vehicle agents in different subsets are dissimilar to each

other.

Let define coordination graph as 𝐺 = (𝐴, 𝐸) with vertex set as vehicle agents and the edge

set carries a non-negative weight between vertices. The weighted adjacency matrix of the graph is

the matrix 𝑊 = (𝑤𝑖𝑗)𝑖,𝑗=1,2,…,𝑚. 𝑤𝑖𝑗 = 0 means that there is no similarity between vehicle agent 𝑖

and vehicle agent 𝑗. As the coordination graph is undirected, 𝑤𝑖𝑗 = 𝑤𝑗𝑖.

The degree of a vehicle agent in the coordination graph is defined as:

𝑑𝑖 = ∑ 𝑤𝑖𝑗
𝑗∈{1,2,…,𝑚}\𝑖

 (4. 8)

Then the degree matrix 𝐷 is defined as the diagonal matrix with the degrees 𝑑1, 𝑑2, … , 𝑑𝑚

on the diagonal.

Graph Laplacian matrix is the main tool for spectral clustering; for further details on

spectral graph theory see (Chung and Graham, 1997). The rest of this section explains how the

vehicle agents in the coordination graph will be decomposed from graph Laplacians.

 52

The unnormalized graph Laplacian matrix 𝐿 is defined as:

𝐿 = 𝐷 −𝑊 (4. 9)

The most important facts needed for spectral clustering are summarized by the following

propositions.

Proposition 1: The matrix 𝐿 satisfies the following properties (Chung and Graham, 1997):

a) For every vector 𝑓 ∈ 𝑅𝑚 we have

𝑓𝑇𝐿𝑓 =
1

2
∑ 𝑤𝑖𝑗

𝑚

𝑖,𝑗=1

(𝑓𝑖 − 𝑓𝑗)
2 ≥ 0 (4. 10)

which substantiates that 𝐿 of every graph is positive semidefinite. In linear algebra, 𝑓, the

eigenvector of the second smallest eigenvalue of 𝐿 is called Fiedler eigenvector.

b) 𝐿 is symmetric and positive semi-definite.

c) The smallest eigenvalue of 𝐿 is 0 and the corresponding eigenvector is the constant one

vector.

d) 𝐿 has 𝑚 non-negative, real-valued eigenvalues 0 = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑚.

Proposition 2: Number of connected components 𝑘 in 𝐺 is equal to the number of

eigenvalues 0 of 𝐿 (Chung and Graham, 1997).

Without loss of generality, in the case of 𝑘 connected components, the Laplacian matrix 𝐿

has as many eigenvalues 0 as there are connected components where the corresponding

eigenvectors represent the indicator vectors of the connected components.

The graph Laplacian matrix can be normalized as (Shi & Malik, 2000) which is called

random walk normalized Laplacian:

𝐿𝑛𝑜𝑟 = 𝐷
−1𝐿 = 𝐼 − 𝐷−1𝑊 (4. 11)

 53

or (Ng et al., 2002) which is called symmetric normalized Laplacian:

𝐿𝑠𝑦𝑚 = 𝐷−1/2𝐿𝐷−1/2 = 𝐼 − 𝐷−
1
2𝑊𝐷−

1
2 (4. 12)

So, the question is: Why is this work interested in normalizing the Laplacian matrix?

According to (Von Luxburg, 2007), the normalized spectral clustering considers both objectives

of minimizing the between-partition similarity and maximizing the within-partition similarity

while unnormalized algorithm only considers the first objective. Moreover, performing statistical

analysis on both normalized and unnormalized spectral clustering algorithms with infinite sample

size proves that unnormalized spectral clustering cannot converge to good solutions, resulting in

unbalanced partitions with a significant difference between number of data points in the partitions

(Von Luxburg, 2007).

From the above explanations, the steps of the proposed decomposition algorithm are:

Input: Agent_request matrix 𝐵 ∈ 𝑅𝑚×𝑛, number of partitions k

Output: divides set of vehicle agents into k partitions

1) Construct similarity matrix S from B

2) Compute Degree matrix D and Adjacency matrix W from S

3) Compute Laplacian matrix L from D and W

4) Normalize Laplacian matrix 𝐿𝑛𝑜𝑟 or 𝐿𝑠𝑦𝑚 if D is not singular; otherwise, use L. In the case

of using unnormalized Laplacian, skip this step.

5) Compute the first k eigenvectors of L or 𝐿𝑛𝑜𝑟 or 𝐿𝑠𝑦𝑚 as 𝐶 ∈ 𝑅𝑚×𝑘

6) Cluster the points in C with k-means algorithm into k partitions 𝐶1, 𝐶2, … , 𝐶𝑘

 54

Algorithm 1: Step 1: Construct S

Input: Agent_request Matrix B

Output: Similarity Matrix S

For di ∈ B {each row of B}

 For dj ∈ B {each row of B}

 Si,j = dot_product(di,dj)/l
2_norm(di).l

2_norm(dj)

 End For

End For

return S

The Java library (The Apache Commons Mathematics Library) is used to compute l2 norm

and dot product between two vectors.

Algorithm 2: Step 2: Construct D

Input: Similarity Matrix S

Output: Degree Matrix D

For i ∈ S {each row of S}

 sum = 0

 For j ∈ S {each column of S}

 sum += Si,j

 End For

 Di,i = sum

End For

return D

 55

Time complexity is O(m2) where m is the number of vehicle agents.

Algorithm 3: Step 2: Construct W

Input: Similarity Matrix S

Output: Adjacency Matrix W

W = S

For i ∈ W {each row of W}

 Wi,i = 0

End For

return W

Time complexity is O(m) where m is the number of vehicle agents.

Algorithm 4: Step 3: Construct L

Input: Degree Matrix D, Adjacency Matrix W

Output: Laplacian Matrix L

L = subtract W from D

return L

The Java library (The Apache Commons Mathematics Library) is used to do subtraction of

the two input matrices.

Algorithm 5: Step 4: Construct Lnor

Input: Laplacian Matrix L, Degree Matrix D

Output: Random Walk Normalized Laplacian Matrix Lnor

 56

D’ = inverse D if D is not singular

Lnor = multiply(D’,L)

return Lnor

The Java library (The Apache Commons Mathematics Library) is used to do multiplication

of the input matrices and inverse the degree matrix.

Algorithm 6: Step 4: Construct Lsym

Input: Adjacency Matrix W, Degree Matrix D

Output: Symmetric Normalized Laplacian Matrix Lsym

Lsym = multiply(multiply(D-1/2,W),D-1/2)

return Lsym

The Java library (The Apache Commons Mathematics Library) is used to do multiplication

of the input matrices.

Algorithm 7: Steps 5 and 6: Partitioning using L or Lnor

Input: Random Walk Normalized Laplacian Matrix Lnor or Laplacian Matrix L, number of

clusters k

Output: corresponding vehicle agents in k clusters

Compute eigenvalues of L or Lnor and sort ascendingly

Compute the first k (smallest) corresponding eigenvectors 𝐶 ∈ 𝑅𝑚×𝑘

Do K_means clustering on C

return vehicle agents in each cluster Ci

 57

The Java library (The Apache Commons Mathematics Library) is used to compute

eigenvalues, eigenvectors and do k-means clustering.

Algorithm 8: Steps 5 and 6: Partitioning using Lsym

Input: Symmetric Normalized Laplacian Matrix Lsym, number of clusters k

Output: corresponding vehicle agents in k clusters

compute eigenvalues of Lsym and sort ascendingly

Compute the last (largest) k corresponding eigenvectors 𝐶 ∈ 𝑅𝑚×𝑘

Cn = Normalize each row of C

Do K_means clustering on Cn

return vehicle agents in each cluster Ci

The Java library (The Apache Commons Mathematics Library) is used to compute

eigenvalues, eigenvectors and do k-means clustering.

The above algorithm takes number of partitions 𝑘 as input. Deciding what 𝑘 should be used

depends on the density of the subgraph in each partition and the complexity of the algorithm that

is going to be designed to solve the local problem (subproblem) in each partition. Assuming that

the algorithm (Section 0), which solves each local problem, can provide a good solution in a

reasonable amount of time for a complete subgraph with maximum 𝑔 nodes, the number of

partitions could be found by a naive method as 𝑘 = 𝑚/𝑔, where 𝑚 is the number of vehicle agents

in the system. It is important to note that the algorithm should be applied only to the connected

parts of the coordination graph. Obviously, the structure of the coordination graph does heavily

affect the value of 𝑘. If there are isolated nodes in the coordination graph, then 𝑘 increases

accordingly and the algorithm put the isolated nodes in separate partitions.

 58

Step 6 of the decomposition algorithm applies the spectral clustering algorithms using (4.9)

(unnormalized Laplacian), (4.11) (random walk normalized Laplacian), and (4.12) (symmetric

normalized Laplacian). In the case of using unnormalized Laplacian, the algorithm considers the

eigenvectors that correspond to the first 𝑘 smallest eigenvalues of 𝐿. Also, according to (Shi &

Malik, 2000), the algorithm considers eigenvectors with the smallest eigenvalues of 𝐿𝑛𝑜𝑟;

however, in the case of using (4.12), according to (Ng et al., 2002), the algorithm considers the 𝑘

largest eigenvectors of 𝑊. There is one extra normalization step when the algorithm applies

spectral clustering algorithm introduced in (Ng et al., 2002). After stacking the eigenvectors in

columns, it is needed to renormalize each row vector to make sure that each row has unit length.

After partitioning the coordination graph which determines vehicles agents that need to

cooperate on a set of requests, dispatcher agent needs to allocate requests to each partition

(subproblem). The next section formulates this allocation problem as another optimization

problem similar to bin packing or multiple knapsack problem. Then it presents a greedy algorithm

to solve the underlying optimization problem.

4.3.4 Allocation of Requests to Subproblems

After partitioning vehicle agents into 𝑘 subsets, in the next step dispatcher agent distributes

requests between subsets. In this step, this work considers two different scenarios: (a) number of

requests greater than or equal to number of empty seats; (b) number of requests less than number

of empty seats. The first scenario is formulated as multiple knapsack optimization problem with

the objective function defined in (4.13). The system can assign a weight to each request, e.g.,

requests from users with disability can have higher weight for serving. The goal is to maximize

number of requests that are assigned to each partition. The constraints as defined in (4.14) satisfy

 59

the capacity of each partition and ensure that each request is assigned to maximum one partition.

Note that the capacity of each partition equals to the sum of empty seats of vehicle agents belongs

to that partition.

𝑀𝑎𝑥 ∑∑𝑤𝑖𝑟𝑖𝑘
𝑖𝑘

 (4. 13)

𝑆. 𝑇.

{

 ∑𝑟𝑖𝑘 = 𝐶𝑘

𝑖

, 𝑖 ∈ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠{1,2, … , 𝑛}

∑𝑟𝑖𝑘
𝑘

≤ 1, 𝑘 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠{1,2, … , 𝑘}

𝑟𝑖𝑘 ∈ {0,1}

 (4. 14)

In the second scenario, the optimization problem is formulated as bin packing problem as

seen in (4.15). The goal is to minimize number of bins (partitions) for assigning requests. The

constraints in (4.16) are to ensure that number of requests in each bin does not go beyond the

capacity of each partition and each request is assigned maximum one partition.

𝑀𝑖𝑛 ∑𝐵𝑘
𝑘

 (4. 15)

𝑆. 𝑇.

