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Abstract 

Bone Age Assessment with Less Human Intervention 

 

Yi-Hsuan Lien, MS 

 

University of Pittsburgh, 2021 

 

 

 

 

Biomedical imaging allows doctors to examine the condition of a patient’s organs or tissues 

without a surgical procedure. Various modalities of imaging techniques have been developed, such 

as X-radiation (X-ray), Magnetic Resonance Imaging (MRI), and Computed Tomography (CT). 

For example, the Bone Age Assessment (BAA) evaluates the maturity in infants, children, and 

adolescents using their hand radiographs. It plays an essential role in diagnosing a patient with 

growth disorders or endocrine disorders, such that needed treatments could be provided. 

Computer-aided diagnosis (CAD) systems have been introduced to extract features from regions 

of interest in this field automatically. Recently, several deep learning methods are proposed to 

perform automated bone age assessment by learning visual features. This study proposes a BAA 

model, including image preprocessing procedures and transfer learning with a limited number of 

annotated samples. The goal is to examine the efficiency of data augmentations by using a publicly 

available X-ray data set. The model achieves a comparable MAE of 5.8 months, RMSE of 7.3 

months, and accuracy (within 1 year) of more than 90% on the data set. We also study whether 

generating samples by a Generative Adversarial Network could be a valuable technique for 

training the model and prevent it from overfitting when the samples are insufficient.  
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1.0 Introduction 

Biomedical imaging plays a critical role not only in the healthcare process but also in 

communication, education, and research, and it can show the structure of the body in great detail. 

For example, the function of the tissues within the body can help doctors examine the condition of 

a patient’s organs or tissues without a surgical procedure. There are various types or modalities of 

imaging techniques, such as X-radiation (X-ray), Magnetic Resonance Imaging (MRI), and 

Computed Tomography (CT). 

Bone Age Assessment (BAA) evaluates the maturity in infants, children, and adolescents 

using their hand radiographs. It plays an essential role in diagnosing an individual with growth 

disorders or endocrine disorders, such that needed treatments might be provided [1]. Computer-

aided diagnosis (CAD) systems have been introduced to automatically extract features from 

regions of interest in radiographs, which are generally based on either the Greulich-Pyle atlas 

method or Tanner-Whitehouse (TW) scoring method [2]–[6]. 

Recently, artificial neural networks have gained an incredible amount of attention because 

of their success in image classification [7]. Several deep learning methods are used to perform 

automated bone age assessment by learning visual features. For example, a model based on a 

convolutional neural network is developed to segment regions of interest, standardize images, and 

conduct classification tasks with a pre-trained network [8]. A model called BoNet+ adopts a 

regression method based on densely connected convolutional networks to address poor-quality 

images and discovers that mean absolute error is a better loss function in the BAA problem than 

mean square error [9]. The ensemble of the regression and classification models suggests the 

performance can be improved [10], [11]. An existing model employs a generative adversarial 
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network to enhance image quality and fine-tunes a pre-trained network for transfer learning by 

gradually tuning from the top layer to the bottom layer to prevent the model trap in a local optimum 

[12].  

Utilizing gradient-based learning to the network to train a potentially complex learning 

model, specifically deep neural networks, is referred to as end-to-end learning [13]. The power of 

end-to-end learning has been demonstrated in computer vision and various domains, such as 

Natural Language Processing [14]. An end-to-end learning model learns all the paths between the 

input and the output, and parameters in the model are simultaneously trained. Features are 

automatically learned from the training data set. Prior domain-specific knowledge might not be 

required for solving a given task, but more training samples are needed [13]. Training a complex 

model with a limited number of data tends to result in overfitting and degradation in the 

performance. Acquiring a sufficient amount of training data set in biomedical imaging may be 

arduous due to the human annotation burden and medical ethics. Data augmentation is widely used 

to address the issue. 

