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Abstract 

Enteric disease outbreaks in the US: Analysis of a dataset from the National Outbreak 

Reporting System 

 

Brandon Meng, MS 

 

University of Pittsburgh, 2021 

 

 

Abstract 

 

With approximately 179 million cases occurring annually in the United States, acute 

gastroenteritis is a major public health issue. Cases are characterized by diarrhea and often 

followed by nausea, vomiting, fever, and abdominal pain. The Centers for Disease Control and 

Prevention tracks acute gastroenteritis outbreak data in the United States via the National Outbreak 

Reporting System (NORS). This thesis concerns the relationship between various factors of 

interest (year, season, region, setting, and etiology) and outcomes of illness, hospitalization, and 

death from person-to-person transmitted outbreaks of acute gastroenteritis in the United States.  A 

relevant outbreak dataset was extracted from NORS. A negative binomial model was used to 

examine the various factors of interest on the number of illnesses and logistic regression models 

were used to examine the relationship between those factors and chance of hospitalization. Death 

in these outbreaks was compared with descriptive statistics due to sparsity. To account for missing 

values in setting and etiology, outbreaks with complete records and similar characteristics in other 

factors and number of illnesses were identified and the hot-deck method was used to impute 

missing values. Multiple imputation was used to summarize analysis results from datasets created 

with the hot-deck method. It was shown that that setting and etiology were by far the most 

influential factors on all three outcomes. Additionally, multiple imputation substantially reduced 

the variance estimates of some regression model parameters. Cases of acute gastroenteritis cause 

significant health and economic damage, so an examination of factors that are associated with 
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larger outbreaks is relevant to public health. Our results have important public health implications 

that mitigation of acute gastroenteritis outbreaks should be directed towards the school setting and 

Norovirus in particular. If policies are aimed at reducing severe outcomes, we should target 

Salmonella, Clostridium, and Escherichia, as these etiologies had the highest probabilities of 

hospitalization in this study.  
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1.0 Introduction 

With over 350 million annual cases in the United States, acute gastroenteritis (AGE) is a 

common cause of enteric illnesses leading to nausea, vomiting, diarrhea, and abdominal pain 

(Graves, 2013). This poses a global public health issue with childhood mortality in developing 

countries and significant economic burden in developed countries.  

Most cases of acute gastroenteritis are characterized as viral infections or bacterial 

infections. Risk of infection is especially high in children due to their lack of immunity and lower 

likelihood to practice good hygiene habits. Rotavirus in particular is a very common cause in the 

younger demographic (Elliot, 2007), while Norovirus is more common in the older demographic 

(Chen 2017). Bacterial infections are also prevalent with common causes being species from 

Escherichia, Salmonella, and Shigella.  

While most symptoms are usually mild and often require no treatment in developed 

countries (Wielgos, 2019), outbreaks still lead to significant health and economic impacts. A study 

examining the 5-year period of 2010-2014 in Belgium found that acute gastroenteritis caused 343 

deaths, 27,707 hospitalizations, and 464,222 general practitioner consultations. The economic 

burden was estimated to represent direct costs of €112 million, indirect costs of €927 million, and 

an average total cost of €103 per case and €94 per person (Papadopoulos, 2019). As these figures 

show, public health initiatives directed towards mitigation of AGE are worth pursuing, even in 

developed countries like Belgium. 

The CDC launched the National Outbreak Reporting System (NORS) in 2009 as an online 

platform for which health departments can enter outbreak information in the United States. Since 

the 1970s, national foodborne and waterborne disease outbreak surveillance have been core 
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functions of the CDC. The two surveillance systems handle this responsibility are the Waterborne 

Disease and Outbreak Surveillance System (1971-present) and the Foodborne Disease Outbreak 

Surveillance System (1973-present). While foodborne disease outbreak data have been collected 

electronically since 1998, NORS was designed to combine the outbreak reporting systems and 

improve national outbreak reporting with new components. Enteric disease outbreaks in the US 

are reported by local and state health departments to the NORS. The general flow of outbreak 

information to NORS usually consists of the following: 1) People are exposed to a pathogen; 2) 

People get sick and seek treatment; 3) Health department is notified of a possible outbreak; 4) 

Health department conducts an outbreak investigation; 5) Health department enters outbreak 

information into NORS; 6) CDC checks data for accuracy and analyzes; 7) Data are summarized 

and published (https://www.cdc.gov/nors/about.html). 

NORS collects data on the following types of outbreaks in the United States: waterborne 

disease outbreaks, foodborne disease outbreaks, person-to-person transmitted disease outbreaks, 

animal contact disease outbreaks, environmental contamination outbreaks, and other enteric illness 

outbreaks. A study on the reporting period of 2009-2010 found that the primary reported mode of 

transmission in most AGE outbreaks was person-to-person at 52% (Hall, 2013). This trend has 

continued to recent times with person-to-person transmitted disease outbreaks at 63% of all enteric 

disease outbreaks reported to NORS from 2009-2018.  

According to the NORS guidance documentation, the mode of transmission was defined 

as person-to-person if “the initial enteric illnesses were associated with direct contact with an 

infected person, their bodily fluids, or by contact with the local environment where the exposed 

person was simultaneously present with the infected person and may have had the opportunity for 

direct contact.” (NORS Guidance 7). Even though environmental contamination is often a factor 
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in person-to-person outbreaks, the primary mode of transmission is considered person-to-person 

if most of the patients had known direct contact or likely had the opportunity for direct contact 

with one another. For example, consider an outbreak that occurred in a long-term care facility. 

Multiple workers and residents become ill within a few days, with several more illnesses occurring 

over the next few weeks. Because multiple opportunities arose for direct contact among ill persons 

and there was evidence of propagated transmission, the mode of transmission was considered to 

be person-to-person. 

A 2015 paper focused on the reporting period of 2009-2013 from the same NORS dataset 

at the time with outbreaks with the person-to-person, environmental, and unknown modes of 

transmission (Wikswo, 2015). This study mostly provided descriptive statistics and found that 

Norovirus was by far the most common etiology at 84% of outbreaks with observed etiologies. 

Outbreaks were found to be more frequent during the winter, with 53% occurring between 

December-February. Even though long term care facility was found to be the most common setting 

for all outbreaks, shigellosis and salmonellosis outbreaks were found to be especially prevalent in 

child care facilities. The paper noted the increase in reporting rates from 2009-2013 and stressed 

the importance of Norovirus as a very common pathogen from the dataset. The authors went on to 

highlight the utility of having a centralized database for more focused future studies on specific 

pathogens and their modes of transmission. They concluded that recommendations for prevention 

and control of AGE outbreaks through person-to-person contact, environmental contamination, 

and unknown modes of transmission depend primarily on appropriate hand hygiene, 

environmental disinfection, and isolation of ill persons.  
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The objective of this thesis is to examine the relationship between several factors of interest 

and three specific outcomes of interest (illness, hospitalization, and death) in enteric disease 

outbreaks using NORS data from 2009-2018. 

The outcome of illness count was modeled with negative binomial regression. 

Hospitalization was modeled using grouped logistic regression models to examine and the 

association between demographic or etiologic factors and chance of hospitalization. Death was 

examined via descriptive statistics due to the scarcity of outbreaks with any death. While the 

intention is to examine how these same factors vary across different outcomes, specific variables 

will be removed from each model if they are found to not be useful to the model. This gives insight 

into risk factors of person-to-person transmitted enteric disease outbreaks and provide direction 

for where resources should be allocated for public health initiatives. 
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2.0 Background 

2.1 A Dataset from NORS 

Data were retrieved from NORS Dashboard, the CDC’s webpage used to search and access 

the NORS data on enteric disease outbreaks. This site allows users to filter and extract data as well 

as visualize basic summary statistics on a few variables in each dataset. 

This thesis was restricted to person-to-person transmitted enteric disease outbreaks from 

2009 to 2018. This is because most prior research has focused on foodborne illness outbreaks, 

which have been recorded by the CDC since the 1970s, leaving research on person-to-person 

transmitted enteric disease outbreaks largely unexplored at this point in time. The dataset was also 

extracted using the single-state outbreaks filter, which excluded 13 multistate outbreaks, to ensure 

that there were only singular responses for the State variable. Each observation is an individual 

outbreak. Incidents were required to have at least two people contracting illnesses for them to be 

considered outbreaks and included in this dataset.  

There were a total of 22,917 outbreaks from the extracted dataset. I found similar results 

as results as Wikswo in my analysis of the updated dataset and aim to examine the relationship 

between the outcomes and factors of interest from the dataset (Wikswo, 2015). 

