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The human immune system is responsible for the detection and elimination of

pathogens. The immune response to viral infection is comprised of a complex set of

multi-scale interactions between small molecules, proteins, genes, and cells that govern

pro-inflammatory and anti-inflammatory processes. Overactive inflammation is a root

cause of severe clinical outcomes and can lead to systemic tissue damage and death.

Identifying the drivers of dysregulation is key in the development and administration of

therapeutic treatments to maintain equilibrium. The work presented aims to utilize high

throughput and immunological data to determine the causal agents of immunoregulation

using systems biology tools. Developed methods address this problem at the protein and

systems levels using protein-protein interaction (PPI) network methods and ordinary

differential equation (ODE) models.

Aim 1, the creation of the first ever disease specific subnetwork, identifies a set of proteins

that are enriched for possible antiviral drug targets for influenza A infection. In Aim 2, PPI

network controllability analyses are used to identify a set of 24 and 16 proteins acting as

regulators of influenza A and SARS-CoV-2 infection, respectively. These proteins are further

prioritized as targets in drug development/repurposing based on topology, function, and

known targeting compounds. Five previously unidentified compounds are recommended for

repurposing to treat COVID-19. Together, Aims 1 and 2 computationally produce efficient

and meaningful biological results which align with in vivo findings.

Aim 3 explores influenza A strain-specific dynamics observed in immunological data by

using ODE models to elucidate which biological mechanisms are at the root of differential

behavior. Two models are constructed and parameterized to explore H1N1 and H5N1

influenza dynamics. Study reveals that only a small number of host functions likely
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contribute to the strain-specific response, particularly the production rate of interferon.

This finding is informative to future exploration of interferon-based therapeutics.

In total, both approaches are useful in teasing out the drivers of emergent properties

of the complex immune response. By determining the consequences of the presence of a

single component like interferon on other immune mechanisms, these studies enhance our

understanding of disease progression and open the door to knowledgeable treatment design.
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Figure 0.1. Visual Summary of Dissertation Aims. Aims 1 and 2 are the creation of protein-
protein interaction network methods to identify disease host factors for drug target discovery. Aim
3 is the exploration of immune response dynamics to multiple strains of influenza virus using
mathematical models.
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1.0 Introduction

1.1 The Host Immune Response to Viral Infection

1.1.1 Viral Respiratory Infection

The prevalence of viral pathogens, particularly those leading to lower respiratory

infection and their associated high mortality rates, demand an international effort to

control global infection spread. The clinical presentation of respiratory infections vary by

virus but share common pathology in wheezing, coughing, fever, and congestion of the

upper and lower respiratory tract [1, 2, 3]. Common, yearly epidemics of viruses such as

influenza virus make respiratory infection the fourth leading cause of death worldwide [4].

Claiming 2.8 million lives in 2010, respiratory infections are most commonly observed in

at-risk populations including the immunocompromised, elderly, and pregnant and in

children [5, 6, 7, 8]. Morbidity and mortality in these groups are elevated in comparison to

the total population. These populations are also more susceptible to co-infection with

bacterial and secondary viral infections such as S. pneumoniae which greatly increase the

mortality rate [9].

Up to 75% of novel viruses are considered zoonotic, developing in an animal reservoir

and subsequently transmitting to human hosts [10]. Emergent viruses pose a particular

threat to public health as the absence of existing immunity can lead to high human-human

transmissibility, severe pathology, and high mortality rates. In particular, viral adaptation

within animal reservoirs dictates the immune response needed. For example, naturally high

levels of inflammation in bats drive intense inflammatory responses in humans infected

with viruses that have jumped from bats to humans such as coronaviruses [11]. The onset

of emergent virus epidemics necessitates a period of rapid scientific discovery to identity

the viral structure, mechanisms of viral replication and spread, and the invoked immune

response to better tailor treatment development. Living in continual threat of emergent

strains, pandemic viruses have become reality throughout recent history including

1



pandemic influenza A pH1N1 virus, severe acute respiratory syndrome (SARS), middle

eastern respiratory syndrome (MERS), and SARS-CoV-2. The typical timeline for FDA

approval from start to finish averages 12 years [12] with a 25% success rate for infectious

disease treatments [13]: an infeasible timeline for emergent viral outbreaks. Time and

effort, precious commodities in an outbreak, can be saved through the incorporation of

knowledge learned from previous study of related viruses and treatments.

Classified within families by genome, size, physiochemical characteristics, and

morphology, insight can often be transferred across viruses as many characteristics are

conserved including the general steps of the viral life cycle [14]. For enveloped viruses [15],

spike proteins on the outside of the viral envelope interact with host lung epithelial cell

surface receptors to facilitate viral entry. After endocytosis and the release of viral genetic

material, viruses depend on host cell machinery for replication of viral RNA. New viral

particles are then packaged and leave the cell to continue the cycle. However, differences in

viral protein structure, transcription/translation behavior, host protein interactions, etc.

create discrepancies between disease mechanisms and regulation. Understanding the

individualized drivers of disease-specific behavior is critical in halting viral transmission

and developing therapeutic treatments.

1.1.1.1 Influenza A Virus

Influenza virus is an enveloped, negative-sense single stranded RNA (ssRNA) virus of

family Orthomyxoviridae [16]. There are four types (A, B, C, D) with influenza A being the

most common and severe in humans during yearly seasonal outbreaks. Common symptoms

include fever, chest congestion, body aches, and fatigue. The FDA has approved six total

antiviral treatments, although two have been retired due to drug resistance observed in recent

strains [17]. Subtype strains are characterized by antigenic surface proteins hemagglutinin

(HA) and neuraminidase (NA) that serve as flags for the host immune system to recognize the

pathogen [18]. With 18 known HA types and 11 known NA types, there are 198 theoretical

strains of influenza A [19]. H1-H3 strains are considered human influenzas, though there is

evidence that avian influenzas H5, H7, and H9 are infectious to humans. For example, human
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infection with the high pathogenic avian H5N1 influenza has occurred in 16 countries to date

in small numbers [20]. H5N1 is noted for its severity in humans, leading to characteristic

lower respiratory tract infections with high levels of inflammation and critical damage of lung

epithelial tissue [21]. Estimated mortality rates reach 60%, including young populations, a

trend atypical of other influenza strains [22]. The threat of H5N1 outbreak and pandemic

spread remain on the horizon and the world continues to prepare for the event including

ongoing vaccine stockpiling in the United States.

New human strains of influenza A virus emerge through contact with zoonotic hosts

including birds, bats, horses, and pigs which serve as reservoirs for mutation. Influenza A

is noted for a high level of point mutations within the genome (genetic drift) and genetic

recombination of multiple influenza strains (genetic shift), both of which are responsible for

the emergence of new viral strains [23]. Vaccines are tailored to circulating viruses each

year to provide protection against recent viral evolution [24]. Absence of existing immunity

to limit human transmission of animal influenzas increases the likelihood that novel strains

reach epidemic and pandemic levels of infection spread.

1.1.1.2 SARS-CoV-2

SARS-CoV-2 is a positive-sense ssRNA virus of family Coronaviridae enveloped within

the nucleocapsid (N), membrane (M), and envelope (E) structural proteins [25]. The spike

glycoprotein (S) mediates host cell binding and viral entry. Related viruses SARS-CoV

(2002) and MERS-CoV (2012) caused pandemics noted for excessive mortality rates

(estimated up to 10% and 36%, respectively) [26, 27]. COVID-19, the illness caused by

SARS-CoV-2 infection, transmits from human to human through aerosols and droplets

shared in close contact [28, 29]. The disease presents both asymptomatically and with mild

and severe infection pathology [30, 31]. Mild and severe COVID-19 share many clinical

symptoms including fever, fatigue, respiratory congestion, gastrointestinal distress, and loss

of taste and smell [32]. Severe cases display extreme lung and cardiovascular damage and

neurological impairment. Evidence shows distinct immune response in mild versus severe

patients with notable differences of depleted CD8+ T-cells and increased pro-inflammatory
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cytokines leading to worsened clinical outcomes and increased mortality rates [31, 33].

Approximately 13% of COVID cases are characterized as “Long COVID” with patients

exhibiting extended fatigue, neurological impairments, and more after clearing a severe

infection [34].

As of June 2021, the ongoing SARS-CoV-2 COVID-19 pandemic has claimed an

estimated 3.7 million lives of the 173 million confirmed cases and continues to infect

millions globally [35]. The possibility of reinfection with COVID-19 still remains unknown.

In the interest of time, attempts at COVID-19 drug treatment have revolved around

repurposing existing drugs [36, 37, 38] and monoclonal antibody treatment [39]. The

development of several SARS-CoV-2 vaccines has largely contributed to a downward trend

in cases since early 2021 with available vaccines being successful at preventing 65-97% of

symptomatic disease [40]. Recent, more transmissible variants have been identified,

accelerating the need for advanced treatment options and higher global vaccination rates

[41].

1.1.2 The Host Immune Response

The host immune response, categorized into the early innate arm and the late adaptive

arm, is a series of mechanisms responsible for the elimination of invading pathogens

including viral and bacterial infections. The innate arm is responsible for the initial

response and is triggered when foreign material, including viral RNA, is recognized by

sensors of characteristic pathogen molecules called pattern recognition receptors. These

receptors reside in the cytoplasm and on the surface of epithelial cells, resident

macrophages, neutrophils, and dendritic cells [42]. Stimulated RNA sensing pathways

trigger the production of type-I interferons by infected host cells, a molecule that alerts

surrounding cells of the pathogen’s presence and upregulates immunoregulatory pathways

including the transcription of “interferon stimulated genes”. Pro and anti-inflammatory

cytokines secreted by resident macrophages and neutrophils act as chemoattractants to flag

the site of infection and dictate leukocyte growth and differentiation [43, 44, 45].

Chemokines released as a product of the activation of pro-inflammatory pathways such as
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NFkB are responsible for leukocyte recruitment at the site of infection [46]. New

macrophages, neutrophils, and dendritic cells join resident alveolar populations within

hours to eliminate cellular debris and viral particles [46, 47]. After several days, natural

killer cells identify and induce apoptosis to limit viral replication in infected cells through

the release of cytotoxic granzymes [48].

Dendritic cells scour the interstitial space between lung epithelial cells looking for

pathogen-associated molecular patterns (PAMPs) [49]. When exposed to a viral pathogen,

they mature and migrate to the lymph node, initiating the adaptive immune response [50].

After processing the antigen, it is presented to näıve T cells by major-histocompatibility

class (MHC) molecules on the cell surface to induce antigen-specific differentiation [51].

MHC class I molecules activate cytotoxic CD8+ T cells that release cytotoxins to induce

apoptosis in infected epithelial cells. MHC class II molecules activate helper CD4+ T cells

that release cytokines to aid other lymphocytes. B cells uptake antigen in the lymph node

and present it to näıve T cells with MHC class II molecules and helper CD4+ T cells

express cytokines to promote eventual B cell differentiation into plasma cells and memory

B cells among others [52].

Differentiated, antigen-specific cells typically migrate to the site of infection beginning

3-6 days post-onset of infection [52]. Plasma cells release antibodies that neutralize antigens

and memory B cells launch a robust antibody response upon encountering a known antigen.

As antigen levels decrease, the release of cytokine and chemokine signals drop off and T

cells begin suppressing cytokine release, ceasing immune cell infiltration and ending the

immune response to infection [46]. Chronic inflammation caused by dysregulated homeostasis

between pro and anti-inflammatory cytokines can lead to extensive tissue damage, acute

respiratory distress syndrome, cytokine storm, sepsis, and death [53]. As the timing and

magnitude of the invoked immune response is disease specific, even strain specific within

viruses [54], understanding the complex dynamics of immunoregulation is necessary to restore

homeostasis in the case of dysregulation and develop disease treatments.
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1.2 Computational Methods

Computational exploration of biological systems is reliant on supporting data, much of

which is generated as a result of recent advancements in experimental methods [55, 56, 57].

In particular, the rise of high throughput processing techniques to simultaneously measure

the concentrations of high numbers of genes, proteins, cells, and more with previously

intractable repetition has opened the door to a new level of analysis. Resulting omics’ data

(for example, RNA-seq and microarray transcriptomics or mass spectroscopy-based

metabolomics and proteomics) is a descriptive snapshot of complex, multiscale systems

that holds the promise of unlocking our biological puzzle upon successful processing of

these dense, large-scale datasets [55, 58, 59]. In addition, gene knockdown and knockout

studies that grant the ability to observe the effects of downregulated or eliminated

expression of specific genes responsible for desirable biological mechanisms have allowed for

highly specified in vivo exploration [60]. As these historically expensive data collection

methods become increasingly affordable and accessible [61], efforts have shifted toward the

development of novel methods to analyze this information and achieve greater

understanding of biological systems and disease pathology [62].

Novel methods for processing gene expression, protein interaction data, and immune

cell counts during influenza A virus infection have exhibited predictive power in

characterizing system dynamics [63, 64, 65, 66, 67], predicting disease host factors [68, 69],

and optimizing therapeutic targets [70, 71]. These efforts work toward an ultimate goal: to

reveal and manipulate the molecular and cellular interactions regulating influenza virus

infected cells and terminate infection. While system complexity and experimental or

computational limitations [72] have historically stood as barriers to this goal, each step

toward discerning the dynamics of infected cells and systems will provide insight into

disease pathology and optimize the path to effective clinical treatment.

The lens of scale with which we choose to view viral infection influences the

computational direction of our work. Questions of spatial resolution are quickly followed by

those of temporal resolution and data availability. For example, immune activity at the

lung tissue level is the result of cell signaling pathways activated by continuous regulation
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at the genetic and protein scale. Experiments, however, result in discrete measurement

timepoints that lend mystery to the events of the in-between. As data collection from

animal models requires full lung samples, longitudinal dynamics across time cannot be

tracked within a single animal. In addition, evidence that gene transcription does not

directly correlate to protein translation [73, 74], inherent time delays built into biological

pathways, and the presence of dense, convoluted feedback mechanisms across spatial scales

inserts a nonlinear complication into attempts at computational modeling. Multiscale

modeling is growing in popularity [75, 76, 77, 78, 79, 80] based in the creation of data

processing methods at singular spatial scales across time.

The work contained within develops an understanding of the host response to viral

respiratory infection on two spatial scales. First, at the protein-level through the design of

protein-protein interaction (PPI) network methods of understanding implicated molecular

interactions, and second, at the systems level in the creation and parameterization of

mathematical models of the immunoregulation of immune cells and cytokines during viral

infection. While both approaches hold predictive power in isolating cell system mechanisms

and components with significance to disease progression, the combination provides a

comprehensive understanding of viral infection and corresponding host immunoregulation.

1.2.1 Mathematical Modeling

Ordinary differential equations (ODEs) are a field of mathematics used to describe

change in state per change in an independent variable, often time [81]. ODEs are

commonly employed to determine the species dynamics of biological systems [82, 83, 84].

Equations are constructed from literature understanding of the interactions between each

relevant species where kinetic parameter values represent the rates of individual biological

processes (for example, the rate of host cell infection by virus, or the rate of natural

cytokine decay). These parameters can be interpreted to understand how complex

interactions lead to system-level behavior. Common computational solvers for ODEs in

MATLAB, python, and Julia use finite differencing methods to estimate derivatives over
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small time steps, allowing for fast, powerful estimation of species concentrations over

desired timeframes of study [83].

Before reaping the promised benefits of ODE models, kinetic rates must be determined

to specify system behavior. Model creation and optimization are an iterative process as

parameter fitting may reveal underfitting or overfitting (for example, a linear model failing to

capture true trends from non-linear data or a model containing more free parameters than are

necessary to explain system dynamics) which require model reformulation. Parameterization

can be achieved in two ways. First, rate kinetics available from experimental reports in

literature can be directly substituted into the model equations. However, the availability

of this data is often limited, and may be derived from experimental conditions that stray

too far from those of the training data used for the estimation of the remaining parameters,

meaning that this method should be approached with caution.

The second method of parameterization relies on mathematical estimation of the

parameter combination that best reproduces experimental training data. Minimized

metrics such as sum of squares error can be used to calculate the difference between

simulation output and training data across available timepoints to iteratively optimize the

best fitting parameter set from models such as regression models [85]. While the least

computationally expensive, curve fitting methods fall victim to several

Parameter Value

Er
ro

r

Figure 1.1. Error function output
demonstrating unidentifiable solutions
(pink), a local minimum (green dot), and
the global minimum (blue star).

pitfalls due to insufficient knowledge of possible

parameter space prior to fitting (Figure 1.1).

Parameter identifiability, the ability to identify

a singular optimal solution opposed to several

parameterizations which yield equally minimal

error, is required to determine the values of

unknown parameters and is difficult to assess

without exploring the entirety of parameter

space. Additionally, simple optimization

methods often fail to escape local minima in

their search, ultimately returning non-optimized

solutions.
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To address the problems associated with under characterized parameter space,

probabilistic methods of parameterization instead return a distribution of possible solutions

with associated probabilities of occurrence based on training data. Probabilistic methods

are founded on Bayes Theorem,

P (θ|D) =
P (D|θ)P (θ)

P (D)
(1.1)

The posterior probability, P (θ|D), that a parameter set, θ, can explain datasetD is a function

of three probabilities. The prior, P (θ), details information known about the parameters

(often assumed to be a uniform distribution in the event there is no knowledge of the true

distribution). The evidence, P (D), indicates if the data was generated by the model, and

the likelihood, P (D|θ), describes how well the data fits parameter set θ. While the posterior

cannot be directly calculated from these values, an estimation can be determined through

large-scale sampling of multidimensional parameter space.

Markov Chain Monte Carlo (MCMC) is an algorithm that samples probability

distributions by stepping stochastic chains through possible parameter space.

Advantageously, a Markov Chain’s probability at the current step is only a function of the

previous step, making past and future parameter sets independent and memoryless. The

most commonly implemented MCMC method is the Metropolis-Hastings algorithm [86].

The distance between a parameter set and the training data can be quantified through a

customizable objective function which are often based off of the residual sum of squares:

E =
∑
i

(ȳi − yi)2 (1.2)

where ȳi is simulated output from timepoint i and yi is experimental data at timepoint i.

The likelihood that experimental data could be generated from a given parameter set is a

function of error:

P (D|θ) ∝ exp(−E) (1.3)

At initialization, the error between training data and simulation output for an initial

parameter set, θ, is determined. At each step, each parameter jumps to a new value and the

error is re-determined. The algorithm must choose between accepting the new parameter set
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and returning to the value of the previous step with a probability of acceptance equal to the

ratios of the posterior distributions computed using known likelihood and prior assumptions:

α = min(1,
P (θi+1|D)

P (θi|D)
) = min(1,

P (D|θi+1)P (θi+1)

P (D|θi)P (θi)
) (1.4)

The acceptance probability is compared to a random number, r, from U [0, 1] and the new

parameter step is accepted for r < α that serves to always accept improved solutions (α = 1)

and accept inferior solutions with some probability that promotes exploration of parameter

space. This sampling process is repeated on a large scale (millions of iterations) to ensure

that all multidimensional parameter space is adequately explored before defining the most

likely parameter set. To enhance the algorithm’s ability to survey possible solutions, parallel

tempering MCMC (PTMCMC) explores parameter space by initializing multiple parallel

chains and incorporating a chain temperature which influences the size of the jump to the

next proposed parameter set and the probability of acceptance [87]. When a high probability

solution is identified by a high temperature chain making large jumps, swapping with a low

temperature chain works to optimize the solution using small jumps in the area of high

probability. Chain swapping is particularly useful for avoiding entrapment in local minima

as high temperature chains more efficiently cover all possible parameter space.

While an impossible, infinite sampling would be needed to identify the true posterior

and convergence remains impossible to prove, MCMC convergence diagnostics serve as the

next best identifier of an optimized solution by assessing whether certain characteristics of

convergence hold true [88]. Common graphical methods to check convergence include

plotting parameter values over time to ensure the chain moves randomly and not toward a

specific end, which would suggest insufficient tuning, and checking resultant parameter

distributions to ensure they are not pushed against pre-defined bounds, if applicable.