The purpose of this thesis is to examine the performance of data augmentations by 

constructing a BAA system and using a publicly available data set for validation. Furthermore, we 

aim to study whether generating samples by GAN could be a valuable technique for providing 

more data to train the model. 
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2.0 Background 

2.1 Pediatric Bone Age 

X-ray imaging, a projection technique, is beneficial for producing images of organs, like 

bones, traversed by X-ray beam with lower energy than Gamma rays and higher power than visible 

light. X-rays, which is a type of electromagnetic radiation and are first discovered by Wilhelm 

Conrad Roentgen, awarded the 1901 Nobel Prize in Physics for this achievement, collide with 

electrons when they interact with an object. There are more collisions if a thing is dense or is made 

of higher atomic numbers elements. For example, bones are full of calcium, which has a relatively 

high atomic number; therefore, they absorb X-rays. On the other hand, soft tissues mostly have 

lower atomic numbers, like hydrogen, carbon, and oxygen. These interactions are recorded on the 

film and produce various degrees of brightness and darkness on the image. More X-rays penetrate 

tissues resulting in darker film. The differential contrast of hard and soft matter on the picture is 

the source of identifying anatomic structures [15]. The X-ray images are referred to as radiographs. 

Measuring the physical maturity of children by using events during puberty throughout 

adolescence, such as the breast development for girls, voice change for boys, and appearance of 

public hair, is not without deficiency. The event sequences are coarsely spaced, and the coverage 

of developmental age span is uneven. X-ray imaging enables experts to inspect skeletal 

development, indicating strong evidence to the degree of maturity and is suitable to assess 

maturity. It results from all the bones develop into constant shape along a pathway to physical 

maturity [16]. This inspection is known as the Bone Age Assessment. It is a kind of evaluation by 

examining the shreds of evidence from skeletal development of hand and wrist bones to deduce 
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the bone age of an individual. Skeletal age can be used to assess growth disorder and growth 

potential through the gap between the estimated age and the chronological age and is also a 

measurement of epiphyseal center development, a necessary procedure in diagnosing endocrine 

disorders, skeletal dysplasias, and maturation in various syndromes [1].  

There are two types of assessment systems universally adopted by pediatricians: Greulich-

Pyle (GP) atlas and Tanner-Whitehouse (TW) scoring method. GP method describes the sequences 

of changes of bones and epiphyses occurring during childhood, generally. It examines the distance 

between the fastest and slowest maturing centers of ossification in hand and wrist radiographs 

against a set of the atlas at a certain age [17]. This matching method has the advantages of 

simplicity and availability of evaluating multiple ossification centers; however, the method was 

developed based on middle-class white populations. Therefore, it is liable to be sensitive to the 

subjective nature of different observers [1]. TW method is a system by scoring twenty bones of a 

left hand, and each bone is provided with nine possible ratings of maturity. Among twenty bones, 

radius, ulna, and eleven short bones (RUS) are generally helpful. Weighted ratings enable this 

method to provide sensitive bone age and overcome racial differences during maturation [18]. Both 

assessment systems rely on physician background knowledge, and they are time-consuming [16]. 

In recent years, numerous computer-aided systems have been developed to address this issue [6], 

[8], [19], [20]. 

In 2017, the Radiological Society of North America (RSNA) conducted Pediatric Bone 

Age Machine Learning Challenge. It provided a data set of hand radiographs with corresponded 

bone age reviewed by multiple experts to rate the performance of computer algorithms in 

estimating the skeletal age. A total of 260 individuals or teams worldwide registered the challenge, 

the performance is assessed by the mean absolute difference (MAD) between the model’s 
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estimates and reviewers’ estimates, and the winning approach obtained the MAD of around 4.3 

months [21], [22]. 

2.2 Image Processing 

Most computer-aided systems for BAA perform background removal to eliminate the noise 

and an area outside the patient body [1], [5], [23]. This area contains no pertinent information and 

might adversely affect the image analysis system and degenerate the performance [16]. 

2.2.1 Thresholding 

Thresholding is a method of segmenting images and is widely used because of its 

effectiveness and simplicity. It replaces each pixel in a picture with specific values if the image 

intensity is greater or less than some fixed constant. Thresholding can be categorized into two 

general types: Global thresholding and local thresholding [24]. 

