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Abstract: Cetuximab, an anti-EGFR monoclonal antibody (mAb), is approved for advanced head
and neck squamous cell carcinoma (HNSCC) but benefits a minority. An established tumor-intrinsic
resistance mechanism is cross-talk between the EGFR and hepatocyte growth factor (HGF)/cMet
pathways. Dual pathway inhibition may overcome cetuximab resistance. This Phase I study
evaluated the combination of cetuximab and ficlatuzumab, an anti-HGF mAb, in patients with
recurrent/metastatic HNSCC. The primary objective was to establish the recommended Phase
II dose (RP2D). Secondary objectives included overall response rate (ORR), progression-free
survival (PFS), and overall survival (OS). Mechanistic tumor-intrinsic and immune biomarkers
were explored. Thirteen patients enrolled with no dose-limiting toxicities observed at any dose
tier. Three evaluable patients were treated at Tier 1 and nine at Tier 2, which was determined to
be the RP2D (cetuximab 500 mg/m2 and ficlatuzumab 20 mg/kg every 2 weeks). Median PFS and
OS were 5.4 (90% CI = 1.9–11.4) and 8.9 (90% CI = 2.7–15.2) months, respectively, with a confirmed
ORR of 2 of 12 (17%; 90% CI = 6–40%). High circulating soluble cMet levels correlated with poor
survival. An increase in peripheral T cells, particularly the CD8+ subset, was associated with
treatment response whereas progression was associated with expansion of a distinct myeloid
population. This well-tolerated combination demonstrated promising activity in cetuximab-resistant,
advanced HNSCC.
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1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is a morbid and lethal malignancy associated
with chronic tobacco exposure or oropharyngeal infection with oncogenic human papillomavirus
(HPV) [1]. Despite increased understanding of the genetic and viral underpinnings of HNSCC,
5-year overall survival (OS) in high risk disease remains 40–60%. Recurrence or metastasis following
curative-intent therapy represents the major cause of death. Options for palliative management
include the cytotoxic chemotherapies platinum, 5-fluorouracil, and taxanes; the anti-epidermal
growth factor receptor (EGFR) human-murine IgG1 monoclonal antibody (mAb) cetuximab; and the
immune checkpoint inhibitors targeting the programmed death-1 (PD1) receptor, pembrolizumab and
nivolumab [2–4]. Currently, there is no standard therapy for pan-refractory patients, who will succumb
with a median OS of less than 6 months.

Ubiquitous tumor overexpression of the EGFR receptor tyrosine kinase (RTK) compelled the
development of EGFR inhibitors for the treatment of HNSCC [5,6]. Despite aberrant EGFR signaling
in the majority of HNSCC cases, the modest clinical activity of cetuximab has been disappointing
and de novo or acquired resistance is inevitable [7]. Unlike colorectal cancer, where activating KRAS
and BRAF mutations predict cetuximab resistance [8], no predictive biomarker has been identified
in HNSCC [9,10]. A likely resistance mechanism to anti-EGFR therapy is compensatory activation
of alternate RTKs. The MET oncogene encodes cMet, an RTK bound exclusively by the ligand,
hepatocyte growth factor (HGF). Overexpression of cMet transforms normal epithelial cells and
enhances motility, invasion, and metastasis [11]. cMet and/or HGF are overexpressed in approximately
80% of HNSCC [12]. cMet activation is an established driver of epithelial-to-mesenchymal transition,
a phenotype associated with cetuximab resistance in HNSCC [13,14].

Several lines of evidence developed in our laboratories indicate that cMet plays an important
role in tumor-intrinsic resistance to EGFR inhibition. In vitro, the EGFR ligand transforming growth
factor α (TGFα) stimulated activation of cMet in HNSCC cell lines. Dual inhibition of EGFR and cMet
maximally inhibited phosphorylation of MAPK and Akt compared to single inhibition of either RTK,
abrogating cross-talk. In vivo, dual inhibition retarded tumor growth, decreased the proliferative
index, and enhanced apoptosis compared to either single agent [15]. Others found that dual blockade
of cMet and EGFR was synergistic in erlotinib-sensitive HNSCC cell lines [16]. Growth factors have
the potential to drive resistance to tyrosine kinase inhibitors (TKIs); in kinase-addicted cell lines, HGF
rescued cells dependent upon HER2 amplification, NRG1 autocrine stimulation, EGFR mutation,
and BRAF mutation [17]. In EGFR mutant lung cancer, cMet amplification and increased tumoral HGF
expression are common mechanisms of both de novo and acquired resistance to EGFR TKIs [18,19].
Finally, serum levels of HGF have been associated with resistance to EGFR inhibitors in KRAS wild-type
metastatic colorectal cancer and lung cancer [20–22].