{

 ∑𝑟𝑖𝑘 ≤ 𝐶𝑘

𝑖

, 𝑖 ∈ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠{1,2, … , 𝑛}

∑𝑟𝑖𝑘
𝑘

= 1, 𝑘 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠{1,2, … , 𝑘}

𝑟𝑖𝑘, 𝐵𝑘 ∈ {0,1}

 (4. 16)

To solve the above optimization problems, a greedy algorithm is designed. Before going

deep into the details of the algorithm, it is worthy of note that there are two different measurements

while computing the capacity of each partition from agent_request matrix: number of actual empty

 60

seats and number of functional empty seats. The first measurement refers to the actual number of

empty seats that a vehicle agent has in a specific timestamp. On the other hand, the second

measurement refers to how many requests a vehicle agent can serve at the same time, regarding its

number of empty seats. For example, from the agent_request matrix showed in Table 3, the number

of actual empty seats for vehicle agent3 is four, but its number of functional empty seats is two

because it can only serve two requests at the same time. Following the above discussion and the

structure of agent_request matrix in Table 3, there are two observations: the number of functional

empty seats is less than or equal to the number of actual empty seats; different vehicle agents can

have similar actual number of empty seats (or capacity), but dissimilar number of functional empty

seats. The algorithm designed in this section considers the second measurement to compute the

capacity of each partition.

Algorithm 9: Allocation Algorithm: Allocation of requests to partitions

Input: Partitions containing their vehicle agents P, agent_request matrix AR

Output: allocation of requests to each partition

Sort requests in AR based on their weights and dependency -> R

Compute total number of empty seats from P by summing the capacity of each partition -> ES

while (ES > 0 and |R| > 0)

 Allocate the request to the largely dependent Pi

 Update capacity of Pi and ES based on length of the request

 Remove Rj from R

end while

return set of requests needed to be served in each partition

 61

Time complexity is O(n2m) where m and n are the number of vehicle agents and the number

of columns (all combinations of requests can be served by the vehicle agents) in the agent_request

matrix, respectively.

The algorithm in the first step sorts the requests in agent_request matrix based on their

dependency and weights in descending order. The reason for giving higher priority to dependent

requests instead of serving them separately is that a better solution might be obtained in the first

case. As an example (see Figure 10), there are two requests (blue and orange) with pick-up and

drop-off locations with the cost of 50 and 90 for serving each of them, respectively. These requests

can be served by cost of 140 and 90 if they are considered separately and together, respectively.

In the second step the algorithm computes total number of empty seats from partitions,

considering the functional number of empty seats in each vehicle agent. In the third step the

algorithm allocates each request to the largely dependent partition, i.e., there are higher number of

vehicle agents in that partition which can serve that request. After allocating the request to a

partition, if there are empty seats in the partitions, the algorithm in the fourth step updates total

50

8010

Figure 10 Serving dependent requests together with cost of 90 versus separately with

cost of 140

 62

capacity of partitions and the corresponding partition Pi. In the fifth step, the request is removed

from the list. Steps three through five will be iterated until the list of requests is empty or the

partitions are full.

An example is illustrated in Figure 11 to explicate how the algorithm allocates the requests

to the partitions. Suppose the list of requests in the agent_request matrix is

R={r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r3,5} and the partitions are P={P1,P2,P3,P4}. As we can see in panel (a),

there are ten requests and nine empty seats (i.e., one request should be rejected): three vehicle

agents with the total capacity of four in P1, three vehicle agents with total capacity of three in P2,

one vehicle agent with total capacity of one in both P3 and P4. The algorithm sorts the requests in

R based on the criteria (weight and dependency) already explained where the list of requests will

be R={r8,r7,r4,r3,5,r1,r2,r6,r9,r10}. The algorithm allocates r3 and r5 to P1 because of their dependency

along with r1 and r4. Requests r8, r7, and r6 are allocated to P2, r9 to P3 and r10 to P4. Note that r2 is

rejected because it only belongs to P1 and before reaching this request in R, the corresponding

partition is full. Panel (b) shows the final output of allocating requests to the partitions.

To summarize, the greedy algorithm in each iteration allocates a request to the largely

dependent partition if the partition has empty seat. The algorithm considers two conditions in the

loop to satisfy the conditions of knapsack as seen in (4.13) and (4.14) and bin packing problems

as seen in (4.15) and (4.16). If |R|>>ES the algorithm repeats the steps in the loop ES times; on the

other hand, if ES>>|R| the algorithm repeats the steps in the loop |R| times.

 63

4.3.5 Solving Subproblems

So now the question is: How do the decision makers in each partition work together locally

in order to make a sequence of joint decisions with the aim of optimizing an objective function

(e.g., in this dissertation minimizing total travel distance)? Figure 12 illustrates an example with

three vehicle agents in a partition where there is a similarity between each pair of vehicle agents.

To address the above question, there are three popular formalizations among others in the literature

(Farinelli et al., 2014). Decentralized Markov Decision Process (MDP) (Bernstein et al., 2000) is

(a)

(b)

a6

a5

a4
a2

a3

a1

P1 P2

a7 a8

P3 P4

(r1,r2,r3),
(r2,r3,r4),
(r1,r3,r5,r3,5)

(r6,r7,r8),
(r5,r7,r9),
(r3,r6,r8)

(r4,r9) (r10)

Cap=4 Cap=3 Cap=1 Cap=1

{r4,r3,r5,r1} {r8,r7,r6} {r9} {r10}

Figure 11 An example of allocating requests to partitions

 64

one technique that can be used to find an optimal policy for taking actions between agents, but it

is not practical in real-world scenarios due to its inherent complexity. A second technique is

Partially Observable MDP (Velagapudi et al., 2011) that can be scaled to hundreds or thousands

of agents, but it only scales to multi-agent systems where agents’ interactions are very sparse.

Another technique is Distributed Constraint Optimization Problem (DCOP) (Modi et al., 2005;

Yeoh & Yokoo, 2012) that shows to be promising in solving large-scale multi-agent problems.

This dissertation formulates the above question as classical DCOP (Modi et al., 2005) where agents

in each partition are fully cooperative, have deterministic behavior, and need to coordinate their

actions in a decentralized manner, in order to optimize their objective functions. The next section

presents how the problem in each partition is formulated as DCOP.

4.3.5.1 Intra-Partition Problem Formulation

This section presents a formal definition of DCOP for solving optimization problem in

each partition. A classical DCOP is formulated as a tuple <A, X, D, F> where A = {a1,a2,…,am} is

Figure 12 Cooperative agents to solve subproblem in each partition

A
3

A
2
 A

1

 65

a finite set of agents (decision makers), X = {x1,x2,…,xm} is a finite set of variables, each agent

owns exactly one variable in this work, D = {D1,D2,…,Dm} is a set of discrete and finite variable

domains, each variable owns one domain, and F = {f1,f2,…,fm} is a finite set of cost functions

describing the constraints among variables. In this work, size of each domain Di is equal to the

number of dimensions of agent i in the agent_request matrix, e.g., if agent i can serve two requests

separately and together then |Di|=3. Each function depends on a set of variables that shows the

arity of the function. For example, if the function depends on two variables, it is a binary function.

The goal in DCOP is to find a variable assignment that maximize/minimize the sum of constraints

as defined in (4.17). In this work, the goal is to minimize total travel distance between agents in

each partition. Note that finding an optimal solution for DCOP in each subproblem is still a

combinatorial optimization problem and NP-hard (Modi et al., 2005).

𝑮𝒐𝒂𝒍: 𝑎𝑟𝑔𝑚𝑎𝑥𝑥 ∑ 𝑓(𝑥𝑖)𝑖 or 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 ∑ 𝑓𝑖(𝑥𝑖)𝑖 (4.17)

There are three dominant ways of DCOP representation from agent coordination and

algorithmic perspectives, considering the following assumptions (Fioretto et al., 2018):

 Each agent controls a variable which its domain is known to both the owner agent

and neighboring agents.

 Each agent knows about the values of the cost function of at least one of its local

variables.

 Each agent knows about its neighboring agents. This information is issued to the

agents by the dispatcher agent after the decomposition step.

One way to represent DCOP is via a constraint graph as Gp = (X,Ec) where X represents

the agents nodes and an undirected edge 𝜖 Ec between two nodes exists if and only if there is a

similarity between those nodes. Pseudo-Tree is another way to represent DCOP in which there is

 66

a partial ordering among the agents. The nodes in a pseudo-tree representation are arranged as a

subgraph Tp of Gp such that Tp is a spanning tree of Gp. A third way to represent DCOP is through

a factor graph where a bipartite graph is used to represent the factorization of a function. Given

the objective function in (4.17), the bipartite graph comprises two types of nodes: variable nodes

and function nodes, depicted by circles and squares, respectively. There is a link between a

function node and a variable node in the bipartite graph if the function node depends on the variable

node. In a factor graph, a variable node represents the actions that an agent can take, and a function

node computes utility values for all possible actions based on the dependency between the function

node and the variable nodes. There are several distinct factor graph representations of the same

problem, e.g., interaction-based factor graph and utility-based factor graph, where the choice of

each impacts the performance of the algorithm inferencing in the factor graph. More details about

this topic is discussed in (Farinelli et al., 2014). This dissertation applies utility-based factor graph

representation in solving the underlying DCOP since it has been proven to be a powerful technique

in decentralized coordination (e.g., Zhang & Zhao, 2014; Delle Fave et al., 2012; Yedidsion et al.,

2014; Zivan & Peled, 2012; Stranders et al., 2009; Farinelli et al., 2008; Kok & Vlassis, 2006;).

Figure 13 illustrates three different DCOP representations of the diagram showed in Figure 12

with three agents where there is a similarity between each pair of agents.

 67

Figure 13 Different DCOP representations

Now, the question is: How to solve the underlying DCOP? Basically, there exist two

classes of algorithms for solving the DCOP: complete where the optimality of the solution is

guaranteed; and incomplete where a near-optimal solution can be obtained, i.e., the algorithm

executes in a shorter time at the expense of solution quality. Each class of algorithms can be

categorized as search-based algorithms or inference-based algorithms. In search-based

algorithms, popular search techniques (e.g., best-first search and depth-first search) will be applied

to explore the solution space; on the other hand, inference-based algorithms apply belief

propagation technique in which the agents reduce the size of the problem by exploiting the

structure of the constraint graph and aggregating costs form their neighbors. Figure 14 illustrates

a taxonomy of algorithms along with examples for solving the classical DCOP.

Synchronous branch-and-bound (Hirayama & Yokoo, 1997) is a complete search-based

algorithm and can be considered as a distributed version of branch-and-bound algorithm. Another

example of complete search-based algorithm is ADOPT (Asynchronous Distributed

OPTimization) (Modi et al., 2005) that can be considered as a distributed version of a memory-

(a) Constraint Graph (b) Pseudo-Tree (c) Utility-Based Factor Graph

A1 A2 A3 A1

A2

A3 A3 A2

A1

 68

bounded best-first search algorithm. DPOP (Distributed Pseudo-tree Optimization Procedure)

(Petcu & Faltings, 2005) is an example of complete inference-based algorithm that uses a depth-

first search to search the pseudo-tree constructed by the agents. On the other hand, DSA

(Distributed Stochastic Algorithm) (W. Zhang et al., 2005) is an incomplete search-based

algorithm in which each agent stochastically decides to take a value with maximum gain or other

values with smaller gains. Finally, Max-Sum (Farinelli et al., 2008) is an incomplete inference-

based algorithm, performing inference on a factor graph using belief propagation approach. It

iteratively exchanges messages between variable nodes and factor nodes on a factor graph to

optimize an objective function. Interested readers are referred to the survey paper by (Fioretto et

al., 2018) for a detailed discussion about the characteristics of these algorithms.