Global thresholding is based on the idea that an object in an image can be extracted from 

the background by comparing image values of pixels intensity with a threshold value if an image 

has a bimodal histogram [25]. In the case of binarization, it can be represented as: 

 
𝑔(𝑥, 𝑦) = {

1, 𝑓(𝑥, 𝑦) > 𝑇

0, 𝑓(𝑥, 𝑦) ≤ 𝑇
 (2-1) 

 

The 𝑓(𝑥, 𝑦) is denoted as pixel intensity in coordination (𝑥, 𝑦), and 𝑇 is a threshold value 

determining the intensity range of an object and the background. The result is a binary image, 

where the value of 1 corresponds to an object, and the value of 0 corresponds to the background. 
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An image is divided into sub-images in local thresholding, and a threshold value is selected 

based on local properties for each sub-image [25]. Sub-images and different threshold values allow 

local thresholding to resolve non-uniform illumination over the image [24]. However, the size of 

sub-images and threshold values are difficult to set since the size is chosen globally. Some regions 

might require a larger size of sub-images, while some might require a smaller size to optimize the 

thresholding [16]. 

Unlike local thresholding, local adaptive thresholding computes a threshold value for each 

pixel by sliding a window through an image. Sauvola’s method is one of the popular techniques. 

The threshold 𝑇(𝑥, 𝑦) is calculated by mean 𝑚(𝑥, 𝑦) and standard deviation 𝑠(𝑥, 𝑦) in a 𝑤 × 𝑤 

window centered around the pixel (𝑥, 𝑦). 𝑅 is the maximin value of the standard deviation, and 𝑘 

is a positive constant ranging from 0.2 to 0.5 to control the threshold value in the local window 

[24]. 

 
𝑇(𝑥, 𝑦) = 𝑚(𝑥, 𝑦) [1 + 𝑘 (

𝑠(𝑥, 𝑦)

𝑅
− 1)] (2-2) 

 

When the threshold is computed, an image where 𝑓(𝑥, 𝑦) ∈ [0,255] at location (𝑥, 𝑦) can 

be denoted as: 

 
𝑔(𝑥, 𝑦) = {

255, 𝑓(𝑥, 𝑦) > 𝑇(𝑥, 𝑦)

0, 𝑓(𝑥, 𝑦) ≤ 𝑇(𝑥, 𝑦)
 (2-3) 
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2.2.2 Histogram equalization 

Histogram equalization is a method for image enhancement by adjusting the intensity 

distribution of an image. It aims to map one distribution to another distribution that has generally 

more uniform intensity values. Let 𝑓 be an image ranging from 0 to 𝐿 − 1 with 0 representing 

black and L-1 representing white. 𝑃𝑛 is denoted as the normalized histogram of 𝑓 with a bin for 

every possible intensity 𝑛, where 𝑛 = 0,1, … , 𝐿 − 1, and is recognized as the probability density 

function of 𝑓. 

 
𝑃𝑛 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑤𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
 (2-4) 

 

The histogram equalized image 𝑠 has the form: 

 
𝑠 = 𝑇(𝑘) = 𝑓𝑙𝑜𝑜𝑟 ((𝐿 − 1) ∑ 𝑃𝑛

𝑘

𝑛=0
) (2-5) 

where 𝑘 is pixel intensities and output values are round down to the nearest integer. For simplicity, 

suppose 𝑇 is invertible and differentiable; therefore, 𝑠 defined by 𝑇(𝑛) is uniformly distributed on 

0 to 𝐿 − 1 [26]. 

Contrast Limited Adaptive Histogram Equalization (CLAHE), a variation of adaptive 

histogram equalization, is formed based on splitting an image into several non-overlapping areas 

with almost equal sizes. It limits the contrast amplification to reduce noise amplification and 

renormalizes the histogram after the clipping limit [27]. 
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2.3 Machine Learning 

2.3.1 Artificial Neural Networks 

Artificial Neural Networks (ANN) are inspired by the human brain’s operating mechanism, 

mainly composed of neurons and synapses. Neurons are processing units that operate parallelly; 

synapses are connections among neurons, and information is transferred over them. The network 

composed of artificial neurons and synaptic connections was proposed in the 1960s, and it is called 

the perceptron model. The perceptron model calculates a value for each neuron by summing up 

activation values from all the connected neurons and multiplied them by their synaptic weights. 

