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Abstract 

Evolution-based strategies to elucidate genotype-phenotype relationships in traits relevant 

to human health 

 

Amanda Kowalczyk, PhD 

 

University of Pittsburgh, 2021 

 

 

 

 

Understanding the link between genotype and phenotype is a key question in biological 

research.  In other words, how do changes in DNA sequence give rise to the enormous diversity 

of life on Earth?  In this work, we address that question by focusing on the genomics of convergent 

phenotypes, or phenotypes that have evolved independently in unrelated species.  These natural 

biological replicates of phenotype evolution allow us to identify genomic regions, either regulatory 

or protein coding, that have experienced convergent evolution in concordance with convergent 

evolution of phenotypes, thus linking genomic regions to phenotypes. 

In this work, we calculate evolutionary rates throughout the mammalian phylogeny for 

numerous genomic sequences to find concordance between species phenotype and evolutionary 

rate of sequences to link genomic regions to phenotypes.  Chapter one describes three methods 

associated with quantifying the connection between genomic region evolution and phenotype 

evolution.  First, RERconverge connects genomic regions to phenotypes in a linear regression-

based framework.  Second, permulations are a statistical extension to RERconverge that allow for 

rigorous calculation of confidence in associations from RERconverge.  Third, proper 

implementation of branch-site models for convergent positive selection allows for identification 

of genes potentially driving convergent evolution. 

Chapter two describes implementation of methods from chapter one to longevity 

phenotypes in 61 mammal species.  We found increased evolutionary constraint in cancer control 
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genes in large, long-lived species, thus likely conferring additional protection from cancer.  

Species exceptionally long-lived given their size showed increased evolutionary constraint on 

DNA repair pathways, indicating that efficient DNA repair is important to evolution of extreme 

lifespan independent of body size.  This work provided insight into pan-mammalian genomic 

mechanisms underlying lifespan. 

Chapter three describes further implementation of chapter one methods to the hairlessness 

phenotype in 61 mammal species.  Although all mammals have some hair at some developmental 

time point, several mammals, such as cetaceans, naked mole-rats, armadillos, and humans, have 

relatively little hair.  Many genomic elements we identified were known to be hair-related, and 

many more are valuable candidates for further testing into hair-related functions.  This work for 

the first time provided insights to the natural evolution of mammalian hairlessness.  
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1.0 Introduction 

Planet Earth is an incredibly diverse ecosystem, with habitats ranging from rainforests to 

deserts to tundra to grasslands to oceans and everything in between.  In part because of diversity 

of habitats, life on Earth also exhibits a wide array of characteristics, and species have adapted to 

colonize niches worldwide.  While diversity of life may not be particularly surprising given that 

species are uniquely adapted to survive and thrive in their respective environments and under their 

respective set of selective pressures, what is perhaps more surprising is when we observe a lack of 

diversity, or when unrelated species independently acquire similar characteristics.  The uncommon 

instance of unrelated species evolving similar phenotypes is termed convergent evolution.  Classic 

examples of convergent evolution include birds and bats independently developing the ability to 

fly, species that inhabit caves and subterranean environments losing the ability to see, and three 

groups of marine mammals (pinnipeds i.e. seals and walruses, cetaceans i.e. whales and dolphins, 

and sirenians i.e. manatees and dugongs) acquiring characteristics such as smooth skin, blubber, 

and increased lung capacity to allow them to thrive in the ocean. 

While relatively rare, convergent evolution is a highly useful tool to study evolution in 

general because it provides natural biological replicates of the evolution of often complex 

phenotypes.  If species show convergent evolution of a phenotype, they may also show convergent 

evolution in genes and regulatory regions associated with the phenotype.  By seeking concordant 

patterns of phenotypic and genetic convergence, we can thereby link genetic elements to 

phenotypes to both assign functions to those elements and to better understand how phenotypes 

evolve. 
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Convergent evolution in genomic sequence can be measured at a wide range of scales, from 

convergence at individual nucleotides to convergence of whole networks of proteins with similar 

functions.  For very distantly related species that evolve convergent phenotypes, identical changes 

in specific nucleotide or amino acid positions to give rise to the same phenotype are rare because 

those sequences experienced a long period of divergence prior to potential convergent changes.  In 

distantly related species, the relative position of sequence on chromosomes, the three-dimensional 

configuration of the DNA, and the entire network of genes and regulatory machinery evolved 

distinctly, and thus it is unlikely that changing a single nucleotide or amino acid in different species 

would give rise to the same phenotypic change.  Instead, an alternative approach to studying 

convergent evolution in genomic sequence is to consider how much change has occurred in 

sequence during the development of a convergent phenotype.  Measured as the number of 

substitutions that occurred in sequence between a species and its ancestor, the amount of genomic 

change is also called the evolutionary rate, and it serves as a proxy for the level of selective pressure 

on the sequence.  When a particular sequence demonstrates convergent selective pressure shifts in 

tandem with convergent phenotypic evolution, that suggests that the sequence may be related to 

evolution of the phenotype. 

Even for phenotypes that do not demonstrate convergent evolution of individual sequence 

elements, such as genes or regulatory elements, species that exhibit the phenotype may experience 

genomic convergence at the level of whole networks of elements that work together to give rise to 

phenotypes.  These networks may take the form of gene pathways, networks of regulatory 

elements, or even complex sequence interactions that remain unknown to the scientific 

community.  By investigating high-level convergence of functionally related sequence, we can 

better understand how convergent phenotypes arise at a broad scale in addition to a fine-grained 
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view of individual sequences.  Analysis of multiple possible scales of convergence, as well as 

incorporating information about both regulatory and gene sequence convergence, allows for a 

holistic view of how convergent traits evolve. 

In this dissertation, I first describe methods built, improved, and tested to link genetic 

elements to phenotypes in the context of convergent evolution.  I then demonstrate the use of such 

methods to study evolution of two health-related phenotypes across the mammalian phylogeny. 

In chapter 1, I describe three complementary methods to study convergent evolution in a 

phylogenetic context.  First, RERconverge is a method to link convergently evolving genomic 

elements to phenotypes, and it serves as the flagship method for analyses in subsequent chapters.  

Second, an accessory method termed permulations corrects statistical anomalies often observed 

when performing studies in a phylogenetic context, including when using RERconverge.  Finally, 

I include a note emphasizing and demonstrating the importance of correctly using branch-site 

models for positive selection to test for convergent positive selection. 

In chapter 2, I use my methods to study the evolution of extreme longevity in mammals.  

My work is the first to use RERconverge to analyze a continuous phenotype, and it also represents 

first use of permulations in phylogenetic analyses.  I used a unique metric to study longevity that 

incorporated body size and maximum lifespan into two principal components, thereby resolving 

potential confounding between the two variables.  Through my analyses, I found that cancer 

control mechanisms, such as cell cycle control, are essential to evolution of large body size and 

long life.  On the other hand, DNA repair mechanisms appeared more important for long life 

independent of body size.  These results largely agree with results from previous studies in 

individual species, and my work for the first time indicates that longevity mechanisms are shared 

throughout all mammals. 
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In chapter 3, I further apply my methods to the hairlessness phenotypes in mammals.  

Although all mammals have at least some hair, several mammals, such as whales, naked mole-

rats, elephants, and rhinos, have notably less hair.  This work allowed me to extend my permulation 

method to use in binary phenotypes, and it served as the first instance of using RERconverge on 

phenotype change not necessarily driven by the same selective pressure.  I was able to identify a 

suite of genes, noncoding regions, and microRNAs associated with convergent hair loss.  

Interestingly, I observed a striking difference in patterns of convergence between genes and their 

associated noncoding regions, supporting the hypothesis that complementary evolution of genes 

and regulatory elements drives phenotypic evolution.  Uncharacterized noncoding regions and 

microRNAs are valuable candidates for further testing in hair-related functions. 

My broader impacts section describes outreach work I have conducted while completing 

my thesis research.  I target local schools in a relatively impoverished area for various programs 

to show them that a career in science is possible for them.  Programs include field trips to visit 

research laboratories, guest lectures to classrooms, mentorship through job shadows and guided 

research projects, and a yearly science fair.  The programs have grown over the years and now 

encompass numerous schools under the header of the Greensburg Area Science Program (GASP) 

that I founded. 
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2.0 Computational methods to study phenotype evolution in a phylogenetic context 

Analyzing numerous genome alignments in a statistically rigorous way requires innovative 

and thoughtful computational tools.  The focus of the work in this chapter is to create tools to 

connect genetic elements to phenotypes in a phylogenetic context using genome alignment data.  

In its three sections, this chapter describes RERconverge, a tool to link genetic elements to 

phenotypes, permulations, a statistical method to accurately quantify confidence in associations 

from RERconverge, and proper use of branch-site models for positive selection to detect 

convergent positive selection.  Used together, these tools provide a full view of connections 

between convergent evolution of genetic elements and phenotypes. 

2.1 RERconverge: a computational method to connect convergently evolving genomic 

elements to convergent phenotypes 

RERconverge is a rigorous statistical method to link convergently evolving genetic 

elements and phenotypes in a phylogenetic context.  Designed to be user-friendly even for 

researchers not familiar with computational work, RERconverge allows for either binary or 

continuous trait input and includes all functions and instructions to proceed from alignments of 

sequences of interest to final statistics and visualizations. 

RERconverge was constructed by a team of Clark and Chikina lab members (myself, Wynn 

Meyer, Raghavendran Partha, and Weiguang Mao).  I was the key contributor responsible for 
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implementing, benchmarking, and testing methods for continuous phenotypes, implementing and 

testing pathway enrichment functions, and creating vignette walkthroughs for continuous trait and 

enrichment analyses.  I additionally served as the primary point of contact for users after 

RERconverge was published.  The paper describing RERconverge was originally published in 

Bioinformatics at (Amanda Kowalczyk et al., 2019). 

2.1.1 Introduction 

A major motivation in evolutionary biology is to determine which genetic changes underlie 

phenotypic adaptations. Convergent evolution, in which the same phenotype arises independently 

in distinct evolutionary lineages, provides natural replicates of phenotypic adaptation that aid 

researchers in linking phenotypes to their underlying genetic changes. Selection repeatedly targets 

the same genes in several known cases of phenotypic convergence, including Prestin in 

echolocation in bats and marine mammals (Y. Li, Liu, Shi, & Zhang, 2010), Mc1r in reduced 

pigmentation in multiple vertebrate species (Kronforst et al., 2012) and Nav 1.4 in toxin resistance 

in snakes (Feldman, Brodie, Brodie, & Pfrender, 2012). This pattern leads to the prediction that 

genes responding selectively to a convergent environmental or phenotypic transition may show 

convergent shifts in evolutionary rates (i.e. number of nucleotide or amino acid substitutions per 

unit time), due to reduced or increased selective constraints on those genes. For example, both 

genes and non-coding elements involved in eye function lose selective constraint in subterranean 

mammals, and the corresponding rate shift signal can be used genome-wide to identify candidate 

regions with eye-specific function (Partha et al., 2017a). Thus, evolutionary rates provide a rich 
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source of genome-wide molecular data that, in combination with convergent phenotypes, can be 

used to infer targets of convergent selection. 

Several research groups have developed methods to identify patterns of convergent 

evolutionary rate shifts associated with convergent changes in traits or environment, including 

Coevol (Lartillot & Poujol, 2011), Forward Genomics (Hiller et al., 2012b; Prudent, Parra, 

Schwede, Roscito, & Hiller, 2016) and PhyloAcc (Hu, Sackton, Edwards, & Liu, 2019). However, 

existing methods to identify these patterns still have several areas for improvement, including 

support for both binary and continuous traits, compute times that enable genome-wide analyses, 

robust statistical treatment (Partha, Kowalczyk, Clark, & Chikina, 2019) and ease of visualization 

and downstream analyses. To address these issues, here we present RERconverge, a software 

package that implements tests of association between evolutionary rates of genetic loci and 

convergent phenotypic traits, both binary and continuous (pipeline illustrated in Figure 1). 

RERconverge incorporates and corrects for known phylogenetic relationships among included 

species, performs rapid analyses of genome-scale data and implements appropriate statistical 

techniques to reduce the effect of outliers and correct for multiple testing. This easy-to-implement 

software represents a major advance in comparative genomic methods because it enables biologists 

with extensive organismal knowledge to apply computational techniques to quickly link molecular 

data with phenotypes. 
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Figure 1 RERconverge Pipeline.  Schematic of the RERconverge pipeline focusing on the example discussed in 

the case study. Light blue text indicates user-provided input.  Far right figure shows RER for olfactory receptor 

OR9Q2, a top hit for marine-specfic acceleration.  For additional details of the methods (boxes in arrows) see 

(Partha et al., 2019). 

2.1.2 Description and Implementation 

2.1.2.1 Basic usage of RERconverge 

The RERconverge package runs within an installation of the R software (Team, 2018) on 

any platform (Linux, Windows and Mac OS). The user provides the following data as input: 

• A set of phylogenetic trees, all with the same topology, with branch lengths for each 

tree calculated from alignments of that ‘gene’ sequence (these can also represent 

non-coding sequences such as enhancers) using software such as PAML (Yang, 

2007). 

• Values for a trait of interest for extant species/tips of the tree. RERconverge can 

infer values for internal branches of the tree, or the user can provide these values 
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via a single tree or by using RERconverge interactive branch selection to select 

foreground branches. 

Detailed instructions for RERconverge are available within the Supplementary Material to 

(A. Kowalczyk et al., 2019) or at https://github.com/nclark-lab/RERconverge/wiki/Vignettes. 

2.1.2.2 Rapid estimation and visualization of relative evolutionary rates (RER) 

RERconverge offers efficient computation of gene-specific rates of evolution on branches 

of phylogenetic trees in genome-scale datasets. These gene-specific rates of evolution, termed 

relative evolutionary rates (RER), reflect the amount of sequence divergence on a particular branch 

after correcting for non-specific factors affecting divergence on the branch such as time since 

speciation and mutation rate. Additionally, using a combination of statistical approaches including 

data transformation and weighted linear regression, RERconverge provides estimates of RER that 

are robust to several factors introducing outliers in the dataset, such as the presence of distantly 

related species in the phylogeny (Partha et al., 2019). To accelerate the computations underlying 

RER calculations, key functions are written in C++ and integrated with the R code through the 

Rcpp package (Debian & François, 2011). 

2.1.2.3 Flexible specification of binary and continuous trait evolution 

For binary traits, RERconverge provides multiple methods for users to specify which 

branches are in the ‘foreground’, meaning those that display the convergent trait of interest. Users 

can directly supply foreground branch assignments by providing a phylogenetic tree with 

appropriate branch lengths or by interactively selecting branches on a phylogeny. Alternatively, 

users can specify which extant species are foreground and allow the software to infer which 

https://github.com/nclark-lab/RERconverge/wiki/Vignettes
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internal branches to consider foreground under a variety of scenarios. These include whether to 

consider only branches at a transition to a convergent phenotype as foreground or to also consider 

subsequent branches that preserve the phenotype as foreground, whether the foreground trait can 

be lost or only gained, and whether each foreground branch should be weighted equally. 

In addition to supporting analysis of binary traits, RERconverge can perform correlation 

analysis between evolutionary rates and continuous traits. Trait evolution is modeled on a trait tree 

constructed from user-provided phenotype values for extant species provided by the user and 

ancestral nodes inferred through a phylogenetic model. By default, trait tree branch lengths 

represent change in the trait between a species and its ancestor, which removes phylogenetic 

dependence between branches. For completeness, other options allow branch lengths to be 

calculated as the average or terminal trait value along a branch to represent the state of a trait rather 

than its change. 

2.1.2.4 Genome-wide association between RER and traits, with correct for multiple testing 

RERconverge rapidly computes the association between gene-specific RER and the user-

specified traits for large sets of genes. The program estimates the correlation between gene tree 

branch lengths and the values for traits along those branches using (by default) Kendall’s Tau for 

binary traits and a Pearson linear correlation for continuous traits. Full gene lists are returned with 

correlation statistic values, the number of data points used for the correlations and adjusted P-

values (FDR) derived using the Benjamini–Hochberg correction (Benjamini & Hochberg, 1995). 
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2.1.2.5 Assessing gene set enrichment in results 

Further analysis of gene lists from correlation analyses can be performed using built-in 

RERconverge pathway enrichment functions. These functions perform a rank-based enrichment 

analysis by using a Wilcoxon Rank-Sum Test to detect distribution shifts between a subset of genes 

and all genes in annotated pathways. Enrichment results are returned with pathway names, 

enrichment statistics, Benjamini–Hochberg corrected P-values and ranked pathway genes. 

2.1.3 Case Study 

We demonstrate the features of RERconverge using gene trees derived from the coding 

sequences of 19,149 genes for 62 mammal species, along with foreground branches that represent 

lineages of the mammalian phylogeny whose members live predominantly in marine aquatic 

environments (Chikina, Robinson, & Clark, 2016; W.K. Meyer et al., 2018; Partha et al., 2019). 

For this dataset, RERconverge ran in 1h and 18min on RStudio with R version 3.3.0 installed on 

a computer running Windows 10 with 16 GB of RAM and an Intel Core i7-6500U 2.50 GHz CPU. 

Top categories of functional enrichment included olfactory transduction (FDR<10e−10), GPCR 

signaling (FDR<10e−10) and immune functions (FDR = 5.4e−7), as in Chikina et al. (Chikina et 

al., 2016). We show the RERconverge workflow and visualization of RERs for a top olfactory 

receptor, OR9Q2, in Figure 1. 
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2.1.4 Summary 

RERconverge is an easy-to-implement method that can quickly test for associations 

between genes’ RER and traits of interest on a phylogeny. This enables researchers studying a 

wide variety of questions to generate lists of candidate genes associated with evolutionarily 

important traits and to explore through enrichment analyses the biological functions showing the 

most evidence of molecular change in association with these traits. 

2.2 Permulations: a rigorous statistical strategy to measure confidence in associations in a 

phylogenetic context 

Permulations are a method to accurately quantify confidence in statistical associations from 

RERconverge and related phylogenetic methods.  When working in a phylogenetic context, there 

are many potential confounders, both known and unknown, that may bias statistics calculated in 

that context.  Permulations empirically quantify confidence and thus correct for potential 

confounders without the need to explicitly define them. 

I was the primary creator of permulation methods, and Elysia Saputra subsequently assisted 

with benchmarking and improving methods for binary phenotypes.  I performed all analyses and 

benchmarking described for continuous phenotypes, and I created the original implementation of 

binary trait permulations.  Further, I performed tests using permulations with PGLS and analyzed 

results from Forward Genomics that were generated by Luisa Cusick.  The paper describing 
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permulations was originally published in Molecular Biology and Evolution at (Saputra et al., 

2021). 

2.2.1 Introduction 

Despite the availability of complete genomes for many species, identifying the genetic 

elements responsible for a phenotype of interest is difficult because there are millions of genetic 

differences between almost every pair of species.  One strategy to link genotypes and phenotypes 

is to take advantage of convergent evolutionary events in which multiple unrelated species have 

evolved similar characteristics.  Such events represent natural biological replicates of evolution 

during which species may have experienced similar genetic changes driving similar phenotypic 

changes.  When lineages independently evolve or lose a shared phenotype, convergent molecular 

signals can be used to identify specific genetic elements associated with the phenotypic shift.  

Diverse analytic approaches have been developed to use convergent phenotypes to identify 

specific genetic elements underlying a trait. The methods include analyzing convergent amino acid 

substitutions (Foote et al., 2015) and convergent shifts in evolutionary rates (Hiller et al., 2012b; 

Hu et al., 2019; A. Kowalczyk et al., 2019; Prudent et al., 2016; Wertheim, Murrell, Smith, 

Kosakovsky Pond, & Scheffler, n.d.), as well as investigating convergent gene loss  (Hiller et al., 

2012b; W.K. Meyer et al., 2018). Methods that analyze convergent shifts in evolutionary rates 

(rather than convergence to any specific sequence) have been particularly successful. We have 

previously developed one such method called RERconverge (A. Kowalczyk et al., 2019; Partha et 

al., 2019) to link genetic elements to convergently evolving phenotypes based on evolution across 

a sequence of interest.  Our method has been successfully used to identify the genetic basis of 
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adaptation to a marine habitat (Chikina et al., 2016), regression of ocular structures in a 

subterranean habitat (Partha et al., 2017a), and evolution of extreme lifespan and body size 

phenotypes (Amanda Kowalczyk et al., 2020) in mammals.  Other groups have developed similar 

methods for identifying convergent shifts in evolutionary pressure. The Forward Genomics 

algorithm, which correlates percent sequence change along a phylogeny with phenotypic changes 

(Hiller et al., 2012b; Prudent et al., 2016), has been used to identify genetic elements underlying 

low levels of biliary phospholipid levels in horses and guinea pigs, the loss of ability to synthesize 

vitamin C in some primates, bats, and guinea pigs, as well as the loss of ocular structures in two 

independent subterranean mammals. Both RERconverge and Forward Genomics involve a 

phylogenetic inference step and a subsequent test for phenotype association. More sophisticated 

but computationally intensive methods that consider the phenotype at the phylogenetic inference 

step have also been developed, notably PhyloAcc (Hu et al., 2019), although these methods are 

difficult to scale to genome-wide analyses. A related but distinct approach is to assess the 

association between gene loss (the limiting case of relaxed evolutionary pressure) and convergent 

phenotypes.  A recent study used phylogenetic generalized least squares (PGLS) (Grafen, 1989) 

to compute associations between gene losses and diverse traits and found a large number of 

significant associations (Prudent et al., 2016). 

Importantly, these methods are often applied in a genome-wide discovery context. As such, 

the general approach can be summarized as using a statistical test to calculate the association 

between convergent phenotypes and some measure of molecular evolution (evolutionary rate or 

gene loss) across a large number of genomic regions, followed by multiple hypothesis testing 

corrections. If an enrichment of small p-values is observed, then it is presumed that some genes 

(or other genetic elements) are truly associated with the phenotype. This conclusion rests on the 
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assumption that under the null hypothesis of no association, each data point is sampled 

independently from a common null distribution, in which case uniform p-values would be 

observed. However, when applied to genome-scale datasets, phylogenetic methods often show 

atypical statistical behavior in which the expected uniform distribution of p-values is not observed 

when using null phenotypes (Figure 2A). For example, the standard RERconverge analysis is anti-

conservative when applied to the marine phenotype but conservative when applied to the long-

lived large-bodied phenotype. Forward Genomics likewise produces large deviations from the 

expected null. This issue exists for even the widely used PGLS method, which produces a near-

uniform null when applied to gene loss in long-lived large-bodied mammals, but an extremely 

skewed distribution when applied to loss of transcription factor binding sites in the same 

phenotype. 

PGLS is a method specifically designed to correct for phylogenetic dependence.  

Therefore, the fact that a non-uniform null is observed for even the PGLS method demonstrates 

that deviations from the expected null cannot be explained by the phylogenetic structure of the 

data alone, but can also result from other sources of dependence that arise in the context of large 

multiple alignment datasets. Differences in genome quality (Hosner, Faircloth, Glenn, Braun, & 

Kimball, 2016), nucleotide frequencies (Romiguier & Roux, 2017), a mis-specified phylogeny, or 

other unknown systematic effects all create systematic biases which accumulate when the method 

is applied to thousands of genomic regions. As such, even if the tests can be proven to be 

theoretically valid under some assumptions (such as the well-understood PGLS model), they are 

not guaranteed to produce the expected uniform distribution when applied repeatedly to data from 

the same multiple sequence alignment. This deviation from the null expectation can result in 

overestimated statistical confidence and produce spurious genotype-phenotype associations.  
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Figure 2 Motivation for Permulations.  Permulations reveal statistical anomalies in genetic element- and 

pathway-level analyses because parametric p-values deviate from the expected uniform distribution when 

assessed on null phenotypes. (A) p-value histograms comparing p-values obtained using an observed 

phenotype (red) compared to p-values obtained from 500 (or more, see Results) null phenotypes from 
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permulations. We evaluate a binary phenotype (marine) and a continuous phenotype (long-lived large-

bodied) through RERconverge, a binary phenotype (marine) through Forward Genomics, and a binary 

phenotype (marine) and a continuous phenotype (long-lived and large-bodied) through PGLS with gene stop 

codon counts and noncoding element STAT2 TFBS counts. In all cases, the empirical null from permulations 

(shown in blue) is non-uniform. Since null p-value distributions are often non-uniform (shown in blue), 

observed parametric p-values from standard statistical tests (shown in red) cannot be interpreted using 

traditional strategies. (B) Pathway enrichment statistics from RERconverge long-lived large-bodied analyses 

demonstrate artificially inflated significance because genes in many pathways are non-independent. 

Accordingly, null phenotypes from permulations often show false signals of enrichment. Permulations correct 

for non-independence by quantifying the frequency at which significant pathway enrichment occurs due to 

chance. 

 

The problem is further compounded when results from genetic elements are aggregated at 

the pathway level.  Beyond the existing biases that arise from the nature of multiple sequence 

alignments, geneset analyses suffer additional non-independence induced by the evolutionary 

process itself.  It is well established that genes that are functionally related  experience correlated 

evolutionary pressure and thus evolve in a dependent fashion (Clark, Alani, & Aquadro, 2012, 

2013; Juan, Pazos, & Valencia, 2008). One extreme example of such coevolution is “reductive 

evolution”, where losing a member of interacting proteins decreases the selection pressure for 

preserving its interacting partners (Ochoa & Pazos, 2014). As a result of coevolution, many 

functionally related genes “travel in packs” in association with a phenotype, meaning that if one 

gene in a group appears to be associated with a phenotype, the other genes in the group will as 

well because they do not evolve independently.  The result is that a function could appear as 

associated with the phenotype due to random chance instead of actual involvement, causing an 

erroneous inference of enrichment.  
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The implication of coevolution is apparent when we apply standard pathway enrichment 

analysis to gain insight into which groups of functionally related genes are overrepresented among 

convergently evolving genes, as implemented in standard tools such as Gorilla, GO::TermFinder, 

and RERconverge enrichment functions (Boyle et al., 2004; Eden, Lipson, Yogev, & Yakhini, 

2007; Eden, Navon, Steinfeld, Lipson, & Yakhini, 2009; Amanda Kowalczyk et al., 2019). Figure 

2B demonstrates how correlated evolutionary rates can cause problems in pathway enrichment 

analyses. When genes are ranked based on gene-phenotype associations, coevolving genes tend to 

have clustered ranks. Such clusters make it easier to observe enrichment of extreme ranks, or 

coevolving genes that all have either high or low ranks, due to chance alone, and therefore the 

typical null expectation does not hold. Even when using a null phenotype, genes appear to cluster 

at the extremes of the ranked list. The clustering, and resulting enrichment, is caused by the genes 

“traveling in packs”, in which case simple enrichment tests assign undue confidence to an 

essentially spurious enrichment. 

