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Abstract 

Prediction and Hazard Estimation of Polycyclic Aromatic Hydrocarbon Transformation 

Products 

 

Trevor W. Sleight, P.E., PhD 

 

University of Pittsburgh, 2021 

 

 

 

 

 

Polycyclic Aromatic Hydrocarbons (PAHs) are a group of compounds containing at least 

two aromatic rings. Generated from natural or industrial processes, their degradation half-lives can 

range from weeks to months, as they undergo numerous environmental reactions resulting in 

diverse transformation products (TPs). While some PAHs possess known hazardous properties, 

relatively little is known about the hazards of their TPs. An increase in mutagenicity (the ability to 

cause genetic errors) has been observed as PAHs biodegrade. Since numerous TPs can be 

generated from each original PAH, evaluating which structures contribute to a potential increase 

in mutagenicity becomes a complex problem for remediators and regulators. The objective of this 

work was to build tools utilizing new and existing approaches to predict the most likely PAH TPs, 

identify which contributed to mutagenicity, and test the tools via an empirical experiment.  

To achieve this objective, a network-based tool was developed to refine datasets of over 

20,000 predicted PAH TPs to less than 200, for the parent PAHs acenaphthene, anthracene, 

fluorene, and phenanthrene, creating a manageable number of the highest likelihood compounds. 

Within this subset, the tool predicted up to 48% of PAH TPs found by previous empirical studies, 

aiding in the first step, predicting likely TPs. To address the second step of PAH degradation risk 

assessment, a method to predict the hazard – here mutagenicity - of the most likely TPs was 

needed, as available tools were not designed for biodegradation-induced mutagenicity. A QSAR 
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for PAH TP mutagenicity was developed which outperformed the best available QSARs when 

evaluating for biodegradation-induced mutagenicity and suggested that certain structural features 

corresponded to mutagenic mechanisms. Finally, the predictive tools were tested in an empirical 

study, aiming to identify the approximate time in a PAH’s degradation that mutagens emerge. 

Biodegradation cultures with phenanthrene and fluorene suggested that the networks tool and the 

QSAR together could help target the occurrence of mutagenicity in a PAH’s degradation timeline. 

Overall, this work provided two computational tools, the networks model for predicting the likely 

TPs, and the QSAR for estimating the mutagenicity of actively degrading PAHs and demonstrated 

their utility in biodegradation experiments.  
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1.0 Introduction 

1.1 PAH Sources 

Polycyclic aromatic hydrocarbons (PAHs) are a diverse group of compounds containing at 

least two aromatic rings. Approximately 500 Gg of Polycyclic Aromatic Hydrocarbons (PAHs) 

are emitted into the atmosphere every year.1,2 Environmentally relevant sources include large-scale 

combustion events, including natural sources such as forest fires or volcanic activity, and 

anthropogenic sources such as power generation, some manufacturing operations3 and 

transportation.4,5 PAHs can be emitted into the atmosphere from incomplete combustion,6 or 

leaked directly onto the surface from oil and gas production or irresponsible industrial practices.7,8 

In most areas with significant PAH contamination, anthropogenic sources significantly outweigh 

all natural sources.9–12 The pollution burden varies by multiple orders of magnitude from country 

to country, so although the overall anthropogenic emissions of PAHs worldwide are slowly 

declining, the contamination level in many local regions is either static or increasing.13,14  

Atmospherically emitted PAHs deposit onto the surface environment, contaminating soil 

and water. There, many are persistent contaminants, with half lives of up to several months.15,16 

Elevated levels of PAHs in various stages of transformation can be found in land and water near 

major PAH sources, even if the source has not been active for many years.17–19 Biodegradation is 

the primary means of PAH mineralization and ultimate removal. However, an individual PAH can 

generate thousands of unique degradation intermediates and toxicological data is not available for 

all of these structures. Numerous studies (Table 2) have demonstrated an increase in mutagenicity, 

genotoxicity, or developmental impacts after environmental transformation of PAHs. These 
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transformations result in a changing hazard profile for PAH-contaminated environments, with the 

potential for multiple mechanisms of toxic action depending on the transformation products (TPs) 

that form as the PAH degrades. Estimating the potential harm to the environment in this dynamic 

system is a challenge for both remediators and risk assessors. De Souza et al, 2019 recommended 

specifically considering mutagenicity as a metric for the success of bioremediation.20 

Unfortunately, measuring mutagenicity directly requires a bioassay, which are typically time 

consuming and expensive. For example, the most well established bioassay for mutagenicity, the 

Ames Test,21 requires almost a full day to perform and 2-3 additional days for the bioassay to run. 

It is also expensive and difficult to conduct, requiring a Biosafety Level 2 capable facility and all 

appropriate supporting equipment to appropriately prepare samples, store reference strains and 

maintain sterile procedures.22 Due to the varied and dynamic nature of PAH contamination, 

implementing bioassays as a standard measure for successful bioremediation at the scale necessary 

to address the hazards involved in PAH remediation would be difficult. A computational or 

analytical method that would allow a reasonable estimate of the mutagenicity of partially degraded 

PAHs and enable a more targeted empirical approach would be extremely beneficial. Such an 

approach is explored in this research.  

1.2 PAH Sources and Transformation Products 

As with many forms of pollution, the specific PAHs present in a region tend to reflect the 

profile of the local pollution sources.23 Certain PAHs are more strongly associated with 

combustive processes from either biomass or petrogenic sources. For example, vehicular emissions 

and similar petrogenic sources tend to cause a higher proportion of lower molecular weight PAHs, 
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including 3-4 ring PAHs, such as phenanthrene, fluorene and pyrene, with lower concentrations of 

pyrene being correlated to greater catalytic converter use.24 Residential or agricultural burning of 

biomass fuels such as wood, dung, or crop waste primarily contributes 3-4 ring PAHs.25 A greater 

proportion of 5 and 6 ring PAHs are found in emissions originating from coal combustion.26  

 

Table 1 Mean atmospheric concentrations of unsubstituted, oxy, and nitro-PAHs  

 

Location and 

Date of Study 

Unsubstituted 

PAHs ng/m3 

(unless otherwise 

indicated) 

Oxy-PAHs 

ng/m3 

Nitro-PAHs 

ng/m3 

Publication 

Beijing, China 

2012-2013 

143 55.9 1.73 
Lin et al, 201527 

Grenoble, France 

2013 

24.5 10.3 0.22 
Tomaz et al, 201628 

Beijing, China, 

2015 (Heating 

Season) 

264 N/A 2.51 
Zhang et al, 202029 

Rio de Janeiro, 

Brazil, 2017-

2018, 

Particle: 3.76 

Gas: 10.03 

Particle:1.62 

Gas: 0.86 

Particle: 1.00 

Gas: 0.83 

Santos et al, 202030 

 

The major subcategories of environmental PAHs include the unsubstituted PAH structures, 

oxy-PAHs, and nitro-PAHs. Although nitro-PAHs can be formed in the combustion process itself, 

the majority of those detected in environmental samples are believed to be the result of atmospheric 

reactions.31–33 Oxy-PAHs may arise either from pyrogenic reactions alongside unsubstituted 

PAHs, or they may result from photochemical processes in the air or microbial processes in the 
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soil.34,35 Several atmospheric studies have evaluated the relative concentration of nitro- and oxy-

PAHs vs the unsubstituted PAHs (Table 1). The distribution of transformation products also varies 

with the source as well as with the reactions in the environment that begin to occur immediately 

after emission, and the specific PAHs, oxy-PAHs, and nitro-PAHs which were quantified vary 

among studies. However, the overall trends are consistent: unsubstituted PAHs are roughly 2-3 

times as abundant as oxy-PAHs, and 10 to 100 times as abundant as nitro-PAHs. Once associated 

with soil or water, oxy-PAHs become the dominant TP, as these are formed from microbial 

degradation.36,37 

1.3 Fate and Transport 

The mean half-life of a PAH in the atmosphere is typically estimated to be only a few 

days.38,39 PAHs can sorb onto atmospheric particles, or be collected by rain and subsequently 

deposit out of the atmosphere,40 with the dominant mechanism (wet or dry) varying based on the 

local weather conditions.41 This results in higher levels of PAH contamination close to major 

sources of PAH emission. Once on the surface PAHs exhibit half-lives of weeks to months as they 

slowly degrade through many intermediates.15,16 PAHs can also be transported by water movement 

on the earth’s surface, either by dissolving or by sorbing onto suspended solids and following the 

particle’s transport phenomena. PAHs can also be transported by man-made water-flows such as 

wastewater or sewers. Hot spots of concentration can occur in local regions due to specific sources 

as well as environmental fate and transport. Local contamination levels have also been tied to 

seasonal variations in environmental factors.11,42 Consequently, locations such as estuaries or 
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rivers can have higher concentrations relative to the areas around them and some sites have 

seasonal variations in PAH concentrations.42–44  

1.4 Environmental Impacts 

The U.S. EPA has identified 16 PAHs as priority pollutants.45 These span a range of sizes 

and possible ring arrangements. There are thousands of possible PAHs, so although the priority 

PAHs are a useful starting point, they are by no means exhaustive. Although the PAHs on the 

priority pollutants list have been well studied14, hazard assessment for their biodegradation TPs 

remains an unsolved challenge for both regulating agencies and remediators trying to rehabilitate 

areas of PAH contamination.  

Despite the fact that some microorganisms can degrade PAHs, contamination has been 

shown to suppress the overall respiration of microbial communities,46 as well as lead to shifts in 

community diversity.47,48 Benthic invertebrates are impacted by PAHs49 and toxicity towards small 

earthworms50 and fish51,52 has also been documented (Fig 1). Bivalves are particularly vulnerable 

as they lack the capability to effectively degrade and eliminate PAHs.53,54 Tumors were found in 

oysters in Black Rock Harbor, Connecticut, US where they were exposed to PAHs and other co-

occurring chemicals.55 Additionally, many PAHs can bioaccumulate through the food web, 

causing higher level predators such as fish, mammals, and humans to be exposed through the food 

chain.56 Mutagenicity of environmental samples has been found to be associated with PAH 

contamination in highway runoff and cokery pollution.57,58  
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Figure 1 PAHs Fate and Transport pathways. Atmospheric and surfance environmental factors transport 

PAHs through air and water movement. The PAH TPs cause toxic impacts to organisms living in the 

different stages 

1.5 PAH Biodegradation 

Literature indicates that the primary mechanism of PAH transformation leading to ultimate 

removal from the environment is biodegradation.59–62 Much of the microbiome that is capable of 

degrading PAHs lives in the aerobic region of soil and surface water. PAHs found in the anerobic 

region of deep lakes or aquifers degrade far more slowly.63,64 Furthermore, the microbiome of the 

aerobic region is critical to the health of the overall ecosystem, playing a crucial role in nutrient 

cycling.65  

As PAHs aerobically degrade, polar oxygen groups are added onto their structures. In some 

PAHs this can also occur abiotically due to photooxidation.66 During this process, PAHs can 
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generate dozens to thousands of possible intermediate transformation products.67–69 The 

intermediates generated may depend on the original PAH, the available local microbes and the 

degree of degradation or remediation that has already occurred. The complexity of the possible 

different degradation pathways renders hazard assessment a significant challenge for both 

regulators and risk assessment professionals.70–72  

1.6 Toxicity Mechanisms of PAH Biodegradation Metabolites 

PAH’s baseline toxic mechanism is narcosis; resulting from the compound’s interfering 

with the cell membrane.73,74 Narcosis correlates well with a compound’s octanol-water partition 

coefficient (Kow). Under aerobic conditions, where the majority of PAH degradation occurs,63,64 

PAHs become smaller as rings open and are cleaved off, and more polar as oxygen groups are 

incorporated into their structure. This lowers their Kow and also lowers their narcotic toxicity. Kow 

can be estimated with reasonable reliability using a variety of methods, and quantitative structure 

activity relationships (QSARs) based on Kow have been found to adequately predict narcotic 

toxicity.75–77 However, different methods are needed to estimate toxicity by other mechanisms.  

Studies of carcinogenicity and mutagenicity have shown that PAHs require metabolic 

“activation” by enzymes before they become carcinogenic.78–82 This activation adds oxygen 

groups to the perimeter of the PAH molecules,83,84 and can occur in an organism through metabolic 

pathways as the organism attempts to digest or eliminate the PAH. Alternatively, environmental 

microorganisms can cause a similar effect as they degrade PAHs.37 This results in the potential for 

the presence of direct-acting mutagens, which are mutagenic without need of enzymatic activation, 

after PAHs have been biodegraded either due to natural processes or deliberate bioremediation.36,37 
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Several types of studies (Table 2) have demonstrated that it is the oxygenated or nitrogenated PAH 

derivatives that are responsible for the mutagenic impact of PAH contamination in the 

environment. 

 

Table 2 Selected previous studies demonstrating increased mutagenicity after environmental transformation. 

 

Media PAH Derivative Study 

Air, gas phase nitro-fluorene, nitro-naphthalene Arey, 1992,85 

Sediment Polar vs non polar fraction Fernandez, 199286 

Air, particles nitro-PAHs, oxy-PAHs Topinka, 199887 

Air, particles nitro-PAHs Topinka, 200088 

Water oxy-phenanthrene Schrlau, 201789 

Air, particles nitro-PAHs, oxy-PAHs Umbuzeiro, 200890 

Soil oxy-PAHs Mattsson, 200991 

Air, particles Nitro-PAHs, oxy-PAHs Wang, 201192 

Coal Polar vs non-polar Meyer, 201493 

Water Oxy-PAHs Chibwe et al, 201594 

Soil Oxy-PAHs* Wincent, 201595 

Sediment Polar vs non polar Di Giorgia, 201696 

Soil Not specified de Sousa, 201920 

Soil Polar, oxy-PAHs Park, 200897 

*Developmental Toxicity in Zebrafish 



 9 

All of the studies in Table 2 were conducted with environmental samples. In addition to these 

studies, there are also several studies where known PAH intermediate TPs are evaluated as 

individual molecules, further demonstrating the mutagenic potential of PAH TPs.98–100  

1.7 Computational Tools 

With complex problems such as PAH degradation, experiments cannot be conducted for 

every scenario due to time and resource constrains, or to theoretical conditions that cannot be 

achieved in a reproducible manner. In these cases, modeling approaches can provide fruitful 

insight into how and where to spend precious resources in order to collect the most relevant 

empirical results. This work incorporates both computational and empirical tools to address the 

challenge of evaluating the mutagenicity that may result from aerobic PAH biodegradation. 

Available tools were used where possible to expand upon existing work and provide unique 

options for improving the field of ecological risk assessment. The novel computational tools were 

then used to guide and design an empirical experiment to attempt to detect the occurrence of 

mutagenicity in a live biodegradation culture.  

1.7.1 Networks Analysis 

Network theory is a powerful tool for studying a complex system of interacting objects. 

The first known network, or graph, was drawn by the German mathematician Leonhard Euler, to 

represent a transportation problem in the city of Konigsberg.101 This representation of physical 

space highlighted the relationships between different points rather than the details of exact 
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measurements, as represented in Euclidean geometry. The focus on relationships laid the 

groundwork for Einstein’s theory of relativity.102 Networks can be directed or undirected and can 

contain additional attributes about the objects within them. Network theory has shown substantial 

value in numerous fields including social sciences,103 trade104 and food webs.105,106 Optimizing 

algorithms to expand its applicability and usefulness is an area of active interest.107,108 The 

capability of the networks approach to elucidate information about the elements of the network 

based on the relationships between its members has significant promise in the study of PAH 

biodegradation intermediates. The connections between the different TPs can be represented as a 

network and analyzed to learn more about both the individual TPs and the network as a whole.  

1.7.2 Structural Activity Relationships 

Structural activity relationships are a method of estimating chemical information based on 

a molecule’s structure. These relationships have been recognized since the early understanding of 

molecular structure. However improvements in computational tools over the last several decades 

have dramatically improved their utility and accessibility.109–112 QSARs remain an active area of 

research for drug design, chemical safety and regulatory evaluation. These relationships can 

predict chemical properties, such as solubility or boiling point, or biological properties such as 

toxicity or mutagenicity. Used within the proper applicability domain, QSARs can be valuable 

screening tools for focusing more time-consuming empirical work. 
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1.7.3 Empirical Analysis 

PAH biodegradation experiments can be accomplished using known PAH degrading 

strains.113,114 The concentration of the original PAH and in some cases the transformation projects 

can be monitored with analytical equipment, reflecting the progress of the PAH degradation. 

Bioassays are available to evaluate the toxic properties of the TPs resulting from biodegradation. 

The gold standard bioassay for mutagenicity, and the one on which most QSARs are trained is the 

Ames Test.21,115 Ames Test kits are commercially available, and this bioassay can be conducted in 

a few days in a BSL-2 capable facility. Degrading a single PAH in a batch culture in a laboratory 

allows us to test the tools in a controlled setting and employ the Ames Test to measure the 

occurrence of mutagenicity in live PAH biodegradation cultures, over the course of the PAH’s 

degradation timelines. The results can be compared against the predicted likelihood of 

mutagenicity from the computational tools.  

1.8 Dissertation Research Objectives and Scope 

The overall objective of this research was to develop a method of analysis that could be 

used to predict the most likely PAH metabolites from aerobic environmental degradation, classify 

them as mutagens or non-mutagens, and test the method’s predictive abilities with an empirical 

experiment. 

The central hypothesis was that network theory combined with a pathway predictor, would 

provide a realistic estimate of the most likely metabolites, that a combination of energetic and 
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topological molecular descriptors will be able to classify the most likely mutagens, and that both 

of these tools will yield predictions which can be empirically verified.  

 The following specific aims were pursued to develop a networks method to identify the 

structures of the most likely metabolites, identify the most likely mutagens with a QSAR that was 

simple enough to be connected with known mechanisms, and use the Ames Test to detect the 

occurrence of mutagenicity based on the predictions from networks method and the QSAR.  

Specific Aim 1: Develop a networks-based model for environmental PAHs to predict the 

most likely metabolites to form in a PAH biodegradation system. In this aim we collected all of 

the realistic possible pathways from the EAWAG-Pathway Prediction System (PPS) in order build 

a large network of the possible intermediate TPs. A simple, but unique algorithm was developed 

in order to reflect the weighted contribution of multiple pathways, yielding a much smaller dataset 

of the most likely structures to occur in an environmental context. 

Specific Aim 2: Develop a Quantitative Structure-Activity Relationship (QSAR) to 

identify mutagenic PAH metabolites and determine the properties that are associated with 

mutagenicity. This objective explored the structures most likely to be suggestive of a mutagen, 

allowing us to identify where in the degradation chain mutagenic compounds are most likely to 

occur. A combination of supervised and unsupervised machine learning methods was used to 

develop a system that could reflect a wide range of different sizes of molecules with different 

mutagenic mechanisms.  