Also, these neurons can be grouped into layers where neurons in a layer take input from neurons 

in the previous layer, and their outputs are fed to neurons in the following layers. This kind of 

model is called multilayer perceptron [28]. The structure of a multilayer perceptron is shown in 

Figure 1, where 𝑥𝑗 , 𝑗 = 0,1, … , 𝑑 are the inputs, 𝑧ℎ, ℎ = 1,2, … , 𝐻 are the hidden units, 𝑧0 is the 

bias of the hidden layer, 𝐻 is the dimensionality of the hidden space, 𝑦𝑖 , 𝑖 = 1,2, … , 𝐾 are the 

output unit, 𝑤ℎ𝑗 are weights in the first layer, and 𝑣𝑖ℎ are weights in the second layer [29]. 
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Figure 1: The structure of a multilayer perceptron. Adapted from [29] 

 

The backpropagation algorithm or generalized delta rule is one of the most popular 

methods for training a multilayer perceptron. It gave rise to numerous applications in different 

domains and fields because operations of a multilayer network start from a raw input and gradually 

apply a more complex transformation until an abstract representation is obtained. For example, we 

feed handwritten digits as input to the network. The neurons in the hidden layer combine image 

pixels to find basic descriptors, and the following layer combines these to observe more 

complicated shapes, like rectangles and circles. Layers successively process these features to form 

the representations of handwritten characters [28]. 

A convolutional neural network (CNN) is a variation of a multilayered network. The units 

between layers are not fully connected to the input units in the network but are connected to a 

small subset of the inputs. The units are defined as a window over the input space, and the operation 
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matches its input and weight for each unit. The idea is to combine the features in a more significant 

segment of the input space until a layer can look at the entire input, and the features will get fewer 

in terms of number and more abstract [28]. 

2.3.1.1 Convolutional Networks for Biomedical Image Segmentation 

U-Net is a popular network for image segmentation. The architecture of U-Net is 

symmetric and is mainly composed of two parts: encoder and decoder (Figure 2), and encoder and 

the decoder follow the general structure of a CNN. In the encoder, a contracting path, the number 

of feature channels is doubled at each downsampling step. The decoder, an expansive approach, 

consists of an upsampling part that halves the number of feature channels. The corresponding 

feature map from the contracting path is concatenated with the output of an upsampling function. 

This connection enables the network to pass context information to a successive layer of the 

decoder. Furthermore, there are no fully connected layers in the network, and this strategy allows 

seamlessly segmenting any large images by the overlap-tile method [30]. 
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Figure 2: The architecture of U-Net. Adapted from [30] 

 

2.3.1.2 Densely Connected Convolutional Networks  

DenseNet is a type of CNN where layers in dense blocks directly are connected in a feed-

forward fashion (as shown in Figure 3). A traditional 𝐿 − 𝑙ayer CNN has 𝐿 connections, while 

DenseNet has 
𝐿(𝐿+1)

2
 connections to improve the information flow and address the problem 

resulting from the vanishing gradient in deep neural networks. The densely connected method 

requires fewer parameters than conventional CNN by concatenating the preceding layer and the 

successive layer instead of adding them in terms of element-wise. The parameter efficiency also 

leads prevention of overfitting, especially on smaller training sets [31]. 
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Figure 3: DenseNet Structure. Adapted from [31] 

 

2.3.2 Generative Adversarial Network 

Generative Adversarial Network (GAN) mainly comprises two models: a generative model 

𝐺 and a discriminative model 𝐷. It was proposed for generative modeling (i.e., a model that can 

generate augmented data). The model 𝐺 aims to learn the distribution over data and produces fake 

data. The model 𝐷 evaluates the probability of the input is actual data from the training set or 

counterfeit data from the 𝐺. These models are put against one another in a zero-sum game where 

the advantage won by one of the models is lost by the other [32]. 
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• The conditional generative adversarial network (cGAN): a type of GAN which is capable of 

learning a multi-modal model by adding the dependent labels as input to both 𝐺 and 𝐷. It. 

allows 𝐺 to generate images of a given type based on a class label [33]. 

• The Auxiliary Classifier GAN (ACGAN): an extension of the conditional generative 

adversarial network by modifying 𝐷 and adding a specialized loss function to predict the class 

label of input. 𝐷 is trained without a class label as one of the inputs. It appears to stabilize the 

training process and enable the production of large-high-quality images [34]. 