While complete algorithms guarantee to find a global optimal solution to the underlying

optimization problem, they grow exponentially in size when solving a large-scale optimization

problem. As already mentioned, DCOP is an NP-hard problem; hence complete algorithms are not

appropriate for solving it, especially when size of the problem is large. Also, complete algorithms

such as ADOPT or DPOP require some preprocessing steps (e.g., constructing pseudo-tree) before

executing the algorithm, which means these algorithms are not suitable for dynamic environments

where agents are added to or removed from the network because they need to construct the pseudo-

tree again and re-solve the optimization problem. Contrarily, incomplete algorithms are applicable

to real-time decision-making for large-scale DCOP by providing good quality solutions, but there

is no guarantee on the solution quality, and executing in a short run time. Applying max-sum

algorithm on utility-based factor graph has been proven to be a powerful technique for solving

DCOP along with handling dynamic environments where agents’ neighbors can change over time

(Waldock et al., 2008; Wang et al., 2009; Farinelli et al., 2014; Yedidsion et al., 2014). This is the

 69

reason that this dissertation adopts max-sum algorithm for solving DCOP that is already

formulated and represented by a factor graph. The next section explains how vehicle agents

coordinates their actions for serving requests in each subproblem using max-sum algorithm. Before

going into the details of the algorithm, it is worthy of note that this dissertation calls this algorithm

min-sum because the goal is to minimize a cost function instead of maximizing a gain that is the

case in max-sum algorithm.

4.3.5.2 Min-Sum Algorithm

The goal in each subproblem is to find a set of variable assignments that minimizes the

objective function (total travel distance in each partition). Making use of factor graph, the objective

function in (4.17) is decomposed into g factors (functions) where g is the number of vehicle agents

in each subproblem. Each individual function (in this work, open-loop TSP) represents the utility

of an agent and the sum of the functions shows the objective function. For example, (4.18) is the

factorization of the objective function between three agents in Figure 13 (c) in which each factor

DCOP Algorithms

Complete Incomplete

Search (e.g.,

ADOPT; Synch

Branch &

Bound)

Inference (e.g.,

DPOP)

Search (e.g.,

DSA)

Inference (e.g.,

Max-Sum)

Figure 14 Taxonomy of DCOP algorithms

 70

depends on all three variables (x1,x2,x3) since there is a similarity between each pair of agents as

shown in Figure 13 (a).

In min-sum algorithm, each agent owns one variable node and one function node to

perform computation. In other words, each agent is responsible for allocating values to its own

variable (e.g., allocating values to variable x1 by agent a1), receiving messages from its function

and variable nodes, and updating messages that flow out of its function and variable nodes. In min-

sum algorithm, each agent continuously negotiates with its neighbors to decide about the best

possible joint action that minimizes the sum of the agents’ functions.

F (x1,x2,x3) = f1(x1,x2,x3) + f2(x1,x2,x3) + f3(x1,x2,x3) (4.18)

To ensure that the neighboring agents do not serve the same request in each partition, (4.17)

is reformulated to (4.19) as sum of utility functions where each agent’s utility is defined as follows

(4.20) and (4.21):

𝑎𝑟𝑔𝑚𝑖𝑛𝑥 ∑ 𝑈𝑘(𝑥𝑘)𝑘∈𝑔 (4.19)

𝑈𝑘(𝑥𝑘) = 𝑓𝑘(𝑥𝑘) + ∑ 𝑥𝑘⊗𝑥𝑖𝑖𝜖𝑁𝑘\𝑘 (4.20)

Where:

𝑥𝑗 ⊗𝑥𝑖 = {
∞ 𝑖𝑓𝑥𝑗 = 𝑥𝑖
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.21)

(4.19) finds a set of variable assignment between agents that minimizes the sum of agents’

utility functions; in other words, the joint action between agents (which request should be served

by which agent) that minimizes the total travel distance in each partition. In (4.20), Nk is the set of

agents that are neighbors of agent k.

After formulating the decomposable objective function in each partition, as seen in (4.19)-

(4.21) and representing it as a factor graph, the min-sum algorithm will be applied on the factor

graph to find an optimal joint action between agents by passing messages from variable nodes to

 71

function nodes, as seen in (4.22), and from function nodes to variable nodes, as seen in (4.23).

These messages are defined as:

𝑞𝑖→𝑗(𝑥𝑖) = ∑ 𝑟𝑘→𝑖(𝑥𝑖)𝑘𝜖𝑀𝑖\𝑗
 (4.22)

𝑟𝑗→𝑖(𝑥𝑖) = 𝑚𝑖𝑛𝑥𝑗\𝑖[𝑈𝑗(𝑥𝑗) + ∑ 𝑞𝑘→𝑗(𝑥𝑘)]𝑘𝜖𝑁𝑗\𝑖
 (4.23)

In (4.22), Mi is a set of function nodes that are connected to variable node i. In (4.23), Nj

is a set of variable nodes that are connected to function node j. Note that Uj in (4.23) is computed

from (4.20). As an example based on the factor graph represented in Figure 13 (c), the message

from function node 3 to variable node 3 is computed by

𝑟3→3(𝑥3) = 𝑚𝑎𝑥𝑥1,𝑥2[𝑈3(𝑥3) + ∑ 𝑞𝑘→𝑗(𝑥𝑗)]

𝑘𝜖{𝑥1,𝑥2}

and the message from variable node 1 to function node 1 is computed by

𝑞1→1(𝑥1) = 𝑟2→1(𝑥1) + 𝑟3→1(𝑥1).

Algorithm 10 presents the operations that each vehicle agent performs to implement min-

sum algorithm. Each vehicle agent receives messages from neighboring vehicle agents (Q and R),

computes the messages accordingly (variable to function and function to variable according to

(4.22) and (4.23), respectively), sends the messages to the neighboring vehicle agents, and finally

updates its current value. Each vehicle agent repeats the former steps for a number of iterations or

until there is no change in the current value of x (variable assignment for the vehicle agent). The

main reason for iteration is that the environment might be dynamic in such a way that some

requests might be cancelled, or some vehicle agents might be incapable of serving requests during

the decision-making process. Algorithms 10-12 are adopted from (Farinelli et al., 2014).

Algorithm 10: Assignment Algorithm: Min-Sum Algorithm

 72

Input: the set of received variable to function message Q, the set of received function to

variable message R

Output: Assigning a value to x

Q <- {}

R <- {}

while termination condition is not met do

 for k ∈ Nj do

 ri->k(xk) <- compute message from function node i to variable node k (Algorithm 11)

 send message ri->k(xk) to neighboring vehicle agent ak

 end for

 for k ∈ Mi do

 qi->k(xi) <- compute message from variable node i to function node k (Algorithm 12)

 send message qi->k(xi) to vehicle agent ak

 end for

 Q <- get message from neighboring function nodes

 R <- get message from neighboring variable nodes

 Update current value of x

end while

return x

Time complexity is O(tdg) (Fioretto et al., 2018) where d, g, and t are the size of the largest domain

in each partition, maximum number of vehicle agents in each partition, and number of iterations

in the algorithm, respectively.

Algorithm 11: Compute Message from Function Node j to Variable Node i According to Eq. 4.23

 73

Input: the receiver’s variable xi, the sender’s utility function Uj, Q as the current set of

variable to function messages received by the sender j

Output: rj->i(xi) that is a column vector with the size of Di

rj->i(xi) <- ∞

for di ∈ Di {all joint assignments of xi} do

 t <- Uj(di)

 for dk ∈ DNj, (k≠i) do

 t <- t + qk->j(dk) { qk->j ∈ Q}

 t <- Uj(di)

 end for

 rj->i(di) <- min t {t ∈ DNj}

end for

return rj->i(xi)

Algorithm 12: Compute Message from Variable Node i to Function Node j According to Eq. 4.22

Input: the sender’s variable xi, the receiver’s function Uj, R as the current set of function

to variable messages received by the sender i

Output: qi->j(xi) that is a column vector with the size of Di

qi->j(xi) <- 0

for rk->i ∈ R (k≠j) do

 qi->j(xi) <- qi->j(xi) + rk->i(xi)

end for

return qi->j(xi)

 74

To summarize this section, an example with three interacting agents is presented to

illustrate how the Algorithms 10-12 operate to compute the messages and assign a value to each

agent’s variable. Figure 15 shows the assignment problem in a partition where there are three

interacting agents, Agent 1 and Agent 2 with functional capacity of one and Agent 3 with

functional capacity of two, and four requests. The aim is to find a joint action (maybe optimal) that

minimizes the total travel distance, ∑ 𝑈𝑘(𝑥𝑘) = 𝑈1(𝑥1, 𝑥2, 𝑥3) + 𝑈2(𝑥1, 𝑥2, 𝑥3) +
3
𝑘=1

𝑈3(𝑥1, 𝑥2, 𝑥3), for serving the requests in this partition. Note that the utility of each agent (4.20)

and (4.21) depends on the owner’s agent and two other agents because there is a similarity between

each pair of agents. Based on the DCOP formulation presented in the previous section, the domain

of three variables and function values for the agents are specified as shown in Figure 15 panels (b)

and (c).

As an illustration of how Algorithms 10-12 compute the messages, Table 4 presents some

messages exchanged by the agents at Time 0 and Time 1. The messages are computed by (4.22)

and (4.23).

 75

D1 = {r1,r3}

D2 = {r3,r4}

D3 =

{r1,r3,r5,r3,5}

f1(x1) = [10,20]

f2(x2) = [50,80]

f3(x3) =

[50,120,70,100]

(a) The Assignment Problem

(b) Variables’

Domains

(c) Function

Values

A1 A3

r1

r3

10

20 120

50

A2 r4

r5

70

80
50

r3,5
100

Figure 15 (a) An example of assignment problem in a partition (b) domain of each

agent’s variable (c) function values of each agent

 76

Table 4 An example of exchanging messages from function to variable and from variable to function

Time 0 Time 1

𝑞1→1(𝑥1) = 𝑞2→1(𝑥1) = 𝑞3→1(𝑥1) = [
0
0
]

𝑞1→2(𝑥2) = 𝑞2→2(𝑥2) = 𝑞3→2(𝑥2) = [
0
0
]

𝑞1→3(𝑥3) = 𝑞2→3(𝑥3) = 𝑞3→3(𝑥3) = [

0
0
0
0

]

𝑟1→2(𝑥2) = 𝑚𝑖𝑛𝑥1,𝑥3[𝑈1(𝑥1, 𝑥2, 𝑥3)

+ 𝑞1→1(𝑥1) + 𝑞3→1(𝑥3)]

= [
10
20
]

𝑞2→1(𝑥2) = [
50
80
]

𝑞3→1(𝑥3) = [

50
120
70
100

]

𝑟1→1(𝑥1) = 𝑚𝑖𝑛

[

10 + ∞+ 50 + 50, 10 + ∞+ 50 + 120,
10 + 50 + 70, 10 + ∞+ 50 + 100,
10 + ∞+ 80 + 50, 10 + 80 + 120,
 10 + 80 + 70,10 + 80 + 100;

20 + ∞+ 50 + 50, 20 + ∞+ 50 + 120,
20 + ∞ + 50 + 70,20 +∞ + 50 + 100,

20 + 80 + 50,20 + 80 + 120,
20 + 80 + 70,20 + ∞+ 80 + 100]

The variable assignments for agent 1 computed by r1->1 at Time 1 would be as follows:

x1=r1 x2=r3 x3=r1, x1=r1 x2=r3 x3=r3, x1=r1 x2=r3 x3=r5, x1=r1 x2=r3 x3=r3,5, x1=r1 x2=r4

x3=r1, x1=r1 x2=r4 x3=r3, x1=r1 x2=r4 x3=r5, x1=r1 x2=r4 x3=r3,5;

x1=r3 x2=r3 x3=r1, x1=r3 x2=r3 x3=r3, x1=r3 x2=r3 x3=r5, x1=r3 x2=r3 x3=r3,5, x1=r3 x2=r4

x3=r1, x1=r3 x2=r4 x3=r3, x1=r3 x2=r4 x3=r5, x1=r3 x2=r4 x3=r3,5

 77

From all possible actions computed in r1->1, it can be observed that best action, shown in

green, with total travel distance of 190 would be as follows: serving request 1 by agent 1, request

4 by agent 2, and requests 3 and 5 by agent 3. Note that two other joint actions, shown in blue, are

also possible, which have total travel distance less than the selected joint action, but they are

rejected. The reason is that the joint actions in blue are serving only three requests out of four while

in the selected joint action all requests are served. At the end, each agent by executing Algorithms

10-12 converges to this assignment.