Additional mathematical metrics such as autocorrelation functions can be used to assess

the performance of the algorithm. Parameter correlation at the root of convergence issues

can be addressed with temperature tuning in PTMCMC [89]. A healthy MCMC study

should display a balance between the number of accepted and rejected solutions, a

characteristic conveyed by the acceptance ratio. For basic applications of MCMC, an
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acceptance ratio of 23% is commonly considered the ideal [90] that balances the needs of

sampling versus computational efficiency.

1.2.2 Network Modeling

It would be neat and tidy to attribute observed biological phenomena to the actions of

singular molecules within the cellular system, however, the reality is much messier. The

interactions between entities from small molecules to proteins, DNA, and cells are governed

at the root by a complex set of rules where no two components can be completely

separated. With the rise of high throughput screening methods resulting in massive

protein-protein interaction (PPI), transcription regulation, and metabolic datasets, the

question becomes: how can we model large-scale biological datasets to derive the greatest

biological understanding of the systems they represent? Framework from the field of graph

theory provides a means to understand the interconnectedness of biological systems [91].

Networks consist of nodes, the components of the network, and edges, the interactions

between network components. Edges can be directed, meaning the interaction has a

meaningful flow direction, or undirected, and can hold weights representing probabilities.

Measures of network topology, or the structure and arrangement of network components,

are used to quantify the importance of nodes and edges to the overall function of the

system. Common topology measures include distances between nodes, degree (the number
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Figure 1.2. An example of common topology measures degree and betweenness
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of interacting nodes), and betweenness [92] (a measure of the importance of a node to

totalnetwork information flow) (Figure 1.2) [93, 94, 95]. Networks have been used to model

relevant relationships in a variety of fields including social networks, shipping optimization,

and biological systems.

PPI data is an excellent candidate for network representation and study. Curated in

annotated databases, both computationally predicted and experimentally verified PPIs are

easy and efficient to pick up and utilize [72, 96, 97]. While some computational efforts to

direct PPIs have been successful, the majority of available data is undirected and

unweighted. Networks constructed from unweighted PPI data create a whole cell model of

system behavior by viewing intercellular protein interactions as binary events. In

opposition to mathematical modeling methods that require extensive knowledge of

biological mechanisms and quantitative kinetic rates, network methods place value on the

relationships between proteins in a system much larger than that which could be practically

modelled with a system of ODEs. As interdependent states, the exploration of cellular level

relationships relies on the effects of network flow on systemic behavior, a view that is highly

reflective of the cascade behavior and feedback mechanisms found in biological pathways.

Previous studies have consistently identified disease relevant proteins missed by

traditional modeling efforts [98, 99, 100, 101, 102]. While useful, these analyses fall victim

to two drawbacks of biological network analysis: their generality and static nature. PPI

data is derived from proteome-wide repositories, meaning that most network analyses are

not cell type or disease system specific. Additionally, the lack of temporality imposed by

both the experimental methods and the collective nature of data curation and organization

leads to difficulty advancing dynamic understanding of the system. New methods are

needed to address disease specificity and acknowledge the dynamics of highly connected

biological systems while maintaining the benefits that come with the availability and

qualitative nature of the data.
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2.0 Aim 1: Disease Subnetwork Extraction for Host Factor Identification

2.1 Introduction

Yearly outbreaks of influenza A virus have a major impact on public health and the

global economy each year [103, 104]. While annual vaccinations provide some protection,

vaccination effectiveness is impaired by antigenic drift and availability issues [105, 23].

Recent human infections with highly pathogenic H5N1 and H7N9 subtypes of avian

influenza virus have raised concerns about the potential of pandemic spread

[106, 107, 108, 109]. Antiviral drugs to target the endocytosis and replication activity of

influenza viral proteins are available [110, 111], but they are limited [17] and drug-resistant

strains have emerged [112, 113]. Therefore, there is an urgent need to identify drug targets

that are robust to virus mutation and drug-mediated selective pressure.

Understanding virus-host interactions in the context of the human protein-protein

interaction (PPI) network provides a global perspective into how influenza virus

manipulates host proteins and aids in identifying host factors involved in influenza virus

replication for drug targeting [102, 114, 115]. The virus-host interaction network, a

network containing both host-host interactions and virus-host interactions, is visualized in

Figure 2.1 for the human host and influenza A virus’ 11 proteins.

A protein’s global significance to the PPI network can be assessed by its network

centrality, measures of information flow across the network. Common measures used in

protein network biology include degree (number of binding partners) and betweenness (the

importance of a protein to total network flow) though several others exist [116, 117].

Network centrality has emerged as a valuable tool for studying proteins associated with

cancer [118, 119] and drug targeting [119, 120, 98, 121]. PPI network-based approaches

have recently been utilized in influenza virus studies to identify and study potential factors

involved in virus replication [122, 123, 124, 125, 126] focusing on the host proteins that

directly interact with viral proteins. Network studies have demonstrated that virus

interacting host proteins tend to have a high network significance based on a variety of
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Figure 2.1. The virus interacting network is created from human host-PPI data combined with
virus-host protein interaction data for influenza A virus.Here, influenza A virus proteins are depicted
in grey, virus interacting host proteins are depicted in blue, and non-virus interacting proteins are
depicted in black.

network metrics (including betweenness and degree) for several viruses, including influenza

viruses [127] and hepatitis C virus [128]. A comparative analysis of influenza virus protein

and host protein interactomes has identified novel host factors that are common across the

protein interactomes [129]. Furthermore, meta-analysis studies have developed statistical

methods to better identify host factors by leveraging data from several virus replication

screens [69]. However, the limits of studying the network topology of virus interacting host

proteins to improve host factor identification (i.e., antiviral drug target identification) have

likely been reached.

New methods that move beyond whole cell network topology are necessary to assess the

potential of proteins downstream of virus interacting proteins to act as disease-specific host

factors. Here, we demonstrate a method of identifying a disease-specific subnetwork of the

integrated virus-host PPI network and assess its enrichment with potential antiviral drug

target candidates.

14



2.2 Materials and Methods

2.2.1 Protein-Protein Interaction Network Construction and Topology

Protein-protein interaction (PPI) data was downloaded from the Human Integrated

Protein-Protein Interaction rEference (HIPPIE) database [130] (version 1.4). Interactions

with a confidence score of less than 0.7 were removed to ensure high experimental

reproducibility and accuracy. The network was constructed using the igraph package in R.

The high confidence interaction data resulted in one large network containing 9,969

proteins and 86 smaller networks which were disconnected from the large network (most

with 2 proteins, all containing 7 or fewer). Disconnected networks were removed from the

study to eliminate bias in topology calculations. The final human host PPI network

contains 9,969 proteins and 57,615 interactions. A previous study identified 1,292 host

proteins that co-precipitated with at least one of 11 influenza A virus proteins (viral PB2,

PB1, PA, HA, NP, NA, M1, M2, NS1, NS2, and PB1-F2 proteins) [131]. These proteins,

referred to as “virus interacting proteins”, all mapped to the host PPI network (i.e.: no

virus interacting proteins had been removed in the disconnected networks). The topology

characteristics of virus interacting and non-virus interacting host proteins within the PPI

network were determined using the R igraph library version 1.0.1 [132].

2.2.2 Calculation of Abundance-Degree Correlation

To investigate the effects of correlation between protein abundance and network degree,

a linear model was fit to the total network’s abundance log10 degree data using R 3.2.2’s glm

function. HEK293 cell abundance data from Geiger et al. [133] was used to avoid the effects

of differing cell lines. The correlation slope (0.093) was used to calculate adjusted degree

values as follows:

adjusted degree = (log10(original degree)− slopelm ∗ abundance) + interceptlm (2.1)

where lm is the linear model. The final values reported are 10adjusted degree.
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2.2.3 Protein Network Clustering

A measure of the closeness of virus interacting proteins within the network was calculated

using the shortest distances required to connect all virus interacting proteins, creating a

distribution of distances. The cumulative distribution details the fraction of host proteins

that could be connected to other host proteins that bind the same viral protein in n or fewer

steps. A cumulative distribution of distances that result from randomly sampled proteins in

the network was used as a control. A set of random proteins of size of the number of proteins

that interact with the virus protein of interest (e.g., PB1 has 322 interacting host proteins;

therefore, 322 proteins were randomly selected from the network) were pulled per iteration.

The distribution of distances connecting the randomly sampled proteins was calculated. This

process was repeated 100 times.

To evaluate whether virus interacting proteins are components of a common protein

complex, the fraction of all virus interacting protein pairs (735,078 pairs in total) that appear

within a protein complex was determined and compared to the fraction of all protein pairs

(49,685,496 total pairs) in the PPI network that appear in a protein complex. Mammalian

protein complex information was downloaded from CORUM (a comprehensive resource of

mammalian protein complex data) [134].

2.2.4 Influenza Virus-Host Subnetwork Construction

A partial siRNA screen to identify key host factors that do not interact directly with

viral proteins was performed to address problems of reproducibility resulting from differences

in experimental conditions and characteristically high false-negative rates in siRNA screens

of influenza virus replication host factors [135]. HEK293 cells were transfected with siRNAs

targeting 264 non-virus interacting host factors identified by Karlas et al. [136] (two siRNAs

per gene were used; AllStars Negative Control siRNA [Qiagen] was used as a negative control)

and then infected with influenza A virus at 24 h post-transfection. The culture supernatants

were harvested for virus titration at 48 h post-infection. Virus titers were determined by

plaque assay. A protein was defined as a hit if the virus titers decreased by at least two

log units upon transfection with an adjusted Pvalue of < 0.01. The viability of siRNA-
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Figure 2.2. A disease specific subnetwork is extracted from the human PPI network. It contains
the shortest paths (red) connecting virus interacting proteins (blue) to host proteins that are
essential to virus replication (internal-essential proteins, orange). The connecting proteins (black)
are candidates for antiviral targets.

transfected cells was assessed using Cell-Titer Glo assay, and downregulation of mRNA

levels for the hit proteins was confirmed by quantitative reverse transcription-PCR (qRT-

PCR). Of the 264 previously identified host factors tested, 71 significantly downregulated

virus replication. Of the 71, 21 of the host factors were identified to directly interact with

influenza virus proteins while the remaining 50 host factors downregulated virus growth

and do not directly interact with the virus. Proteins of the latter group were labeled as

“internal-essential” host factor proteins.

An influenza virus-specific subnetwork (process illustrated in Figure 2.2) was

constructed from the shortest paths connecting virus interacting host proteins to

internal-essential host factors. The proteins linking internal-essential proteins to virus

interacting proteins were labeled “connecting” candidate proteins for evaluation as host

factors of virus replication. The resulting subnetwork contains 1,213 virus interacting

proteins, 38 internal-essential proteins (12 proteins were not in the PPI network), and

1,643 connecting candidate proteins.
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2.2.5 Statistical Analyses

All statistical tests were performed in R 3.2.2 using the functions prop.test, fisher.test,

pairwise.t.test or wilcoxon.test (which performs a Mann-Whitney U test) as appropriate.

Prop.test and fisher.test both compare outcome proportions between binomial groups with

the latter being more precise for small group sizes.

2.2.6 Functional Analysis

A functional enrichment analysis was performed using DAVID 6.8’s Functional

Annotation tool [137].

2.2.7 Calculation of Host Factor Enrichment

Protein enrichment was assessed by selecting the 78 proteins of the subnetwork with the

highest (n = 39) and lowest betweenness (n = 39) and conducting an additional in vitro

virus replication assay. HEK293 cells were again transfected with siRNAs targeted to the

genes of the 78 candidate proteins. The procedure described previously was performed to

determine the proportion of connecting proteins tested that are host factors of influenza virus

replication. Enrichment is determined by a hit rate defined as the proportion of proteins

tested that significantly downregulate virus replication. Differences between hit rates were

compared using Pearson’s chi-squared test to compare proportions between two binomial

groups.

2.3 Results

2.3.1 Virus Interacting Proteins are Central to the PPI Network

Studies have shown that proteins in network positions essential to information flow within

the PPI network (high degree or high betweenness) are more likely to be associated with

disease [138, 139] or drugs with known, dangerous side effects [140, 141]. Virus proteins
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are significantly more likely to interact with host proteins in positions of high regulatory

importance. For every protein, the degree (number of interacting proteins) and betweenness

[142] (a measure of a protein’s importance to efficient network flow) were calculated. On

average, the degree of virus interacting host proteins is twice the average degree of all proteins

and is significantly higher than the degree of the non-virus interacting proteins of the network

(Figure 2.3A; median degree of virus interacting, non-virus interacting, and all proteins: 10,

4, and 5, respectively; Student t-test P value for comparing log-scaled non-virus interacting

and virus interacting data: < 10−16).

Bias introduced by the relationship between protein abundance and a protein’s network

degree is documented in literature [143]. An analysis of the correlation between the two

variables was performed to ensure that the high degree of virus interacting proteins was

not an artifact of protein abundance. Significant correlation exists between abundance and

degree in the virus interacting proteins (Pearson correlation coefficient: 0.23; P value: 1.2

x 10−13), subnetwork (Pearson correlation coefficient: 0.10; P value: 6.9 x 10−7), and total

network (Pearson correlation coefficient: 0.25; P value: 2.2 x 10−16). (Figure 2.4) After

fitting degree and abundance to a linear model to remove this bias, a comparison of the

adjusted degrees of the non-virus interacting and virus interacting proteins reveals that the

previous conclusions remain: the degree of virus interacting proteins is significantly higher

than the degree of non-virus interacting proteins in the network (Figure 2.3B; median degree

of virus interacting, non-virus interacting, and all proteins: 5.4, 3.9, and 4.2, respectively;

Student t-test P value comparing log-scaled non-virus interacting and virus interacting data:

< 10−16). Therefore, despite known biases engrained in PPI data, virus interacting proteins

interact with a higher number of neighbors than non-virus interacting proteins.

Virus interacting proteins also had a significantly higher betweenness (Figure 2.3C;

median betweenness of virus interacting and all proteins: 1,625.1 and 32.8, respectively;

Mann-Whitney U test P value for log-scaled data: < 10−16). Comparing median

betweenness after the removal of proteins with a betweenness of zero, virus interacting

proteins still had a significantly higher betweenness though the population medians were

closer in value (median betweenness of virus interacting and all proteins: 3,981.1 and

1,584.8, respectively; Mann-Whitney U test P value for the log-scaled data: 8.2 x 10−16).
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Figure 2.3. The network topological characteristics of virus interacting host proteins. (A to
C) Distributions of the degree (A), adjusted degree (B), and betweenness (C) of virus interacting
proteins and all proteins in the human PPI network. An ε of 0.01 was added to the betweenness
to facilitate log scaling. (D to G) The cumulative distributions (thick red lines) of the shortest
distances connecting host proteins in the PPI network that interact with viral PB1 (D), HA (E),
or NS1 (F) protein or the set of all viral proteins (G). For a control, the cumulative distribution
of distances was iteratively determined (N=100) by randomly sampled host proteins in the PPI
network (thin black lines). The number of proteins sampled on each iteration was equal to the
number of interacting host proteins of each virus protein (or set of viral proteins).
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Figure 2.4. Protein abundance versus protein degree for the total network’s original degree
(A) and adjusted degree (B). Each plot is fit with a linear model in red, demonstrating that the
correlation found in the original degree is not present after value adjustment.

The tendency for virus proteins to bind host proteins that had a higher degree and

betweenness was consistent when analyzing the interaction partners of each virus protein

separately (Pairwise t-test of the log-scaled data: all P values < 0.01 except betweenness of

NS2-interacting proteins that was not significantly distinct from the betweenness of the

total network). This indicates that influenza virus proteins selectively interact with host

proteins that strongly regulate cellular behavior. These results are consistent with

published findings for HCV and dengue virus [144, 145] and with a previous study that

used a yeast two-hybrid approach to identify influenza virus interacting host proteins for 10

of the 11 virus proteins [127]. Further, these are characteristics that generalize to each

virus protein’s interacting partner; suggesting that all 11 virus proteins have a role in

manipulating cellular machinery.

2.3.2 Virus Interacting Host Proteins are Closely Connected in the Human PPI

Network

A previous study suggests that host factors of viral replication are closely clustered within

the network but did not assess the topological characteristics of virus interacting host proteins

[135]. Functionally related proteins are often observed to be closely clustered in PPI networks

[146, 147]. Knowing that influenza virus proteins manipulate multiple host cell functions to
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promote replication, these previous studies suggest that the interaction partners of viral

proteins should be closely clustered by host function. If this is true, neighboring cluster

proteins could serve as possible alternative mechanisms for influenza virus to manipulate

necessary host functions.

Clustering analysis finds that virus interacting host proteins are very significantly

clustered within the PPI network. The set of proteins that interact with each viral protein

are significantly more closely clustered in the network than expected by chance (Figure

2.3D to G, P value < 0.01 comparing the median distance of the virus interacting proteins

to the median distance of randomly sampled proteins). Generally, 25% of the randomly

sampled proteins are connected by two or fewer interactions, while 88.7% of

PB1-interacting proteins, 90.0% of HA-interacting proteins, 98.2% of NS1-interacting

proteins, and 79.6% of all host proteins that interact with any influenza virus protein are

connected by two or fewer interactions. Collectively, these results support that viral

proteins are selectively targeting closely clustered host proteins. Additionally, 1.5% of all

virus interacting protein pairs are involved in a complex, whereas only 0.066% of all protein

pairs in the PPI are involved in a complex. In sum, influenza virus proteins are closely

clustered and 22.4 times more likely to be involved in a protein complex than randomly

selected proteins.

2.3.3 Constructing the Influenza A Virus Subnetwork

Network analysis of virus interacting host proteins demonstrates that viral proteins

preferentially interact with closely connected host proteins that are in positions central to

information flow across the human PPI network, suggesting that it may be possible to

exploit network positions to prioritize potential antiviral drug targets. We hypothesized

that there exists a disease-specific subnetwork that is likely to be significantly enriched for

host factors consisting of pathways that connect virus interacting proteins to key cellular

machinery. We further hypothesized that the topology of proteins within this subnetwork

may provide an additional advantage in identifying host factors of disease.
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Figure 2.5. Network characteristics of the virus subnetwork. Panels A and B compare the degree
and betweenness, respectively, of the connecting proteins in the whole PPI network and the virus
subnetwork.

As a result of how the subnetwork is constructed, the mean degree of the virus

interacting proteins and the internal-essential proteins were lower than the mean degree of

the connecting proteins (ANOVA followed by Tukey post hoc analysis P value: < 0.01).

While the degree of connecting proteins does not shift significantly between the total PPI

network and the virus subnetwork (Figure 2.5A), some proteins with low betweenness have

much lower betweenness in the virus subnetwork compared to the total PPI network

(Figure 2.5B). Higher betweenness nodes in the total PPI network do not demonstrate

dramatic shifts in the virus subnetwork upon comparison. This shift between the total

network and virus subnetwork may reveal proteins that are more or less critical to virus

replication that cannot be identified in a standard topological analysis of a PPI network.

2.3.4 Functional Enrichment Analysis of the Influenza Virus-Host Subnetwork

Previous work [131] included a per protein analysis of virus interacting proteins that

identified involvement in several stages of the life cycle of influenza virus, particularly in

viral replication tasks and export of influenza vRNPs from the nucleus. Here, analysis

found that virus interacting host proteins and connecting proteins within the virus

subnetwork are functionally distinct (see Tables 2.1 and 2.2 for abbreviated results).

Analysis of virus interacting proteins replicated the previous finding that virus interacting
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host proteins are primarily associated with housekeeping and viral replication processes

[131], whereas analysis of connecting proteins shows association with protein

phosphorylation, histone reconfiguration, and immune responses. Specifically, the immune

response pathways identified are the stimulatory C-type lectin receptor signaling, T-cell

receptor signaling, and Fc epsilon receptor signaling, all of which regulate NF-kB activity.