The extracted dataset included the following variables:  

Table 1 Dataset Variables 

Variable Included or Excluded 

Year Included 

Month Included 
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State Included 

Primary Mode (of transmission) Excluded 

Etiology Included 

Serotype or Genotype Excluded 

Etiology Status Excluded 

Setting Included 

Illnesses Included 

Hospitalizations Included 

Info on Hospitalizations Excluded 

Deaths Included 

Info on Deahts Excluded 

Food Vehicle Excluded 

Food Contaminated Ingredient Excluded 

IFSAC Category Excluded 

Water Exposure Excluded 

Water Type Excluded 

Water Status Excluded 

Animal Type Excluded 

Animal Type Specify Excluded 
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2.1.1 Outcomes of Interest 

Out of the 21 total variables from the original dataset, three could be considered outcomes: 

“Illnesses,” “Hospitalizations,” and “Deaths.”  “Illnesses” was defined as “estimated total number 

of primary cases, including lab-confirmed and probable, based on the outbreak-specific 

definition.” “Hospitalizations” was defined as “number of primary cases who were hospitalized.” 

“Deaths” was defined as “number of primary cases who died.” This means that the hospitalization 

counts and death counts are included in the illness counts. However, these three distinct outcomes 

will be examined separately.  

2.1.2 Factors of Interest 

Many of the 21 original variables are only relevant to different types of outbreaks not 

pertaining to this specific dataset. For example, variables like “Food Vehicle” and “Animal Type” 

are not relevant for this dataset which only contains person to person transmitted disease outbreaks. 

The dataset also contained variables that were clearly associated etiology, such as “Serotype or 

Genotype” and “Etiology Status”. These variables are less relevant to the objectives of this thesis 

than the specific variables they correspond to (Etiology in this case) and could potentially cause 

multicollinearity issues with modeling and were not included in the analyses. After taking all these 

considerations, the finalized factors of interest from the dataset include: Year, Month, State, 

Setting, and Etiology.  
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2.2 Data Pre-Processing 

Most factors were reclassified into fewer levels to examine trends and allow for more 

manageable regression analyses.  

2.2.1 Year 

The year variable was not reclassified from the original dataset and was treated as a discrete 

variable. This dataset contained year values 2009-2018 for person-to-person outbreaks. 

2.2.2 Month 

Historically, many person-to-person disease outbreaks have been shown to occur more 

frequently during winter months when weather is cooler. Despite the ubiquity of this trend, the 

exact mechanisms underlying these changes are still not well understood (Fares, 2013). The 

following factors have been proposed to explain the seasonality of various directly transmitted 

diseases: 

1. Human Activity: With colder weather, people spend more of their time indoors, where 

pathogens thrive in crowded environments.  

2. Pathogen Infectivity: Seasonal changes bring about changes in the physical 

environment like temperature, oxygen concentration, and humidity. For example, many 

micro-organisms like E. coli are much more stable in low-humidity conditions.  

3. Immune System Function: Recent experimental studies on various animals including 

humans suggest that the immune system is weakened during the winter. Evidence 
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suggests that deficiencies in chemical compounds such as Vitamin D and Melatonin, 

both of which human bodies produce less of during the winter, can change normal 

immune system function. 

The month variable was relabeled from 1-12 (January-December) to seasons as defined by 

northern meteorological seasons: Winter (December-February), Spring (March-May), Summer 

(June-August), and Autumn (September-November).  As determining whether more outcomes 

occurred earlier or later in the year is not particularly helpful, months were reclassified to seasons, 

which hold more meaningful information by being related to climate trends. 

2.2.3 State 

The state variable from the original dataset (50 US States, Puerto Rico, and DC) was re-

grouped into four US regions as defined by the US Census Bureau.  This regrouping aims to reduce 

the number of levels for regression while also grouping together states that are likely to have 

similar climates based on similar geographic location. 

2.2.4 Setting 

The setting variable was re-grouped to combine similar levels together. This was done to 

identify potential trends across demographics usually found in specific locations. Long-term care 

facilities (LTCF), School, and Child Daycare had distinct enough demographics to remain 

unchanged for re-categorization. “Hospital” was combined with “Other healthcare facility” to 

create the new “Healthcare Facility” category. This categorization aims to examine outbreaks that 

occur in patients and healthcare workers. “Unknown” settings were converted and added to NA 
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for imputation. The remainder of the categories (all below 2.5%) were added together and used to 

create the new “Other” category.   

2.2.5 Etiology 

Etiologies from this dataset are either viral or bacterial. Norovirus is a common viral cause 

of acute gastroenteritis, while Shigella is a common bacterial agent. 

In the United States, Norovirus is the most common cause of acute gastroenteritis across 

all age groups. Infection is characterized by diarrhea, vomiting, and stomach pain. Cases usually 

resolve themselves after 1-3 days. However, complications such as dehydration may occur, 

especially in the young, old, and those with pre-existing conditions such as diabetes. It can be 

transmitted directly from person to person or indirectly from contaminated water or food. 

Norovirus also is very contagious as fewer than twenty virus particles can cause an infection 

(Morillo, 2011).  

Acute gastroenteritis can also be caused by bacterial infections from pathogens such as 

Shigella. Shigella is one of the leading bacterial causes of diarrhea worldwide and may cause 

dysentery, a type of gastroenteritis that results in diarrhea with blood, upon infection. Common 

symptoms are similar to those of Norovirus and usually last for several days. Cases usually resolve 

without specific treatment; however, complications can include reactive arthritis, sepsis, and 

seizures. As with most cases of bacterial infection, antibiotics can be administered to shorten the 

length of infection, but are usually only recommended for use in severe cases as resistance has 

become a common issue (Prince, 2010).  
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The original dataset contained 194 different etiologies, including viruses like Norovirus 

bacteria like E. coli.  Since many of those etiologies are related to each other and can be aggregated, 

effort was made to categorize into a handful of pathogen groups. 

Despite the clear difference between viruses and bacteria, both are classified relatively 

similarly using taxonomic systems. In both cases, genus refers to the classification above species 

and below family on the taxonomic hierarchy. In the original dataset, some entries for the etiology 

variable were genus (such as Shigella) while others were species (such as E. coli). Therefore, all 

etiology values were consolidated into viral genera or bacterial genera in this analysis for 

consistency. 

Genera with too few outbreaks (<75 outbreaks observed) were collapsed into an “Other” 

category. Some outbreaks had multiple pathogens listed separated by semicolons such as 

“Adenovirus; Norovirus Genogroup II; Clostridium other.” These outbreaks were collapsed into a 

“Multiple” etiology category. As almost all of the observations in this “Multiple” category contain 

Norovirus as one of the etiologies listed for this dataset, interpretation of this designation will be 

viewed as Norovirus in combination with at least one other etiology. 
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3.0 Statistical Methods 

In this thesis, two well-established regression models were applied to study the association 

between factors of interest and outcomes in these outbreaks. Usually, the Poisson distribution is 

ideal for count data, but the assumption that the mean of the outcome is equal to the variance of 

the outcome is rarely the case in practice. In these situations, the negative binomial distribution is 

preferred to account for overdispersion. The negative binomial regression model was used to 

examine the relationship between the factors of interest and the number of illnesses in each 

outbreak.  

Logistic regression models were used to study how the factors of interest related to the rate 

of hospitalization in each outbreak. Because there were missing values in etiology and setting, a 

hot-deck imputation algorithm was developed to impute missing etiology and setting by using the 

observed values from other outbreaks with similar characteristics in the dataset. The data were 

imputed several times and analysis results from the imputed datasets were summarized via multiple 

imputation (Rubin, 1987). 

3.1 Negative Binomial Regression 

 The negative binomial is a conjugate mixture distribution for over-dispersed count data. It 

is a popular generalization of the Poisson distribution that relaxes the restriction of the variance 

equaling the mean. This is accomplished by modeling the Poisson heterogeneity with a gamma 

distribution.  
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Assume that: (1) given λ, Y follows a Poisson distribution with mean λ, and (2) λ follows 

a gamma distribution, F(k, μ), with probability density function  

 𝑓(𝜆; 𝑘, 𝜇)  =  
(

𝑘

𝜇
)

𝑘

(𝛤(𝑘))
exp (−

𝑘𝜆

𝜇
) 𝜆𝑘−1,      𝜆 ≥ 0     

For this gamma distribution, we have  

𝐸(𝜆) =  𝜇,      𝑣𝑎𝑟(𝜆) =  𝜇2/𝑘 

Where k > 0 defines the shape. The degree of skewness decreases as k increases.  

Marginally, the gamma mixture of the Poisson distributions is the negative binomial 

distribution for Y. The probability mass function of Y is  

𝑝(𝑦; 𝑘, 𝜇) =
𝛤(𝑦 + 𝑘)

𝛤(𝑘)𝛤(𝑦 + 1)
(

𝑘

𝜇 + 𝑘
)

𝑘

(1 −
𝑘

𝜇 + 𝑘
)

𝑦

,      𝑦 = 0, 1, 2, …. 