Rigorous statistical handling needs to be employed to address these sources of bias. 

Systematic solutions have been devised to correct issues with non-independence, both in the 

contexts of quantitative genetics (Allison et al., 2002) and phylogenetics (Stone, Nee, & 

Felsenstein, 2011). However, these systematic approaches often make assumptions on the 

evolutionary process or other distributional assumptions, which may not accurately represent the 

data. We argue that an empirical approach that is grounded in the observed data can provide better 

calibration against sources of bias. In the context of gene expression, this problem is typically 

handled by performing label permutations (Majewski et al., 2010; Ritchie et al., 2015; A. 

Subramanian et al., 2005) and in certain cases parametric adjustments (Wu & Smyth, 2012). 

However, simple label permutations are not applicable to associations involving a phylogeny as 
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they would not preserve the underlying phylogenetic relationships, thereby producing false 

positives.  

Here, we develop a novel strategy that combines permutations and phylogenetic 

simulations to generate null phenotypes, termed “permulations”. The strategy addresses statistical 

non-independence empirically by generating phenotype permutations from phylogenetic 

simulations. In this way, the strategy preserves the underlying phylogenetic dependence by 

sampling permutations from the correct covariance structure. It also more accurately mimics the 

null expectation for a given phenotype by exactly matching the distribution of observed phenotype 

values for continuous phenotypes and exactly matching the number and structure of foreground 

branches (branches on which the phenotype changes) for binary phenotypes.  We use these 

“permulated” phenotypes to calculate empirical p-values for gene-phenotype associations and 

pathway enrichment related to a phenotype. In doing so, we have created a statistical pipeline that 

accurately reports confidence in relationships between genetic elements and phenotypes at the 

level of both individual elements and pathways. 

2.2.2 New Approaches 

2.2.2.1 Permulations: A Hybrid Approach of Using Permutations and Phylogenetic 

Simulations to Generate Null Statistics 

The goal of permulations is to empirically calibrate p-values from phylogenetic methods 

by producing permutations of the phenotype tree that account for the structure in the data. The 

permulation method requires a master species tree and a species phenotype (either continuous or 

binary). The method then returns a set of phenotypes that are random but preserve the phylogenetic 
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dependence of the input phenotype. We typically generate 1,000 such permulated phenotypes, 

which are then used in the framework of a certain phylogenetic method (e.g., RERconverge) to 

compute gene-trait associations, resulting in 1,000 empirical null statistics for each gene. 

Similarly, we can also run enrichment analyses using the permulated phenotypes to produce 1,000 

empirical null statistics for each pathway. Finally, for each gene or pathway, we calculate the 

empirical p-value as the proportion of empirical null statistics that are as extreme or more extreme 

than the observed parametric statistic for that gene or pathway. Since empirical null statistics 

capture the true null distributions for genes and pathways, the empirical p-values represent the 

confidence we have to reject the null hypotheses of no association, correlation, or enrichment given 

the underlying structure of our data. Note that permulations do not eliminate the need for multiple 

hypothesis correction; even with a corrected null model, the likelihood that false discoveries are 

made from performing multiple statistical inferences simultaneously still exists. Our permulation 

methods for binary and continuous phenotypes have been included in the publicly available 

RERconverge package for R (Kowalczyk et al. 2019) (published on github at 

https://github.com/nclark-lab/RERconverge), with a supplementary walkthrough (see 

Supplementary Walkthrough) also available as a vignette included in the RERconverge package. 

2.2.2.2 Phylogenetic Permulation for Continuous Phenotypes 

For continuous traits, generating permulated phenotypes is a two-step process.  First, null 

phenotype values are simulated.  Second, real phenotype values are assigned based on the 

simulated values. In step one, given the master tree with branch lengths representing average 

evolutionary rates and phenotype values for each species, we simulate a random phenotype using 

the Brownian motion model of evolution. The Brownian motion model takes a "random walk" 
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down the master tree phylogeny to assign phenotype values.  Since more closely related species 

are a shorter "walk" from each other, they are more likely to have more similar phenotype values 

than more distantly related species. In step two, real phenotype values are assigned to species based 

on ranks of the simulated values. The species with the highest simulated value is assigned the 

highest observed value, the species with the second-highest simulated value is assigned the second 

highest observed value, and so on. By doing so, observed phenotypes are shuffled among species 

with respect to the underlying phylogenetic relationships among the species.  Since simulated 

values are more similar among more closely related species compare to distantly related species, 

the newly reassigned real values follow the same pattern (Figure 3). 
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Figure 3 Permulated Phenotype Generation Procedure. Permulated phenotypes were generated by simulating 

phenotypes and then assigning observed phenotype values based on the rank of simulated values. Simulations 

were performed using Brownian motion phylogenetic simulations and a phylogeny containing all mammals 

with branch lengths representing the average evolutionary rate along that branch genome-wide. For binary 

phenotypes, foreground branches for permulated phenotypes are assigned based on the highest-ranked 

simulated values while preserving the phylogenetic relationships between foregrounds. For continuous 

phenotypes, observed numeric values were assigned directly to species based on ranks of simulated values.   

2.2.2.3 Phylogenetic Permulation for Binary Phenotypes 

For binary traits, the critical feature is the number of foreground species and their exact 

phylogenetic relationship, and hence the inferred number of phenotype-positive internal nodes or 

equivalently phenotypic transitions. The two-step process proposed above does not guarantee to 

perfectly preserve this structure.  Instead, we employ a rejection sampling strategy where the 
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simulation is used to propose phenotypes which are accepted only if they match the stricter 

requirements. Specifically, species are ranked based on simulated values, and a set of top-ranked 

species chosen to match the number of foreground species in the observed phenotype are proposed 

as a null phenotype. The proposed phenotype is only accepted if it preserves the phylogenetic 

relationships among chosen foregrounds, as observed in the actual foregrounds (Figure 3, Binary 

Phenotype). Using the simulation as the proposed distribution ensures that phylogenetically 

dependent phenotypes are generated and thus speeds up the construction of null phenotypes over 

what can be achieved from random selection.  

We present two binary permulation strategies: the complete case (CC) method and the 

species subset match (SSM) method. The SSM method accounts for the fact that not all genes have 

orthologs in all species while the CC method ignores species presence/absence for simplicity. The 

strategies encompass the trade-off between computational feasibility and statistical exactitude—

in some cases, it may not be possible to perform the SSM method, in which case the CC method 

is a viable alternative. The CC method is the first and simpler strategy.  The CC method performs 

permulations using the master tree in which all species are present and therefore generates 

permulated trees that contain the complete set of species. Since not all species will have sequences 

available for all genes and the CC method produces one set of permulated phenotypes for all the 

genes, the exact number of foreground and background species per genetic element may not be 

preserved because of species presence/absence in those alignments (Figure 4). Thus, the CC 

method is an imperfect but fast method to generate null phenotypes, but we recommend use of the 

SSM method whenever feasible. 

In contrast, the SSM method accounts for the presence/absence of species in different gene 

trees.  For each permulation, the SSM method generates separate null phenotypes for each tree in 
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the set of genetic elements.  Since genetic element-specific trees contain exactly the species that 

have that genetic element, the null phenotypes exactly match the observed phenotypes for that 

genetic element in terms of number of foreground and background species (Figure 4).  

Additionally, unlike the CC method, null phenotypes for a single permulation iteration are distinct, 

and potentially unique, from each other because they are generated on a genetic element-by-

genetic element basis.  Although the SSM method is statistically more ideal than the CC method, 

it is much more computationally intensive and may not be feasible for very large datasets. For 

example, the CC method took 7 seconds to produce 50 permulated traits for 200 genes, whereas 

the SSM method took ~15.5 minutes. 
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Figure 4 CC vs. SSM Permulations.  Examples of toy binary phenotypes permulated using the complete case 

(CC) method or the species subset match (SSM) method. For the CC method, top-ranked simulated values are 

assigned as foreground regardless of gene-specific species absence. For the SSM method, top-ranked simulated 

values are assigned as foreground after considering gene-specific species absence so the number of foreground 

and background species for each gene is consistent across every permulated phenotype. Note that in the case of 

genes with all species present (e.g., Gene 1), CC and SSM methods are identical. 
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2.2.2.4 Datasets for Method Evaluation 

We evaluate the performance of our permulation methods by using RERconverge to find 

genetic elements that demonstrate convergent acceleration of evolutionary rates in association with 

convergent phenotypic adaptations that are well-characterized, namely the evolution of the marine 

mammal phenotype (Chikina et al., 2016; Wynn K Meyer et al., 2018), the subterranean mammal 

phenotype (Partha et al., 2017b), and the long-lived large-bodied mammal phenotype (Amanda 

Kowalczyk et al., 2020). For the remaining part of this article, we will refer to these phenotypes 

as the marine phenotype, the subterranean phenotype, and the long-lived large-bodied phenotype, 

respectively. We use the set of protein-coding gene trees across 63 mammalian species previously 

computed by Partha et al. (Partha et al., 2019). These trees have the “Meredith+” tree topology 

(Amanda Kowalczyk et al., 2020) (Figure 5), a modification of the tree topologies published by 

Meredith et al. (Meredith et al., 2011) and Bininda-Emonds et al. (Bininda-Emonds et al., 2007), 

resolved for their differences across various studies as originally reported by Meyer et al. (Wynn 

K Meyer et al., 2018).  

For the binary marine phenotype, we set three independent lineages as foreground species 

that possess the marine trait (blue branches in Figure 5, Binary Phenotype): pinnipeds (Weddell 

seal, walrus), cetaceans (bottlenose dolphin, killer whale, the cetacean ancestor), and sirenians 

(West Indian manatee) (Chikina et al., 2016). For the subterranean phenotype, we set as 

foregrounds three independent subterranean species for which high quality genomes are available 

in our dataset: naked mole-rat, star-nosed mole, and cape golden mole (red branches in Figure 5, 

Binary Phenotype).  
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Figure 5 Phenotypes to Test Permulations.  Meredith+ tree topology and the binary and continuous phenotypes 

evaluated. Binary phenotypes include the marine mammal phenotype and the subterranean mammal 

phenotype (foreground branches are indicated in blue and red, respectively). The continuous phenotype 

evaluated is the long-lived large-bodied phenotype as constructed based on the first principal component 

between species body size and maximum longevity (Kowalczyk et al. 2020). 

 

Finally, for the continuous long-lived large-bodied phenotype, we use the "3L" trait as 

defined in previous work (Amanda Kowalczyk et al., 2020).  The numerical phenotype is 

constructed by calculating the first principal component (PC1) between body size and maximum 

lifespan across 61 mammal species (Figure 5, Continuous Phenotype). PC1 therefore represents 

the agreement between body size and lifespan – species like whales with long lifespans and large 
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sizes have large phenotype values and species like rodents with short lifespans and small sizes 

have small phenotype values.  For example, killer whale, elephant, and rhino have the highest 

values (2.63, 2.40, and 1.95) because they are both large and long-lived, and shrew, star-nosed 

mole, and mouse have the smallest values (-2.62, -2.46, and -2.27) because they are small and 

short-lived.  Human, while longest-lived among the mammals included, has the fifth largest value 

(1.87) because humans are relatively small compared to the other mammals.  Likewise, large 

grazing animals like cow also have smaller PC1 values (1.08, the 15th largest value) because 

although cows are large, they are not very long-lived given their body size. 

2.2.3 Results 

2.2.3.1 Permulation of Binary Phenotypes Improved Power and Type I Error Control 

To evaluate the performance of the permulation methods compared to the parametric 

method for binary phenotypes, we first use RERconverge to find genetic elements with 

convergently accelerated evolutionary rates in species with the marine phenotype. We consider 

three p-value calculation methods: parametric, complete case (CC) permulations, and species 

subset match (SSM) permulations. Resulting p-values are corrected for multiple hypothesis testing 

using Storey’s correction (J. D. Storey, Bass, Dabney, & Robinson, 2020; J. D. Storey & 

Tibshirani, 2003). We see in Figure 2A that the parametric p-values for the association of genes 

with the observed marine phenotype (red histogram) are enriched for small p-values.  According 

to the standard parametric approach, which assumes a simple null hypothesis with uniformly 

distributed p-values, the enrichment of low p-values indicates the possible presence of genes with 

evolutionary rate shifts that are significantly correlated with marine adaptation.  However, when 
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we construct the empirical null p-value distribution using 1,000 permulations of the marine 

phenotype, we see that the null distribution of parametric p-values is not uniform.  In fact, the 

enrichment of low p-values is also present in the null distribution (blue histogram), albeit a lesser 

enrichment than the observed, meaning that observing low p-values by chance is more likely than 

expected.  Thus, if we use standard multiple testing procedures directly on the parametric p-values, 

we will identify more positive genes than the true number of positives, in other words causing an 

undercorrection of p-values.  

To demonstrate that our permulation strategy effectively corrects for the background p-

value distribution, we plot similar histograms of the empirical p-values for the marine phenotype 

versus 1,000 permulated phenotypes, generated from both CC and SSM permulations. With 

permulations, we can see that while some enrichment of small empirical p-values is observed for 

the marine phenotype, the empirical p-values for the null phenotypes are almost perfectly uniform, 

meaning that our permulation methods are able to construct the correct null distribution 

(Supplementary Figure 1 in (Saputra et al., 2021)). When we overlay the p-value histograms of the 

parametric and empirical p-values for the marine phenotype, we can see that compared to the 

parametric method, the histograms for the CC and SSM permulations have steeper slopes at low 

p-values, indicating that the permulation methods have better Type I error control (Figure 6A). 

Furthermore, the histograms for the permulation methods plateau at higher π0 than the parametric 

method, consistent with the postulation that the parametric method would identify more (possibly 

false) positives. These findings are also observed when we define genes with significant 

evolutionary acceleration in marine mammals (i.e., “marine-accelerated” genes) by setting a 

rejection threshold of Storey’s false discovery rate (FDR) ≤ 0.4 (the high threshold is set 

considering the high minimum FDR from the parametric method), as shown in Figure 6B. For the 
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permulation methods, as the number of permulations increases, the number of identified marine-

accelerated genes increases and eventually stabilizes after ~400 permulations.  The asymptotic 

numbers of marine-accelerated genes identified by permulations (~350 genes for CC permulation 

and ~450 genes for SSM permulation) are much smaller than the ~700 genes identified through 

parametric statistics, demonstrating improved Type I error control. 

Surprisingly, while the permulation methods identify fewer significantly accelerated 

regions, we have greater confidence in their significance. Figure 6C shows the minimum FDRs 

achieved by the permulation methods with increasing number of permulations.  The figure shows 

that the permulation methods provide better control of FDRs compared to the parametric method 

with only a few permulations (above ~125 permulations). With increasing permulations, the 

minimum FDR continues to drop to reach levels below 0.1 at 1000 permulations, while the 

minimum FDR from parametric statistics is higher at above 0.3. Use of the permulation null 

substantially improves the statistical power of the method and provides much higher confidence 

in detecting true correlations between evolutionary rate shifts and the convergent phenotype of 

interest. 

Lastly, we find that permulation methods can identify marine-accelerated genes that are 

missing in many species, i.e., genes with phylogenetic trees containing few species.  In contrast, 

the parametric method fails to identify any such gene (Figure 6D). 
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Figure 6 Permulations Correct Inflation of Statistical Significance for a Binary Phenotype.  Permulation of 

binary phenotypes corrects for inflation of statistical significance in finding evolutionarily accelerated genes in 

marine mammals. (A) Histogram of parametric and permulation p-values for the marine phenotype from the 

parametric, the complete case (CC) permulation, and the species subset match (SSM) permulation methods. 

(B) Permulation methods identify fewer accelerated genes in marine mammals compared to the parametric 

method, correcting for the inflation of significance. The rejection region of the multiple hypothesis testing is set 

to be Storey’s FDR ≤ 0.4, considering the weak power of the parametric method. (C) Binary permulation 

methods have greater statistical power compared to the parametric method, as shown by the minimum false 

discovery rate (FDR) calculated using Storey’s method. (D) Permulation methods can identify accelerated genes 

that are missing in many species (gene tree size ≤ 30), whereas the parametric method fails to do so. 
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2.2.3.2 Binary Permulation Methods Improved Gene-level Detection of Functional 

Enrichment 

We have demonstrated that the permulation methods show favorable statistical properties 

based on the distribution of p-values.  We expect that this approach also improves the biological 

signal of rate convergence analysis. To address this question, we ask if the marine-accelerated 

genes identified by binary permulations are enriched for functions that are consistent with the 

marine phenotype. Our group previously identified marine-specific pseudogenes that should be 

undergoing accelerated evolution in marine mammals due to relaxation of evolutionary constraint 

(Wynn K Meyer et al., 2018). Putative pseudogenes associated with marine mammals were 

identified using Bayes Traits software (Pagel & Meade, 2006) to find signals of coevolution 

between marine status and pseudogenization.  In addition, our group also previously found that 

marine-accelerated genes that evolve under relaxed constraint are enriched for genes responsible 

for the loss of olfactory and gustatory functions (Chikina et al., 2016).  Thus, to represent the 

“ground truth”, we select a collection of gene sets relevant to olfactory and gustatory functions 

from the Mouse Genome Informatics (MGI) database and top-ranking marine-specific 

pseudogenes with Bayes Traits FDR values less than 0.25. 

We then perform the one-tailed Fisher’s exact test to measure the enrichment of the 

functions in the marine-accelerated genes from the parametric and permulation methods.  The 

Fisher’s exact test odds ratios indeed show that the CC and SSM permulation methods generally 

magnify or maintain the effect sizes of enrichment across the gene sets compared to the parametric 

method (Figure 7A).  At worst, the permulation methods match the performance of the parametric 

method (e.g., “taste/olfaction phenotype” gene set). The improved performance of the permulation 
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methods is also demonstrated in the example precision-recall curves for the marine-associated 

pseudogenes in Figure 7B. 

To see if this observation generalized to other phenotypes, we repeat the whole analysis to 

find genes that are accelerated in species with the subterranean phenotype. As subterranean-

accelerated genes have been found to be enriched in ocular functions (Partha et al., 2017b, 2019; 

Prudent et al., 2016), we pick gene sets relevant to vision-related functions as the “ground 

truth”.  In general, the signals we obtained from RERconverge for the subterranean phenotype are 

much weaker than in the marine phenotype case, but the enrichment is still captured in the rankings 

of the genes.  Similar to the marine phenotype, permulation methods generally improve or match 

the performance of the parametric method (Figure 7C-D). 
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Figure 7 Binary Permulations Match or Improve Power to Detect True Positives.  Binary permulation methods 

have matching or improved power compared to the parametric method in detecting enrichments of functions 

consistent with known phenotypes. (A) Fisher’s exact test odds ratios showing that marine-accelerated genes 

identified by the permulation methods have greater enrichment of gustatory and olfactory genes, compared to 

the parametric method. (B) Precision-recall curves for the enrichment of the marine pseudogenes in the 

identified marine-accelerated genes.  Greater area under the curve (curves that have higher values on the left 

side of the plot) have greater enrichment. (C) Fisher’s exact test odds ratios showing that subterranean-

accelerated genes identified by the permulation methods have greater or comparable enrichment of ocular 

genes, compared to the parametric method. (D) Precision-recall curves for the enrichment of the visual 

perception genes in the identified subterranean-accelerated genes. 
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2.2.3.3 Binary Permulation Method Corrects for False Positives in Related Approaches 

In addition to performing permulations using RERconverge, we test our methods using 

Forward Genomics and PGLS.  Other methods, such as PhyloAcc, would require tens of millions 

of computational hours to generate 500 permulations (from the analysis with RERconverge, the 

number of identified accelerated genes plateaus after 400-500 permulations are used (Figure 6B)), 

and thus permulations are not scalable to those analyses.   

Forward Genomics (Hiller et al., 2012a; Prudent et al., 2016), like RERconverge, tests for 

an accelerated evolutionary rate in a set of foreground species by correlating a normalized 

substitution rate with phenotypes using Pearson correlation. It works only for binary phenotypes 

and has demonstrated success in coding and non-coding elements. Forward Genomics’ “global 

method” uses substitution rate with respect to each tree’s root to correlate with trait loss and 

identify convergent relaxed selection; therefore, it does not correct for evolutionary relatedness.  

The “local branch method”, an improvement on the original approach, uses substitution rate with 

respect to the most recent ancestor to identify relaxed selection, which substantially improves its 

power (Prudent et al., 2016). We use the most recent version of both the global and the local 

methods to test for associations between gene evolutionary rates and the binary marine phenotype.  

Both global and local Forward Genomics methods had unusual p-value distributions. The 

local method identified high proportion of positives with significant p-values (Figure 2A), while 

p-values from the global method were highly concentrated around 0.5 (global p-values not shown). 

Adjusting for multiple testing further exaggerated this issue.  For the global method, due to the 

number of genes with very low p-values, the lowest possible Benjamini-Hochberg (BH) corrected 

parametric p-value is 0.531, and for the local method, the lowest possible corrected p-value is 

0.465. For the local method, out of 18,797 genes, more than half of the genes (12,438) have the 
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lowest possible corrected parametric p-value.  As such, it is impossible to designate a significance 

cut-off, because it will either include no genes or include most of the genes. Applying the 

permulation strategy to Forward Genomics output, we find that of the same set, 889 have a 

corrected empirical p-value that is less than or equal to 0.465 (the minimum observed corrected 

parametric p-value), allowing for a more reasonable selection of a rejection threshold. Thus, 

permulation can improve statistical performance even for a statistic with known flaws. 

We further investigate our results from Forward Genomics at the pathway level in addition 

to analyzing results at the individual gene level. We use the marine pseudogenes as a “ground 

truth” set of genes that should be undergoing accelerated evolution in marine species, to test our 

ability to detect pathway enrichment of these genes. As shown in Figure 8A, the global and local 

parametric test statistics show slight enrichment for elements that are pseudogenized in marine 

mammals, and the difference is improved when empirical p-values are computed. Figure 8B shows 

the same data as a precision-recall plots, clearly demonstrating that the permulation correction 

improves the predictive power of both methods. 

Next, we tested the effect of permulations on PGLS results. PGLS tests for association 

between two traits across species while adjusting for the phylogenetic relationships among those 

species. In doing so, it numerically corrects for non-independence due to phylogenetic relatedness. 

Note that unlike RERconverge and Forward Genomics, PGLS does not require evolutionary rate 

information and is therefore a more generalized phylogenetic analysis. We test PGLS using both 

the binary marine and the continuous long-lived large-bodied phenotype for coevolution with stop 

codon counts across genes. We additionally test the continuous phenotype for coevolution with 

STAT2 transcription factor binding site counts across noncoding regions. 
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Figure 8 Permulations for Forward Genomics.  Binary permulation methods improve Forward Genomics’ 

positive-predictive value and power. (A) Distributions of Forward Genomics statistics and corresponding 

permulation p-values for local and global methods.  Both global and local statistics show slight shifts (to the left 

for global statistics and to the right for local statistics) indicating enrichment of marine mammal pseudogenes 

under accelerated evolution (global AUC=0.6235; local AUC=0.6196).  Permulation p-values show a more 

dramatic shift toward significant values for marine pseudogenes under accelerated evolution for the global 

method (AUC=0.6653) and about the same shift for the local method (AUC=0.6086) compared to parametric 

statistics. (B) Precision-recall curves for the enrichment of pseudogenes in marine-accelerated genes using 

parametric statistics and permulation p-values for both local and global methods.  Permulated values represent 

a unique ranking in which ties in permulation p-values for genes are broken based on parametric statistics.  

Permulation methods perform at least as well as both global and local methods, indicated by curves that are 

higher at the left side of the plot. 
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Like other methods, PGLS demonstrates unexpected null behavior that varies across 

genomic datasets and phenotypes (Figure 2A).  Although the null distribution of p-values for 

associations between the long-lived large-bodied phenotype and the stop codon counts show only 

a slight inflation of low p-values (5.2% of null p-values below 0.05) and otherwise nearly uniform 

distribution, tests using the marine phenotype and the transcription factor binding site counts show 

much different behavior.  Permulations for associations between the marine phenotype and stop 

codon counts reveal that, although there may appear to be a meaningful enrichment of low 

observed p-values, such enrichment is observed even when analyzing permulated phenotypes.  

Conversely, although the enrichment of low observed p-values appears relatively less for 

associations between the long-lived large-bodied phenotype and transcription factor binding site 

counts in noncoding regions, such enrichment is indeed meaningful because it is greater than 

observed when analyzing permulated phenotypes.  Together, these observations indicate that 

PGLS may exhibit aberrant statistical behaviors, that the exact nature of the behaviors may vary 

greatly across datasets, and that permulations are a valid strategy to identify and correct those 

behaviors. 

2.2.3.4 Permulations Improve Power to Detect Genes Correlated with a Continuous 

Phenotype 

When we use RERconverge to evaluate the long-lived large-bodied mammal phenotype, a 

continuous phenotype, we observe that the Type I error rate is in fact too low.  We demonstrate 

this by performing one thousand permulations to generate 1,000 null statistics and p-values for 

each gene, calculating empirical p-values as the proportion of null statistics that were as extreme 

or more extreme than the observed statistic per gene.  As shown in Figure 2A, the parametric null 
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p-value distribution for genes associated with the long-lived large-bodied phenotype is non-

uniform, and in fact slopes down at low p-values. This indicates that observing small p-values due 

to chance alone happens less often in our dataset than we would typically expect compared to the 

standard uniform expectation.  In practice, the result of the non-uniform null is overcorrection of 

parametric p-values using a standard multiple hypothesis testing correction.  In other words, for 

this dataset, corrected parametric p-values are larger than they should be when using multiple 

hypothesis testing correction (such as a Benjamini-Hochberg correction) that assumes a uniform 

null.  The null distribution of empirical p-values, however, does follow a standard uniform null by 

construction, so Benjamini-Hochberg corrected empirical p-values represent our true, higher 

confidence in a correlation between gene evolutionary rate and phenotypic evolution. We observe 

this increased confidence in our data – after multiple hypothesis testing correction, only 24 

parametric p-values remain significant at an alpha threshold of 0.15 while 305 empirical p-values 

remain significant.  Regardless of the increase in power, empirical p-values provide a more 

accurate representation of confidence in rejecting the null hypothesis, and thus are a more valid 

metric than parametric p-values. 