These results suggest that the virus subnetwork contains functional information generally

unobserved when considering virus interacting host proteins or internal-essential proteins in

isolation.

Table 2.1. Functional enrichment analysis of connecting proteins within the virus subnetwork.
Proteins were analyzed using DAVID.

Cluster Number

of GO

Terms

Enrichment

Score

Transcription 4 55.4

DNA damage/repair 3 19.2

Protein phosphorylation 19 18.7

Mitosis 5 18.7

Histone reconfiguration 42 14.4

Immune response (C-type lectin receptor signaling

pathway, T cell receptor signaling pathway)

3 14.0

Zinc ion binding 4 11.5
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Table 2.2. Functional enrichment analysis of virus interacting proteins within the virus
subnetwork. Proteins were analyzed using DAVID.

Cluster Number

of GO

Terms

Enrichment

Score

Ribonucleoprotein/Viral transcription 13 67.2

Cell-cell adhesion 3 45.0

mRNA splicing 9 41.8

Nucleotide binding 10 30.3

Chaperone/UPR 3 22.1

Viral nucleocapsid 3 19.0

mRNA nuclear export 4 17.5

Nucleotide binding/ATP binding 5 17.3

Translation initiation factors 11 13.2

Proteasome/NF-kB MAPK signaling 23 12.1
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2.3.5 Connecting Proteins of the Influenza Virus-Host Subnetwork are More

Enriched for Host Factors than Virus Interacting Proteins

To evaluate the significance of the connecting proteins, the observed hit rate from the

secondary siRNA screen was compared to the hit rate resulting from several other screens:

1.) the 1,292 virus interacting host proteins in HEK293 cells (hit rate = 299/1,292=0.23)

[131], 2.) the 264 host factors in the study by Karlas et al. (71/264 = 0.27) [136], and 3.) a

genome-wide screen for influenza virus host factors in A549 cells (287/22,843=0.013) [136]

which can be interpreted as the expected hit rate when randomly sampling the PPI network.

The secondary siRNA screen found that connecting proteins were significantly enriched

for host factors of influenza virus replication, but demonstrate no statistically significant

advantage in selecting proteins by betweenness (Figure 2.6). Of the 78 proteins targeted in

the siRNA screen of connecting proteins, a total of 27 significantly reduced viral titers by

at least two orders of magnitude, with 15 categorized as high-betweenness proteins and 12

Figure 2.6. Hit rates for all tested connecting proteins and the 39 connecting proteins with highest
and lowest betweenness in the virus subnetwork. Hit rates are compared to those observed in a
previous screen of virus interacting host proteins [131], from our secondary screen of host factors
identified by Karlas et al., and from a genome-wide screen [136]. *p < 0.05 and **p < 0.01.
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categorized as low-betweenness proteins. Note that one of the 39 high-betweenness proteins

(PLK1) was eliminated from the calculation because both respective siRNAs were cytotoxic.

Differences between hit rates were compared using Pearson’s chi-squared test. The hit rate

of connecting proteins (27/77=0.35) was significantly higher than the hit rate observed in

the screen of virus interacting proteins (P value: 0.024) and in the whole-genome screen

(P value: < 2.2x10−16) but not significantly distinct from the rate observed in rescreening

the Karlas host factors (P value: 0.21). When considering the connecting proteins based on

their betweenness, the high-betweenness connecting proteins had a hit rate of 0.39 (15/38)

which was significantly higher than the hit rates observed in the virus interacting and whole-

genome screens (P value: 0.032 and P < 2.2 x 10−16, respectively). The high-betweenness

protein hit rate was higher than the rate observed in the screen of host factors by Karlas et

al. (33), but not significantly (P value: 0.16). The low-betweenness connecting protein hit

rate was lower than that of the high-betweenness connecting proteins (12/39=0.31). The

difference in hit rates between high- and low-betweenness proteins was not significant (P

value: 0.57). In all, the screening results suggest that proteins connecting virus interacting

proteins to host factors of influenza virus replication are highly enriched for host factors

themselves-significantly more so than proteins that directly interact with virus proteins.

However, the topological information from betweenness does not significantly improve host

factor identification.

2.3.6 The Influenza Virus Subnetwork is Enriched for Host Factors Identified

in Six Host Factor Screens

To determine whether host factors identified in additional, previous screens are enriched

within the virus subnetwork, we compiled a list of host factors of influenza virus replication

identified in at least one of six previous screens [136, 148, 149, 150, 151, 152]. A Fisher exact

test for enrichment was used to determine whether the connecting proteins or the set of

influenza virus interacting proteins are enriched with host factors identified in these studies

relative to the abundance of host factors within the total PPI network. Both connecting

proteins and the virus interacting proteins are significantly enriched for host factors (P
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value: 7.2 x 10−5 and 1.1 x 10−5, respectively; odds ratio: 1.4 and 1.5, respectively). There

is no significant difference in the enrichment of host factors between connecting proteins

and virus interacting proteins (P value: 0.48; odds ratio: 0.92). To ensure the host factors

identified in the study by Karlas et al. [136] were not creating bias in the enrichment

result, the enrichment analysis was repeated using host factors identified in all studies except

Karlas. Again, connecting proteins and virus interacting proteins are significantly enriched

for host factors (P value: 1.8 x 10−6 and < 3.2 x 10−3, respectively; odds ratio: 1.5 and

1.34, respectively), and no significant difference in the enrichment of host factors between

connecting proteins and virus interacting proteins was found (P value: 0.49).

2.4 Summary

Biological network approaches have demonstrated their potential impact on

health-related research, including gene/protein characterization, and drug design and side

effects [114, 118, 119, 101, 140, 153], yet demonstrations that network information can

inform drug target discovery are still limited. The completion of this aim marks the first

confirmation that virus and host protein interaction data can be integrated to improve

large-scale drug target discovery (specifically antiviral target discovery) and reveal

additional insights into virus-host interactions. The positions of virus interacting proteins

within the human PPI network suggest that influenza A virus has evolved to interact with

proteins that influence network behavior, regardless of the previously unexplored effects of

abundance-degree biases in PPI data generation. The virus-specific subnetwork reveals

that there is a set of proteins with moderately high betweenness in the total network yet

low betweenness in the subnetwork. While these proteins may be of high importance to the

total network, this result suggests that they may be less important to the progression of

influenza infection than proteins that are of high betweenness to both the total network

and virus-specific subnetwork. In this way, the novel subnetwork construction provides

further insight when determining important host factors of virus replication.
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Virus interacting proteins are closely clustered in the network which may be the result

of attempts to manipulate specific biological functions as proteins with shared biological

functions tend to cluster in PPI networks [154]. This may signify that influenza virus has

parallel available pathways with which to engage with host biological functions. Additionally,

protein complex evidence suggests that high degree and high clustering of influenza A virus

proteins may be due to their involvement in complexes. From a network viewpoint, it

is likely that high incidence of clustering within the PPI network is a result of both the

high betweenness and degree of the virus interacting protein group as a whole. Previous

studies have found that host factors of virus replication (not necessarily virus interacting

host proteins) have been observed to cluster within the PPI network [135]. Further analysis

on network clustering host factors of interest is needed to determine whether these two

observations are independent of one another.

Functional enrichment analysis of the subnetwork reinforces that while virus interacting

proteins are associated with virus replication processes, proteins within the constructed

subnetwork are associated with immune response to viral infection. Results for virus

interacting proteins largely build on the per protein discussion of virus-host interactions

found in previous work [131], identifying involvement in several stages of the viral

replication cycle. The functional enrichment analysis of connecting proteins reveals high

levels of involvement in the immune response to viral infection, specifically in NF-kB

regulating pathways such as stimulatory C-type lectin receptor signaling, T-cell receptor

signaling, and Fc epsilon receptor signaling. Influenza virus is known to manipulate host

immune response pathways (specifically NF-kB regulating pathways) to promote viral

replication [155, 156]. Because previous virus-host PPI network analyses have not studied

these connecting proteins as a separate population, their importance to the biology and

regulation of the system has been overlooked. The subnetwork construction approach

applied in this work isolates additional host biological processes essential to the regulation

of virus replication, further demonstrated by siRNA screening results of the connecting

proteins. Together, the results suggest that future work in virus-host protein networks can

leverage the technique presented here to identify subnetworks with increased biological
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relevance to the analyzed phenotypes/conditions and increase predictive power for the

purposes of drug discovery.

The conclusion that host-virus interaction data can be leveraged to improve virus

replication host factor discovery is unlikely to be affected by off-target concerns associated

with siRNA screens. Though off-target effects often challenge siRNA studies, changes to

experimental protocols (such as requiring multiple siRNA hits per targeted gene or

changing siRNA concentrations) can only moderately improve false-positive rates

[157, 158, 159]. The protocol used to generate the data used in this study was not optimal

to ensure the characterization of any one targeted gene. As such, the hit rates of gene

groups are compared. Protocols between these experiments and those used for comparisons

are either identical [131] or very similar [136], suggesting that off-target rates across the

tested groups are unlikely to explain the differences in observed hit rates.

The variability and incompleteness of PPI data as well as the limited agreement

between influenza virus replication screens are well-known concerns for network-based drug

target discovery. False discovery of virus-host interactions and the possibility that

virus-host interaction data are skewed toward well-studied networks could also have an

effect on the clustering result in virus interacting proteins. However, the enrichment of host

proteins important for influenza virus replication within the constructed virus subnetwork

demonstrates that even with these possible shortcomings, PPI network analyses have the

power to identify important host factors for influenza virus replication. The antiviral

protein candidate screen performed in this study further supports the use of PPI data

during candidate prioritization with significant hit rates against virus interacting proteins

and randomly targeted proteins.

Overall, this PPI network-based study provides insight into the network characteristics

of disease relevant proteins beyond those captured directly in virus-host interactions and

supports the idea that influenza virus interacts with host proteins in dominant network

positions in order to maximally manipulate host cells. Protein predictions from this novel

method should be used to guide future experimental design in drug development efforts.
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3.0 Aim 2: Network Controllability for Drug Discovery and Repurposing

3.1 Introduction

The key to antiviral drug development lies in identifying key processes in the viral life

cycle that can be suppressed to limit infection spread. For example, Oseltamivir and

Zanamivir are neuraminidase inhibitors that halt the release of newly manufactured viral

material from the host cell [160]. Currently, the FDA recommends the use of four antiviral

treatments for the flu, having retired two additional drugs due to drug resistance observed

in most recent strains [17]. While antiviral drug development can always benefit from

innovation and efficiency, rapid and effective development is of even greater need in the

event of emergent viruses and pandemic spread. As COVID-19 spreads worldwide with 179

million cases and 3.87 million deaths occurring between January 2020 and June 2021 [161],

there is an urgent need for novel treatment options. There are currently few

pharmaceutical treatments for SARS-CoV-2 infection under review [162]. One strategy to

accelerate the identification of possible leads is to reposition drugs with known targets and

mechanisms that may have been through parts of the FDA approval process [163].

Avoiding this development pipeline known for its low success rate [164] advantageously

saves invaluable time and monetary cost. While this is ultimately the fastest way to get

treatments to patients in need, the most efficient way to discover drugs with the potential

for repurposing is unclear.

In the time since the beginning of 2020, many attempts to predict candidate drugs for

repositioning have been made. Given the novel nature of the virus, methods of target

prediction have been forced to utilize the limited data that is available or creatively

repurpose data from related coronaviruses. In vitro screenings of chemical libraries have

been used to identify inhibitors of SARS-CoV-2 replication [165, 166] and cellular toxicity

[167]. Screenings of experimentally verified SARS-CoV-2 interacting host proteins [168]

have elucidated key infection mechanisms which, when compared to drug databases, have

predicted a range of possible targets for repurposing. Network analyses using protein
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interaction data from up to 13 related human coronaviruses [169, 170] combined with in

vitro screenings have identified additional sets of cellular pathways to consider for drug

repurposing. Topology of protein interactions and drug-gene interactions combined with

differential expression and pathway analysis has been used to identify possible mechanisms

of action for SARS-CoV-2 infection [171]. With each method integrating varying levels of

biological detail, overlap between studies is optimal for ensuring infection-specific relevance

and effectiveness.

There is precedent for network studies of many common viruses including hepatitis C

[128, 144], severe acute respiratory syndrome (SARS) [172, 173], Human immunodeficiency

virus (HIV) [173, 174, 175, 176, 177], and influenza virus [128, 123, 68, 178, 69]. Past

work studying the effects of influenza virus in PPI networks has focused on identifying host

factors involved in virus replication and improving the prediction of drug targets but often

focuses on the analysis of basic topological measurements. While this provides a general

overview of the state of the network, it is a static snapshot of the cell and, therefore, fails

to capture the dynamic nature of the cell’s pathways. To identify how these systems can

be manipulated and exploited to manage biological properties, a dynamic understanding of

disease progression is required.

Controllability, a concept from classic controls engineering, states that a system is

controllable if it can be driven to any final state within state space in finite time given an

appropriate external input [179]. This is commonly applied to linear, time invariant

dynamic systems:
dx(t)

dt
= Ax(t) +Bu(t) (3.1)

where A is an NxN matrix of state coefficients that describes how N molecule states, x(t),

interact within the system and B is a matrix of input weights describing how external

influences, u(t), impact the system. In general, a system is controllable if the controllability

matrix,

C = [B,AB,A2B, ..., AN−1B] (3.2)

is full rank, N . This means that the system can be manipulated to reach any desired

combination of states within all of state space following the defined input, B. In total, a
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Figure 3.1. An example protein-protein interaction network with three proteins and two protein
translation process inputs. The state space representation demonstrates that the change in state
of a protein’s concentration is a function of its current state and an input process. A classic
controllability analysis demonstrates that this system is fully controllable and could, therefore, be
driven to any possible state change in every protein.

controllability analysis identifies the key components of a system that must be manipulated

to drive desired system outcomes [180].

An example PPI network in Figure 3.1 is transformed into its state space matrix

representation. With the inclusion of two independent inputs (u1 and u2), the

controllability matrix is full rank. Therefore, the system is fully controllable and it is

possible to drive the protein concentrations to any desired state. Applying the idea of

controllability to a cell at the onset of infection, a virus aims to control cellular functions

(the system of proteins), promote virus replication tasks, and reach a final, infected cell

state. Theoretically, controllability can be used as a tool to identify the proteins of the

traditional B matrix that the virus must control. While it would be advantageous to

interpret the infection from this control perspective, mathematical limits are quickly

reached as a result of the system size, preventing the direct application of traditional

controllability methods to PPI networks.

Advances in network theory have created alternative methods of network controllability

evaluation that survey each node’s (protein’s) importance in the ability of an external set

of inputs to fully control the network. Controllability classification is founded in “driver

node” calculations: identifying the network components that must be manipulated for the

system to be fully controlled (analogous to determining the non-zero elements of the B

matrix in classic controllability). Without manipulation, driver nodes will remain unaffected
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by changes to the rest of the system, rendering the total system uncontrollable. Driver nodes

are identified using the Hopcroft-Karp algorithm [181] which can be applied to any directed

graph in bipartite form. This method calculates the maximum matching of the graph, or,

the largest set of network paths where no node is shared by two edges. Because each node

can only influence one of its interactors, the identification of these paths dictates the way in

which control can propagate through the network. The nodes that are not included in these

paths or at the start of these paths are not receiving control from a neighboring node and,

therefore, require “driving”. A set of driver nodes (size ND) that is capable of controlling the

total network is called a minimum input set (MIS). The MIS is not unique and the number

of possible MISs scales exponentially with the size of the network [182]. After a primary

MIS is calculated, two methods of controllability node classification can be used.

In robust controllability (by Liu et al. [116]), the MIS is re-calculated (size N ′D) after

removing each node from the network. The node is then classified by its effect on the

manipulation required to control the network, where an increase in the size of the MIS

makes it more difficult to control the network and a decrease in the size of the MIS makes

it easier to control the network. This method has previously been applied to many network

types such as gene regulatory networks, food webs, citation networks, and PPI networks to

better understand what drives the dynamics of each system [177, 116]. While it is useful

to observe the structural changes to the network after the removal of singular nodes, this

method only considers one possible MIS. A second global controllability method by Jia et al.

[182] classifies a node by its role across all possible MISs, placing each node in the broader

context of all possible control configurations.

A comparison of the controllability of the human protein-protein interaction network

(Host Interaction Network, HIN) and the human network with the addition of influenza A

virus or SARS-CoV-2-host protein interactions (Virus Integrated Network, VIN) can be

used to identify proteins with unique post-infection roles in driving total cell behavior.

Assuming the identified differences are representative of biological changes within the cell

(such as changes to gene regulation), the protein predictions have potential as virus-specific

drug targets. Here, proteins are identified by topological, controllability, and biological

relevance to both influenza A and SARS-CoV-2 infection and recommended for target
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prioritization based on previous druggability and relevance to functions such as translation,

cellular transport, and the immune response.

3.2 Materials and Methods

3.2.1 Protein-Protein Interaction Network Construction

The directed human protein-protein interaction network was published by Vinayagam et

al. [183]. The network was restricted to interactions with a confidence level greater than

0.7 based on the correlation between confidence scores and biological relevance as discussed

by Yu and Finley [184]. After construction, the Host Interaction Network (HIN) contains

6,281 proteins and 31,079 interactions. For influenza A virus studies, virus-host interactions

from Watanabe et al. [131] were narrowed to 2,592 directed interactions from 11 influenza

A virus proteins (HA, M1, M2, NA, NP, NS1, NS2, PA, PB1, PB2, and PB1-F2 proteins)

to 752 “virus interacting proteins” preexisting in the HIN. After integration into the HIN,

the network contains 6,292 proteins and 33,671 interactions. This network is referred to as

the “Virus Integrated Network” (VIN) in the influenza A study.

For SARS-CoV-2, host proteins identified in the SARS-CoV-2-host interactions from

Gordon et al. [168] were referenced against the host network. To construct the VIN, 23 of

the 27 SARS-CoV-2 proteins tested were added to the network along with 152 interactions

with 148 existing host proteins. Four SARS-CoV-2 proteins, spike, nsp11, ORF3b, and

ORF7a, had no known interactions with host proteins of the HIN and were omitted from

the analysis. In total, the VIN contains 6,304 proteins and 31,231 interactions. All network

construction and topological analysis was completed in R 3.6.1 using the igraph package.

3.2.2 Robust Controllability Classification

Methods for robust controllability are sourced from Liu et al.’s work [116]. An example

is found in Figure 3.2. For any network with n total nodes, a subset, ND, of driver nodes is

found using a maximum matching algorithm such as Hopcroft-Karp on the bipartite
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Figure 3.2. Application of robust controllability to determine the robustness of the network after
the removal of a protein and global controllability to assess the importance of a protein to all
methods of network control. Both methods rely on the calculation of a minimum input set (MIS)
of driver nodes which represent the proteins which require an input to be driven to a final state.

representation of the total network [181]. Each node of the network is removed, the driver

set is re-calculated (size N ′D), and the removed node is classified by its effect on the

changes to the size of the driver set. Increasing the number of driver nodes (N ′D > ND)

makes it more difficult to control the network (these nodes are classified as indispensable

nodes) and decreasing the number of driver nodes (N ′D < ND) makes it easier to control

the network (these nodes are classified as dispensable nodes). A removed node with no

effect on the number of driver nodes (N ′D=ND) is classified as a neutral node.

3.2.3 Global Controllability Classification

Calculations for global classification were adopted from Jia et al. [182]. An example is

found in Figure 3.2. For any network with n total nodes, a subset, ND, of driver nodes is

found using a maximum matching algorithm such as Hopcroft-Karp on the bipartite

representation of the total network [181]. Control adjacent nodes of all ND are identified

iteratively and used to create an input graph as described in Zhang et al. [185]. Global
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controllability classifies each node by its membership to all possible minimum input sets

(MISs) of the network. Critical nodes are included in all of the network’s possible MISs,

intermittent nodes are only included in some of the possible MISs, and redundant nodes

are not included in any of the possible MISs.