In terms of the dispersion parameter 𝛾 = 1/𝑘, 

𝐸(𝑌) =  𝜇,      𝑣𝑎𝑟(𝑌) =  𝜇 +  𝛾𝜇2 

The degree of overdispersion relative to the Poisson increases as γ increases. As γ 

approaches 0, the negative binomial distribution has var(Y) approaches μ and it converges to the 

Poisson distribution with mean μ. 

Negative binomial regression model count data and allow μ to depend on covariates. Such 

models usually assume the same dispersion parameter γ for all observations (Agresti, 2013). 

3.2 Logistic Regression 

The logistic regression model is used to examine probability in a binary outcome. The 

model for 𝜋(𝑥) = 𝑃(𝑌 = 1) at 𝑥 = (𝑥1, … , 𝑥𝑝) for p predictors is 
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𝑙𝑜𝑔𝑖𝑡[𝜋(𝑥)] =  𝛼 + 𝛽1𝑥1 +  𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 

An alternate formulation that directly specifies π(x) is 

𝜋(𝑥) =
exp(𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ +  𝛽𝑝𝑥𝑝)

1 + exp(𝛼 +  𝛽1𝑥1 +  𝛽2𝑥2 + ⋯ +  𝛽𝑝𝑥𝑝)
 

We use indicator variables to denote categories for qualitative predictors. The parameter βj 

is the effect of xj on the log odds that Y = 1, adjusting for the other xks. 

When more than one observation occurs at a fixed xi, we record the number of observations 

as ni and the number of successes as yi. Then {𝑌1, … , 𝑌𝑁} are independent binomials with 𝐸(𝑌𝑖) =

𝑛𝑖𝜋(𝑥𝑖), where 𝑛1 + ⋯ + 𝑛𝑁 = 𝑛. Their joint probability mass function is proportional to the 

product of N binomial functions, 

∏ 𝜋(𝑥𝑖)𝑦𝑖[1 − 𝜋(𝑥𝑖)]𝑛𝑖−𝑦𝑖

𝑁

𝑖=1

 

= {∏ 𝑒𝑥𝑝[log (
𝜋(𝑥𝑖)

1 − 𝜋(𝑥𝑖)
)𝑦𝑖]

𝑁

𝑖=1

} {∏[1 − 𝜋(𝑥𝑖)]𝑛𝑖

𝑁

𝑖=1

}  

In the above likelihood function, we can model the data with 𝑙𝑜𝑔𝑖𝑡(𝜋(𝑥𝑖)) =  ∑ 𝛽𝑗𝑥𝑖𝑗𝑗  

(Agresti, 2013). 

3.3 Cook’s Distance 

Cook’s distance utilizes single-case deletion to calculate the influence of each observation 

on the fitted response values (Cook and Weisberg, 1982). Observations with Cook’s distance 

greater than three times the mean Cook’s distance can be considered outliers. As this metric was 

originally designed for linear models, the implementation for generalized linear models are 
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approximations, as described by Williams in 1987 (Williams, 1987). The formula for the Cook’s 

distance metric applied to generalized linear models is the following: 

(
𝑟𝑒𝑠

1 − ℎ𝑎𝑡
)

2

∗
ℎ𝑎𝑡

𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 ∗ 𝑝
 

Where res are Pearson residuals 

hat is the hat matrix 

p is the number of parameters in the model 

and dispersion is the dispersion considered for the current model 

3.4 Hot-Deck Imputation 

Hot-deck imputation is an implicit and very popular imputation technique that identifies 

subjects with similar characteristics as the ones with missing values and impute the missing values 

by drawing observed values from those similar subjects with completely observed data. In this 

project, nearest neighbor imputation was used, meaning donors or observations with complete data 

in the close vicinity of each observation with missing values are identified and randomly allocated 

to impute each missing value. This method is convenient because it does not rely on explicit model 

fitting, and is less sensitive to model misspecification and violation of assumptions from methods 

like regression imputation (Andridge and Little 2010).  

Contingency tables and chi-square tests of independence are usually used to examine 

whether a discrete variable to be imputed is associated with the other discrete variables. Regression 

analyses can be used to identify continuous variables that are related to discrete variables that are 

subject to missing values. In general, one can define a distance metric between any pair of 
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observations based on completely observed variables that are associated with variables that are 

subject to missing values. For each incomplete case, complete cases within its neighborhood of 

pre-determined size form the adjustment cells are potential donors. Let 𝑥𝑖 = (𝑥𝑖1, … 𝑥𝑖𝑞) be the 

values of q covariates from subject i and C(xi) denote the adjustment cell where subject i falls. 

Then one can randomly draw observed values from C(xi) to impute the missing values of xi in the 

hot-deck imputation (Little and Rubin, 2002). 

In practice, an adjustment cell based on discrete variables can be formed by matching those 

discrete variables exactly. In this thesis, etiology and setting are the two variables that are subject 

to missing values. It is noted that year, season, and region are the fully observed discrete variables 

that are highly associated with these two variables. The number of illnesses, as a continuous 

variable, is also highly associated with etiology and setting. We will consider creating adjustment 

cells based on these variables to impute missing values in etiology and setting.  

3.5 Multiple Imputation 

In general, missing values are imputed randomly via an explicit or an implicit model. 

Because of the randomness in the imputation, imputed values and the resulting parameter estimates 

will vary from imputation to imputation. Multiple imputation is a method of imputing missing 

values multiple times and making inferences by incorporating both within-imputation and 

between-imputation variation in parameter estimates derived from imputed datasets. In practice, 

we will repeat the same imputation algorithm multiple times. Then we will analyze each imputed 

dataset and summarize the analysis results from these multiply imputed datasets. 
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Analysis on single imputed data usually considers variation within the imputed data. 

Compared with single imputation, multiple imputation also considers variation due to imputation. 

The analysis of multiply-imputed datasets is rather straightforward. Each imputed dataset 

is analyzed using the same analysis for complete rectangular data. Parameters are estimated using 

the following formula:  

𝜃𝐷
̅̅ ̅  =

1

𝐷
∑ 𝜃𝑑 

𝐷

𝑑=1

 

Where 𝜃𝑑 is the parameter estimate from a single imputation 

D the number of imputations, and 

𝜃𝐷
̅̅ ̅ the average of parameter estimates from the D multiply imputed datasets 

Because imputations are conditional draws rather than condition means, they provide valid 

estimates for a wide range of estimands, while averaging also increases efficiency. Variability has 

two components:  

1. Average Within-Imputation Variance 

a. �̅�𝐷 =
1

𝐷
∑ 𝑊𝑑

𝐷
𝑑=1  

Where 𝑊𝑑 is the within-imputation variance estimate from the dth imputed dataset 

2. Between Imputation Variance 

a. 𝐵𝐷 =
1

𝐷−1
∑ (𝜃𝑑 − 𝜃𝐷

̅̅ ̅)
2𝐷

𝑑=1  

Total variability associated with 𝜃𝐷 is 

𝑇𝐷 = �̅�𝐷 +
𝐷 + 1

𝐷
𝐵𝐷 

Because the sample size is so large for this dataset, the standard normal distribution will be used 

as the reference distribution for interval estimates and significance tests. 
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4.0 Analysis Results 

This section will be focused on analyses of the relationship between factors of interest and 

outcomes of illness, hospitalization, and death from the extracted dataset. 

To address missing values from the setting and etiology variables, multiple imputation was 

used before fitting the same model used in the complete case analyses. Coefficient estimates were 

compared between the model fit on the data before and after the imputation of missing values to 

examine the effect of imputation. 

4.1 Summary Statistics of Factors and Outcomes of Interest 

This section shows descriptive statistics of re-categorized variables and examines their 

frequencies with regards to number of outbreaks.  

4.1.1 Year 

The year variable was not reclassified from the original dataset and was treated as a discrete 

variable. This dataset contained year values 2009-2018 for person-to-person outbreaks. 

The frequencies of outbreak year are shown in Table 2. 

Table 2 Frequencies of Outbreak Year 

Year Number of Outbreaks (Percentage) 

2009 1308 (5.71%) 
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2010 1781 (7.77%) 

2011 1892 (8.26%) 

2012 2554 (11.14%) 

2013 2555 (11.15%) 

2014 2490 (10.87%) 

2015 2682 (11.70%) 

2016 2709 (11.82%) 

2017 2549 (11.12%) 

2018 2397 (10.46%) 

 

Table 2 shows that there was an increase in number of outbreaks each year from 2009 to 

2012, when the number of outbreaks each year stabilizes at around 2500 (about 11% of the total).  

4.1.2 Season 

The month variable was re-labelled as season as defined by northern meteorological 

seasons.  The frequencies of outbreak season are shown in Table 3. 

Table 3 Frequencies of Outbreak Season 

Season Number of Outbreaks (Percentage) 

Winter 12130 (52.93%) 

Spring 6932 (30.25%) 

Summer 1150 (5.02%) 

Autumn 2705 (11.80%) 
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Table 3 shows that the majority of outbreaks occur during winter (52.93%) while very few 

occur during summer (5.02%).  