2.2.3.5 Permulations Correct Pathway Enrichments for Genes with Correlated 

Evolutionary Rates 

After generating null p-values and statistics from permulations for either binary or 

continuous traits, those values can be used to calculate null pathway enrichment statistics.  

Empirical p-values for pathways are then calculated as the proportion of null pathway enrichment 

statistics as extreme or more extreme than the observed statistic.  This procedure corrects for gene 

sets with correlated evolutionary rates, that is genes whose rates will “travel in packs” regardless 
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of any relation to the phenotype (e.g., Figure 2B).  Such groups of genes will tend to show 

enrichment more often than would be observed if the genes’ rates were independent after 

conditioning on phenotype, resulting in false signals of pathway enrichment.  

Permulations account for the non-independence problem by explicitly incorporating it into 

the null distribution used to calculate empirical p-values.  In the demonstrated case of the 

Coenzyme Q Complex, only one permulation out of the ten depicted shows enrichment due to 

random chance (indicated by an asterisk * below the vertical bar in Figure 2B), which would 

correspond to a empirical p-value of 0.1 in this toy example.  This interpretation is identical to the 

standard p-value interpretation—the proportion of times we expect to see a statistic as extreme or 

more extreme than observed assuming that the null expectation is true.  In the case of permulations, 

we simply explicitly calculate the null expectation rather than using a predefined distribution (t-

distribution, F-distribution, etc.).  In the case of enrichment for a pathway with independent genes, 

the significance of the empirical p-value will agree with the significance of the parametric p-value 

because the null expectation from permulations agrees with the typical null expectation. 

In the case of a pathway with genes with non-independent evolutionary rates, the empirical 

p-value will be larger than the parametric p-value because the empirical p-value will penalize for 

non-independence.  An example with “Structural Maintenance of Chromosomes” genes shows 

that, although there is an apparent enrichment based on the observed phenotype, half (5 out of 10) 

of permulated phenotypes show at least as strong enrichment for an empirical p-value of 0.5.  

Therefore, although the pathway does appear to be enriched from parametric statistics, its 

enrichment is actually not exceptional given the null expectation for that set of genes. 

Empirical p-values are calculated for every pathway individually. Table 1 shows top 

enriched pathways under accelerated evolution and decelerated evolution in association with the 
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long-lived large-bodied phenotype. While most significantly enriched pathways under decelerated 

evolution based on parametric p-values also demonstrate significant empirical p-values, many 

pathways under significant acceleration show non-significant empirical p-values.  Thus, this 

phenotype shows little evidence for accelerated pathway evolution associated with phenotypic 

evolution. 

 

Table 1 Continuous Phenotype Pathway Enrichment with Permulations.  Top-enriched pathways with 

quickly evolving genes and slowly evolving genes in association with the long-lived large-bodied phenotype 

according to parametric p-values. Note that due to the number of pathways, the lowest possible Benjamini-

Hochberg corrected permulation p-value is 0.0913. Boxes in green show significance at α = 0.25. Note that 

many accelerated pathways that appear to be enriched based on parametric p-values are not enriched based 

on permulation p-values. 

Pathway Enrichment 

Positive Negative 

Pathway Statistic p-adjusted 
perm 

p-adjusted Pathway Statistic p-adjusted 
perm 

p-adjusted 

Olfactory 

Signaling 
0.217 9.25e-43 0.199 

Cytokine-

Cytokine 

Receptor 

Interaction 

-0.181 3.40e-20 0.0913 

GPCR 

Signaling 
0.0606 8.34e-7 0.596 

Mitotic 

Cell Cycle 
-0.132 6.03e-12 0.213 

Biological 

Oxidations 
0.150 1.10e-6 0.276 

Immune 

System 
-0.0600 1.54e-6 0.0913 

Valine and 

Isoleucine 

Degradation 

0.219 3.32e-5 0.354 
DNA 

Replication 
-0.122 2.81e-6 0.352 

Fatty Acid 

Metabolism 
0.215 8.26e-5 0.352 

Fanconi 

Anemia 
-0.212 4.45e-5 0.221 
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2.2.3.6 Comparison of Phylogenetic Simulations, Permutations, and Permulations 

Alternatives to permulations include either permutations or simulations alone.  

Permutations involve randomly assigning phenotype values to species regardless of the underlying 

phylogenetic relationships among those species.  Meanwhile, simulations refer to the first step of 

permulations – phenotype values are generated based on predicted phenotype evolution along the 

phylogenetic tree.  However, unlike permulations, simulations do not include reassigning real 

values based on simulated values and thus do not preserve the distribution of the original 

phenotype values. 

At the pathway level, permulations result in p-values that are about equally as conservative 

as phylogenetic simulations alone and more conservative than permutations alone (Figure 9).  Both 

permulations and simulations are preferred to permutations because null phenotypes generated 

from permulations or simulations reflect the underlying phylogenetic relationships among species, 

while null phenotypes from permutations do not.  Therefore, the empirical null generated from 

permulations or simulations more closely represents the true null expectation for phenotype 

evolution.  Although permulations and simulations show similar performance, we prefer 

permulations because permulated phenotypes exactly match the distribution of observed 

phenotypes, and thus create null phenotypes uniquely tailored to a particular continuous phenotype 

of interest.  Such matching eliminates statistical anomalies that can arise due to discrepancies in 

range and distribution of permulated phenotypes compared to observed phenotypes. 
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Figure 9 Comparison of Permulations, Permutations, and Simulations.  Permulations p-values are more 

conservative than permutation p-values and about equally as conservative as simulation p-values.  All plots 

demonstrate enrichment for canonical pathways associated with the long-lived large-bodied phenotype. (A) 

Density plots representing the empirical p-value distributions for the three methods to generate null p-values. 

Permulation and simulation curves are very similar, while the permutation curve demonstrates a stronger 

enrichment of low p-values and therefore less conservative p-values. (B) Q-Q plots comparing empirical p-

values from permulations to empirical p-values from simulations and permutations also demonstrate that 

permulation p-values are more conservative than permutation p-values and about equally as conservative as 

simulation p-values. 
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2.2.4 Discussion 

In the present work, we present permulations, a set of novel empirical methods to address 

problems of non-independence and bias in phylogenetic analysis.  The methods use phylogenetic 

relationships among species alongside known values of an observed phenotype to inform 

Brownian motion simulations from which permuted phenotypes are then generated.  By doing so, 

the methods empirically construct the possibly composite null distribution and account for this 

complexity in multiple hypothesis testing.  For permulation of binary phenotypes, the phylogenetic 

characteristics preserved are the number of foreground branches and the underlying relationships 

among foreground branches.  For continuous phenotypes, the exact distribution of phenotype 

values is preserved in addition to the underlying phylogenetic relationships among species. 

From testing the strategy on binary and continuous phenotypes, we find that our 

permulation strategy is an effective approach for overcoming challenges in multiple testing with 

composite nulls in comparative phylogenetic studies.  We discuss with examples how our binary 

and continuous permulation methods fix issues of both undercorrection and overcorrection of p-

values for specified phenotypes, and subsequently improve the quality and confidence of 

prediction.  Note that although our examples demonstrate the usefulness of permulations, they are 

not necessarily representative of how empirical null distributions will deviate from the typical null 

for all phenotypes over all phylogenies for all sets of genetic elements.  In fact, we expect 

permulations to behave differently as those variables change, and thus the best way to determine 

how permulations will affect a particular data set is to run the permulation analyses. 

Devising a systematic solution for such problems is difficult because the causes of complex 

null distributions in phylogenetic studies can be confounding. The necessity for incorporating 
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phylogenetic information to correct for phylogenetic effects is well understood (Felsenstein, 1985; 

Sakamoto & Venditti, 2018; Stone et al., 2011), and some systematic solutions have been designed 

to tackle the problem, including Phylogenetic Independent Contrast (PIC) (Felsenstein, 1985), 

Phylogenetic Generalized Least Squares (PGLS) (Grafen, 1989), phylogenetic autoregression 

(Cheverud & Dow, 1985; Gittleman & Kot, 1990), and phylogenetic mixed models (Hadfield & 

Nakagawa, 2010; Housworth, Martins, & Lynch, 2004; Lynch, 1991). However, systematic 

solutions usually make phylogenetic or distributional assumptions that can lead to inaccuracies if 

the assumptions do not accurately represent the data. For example, PIC makes an assumption that 

the observed phenotype evolved by Brownian motion, and it can lead to overcorrection when the 

selection giving rise to the observed data did not actually cause strong phylogenetic effects 

(Martins, 2000). In addition, phylogenetic mixed models usually assume that evolution along the 

phylogeny follows a Brownian motion process and that the resulting phenotype values are 

normally distributed. With the lack of full understanding of the underlying evolutionary 

mechanism, incorrect assumptions can lead to overcorrection or undercorrection of statistical 

confidence. Empirically correcting p-values using permulation methods allows us to circumvent 

the need to artificially deconstruct this unknown correlation structure in the data. Importantly, 

while our permulation methods are based on Brownian motion simulations, the simulated trait 

values themselves are not incorporated in the null phenotypes, and instead are only used as a way 

to incorporate phylogenetic dependencies in informing how trait values should be permuted across 

the phylogeny. In this sense, the choice of simulation model is not important. 

For binary phenotypes, our permulation methods choose permuted foreground sets by 

matching the number of foregrounds and their underlying relationships to those observed in the 

actual phenotype.  This approach of defining null phenotypes can be justified by phylogenetic non-
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independence, a notion that arises from the implications of shared ancestry (Felsenstein, 1985).  

At the time of divergence, closely related species diverging from a common ancestor are likely to 

experience similar selective pressures as the ancestor as well as similar genetic predispositions to 

respond to the selection pressures.  With progressing evolutionary time, the daughter species will 

evolve independently in response to their respective environments.  Such similarities in 

environmental pressures and genetic predispositions diminish with increasing evolutionary 

distance between species, meaning that the variance in phenotype values will increase with 

increasing divergence in evolutionary time.  Considering this phylogenetic non-independence and 

that adaptations to selection pressures are often assumed to be reflected in evolutionary rates, it is 

reasonable to preserve the pattern of divergence between foreground species to construct 

hypothetical null phenotypes, in finding correlations between evolutionary rates and phenotypes.  

It is impossible to pick a new set of foreground branches with perfectly matching divergence times, 

but matching divergence patterns can serve as a justifiable workaround because the general 

implications of shared ancestry on phylogenetic non-independence among the new set of 

foregrounds would apply in a similar way. 

We develop two versions of permulation methods for binary phenotypes.  The complete 

case (CC) algorithm produces one permuted phenotype from the master tree to apply for all genes 

simultaneously, while the species subset match (SSM) algorithm produces distinct permuted trees 

for each gene, accounting for the differences in species membership in different gene trees.  This 

makes the CC method statistically imperfect.  For example, a gene that is missing in some species 

will have a phylogenetic tree that is missing some branches.  As a consequence of producing 

permuted trees from the master tree that contains all species, the CC method may not conserve the 

number and relationships of foregrounds across the permulations of the example gene (e.g., genes 
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3 and 4 in Figure 4 CC vs. SSM Permulations).  In contrast, the SSM method accounts for 

differences in numbers and patterns of foregrounds among different genes and addresses each gene 

independently.  This means that the SSM method is the ideal implementation of our concept of 

binary permulations.  However, the CC method is both computationally much faster and accounts 

for the fact that existing comparative genomics methods take in phenotype inputs in different 

forms.  For example, Forward Genomics requires one phenotype tree to apply for all genes, while 

HyPhy RELAX requires multiple phenotype trees with matching topology to each gene.  

Regardless of the statistical flaw, our results demonstrate that applying the CC method on Forward 

Genomics is beneficial for improving prediction (Figure 8).  The CC method is significantly faster 

than the SSM method because it only produces one permuted tree for each permulation, instead of 

a heterogeneous set of permuted trees applying to different genes.  Therefore, in the case of limited 

computational resources or very large datasets in which using the SSM method is infeasible, the 

CC method can serve as a good alternative. 

Our results also demonstrate that binary permulations improve the sensitivity of 

RERconverge to identify significantly accelerated genes that are missing in many species (Figure 

6D), i.e., genes with small trees.  Because of lower species numbers, genes with small trees suffer 

from lower statistical power compared to genes with large trees (for example, the number of ways 

to permute a small tree is much fewer compared to a large tree).  As such, pooling all the p-values 

together to perform multiple testing correction unfairly penalizes genes with small trees.  

Calculating empirical p-values from multiple empirical permutations is a way to correct for this 

imbalance in power by indirectly incorporating important covariates, which accounts for the 

number of foregrounds, backgrounds, and the ratio and phylogenetic relationship between them.  

Indeed, the pooled null empirical p-values have a uniform distribution (Supplementary Figure 1 in 



   

 

 48 

(Saputra et al., 2021)), establishing the validity of applying standard multiple testing methods to 

identify significant divergence in evolutionary rates. Future work can evaluate if such benefits are 

similarly observed when applied to other comparative genomics methods. 

Permulations grant increased power to detect genes associated with a continuous phenotype 

as suggested by the shape of the empirical null distribution (Figure 2).  When p-values from 

permulations are compared with permutations or simulations of trait values, we find that 

permulation p-values are more conservative than p-values from permutations alone, and equally 

as conservative as p-values from simulations alone. This suggests that permulations offer a valid 

alternative to phylogenetic simulations.  Importantly, permulations preserve the exact distribution 

and range of phenotype values, a critical characteristic related to the power of the correlation 

calculated between gene evolution and phenotype evolution.  Thus, permulations more accurately 

match the power between observed and permulated statistics compared to observed and simulated 

statistics. 

Although many of our tests of the permulation strategy were performed using 

RERconverge, permulations are applicable to any similar methods.  When using permulations to 

calculate empirical p-values using Forward Genomics, an alternative evolutionary rates-based 

method, we show that we can quantify a realistic confidence level at which we believe a gene is 

under accelerated evolution in a subset of species.  Even when using the Forward Genomics global 

method, a deprecated method that does not account for phylogenetic relationships among species, 

permulations improved the ability to detect accelerated evolution in marine pseudogenes (Figure 

8).  The improvement is likely due to permulations indirectly capturing phylogenetic information 

through their construction.  For the Forward Genomics local method, permulations captured 

realistic confidence levels without losing the ability to detect accelerated evolution in marine 
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pseudogenes.  Theoretical p-values directly from the Forward Genomics method (Figure 2A) show 

over half of the genome under significantly accelerated evolution related to the marine phenotype 

(12,438 out of 18,797 genes with the lowest possible Benjamini Hocberg corrected p-value), which 

is biologically highly unlikely (Eyre-Walker & Keightley, 1999; Eyre-Walker, Keightley, Smith, 

& Gaffney, 2002; Eyre-Walker, Woolfit, & Phelps, 2006; Kryukov, Pennacchio, & Sunyaev, 

2007).  Permulations reduce the number of genes under significantly accelerated evolutionary rates 

to a more modest number (889 genes if using the same confidence level cut-off) to more accurately 

reflect both the biology of the system and our confidence in identifying genes with significant 

evolutionary rate shifts. 

Our permulations also reveal aberrant statistical behavior in PGLS.  Designed to correct 

for phylogenetic relatedness when testing for coevolution of traits, PGLS indeed demonstrates a 

near-uniform empirical p-value distribution for one set of tests for coevolution of the long-lived 

large-bodied phenotype and gene stop codon counts.  However, the method's behavior is 

dramatically different when testing for coevolution of gene stop codon counts with the binary 

marine phenotype.  It likewise shows undesirable behavior when testing for coevolution of STAT2 

transcription factor binding site counts across noncoding regions.  In addition to revealing a non-

uniform null, the exact identity of noncoding regions with significant observed and permulation p-

values is different, completely altering analysis results.  These findings suggest that phylogenetic 

methods may behave in unexpected ways, and permulations are a valid strategy to investigate those 

behaviors and perform appropriate statistical corrections. 

Finally, permulations demonstrate a crucial correction to pathway enrichment statistics that 

corrects for coevolution among genes in a pathway of interest.  Since pathways often contain 

functionally related genes that evolve at similar rates, performing pathway enrichment treating 
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each gene as an independent observation is statistically incorrect and will result in erroneous 

conclusions.  Performing permulations at the pathway level identifies pathways that are falsely 

shown to be enriched and correctly quantifies the confidence at which we may state that a pathway 

is enriched.  We argue that a strategy like permulations is essential in virtually all cases of pathway 

enrichment calculations to account for gene non-independence driven by correlated evolutionary 

trends. 

Overall, permulations are an important statistical consideration that should be undertaken 

to accurately report results from evolutionary rates-based analyses as presented here.  Regardless 

of whether permulation allows for greater or fewer null hypothesis rejections at a given threshold, 

they are an accurate depiction of statistical power given a data structure.  In the absence of a known 

parametric null that accurately represents a data set, a permulation-style approach is an important 

tool to calculate statistical confidence. 

2.2.5 Materials and Methods 

2.2.5.1 RERconverge 

RERconverge finds associations between genetic elements and phenotypes by detecting 

convergent evolutionary rate shifts in species with convergent phenotypes.  The method operates 

on any type of genetic element and has been used successfully for both protein-coding and 

noncoding regions.  Prior to running RERconverge, phylogenetic trees for each genetic element 

are generated using the Phylogenetic Analysis by Maximum Likelihood (PAML) program (Yang, 

2007) or related method, with branch lengths that represent the number of substitutions that 

occurred between a species and its ancestor.  Raw evolutionary rates are converted to relative 
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evolutionary rates (RERs) using RERconverge functions readTrees and getAllResiduals, which 

normalize branches for average evolutionary rate along that branch genome-wide and correct for 

the mean-variance relationship among branch lengths (Partha et al., 2019).  RERs and phenotype 

information are then supplied to correlateWithBinaryPhenotype or 

correlateWithContinuousPhenotype functions to calculate element-phenotype associations.  

Kendall’s Tau associations are calculated for binary phenotypes, and Pearson correlation values 

are calculated for continuous phenotypes, both by default. 

After calculating association statistics, signed log p-values for associations are used to 

calculate pathway enrichment using the rank-based Wilcoxon Rank-Sum test.  The 

fastWilcoxGMTAll function in RERconverge calculates pathway enrichment statistics over a list 

of pathway annotations using all genes in a particular annotation set as the background. 

2.2.5.2 Phylogenetic Simulations 

As shown in Figure 3, each permulated phenotype is generated by first performing a 

phylogenetic simulation using an established phylogenetic topology. To generate the master tree, 

whose branch lengths represent the average evolutionary rates of all genetic elements in the dataset 

for each species, the function readTrees in RERconverge can be used. Next, the master tree and 

the trait values (binary or continuous) are used to compute the expected variance of the phenotype 

per unit time, and subsequently perform a Brownian motion simulation to simulate branch lengths; 

the R package GEIGER (Harmon, Weir, Brock, Glor, & Challenger, 2008) is used to perform both 

operations. Simulated values are then used in different ways for binary and continuous phenotypes 

to generate permulated phenotypes. 
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2.2.5.3 Implementation of Permulation Methods 

In RERconverge, CC and SSM permulations are performed using the getPermsBinary 

function, by setting the argument “permmode” to “cc” or “ssm”, respectively. The function 

requires the user to supply information on the original foreground species and their relationships 

by specifying 1) the names of the extant (tip) foreground species and 2) an R list object containing 

pair(s) of sister species whose common ancestor(s) is to be included in the foreground set as well 

(see examples in Supplementary Walkthrough in (Saputra et al., 2021)).  Using these inputs, the 

function infers the original phenotype tree and assigns the phenotype values to the correct branches 

(1 for foreground, 0 for background), which is subsequently used as constraints for the 

permulation.  Phylogenetic simulations are then run using the master tree to assign simulated 

branch lengths to the tree branches.  

For the CC permulation, the n tip branches with the highest trait values from the simulation, 

where n is the number of observed tip foregrounds, are selected as the new foregrounds.  The 

function then calls the foreground2Tree function in RERconverge with “clade” set to “all” to 

construct a binary tree with a foreground set that includes all branches (tip and internal) in the 

foreground clades.  A valid permulation has the same number of internal and tip foreground 

branches as the original phenotype.  Thus, permulated phenotypes with an incorrect foreground 

configuration are rejected and phenotype generation is repeated until the correct number of 

permulations is achieved.  Note that the CC method uses the same permulated phenotype for every 

genomic element, so statistics for some genes will not be calculated for some permulations because 

of species presence/absence across genes.  In other words, some genes will have fewer total 

permulations because of the way permulated phenotypes are constructed.  The exact number of 
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foreground and background species may also differ across each permulated phenotype for the same 

gene. 

The SSM permulation matches the tree topology of the permulated phenotypes to the tree 

of individual genes. To do this, the SSM permulation follows the same steps as described above, 

with an additional step of trimming off branches that are missing in the gene tree. In this case, the 

m longest tip branches (where m is the number of observed tip foregrounds in the gene tree) are 

chosen as new tip foregrounds to run foreground2Tree.  Thus, in the SSM method, genes with 

different tree topologies will have different sets of permulations.  However, for each unique 

topology, the number and phylogenetic relationships of the foregrounds are preserved. Figure 4 

shows examples of CC- and SSM-permulated trees for 4 genes with distinct topologies.  

For the continuous phenotype, the function simpermvec generates a permulated phenotype 

given the original phenotype vector and the underlying phylogeny with appropriate branch lengths.  

The master tree from the RERconverge readTrees function is appropriate to use for simulations.  

In most cases, the user will not have to use the simpermvec function directly – instead, the 

getPermsContinuous function that calculates null empirical p-values for genes correlations and 

pathway enrichments will call simpermvec internally. 

After calculating empirical null statistics and p-values, empirical p-values per gene are 

calculated by finding the proportion of null statistics from permulated phenotypes that are as 

extreme or more extreme than the statistic calculated using the real phenotype.  This proportion 

represents the proportion of times that random chance produces a concordance between gene and 

phenotype evolution that is as strong as the observed statistic, given the underlying structure of the 

data.  In RERconverge, the permpvalcor function calculates the empirical p-values for a given set 

of permulation association statistics. Note that since empirical p-values are a proportion of total 
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permulations, the precision of empirical p-values is based on the total number of permulations 

performed.  For example, with 1,000 permulations, the lowest reportable p-value is 0.001 and 

empirical p-values calculated as 0 must be reported as <0.001 because we only have precision to 

report p-values to the thousandths place. 

Finally, to determine the number of permulations that can provide sufficient correction for 

systematic bias, the function plotPositivesFromPermulations can be used to plot how the number 

of significantly accelerated or conserved genetic elements changes with increasing number of 

permulations (e.g., Figure 6B). From the generated plot, users can determine the minimum number 

of permulations by evaluating when the number of positives start to stabilize. 

2.2.5.4 Empirical p-values for Pathway Enrichment 

Empirical null statistics and p-values for pathways are calculated using the empirical null 

statistics and p-values for individual genes.  For each set of empirical null statistics generated from 

a particular permulated phenotype, genes are assigned the log of the empirical null p-value times 

the sign of the empirical null statistic for that permulation.  Empirical null pathway statistics are 

calculated for each permulation using those values with the RERconverge function 

fastWilcoxGMTall that performs a Wilcoxon Rank-Sum test comparing values from genes in a 

pathway to values in background genes.  The function getEnrichPerms calculates null enrichment 

statistics given a set of null correlation statistics, or, alternatively, getPermsBinary and 

getPermsContinuous calculate both null correlation and null pathway enrichment statistics 

simultaneously by default for the binary and continuous phenotypes, respectively.  Empirical p-

values for pathway enrichment are then calculated as the proportion of empirical null statistics that 

are as extreme or more extreme than the observed enrichment statistic using the permpvalenrich 
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function. Pathways that show significant parametric p-values and non-significant empirical p-

values are likely cases of genes “moving in packs” and are not truly significantly enriched. 

2.2.5.5 Phylogenetic Generalized Least Squares (PGLS) 

PGLS analyses were conducted through R as implemented in the "nlme" package using the 

gls function.  Within-group correlation structure was defined using the corBrownian function from 

the "ape" package and a master tree with branch lengths representing genome-wide evolutionary 

rates per species. 

Noncoding regions were identified based on evolutionary convergence from phastCons 

scores across the 63 mammal species as described here: https://github.com/nclark-

lab/RERconverge/blob/master/NoncodingRegionWorkflow.  Stop codon calls per gene were 

obtained from Meyer et al. (Wynn K Meyer et al., 2018) and were based on genome-wide calls 

across species. 

TFBS calls were obtained using the HOCOMOCO STAT2 binding site motif based on 

position weight matrix scores.  Calls for 29,880 noncoding regions corresponding to human 

chromosome 1 were used for analyses.  Of those regions, 560 had a sufficient number of calls and 

variation in calls across species to calculate PGLS statistics. 

2.3 Proper use of branch-site models to detect convergent positive selection 

Branch-site models are a powerful tool to detect positive selection along branches in a 

phylogeny based on the ratio of nonsynonymous and synonymous mutations.  When considering 

https://github.com/nclark-lab/RERconverge/blob/master/NoncodingRegionWorkflow
https://github.com/nclark-lab/RERconverge/blob/master/NoncodingRegionWorkflow
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convergent positive selection using the popular PAML implementation of branch-site models, it is 

essential to correctly perform tests for background positive selection to correctly distinguish genes 

under foreground branch-specific positive selection (convergent positive selection) from genes 

ubiquitously under positive selection on all or many branches of the phylogeny.  Since many 

published manuscripts incorrectly use or incorrectly interpret branch-site models for positive 

selection, this work is a cautionary example and guide of how to correctly use those tests. 

I completely all work in this section independently. 

2.3.1 Introduction 

Researchers have long used comparative biology to understand adaptations to biological 

challenges. One powerful comparative approach is to study independent evolutionary lineages that 

convergently experienced an evolutionary pressure. Traits that evolved in species sharing that 

pressure, but not in other species, could be inferred to be involved in an adaptive response. This 

strategy is now frequently applied using genome sequences from multiple species to identify genes 

or regulatory sequences potentially responsible for their convergent response.  

Multiple methods have been developed to find such genes by scanning for shifts in a gene’s 

overall evolutionary rate occurring preferentially in species sharing the evolutionary pressure. 

