Feng, Peiyun and Hao, Liangyan and Xiong, Wei
(2021)
Calphad modeling and prediction of magnetic phase diagram for the Fe-Cr-Ni system.
Ingenium: Undergraduate Research at the Swanson School of Engineering.
Abstract
The compositional dependency of both magnetic transition temperature and magnetic moment of binary Cr-Fe, Fe-Ni, and Cr-Ni alloys, and ternary Fe-Cr-Ni alloys was investigated using magnetic modeling. Previous work on these systems were mainly based on the Inden–Hillert–Jarl magnetic model and Weiss Factor introduced by Hertzman and Sundman. In this work, a revised model proposed by Xiong was applied to study the compositional dependency of both magnetic transition temperature and magnetic moment, which reduced artificial parts of calculations. The reliability of the revised model was proved by the fact that calculated Curie temperature, Néel temperature, and magnetic moment of three binary systems all agree well with experimental data. The predicted variation trend of ternary magnetic properties was also supported by available experimental and theoretical calculation results. The low-temperature properties prediction can be benefited by the showing the improvement of description of the magnetic phase diagrams. The improved simulation of thermodynamic properties is critical to steel and superalloy development.
Share
Citation/Export: |
|
Social Networking: |
|
Details
Metrics
Monthly Views for the past 3 years
Plum Analytics
Actions (login required)
|
View Item |