Specific Aim 3: Experimentally determine the occurrence of mutagenicity in a PAH 

degradation batch culture to confirm outputs from the model and/or identify new mutagenic 

intermediate metabolites. A known hydrocarbon degrading strain was used to biodegrade PAHs 

in a laboratory flask culture. The degradation was monitored with a High-Performance Liquid 
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Chromatograph (HPLC), and aliquots were run on the Ames Test at regular intervals. The media 

prior to exposure to the bacterial degradation was not mutagenic, but the occurrence of 

mutagenicity was observed after partial degradation.  

1.8.1 Dissertation Organization 

Chapter 1 provides a summary of the overall environmental context of the problem of 

hazard assessment for PAH transformation products. Chapter 2 summarizes the work done to 

generate our first publication from this project.68 This component of the project focused on 

utilizing a well-established degradation pathway predictor to generate a networks of possible PAH 

TPs and the biodegradation reactions that connect them, and used custom algorithms based on 

network theory to refine the network down to a more feasible scale. Chapter 3 is an explanation of 

the custom QSAR that we developed to evaluate the mutagenicity of potential PAH TPs. The 

currently available QSAR tools did not provide specific enough resolution to discriminate between 

mutagens and non-mutagens for the PAH TPs which occur in surface soil and water: oxy-PAHs. 

Chapter 4 contains an overview of the batch culture experiments conducted to validate the tools 

developed in the earlier chapters. Code for all of the analysis methods developed is available on 

the Ng Lab github, https://github.com/ngLabGroup or on Trevor Sleight’s github account. 

https://github.com/twsleight/Environmental_PAH_Mutagenicity.  

1.8.2 Intellectual merit and broader impacts 

This project was designed to utilize the tools of network analysis and predictive toxicology 

to aid in the problem of hazard assessment for PAH biodegradation. PAHs are one of several 

https://github.com/ngLabGroup
https://github.com/twsleight/Environmental_PAH_Mutagenicity.


 14 

categories of compounds that have long, complicated degradation chains. The techniques explored 

in this work provide insight into the hazards of the degradation TPs of PAHs. However, they could 

also be applied to other molecules with similar complex degradation chains and potentially 

hazardous intermediates. Both the U.S. EPA and The European Union’s Registration, Evaluation, 

Authorization and Restriction of Chemicals (REACH) require evaluation of environmental 

transformation products in certain situations,116,117 and QSAR use is encouraged and accepted by 

both agencies for many requirements.  
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2.0 Networks Analysis 

Reproduced with permission from Environmental Science and Technology, Sleight, T.; Khanna, 

V.; Gilbertson, L.; Ng, C. Network Analysis for Identifying High Impact Biodegradation 

Metabolites: A PAH Case Study. Environ. Sci. Technol. Rev. 2020. Copyright 2021, American 

Chemical Society 

http://pubs.acs.org/articlesonrequest/AOR-GJ55CVZRYEEYFDXKBSSX 

2.1 Introduction 

Polycyclic Aromatic Hydrocarbons (PAHs) are environmental contaminants containing at 

least two aromatic rings in their chemical structure. PAHs are released into the environment from 

either pyrogenic or petrogenic sources. Pyrogenic PAHs are created by incomplete combustion 

of a carbon based fuel including wood, coal, or dung.118 Petrogenic PAHs are caused by refining 

petroleum products, and to a lesser extent, releases from the production and use of plastic 

consumer products.119 The contribution from each anthropogenic source varies widely across 

different countries depending on their industry, agriculture, and power production.1 Natural 

sources of PAHs include volcanic activity and forest fires. PAH exposure is a significant human 

health concern, contributing to cancer and cardiovascular diseases.120 While PAHs can be 

inhaled, the typical half-lives for mid-sized PAHs to settle out of the atmosphere are estimated to 

be only hours to days, depending on atmospheric conditions,38,121 while PAHs can persist for 
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several months in soil or water before degrading, with larger PAHs demonstrating greater 

persistence.15,16  

PAHs are introduced to soil or water through deposition from the atmosphere, direct 

spillage from petroleum production, and/or impermeable surface runoff.122 They can dissolve 

into water or sorb onto soil colloids and be transported by water movement, causing areas of 

concentrated contamination where they are deposited. From soil or water, PAHs can undergo 

volatilization, photochemical transformations, and microbial biodegradation.121 Under sunlight, 

photochemical degradation can rapidly oxygenate the perimeter carbons of PAHs, especially the 

larger ones,123 and in some cases open rings.120 These pathways are often complementary to 

biodegradation pathways and generate similar products.66 However, biodegradation is the most 

effective mechanism for mineralization of PAHs, resulting in their complete removal from the 

environment.59–61 Microorganisms utilize a variety of oxygenase enzymes to hydroxylate the 

outer rings of PAHs, enabling ring cleavage enzymes to open the rings and break down the 

aromatic structure of the compound.59 Some studies show low or minimal PAH transformation 

without the presence of microorganisms when comparing biotic and abiotic soil conditions.60  

From a hazard assessment perspective, the aerobic region of soil and surface water is of 

particular interest because much of the microbiome capable of degrading PAHs exists in this 

region, and PAHs accumulate in soil and water rather than in the atmosphere due to longer soil 

and water half-lives and low volatility. If PAHs settle into the anaerobic zone in the sediment of 

a deep lake, river, or aquifer, their degradation rates drop significantly.63,124 Many organisms 

including benthic invertebrates, fish, amphibians, and small mammals live or feed in the aerobic 

region of the environment, and are exposed to the toxic effects of PAH contamination. PAHs can 

bioaccumulate in food webs, and are found in human food sources.125 Intermediate metabolites 
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created during the biodegradation process are a subject of concern for PAHs,36,126 and also many 

other environmental contaminants including pharmaceuticals, solvents, and antibiotics.127 

Estimating the overall environmental impact of intermediate metabolites, which could include 

persistence, bioaccumulation potential, or toxicity, poses a challenge for both regulators and 

remediation professionals due to the broad spread of possibilities, low concentrations, and 

complex degradation pathways. Environmental transformation products are beginning to be 

covered by regulations. The EU’s Registration, Evaluation, Authorization and restriction of 

CHemicals (REACH) legislation requires evaluation of the transformation products of chemicals 

produced or imported in quantities above 100 tonnes/yr.116 Although PAHs are not common 

commercial products, the interest in including transformation products in regulations may 

eventually apply to contaminants also. The US Environmental Protection Agency (EPA)’s 

methods of PAH risk assessment currently evaluates the parent compounds only, although there 

is interest in improving the accuracy of these methods and reflecting the uncertainty of 

mixtures.128  

Multiple mechanisms of toxicity are possible for PAHs and their metabolites. Some 

PAHs can be metabolically activated to become carcinogens.81 However, in absence of other 

knowledge, narcosis is considered to be the baseline mechanism of toxicity to most 

invertebrates,129–131 and can be caused by both directly emitted PAH compounds and their 

degradation products. Narcotic toxicity is well correlated with a compound’s octanol – water 

partition coefficient (log Kow), and is used in many quantitative structure activity relationship 

(QSAR) estimation tools, such as those published by the EPA.75 However, recent research 

suggests that narcotic toxicity does not represent the entire picture of PAH toxicity, and that 

PAHs may exhibit synergistic effects through more complex toxicity mechanisms.132 Numerous 
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studies have noted increased developmental toxicity or genotoxicity in the presence of PAH 

metabolites, including PAHs of low molecular weight (3 rings or less).89,94,132–136  

Unfortunately, in many cases it is not possible with existing methods to identify exactly 

which chemical structures are causing toxic effects on an ecosystem. Sources of PAHs may not 

be constant, and seasonal weather patterns as well as wind and rain can impact PAH deposition 

rates.137 The variable nature of the emission of PAHs to the environment, as well as the 

complexity of the environmental microbiome can result in some intermediate metabolites 

occurring very briefly or only for a limited period of time during the degradation process.137,138 

Numerous analytical techniques can be used to empirically study PAH transformation products, 

usually involving a combination of a chromatograph to separate compounds and a detector to 

measure them.69 However, all currently available methods have difficulty resolving very similar 

compounds, and many intermediates may occur outside of the sampling period and in low 

concentrations.89,139,140 Additionally, even without the challenge of co-eluted compounds, many 

empirical studies of PAHs are challenged by unidentifiable compounds due to either a lack of 

available standards or limits in mass spectrum libraries.136,141–143 As such, there is a need for 

improved methods of prioritizing potentially formed metabolites by their frequency or likelihood 

of occurrence as well as the potential to cause an environmentally relevant toxic impact.70  

Such an approach was developed herein, using an innovative integration of degradation 

product prediction and network theory. We used the EAWAG Pathway Prediction System 

(EAWAG-PPS http://eawag-bbd.ethz.ch/predict/), hosted by the Swiss Federal Institute of 

Aquatic Science and Technology (EAWAG), to predict potential transformation products of 

PAHs.144 EAWAG-PPS is a biodegradation tool which predicts microbial reactions using a 

molecular substructure search and a transformation rule database. Thousands of possible 
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biodegradation intermediates can be generated from each original PAH, resulting in a rich, but 

overwhelming data set.  

Network theory leverages the relationships between interconnected items to elucidate 

specific information about the individual objects and the relationships between them.145 Network 

theory has seen significant utilization in multiple domains including social sciences, biology, 

transportation, and food webs.105 Individual objects are referred to as nodes and the links 

between them are referred to as edges. Network edges can contain information such as weight or 

direction, and individual characteristics can be attached to the nodes. Mathematical relationships 

describing the connections between the different nodes and edges can be used to represent the 

entire network, or extract specific information about particular sub-sections of the network. In 

the current application, the nodes represent the plethora of possible degradation metabolites, and 

the edges represent the biodegradation reactions from one compound to another. Each node is 

represented by a Simplified Molecular Input Line Entry Specification (SMILES) code, which 

indicates a specific chemical compound and each edge is a biodegradation reaction as defined by 

EAWAG-PPS. Networks analysis has previously to study metabolic networks, although in many 

cases data are organized and presented as a network, but not investigated using network analysis 

methods. When network analysis is used, it has demonstrated significant value in revealing new 

possible metabolic pathways,146,147 understanding robustness in complex reaction networks,148,149 

and in locating the most biologically relevant pathways among known reactions.150 Our 

methodology is a contribution to the techniques used to refine networks for biological relevance.  

We present a feasible model that is able to focus the user on the most relevant possible 

degradation compounds. This method is able to elucidate the hidden portions of the degradation 

chain, which are often difficult to study empirically due to low instantaneous concentration, 
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numerous complex structures, and the lack of available standards. Our work will enable a better 

understanding of the pathways that are most likely to form toxic transformation products in the 

environment.  

2.2 Data and Methods 

Four of the PAHs on the EPA’s Priority Pollutants List;45 acenaphthene, anthracene, 

fluorene, and phenanthrene were selected for this analysis. These compounds were chosen as 

candidates for testing the network analysis approach because of the variations in the ring 

structure between them and a mix of heavily studied compounds such as phenanthrene and less 

studied compounds such as acenaphthene. 

2.2.1 Chemical Characteristics 

The following chemical characteristics were considered for correlations with network data: 

log Kow, number of oxygens, number of carboxylic acid groups, number of carbonyl groups, 

number of aromatic and aliphatic hydroxyl groups, number of nonring carbons, and number of 

rings. These descriptors were selected as they reflect the different ways that the PAH rings are 

oxygenated, opened, and ultimately degraded. Because of its capability to handle high volumes of 

data, RdKit151 was used to calculate all molecular structure descriptors based on the SMILES codes 

obtained from EAWAG-PPS, with the exception of log Kow. The Kowwin module of the 

Estimation Program Interface Suite (EPI Suite) was used to predict log Kow,152 as the Kowwin 

method performed better than the RdKit Wildman–Crippen method on several literature data 
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sets.153–156 The Python libraries, Pandas,157 NumPy,158 and MatplotLib159 were used to manage the 

data with custom scripts, available on github: https://github.com/ngLabGroup. A summary of the 

scripts and how to use them is provided in the Chapter 2 Supporting Information. (see attached file 

Chap2_networks_analysis_SI.docx) 

2.2.2 Network Construction 

The network of degradation metabolites was constructed using batch processing from the 

EAWAG-PPS144 (batch access kindly provided by Dr. Kathrin Fenner, EAWAG). Only the aerobic 

likelihood categories of “neutral”, “likely”, and “very likely” were included. Aerobically 

“unlikely” reactions were assumed to be negligible. An Edge Aerobic Likelihood Score was 

assigned to each category and used as the numerical weighting in the network calculations. The 

Edge Aerobic Likelihood Score was selected based on a sensitivity analysis designed to optimize 

the network’s agreement with empirical literature data. The “Neutral” category was assigned an 

Edge Aerobic Likelihood Score of 1, “Likely” a score of 33, and “Very Likely” a score of 65. The 

full sensitivity analysis is presented in the SI. All edges were assumed to be unidirectional and 

irreversible. EAWAG-PPS does not predict methylation or nitrification of PAHs, so pathways 

containing these steps could not be included in the model, although these could be added to future 

versions. Compounds that did not contain at least one aromatic ring were only included in the 

network as sinks, defined as leading directly from a ring-containing compound to a non-aromatic 

compound. Compounds beyond sinks would not contain rings and were assumed to have low 

toxicity and persistence relative to the ring-containing compounds, and were not considered in the 

network. 
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2.2.3 Network Analysis 

Three methods of network analysis were employed to describe the complex transformation 

pathways of PAH biodegradation. First, analyzing the network as a whole, network characteristics 

were correlated with the molecular descriptors of individual nodes. Second, the compounds that 

have the highest betweenness centrality contain identifiable structural patterns. These compounds 

were grouped into similar substructures based on Morgan Fingerprints160 using Tanimoto 

Similarity161 and Butina Clustering162 and the most common structures were identified. Finally, 

the compounds identified by the novel Node Throughput algorithm were compared against the 

compounds identified by the empirical literature survey.  

2.2.4 Betweenness Centrality 

Betweenness centrality is a commonly used node-level metric in network analysis. A 

node’s betweenness centrality is the number of geodesic paths between any other two other nodes 

in the network that pass through the specified node, normalized by all of the geodesic paths 

between those other two nodes.105 The Edge Aerobic Likelihood Score is used as the edge 

weighting for this calculation. This measure is computed for each node in the network and is used 

to reflect the influence that a node has over all the other nodes in the network. In the chemical 

degradation network, betweenness centrality is used to highlight nodes (compounds) that are 

particularly influential in the pathways that are followed during network degradation. Betweenness 

centrality was obtained using the python package Networkx.163 In our chemical degradation 

networks, a high value of betweenness centrality indicates that a compound falls on a large number 

of heavily weighted pathways in the degradation chain. 



 23 

2.2.5 Node Throughput Algorithm 

In addition to using an established network algorithm, we developed a new algorithm, 

hereafter termed “Node Throughput”, designed to highlight specific nodes and edges that occur 

with a higher likelihood than other nodes. Each edge’s “Throughput” value is assigned by the 

following: 

Edge Throughput Value = Edge Aerobic Likelihood Score ×
Source Node Throughput Value

∑ All Outgoing Edge Aerobic Likelihood Scores
 (1)  

 

and each node’s “Throughput” value is assigned by: 

 

Node Throughput Value = ∑ Incoming Edge Throughput Values (2) 

 

Both equations are applied recursively until the entire network is accounted for. Once the edge 

weightings have been assigned by equation 1, Node Throughput could also be computed with a 

node strength function, however, the recursive method is necessary to compute the Edge 

Throughput values, so it is simplest to compute them together. For the purposes of this paper, 

“Node Throughput” refers to the node strength assigned by the above method, so as not to confuse 

it with a node strength value that could be computed by another method. Figure 2 provides an 

example of Node Throughput, in which all edges are weighted equally for simplicity in presenting 

the concept. However, in all calculations they were weighted as described above.  
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Figure 2 Schematic of the Node Throughput metric. The Throughput divides at the outgoing nodes and sums 

when multiple edges point to the same ingoing node. After several generations, certain portions of the 

network accrue more Throughput than other portions. Each layer sums to the total at the start. 

2.2.6 Relevant Pathway Filtering 

In addition to identifying nodes of interest using the networks metrics described above, we 

developed a systematic procedure for trimming a network to include only the portions of it that 

contain nodes with a specified property. The nodes are selected based on a molecular descriptor of 

interest, and then the pathways that flow to the nodes of interest are traced back to a source node. 

This reduces the size of the network without sacrificing relevant information about the desired 

parameters. In this analysis, nodes with a log Kow value > 2.0 were selected as nodes of interest, 

based on a study by Voutchkova et al, 2011 which indicated that log Kow > 2.0 may indicate 
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potential toxicity.164 Log Kow was used as an example for the analysis below; however, any desired 

property that could be computed from a SMILES code could be used (Fig 3). 

 

 

 

Figure 3: Relevant Pathway Filtering. Node A is one of the parent PAHs; acenaphthene, anthracene, fluorene, 

or phenanthrene. Its log Kow is greater than 2.0, so it is coded as a potentially toxic node. Node C, a 

metabolite, also has a log Kow greater than 2.0 and is considered a po tentially toxic node. Node B has a log 

Kow value less than 2.0, however, it leads to Node C, so it is considered an Intermediate Node and is included 

in the network. Nodes E and D have log Kow values less than 2.0, and have no daughter products that are 

greater than 2.0, so these are considered sinks and no compounds below them are included in the Relevant 

Pathway filtered network. 