3.2.4 Prediction Validation

A test is needed to ensure that resulting predictions are meaningful and not simply a

consequence of network structure. 10,000 random protein sets the size of the number of

virus interacting proteins (752 for influenza A virus, 152 for SARS-CoV-2) were pulled from

the host proteins of the VIN. The degree and betweenness as well as the controllability

classifications of the pseudo-virus interacting proteins were compared to the true values of

the virus interacting proteins, driver proteins, and all proteins. Statistical significance was

determined with a Mann-Whitney U test.

Controllability-predicted proteins were cross-referenced with Interferome v2.01 [186] to

determine which genes were experimentally identified as interferon regulated genes (IRGs),

inductors of a fold change in expression greater than two in interferon knockdown studies.

For influenza virus, an additional validation was performed by comparing controllability

predicted proteins to 6 previous siRNA screens for host factors of influenza A virus replication

[150, 135, 136, 152, 149, 131]. Similar analysis could not be performed for SARS-CoV-2 as this

study occurred during the COVID-19 pandemic four months after the emergence of the virus

and siRNA screenings had yet to be performed. Ingenuity Pathway Analysis (IPA) was also

used to analyze the functional networks of the predictions for influenza [187], but could not be

completed for SARS-CoV-2 as IPA is proprietary software and could not be accessed in the

office during the SARS-CoV-2 global pandemic. For SARS-CoV-2, predicted candidates were

prioritized by cross-referencing Drugbank [188] to identify targets with known interactions

with drugs that have completed some or all of the FDA pipeline.
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3.3 Influenza A

3.3.1 Results

3.3.1.1 Addition of Virus Interactions to Host Network has Wide Reaching

Effect

As expected, only the 752 virus interacting proteins display an alteration in degree after

the addition of virus interactions to the network (Marked in blue in Figure 3.3a). This shift is

significant for the group of virus interacting proteins as compared to all proteins in both the

VIN (log scaled median of virus interacting proteins: 1.04; log scaled median of all proteins:

0.70; student t-test of log scaled data P value < 2.2 x 10−16) and the HIN (log scaled median

of virus interacting proteins: 0.85; log scaled median of all proteins: 0.70; Student t-test of

log scaled data P value: 5.97 x 10−12). The degree distributions of both networks are scale

free (Figure A1).

Because betweenness is sensitive to the information flow through all proteins instead of

only neighboring proteins, 2,735 proteins exhibit an increase in betweenness after the addition

of influenza virus interactions. Of these proteins, 207 proteins’ log betweenness exhibits an

increase of 2 or more in the VIN compared to the HIN (Figure 3.3b). This suggests that
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Figure 3.3. a) Degree of the VIN vs degree of the HIN where the virus interacting proteins are
marked in blue. The degree distributions of the networks are scale free. b) Difference in betweenness
between the VIN and HIN for proteins that exhibit a difference greater than one.
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the addition of influenza virus interactions has an effect on network topology that reaches

over 3.5 times the number of host proteins that are directly interacting with influenza virus

proteins. The betweenness shift in the group of virus interacting host proteins is significant

as compared to all proteins in both the VIN (Log scaled median of virus interacting proteins:

3.23; Log scaled median of all proteins: 2.82; Student t-test of log scaled data P value <

2.2 x 10−16) and the HIN (Log scaled median of virus interacting proteins 3.22; Log scaled

median of all proteins: 2.82; Student t-test of log scaled data P value: 2.13 x 10−15. This is a

result of directed interactions from viral to host proteins, making virus interacting proteins

responsible for information flow to the rest of the network.

Driver proteins (nodes) are the foundation of both types of controllability calculations,

representing the protein set that must be manipulated for the system to be fully controlled.

The proteins are identified through maximum matching algorithms [181]. The HIN and VIN

both require ND = 2,463 driver proteins to achieve full network controllability, suggesting

that the magnitude of network control is unchanged by the influence of the influenza virus

interactions. However, the identity of driver proteins shifts slightly as the 11 viral proteins

replace 11 host proteins within the primary MIS as drivers in the VIN. Table 3.1 lists the

identities of the 11 host proteins along with the shortest distance to an influenza virus

protein in the network, degree, and betweenness. Of these 11 proteins, only five are directly

interacting with influenza virus proteins. One of the remaining proteins is two steps (two

interactions and one connecting protein) from any influenza virus protein, and the remaining

five proteins are three steps from any influenza virus protein. The number of paths between

viral proteins and these proteins are reflective of the number of paths between viral proteins

and all host proteins (Fisher test P value: 0.99). This supports the idea that viral interactions

have lasting effects on the system’s control structure, affecting proteins that are multiple

paths away.
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Table 3.1. Identities of the proteins that are drivers in the HIN but not the VIN with the shortest
number of paths to an Influenza A viral protein. Degree and betweenness of the proteins of the VIN
is provided (with the values from the HIN in parenthesis). Only 45% of these proteins are directly
interacting with the viral proteins, demonstrating the cascade effect caused by the inclusion of viral
interactions

Entrez

ID

Gene Name Shortest

Dist. to

Virus

Deg. Bet.

10658 CUGBP, Elav-Like Family Member 1

(CELF1)

1 4 (4) 81 (81)

1969 EPH Receptor A2 (EPHA2) 1 14 (13) 93 (0)

6733 SRSF Protein Kinase 2 (SRPK2) 1 6 (2) 6023

(6023)

10318 TNFAIP3 Interacting Protein 1 (TNIP1) 1 7 (7) 115

(115)

2997 Glycogen Synthase 1 (GYS1) 3 4 (4) 384

(384)

10949 Heterogeneous Nuclear Ribonucleoprotein

A0 (HNRNPA0)

2 9 (2) 5 (0)

64112 Modulator of Apoptosis 1 (MOAP1) 1 8 (8) 6942

(6931)

10419 Protein Arginine Methyltransferase 5

(PRMT5)

3 26 (17) 6996

(4743)

10262 Splicing Factor 3b Subunit 4 (SF3B4) 3 13 (7) 82 (44)

23321 Tripartite Motif Containing 2 (TRIM2) 3 2 (2) 15 (15)

81603 Tripartite Motif Containing 8 (TRIM8) 3 3 (3) 0 (0)
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Lastly, analysis finds that 8.9% of all driver proteins are also virus interacting proteins,

meaning the intersection of the two protein groups of interest comprise only 3.5% of the total

network. There is a significant increase in the betweenness of driver proteins depending on

their status as virus interacting or influenza virus non-interacting proteins (Fisher test P

value < 2.2 x 10−16) where there is no significant difference in degree of the same groups

(Fisher test P value: 0.7161). This is further evidence that the addition of virus interactions

to the network magnifies information flow through the proteins most involved in controlling

network behavior.

3.3.1.2 Influenza A Virus Interacts with Proteins That Promote Cellular

Control

Robust controllability was calculated for all proteins of the HIN and VIN (as shown

in Table 3.2 with and without parentheses, respectively). The addition of influenza virus

interactions to the network has no effect on the distribution of classifications of host proteins,

and consequently, the virus interacting proteins. Upon entry to the VIN, the 11 influenza

virus proteins are classified as neutral, meaning that removing these proteins does not alter

the number of driver proteins required to control the VIN (ND = N ′D). This reveals that the

removal of singular proteins from the system is not enough to disturb the existing control

structure under robust controllability.

While none of the proteins change robust classification between networks, the

aforementioned replacement of 11 host driver proteins with viral proteins after the addition

Table 3.2. Robust controllability types of all proteins, driver proteins, and virus interacting
proteins in the VIN (HIN in parenthesis).

All Proteins Driver Proteins Virus Interacting Proteins

Indispensable 1,169 (1,169) 0 (0) 186 (186)

Neutral 2,669 (2,658) 803 (799) 312 (312)

Dispensable 2,454 (2,454) 1,660 (1,664) 254 (254)
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of virus interactions creates a small change in robust type distribution for driver proteins.

Of the displaced host proteins (deemed “robust proteins”, found in Table 3.1), seven are

neutral and four are dispensable in the HIN, meaning that their removal from the network

does not change the number of driver proteins and reduces the number of driver proteins

needed, respectively. All influenza virus proteins are classified as dispensable in the VIN.

Of the five robust proteins that are both driver and virus interacting proteins, four are

neutral and one is dispensable. The most notable change in degree and betweenness

between the HIN and VIN is PRMT5, with an increase of 9 and 2250, respectively. Overall,

robust controllability results suggest that the HIN is stable against potential changes in the

control structure that could be caused by the addition of influenza virus interactions.

Robust type distributions were plotted against the classification results of virus

interacting proteins, driver proteins, and all proteins in the VIN (Figure 3.4a-c). Randomly

sampled protein sets closely resemble all proteins of the network, not the true interacting

protein set, suggesting that robust controllability behavior of interacting proteins is not a

coincidence of network construction (one-sided P value: 0.51, 0.49, and 0.50 for

indispensable, neutral, and dispensable, respectively). Virus interacting proteins tend to be

indispensable compared to the percentage of all proteins that are indispensable (Figure

3.4a). This suggests that viruses prefer to interact with proteins that are vital to cellular

control. Driver proteins are very likely to be dispensable proteins compared to the percent

of all proteins that are dispensable (Figure 3.4c). Further, the mean and median log degree

and betweenness of the randomly sampled protein sets is significantly lower than the same

measurements of the true virus interacting set (P value: < 2.2 x 10−16, < 2.2 x 10−16,

Figure 3.5), signifying that virus interacting proteins are in positions of network

significance. Overall, the robust controllability results of virus interacting proteins suggest

that the virus may be selectively targeting host proteins based on controllability

characteristics.
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a) c)b)

d) f)e)

Figure 3.4. a-c) Density plots of distribution of robust controllability type for 10,000 random pulls
of 752 proteins (number of virus interacting proteins in network). d-f) Density plots of distribution
of global controllability type for 10,000 random pulls of 752 proteins (number of virus interacting
proteins in network). Values for virus interacting proteins (blue), driver proteins (green), and all
proteins (gold) are pictured for all figures.
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a)

b)

Figure 3.5. Density plots of a) mean (blue) and median (green) log degree of random virus
interacting protein sets and b) mean (blue) and median (green) log betweenness of random virus
interacting protein. Values for the true influenza virus interaction set shown as vertical lines,
evidence that host proteins that directly interact with viral proteins are in positions of network
significance.
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3.3.1.3 Global Controllability Predicts Key Regulators of Influenza Infection

Global controllability was calculated for all proteins of the HIN and VIN (as shown

in Table 3.3 with and without parentheses, respectively). Unlike in robust controllability,

there is a small disturbance to global type distributions of host proteins after the addition

of virus interactions. 24 host proteins shift from being classified as critical (a member of

all MISs) to intermittent (a member of some MISs) proteins. Identities of these proteins

(deemed “global proteins”) can be found in Table 3.4 along with the shortest distance to an

influenza virus protein in the network and protein degree and betweenness. The two most

notable changes in degree and betweenness between the HIN and VIN are EPH receptor A2

(EPHA2) with an increase of 1 and 93, respectively, and transferrin receptor (TFRC), with

an increase of 3 and 164, respectively. All 24 global proteins are driver and virus interacting

proteins which, as mentioned, only comprises 3.5% of the total network. There are only two

proteins (EPHA2 and HNRNPA0) that are also members of the robust protein set. 45%

of virus interacting proteins are never drivers, suggesting that they are always manipulated

by neighboring host proteins within any possible control configuration. Virus interacting

proteins are not enriched for driver proteins (Fisher test P value: 0.14).

Table 3.3. Global controllability types of all proteins, driver proteins, and virus interacting
proteins in the VIN (HIN in parenthesis).

All Proteins Driver Proteins Virus Interacting Proteins

Critical 512 (525) 512 (525) 0 (24)

Intermittent 3,342 (3,318) 1,951 (1,938) 411 (387)

Redundant 2,438 (2,438) 0 (0) 341 (341)
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Table 3.4. Identities of global Proteins (proteins that shift global classification between the
HIN and VIN). All identified proteins are directly interacting with viral proteins. Degree and
betweenness of the proteins of the VIN is provided (with the values from the HIN in parenthesis).

Entrez

ID

Gene Name Shortest

Dist. to

Virus

Deg. Bet.

56655 DNA Polymerase Epsilon 4, Accessory

Subunit (POLE4)

1 2 (1) 1 (0)

30846 EH Domain Containing 2 (EHD2) 1 3 (1) 1 (0)

1969 EPH Receptor A2 (EPHA2) 1 14 (13) 93 (0)

2665 GDP Dissociation Inhibitor 2 (GDI2) 1 3 (1) 2 (0)

51552 RAB14, Member RAS Oncogene Family

(RAB14)

1 2 (1) 1 (0)

2091 Fibrillarin (FBL) 1 9 (4) 19 (0)

10949 Heterogeneous Nuclear Ribonucleoprotein

A0 (HNRNPA0)

1 9 (2) 5 (0)

3032 Hydroxyacyl-Coa

Dehydrogenase/3-Ketoacyl-Coa

Thiolase/Enoyl-Coa Hydratase

(Trifunctional Protein), Beta Subunit

(HADHB)

1 9 (5) 26 (0)

3419 Isocitrate Dehydrogenase 3 (NAD(+))

Alpha (IDH3A)

1 3 (1) 2 (0)

4191 Malate Dehydrogenase 2 (MDH2) 1 3(1) 1 (0)

64949 Mitochondrial Ribosomal Protein S26

(MRPS26)

1 2 (1) 0 (0)

9180 Oncostatin M Receptor (OSMR) 1 6 (5) 18 (0)
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Table 3.4. (Continued)

Entrez

ID

Gene Name Shortest

Dist. to

Virus

Deg. Bet.

5052 Peroxiredoxin 1 (PRDX1) 1 11 (4) 44 (0)

5213 Phosphofructokinase, Muscle (PFKM) 1 6 (5) 17 (0)

26227 Phosphoglycerate Dehydrogenase (PHGDH) 1 4 (2) 9 (0)

5817 Poliovirus Receptor (PVR) 1 7 (6) 42 (0)

5686 Proteasome Subunit Alpha 5 (PSMA5) 1 6 (5) 11 (0)

5464 Pyrophosphatase (Inorganic) 1 (PPA1) 1 6 (5) 5 (0)

113174 Serum Amyloid A Like 1 (SAAL1) 1 2 (1) 1 (0)

6745 Signal Sequence Receptor Subunit 1 (SSR1) 1 4 (2) 12 (0)

7037 Transferrin Receptor (TFRC) 1 11 (8) 164 (0)

8834 Transmembrane Protein 11 (TMEM11) 1 4 (3) 20 (0)

30000 Transportin 2 (TNPO2) 1 2 (1) 1 (0)

7407 Valyl-Trna Synthetase (VARS) 1 3 (1) 0 (0)

Again, a randomized protein set was created to test if influenza virus may be selectively

interacting with host proteins based on controllability characteristics. 10,000 random sets of

752 proteins (the number of virus interacting proteins) were sampled from the host proteins

of the VIN. Their global type distributions were plotted against the classification results

of virus interacting proteins, driver proteins, and all proteins in the VIN (Figure 3.4d-f).

As with the robust classification, the random sets closely resemble the total network (one-

sided P value: 0.50, 0.51, and 0.50 for critical, intermittent, and redundant, respectively).

While there are no redundant driver proteins by definition, driver proteins are more likely

to be intermittent proteins than critical proteins (Figure 3.4d-e), where more than 75% of
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Figure 3.6. A comparison of the a) degree and b) betweenness of the robust (purple) and global
(yellow) protein sets identified for influenza A virus. Global proteins are noted for a betweenness
of 0 in the HIN while increasing orders of magnitude in the VIN.

all driver proteins are missing from at least one possible MIS. This means the majority of

possible driver proteins are controllable by a neighboring protein in at least one MIS. Virus

interacting proteins tend to be redundant compared to the total number of proteins that are

redundant (Figure 3.4f). This suggests that viruses prefer to interact with proteins that are

part of existing control structures to receive input from neighboring proteins.

Overall, global calculations identify a set of proteins for consideration that are more

important within the VIN than the HIN. This is demonstrated through a comparison of

degree and betweenness for the identified robust and global driver sets in Figure 3.6.

Proteins identified in the robust analysis show little deviation in both degree (Figure 3.6a)

and betweenness (Figure 3.6b) measures after the addition of virus-host interactions to the

network. In contrast, proteins identified in the global analysis show much larger deviations

in degree (Figure 3.6a) and betweenness (Figure 3.6b) with all proteins having a

betweenness of 0 in the HIN with an up to two log unit increase in the VIN (Table 3.4).

Because the identified proteins were not responsible for information flow until the addition

of virus-host interactions to the network, this suggests that the global protein set may

identify key regulators of host immune response to infection.
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Figure 3.7. Percent of each a) robust classification type and b) global classification type confirmed
in 6 siRNA screens (Brass, Karlas, Shapira, Hao, Konig, Watanabe). None of the 6 possible
classifications are more than 5% validated in the screenings, suggesting that experimental findings
do not favor certain protein controllability types.

3.3.1.4 Partial Genome siRNA Screens Do Not Favor Specific Controllability

Classifications

All proteins were checked against 6 siRNA screens for host factors involved in influenza

replication (Brass et al. [150], Hao et al. [135], Karlas et al. [136], Konig et al. [152], Shapira

et al. [149], and Watanabe et al. [131]), grouped by both robust and global controllability

classifications. Less than 5% of all classifications of both types are validated by any of the

6 screens (Figure 3.7), suggesting that no controllability classification is more enriched for

host factors than another. This is likely due to the low agreement observed across siRNA

studies [135]. However, the driver proteins that change robust and global classification have

higher hit rates in siRNA screens, with 2 of 11 changing MIS proteins (SF3B4, SRPK2, 18%

validation) and 5 of 24 global-identified proteins (OSMR, PPA1, PSMA5, POLE4, GDI2,

21% validation), though neither are statistically significant results (Fisher P values of 0.685

and 0.252, respectively).

An analysis of both protein sets of interest was performed using Ingenuity Pathway

Analysis (IPA) [187]. The network created for the robust protein set identified cellular

compromise, cell death, and cell cycle functions. The network created for the global protein
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set identified protein synthesis functions, all centered around NF-kB. The global network

notably recognizes six proteins (EPHA2, FBL, PFKM, PSMA5, SSR1, and TFRC) for their

involvement in the infection of cells (P value: 9.58 x 10−4). Four proteins in the robust

network (CELF1, SF384, SRPK2, and HNRNPA0, the last of which appears in both protein

sets) were identified for their involvement in mRNA processing (P value: 3.33 x 10−6).

Lastly, Interferome v2.01 [186] was used to determine if the 11 robust proteins and 24 global

proteins are interferon regulated genes (IRGs). All 11 robust proteins are identified as

IRGs and exhibit a 2-fold change in expression when treated with interferon in at least one

experimental dataset. 20 of 24 global proteins are identified as IRGs and exhibit a 2-fold

change in expression in at least one experimental dataset. 6 global proteins are identified in

more than 10 studies. In particular, HNRNPA0 and PPA1 are significantly down regulated in

20 and 63 datasets, respectively. These results point toward the involvement of the predicted

protein subsets in immune response events. An overall summary of results can be found in

Table 3.5.

Table 3.5. Summary of results for proteins identified in the global controllability analysis.