4.1.3 Region 

The state variable was re-labelled as region as defined by the US Census Bureau. The 

frequencies of outbreak region are shown in Table 4. Population sizes for each region from the 

2020 US Census were included as a reference. 

Table 4 Frequencies of Outbreak Region 

Region Number of Outbreaks 

(Percentage) 

Population Size from 2020 

US Census 

Midwest 8096 (35.33%) 68,995,685 

Northeast 6793 (29.64%) 57,609,148 

South 5165 (22.54%) 126,266,107 

West 2863 (12.49%) 78,588,572 

 

Table 4 shows that the Midwest region of the US had the most outbreaks at 35.33% while 

the West region had the least amount of outbreaks at 12.49%.  

4.1.4 Setting 

The setting variable was re-grouped to combine similar levels together. The frequencies of 

re-categorized setting are shown in Table 5. 
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Table 5 Frequencies of Outbreak Setting 

Setting Number of Outbreaks (Percentage) 

Long Term Care Facility 13316 (58.11%) 

School/College/University 2156 (9.41%) 

Child Daycare 1492 (6.51%) 

Healthcare Facility 832 (3.63%) 

Other 1672 (7.30%) 

NA 3449 (15.05%) 

 

Table 5 shows that the majority of the outbreaks were at long-term care facilities (58.11%) 

while fewer occurred at School (9.41%) and Daycare (6.51%). A sizable portion of the setting 

values is missing at 15.05%. 

4.1.5 Etiology 

The etiology variable was condensed into bacterial genera and viral genera for consistency. 

The frequencies of re-grouped etiology are shown in Table 6.  

Table 6 Frequencies of Outbreak Etiology 

Etiology Number of Outbreaks (Percentage) 

Norovirus 15530 (67.77%) 

Shigella 854 (3.73%) 

Salmonella 219 (0.96%) 

Clostridium 164 (0.72%) 

Escherichia 138 (0.60%) 
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Rotavirus 104 (0.45%) 

Sapovirus 78 (0.34%) 

Other 182 (0.79%) 

Multiple 611 (2.67%) 

NA 5037 (21.98%) 

 

Table 6 shows that the majority of the outbreaks were caused by Norovirus at 67.77%.  

Shigella is noted as being 3.73% of all outbreaks while the rest of the single pathogen etiologies 

are all below 1%: Salmonella at 0.96%, Clostridium at 0.72%, Escherichia at 0.60%, Rotavirus at 

0.45%, and Sapovirus at 0.34%. A large portion of the etiology values is missing at 21.98%. 

4.1.6 Outcomes 

The outcomes of interest from the dataset are counts of illnesses, hospitalizations, and 

deaths. Table 7 shows summary statistics of these three different outcomes. 

Table 7 Outcome Summary Statistics 

Variable Mean (SD) Median (1st Quartile, 3rd Quartile) Missing Values 

(Percentage) 

Illnesses 32.71 (42.20) 23.00 (12.00, 41.00) 0 (0%) 

Hospitalizations 0.5342 (1.6988) 0 (0, 0) 2647 (11.55%) 

Deaths 0.0452 (0.2803) 0 (0, 0) 2625 (11.45%) 

 



 23 

By comparing the medians to the means, we can see from Table 7 that all three outcomes 

are heavily right-skewed. The data show that hospitalizations and deaths consist almost entirely of 

zero values as medians, 1st quartiles, and 3rd quartiles are all 0.  

Illnesses does not have any missing values while hospitalizations and deaths have very 

similar amounts of missing values. Almost all of the observations with these missing values are 

missing values from both hospitalizations and deaths.  

4.2 Preliminary Analyses 

Complete-case analyses were conducted before imputation of missing values to examine 

the effects of the factors of interest on counts of illness, probabilities of hospitalization, and 

probabilities of death from outbreaks. 

4.2.1 Illnesses 

4.2.1.1 Model Fitting 

The negative binomial model was chosen for illnesses because the outcomes are counts 

and the summary statistics of illness count from Table 7 showed a heavy right skew, meaning the 

data were overdispersed. 

To ensure that the negative binomial model was appropriate, univariate negative binomial 

regressions with each covariate were used for number of illnesses to examine dispersion 

parameters for overdispersion. 
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Table 8 Estimated Dispersion Parameter from Univariate Negative Binomial Regression Models on Illness 

Count 

Covariate Dispersion Parameter 

Year 1.3901 

Season 1.3898 

Region 1.3775 

Setting 1.5320 

Etiology 1.4785 

 

Table 8 shows that all of the univariate regression dispersion indices are significantly 

greater than 1, suggesting overdispersion is present, meaning that the negative binomial model is 

an appropriate fit. 

To determine if all covariates were necessary for the model, likelihood ratio tests were run. 

Each likelihood ratio test compared the full model with all of the covariates against sub-models 

with each of the covariates removed.  

Table 9 Likelihood Ratio Test against Sub-Models 

Covariates Test Statistic P value 

Year 514.54 < 0.0001 

Season 91.28 < 0.0001 

Region 39.14 < 0.0001 

Setting 25424.59 < 0.0001 

Etiology 37184.86 < 0.0001 
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Table 9 shows that all of the covariates appear to be statistically significant predictors of 

the number of illnesses in the multivariate negative binomial regression model. 

Residuals were plotted as diagnostics for how well the model fit the data. A quantile-

quantile plot was used to examine how close the model residuals were to a normal distribution in 

Figure 1. 

 

Figure 1 Quantile-Quantile Plot for Illness Count Model Residuals 

 

The data points from this quantile-quantile plot mostly follow the line, showing that the 

distribution of the residuals mostly follows a normal distribution. 

A histogram was used to examine the distribution of residuals for outliers and skewness in 

Figure 2. 



 26 

 

Figure 2 Histogram of Illness Count Model Residual Distribution 

 

This histogram shows slight right skew, meaning that there are likely a couple observations 

with very high residual values.  

The metric used to determine outliers from the model was Cook’s distance. Cook’s distance 

values were calculated for each of the 15,205 complete-case observations. Figure 3 shows which 

observations had the highest Cook’s distance values. 



 27 

 

Figure 3 Outliers of Illness Count Model by Cook’s Distance 

 

Any observations with Cook’s distance values of greater than four times the mean 

(0.000784 represented by the red line) were removed from the dataset to allow for a better model 

fit. The dataset with complete data observations was reduced from 15,205 outbreaks to 14,959 

outbreaks after removal of outliers.  

4.2.1.2 Examination of Outliers from Illness Model 

Outbreaks considered outliers using the Cook’s distance metric were separated into groups 

based on illness count quartiles. 

Table 10 Outlier Outbreaks Sorted by Illness Counts 

Illness Counts Number of Outbreaks Percentage 

2-12 72 29.27% 

13-23 50 20.33% 
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24-41 58 23.58% 

42-180 66 26.83% 

Total 246  

 

Table 10 shows that there was not a disproportionate amount of high outliers or low outliers 

with regards to illness count. Out of the total 246 outbreaks outliers using the Cook’s distance 

metric, 66 outbreaks had illness counts greater than the 3rd quartile (41). These outbreaks with high 

illness counts were examined by setting and etiology, the two covariates with highest dispersion 

parameters and lowest likelihood ratio test p-values. This was done to examine potential trends in 

outbreaks that had higher than predicted illness counts. 

Table 11 High Illness Count Outliers by Setting 

Setting Number of Outbreaks Percentage  

Long Term Care Facility 52 78.79% 

School/College/University 9 13.64% 

Child Daycare 1 1.52% 

Healthcare Facility 2 3.03% 

Other 2 3.03% 

Total 66  

 

Table 11 shows that a majority of the high illness count outliers came from outbreaks in 

long term care facilities. This is expected as most of the outbreaks in the dataset were also in long 

term care facilities.  
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Table 12 High Illness Count Outliers by Etiology 

Etiology Number of Outbreaks Percentage  

Norovirus 61 92.42% 

Shigella 1 1.52% 

Rotavirus 1 1.52% 

Multiple 3 4.55% 

Total 66  

 

Table 12 shows that almost all of the high illness count outliers came from Norovirus 

outbreaks. This is expected as most of the outbreaks in the dataset were due to Norovirus.  