2.2.7 Empirical Literature Survey 

A comprehensive literature survey was used to identify all available empirical studies on 

individual PAH degradation in a natural freshwater or soil aerobic environment. The following 

search terms were used to identify studies in the databases Scopus, Web of Science, and 
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Compendex: [anthracene, acenaphthene, fluorene, phenanthrene] AND [degradation, 

biodegradation, biotransformation] AND [metabolite, intermediate]. Studies that included 

deliberate augmentation such as surfactants or heat that would not be reflective of an 

environmental degradation process were omitted, as were studies that only used a mixture of PAHs 

without separating metabolites by their original source. Saltwater studies were also omitted as they 

would not be comparable with the EAWAG Pathway Prediction system. After this screening 

process, a total of 176 studies, some including multiple PAHs, were included for comparison with 

our modeled degradation networks. A detailed summary is provided in the SI. (see attached file 

Chap2_networks_analysis_SI.docx)  

2.3 Results and Discussion 

See attached files Chap2_networks_analysis_SI.docx and 

Chap2_networks_analysis_pathmatches.xlsx for Supporting Information 

The batch process from EAWAG-PPS provides a data set of several thousand possible 

metabolite structures for each individual PAH. This data set is impractically large for the detailed 

analysis of each individual structure. However, by applying the techniques of networks analysis, 

concise information about nodes that have the highest likelihood of formation, or that occur in 

specific parts of the degradation network can be extracted. For clarity, nodes in the metabolite 

network are hereafter referred to as “metabolites” and edges are hereafter referred to as 

“biodegradation reactions”. A summary of the numbers of metabolites (nodes) and biodegradation 

reactions (edges) in the predicted networks and effects of each method of filtering selected, as well 

as the number of empirical papers cited for each PAH is provided in Table 3.  
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Table 3 Summary of the number of nodes and edges in the predicted network and in literature. Relevant 

Pathways filtering was conducted, targeting nodes with log Kow > 2.0. High Node Throughput was defined as 

a Node Throughput value > 0.01 

 

 Acenaphthene Anthracene Fluorene Phenanthrene 

Initial Predicted Nodes 6,104 26,694 30,759 22,996 

Nodes after Relevant 

Pathway Filtering 

3,591 8,365 16,451 14,651 

Initial Predicted Edges 20,154 100,572 104,725 84,374 

Edges after Relevant 

Pathway Filtering 

9,190 23,311 52,385 40,544 

High Node Throughput 

Compounds ( > 0.01) 

165 39 98 39 

Empirical Literature 

Metabolites 

14 46 46 88 

Number of Empirical 

Literature Papers Cited 

11 45 35 108 

 

2.3.1 Network Level Correlations: 

Correlations can be drawn between chemical characteristics and the node-level metrics 

betweenness centrality and Node Throughput. Relevant pathway filtering reduces the number of 

metabolites in the network by eliminating pathways containing metabolites that do not exhibit 

selected chemical characteristics, yielding a smaller network. The reduced network is more 

feasible to visualize or utilize for further analysis. The correlations between predicted chemical 

properties and the network metrics are very consistent across different PAH degradation networks. 

Some correlations with betweenness centrality are stronger if the unfiltered data are used; however, 
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relevant pathway filtering can be applied without substantially weakening the correlations for most 

of the chemical characteristics with Node Throughput. (Fig 4)  

Correlations between the network algorithms and molecular descriptors can be used to 

prioritize compounds based on specific criteria. For example, log Kow is strongly associated with 

narcotic toxicity, and certain patterns of aromatic hydroxyl groups are associated with carcinogenic 

toxicity. Log Kow is weakly correlated with Node Throughput with an average Spearman 

correlation coefficient (rs) of 0.21, and correlated more strongly with betweenness centrality with 

an average rs of 0.40. Aromatic hydroxyl groups are correlated with betweenness centrality with 

an average rs of 0.56. These aromatic hydroxyl groups are part of the structure of compounds that 

adduct onto DNA causing genotoxic and developmental impacts.81,165 Carbonyl groups are 

associated with certain types of toxicity166 and are negatively correlated with betweenness 

centrality with an average rs of -0.42, suggesting that these compounds form closer to the edges of 

the network, or deeper in the degradation chain. These compounds may cause toxic impacts even 

after substantial degradation of PAH compounds have occurred. A discussion of the potential 

applications and strengths and weaknesses of the Node Throughput algorithm is provided in the 

sections below. 
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Figure 4 A. Mean Spearman correlation coefficients (rs) between Node Throughput and molecular 

descriptors. B. Mean Spearman correlation coefficients (rs) between betweenness centrality and molecular 

descriptors. 4 PAH degradation networks were considered and averaged: (acenapthene, anthracene, fluorene, 

and phenanthrene). Relevant Pathway Filtering was applied selecting nodes with log Kow > 2.0. 
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2.3.2 Betweenness Centrality Substructure Identification 

Betweenness centrality reflects the compounds that occur on the greatest number of 

degradation pathways in the network. In this portion of the network, with high betweenness 

centrality, many predicted compounds exhibit similar substructures. In order to analyze the 

substructures in these compounds, the top 1% of compounds in each PAH degradation network 

with the highest betweenness centrality were selected. For clarity, these compounds will hereafter 

be referred to as high betweenness compounds. These compounds were clustered using Morgan 

Fingerprinting160,167 as described in the SI (see attached file Chap2_networks_analysis_SI.docx), 

and the Maximum Common Substructure (MCS) for each cluster was then computed. The clusters 

represent groups of compounds with the same substructure. The tightness of the cluster can be 

adjusted as appropriate for the application; tighter clusters will have larger MCS’s, but it will take 

more clusters to describe the high betweenness compounds. The MCS’s for phenanthrene’s five 

largest clusters are summarized in Figure 5.  
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Figure 5 Maximum Common Substructures (MCS) in the top 1% of betweenness for phenanthrene. The first 

row shows the MCS in top 5 largest clusters. The numbers indicate how many compounds are contained in 

each cluster. The compounds in the vertical columns with the substructure highlighted in orange are 

presented as examples of which compounds are included in the cluster. In the case of phenanthrene, the same 

MCS occurs in several different clusters. 
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Locating common substructures is one possible way to predict the types of compounds that 

occur deep in the degradation network where low concentrations, intermittent occurrence, and 

brief persistence may make it more challenging to study the network with experimental methods. 

Additionally, high betweenness compounds may lie along key pathways that govern the rest of the 

network. If the primary degradation pathways can be highlighted by studying the high betweenness 

compounds, accelerating or restricting these pathways by providing specific nutrients, bacterial 

strains or enzymes could influence the overall decay chain. For example, Tian et al, 2003 found 

that salicylate affected the degradation kinetics of phenanthrene by Pseudamonas Mendocina,168 

and Sponza et al, 2012 suggested a biodegradation model including inhibition kinetics.169 

Optimizing the PAH degradation chain by deliberately managing the intermediate compounds 

could lead to less creation of toxic metabolites, or enable them to be removed more quickly. For 

example, a bioremediation professional should select an augmentation method that either avoids 

toxic intermediates, or continues the degradation pathway beyond them, and regulations should 

consider degradation metabolites. 

2.3.3 Identification of Likely Empirical Compounds 

The Node Throughput algorithm can be used to predict compounds that are likely to be 

detectable with instruments in an empirical study, as well as those that are on pathways to or from 

a detectable compound. We posit that nodes having a higher Node Throughput score have a greater 

likelihood of formation. A threshold value can be used as a cutoff to create a subset of “High Node 

Throughput” compounds, and construct a new network just from these compounds. The threshold 

could be set wherever desired; however, for this analysis, a threshold of 0.01 Node Throughput 

was found to perform well. It should be noted that the algorithm does not incorporate kinetic data 
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and therefore some High Node Throughput compounds may form that do not persist for very long. 

Figure 6 demonstrates this analysis for phenanthrene.  

 

 

 

Figure 6 Phenanthrene Degradation Network High Throughput (> 0.01) predicted compounds for 

phenanthrene degradation compared against the available empirical literature data. “Perfect Match” 

compounds that match an empirical study exactly are shown as structures, and high Node Throughput 

predicted compounds that are on pathways to or from “Perfect Match” compounds are defined as “Pathway 

Match” compounds and are shown as yellow dots. The bar on the bottom of the figure shows the distributions 

of different types of matches. Comparisons for the other 3 PAHs and identification of the Pathway Matches 

are included in SI sections S1-S4. (see attached file Chap2_networks_analysis_SI.docx and 

Chap2_networks_analysis_pathmatches.xlsx) 
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More compounds are predicted by the high Node Throughput model than are found in the 

literature. This is anticipated because many possible intermediates on the high throughput 

pathways are included in the prediction. In the example shown in Figure 6, all predicted 

metabolites selected by the high Node Throughput filter were either exactly matched or included 

in high throughput pathways to or from matched compounds. Although some compounds leading 

to and from the experimentally identified compounds may not be easily detected with 

experimental approaches, they may still occur and cause toxic effects in organisms exposed to 

them. These additional compounds represent possible targets for analysis in future experiments 

to further illuminate PAH degradation metabolites. This process could be applied to less studied 

PAHs, providing a data set of the most likely structures and the links between them. 

To assess the completeness of the High Node Throughput filtering method, a thorough 

literature review was conducted as described in the Methods to identify all available metabolites 

found by empirical studies. The comparison between the metabolites from empirical literature 

and the compounds identified by High Node Throughput filtering is summarized in Figure 7.  
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Figure 7 Analysis of whether the empirical compounds identified in literature are predicted by the High Node 

Throughput network algorithm. Perfect Match: The predicted structure and the literature structure match 

exactly. Partial Match: One of the following conditions is true: 1. The compounds have the same carbon 

backbone, including aromaticity of bonds. The oxygenation groups may differ. 2. The predicted network 

contains an exact match for both the immediate precursor and daughter product of a compound from 

literature. Low Throughput Match/Partial Match: The same criteria as Perfect/Partial Match is applied, but 

the predicted Throughput is less than 0.01. No Match: The “No Match” category is assigned if none of the 

other categories can be assigned. No Match compounds are separated into compounds found by only one 

paper and those found by multiple papers. 

 

If Partial Matches are included, 38% to 48% of the compounds discovered by empirical 

studies in the literature are also predicted by the High Node Throughput algorithm. If the 

compounds that are only represented by a single paper are removed, this improves to 42% to 

66%. In many cases there are reasonable explanations for why compounds are not matched due 
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to the EAWAG-PPS rules. For example, EAWAG-PPS does not predict methylations, and out-

and-back pathways are not predicted. Common reasons for a “No Match” classification are 

included in the SI.  

Uncertainty in the network arises from the broad spread of possible compounds 

predicted. It is expected that not all of the predicted compounds have a realistic environmental 

impact. The EAWAG aerobic likelihood categories used in this study were limited to three 

levels60 and their relative weight to each other can only be estimated. To account for this 

uncertainty, the SI contains detailed sensitivity analysis showing that even with a significant 

amount of variability in the network weights, the Highest Node Throughput compounds are very 

consistent and the literature matches are found with very high fidelity.  

2.3.4 Environmental Implications 

Hazard assessment for intermediate degradation compounds is a challenging problem. 

Network analysis can assist in highlighting desired portions of the complicated and often 

undetectable degradation network. As the understanding of the toxic mechanisms of these 

compounds improves, the correlations between the chemical property data can be used to predict 

the portions of the degradation network that may contribute to specific toxic impacts. Compounds 

that show high betweenness can be analyzed for substructures, indicating the types of compounds 

likely to form during degradation. The novel High Node Throughput algorithm can predict many 

of the same compounds identified over the last 30 years of experimental research into PAH 

metabolites, as well as the compounds that flow to and from them. Furthermore, the comparison 

of network metrics with chemical property data suggests that the relationships both with 

betweenness centrality and with Node Throughput are consistent regardless of which PAH is 
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modeled, so this method may provide a good tool for estimating the degradation pathways of less 

studied PAHs or for studies to target intermediate metabolites of previously studied PAHs.170  
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3.0 Direct-Acting Mutagenicity Quantitative Structural Activity Relationship (QSAR) 

3.1 Introduction 

Reproduced with permission from Chemical Research in Toxicology, Sleight, T.; Sexton, C.; 

Mpourmpakis, I.; Gilbertson, L.; Ng, C. A Classification Model to Identify Direct-Acting 

Mutagenic Polycyclic Aromatic Hydrocarbon Transformation Products. Chem. Res. Toxicol. 

Rev. 2021. Copyright 2021, American Chemical Society (in review) 

 

Polycyclic Aromatic Hydrocarbons (PAHs) contain at least two aromatic rings and are the 

byproduct of both natural and industrial pyrogenic processes, including forest fires, extraction and 

burning of fossil fuels, plastic manufacturing and municipal waste incineration.171,172 

Consequently, PAHs can be found in all environmental compartments - the atmosphere, soil and 

water.173 Atmospheric deposition of PAHs occurs within a few days of emission,38,121 and some 

PAHs can persist for up to several months on surface soils or in water as they slowly degrade.15,16 

While in the aerobic region of soil and/or water, PAHs can form a multitude of different 

transformation products (TPs), many of which are hazardous.174,175 

The U.S. Environmental Protection Agency (EPA) currently classifies 16 PAHs as priority 

pollutants.176 While these compounds have been well studied, there is limited research on the 

hazards of TPs that result from PAH biodegradation, which occurs naturally in the environment 

and can also be induced with deliberate bioremediation at contaminated sites. While 

biodegradation typically eliminates the original unsubstituted PAHs, it does not necessarily 

eliminate the health risk due to their toxic TPs.177–179 Numerous studies have noted that PAH TPs 
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exhibit greater developmental toxicity, mutagenicity or genotoxicity than the original PAHs, 

including PAHs of lower molecular weight, containing three rings or less.20,36,89,94,98,126,134,177,180–

182 

3.2 PAH Toxic Impacts Background 

Narcosis is the baseline mechanism of PAH toxicity and typically correlates well with a 

compound’s octanol-water partition coefficient (Kow).129–131 Many toxicity assessment tools, 

including the Ecosar module of the U.S. EPA’s Estimation Programs Interface (EPI) Suite,183 rely 

heavily on Kow and provide adequate prediction of narcotic toxicity.75–77 However, as compounds 

are degraded, numerous transitions occur including oxygenation, hydroxylation and ring cleavage, 

which can impact the TP’s potential toxicity.184 PAH degradation intermediates are smaller than 

their parent compounds and possess polar oxygen groups, lowering their Kow. However the 

addition of polar oxygen groups facilitates other toxicity mechanisms, particularly 

mutagenicity.185,186 Since the mutagenicity of biodegraded TPs is not directly related to Kow, 

QSARs based on Kow do not effectively predict mutagenicity. Therefore, a different approach is 

needed for assessing this component of PAH toxicity.  

The recognition of a relationship between a molecule’s structure and its toxic properties is 

almost as old as molecular theory. In his thesis in 1893,109 Cros noted a relationship between the 

lipophilicity of primary aliphatic alcohols and their toxicity, a principle which remains useful to 

this day. As molecular representations and numerical analysis methods have improved, 

quantitative structural activity relationships (QSARs) have gained increased acceptance as 

screening and prediction tools for physical properties and biological activity.187,188 In order to 
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predict the specific toxic properties of a molecule, empirical training data is needed. Most publicly 

available or commercially licensed QSARs for mutagenicity are trained on Ames test data,189–191 

the gold standard bioassay for mutagenicity.115,189,192 The test involves culturing bacterial strains 

with specific reverse mutations in their histidine (an essential amino acid) coding gene on histidine 

deficient media. When exposed to a mutagen, the reverse mutation reverts to restore the histidine 

gene, allowing the bacteria to grow, thus indicating the presence of a mutagen. The test typically 

includes a set of replicates spiked with rat liver extract (S9 fraction), to reflect an organism’s 

metabolism. This is designed to evaluate the formation of mutagens upon biotransformation within 

organisms higher on the food chain that might be exposed to PAHs through ingestion or inhalation. 

However, direct-acting mutagens such as those created through biodegradation may be difficult to 

detect if S9 activation is used. Publicly available ready-to-use Ames test QSAR programs are 

typically trained on data both with and without S9 activation and consequently are not suitable for 

evaluating the direct-acting mutagenicity that is induced through biodegradation (that is, occurring 

without any S9 activation).193 Additionally, several more specific theoretical QSAR relationships 

have been developed, many focusing on select nitrogenated PAHs which occur in the atmosphere 

(Fig 8).194–198 Although this body of work aids in evaluating the mutagenicity of nitrogenated 

PAHs, which can occur in the atmosphere, there is a lack of similar evaluation of the environmental 

transformation products resulting from the terrestrial biodegradation of PAHs, which are primarily 

oxygenated derivatives.36,37,98  

Due to the narrow applicability of the available theoretical QSAR relationships designed 

specifically for PAHs, and the lack of specificity of public QSAR programs, there is a gap in 

assessment methods for mutagenic PAHs TPs activated by environmental processes.18–21 The 16 

PAHs recognized as priority pollutants by the U.S. EPA are commonly used as a starting point for 
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PAH studies, but do not contain any nitro-PAHs or oxy-PAHs, which are common among 

intermediate TPs. Thus, a new tool is needed that is both able to cover a wide range of different 

sizes of potential compounds and is trained only on data that does not use S9 activation. In this 

study, we develop such a QSAR that is able to reflect the mutagenic potential of molecules 

representative of potential PAH TPs from aerobic biodegradation, with higher performance than 

publicly available QSAR tools and with broader applicability than previously published theoretical 

relationships. The methods used allow the resulting characteristics of PAH TPs to be connected 

with known pathways of PAH mutagenicity for a mechanistic interpretation. 

3.3 Experimental Procedures 

3.3.1 Training Data 

Data for Ames test Salmonella typhimurium strains TA98 (frameshift mutation) and TA100 

(base-pair substitution mutation) were selected, as they are commonly used in studies focused on 

environmental exposure, and are specified in ISO 11350 for the genotoxicity of water and 

wastewater.203 These strains have shown good responsiveness to the oxy-PAH mutagens that are 

generated from PAHs by environmental degradation processes (Table 4). Most of the training data 

were acquired from the Chemical Carcinogenesis Research Information System (CCRIS).204 The 

data were limited to hydrocarbons that only contain carbon, oxygen, and hydrogen, weighing less 

than 500 amu and containing between 1 and 5 aromatic rings, in order to be representative of 

environmentally relevant PAH TPs. Twelve additional molecules were obtained from the 

Organization for Economic Co-operation and Development (OECD) eChemPortal.205 Other data 
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sources206–208 were reviewed but it was found that these sources did not discriminate between 

positive Ames test results that used S9 activation and those for direct-acting mutagens (which are 

mutagenic without metabolic activation). 

3.3.2 Molecular Descriptors 

A search for existing studies on QSAR development for environmental PAH TPs 

uncovered 7 studies that contained QSAR relationships for specific sub-categories of PAHs (Fig 

8, Table 4).196,199,200,202,209–211 These studies were used to inform the types of descriptors that were 

likely to be helpful in predicting PAH mutagenicity. The Highest Occupied Molecular Orbital and 

Lowest Unoccupied Molecular Orbital energies (ϵ-HOMO and ϵ-LUMO, respectively), the HOMO-

LUMO gap, the ionization potential, and electron affinity were calculated using electronic 

structure calculations in Gaussian 09.212 Density Functional Theory calculations were applied 

using the B3LYP213 hybrid functional and the 6-311g(d,p) basis set.214 This method and basis set 

were selected due to good performance in calculating electronic properties.215–217 All molecules 

studied were fully optimized to their ground state geometry in neutral charge state. From the 

relaxed structures, vertical ionization potentials and electron affinities were calculated with single-

point energy calculations (in positive and negative charge states, respectively). Pharmaceutical 

Data Exploration Laboratory (PaDEL)-Descriptor218 was used to calculate topological descriptors 

for the Ames test data sets. The coordinates from the DFT optimization were supplied to PaDEL-

Descriptor for use in the calculation of 3-dimensional descriptors. PaDEL has the capability to 

calculate up to 1875 unique descriptors. Of these, approximately 1500 descriptors were applicable 

to our dataset with the others reflecting atoms or structures that not relevant to PAHs. Many of 

PaDEL’s descriptors contain weightings that reflect different types of atoms (Table S4.1). All of 
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these are set for each atom, except for the weighting for intrinsic state, abbreviated “s”, and charge, 

abbreviated “c”. An atom’s intrinsic state is the ratio of the atom’s π bonds and lone pair electrons 

over the number of σ bonds for the atom considered. Atoms with more single bonds will have a 

lower intrinsic state, relative to the same atom with double bonds, and most oxygen atoms will 

have a higher intrinsic state than most carbon atoms (Table S4.2). In order to explore the overlap 

between our dataset and existing studies, PaDEL structural descriptors218 were computed for each 

of the datasets used in these studies and principal component analysis (PCA) was used to visualize 

the feature space of each dataset as well as the dataset used for this study. 