A second important mechanism of action of cetuximab is antibody-dependent, cell-mediated
cytotoxicity, triggered by engagement of its IgG1 Fc with the Fc receptor (FcR) on natural killer (NK)
cells [23,24]. Mechanistically, cetuximab-activated NK cells upregulated human leukocyte antigen-C
(HLA-C) on HNSCC cells via interferon gamma (IFNγ) [25]. Clinically, HNSCCs that responded to
cetuximab were shown to have an increased rate of HLA-C mutations compared to non-responders or
untreated tumors, which may contribute to immune evasion in the setting of cetuximab treatment [25].
Recent studies show that HGF/cMet signaling also orchestrates immune responses. However, this is
not sufficiently understood [26]. Some studies identify HGF as a negative regulator of dendritic cell
(DC) function and T lymphocytes [27], while others imply an immunostimulatory role by promoting
recruitment of DC, B cells and T lymphocytes [28]. Thus, an immunological mechanism may exist for
HGF/cMet-directed agents as well.

Because the HGF/cMet signaling pathway converges with the EGFR network at multiple
downstream nodes, we hypothesize that HGF/cMet pathway inhibition may overcome clinical
cetuximab resistance. We conducted a Phase I study evaluating the combination of ficlatuzumab
(AV-299), a humanized anti-HGF IgG1 mAb, and cetuximab in patients with recurrent/metastatic
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HNSCC. We sought the recommended Phase II dose (RP2D) for subsequent randomized evaluation
and explored mechanistic proteomic, signaling and immune biomarkers that may be associated with
clinical benefit.

2. Results

2.1. Patient Characteristics

Thirteen patients were enrolled and received at least one dose of protocol treatment between
September 2015 and June 2016. Baseline demographic and disease characteristics are summarized in
Table 1, and are typical of a pan-refractory HNSCC population. The majority of subjects were male,
median age was 58.4 years, and 12 of 13 (92%) had HPV-negative disease. The majority of subjects
(92%) met protocol-specified criteria for platinum and cetuximab resistance, and 9 of 13 (67%) were
VeriStrat poor. Although the trial was conducted prior to the U.S. FDA approvals for the anti-PD1
mAb, pembrolizumab and nivolumab, five (38%) had received prior anti-PD1 or PDL1 mAb in the
setting of a clinical trial. In the 12 cetuximab-resistant patients, the median time from most recent
cetuximab exposure was 17 weeks (range 2–44 weeks).

Table 1. Baseline patient demographics and disease characteristics.

Patient Characteristics n (%)

Age (Median, Range) 58.4 (46.7–80.1 years)

Sex
Male 10 (77%)

Female 3 (23%)

ECOG Performance Status
0 8 (62%)
1 5 (38%)

Primary Tumor Site
Oral Cavity 1 (8%)
Oropharynx 4 (31%)

Hypopharynx 2 (15%)
Larynx 5 (38%)

External Auditory Canal 1 (8%)

Platinum-Refractory
Yes 12 (92%)
No 1 (8%)

Cetuximab-Resistant at Protocol Entry
Yes 12 (92%)
No 1 (8%)

Tumor HPV Status
p16+ Oropharynx 1 (8%)

p16- Oropharynx and Non-Oropharynx 12 (92%)

Previous Treatment with Anti-PD1/L1
mAb
Yes 5 (38%)
No 8 (62%)

Baseline VeriStrat Status
Good 4 (33%)
Poor 9 (67%)
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2.2. Dose-Limiting Toxicities and Recommended Phase II Dose

Adverse events are described regardless of attribution in Table 2, and reflect the expected, additive
patterns observed during studies of ficlatuzumab or cetuximab monotherapy. The HGF/cMet inhibitor
class toxicity of edema was observed in three subjects (25%), with one instance of Grade 3 peripheral
edema. Due to the unique risk for head and neck edema in this patient population [29], this toxicity
was specifically assessed at each study visit and was observed in three patients (23%), none requiring
dose reduction of ficlatuzumab. No DLTs were observed at any dose tier, thus only Tier 1 and Tier 2
were utilized. Three subjects were treated at dose Tier 1, as the second subject had not cleared the DLT
observation period when the third patient was enrolled thus criteria for escalation had not yet been
met. Ten subjects were subsequently treated at the Tier 2 dose of ficlatuzumab 20 mg/kg and cetuximab
500 mg/m2 every 2 weeks. One subject (patient 6) withdrew consent during the DLT observation
period following an unrelated thromboembolic event and was considered unevaluable for both DLT
and disease response, but was included in Table 2. When 6 subjects on Tier 2 had completed the DLT
observation period without DLT, Tier 2 was declared the RP2D. Three additional subjects were then
enrolled to Tier 2 in order to reach the target of 12 biomarker-evaluable subjects.

Table 2. Adverse events related to cetuximab plus ficlatuzumab by dose tier and grade in all patients
that received at least one dose of drug (n = 3 at Tier 1; n = 10 at Tier 2).