4.2.1.3 Model Estimates 

After removing the 246 outliers, a main effects negative binomial regression model was 

run with year, season, region, setting, and etiology as the covariates and the number of illnesses 

the count outcome. The estimates are presented in Table 13, where the baseline references for the 

covariates are: 

1. Year: 2009 

2. Season: Winter 

3. Region: Midwest 

4. Setting: Long Term Care Facility 

5. Etiology: Norovirus 
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Table 13 Multivariate Negative Binomial Regression Model on Illness Count 

Covariate Multiplication Factor 

[95% CI] 

P-value 

Year   

2009 1.00  

2010 1.04 [0.96, 1.13] 0.3298 

2011 1.07 [0.99, 1.16] 0.0972 

2012 0.94 [0.87, 1.01] 0.0949 

2013 0.82 [0.77, 0.89] < 0.0001 

2014 0.88 [0.82, 0.95] 0.0012 

2015 0.84 [0.78, 0.90] < 0.0001 

2016 0.73 [0.68, 0.77] < 0.0001 

2017 0.71 [0.67, 0.77] < 0.0001 

2018 0.65 [0.61, 0.70] < 0.0001 

Season   

Winter 1.00  

Spring 0.88 [0.86, 0.91] < 0.0001 

Summer 0.81 [0.76, 0.86] < 0.0001 

Autumn 0.92 [0.88, 0.96] 0.0002 

Region   

Midwest 1.00  

Northeast 1.11 [1.07, 1.15] < 0.0001 

South 1.06 [1.03, 1.09] 0.0005 
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West 1.07 [1.03, 1.12] 0.0009 

Setting   

Long Term Care Facility 1.00  

School/College/University 1.84 [1.77, 1.92] < 0.0001 

Child Daycare 0.64 [0.60, 0.68] < 0.0001 

Healthcare Facility 0.70 [0.66, 0.75] < 0.0001 

Other 1.04 [0.99, 1.10] 0.0744 

Etiology   

Norovirus 1.00  

Shigella 0.68 [0.63, 0.73] < 0.0001 

Salmonella 0.25 [0.21, 0.29] < 0.0001 

Clostridium 0.39 [0.32, 0.48] < 0.0001 

Escherichia 0.32 [0.28, 0.38] < 0.0001 

Rotavirus 0.67 [0.57, 0.80] < 0.0001 

Sapovirus 0.86 [0.72, 1.03] 0.0986 

Other 0.25 [0.22, 0.29] < 0.0001 

Multiple 1.35 [1.26, 1.44] < 0.0001 

 

The coefficient estimates from Table 13 are displayed with a dot and whisker plot in Figure 

4. 
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Figure 4 Multivariate Negative Binomial Regression Model for Illness Count 

4.2.1.4 Interpretation of Model Estimates 

In Table 13 and Figure 4, the multiplication factors provide an idea on how the average 

number of illness of an outbreak differentiates across different levels of a covariate. For example, 

on average, the number of illnesses per outbreak in 2010 was 1.04 times that of an outbreak in 

2009. 2011 also shows a similar increase with a multiplication factor of 1.07. From 2011 to 2018, 

the multiplication factors show a decreasing trend with 2011 at 1.07, 2014 at 0.88, and 2018 at 

0.65. This means that there are usually fewer counts of expected illnesses year to year relative to 

2008 when holding the other factors constant.  

All season multiplication factors are less than 1.0, meaning winter had the most expected 

illnesses per outbreak while summer (0.81) had the least. This means that on average, the number 

of illnesses from an outbreak in summer is 0.81 times that of winter. Spring and autumn have 
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similar numbers of illnesses during outbreaks compared to winter with multiplication factors of 

0.88 and 0.92. 

Region multiplication factors are all greater than 1, meaning on average, the Midwest has 

the lowest number of illnesses. The other regions all have slightly more numbers of illnesses 

compared to the Midwest, with Northeast at 1.11 times, South at 1.06 times, and West at 1.07 

times.  

School has a noticeably high multiplication factor at 1.84, meaning that on average, the 

number of illnesses at schools is 1.84 times that of long term care facilities. Daycare (0.64) and 

healthcare facility 0.70) appear to have significantly lower numbers of illnesses compared to 

LTCF. 

Multiple (1.35) is the only etiology with a multiplication factor greater than 1.0. As all the 

other etiologies have factors below 1.0 by a rather noticeable margin, this means that, on average, 

Norovirus outbreaks have the highest numbers of illnesses out of the single pathogen etiologies. 

Salmonella (0.25), Escherichia (0.32), and Clostridium (0.39) have similarly low factors, meaning 

outbreaks with these etiologies usually have much lower numbers of illnesses compared to 

Norovirus outbreaks. Rotavirus [0.57, 0.80] and Sapovirus [0.72, 1.03] have especially wide 

confidence intervals, likely due to the scarcity of outbreaks with these either of these two as the 

etiology listed. 

Overall, setting and etiology appear to have the most influence on illnesses per outbreak 

out of the factors of interest.  
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4.2.2 Hospitalizations 

4.2.2.1 Model Fitting 

For each outbreak, the number of hospitalized is part of the number of illnesses. Therefore, 

the binary outcome for this logistic regression model is whether or the person affected by the 

outbreak was hospitalized or not hospitalized. 

To determine if all covariates were necessary to the model, likelihood ratio tests were run. 

Each likelihood ratio test compared the full model with all of the covariates against sub-models 

with each of the covariates removed.  

Table 14 Likelihood Ratio Test against Sub-Models 

Covariates Test Statistic P value 

Year 57.91 < 0.001 

Season 20.19 < 0.001 

Region 162.61 < 0.001 

Setting 4252 < 0.001 

Etiology 1481.5 < 0.001 

 

All of the covariates appear to be statistically significant predictors of hospitalizations in 

the logistic regression model. 

Various residual plots were examined in order to determine how well the model fit the data. 

A quantile-quantile plot was used to examine how close the model residuals were to a normal 

distribution in Figure 5. 
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Figure 5 Quantile-Quantile Plot Hospitalization Model Residuals 

 

This Q-Q plot shows that the residual distribution does not appear to resemble a normal 

distribution, meaning the model likely does not fit the data well. This suggests that the included 

variables are not adequate to predict the chance of hospitalization. 

A histogram was used to examine the distribution of residuals for outliers and skewness in 

Figure 6. 
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Figure 6 Histogram of Hospitalization Model Residual Distribution 

 

This histogram shows that most of the residuals are slightly negative with more outliers on 

the positive tail end. 

Because the hospitalizations variable has so few non-zero counts (only 26% of the 

observations with non-missing hospitalization values), removal of outliers actually increased 

model variance metrics; therefore, the model will be fit on the observations with complete-case 

data without removal of outliers.  

4.2.2.2 Model Estimates 

A Logistic Regression was run with Year, Season, Region, Setting, and Etiology as the 

covariates and Hospitalizations versus Not Hospitalizations as the dichotomous outcomes. The 

baseline references for the covariates are: 

1. Year: 2009 
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2. Season: Winter 

3. Region: Midwest 

4. Setting: Long Term Care Facility 

5. Etiology: Norovirus 

Table 15 Multivariate Logistic Regression Model on Hospitalizations 

Covariate Multiplication Factor [95% CI] P-value 

Year   

2009 1.00  

2010 0.90 [0.79, 1.02] 0.0949 

2011 0.95 [0.84, 1.08] 0.4394 

2012 1.05 [0.94, 1.18] 0.3863 

2013 1.07 [0.95, 1.20] 0.2489 

2014 1.00 [0.89, 1.12] 0.9898 

2015 0.96 [0.86, 1.08] 0.5220 

2016 1.16 [1.04, 1.30]  0.0120 

2017 1.16 [1.04, 1.30] 0.0106 

2018 1.16 [1.03, 1.30] 0.0127 

Season   

Winter 1.00  

Spring 1.01 [0.96, 1.07] 0.5901 

Summer 1.23 [1.10, 1.38] 0.0003 

Autumn 0.92 [0.86, 1.00] 0.0415 

Region   
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Midwest 1.00  

Northeast 0.86 [0.81, 0.91] < 0.0001 

South 1.02 [0.97, 1.08] 0.4311 

West 1.39 [1.30, 1.49] < 0.0001 

Setting   

Long Term Care Facility 1.00  

School/College/University 0.07 [0.06, 0.08] < 0.0001 

Child Daycare 0.21 [0.18, 0.24] < 0.0001 

Healthcare Facility 4.05 [3.78, 4.34] < 0.0001 

Other 0.51 [0.46, 0.56] < 0.0001 

Etiology   

Norovirus 1.00  

Shigella 5.86 [5.14, 6.68] < 0.0001 

Salmonella 9.64 [7.54, 12.18] < 0.0001 

Clostridium 10.10 [8.31, 12.21] < 0.0001 

Escherichia 19.40 [15.23, 24.48] < 0.0001 

Rotavirus 2.96 [2.35, 3.67] < 0.0001 

Sapovirus 0.44 [0.23, 0.74] 0.0044 

Other 4.96 [3.48, 6.88] < 0.0001 

Multiple 1.36 [1.23, 1.49] < 0.0001 

 

The coefficient estimates from Table 15 are displayed with a dot and whisker plot in Figure 

7. 
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Figure 7 Multivariate Logistic Regression Model on Hospitalizations 

4.2.2.3 Interpretation of Model Estimates 

Due to the scarcity of the non-zero hospitalization counts, the confidence intervals are all 

noticeably larger in this logistic regression model for hospitalizations compared to the previous 

negative binomial model for illnesses.  