Those methods include RERconverge (Amanda Kowalczyk et al., 2019), Forward Genomics 

(Hiller et al., 2012b), PhyloAcc (Hu et al., 2019), and HyPhy RELAX (Wertheim, Murrell, Smith, 

Kosakovsky Pond, & Scheffler, 2015). It is important to clarify that rather than looking for shared 

changes at a particular nucleotide or amino acid site, these methods identify genes that are evolving 

at different rates in the convergently evolving species compared to all other species. They have 
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been applied to discover genes involved in phenotypes such as vision loss in subterranean 

mammals (Partha et al., 2017a; Prudent et al., 2016), transition from a terrestrial to a marine 

environment (Chikina et al., 2016; Hu et al., 2019), reduction of hair density (Amanda Kowalczyk 

et al., 2021), increased lifespan in mammals (Amanda Kowalczyk et al., 2020), complex sociality 

in bees (Kapheim et al., 2015), endosymbiosis in proteobacteria (Wertheim et al., 2015), and loss 

of flight in birds (Hu et al., 2019). Importantly, these methods have statistical designs that assure 

statistically significant genes experienced a rate change preferentially in the convergently evolving 

species. However, we have seen the rise of another approach to study convergent evolution that 

does not assure the same, and which could lead to false positive claims. 

That concerning approach intends to identify genes showing evidence of positive selection 

on branches leading to the convergently evolving species, i.e., the foreground branches. Positive 

selection is inferred on foreground branches when a class of codons is found to have a dN/dS ratio 

significantly greater than one, which is a hallmark of positive selection (Hughes & Nei, 1988). 

Repeating this test for many genes serves as a screen for genes that responded adaptively to the 

convergent selective pressure. The tests are frequently performed using the branch-site models in 

the PAML package (Yang, 2007) that test for dN/dS > 1 on branches of interest. 

The problem with this approach is that the results of branch-site models are misinterpreted; 

while they do test for positive selection on foreground branches, they do not test for the absence 

of positive selection on background branches. A significant result from a branch-site test could 

indicate either that the foreground species have dN/dS >1 and the background species have dN/dS ≤ 

1 (Figure 10: Foreground-Specific Positive Selection) or that both foreground and background 

branches have dN/dS >1 (Figure 10: Tree-Wide Positive Selection). This is because, in the case of 

a gene truly experiencing positive selection on all branches, the branch-site model fits better when 
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allowing positive selection on foreground branches, even though it would fit even better if positive 

selection were allowed on all branches. Therefore, significant results from branch-site models 

alone do not reliably identify genes under positive selection associated with a convergent 

trait. This approach runs the risk of inferring that genes evolving under positive selection on most 

or all branches, such as genes interacting with pathogens, are specifically responding to the 

convergent selective pressure, when in fact they are not. Unfortunately, branch-site models are 

frequently misinterpreted in this manner (Fang et al., 2014; Kim et al., 2011; McGowen, 

Tsagkogeorga, Williamson, Morin, & Rossiter, 2020; Nam et al., 2017; Sahm et al., 2018) and can 

lead to the erroneous conclusion that vast swaths of genomes are under positive selection in 

response to the focal convergent trait, when in fact many of those genes likely experienced tree-

wide positive selection not specific to foreground branches.  

To illustrate, we demonstrate how interpreting the branch-site models in this way leads to 

false inferences of positive selection in response to a convergent pressure. We then propose a 

simple “drop-out” test that filters out genes with evidence for positive selection more broadly than 

in the foreground species. The drop-out test is a sites model test using only non-convergent species 

to test for tree-wide positive selection (Figure 10: Sites Model Drop Foreground). Genes that 

demonstrate evidence for positive selection in species of interest from branch-site models and 

show no evidence for tree-wide positive selection are candidates for convergent positive selection 

unique to foreground species. We provide code and documentation to run our recommended tests 

(https://github.com/nclark-lab/bsmodels-dropout). 

https://github.com/nclark-lab/bsmodels-dropout
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2.3.2 New Approaches 

We strongly recommend the drop-out test to detect convergent positive selection using the 

branch-site analysis and provide a framework with detailed instructions. In brief, after performing 

branch-site tests to detect positive selection in foreground species, those foreground species should 

be removed and codeml sites models, or HyPhy equivalent (Wertheim et al., n.d.), should be 

analyzed to determine if positive selection occurs tree-wide or only in foreground species. Without 

the drop-out test, it is impossible to distinguish tree-wide positive selection from convergent 

positive selection along foreground branches. 



   

 

 60 

 

Figure 10 Distinguishing Tree-Wide Positive Selection from Foreground-Specific Positive Selection.  Branch-

site models alone cannot detect positive selection unique to foreground branches. Consider two cases shown in 

the top box: the case of positive selection unique to foreground branches (Foreground-Specific Positive 

Selection) and the case of positive selection on all branches (Tree-Wide Positive Selection). In both cases, 

branch-site models for positive selection on the foreground branches will show significant signals of positive 

selection because there is positive selection along those branches (Branch-Site Model Real Foreground). 

However, if foreground branches are removed and sites models to test for tree-wide positive selection are 

performed, the two cases will behave differently (Sites Model Drop Foreground). In the case of foreground-

specific positive selection, sites models do not show signals of tree-wide positive selection. However, in the case 

of tree-wide positive selection, sites models will show signals of tree-wide positive selection through the drop 

foreground analysis. 
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2.3.3 Results and Discussion 

We present branch-site models for positive selection and drop-out site models to test for 

tree-wide positive selection performed on simulated data and real data. These results demonstrate 

that the drop-out tests are essential to distinguish convergent positive selection from tree-wide 

positive selection. 

Simulated data depicted in Figure 11 were generated with either a class of positively 

selected sites specifically along foreground branches (branch-site model simulations) or a class of 

positively selected sites tree-wide (sites model simulations). Regardless of simulation type, all 

replicates showed strong signals of positive selection along foreground branches (Fig. 2: BS2-BS1 

Real Foreground). Thus, using only branch-site models, it is impossible to distinguish foreground-

specific from tree-wide positive selection. Only upon removing foreground branches and running 

sites models did it become clear that genes simulated under foreground-specific positive selection 

showed little signal for tree-wide positive selection while genes simulated under tree-wide positive 

selection showed strong signal for such selection (Figure 11: M2-M1 Drop Foreground). 

Tests on real data confirm that such concerns prevail in genuine gene sequences (Figure 

12). To demonstrate, we arbitrarily assigned foreground species based on a “large” phenotype 

calculated from adult mass. It included 14 out of 35 mammals in the dataset, including large marine 

mammals, large African mammals, gorilla, and panda. Note that our test is to confirm that tree-

wide positive selection can be incorrectly interpreted as foreground-specific positive selection, so 

the choice of foreground species is irrelevant. Any set of foreground species, regardless of 

phenotypic convergence, could behave similarly. We demonstrate that four randomly selected 

genes with evidence of positive selection from a branch-site test also show evidence of tree-wide 
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positive selection when foreground species are removed (Figure 12: Real Foreground vs. Drop 

Foreground). Therefore, none of the genes could be concluded to be under convergent positive 

selection in conjunction with this “large” phenotype and should not be connected its convergent 

evolution. 
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Figure 11 Testing for Positive Selection Using Simulated Data.  Simulated data demonstrate that branch-site 

models for positive selection can not distinguish positive selection unique to foreground branches from tree-

wide positive selection. A) Topology of trees used to simulate sequences. In red are branches with sites under 

positive selection (dN/dS > 1). Boxes indicate foreground branches, which were used for branch-site models 

for positive selection and removed to test for tree-wide positive selection using sites models. B) Sites models 

distinguish foreground-specific positive selection from tree-wide positive selection. P-values from likelihood 

ratio tests for BS2-BS1 models (branch-site models) are indistinguishable between data simulated to have 

foreground-specific versus tree-wide positive selection. After foreground species are removed (Drop 

Foreground), p-values from M2-M1 model comparisons (sites models) are no longer significant for genes 

simulated with foreground-specific positive selection, while p-values remain significant for genes simulated 

under tree-wide positive selection, thus distinguishing the two cases. Dashed line indicates statistical 

significance threshold at an alpha of 0.05. 
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Figure 12 Testing for Positive Selection Using Real Data.  Real data demonstrate genes under tree-wide 

positive selection in mammals. A) Mammal phylogeny. Included are all species used in sites and branch-site 

models. Foreground species are labeled in red. The arbitrary phenotype “large body size” was used solely for 

demonstration purposes. B) All genes with signals of positive selection from branch-site models (BS2-BS1) 

also show evidence of tree-wide positive selection after dropping foreground species (M2-M1). Depicted are 

four genes that demonstrate patterns of positive selection in foreground branches (according to branch-site 

models) and tree-wide (according to sites models). Note that without running sites models on non-foreground 

species, we may have falsely concluded that the genes depicted are under convergent positive selection unique 

to foreground species. Dashed line indicates statistical significance threshold at an alpha of 0.05. 

 

We again emphasize that to identify genes under convergent positive selection unique to 

foreground species it is essential to perform branch-site model tests for positive selection and then 

filter out genes with evidence for tree-wide positive selection using drop-out tests. It is possible 

that studies that performed branch-site tests without drop-out tests identified genes with 

foreground-specific positive selection, but without a drop-out test it is unclear which genes those 

are. Alternatively, the authors could use a method mentioned in the introduction to test for 
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convergent rate shifts in association with their convergent trait or an additional solution presented 

by Davies et al. (Davies, Bennett, Tsagkogeorga, Rossiter, & Faulkes, 2015), who used clade 

models to control for tree-wide positive selection (Bielawski & Yang, 2004). Another possible 

strategy to control for tree-wide selection is to swap the foreground and background branches in 

the branch-site test. While this swap test is a good idea, its power depends on the number of 

foreground and background species and the relative heterogeneity of positive selection among 

those species, and thus it is less reliable than the drop-out test.  In our simulations, the swap test 

sometimes failed to detect tree-wide positive selection and sometimes erroneously detected tree-

wide positive selection in simulations of foreground-specific positive selection.  On the other hand, 

the drop-out test always accurately distinguished foreground-specific positive selection from tree-

wide positive selection, and thus we recommend the drop-out test. 

We postulate that it is unlikely to find large numbers of genes under positive selection in 

association with a trait because convergent positive selection is difficult to detect.  In previous 

work on various phenotypes, we detected relatively little positive selection (Chikina et al., 2016; 

Amanda Kowalczyk et al., 2021, 2020; Partha et al., 2017a), suggesting convergent positive 

selection strong enough to be detected by branch-site models is rare. Previous work on simulated 

data also suggests that branch-site tests for positive selection are conservative and are likely 

underpowered in cases where species are distantly-related and near synonymous mutation 

saturation (Gharib & Robinson-Rechavi, 2013). We interpret such rarity not as a downside, but an 

exciting indicator of novelty when robust signals of convergent positive selection are identified. 

Branch-site models are a useful tool to make such discoveries, especially when implemented with 

a control test to rule out phylogeny-wide positive selection. 
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2.3.4 Materials and Methods 

2.3.4.1 Simulations 

Data were simulated using evolver with the MCcodonNSbranchsites and MCcodonNSsites 

control files (Yang, 2007). For both, kappa = 1.7, # sites = 1000 codons, and tree length = 3. All 

non-stop-codon frequencies were set to 0.01639344 for simplicity. In sites models, three site 

classes were defined with omega = 0.1 at frequency = 0.15 (purifying selection), omega = 1 at 

frequency 0.15 (neutral evolution), and omega = 3 at frequency = 0.7 (positive selection). For 

branch-site models, four site classes were defined as follows: foreground and background omega 

= 0.1 at frequency 0.075 (uniform purifying selection), foreground and background omega = 1 at 

frequency 0.075 (uniform neutral evolution), foreground omega = 3 and background omega = 0.1 

at frequency 0.035 (foreground positive selection, background purifying selection), and 

foreground omega = 3 and background omega = 1 at frequency 0.35 (foreground positive selection, 

background neutral). Note that sites and branch-site simulations were designed such that the same 

proportion of sites were accelerated either in the foreground (for branch-site models) or tree-wide 

(for sites models). Five replicates were generated for each type of simulation. Example control 

files are available at https://github.com/nclark-lab/bsmodels-dropout. 

2.3.4.2 Real Data 

The mammal phylogeny was pruned from a previously reported phylogeny (Wynn K 

Meyer et al., 2018) to remove closely-related species. Such pruning reduces branch-site and sites 

model runtime, helps the models converge without reducing phylogenetic information, and 

remedies oversampling in some clades (such as primates). Mammal mass values were from the 

https://github.com/nclark-lab/bsmodels-dropout
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Anage Longevity Database (Tacutu et al., 2018), and mammals above 100,000g were defined as 

“large” foreground species. Gene alignments were from the UCSC 100-way alignment (Blanchette 

et al., 2004; Harris, 2007; Kent et al., 2002). Selected genes were pseudorandom – all genes tested 

had alignment file sizes equal to 15 kilobytes (a proxy for sequence length) and at least 50 mammal 

species of the 62 included in the full alignment. Selection of short genes allowed for fast runtimes 

and therefore testing of numerous genes (133 total genes) and helped ensure model convergence. 

Selecting highly conserved genes (present in most species) mitigated genome quality concerns and 

ensured that genes had similar foreground/background species counts. The four genes shown are 

the only genes that demonstrated foreground positive selection from branch-site models. 

2.3.4.3 Branch-site and sites models 

Branch-site models were conducted using BS1 and BS2 templates with tree topologies and 

foreground species as shown in Figure 11 and Figure 12. Briefly, both models specify model = 2 

for two or more dN/dS ratios for branches and NSsites = 2 for selection. BS1 specifies fix_omega 

= 1 and omega = 1 to fix foreground omega at 1 while BS2 specifies fix_omega = 0 and omega = 

0.4 to allow foreground sites to have omega greater than 1.  

Sites models were conducted using M1 and M2 templates topologies as show in Figure 11 

and Figure 12 with foreground species removed. Briefly, both models specify fix_omega = 0 and 

omega = 0.4 to estimate omega values. M1 specifies NSsites = 1 for negative selection and neutral 

evolution with no codon class allowed to have omega values greater than 1. M2 specifies NSsites 

= 2 to build on model M1 by allowing an additional codon class with omega values greater than 

or equal to 1. 
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All parameter values are available in control files in the GitHub repository 

(https://github.com/nclark-lab/bsmodels-dropout). 

https://github.com/nclark-lab/bsmodels-dropout
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3.0 Convergent evolutionary rate shifts in coding sequence underlie the evolution of 

longevity in mammals 

I used the methods described in the previous chapter with two phenotypes, the first of which 

is longevity in mammals.  How species age and evolve to live longer is of great interest to the 

scientific community because of its implications for healthy aging in humans.  If we can fully 

understand the genomics of aging, we can help people live longer, healthier lives.  This work was 

of further interest because it represented the first successful use of RERconverge with a continuous 

phenotype, and one of the first ever uses of any similar methods with continuous phenotypes. 

I completed the entirety of work described in this chapter individually, with the exception 

of assistance with running branch-site models for positive selection and gene tree generation that 

were conducted by Raghavendran Partha.  This work was originally published in eLife at (Amanda 

Kowalczyk et al., 2020). 

3.1 Introduction 

Humans age in the sense that an individual’s probability of dying increases as a function 

of time lived.  Interestingly, this trend is not true of all species but is true of mammals generally 

(Jones et al., 2014).  Numerous hypotheses of mammal-specific aging exist, including the 

antagonistic pleiotropy hypothesis (Williams, 1957) and the mutation accumulation hypothesis 

(Medawar, 1952), both of which refer to changes within an individual throughout its lifetime that 
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result in aging.  The antagonistic pleiotropy hypothesis postulates that genes that are beneficial to 

early life become detrimental later in life.  Such genes are retained because they increase early-life 

reproductive output and thus increase fitness.  The mutation accumulation hypothesis predicts that 

a gradual accumulation of errors in DNA sequence as a result of repeated replication during a 

lifetime’s worth of cell divisions will lead to a gradual breakdown of functionality.  Support for 

both hypotheses has been found in individual species.  Recent work has identified disease-related 

SNPs in age-related genes that are beneficial in early life and detrimental in later life in humans, 

thus indicating selective pressures associated with gene evolution related to aging and supporting 

the antagonistic pleiotropy hypothesis (Rodríguez et al., 2017).  A study of SNVs in the human 

brain found that number of mutations was positively correlated with age and that mutations were 

at loci associated with age-related disease, thus supporting the mutation accumulation hypothesis 

(Lodato et al., 2018).  However, in human populations, variability in the aging phenotype is limited 

and many confounding biological changes are correlated with aging, making it difficult to pinpoint 

specific biological processes that are causal and thus amenable to manipulation.  

On the other hand, lifespan varies dramatically (>100-fold) across mammals (Nowak, 

1999), making comparative genomics a fruitful avenue for aging research.  Numerous studies have 

investigated the genomic features of mammals with extreme lifespan such as bats (Foley et al., 

2018; Seim et al., 2013), naked mole-rats (Kim et al., 2011), whales (Keane et al., 2015), and 

elephants (Sulak et al., 2016) to identify potential causative genetic changes.  In Myotis, the 

longest-lived bat genus, species show lack of telomere shortening and corresponding expression 

changes in telomere maintenance and DNA repair genes (Foley et al., 2018).  Comparative 

genomics studies have also suggested that changes in the insulin growth factor 1 pathway may 

enable increased lifespan and cancer resistance in Myotis brandtii (Brandt’s bat) (Seim et al., 



   

 

 71 

2013).  Similarly, naked mole-rats show differential regulation of genes associated with 

macromolecule degradation, mitochondrial function, and TERT, a gene associated with telomere 

maintenance, as well as changes to genes related to tumor suppression (Kim et al., 2011).  In 

primates, genes associated with cardiovascular function, coagulation, and healing have been 

demonstrated to show evolutionary correlations with lifespan (Muntané et al., 2018).  Sequencing 

of the bowhead whale genome revealed species-specific changes in DNA repair, cell cycle, and 

aging genes (Keane et al., 2015).  In elephants, a striking increase in TP53 copy number has been 

linked to increased cancer resistance enabling longer lifespan (Sulak et al., 2016).  Despite 

compelling results, these single- and limited-species studies have limitations.  The species studied 

differ from their nearest sequenced relatives in multiple physiological traits as well as millions of 

nucleotides.  Thus, while single-species studies have yielded some credible candidates for genes 

associated with increased lifespan, it is difficult to know to what extent these represent insights 

into the universal mechanisms of lifespan regulation rather than species-specific adaptation or 

coincidental neutral changes.  In this study, we develop new methodology to evaluate the 

relationship between the evolutionary constraint of genes and pathways and quantitative lifespan 

traits in an unbiased, genome-wide, pan-mammalian analysis. 

The wide range of lifespans across the mammalian phylogeny (Figure 13A) provides the 

ideal dataset to investigate lifespan from a comparative genomics perspective.  Because 

independent changes in lifespan occurred repeatedly in the mammalian species tree, lifespan can 

be viewed as a convergent trait.  Molecular features that correlate with convergent changes in 

lifespan therefore may also occur repeatedly across a variety of organisms.  In our study we use 

protein evolutionary rates quantified as the number of amino acid substitutions on a phylogenetic 
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branch to infer convergent rate shifts associated with lifespan traits across the mammalian 

phylogeny.   

 

Figure 13 RERconverge and Longevity.  Many genes have evolutionary rates correlated with longevity 

phenotypes as demonstrated by analysis with RERconverge.  A) A subset of species used for this analysis 

alongside their maximum longevity values.  Lifespan varies widely across mammals independent of 

phylogeny.  B) Mammal body size and maximum lifespan values for 61 species.  Lines represent the 3L 

phenotype and the ELL phenotype (also see Figure 14).  C) RERconverge pipeline to find correlation between 

relative evolutionary rates of genes and change in lifespan phenotypes.  D) and E) Distribution of p-values 

from correlations between evolutionary rates of genes and change in the 3L and ELL phenotypes indicate an 

enrichment of significant correlations (also see Figure 29). 
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Evolutionary rates are useful for linking phenotypes to genes because they reflect 

evolutionary constraint experienced by a genetic element (Jianzhi Zhang & Yang, 2015).  In the 

absence of diversifying selection, genetic elements that support a specific trait are expected to be 

more constrained in species where the trait has a larger contribution to fitness.  In agreement with 

this expectation, multiple studies have shown that a genetic element providing a function less 

important for a given species is under less constraint and hence exhibits a faster evolutionary rate 

(Clark et al., 2013; Janiak, Chaney, & Tosi, 2018; Roscito et al., 2018; Wertheim et al., 2015).  

Reciprocally, when an element becomes relatively more important, its rate is expected to slow.  

Thus, in cases of phenotypic convergence, rates can be exploited to reveal important genes 

associated with the phenotype, such as changes to muscle and skin genes associated with the 

mammalian transition to a marine environment (Chikina et al., 2016) and loss of constraint of 

vision-related genetic elements in subterranean mammals (Partha et al., 2017a; Prudent et al., 

2016).  Rate shifts can thus provide an evolutionary perspective on the contribution of genes, non-

coding elements, or pathways to phenotypes of interest (Hiller et al., 2012b).  Here we report the 

genome-wide, pan-mammalian correlations between evolutionary rates of genes and lifespan 

phenotypes. 

3.2 Results 

In mammals, lifespan is strongly positively correlated with adult body size such that the 

largest mammals (whales) are longest-lived and the smallest mammals (small rodents) are shortest 

lived (Figure 13B).  However, if lifespan is corrected for body size, species including bats, the 
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naked mole-rat, and some primates are clearly exceptionally long-lived given their body sizes.  

The term “longevity” is applied to both phenotypes and previous studies have focused on small 

numbers of species at both phenotypic extremes to find genetic and physiological explanations for 

the extended phenotypes (Foley et al., 2018; Keane et al., 2015; Kim et al., 2011; Seim et al., 2013; 

Sulak et al., 2016).  In our study we explicitly distinguish two different extended longevity traits:  

the “long-lived large-bodied” trait (3L) and the “exceptionally long-lived given body size” trait 

(ELL). Using maximum lifespan and body size data (Tacutu et al., 2018) we define the 3L and 

ELL phenotypes (Supp. File 1 in (A. Kowalczyk, Partha, Clark, & Chikina, 2020))  to be the  first 

and second principal components of body size and maximum lifespan (Figure 13B, Figure 14).  

The resulting trait values are orthogonal with respect to each other, ensuring that they can be 

analyzed independently. 

Having defined the 3L and ELL phenotypes, we compute the association between these 

phenotypes and protein-specific relative evolutionary rates (RERs) using the RERconverge 

method (Amanda Kowalczyk et al., 2019; Partha et al., 2019) (Figure 13C and Methods).  Relative 

evolutionary rates quantify the deviation in evolutionary rate of a protein along a specific 

phylogenetic branch from proteome-wide expectations.  Negative RERs indicate fewer 

substitutions than expected due to increased constraint.  Positive RERs correspond to more 

substitutions than expected, which could arise due to relaxation of constraint or positive selection.  
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Figure 14 Longevity Phenotypes.  3L phenotype values (A) and ELL phenotype values (B) for 61 mammal 

species alongside mammalian phylogenetic tree. 
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After computing correlations between all protein relative evolutionary rates and the 3L and 

ELL phenotypes, we find an excess of low p-values (Figure 13D and Figure 13E).  In order to 

evaluate how much of the signal is due to true association with the phenotypes, we used a 

phylogenetically restricted permutation strategy (termed “permulations”, see Permulation 

Analysis (Phylogenetically-Restricted Permutations)) to generate null correlation statistics.  We 

find that the real and permuted p-value distributions are indeed different, indicating that a large 

fraction of genes are correlated with lifespan phenotypes.  We quantify the fraction of non-null 

genes using the π1 method (John D. Storey, 2003).  Using our permulation p-values as the null 

distribution, the fraction of true positives was inferred to be ~15% (π1=0.153) for the 3L phenotype 

and ~7.5% (π1=0.075) for the ELL phenotype.  Using the theoretical uniform null distribution, the 

corresponding values are π1=0.108 and π1=0.021, respectively.  Regardless of the null distribution 

choice, our analysis clearly demonstrates a significant molecular signal for gene evolutionary rates 

correlated with lifespan phenotypes, with a considerably higher number of associations for the 3L 

phenotype. 

Our analysis investigates both positive and negative correlations between evolutionary 

rates of genes and changes in lifespan phenotypes.  Positive correlations represent genes with faster 

evolutionary rates in species with high 3L and ELL phenotype values relative to species with low 

phenotype values.  Conversely, negative correlations represent genes with slower evolutionary 

rates in species with high 3L and ELL phenotype values relative to species with low phenotype 

values.  Note that correlation directionality is relative – faster evolution in low phenotype values 

corresponds to slower evolution in high phenotype values and vice versa.  However, the choice 

has important consequences for biological interpretation and necessitates an in-depth discussion. 
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RERs reflect the amount of constraint on the genetic element.  A decrease in RER implies 

greater evolutionary constraint and a greater contribution of that gene to fitness. An increase in 

RER, on the other hand, has two nearly opposite interpretations. An increased RER could arise 

because of a relaxation of evolutionary constraint driven by a reduced contribution to fitness. 

Alternatively, an increased RER could arise due to positive (also termed directional) selection, 

which implies that that the gene is actively undergoing directed evolution and thus could be 

contributing to trait-related innovation.  However, since there is no default evolutionary rate for 

protein coding sequence, genes evolving slower in long-lived species could just as easily be 

interpreted as evolving faster in short-lived species.  In our study, we have chosen to interpret the 

rate changes with reference to the effect in the long-lived species.  The ancestral mammal is 

believed to have been small and short-lived, and thus large values of 3L and ELL are derived traits.  

Consequently, our interpretation reduces to assuming that change in phenotype and shifts in 

evolutionary rate coincide.  

 With this interpretation, negative correlations imply that a gene is more important in 

species with large values of 3L and ELL, while positive correlations imply either a relaxation of 

constraint or positive selection in species with large values of 3L and ELL. While such positively 

correlated genes would be of great interest if they indeed represent molecular innovations 

underlying evolution of extended lifespan, we find relatively fewer such genes, no evidence of 

positive selection among them (see Supp. File 6 in (A. Kowalczyk et al., 2020)), and no enriched 

pathways associated with them. 

We thus focus our analysis on the negatively correlated genes, which we interpret as being 

under increased purifying selection in species with high longevity (3L or ELL) values.  It is 

theoretically possible for negative correlations to be caused by accelerated evolution in small and 
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short-lived species because of directional selection associated with development of low longevity 

values.  However, this possibility can be ruled out via branch-site models for positive selection 

using the low longevity species as foreground, as these show little evidence for positive selection 

(see Supp. File 6 in (A. Kowalczyk et al., 2020)).  Together, these analyses support a single 

interpretation of the main rate convergence signal as a decrease in evolutionary rate, and thus an 

increase in purifying selection, experienced by species with large 3L and ELL values. It is 

important to emphasize that these genes are unlikely to have contributed to molecular innovation 

that lead to the establishment of 3L and ELL traits, but rather these represent existing biological 

systems that become especially important after the traits are established (see Discussion). 