Adverse Events
NCI CTCAE Grade

Grade 1–2 n (%) Grade 3–4 n (%)

Tier 1 Tier 2 Tier 1 Tier2

Constitutional
Flu-Like Symptoms 2 (67%) 3 (30%) 0 0

Dermatologic
Acneiform Rash 3 (100%) 6 (60%) 0 0

Hepatic
Hypoalbuminemia 0 5 (50%) 1 (33%) 0

Infection 1 (33%) 0 0 2 (20%)

Metabolic
Hypomagnesemia 1 (33%) 3 (30%) 0 0

Hyponatremia 1 (33%) 4 (40%) 0 0
Hypophosphatemia 2 (67%) 2 (20%) 0 1 (10%)

Vascular
Thromboembolism 0 0 1 (33%) 1 (10%)
Peripheral Edema 0 2 (20%) 0 1 (10%)

Head and Neck Lymphedema 1 (33%) 2 (20%) 0 0

2.3. Preliminary Oncologic Efficacy

The protocol treatment schema is outlined in Figure 1A and described in the Treatment Plan in
Materials and Methods section. The median number of cycles received was 3 (range 1–20). Twelve
subjects were evaluable for efficacy parameters. There was no dose–response relationship between
ficlatuzumab and percent tumor change according to RECIST, thus secondary analyses were pooled
across the two dose tiers. The ORR was 2 of 12 patients (17%; 90% CI = 6–40%), with 1 confirmed
partial response (PR) observed at each dose tier as depicted in the waterfall plot (Figure 1B). The partial
response of patient #4 is illustrated by CT scans and clinical photographs, obtained at baseline and
after two treatment cycles (Figure 1C). An index metastatic lesion in the right lung regressed to
form a thin-rimmed cavitary lesion, while the exophytic, ulcerative right neck mass grossly flattened
and epithelialized. The median PFS was 5.4 months (90% CI 1.9–11.4 months) and median OS was
8.9 months (90% CI 2.7–15.2 months) (Figure 1D).
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Figure 1. (A) Dose tier escalation rules and treatment schema. (B) Waterfall plot showing percent
change in tumor burden by patient and by ficlatuzumab dose. Twelve patients were treated—three
at 10 mg/kg (black bars) and nine at 20 mg/kg (gray bars) ficlatuzumab. (C) Representative lung
CT images (top) and clinical photographs (bottom) of patient #4 at baseline and after two treatment
cycles. (D) Kaplan–Meir curves (solid lines) with 95% CIs (dotted lines) showing PFS (left panel)
and OS (right panel) in months. Time to progression and death were measured from first day of
on-protocol treatment.

2.4. Prognostic Biomarkers

We examined baseline plasma levels of HGF and scMet as well as IL6, a cytokine known to be
regulated by HGF [30], for correlation with outcomes among the 12 evaluable study participants.
All patients had detectable levels of HGF and scMet in baseline plasma. Two of 12 subjects (17%) had
undetectable IL6 at baseline. None of the circulating markers were associated with tumor change.
Baseline levels of scMet were inversely associated with PFS (HR = 1.92; p = 0.048) with a similar,
but non-significant association observed for OS (HR = 1.63; p = 0.113); no association was observed
between baseline HGF or IL6 and PFS or OS (Table 3). At the end of cycle 1, HGF levels increased from a
median baseline of 0.9 ng/ml to a median of 17.9 ng/ml and continued to show a non-linear increase that
eventually plateaued or decreased over time (Figure S1). In three patients whose blood was available
at time of disease progression, HGF levels declined at time of progression. The increase in circulating
HGF is consistent with a pharmacodynamic effect of HGF mAb treatment, as demonstrated in previous
clinical studies [31–33]. scMet and IL6 levels did not change appreciably after treatment. No correlations
among baseline circulating markers were found. The soluble cMet protein has been shown to correlate
with tumor cMet protein expression in patients with non-small-cell lung cancer (NSCLC) [34]. Here,
soluble HGF was correlated with tumor cMet (r = 0.62, p = 0.056), HGF (r = 0.54, p = 0.106) and the
cMet–HGF complex (r = 0.65, p = 0.044) and soluble cMet was correlated with the cMet–HGF complex
(r = 0.58, p = 0.0677).

We next measured the cMet–HGF complex as a measure of cMet activation as well as total cMet and
total HGF using the VeraTag assay in FFPE tumor tissue. None of the tumor markers were associated
with change in tumor size. Neither total cMet nor HGF significantly correlated with the cMet–HGF
complex (Figure 2A). While there was a non-significant trend towards poor survival, high total tumor
HGF was not an indicator of OS (HR 1.47, p = 0.618) nor PFS (HR = 1.65; p = 0.508) (Table 3). Similarly,
high activated cMet was not associated with OS (HR = 1.84; p = 0.390) or PFS (HR = 2.11; p = 0.273).
We also measured total EGFR (H1T) and EGFR homodimers (H11D). High total EGFR, also trending
towards worse survival, was not associated with PFS or OS when considering the adjusted p value,
nor was the EGFR homodimer (Table 3). Furthermore, we observed a significant correlation between
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total cMet and total EGFR (p = 0.03) and the EGFR homodimer (p = 0.03), as well as between
activated cMet and total EGFR (Figure 2B), suggesting cross-talk between these two pathways in
cetuximab-resistant HNSCC.

Table 3. Hazards ratios and confidence intervals for proportional-hazards regression of PFS and OS for
baseline circulating and tumor markers. HR= hazards ratio; CI= confidence intervals. Prespecified
markers are indicated in bold. Adjusted p values are shown in parentheses for markers that were not
prespecified in the protocol.