 78

5.0 Evaluation

After proposing the decentralized approach, formulating the main optimization problem,

designing algorithms for decomposing the main problem and allocating requests to each

subproblem, formulating each subproblem as DCOP and designing algorithms for solving each

subproblem in Chapter 4, now this chapter presents an empirical evaluation of the formalism and

the designed algorithms through a simulation. This dissertation considers two metrics for

evaluating the performance of the proposed decentralized approach: (a) solution quality in terms

of measuring total travel distance of vehicle agents and (b) running time of the algorithms by

measuring CPU time. These two metrics are used to benchmark the proposed approach against

two alternative approaches: (a) in the first approach, a lower bound to the original optimization

problem is obtained by formulating the problem as ILP and providing an exact solution via CPLEX

and (b) a greedy heuristic algorithm is designed to solve the original optimization problem.

5.1 Data for Experiments

The proposed decentralized approach is tested on a synthetic data rather than real data

because at this time the synthetic data meets the needs of this work in terms of testing the developed

models and algorithms and the theories behind them. Furthermore, with synthetic data,

coordination graph with different structures (best case, average case, worst case) can be created

and examined while in using real-world data, there might not exist such flexibility.

 79

Five variables are considered in creating test cases to test the performance of the proposed

approach: (a) number of vehicle agents (b) capacity of each vehicle agent (c) number of requests

(d) maximum number of vehicle agents in each subproblem(g), and (e) time interval, elapsed time

from the initialization. The simulator (Section 5.2) considers these five variables and creates five

sets of test cases that represent variant structures of the coordination graph. These sets are:

 50 instances of the problem with 10, 15, 20, 25, and 50 random requests where

number of vehicle agents is 5, capacity of each vehicle agent is 3, time interval is

155 seconds, and g is 2.

 30 instances of the problem with vehicle agents’ capacity of 2, 3, and 4 where

number of vehicle agents is 15, time interval is 155 seconds, g is 5, and number of

random requests is 20.

 40 instances of the problem with 50, 100, 150, and 300 vehicle agents where

capacity of each vehicle agent is 2, time interval is 155 seconds, g is 5, and number

of random requests is 110.

 70 instances of the problem with setting g to 5, 10, 15, 20, 25, 30, and 50 where

number of vehicle agents is 300, capacity of each vehicle agent is 2, time interval

is 155 seconds, and number of random requests is 100.

 40 instances of the problem with time interval of 30, 50, 90, and 150 seconds where

number of vehicle agents is 300, capacity of each vehicle agent is 2, g is 10, and

number of random requests is 100.

 80

5.2 Simulator

A simulator is developed using Java programming language on a laptop with 8 GB RAM

and 2.9 GHz Core i5 CPU. In the simulator, a number of vehicle agents move on a grid with a

specific speed (Figure 16). At time zero (initialization time), all vehicle agents are at the origin of

the grid that is at the bottom left of the grid. Vehicle agents are allowed to take one of the four

actions (right, left, up, down) in each movement if they stay in the grid. Each vehicle agent has the

following properties in the system: capacity, occupancy with number of onboard passengers,

speed, path as a set of cells that the vehicle agent should traverse on the grid, and schedule as a set

of pick_up and/or drop_off cells.

The shortest distance on the grid is computed by Manhattan distance. A specific number

of requests are generated randomly on the grid in each round with the following properties:

pick_up cell, drop_off cell, time window for both cells, current time (time of request). To compute

bids in each round, each vehicle agent finds an exact solution to open-loop TSP problem, satisfying

the constraints of the new requests and onboard passengers. In other words, each vehicle agent is

responsible for optimizing its own local schedule by solving an instance of open-loop TSP. Since

the capacity of vehicle agents in this simulation is at most four, an exact solution is obtained to the

TSP problem. By increasing vehicle agents’ capacity, heuristic algorithms can be applied for

solving open-loop TSP.

To be consistent with the works reported in the literature, for example, the models and

algorithms developed for DARP, this dissertation experimented with a grid size of 20 x 20 cells.

Also, in the simulator, the speed of each vehicle agent is 1m/s and time window for pick-up and

drop-off is 130s.

The following assumptions are made for the experiments in this simulator:

 81

 There is no wall in the grid.

 Number of passengers in each request is one.

 Number of requests and number of empty seats at time zero are equal.

 Vehicle agents remain idle at their location when they are done with serving the requests.

5.3 Validation and Evaluation Results

Before discussing the algorithms designed for evaluation and presenting the empirical

results to confirm the workability of the proposed multi-agent approach, it is important to see how

different values of time interval in the simulator affect the structure of the coordination graph. The

shorter the time interval, the sparser the coordination graph. The intuition behind this is that when

the time interval is too short, most or all vehicle agents are full, so they cannot serve any new

request and there is no similarity between vehicle agents. i.e., there are isolated nodes in the graph.

Table 5 illustrates coordination graphs with different structures (complete graph, sparse

graph, edgeless graph) when two variables, time interval and number of requests, are changed in

the simulator. The range of time interval is between 13s and 223s where the number of requests is

 d1 d4

d3 d2

 p2 p3

p1 p4

Figure 16 An example of a grid with two agents and four requests

 82

5 and 10. In this part of simulation, the number of partitions is set to two (K=2) since there are

only five vehicle agents in the fleet. The decomposition algorithm divides vehicle agents based on

three different spectral clustering algorithms (See Chapter 4). Firstly, the algorithm decomposes

the graph from an unnormalized Laplacian matrix (the antepenultimate graph). Secondly, the

algorithm considers normalized Laplacian for decomposition, inspired by the algorithm presented

in (Shi & Malik, 2000) (the penultimate graph). Thirdly, the decomposition algorithm uses

normalized adjacency matrix and divides vehicle agents based on the algorithm developed by (Ng

et al., 2002) (the ultimate graph). An isolated node in a graph means that there are no similarities

between the vehicle agents and the algorithm considers it as a separate partition.

 83

Table 5 Decomposition of five vehicle agents with different structures and similarities and with varying time

intervals and number of requests. (TI=Time Interval, CG=Coordination Graph)

Req

TI

(s)

CG

5

113

43

13

223

 84

10

73

153

33

5.3.1 Validation

As mentioned before, this dissertation considers two metrics for validation: solution quality

and running time. Using these two metrics, the set of proposed algorithms in the decentralized

approach is benchmarked against two alternative solution approaches: optimum solution obtained

by ILP and greedy heuristic solution.

 85

To formulate the original optimization problem as ILP, this dissertation adopts the

mathematical formulation presented by (Alonso-mora et al., 2018), which is defined as follows:

𝑀𝑖𝑛 [∑ ∑ 𝑎𝑖𝑥𝑖𝑗 + ∑ 𝑐𝑦𝑘𝑘∈{𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠}𝑗∈{𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠}]𝑖∈{𝑎𝑔𝑒𝑛𝑡𝑠} (5.1)

𝑆. 𝑇.

{

 𝑦𝑘∈{𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠} + ∑ ∑ 𝑥𝑖𝑗

𝑗∈{𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠}

= 1 (5. 2)

𝑖∈{𝑎𝑔𝑒𝑛𝑡𝑠}

∑ 𝑥𝑖𝑗
𝑗∈{𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠}

≤ 1 (5. 3)

𝑥𝑖𝑗 ∈ {0,1} (5. 4)

𝑦𝑘 ∈ {0,1} (5. 5)

The goal in the objective function (5.1) is to minimize both the total travel distance of the

vehicle agents and number of rejected requests. The set dimensions in the objective function refers

to the columns of the agent_request matrix presented in Table 3. ais show the elements of the

agent_request matrix and c is a constant (c>0). The constraints of this ILP formulation are to ensure

that: each request is served by exactly one vehicle agent or rejected, as seen in (5.2); each vehicle

agent serves at most one dimension (5.3); and decision variables are binary. The presented ILP is

solved by CPLEX 12.10 to obtain an optimum solution to the problem.

Error! Reference source not found. shows an overview of how the experiments are c

onducted in the simulator. There are four variables (number of vehicle agents, number of requests,

vehicle agents’ capacity, time interval) in the simulator on which the agent_request matrix are

constructed. The agent_request matrix is the input to two different scenarios as follows:

 The agent_request matrix is an input to ILP, as formulated in (5.1)-(5.5), and the

result would be an optimal solution to the problem.

 86

 The agent_request matrix is an input to the decentralized approach in which the

matrix is decomposed into k partitions by using three different decomposition

methods presented in Chapter 4 (unnormalized Laplacian, normalized Laplacian

presented by Shi & Malik, 2000, and normalized Laplacian presented by Ng et al.

2002). Then requests are allocated to each partition using Algorithm 9. In the next

step, the assignment problem in each partition will be solved using min-sum

algorithm (Algorithms 10-12). Then the final solutions form partitions are

aggregated and compared to the solution provided by ILP.

Figure 17 An overview of the experiment design

 87

The second approach for validation is performed by developing a greedy heuristic

algorithm as presented in Algorithm 13. The algorithm processes the requests in the pool

individually based on first-come-first-served scheme. There are alternatives to processing the

requests one-by-one in a chronological order, such as selecting one request randomly at each time.

Since Algorithm 13 considers all vehicles in each round (serving a new request) unless a vehicle

is full (i.e., a vehicle can serve more than one request if it has enough empty seat), the order of

processing requests does not affect the final solution, neither accuracy nor time performance. In

another variant of processing requests one-by-one, each vehicle can serve only one request. In this

case, the approaches for serving the requests (e.g., first-come-first-served or random selection) do

affect the final solution.

Algorithm 13 computes the bid for each vehicle agent sequentially to serve a request. If

there is no vehicle agent that can serve the request because the vehicle agents are full or the

constraints of the optimization problem (e.g., time window) cannot be satisfied, the request will

be rejected. Otherwise, the request will be assigned to the vehicle agent with the minimum bid.

This process will be repeated until there is no request in the pool.

Algorithm 13: Greedy Assignment

Input: set of requests R, set of vehicle agents with current trajectories and schedules A

Output: assignment of vehicle agents to requests for serving them B

for each request in R

 best bid <- positive infinity

 for each vehicle agent in A

 current bid <- compute bid for the vehicle agent if it is eligible for serving the request

 88

 if current bid is less than the best bid

 update best bid

 end if

 end for

 if best bid is less than positive infinity

 add best bid to B

 end if

end for

return B

Time complexity is O(Rm(p!)) where R, m, and p are the number of independent requests

in the pool, the number of vehicle agents, and the number of points in the schedule of a vehicle

agent, respectively. Note that the reason that the time complexity has a factorial term is that an

exact solution is provided to compute each bid as an instance of open-loop TSP.