3.3.3 Analysis 

 The descriptors were standardized by standard deviation, and recursive feature elimination 

was applied to select the most relevant features. Logistic Regression (LR) was used to develop a 

model for distinguishing between mutagens and non-mutagens across the entire dataset, 

considering mutagens detected by either the TA98 or the TA100 strain. Previous studies suggest 

that there are multiple possible mechanisms by which small hydrocarbons may exhibit 

mutagenicity;99,219–224 thus, we anticipate that there may be multiple mutagenic mechanisms within 

our dataset. PCA clustering was completed without considering whether the data was positive or 

negative for mutagenicity. We hypothesized that structural subclasses with similar mechanisms 

could be uncovered using unsupervised clustering methods to categorize the data before attempting 

to extract the descriptors that corresponded to mutagenicity within each cluster.  

Established classification metrics were applied for evaluating the performance of the 

classifier.225 Mutagenic compounds are considered positive data for the classifier metrics. 

Accuracy is the overall fraction of correct classifications of either class. Precision is the proportion 
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of mutagenic classifications that were correct. Recall/Sensitivity (terms used interchangeably) is 

the proportion of the total number of true mutagens that were correctly classified. Specificity is 

the proportion of the total number of non-mutagens that were correctly classified. The publicly 

available QSARs are expected to have low precision and specificity for this dataset as they are 

trained on data that includes S9 activation. F1 is the harmonic mean of precision and recall. F1 

reflects errors in both forms of classification, so it is the most comprehensive single overall metric 

for evaluating a classifier’s performance. 

In each intra-cluster regression analysis, 10 iterations of k-fold validation using 1/3 of the 

data for testing were conducted, sweeping through different numbers of features to determine the 

ideal number to select. The number of descriptors to use was determined by incrementally adding 

descriptors and calculating the weighted F1 scores. Once performance stopped improving, no 

further descriptors were added. Although recursive feature elimination is an effective method of 

selecting the most impactful descriptors, it does not eliminate correlated descriptors that provide 

the same information. A variance inflation factor (VIF) of < 5 was used to iteratively remove 

highly correlated, redundant descriptors226,227. If the VIF was within 0.5, an assigned preference 

was used as detailed in Table S2.16. Full details including correlated descriptors and example 

structures are provided in the SI and the code used to extract the data from the CCRIS and OECD 

repositories, efficiently calculate the PaDEL descriptors, and perform the analysis is available at 

https://github.com/twsleight/Environmental_PAH_Mutagenicity. 

https://github.com/twsleight/Environmental_PAH_Mutagenicity
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3.4 Results 

See attached file Chap3_classification_model_SI.docx for Supporting Information and additional 

data 

Based on PCA analysis of the PaDEL descriptors for each dataset, none of the existing 

individual studies covered the entire feature space that we wished to consider (Fig 8).  

 

 

Figure 8 Principal Component Analysis (PCA) plot of the features of the available literature QSAR 

relationships for PAHs. The PCAs were calculated with the PaDEL topological descriptors to visualize the 

feature space of the different descriptors. 

 



 46 

Table 4 Existing QSARs that apply to specific PAH derivaties 

 

Descriptors Training Data 

Type and Size 

Target Assay Study 

ϵ-LUMO, Kow Nitro-PAHs, 162 TA98/TA100 (w/o S9) Debnath 

et al 

1992196 

Gs (molecular symmetry) 

Rm5+ (max autocorrelation of 

Atoms) 

Nitro-PAHs, 48 TA98/TA100, (w/o S9) Gramatica 

et al, 

2007202 

ϵ-HOMO Total Information Content 

Index, 2D structure-based atom-pair 

descriptor representing topological 

information, Hypnotic-80* 

Infective-50** 

Nitro-PAHs, 48 

 

TA100, (w/o S9) Hao et al, 

2019209 

Electron-Correlation Energy (ECORR) 

Correlation Contribution of 

Electrophilicity Index (ωCORR) 

Nitro-PAHs, 51 

 

TA100, (w/o S9) Reenu210 

q+H (indicates hydrogen bonding) OPAHs 2-6 

rings, 26 

DNA Binding Wang et 

al, 2009199 

Substructure alert α, β Unsaturated 

Carbonyl 

Compounds, 235 

Multiple Ames Tests  

(w & w/o S9) 

Perez-

Garrido et 

al, 2010200 
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Table 4 (Continued) 

 

ϵ-LUMO, and several charge 

descriptors  

Benz[a]anthrace

ne Derivatives, 

29 

Myco-bacterium strains Kim et al, 

2006211 

Charge and Structural Descriptors Oxy-PAHs w/1-

5 aromatic rings. 

~550 

TA98, TA100, 

(w/o S9) 

This study 

*Ghose-Viswanadhan-Wendoloski hypnotic-like at 80% (drug-like index)228  

**Ghose-Viswanadhan-Wendoloski anti-infective at 50% (drug-like index)228 

 

The descriptors used by the studies in Figure 8 (Table 4) were used to inform the descriptors 

explored in this study. Several studies indicate that both the ϵ-HOMO and the ϵ-LUMO energies can be 

relevant descriptors. Additionally, there are several descriptors that reflect specific molecular 

shapes or charge distributions. We are focusing on oxygenated PAHs rather than nitrogenated 

PAHs, in order to reflect the most likely TPs generated in surface water and soil. However, the 

mechanisms of mutagenic toxicity are likely to be similar. Furthermore, as Table 4 illustrates, 

PAHs of different sizes and with different functional groups may require different descriptors to 

evaluate their mutagenic potential. 

The ability of existing publicly available QSAR programs to classify direct-acting PAH 

mutagens was evaluated with our dataset (Table 5). The other common Ames test strains of TA97, 

TA102, TA1535, TA1537, and WP2 were also considered for additional positive data to evaluate 

the publicly available QSARs, but no additional positives were found.229  
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Table 5 Classifier metrics of publicly available Ames QSARs vs the QSAR developed in this work, evaluated 

with our dataset, which contains unsubstituted and oxygenated hydrocarbons. 

 

  

Vega191 

 

T.E.S.T190 

This Study 

All Data 

This Study 

Small Molecules 

This Study 

Large Molecules 

Accuracy 0.80 .73 0.82 0.91 0.80 

Precision 0.56 .48 0.60 0.75 0.63 

Recall/Sensitivity 0.95 .85 0.84 0.86 0.84 

Specificity 0.75 .69 0.81 0.93 0.78 

F1 0.70 0.61 0.70 0.80 0.72 

 

Training our entire dataset of 557 molecules (141 mutagens) with LR yields a Receiver 

Operating Curve (ROC) with an Area Under the Curve (AUC) of 0.90. The F1 score equals or 

exceeds those of both the Vega-HUB and EPA Toxicity Estimation Software Tool (T.E.S.T) 

models (Table 5). Forty-Eight descriptors are used in this model. The ROC and classifier metrics 

are developed using 10 rounds of 3-fold cross validation, using 2/3 of the data for training and 1/3 

for testing, randomizing the data between each round. The final regression coefficients are 

obtained by regressing across the entire dataset and the selection threshold is set at 0.5 in order to 

be consistent with the other QSARs. The simplicity of LR made it a good candidate to connect the 

descriptors to specific mechanisms.230 Regression coefficients from the scaled LR input data 

provide a simple and easily understood reflection of a descriptor’s predictive strength for or against 

mutagenicity. Several other methods including k-nearest neighbors, decision tree, support vector 

machines and random forest were considered. However, these methods are more difficult to 

interpret due to the need to tune additional hyperparameters. 
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Figure 9 Receiver operating (ROC) with logistic regression for the entire dataset. The two descriptors with the 

two largest positive and negative coefficients are the simple chain, order 3 (SCH-3) which tends to highlight 

epoxide groups and HOMO-LUMO gap, which has lower values associated with mutagenicity. See S-2 for 

details of other descriptors. 

 

Table 6 Confuction matrix for 10 rounds of cross validation for the entire dataset  

 True Mutagens True Non-Mutagens 

Predicted Mutagens (True Positives) 

1167 

(False Positives) 

762 

Predicted Non-Mutagens (False Negatives) 

243 

(True Negatives) 

3398 

 

 

Although the performance of the classifier using all of the data across the entire dataset has 

an equal or higher F1 score than the publicly available QSARs (Table 5), clustering the available 

data by the principal components of the descriptors allows us to achieve a higher level of 
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performance with fewer descriptors. It is reasonable to anticipate that a broad study of hydrocarbon 

mutagenicity such as this one would include data reflecting multiple mutagenic mechanisms.  

 

 

Figure 10 Principal Component (PC) plot of the dataset showing the results of k-means (k=3) clustering. 

 

Three clusters, based on the first five principal components was found to be the ideal 

number to maximize the silhouette plot (Fig S1.3) and minimize the Davies-Bouldin Plot (Fig 

S1.4), indicating that this is the ideal number of clusters to describe this dataset. Within each 

cluster, specific descriptors emerge which allow a better characterization of the mutagenic 

compounds than if the dataset is considered as a whole. The two major clusters are still larger than 

most of the studies in Table 4 and classification scores exceeding those by existing QSARs can be 
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obtained with this method. There are 301 molecules in the cluster of “large molecules”. This cluster 

has an average molecular weight of 254 amu, with an average of 32 atoms per molecule and most 

molecules have 2 or more aromatic rings. The “small molecules” cluster contains 215 molecules. 

Most of these molecules have 1 ring, with a few 2 or 3 rings structures. The average molecular 

weight is 153 amu and there is an average of 21 atoms in each molecule. See Figures S6.1-S6.4 

for representative structures of both clusters. The “other molecules” cluster was not analyzed due 

to its complicated molecular structures and the small size of the cluster. Aliphatic 6-membered 

rings were much more common in this cluster than in the other two clusters, and these compounds 

were not structurally similar to common environmental TPs of PAHs (Fig S6.5).  

 

 
 

Figure 11 Large molecules cluster (blue in Figure 10, 301 molecules, 92 mutagens) Logistic regression 

receiver operating characteristic with classifier metrics and coefficients for the larger molecules in the 

dataset. 
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Table 7 Confuction matrix for 10 rounds of cross validation for the large molecules cluster  

 True Mutagens True Non-Mutagens 

Predicted Mutagens (True Positives) 

768 

(False Positives) 

447 

Predicted Non-Mutagens (False Negatives) 

152 

(True Negatives) 

1643 

 

In the large molecules cluster, a ROC curve with an AUC of 0.90 can be achieved with 

thirty-five descriptors. All descriptors have a VIF of < 5 and the maximum absolute correlation 

between any two descriptors is 0.76. This results in a classifier that achieves an F1 score of 0.72 

(Fig 11, Tab 7), indicating a performance improvement by regressing within this cluster as opposed 

across the entire dataset, as well as reducing the number of descriptors used. 

In the small molecules cluster, a ROC curve with an AUC of 0.96 is achieved with twenty-

five descriptors, resulting in a classifier with an F1 score of 0.80. (Fig 12, Tab 8) The highest 

Spearman correlation coefficient between any two descriptors is 0.94, between two of the 

molecular edge descriptors. 
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Figure 12 Small molecules cluster (rose in Figure 10, 215 molecules, 43 mutagens) Logistic regression receiver 

operating characteristic with classifier metrics and coefficients for the small molecules in the dataset. 

 

Table 8 Confuction matrix for 10 rounds of cross validation for the small molecules cluster 

 True Mutagens True Non-Mutagens 

Predicted Mutagens (True Positives) 

376 

(False Positives) 

108 

Predicted Non-Mutagens (False Negatives) 

54 

(True Negatives) 

1612 

 

Further details of the descriptors with examples as well as information about which 

descriptors were removed by the VIF function due to correlation with other descriptors are 

provided in Figures S2.1-S2.15. PaDEL-Descriptor’s documentation includes a summary of all 

possible descriptors that can be computed by PaDEL including descriptors not selected for this 

analysis. Further information can be obtained from Todeschini and Consonni, 2009.228 
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3.5 Discussion 

3.5.1 Positive coefficients in the large molecule cluster 

Since the dataset is only comprised of compounds containing only carbon, oxygen, and 

hydrogen atoms, most descriptors correlate with specific atomic substructures. Some substructures 

can be connected to specific known mutagenic pathways and certain substructures emerge as likely 

non-mutagenic structures.  

The average centered Broto-Moreau autocorrelation - lag 3, weighted by charges 

(AATSC3c) has the largest positive coefficient in the large molecules cluster. Lag refers to how 

close the atoms are together in the molecular structure. The descriptor reflects oxygen groups 3 

atoms apart. It is balanced against the strongest negative descriptor, ATSC3e, the centered Broto-

Moreau autocorrelation, lag 3, weighted by Sanderson electronegativities, which is more 

associated with non-mutagens. The primary differences between the two descriptors are that 

AATSC3c is an average over the entire molecule, and is weighted by charges, while ATSC3e is 

weighted by Sanderson electronegativities. AATSC3c tends to select molecules with ortho-oxygen 

groups, which can be mutagenic222,231–233 and ATSC3e tends to select any pattern of where there 

are multiple sets of oxygen groups 3 spaces apart, which may be mutagenic or not. 

There are two descriptors based on eigenvalues of the Burden modified matrix. 

SpMin7_Bhp is the smallest 7th absolute eigenvalue of Burden modified matrix, weighted by 

relative polarizabilities. SpMin5_Bhi is the smallest 5th absolute eigenvalue, weighted by relative 

first ionization potential. Both of these descriptors tend to favor larger molecules, but the relative 

polarizability weighting of SpMin7_Bhp favors molecules with oxygen groups on part of the 

perimeter of the molecule. VE1_Dzp is the sum of the coefficients of the last eigenvector from 
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Barysz matrix, weighted by polarizabilities. This sum will be higher for asymmetric molecules 

with oxygens on one side of the molecule, which results in a higher overall sum due to the 

coefficients being different. Another strong positive coefficient, GATS6i, refers to the Geary 

autocorrelation lag 6, weighted by the ionization potential (abbreviated “i”, Table S4.1) of each 

individual atom. This Geary autocorrelation number highlights molecules with a different atom 6 

positions away in the molecular structure, as carbon and oxygen have different “i” weighting 

values. This suggests that mutagens must have oxygen groups on one portion of the molecule, but 

not all over it, and this descriptor selects such dissimilar molecules.  

Several descriptors indicate structures that are recognized indicators of mutagenicity. 

TDB8r is the 3D topological distance-based autocorrelation, lag 8, weighted by covalent radius. 

Since the covalent radii of carbon and oxygen atoms are similar, this descriptor does not weight 

the difference between oxygens and carbons as heavily as the other weighting schemes and tends 

to select longer molecules, particularly with aromatic rings that are several bonds apart and have 

a bend in their structure, referred to as the “bay” region, which is a recognized mutagenic 

structure.78,234,235 The n3HeteroRing descriptor usually indicates the presence of an epoxide group. 

This is a well-recognized indicator of mutagenicity236 and is often used as structural alert for 

mutagenicity.200 The maximum electrotopical state of a hydrogen (hmax) is similar to a descriptor 

that was reported by Wang et al, 2009.199 Wang suggested that the hydrogen atom from a hydroxyl 

group might engage in hydrogen bonds with DNA bases, assisting the mutagenic interaction.  
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3.5.2 Negative coefficients in the large molecule cluster 

The negative descriptors are equally important in sorting the mutagenic structures from the 

non-mutagenic. As mentioned above, the largest negative coefficient is the centered Broto-Moreau 

autocorrelation, lag 3, weighted by Sanderson electronegativities (ATSC3e). This descriptor 

reflects the same atom 3 bonds apart in the molecular structure and favors unsubstituted rings as 

well as oxygens embedded a ring or aliphatic chain 3 bonds apart. JGI7, the mean topological 

charge index of order 7, has a strong negative coefficient. This descriptor indicates molecules that 

have a high charge transfer 7 atoms apart, and tends to highlight molecules with oxygen groups 

distributed all over the entire molecules surface, further confirming that the more mutagenic 

structures have a portion of the molecule with a large amount of charge transfer and a portion with 

less charge transfer. CrippenLogP is the octanol-water partition coefficient (Log P, also called Log 

Kow) calculated via the Ghose-Crippen method. Log P has been previously reported as a positive 

variable for mutagenicity with nitro-PAHs.196 However, in the large molecule cluster, it is assigned 

a negative coefficient. This difference may be due to controlling for size through the cluster 

assignments, or because this QSAR selects only direct-acting mutagens.  

Certain carbon molecular structures are less likely to be mutagenic. The number of 12-

membered rings, nT12Ring, is associated with non-mutagenicity. This descriptor tends to select 

molecules with at least 3 rings that are all joined together on the edges, resulting in more circular 

structures, which tend to be non-mutagenic. VR2_Dt is the normalized randic-like eigenvector-

based index from detour matrix. The detour matrix reflects the longest path in a molecule’s graph 

between each set of atoms. This descriptor is highest in molecules where most paths between atoms 

are also the longest path, which results in the descriptor selecting molecules with long aliphatic 

chains and unsubstituted rings. C4SP3 refers to a carbon bound to 4 other carbons. There are no 
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mutagens in the large molecule cluster that contain this particular structure. While a single methyl 

group in specific positions on the perimeter of a planar aromatic structure can enhance 

mutagenicity,237–240 it is likely that the three-dimensional structure of the C4SP3 grouping inhibits 

a molecule’s ability to cause mutagenicity; similar to how long aliphatic or substituted chains tend 

not to be mutagenic. There are also patterns of oxygen groups which can be non-mutagenic. 

nHBint8 is the count of E-State descriptors of strength for potential hydrogen bonds of path length 

8. This descriptor tends to reflect hydroxyl groups on opposite sides of the molecule, which tend 

to be non-mutagenic in this cluster, whereas mutagens tend to have hydroxyl groups on only one 

side of the molecule.  

There are three radial distribution functions (RDF) including both positive and negative 

coefficients. Although there is some correlation between them, the weightings used with these 

functions and the specific radii that apply to each account for the differences. RDF75s (radius of 

7.5 Å, intrinsic state weighting), is the only RDF descriptor with a positive coefficient, and reflects 

the likelihood of finding a high intrinsic state structure within 7.5 Å of each atom in the molecule. 