Progression-Free Survival

Covariate HR 95% CI p value

Circulating Biomarkers

scMet 1.92 0.95–3.86 0.048

HGF 0.86 0.57–1.29 0.452

IL6 0.59 0.27–1.26 0.110 (0.337)

VeriStrat 1.54 0.41–5.81 0.517 (1.0)

Tumor Biomarkers

cMet 2.09 0.70–6.24 0.172

HGF 1.65 0.37–7.33 0.508

cMet–HGF 2.11 0.54–8.14 0.273

H1T 2.80 1.03–7.56 0.023 (0.187)

H11D 1.14 0.86–1.51 0.335 (1.0)

Overall Survival

Covariate HR 95% CI p value

Circulating Biomarkers

scMet 1.63 0.87–3.06 0.113

HGF 0.90 0.60–1.34 0.599

IL6 0.80 0.51–1.24 0.292 (0.790)

VeriStrat 0.89 0.25–3.06 0.852 (1.0)

Tumor Biomarkers

cMet 1.58 0.51–4.92 0.422

HGF 1.47 0.32–6.61 0.618

cMet–HGF 1.84 0.45–7.56 0.390

H1T 1.94 0.80–4.71 0.13 (0.790)

H11D 1.13 0.85–1.50 0.39 (0.790)

Taking the lead from the Phase II study of gefitinib with or without ficlatuzumab in NSCLC,
demonstrating benefit from ficlatuzumab in the VeriStrat poor subgroup, we also assessed serum
VeriStrat, a proteomic classifier, in our study population [35]. Eight RECIST-evaluable subjects were
classified as VeriStrat poor, while 4 were classified as VeriStrat good. There was no association between
VeriStrat status and PFS or OS.
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assays. (B) Correlations between cMet, EGFR (H1T) and EGFR homodimers (H11D) and the cMet–HGF
complex and EGFR (H1T). Spearman correlation coefficients and p values are shown.

2.5. Immune Correlatives

To investigate alterations in systemic immune composition during therapy, we employed
polychromatic spectral cytometry to simultaneously identify major lymphoid and myeloid cell subtypes
present within peripheral blood mononucleocytes (PBMCs). Of the 12 evaluable study subjects, 92%
(11/12) were evaluated at baseline, 83% (10/12) were evaluated at progression, and two patients
who exhibited a PR to therapy were examined during treatment response (17%; 2/12). To facilitate
population discovery, unbiased computational analysis was conducted using Rphenograph in Cytofkit,
a graph-based partitioning method which dissects nearest-neighbor data into phenotypically coherent
populations based on relatedness. FACS data from the two subjects with the greatest tumor volume
increase during progressive disease (“rapid progressors,” patients 3 and 9) and the two subjects with
the largest reduction in tumor volume during partial response (“responders,” patients 4 and 10) were
compiled at three time points: at baseline, at response (if responder), and at progression. These data
were used to generate t-SNE plots and associated heatmap for data reduction and illustration
(Figure 3A,B). At baseline, rapid progressors were characterized by high levels of classical monocytes
and an undefined subpopulation of myeloid cells (myeloid #2) (Figure 3C,D). Upon progression,
PBMCs from rapid progressors consisted predominantly of two myeloid subsets, both the previously
observed myeloid #2 cells and the emergence of a unique myeloid #1 population. Both myeloid
populations were characterized by high CD11b and CD11c expression and low expression of MHC class
II (Figure 3B). Like subjects with progressive disease, responders were enriched in the myeloid #2 subset
at baseline, yet these subjects also possessed an elevated proportion of peripheral B cells and a minor
population of effector CD8+ T cells (Figure 3C,E). Notably, during response to treatment, responders
demonstrated robust expansion of effector CD8+ T cells (Figure 3C,E). When subpopulations were
analyzed via conventional gating strategies, this represented an 83.3% increase in CD3+CD8+ T cells
during treatment response. Interestingly, upon disease progression in previously responding patients,
subjects displayed an increased proportion of the unique myeloid #1 subset previously observed during
disease progression in rapid progressors, as well as the myeloid #2 population conserved throughout
all three time points (Figure 3C,E). Analysis of the change in immune cell proportions from baseline
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to progression identified a significant positive correlation between the increase in percentage of total
CD3+ T cells and CD3+CD8+ T cells with increased PFS and OS (Figure 3F).
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immune profiles in PD and PR subjects. (A) PBMCs from responders (n = 2) or rapid progressors
(n = 2) were assessed by spectral cytometry (21 color) and analyzed using Rphenograph in Cytofkit for
unbiased population discovery. Combined analysis of responding and progressing patient subsets at
baseline, at response, and at progression illustrated as a t-SNE plot. (B) Heatmap depicting antigen
expression of selected phenotypic markers corresponding to cell subsets in Rphenograph t-SNE (A).
(C) Heatmap illustrating the proportion of cell subsets expressed within responders or progressors
(n = 2 per group per timepoint) during baseline, response (after two treatment cycles), and progression.
t-SNE density plots illustrating the increased proportion of cell subsets corresponding to Rphenograph
for (D) rapid progressors and (E) responders. (F) Spearman correlations among all evaluable subjects
between the change in percentage of total CD3+ T cells or CD3+CD8+ T cells with progression-free
survival or overall survival, as indicated.