While we observe a clear excess of genes at low p-values, we focus on pathway enrichment 

analysis which both demonstrates a stronger signal and facilitates interpreting our results in the 

context of existing knowledge.  We investigate enriched pathways for both 3L and ELL 

phenotypes using a rank-based method (see Supp. File 2 in (A. Kowalczyk et al., 2020)).  After 

performing standard multiple-hypothesis testing corrections on the empirical p-values from 

permulations, there remains considerable pathway-level signal underlying the 3L and ELL traits.  

Both the gene-level and pathway-level results were highly robust to species removal, which 

indicates the biological pathways revealed here are important for longevity across mammals and 

are not restricted to specific species (see Species Robustness through Subtree Analysis, Figure 15 

and, Figure 16, and Supp. File 4 and Supp. File 5 in (A. Kowalczyk et al., 2020)). 

 



   

 

 79 

 

Figure 15 Random Subtree Analysis.  Each panel demonstrates the correlation between results using all 

species and results with ten to eighty percent of species removed.  Panels A and B show results from the PC1 

phenotype 3L and panels C and D show results from the PC2 phenotype ELL.  Panels A and C show 

correlations between gene results as quantified by the sign of the correlation statistic times the negative log p-

value of the gene correlation.  Panels B and D show correlations between enrichment results as quantified by 

the sign of the pathway enrichment statistic times the negative log p-value of the pathway enrichment 

statistic.  There is a strong relationship between results from the full dataset and results from partial datasets, 

which suggest that the results are generally robust to species presence and absence. 
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Figure 16 Targeted Subtree Analysis.  Correlation statistics for genes and enrichment statistics for canonical 

pathways plotted with statistics calculated from data with bat and naked mole-rat removed (A, B, C, and D) 

and with marine species removed (E, F, G, and H).  Points plotted are the sign of the correlation statistic 

times the negative log p-value of the correlation for genes (A, C, E, and G) and the sign of the enrichment 

statistic times the negative log p-value of canonical pathway enrichment (B, D, F, and H).  These data indicate 

a strong relationship between results from the full species set and the partial species sets, which suggests the 

bats, naked mole-rat, and marine mammals do not strongly influence the results. 

 

Among pathways under increased constraint in 3L species, we find a striking abundance 

of pathways related to cancer control.  Those pathways can be organized into the broad categories 

of “cell cycle control”, “cell death”, and “innate and adaptive immunity”, and they also include 

other cancer-related pathways such as p53 regulation and telomere maintenance (Figure 17A).  We 

likewise see a significant enrichment in cancer-related genes more broadly.  We compared 

correlation statistics between known cancer genes from Bailey et al. (2018) and found that tumor 

suppressor genes had significantly lower correlation statistics (rho) than all genes (Wilcoxon rank-
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sum p-value=4.114e-8) while oncogenes had no significant difference in correlation statistics 

compared to all genes (Wilcoxon rank-sum p-value=0.3745) (Figure 18).  This may indicate 

preferential purifying selection on tumor suppressor genes in large, long-lived species.  

Considering these findings, our 3L results can be naturally interpreted in the context of Peto’s 

Paradox (Peto, 2016).  The paradox reasons as follows: if all cells have a similar probability of 

undergoing a malignant transformation, organisms with more cells should have a greater risk of 

developing cancer.  However, empirical cancer rates do not vary with body size (Peto, 2016), 

which implies that larger animals harbor mechanisms to suppress cancer rates.  Top 3L constrained 

pathways are associated with multiple cancer control mechanisms, including DNA repair, cell 

cycle control, cell death, and immune function (Figure 17B and Figure 17C).  A normal cell’s 

transformation to malignancy involves failure of all these processes, and our analysis suggests that 

3L animals are invested in the maintenance of each of their associated pathways through increased 

purifying selection.  Based on enrichment and permulation results, we can infer that cell cycle 

fidelity, an early step in cancer development, is most important over evolutionary time scales for 

3L species.  Further, there is no evidence for enrichment of pathways associated with metastasis 

and angiogenesis, later steps in cancer development.  This finding suggests that large, long-lived 

species have experienced increased selective pressure to protect pathways involved in early cancer 

stages but not later stages, perhaps because the most severely negative fitness impacts of cancer 

are felt earlier in its development.  Species-specific cancer control mechanisms have been 

identified in individual species, such as increased TP53 copy number in elephants (Sulak et al., 

2016), but we show here that investment in cancer control is key to longevity across the entire 

dmammalian phylogeny because top enriched pathways for the 3L phenotype do not depend on a 

handful of species (Figure 15 and Figure 16). 
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Figure 17 Cancer Control Mechanisms Underlying Mammalian Longevity.  Pathways that evolve slower in 

long-lived, large-bodied mammals are related to control of cancer.  A) Significantly enriched pathways under 

increased constraint in species with larger values of the 3L phenotype.  Each dot represents a pathway, and 

the size and color of the dot represents the negative log of the rank-sum enrichment statistic.  Width of lines 

connecting pathways represent the number of genes the pathways have in common.  B) and C) Pathways 

under increased constraint in 3L species play various roles in cancer control.  Pathways associated with early 

stages of cancer development (DNA repair, cell cycle control, cell death, and immune functions) are 

significantly enriched, while pathways for later stages of cancer development (angiogenesis and metastasis) 

are not enriched.  In C), each dot represents a pathway.  Yellow dots have significant permulation p-values 

while black dots do not.  Note that dots for “All” pathways are excluded for the sake of clarity. 
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Figure 18 Oncogenes and Tumor Suppressor Genes.  Correlation statistics (Rho) for gene evolutionary rate 

with PC1 3L phenotype.  Oncogenes show no significant difference in Rho compared to all genes, which 

tumor suppressor genes show significantly more negative correlations (Wilcoxon Rank-Sum). 

 

An additional pathway that shows a strong signal of increased constraint with the 3L 

phenotype is the insulin-like growth factor (IGF1) signaling pathway (Figure 19), which deserves 

special consideration.  Perturbations of IGF1 signaling result in changes in lifespan and body size 

in diverse organisms (S. Johnson, Rabinovitch, & Kaeberlein, 2013; Kimura et al., 1997; Stout et 

al., 2013), which suggests that the IGF1 pathway may be a source of innovation underlying the 

evolution of the 3L trait.  However, we find that IGF1 pathway genes in fact evolve more slowly 

and are thus under increased purifying selection in large, long-lived species.  The magnitude of 

this signal is quite striking; IGF1 and IGF1R are ranked 1014 and 94 respectively for increased 

constraint and several other pathway members are near the top (see Figure 17A).  A possible 
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explanation is that the IGF1 pathway plays an important role in cancer control (Larsson, Girnita, 

& Girnita, 2005), and this cancer-related signal of constraint dominates any adaptive signal related 

to lifespan.  There are also further reasons to believe that the IGF1 pathway is not the main source 

of the 3L trait.  Across the mammalian phylogeny, lifespan is strongly correlated with body size, 

but genetic perturbations in the IGF pathway result in longer-lived individuals that are of smaller 

size (Holzenberger et al., 2003; Sutter et al., 2007) thus decoupling the two traits.  This strongly 

suggests that changes in the IGF1 pathway are unlikely to drive the natural evolution of the large, 

long-lived phenotype, which is established through a different, yet-unknown mechanism. 

For the ELL phenotype, we find a smaller, more focused set of enriched genes and 

pathways.  Of those significantly enriched constrained pathways for ELL, we see some overlap 

with functional groups represented in results from the 3L phenotype, notably immune-related and 

DNA repair pathways (Figure 20A).  However, although the functional groups are the same, the 

pathways contained within them differ between the two phenotypes (see File S2, File S3 in (A. 

Kowalczyk et al., 2020)).  In particular, the only significantly constrained DNA repair pathways 

for the 3L phenotype involve Fanconi’s anemia, while the ELL phenotype shows significantly 

constrained DNA repair pathways for a variety of repair functions (Figure 20).  Such pathways 

stand out not only because of the connection between DNA repair and cancer control, but also 

because of the observed relationship between DNA repair and aging independent of cancer 

incidence.  This relationship can be demonstrated experimentally by creating double-stranded 

DNA breaks in laboratory mice to induce an aging phenotype (White et al., 2015).  There is also 

evidence that DNA damage causes dysregulation of the cellular chromatin state and thus can 

contribute to aging even in post-mitotic cells (Oberdoerffer et al., 2008; Shi & Oberdoerffer, 2012).   
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Figure 19 IGF Pathway.  The IGF1 signaling pathway is under increased evolutionary constraint in long-

lived, large-bodied mammals.  A) IGF1 signaling pathway genes are significantly correlated with change in 

the 3L phenotype.  B) The IGF1 signaling pathway is significantly enriched for increased evolutionary 

constraint in large, long-lived species.  The barcode indicates ranks of genes in the pathway within the list of 

all pathway-annotated genes.  The worm indicates enrichment as calculated by a tricube moving average, a 

type of moving average in which values near the end of the sliding window are down weighted to reduce the 

effect of extreme values in any given window.  The dashed horizontal line marks the null value indicating no 

enrichment.  C) The IGF1 signaling pathway contains many genes whose evolutionary rates are negatively 

correlated with the 3L phenotype.  Shading indicates the Rho-signed negative log p-value for the correlation.  

Genes in white are not included in the IGF1 pathway annotation used to calculate pathway enrichment 

statistics, but they are included in the diagram for sake of completeness.  The GNB2L1 gene (gray) is in the 

IGF1 pathway annotation, but correlation statistics were not calculated for that gene because too few 

branches in the gene tree met the minimum branch length cut-off. 
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Figure 20 DNA Repair Pathways.  DNA repair pathways are under increased evolutionary constraint in 

mammals that are exceptionally long-lived given their body size.  A) Significantly enriched pathways under 

increased constraint in species with larger values of the ELL phenotype.  Bar height indicates the negative log 

permulation p-value for each pathway, and the color of bars indicates the pathway enrichment statistic.  B) 

DNA repair pathways are more significantly enriched for increased evolutionary constraint in species with 

large values of the ELL phenotype than species with large values of the 3L phenotype.  The barcodes indicate 

ranks of genes in the pathways within the list of all pathway-annotated genes.  The worms indicate 

enrichment as calculated by a tricube moving average, a type of moving average in which values near the end 

of the sliding window are down weighted to reduce the effect of extreme values in any given window.  The 

dashed horizontal lines mark the null value indicating no enrichment.   

 

In addition to DNA repair-related pathways, we also noted pathways related to NFKB 

signaling for which overexpression in downstream targets has been associated with aging. 

Experimental evidence suggests a connection between NFKB signaling and DNA repair through 
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sirtuins, a chromatin regulator family that has already been implicated in lifespan control (Howitz 

et al., 2003; Mao et al., 2012).  Sirtuins mediate DNA damage-induced dysregulation and are also 

responsible for silencing NFKB-regulated genes, thus connecting the two processes (Salminen et 

al., 2008).  Overall, our analysis strongly suggests that fidelity in DNA repair and NFKB signaling 

contributes to the fitness of ELL species, indicating that these pathways may be a fruitful avenue 

for aging research and intervention. 

3.3 Discussion 

We employed an evolutionary rates-based method as an unbiased, genome-wide, pan-

mammalian scan to identify genes and pathways that evolve significantly slower in long-lived 

large-bodied species (3L) and species that are exceptionally long-lived given their body size 

(ELL).  Pathways related to cancer control, including cell cycle, DNA repair, cell death, and 

immunity, evolve significantly slower in 3L species, which suggests that cancer resistance is an 

important functionality to enable to evolution of large and long-lived species.  Alternatively, a 

broader set of DNA repair genes and a more focused set of immune genes related to NFKB 

signaling evolve significantly slower in ELL species, both of which may be linked to effective 

DNA repair in order to preserve chromatin state. 

Our analysis differs from previous efforts in both methodology and results.  Firstly, we do 

not consider individual amino acid changes within a protein as the unit of convergence, but rather 

we calculate the overall evolutionary rate of a protein on each branch of a phylogeny and consider 

these evolutionary rates as the unit of convergence.  Secondly, unlike previous studies that focused 
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on lineage- or species-specific changes, we look for correlations between evolutionary rates and 

quantitative life history traits across the entire phylogeny.  This pan-mammalian approach allows 

us to generalize our findings to describe evolutionary trends throughout all mammals.  We also 

draw a careful distinction between absolute lifespan and relative lifespan, which allows us to make 

district conclusions about the 3L and the ELL phenotypes. 

The most important distinction between our work and previous work is that prior studies 

began with the assumption that some genes must be under positive selection in association with 

evolution of extended lifespan.  From our unbiased analysis, we find that in fact the strongest 

signal of evolutionary convergence is that of increased constraint on certain genes and gene 

families in long-lived species (see Figure 17).  While some of the pathways have been reported 

previously (such as cell cycle control, DNA repair, telomerase repair, and IGF1 signaling) our 

finding is actually the opposite of (though not necessarily contradictory to) the positive selection 

signal that has been emphasized in previous work, which from the perspective of evolutionary rate 

is decreased constraint.  In fact, we find comparatively few genes and no significant pathway 

enrichments for the opposite trend – faster relative rates in longer lived species – which would 

correspond to genes potentially under positive selection in longer-lived species.  We therefore 

focus our discussion on genes and pathways evolving slower in species with large values for the 

3L and ELL traits.  We considered these genetic elements to be important to the evolution of the 

3L and ELL traits because they have been protected from accumulating deleterious mutations and 

therefore evolve slower.   

Despite considerable previous work on genes under positive selection in species with 

extreme lifespan traits, our analysis did not recover any positively selected pathways in the pan-

mammalian analysis.  However, for any new trait to arise, some corresponding genetic changes 
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must occur.  It is possible that many of the molecular innovations that lead to increased lifespan 

are species-specific and thus would not be detected by our method.  However, it is also true that 

our relative evolutionary rates method is much more suited to detecting the kind of long-term 

convergent increases in purifying selection that we observe.  Figure 21 represents a simple 

schematic history of the evolution of a trait and corresponding rate changes. During the 

establishment of a new trait, some genes experience a brief period of positive selection which 

generates the molecular innovation to create the new trait, after which the derived sequence will 

again be subject to purifying selection.  Using extant species as a genomic reference for 

evolutionary history, we can only infer the average rate over the entire history and the brief period 

of positive selection results in a small, potentially undetectable signal.  On the other hand, we can 

hypothesize another class of genes which become more important as a trait is established and thus 

experience continuously increased purifying selection after the trait exists.  These are the trait 

“enabling” as opposed to the trait “establishing” genes.  Because the rate change in the case of 

trait-enabling genes is permanent, it has a greater impact on the inferred average rate observable 

from extant data.  Our analyses strongly support that in the case of extended longevity, such 

“enabling” genes not only exist but are also convergent across independent trait change events. 

We have interpreted the rate correlation from the prospective of species with large 

phenotype-values thereby assuming phenotype changes and rate changes coincide.  The implicit 

choice of default rate does not affect the final gene ranking on which our analysis is based, it does 

have one important consequence. While decreases in rate are easily interpretable as increased 

constraint, rate increase can be due to relaxation of constraint or positive selection.  We address 

this asymmetry simply by testing both possibilities. We test the relative accelerated genes for 

positive selection in the long-lived species and the relatively decelerated genes for positive 
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selection in the short-lived species. We find no evidence of systematic positive selection in either 

direction. 

 

Figure 21 Diagram of Selective Pressure Shifts.  During selective pressure shifts that drive phenotypic 

changes, the genetic evolutionary rate landscape shifts for many genes.  Imagine a simplified case where Gene 

1 and Gene 2 start at the same evolutionary rate (solid red and blue lines, respectively).  Trait-driving genes 

like Gene 1 enter a transient state of increased evolutionary rates to drive trait change.  Complementary 

genes that support the trait like Gene 2 experience increased purifying selection to allow the trait to persist as 

it is established.  True rates (solid red and blue lines) are not measurable because they represent rates at 

inaccessible ancestral evolutionary timepoints – only accessible extant sequences can be used to access 

average rates over time (dashed red and blue lines, which represent positive and negative RERs).  Therefore, 

transient periods of positive selection are less readily able to be captured by RERconverge than sustained 

purifying selection due to the greater magnitude of their captured rate shifts. 
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We interpret our strongest pathway enrichment signals as indicating that cancer control is 

important for enabling evolution of the 3L phenotype, which is in agreement with previous work 

that has found similar changes in expression levels of cell cycle and immune function genes in 

both cancerous and aging cells (Chatsirisupachai, Palmer, Ferreira, & Magalhães, 2019).  

However, there may be alternative explanations.  Specifically, differential pathogen pressure is 

expected to affect some of the same pathways.  The connection to immune pathways is clear, and 

viruses are known to co-opt the cell cycle.  TP53 and cell death are likewise important mechanisms 

by which cells control viral infection.  All of these pathways may thus be under increased 

constraint in species more likely to experience viral infections.  However, we believe these 

explanations are unlikely for several reasons.  Firstly, we do not see an enrichment of genes that 

are specialized for virus control, such as MX1, OAS1, DHX58, and genes activated by type I 

interferon.  Secondly, the interaction between pathogen pressure and evolutionary rates has been 

studied extensively and it is found that it typically drives adaptive changes in pathogen interacting 

protein as pathogens are often unique to a species (Kosiol et al., 2008; Sackton et al., 2007; Shultz 

& Sackton, 2019).  This is at odds with the increased constraint of immune genes that we observe.   

Finally, the probability of cancer increases with age and there is theoretical and empirical evidence 

that importance of cancer resistance increases with body-size and lifespan.  On the other hand, for 

humans the probability of dying from many infections decreases sharply in early life (though 

increases again at post-reproductive ages) (Palmer, Albergante, Blackburn, & Newman, 2018) 

suggesting that infection resistance should not be preferentially selected for in long-lived species.  

Overall, the genes and pathways we identified whose constraint is negatively correlated 

with the 3L and ELL traits encompass functionalities important for the evolution of extended 

lifespan, and they therefore represent candidate genes and pathways for further experimental 
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exploration.  Importantly, such genes were uncovered using an unbiased, genome-wide pan-

mammalian scan.  As such, these results point to keys to exceptional longevity that are not specific 

to one or a handful of species, but that are universal across mammals. 

3.4 Methods 

RERconverge measures relationships between relative evolutionary rates of orthologous 

genes and phenotype values based on a set of gene trees whose branch lengths represent protein 

evolutionary rates and a set of phenotype values, either binary or continuous.  The RERconverge 

package is freely-available for use at https://github.com/nclark-lab/RERconverge along with 

walkthroughs for beginner users (Amanda Kowalczyk et al., 2019).  The original RERconverge 

method was successfully used to find genes undergoing convergent evolutionary rate shifts in 

marine mammals (Chikina et al., 2016) and subterranean mammals (Partha et al., 2017a), and 

recent statistical improvements have made RERconverge more robust and have given it more 

power to detect such rate shifts (Partha et al., 2019).  Here, the RERconverge methods were 

extended to use on continuous traits. 

To perform the RERconverge analysis, we first used PAML (Yang, 2007) to create 

maximum likelihood gene trees whose branch lengths represent evolutionary rates by means of 

number of amino acid substitutions.  Gene trees were generated for 19,149 amino acid alignments 

of orthologous genes from the 62 mammal species from the UCSC 100-way alignment (Blanchette 

et al., 2004; Harris, 2007; Kent et al., 2002) using the hg19 genome, all of which are available at 

http://genome.ucsc.edu/.  Trees were read into R using the readTrees() function from 

https://github.com/nclark-lab/RERconverge
http://genome.ucsc.edu/
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RERconverge.  This step also estimated a master tree with branch lengths that represented the 

average branch lengths across many gene trees.  For all further steps, only 61 species were used as 

listed in Supp. File 1; the cape golden mole was excluded because longevity data were not available 

for it.  Relative evolutionary rates corrected for genome-wide evolutionary rates for each species 

as well as corrected for branch length heteroskedasticity using a weighted regression approach 

(Partha et al., 2019) were calculated using getAllResiduals() with weight=T, scale=T, cutoff=.001, 

and useSpecies=species names for the 61 mammals species.   

Relative evolutionary rates (RERs) quantify the deviation in evolutionary rate of a protein 

along a specific phylogenetic branch from proteome-wide expectations.  Negative RERs indicate 

fewer substitutions than expected due to increased constraint.  Positive RERs correspond to more 

substitutions than expected, which could arise due to relaxation of constraint or positive selection.  

To correlate RERs with lifespan phenotypes, we use phenotypic change along phylogenetic 

branches computed from maximum likelihood ancestral state reconstruction (Revell, 2012).  This 

transformation is equivalent to phylogenetically independent contrasts (Felsenstein, 1985) and 

thus removes phylogenetic dependence from the phenotype values.   

We used the char2Paths() function on each phenotype with trees read in using readTrees() 

to create a phenotype vector that represented the predicted difference in phenotype values between 

each species and its ancestor.  The char2Paths() function first uses maximum likelihood estimation 

through the fastAnc() function from phytools (Revell, 2012) and then subtracts the values between 

connected pairs of species to calculate a phylogenetically-independent measure of the change in 

the phenotype over evolutionary time.  Finally, the getAllCor() function was run with each 

phenotype and the RER matrix with method = "p", min.pos = 0, and winsorizeRER = 3 to perform 

Pearson correlations with RERs winsorized such that the two most extreme RER values are set to 
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the value of the third most extreme RER.  See Figure 22 for evolutionary rate-phenotype 

scatterplots with high correlation values. 
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Figure 22 RERconverge Scatterplots.  Scatterplots for both 3L and ELL phenotype trait change versus 

relative evolutionary rate.  Genes depicted for the 3L phenotype have adjusted correlation p-values below 
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0.15, genes depicted for ELL positive correlations have adjusted correlation p-values below 0.4, and genes 

depicted for ELL negative correlations have adjusted correlation p-values below 0.5. 

 

The gene lists produced from the RERconverge correlation analyses were used to calculate 

pathway enrichments for all canonical pathways from mSigDB (Liberzon et al., 2011) and Mouse 

Genome Informatics (MGI) functional annotations (Blake et al., 2003; Eppig et al., 2015).  For 

each pathway, a Wilcoxon Rank-Sum statistic was calculated to compare the sign of Rho times 

the negative log p-value for correlations of genes in the pathway to the same measure for all genes 

included in a pathway annotation using getStat() from RERconverge to calculate the sign of Rho 

times the negative log p-value for correlations for each gene and fastwilcoxGMTall() to quickly 

calculate an approximation of the Wilcoxon Rank-Sum statistic. 

3.4.1 Permulation Analysis (Phylogenetically-Restricted Permutations) 

In addition to calculating theoretical enrichment statistics, we developed a novel 

phylogenetically-restricted permutation strategy dubbed “permulations” to calculate empirical p-

values for each pathway enrichment statistic.  Permulations are a combination of permutations and 

simulations in reference to the strategy for generating null phenotype values to use to generate null 

statistics.  To perform permulations, first phenotype values (3L and ELL) were simulated for each 

species using phylogenetic simulations, and then original phenotype values were reassigned to the 

species based on the rank of the simulated values (see Figure 23).  Simulations were performed 

using the geiger library in R using a Brownian motion approach and the average evolutionary rate 

tree created by RERconverge (Harmon et al., 2008).  After creating new phenotype values, 
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RERconverge analyses were performed to calculate correlations between evolutionary rates of 

genes and phenotype values, and enrichment statistics were calculated using these gene results.  

The process of creating new phenotype values and calculating enrichment statistics was repeated 

1,000 times for each phenotype and the empirical p-value for pathway enrichment was calculated 

as the proportion of times the permulation enrichment statistic was greater than the enrichment 

statistic calculated using real phenotype values. 

 

 

Figure 23 Permulation Diagram.  Diagram of a toy example of permulation calculations.  Starting with 3L or 

ELL phenotypes, new phenotype values are simulated based on average genome-wide evolutionary rate.  

Original phenotype values are then reassigned to species based on the ranks of simulated values and used as 

the new permulated phenotype values. 

 

Permulations are an attractive option to calculate empirical p-values because they use 

fabricated phenotypes that are independent of RERs but respect the underlying phylogenetic 

relationships between species (due to use of phylogenetic simulations) while maintaining the 

original range of the data (due to rank-based assignment of true phenotype values).  These types 
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of analyses are a common tool in genomics because they allow for control of the dependence across 

tests caused by intercorrelations among genes.  Permulations are highly analogous to permutations 

commonly performed in differential expression analysis, and we use them for the same purpose, 

namely to calculate empirical pathway-level statistics (Aravind Subramanian et al., 2005).  This 

step is critical for evaluating pathway enrichment results because many pathways have elevated 

RER correlations even when conditioned on the phenotype of interest.  A pathway with high RER 

correlation among its genes is more likely to show up as enriched when using a test that assumes 

gene independence, such as the Wilcoxon Rank-Sum test.  Permulations allow us to generate an 

empirical null distribution for pathway enrichment statistics to correct for interdependence among 

gene ranks.  Indeed, we find multiple pathways that show significant enrichment using a Wilcoxon 

Rank-Sum test but insignificant empirical p-values using permulations.  We also show that 

permulation p-values, which take phylogeny into account, are more conservative than permutation 

p-values, which ignore phylogenetic dependence, and equally as conservative as the phylogenetic 

simulation p-values (see Figure 24).   
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Figure 24 Compare Permulations, Permutations, and Simulations.  Quantile-quantile plots demonstrating 

that permulation p-values are more conservative than permutation p-values for both 3L and ELL phenotypes 

(A and B) and permulation p-values are equally as conservative as simulation p-values for both 3L and ELL 

phenotypes (C and D). 
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3.4.2 Positive Selection Tests 

In genes significantly correlated with the 3L and the ELL phenotypes, we investigated 

evidence for relaxation of constraint and positive selection on trait-defining foreground branches 

using phylogenetic models of codon evolution.  We did so using a representative subset of the full 

mammalian phylogeny (see Figure 25).  Trait-defining foreground branches were specified 

independently for the two phenotypes along both axes of trait values – positive and negative.  In 

total we have four sets of trait-defining foreground branches, namely positive 3L, negative 3L, 

positive ELL, and negative ELL.  Figure 26 shows the phylogeny of species used for this analysis 

and the four sets of trait-defining foreground branches.  Species were selected for the 

representative subset based on three criteria: 1) all species were placental mammals (the 

monotreme and marsupials were excluded), 2) species with highest and lowest 3L and ELL 

phenotype values were included and used as foreground species in their respective tests, and 3) 

closely-related non-foreground species were included.  Only placental mammals were used 

because the inference of positive selection can be confounded in the non-placental clade due to the 

long divergence time between the clades and hence saturation of synonymous sites for many genes.  