RDF90i, (radius of 9.0 Å, ionization potential weighting) tends favor molecules with long aliphatic 

chains. RDF30p (radius 3.0 Å, relative polarizability weighting) highlights molecules with a large 

number of singly bonded carbons. RDF55s is the radial distribution function for intrinsic state at 

a distance of 5.5 Å. This is a 3D descriptor which reflects the likelihood of finding high intrinsic 

state molecules, particularly doubly bonded oxygens, within 5.5 Å of each atom in the molecule, 

which is approximately 3-4 carbon-carbon bonds. Molecules with high values for this descriptor 

have numerous oxygens evenly distributed over the molecules surface.  
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3.5.3 Positive coefficients in the small molecule cluster 

In the small molecule cluster, several descriptors indicate dense structures with a high 

proportion of oxygen as likely mutagens in this cluster. The information content index 

(neighborhood symmetry of 0-order), IC0, has higher values when there are approximately equal 

numbers of carbons and oxygens in the molecule. The 10th bond order index ID (piPC10) reflects 

molecules that have at least 10 bonds in a series and has a stronger weighting for double or aromatic 

bonds, so this descriptor is highest when a large proportion of the molecule is aromatic. MATS4m 

is the Moran autocorrelation, lag 4, weighted by atomic mass. This descriptor tends to highlight 

molecules with oxygens groups close together on a molecule’s perimeter, which like the epoxide 

group, tend to be a mutagenic sub-structure.99,231 AATSC5s, the average centered Broto-Moreau 

autocorrelation, lag 5, weighted by intrinsic-state, indicates oxygen groups 5 atoms apart, such as 

para-oxygen groups. ATSC1e is the centered Broto-Moreau autocorrelation, lag 1, weighted by 

Sanderson electronegativities, and highlights molecules where there are oxygen-oxygen bonds.  

As with the large molecules cluster, in the small molecules cluster, the presence of an 

epoxide group (indicated by SCH-3: simple chain, order 3) is a strong descriptor for mutagenicity. 

The mean topological charge index of order 2, JGI2, is highest when there are single atom 

perimeter groups, such as hydroxyl groups or methyl groups. Unsubstituted rings or rings joined 

by aliphatic chains have lower scores. E2p is the 2nd principal component accessibility directional 

Weighted Holistic Invariant Molecular (WHIM) index, weighted by relative polarizabilities. 

WHIM indexes are 3D molecular indices that reflect the covariance matrix based on the 

weighting.241 Molecules with symmetric branches have a higher E2p value.  
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Unlike in the large molecule cluster, RDF55s has a positive coefficient in this cluster of 

small molecules. These descriptors select molecules with high intrinsic state values, such as 

hydroxyl groups or double bonded oxygens within short radii of most atoms in the molecule.  

3.5.4 Negative coefficients in the small molecule cluster 

Again, the negative descriptors are also necessary to distinguish mutagenic vs non-

mutagenic structures. There are three negative descriptors highlighting Burden modified matrix 

minimum absolute eigenvalues, SpMin4_Bhi, SpMin5_Bhi, and SpMin6_Bhi. These descriptors 

all tend to select molecules with symmetric patterns, some of which can fold into 3D structures 

that are not good candidates for mutagenicity. The topological radius (topoRadius) is the minimum 

number of atoms across a molecule. In the small molecules cluster, molecules with larger 

topological radii typically have long, aliphatic chains, potentially substituted with oxygen groups, 

or rings linked by single bonds (such as the biphenyl structure) which are non-mutagenic 

structures.  

As with the large cluster, certain structural patterns are less likely to be mutagenic. The 

Geary autocorrelation, lag 5, weighted by van der Waals volumes (GATS5v) highlights atoms 5 

bonds away that have a different van der Waals volume. These may be a different atom, such as 

carbon vs oxygen, or they may be bonded differently. This tends to reflect aliphatic rings or chains, 

which are non-mutagenic structures. MATS2c is the Moran autocorrelation lag 2, weighted by 

charges. This descriptor tends to select carboxylic acid groups. There are no mutagens in the small 

cluster that contain carboxylic acid groups. The mindO and minsOH descriptors indicate the 

minimum energy state of a double bonded oxygen and an OH group, respectively. If the structure 

is not present, the value of 0 is assigned (which is then scaled with the rest of the data as part of 
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the analysis), so these two descriptors reflect the presence of OH and doubly bonded oxygens. 

Both structures are found in mutagenic and non-mutagenic structures and in the absence of other 

descriptors these structures are not always mutagenic.  

3.5.5 Global summary of regression coefficients in both clusters 

The OECD guidelines for QSAR development state that a QSAR should provide a 

mechanistic interpretation if possible.230,242 Across both clusters, there are both key similarities 

and differences that may give us insight into the likely mechanisms of mutagenicity. Although 

there are a few mutagenic molecules without oxygen groups, mutagenic structures typically have 

oxygen groups on a part of the molecule, but not all of it. The epoxide group is a strong, although 

not a sufficient predictor of mutagenicity in both large and small molecules. Long aliphatic or 

oxygen-substituted chains are anti-mutagenic structures unless they contain an epoxide group close 

to the rings on the molecule.  

In the large molecule cluster, the positive descriptors favor molecules that are asymmetric 

and have both a polar and a non-polar portion of the molecule. As reported previously, asymmetric 

structures such as the bay or fjord region contribute to the likelihood of a TP being 

mugatenic,78,234,235,243,244 and more symmetric structures such as unbranched biphenyl groups tend 

to be non-mutagenic.245,246 In the small molecules cluster, oxygens close together on the perimeter 

of a ring, either as hydroxyl groups or doubly bonded oxygens, contribute to the mutagenicity of 

the PAH structure and mutagens may be more symmetric.  

 



 61 

3.5.6 Proposed mutagenic mechanisms  

In the absence of studying each molecule experimentally, a potential mechanism of action 

for any individual TP can only be hypothesized. However, based on the strongest descriptors in 

each cluster, and what is known about the mechanisms of PAH mutagenicity, the following two 

mechanisms are proposed as the dominant mechanisms within the two major clusters. These are 

not exclusive categories and there is overlap, but the differences in the selected descriptors suggest 

some differences in the mutagenic mechanism.  

3.5.6.1 Covalent Adduct Pathway  

One of the most well studied mechanisms of PAH-induced mutations is formation of 

covalent adducts with DNA bases. These adducts can be either stable adducts, which persist within 

the DNA strand and interfere with proper replication of the strand, or unstable adducts, which 

remove purine bases from the DNA strand. The bay region diol epoxide group is well established 

as a structural indicator of covalent adduct mutagenicity.83,243,247 The ortho-quinone structure has 

also been shown to be directly mutagenic through this mechanism in the Ames test.99,219,231,248 

Benzo[a]pyrene is the most studied PAH in this category, but it is not the only PAH that exhibits 

this mechanism of mugatenicity.99,223,224  
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Figure 13 Covalent adduct and radical cation pathway. An example diol epoxide pathway (bottom), proposed 

by Huberman et al249, and the radical cation pathway (top), proposed by Borosky and Laali237, to covalent 

adduct formation. 

 

Stable covalent adducts may be formed with either of the purine bases, primarily at the 

exocyclic nitrogen group. If the adducts are not repaired, the wrong pyrimidine base can be 

introduced on the opposite strand, leading to a base pair substitution.250 Many PAHs can also lose 

an electron and become radical cations, which may create unstable DNA adducts with the purine 

bases (Fig 13). This results in the removal of a purine from the phosphate backbone of DNA.250–

252 Some studies suggest that an ionization potential of less than 7.35 eV can be used as the cutoff 

for predicting if a compound will be active via the radical cation pathway or not. Compounds with 
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greater ionization potential will likely only be activated by the diol-epoxide pathway, whereas 

compounds with a lower ionization potential may be activated by both pathways.250 Since there 

are multiple mechanisms of mutagenicity, including some that do not require ionization, ionization 

potential alone is not a good predictor of mutagenicity. 

The cluster of large molecules contains several descriptors that suggest that the covalent 

adduct pathway is relevant. The descriptors that indicate the bay or fjord region and the epoxide 

group contribute to this. The small molecules cluster also contains epoxide groups, so there may 

be some formation of adducts from this cluster, even though the molecules in the small molecules 

cluster are not large enough to contain bay and/or fjord regions. 

3.5.6.2 Reactive Oxygen Species (ROS) Pathway  

Several PAH intermediates can generate ROS through enzyme and metal catalyzed 

reactions,222 and a subset of PAH TPs have the potential to follow both ROS generating pathways 

and covalent adduct pathways. Many quinone and catechol-like structures can cause ROS damage, 

including several smaller structures.219–221 PAH catechols can generate ROS as they are 

metabolized to ortho-quinones. The resulting PAH ortho-quinones can enter futile ROS cycles 

(Fig 14) when cellular reducing agents such as NAD(P)H and NADH are present,220,253 greatly 

amplifying their toxic impacts. This process generates hydroxyl radicals, hydrogen peroxide, and 

superoxide anion radicals (⦁OH-, H2O2, ⦁O2
-).232,254 Enzymes219 and trace metals such as Cu(II)254 

or Fe(III)255,256 can act as catalysts in all of the oxidation steps of the futile ROS cycle. NAD(P)H 

reduces the quinone back to the catechol structure, perpetuating the cycle. Other polar structures 

resulting from oxygenation of hydrocarbons may also generate ROS through similar 

pathways.36,221 Although the quinone or catechol structure can autoxidize, the presence of a 
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catalyst has a significant impact on how quickly the ROS cycle iterates and consequently how 

many ROS are generated.  

 

 

 

Figure 14 Possible ROS generating pathways for PAH catechol and quinone-like structures. Different steps of 

the process can generate hydrogen peroxide (H2O2), hydroxyl radical (⦁OH-), and the super-oxide anion 

radical (⦁O2
-). The Fenton reaction converts hydrogen peroxide into a hydroxyl radical. Reproduced from 

Flowers, L.; Ohnishi, S. T.; Penning, T. M. DNA Strand Scission by Polycyclic Aromatic Hydrocarbon o -

Quinones: Role of Reactive Oxygen Species, Cu(II)/Cu(I) Redox Cycling, and o -Semiquinone Anion Radicals 

† , ‡. Biochemistry 1997, 36 (28), 8640–8648. https://doi.org/10.1021/bi970367p. 1997 American Chemical 

Society.254 with additions adapted from Park et al, 2006232 

 

https://doi.org/10.1021/bi970367p
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While all of the DNA bases can be oxidized, the deoxyguanosine oxidation is the most 

common. Although this oxidation occurs naturally and can be rapidly repaired at normal levels, 

high levels of oxidized DNA can result in base pair mutations257 and ultimately carcinogenesis. 

2’-deoxyguanosine reacts with hydroxyl radicals to form 8-hydroxy-2’-deoxyguanosine (8-

OHdG),258 which is a potent enough biomarker for oxidative DNA damage that it has been 

proposed as an early indicator of colorectal cancer in humans.259  

There are descriptors in both clusters that are representative of the ROS pathway, and 

molecules of various sizes can engage in these ROS generating pathways.260 However, it appears 

to be the dominant mechanism of mutagenicity in the small molecules cluster. The descriptors 

MATS4m, RDF55s and AATSC5s are all indicative of catechol- or quinone-like structures, 

supporting the ROS pathway as a likely explanation of mutagenicity.  

3.5.7 Benefits of clustering 

Using laboratory bioassays to study the mutagenic mechanisms from the vast array of all 

possible molecules that can result from PAH degradation would be prohibitively expensive and 

time consuming. Thus a computational approach to estimating the most likely method of 

mutagenicity to guide experiments has substantial promise. The differences in the descriptors 

selected in the two major clusters of this study suggest that there may be different dominant 

mechanisms of mutagenicity in the two different clusters. These distinctions are not exclusive, and 

it is likely that both known mechanisms of mutagenicity are active in each cluster. However, 

certain differences are quite pronounced. There are no descriptors with a lag of 1 selected in the 

large molecules cluster, but in the small molecules cluster, ATSC1e and IC0 both indicate similar 

atoms close to each other in 3-D space or next to each other in the molecular structure, respectively. 
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The impact of HOMO-LUMO Gap (HLgap) changes between the two clusters. In the large 

molecules cluster, HOMO-LUMO gap has a moderately negative coefficient, which generally 

indicates that mutagens are likely to be more reactive molecules with smaller gaps and in the small 

molecules cluster it is not selected as a relevant descriptor. We hypothesize that the absence of 

selection of HOMO-LUMO gap in the small molecules cluster may indicate the molecule 

persisting long enough to enter the futile ROS cycle. Once in ROS cycle, catalysts may account 

for the ability of molecules with the larger HOMO-LUMO gaps to be mutagenic. The radial 

distribution function with a radius of 5.5 Å, weighted by intrinsic state (RDF55s), is a negative 

descriptor in the large molecules cluster, but a positive descriptor in the small molecules cluster. 

This is attributable to the need for mutagens in the large molecules cluster to have a greater portion 

of the molecule without oxygen groups (which have a high intrinsic state value, Table S13), 

whereas the small molecules which tend to cause mutagenicity via ROS can have a higher 

proportion of oxygen groups over their surface area. 

Between the two clusters, there are differences in the RDF55s coefficients as well as in the 

variables (including HOMO-LUMO gap) selected in each cluster (Figs 11-12). Additionally, there 

is improvement in the performance of the F1 classifier metric as well as a reduction in the number 

of descriptors needed by analyzing within each cluster rather than by analyzing the entire dataset 

all at once. These distinctions suggest that the small molecules and large molecules have different 

structural properties that contribute to mutagenicity, and likely different mechanisms, and that the 

other molecules should be excluded from the training data on their structural differences from both 

the large and small molecule clusters. 
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Figure 15 Examples of structures illustrating the differences in selected negative and positive descriptors in 

each cluster. In the small molecules cluster, high values of RDF55s (Radial Density Function at a radius of 5.5 

Å, weighted by intrinsic state) are associated with a higher likelihood of mutagenicity, and the HOMO-

LUMO gap values are similar. In the large molecules cluster, Low values of HOMO-LUMO gap indicate a 

molecule that is more reactive, and are associated with a higher likelihood of mutagenicity. High values of 

RDF55s are less likely to be mutagenic in the large molecule cluster, but more likely to be mutagenic in the 

small molecule cluster. Also see Figures S3.1-S3.6 

3.6 Conclusions 

The improvement in performance of our QSAR (F1 scores of 0.7 to 0.8) compared to those 

trained on data that used metabolic activation (F1 score of 0.61 to 0.7) shows how crucial it is to 

document whether or not metabolic activation was used in Ames Tests. Future datasets189 

developed for the Ames test should specify this difference. Sub-dividing the data using 

unsupervised clustering before applying machine learning techniques for classification is a novel 
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approach that shows significant promise in the area of topological-descriptor-based classifiers. The 

reduction in the number of descriptors needed in order to achieve high classifier performance by 

evaluating within each cluster rather than across the entire dataset suggests that there may be 

different mechanisms (covalent adducts and ROS) which dominate each cluster. In large datasets 

where there may be multiple mechanisms of mutagenicity, unsupervised clustering may provide a 

simple unbiased method of sorting compounds to create more constrained, but more accurate 

QSARs.  

Empirical studies of PAH contamination demonstrate that their TPs are a significant 

contributor to the mutagenic hazards at PAH-contaminated locations. The QSAR developed in this 

work improves upon previous PAH-QSARs by more accurately detecting direct-acting mutagens. 

Known mutagenic structures such as the bay region epoxide group and quinone-like compounds 

are useful descriptors. However, the distribution of oxygen groups over the surface of the molecule 

and the molecule’s overall shape are also necessary to determine mutagenicity or non-

mutagenicity. The number of 3D descriptors selected shows the importance of the 3D structure to 

mutagenic action. Future mutagenicity classifiers should use optimized structures and include 3D 

descriptors in their training dataset. Although a larger dataset was used than in previous PAH 

studies, a simple, regression-based classifier was still achievable, demonstrating that more 

advanced algorithms which make it harder to obtain a mechanistic interpretation may not be ideal 

or even necessary for predicting PAH mutagenicity.  

Due to the vast number of possible PAH TPs175 that can result from PAH environmental 

contamination, computational approaches to estimating the potential hazards are the most feasible 

and accessible solution. Future regulation and remediation approaches may benefit from a better 

understanding of pathways that lead to mutagenic compounds, ultimately leading to 
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biodegradation approaches that avoid or remove these mutagenic TPs. Hazard assessments for 

PAH contamination should incorporate degradation products and evaluate the most likely 

mutagenic structures in order to avoid trading one hazard for another in the process of remediating 

PAH soil contamination.  
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4.0 Empirical Evaluation of Mutagenic TP Formation 

4.1 Introduction 

4.1.1 Motivation 

The networks model developed in Chapter 2 provided a method to estimate the most likely 

compounds that would occur in the environment. In order to estimate which PAHs would degrade 

into mutagenic transformation products, the QSAR developed in Chapter 3 was applied to the high 

throughput compounds that were predicted by the networks model. These compounds were 

assumed to have the greatest probability of occurring in an actual degradation experiment. The 

direct-acting mutagenicity QSAR is a tool for predicting whether a given structure is likely to be 

mutagenic or not. These two tools can be used in combination to estimate whether a given PAH is 

likely to degrade into mutagenic TPs and if so, where in the degradation chain they are likely to 

occur. In order to verify the predictive tools, we designed an experiment to evaluate whether, when, 

and to what extent mutagenic transformation products would form from a given PAH in a 

laboratory biodegradation experiment.  

4.1.2 Distinctions from previous biodegradation mutagenicity studies  

The occurrence of mutagenicity from biodegradation intermediates has been previously 

evaluated with various experimental designs, and environmental transformation of PAHs can 

increase their mutagenicity (Chap 1, Table 2). In many previous studies, known or suspected PAH 
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intermediates were synthesized and evaluated for mutagenicity. While valuable in the structural 

specificity offered through compound synthesis, this approach does not capture the potential 

contribution of TP mixtures89,261 or the formation of unknown metabolites. In other studies, the 

mutagenicity of a PAH degradation culture (such as phenanthrene) was evaluated before and after 

a period of degradation, but not at intermediate time points (Table 4). This approach runs the risk 

of missing mutagenic TPs which persist long enough to cause harm, but ultimately degrade before 

the final time point. Such intermediate TPs are particularly important when translating results of a 

batch culture study, which proceeds from a deliberate starting point to a deliberate end point, to an 

environmental context. Unless the contaminant source has been eliminated or controlled, there is 

typically ongoing input of the parent contaminant compound (here, PAHs) even as legacy pollution 

transforms, causing new TPs continue to be generated from the new contamination.  