3. Discussion

Despite aberrant EGFR signaling in the majority of HNSCC cases, the modest clinical activity of
cetuximab has been disappointing and either primary or acquired resistance is inevitable. Currently,
there is no standard therapy for patients with recurrent/metastatic HNSCC after failure of platinum,
cetuximab, and anti-PD1 mAb, and all such patients will succumb with a median survival of less than
6 months. The lack of therapeutic options represents a major unmet clinical need. Co-targeting EGFR
and a parallel or compensatory oncogenic pathway may overcome cetuximab resistance. Dysregulation
of the HGF/cMet pathway is one of the major mechanisms of resistance to EGFR-targeted therapy. In this
Phase 1 study, we investigated the combination of cetuximab with the anti-HGF mAb, ficlatuzumab,
in patients with cetuximab-resistant recurrent/metastatic HNSCC. The combination proved to be
tolerable, with no DLTs observed at any dose level, thus the escalation–de-escalation rules were not
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triggered and the RP2D was identified efficiently. The RP2D is cetuximab 500 mg/m2 and ficlatuzumab
20 mg/kg every 2 weeks, which represents the full therapeutic dose of cetuximab and the maximal
tolerated dose of ficlatuzumab monotherapy. Preliminary oncologic efficacy in this heavily pre-treated
population was encouraging, with a confirmed response rate of 17% (90% CI = 6–40%) and a median
PFS of 5.4 months (90% CI = 1.9–11.4 months), warranting formal Phase II study.

Ficlatuzumab has been combined safely with full-dose anti-EGFR TKIs and evaluated in patients
with advanced NSCLC. A Phase 1b trial of ficlatuzumab plus the EGFR TKI gefitinib in Asian patients
with advanced NSCLC demonstrated acceptable tolerability with an objective response rate of 33% [33].
However, a randomized Phase II study comparing gefitinib with or without ficlatuzumab failed to
confirm clinical benefit from the combination [35]. In the subgroup of patients classified as VeriStrat
poor and EGFR mutant, the addition of ficlatuzumab to gefitinib improved both PFS (7.4 months vs.
2.3 months; p = 0.02) and OS (23.9 months vs. 5.8 months; p = 0.04). However, further prospective study
has been precluded by the rarity of this subpopulation [35]. The Phase I combination of ficlatuzumab
with full-dose erlotinib also identified 20 mg/kg ficlatuzumab as the RP2D, with preliminary anti-tumor
activity and manageable adverse events [36]. Rilotumumab, an IgG2 anti-HGF mAb, has also been
evaluated in combination with the EGFR TKI erlotinib, demonstrating clinical efficacy in certain
NSCLC subpopulations [31]. However, further development of rilotumumab has been halted due to
THE lack of efficacy in gastric cancer trials. Small-molecule cMet TKIs are currently being evaluated in
combination with EGFR TKIs in patients with EGFR TKI-resistant and cMet-amplified NSCLC, based
on promising antitumor activity found in preclinical models [37].

In order to inform Phase II development of this combination in recurrent/metastatic HNSCC,
we evaluated mechanistically relevant, tumor-intrinsic biomarkers that may point towards a subgroup
that uniquely benefits. We hypothesized that patients with baseline HGF/cMet and EGFR pathway
activation might disproportionately benefit from the combination of ficlatuzumab and cetuximab.
However, here, as in other advanced cancer settings, plasma scMet was a marker of poor prognosis,
while tumor cMet, HGF and cMet–HGF trended in the same direction, suggesting that these measures
may be inadequate to predict benefit from dual pathway inhibition, or that this Phase I dose-finding
study was underpowered to detect the impact of these prognostic markers. cMet is synthesized
as a single-chain intracellular precursor and subsequently undergoes proteolytic processing during
intracellular trafficking, leading to an α/β heterodimer at cell surface. The β chain in the extracellular
domain can be proteolytically cleaved and released as scMet. Consistent with our findings, Gao et al.
recently reported a significant correlation between scMet levels and NSCLC tumor cMet protein
expression, and that patients with high scMet levels had poor OS [34]. In our study, tumor measures
of HGF/cMet pathway activation were not associated with better survival outcomes. The lack of
a significant correlation between cMet or HGF and the cMet–HGF complex suggests that there are
multiple mechanisms involved in cMet activation, which may explain why patients with increased
pathway activation did not uniquely respond to ficlatuzumab. While the VeriStrat proteomic classifier
has mainly been used in the setting of NSCLC, a recent study showed prognostic value of VeriStrat
for PFS and OS in afatinib (EGFR TKI)-treated recurrent/metastatic HNSCC patients, and OS in
methotrexate-treated HNSCC patients. The VeriStrat proteomic classifier was not associated with either
PFS or OS in our study [38]. Our biomarker results are consistent with circulating HGF as a robust
pharmacodynamic marker of HGF mAb treatment [31–33,36,39], as we observed the expected increase
in HGF after ficlatuzumab administration. The increase in HGF is thought to be due to stabilization of
HGF upon forming a complex with ficlatuzumab.