• The Style-based GAN architecture (StyleGAN): one of the state-of-the-art networks in data-

driven unconditional generative modeling for image synthesis. StyleGAN2 is an improved 

version of StyleGAN. The normalization used in the generator is redesigned, and a 

demodulation process, which is applied to the weights corresponded to each convolution layer, 

replaces the instance normalization. Moreover, the training method is modified by starting 

from low-resolution images then gradually shifting to images with higher resolution. The 

network topology remains unchanged during training [35]. 

2.3.3 Training Generative Adversarial Networks 

Overfitting occurs when a model memorizes the training data and learns irrelevant 

information within samples, and the performance of unseen data degrades significantly. Training 

a model with less data is liable to overfitting. Data augmentation, which increases the diversity of 

examples, is one of the most popular solutions against overfitting. However, adding noisy data to 

a GAN while training not only deteriorates the model to learn the distribution over data but also 

interrupts the subtle balance between the generator and the discriminator. The adaptive 

discriminator augmentation method was proposed to address the issue. Data augmentation is 
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applied to all real images and generated images, and all these images are used to train either the 

generator or the discriminator. Standard differentiable primitives are used to differentiate the 

augmentations when training the generator. The discriminator outputs for the training set, 

validation set, and generated images are measured by the overfitting heuristics. The augmentation 

strength is adjusted based on the heuristics [36]. 

Another method called Differentiable Augmentation adopts a similar strategy, imposing 

data augmentations on both real and generated data for training the generator and discriminator. 

Still, the augmentation is differentiable such that the gradients of the augmented data are able to 

be propagated to the generator. Three types of transformations (i.e., Translation, Cutout, and 

Color) are chosen to demonstrate the performance. The overview of the method for update the 

generator and the discriminator is shown in Figure 4 [37]. 

 

 

Figure 4: Overview of Differentiable Augmentation. Adapted from [37] 
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2.4 Performance Metrics 

Accuracy (ACC): represents the proportion of correctly predicted samples among a total 

number of pieces. It is used as a measurement of how well a binary classifier recognizes a 

condition. The formula is as follows: 

 
𝐴𝐶𝐶 =

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (2-6) 

 

Fréchet Inception Distance (FID): is the measurement of comparing the statistics of 

generated images to real images. It is the squared Wasserstein metric between two multivariate 

normal distributions, and lower FID is better because it means the distance of real and generated 

images between their activation distributions is closer. The formula of FID is: 

 
FID = |μ𝑟 − μ𝑔|

2
+ 𝑡𝑟 (𝛴𝑟 + 𝛴𝑔 − 2√𝛴𝑟𝛴𝑔) (2-7) 

where 𝑋𝑟 denotes real images, 𝑋𝑟~𝒩(μ𝑟, 𝛴𝑟) , and 𝑋𝑔 denotes generated images, 𝑋𝑔~𝒩(μ𝑔, 𝛴𝑔) 

[38], [39]. 
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3.0 Methods 

3.1 Materials 

The data sets are obtained from the RSNA Pediatric Bone Age Machine Learning 

Challenge and are provided by Children’s Hospital Colorado and Lucile Packard Children’s 

Hospital at Stanford. It contains 12,611 images for training, 1,425 images for validation, and 200 

images for testing (Figure 5). For each image, the ground truth skeletal age ranges from 0+ to 19 

years and is based on the estimates from six reviewers, and the GP standard, and sex, are provided. 

Reviewers’ evaluation determines the ground truth estimates for the testing set. They are corrected 

by calculating the mean of the inverse of the mean absolute difference between their estimates and 

the average of all reviewers’ estimates [21]. The distribution of ages and genders among data sets 

is shown in Figure 6. 

 

 

Figure 5: Samples from the training set 
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Figure 6: The distribution of ages and genders, total (green bins), male (blue bins), and female(red bins). 