Year multiplication factors for 2010-2015 contain 1.0 in the confidence intervals, meaning 

that the outbreaks in these years likely do not have different odds of hospitalization compared to 

outbreaks from 2009. Years 2016-2018 all had the same multiplication factor of 1.16, meaning 

that the odds of hospitalization from outbreaks in these years was, on average, 1.16 times that of 

outbreaks in 2009. 
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Spring (1.01) and Autumn (0.92) have multiplication factors rather close to 1.0, meaning 

the odds of hospitalization from outbreaks in these two seasons are not that different from 

outbreaks in winter. However, Summer has a multiplication factor of 1.23, meaning odds of 

hospitalization from outbreaks in summer were, on average, 1.23 times odds from outbreaks in 

winter. 

Region is the first factor for which the levels start to show noticeably different probabilities 

for hospitalization. The Northeast region has a multiplication factor of 0.86, meaning that the odds 

of being hospitalized from an outbreak are lower in the Northeast compared to the Midwest holding 

all other factors constant. The West region has multiplication factor of 1.39, meaning that the odds 

of being hospitalized from an outbreak are, on average, 1.39 times higher in the West compared to 

the Midwest.  

Settings also greatly influence probabilities of hospitalization. School (0.07) and Child 

Daycare (0.21) have very low multiplication factors, meaning outbreaks in these settings have 

much lower probabilities of having people be hospitalized than outbreaks in long term care 

facilities. Healthcare facilities had a relatively high multiplication factor at 4.05, meaning that the 

odds of hospitalization from outbreaks in healthcare facilities are, on average, 4 times greater than 

that of long term care facilities.  

Each etiology appears to have very different multiplication factors for hospitalization. With 

Norovirus as the baseline, all of the other etiologies have odds ratios greater than 1.0 except for 

Sapovirus at 0.44. Most notably, Salmonella (9.64), Clostridium (10.10), and Escherichia (19.40) 

appear to have outbreaks for which the odds of being hospitalized are many times more likely than 

outbreaks of Norovirus. 
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Similar to the illness model, setting and etiology appear to be the factors with the most 

impact on probability of hospitalization. 

4.2.3 Deaths 

Because death was such a rare occurrence among the outbreaks in the dataset, the 

distribution of the number of deaths for the outbreaks was examined in Table 16. 

Table 16 Frequency of Death Counts 

Number of Deaths Number of Outbreaks (Percentage) 

0 19598 (85.52%) 

1 549 (2.40%) 

2 98 (0.43%) 

3 31 (0.14%) 

4 7 (0.03%) 

5 3 (0.01%) 

6 5 (0.02%) 

7 1 (0.004%) 

NA 2625 (11.45%) 

 

Table 16 shows that 85.52% of the outbreaks had 0 deaths. There were only 8 possible 

death counts excluding missing values.  

Due to this relative scarcity, regression models were not considered for the death outcome. 

Instead, descriptive statistics for setting and etiology (the two factors found to be the most 
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influential from the negative binomial model for illness count and the logistic regression model 

for hospitalization probability) were examined for outbreaks with non-zero death count values.  

4.2.3.1 Setting 

The settings for outbreaks with deaths were examined in Table 17. 

Table 17 Outbreaks with Deaths by Setting 

Setting Number of 

Outbreaks with 

Deaths 

Number of 

Outbreaks in 

Setting 

Percentage of Fatal 

Outbreaks in 

Setting 

Long Term Care Facility 624 13316 4.69% 

School/College/University 2 2156 0.09% 

Child Daycare 2 1492 0.13% 

Healthcare Facility 20 832 2.40% 

Other 8 1672 0.48% 

Unknown 38 3449 1.10% 

Total 694 22917  

 

Table 17 shows that almost all of the outbreaks with deaths were from the long term care 

facility setting. The percentage of having at least one death was very low at below 5% for each 

setting.  

Pearson’s chi-square test of independence was used to examine if there was a relationship 

between setting and whether or not an outbreak resulted in death(s). This test resulted in a p-value 

< 0.0001, meaning that there is a significant relationship between setting and death in this dataset. 
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4.2.3.2 Etiology 

The etiologies for outbreaks with deaths were examined in Table 18. 

Table 18 Outbreaks with Deaths by Etiology 

Etiology Number of Outbreaks 

with Deaths  

Number of 

Outbreaks by 

Etiology 

Percentage of Fatal 

Outbreaks by 

Etiology 

Norovirus 543 15530 3.50% 

Shigella 1 854 0.12% 

Salmonella 5 219 2.28% 

Clostridium 7 164 4.27% 

Escherichia 3 138 2.17% 

Rotavirus 6 104 5.77% 

Sapovirus 1 78 1.28% 

Other 1 182 0.55% 

Multiple 32 611 5.24% 

Unknown 95 5037 1.89% 

Total 694 22917  

 

Table 18 shows that almost all of the outbreaks with deaths were from the Norovirus 

etiology. Despite this, Rotavirus outbreaks and Multiple etiology outbreaks had the highest 

percentages of fatal outbreaks. 

Pearson’s chi-square test of independence was used to examine if there was a relationship 

between etiology and whether or not an outbreak resulted in death(s). This test resulted in a p-
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value of less than 0.0001, meaning that there is a significant relationship between etiology and 

death in this dataset. 

4.2.4 Relationship Between Setting and Etiology 

As different pathogens are known to thrive in different environments, the most common 

settings for each etiology were examined. Table 19 shows those settings and their percentages for 

each etiology. 

Table 19 Most Common Settings for Outbreak Etiologies 

Etiology Most Common Setting 

(Percentage) 

Second Most Common Setting 

(Percentage) 

Norovirus LTCF (73.41%) School (10.74%) 

Shigella Daycare (59.11%) School (22.17%) 

Salmonella Other Setting (40.79%) Daycare (39.47%) 

Clostridium LTCF (66.67%) Healthcare Facility (24.24%) 

Escherichia Daycare (63.36%) Other Setting (25.19%) 

Rotavirus LTCF (73.96%) Daycare (18.75%) 

Sapovirus LTCF (75.34%) School (12.33%) 

Other Daycare (48.50%) Other Setting (41.92%) 

Mulitple LTCF (59.38%) Daycare (13.94%) 

 

Table 19 shows that long term care facilities are usually the most common setting for 

outbreaks of different etiologies. However, Shigella outbreaks, Escherichia outbreaks, and Other 
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Etiology outbreaks are all most common in daycares. Schools and daycares are also the second 

most common setting for different etiologies.  

Pearson’s chi-square test of independence was used to examine if there was a relationship 

between setting and etiology. This test resulted in a p-value of less than 0.0001, meaning that there 

is a significant relationship between setting and etiology in this dataset. 

4.3 Results from Multiple Imputation 

4.3.1 Hot-Deck Imputation 

Year, season, region, setting, etiology, and number of illnesses were used to impute missing 

values in setting and etiology. Chi-square tests for each of these factors confirmed that all of them 

were related to both setting and etiology. For each outbreak with missing setting and/or etiology 

values, similar complete outbreaks in other fully observed variables were found and used to create 

neighborhoods for imputations.  

As year, season, region, setting, and etiology were categorical variables, similar outbreaks 

selected for the neighborhoods were required to have exactly matching values for the fully 

observed variables.  

Unlike the other variables, illness count was a continuous variable and therefore needed be 

standardized before comparison. Raw illness counts were log-transformed, truncated by mean plus 

or minus three times its standard deviation, then divided by the range after truncation. The 

difference between these standardized values was used as the second metric to select outbreaks 
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with complete records to form the neighborhoods for outbreaks with missing data. The difference 

in the standardized scale was required to be less than or equal to 0.1. 

Criteria were relaxed if there were 0 complete-case observations that matched the above 

requirements. They were modified such that one of year, season, region, setting, or etiology does 

not need to match (the rest still must match) while the difference between the two standardized 

illness values was increased to be less than or equal to 0.2 instead of 0.1. 

4.3.2 Multiple Imputation 

Using the Hot-Deck Imputation method described in the previous section, each outbreak 

with missing setting and/or missing etiology values was imputed 100 times by sampling with 

replacement from the neighborhood of similar observations, forming 100 different imputed 

datasets.  

The same model used to fit the complete-case analysis for each outcome was used to run 

regressions on each of the 100 different datasets. Model coefficients were averaged over the 100 

regressions. Variance was computed using the following formula:  

𝑇𝐷 = �̅�𝐷 +
𝐷 + 1

𝐷
𝐵𝐷 

Where  𝑇𝐷 is the total variance, �̅�𝐷 is the average within-imputation variance, 𝐵𝐷 is the 

between imputation variance, and D is 100. This variance was used to construct confidence 

intervals and p-values using a normal distribution for each coefficient. 