The HGF/cMet signaling axis has pleiotropic effects on innate and adaptive immunity that
are likely to be highly context dependent, and as such, we collected and cryopreserved PBMCs
for exploratory immunophenotyping. Although the current study does not examine the specific
effect of ficlatuzumab upon antitumor immunity, the immunophenotyping performed provides a
potential immune profile both for patients who may be predisposed to and/or capable of sustaining
a response to combined ficlatuzumab-cetuximab treatment. This beneficial immunologic state was
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characterized by the opposing presence of massive CD8+ T cell expansion seen in responders
compared to the predominance of distinct myeloid cell subsets with low MHC class II expression,
indicative of immunosuppressive activity, found at baseline in rapid progressors as well as upon
ultimate progression in responders. A subset of cMet+ CD8+ T cells have been identified in murine
tumor models and melanoma patients, where cMet expression is associated with increased cytolytic
capacity and effector functions including IFNγ/TNFα and granzyme B/perforin production [40].
Administration of exogenous HGF in vitro, or in vivo exposure to HGF-producing tumors in mouse
models inhibited effector functions of cMet+ CD8+ T cells [40]. Speculatively, cMet expression
on CD8+ T cells may be associated with a specific developmental or functional state, such as
antigen-experienced memory populations, and that subsequent HGF signaling may serve to inhibit
ongoing inflammatory responses as a compensatory mechanism to subvert deleterious immunity
during immune resolution [41]. Herein, ficlatuzumab may serve to potentiate cellular immunity by
removing HGF-mediated immunosuppression in recurrent/metastatic HNSCC, allowing for expansion
and potential activation of the T cell compartment. Concomitantly, HGF/cMet signaling conventionally
enhances cellular motility and proliferation during tissue injury and/or organogenesis, and likely
augments the wound healing functionality of myeloid cells. In the presence of malignant disease, such
functionality serves to enhance angiogenesis, metastasis, and tumor cell survival. Tumor-associated
macrophages and myeloid-derived suppressor cells are negatively associated with disease outcomes
across numerous cancers [42,43]. In the current study, elevated myeloid cell composition prior
to treatment may preclude potential beneficial effects of ficlatuzumab as inhibition of cMet–HGF
may only serve to remove pro-tumorigenic stimuli but be insufficient to repolarize established
immunosuppressive cells towards an inflammatory, tumoricidal phenotype.

4. Materials and Methods

4.1. Human Subjects Considerations

The protocol was approved by the University of Pittsburgh Institutional Review Board
(PRO14100436) and registered with ClinicalTrials.gov (NCT02277197). All subjects provided written,
informed consent. Primary inclusion criteria included recurrent/metastatic HNSCC from any primary
site (except for Epstein–Barr virus-positive nasopharynx); known HPV status in the case of an
oropharynx primary site as determined by p16 immunohistochemistry; measurable disease in
accordance with the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 [44]; age ≥ 18;
Eastern Cooperative Oncology Group (ECOG) performance status 0–1; adequate end organ function and
electrolytes; albumin ≥ 3 mg/dL; willingness to undergo baseline research biopsy. Clinical cetuximab
resistance was required during cohort expansion, and was defined as either disease recurrence within
6 months of completing definitive cetuximab-radiation therapy or disease progression during or within
6 months of cetuximab in the recurrent/metastatic setting [45]. Cetuximab was not required to be the
most recent systemic therapy received. Primary exclusion criteria included prior treatment with an
HGF/cMet inhibitor; peripheral edema ≥ Grade 2; interstitial lung disease; any medical comorbidity
that would interfere with the subject’s safety or compliance.

4.2. Study Design and Statistical Considerations

The primary objective of this Phase I study was to find the RP2D. The dose-finding study followed
an adaptive, escalation–de-escalation, Narayana k-in-a-row design, with k set to 2 to target a 33%
dose-limiting toxicity (DLT) rate [46]. This method was selected based on the superiority of its operating
characteristics compared to other adaptive or rule-based designs (such as 3 + 3). Dose tiers are specified
in Figure 1A. RP2D would be declared as the dose of ficlatuzumab that is close to but does not exceed a
33% DLT rate when administered with a standard, fixed dose of cetuximab. In the dose-finding phase,
a total of either 8 or 14 patients would be treated. If no DLTs were observed among the first 8 patients
(2 + 6 on Tiers 1 and 2), the upper 90% confidence bound for the estimated DLT rate at the highest dose
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tier would be 0.32 and less than the targeted toxicity rate of 0.33, thus Tier 2 would be declared the
RP2D. If a DLT was observed at any time among the first 8 patients, then the escalation–de-escalation
rules would be triggered and 14 DLT-evaluable subjects accrued. An intermediate tier (Tier 1.5) would
be accrued only in the event that a DLT was observed and escalation–de-escalation required. After the
enrollment of 14 patients to Tiers 1, 1.5, and 2, the RP2D would be estimated from DLTs across all dose
levels by isotonic regression.