 

3.2 Data Preprocessing 

First, the U-Net segmentation network is used to conduct background removal. A 

significant number of labeled images tend to result in good segmentation results, but it involves 

the laborious effort of labeling. Therefore, we randomly select 500 images from the training set 

and manually annotate the hand for each image using LabelMe [40] (Figure 7). Also, the encoder 

of the U-net is replaced with the pre-trained RegNetX backbone trained on ImageNet to improve 
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training efficiency [41]. Then all the images in the data sets are segmented using masks generated 

from the trained U-Net model and have the most significant connected components in each mask. 

Histogram equalization and contrast limiting (the grid size is 7 by 7, and the threshold value 

for contrast limiting is 9.0) is applied on the segmented images to enhance contrast. During the 

equalization, bilinear interpolation is used to remove artifacts in the borders. 

After the equalization, the contours of the hand are retrieved from the binary image using 

the border following algorithm [42]. Then the bounding rectangle of the convex hull is constructed 

to compute an approximation of the center of the hand. The hand contour and convex hull are used 

to locate the fingertips. Next, the images are rotated by calculating the angle between the center of 

the hand, the farthest fingertips from the center of the hand, and the reference point (x=0, y=the y-

axis value of the center of the hand) for each image. The rotated images are cropped and padded 

with a constant value of 0, such that the magnification ratio of images is 1:1. A classification model 

requires the input with consistent resolution; thus, images are scaled to 256 by 256 using bilinear 

interpolation to alleviate the computational cost, and images are normalized by subtracting the 

value of zero and dividing by the value of one (Figure 8). 
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Figure 7: Examples of original images (top) and annotated images (bottom) 

 

 

Figure 8: Examples at each preprocessing stage. (a) The original images. (b) Masks generated by the U-Net 

model. (c) Applying Histogram equalization (d) Processed images 



 20 

3.3 Prediction network 

The structure of the bone age assessment network is based on DenseNet (the growth rate 

is 32, the number of layers is 12) and ACGAN [31], [34], and the overview is shown in Table 1. 

All the bottleneck blocks and transition blocks are equipped with batch normalization [43], 

followed by the rectification nonlinearity [7]. The inputs are a fixed-sized 256 by 256 image and 

a gender label. Labels are embedded (the size of the diction of embeddings is 1, and the size of 

each embedding vector is 1). They are concatenated with the output of the Average Pooling layer 

as the input to the first linear layer. Two outputs are generated in the network: one is used to 

determine the input image is real or fake, the other is the predicted classes. The total number of 

parameters in the model is around 17.6M. 

In the model, the loss function is composed of discrimination loss and classification loss.  

 ℒ𝐷 = ℒ𝑟𝑒𝑎𝑙
𝑑𝑖𝑠 + ℒ𝑟𝑒𝑎𝑙

𝑐𝑙𝑠  

= 𝐸[log P(𝒮 = 𝑟𝑒𝑎𝑙|𝑥)] + 𝐸[log P(𝒞 = 𝑐𝑙𝑎𝑠𝑠|𝑥)] 
(3-1) 

where 𝑥 are images with labels, 𝒮 is the discrimination output, and 𝒞 is the classification output. 

The discrimination loss is measured by the mean squared error between the discrimination output 

and the target (a value of 1 representing real). The classification loss is measured by Cross Entropy 

Loss which is a combination of Log SoftMax and negative log-likelihood loss, described as: 

 
𝑙𝑜𝑠𝑠(𝑥|𝑐𝑙𝑎𝑠𝑠) = −𝑥[𝑐𝑙𝑎𝑠𝑠] + log (∑ 𝑒𝑥𝑝(𝑥[𝑗])

𝑗
) (3-2) 

The input is the raw scores for each class, and the target is a class index in the range 

[0, 𝑁 − 1], where 𝑁 is the number of classes. 
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Table 1: Structure of the assessment network 