These estimates were compared to the estimates from the complete-case analyses to 

examine the effect of the imputation on the data. 
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4.3.2.1 Illnesses 

The negative binomial regression model with year, season, region, setting and etiology as 

covariates and counts of illness as the outcome used for the complete-case analysis was used for 

multiple imputation. Table 20 compares the covariate estimates for the multiple imputation 

analysis and the complete-case analysis. 

Table 20 Negative Binomial Regressions for Multiple Imputation Analysis and Complete-Case Analysis 

 Multiple Imputation  Complete-Case  

Covariate Multiplication Factor 

[95% CI] 

P-value Multiplication Factor 

[95% CI] 

P-value 

Year     

2009 1.00  1.00  

2010 1.10 [1.04, 1.16] 0.0012 1.04 [0.96, 1.13] 0.3298 

2011 1.07 [1.01, 1.14] 0.0140 1.07 [0.99, 1.16] 0.0972 

2012 0.99 [0.94, 1.05] 0.7499 0.94 [0.87, 1.01] 0.0949 

2013 0.92 [0.87, 0.97] 0.0015 0.82 [0.77, 0.89] < 0.0001 

2014 0.94 [0.89, 0.99] 0.0203 0.88 [0.82, 0.95] 0.0012 

2015 0.91 [0.86, 0.96] 0.0006 0.84 [0.78, 0.90] < 0.0001 

2016 0.82 [0.78, 0.86] < 0.0001 0.73 [0.68, 0.77] < 0.0001 

2017 0.78 [0.74, 0.82] < 0.0001 0.71 [0.67, 0.77] < 0.0001 

2018 0.74 [0.70, 0.78] < 0.0001 0.65 [0.61, 0.70] < 0.0001 

Season     

Winter 1.00  1.00  

Spring 0.87 [0.85, 0.89] < 0.0001 0.88 [0.86, 0.91] < 0.0001 

Summer 0.77 [0.73, 0.81] < 0.0001 0.81 [0.76, 0.86] < 0.0001 

Autumn 0.91 [0.88, 0.94] < 0.0001 0.92 [0.88, 0.96] 0.0002 

Region     

Midwest 1.00 < 0.0001 1.00  
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Northeast 1.09 [1.06, 1.12] < 0.0001 1.11 [1.07, 1.15] < 0.0001 

South 1.09 [1.06, 1.12] < 0.0001 1.06 [1.03, 1.09] 0.0005 

West 1.09 [1.05, 1.13] < 0.0001 1.07 [1.03, 1.12] 0.0009 

Setting     

Long Term Care Facility 1.00  1.00  

School/College/University 1.84 [1.77, 1.91] < 0.0001 1.84 [1.77, 1.92] < 0.0001 

Child Daycare 0.67 [0.64, 0.71] < 0.0001 0.64 [0.60, 0.68] < 0.0001 

Healthcare Facility 0.68 [0.65, 0.72] < 0.0001 0.70 [0.66, 0.75] < 0.0001 

Other 0.98 [0.94, 1.02] 0.3950 1.04 [0.99, 1.10] 0.0744 

Etiology     

Norovirus 1.00  1.00  

Shigella 0.68 [0.64, 0.71] < 0.0001 0.68 [0.63, 0.73] < 0.0001 

Salmonella 0.22 [0.19, 0.24] < 0.0001 0.25 [0.21, 0.29] < 0.0001 

Clostridium 0.33 [0.29, 0.38] < 0.0001 0.39 [0.32, 0.48] < 0.0001 

Escherichia 0.33 [0.28, 0.38] < 0.0001 0.32 [0.28, 0.38] < 0.0001 

Rotavirus 0.68 [0.59, 0.79] < 0.0001 0.67 [0.57, 0.80] < 0.0001 

Sapovirus 0.82 [0.70, 0.97] 0.0214 0.86 [0.72, 1.03] 0.0986 

Other 0.27 [0.23, 0.30] < 0.0001 0.25 [0.22, 0.29] < 0.0001 

Multiple 1.31 [1.23, 1.40] < 0.0001 1.35 [1.26, 1.44] < 0.0001 

 

The coefficient estimates from Table 20 are displayed with a dot and whisker plot in Figure 

8. 
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Figure 8 Negative Binomial Regressions for Multiple Imputation Analysis and Complete-Case Analysis 

 

Table 20 and Figure 8 show that the coefficient estimates from the multiple imputation 

analysis are very close to those of the complete case analysis. The most notable difference is that 

the estimates from the multiple imputation analysis have narrower confidence intervals, due to a 

reduction in variance by the inclusion of information from incomplete observations in the 

regression analysis. 

4.3.2.2 Hospitalizations 

The logistic regression model with year, season, region, setting and etiology as covariates 

and hospitalizations vs not hospitalizations as the outcomes used for the complete-case analysis 
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was used for multiple imputation. Table 21 compares the covariate estimates for the multiple 

imputation analysis and the complete-case analysis. 

Table 21 Logistic Regressions for Multiple Imputation Analysis and Complete-Case Analysis 

 Mulitple Imputation  Complete-Case  

Covariate Multiplication Factor 

[95% CI] 

P-value Mulitplication Factor 

[95% CI] 

P-value 

Year     

2009 1.00  1.00  

2010 0.89 [0.80, 0.99] 0.0357 0.90 [0.79, 1.02] 0.0949 

2011 0.90 [0.81, 1.00] 0.0494 0.95 [0.84, 1.08] 0.4394 

2012 0.97 [0.88, 1.08] 0.6168 1.05 [0.94, 1.18] 0.3863 

2013 0.98 [0.89, 1.09] 0.7287 1.07 [0.95, 1.20] 0.2489 

2014 1.00 [0.90, 1.10] 0.9659 1.00 [0.89, 1.12] 0.9898 

2015 1.01 [0.91, 1.11] 0.8911 0.96 [0.86, 1.08] 0.5220 

2016 1.17 [1.06, 1.30] 0.0017 1.16 [1.04, 1.30]  0.0120 

2017 1.12 [1.02, 1.25] 0.0329 1.16 [1.04, 1.30] 0.0106 

2018 1.11 [1.00, 1.23] 0.0518 1.16 [1.03, 1.30] 0.0127 

Season     

Winter 1.00  1.00  

Spring 0.98 [0.94, 1.03] 0.4969 1.01 [0.96, 1.07] 0.5901 

Summer 1.12 [1.01, 1.25] 0.0329 1.23 [1.10, 1.38] 0.0003 

Autumn 0.89 [0.83, 0.95] 0.0008 0.92 [0.86, 1.00] 0.0415 

Region     

Midwest 1.00  1.00  

Northeast 0.89 [0.84, 0.94] < 0.0001 0.86 [0.81, 0.91] < 0.0001 

South 1.07 [1.02, 1.12] 0.0086 1.02 [0.97, 1.08] 0.4311 

West 1.47 [1.38, 1.56] < 0.0001 1.39 [1.30, 1.49] < 0.0001 
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Setting     

Long Term Care Facility 1.00  1.00  

School/College/University 0.10 [0.09, 0.11] < 0.0001 0.07 [0.06, 0.08] < 0.0001 

Child Daycare 0.25 [0.22, 0.29] < 0.0001 0.21 [0.18, 0.24] < 0.0001 

Healthcare Facility 3.47 [3.25, 3.70] < 0.0001 4.05 [3.78, 4.34] < 0.0001 

Other 0.61 [0.56, 0.67] < 0.0001 0.51 [0.46, 0.56] < 0.0001 

Etiology     

Norovirus 1.00  1.00  

Shigella 4.49 [3.92, 5.14] < 0.0001 5.86 [5.14, 6.68] < 0.0001 

Salmonella 7.72 [6.06, 9.85] < 0.0001 9.64 [7.54, 12.18] < 0.0001 

Clostridium 8.49 [6.70, 10.76] < 0.0001 10.10 [8.31, 12.21] < 0.0001 

Escherichia 14.90 [11.68, 19.01] < 0.0001 19.40 [15.23, 24.48] < 0.0001 

Rotavirus 2.46 [1.94, 3.13] < 0.0001 2.96 [2.35, 3.67] < 0.0001 

Sapovirus 0.55 [0.31, 0.97] 0.0382 0.44 [0.23, 0.74] 0.0044 

Other 4.32 [3.13, 5.97] < 0.0001 4.96 [3.48, 6.88] < 0.0001 

Multiple 1.31 [1.19, 1.45] < 0.0001 1.36 [1.23, 1.49] < 0.0001 

 

The coefficient estimates from Table 21 are displayed with a dot and whisker plot in Figure 

9. 



 52 

 

Figure 9 Logistic Regressions for Multiple Imputation Analysis and Complete-Case Analysis 

 

Table 21 and Figure 9 show that the coefficient estimates for year, season, region, and 

setting from the multiple imputation analysis are very close to those of the complete case analysis. 