Another key difference between this study and previous work on PAH biodegradation 

mutagenicity is the simplicity of the sample preparation. Many previous studies employ techniques 

such as liquid-liquid extractions,134 fractionation,93,261 or directly synthesizing known 

metabolites.244 While these studies are valuable for their specificity and their enhanced detection 

ability, their results may not be as representative of the actual degradation conditions as a sample 

preparation with fewer purification and concentration steps. Additionally, some studies only take 

samples at the beginning and end of a degradation culture,262 but not at intermediate time points 

during the degradation culture. This study provides a complementary option to more processed 

samples with a very simple sample preparation procedure and samples taken at intermediate time 

points. 



 72 

4.1.3 Selection of PAHs for Batch Degradation 

The dominant PAHs in any given contaminated environment vary widely. However, 

phenanthrene is one of the most abundant PAHs found in environmental studies and is also a 

smaller PAH, making it a preferable starting point for designing the predictive tools in this work 

due to a manageable set of possible TPs and good availability of empirical literature.24,57,263,264 The 

empirical literature (Chap 2) was reviewed to identify intermediate aerobic biodegradation 

products of phenanthrene, although only a few studies included the associated hazards. 

Additionally, phenanthrene has several known microbial degraders (e.g., Pseudomonas Putida, 

used here) which are available from laboratory suppliers, facilitating laboratory degradation 

cultures without needing to isolate an environmental strain from a contaminated site. Furthermore 

phenanthrene has a “bay” region, a recess in the aromatic rings, making it a good candidate for 

exploring mutagenicity induced by biodegradation.78 The availability of existing microbial 

degraders and the bay region80,235,235,243 suggest that phenanthrene may introduce observable 

mutagenicity in a biodegradation experiment. Several previous studies suggest that phenanthrene 

may generate mutagenic TPs (Table 9). 

Fluorene was selected as the second PAH for use in batch degradation studies. Pilot 

experiments confirmed that Pseudomonas Putida was also able to degrade fluorene. Fluorene is 

typically found in lower concentrations than phenanthrene in environmental contexts and thus, is 

less studied. The empirical literature review conducted for the networks model found 

approximately half as many empirical TPs reported for fluorene as for phenanthrene. The QSAR 

developed in Chapter 3 was used to estimate the likelihood of mutagens occurring based on the 

predicted degradation projects from the network models from these two PAHs.  
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Table 9 Previous Phenanthrene Mutagenicity Studies 

 

Experimental Design Strains* Results Study 

Batch culture, bacteria 

immobilized on porous 

surfaces, glucose as a co-

metabolite, 

ethyl acetate extraction used 

TA98 Positive when co-

metabolized with 

glucose. S9 fraction 

reduced mutagenic 

effect. 

Traczewska et 

al, 2000134 

Individual compounds that are 

potential metabolites 

TA98, TA100, 

TA1535, TA1538 

Some positives Bucker et al, 

1979244 

Biodegradation with alfalfa TA98, TA100 Negative Flocco et al, 

2002265 

Individual compounds TA98, TA100 Some positives Wood et al, 

197984 

Fungal enzyme degradation TA98, TA100 Negative Wulandari et al, 

2021262 

*Notes on Ames test strains: TA98: Frameshift Mutation, TA100; Basepair substitution with SOS 

promoting plasmid. TA1535: Basepair Substitution Mutation 

 

In the case of fluorene, minimal information is available for the mutagenicity of 

degradation TPs. Most of the available studies for mutagenicity in relation to fluorene have been 

conducted with either unmodified fluorene, or fluorene bound to groups not likely to occur through 

environmental transformations. Two fluorene amides that were being developed as insecticides in 

the 1940s, 2-Aminofluorene and 2-acetylaminofluorene, were discovered to be carcinogenic.266 

Mutagenicity studies using fluorene tend to focus on these and their derivatives.246,267,268  
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4.2 Materials and Methods 

4.2.1 Overall Experimental Design 

The high-throughput networks predicted by the networks model (Chap 2) were evaluated 

for potential mutagens with the QSAR (chap 3). The placement of mutagens on the pathways most 

likely to occur based on empirical literature (see 4.3.1) was used qualitatively to design the 

degradation experiments.  

 Based on the results from a pilot phenanthrene degradation culture, (Appendix C), the 

location in the degradation chain of the mutagens predicted by the networks model (Chap 2) and 

the QSAR (Chap 3), a 2-day time interval for the Ames FT samples was selected. From previous 

pilot work, (Appendix C) most degradation runs in this experimental setup were anticipated to be 

complete (either fully degraded, or the degradation significantly leveling off) by approximately 1 

week, so time points of 2, 4, 6, and 8 days were selected. (Fig 16).  

Phenanthrene and fluorene were degraded by Pseudomonas Putida in batch degradation 

cultures. Aliquots were pulled from the PAH degradation cultures, measured with the HPLC to 

determine the extent of degradation, and tested with the Ames FT. Two weeklong batch culture 

experiments were conducted, using Pseudomonas Putida as the PAH degrading strain, and the 

Ames tester strains TA98 and TA100 to measure mutagenicity.  
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Figure 16 Gantt chart for the full experimental design, showing 6 days. Each Ames FT overnight culture was 

started the day prior to the Ames Test procedure and the P. Putida degradation culture ran the entire time. If 

the degradation culture ran for 8 days the same process was extended for 2 more days.  

 

Three replicates were used for HPLC analysis and were filtered to remove cells and any 

suspended solids prior to analysis. An abiotic control (Figs 20-22) was included to determine if 

any induced mutagenicity could be attributable to photo-degradation. The abiotic controls were 

prepared in the same manner as the degradation culture, placed on the shaking incubator and 

exposed to sunlight, but not inoculated with bacteria.  

4.2.2 PAH-Media Preparation  

Bushnell-Haas (BH) Media was prepared according to the manufacturer’s instructions and 

autoclaved at 121 ⁰C for 20 minutes. Tween® 80 was used to help stabilize the PAH in solution 
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with the bacteria. Since Tween cannot be autoclaved, it was added to previously autoclaved BH 

media at a concentration of 2% (v/v) using a hotplate at 120 ºC and frequent manual swirling. The 

BH media/Tween solution was then filter sterilized through 0.1 µm or 0.2 µm filters based on 

availability, with a sterile syringe and diluted to a concentration of 0.5% Tween (v/v), which was 

adequate to stabilize our PAHs. The PAH (phenanthrene or fluorene) was dissolved in acetone at 

5,000 mg/L and an appropriate amount added to the BH media/Tween to yield 100 mg/L of PAH. 

This BH media/Tween/PAH solution was left open in a chemical hood, covered with sterile cotton 

overnight to allow the acetone to evaporate, leaving the PAH behind. This stock solution (hereafter 

referred to as “PAH culture media”) was then stored away from light to prevent any photo-

transformations.  

4.2.2.1 Pseudomonas Putida Freezer Stock Preparation 

Pseudomonas Putida was selected for the degradation experiments because it is a known 

PAH degrader.113,114,269–273 Pseudomonas Putida (ATCC 17484) was purchased from the 

American Type Culture Collection, Stock cultures were prepared by growing a culture overnight 

in BD Difco™ growth media (a beef peptone media). 0.5 mL of this culture was combined with 

0.5 mL of 50% glycerol (v/v) for a final volume of 1 mL and 25% glycerol (v/v) in 1.5 mL 

microcentrifuge tubes. The prepared microcentrifuge tubes were labeled and stored in a -80 ºC 

freezer.  
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4.2.2.2 PAH Degradation Culture Inoculation 

Pseudomonas Putida cultures were started from freezer stock as described in Appendix B 

and grown overnight in a shaking incubator 28 ºC and 120 rpm to early exponential phase 

(approximately 18 hrs, OD600 0.3 to 0.6) in BD Difco media. If the culture proceeded all the way 

to the stationary phase, it was passaged once and the passaged culture was used for inoculating the 

PAH culture media while in the early exponential phase. The PAH culture media flasks to be used 

for inoculation were filled with 100-120 mL of PAH culture media from the pre-prepared stock 

and placed in the shaking incubator, wrapped in foil, at the same time as the Pseudomonas Putida 

cultures. This provided several hours of shaking prior to inoculation or light exposure in order to 

fully solubilize the PAH.  

 Cells were extracted from the Pseudomonas Putida cultures in the early exponential phase 

and 40 mL added to a sterile 50 mL tube. This tube was centrifuged at 6000 rpm for 5 minutes, 

decanted and the pellet resuspended in BH media, centrifuged a second time, and the pellet 

resuspended in PAH culture media to avoid diluting the PAH culture when adding the cell 

suspension to it.  

Based on our OD600 calibration curve (Appendix B), 108 cells/mL were added to 100-120 

mL of the PAH media in a sterile 250 mL shaker flask. The mouth of the flask was filled with 

sterile cotton to allow air exchange (Fig 21) and the flasks were placed immediately onto a shaking 

incubator at 28 ºC and 120 rpm, uncovered, to permit any potential photo-transformations that 

occur in an environmental degradation context. Abiotic control flasks were also placed on the 

shaking incubator and contained all of the same preparations except the addition of the cells was 

excluded. The shaking incubator was located next to a south-facing window. At the predetermined 

time points, a small aliquot (< 5 mL) was extracted from the flask and the flask was immediately 
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returned to the shaking incubator. The aliquot was filtered using a sterile syringe and a 0.1-0.2 µm 

filter (based on available supplies) to remove cells and any suspended solids, such as undissolved 

PAH or small clumps of the BH media. The filtrate was analyzed by HPLC and used for carrying 

out the Ames Test.  

An Agilent™ 1200 series High-Performance Liquid Chromatograph (HPLC) with a UV 

detector was used to monitor the PAH degradation. A 4.6 mm x 150 mm Agilent™ C18 Column 

was used with a gradient of acetonitrile and de-ionized water. Individual TPs were not identified 

as this has already been heavily studied and metabolite identification was not the focus of this 

study. Peak height at 254 nm was used to measure the PAH. Details on the HPLC configuration 

are provided in Appendix B, and selected HPLC data is provided in Appendix D.  

4.2.3 Ames Fluctuation Test  

The Ames Fluctuation Test261,274,275 (Ames FT) was selected to measure the occurrence of 

mutagenicity in the PAH degradation cultures. The Ames FT is a variation on the well-established 

traditional Ames Test for mutagenicity, which is a pour-plate bioassay.21 In the traditional Ames 

Test, tester strains of Salmonella typhimurium containing a reverse mutation in the histidine coding 

gene are mixed into a top agar and poured over a base agar. Each Ames tester strain contains a 

specific type of reverse mutation (e.i. frameshift, base-pair substitution). The substance to be 

analyzed for mutagenicity is mixed into the top agar at a dilution gradient in order to assess dose-

response. If a mutagen is present the mutation will reverse and colonies will form. The number of 

colonies are counted and evaluated against a negative control to correct for spontaneous 

mutations.276 In the Ames FT the tester strains are cultured in multi-well plates and a colorimetric 

indicator is used to evaluate bacterial growth indicating the presence of a mutagen. The Ames FT 
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is more facile and efficient (with both time and material) to conduct than the traditional pour plate 

design. The Ames FT also has a similar level of sensitivity to the pour plate test,22,277,278 and has 

been applied successfully to similar projects.261,274,275 Due to the high volume of samples required 

for this project, the FT test was selected. An adjustment to the standard Ames Test procedure for 

this experiment was the omission of S9 replicates, which are typically used for enzymatic 

activation, designed to reflect higher organism’s internal metabolism.115 Since this project was 

intended to reflect only the mutagenicity that would result from environmental microbial 

degradation, we did not include the S9 activation component. The tester strains TA98 (frameshift 

mutation) and TA100 (base-pair substitution mutation) were selected as these provide two types 

of mutations, and are commonly used to evaluate the mutagenicity of water or wastewater,279–281 

and are the strains specified in ISO 11350.203 ControlChem™ positive controls were used, 2-

nitrofluorene for TA98 and 4-nitroquinoline-N-oxide for TA100. The controls were dissolved in 

1 mL dimethyl sulfoxide for a dosing solution of 50 µg/mL. The Ames FT has a 1/25 dilution 

when the test substance is added to the media, so the final positive control dose was 2 µg/mL. All 

Ames Test specific materials were purchased from Molecular Toxicology (MOLTOX™), Inc, 

Boone, North Carolina.  

4.2.3.1 Ames Fluctuation Test Process 

To conduct an Ames FT, the TA98 and TA100 strains were inoculated with a 20 µL 

injection of a freshly thawed freezer stock (preparation described below) into 10mL of MolTox™ 

growth media in a sterile 50 mL Erlenmeyer flask. The exact volume of this culture was flexible 

as the culture would be required to meet a specific OD600 before being passaged for exposure to 

the sample. Extra growth media was used in the experiments with abiotic controls or if additional 
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OD600 checks were needed. This flask was incubated (stationary) overnight at 37 ⁰C and then 

placed on a shaking incubator on the morning of the day of the assay at 37 ⁰C and 150 rpm until it 

reached an OD600 of at least 1.0. 800uL of this overnight culture was added to 7.2 mL of MolTox™ 

exposure media. For abiotic controls 1.5x as much bacteria and exposure media were prepared. A 

24 well plate was prepared with 10 uL of each sample (positive and negative controls and serial 

dilutions) and 240 uL of the exposure media mixture was added to each well. 3 dilution replicates 

with 6 serial dilutions of 50% were used for final dilutions of 1, 1/2, 1/4, 1/8, 1/16, and 1/32 of the 

original aliquot from the Ames degradation culture, with 3 positive and 3 negative controls for 

each sample. Autoclaved de-ionized water was used for dilution. Serial dilutions of 1, 1/4, and 

1/16 were used for the abiotic controls. This plate was then placed on a shaking incubator at 37 ºC 

for 90 minutes. If an overnight culture reached OD600 of 1.0 and could not be used within 15 

minutes due to the 24 well plate for the other strain being prepared it was placed in a 4 ⁰C 

refrigerator for no more than 2 hrs, and then used as described above. After the 90-minute 

incubation time the 24 well plate was removed from the shaking incubator and 2.75 mL of 

MolTox™ reversion indicator media was added to each well. Each of the 24 wells was then 

transferred to 48 wells on a 384 well plate, 50 µL per well. Each set of dilutions with positive and 

negative controls fills one 384 well plate. The 384 well plates were placed in a resealable plastic 

bag (i.e. Ziploc®), and placed in a stationary incubator at 37 ºC for 72 hrs. The Reversion Indicator 

Media changes from a deep purple color to a bright yellow if there is cell growth, indicating reverse 

mutations. (Fig 17) The full instructions for this Ames FT can be obtained from MOLTOX™.282 
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Figure 17 Example Ames Test 384 well plate. Each Ames Test time point has 3 such plates per strain, and the 

mean of the counts of the positive wells are used to determine the increase over the mean of the negative 

control.  

4.2.3.2 Ames Test Freezer Stock Preparation 

Freezer stock for the Ames FT was prepared by incubating the TA98 and TA100 

Salmonella typhimurium overnight at 37 ºC and shaking to an OD600 of at least 1.0 at 37 ºC and 

150 rpm the next day. 0.5 mL of 50% (v/v) glycerol was added in equal volumes to the culture to 

yield a final mixture of cell suspension in growth media with 25% glycerol (v/v) in 1.5 mL tubes, 

which were preserved at –80 ⁰C. 10 tubes of frozen Ames Test stock were prepared in a batch and 

each batch of frozen stock was tested to ensure responsiveness to the positive control (≥25 positive 

wells) and an acceptably low background rate of naturally occurring revertant positive wells (≤10), 

as defined by ISO 11350, “Water quality — Determination of the genotoxicity of water and waste 

water —Salmonella/microsome fluctuation test (Ames fluctuation test)”. Freeze-thaw cycles can 
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cause high background reversion or loss of response to mutagens in Ames tester strains, 115,283 so 

each individually prepared frozen vial of Ames tester strain bacteria was only used once. To start 

an overnight Ames culture, a single microcentrifuge tube for each strain was thawed and 20 µLs 

of the contents was immediately used to inoculate an overnight culture.284,285  

4.2.3.3 Ames Fluctuation Test Statistical Interpretation 

 

 The Ames FT is typically considered positive for mutagenicity when a statistically 

significant 2-fold increase over the negative control is observed.93,203,274,277 For the purposes of this 

experiment, criteria similar to that used by Flückiger-Isler and Kamber, 2012277 were applied to 

the results. In order to be positive a test value must satisfy the following criteria (Table 10):  

1. At least a 1.5-fold increase for a weak positive and at least a 2-fold increase for a positive. 

2. Significance (t-test) at α < 0.05 or α < 0.1, for a weak positive. The well counts were 

arcsine–square-root transformed as recommended by ISO 11350.203 

3. A dose-dependent response. A linear response is not necessarily anticipated, but in order 

to be considered a positive, the mutagenic response should eventually cease to be observed at the 

lower doses.  

4. If the mean value of the negative control replicates was less than 1, the value 1 was 

assigned for evaluating the fold response.277 This ensures that a false positive is not observed due 

to background rates of spontaneous reversion. 

Additionally, the validity criteria from ISO 11350203 was applied. In order to be valid, the controls 

in a test must satisfy the following criteria:  

A. the mean number of positive wells for negative controls must be ≥0 and ≤10. 

B. the mean number of positive wells for positive controls must be ≥25.  
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The Ames FT can be read between 48 and 72 hrs of incubation.203,282 All assays were read at 

approximately 72 hrs due to the anticipated weak response of the PAH TPs.  

 

Table 10 Summary of positive and weak positive Ames FT result criteria. The fold-increase and the α level of 

significant pertain to individual dilutions with 3 replicates in an Ames FT. The overall Ames FT result  

 

Fold Increase of the mean 

positive wells of a set of dilution 

replicates relative to negative 

control from that time point 

α level of significance 
Overall Ames FT 

Result 

>=2 <0.05 Positive 

>=2 <0.1 Weak Positive 

>=1.5 <0.05 Weak Positive 

 

In all cultures, the same batch of PAH culture media as was used for the degradation 

experiment, (sterile, never exposed to bacteria or significant amounts of sunlight) was run on the 

Ames Test for the day 0 time point. No batch of PAH culture media of either fluorene or 

phenanthrene was ever positive for mutagenicity on the Ames FT Test. Some of the phenanthrene 

cultures did not successfully inoculate on the first attempt and required a second inoculation of 

washed cells from the enrichment culture. 

4.3 Results and Discussion 

See attached file Chap4_PAH_culture_data.xlsx for raw data  
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4.3.1 Mutagenicity predictions from networks model and QSAR 

Pilot experiments confirmed that the Pseudomonas Putida strain was capable of degrading 

both phenanthrene and fluorene. These pilot experiments were conducted as described in section 

4.2, using the same PAH culture media preparation, inoculation procedure and HPLC methods, 

but not including the Ames Test.  