Layers Kernel Strides Padding Output size Activation 

Convolution 7 × 7 2 × 2 1 × 1 [batch, 64, 126, 126] - 

MaxPooling 3 × 3 2 × 2 0 [batch, 64, 62, 62] - 

Bottleneck Block (1) [
1 × 1
3 × 3

] [
1 × 1
1 × 1

] [
0

1 × 1
] [batch, 448, 62, 62] ReLU 

Transition Block (1) 1 × 1 1 × 1 0 [batch, 448, 31, 31] ReLU 

Bottleneck Block (2) [
1 × 1
3 × 3

] [
1 × 1
1 × 1

] [
0

1 × 1
] [batch, 832, 31, 31] ReLU 

Transition Block (2) 1 × 1 1 × 1 0 [batch, 832, 15, 15] ReLU 

Bottleneck Block (3) [
1 × 1
3 × 3

] [
1 × 1
1 × 1

] [
0

1 × 1
] [batch, 1216, 15, 15] ReLU 

Transition Block (3) 1 × 1 1 × 1 0 [batch, 1216, 7, 7] ReLU 

Bottleneck Block (4) [
1 × 1
3 × 3

] [
1 × 1
1 × 1

] [
0

1 × 1
] [batch, 1600, 7, 7] ReLU 

Transition Block (4) 1 × 1 1 × 1 0 [batch, 1600, 3, 3] ReLU 

Bottleneck Block (5) [
1 × 1
3 × 3

] [
1 × 1
1 × 1

] [
0

1 × 1
] [batch, 1984, 3, 3] ReLU 

Average Pooling 3 × 3 3 × 3 0 [batch, 1984, 1, 1] ReLU 

Linear (1) - - - [batch, 1] Tanh 

Linear (2-1) - - - [batch, 1000] LeakyReLU 

Linear (2-2) - - - [batch, 500] LeakyReLU 

Linear (2-3) - - - [batch, 229] - 
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3.4 Experiment Settings 

The network is trained using Adam optimizer with a learning rate of 0.0002, and the first 

and the second-moment estimates are 0.5 and 0.999, respectively [44]. The number of mini-batch 

sizes is 32, the number of CPU threads to use during batch generation is 8, the number of image 

channels is set to 1, and the number of classes is 229. All the training sets, validation sets, and 

testing sets are used. The experiment is implemented with the Pytorch framework on NVIDIA 

Tesla P100 GPU. 

Table 2 shows the parameters for transformations, including horizontal flipping, vertical 

flipping, rotation, cutout, and blurring. They are performed with the probability of applying: 0.25 

to improve the resiliency of the model.  

 

Table 2: Parameters for transformation 

Methods Parameters 

Horizontal flipping 0 / 1 (flip or not) 

Vertical flipping 0 / 1 (flip or not) 

Rotation angle: [-90°, 90°] 

Cutout number of regions: 8 pixels 

maximum height, width: 32 pixels 

Blurring maximum kernel size: 7 pixels 

 

To simulate the situation where training sets are not adequate, we split 10 percent of the 

preprocessed training images in a stratified fashion using bone ages rounded to year as the class 

labels (i.e., from age 0 to 19). Because the number of samples in the different age groups is not 
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even, the maximum number of examples of age is constrained to 50. A total of 917 images are 

selected out of 1,262 images (10% of training data) and are used to train the conditioned 

StyleGAN2 network with differentiable augmentation techniques, including color, translation, and 

cutout [37]. We used 50k samples for FID calculation. The model achieves an FID of 51.47 during 

the training for 160k images. Then the trained StyleGAN2 model is further used to be a generator 

to provide a continuously supported probability density function for training the assessment 

network (Figure 9).  

 

  Real sample Fake sample  

 

1 year 

  

 

 

5 years 

  

 

 

10 years 

  

 

 

15 years 

  

 

Figure 9: Generated images and real images 
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In this setting, the loss function in the assessment network is modified by adding 

discrimination loss of fake images and is denoted as: 

 ℒ𝐺𝐷 = ℒ𝑟𝑒𝑎𝑙
𝑑𝑖𝑠 + ℒ𝑟𝑒𝑎𝑙

𝑐𝑙𝑠 + ℒ𝑓𝑎𝑘𝑒
𝑑𝑖𝑠  (3-3) 
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4.0 Results 

Table 3 provides the performance of the proposed model along with two variant settings 

on the testing set. When training with 100% data set, the model with transformations achieves the 

best MAE of 5.8, RMSE of 7.3, and accuracy (within 1 year) of more than 90%. When training 

with only a 10% data set, the model Base outperforms its two variants and obtains MAE of 9.5, 

RMSE of 12.5, and accuracy (within 1 year) of 72%. Although the model, +GAN, does not 

outperform the baseline, its performance is better than the model, + Transform. 