The most noticeable differences come from the coefficient estimates for etiology. This makes 

sense as most of the missing values from the dataset were from the etiology variable. Once again, 

the estimates from the multiple imputation analysis have narrower confidence intervals, due to a 

reduction in variance by the inclusion of information from incomplete observations in the 

regression analysis.  
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5.0 Discussion 

In this thesis, we examined the relationship between year, season, region, setting, and 

etiology and the outcomes of illness, hospitalization, and death. A negative binomial regression 

model was used to study how the number of illnesses in an enteric disease outbreak varied across 

those factors. A logistic regression model was used to examine how the chance of hospitalization 

among affected individuals in an enteric disease outbreak depended on those factors. Because 

death only occurred in very few outbreaks, the Pearson’s chi-square test was used to study the 

association between each individual factor and presence of death among the infected in an enteric 

disease outbreak. 

Descriptive statistics of factors of interest in this dataset matched those of prior studies. 

Winter was the most common season for outbreaks. Norovirus outbreaks were the most common 

with regards to etiology.  

Results from the regression analyses on the number of illnesses indicate that the average 

numbers of illnesses among enteric disease outbreaks in schools and long term care facilities are 

much higher than outbreaks in other settings. On the contrary, outbreaks under child daycare and 

healthcare facility had fewer numbers of illnesses (Table 9). These findings agree with previous 

studies that found that Norovirus outbreaks in particular are uniquely suited to areas of close living 

quarters, shared dining facilities, and difficult environmental maintenance (Robilotti, 2015). As a 

majority of the outbreaks in this dataset involve Norovirus, these setting trends are expected. 

Schools and long term care facilities tend to fit these three criteria listed better than the other 

settings examined in the regression analysis, so it makes sense for these settings to have greater 

numbers of illnesses. It was also noted that enteric disease outbreaks caused by Norovirus or 
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multiple pathogens (can be interpreted as mostly Norovirus with at least one other etiology) were 

the ones that led to much higher numbers of infected people. This agrees with research that has 

found that Norovirus is very contagious as it can stay on surfaces even after disinfection and cause 

infection with as few as ten viral particles (Capece, 2020). Outbreaks caused by Salmonella, 

Clostridium, and Escherichia tended to have fewer numbers of illnesses. 

Results from the regression analyses on the probability of hospitalization indicate that 

outbreaks in settings of school and daycare have a much lower probability of resulting in 

hospitalizations compared to outbreaks in long term care facilities. This result supports previous 

findings that found that implementation of Rotavirus vaccines in 2008 appear to have significantly 

reduced the number of child hospitalizations from acute gastroenteritis in the United States 

(Leshem, 2018). This makes sense as children are historically the demographic most at risk for 

Rotavirus in particular. Healthcare facilities have a much higher probability of hospitalization, but 

this might be a technicality because hospitals are included in this categorization. With regards to 

etiology, outbreaks with Norovirus and Sapovirus had low probabilities of resulting in 

hospitalization relative to the other etiologies. This result supports prior research that found that 

symptoms of Sapovirus infection are usually mild and patients tend to recover within a couple of 

days, similarly Norovirus infections (Oka, 2015). Salmonella, Escherichia, and Clostridium in 

particular had very high probabilities of hospitalization relative to other etiologies. This is notable 

as outbreaks with these same three etiologies were found to often result in low numbers of 

illnesses, implying that outbreaks with these three etiologies often result in more severe outcomes 

relative to the other etiologies in this dataset. Most previous publications on person-to-person 

transmitted enteric disease outbreaks focus on single pathogens individually, making it difficult to 

say whether this finding is supported by the literature. However, these pathogens have all been 
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listed individually on multiple occasions as notable causes of concern for severe outcomes in 

analyses on foodborne outbreaks, meaning this finding makes sense in context. 

Descriptive statistics for fatal outbreaks showed that few outbreaks with deaths occurred. 

Those that did occur only all had very low death counts. Almost all of these outbreaks occurred in 

long term care facilities. With regards to etiology, a large majority of the outbreaks with deaths 

were related to Norovirus. This is expected as the majority of all outbreaks in the dataset were in 

these two categories as well. Rotavirus outbreaks and multiple etiology outbreaks in particular had 

relatively high percentages of resulting in at least one death relative to the other etiologies. Chi-

square tests of independence found both setting and etiology to be significantly associated with 

mortality.  

The examination of the relationship between setting and etiology of outbreaks found that 

common settings differed based on the pathogen causing the outbreak. The result of the chi-square 

test indicated a significant relationship between these two factors. Long term care facilities and 

daycares in particular were often the settings with the highest frequencies across etiologies, 

implying that the most vulnerable populations were either very young or very old individuals 

depending on the pathogen causing the outbreak. Norovirus outbreaks appear to be especially 

prevalent in older adults in long term care facilities, a finding supported by previous research 

(Chen, 2017). A majority of Shigella outbreaks and Escherichia outbreaks occurred in daycares, 

which is consistent with the CDC website’s statements (https://www.cdc.gov/shigella/infection-

sources.html) that young children are more likely to get infected and develop complications by 

these two pathogens (https://www.cdc.gov/healthypets/diseases/ecoli.html). 

Multiple imputation succeeded in reducing the variance of the coefficient estimates in both 

models by imputing missing setting and missing etiology values. The estimates from the multiple 
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imputation analysis were rather similar with noticeably narrower confidence intervals, indicating 

improved precision from the multiple imputation. With the results from hospitalizations model in 

particular, some categories had very few outbreaks with nonzero hospitalization counts. Therefore, 

the multiple imputation estimates were shown to differ more from the complete case estimates 

compared to the illnesses model.  

The dataset extracted from NORS contained many variables, but only a few were usable 

for the regression models. This was because many variables were details on other variables in the 

dataset. More distinct variables would have been helpful in modeling the outcomes. Multiple 

imputation was able to address the outbreaks with missing values in setting and etiology, but was 

not able to account for the majority of outbreaks with zero hospitalizations and outbreaks with zero 

deaths. This scarcity of outbreaks with more severe outcomes made examining hospitalization and 

death from the dataset particularly difficult. 

In the hot-deck imputation procedure, data on year, region, season, setting, etiology, and 

illness count were incorporated to impute missing values in etiology and settings of many 

outbreaks. It is noted that the imputation was based on the condensed levels of season, region, 

setting, and etiology, meaning that some information from the original data was lost. The 

imputation procedure could potentially be improved by using the more granular data from the 

variables from the original dataset before reclassification. For example, we could match potential 

donors with the outbreak with missing values by month instead of season, by state instead of 

region, and by the specific setting instead of the combined setting. This would provide more 

specificity for the hot-deck imputation procedure, leading imputations to more closely resemble 

similar complete-case donor observations. The only complication would be vastly increased 

number of strata as determined by the matching variables in more granular levels, potentially 
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making it difficult to find any donors within the same stratum as the outbreak to be imputed. In 

order to identify a few donors that are reasonably close to the outbreak under consideration, one 

could develop a strategy to collapse on some strata and identify a neighborhood with donors that 

are exactly matched on some variables and similar in other variables to the target outbreak.  

Improvements on imputation could lead to even further reductions on variation, which would result 

in narrower confidence intervals for model coefficient estimates.       

The models used to examine illness counts and hospitalization probabilities were both main 

effects models. Interactions between covariates were considered, but ultimately not included in the 

modeling process because including the resulting models suffered from sparsity. The negative 

binomial regression model for illness fit the data relatively well but the logistic regression model 

for hospitalization was not adequate. Further research into improving these models could involve 

including more covariates, reorganizing covariates onto a continuous scale and/or refactoring 

covariates into fewer levels, so that interactions between covariates can be examined without 

sparsity or the risk of overfitting. 

With Norovirus being such a common cause of acute gastroenteritis outbreaks in the United 

States, public health efforts should consider educating the public on basic cautionary measures and 

infection symptoms. As Norovirus spreads easily and quickly in different ways, the CDC 

recommends the following measures for prevention: practicing proper hand hygiene, handling and 

preparing food safely, not preparing food or caring for others when sick, disinfecting surfaces, and 

washing laundry thoroughly (https://www.cdc.gov/norovirus/about/prevention.html). Initiatives 

like these should be aimed towards younger people in school as acute gastroenteritis outbreaks 

tend to have higher illness counts on average in these settings. Efforts to mitigate hospitalizations 

from these outbreaks should be targeted towards long term care facilities and Salmonella, 
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Escherichia, and Clostridium in particular. The common thread between prevention advice for 

these three different pathogens is to make sure to wash hands after using the bathroom. Deaths are 

very rare from acute gastroenteritis outbreaks, but special attention should be given to Rotavirus 

outbreaks and multiple etiology outbreaks to prevent deaths.  
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