In Algorithm 13, as one variant of the centralized approach, the vehicles can compute the

bids in parallel and independently without knowing about the other vehicles’ bids. This

parallelization makes it easy to handle dynamism, i.e., adding/removing vehicles to/from the

system during the decision-making process, in the ridesharing system to some extent. However,

finding a solution to the assignment problem (which vehicle should serve which request) in the

centralized approach requires solving the optimization problem from scratch. On the other hand,

any change (e.g., add/remove vehicles) in the proposed decentralized approach does not require

solving the optimization problem from scratch; instead, it only needs to repair the initial solution

in the partition (subproblem) within which the change has happened. It is worth mentioning that

this capability is a reference to the flexibility feature of the proposed approach.

 89

5.3.2 Evaluation Results

This section presents the experiments performed in the simulator using the five sets of test

cases described earlier. The empirical results are summarized in Table 6. Since requests are

generated randomly on the grid, to have a better estimation of the metrics, i.e., objective value

(OV) and running time (RT), each test case (each row in the table) is run 10 times in the simulator.

In this experiment, number of vehicle agents, vehicle agents’ capacity, time interval, parameter g,

and number of requests are the variables that take different values. The reason for choosing

different values for g is to observe how different number of nodes in each partition affects the

solution quality and execution time of the proposed decentralized approach. Columns OPT and

GR show the results from ILP and greedy heuristic algorithm, respectively. Columns DM1, DM2,

and DM3 show the results from three different decomposition methods, i.e., unnormalized

Laplacian, normalized Laplacian presented by Shi & Malik (2000), and normalized Laplacian

presented by Ng et al. (2002).

Table 6 Experimental Results (TI=Time Interval, GR=Greedy, RT=Running Time, OV=Objective Value)

Agents Cap TI g Req → OPT DM1 DM2 DM3 GR

5 3 155 2

10

RT 1.0 0.75 0.73 0.73 0.18

OV 130 183 190 190 376

15

RT 1.83 1.56 1.52 1.52 0.34

OV 200 288 286 283 597

20

RT 3.79 3.2 3.15 3.15 0.23

OV 235 293 295 295 620

 90

25

RT 6.56 5.02 4.99 4.97 0.26

OV 182 263 268 268 617

50

RT 137.35 55.6 57.1 57.01 0.24

OV 117 291 293 291 605

15

2

155 5 20

RT 0.71 0.39 0.35 0.33 0.23

OV 253 375 405 396 571

3

RT 8.53 7.13 7.08 7.07 0.19

OV 226 361 371 370 612

4

RT 1519.21 1518 1518.17 1518 0.27

OV 68 107 107 105 663

50

2 155 5 110

RT 79.55 22.65 23.14 22.96 0.33

OV 1028 2065 2166 2161 3049

100

RT 170.8 46 46.83 46.4 0.38

OV 1098 2055 2303 2326 3062

150

RT 246.33 66.37 67.72 67.32 0.46

OV 1105 1960 2329 2356 2957

300

RT 531.68 171.79 143.83 142.8 0.66

OV 1077 1966 2256 2239 2760

300 2 155

5

100

RT 358.12 106.02 108.31 107.07 0.66

OV 982 1739 2013 2030 2475

10

RT 357 106.57 109.73 106.63 0.72

OV 956 1712 2071 2094 2605

15 RT 361.72 113.59 114.63 135.02 0.67

 91

OV 968 1677 2124 2160 2642

20

RT 354.41 105.83 107.99 107.27 0.64

OV 956 1673 2120 2135 2647

25

RT 345.55 107.73 109.71 107.76 0.63

OV 967 1673 2119 2079 2593

30

RT 337.7 103.66 105.49 106.14 0.62

OV 983 1685 2049 2052 2565

50

RT 345.52 107.65 108.71 108.7 0.65

OV 943 1518 1794 1732 2606

300 2

30

10 100

RT 6.62 6.62 6.36 5.83 0.58

OV 2370 2628 2921 3469 2954

50

RT 64.96 22.43 21.95 22.27 0.83

OV 1044 2008 1958 1650 3046

90

RT 313.75 97.54 100.22 98.82 0.66

OV 971 1702 2093 2071 2521

150

RT 356.65 107.89 110.21 109.7 0.69

OV 984 1733 2145 2111 2534

Figure 18 and Figure 19 respectively illustrate the objective value (total travel distance)

and run time of the algorithms proposed in the decentralized approach using three different

decomposition methods, ILP, and greedy heuristic algorithm. In each graph, the values of one

variable out of five change to see how this variable affects the solution quality and run time.

 92

Figure 18 Objective values obtained from ILP, Greedy and three decomposition methods

 93

Figure 19 Running time obtained from ILP, Greedy and three decomposition methods

Figure 20 Objective value obtained from Greedy algorithm with different number of

requests and agents

 94

Based on the five sets of test cases created in the simulator, the greedy heuristic algorithm

has a very fast execution time (almost constant) as shown in Figure 19. To have a more precise

estimation of the performance of the greedy heuristic algorithm, different test cases (as shown in

Figure 20 and Figure 21) with larger number of requests and vehicle agents are tested in the

simulator. It can be observed that the execution time of the greedy algorithm grows as number of

vehicle agents or number of requests changes from a few hundreds to a few thousands.

5.4 Analysis of Evaluation Results

This section analyses the results of the experiments conducted in the previous section and

illustrated in Table 6, Figure 18, and Figure 19.

a) The running time in the distributed approach is less than the centralized one in all

experiments. The bigger the size of the problem (by increasing capacity, number of

Figure 21 Running time obtained from Greedy algorithm with different number of

requests and agents

 95

vehicle agents, number of requests), the more significant the gap between running times

of the two approaches (decentralized and ILP). However, by increasing size of the

problem, the gap between the optimal solution and local solution increases.

b) According to (Von Luxburg, 2007), the statistical analysis on both normalized and

unnormalized Laplacian substantiated that normalized Laplacian provides better

solution. However, in my experiment, it can be observed that DM1 (unnormalized

Laplacian) outperforms the other two decomposition methods in most test cases in

terms of providing better solutions while the running times of different decomposition

methods are almost similar. It should be noted that the running time in the decentralized

approach is the highest running time between the running times of all subproblems.

c) It can be observed that by increasing g, better solution can be obtained. This

observation ratifies the intuition behind it, i.e., when g has a bigger value, the number

of partitions decreases (less decomposition) and the search space is more similar to the

original search space before decomposition.

d) Decreasing time interval allows us to have a combination of isolated nodes and

connected nodes in the coordination graph. However, if the time interval is too short,

it is highly probable that the system does not provide any service because all the vehicle

agents are full.

e) Almost all the above test cases can be considered as worst-case scenarios (see the

values of time interval in Table 6 and the discussion of Section 5.2), i.e., there is a high

level of dependency between vehicle agents which means there are a lot of similar

requests that can be served between different vehicle agents in different partitions.

 96

f) The running time includes construction of agent_request matrix and solving the

assignment problem using ILP. Note that in the distributed paradigm, the running time

for constructing agent_request matrix is much lower than the above experiment. This

is because based on the proposed model, agent_request matrix is constructed by the

vehicle agents in parallel, but in the above experiment, the matrix is constructed in a

sequential manner.

g) In the last set of test cases where the variable TI (time interval) changes, it is observed

that the more isolated nodes in the coordination graph (shorter time interval), the better

solution can be obtained. More isolated (dissimilar) nodes can be created by decreasing

the time interval. It verifies that the distributed paradigm performs better in average-

case scenarios (sparse coordination graph, i.e., combination of isolated nodes and

connected nodes) in comparison with worst-case scenarios (complete coordination

graph).

h) In all test cases, the greedy algorithm performs very fast, but its solution quality falls

behind the one obtained by two other approaches. The main reason is that in the greedy

approach, the requests are processed separately, but better solution can be obtained

when considering requests in batch assignment (see Section 2.1.4 for more detail).

i) There could be an extreme case where similarity between all vehicles agents is the

same. If this case occurs, mathematically speaking, the cosine similarity between all

vehicles agents in the agent_request matrix is one, which means all vehicles agents

have exactly similar trajectory and schedule, and serve new requests with the same

utility values. This case is not simulated in this dissertation because the occurrence of

such a case is extremely rare in real world. However, if this case occurs, the

 97

decomposition algorithm partitions the vehicles agents randomly into K partitions

because there is no specific criterion for distinguishing vehicles agents from each other.

5.5 Limitation

In the second scenario of the experiment design as shown in Error! Reference source not f

ound., min-sum algorithm solves the assignment problem in each partition in parallel. This is the

ideal materialization of the decentralized approach proposed in this dissertation. However, in this

dissertation this implementation has not been done due to lack of resources in parallel computing,

extra challenges imposed by parallel programming, and steep learning curve. Alternatively, in the

second scenario, instead of using min-sum algorithm for solving each subproblem, ILP

formulation similar to (5.1)-(5.4) is implemented. Algorithm 14 presents how this implementation

has been done in the simulator.

There are some pros and cons between the ideal approach (min-sum algorithm) and the

alternative approach (ILP) in solving each subproblem. The advantage with min-sum algorithm is

that it can handle changes in the environment dynamically, e.g., some requests might be canceled,

or some vehicle agents might be out of order while in the ILP, the problem should be re-solved

once a change occurs in the environment.

On the other hand, considering all combinations of variables’ assignments in min-sum

could be a hurdle in getting an optimal solution when number of vehicle agents and/or size of the

domains grows in each partition. However, some pruning techniques can be applied in min-sum

to reduce the fraction of the joint action space in each subproblem. Size of the sub-graph

(increasing number of partitions) can be another solution to bypass the above hurdle, but it may

 98

come at expense of global optimality. Table 7 compares ILP and min-sum algorithm in terms of

formulation, solution quality, and implementation aspect.

Table 7 ILP vs min-sum algorithm

Technique Formulation Solution Quality Implementation

ILP (5.1)-(5.4)

Exact solution can

be obtained

Can be done using

existing

optimization tools

such as Cplex

Min-Sum Algorithm Algorithms 10-12

Based on the

proposed

formulation, exact

solution can be

obtained by

considering all

combinations of

variables’

assignments

Can be implemented

in a multi-agent

environment such as

JADE (Java Agent

DEvelopment

Framework)

Algorithm 14: Optimal Assignment

Input: set of partitions P including a set of vehicle agents and allocated requests in each

partition

 99

Output: assignment of vehicle agents to requests in each partition S

for each partition in P

 add the solution obtained by ILP to S

end for

return S

 100

6.0 Summary, Conclusion, and Future Research Direction

6.1 Summary

This dissertation proposed a novel approach to solve dynamic ridesharing problem in a

decentralized way. In the proposed approach, the dispatcher agent plays an important role in the

system where it constructs the coordination graph between decision makers, decompose the task

between the vehicle agents, and allocates requests to each subproblem. Also, there are a set of

cooperative agents work together to take an optimal or near-optimal joint action in each

subproblem to decide which requests should be served by which vehicle agent. Three different

decomposition techniques, using spectral graph theories and graph Laplacian, are considered in

the proposed approach. The experiments showed that the decomposition using unnormalized

Laplacian outperforms the other two techniques by providing better solution (near optimal

solution), but the execution time of the three techniques is similar. As a proof of concept, a

simulator was implemented in Java and five sets of test case designed and ran using this simulator.