 

Table 3: Performance of different settings 

Model MAE  

(months) 

RMSE  

(months) 

ACC 

(Within 1 year) 

ACC 

(Within 2 years) 

 Training data 

  (100%)  (10%)  (100%)  (10%)  (100%)  (10%)  (100%)  (10%) 

Base 

(baseline) 

7.425 9.48 9.459 12.5 82.5% 72% 99% 96% 

+Transform 5.805 14.62 7.296 18.81 92% 50.5% 99.5% 80.5% 

+GAN - 12.5 - 15.79 - 55.5% - 89% 

MAE=Mean Absolute Error; RMSE=Root Mean Square Error; ACC=Accuracy 
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Compared with existing models in BAA using the same testing data (Table 4), our method 

achieves a comparable result and further improves the performance of a DenseNet-based network.  

 

Table 4: Comparison with the published models on RSNA testing set 

Item Method MAE 

1. Alexander et al. [21]  Inception V3 4.2 months 

2. Iglovikov et al. [10] VGG 5 months 

3. Proposed DenseNet+Transformation 5.8 months 

4. Zhao et al. [12] DenseNet male: 6 months 

female: 6.3 months 

5. Pan et al. [11] CNN 7.4 months 
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The training loss and validation loss for the 100% training set and 10% training set are 

shown in Figure 10. Except for the model, +Transform, using 10% data, the training loss of others 

decreases gradually. 

 

 

Figure 10: Training loss (blue line) and validation loss (red line) of the models. (a) Base using 100% data.    

(b) Base+Transform using 100% data. (c) Base using 10% data. (d) Base+Transform using 10% data.          

(e) Base+GAN using 10% data 
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5.0 Discussion 

The hand segmentation is conducted via transfer learning. It demonstrates the effectiveness 

and applicability of transferring pre-trained deep learning weights from a different data set to a 

similar field. Furthermore, it allows a model to better find global optima with limited labeled data. 

The efficiency of data augmentation is assessed in this study. The results support the 

finding by other studies that transformation is a standard solution against overfitting and improves 

the performance by providing relevant data to stabilize a model. In addition, it leads to a better 

converge.  

In the experiments using 100% training data, we observe that the performance on testing 

data increase compared to the performance measured during validating models on the validation 

data. Though the number of the data sets is not the same, the distribution on age groups and gender 

are similar. One explanation for this improvement could be that testing sets have more accurate 

labeling of estimated age than the validation sets. According to the description of the data set, the 

ground truth skeletal age of testing sets is based on the estimates from reviewers. Therefore, it is 

corrected by the mean absolute difference among reviewers’ assessments.  

Differentiable Augmentation shows improvement on data efficiency of GAN in BAA when 

training the GAN with no more than 50 samples for each class. However, a sufficient number of 

high-quality training samples are still needed. Training a complex model with a limited number of 

high-quality data can overfit and degrade the model’s generalization. They could not be replaced 

entirely with synthesized data, even though GAN-generated images are visually real-like and share 

close distribution over training data. The baseline has the best performance in the experiments 
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using 10% training data. The reason might be too many irrelevant samples are added and disturbs 

the model to parse out the relationship between the input and the output. 

A deep learning model is powerful, but it still could be improved by several methods. For 

example, we did not consider gender while training a conditional GAN, so fake genders are 

generated to train the prediction model without gender labels. In clinical practice, male and female 

cohorts are determined with different standards. Therefore, the real distribution over samples 

might not be learned correctly. Also, the region of interest in this study is the whole hand of 

radiographs. Implementing feature selection based on clinical practice, such as GP atlas and TW 

method, could develop a more robust model, even when samples are not adequate. These 

procedures might potentially give rise to the development of a more generalized and state-of-the-

art BAA system. 
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6.0 Conclusions 

In this thesis, we reviewed several BAA models based on traditional methods and deep 

learning, implemented image processing techniques to enhance the image quality of the data set, 

and presented a BAA model. The model has obtained comparable performance. We also 

investigated the efficiency of data augmentations from the data-efficient perspective. Further 

techniques are necessary for a deep learning model with limited data. 
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