 

 

 

Figure 18 High Node Throughput (See Chap 2) portion of the predicted phenanthrene degradation network 

(refer to Chapter 2). Compounds that are a perfect match to those identified in an empirical study are shown 

as structures. Predicted TPs identified by the networks model (Chapter 2) are shown as circles. Red circles 

and structures indicate a potential mutagen as predicted by the QSAR (Chapter 3). The blue arrows indicate 

the pathways documented in literature by Pseudomonas Putida strains. (see Chap 2 SI) 
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Based on our mutagenicity QSAR described in Chapter 3, the number of predicted 

mutagenic products and the number of TPs before a mutagen was predicted from the original 

source PAH varied significantly between phenanthrene and fluorene. These differences made these 

two PAHs good candidates for testing the ability of the networks model and the QSAR to predict 

the potential occurrence of mutagenic TPs in a PAH degradation network. The QSAR was applied 

to the high node throughput compounds for phenanthrene (Fig 18) and fluorene (Fig 19). All input 

data was prepared in the same manner as the training data for the QSAR (Chap 3).  

Based on previous degradation studies from literature using Pseudomonas Putida strains, 

the phenanthrene degradation culture was anticipated to proceed down either the left286,287 or center 

pathways113,288,289 (Figure 18, indicated by blue arrows), or both. The left-most pathway generates 

more predicted mutagens (denoted in red) than any other portion of the network.  

It was anticipated that fluorene would degrade through the 9-hydroxyfluorene group, the 

most commonly documented pathway in empirical literature,136,290–293 (blue arrows in Fig 19, also 

see literature review summary in Chapter 2 SI). This pathway does not generate many predicted 

mutagens until the very bottom of the network. Although this is only an approximation as the 

kinetics of each transition cannot be known, the TPs lower in the network are only a few transitions 

away from opening the last aromatic ring. Fluorene was therefore hypothesized to be less likely to 

generate mutagens than phenanthrene. 
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Figure 19 High Node Throughput (see Chap 2) portion of the predicted fluorene degradation network (refer 

to Chapter 2). Compounds that are a perfect match to those identified in an empirical study are shown as 

structures. Predicted TPs identified by the networks model (Chapter 2) are shown as circles. Red circles and 

structures indicate a potential mutagen as predicted by the QSAR (Chapter 3). The group of compounds in 

the upper left corner indicates a point where several lower throughput pathways joined that resulted in a 

high node throughput region. The blue arrows indicate the most commonly documented degradation 

pathway from literature (See Chap 2 SI).  

4.3.2 Biodegradation Culture Ames Tests 

Two degradation culture runs were conducted with phenanthrene and one with fluorene. 

The occurrence of direct-acting mutagenicity in a live biodegradation culture, without the use of a 

detailed preparation chain to isolate and/or concentrate specific metabolites, was hypothesized to 
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be transient in the degradation culture. All raw data is provided in the attached 

PAH_culture_data.xlsx file.  

4.3.3 Phenanthrene Degradation  

 

 

Figure 20 Normalized HPLC peak height (absorbance at 254 nm) (A) Phenanthrene biodegradation culture 

with Ames FT results. (B) Phenanthrene Abiotic Control. The error bars show one standard deviation, (n=3, 

some time points had extra replicates, see Chap4_PAH_culture_data.xlsx) The subsequent days were 

normalized to the day 0 mean peak height. Ames FT results (Tables 11 and 12) are shown in the shaded 

boxes. The TA100 weak pos on day 6 was the only positive result from the abiotic control.  

 

The phenanthrene peak was almost undetectable on the HPLC by 6 days. (Fig 20) On Day 

2, a weak positive was detected in the TA98 strain, at the start of the culture degradation, and on 

Day 4 a positive was detected in the TA98 strain and a weak positive in the TA100 strain. By Day 

6, no further positives were detected, confirming the hypothesis that mutagenicity would occur 

while the culture was partially degraded. Several days did not meet the criteria for valid samples 

due to the positive or negative Ames FT controls being outside of the acceptable range (see 4.2.3.3, 
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and Table 11). It is anticipated that invalid controls would be most likely to impact the test’s ability 

to show positives, as a low positive control would indicate a weak response for that plate and a 

high negative control would make it less likely to see enough of an increase in positive wells 

(relative to the negative control) to detect mutagenicity. Therefore, time points that still met the 

criteria to be considered positive may be of interest even if the controls were out of the desired 

range. 
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Table 11 Phenanthrene Ames FT Data. The values for each day/dilution are the fold increase of the mean 

number of positive wells (n = 3 replicates) relative to the mean number of positive wells of the negative 

control (n=3 replicates) for that day. Highlighting indicates the level of significance and magnitude of fold 

change; fold changes may be greater than 2 and not be significant at least α < 0.1. *The TA98 Day 2 positive 

control was low at 21 mean positive wells. *TA100 Day 4 negative control was high at 16 mean positive wells. 

See attached file PAH_culture_data.xlsx for full details 

 

     

TA98  Day 0  Day 2* Day 4 Day 6  
1 1.50 3.00 1.33 1.17  

 1/2 1.00 1.67 0.67 0.67  
 1/4 1.50 0.67 1.00 0.63  
 1/8 0.50 0.67 2.33 0.79  

 1/16 1.25 1.00 2.67 0.58  
 1/32 0.25 0.67 1.00 0.50  

 neg weak pos pos neg  

      

TA100  Day 0  Day 2 Day 4* Day 6  
1 1.07 1.06 1.70 0.87  

 1/2 0.81 1.28 1.60 0.63  
 1/4 1.22 1.22 1.47 0.87  
 1/8 1.11 1.28 1.47 0.80  

 1/16 0.78 1.33 1.51 0.90  
 1/32 1.11 1.17 0.87 0.80  

 neg neg weak pos neg  

      

Individual Dilution Result   Ames FT Result 

α < 0.05, fold increase > 1.5  = weak positive 

α < 0.1, fold increase >= 2.0  = weak positive 

α < 0.05, fold increase >= 2.0   = overall positive 

 

The abiotic control had only one Ames FT positive sample (Table 12). The peak of the 

phenanthrene peak remained stable throughout the experiment, suggesting that there was little to 

no photodegradation, although there may have been enough to cause a low level of 

mutagenicity.294 (Fig 20, Table 12) 



 90 

Table 12 Phenanthrene Ames FT Abiotic Control Data. The values for each day/dilution are the fold increase 

of the mean number of positive wells (n = 3 replicates) relative to the mean number of positive wells of the 

negative control (n=3 replicates) for that day. The Day 0 values are the same data as Table 11. The TA98 

strain showed a weak positive on day 6, but otherwise there were no positive results. *TA 100 Day 4 negative 

control was high at 24 mean positive wells. 

 

TA98  Day 0 Day 2 Day 4 Day 6 

1 1.5 0.5 0.25 1.94 

 1/4 1.5 1 0.75 1.19 

 1/16 1.25 1.5 2.50 1.31 

 neg neg neg weak  pos 

     

TA100  Day 0 Day 2 Day 4* Day 6 

1 1.07 2.05 1.17 0.70 

 1/4 1.22 1.62 0.83 0.90 

 1/16 0.78 1.48 0.68 0.97 

 neg neg neg neg 

     

Individual Dilution Result   Ames FT Result 

α < 0.05, fold increase > 1.5  = weak positive 

α < 0.1, fold increase >= 2.0  = weak positive 

α < 0.05, fold increase >= 2.0  = overall positive 

 

Mutagenicity was detected in both strains in the phenanthrene biodegradation culture on day 4, 

(positive for TA98 and weak positive for TA100) and a weak positive for TA98 was detected on 

day 2.  

4.3.4 Fluorene Degradation 

Fluorene was selected as a PAH that was expected to be less likely than phenanthrene to 

generate mutagenic TPs. The fluorene culture was prepared in exactly the same manner as the 

phenanthrene cultures with Bushnell Haas media and 0.5% Tween® 80. The fluorene likely did 
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not fully solubilize as a fine white precipitate was visible, so this culture was diluted with equal 

volumes of ACN for HPLC analysis to ensure that the HPLC measured the full concentration of 

fluorene and no suspended fluorene was removed in the filtering step. The culture was run for 8 

days and sampled every 2 days as with the phenanthrene culture. Turbidity indicating the growth 

of bacteria was observed in the degradation culture flask. A slightly green tint was observed in the 

abiotic control, indicating the presence of the photo-metabolites. (Fig 21) 

 

 

 
Figure 21 Fluorene degradation culture (left) and abiotic control (right) on day 4 of the degradation run. 

Turbidity can be seen in the degradation culture, and a faint green hue in the abiotic control. 

 

Both fluorene cultures appeared to photodegrade from fluorene to a photo-metabolite. 

(Appendix D) This photo-metabolite is most likely 9-hydroxyfluorene or 9-fluorenone, the most 

common photo-metabolite of fluorene.5,295 The Pseudomonas Putida degradation strain was less 

adapted to degrading fluorene than phenanthrene, and only reduced the peak to about 70% of the 

original peak height in 8 days. This reduction may have been due to photodegradation. However, 
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comparison with the abiotic control suggested that fluorene’s first photo-metabolite was degraded 

by the bacteria. (Fig 22) The photo-metabolite showed a downward trend over the degradation 

culture, whereas the photo-metabolite showed an upward trend in the abiotic control, 

demonstrating that the Pseudomonas Putida were at least degrading the photo-product, if not also 

degrading fluorene.296 

 

 

 
Figure 22 Fluorene degradation culture. Normalized HPLC peak height (absobance at 254 nm) (A) 

Phenanthrene biodegradation culture with Ames FT results. (B) Fluorene Abiotic Control. The error bars 

show one standard deviation in both panels (n=3). The subsequent days were normalized to the day 0 mean 

peak height. Ames FT results are shown in the shaded boxes. No positive Ames FT results were found in the 

abiotic control. (see attached file PAH_culture_data.xlsx ) 

 

Mutagenicity was observed at days 2 and 4 in the TA100 strain, but not in the TA98 strain. 

(Table 13) This may be indicative of base pair substitution mutations, rather than frameshift 

mutations, which are shown by TA98.203 
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Table 13 Fluorene Degradation Ames FT Data. The values for each day/dilution are the fold increase of the 

mean number of positive wells (n = 3 replicates) relative to the mean number of positive wells of the negative 

control (n=3 replicates) for that day. Highlighting indicates the level of significance and magnitude of fold 

change; fold changes may be greater than 2 and not be significant at least α < 0.1. *The TA98 degradation 

culture day 4 positive control was low at 7 mean positive wells. (C) The TA100 degradation culture day 0 

negative control was slightly high at 11 wells. (D) Normalized HPLC peak height (254 nm) for the abiotic 

control and its first photo product. (E) TA100 results for the abiotic control. *The TA100 degradation culture 

day 8 postitive control was low at 17 mean positive wells. *The TA100 abiotic control day 4 negative control, 

may have died due to old media. (see attached file Chap4_PAH_culture_data.xlsx ) 

 

TA98 Data Day 0 Day 2 Day 4* Day 6 Day 8 

1 0.57 0.67 0.00 0.5 0.00 

1/2 0.00 1.33 0.33 0.25 0.33 

1/4 0.71 0.33 0.33 0.25 0.00 

1/8 0.00 1.00 1.67 1.25 0.67 

1/16 1.14 0.00 0.00 0.25 1.00 

1/32 0.71 1.67 0.67 0.5 1.33 

 neg neg neg neg neg 

      

TA100 Data Day 0* Day 2 Day 4 Day 6 Day 8* 

1 0.88 1.32 2.31 1.41 1.13 

1/2 1.03 1.54 1.81 0.94 0.93 

1/4 0.61 1.00 2.00 1.00 0.73 

1/8 0.76 1.29 1.19 1.12 1.20 

1/16 0.76 1.18 1.63 1.00 1.00 

1/32 1.09 0.79 1.75 1.29 0.93 

 neg weak pos pos neg neg 

      

Individual Dilution Result   Ames FT Result 

α < 0.05, fold increase > 1.5  = weak positive 

α < 0.1, fold increase >= 2.0  = weak positive 

α < 0.05, fold increase >= 2.0  = overall positive 
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Mutagenicity was not observed in the abiotic control, indicating that although fluorene was 

photo-transformed due to the ambient sunlight, the photo transformation products were not 

mutagenic.295 

 

Table 14 Fluorene Ames Ft Abiotic Control Data. The values for each day/dilution are the fold increase of the 

mean number of positive wells (n = 3 replicates) relative to the mean number of positive wells of the negative 

control (n=3 replicates) for that day. The Day 0 values are the same data as Table 13. No Ames FT results of 

either strain met the criteria for positivity. *The TA100 abiotic control day 4 negative control, may have died 

due to old media. (see attached file Chap4_PAH_culture_data.xlsx) 

 

TA98 Data Day 0 Day 2 Day 4 Day 6 Day 8 

1 0.57 1.00 0.00 0.33 1.00 

 1/4 0.71 0.40 0.25 0.83 1.33 

 1/16 1.14 0.60 0.25 0.33 1.33 

 neg neg neg neg neg 

      

TA100 Data Day 0 Day 2 Day 4* Day 6 Day 8 

1 0.88 1.27 1.80 1.24 1.24 

 1/4 0.61 0.92 1.20 1.44 1.44 

 1/16 0.76 1.04 2.40 1.00 1.00 

 neg neg neg neg neg 

      

Individual Dilution Result   Ames FT Result 

α < 0.05, fold increase > 1.5  = weak positive 

α < 0.1, fold increase >= 2.0  = weak positive 

α < 0.05, fold increase >= 2.0  = overall positive 

 

Mutagenicity was only detected in the TA100 strain in the fluorene degradation culture. 

As with the phenanthrene culture, mutagenicity was not detected (in either strain) at the beginning 

or end of the culture.  
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4.3.5 Limitations 

There were several limiting factors to this experiment. Because the biodegradation culture 

is always actively degrading and a reliable method for preserving culture aliquots had not been 

established, there was no opportunity to repeat Ames FT runs if the positive or negative controls 

were outside of tolerances. Due to this limitation, all data was retained, but noted as not meeting 

the validity criteria (see section 4.2.3.3). 

Additionally, because no two biodegradation cultures can ever be perfect replicates of each 

other, even if the preparation methods and time points were standardized, even standard time 

points are not perfectly identical. Supply and scheduling issues were encountered due to operating 

during the COVID-19 pandemic and adjustments had to be made which limited the number of 

pilot experiments that could be conducted to fine tune parameters. Due to the unknown nature of 

the exact chemical makeup of the samples from the degradation cultures and concerns about 

stability if the samples were stored, samples were always analyzed immediately rather than 

preserved for future analysis, which prevented any re-analyzing of samples.  

4.4 Conclusions 

This experiment required the use of three independent bacterial cultures; one to degrade 

the PAH (P. Putida), and two to monitor the potential occurrence of mutagenicity (TA98 and 

TA100). As anticipated, this created a high degree of variability and complexity. To guide the 

experiment, the networks model was used to predict the TPs most likely to be generated by a 

degradation culture and the QSAR was used to classify them as likely mutagens or likely non-
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mutagens. These models provide only a rough estimate of the relative likelihood of mutagenicity 

based on all possible TPs that may be generated by a given PAH. By using a single degrading 

bacterium strain only some of the potential degradation pathways will be active. Furthermore, even 

if the degradation pathway is known or can be estimated, the kinetics are impossible to predict. 

Some steps may proceed much faster than others and the bacteria may be unable to degrade the 

TPs after a certain point. Despite these limitations, the phenanthrene culture samples (Tables 11 

and 12) showed positive for mutagens with the Ames FT in both strains, whereas the fluorene 

culture (Tables 13 and 14) only showed positive for mutagens in the TA100 strain, and all cultures 

had mutagenicity occur in the middle of the degradation time, but not at the beginning or the end, 

which fits with our hypothesis that phenanthrene would generate more mutagens than fluorene and 

that they would occur part way through the degradation chain. The prediction of the likelihood of 

detecting mutagenic TPs from the combination of the networks model, based on a pathway 

predictor, and the QSAR, based on empirical training data, may prove a valuable tool for future 

experiments evaluating the toxic impact of dynamic and partially unknown degradation chains. In 

the case of phenanthrene available literature suggests that some of the biodegradation TPs might 

be mutagenic and this is also supported by the work herein. Fluorene may form TPs that are 

mutagenic to the TA100 strain that are not currently identified in the literature. As the field of 

bioremediation for PAHs and even other compounds based on carbon backbones continues to 

improve and more degraders are identified, this same approach could be applied to identify the 

portions of highest concern for mutagenicity in the degradation network. QSARs for other toxicity 

endpoints could also be applied to expand the hazard analysis. Based on the estimate of where in 

the network the most hazardous compounds would be expected, appropriate hazard monitoring 

and mitigation measures could be applied.  
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5.0 Conclusions and Future Work 

Risk is a function of the likelihood of a negative event occurring and the severity of the 

event should it occur. In the real world under time and resource constraints, the risk assessor aims 

to identify the highest severity and highest likelihood negative outcomes to then design and enact 

appropriate mitigation measures against these possibilities. This work developed tools to predict 

each component of risk for PAH biodegradation TP mutagenicity and evaluated them in a benchtop 

experiment.  

5.1 Summary and Conclusions 

The hazard assessment of PAH environmental degradation products is a complex and 

widespread problem. Biological degradation is the most effective mechanism of mineralization 

and ultimate removal of these contaminants from the environment.59,297 However, bacteria degrade 

contaminants in stages, creating a vast array of potential TPs,175 which have their own unique 

toxicological properties.37,95 In general, PAHs are transformed in surface soil and water through 

ring-opening reactions, functionalization with various oxygen groups, and cleavage of carbon 

chains. These degradation processes result in TPs with lower narcotic toxicity, which can be 

estimated based on Kow.75–77,298 Although the polar oxygen groups lower the Kow value, they also 

provide opportunities for DNA adduction, creating the potential for mutagenicity.20,85,94,221 

However, not all TPs are mutagenic and some that are mutagenic may emerge and diminish over 

the course of the degradation chain. This results in a constantly changing hazard profile of a 
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multitude of TPs. The variability in the nature of the toxicity of the various TPs causes changing 

impacts on the environment and makes it difficult to develop an accurate hazard profile of the 

partially degraded contamination.  

Tools have been developed to address the challenge of predicting environmental 

transformations. However, comprehensive evaluation generates an intractable number of possible 

TPs.144,175 The networks model developed in this work provides a tool for refining the thousands 

of predicted potential intermediates from a given PAH to a manageable dataset with the goal of 

narrowing the compounds to focus experimental or computational efforts. While the network 

model does not explicitly provide information on kinetics, it does provide the order in which the 

TPs would be anticipated to occur along each individual pathway. The ability to predict the most 

likely TPs to result from biodegradation provides a first step towards understanding their potential 

toxic impact. Once the likely structures are known, they can be evaluated through targeted 

empirical or computational approaches for their potential toxic impacts.  