To evaluate the proposed approach, two other approaches, ILP and greedy heuristic, are used

where the solution from ILP provided a lower bound to the underlying optimization problem. The

greedy heuristic algorithm performed extremely fast in the five sets of test cases designed in the

experiments, but its solution quality fell behind the proposed approach and obviously the ILP.

 101

6.2 Conclusion

Dynamic ridesharing, centralized or decentralized, involves real-time decision making. A

ridesharing system must be: (a) scalable with respect to different numbers of passengers and

vehicles (b) fault-tolerant (robust), and (c) flexible when an unexpected disturbance happens (e.g.,

vehicle breakdown) in the system. Gaining advantage from computational and communication

capacity of each vehicle, the proposed multi-agent approach has all the above features. Firstly, due

to the availability of computational resources in each vehicle and the distributed nature of

computation, the decentralized approach has the potential to scale up to much larger scenarios in

solving the ridesharing problem, i.e., when the number of agents (users and vehicles) and/or their

capacities (number of passengers per requests and larger vehicles) within the network increases.

Secondly, the process of decision making in the decentralized approach is more robust in

comparison with a single agent decision maker in the centralized approach. The dispatcher agent

in the decentralized approach might fail, but building fault-tolerant decentralized systems are not

as challenging as building fault-tolerant centralized systems. Building fault-tolerant centralized

ridesharing systems must handle some computational challenges, incurs time delay due to

synchronization between nodes, and requires to check data integrity due to redundant and

inconsistent data. The existence of multiple decision makers allows us to decompose a large-scale

ridesharing problem, which is computationally complex and expensive to be solved by a single

agent, into smaller tractable subproblems, and to solve each subproblem by the corresponding

decision makers independently. Thirdly, the decentralized approach is flexible, allowing vehicle

agents in each subproblem to adjust their decisions locally when an unexpected situation occurs to

a vehicle agent, rather than forcing the single-agent decision maker in the centralized approach to

re-compute the global solution. Lastly, properly decomposing the coordination graph as well as

 102

designing efficient algorithms to solve the given assignment task in each subproblem make

obtaining a good solution in a reasonable amount of time possible.

Table 8 provides an overview comparing the characteristics of the centralized and

decentralized approaches.

Table 8 Comparison of the centralized and decentralized approaches.

Features Centralized approach Decentralized approach

Vehicle to vehicle

communication
No Mandatory

Robustness
System is down if the central

server fails to operate.

System operates even if some

decision makers locally fail to

function

Scalability

Adding more computing

resources with parallelization

might help

Highly scalable since each

vehicle has computing

resources

latency in Exchanging

messages

Might happen when vehicles

exchange messages to the

central server

Might happen when

exchanging messages

between decision makers or

between vehicles agents and

dispatcher agent

Flexibility

Highly sensitive to

information updates due to

costly re-computation

Flexible owing to the

computational and

communication resource of

each decision maker

6.3 Future Research Direction

This dissertation formulated the ridesharing problem as a distributed optimization problem

and designed a set of algorithms for task decomposition, request allocation, and decentralized

 103

coordination between cooperative agents, and finally successfully implemented the proposed

approach. The work presented in this dissertation can be extended in three main directions. First,

the formulation needs to be extended to address the underlying optimization problem in deciding

how idle vehicle agents should move in the environment. In other words, should the vehicle agents

be idle after serving their requests, or should they move to high-demand areas? In both cases the

objective is to serve more requests; however, in the latter case, a negotiation between vehicle

agents is needed to prevent some areas from getting overcrowded with vehicle agents while some

other areas are vacant.

Second, cast deterministic formulation of the optimization problem presented in this

dissertation to a stochastic optimization problem to consider uncertainty in decision making. More

precisely, handling action uncertainty in the proposed large-scale DCOP is challenging. One

example of uncertainty is when vehicle agents in each subproblem are not completely sure to serve

a new request due to lack of fuel.

From the empirical results (Table 6) it can be observed that in every instance of the problem

where |R|<=ES, DM1 can find a solution within a factor 𝛼 = 2 of the optimum solution (for DM2

and DM3, this factor is 𝛼 = 2 + 𝜀); however, there is no guarantee to keep the solution quality

within this range for other instances of the problem. Hence, the third direction is to prove

theoretically that the proposed approach guarantees this solution quality and as a result, this

dissertation would be the pioneer in providing an approximation algorithm to the underlying

optimization problem that is NP-hard.

Lastly, the simulator developed in this dissertation can be extended to test the performance

of the proposed model and algorithms on real data, e.g., New York city yellow cab data.

 104

Bibliography

Agatz, N. A. H., Erera, A. L., Savelsbergh, M. W. P., & Wang, X. (2011). Dynamic ride-sharing:

A simulation study in metro Atlanta. Transportation Research Part B: Methodological, 45

`(9), 1450–1464. https://doi.org/10.1016/j.trb.2011.05.017

Agatz, N., Bazzan, A. L. C., Kutadinata, R., Mattfeld, D. C., Sester, M., Winter, S., & Wolfson,

O. (2016). Autonomous car and ride sharing: flexible road trains. Proceedings of the 24th

ACM SIGSPATIAL International Conference on Advances in Geographic Information

Systems - GIS ’16, 1–4. https://doi.org/10.1145/2996913.2996947

Agatz, N., Erera, A., Savelsbergh, M., & Wang, X. (2012). Optimization for dynamic ride-sharing:

A review. European Journal of Operational Research, 223(2), 295–303.

https://doi.org/10.1016/j.ejor.2012.05.028

Alarabi, L., Cao, B., Zhao, L., Mokbel, M. F., & Basalamah, A. (2016). A demonstration of

SHAREK: an efficient matching framework for ride sharing systems. Sigspatial/Gis, 95:1-

95:4. https://doi.org/10.1145/2996913.2996983

Alonso-mora, J., Wallar, A., Frazzoli, E., Rus, D., Alonso-mora, J., Samaranayake, S., Wallar, A.,

Frazzoli, E., & Rus, D. (2018). Correction for Alonso-Mora et al., On-demand high-capacity

ride-sharing via dynamic trip-vehicle assignment. Proceedings of the National Academy of

Sciences, 115(3), E555–E555. https://doi.org/10.1073/pnas.1721622115

Asghari, M., Deng, D., Shahabi, C., Demiryurek, U., & Li, Y. (2016). Price-aware real-time ride-

sharing at scale: an auction-based approach. Proceedings of the 24th ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems - GIS ’16, 1–10.

https://doi.org/10.1145/2996913.2996974

 105

Attanasio, A., Cordeau, J. F., Ghiani, G., & Laporte, G. (2004). Parallel Tabu search heuristics for

the dynamic multi-vehicle dial-a-ride problem. Parallel Computing, 30(3), 377–387.

https://doi.org/10.1016/j.parco.2003.12.001

Ayala, D., Wolfson, O., Dasgupta, B., Lin, J., & Xu, B. (2018). Spatio-Temporal Matching for

Urban Transportation Applications. ACM Transactions on Spatial Algorithms and Systems,

3(4), 1–39. https://doi.org/10.1145/3183344

Bader, D. A., Hart, W. E., & Phillips, C. A. (2005). Parallel Algorithm Design for Branch and

Bound. In H. J. G (Ed.), Tutorials on Emerging Methodologies and Applications in

Operations Research: Presented at Informs 2004, Denver, CO (pp. 5–44). Springer New

York. https://doi.org/10.1007/0-387-22827-6_5

Barreto, L., & Bauer, M. (2010). Parallel branch and bound algorithm - A comparison between

serial, openMP and MPI implementations. Journal of Physics: Conference Series, 256(1).

https://doi.org/10.1088/1742-6596/256/1/012018

Baugh Jr, J. W., Kakivaya, G. K. R., & Stone, J. R. (1998). Intractability of the dial-a-ride problem

and a multiobjective solution using simulated annealing. Engineering Optimization, 30(2),

91–123.

Bentley, J. L., & Finkel, R. a. (1974). Quad trees a data structure for retrieval on composite keys.

Acta Informatica, 4(1), 1–9.

Bentley, Jon Louis. (1990). K-d trees for semidynamic point sets. 187–197.

Berbeglia, G., Cordeau, J. F., & Laporte, G. (2010). Dynamic pickup and delivery problems.

European Journal of Operational Research, 202(1), 8–15.

https://doi.org/10.1016/j.ejor.2009.04.024

Berbeglia, G., Cordeau, J. F., & Laporte, G. (2012). A hybrid tabu search and constraint

 106

programming algorithm for the dynamic dial-a-ride problem. INFORMS Journal on

Computing, 24(3), 343–355. https://doi.org/10.1287/ijoc.1110.0454

Bernstein, D. S., Givan, R., Immerman, N., & Zilberstein, S. (2000). The complexity of

decentralized control of Markov decision processes. Mathematics of Operations Research,

27(4), 819–840. https://doi.org/10.1287/moor.27.4.819.297

Blumrosen, L., & Nisan, N. (2007). Combinatorial auctions. Algorithmic Game Theory,

9780521872, 267–300. https://doi.org/10.1017/CBO9780511800481.013

Bullo, F., Frazzoli, E., Pavone, M., Savla, K., & Smith, S. L. (2011). Dynamic vehicle routing for

robotic systems. Proceedings of the IEEE, 99(9), 1482–1504.

https://doi.org/10.1109/JPROC.2011.2158181

Cao, B., Alarabi, L., Mokbel, M. F., & Basalamah, A. (2015). SHAREK: A Scalable Dynamic

Ride Sharing System. Proceedings - IEEE International Conference on Mobile Data

Management, 1, 4–13. https://doi.org/10.1109/MDM.2015.12

Chan, N. D., & Shaheen, S. A. (2012). Ridesharing in north America: Past, present, and future.

Transport Reviews, 32(1), 93–112. https://doi.org/10.1080/01441647.2011.621557

Christofides, N., & Eilon, S. (1969). An algorithm for the vehicle-dispatching problem. Journal of

the Operational Research Society, 20(3), 309–318.

Chung, Fan RK and Graham, F. C. (1997). Spectral graph theory. American Mathematical Soc.

Cici, B., Markopoulou, A., & Laoutaris, N. (2015). Designing an on-line ride-sharing system.

Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic

Information Systems - GIS ’15, 1–4. https://doi.org/10.1145/2820783.2820850

Coltin, B., & Veloso, M. (2014). Ridesharing with passenger transfers. IEEE International

Conference on Intelligent Robots and Systems, Iros, 3278–3283.