The observation period for identifying a DLT was the first cycle (4 weeks). A DLT was defined
as any ≥ Grade 3 non-hematologic toxicity (except rash, infusion reaction, nausea, vomiting or
diarrhea lasting < 48 hours, isolated AST or ALT elevation, or asymptomatic electrolyte abnormality);
Grade 3 neutropenia with fever; Grade 3 thrombocytopenia with bleeding; Grade 4 neutropenia or
thrombocytopenia; AST or ALT elevation ≥ 3-fold the upper limit of normal (ULN) with concurrent
elevation of bilirubin≥ 2-fold ULN; ficlatuzumab-related toxicity requiring a dose reduction or resulting
in ≥ 2 missed doses.

According to the adaptive design, the total sample size required to establish the RP2D would
range from 8 to 14. In order to conduct preliminary biomarker analyses, a minimum sample size of
12 biomarker and RECIST-evaluable patients was set. Preliminary oncologic efficacy was described as
overall response rate (ORR) in accordance with RECIST v 1.1, progression-free survival (PFS), and OS
in the total study population. PFS and OS were analyzed by the methods of Kaplan–Meier with 90%
confidence intervals.

4.3. Treatment Plan

The protocol schema is presented in Figure 1A. One treatment cycle of ficlatuzumab and cetuximab
was defined as four weeks. Subjects were dosed according to their assigned dose tier as specified.
Cetuximab was dosed at 500 mg/m2 IV every 2 weeks, i.e., on Days 1 and 15 of a 28 day cycle. Subjects
were assessed for response every 2 cycles, and continued treatment until disease progression. There was
no intrapatient dose escalation. However, the dose of ficlatuzumab and/or cetuximab could be reduced
for qualifying toxicities.

The dose and schedule for cetuximab was based on the established treatment paradigm in colorectal
cancer, where clinical trials showed that biweekly dosing at 400–700 mg/m2 was well tolerated and that
trough cetuximab levels for the 500 mg/m2 every 2 weeks, 600 mg/m2 every 2 weeks, and 250 mg/m2

weekly regimens were comparable [47,48]. In recurrent/metastatic HNSCC, a randomized Phase II
study found that the biweekly dose of 500 mg/m2 resulted in similar efficacy to weekly dosing at
250 mg/m2, with no therapeutic advantage for 750 mg/m2 [49]. Due to convenience and comparable
efficacy, clinical trials in HNSCC now incorporate biweekly dosing of cetuximab monotherapy at
500 mg/m2 (i.e., TPExtreme, NCT02268695) [50].

4.4. Biomarker Signaling Correlatives and Statistical Considerations

Blood samples were processed for isolation of sera, plasma and peripheral blood mononucleocytes
(PBMCs). Individual enzyme-linked immunosorbent assays (ELISAs) for HGF (Quantikine ELISA
kit, R&D Systems, Minneapolis, MN, USA, IL6 (Quantikine ELISA kit, R&D Systems) and scMet
(ThermoScientific, Waltham, MA, USA) were used to quantify each analyte in duplicate using baseline
plasma. All but two subjects had at least one additional blood sample collected post-treatment. Mean
values were used for all analyses. VeriStrat testing was carried out on baseline serum samples at
Biodesix, Inc. (Boulder, CO, USA), blinded to all clinical, treatment and outcome data. VeriStrat
measures multiple circulating analytes by MALDI ToF mass spectrometry to assign VeriStrat Good
or VeriStrat Poor classifications to blood samples which may predict clinical outcome of patients,
independent of treatment and other prognostic factors [51].

To overcome the limitations of traditional immunohistochemistry (IHC) to evaluate activated
cMet, we utilized the VeraTag® proximity binding, dual antibody assay which measures the cMet–HGF
receptor–ligand complex. VeraTag assays were also used to measure total cMet, HGF, EGFR and EGFR
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homodimers. All VeraTag assays were performed by Monogram Biosciences (South San Francisco,
CA, USA) on formalin-fixed, paraffin-embedded (FFPE) tumor biopsies collected prior to study entry.
Three blocks had insufficient tumor area for the assay. In one of these three cases, an archived biopsy
was substituted prior to previous cetuximab exposure and was less likely to represent the cetuximab
resistant state. FFPE blocks were sectioned at a thickness of 5 micron and placed on positively charged
glass slides. Released fluorescent VeraTags were detected and quantified by capillary electrophoresis
(CE). Following the VeraTag assay, the slides were hematoxylin and eosin (H&E) stained, tumor
area identified and circled, and the fluorescent signal from the released VeraTag was normalized to
sample buffer volume and tumor area to give units of relative fluorescence per square millimeter of
tumor (RF/mm2). A panel of cell line controls was assayed together with the samples to control for
batch-to-batch variability and allow for the comparison of samples over time. The following antibodies
were used: cMet: anti-cMet rabbit mAb SP44 (Spring Bioscience, Pleasanton, CA, USA) and goat
F(ab’)2 anti-rabbit IgG (Southern Biotech, Birmingham, AL, USA) labeled with a fluorescent VeraTag
reporter via a disulfide bond; HGF: anti-HGF mouse mAb SBF5 (ThermoScientific), goat anti-HGF
polyclonal IgG (R&D Systems) labeled with a fluorescent VeraTag reporter, and goat anti-mouse IgG
(Southern Biotech) labeled with biotin; cMet–HGF complex: anti-cMET rabbit mAb SP44 (Spring
Bioscience), goat anti-HGF polyclonal IgG (R&D Systems) labeled with a fluorescent VeraTag reporter,
and goat F(ab’)2 anti-rabbit IgG (Southern Biotech) labeled with biotin; EGFR homodimer (H11D):
equal concentrations of anti-HER1 rabbit mAb D38B1 (Cell Signaling Technology, Danvers, MA, USA)
labeled with either a fluorescent VeraTag reporter or biotin. EGFR total (H1T), anti-EGFR rabbit mAb
D38B1 (Cell Signaling Technology) and goat F(ab’)2 anti-mouse IgG (Southern Biotech) labeled with a
fluorescent VeraTag reporter via a disulfide bond [52,53]. For both blood and tumor markers, levels
below the limit of detection (LOD) were set to one-half the LOD for statistical analysis.