As PAH’s degrade into TPs, their narcotic toxicity tends to decrease, but their mutagenic 

potential increases.89,133 Several mutagenicity classifiers exist;190,191 however, they are designed to 

reflect both direct-acting mutagenicity and mutagenicity that only occurs after metabolic 

transformation in higher organisms, which are not reflective of the mutagenicity that can occur 

due to environmental microbial biodegradation. Additionally, many existing tools are designed to 

reflect a broad range of compounds and are not sensitive to the subtle variations between different 

PAH TPs. For example, structural-alert based mutagenicity classifiers are often not designed for 

PAHs and may contain only a few relevant groups such as the epoxide group to alert for 

mutagenicity.299,300 This gap in the available tools motivated the development of the mutagenicity 

QSAR. The QSAR’s performance was further improved by sub-dividing the dataset based on 
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unsupervised clustering using features of the molecular structure, which suggested a dominant 

mechanism within each cluster. 

The QSAR developed in Chapter 3 provides an example of a useful approach for a specific 

hazard assessment application (environmental PAH TPs). The performance improvement of this 

QSAR, designed for non-enzymatically activated mutagenicity (direct-acting mutagenicity), over 

QSARs predicting both enzymatically activated and direct-acting mutagenicity when evaluating 

just for the latter shows that there is a difference in the structural characteristics of direct-acting 

mutagens and enzymatically activated mutagens. This highlights the importance of studying 

direct-acting mutagens, and additional QSARs covering broader applicability domains are needed 

for other environmentally relevant, potentially mutagenic compounds. Future Ames test databases 

should take care to separate mutagenicity induced by S9 activation from direct-acting 

mutagenicity. This will enable better computational tools for all types of environmental 

transformations that can result in mutagenic TPs, including atmospheric compounds. Advanced 

machine learning tools based on these datasets may consider providing an option for the user to 

specify if the tool should predict mutagenicity with or without S9 activation, rather than combining 

the two into one result. 

The networks model and the QSAR were designed to provide insight into the potential 

occurrence of mutagenicity in PAH environmental degradation. Degrading a PAH in a controlled 

manner and measuring for mutagenicity enabled evaluation of their potential utility. The batch 

degradation culture experiment provides initial insight into evaluating mutagenicity over time in 

an actively degrading culture, using the predictions from the computational tools to target the 

sampling time points. The mutagenicity of PAH degradation has garnered interest in the 
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environmental toxicity field over the last few years20,89,93–95 and improved methods of evaluating 

mutagenicity in PAH degradation will continue to be needed. 

5.2 Future work 

PAHs are major current and historical environmental contaminants. Substantial work 

remains to more fully comprehend their transformations in the environment, appropriately evaluate 

their hazards, including mutagenicity that can result from PAH biodegradation. Ultimately, the 

collective findings are intended to inform appropriate mitigation approaches to control the array 

of potential hazards. This research has contributed several tools towards this goal. Furthermore, 

the overall approach is transferable to the environmental transformation networks of numerous 

other environmental containments for which (1) the degradation pathways are known or can be 

predicted with a tool such as EAWAG-PPS, and (2) an appropriate QSAR for the toxic mechanism 

of interest exists or can be developed from available empirical data. 

One valuable expansion of this work would be to evaluate the mutagenic potential from 

the biodegradation of larger 4-6 ring PAHs. The pilot experiments herein included attempting to 

degrade pyrene, fluoranthene, and chrysene with the Pseudomonas Putida degradation strain. 

However, the degradation ability for this bacterial strain appears to be limited to 3-ring PAHs and 

smaller. In general, larger PAHs are more resistant to photo and biological degradation,301–303 and 

these PAHs are also an important component of PAH environmental contamination. For example, 

the PAH of primary carcinogenic concern to humans, benzo[a]pyrene,304 contains 5 rings, and one 

third of mutagenic compounds from the training data for the QSAR developed in Chapter 3 contain 

4 or 5 rings. Experiments to degrade the larger PAHs would likely be difficult and might take 
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months to complete rather than 1-2 weeks as with flask cultures degrading the smaller PAHs. The 

degradation networks are also proportionally larger, but still well within the capabilities of the 

computational tools developed in Chapters 2 and 3.  

Another expansion of this work would be to analyze PAHs beyond the 16 PAHs on the 

EPA’s Priority Pollutant list, as there may be PAHs which degrade into mutagenic TPs that have 

not been identified yet. The 16 priority PAHs are representative structures, but are by no means an 

exhaustive list.170 The networks model and the QSAR provide powerful tools for estimating the 

potential hazards of any compound that can be predicted by EAWAG-PPS. There are numerous 

potential PAH structures beyond those 16 priority PAHs, and a theoretical study based on the 

computational tools developed in this work could provide an expanded dataset of PAHs likely to 

degrade into mutagens, even if no empirical data exist yet for these other PAHs.  

Estimates of the active pathways in a particular experiment could be potentially improved 

as more TPs are identified. If TPs were found that were unique to a particular section of a network, 

these could be used as “checkpoints” and threshold quantities relative to the original PAH 

concentration could be identified along a degradation chain. Checkpoints would be unique 

identifiable compounds which would indicate that the degradation had taken a certain pathway 

(such as the pathways indicated by the blue arrows in Figures 18 and 19). This would allow rough 

estimates of which pathways are active and how quickly the culture proceeds to each checkpoint, 

even if the steps between them cannot always be known. 

An additional improvement would be to use the pour-plate Ames Test. This test is more 

difficult and resource intensive (cost and time) to conduct than the FT method. While the pour-

plate design is not necessarily more sensitive, it would be easier to evaluate whether a result that 

was close to the threshold for a positive mutagenic response was due to the sample being only 
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weakly mutagenic or to a low response of the indicator strain itself. The pour-plate method 

provides a numerical result rather than simply a positive or negative result as the with the FT test, 

which would be beneficial in trying to detect more subtle increases in mutagenicity. It is also easier 

to evaluate cytotoxicity in the pour-plate design, which would make it possible to work at higher 

sample concentrations as it would be possible to determine if a negative reading was the result of 

cytotoxicity rather than non-mutagenicity.  

Samples were always analyzed immediately in this work due to the concerns of auto-

oxidation and interaction with other TPs. It would be beneficial in future work to develop a suitable 

method of preserving samples such that they could be analyzed at the completion of the 

degradation experiment, rather than in real-time. This would allow a higher number of samples to 

be analyzed than are feasible analyzing purely in real-time, as was done under the current design. 

The Ames Test requires 3 days before results can be read, so results are not available in real time 

under any design, and performing the analysis using preserved samples would allow repeating the 

Ames Test for samples that resulted in inconclusive results due to either the positive or negative 

controls being outside of tolerances. The Ames FT could also be used as a screening assay and the 

pour-plate version could be used as a follow up for confirmation. The first samples to be analyzed 

could still be targeted based on the networks model and the QSAR, however more samples could 

also be collected than would initially be analyzed. Samples before or after one of the initial samples 

that resulted in a positive on the Ames FT could also be analyzed to determine if nearby time 

points were also mutagenic. This would allow a more detailed analysis on the portion of the 

degradation timeline believed to contain the mutagens with the benefit of hindsight from the initial 

round of analysis, rather than only trying to predict the point in the degradation timeline where the 

mutagens would occur. Preserving samples would likely also improve the repeatability of 
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biological replicates. Biodegradation cultures do not have consistent kinetics, so it is difficult to 

sample the same time point in biological replicates based off of pre-selected time points. A 

preservation method would need to preserve the exact structure of the TPs, avoiding auto-oxidation 

that could change the structure, ensuring that the culture would retain the same degree of 

mutagenicity (see Chapter 4). The success of a preservation method would be difficult to evaluate 

as the Ames Test contains some intrinsic variation in its repeatability, so many replicates would 

likely be needed.305 

With numerous possible sources and substantial historical contamination, PAH 

environmental contamination will be an ongoing problem for many years to come. The potential 

hazards of TPs are a key component of PAH impacts on the environment. The combination of 

computational predictive power and experimental verification undertaken in this work will enable 

better understanding of the ecological hazards of contaminated environments, the impacts of 

natural and guided biodegradation, and better overall environmental stewardship.  
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Appendix A Summary of Attached Files 

The following files accompany this dissertation as attachments, as noted, some are reproduced in 

accordance with the permissions granted in the American Chemical Society’s Journal Publishing 

Agreement 

Appendix A.1.1 Supporting Information for Chapter 2 

Reproduced with permission from Environmental Science and Technology, Sleight, T.; Khanna, 

V.; Gilbertson, L.; Ng, C. Network Analysis for Identifying High Impact Biodegradation 

Metabolites: A PAH Case Study. Environ. Sci. Technol. Rev. 2020. Copyright 2021, American 

Chemical Society 

 

- Chap2_networks_analysis_pathmatches.xlsx: SMILES codes of the Pathway Matches 

- Chap2_networks_analysis_SI.docx: Networks Analysis Supporting Information; Additional 

details and similar plots for PAHs not shown in the primary text, full empirical literature review 

for each PAH including all references, images of structures, and SMILES codes, and summary of 

the python scripts and the process for data analysis and the sensitivity analysis 
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Appendix A.1.2 Supporting Information for Chapter 3 

-Chap3_classification_model_SI.docx: Detailed plots of clustering (S1.1-S1.6) Expanded plots 

of descriptor selection, correlation plots, confusion matrices and variance inflation factor iterative 

removal (S2.1-S2.15) Swarm plots of differences between clusters (S3) PaDEL descriptor details, 

weightings and equations (S4-S5) Representative structures for each cluster (S6)  

- Chap3_assigned_priority.xlsx: Assigned Priority for Closely Correlated Descriptors 

Appendix A.1.3 Supporting Information for Chapter 4 

- Chap4_PAH_culture_data.xlsx Raw data for Ames Tests and HPLC measurements 



 106 

Appendix B Detailed Biodegradation Culture Protocol 

Appendix B.1.1 PAH Degradation Strain 

Pseudomonas Putida (Trevisan) ATCC 17484, a known naphthalene, anthracene, and 

phenanthrene degrader, was purchased from ATCC. The bacteria were rehydrated according to the 

suppliers in instructions and freezer stock was prepared with 25% glycerol. The stock was 

maintained at -80 ºC, and never thawed except to scrape ice off the surface as described below.  

Appendix B.1.2 Freezer Extraction Procedure 

When a new culture of Pseudomonas Putida was needed, a tube of frozen cell strain was 

quickly removed from the freezer and held in a freezer container filled with frozen ethanol to 

prevent the tube from thawing. A small amount of frozen culture was scrapped off of the top with 

a sterile pipette and then swirled in a 250 mL shaker flask of BD Difco 234000 media, inside a 

sterile hood. The freezer container was then immediately returned to the -80 ºC freezer. The full 

extraction took approximately 30 seconds. The shaker flask was then placed on the shaking 

incubator at 28 ºC and approximately 120 rpm.  

Appendix B.1.3 High Performance Liquid Chromatography Procedure 

HPLC details: The reverse phase HPLC used a 20-minute custom method with a mixture 

of acetonitrile (ACN) and DI water. The method started with a 3-minute hydrophilic hold at 90% 
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water/10% ACN to flush out the salts from the BH media. Next a 10-minute gradient slowly 

transitioned to 20% water/80% ACN. Some TPs would typically elute during this gradient. Once 

at 20% water/80% ACN, this was held for 4 minutes The PAHs would elute during this time. The 

final step was a gradient back to 90% water/10% ACN to prepare for the next run and clean out 

any residual TPs.  

Blanks were run at the beginning of a set of analyses and a conditioning sequence was run 

at the end in order to maintain the health of the column.  

Ames FT supplies were purchased from Molecular Toxicology™, Inc.  

 

 

 

Appendix Figure 1 HPLC Sample Phenanthrene Chromatogram. The peak at 15.564 minutes is 

phenanthrene and the peak at 4.897 is a transformation product, most likely either 2-hdyroxy-1-naphthoic 

acid or 1-hydrox-2- naphthoic acid. 
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Appendix B.1.4 Pseudomonas Putida Enrichment Culture 

In order to be able to inoculate the PAH degradation cultures at an appropriate initial cell 

concentration, the Pseudomonas Putida (P. Putida) was precultured in BD Difco Media.  

 

 

 

Appendix Figure 2 OD600 calibration curve 

Appendix B.1.5 Ames Test Procedure.  

A 16-channel pipette is preferred for pipetting into a 384 well plate. However, the largest multi-

channel pipette available in the University of Pittsburgh Civil and Environmental Engineering 

laboratory at the time of this experiment was a 12-channel pipette. Alternate-well pipette was used 
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in order to overcome this limitation. In order to minimize the potential for errors, a different well 

mapping was adopted from the mapping suggested by the Ames Test supplier. All other procedures 

were as described in the Mol-Tox™ manual Ames FT™ Mutagenicity Test Kit Instruction Manual 

31-300. S9 activation was not used. Pipette tips and reservoirs were re-used on the same replicate, 

starting with the most dilute (1/32) and proceeding to the least dilute (1), so that any carry-over 

would only result in a very small amount of media from a lower dilution being mixed with a higher 

dilution. A fresh reservoir and pipette were used for the negative control and tips and reservoir 

were also re-used from the negative control to the positive control; any carry over would have 

resulted in a negligible dilution of the positive control.  

 

 

 

Appendix Figure 3 Ames Test 24-Well Plate Mapping 
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Appendix Figure 4 Ames Test 384 Well Plate Mapping 

Appendix B.1.6 Safety 

All procedures were conducted in accordance with the University of Pittsburgh’s Chemical 

Hygiene safety protocols. Aseptic procedure was maintained throughout. Biosafety hoods were 

sterilized with 20 minutes of UV and 70% ethanol. A Biosafety Level 2 room and dedicated 

equipment was used for the Salmonella strains of the Ames Test.  
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Appendix B.1.7 Supply List 

Appendix Table 1 Appendix Media Products and Suppliers 

 

Product Supplier 

Becton, Dickinson and Company (BD) 

Difco™ 234000 Media 

Fisher Scientific 

Bushnell-Haas Media Fisher Scientific 

Tween 80 Fisher Scientific 

Phenanthrene and Fluorene Sigma-Aldrich 

Acetonitrile Fisher Scientific 
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Appendix C Phenanthrene Pilot Work 

Appendix C.1 Phenanthrene Degradation Pilot Experiments 

Several pilot experiments were conducted with phenanthrene to establish the protocol for 

biodegradation and conducting Ames FTs on an actively degrading culture. One of the early 

studies was to compare OD600 readings to the HPLC data. Three identical cultures were started 

simultaneously as biological replicates. The media and inoculation procedures were as described 

in 4.2.2, except that the PAH culture flasks were not placed on the shaker ahead of inoculation. 

This experiment was part of what determined the need to place the flasks on the incubator ahead 

of inoculation to fully dissolve the PAH. An existing supply of phenanthrene manufactured by 

Kodak from the Civil and Environmental Engineering Chemical Stock room was used for these 

early experiments.  
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Appendix Figure 5 OD600 readings and phenanthrene peak height. 3 biological replicates were used. The error 

bars represent 1 standard deviation. The HPLC values are normalized to the 9 hr time point. A small 

increase in the phenanthrene peak height was seen at 9 hrs relative to the media baseline, (data not shown) 

most likely due to phenanthrene solubilizing due to the shaking motion of the incubator.  

 

 The OD600 of a freshly inoculated phenanthrene culture climbs for 1-2 days and the 

phenanthrene does not begin to degrade significantly until the OD600 reaches the stationary phase 

and the Pseudomonas Putida begin to degrade the phenanthrene. (Appendix Figure 5)  
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Appendix C.2 Phenanthrene Mutagenicity Pilot Experiment 

 

 

Appendix Figure 6 Normalized HPLC peak height (254 UV) for phenanthrene in the degradation culture. The 

error bars show one standard deviation.  

 

In the TA100 strain, weak positive responses were observed at 36 hrs and 60 hrs. In the 

TA98 strain, a positive response was observed at the 60-hour time point. (Appendix Table 2) Some 

fluctuation is observed in the HPLC data due to the uncertainty in sampling a live culture. It is 

possible that the sample for the HPLC 36-hr time point was allowed to sit for too long off of the 

shaking incubator, resulting in an artificially low HPLC reading. Replicates for the HPLC data 

were only collected at the 60 hr time point. Based on the occurrence positive Ames Test are 36 

and 60 hrs in this pilot study, the 2-day interval was selected for further experiments.  
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Appendix Table 2 TA98 and TA100 results from the phenanthrene degradataion pilot study. *The TA100 

Day 0 had a high negative control baseline of a mean of 28 positive wells which would have made it difficult to 

detect a mutagenic response. 

 

TA98 Data 0 36 hrs 60 hrs 1 week  
1 1.75 0.90 5.00 1.29  

1/2 1.25 0.40 2.33 0.53  
1/4 1.25 0.60 1.17 0.59  
1/8 1.50 0.50 1.00 0.35  

1/16 1.13 0.50 0.67 1.24  
1/32 0.75 1.00 1.17 0.59  

 neg neg pos neg  

      

TA100 Data 0* 36 hrs 60 hrs 1 week  
1 0.72 2.65 1.83 1.17  

1/2 0.58 1.95 1.70 0.98  
1/4 0.55 1.5 1.78 0.94  
1/8 0.36 1.1 1.30 1.06  

1/16 0.52 1.75 1.30 0.87  
1/32 0.42 1.55 1.04 0.66  

 neg 
weak 
pos 

weak 
pos neg  

      

Individual Dilution Result   Ames FT Result 

α < 0.05, fold increase > 1.5  = weak positive 

α < 0.1, fold increase >= 2.0  = weak positive 

α < 0.05, fold increase >= 2.0  = overall positive 
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Appendix C.3 OD600 Plot of phenanthrene and fluorene experiment 

 

 

Appendix Figure 7 OD600 timelines of phenanthrene and fluorene degradation cultures.  

 

The OD600 timelines of the Phenanthrene and Fluorene Cultures presented in section 4.3 follow a 

similar pattern to the pilot studies, reaching the terminal OD600 at about 2 days. Thus the 2 and 4 

day time points should be in the early and mid parts of the PAH degradation curve, respectively.  
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Appendix D Selected HPLC Data 

Appendix D.1 Fluorene 

 

 

Appendix Figure 8 Fluorene Baseline. The peak at 2.897 is a media artifact. The highest peak at 15.467 is the 

fluorene peak. The peak at 13.739 was tenatively identified as 9-hydroxy fluroene. 
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Appendix Figure 9 Fluorene abiotic control after 6 days. The 13.593 peak is now the highest peak on the 

chromatogram, and the phenanthrene peak at 15.664 is significantly reduced. 
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