Quality Frequency in Global Protein Set

Driver protein 100%

virus interacting protein 100%

Identified in robust protein set 8%

Validated in at least one siRNA screen 21%

Cell infection - functional enrichment 25%

mRNA processing - functional enrichment 17%

Interferon regulating gene 83%

3.3.2 Summary

In total, this two-part network controllability analysis for a host protein-protein

interaction network (HIN) and an integrated influenza virus-host protein-protein

interaction network (VIN) aims to enhance the prediction of antiviral drug targets for
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influenza A virus. While robust controllability methods have previously been applied to

study PPI networks [177], past analysis focuses only on the classification of virus

interacting proteins and does not evaluate changes induced by the addition of virus-host

interactions to the network. This study marks the first time a global controllability analysis

has been applied to PPI networks. The unique construction of the VIN requires only a

minimal disease specific virus-host interaction dataset [131] that represents opportunities

for the virus to manipulate host intracellular machinery using protein-protein interactions.

Here, analysis of the transition between the healthy and infected network states and

further investigation of virus interacting and driver proteins has identified 24 proteins as

regulatory markers of the infected state. This protein set is noted for its characteristics in

topology, controllability, and functional roles within the infected cell: results that are

summarized in Table 3.5. Our workflow observes both the effect of structural changes to

the network in the case of potential protein knock outs, as well as each protein’s role in all

MISs, representing all possible ways of controlling the system. In combination, the network

approach and results provide deeper understanding of how changes to cell behavior at the

onset of infection are able to occur through the work of a small set of viral proteins.

Through understanding the system in this way, we present the possibility to “outsmart”

viral attack by dismantling the control structure that allows the viral infection to take hold.

A network representation of the cellular environment demonstrates that the effects of

infection (represented by the addition of virus-host interactions) cascade through the

system, demonstrated by the alteration of basic topology measures. The betweenness shift

between the two networks, particularly in virus interacting proteins, supplies evidence that

the topological effect of viral infection is wide reaching (Tables 3.1 and 3.4). Further, a

comparison of driver protein betweenness for those that are also virus interacting proteins

in comparison to those that are not shows a significant difference. Driver proteins that are

virus interacting are not receiving control influence from viral proteins (dictated by the

maximum matching requirement that each protein only control a single protein) and

require additional external influence to achieve network control. However, the increased

betweenness of proteins that are both driver and virus interacting proteins suggests that

this group is still of great importance to information flow through the network. This is one
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example where differences in network topology measures can emphasize the importance of

select proteins that are overlooked by controllability principles.

Controllability analyses confirm that virus interacting proteins are in positions of

significance for both types of classification. The increased population of indispensable virus

interacting proteins (robust controllability: N ′D > ND, Figure 3.4a) compared to what

would be expected by random chance suggests that it would be more difficult for an

outside influence (such as viral infection) to control the network after removing the virus

interacting proteins opposed to a randomly selected protein. This is logical as virus

interacting proteins act as the connection between viral proteins and the host network

where control is initiated. The increased population of redundant virus interacting proteins

(global controllability: never a driver protein, Figure 3.4f) when compared to the random

expectation indicates that more virus interacting proteins are always being manipulated

internally than would be expected by chance. This means that they are fully incorporated

into the control structure of the VIN. From these two results, one can conclude that virus

interacting proteins contribute to both the “gate” (the ease of entering the system) and the

“heart” (the proteins responsible for propagating control through the system) of the

network control structure during infection. These findings support the idea that viruses are

likely to interact with proteins that offer an advantage to total network control.

Similarly, both sets of controllability results demonstrate that driver proteins play

interesting roles in the network control structure. The large population of dispensable

driver proteins (robust controllability: N ′D < ND, Table 3.2) signifies that the majority of

driver proteins are making it more difficult to control the network by requiring more

external inputs to control system behavior. In their absence, the number of driver proteins

would decrease and it would theoretically be easier for a viral attack to compromise the

network control structure. As such, a possible strategy for drug development could be to

protect these proteins from repression effects during infection. Over 75% of driver proteins

are classified as intermittent (global controllability: sometimes a driver protein, Table 3.3),

meaning there is at least one MIS where these driver proteins are not drivers, and receive

control influence through internal propagation. This lends itself to the idea of viral escape
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routes: under pressure, virus proteins could utilize alternative pathways to maintain

system control and reach the goal of hijacking cellular function.

The method of controllability implementation used identifies protein sets of interest

through changes to classification between the HIN and VIN. However, robust classification

methods do not detect a change between the two networks in this study. As it is a measure

of the robustness of the network to structural changes in the absence of each protein, this

suggests that the HIN upholds its typical control structure during influenza virus infection.

This result could be a consequence of the interaction data used or it may be that the

strategy applied here cannot distinguish between the behavior of healthy and diseased

states. Knowing the extent of changes to cell behavior within immune response pathways

[189, 190, 191], apoptosis signaling [192, 193], and transcriptional processes [194, 195, 196]

during infection, the infected cell should be interpreted as a different system. The failure to

see this distinction may be a shortcoming of the robust controllability calculation,

especially knowing that the 11 robust proteins are not unique due to the method’s use of a

single MIS.

The 24 proteins identified by global controllability show promise as indicators of

regulatory roles specific to the infected state. All global proteins are virus interacting and

driver proteins, a high distinction which demonstrates a significant importance to network

information flow marked by significantly higher betweenness in the VIN than even driver

proteins that are not virus interacting. Additionally, all global proteins have no importance

to network flow in the HIN (betweenness = 0) (Table 3.4), suggesting their role in network

structure “turns on” after the onset of infection. It is noteworthy that PRDX1 has been

implicated in respiratory syncytial virus (RSV) [197], a lower respiratory tract infection

that is often associated with influenza virus [198]. Though the number of global proteins

identified in existing siRNA screening data is not statistically significant, it should be

noted that siRNA screens cover only the partial genome. As such, this type of analysis

could be used to direct future experimental studies to save time, money, and effort. IPA

analysis reveals that some of the identified proteins hold roles in mRNA processing, an

integral part of the influenza virus’ ability to spread through processing its own RNA using

host machinery [199]. The global protein network is centered around NF-kB, which is
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implicated in host immunity with evidence that the virus directly inhibits NF-kB activity

[200, 201]. The interferon regulating roles of proteins in a high number of both identified

sets (all 11 changing MIS proteins and 20 of 24 global-identified proteins) speak to their

high responsibility in controlling infection. PPA1 and HNRNPA0 appear as downregulated

in 63 and 20 studies, respectively, when treated with interferon, solidifying their

involvement in the host immune response. In total, this evidence suggests that

controllability analyses hold power as predictors for important regulators of the host

response to influenza infection and, therefore, hold power for drug target prediction.

Existing influenza virus studies using PPI networks require additional data such as

differentially expressed gene information [124] or protein context [202] to construct host

response networks. Alternative methods such as DeltaNet [203, 204] and ProTINA [205]

utilize gene transcription profiles to infer protein drug targets, but rely on the accurate

deduction of gene regulatory networks. More recent PPI studies have used network growing

functions such as GeneMANIA, STRING, and IPA [125] to predict influenza virus host

factors and studied infected cell systems through the integration of screening data with

network methods [69, 126]. Approaches incorporating time course data into network

analysis have also been explored [206]. While these methods (including basic network

metrics such as degree and betweenness of PPI networks) have been successful at

identifying disease host factors and in drug target development in the existing body of

work, this dual controllability study offers a novel, in-depth analysis of the role of

individual proteins in the context of total system function and how possible changes to the

system can be interpreted.
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3.4 SARS-CoV-2

3.4.1 Addition of Virus Interactions to Host Network Significantly Changes

Network Topology

Median log10 degree and betweenness of the HIN is 0.699 and 2.945, respectively. Median

log10 degree and betweenness of the VIN is 0.699 and 2.823, respectively. There is no

statistical difference between the degree or betweenness of the HIN and VIN (Wilcoxon rank

sum test P values: 0.776 and 0.994, respectively), however, all host proteins have higher

betweenness in the VIN compared to the HIN. While viral proteins only interact with 148

proteins, the topological effects are seen across the entire network. Median log10 degree

and betweenness of host proteins directly interacting with at least one SARS-CoV-2 protein,

or “virus interacting proteins”, in the HIN are 0.699 and 3.053, respectively. The same

values in the VIN are 0.778 and 3.449, respectively. There is a significant difference in mean

degree and betweenness distributions of virus interacting proteins compared to the total

protein population of the VIN (two sample t-test P value: 3.02 x 10−5 and 1.801 x 10−6,

respectively). All described degree and betweenness distributions are found in Figure 3.8.

3.4.2 Immune Proteins Become Driver Proteins at the Onset of Infection

Driver proteins are a subset of the network’s proteins that must be directly controlled

to manipulate total system behavior. This subset, size ND, is identified through maximum

matching algorithms [181] and serves as the first step in both methods of controllability.

Calculations identified ND = 2,463 in the HIN and ND = 2,466 in the VIN, implying that

there is little change to the control structure of the network during infection. All SARS-CoV-

2 proteins are driver proteins of the VIN. The 20 host proteins displaced by SARS-CoV-2

proteins as drivers are deemed “displaced proteins”. Their identities are listed in Table 3.6.

Only five displaced proteins are not virus interacting proteins (HPR, CNNM3, TRIM51,

DIP2A, MICA). The removal of these five proteins as drivers of infected cell behavior in the

VIN suggests that they have fallen under the control of viral proteins or are part of a host

cascade that has been activated in the response. Two proteins are of note: first,
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a

b

Figure 3.8. The log10 (a) degree and (b) betweenness distributions of the Host Interaction Network
(HIN) and Virus Interaction Network (VIN) with the corresponding distributions for the subset of
SARS-CoV-2 interacting host proteins.
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Table 3.6. The identities of the displaced driver proteins: the proteins that are drivers in the
HIN, not the VIN. If the proteins are also virus interacting, viral protein interactor is given along
with status as an interferon regulated gene (IRG).

Entrez

ID

Gene Name Virus

Interaction

IRG

3250 haptoglobin-related protein (HPR) - X

23225 nucleoporin 210 (NUP210) Nsp4 X

26505 cyclin and CBS domain divalent metal cation transport

mediator 3 (CNNM3)

- X

5557 primase (DNA) subunit 1 (PRIM1) Nsp1 X

23367 La ribonucleoprotein domain family member 1

(LARP1)

N X

382 ADP ribosylation factor 6 (ARF6) Nsp15 X

2802 golgin A3 (GOLGA3) Nsp13 X

949 scavenger receptor class B member 1 (SCARB1) Nsp7 X

10280 sigma non-opioid intracellular receptor 1 (SIGMAR1) Nsp6

84767 tripartite motif-containing 51 (TRIM51) - X

3615 inosine monophosphate dehydrogenase 2 (IMPDH2) Nsp14 X

9470 eukaryotic translation initiation factor 4E family

member 2 (EIF4E2)

Nsp2

55823 VPS11, CORVET/HOPS core subunit (VPS11) ORF3a,

ORF8

X

523 ATPase H+ transporting V1 subunit A (ATP6V1A) M X

2876 glutathione peroxidase 1 (GPX1) Nsp5 C145A X

23181 disco interacting protein 2 homolog A (DIP2A) - X

2150 F2R like trypsin receptor 1 (F2RL1) ORF9c X
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Table 3.6. (Continued)

Entrez

ID

Gene Name Virus

Interaction

IRG

5817 poliovirus receptor (PVR) ORF8 X

6731 signal recognition particle 72 (SRP72) Nsp8 X

4276 MHC class I polypeptide-related sequence A (MICA) -

TRIM51 is a member of the tripartite interaction motif family of innate immunity regulators

[207]. It is previously shown to be highly upregulated in the presence of TLR3 and TLR4

ligands [208] of the viral RNA sensing pathway [209]. Second, MICA is an MHC class

I cell surface protein that regulates the activation of both T cells and natural killer cells

during a stress response along with other NKG2D ligands such as RAE1 [210, 211]. The

displaced protein set was analyzed with Interferome v2.01 [186] to determine their status as

interferon regulated genes (IRGs) known to exhibit a fold change in expression greater than

two in interferon knockdown studies. All displaced proteins are IRGs with the exception

of SIGMAR1, EIF42E, and MICA. The altered role of these immune proteins as drivers of

network behavior is representative of the activation of immune response pathways.

A robust controllability analysis was performed on the HIN and VIN to determine the

effect of singular protein components on total system behavior. The classification results are

shown in Table 3.7. Aside from the addition of viral nodes, there is very little change to the

robust controllability of the VIN as compared to the HIN. The majority of all proteins are

classified as neutral (VIN: 42.4%, HIN: 42.3%) and dispensable (VIN: 39.0%, HIN: 39.1%),

suggesting that most proteins are regulated by neighboring protein pathways (neutral) or

make the network easier to control in their absence (dispensable). Conversely, the loss

of a small proportion of indispensable proteins (VIN and HIN: 18.6%) would make the

network increasingly difficult to regulate. The driver protein population is skewed toward

those with dispensable classifications (VIN: 67.2%, HIN: 67.6%) as compared to all proteins.

Classifications of virus interacting proteins are similar to those of the total
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Table 3.7. The number of proteins in each robust controllability category for all proteins, driver
proteins, and SARS-CoV-2 interacting proteins. Values are reported as totals and percent total for
the VIN (HIN).

Indispensable Neutral Dispensable Total

All proteins
1170 (1169) 2675 (2658) 2459 (2454) 6304 (6281)

18.6% (18.6%) 42.4% (42.3%) 39.0% (39.1%) 100%

Driver proteins
0 (0) 810 (799) 1656 (1664) 2466 (2463)

0% (0%) 32.8% (32.4%) 67.2% (67.6%) 100%

Virus interacting
32 (30) 57 (57) 59 (61) 148 (148)

proteins 21.6% (20.3%) 38.5% (38.5%) 39.8% (41.2%) 100%

network, eliminating the possibility that viral interactions target proteins that are

advantageous to robust controllability. Viral proteins E, nsp5, and nsp10 are classified as

dispensable in the VIN. All other viral proteins are classified as neutral.

The nine host proteins that change robust classification after the addition of viral

interactions are listed in Table 3.8. Four of the “robust proteins” are also virus interacting

proteins (IMPDH2, RAE1, SIGMAR1, NUP210) and three belong to the displaced protein

set (IMPDH2, SIGMAR1, NUP210). While only the four virus interacting proteins exhibit

an increase in degree from a singular viral interaction, all nine robust proteins demonstrate

an increase in betweenness in the infected network, some by orders of magnitude. Of note,

the betweenness of IMPDH2 increases from 65 to 4090 and SIGMAR1 reaches 4094 where

it has a betweenness of 0 in the HIN. This trend demonstrates the importance of the

robust protein set to network information flow and regulation in the infected cell. There is

no trend in the changes to classification type for the robust group. Only two robust

proteins were identified as IRGs with a fold change greater than two by Interferome

(IMPDH2, DYNLT1).
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Table 3.8. The identities and topological characteristics of the proteins identified in the robust
controllability analysis. Values for degree, betweenness, and classification are given as VIN (HIN).
Classification is denoted as indispensable, I; neutral, N; and dispensable, D. Genes that have
experimentally shown a fold change in expression greater than 2 during interferon knockdown
studies are denoted as interferon regulated genes (IRGs).

Entrez

ID

Gene Name Deg. Bet. Class. IRG

1174 adaptor-related protein complex 1

sigma 1 subunit (AP1S1)

3 (3) 34.1

(33.0)

D (N)

3615 inosine monophosphate dehydrogenase

2(IMPDH2)

4 (3) 4090.0

(65.0)

N (D) X

6993 dynein light chain Tctex-type

1(DYNLT1)

11

(11)

44,093.7

(43,902.7)

D (N) X

8480 ribonucleic acid export 1(RAE1) 6 (5) 3863.3

(1076.3)

I (N)

10280 sigma non-opioid intracellular receptor

1(SIGMAR1)

3 (2) 4094.0

(0.0)

I (N)

10987 COP9 signalosome subunit 5(COPS5) 33

(33)

30,094.4

(29,968.0)

N (I)

23225 nucleoporin 210(NUP210) 4 (3) 331.1

(325.9)

N (D)

64326 ring finger and WD repeat domain

2(RFWD2)

3 (3) 207.1

(206.8)

D (N)

64837 kinesin light chain 2(KLC2) 7 (7) 463.2

(460.3)

D (N)
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To assess whether the robust controllability classifications of the driver and virus

interacting proteins are a result of the network’s connectivity structure, a randomization

analysis was performed. A random set of 148 host proteins representing a “pseudo-virus

interacting” protein set was pulled from the network and assessed for robust controllability.

The resulting distributions from 10,000 iterations of this process are reported in Figure

3.9a against the true values for all proteins, driver proteins, and virus interacting proteins.

Distributions are reflective of the true values of all proteins for all three robust

controllability classifications. True values for virus interacting proteins also fall within the

distributions for robust classifications implying that there is no regulatory advantage for

the particular set of host proteins interacting with SARS-CoV-2 within the robust

controllability framework. However, true values for driver proteins fall outside the

distributions generated by the pseudo-sets, implying that the groups are distinctly different

in regulatory function. A topological analysis including the median and mean values of the

same distributions against the true values for virus interacting proteins is shown in Figure

3.10. The mean log10 degree and betweenness is significantly higher than the corresponding

distribution mean (one-sided t-test P values: 2.2 x 1016, 2.2 x 1016) implying that the virus

prefers to interact with proteins that hold significance to network structure.

a b

Figure 3.9. Distributions of controllability classification results of 10,000 random “pseudo-virus
interacting” protein sets for (a) robust controllability and (b) global controllability. True values for
all proteins (blue), driver proteins (green), and virus interacting proteins (yellow) of the VIN are
shown as reference for each classification.

61



a) b)

Figure 3.10. Distributions of (a) log10 degree and (b) log10 betweenness of 10,000 random “pseudo-
virus interacting” protein sets. True values for virus interacting proteins are shown in yellow.

3.4.3 Global Controllability Predicts Key Regulators of SARS-CoV-2 Infection

Similarly, a global controllability analysis was performed on the HIN and VIN. Results

are shown in Table 3.9. As in the robust controllability analysis, global controllability

classifications of the VIN’s proteins are almost identical to those of the HIN. Over half

(VIN: 52.7%, HIN: 52.8%) of all proteins are classified as intermittent, suggesting that the

majority of proteins are able to play a role in cellular regulation. Only a small percentage

(VIN: 8.6%, HIN: 8.4%) of all proteins are classified as critical, meaning they are involved

in all combinations of network regulators. By definition, driver nodes cannot be redundant,

therefore, they are predominately classified as intermittent (VIN: 78.1%, HIN: 80.5%).

Unlike the robust analysis, classifications of virus interacting proteins differ slightly from

those of the total protein population. The eight critical virus interacting proteins of the

HIN become intermittent in the VIN, losing some control over infected network regulation.

There is a higher proportion of redundant virus interacting proteins in the VIN (46.6%)

compared to both the virus interacting proteins in the HIN and all proteins of both the

VIN and HIN (HIN virus interacting proteins: 32.9%, VIN all proteins: 38.7%, HIN all

proteins: 38.8%), suggesting that proteins that directly interact with the virus are

transitioning into deferential roles after the onset of infection. All 23 viral proteins are

classified as critical in the VIN, always holding control of network regulation.
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Table 3.9. The number of proteins in each global controllability category for all proteins, driver
proteins, and SARS-CoV-2 interacting proteins. Values are reported as totals and percent total for
the VIN (HIN).

Critical Intermittent Redundant Total

All proteins
540 (525) 3322 (3318) 2442 (2438) 6304 (6281)

8.6% (8.4%) 52.7% (52.8%) 38.7% (38.8%) 100%

Driver proteins
540 (525) 1926 (1983) 0 (0) 2466 (2463)

21.9% (21.3%) 78.1% (80.5%) 0% (0%) 100%

Virus interacting
0 (8) 79 (75) 69 (65) 148 (148)

proteins 0% (5.4%) 53.4% (50.7%) 46.6% (32.9%) 100%

Eleven host proteins change classification after the addition of viral interactions (Table

3.10). All eleven “global proteins” interact with SARS-CoV-2 proteins with six belonging

to the displaced protein set (SCARB1, IMPDH2, PVR, EIF4E2, SIGMAR1, and NUP210).