Foreground species were selected based on 3L and ELL values.  A subset of non-foreground 

species was selected to correct for over- and under-sampling in particular clades while maintaining 

valid “outgroups” for foreground species.  This subset also eliminated species that were essentially 

duplicates in terms of tests for positive selection.  For example, the primate clade is sampled much 

more than other clades, i.e. more primate genomes are available.  Additionally, because most of 

these species are non-foreground species, their presence has little impact on positive selection tests.  

To correct for the oversampling, we used five out of twelve primates in our subtree, three of which 
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were foreground species (human, marmoset, and squirrel monkey) and two of which were 

outgroups (rhesus as an outgroup to human and bushbaby as an outgroup to the whole clade).  We 

used similar logic to select outgroup species throughout the rest of the phylogeny. 

We inferred the significance of relaxation of constraint on each foreground branch set using 

likelihood ratio tests (LRT) between Branch-site Neutral (BS Neutral) and its nested null model 

M1 (sites neutral model) in PAML (Yang, 2007). Similarly, we performed LRTs between branch-

site selection model (BS Alt Mod) and its null BS Neutral were used to infer positive selection on 

the foreground branches. Probabilities for each of these two LRTs were estimated using the chi-

square distribution with 1 degree of freedom. We additionally inferred significance of mammal-

wide relaxation of constraint and positive selection using the LRTs between M8A (Neutral model) 

vs M0 (null model) and M8 (positive selection model) vs M8A respectively. Prior to performing 

the mammal-wide tests in genes corresponding to each of the four foreground branch sets, we 

removed the corresponding foreground branches, allowing us to obtain unbiased estimates for 

significance of relaxation of constraint and positive selection from only the background 

mammalian branches. 
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Figure 25 Full Phylogenetic Tree.  Phylogenetic tree with all 61 mammal species used for RERconverge 

analysis.  Branch lengths represent average evolutionary rates for each species as estimated by RERconverge.  

This tree topology was first reported in (Wynn K Meyer et al., 2018) and was created based on two widely-

accepted phylogenies (Bininda-Emonds et al., 2007; Meredith et al., 2011) and extensive literature review. 
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Figure 26 Subtree for Branch-Site Models.  Phylogenetic tree with 34 placental mammal species used for 

branch-site tests for positive selection.  Species used as foreground for each of the four phenotypes (PC1=3L, 

PC2=ELL) are represented by symbols and shapes. 
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3.4.3 Species Robustness through Subtree Analysis 

We were interested in assessing the sensitivity of our results to the choice of mammalian 

species used in our analyses.  The mammalian genomes available represent a subset of not only all 

extant mammals, but all mammal species that have ever existed.  Therefore, the genomes used in 

this analysis represent an incomplete, and perhaps even a biased representation of mammal species.  

Since we would like to extend our conclusions to pertain to mammals in general, we sought to 

quantify the effects of our incomplete data on our gene and pathway results. 

To do this, we created subsets of our data that contained fewer species.  These subsets had 

10, 20, 30, 40, 50, 60, 70, and 80 percent of species randomly removed (6, 12, 18, 24, 30, 36, 42, 

and 48 species removed out of 61 total, respectively) with ten random subsets created for each 

species removal level.  We then ran the standard RERconverge analysis on these subsets to acquire 

correlation statistics representing the relationship between evolutionary rate of each gene across 

species and longevity phenotypes in those species.  We also ran enrichment analyses on the subset 

gene results to acquire pathway enrichment statistics.  After performing these analyses, we 

calculated correlations between results from our full dataset and results from the subsets, where 

results were quantified as the negative log p-value times the sign of the statistic. 

We further tested the sensitivity of our results to specific species presence/absence by 

performing targeted species removal of species groups with which we expected to have other 

phenotypes confounded with body size, namely marine mammals, and species that may have non-

convergent genetic mechanisms for lifespan extension, namely bats and the naked mole rat.  We 

created two new data subsets that only contained non-marine species (dolphin, manatee, killer 

whale, walrus, and Weddell seal were removed) and only non-bat and non-naked-mole-rat species 
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(megabat, black flying-fox, microbat, David’s myotis bat, big brown bat, and naked mole-rat were 

removed).  We then performed the standard RERconverge analysis to find correlations between 

the evolutionary rates of genes across species and longevity phenotypes in those species.  We also 

performed pathway enrichment analyses on the gene results. 

We found good correlation of both enrichment and correlation statistics between subset 

results and full dataset results based on negative log p-values times the sign of the statistic (Figure 

15 and Figure 16).  For data subsets in which a proportion of species were randomly eliminated, 

there was upwards of a median 60% correlation between results even with half all species removed 

from our analyses, which indicates that randomly removing species did not significantly change 

our results.  These findings are quantified numerically as an among-subtree variance in Supp. File 

4 and Supp. File 5 in (A. Kowalczyk et al., 2020).  We also compared full dataset results to results 

from targeted data subsets without marine mammals and without bats and the naked mole-rat by 

quantifying correlations between their negative log p-values times the sign of the statistic for gene 

correlations and pathway enrichment statistics (Figure 16).  From these comparisons, we found a 

strong relationship between full dataset results and targeted subset results, which indicates that 

presence or absence of potentially problematic species such as marine mammals, bats, and the 

naked mole-rat is not strongly impacting our results.  Quantitative representations of these findings 

are available in Supp. File 4 and Supp. File 5 in (A. Kowalczyk et al., 2020).  Together, these 

findings indicate that our results are not species, clade, or species subgroup-specific, but instead 

represent trends across all mammals. 
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3.4.4 Alternate Tree Topology Analysis 

In addition to determining whether individual or groups of species were disproportionately 

driving our conclusions, we were also interested in verifying that the fixed tree topology used for 

analyses was not affecting results.  To do so, we reran analyses using alternate plausible topologies 

representing different ancestral relationships among species (trees shown in Figure 27).  

Differences in the alternate tree topologies represent points of potential incomplete lineage sorting 

that lead to uncertainty, they and are thus reasonable alternatives compared to the original tree 

used for analyses. 

RERconverge was run using gene trees generated using the alternate topologies and results 

were compared to results using the original tree.  As shown in Figure 28, there is a strong 

correlation between all sets of results, which indicates that uncertainties in tree topology do not 

strongly affect results.  This is true for very similar topologies (Robinson-Foulds distance 6) and 

fairly different topologies (Robinson-Foulds distance 22). 
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Figure 27 Mammalian Dendrogram Topologies.  Alternative tree topologies used to test for robustness to 

phylogeny topology errors and incomplete lineage sorting. 
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Figure 28 RERconverge Results from Alternate Tree Topologies.  Correlations between gene correlation and 

pathway enrichment statistics between alternative tree topologies and the Meredith+ tree topology used for 

all other analyses.  Correlations between results are very strong, indicating that the results are robust to 

differences in tree topology. 
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Figure 29 Q-Q Plots of RERconverge Results.  Q-Q plots demonstrating the relationship between null gene 

permulation p-values and a standard uniform distribution and theoretical gene p-values and a standard 

uniform distribution for both 3L and ELL phenotypes. 
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3.4.5 Phylogenetic Trees 

Full Tree (61 mammals): 

((((((((((((Human:0.005957477577,Chimp:0.006721826689):0.001382639829,Gorilla:0.0

07765177171):0.005572327638,Orangutan:0.0164503644):0.002187630666,Gibbon:0.01770384

793):0.007043113559,(Green_monkey:0.007693724903,((Crab-

eating_macaque:0.001292320552,Rhesus:0.00713015786):0.002951690224,Baboon:0.00519924

0711):0.002049749893):0.01566263562):0.0135408115,(Marmoset:0.02474184521,Squirrel_mo

nkey:0.02096868307):0.02784675729):0.04299750653,Bushbaby:0.108738222):0.01379370868

,((((((Guinea_pig:0.09048639907,(Chinchilla:0.05332953299,Brush-

tailed_rat:0.08476954109):0.01287861561):0.02118937782,Naked_mole-

rat:0.08588673524):0.07432515556,Squirrel:0.08896424642):0.006291577528,((((Chinese_ham

ster:0.04084640027,Golden_hamster:0.04456203524):0.02314125062,Prairie_vole:0.069324026

49):0.01947113467,(Mouse:0.05273642272,Rat:0.05576007402):0.04435347588):0.083800651

37,Lesser_Egyptian_jerboa:0.1438649666):0.04270536633):0.01663675397,(Pika:0.125654444

5,Rabbit:0.07131655591):0.06535533418):0.009050428462,Chinese_tree_shrew:0.1191189141)

:0.003894252213):0.01425600689,(((((Panda:0.03854019703,((Weddell_seal:0.02002160645,Pa

cific_walrus:0.02064385875):0.01734764946,Ferret:0.04613997497):0.002879093616):0.00900

5888384,Dog:0.05339127565):0.01185166857,Cat:0.05020331605):0.03285617057,((((((Cow:0

.02168740723,((Domestic_goat:0.01157093136,Sheep:0.01246322594):0.0049716126,Tibetan_

antelope:0.01522587482):0.01465511149):0.0662523666,(Killer_whale:0.006371664911,Dolphi

n:0.01086552617):0.06014682602):0.01216198069,Pig:0.0796745271):0.006785823323,(Bactri

an_camel:0.01240650215,Alpaca:0.01096629635):0.06374554586):0.02551888691,(White_rhin
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oceros:0.04977357056,Horse:0.061454379):0.02510111297):0.00331214686,((Big_brown_bat:0

.03248546656,(Davids_Myotis_bat:0.02344332842,Microbat:0.01567729315):0.02193849809):

0.09455328094,(Black_flying-

fox:0.005833353548,Megabat:0.01611220178):0.07567400302):0.02385546003):0.0020577712

24):0.004845253848,(Star-

nosed_mole:0.1239823369,(Hedgehog:0.1696142244,Shrew:0.1934205791):0.02079474546):0.

0235875333):0.01477733374):0.01316436193,(((((Cape_golden_mole:0.1017903453,Tenrec:0.1

749615473):0.01592632003,Cape_elephant_shrew:0.1516860647):0.006610995228,Aardvark:0.

08326528894):0.008243787904,(Elephant:0.06812658238,Manatee:0.06198982615):0.0224994

529):0.03384011363,Armadillo:0.1342602666):0.005989703247):0.2206952867,((Wallaby:0.12

70943532,Tasmanian_devil:0.09944141622):0.02717055443,Opossum:0.1181200712):0.180296

6572):0,Platypus:0.4322118716); 

 

Branch Site Tree (34 placental mammals): 

((((((Human:0.02214318927,Rhesus:0.0277942336):0.0135408115,(Marmoset:0.024741

84521,Squirrel_monkey:0.02096868307):0.02784675729):0.04299750653,Bushbaby:0.1087382

22):0.01379370868,(((Chinchilla:0.08739752642,Naked_mole-

rat:0.08588673524):0.07432515556,Squirrel:0.08896424642):0.006291577528,((((Chinese_ham

ster:0.04084640027,Golden_hamster:0.04456203524):0.02314125062,Prairie_vole:0.069324026

49):0.01947113467,(Mouse:0.05273642272,Rat:0.05576007402):0.04435347588):0.083800651

37,Lesser_Egyptian_jerboa:0.1438649666):0.04270536633):0.02958143464):0.01425600689,(((

(Weddell_seal:0.02002160645,Pacific_walrus:0.02064385875):0.04108430003,Cat:0.05020331

605):0.03285617057,(((((Cow:0.02168740723,(Sheep:0.01743483854,Tibetan_antelope:0.01522
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587482):0.01465511149):0.0662523666,Killer_whale:0.06651849094):0.01216198069,Pig:0.07

96745271):0.03230471024,Horse:0.08655549197):0.00331214686,((Big_brown_bat:0.0324854

6656,(Davids_Myotis_bat:0.02344332842,Microbat:0.01567729315):0.02193849809):0.094553

28094,Black_flying-

fox:0.08150735657):0.02385546003):0.002057771224):0.004845253848,(Star-

nosed_mole:0.1239823369,(Hedgehog:0.1696142244,Shrew:0.1934205791):0.02079474546):0.

0235875333):0.01477733374):0.01316436193,((Cape_elephant_shrew:0.1665408478,(Elephant:

0.06812658238,Manatee:0.06198982615):0.0224994529):0.03384011363,Armadillo:0.1342602

666):0.005989703247); 
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4.0 Complementary evolution of coding and noncoding sequence underlies mammalian 

hairlessness 

This final chapter detailing my thesis research covers the use of RERconverge for a 

different phenotype: mammalian hairlessness.  Studying this phenotype allowed for two key 

benefits.  First, better understanding the genomics of hair growth may help us find new genomic 

regions to tackle conditions that cause undesired hair loss in humans.  Second, I developed several 

new computational strategies to study hairlessness, including using Bayes factors to disentangle 

confounded phenotypes, using weight-regressed RERs to remove confounding with body size, and 

developing binary permulations that were first used in this work.  Such strategies will be invaluable 

for further use in studying other phenotypes. 

I independently completed all of the work described in this chapter.  This work is currently 

available as a preprint on bioRxiv at (Amanda Kowalczyk et al., 2021). 

4.1 Introduction 

Hair is a defining mammalian characteristic with a variety of functions, from sensory 

perception to heat retention to skin protection (Pough, Heiser, & McFarland, 1989).  Although the 

mammalian ancestor is believed to have had hair, and in fact the development of hair is a key 

evolutionary innovation along the mammalian lineage (Eckhart et al., 2008), numerous mammals 

subsequently lost much of their hair.  Many marine mammals, including whales, dolphins, 
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porpoises, manatees, dugongs, and walruses, have sparse hair coverage likely related to 

hydrodynamic adaptations to allow those species to thrive in a marine environment (Z. Chen, 

Wang, Xu, Zhou, & Yang, 2013; Nery, Arroyo, & Opazo, 2014).  Large terrestrial mammals such 

as elephants, rhinoceroses, and hippopotamuses also have little hair, likely to enable heat 

dissipation diminished by the species’ large sizes (Fuller, Mitchell, Maloney, & Hetem, 2016).  

Notably, humans are also relatively hairless, a phenotypic characteristic that, while stark, has long 

been of mysterious origin (Kushlan, 1980).  Just as hair coverage varies across mammal species, 

coverage for an individual organism can change over time in response to environmental factors.  

For example, Arctic mammals such as foxes and hares famously demonstrate dramatic coat 

changes in different seasons (E. Johnson, 1981). 

Hair follicles are established during embryonic development as a result of interactions 

between epithelial and mesenchymal cells in the skin, and such interactions also drive follicle 

movement in adults (Zhou et al., 2018).  Hair follicles consist of a complex set of structures under 

the skin that support the hair shaft itself, which protrudes above the skin.  The hair shaft contains 

an outer layer called the cuticle, an inner cortex later, and sometimes a central medulla core 

(Plowman, Harland, & Deb-Choudhury, 2018).  Structures under the skin support the growth and 

formation of the hair follicle.  Of particular interest are the dermal papilla and matrix region, both 

located at the base of the hair follicle.  The dermal papilla is a key controller of regulation of hair 

growth and follicle morphogenesis (Veraitch et al., 2017).  In fact, transplantation of dermal papilla 

cells has been repeatedly demonstrated to result in hair growth in previously hairless tissue (C. 

A.B. Jahoda, Horne, & Oliver, 1984; Colin A.B. Jahoda, Reynolds, & Oliver, 1993; Reynolds & 

Jahoda, 1992).  Just above the dermal papilla, the matrix generates stem cells to the growing hair 

shaft and the root sheath (Plowman et al., 2018).  The two regions work together to regulate and 
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carry out hair growth – the dermal papilla is the master controller that instructs the hair-growing 

engine of the matrix region. 

During hair growth, a hair follicle goes through three stages of growth called anagen, 

catagen, and telogen phases.  During the anagen phase, the hair shaft is generated and grows out 

through the skin, while catagen phase ends hair growth and telogen phase causes the follicle to 

become dormant (Alonso & Fuchs, 2006). 

Changes to several hair-related genes are known to result in hairlessness in specific species.  

The Hr gene in mice, so named because of its role in the hair phenotype, results in hairless mice 

when knocked-out (Benavides, Oberyszyn, VanBuskirk, Reeve, & Kusewitt, 2009).  In Mexican 

dogs, the FOXI3 gene has been found to be associated not only with hairlessness, but also 

associated dental abnormalities (Drögemüller et al., 2008).  In the American Hairless Terrier, 

mutation in a different gene, SGK3, is responsible for relative hairlessness (Parker, Harris, Dreger, 

Davis, & Ostrander, 2017).  Fibroblast growth factor genes such as FGF5 and FGF7 are also 

heavily implicated in hair growth because their absence causes drastic changes to coat length and 

appearance in mice (Ahmad et al., 1998).  Such genes are associated with keratinocyte growth in 

which keratins and keratin-associated proteins play a key role.  Unsurprisingly, specific structural 

proteins that comprise hair shafts and their associated genes, known as KRTAP genes or hair-

specific keratins, are also heavily implicated in hair-related functions (Plowman et al., 2018).  They 

also appear to be unique to mammals, although some KRTAP-like genes have been found in 

reptiles (Eckhart et al., 2008), 

Although genetic changes associated with induced hairlessness in specific domesticated 

species are useful, it is unclear if such changes reflect evolutionary changes that result in 

spontaneous hairlessness and how much such changes are convergent across all or many naturally 



   

 

 116 

hairless species.  By taking advantage of natural biological replicates of independent evolution of 

hairlessness in mammals, we can learn about global genetic mechanisms underlying the hairless 

phenotype.   

Mammalian hairlessness is a convergent trait since it independently evolved multiple times 

across the mammalian phylogeny.  We can therefore characterize the nature of its convergence at 

the molecular level to provide insights into the mechanisms underlying the trait.  For example, if 

a gene is evolving quickly in hairless species and slowly in non-hairless species, that implies that 

the gene may be associated with hairlessness.  We focus on the relative evolutionary rate of 

genomic sequence, which is a measure of how fast the sequence is evolving relative to its expected 

rate.  Unlike seeking sequence convergence to a specific amino acid or nucleotide, using an 

evolutionary-rates-based method detects convergent shifts in evolutionary rates across an entire 

region of interest (such as a gene or putative regulatory element).  Evolutionary rate shifts reflect 

the amount of evolutionary pressure acting on genomic elements, and multiple studies 

investigating diverse phenotypes have found that phenotypic convergence is indeed associated 

with convergent changes in evolutionary rates (Chikina et al., 2016; Hiller et al., 2012b; Hu et al., 

2019; Kapheim et al., 2015; Amanda Kowalczyk et al., 2020; Partha et al., 2017a, 2019; Prudent 

et al., 2016; Wertheim et al., 2015).  We used RERconverge, an established computational 

pipeline, to link convergently evolving genes and noncoding regions to convergent evolution of 

mammalian hairlessness.  Previous work using RERconverge (Amanda Kowalczyk et al., 2019) 

to detect convergent evolutionary rate shifts in genes and noncoding elements associated with 

convergently evolving traits has identified the putative genetic basis of the marine phenotype in 

mammals (Chikina et al., 2016), the fossorial phenotype in subterranean mammals (Partha et al., 

2017a, 2019), and extreme longevity in mammals (Amanda Kowalczyk et al., 2020).  Those 
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studies revealed trends that are not species-specific, but instead represent relevant genetic changes 

that occurred phylogeny-wide. 

Here, we further explored the genetic basis of hairlessness across the mammalian 

phylogeny by finding genes and noncoding regions under relaxation of evolutionary constraint 

(i.e. evolving faster) in hairless species.  Such genetic elements likely have reduced selective 

constraint in species with less hair and thus accumulate substitutions at a more rapid rate.  To find 

genetic elements under accelerated evolution in hairless species, we performed an unbiased, 

genome-wide scan across 62 mammal species using RERconverge on 19,149 orthologous genes 

and 343,598 conserved noncoding elements.  In addition to recapturing known hair-related 

elements, we also identified novel putative hair-related genetic elements previously overlooked by 

targeted studies.  Importantly, newly uncovered genes and noncoding regions were not only related 

to keratins, but they also represented a suite of genetic functionality underlying hair growth.  Such 

findings represent strong candidates for future experimental testing related to the hair phenotype. 

4.2 Results 

4.2.1 Phenotype Assignment 

The hairless phenotype in mammals arose at least nine independent times along the 

mammalian phylogeny (Figure 30A).  Genomic regions that experienced evolutionary rate shifts 

in tandem with mammalian loss of hair were considered potentially associated with phenotype 

loss.  Ten extant and one ancestral hairless species were identified based on species hair density 
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(Figure 30A).  Broadly, species with skin visible through hair were classified as hairless, namely 

rhinoceros, elephant, naked mole-rat, human, pig, armadillo, walrus, manatee, dolphin, and orca.  

The cetacean (dolphin-orca) ancestor was also included because it was likely a hairless marine 

mammal. 

An ancestral point of phenotypic ambiguity existed at the ancestor of manatee and elephant.  

Considerable uncertainty exists as to whether the ancestral species had hair and independent trait 

losses occurred on the manatee and elephant lineages or, alternatively, whether the ancestral 

species lost hair prior to manatee-elephant divergence and regained hair along mammoth lineages 

post-divergence (Roca et al., 2009).  Since foreground assignment of the manatee-elephant 

ancestor had little impact on skin-specific signal, we retained the parsimonious assignment of the 

ancestral species as haired with inferred independent losses in the manatee and post-mammoth 

elephant lineages (Figure 31B).  Similarly, assigning foreground branches based on the state of 

being hairless or the transition from haired to hairless – i.e. assigning the entire cetacean clade as 

foreground versus only assigning the cetacean ancestor as foreground – had little impact on skin-

specific signal (Figure 31A).  In the case of cetaceans, we retained all three branches (orca, dolphin, 

and the orca-dolphin ancestor) as foreground to maximize statistical power. 
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Figure 30 RERconverge and Hairlessness.  Hairless species show an enrichment of hair-related genes and 

noncoding elements whose evolutionary rates are significantly associated with phenotype evolution.  A) 

Phylogenetic tree showing a subset of the 62 mammal species used for analyses.  Foreground branches 

representing the hairless phenotype are depicted in orange alongside photographs of the species.  B) Q-Q 

plots for uniformity of permulation p-values for association tests per genetic element for coding and 

noncoding elements.  Shown are both positive associations that indicate accelerated evolution in hairless 

species and negative associations that indicate decelerated evolution in hairless species.  The deviation from 

the red line (the identity) indicates an enrichment of low permulation p-values – there are more significant 

permulation p-values than we would observe under the uniform null expectation.  This indicates significant 

evolutionary rate shifts for many genes and noncoding elements in hairless mammals.  C) Hair-related MGI 

category genes are under significantly accelerated evolution in hairless species.  Shown are one minus the 
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AUC values (maximum enrichment statistic = 0.5; statistic = 0 indicates no enrichment) for each hair- or 

skin-related pathway with a permulation p-value less than or equal to 0.01.  In parentheses are the statistic-

based ranks of those pathways among all pathways under accelerated evolution in hairless mammals with 

permulation p-values less than or equal to 0.01.  D) Skin- and hair-expressed genes are under significant 

evolutionary rate acceleration in hairless species.  All genesets except hair follicle are from the GTEx tissue 

expression database.  Hair follicle genes are the top 70 most highly expressed genes from (Jing Zhang et al., 

2017) hair follicle RNA sequencing that are not ubiquitously expressed across GTEx tissue types. 
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Figure 31 Ancestral Hair Phenotypes.  Skin-related genes evolve faster in hairless species.  A) When 

considering either the state of being hairless as the foreground or the process of changing from haired to 

hairless as the foreground, enrichment of skin-related genes shows little difference.  B) When considering the 

elephant/manatee ancestor as haired or hairless, enrichment of skin-related genes shows little difference. 
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4.2.2 Phenotypic Confounders 

Hairless species share other convergent characteristics that could confound associations 

between the hairless phenotype and evolutionary rate shifts.  In particular, several hairless species 

are large and many are marine mammals.  Therefore, any signal related to hairless species could 

be driven instead by confounders.  Problems with these two confounders were handled in two 

different ways. 

To handle large body size as a confounder, body size was regressed from relative 

evolutionary rates on an element-by-element basis.  In other words, the residuals from the linear 

relationship between body size and relative evolutionary rates were retained to eliminate the effect 

of body size on relative evolutionary rate trend.  In doing so, any effects related to the relationship 

between body size and hairlessness were mitigated. 

Marine status, on the other hand, is a trait of potential interest because marine mammals 

experienced unique hair and skin changes during the transition from a terrestrial to a marine 

environment.  However, it is also of interest how much signal is driven by the marine phenotype 

versus the hairless phenotype.  Therefore, Bayes factors were used to quantify the amount of 

support for the marine phenotype versus the hairless phenotype.  A larger Bayes factor indicated 

more contribution from one model versus another.  A ratio of five or greater for the hairless 

phenotype versus the marine phenotype indicated strongly more support for signal driven by 

hairlessness.  Many hair-related pathways evolving faster in hairless species according to 

RERconverge also indicated that signal was indeed driven by the hairless phenotype as opposed 

to its heavy confounder, the marine phenotype, according to Bayes factor analyses (Figure 32). 
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Figure 32 Bayes Factors for Detangling Confounded Phenotypes.  Bayes factors reveal the proportion of 

signal driven by the marine phenotype versus the hairless phenotype.  Depicted are precision-recall curves 

demonstrating how Bayes factors of the contrasting hairless and marine phenotypes rank genes related to 

skin, hair, and olfaction. Also plotted is a ranking based on the ratio of hairlessness and marine Bayes factors 

(hVSm = hairlessness Bayes factor/marine Bayes factor).  The ratio of the Bayes factors quantifies the 

amount of support for the hairless phenotype beyond the support for the marine phenotype per gene.  In 

other words, a high Bayes factor ratio indicates a signal of evolutionary convergence associated with 

hairlessness that is not only driven by signals of convergence in hairless marine mammals.  The hairless 

phenotype had much greater power to enrich for genes expressed in skin (GTEx data) compared to the 

marine phenotype, indicating that accelerated evolution is driven more strongly by hairlessness.  Both the 

marine and hairless phenotypes enriched for genes in hair follicle expression genes, indicating that both 

contribute to accelerated evolution of those genes.  Olfactory genes on the other hand are expected to show 

acceleration only related to the marine phenotype.  As expected, the marine phenotype much more strongly 

enriched for olfactory genes than the hairless phenotype. 