 107

https://doi.org/10.1109/IROS.2014.6943018

Cordeau, J. F., & Laporte, G. (2007). The dial-a-ride problem: Models and algorithms. Annals of

Operations Research, 153(1), 29–46. https://doi.org/10.1007/s10479-007-0170-8

Coslovich, L., Pesenti, R., & Ukovich, W. (2006). A two-phase insertion technique of unexpected

customers for a dynamic dial-a-ride problem. European Journal of Operational Research,

175(3), 1605–1615. https://doi.org/10.1016/j.ejor.2005.02.038

CPLEX optimizer. (2019). https://www.ibm.com/analytics/cplex-optimizer

D’Orey, P. M., Fernandes, R., & Ferreira, M. (2012). Empirical evaluation of a dynamic and

distributed taxi-sharing system. IEEE Conference on Intelligent Transportation Systems,

Proceedings, ITSC, 140–146. https://doi.org/10.1109/ITSC.2012.6338703

Delle Fave, F. M., Rogers, A., Xu, Z., Sukkarieh, S., & Jennings, N. R. (2012). Deploying the

max-sum algorithm for decentralised coordination and task allocation of unmanned aerial

vehicles for live aerial imagery collection. Proceedings - IEEE International Conference on

Robotics and Automation, 469–476. https://doi.org/10.1109/ICRA.2012.6225053

Delling, D., Sanders, P., Schultes, D., & Wagner, D. (2009). Engineering and augmenting route

planning algorithms. Algorithmics of Large and Complex Networks, 5515, 117–139.

papers2://publication/uuid/7F722816-1187-4A7A-B2EF-249C3DDFCE9D

Fagnant, D. J., & Kockelman, K. M. (2018). Dynamic ride-sharing and fleet sizing for a system of

shared autonomous vehicles in Austin, Texas. Transportation, 45(1), 143–158.

https://doi.org/10.1007/s11116-016-9729-z

Fagnant, D. J., Kockelman, K. M., & Bansal, P. (2015). Operations of shared autonomous vehicle

fleet for Austin, Texas, market. Transportation Research Record, 2536, 98–106.

https://doi.org/10.3141/2536-12

 108

Farinelli, A., Rogers, A., & Jennings, N. R. (2014). Agent-based decentralised coordination for

sensor networks using the max-sum algorithm. Autonomous Agents and Multi-Agent Systems,

28(3), 337–380. https://doi.org/10.1007/s10458-013-9225-1

Farinelli, A., Rogers, A., Petcu, A., & Jennings, N. R. (2008). Decentralised coordination of low-

power embedded devices using the max-sum algorithm. Proceedings of the International

Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, 2(Aamas), 630–

637.

Fioretto, F., Pontelli, E., & Yeoh, W. (2018). Distributed constraint optimization problems and

applications: A survey. Journal of Artificial Intelligence Research, 61, 623–698.

https://doi.org/10.1613/jair.5565

Fischer, K., Müller, J. P., & Pischel, M. (1996). Cooperative transportation scheduling: an

application domain for dai. Applied Artificial Intelligence, 10(1), 1–34.

https://doi.org/10.1080/088395196118669

Furuhata, M., Dessouky, M., Ordóñez, F., Brunet, M.-E., Wang, X., & Koenig, S. (2013).

Ridesharing: The state-of-the-art and future directions. 1–44.

https://doi.org/10.1016/j.trb.2013.08.012

Gao, J., Wang, Y., Tang, H., Yin, Z., Ni, L., & Shen, Y. (2017). An Efficient Dynamic Ridesharing

Algorithm. IEEE CIT 2017 - 17th IEEE International Conference on Computer and

Information Technology, 320–325. https://doi.org/10.1109/CIT.2017.33

Gerte, R., Konduri, K. C., & Eluru, N. (2018). Is there a limit to adoption of dynamic ridesharing

systems? Evidence from analysis of uber demand data from new york city. Transportation

Research Record, 2672(42), 127–136. https://doi.org/10.1177/0361198118788462

Ghoseiri, K., Haghani, A., & Hamedi, M. (2011). Real-Time rideshare matching problem. Thesis.

 109

Google geocoding API. (2020).

https://developers.google.com/maps/documentation/geocoding/usage-and-billing#set-caps

Gottlob, G., & Greco, G. (2013). Decomposing combinatorial auctions and set packing problems.

Journal of the ACM, 60(4), 1–39. https://doi.org/10.1145/2505987

Gurobi optimizer. (2019). https://www.gurobi.com/

Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. Proceedings of the

1984 ACM SIGMOD International Conference on Management of Data - SIGMOD ’84, 47.

https://doi.org/10.1145/602259.602266

Helsgaun, K. (2000). Effective implementation of the Lin-Kernighan traveling salesman heuristic.

European Journal of Operational Research, 126(1), 106–130.

https://doi.org/10.1016/S0377-2217(99)00284-2

Herrera, J. F. R., Salmerón, J. M. G., Hendrix, E. M. T., Asenjo, R., & Casado, L. G. (2017). On

parallel Branch and Bound frameworks for Global Optimization. Journal of Global

Optimization, 69(3), 547–560. https://doi.org/10.1007/s10898-017-0508-y

Hirayama, K., & Yokoo, M. (1997). Distributed partial constraint satisfaction problem. Lecture

Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 1330, 222–236. https://doi.org/10.1007/bfb0017442

Ho, S. C., Szeto, W. Y., Kuo, Y. H., Leung, J. M. Y., Petering, M., & Tou, T. W. H. (2018). A

survey of dial-a-ride problems: Literature review and recent developments. Transportation

Research Part B: Methodological, 111, 395–421. https://doi.org/10.1016/j.trb.2018.02.001

Hosni, H., Naoum-Sawaya, J., & Artail, H. (2014). The shared-taxi problem: Formulation and

solution methods. Transportation Research Part B: Methodological, 70, 303–318.

https://doi.org/10.1016/j.trb.2014.09.011

 110

Huang, Y., Jin, R., Bastani, F., & Wang, X. S. (2013). Large Scale Real-time Ridesharing with

Service Guarantee on Road Networks. 7(14), 2017–2028.

https://doi.org/10.14778/2733085.2733106

Hyland, M. F., & Mahmassani, H. S. (2017). Taxonomy of shared autonomous vehicle fleet

management problems to inform future transportation mobility. Transportation Research

Record, 2653, 26–34. https://doi.org/10.3141/2653-04

Jaw, J.-J., Odoni, A. R., Psaraftis, H. N., & Wilson, N. H. M. (1986). A heuristic algorithm for the

multi-vehicle advance request dial-a-ride problem with time windows. Transportation

Research Part B: Methodological, 20(3), 243–257. https://doi.org/10.1016/0191-

2615(86)90020-2

Jia, Y., Xu, W., & Liu, X. (2017). An optimization framework for online ride-sharing markets.

Proceedings - International Conference on Distributed Computing Systems, 826–835.

https://doi.org/10.1109/ICDCS.2017.185

Jung, J., Jayakrishnan, R., & Park, J. Y. (2016). Dynamic shared-taxi dispatch algorithm with

hybrid-simulated annealing. Computer-Aided Civil and Infrastructure Engineering, 31(4),

275–291. https://doi.org/10.1111/mice.12157

Kalantari, B., Hill, A. V., & Arora, S. R. (1985). An algorithm for the traveling salesman problem

with pickup and delivery customers. European Journal of Operational Research, 22(3), 377–

386. https://doi.org/10.1016/0377-2217(85)90257-7

Kelly, K. (2007). Casual carpooling-enhanced. Journal of Public Transportation, 10(4), 119–130.

https://doi.org/10.5038/2375-0901.10.4.6

Kleiner, A., Nebel, B., & Ziparo, V. A. (2011). A mechanism for dynamic ride sharing based on

parallel auctions. IJCAI International Joint Conference on Artificial Intelligence, 266–272.

 111

https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-055

Kok, J. R., & Vlassis, N. (2006). Collaborative multiagent reinforcement learning by payoff

propagation. Journal of Machine Learning Research, 7, 1789–1828.

Kriegel, H. P., Seeger, B., Schneider, R., & Beckmann, N. (1990). The R-tree: an efficient and

robust access method for points and rectangles. GIS for the 1990s. Proc. National Conference,

Ottawa, 1990, 448–455.

Krishnamurti, R. (2002). The multiple traveling salesman problem with time windows : Bounds

for the minimum number of vehicles. Time, 1–16.

Lee, M. L., Hsu, W., Jensen, C. S., Cui, B., & Teo, K. L. (2003). Supporting frequent updates in

R-Trees: A bottom-up approach. Proceedings 2003 VLDB Conference, 608–619.

https://doi.org/10.1016/b978-012722442-8/50060-4

Liebling, T. M. (1987). Large scale combinatorial optimization problems: randomized exchange

heuristics. IFAC Proceedings Volumes, 20(9), 73–80. https://doi.org/10.1016/s1474-

6670(17)55683-9

Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-salesman

problem. Operations Research, 21(2), 498–516. https://doi.org/10.1287/opre.21.2.498

Liu, Z., Miwa, T., Zeng, W., & Morikawa, T. (2018). An agent-based simulation model for shared

autonomous taxi system. Asian Transport Studies, 5(1), 1–13.

https://doi.org/10.11175/eastsats.5.1

Lowalekar, M., Varakantham, P., & Jaillet, P. (2019). ZAC: A zone path construction approach

for effective real-time ridesharing. Proceedings International Conference on Automated

Planning and Scheduling, ICAPS, Icaps, 528–538.

Ma, S., Zheng, Y., & Wolfson, O. (2013). T-Share : A Large-Scale Dynamic Taxi Ridesharing.

 112

Proceedings - International Conference on Data Engineering, 410–421.

https://doi.org/10.1109/ICDE.2013.6544843

Ma, S., Zheng, Y., & Wolfson, O. (2015). Real-time city-scale taxi ridesharing. IEEE Transactions

on Knowledge and Data Engineering, 27(7), 1782–1795.

https://doi.org/10.1109/TKDE.2014.2334313

Mallus, M., Colistra, G., Atzori, L., Murroni, M., & Pilloni, V. (2017). Dynamic carpooling in

urban areas: Design and experimentation with a multi-objective route matching algorithm.

Sustainability (Switzerland), 9(2). https://doi.org/10.3390/su9020254

Mes, M., van der Heijden, M., & van Harten, A. (2007). Comparison of agent-based scheduling to

look-ahead heuristics for real-time transportation problems. European Journal of Operational

Research, 181(1), 59–75. https://doi.org/10.1016/j.ejor.2006.02.051

Mills-tettey, G. A., Stentz, A., & Dias, M. B. (2007). The Dynamic Hungarian Algorithm for the

Assignment Problem with Changing Costs. Naval Research Logistics Quarterly, July, 83–87.

Modi, P. J., Shen, W. M., Tambe, M., & Yokoo, M. (2005). Adopt: Asynchronous distributed

constraint optimization with quality guarantees. Artificial Intelligence, 161(1–2), 149–180.

https://doi.org/10.1016/j.artint.2004.09.003

Molenbruch, Y., Braekers, K., & Caris, A. (2017). Typology and literature review for dial-a-ride

problems. Annals of Operations Research, 259(1–2), 295–325.

https://doi.org/10.1007/s10479-017-2525-0

Morency, C. (2007). The ambivalence of ridesharing. Transportation, 34(2), 239–253.

https://doi.org/10.1007/s11116-006-9101-9

Mosek optimization solver. (2019). https://www.mosek.com/

Najmi, A., Rey, D., & Rashidi, T. H. (2017). Novel dynamic formulations for real-time ride-

 113

sharing systems. Transportation Research Part E: Logistics and Transportation Review,

108(September), 122–140. https://doi.org/10.1016/j.tre.2017.10.009

Nash, J. F., & others. (1950). Equilibrium points in n-person games. Proceedings of the National

Academy of Sciences, 36(1), 48–49.

New York City Yellow Taxi Trip. (2016).

Ng, A. Y., Jordan, M. I., & Weiss, Y. (2002). On spectral clustering analysis and an algorithm. In

Advances in neural information processing systems (pp. 849–856). MIT press Cambridge.

https://doi.org/10.1.1.19.8100

Nourinejad, M., & Roorda, M. J. (2016). Agent based model for dynamic ridesharing.