Four global proteins are also identified as robust proteins (IMPDH2, RAE1, SIGMAR1, and

NUP210). With the exception of EIF4E2, SIGMAR1, and SAAL1, all members of the set

were identified as IRGs with a fold change greater than two by Interferome.

The betweenness of the global protein set increases after the addition of virus-host

interactions. In particular, the betweenness of eight of the global proteins (SCARB1, PVR,

EIF4E2, CEP135, SIGMAR1, TOR1AIP1, RAB14, and SAAL1) is 0 in the HIN before

increasing by several orders of magnitude in the VIN, implying that these proteins are

integrated into the network information flow at the onset of infection. Supporting this,

seven of the eight shift from critical to intermittent classification (SIGMAR1 becomes

redundant) after the integration of viral interactions, indicating new regulation and a loss

of control over the network. A topological comparison of the robust and global protein sets

within the HIN and VIN (Figure 3.11) demonstrates larger differences between the degree

and betweenness of the two networks, making the global controllability analysis a better

predictor of the regulators of the infected cell.
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Table 3.10. The identities and topological characteristics of the proteins identified in the global
controllability analysis. Values for degree, betweenness, and classification are given as VIN (HIN).
Classification is denoted as indispensable, I; neutral, N; and dispensable, D. Genes that have
experimentally shown a fold change in expression greater than 2 during interferon knockdown
studies are denoted as interferon regulated genes (IRGs).

Entrez

ID

Gene Name Deg. Bet. Class. IRG

949 scavenger receptor class B member

1(SCARB1)

5 (4) 1098.0

(0.0)

I (C) X

3615 inosine monophosphate dehydrogenase

2(IMPDH2)

4 (3) 4090.0

(65.0)

R (I) X

5817 poliovirus receptor (PVR) 7 (6) 349.6

(0.0)

I (C) X

8480 ribonucleic acid export 1(RAE1) 6 (5) 3863.3

(1076.3)

R (I) X

9470 eukaryotic translation initiation factor 4E

family member 2(EIF4E2)

4 (3) 672.1

(0.0)

I (C)

9662 centrosomal protein 135(CEP135) 2 (1) 46.6

(0.0)

I (C) X

10280 sigma non-opioid intracellular receptor

1(SIGMAR1)

3 (2) 4094.0

(0.0)

R (C)

23225 nucleoporin 210(NUP210) 4 (3) 331.1

(325.9)

R (I) X

26092 torsin 1A interacting protein 1(TOR1AIP1) 2 (1) 41.1

(0.0)

I (C) X

51552 RAB14, member RAS oncogene family

(RAB14)

2 (1) 1.0 (0.0) I (C) X

113174 serum amyloid A like 1(SAAL1) 2 (1) 78.2

(0.0)

I (C)
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a) b)

Figure 3.11. A comparison of the (a) degree and (b) betweenness of the robust (yellow) and
global (green) protein sets.

A randomization analysis was performed using the same “pseudo-virus interacting”

protein sets assessed for robust controllability classifications. The resulting distributions

from the 10,000 iterations are found in Figure 3.9b against the true values for all proteins,

driver proteins, and virus interacting proteins. Again, random distributions are reflective of

the true values from the global controllability of all proteins. While the true value for

intermittent virus interacting proteins reflects the random distributions, true values for

critical and redundant proteins fall at the tails of the distributions suggesting a regulatory

advantage in SARS-CoV-2 interacting with redundant host proteins. True values for driver

proteins fall outside the distributions generated by the pseudo-sets, supporting the

conclusion that the groups are distinct.

3.4.4 Prioritization of Six Drugs to Repurpose for COVID-19 Treatment

Assuming the identified robust and global proteins are acting as regulators of the

infected state, it follows that they have potential as drug targets for SARS-CoV-2 infection

treatments. The Drugbank database [188] was used to prioritize the predicted proteins for

drug repositioning efforts by assessing which proteins act as targets for existing drugs.

Results were compared with the results of drug repurposing and viral inhibition studies
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performed by Gordon et al. [168]. Of the 16 combined robust and global proteins, six are

drug targets registered in Drugbank (PVR, SCARB1, NUP210, SIGMAR1, IMPDH2, and

EIF4E2). NUP210, SIGMAR1, IMPDH2, and EIF4E2 were identified by Gordon et al.,

though Drugbank identified compounds for each target that were not included in the viral

inhibition studies. The compounds associated with two additional targets that were

identified by the controllability methods but are unregistered in Drugbank (LARP1 and

RAE1) were also previously identified. The targets and associated compounds for all eight

genes are found in Appendix Table B1.

A summary of compounds known to target PVR and SCARB1, i.e., the prioritized

proteins that have not been recommended in previous repurposing studies are found in

Table 3.11. PVR is a known regulator of natural killer cell adhesion to host cells and lytic

granule secretion after binding to DNAM-1, a receptor expressed by natural killer cells, T

cells, and monocytes [212]. First identified in the context of polio virus, it has also been

identified for its role in motility during tumor cell invasion [213]. It is a member of the

displaced driver set and the global set and acts as the target for two experimental

compounds: myristic acid and sphingosine. A previous study of cytokine storms resulting

from influenza virus infection asserts that the use of sphingosine-1-phosphate successfully

blunts the overactive inflammatory response, limiting morbidity and mortality [214]. Given

the similarly aggressive inflammatory response seen clinically in SARS-CoV-2 infected

individuals [215], the prioritization of PVR is noteworthy.

SCARB1 is a cellular membrane protein involved in high-density lipid transport [216]

that mediates cell entry of hepatitis C virus as the receptor for the E2 protein [217]. It

was identified as both a displaced driver and global protein, and functions as the target for

three compounds: phosphatidylserine, tocopherol/vitamin E, and PHA-665752. While not

specific to viral infection, SCARB1 acts as a phosphatidylserine receptor on testicular Sertoli

cells which induce phagocytosis of spermatogenic cells [218]. SCARB1 also acts as one of

the most important transport vehicles for vitamin E in the lung’s alveolar cells, the presence

of which largely regulates the receptor’s expression [219]. Vitamin E is also known to have

a positive effect on influenza A viral clearance in the lungs of mice [220].
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Table 3.11. Status of drugs known to target controllability predicted proteins. Each target’s
SARS-CoV-2 protein interactor is given along with its known target function.

Drug (Status) Target/Viral

Protein

Target Function

Myristic acid

(Experimental)
PVR/ORF8

Regulate Natural killer

cells,

polio virus [212]Sphingosine

(Experimental)

Phosphatidyl serine

(Approved)
SCARB1/Nsp7

Facilitate cell entry,

Hepatitis C [216]

Tocopherol/Vitamin

E (Approved)

PHA-665752

(Experimental)

SCARB1/Nsp7 Facilitate cell entry,

Hepatitis C [216]

NUP210/Nsp4 Transport between nucleus

and cytoplasm [220]
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In addition to SCARB1, PHA-665752 targets NUP210, a nucleopore protein identified

in all three protein sets of interest from controllability. Knockout experiments reveal that

NUP210 has wide effects on T cell differentiation and response [221]. While not studied in

the context of viral infection, PHA-665751 is known to induce apoptosis in both tumor and

vascular endothelial cells resulting from non-small cell lung cancer [222].

SIGMAR1 and IMPDH2 were also identified in all controllability predicted groups.

Sigma receptors 1 and 2 (SIGMAR1 and SIGMAR2) have been discussed as regulators of

cellular stress and the apoptotic response [223]. Several known targeting compounds show

evidence of inhibition at the viral replication stage including haloperidol, PB28, and widely

discussed hydroxychloroquine. Many Drugbank predicted compounds targeting SIGMAR1

have not been tested for viral inhibition. IMPDH2 has long been a goal for targeting with

immunosuppressive treatments, though inhibition with small molecules is notoriously

difficult [224]. While many Drugbank-predicted compounds for IMPDH2 have not been

tested in this context, mycophenolic acid and ribavirin were assessed in the viral inhibition

screen with only the latter displaying active inhibition.

EIF4AE belongs to the 4E family of translation initiation factor proteins which bind to

mRNA 5’ cap structures to recruit ribosomal recruitment within the cytosol [225]. The 4E

family controls the rate of the early steps of the protein translation process. EIF4AE is a

member of both the displaced driver set and the global protein set. A different translation

regulator, LARP1, was identified as a druggable target for SARS-CoV-2 by Gordon et al.,

given previous evidence that the downstream effects of a common kinase inhibitor,

rapamycin, inhibited MERS-CoV infection by over 60% [226]. Studies show that

rapamycin promotes the phosphorylation of EIF4AE, achieving similar inhibition of the

mTOR pathway [227]; however, evidence of viral inhibition after rapamycin treatment was

inconclusive. Still, several other mRNA translation inhibitor compounds such as ternatin 4

and zotatifin have tested as active inhibitors of SARS-CoV-2, making EIF4AE an

interesting prospect for future study.
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3.4.5 Summary

Here, a set of drug targets is prioritized for drug repurposing efforts in the global fight

against COVID-19. Network controllability methods, with only disease-specific virus-host

and host-host protein interaction data, create a large-scale representation of regulatory

changes occurring during infection. With no additional biological information, the

connectivity of the network is sufficient to predict the most biologically relevant

components of the disease system, as evidenced by the high level of overlap between the

presented results and the extensive biological analysis performed in Gordon et al.’s study

for SARS-CoV-2 [168]. In total, this study demonstrates a simple computational approach

to prioritizing drug target predictions with minimal biological context, an advantage in

present times where viral understanding and data is even more sparse than usual.

As seen in the previous study of influenza A virus [228], the magnitude of control needed

to manipulate the total cell system (number of driver proteins) is comparable in the healthy

and infected cellular networks. The small changes in driver proteins between the networks

are seen in immunoregulatory proteins that are typically upregulated during viral infection

(such as TRIM51 and MICA) and many of the proteins identified in the controllability

analyses. This is reflective of the activation of the immune response pathways and their

effect on the cell as a whole. With respect to the ratio of resultant classifications in both

controllability methods, outcomes are again similar to those achieved with the influenza A

virus-host network [228]. This is unsurprising due to the use of the same host network in the

analyses. However, the low overlap between the controllability predicted proteins for the two

diseases (3/16 proteins, PVR, RAB14, and SAAL1) demonstrates that while the method is

easily applied to other viruses, the result is unique.

One limitation of this method is the requirement of high-confidence virus-host protein

interaction data where the host proteins exist in the HIN. As experimentally-validated,

directed networks are typically smaller than the available undirected networks, the method

was unfortunately unable to use over half of the 332 known SARS-CoV-2-host protein

interactions (in comparison, the influenza A virus network contains 752 virus-host

interactions). Even so, the controllability analysis was able to predict biologically relevant
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proteins involved in functions like the cellular stress response, host translation, and cellular

transport, proving the robustness of the method.

Of the eight prioritized targets, all but NUP210 exhibit large increases in betweenness

after the addition of virus-host protein interactions, placing particular importance on their

role in infected cell behavior based on topology. Further, most of the global protein set

(including the novel predictions, PVR, and SCARB1) have a betweenness of zero in the

HIN, implying that their individual significance to cellular network flow is truly unique to the

infected cell. With the majority of the identified proteins being regulated by the interferon

response (with a fold change in expression greater than two), this network result translates

to immunological significance. The alterations in classification for all global proteins indicate

a step down in network control where critical proteins have the most control and redundant

the least. Biologically, this could represent viral interruption of normal host function or

activation of a new pathway, both being interesting prospects for drug development.

Given the biological relevance of the topologically predicted/controllability target

proteins, there is a good reason to pursue these recommendations, either in drug

repurposing or in novel drug development. The extended list of untested compounds found

in Appendix Table B1 will be considered for further viral inhibition studies, particularly

tocopherol/vitamin E which is already approved and has documented positive effects on

viral clearance for influenza A [220]. Predictions indicate opportunity to both interfere with

the viral replication cycle or to modulate the immune response to infection. Therefore, to

most efficiently translate these findings to bedside, knockdown studies or siRNA screens

should be used to validate drug predictions for each target. Cell culture studies that track

interferon and cytokine activity may further establish a possible mechanism between the

proposed targets and immune regulation. By narrowing the pool of drug target candidates

with controllability methods, experimental validation will be efficient and timely.
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4.0 Aim 3: Modeling Strain-Specific Immunodynamics During Viral Infection

4.1 Introduction

Mathematical (ODE) models of the host immune response in influenza A virus infected

lungs have served as a computational method of treatment optimization

[63, 229, 66, 230, 231, 232, 67]. ODE modeling is advantageous in tandem with traditional

experiments in its ability to determine kinetic rate parameters of influenza infection that

are difficult to measure in vivo. Many experimental data sources, particularly murine

(mouse) models of influenza, are generated from a pool of measures collected from hosts

subjected to identical experimental conditions. Because these animals need to be sacrificed

to measure cell and cytokine levels, hosts cannot be tracked for the full duration of the

infection, making true longitudinal data impossible to obtain. These experiments assume

that all animals will mount identical immune responses, though inter-individual variability

is a known confounding factor. Mathematical modeling can be used to help fill in gaps in

knowledge created by the deficiencies in experimental data.

ODE models can vary substantially in complexity as they depend on the chosen

representative components of the immune response and the interactions between them.

There are two general types of model: target cell-limited models, in which the healthy

epithelial cells acting as a target for the virus are unable to replicate themselves [229, 230]

and models in which healthy cells are able to regenerate [63, 66, 231, 232, 67]. Current

models feature three fundamental states: healthy epithelial cells, infected epithelial cells,

and virus. More states, such as cytokines, immune cells, or antibodies, can be added to the

model with additional ODEs and rate parameters. While large models create a more

biologically complete picture of the immune response, they require a larger pool of quality

data to parameterize the model and can easily fall into stability issues. The question

becomes: which interactions comprise a minimum necessary set for characterizing the

immune response without losing critical information to simplifying assumptions?
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The interferon response is a key regulator of the immune system and is foundational to

capturing the innate immune response in a mathematical model. While interferon is

essential for viral clearance and has been heavily studied since its discovery in 1957, full

understanding of the role of interferon dynamics in clinical pathology remains elusive

[233, 234]. Modulating the immune response post infection to control inflammation or

pre-infection to provide increased protection for high risk groups has been a major theme

in severe influenza infection research [235, 236, 237, 238, 239, 240, 241, 242, 53, 243, 244].

When pre-stimulated with synthetic or natural agonists of the Toll-Like Receptor pathways

(specifically TLR3 and TLR4) that activate interferon production prior to infection

[245, 246, 247, 248], animals infected with highly pathogenic viruses elicited higher

concentrations of interferon in lung epithelial cells, reduced virus titers and significantly

improved infection outcomes. Several studies demonstrate dysregulation of the immune

response during deadly influenza infections [238, 242, 249, 250] suggesting that

immunomodulation prior to infection may be an option for protecting high risk groups.

4.1.1 Model Review

The ability to replicate the effects of interferon-regulating pathways provides a valuable

measure of model applicability. In preparation for modeling studies, we reviewed three

recently published models (Figure 4.1) of varying complexity surrounding interferon

interactions (Appendix C) (Saenz et al., 2010 [229], Pawelek et al., 2012 [63], and

Hancioglu et al., 2007 [66]). Five elements of the intrahost immune response are conserved

across each model: healthy epithelial cells (H), infected cells (I), virus (V), type I interferon

(F), and “resistant cells”, that is, epithelial cells with interferon-induced virus resistance

(R). While each model has these five features in common, the inflammatory response to

viral infection is represented differently, depending largely on model complexity. These

differences are particularly apparent in the model-specific incorporation of the production,

activity, and depletion of interferon.

In the Pawelek model (Figure 4.1a), interferon has two functions: creating virus-resistant

cells when interacting with healthy epithelial cells, and increasing infected cell death when
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Figure 4.1. Model diagrams for Saenz, Pawelek, and Hancioglu models of the host immune
response to influenza A infection. These models all include the interferon response and rely on
epithelial cell populations, particularly resistant cells.
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interacting with infected epithelial cells. In the Saenz model (Figure 4.1b), interferon leads

to the creation of virus-resistant cells but does not impact the infected cells directly. Instead,

the infected cells produce more interferon. The Hancioglu model (Figure 4.1c) uses interferon

to create resistant cells (as in the other two models) while interferon is produced by infected

cells and antigen-presenting cells. In all models, a decrease in interferon levels is caused by

a combination of natural decay and absorption into epithelial cells. The Saenz and Pawelek

models are trained to experimental data (e.g., cytokine concentrations and immune cell

counts) measured in pony lungs infected with H3N8 virus, while the Hancioglu model was

fit to certain qualitative behaviors selected from a study of the human response to influenza

A virus by Bocharov and Romanyukha [251].

We considered the “systems” perspective of which components of the model most strongly

regulate virus replication. Each of the three models shows a sensitivity of the virus to the

creation and loss of infected epithelial cells. The virus equation of the Pawelek model is most

sensitive to the loss of resistance in epithelial cells, ρ, and the death rate of infected cells, δ

(Figure 4.2A). If the infected cells die off too quickly, the virus cannot replicate at a rate high

enough to sustain the infection. Similarly, if cells are becoming virus-resistant too quickly,

there will not be a sufficient number of cells remaining to become infected and keep the

viral titers elevated. In this way, the presence of the virus in the system is predominantly

driven by the number of cells currently infected or able to become infected. The Saenz

model also emphasizes a low death rate of infected cells, δ, as well as a short eclipse phase

for infected cells, k2 (Figure 4.2B). The duration of the eclipse phase determines the delay

in time between the infection of the cell and the subsequent release of virion by the infected

cell. The shorter the eclipse phase, the more readily the cells can begin producing virus. As

in the Pawelek model, the Saenz model shows that the availability of productively infected

cells is vital to the continuation of the infection.

The Hancioglu model also emphasizes the importance of maintaining a large pool of

infected cells, but through a different set of parameters than the Pawelek or Saenz models.

The infectivity of the virus, γHV , and the replication rate of the virus, γV , are the most

sensitive parameters in the model (Figure 4.2C). The Hancioglu model is thus controlling

the virus by a high rate of production of infected cells, and not through a diminished rate
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A) Pawelek

B) Saenz

C) Hancioglu

Figure 4.2. Time-dependent sensitivity of virus to each parameter and two-dimensional sensitivity
to the two most sensitive parameters in the A) Pawelek, B) Saenz, and C) Hancioglu model. Colors
correspond to the maximum amount of virus present over a ten-day simulation. White indicates
that the maximum value of V is 0.01, the initial value of the virus. Darker colors indicate higher
values of peak virus.
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of decay of these cells, as in the other two models. Interestingly, none of the three models

shows a strong sensitivity of virus to the concentration of interferon in the system.

This review has shown that simply creating a population of virus-resistant cells is not

sufficient to model the impact of interferon on control of virus replication. This is the

mechanism by which many current published models, including the three covered here,

incorporate the effect of interferon on the immune response. For a truly accurate

mathematical model, the model structure should be able to simulate known qualitative

behaviors as well as reproduce the quantitative data used to tune the model parameters.

Moving forward with this information, ODE models of influenza infection should include a

better representation of innate immunity, and possibly more interactions of interferon with

other components in the model, to accurately portray the impact of interferon on the

system as a whole. Rather than reliance on the creation of virus-resistant epithelial cells to

simulate the effect of interferon on the host, interferon should be used to directly diminish

the replication rate of the virus, similar to a model proposed by Baccam et al. [230].