4.2.3 Known Hair-Related Genomic Elements Evolve Faster in Hairless Species 

We used RERconverge to identify genes and noncoding elements evolving at significantly 

faster or slower rates in hairless species compared to haired species (see Methods).  Briefly, the 
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evolutionary rates of genetic elements were compared in hairless versus haired species using a 

rank-based hypothesis test, and we generated p-values empirically with a newly developed 

method, termed permulations, that uses phylogenetically constrained phenotype permutations 

(Saputra, Kowalczyk, Cusick, Clark, & Chikina, 2020).  The permulation method compares the 

correlation statistics from the true phenotype to correlation statistics that arise from randomized 

phenotypes that preserve the relative species relationships.  Thus, small p-values indicate a specific 

association with the hairless phenotype. 

We find that quantile-quantile (QQ) plots of permulation p-values from hypothesis tests 

for all genetic elements indicate a large deviation from the expected uniform distribution and thus 

an enrichment of significant permulation p-values (Figure 30B).  We show enrichment of 

significant p-values for both positive and negative evolutionary rate shifts, and the direction of the 

rate shifts is critical to interpretation.  Positive rate shifts imply rate acceleration, which we 

interpret as a relaxation of evolutionary constraint.  While positive rate shifts could theoretically 

be driven by positive selection, we demonstrate that this is not the case for our top accelerated 

genes.  Branch-site models to test for positive selection were performed using PAML (Yang, 2007) 

on top accelerated genes.  Tests showed little evidence for foreground-specific positive selection; 

out of 199 genes tested, 27 genes demonstrated hairless acceleration, but all such genes also 

showed evidence for tree-wide positive selection, suggesting that positive selection was not 

specific to hairless species although perhaps stronger.  Thus, regions with positive rate shifts 

evolve faster in hairless species due to relaxation of evolutionary constraint, perhaps because of 

reduced functionality driving or in conjunction with the hairlessness phenotype.  Negative rate 

shifts indicate increased evolutionary constraint in hairless species, which implies increased 

functional importance of a genomic region.  While negative shifts are more difficult to interpret in 
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the context of trait loss, they may represent compensatory phenotypic evolution in response to trait 

loss. 

To demonstrate that the statistical signal from individual genes and noncoding regions is 

meaningful, we evaluated to what extent those RERconverge results enrich for known hair-related 

elements.  We calculated pathway enrichment statistics using a rank-based test and statistics from 

element-specific results to evaluate if genes or noncoding elements that are part of a predefined 

biologically coherent set are enriched in our ranked list of accelerated regions.  Using numerous 

gene sets associated with hair growth, such as KRTs, KRTAPs, hair follicle expressed genes (Jing 

Zhang et al., 2017), skin-expressed genes (Papatheodorou et al., 2018), and Gene Ontology (GO) 

(Ashburner et al., 2000), Mouse Genome Informatics (MGI) (Eppig et al., 2015), and canonical 

hair-annotated genes (Liberzon et al., 2011), we indeed find that our results are highly enriched 

for hair-related functions.  As shown in Figure 1C, many of the top-enriched MGI phenotypes are 

hair-related.  Likewise, enrichment analyses using the GTEx tissue expression database 

(Papatheodorou et al., 2018) supplemented with hair follicle expressed genes (Jing Zhang et al., 

2017) show strong enrichment for both skin and hair follicle genes, as well as signal for other 

epithelial tissues such as vagina and esophagus (Figure 30D). 

Hair-related pathways remained enriched among rapidly evolving genes even when KRTs 

and KRTAPs were removed.  This implies that hairless-related genetic changes are not merely 

structural, but instead they are broadly driven by many genes related to the hair cycle.  Similarly, 

no individual hairless species had an undue impact on enrichment of known hair-related pathways 

as indicated by consistent findings when individual hairless species were removed from analyses 

(Figure 33).   
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Figure 33 RERconverge Results are Robust to Species Removal.  Hair-related pathways are enriched for 

genes with evolutionary rates significantly accelerated in hairless species.  Enrichment is consistent even 

when individual hairless species are removed. 

 

Investigating a focused list of gene sets associated with specific structures of the hair 

follicle revealed an interesting contrast between coding and noncoding sequence (Figure 34).  

Significantly accelerated genes were primarily within the hair shaft itself for coding sequence.  

Noncoding regions near genes related to the hair shaft were also under accelerated evolution, and 

additionally, noncoding regions near genes for the matrix and dermal papilla also showed patterns 

of decelerated and accelerated evolution, respectively, in hairless species.  Since the matrix and 

dermal papilla play key roles in hair follicle localization, development, and cycling, evolutionary 

rate shifts in those compartments’ noncoding regions suggests that regulatory sequence evolution 

rather than coding sequence evolution may drive changes in hair follicle formation. 
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Figure 34 RERconverge Results in Hair Compartments.  Diagram of hair shaft and follicle with shading 

representing region-specific enrichment for coding and noncoding sequence.  Both coding and noncoding 

sequence demonstrate accelerated evolution of elements related to hair shaft (cortex, cuticle, and medulla).  

Noncoding regions demonstrate accelerated evolution of matrix and dermal papilla elements not observed in 

coding sequence.  All compartment genesets were compiled from MGI annotations that contained the name of 

the compartment except arrector pili (Santos et al., 2015) and dermal sheath (Heitman et al., 2020) genesets. 
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Overall, these results indicate strong enrichment for hair-related function in both protein 

coding genes and non-coding regions that are convergently accelerated in hairless species. 

4.2.4 Analyses Reveal Novel Putative Hair-Related Genetic Elements 

After extensive filtering using RERconverge statistics, Bayes Factors, and permulation 

statistics, several novel putatively hair-related genes were uncovered.  Shown in Table 2, the top 

accelerated gene associated with hairlessness with strong support for hairless-related signal as 

opposed to marine-related signal was FGF11.  While FGF11 has no known role in hair growth, 

its expression is highly enriched in the skin and other fibroblast growth factor genes are known to 

be related to hair growth (Kawano et al., 2005; Lee et al., 2019; Nakatake, Hoshikawa, Asaki, 

Kassai, & Itoh, 2001; Rosenquist & Martin, 1996; Suzuki, Ota, Ozawa, & Imamura, 2000).  

Together these observations support FGF11 as another strong candidate for hair-related function. 

The second-ranked gene, GLRA4, a glycine receptor subunit, is more difficult to interpret 

because while generally conserved across mammals, it is a pseudogene in humans, so it has been 

relatively less studied.  Glycine receptors are often involved in motor reflex circuits (Callister, 

2010), and thus with respect to any functional relevance to hair we hypothesize that GLRA4 may 

contribute to regulating the reflexive piloerection response (hairs "standing on end") observed in 

many mammals.  
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Table 2 Top RERconverge Hair Results.  Genes whose evolutionary rates are significantly associated with the 

hairless phenotype with significant parametric p-values, significant permulation p-values, positive statistic, 

and hairless versus marine Bayes factors (BF) greater than five.  BF Marine and BF Hairless are bayes 

factors for those phenotypes individually, while BF HvM is the ratio of the two (BF Hairless/BF Marine).  The 

ratio of the Bayes factors quantifies the amount of support for the hairless phenotype beyond the support for 

the marine phenotype per gene.  In other words, a high Bayes factor ratio indicates a signal of evolutionary 

convergence associated with hairlessness that is not only driven by signals of convergence in hairless marine 

mammals.  Also shown are enrichment statistics for noncoding regions near top genes.  Adjusted p-values are 

Benjamini-Hochberg corrected.  Note that permulation p-values observed as 0 were adjusted to 0.001 (the 

smallest observable permulation p-value) prior to multiple hypothesis testing correction.  Cells with missing 

values (for “Noncoding Enrich Stat” and “Noncoding Enrich p-adj”) do not have enough observations to 

calculate enrichment statistics because too few conserved noncoding elements were detected in the vicinity of 

those genes. 

Gene Statistic p-adj 
BF 

HvM 

BF 

Hairless 

BF 

Marine 

Perm 

p-adj 

Noncoding 

Enrich 

Stat 

Noncoding 

Enrich 

p-adj 

FGF11 0.403 0.205 116.4 6354.7 54.6 0.201 -0.115 0.051 

GLRA4 0.332 0.179 22.6 1908.3 84.3 0.201 -0.159 0.068 

ANXA11 0.328 0.179 25.5 45.2 1.8 0.201   

PTPRM 0.326 0.179 51.7 4393.6 85.0 0.201 0.146 1.19e-9 

PKP1 0.323 0.179 5.6 2669.0 478.9 0.201 0.117 0.410 

KRT2 0.304 0.205 2235.7 27034.4 12.1 0.201 0.175 0.181 

MYH4 0.297 0.205 28.0 11447.2 409.3 0.201 0.147 0.311 

KRT35 0.293 0.205 8.6 1954.5 227.3 0.201 0.142 0.211 

 

Other top-accelerated genes are KRT2, KRT35, PKP1, and PTPRM, all of which are known 

hair-related genes.  KRT2 protein product localizes in the hair follicle and may play a role in hair 

and skin coloration (Cui et al., 2016), and KRT35 is a known target of HOXC13 and is essential 

for hair differentiation (Lin et al., 2012).  PKP1 mutations lead to ectodermal dysplasia/skin 
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fragility syndrome, which includes abnormalities of both skin and hair development (Sprecher et 

al., 2004).  PTPRM regulates cell-cell communication in keratinocytes (Peng et al., 2015). 

The remaining accelerated genes are also plausibly connected to skin- and hair-related 

functions.  ANXA11 has been strongly linked to sarcoidosis in humans (Hofmann et al., 2008), an 

inflammatory disease in epithelial tissue.  MYH4, a myosin heavy-chain protein, has surprisingly 

also been implicated in skin and hair growth, both through upregulation during hair follicle cycling 

and skin healing (Carrasco et al., 2015) and upregulation in response to overexpression 

glucocorticoid receptors that drive hair follicle morphogenesis (Donet, Bayo, Calvo, Labrie, & 

Pérez, 2008).  Note that in both cases of MYH4 upregulation, it was the only myosin with 

significantly different expression in the tissues studied, suggesting a unique role for the protein in 

skin and hair growth. 

In addition to identifying genes with significant evolutionary rate shifts in coding sequence, 

we have also found many other protein-coding genes with significant enrichment of hairless-

accelerated non-coding elements in their vicinity 

(https://pitt.box.com/s/b8ozkcwzile4znq8tw9ri8s160zjb3uw and Figure 35).  There is a global 

trend in correlation between evolutionary rate shift statistics for protein-coding regions and 

enrichment statistics for their nearby non-coding regions (Pearson’s Rho = 0.177).  Concordance 

between accelerated evolutionary rates in genes and their nearby noncoding regions is particularly 

strong for KRTs and KRTAPs, which are known to be skin- and hair-related (Figure 35B) – out of 

69 KRTs and KRTAPs for which noncoding enrichment could be calculated, 66 showed accelerated 

evolution in both protein-coding sequence and non-coding regions.  However, across all genes 

with strong signals for nearby noncoding regions under accelerated evolution in hairless mammals 

(permulation p-value less than or equal to 0.03), acceleration in the coding sequence itself spans a 

https://pitt.box.com/s/b8ozkcwzile4znq8tw9ri8s160zjb3uw
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wide range of values (Figure 35A), and in many cases there is little evidence of evolutionary rate 

shifts in the coding sequence.  This range likely reflects the requirement that some protein-coding 

sequences remain under strong evolutionary constraint because of their continued importance in 

non-hair-related tissues. 

Top-ranked genes with accelerated nearby noncoding regions include several known hair-

related regulator genes (ELF3, FOXC1, and others) (Figure 35C).  FOXC1 is a transcription factor 

involved in maintaining the hair follicle stem cell niche (Lay et al., 2016; L. Wang, Siegenthaler, 

Dowell, & Yi, 2016) and ELF3 is known to regulate transcription of keratin genes (Aldinger et al., 

2009).  These genes showed no coding region acceleration, which is expected since they are highly 

pleiotropic.  Regulatory proteins tend to have many functions – for example, in addition to their 

hair-related functions, FOXC1 regulates embryonic development (Brembeck, Opitz, Libermann, 

& Rustgi, 2000; Seo et al., 2006) and ELF3 is involved in the epithelial to mesenchymal transition 

(Sengez et al., 2019) – so we expected to observe no loss of constraint in the coding sequence for 

those proteins.  Instead, changes to regions that regulate expression of those regulatory proteins 

appear to be driving the convergent evolution of hairlessness.  While regulation of transcription 

factor expression is highly complex, our analysis pinpoints regions that are candidates for hair-

specific regulation. 

The global analysis of noncoding regions also revealed under-characterized regions 

(CCDC162-SOHLH2, FAM178B), and regions that may plausibly be connected to hair or skin 

(UVSSA (Sarasin, 2012), OLFM4 (Jaks et al., 2008; Muñoz et al., 2012), ADRA1D (Rezza et al., 

2016)).  These noncoding regions are excellent candidates for further experimental analyses to 

explore their role in regulating hair and skin growth, development, and cycling. 
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Figure 35 Hairless Coding and Noncoding Results.  Noncoding regions near hair-related genes evolve faster 

in hairless species.  A) Genes with a significant enrichment for quickly evolving nearby noncoding regions 

(permulation p-value of 0.03 or less) only sometimes demonstrate evolutionary rate shifts in their protein-

coding sequences.  In orange are keratins and keratin-associated proteins, which tend to show accelerated 

evolutionary rates in both genes and nearby non-coding regions.  In pink are top genes also in pink in panel 

C.  In blue are all other genes in panel C.  B) Keratin (KRT) and keratin-associated protein (KRTAP) genes 

and nearby noncoding sequence show enrichment for accelerated evolutionary rates.  Show are rate shift 

statistics for genes and enrichment statistics for noncoding regions.  C) Many top-ranked genes for nearby 
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quickly evolving noncoding regions are hair-related.  Depicted are the top 30 genes (KRTs and KRTAPs 

excluded) based on enrichment statistic with enrichment permulation p-value of 0.03 or less.  No genes had 

significant evolutionary rate shifts in coding sequence except OLFM4, which evolves faster in hairless species.  

In pink are genes with hair-related functions in the literature (citations: ELF3 (Blumenberg, 2013), FOXC1 

(Lay, Kume, & Fuchs, 2016), CCL13 (Michel et al., 2017; Suárez-Fariñas et al., 2015), CCL1 (Nagao et al., 

2012), DSG1 (Jing Zhang et al., 2017), GSG1 (Aya, Shimokawa, & Doi, 2009), MIR205HG (D. Wang et al., 

2013), FOXQ1 (Ashburner et al., 2000; Carbon et al., 2019)). 

 

Perhaps even more so than genes and their regulatory regions, microRNAs are strong 

candidates for hair-related functions.  A key component of hair follicle cycling is persistence of 

stem cells, and microRNAs are known to be important players in stem cell regulation (Peng et al., 

2015).  Too small to be analyzed via their sequence alone using our analysis strategy, we mapped 

noncoding regions to nearby microRNAs and performed enrichment analyses to identify groups 

of microRNA-associated noncoding regions enriched for significant association with the 

hairlessness phenotype (Figure 36A).  The top enriched microRNA with rapidly evolving nearby 

noncoding regions was mir205, a microRNA known to be associated with skin and hair 

development (D. Wang et al., 2013).  Mir205 is readily studied because its host gene (mir205hg) 

is long enough to be captured using standard methods, including bulk RNA sequencing.  

Reanalyzed data from a previous study (Jing Zhang et al., 2017) focused on coding sequence 

revealed read pileups at mir205hg even without microRNA-specific capture methods (Figure 36C 

and Figure 36D).  Through our study, we now know which noncoding regions in the gene desert 

around mir205 potentially control its expression in hair follicles as opposed to other tissues.  

Through this scan for associated noncoding elements, we similarly identified several poorly 

characterized microRNAs with significant hair-related signal that are less studied and are also 
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strong candidates for hair-related functions (Figure 36A).  Furthermore, we have identified the 

precise noncoding regions that likely control their expression in the context of hair and hair 

follicles. 
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Figure 36 microRNA Results.  Top miRNAs with nearby noncoding regions with evolutionary rates 

significantly associated with the hairless phenotype.  A) Wilcoxon rank-sum enrichment statistics and 

Benjamini-Hochberg corrected p-values for top-ranked miRNAs.  B) Precision recall curve of statistic ranks 

for CNEs near mir205 demonstrates an enrichment of CNEs with accelerated evolution near mir205 

compared to all noncoding regions near microRNAs.  C) The chromosomal region around mir205 shows a 

large number of CNEs accelerated in hairless species, as seen for RERconverge and Bayes factor scores. Note 
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the relative decline of peaks in the vicinity of nearby protein-coding genes such as CAMK1G to the right. D) 

mir205 is well-known to be associated with hair and skin growth and structure. Its transcriptional unit on 

chromosome 1 shows clear read pileups from hair follicle RNAseq data (Jing Zhang et al., 2017).  Gray peaks 

represent the number of RNAseq read coverage and blue curves represent splice junctions. 

4.3 Discussion 

These analyses successfully used RERconverge, a method to link convergent evolutionary 

rates of genetic elements with convergent phenotypes, to identify known hair-related genes in 

mammals.  In addition to identifying known genes, other understudied genes and microRNAs were 

also identified as key plausible targets for further inquiry into the genetic basis of hairlessness, and 

a suite of putative regulatory elements associated with hair and skin were uncovered. 

The top-ranked gene was FGF11, a fibroblast growth factor gene.  It evolved faster in 

hairless species due to relaxation of evolutionary constraint, indicating that it has reduced 

functionality in hairless species.  Fibroblast growth factors are readily studied for a variety of 

functions, but the precise functionality of FGF11 is unknown.  The gene may be associated with 

cancer development through interaction with T-cells (Ye et al., 2016), and it has also been 

implicated in tooth development in mice (Kettunen, Furmanek, Chaulagain, Hals Kvinnsland, & 

Luukko, 2011).  Interestingly, the gene related to hairlessness in Mexican Hairless dogs is also 

related to dentition (Drögemüller et al., 2008), implying plausibility for a hair-related gene to also 

be tooth-related.  Furthermore, numerous fibroblast growth factor genes have been studied in 

relation to hair growth (Rosenquist & Martin, 1996), including work that found errors in FGF5 

resulted in longer hair in goats (G. Li et al., 2019), FGF5 and FGF7 regulation controlled hair 



   

 

 137 

anagen phase in mice (Lee et al., 2019), and FGF2 stimulated hair growth when applied to mouse 

skin (Xu, Chen, Wang, Xue, & Fu, 2018).  FGF11 is an excellent candidate to perform similar 

tests for hair-related functions, among other high-scoring genes in the list such as MYH4 and 

ANXA11. 

Compared to coding sequence, study of noncoding regions is more challenging for several 

reasons.  First, identifying such regions genome-wide is difficult because they lack the defining 

characteristics that genes share, such as start and stop codons, and thus finding putative regulatory 

elements using sequence alone is an ongoing area of study.  Our strategy of using conserved 

regions as putative regulatory elements likely misses many real regulatory sequences while 

simultaneously capturing conserved elements with no regulatory function.  However, our method 

is also unbiased and provides a robust set of sequences to analyze, many of which likely do have 

regulatory functions.  Second, validating our findings from noncoding regions is difficult because 

few CNEs have known functions.  Therefore, to validate our noncoding results, we mapped 

noncoding regions to nearby genes and inferred CNE functions based on the functions of those 

genes.  Such proximity-based mapping has known flaws because enhancers can have distal effects 

and chromatin state controls enhancers' access to genes regardless of distance.  However, despite 

all of the potential sources of error, we identify global signal for noncoding regions under 

accelerated evolution in hairless species (Figure 30B) and signal for hair-related acceleration of 

noncoding regions (Figure 34, Figure 35, and Figure 36).  

Further analyses of noncoding regions revealed an interesting deviation from signals of 

accelerated evolution in coding regions.  Namely, coding regions primarily showed acceleration 

in genes related to texture and the structure of the hair shaft itself.  Noncoding regions, on the other 

hand, showed accelerated evolution near genes related to the dermal papilla and the matrix.  Both 
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regions are essential for hair growth.  The dermal papilla is the master controller of hair follicle 

development and hair growth, and it has in fact been repeatedly shown to be sufficient to cause 

hair growth.  Dermal papilla cells, when transplanted to hairless skin such as footpads, has 

consistently been shown to result in development of hair follicles (C. A.B. Jahoda et al., 1984; 

Colin A.B. Jahoda et al., 1993; Reynolds & Jahoda, 1992).  Since all mammals are capable of 

growing hair and do have at least some hair at some point in their life cycles, these findings imply 

that function of genes related to the dermal papilla must be preserved, and spatial and temporal 

changes in hair growth may be driven by noncoding regions.  Much like the dermal papilla, the 

hair follicle matrix is essential for hair growth – mitotically-active matrix cells give rise to all other 

inner hair structures, including the hair shaft and the root sheath.  Early-stage matrix differentiation 

can even progress without dermal papilla signaling (Mesler, Veniaminova, Lull, & Wong, 2017).  

Hair cannot exist without the dermal papilla and matrix, and alterations to their related noncoding 

regions could plausibly have a large impact on hair growth capabilities.  Changes to their 

associated regulatory regions, on the other hand, may be more flexible and allow for the changes 

in hair localization, texture, and density that we observe in near-hairless mammals. 

Other genes with nearby accelerated noncoding regions likewise demonstrate conservation 

in protein-coding sequence, possibly because of strong pleiotropy of hair- and skin-related genes.  

In fact, among the top-ranked non-keratin genes with quickly evolving nearby noncoding regions, 

only one gene showed a significant evolutionary rate shift in protein-coding sequence (Figure 35).  

FOXC1 and ELF3, among the top-ranked genes, are strongly linked to hair and skin development 

(Brembeck et al., 2000; Lay et al., 2016; L. Wang et al., 2016) but also have other essential 

functions (Aldinger et al., 2009; Sengez et al., 2019; Seo et al., 2006).  Our findings imply that 

many hair-related genes may have similar pleiotropy preventing accelerated evolution of coding 
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sequence in hairless species.  Instead, plasticity of gene regulation through accelerated evolution 

of noncoding regions may allow for the evolution of hairlessness.  

Additionally based on noncoding sequences near regions of interest, mir205 was found to 

be the top-ranked microRNA with nearby noncoding sequences under accelerated evolution.  

Mir205 is well-established microRNA related to hair and skin development (D. Wang et al., 2013), 

and it thereby serves as a strong validation that signals of convergent evolution are successfully 

identifying hair-related elements.  The second-ranked mir1305 has been implicated in skin 

functionality with significantly different expression levels in damaged versus healthy skin (Liang 

et al., 2012).  Numerous microRNAs have been implicated in hair- and skin-related functions 

(Andl & Botchkareva, 2015; Fu, Zhao, Zheng, Li, & Zhang, 2014), likely a subset of the total 

elements involved in hair growth.  In general, microRNAs are likely key players in hair follicle 

cycling because of their importance in stem cell regulation (Peng et al., 2015), and the microRNAs 

and their associated noncoding regions identified in this work serve as a valuable list of candidates 

for further inquiry.  Likewise, noncoding regions near other hair-related genes are also under 

accelerated evolution in hairless species and may regulate hair- and skin-related functions.  

Further, some under-characterized and plausibly hair- and skin-related genes, such as CCDC169-

SOHLH2 and FAM178B, have nearby accelerated noncoding regions and thus identify those genes 

and their regulatory regions as candidates for further experimental testing. 

This study has revealed a slew of fresh candidate genes, noncoding regions, and 

microRNAs putatively associated with hair growth.  As an unbiased, genome-wide scan across a 

large swath of the mammalian phylogeny, it represents not only a step toward fully understanding 

hair growth, but also understanding the evolution of hair across all mammals. 
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4.4 Methods 

4.4.1 Calculating body size-regressed relative evolutionary rates 

The RERconverge package in R was used to generate phylogenetic trees for each gene and 

noncoding region in which branch length represented the amount of evolutionary change, or the 

number of nonsynonymous substitutions, that occurred along that branch as described in several 

previous publications (Amanda Kowalczyk et al., 2019, 2020; Partha et al., 2019).  Alignments for 

19,149 genes in 62 mammal species were obtained from the UCSC 100-way alignment (Blanchette 

et al., 2004; Harris, 2007; Kent et al., 2002).  The topology used to generate element-specific trees 

is included below under Phylogenetic trees. 

Likewise, alignments for 343,598 conserved noncoding elements were extracted based on 

phastCons conservations scores across the 62 mammal species and the blind mole-rat (Nanospalax 

galili) (Siepel et al., 2005).  Briefly, the full set of conserved elements across 46 placental 

mammals and their respective phastCons scores were downloaded from the UCSC genome 

browser (Kent et al., 2002) from the hg19 (human genome) “Cons 46-way” track 

(phastConsElements46wayPlacental).  Regions that overlapped coding regions were removed 

using the UCSC genome browser “Intersection” utility and the “Genes and Gene Predictions” 

annotations from the “GENCODE V28lift37” track.  Elements with phastCons scores greater than 

350 were maintained, and elements less than 10 base-pairs apart were merged.  Finally, elements 

with fewer than 40 base-pairs were discarded to result in the final 343,598 regions.  Orthologs for 

all 63 mammals were downloaded from the UCSC 100-way alignment.  Blind mole-rat elements 

were added based on the pairwise alignment between hg38 (human genome) and Nannospalax 
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galili genome (Zerbino, Wilder, Johnson, Juettemann, & Flicek, 2015) by first mapping hg19 

coordinates to hg38 coordinates (Supp. File 7 and 8).  Orthologs were added to the 62 mammal 

species alignments using MUSCLE (Edgar, 2004).  Data generation steps and code are available 

here: https://pitt.box.com/s/m6gineor6ergnjk07s8515o27wm37lyx. 

Alignments were used to generate evolutionary rate trees based on a well-established 

topology of the mammalian phylogeny in the Phylogenetic Analysis by Maximum Likelihood 

(PAML) program (Wynn K Meyer et al., 2018; Yang, 2007).  Briefly, RERconverge was used to 

convert evolutionary rate information from each gene- or noncoding element-specific tree by 

correcting for the mean-variance relationship among branch lengths and normalizing each branch 

for the average evolutionary rate along that branch such that the final branch length was relative 

to the expectation for that branch (Partha et al., 2019). 