Transportation Research Part C: Emerging Technologies, 64, 117–132.

https://doi.org/10.1016/j.trc.2015.07.016

Ota, M., Vo, H., Silva, C., & Freire, J. (2015). A scalable approach for data-driven taxi ride-sharing

simulation. Proceedings - 2015 IEEE International Conference on Big Data, IEEE Big Data

2015, 888–897. https://doi.org/10.1109/BigData.2015.7363837

Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2008). A survey on pickup and delivery problems.

Journal Fur Betriebswirtschaft, 58(1), 21–51. https://doi.org/10.1007/s11301-008-0033-7

Perugini, D., Lambert, D., Sterling, L., & Pearce, A. (2003). A distributed agent approach to global

transportation scheduling. IEEE/WIC International Conference on Intelligent Agent

Technology, 2003. IAT 2003., 18–24. https://doi.org/10.1109/IAT.2003.1241043

Petcu, A., & Faltings, B. (2005). A scalable method for multiagent constraint optimization. IJCAI

International Joint Conference on Artificial Intelligence, 266–271.

Pillac, V., Gendreau, M., Guéret, C., & Medaglia, A. L. (2013). A review of dynamic vehicle

routing problems. European Journal of Operational Research, 225(1), 1–11.

 114

https://doi.org/10.1016/j.ejor.2012.08.015

Ralphs, T. K. (2006). Parallel branch and cut. Parallel Combinatorial Optimization, 53–101.

https://doi.org/10.1002/9780470053928.ch3

Reinelt, G. (1994). The traveling salesman: computational solutions for TSP applications.

Springer-Verlag.

Rubinstein, Z. B., Smith, S. F., & Barbulescu, L. (2012). Incremental management of

oversubscribed vehicle schedules in dynamic dial-a-ride problems. Proceedings of the

National Conference on Artificial Intelligence, 3, 1809–1815.

Santos, D. O., & Xavier, E. C. (2015). Taxi and ride sharing: A dynamic dial-a-ride problem with

money as an incentive. Expert Systems with Applications, 42(19), 6728–6737.

https://doi.org/10.1016/j.eswa.2015.04.060

Saraswathi, A. T., Kalaashri, Y. R. A., & Padmavathi, S. (2015). Dynamic resource allocation

scheme in cloud computing. Procedia Computer Science, 47(C), 30–36.

https://doi.org/10.1016/j.procs.2015.03.180

Schreieck, M., Safetli, H., Siddiqui, S. A., Pflügler, C., Wiesche, M., & Krcmar, H. (2016). A

Matching Algorithm for Dynamic Ridesharing. Transportation Research Procedia, 19(June),

272–285. https://doi.org/10.1016/j.trpro.2016.12.087

Schwarting, W., Alonso-Mora, J., & Rus, D. (2018). Planning and Decision-Making for

Autonomous Vehicles. Annual Review of Control, Robotics, and Autonomous Systems, 1(1),

annurev-control-060117-105157. https://doi.org/10.1146/annurev-control-060117-105157

Sellis, T. K., Roussopoulos, N., & Faloutsos, C. (1987). The R+-Tree: A Dynamic Index for Multi-

Dimensional Objects. Proceedings of the 13th International Conference on Very Large Data

Bases, 507–518.

 115

Shemshadi, A., Sheng, Q. Z., & Zhang, W. E. (2014). A decremental search approach for large

scale dynamic ridesharing. Lecture Notes in Computer Science (Including Subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8786, 202–217.

https://doi.org/10.1007/978-3-319-11749-2_16

Shen, B., Huang, Y., & Zhao, Y. (2016). Dynamic ridesharing. SIGSPATIAL Special, 7(3), 3–10.

https://doi.org/10.1145/2876480.2876483

Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22(8), 888–905.

https://doi.org/10.1109/34.868688

Simonetto, A., Monteil, J., & Gambella, C. (2019). Real-time city-scale ridesharing via linear

assignment problems. Transportation Research Part C: Emerging Technologies, 101, 208–

232. https://doi.org/10.1016/j.trc.2019.01.019

Smith, R. G. (1980). The contract net protocol: High-level communication and control in a

distributed problem solver. IEEE Transactions on Computers, C–29(12), 1104–1113.

https://doi.org/10.1109/TC.1980.1675516

Song, C. H., Lee, K., & Lee, W. D. (2003). Extended simulated annealing for augmented TSP and

multisalsemen TSP. Proceedings of the International Joint Conference on Neural Networks,

3, 2340–2343.

Stranders, R., Farinelli, A., Rogers, A., & Jennings, N. R. (2009). Decentralised coordination of

mobile sensors using the max-sum algorithm. IJCAI International Joint Conference on

Artificial Intelligence, 299–304.

Teodorovic, D., & Radivojevic, G. (2000). A fuzzy logic approach to dynamic Dial-A-Ride

problem. 116, 23–33.

 116

Tsubakitani, S., & Evans, J. R. (1998). Optimizing tabu list size for the traveling salesman

problem. Computers and Operations Research, 25(2), 91–97. https://doi.org/10.1016/S0305-

0548(97)00030-0

Velagapudi, P., Varakantham, P., Scerri, P., & Sycara, K. (2011). Distributed model shaping for

scaling to decentralized POMDPs with hundreds of agents categories and subject descriptors.

International Conference on Autonoumous Agents and MultiAgent Systems (AAMAS 11),

955–962.

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4), 395–

416. https://doi.org/10.1007/s11222-007-9033-z

Waldock, A., Nicholson, D., & Rogers, A. (2008). Cooperative control using the max-sum

algorithm. Computer, 65–70. http://eprints.soton.ac.uk/265456/

Wang, J., Wang, T., Wang, X., & Meng, X. (2009). Multi-robot decision making based on

coordination graphs. 2009 IEEE International Conference on Mechatronics and Automation,

ICMA 2009, 2393–2398. https://doi.org/10.1109/ICMA.2009.5246091

Xiao, Z., Song, W., & Chen, Q. (2013). Dynamic resource allocation using virtual machines for

cloud computing environment. IEEE Transactions on Parallel and Distributed Systems,

24(6), 1107–1117. https://doi.org/10.1109/TPDS.2012.283

Yedidsion, H., Zivan, R., & Farinelli, A. (2014). Explorative max-sum for teams of mobile sensing

agents. 13th International Conference on Autonomous Agents and Multiagent Systems,

AAMAS 2014, 1, 549–556.

Yeoh, W., & Yokoo, M. (2012). Distributed problem solving. AI Magazine, 33(3), 53–65.

https://doi.org/10.1609/aimag.v33i3.2429

Yuni Xia, & Prabhakar, S. (2003). Q+Rtree: efficient indexing for moving object databases. Eighth

 117

International Conference on Database Systems for Advanced Applications, 2003. (DASFAA

2003). Proceedings., 175–182. https://doi.org/10.1109/DASFAA.2003.1192381

Zhang, W., Wang, G., Xing, Z., & Wittenburg, L. (2005). Distributed stochastic search and

distributed breakout: Properties, comparison and applications to constraint optimization

problems in sensor networks. Artificial Intelligence, 161(1–2), 55–87.

https://doi.org/10.1016/j.artint.2004.10.004

Zhang, Z., & Zhao, D. (2014). Clique-based cooperative multiagent reinforcement learning using

factor graphs. IEEE/CAA Journal of Automatica Sinica, 1(3), 248–256.

https://doi.org/10.1109/JAS.2014.7004682

Zheng, Y., Capra, L., Wolfson, O., & Yang, H. (2014). Urban Computing: concepts,

methodologies, and applications. ACM Transactions on Intelligent Systems and Technology,

5(3), 1–55. https://doi.org/10.1145/2629592

Zivan, R., & Peled, H. (2012). Max/min-sum distributed constraint optimization through value

propagation on an alternating DAG. 11th International Conference on Autonomous Agents

and Multiagent Systems 2012, AAMAS 2012: Innovative Applications Track, 1(June), 280–

287.

	Title Page
	Committee Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Preface
	1.0 Introduction
	1.1 Terminologies
	1.2 Motivation
	1.3 Proposed Research
	1.4 Contributions
	1.5 Structure of the Dissertation

	Figure 1 New York City yellow cab taxi records in different hours in February 2016
	2.0 Background
	2.1 Centralized Approach
	Figure 2 Centralized approach in dynamic ridesharing systems
	2.1.1 System Objects Module
	2.1.2 Data Module
	2.1.3 Algorithm Module
	Figure 3 An illustration of rescheduling in a dynamic ridesharing system. (a) current route of a vehicle for serving two passengers and a new request with pick-up location P3 and drop-off location D3. (b) new route of the vehicle after rescheduling.

	2.1.4 Optimization Module
	Figure 4 An example of queueing approach in ridesharing problem. The numbers on links are travel times for vehicles-requests (Ayala et al., 2018).
	Figure 5 An example of batch assignment

	2.2 Analysis

	3.0 Dynamic Ridesharing
	Table 1 Analogy between dynamic ridesharing problem and different VRP variants.
	3.1 Dynamic Dial-a-Ride Problem (DDARP)
	Table 2 Classification of the papers with respect to the type of solution approach applied

	3.2 Agent-based Approach
	3.3 Other Ridesharing Systems

	4.0 Proposed Research
	4.1 Assumptions
	4.2 Problem Formulation and Definitions
	4.3 Methodology
	4.3.1 Decentralized Approach
	4.3.2 Coordination Graph and Decomposition
	Table 3 An example of agent_request matrix

	4.3.3 Spectral Graph Theory
	4.3.4 Allocation of Requests to Subproblems
	4.3.5 Solving Subproblems
	4.3.5.1 Intra-Partition Problem Formulation
	Figure 13 Different DCOP representations

	4.3.5.2 Min-Sum Algorithm
	Table 4 An example of exchanging messages from function to variable and from variable to function

	Figure 6 An overall illustration of the global objective function’s decomposition
	Figure 7 Overview illustration of the decentralized approach
	Figure 8 Hypergraph representation of agent-request
	Figure 9 Overview of the decomposition algorithm
	Figure 10 Serving dependent requests together with cost of 90 versus separately with cost of 140
	Figure 11 An example of allocating requests to partitions
	Figure 12 Cooperative agents to solve subproblem in each partition
	Figure 14 Taxonomy of DCOP algorithms
	Figure 15 (a) An example of assignment problem in a partition (b) domain of each agent’s variable (c) function values of each agent
	5.0 Evaluation
	5.1 Data for Experiments
	5.2 Simulator
	5.3 Validation and Evaluation Results
	Table 5 Decomposition of five vehicle agents with different structures and similarities and with varying time intervals and number of requests. (TI=Time Interval, CG=Coordination Graph)
	5.3.1 Validation
	5.3.2 Evaluation Results
	Table 6 Experimental Results (TI=Time Interval, GR=Greedy, RT=Running Time, OV=Objective Value)

	5.4 Analysis of Evaluation Results
	5.5 Limitation
	Table 7 ILP vs min-sum algorithm

	Figure 16 An example of a grid with two agents and four requests
	Figure 17 An overview of the experiment design
	Figure 18 Objective values obtained from ILP, Greedy and three decomposition methods
	Figure 19 Running time obtained from ILP, Greedy and three decomposition methods
	Figure 20 Objective value obtained from Greedy algorithm with different number of requests and agents
	Figure 21 Running time obtained from Greedy algorithm with different number of requests and agents
	6.0 Summary, Conclusion, and Future Research Direction
	6.1 Summary
	6.2 Conclusion
	Table 8 Comparison of the centralized and decentralized approaches.

	6.3 Future Research Direction

	Bibliography