4.1.2 The Strain-specific Immune Response

A comparison of influenza A virus strains reveals distinct trends in the severity of clinical

outcomes. High pathogenic strains such as H5N1 induce increased levels of inflammation,

congestion, and tissue damage extending deep into the alveoli of the lung in comparison to

low pathogenic strains such as the seasonal H1N1 that replicate in the larger airways of the

upper lungs [252]. High pathogenic strains are generally noted for their virulence, lengthened

clearance times, and increased mortality rates, exemplified by H5N1 where an estimated 60%

of human cases end in death (the majority of which unexpectedly occur in those under age 65)

[22]. Viral titers, immune cell counts, and cytokine counts for high pathogenic strains have

higher magnitudes and sustained production compared to low pathogenic strains, indicating

disparate immunoregulatory behavior across viral strains [54]. Biologically, influenza virus

strains are subtyped by the viral envelope proteins hemagglutinin (HA) and neuraminidase

(NA) [253]. The presence of HA leads to a 60% reduction in STAT1 phosphorylation in

correlation with IFNAR1 downregulation [254], ultimately downregulating the expression of
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interferon stimulated genes and altering the positive feedback relationship between STING

and interferon production [255]. Infection with NA-defective influenza virus induces lower

levels of type-I interferon [256]. Additionally, studies have identified that a D92E mutation in

the influenza A nonstructural NS1 protein of highly pathogenic H5N1 has a repressive effect

on interferon production [257]. NS1 has been implicated as a factor in the type-I interferon

response time after the discovery that low pathogenic strains grafted with NS1 from high

pathogenic strains remain more capable of inhibiting interferon signaling, resulting in failed

suppression of viral replication and delay in the overall immune response [258]. Exploration

of the relationship between virus replication and interferon production as well as the timing

of the innate immune response is needed to identify causes of the in vivo correlation between

viral strain and severity.

Previous studies have used ordinary differential equation (ODE) modeling methods to

understand in vivo immunodynamics during influenza infection, though differential strain

behavior has never been explicitly explored. Existing models often focus on a range of

epithelial cell states as well as interferon production [63, 229, 259, 260, 261], however, states

representative of additional cells and cytokines of the innate immune response are limited

[66, 67]. ODE modeling efforts are limited in part by the quality of training data which is

often in the form of triplicate viral titers, immune cell counts and/or cytokine assays from

in vivo experiments. The marked absence of data regarding the epithelial cell populations

of interest (many models move beyond healthy and infected cells to include refractory cell

states that denote stages of interferon production) leads to identifiability problems during

parameter estimation and often necessitates that heuristics be imposed on the model to

force biologically relevant behavior. All data quality and quantity issues contribute to model

error and uncertainty and diminish the overall usefulness of the model for understanding

system dynamics. As such, model design should seek to eliminate these sources of error

when possible.

To elucidate the biological mechanisms that contribute to strain-specific

immunodynamics observed during influenza virus infection, we have performed a shared,

multi-strain parameterization of two ODE models. The first aims to assess the inclusion of

biological mechanisms representative of both the innate and adaptive immune response.
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The second eliminates the adaptive and epithelial states to focus on the interferon feedback

of the early innate immune response.

4.2 Multi-strain parameterization of Innate-Adaptive Model

Originally published in IFAC-PapersOnLine, reproduced with permission

©2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd.

4.2.1 Materials and Methods

4.2.1.1 Model Creation

A mathematical model representative of the immune response to influenza A virus

infection was developed (Equations 4.1-4.6, parameter key Appendix D). A brief schematic

of the system in Figure 4.3 outlines the interactions included in this six state model of the

innate and adaptive immune response. Healthy cells (H) become infected cells (I) at a rate

influenced by the virus infectivity parameter (β). The amount of virus (V) present is

dictated by three parameters: replication rate (p), depletion by interferon (q), and

clearance by antibodies (c). An innate immune response is represented by the presence of

macrophages (M) and interferon (IFN), where interferon production is notably influenced

by the presence of macrophages (bM,IFN). The adaptive immune response is represented by

cytotoxic T lymphocytes (CTL). In total, the model contains 15 parameters.
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dH

dt
= −βHV + λH(1−H − I) (4.1)

dI

dt
= βHV − δI −KCTLCTL ∗ I (4.2)

dV

dt
= pI − cV − qV ∗ IFN (4.3)

dM

dt
= bIFN,MIFN ∗M − µM(M −M0) (4.4)

dIFN

dt
=

bI,IFNI
n

In + θnIFN

+
bM,IFN(M −M0)

n

(M −M0)n + θnIFN

− µIFNIFN (4.5)

dCTL

dt
= bM,CTLM − µCTL(CTL− CTL0) (4.6)

States: 
H: Healthy cells 
I: Infected cells

V: Influenza virus 

IFN: Interferon 
M: Macrophages
CTL: Cytotoxic T 

Lymphocytes 

Figure 4.3. Innate-Adaptive model scheme. Macrophage represent the early, innate response and
cytotoxic T lymphocytes represent the late, adaptive response.
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4.2.1.2 Multi-strain MCMC Parameterization

Parameter fitting was performed in MATLAB using a shared parameter Markov Chain

Monte Carlo algorithm as modified from Price et al [67]. As shown in Figure 4.4, each

MCMC study begins with the decision of Pshared, the parameters to be kept equal across

strains. After solving the ODEs with an initial parameter set, P0, H1N1 parameters are

stepped to new values on the chain and the ODEs are solved. PH5N1 is set equal to PH1N1

for Pshared and the chain is stepped to new values for the remaining parameters of PH5N1

before solving. The per strain objective function,

Energy =
X∑

x=1

T∑
t=0

(Mx,t −Ox,t)
2

σx,t
(4.7)

is based on the residual sum of squares: the squared difference between model output, Mx,t,

and observed data, Ox,t, for each state, x and timepoint, t, over all time points, T , for all

species, X. Each time point was divided by the standard error of the corresponding data σx,t

to take the variance of triplicate measures into consideration. The model was trained with

data for four of the six states (V, CTL, IFN, M) [54]. Virus kinetics used were measured in

plaque assay studies. Macrophage and CTL counts were determined using flow cytometry.

All data is derived between days zero and seven post-infection from mouse lung infected with

105 PFU of H1N1 or H5N1 influenza A virus. Cell data was pre-processed by normalizing raw

data per cell type by the reported live cell count and multiplying each value by a constant,

107, to return to cell count units. Gene expression data for the probe corresponding to gene

ifnb was averaged within each time point per strain and used as time course data to inform

interferon dynamics. Initial conditions are dependent on data when available (V, CTL, M).

Because interferon is initially below the limit of detection, it is initialized at a value of zero.

Assuming there is no infection prior to time 0, the healthy cell fraction is initialized to one,

and for the same reason, the infected cell fraction is initialized to zero. No heuristics were

added to the model. A sensitivity analysis was performed in MATLAB.

80



Figure 4.4. A summary of the multi-strain MCMC parameterization method. The method output
contains a parameter set, best fit solution, and parameter distributions for each strain of influenza
virus.
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4.2.2 Results

4.2.2.1 H1N1 Model Cannot Predict H5N1-induced Dynamics with Variance

in Virus Replication Parameters

First, the model was fit to H1N1 infection data and evaluated for its ability to

simultaneously predict immune response dynamics in H5N1-infected animals when allowing

only strain-specific parameterization of the four virus-specific parameters: virus infectivity,

β, viral replication rate, p, viral depletion by interferon, q, and viral clearance by

antibodies, c. However, no solution was identified in which the H1N1-trained model could

predict the H5N1-induced responses (results not shown).

4.2.2.2 H1N1 Model Predicts H5N1-induced Dynamics with Added variance in

Macrophage Interferon Production

A second analysis used the H1N1 trained model to predict H5N1-induced dynamics as

in section 4.2.2.1 with the addition of the parameter describing the effect of macrophages

on interferon production, bM,IFN , to the independently trained H5N1 parameter set. This

parameter was chosen because in vivo data suggests H5N1 infected resident macrophages

induce a stronger interferon response [262]. Dynamics of the best parameter fits for H1N1 and

H5N1 are found in Figure 4.5a and Figure 4.5b, respectively (1,850,000 training instances;

suitable models selected after parameterization burn in). Each fit is shown with the intervals

containing 25-75% (dark grey) of all parameter sets and 5-95% (light grey) of all parameter

sets. In the H1N1 model fits, all states are well fit to the data through the seven day span

of infection with little variance in dynamics caused by the parameter set distribution. The

only notable exception of good fit is seen in CTL’s where there is no data between days 3

and 7 and the data present exhibits a sharp increase at the later time point.

The same model accurately predicts the immune dynamics induced by the high

pathogenic H5N1 strain when only the virus-specific parameters and bM,IFN are allowed to

differ from those of the H1N1 parameter set. A large population of infected cells peak

around days 1-2 and, unlike H1N1, never return to zero. However, this is concurrent with
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Figure 4.5. Model fits for a) H1N1 and b) H5N1 where virus-specific parameters and bM,IFN were
allowed to vary between strains. Fits are plotted against training data. Intervals in light grey and
dark grey contain 25-75% and 5-95% of all parameter value sets, respectively.
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the high viral load still in place past day 4 which does not occur in H1N1. Additionally,

recovery is not expected because H5N1 infected animals die before day 7. Fits are generally in

agreement with the data sources, displaying greater variance in parameter sets in comparison

to H1N1. Similar to the H1N1 model, the steep increase in CTL counts is not captured in

the model dynamics. Overall, the model correctly predicts a more severe response to H5N1

than H1N1 influenza strains.

An analysis of the variance in strain parameter distributions is shown in Figure 4.6

with H1N1 distributions in green and H5N1 in blue. All virus-specific parameters and

bM,IFN display a difference in distributions between strains (P value < 2x10−16, Kolmogorov-

Smirnov test). Distributions for virus infectivity, β, and viral depletion by interferon, q, are

slightly elevated in magnitude for H1N1 where distributions for viral replication rate, p, viral

clearance by antibodies, c, and the effect of macrophages on interferon production, bM,IFN ,

are elevated by orders of magnitude in H5N1. Narrow distributions suggest that H1N1

is highly sensitive to virus depletion by interferon where H5N1 is sensitive to interferon

production in the presence of macrophages.

4.2.2.3 Sensitivity in Virus Infectivity Leads to Variance in Viral Production

A sensitivity analysis was performed to assess the parameters with the greatest effect on

output dynamics during influenza infection. Table 4.1 shows the time dependent sensitivity

of the virus concentration to each of the 15 model parameters. Seven parameters are most in

control of the virus trajectory: virus infectivity, β, the natural death rate of infected epithelial

cells, δ, the clearance rate of infected cells by CTLs, KCTL, viral depletion by interferon, q,

viral clearance by antibodies, c, activation of macrophages due to interferon, bIFN,M , and

the decay rate of interferon, IFN . Sensitivity peaks before day 2 for most parameters and

drops off over the remainder of the infection.
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Figure 4.6. Log10 parameter distributions for H1N1 (green) and H5N1 (blue) for the model where
virus-specific parameters and bM,IFN were allowed to vary between strains.
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Table 4.1. Maximum and minimum sensitivity of virus trajectory for all 15 parameters

Parameter Max. Sensitivity (day) Min. Sensitivity (day)

β 7.49 x 1014 (1.5) 0 (0.1)

λ 1.78 x 10−11 (4) -8.89e-12 (1.4)

δ 0 (0.1) -5.81 x 106 (1.6)

KCTL 0 (0.1) -2.16 x 1011 (1.6)

p 0.041 (1.5) 0 (0.1)

q 0 (0.1) -8.12 x 109 (1.6)

c 0 (0.1) -5.64 x 106 (1.5)

bIFN,M 0 (0.1) -5.43 x 106 (1.9)

muM 407.01 (1.9) 0 (0.1)

bI,IFN 0 (0.1) -30013 (1.6)

θIFN 13.11 (2.4) -3.51 (4.7)

µIFN 4.11 x 107 (1.9) 0 (0.1)

bM,CTL 0 (0.1) -132.25 (1.6)

µCTL 1.99 (1.6) 0 (0.1)

bM,IFN 0 (0.1) -30010 (1.6)

4.2.2.4 Prediction of additional strain-specific kinetics

The existence of multiple solutions is expected when fitting ODE models to limited data.

To develop additional hypotheses on virus-specific host immune regulation, a third study

assessed the ability of the model to capture influenza dynamics given no parameter restraints

between strains. All model parameters were permitted to vary between H1N1 and H5N1

strains during estimation. Otherwise, the analysis used identical conditions (approximately

1,000,000 training instances; suitable models selected after parameterization burn in). This

serves to identify if varying additional host-specific parameters could improve model fits or

identify additional solutions that fit the virus-specific immune response. Fits for H1N1 and

H5N1 dynamics are found in Figure 4.7a and b, respectively. Each fit is shown with the

intervals containing 25-75% (dark grey) of all parameter sets and 5-95% (light grey) of all
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Figure 4.7. Model fits for a) H1N1 and b) H5N1 where all parameters were allowed to vary
between strains. Fits are plotted against training data. Intervals in light grey and dark grey
contain 25-75% and 5-95% of all parameter value sets, respectively.
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Figure 4.8. Log10 parameter distributions for H1N1 (green) and H5N1 (blue) for the model where
all parameters were allowed to vary between strains.
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parameter sets. Overall, fits for both strains are comparable to those generated when only

varying the virus-specific parameters (minimum error: 54.0025, section 4.2.2.2: 62.6403).

While the H1N1 infected cell count similarly peaks between days 1-2, the magnitude of

infected cells is greater (50% of cells infected) as compared to the fraction seen in section

4.2.2.2 (20% of cells infected). Virus, macrophage, and interferon are well fit to the data

with tight parameter set distribution, however, the model is still unable to capture the steep

increase in late H1N1 infection CTL behaviour. The H5N1 fits for infected cells peak around

days 1-2 and while they do not return to zero, they do not display the same high level

of infection through day 7 seen in section 4.2.2.2. Fits are in good agreement with data

with similar variance in parameter sets as seen in section 4.2.2.2. Notably different, this

model is the closest to capturing late stage CTL behaviour, though it still cannot achieve

the magnitude of increase depicted in the data. Again, the model correctly predicts a more

severe response to H5N1 infection.

Log10 parameter distributions for H1N1 (green) and H5N1 (blue) are shown in Figure 4.8.

All parameters demonstrate differences between strains (P value < 2x10−16, Kolmogorov-

Smirnov test). When given total freedom, virus infectivity, β, viral depletion by interferon,

q, and viral replication rate, p, retain similar distributions to those produced in the model

from section 4.2.2.2. Viral clearance by antibodies, c, and the effect of macrophages on

interferon production, bM,IFN , show more similarity between strains in comparison to the

model from section 4.2.2.2 where the strain distributions show no overlap. As supported in

the sensitivity analysis, interferon-related parameters tend to have tight distributions.

4.2.3 Summary

In total, this study has assessed the ability of an ODE model of the influenza virus

infection host immune response to accurately capture strain-specific dynamics. A simple

model of the immune response was constructed to reproduce most of the dynamics identified

in data sources during H1N1 and H5N1 infections when allowing only 5 parameters (those

that control virus replication and interferon production by macrophages) to vary between

strains. Further, the fits produced are similar in trajectory and timing to those produced
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when all 15 parameters are permitted to vary. This comparable performance between models

suggests that it is possible to successfully capture strain-specific influenza infection behaviour

using the same generalized model with limited alterations to a small parameter set. Further

exploration to minimize the size of this parameter set will advance the viability of this

process moving forward into more generalized models. For example, while it is logical to

allow for variance in viral replication rate, p, between strains physiologically, a sensitivity

analysis reveals it has little effect on virus trajectory within the model. In the interest of

simplification, the removal of p from the virus-specific parameter set should be explored.

The more severe response predicted in the H5N1 fit is reflective of disease phenotype.

The model’s viral state predicts a drop in viral load near day 6 in H1N1 infections and a

sustained viral production time in H5N1 which agrees with trends identified in viral titer

data. It is well recorded in literature that H5N1 infections cause increased damage to lung

epithelial cells [263] and the strain is estimated to have a high mortality rate of 60% by the

World Health Organization [264].

Two major areas of model development should be further explored. First, positive

feedback occurring between macrophage and interferon production within these equations

act as a major barrier to model stability. Reformulation of equations should be explored.

Second, the model’s inability to capture late infection CTL dynamics in all models suggests

that the quality of the current CTL data is insufficient as equations are unsuited to capture

the dynamics seen at later timepoints. Future work will address these issues and continue

to analyse the involvement of host-specific parameters in eliciting a strain-specific response

from a single ODE model.
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4.3 Multi-strain parameterization of Innate Model

4.3.1 Materials and Methods

4.3.1.1 Model Creation

A deeper look into three commonly referenced models [63, 229, 66] which focus largely

on interferon and epithelial lung cell populations reveals a common thread: dependence on

epithelial cell states that cannot be measured in vivo. Further, despite their mid to large

number of states, the models demonstrate mixed ability to respond to changes in interferon

levels, suggesting an inadequate representation of the host immune response. Additional

attention was given to the quality of available time course data of immune cells and cytokines.

Many cells and cytokines share dynamic profiles, a particularly common occurrence amongst

cytokines and the monocytes they recruit which transpire within feedback loops [54]. While

a model of increased complexity serves as a more complete biological picture, the reality of

larger models is parameterizations that often contain intractably sensitive and unidentifiable

parameters. Lastly, experiments verify that CCR2+ infiltrating macrophage are at the root

of pulmonary immunopathology and mortality [265]. MCP1 is the chemokine responsible

for regulating the infiltration of macrophages to the site of infection [266], making it notable

for its consequence within the model building process.

Given this collection of evidence, a novel three state ODE model of the innate immune

response (Equations 4.8-4.10, parameter key Appendix E) was developed using current

immunological knowledge of the early innate immune response to a primary influenza A

virus infection (i.e. the animal’s first exposure when they have no antibodies for the virus).

A schematic of model interactions can be found in Figure 4.9. Virus (V) growth is logistic

based on evidence from single-cell viral load florescence experiments [267]. Virus is

removed two ways: at a rate rIFN,V corresponding to the activation level of the interferon

response representing all downstream methods of viral removal within the immune

response and a natural death rate, dV . Type-I interferon (IFN) is produced at a rate,

pV,IFN , relative to viral load and decays naturally at rate dIFN . Biologically, macrophages

serve as the major producer of MCP1 [268] and display an in vivo time delay relative to
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the initial interferon response. However, in vivo dynamics for MCP1 and macrophage are

highly correlated, leading to parameter unidentifiability in early model building trials.

Additionally, because available macrophage data is lacking day 5 timepoints, model

training could not occur past day 3 for a macrophage state. As such, MCP1 was chosen as

a representative state for the macrophage-derived inflammatory response. Several forms of

the MCP1 production term were tested including mass action and logistic growth.