The resulting relative evolutionary rates were used to calculate body size-regressed relative 

evolutionary rates.  Using adult weight information for the 62 mammal species obtained from the 

Anage Animal Aging and Longevity Database (Tacutu et al., 2018), RERconverge functions were 

used to predict body size phenotype values throughout the mammalian phylogeny.  Residuals from 

a linear model fitted to the phenotype values and the relative evolutionary rates for each gene and 

conserved noncoding element were extracted and used as the body size-regressed relative 

evolutionary rates for that element. 

RER matrices and phylogenetic trees are available at: 

https://pitt.box.com/s/newoupek4nlfnx1y5xri7xnx9i96ir9s 

https://pitt.box.com/s/m6gineor6ergnjk07s8515o27wm37lyx
https://pitt.box.com/s/newoupek4nlfnx1y5xri7xnx9i96ir9s
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4.4.2 Defining hairless species 

Since all mammals have some hair during at least one stage of life, no species are truly 

hairless.  Therefore, classification of species as “hairless” versus “haired” was qualitatively based 

on density of hair covering and quantitively based on the impact of removing species on the hair-

related signal detected during analyses.  Tendency was the err on the side of leniency when 

assigning species as hairless – any species with reduced hair quantity was classified as hairless. 

Extant species classified as hairless were armadillo, elephant, white rhinoceros, pig, naked 

mole-rat, human, and marine mammals (manatee, pacific walrus, dolphin, and orca).  The hairless 

set comprised all but one marine mammal in the 62 mammal species (the furry Weddell seal is not 

included in the hairless set).  The only non-extant species classified as hairless was the orca-

dolphin ancestor (the cetacean ancestor) because that species was likely also a hairless marine 

species (Z. Chen et al., 2013; Nery et al., 2014).  The elephant-manatee ancestor was not classified 

as hairless because modern elephants have known extinct hairy sister species (wooly mammoths) 

that diverged after the elephant-manatee divergence (Roca et al., 2009).  Thus, classifying the 

elephant-manatee ancestor as hairy was the most parsimonious phenotype assignment for the 

afrotherian clade.  The classification was also supported by the data, which indicated a stronger 

signal for skin-related genes when the elephant-manatee ancestor was classified as hairy (Figure 

31). 

Although some species are undeniably hairy (dog, cat, sheep, etc.) and some are undeniably 

relatively hairless (orca, dolphin, elephant, etc.), some species are borderline cases.  For example, 

the tenrec and hedgehog appear to have “spikes” rather than hair.  However, tenrec and hedgehog 

spikes (as well as porcupine quills), are modified hairs (Leon Augustus, 1920), so we classified 



   

 

 143 

tenrec and hedgehog as hairy.  Armadillo, pig, and human are likewise classified as hairless species 

but have relatively greater hair quantity than the other hairless species.  The armadillo, like the 

tenrec and hedgehog, has a unique external modification, but unlike the tenrec and hedgehog, the 

armadillo’s shell is made of bone, not hair (I. H. Chen et al., 2011), so we classified the armadillo 

as hairless.  Pig and human, on the other hand, have non-modified skin that is nearly completely 

covered in hair (and in the case of humans, the hair is quite dense in some body areas), but both 

species have large swaths of body area where hair is so sparse that sun-exposed skin is clearly 

visible.  Both species were classified as hairless due to this pervasive low hair density.  To assess 

the impact of species assignment on skin- and hair-related signal, hairless species were 

systematically removed and relevant enrichment statistics were recalculated.  No specific species 

has a consistently detrimental impact on enrichment for gene sets of interest (Figure 33). 

4.4.3 Calculating element-specific association statistics 

For each genetic element, evolutionary rates for haired species versus hairless species were 

compared using Kendall’s Tau.  Haired species included ancestral species inferred to be haired in 

addition to extant haired species.  Resulting p-values were multiple hypothesis testing corrected 

using a standard Benjamini-Hochberg correction (Benjamini & Hochberg, 1995). 

In addition to calculating parametric p-values, empirical p-values were calculated using a 

novel permulation strategy modified from a similar strategy developed for continuous phenotypes 

(Amanda Kowalczyk et al., 2020).  First, 1,000 null phenotypes were generated by using Brownian 

motion phylogenetic simulations and assigning the top ten values as hairless species.  Resulting 

phenotypes were backpropagated along the phylogeny to ensure that final null phenotypes 
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contained a total of eleven foreground species with only a single ancestral species classified as 

hairless.  Such a procedure matched the organization of null phenotype values to true phenotype 

values.  Hypothesis testing was repeating using all null phenotypes, and the empirical p-values 

were calculated as the proportion of permulations with statistics as extreme or more extreme than 

the parametric statistic for the real phenotype values. 

4.4.4 Calculating element-specific Bayes Factors 

In addition to calculating element-specific association statistics, Bayes factors were 

calculated for each gene using the marine and hairless phenotypes.  Briefly, Bayes factors quantify 

the support for a linear model predicting phenotype using evolutionary rate information from each 

gene, with a higher Bayes factor indicating greater support.  The ratio of Bayes factors between 

the hairless and marine phenotypes quantifies the level of support of one phenotype over the other 

and thus can be used to tease apart intricacies of the two heavily-confounded phenotypes. 

4.4.5 Calculating enrichment statistics 

Enrichment statistics were calculated using Mouse Genome Informatics (MGI) gene sets 

(Blake et al., 2003), GTEx tissue annotations (Papatheodorou et al., 2018), GO annotations 

(Ashburner et al., 2000; Carbon et al., 2019), and genes highly expressed in hair follicles (Jing 

Zhang et al., 2017).  The 70 hair-follicle-specific genes were obtained by selecting the top 200 

hair-follicle-expressed genes and removing genes that were included in the top 10,000 genes with 

the highest minimum median expression across GTEx tissues, i.e. ubiquitously expressed genes.  
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Noncoding regions were mapped to annotations via distance from relevant genes – regions within 

10,000 bases of a gene were assigned to that gene and its pathways.  Noncoding regions were also 

mapped to microRNA coordinates using the same distance-based metric.  All annotations are 

available at: https://pitt.box.com/s/b8ozkcwzile4znq8tw9ri8s160zjb3uw 

Pathway enrichment statistics were calculated using the Wilcoxon Rank-Sum Test, which 

compares ranks of foreground values for elements in a pathway to background values for non-

pathway elements.  For each gene or noncoding element, the sign of the statistic times the log of 

the p-value were used to generate ranks.  Empirical p-values from permulations were also 

generated using the same null phenotypes used for individual elements and detailed in previous 

work (Amanda Kowalczyk et al., 2020). 

4.4.6 Permulations 

In addition to computing parametric statistics directly from standard statistical tests, 

empirical p-values were also calculated using a permulation strategy.  Permulations were used to 

generate null phenotype values, and the empirical p-value was calculated as the proportion of null 

statistics as extreme or more extreme than the observed parametric statistics.  Such a strategy 

corrects for a non-uniform empirical null distribution at the gene level (Figure 30) and non-

independence among genetic elements at the pathway level (Saputra et al., 2020).   

https://pitt.box.com/s/b8ozkcwzile4znq8tw9ri8s160zjb3uw
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4.4.7 Positive selection tests 

For top-ranked genes under accelerated evolution in hairless species, all KRT and KRTAP 

genes, and various genes in top-ranked pathways under accelerated evolution in hairless species, 

branch-site models to test for positive selection were performed identify if rapidly-evolving genes 

were undergoing positive selection or merely under relaxation of constraint.  Such models were 

performed using a subset of the full 62 species mammalian phylogeny as shown in the 

Phylogenetic trees section below. 

Significance of relaxation of constraint for hairless species was assessed using likelihood 

ratio tests (LRT) between Branch-site Neutral (BS Neutral) and its nested null model M1 (sites 

neutral model) in PAML (Yang, 2007).  Similarly, LRTs between branch-site selection model (BS 

Alt Mod) and its null BS Neutral were used to infer positive selection in hairless species.  For each 

test, p-values were estimated using the chi-square distribution with one degree of freedom.  

Phylogeny-wide relaxation of constraint was additionally quantified using the LRTs between M2 

(sites selection model) vs M1 (sites neutral model) and M8 (sites selection model) vs M8A (sites 

neutral model) respectively. Prior to performing the mammal-wide tests, hairless foreground 

species were removed to allow for unbiased estimates of significance of relaxation of constraint 

and positive selection from only the background mammalian branches.  Genes with significant 

signals of positive selection and non-significant signals of phylogeny-wide acceleration were 

inferred to be under positive selection. 
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4.4.8 Phylogenetic trees 

Master tree topology with average branch lengths: 

((((((((((((((ailMel1:0.03854019703,((lepWed1:0.02002160645,odoRosDi:0.02064385875):0.01

734764946,musFur1:0.04613997497):0.002879093616):0.009005888384,canFam3:0.053391275

65):0.01185166857,felCat5:0.05020331605):0.03285617057,((((((bosTau7:0.02168740723,((cap

Hir1:0.01157093136,oviAri3:0.01246322594):0.0049716126,panHod1:0.01522587482):0.01465

511149):0.0662523666,(orcOrc1:0.006371664911,turTru2:0.01086552617):0.06014682602):0.0

1216198069,susScr3:0.0796745271):0.006785823323,(camFer1:0.01240650215,vicPac2:0.0109

6629635):0.06374554586):0.02551888691,(cerSim1:0.04977357056,equCab2:0.061454379):0.0

2510111297):0.00331214686,((eptFus1:0.03248546656,(myoDav1:0.02344332842,myoLuc2:0.

01567729315):0.02193849809):0.09455328094,(pteAle1:0.005833353548,pteVam1:0.01611220

178):0.07567400302):0.02385546003):0.002057771224):0.004845253848,(conCri1:0.12398233

69,(eriEur2:0.1696142244,sorAra2:0.1934205791):0.02079474546):0.0235875333):0.01477733

374,((((((chrAsi1:0.1017903453,echTel2:0.1749615473):0.01592632003,eleEdw1:0.151686064

7):0.006610995228,oryAfe1:0.08326528894):0.008243787904,(loxAfr3:0.06812658238,triMan

1:0.06198982615):0.0224994529):0.03384011363,dasNov3:0.1342602666):0.005989703247,(((

macEug2:0.1270943532,sarHar1:0.09944141622):0.02717055443,monDom5:0.1181200712):0.

1802966572,ornAna1:0.4322118716):0.2206952867):0.01316436193):0.01425600689,((((((cav

Por3:0.09048639907,(chiLan1:0.05332953299,octDeg1:0.08476954109):0.01287861561):0.021

18937782,hetGla2:0.08588673524):0.07432515556,speTri2:0.08896424642):0.006291577528,((

((criGri1:0.04084640027,mesAur1:0.04456203524):0.02314125062,micOch1:0.06932402649):0

.01947113467,(mm10:0.05273642272,rn5:0.05576007402):0.04435347588):0.08380065137,jac
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Jac1:0.1438649666):0.04270536633):0.01663675397,(ochPri3:0.1256544445,oryCun2:0.07131

655591):0.06535533418):0.009050428462,tupChi1:0.1191189141):0.003894252213):0.0137937

0868,otoGar3:0.108738222):0.04299750653,(calJac3:0.02474184521,saiBol1:0.02096868307):0

.02784675729):0.0135408115,(chlSab1:0.007693724903,((macFas5:0.001292320552,rheMac3:

0.00713015786):0.002951690224,papHam1:0.005199240711):0.002049749893):0.01566263562

):0.007043113559,nomLeu3:0.01770384793):0.002187630666,ponAbe2:0.0164503644):0.0055

72327638,gorGor3:0.007765177171):0.001382639829,hg19:0.005957477577,panTro4:0.006721

826689); 

 

Subset of master tree used for branch-site models for positive selection: 

(((((((((((lepWed1:0.02002160645,odoRosDi:0.02064385875):0.01734764946,musFur1:

0.04613997497):0.02373665057,felCat5:0.05020331605):0.03285617057,((((((bosTau7:0.02168

740723,oviAri3:0.03208995002):0.0662523666,(orcOrc1:0.006371664911,turTru2:0.010865526

17):0.06014682602):0.01216198069,susScr3:0.0796745271):0.006785823323,vicPac2:0.074711

8422):0.02551888691,(cerSim1:0.04977357056,equCab2:0.061454379):0.02510111297):0.0033

1214686,(myoDav1:0.1399351075,pteAle1:0.08150735657):0.02385546003):0.002057771224):

0.004845253848,(conCri1:0.1239823369,sorAra2:0.2142153246):0.0235875333):0.0147773337

4,(((eleEdw1:0.1582970599,oryAfe1:0.08326528894):0.008243787904,(loxAfr3:0.0681265823

8,triMan1:0.06198982615):0.0224994529):0.03384011363,dasNov3:0.1342602666):0.01915406

518):0.01425600689,(((((cavPor3:0.1116757769,hetGla2:0.08588673524):0.07432515556,speTr

i2:0.08896424642):0.006291577528,((criGri1:0.08345878555,mm10:0.09708989861):0.083800

65137,jacJac1:0.1438649666):0.04270536633):0.01663675397,oryCun2:0.1366718901):0.0090

50428462,tupChi1:0.1191189141):0.003894252213):0.01379370868,otoGar3:0.108738222):0.0
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4299750653,calJac3:0.0525886025):0.0135408115,(chlSab1:0.007693724903,rheMac3:0.01213

159798):0.01566263562):0.01618571169,hg19:0.005957477577,panTro4:0.006721826689); 
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5.0 Broader Impacts: Greensburg Area Science Program 

While completing my dissertation research, I launched and organized an outreach effort 

called the Greensburg Area Science Program (GASP).  Originally started as a program through a 

few classrooms at Greensburg Salem High School, the program has since grown to include 

students from any school districts in Westmoreland County, an area immediately east of 

Pittsburgh.  The program includes field trips to allow students to tour research facilities, guest 

lectures at classrooms, opportunities for mentorship, and a yearly science fair. 

I chose the Greensburg area as the target for my outreach efforts because I grew up in the 

area and attended the Greensburg Salem School District, so I know firsthand that the community 

is underserved by science professionals.  Since there are no large research universities and few 

scientific industry hubs near Greensburg, students never meet scientists or learn what science 

careers look like.  When students are choosing a career path, in order for them to believe that the 

career is actually possible for them, it is essential that they 1) see people in general following that 

career path and 2) see people like them following that career path.  Since I fit both of those criteria 

for students in the Greensburg area, it seemed like a natural choice for a region to enrich with 

scientific outreach. 

Beyond being underserved, the Greensburg area is also home to a wide array of individuals 

from a huge span of socioeconomic backgrounds.  While a small number of students are from 

wealthy backgrounds, many students are from relatively lower income homes.  Many such students 

would be first-generation college students, and many more would be first-generation graduate 
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school students.  Without a parent with an advanced education to guide their paths, many students 

have no idea what it means to get a PhD, let alone how to get one. 

My outreach efforts in the Greensburg area started with yearly field trips to bring students 

to visit research facilities at the University of Pittsburgh.  In the 2017-2018 and 2018-2019 school 

years, students from one or two classrooms visited the University of Pittsburgh to attend a seminar 

about how to get a PhD, hear lightning talks about computational biology, tour laboratory facilities, 

and be paired with a graduate student, postdoctoral fellow, or a professor for a mini one-on-one 

job shadow to learn what a job in scientific research looks like.  Unfortunately, the pandemic 

eliminated the possibility of field trips during the 2019-2020 and 2020-2021 school years, but the 

two earlier years were huge successes.  They sparked longer term job shadows for multiple 

students, and at least one student remained in contact with their mini job shadow graduate student 

to receive mentorship for a research project. 

In addition to field trips and in order to serve more students, I also visited Greensburg 

Salem High School to give several guest lectures during the 2017-2018 and 2018-2019 school 

years.  Some topics were more exploratory, such as "What is computational biology?" and "What 

is a PhD?", but other lectures were more focused on scientific topics the students were learning 

during the course.  One such lecture focused on phylogenetics and how to use BLAST to find 

sequences and build a phylogenetic tree.  Another focused on reading scientific literature and asked 

students to read and be prepared to discuss a scientific paper.  During every lecture, students started 

out unsure and hesitant, but always ended visibly more confident in their ability to understand "real 

science". 

After conducting lectures and field trips, my outreach program grew to include a yearly 

science fair for students in the Spring of 2019, 2020 (virtual), and 2021 (virtual).  The first science 
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fair included only five groups with six total students, and this year's event has grown to 12 groups 

with 25 total students.  Originally targeted to Greensburg Salem High School students for its first 

two year, this year's science fair is open to middle and high school students throughout 

Westmoreland County.  Unlike traditional science fairs in which students conduct projects 

primarily independently, the GASP science fair includes mentorship and numerous workshops to 

guide students through the research process.  Each group is paired with a graduate student mentor 

as a direct point of contact to help them organize their research project, which not only gives the 

student participants valuable knowledge and networking, but also helps graduate students gain 

mentoring skills.  Numerous workshops help students pick their project topics, design their 

experiments, perform basic statistical analyses, and prepare their poster presentations for the 

science fair event.  The science fair is open to the public and is largely supported by community 

organizations, such as the Delmont Lions Club and the Kiwanis Club of Greensburg.  Additional 

support comes from the University of Pittsburgh Biomedical Graduate Student Association, the 

Department of Computational and Systems Biology, and the Integrative Systems Biology PhD 

Program.  The 2019 science fair was also supported by an American Society for Cell Biology 

COMPASS grant. 

Together, these efforts represent a substantial push to introduce Greensburg area students 

to careers in science.  I hope to see participation and impact continue to grow over the years to 

continue showing even more students that careers in science are possible for them. 
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6.0 Conclusions 

In this dissertation, I have demonstrated that computational methods to connect genetic 

elements to convergently evolving phenotypes are powerful and statistically robust tools.  As 

genome sequencing technology continues to improve and more genomes are available, these tools 

will become even more relevant to study a diverse array of phenotypes and to perform preliminary 

functional annotation tasks for genome regions such as enhancers and microRNAs whose 

functions can be difficult to identify experimentally.  My results demonstrate the utility of 

RERconverge, permulations, and branch-site models for positive selection, all of which are 

versatile and scalable to large datasets. 

In chapter 1, I discuss my three methods, RERconverge, permulations, and branch-site 

models for positive selection, and demonstrated their effectiveness.  Both new methods, 

RERconverge and permulations, are already used by numerous external labs despite only being 

recently published, which further highlights their utility in a huge array of research designs.  Tests 

of RERconverge alone indicate that it is fast, easy to use, and scalable to large genomic datasets 

for use with both binary and continuous phenotypes.  Permulations enhance RERconverge function 

by generating an empirical null under a phylogenetic simulation framework.  For individual 

genetic elements, the empirical null corrects for non-independence and other unknown 

confounders when seeking correlations between each genetic element and a convergent phenotype.  

For pathway enrichment analyses, the non-independence correction is even more dramatic because 

genes are known to coevolve, and thus permulations provide a more valid pathway enrichment 

analysis than RERconverge alone.  Finally, a note about proper use of branch-site models for 
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positive selection to test for convergent positive selection highlights the necessity of proper model 

formulation to distinguish phylogeny-wide positive selection from convergent branch-specific 

positive selection.  Although branch-site models are a foundational and widely used method, in 

published manuscripts, they are often used incorrectly to test for positive selection.  My strategy 

shows that the "drop-out method", a test in which species with a convergent phenotype are 

removed prior to running a second set of tests for selection, helps distinguish phylogeny-wide 

positive selection from branch-specific positive selection. 

In chapter 2, I demonstrate work to use the methods from chapter 1 to identify genetic 

elements associated with the evolution of extreme lifespan in mammals.  Using my new longevity 

phenotypes, the first and second principal components of body size and lifespan, I identify a suite 

of genes and pathways that evolve slower in long-lived species.  Little signal is found for genes 

evolving faster in species with extreme lifespan, perhaps because the period of positive selection 

to drive lifespan change was very short in terms of evolutionary time.  On the other hand, as some 

genes were theoretically positively selected to increase lifespan and body size, the entire 

evolutionary landscape of genes shifted and genes whose function was essential to enable long 

lifespan became under increased constraint to protect them from mutations.  Such increased 

evolutionary constraint persists to the current day, and thus those signals of convergence are 

stronger and can be detected using RERconverge.  For large and long-lived species, we find that 

cancer control functionalities, and in particular cell cycle control, evolve slower and thus are likely 

essential to enable the phenotype.  This finding helps to resolve Peto's Paradox, which states that 

large (and long-lived) species should get cancer more often than small (and short-lived) species 

simply because they have more cells than duplicate more times and thus have greater opportunity 

to acquire deleterious mutations.  However, cancer rates across species of different sizes are 
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actually fairly similar.  My findings suggest that robust cancer control mechanisms across large 

and long-lived species may be the key to protect them from cancer.  For species that are long-lived 

independent of body size, I find a unique set of DNA repair mechanisms under increased 

evolutionary constraint.  This is consistent with findings from previous work in individual species 

that found efficient DNA repair was important to slow senescence independent of the size of the 

organism. 

In chapter 3, I show results using RERconverge with a binary phenotype, mammalian 

hairlessness.  Unlike the longevity phenotypes, the hairlessness phenotype shows many genes that 

are under accelerated evolution.  Since branch-site models for positive selection show little 

evidence for positive selection, it appears that many genes are under reduced evolutionary 

constraint in association with hairlessness, perhaps because of reduced functionality.  Since many 

such genes were known to be hair-related, such as keratins and genes associated with hair follicle 

compartments, gene-based analyses served as validation that the method was working correctly.  

Analysis of noncoding regions showed regions with both increased under decreased evolutionary 

rates, and distance-based mapping of noncoding regions to nearby genes showed that genes and 

their putative regulatory elements often have very different evolutionary rates landscapes in 

association with hairlessness.  Notably, genes associated with the matrix and dermal papilla of the 

hair follicle showed little evolutionary rate shifts in genes but significant shifts in noncoding 

regions, suggesting a regulatory component of natural mammalian hairlessness associated with 

key hair follicle regions.  Noncoding analysis further allowed me to identify putative enhancers 

and microRNAs that are potentially associated with hairlessness and are strong candidates for 

further experimental validation. 
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Finally, my broader impacts section highlights my work with a local underserved 

community to help high school and middle school students see that a career in science is possible 

for them.  I describe the initiatives that I piloted, including organizing field trips and guest lectures, 

facilitating mentorship and job shadows, and planning a yearly science fair.  Since its conception 

at the beginning of my doctoral research, the program has grown to include numerous high schools 

and include many local students, and I plan to continue growing the program in the future.  

Diversity of individuals conducting scientific research is essential to foster innovation and ensure 

equity across all populations of people.  I hope that my outreach serves as a model for future 

outreach initiatives to help students pursue careers in the sciences. 

As we move into the future of science, technologies to study genomic sequences will 

continue to improve.  Soon we will have genome sequences available for every species on Earth, 

and we will need methods to analyze those genomes.  Continuing to implement and improve 

methods like RERconverge will allow us to continue performing rigorous analyses of convergent 

sequence evolution like those described in this dissertation.  In particular, study of regulatory 

elements and their networks remains in its infancy, and the field is in dire need of gold standard 

strategies to computationally identify regulatory sequences, map regulatory sequences to their 

associated genes, and build networks of transcriptional networks at the whole genome scale.  

Measuring sequence changes alone is insufficient to fully understand how genomic sequence 

functions – we must strive for a multi-dimensional view of not only what the sequence looks like, 

but when and where it is expressed, how its expression affects the expression of other sequence, 

how it is co-expressed with other sequences, and how it and other sequences ultimately work 

together to drive phenotypes.  A full understanding will require multi-faceted approaches and 

innovation that I hope to be a part of in my future work. 
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A fuller understanding of whole genome function and interactivity would provide 

innumerable benefits to other genomic technologies.  Fully understanding regulatory function in 

particular would allow us to design gene therapies that target specific cell types or preferentially 

target tumor cells over healthy cells.  It could also help guide modifications using the CRISPR-

Cas9 gene editing system by allowing us to accurately and fully predict how edits will affect the 

genome.  As it currently stands, CRISPR-Cas9 is like the queen on a chess board – incredibly 

powerful, but it is impossible to know the best place to move her without being able to see the rest 

of the pieces.  The rest of the pieces is a full understanding of the genome, and that would allow 

us to make the most out of gene editing technology. 

Improvements in technology in the world at large are also continually making science more 

accessible to all, and outreach efforts that adapt to the modern world will be essential to continuing 

to diversify scientific research.  Particularly for computational research, many resources are 

completely free and available to anyone with a computer and internet access.  Such resource 

availability makes it possible for anyone, anywhere to conduct research.  In conjunction with 

technological advancements, the movement toward all-open-access journals will allow anyone to 

access scientific research information and make science more equitable and accessible to all.  

Scientific innovation cannot continue without welcoming a diverse set of individuals with a wide 

range of ideas to apply to difficult research questions.  My future work will tackle those difficult 

questions, and I plan to continue engaging in outreach to attract diverse minds to help me answer 

them. 
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Appendix Permissions to Reuse Copyright Content 

Text from Chapter 1 about RERconverge originally published in (A. Kowalczyk et al., 

2019) was reused from Bioinformatics under policies that allow full reuse in author theses: 

https://global.oup.com/academic/rights/permissions/autperm/?cc=us&lang=en& 

Text from Chapter 1 about permulations originally published in (Saputra et al., 2021) was 

reused from Molecular Biology and Evolution under 

https://global.oup.com/academic/rights/permissions/autperm/?cc=us&lang=en& 

I retain copyright for the text from Chapter 1 about proper use of branch-site models to 

detect convergent positive selection, which is not yet available as a preprint or a peer-reviewed  

manuscript. 

Text from Chapter 2 about implementation of RERconverge to analyze the longevity 

phenotype originally published in (A. Kowalczyk et al., 2020) was reused from eLife under 

https://creativecommons.org/licenses/by/4.0/legalcode 

I retain copyright for the text from Chapter 3 about the implementation of RERconverge 

to analyze the hairlessness phenotype, currently available as a preprint on bioRxiv at (Amanda 

Kowalczyk et al., 2021). 

https://global.oup.com/academic/rights/permissions/autperm/?cc=us&lang=en&
https://global.oup.com/academic/rights/permissions/autperm/?cc=us&lang=en&
https://creativecommons.org/licenses/by/4.0/legalcode
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