Five mechanistic biomarkers, including plasma (scMet, HGF) and tumor (cMet, HGF, and
cMet–HGF complex) expression of an activated HGF/cMet pathway were pre-specified for specialized
alpha spending and were considered significant if association with PFS or OS was≤ 0.05 (unadjusted) in
proportional hazards regression models. Additional exploratory biomarkers, including serum VeriStrat,
circulating IL6, tumor EGFR expression and tumor EGFR homodimer expression were also evaluated
as predictors of PFS or OS. Within-patient changes in tumor diameter were also tested for association
of baseline tumor and blood markers by linear regression. The exploratory unplanned biomarker test p
values were adjusted for false discovery by the method of Benjamini and Hochberg [54].

4.5. Immune Correlatives

Immunophenotyping was performed on cryopreserved PBMCs. Data collection was conducted
on all samples at the same time to eliminate batch effects. All reagents were purchased from BioLegend
unless specified. In total, 1–5 × 106 cells per sample were stained in Cell-Staining Buffer using
combinations of mAbs followed by labeling with amine-reactive viability dye (LiveDead, Molecular
Probes, Eugene, OR). To determine leukocyte composition, cells were labeled extracellularly with
mAbs specific for: CD3 (UCHT1; BD Biosciences, Franklin Lakes, NJ, USA), CD4 (RPA-T4), CD8a
(RPA-T8), CD45RA (HI100), CD45RO (UCHL1), CD197 (G043H7), CD279 (eBioJ105; eBioscience,
San Diego, CA, USA), HLA-DR (LN3; ThermoFisher, Waltham, MA, USA), CD11b (ICRF44), CD14
(61D3; ThermoFisher), CD15 (W6D3), CD16 (3G8), CD123 (6H6; BD), CD11c (B-ly6; BD), CD56 (5.1H11),
CD19 (SJ25C1), CD25 (BC96), and CD127 (A019D5). Cells were then fixed, permeabilized, and labeled
for intracellular expression of Ki-67 (SolA15; ThermoFisher) and FoxP3 (PCH101; ThermoFisher)
using the True-Nuclear Transcription Factor Buffer Set (BioLegend, San Diego, CA, USA) per the
manufacturer’s instructions. Data were collected on a four-laser Cytek Aurora spectral cytometer.
FlowJo (BD Biosciences) software was used for conventionally gated data analysis. Lineage for DC
identification consisted of CD3+, CD19+, and CD56+ cells. For computational analysis, samples were
analyzed using Cytofkit package for R studio as previously described [55]. Briefly, viable, single cells
were manually gated using FlowJo. Preprocessing was performed to generate expression matrix for
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each sample in a Flow Cytometry Standard (FCS) file. Parameters of interest were selected and FSC
files were exported and uploaded into Cytofkit package. FCS files were transformed using automatic
logicle transformation (autoLgcl) and merged in to one matrix using ceil. In total, 25,000 cells per
sample were clustered using Rphenograph and visualized using t-Distributed Stochastic Neighbor
Embedding (t-SNE). Samples were grouped per response to treatment (progressors vs. responders)
and time point during therapy (baseline, response, progression), generating density plots within the
collective t-SNE. Heatmaps were generated from Rphenograph using the expression heat map option
depicting Rphenograph clusters and marker expression per cluster and per group.

5. Conclusions

In summary, the ficlatuzumab-cetuximab combination had an acceptable safety profile and
showed promising antitumor activity in a refractory HNSCC patient population. Tumor-intrinsic
biomarkers of HGF/cMet and EGFR pathway activation were not associated with survival outcomes in
this therapeutic setting which was likely limited by the small sample size. Furthermore, the increase
in peripheral CD8+ T cells associated with treatment response is the first report of potential immune
modulatory activity of this combined regimen, warranting additional study. Our findings are limited
by the small sample size of this Phase I study but support the ongoing randomized, Phase II study of
ficlatuzumab with or without cetuximab in patients with cetuximab-resistant, recurrent or metastatic
HSNCC (NCT03422536).

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/6/1537/s1,
Figure S1: Mean plasma HGF levels (ng/mL) per patient and according to treatment cycle as measured by ELISA.
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