However, none were able to find a parameterization that reproduced the steep drop in

H1N1 MCP1 expression at day 5. Therefore, the production term is estimated as a Hill

kinetic dependent with a natural decay rate, dMCP1. Instead of the classic interpretation of

the Hill Coefficient, n, as cooperativity in ligand binding [269], it can be interpreted in this

context as an activation threshold representing the threshold of interferon needed to induce

macrophage production of MCP1, similar to the activation threshold that must be

exceeded to induce T cell cytokine production [270, 271].

dV

dt
= kV (1− V/K)− rIFN,V V (IFN − IFN0)− dV V (4.8)

dIFN

dt
= pV,IFNV − dIFN(IFN − IFN0) (4.9)

dMCP1

dt
=

k1(IFN − IFN0)
n

k2 + (IFN − IFN0)n
− dMCP1(MCP1−MCP10) (4.10)

Figure 4.9. Innate Model Schematic.
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4.3.1.2 Multi-strain MCMC Parameterization

The model was fit to in vivo data from Shoemaker et al. [54] derived from triplicate

C57BL/6J mice infected with either the low pathogenic, seasonal A/Kawasaki/UTK-4/09

H1N1 virus (H1N1) or the high pathogenic, pandemic A/Vietnam/1203/04 H5N1 virus

(H5N1). The viral state was fit to viral titers (PFU/mg), and while the MCP1 state was fit

to protein expression data (ρg/mL), resultant interferon-β protein expression below the

assay limits of detectability necessitated that the interferon state be fit to gene expression

data. All training data used is the mean of triplicate values. Virus and interferon states are

fit to log10 and log2 values respectively and treated as absolute values to improve

solvability and convergence. Initial state conditions were set to data values from time zero

for model initialization. Lab-developed Parallel Tempering Markov Chain Monte Carlo

(PT MCMC) methods were used as described in section 4.2.1.2 to determine parameter

distributions for the ten model parameters, regardless of shared parameters, through

optimization of the objective function:

Energy =
X∑

x=1

T∑
t=0

(Mx,t −Ox,t)
2

2Ox,t

(4.11)

The developed objective function was based on the sum of squares error: one half of the

squared difference between model output, Mx,t, and observed data, Ox,t, for each state, x

and timepoint, t, over all time points, T , for all species, X. Each time point was divided by

the corresponding data Ox,t to normalize error values. All simulations ran across six chains

of temperature 0.99, 0.9, 0.8, 0.4, 0.2, and 0.05 to ensure adequate exploration of parameter

space. For shared parameter studies, a modified MCMC routine continued to evaluate new

parameters for H1N1 and H5N1 as described while ensuring that chosen shared parameter

values were equal across strains before error calculations at each iteration. Mann-Whitney

U tests were used to assess the statistical differences between the top 1,000 values of non-

shared parameters to determine if the PT MCMC was sampling the same, often non-normal,

distribution across both strains.
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4.3.1.3 Model Selection

While an objective function conveys the quality of the fit achieved by parameterization,

it is incapable of comparing models with varying numbers of estimated parameters because

it fails to consider changes in degrees of freedom. Consequently, models with an increasing

number of free parameters will result in a lower error and better fit but increase the likelihood

of overfitting. The number of free parameters in a shared MCMC parameterized model is

Pfree = Pshared + 2 ∗ Pindependent (4.12)

where Pshared is the number of parameters shared across cohorts and Pindependent is the

number of parameters that are independently estimated per cohort. As one of the benefits

of the shared parameter MCMC is the ability to explore the similarities between cohorts

through selected variance of Pshared and, therefore, the degrees of freedom of the system, the

ultimate task of model selection must employ an equivalent metric to error with accounts

for variations in the models’ degrees of freedom. Akaike Information Criterion (AIC) is a

comparison methodology for multiple competing models that explain the same data set. It

is defined [272] as:

AIC = −2 ∗ log10(MaximumLikelihood) + 2 ∗ Pfree (4.13)

AIC is based on a maximum likelihood estimate specific to the models being compared.

This estimate is directly computed for linear regression fittings [273]. Other estimates must

be used, when direct Likelihood functions are not available [274], especially in ODE and

PDE systems. Monte Carlo maximum log-likelihood functions have been used previously in

linear mixed-effect models to inform AIC [275]. Maximum Likelihood Estimate (MLE) for

shared MCMC parameterization is calculated as:

MLE = exp(−Energy) (4.14)

using the minimum values from the corresponding MCMC error function as defined in

Equation 4.3.1.2. Much like error, a lower AIC value signifies a better model while a higher

AIC value represents a worse model, however, there is a penalty for the addition of free

parameters to limit the effects of overfitting.
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4.3.1.4 Global Sensitivity

An extended Fourier Amplitude Sensitivity Testing (eFAST) global sensitivity analysis

[276, 277] was performed in Julia Version 1.6.1 with the DiffEqSensitivity v6.44.2 package to

determine the output variance of each state as a function of input variance to each parameter.

The output of the method is first-order indices, Sp, which represents the variance explained by

an input parameter, and total-order indices, STp, which represents the high order interactions

between parameters.

4.3.2 Results

4.3.2.1 Quantifying limitations of model goodness of fit

To assess the model’s capability to capture the behavior of both strains individually,

parameterization was performed allowing all parameters to vary between strains (no

parameter sharing, DoF: 20). After 2 million iterations of MCMC fitting, the minimum

energies for H1N1 and H5N1 were 2.17 and 1.16, respectively, with a total energy of 3.33

and an AIC value of 46.67. Energy values per iteration are shown in Figure 4.10A and B

for H1N1 and H5N1, respectively. These values, referred to as “All Independent”, are used

as benchmark optimal fits for the remainder of the study. Qualitatively, model outputs

are well fit to the data, displaying expected trends in magnitude and timing (Figure 4.11,

black line). Standard deviation intervals of the top 1,000 solutions (i.e.: the 1,000 lowest

energy parameter sets identified) are narrow, suggesting it is necessary that the biological

rates represented by the parameter values operate in a small window of possible values to

achieve known system behavior. Comparison of resultant top 1,000 parameter

distributions, seen in Figure 4.12, across strain yields significant differences between

distribution means (Mann-Whitney test P value < .001 for all parameters) indicating that

MCMC chains are adequately exploring parameter space and suggesting the possibility of

strain-specific kinetics in all represented biological functions.

For comparison, parameterization was performed under identical conditions while

enforcing equal parameter values across strains for all parameters (DoF: 10). These “All
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A

B

C

Figure 4.10. Energy values per iteration for A) All Independent H1N1, B) All Independent H5N1,
and C) All Shared. The 1,000 lowest energies are marked in blue.
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Figure 4.11. Model output for minimum energy parameter set (lines) and corresponding training
data (markers) for H1N1 (top row) and H5N1 (bottom row). All Independent results (all parameters
allowed to independently estimate across strains) are shown in black and All Shared results (all
parameters shared between strains) are shown in blue. Intervals represent standard deviation of
the 1,000 lowest energy parameter sets. Data markers are shown with the standard error associated
with triplicate data points per timepoint.
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Figure 4.12. Parameter distribution density plots for All Independent H1N1 (black), All
Independent H5N1 (blue), and All Shared (purple) resulting from 1,000 lowest energy solutions
of each study.
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Shared” fits result in a total minimum energy of 15.04 (Figure 4.11, blue line). Energy

values per iteration are shown in Figure 4.10C. The associated AIC value, 50.08, suggests

that the All Shared parameterization is worse than that of the All Independent.

Qualitatively, resultant fits are non-representative of trends and/or magnitudes of

experimental data, proving that strain-specific initial state conditions are not enough to

reproduce observed dynamics. The top 1,000 parameter sets, purple in Figure 4.12, have

significantly different means when compared to all parameter distributions for both H1N1

and H5N1 (Mann-Whitney test P < .001). In combination, these results highlight the

extrema of the shared parameterization method for the system and serve in contrast to the

exploration of shared parameter combinations.

4.3.2.2 Strain Independence in Interferon Production Produced Best Fit with

Single Parameter Freedom

Assuming there are parameters where shared values are appropriate across strains, the

next step was a relaxation of the All Shared parameterization. For each model parameter, p,

2 million iterations of MCMC parameterization were performed where all parameters were

shared across strains with the exception of p (DoF: 11). When compared to the benchmark

All Shared and All Independent studies, the contribution of each parameter to observed in

vivo strain-specific dynamics can be elucidated. Minimum energy solutions for these “Solo

Independent” parametrizations of all ten model parameters are found in Figure 4.13 for

H1N1 and H5N1 with corresponding energies and AIC values in Table 4.2. Most solutions

resemble the undesirable trends seen in the All Shared results of Figure 4.11 including the

inability to capture viral titers post day 2 or the stark contrast in day 5 levels of MCP1

between strains. Comparison of resultant top 1,000 parameter distributions across strain

yields significant differences between distribution means (Mann-Whitney test P < .001 for

all independently estimated parameters).

Minimum combined energy values fall between 9 and 13 with the exception of pV,IFN ,

which yields a minimum energy of 6.65. While this is the closest to the combined All

Independent energy (3.33) by far, AIC calculations reveal that the resulting value of 35.30
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Figure 4.13. Model output for the minimum energy parameter set (line) for solo independent
parameterizations and corresponding training data (markers) for H1N1 (top row) and H5N1
(bottom row). Data markers are shown with the standard error associated with triplicate data
points per timepoint.
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Table 4.2. Minimum error and AIC values for All Independent, All Shared, Solo Independent,
and Virus Independent studies. V is representative of four viral parameters: k,K,rIFN,V , and dV .

Independently

Estimated

Parameter

Minimum Error AIC Value

All Independent AllParameters 3.33 46.67

All Shared None 15.04 50.08

Solo Independent

k 9.37 40.74

K 9.79 41.59

rIFN,V 10.83 43.66

dV 9.65 41.31

pV,IFN 6.65 35.30

dIFN 10.30 42.61

k1 12.36 46.73

k2 12.29 46.57

n 12.28 46.57

dMCP1,IFN 12.37 46.75

Virus Independent

V 9.34 46.68

V + pV,IFN 5.55 41.11

V + dIFN 8.38 46.75

V + k1 8.86 47.72

V + k2 8.89 47.79

V + n 8.92 47.85

V + dMCP1 8.89 47.78
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for pV,IFN is not only lower than the results of the other nine parameterizations but is

lower than that of the Independent study (AIC 46.67). In fact, all Solo Independent

studies for parameters of the virus and interferon state equations report AIC values less

than that of the Independent study. While the energy calculation values goodness of fit via

the distance between simulation and training data, AIC calculation, which analyzes not

only parameterization error via likelihood estimate but the impact of the degrees of

freedom, suggests that the All Independent parameterization is likely overfitting the model

where the same information can be captured using a model of lower degrees of freedom.

4.3.2.3 Independent Estimation of Virus Parameters per Strain Does Not

Improve Model Fits

We hypothesized that disparate dynamics between viral strains may be related to virus-

based rates such as growth rate, k, or death rate, dV . To test this, a “Virus Independent”

parameterization was performed allowing only viral state parameters k, K, rIFN,V and dV ,

denoted as parameter subset V, to independently explore parameter space per strain (DoF:

14). Six additional “Virus-host Independent” parameterizations were performed with the

addition of one of the non-viral state parameters to set V (DoF: 15). Qualitatively, the

resulting fits are more indicative of the expected dynamic trends, including for day 5 of

infection.

The minimum energy solutions for each parameterization are found in Figure 4.14.

Corresponding minimum energy and AIC values are found in Table 4.2. Comparison of

resultant top 1,000 parameter distributions across strain yields significant differences

between distribution means with the exception of rIFN,V in the V + k2 study

(Mann-Whitney test P < .001 for all independently estimated parameters). Minimum

energies associated with Virus-Host Independent parameterizations are lower than that of

the Virus Independent equivalent with a marked improvement in the minimum energy,

5.55, associated with independent fitting of V and pV,IFN against both the Virus-Host

102



0 1 2 3 4 5
Days

6

8

10

lo
g1

0(
PF

U
/g

)

V - H1N1

0 1 2 3 4 5
Days

0.0

2.5

5.0

7.5

G
en

e 
ex

pr
es

si
on

IFN - H1N1

0 1 2 3 4 5
Days

7

8

9

10

lo
g2

(p
g/

m
L)

MCP1 - H1N1

V
V + pV, IFN

V + dIFN

V + k1

V + k2

V + dMCP1

V + n

0 1 2 3 4 5
Days

6

8

10

12

lo
g1

0(
PF

U
/g

)

V - H5N1

0 1 2 3 4 5
Days

0

5

10

G
en

e 
ex

pr
es

si
on

IFN - H5N1

0 1 2 3 4 5
Days

8

10

12

14

lo
g2

(p
g/

m
L)

MCP1 - H5N1

Figure 4.14. Model output for minimum energy parameter set (line) for virus independent
parameterizations and corresponding training data (markers) for H1N1 (top row) and H5N1
(bottom row). V is representative of four viral parameters: k, K, rIFN,V and dV . Data markers
are shown with the standard error associated with triplicate data points per timepoint.
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Figure 4.15. First- (dashed) and total-order (solid) indices of the eFAST sensitivity analysis.
Indices are reported per model state for each parameter.

Independent and Solo Independent study for pV,IFN . Comparing AIC values to baseline

values again reveals that Independent estimation of subset V and pV,IFN results in a lower

AIC value than the All Independent study.

4.3.2.4 Viral State is Highly Sensitive to Interferon Parameters

The eFAST algorithm was used to quantify overall model sensitivity in the form of

fractional variance that can be attributed to model parameters and their interactions. The

first-order indices, representing the output variance explained by variance in parameter input

p, and total-order indices, representing nonlinear interactions between parameter p and other

model parameters, are found in Figure 4.15.

First-order indices remain close to zero for all parameters across states, with the

maximum first-order index of 0.1 for the effect of pV,IFN on interferon output, asserting

that higher-order, nonlinear interactions between parameters are driving the observed

output variance of the model. Total-order sensitivity is much higher for interferon and

MCP1 in comparison with many values resting between 0.7 and 0.8, which is unsurprising

given the Hill kinetics of the MCP1 state rely only on interferon dynamics. Interferon

parameters drive high variance in the viral state, indicative of the positive feedback loop
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between viral growth and interferon production. This trend is most clearly seen in the

sensitivity of the viral state as a function of variance in pV,IFN , the interferon production

rate, reiterating the importance of interferon production rate as a driver of overall system

outcomes.

4.3.3 Summary

Here, a three state ODE model of the innate immune system investigates the mechanistic

roots of differential immunoregulatory behavior observed in vivo. This study is made possible

by the iterative application of an MCMC parameterization approach to explore the concept of

shared parameters across strains as a method of mathematically elucidating the most likely

biological drivers of strain-specific behavior in an unbiased manner. The production rate

of interferon within the virus-interferon positive feedback relationship, parameter pV,IFN , is

identified as a major driver of strain-specific dynamics observed in the early innate immune

response to highly pathogenic (H5N1) and low pathogenic (H1N1) influenza A virus. Global

sensitivity highlights the importance of virus-interferon feedback as the majority of output

variance is the result of high order parameter interactions with interferon parameters pV,IFN

and dV being responsible for a large degree of the variance seen in virus production. With

broader impact to the field of cohort modeling as a whole, AIC model selection methods

reveal that allowing all parameters to explore parameter space simultaneously is detrimental

to model performance and asserts that the rates of many biological mechanisms are not

significantly strain dependent.

The identification of the virus-interferon feedback, particularly in the context of strain-

specific behavior, aligns well with experimental evidence of strain-specific characteristics.

HA and NA, the influenza virus envelope proteins which dictate strain characterization, are

known regulators of type-I interferon production [254, 255, 256] while H5N1 NS1 protein

is noted for its effect on the timing and overall efficacy of the interferon response. One or

some combination of these protein mechanisms may be at the root of the identified strain-
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sensitivity within the model. Further exploration training the model to additional or mutated

strains may prove useful for pinpointing the biological source.

The inequity of trends in model energy and AIC values for the varying levels of shared

parameters reveals interesting information about the performance of the constructed

model. While energy, a normalized measure of the distance between simulation output and

training data, follows a trend of increasing accuracy with increasing degrees of freedom,

AIC predicts that the optimal model shares 90% of parameters between strains. As AIC is

a measure of both prediction energy and model quality by imposing a penalty for each

degree of freedom, results suggest that the All Independent study is overfitting to in vivo

data. Our hypothesis that disparate kinetics could be explained by viral parameters alone

was a logical assumption. However, AIC suggests that variance of a single parameter (Solo

Independent parameterizations, DoF: 11) of the virus and interferon states provide a better

model than both allowing all parameters to vary (All Independent, DoF: 20) and allowing

virus parameters to vary (Virus Independent models, DoF: 14 or 15) with the exception of

V + pV,IFN . Discovering that the cost of imposing equivalence between three of the four

virus parameters between strains outweighs the information lost by allowing freedom in the

estimation of all viral parameters at once suggests that viral strains likely share kinetic

characteristics. This serves as further proof that the initial hypothesis was incorrect:

strain-specific differences likely arise from host-virus interactions and their effects.

Modelers face several limitations and choices in the process of creating mathematical

models. First, working with averaged triplicate time course data comes with challenges like

missing values and high standard error in the event of the heterogeneity often observed in

biological systems. Additionally, data derived from methods such as protein assays often

return values below the limit of detection for some or all data points. While alternative

measures such as gene expression can be used in place of protein expression as carried out

here for training the interferon state, the question of correlation between the two datasets

must be acknowledged. Decisions surrounding data transformation are often made to weigh

model accuracy and feasibility. For example, data used to train the virus and interferon

states are logged values (log10 and log2 respectively) while treated as absolute measures

to eliminate problems of mathematical solvability. Lastly, systems where multiple states
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are training to data with similar dynamic trends often have parameter identifiability issues

that affect the ability of the model to accurately perform. The freedom in these combined

decisions remind us that the field of ODE modeling is a constant work in progress, with

everchanging best practices and methodologies for optimal model development.

Under these considerations, the deployed combination MCP1-macrophage state

representative of the inflammatory response invoked by macrophage activity balances

complexity with parameter identifiability concerns. Within the framework of n serving as

an activation threshold needed to induce macrophage production of MCP1, resulting values

of 5.47 and 9.98 for H1N1 and H5N1, respectively, imply that a higher rate of interferon

production is reached in H5N1 infection before the cytokine response is upregulated.
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5.0 Conclusions

In aggregate, this dissertation uses classic controls engineering and systems biology

modeling tools to elucidate the foundational biological mechanisms of the host immune

response driving clinical outcomes in influenza A virus and SARS-CoV-2 infections.

Immunoregulation is studied at two levels: a protein level analysis to identify host factors

of disease through the creation of two novel PPI network analysis pipelines and a systems

level exploration of strain-specific dynamics using MCMC parameterization of ODE

models. The resulting analyses hold potential in focusing drug development efforts on the

most likely targets and improving patient outcomes. The developed methodologies are

widely applicable in future studies of other diseases.

5.1 Disease-specific Subnetwork

The formation and analysis of biological networks from high throughput data such as

proteomics yields an advantageous evaluation of the relationships between cellular

pathways. Most notably, PPI networks remain unburdened by the need for extensive

experimental characterization of protein interaction kinetics that hinder the development of

more quantitative modeling methods. Topological analysis, such as degree and

betweenness, and the clustering behavior of biological networks remain as foundational

systems biology tools for identifying the most important components of the network,

however, highly depend on the construction of the network itself. As many efforts utilize

whole cell interaction repositories, methods are needed to address the lack of

disease-specificity seen in network biology studies.

Aim 1 addresses this gap with the first integration of viral-human protein interactions

into the human protein interaction network to create a disease-specific PPI network for

influenza A virus. Virus interacting host proteins are found to be closely clustered within

the network and are often members of protein complexes, suggesting that influenza virus has
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evolved to manipulate specific pathways and mechanisms of the cell to advance the ability to

manipulate host machinery. This aligns with previous evidence of clustering in host factors

of viral replication [278]

. Further, with additional siRNA data to identify proteins that are vital to viral

replication tasks, we create a disease specific subnetwork representative of the pathways

activated between virus interacting host proteins and critical host mechanisms used to

advance infection. The subnetwork is more highly enriched for host factors of influenza A

virus identified in six previous partial genome siRNA screens than the virus interacting

protein set and the total network asserting that the subnetwork is a better predictor of

disease host factors than the traditionally studied virus interacting proteins. The proteins

that are unconfirmed as host factors should be tested in future screens. Several of the

highest betweenness proteins of the total network display much lower values in the

subnetwork, revealing discord between topological estimation of protein importance in the

total cell landscape versus the importance to disease systems of interest. Functionally, the

subnetwork is comprised of a distinct group of proteins implicated in immune functions

such as NF-kB pathways in contrast to the typically studied virus interacting proteins.

The observation that betweenness does not significantly improve host factor prediction

suggests that alternative topology measures should be considered for future studies. There

are several reasons why betweenness was selected. Biological pathways are known to have

several alternative routes to maintaining cellular operations, a key feature of biological

robustness [279, 280, 281]. Biological networks are also theorized to have a bow tie-like

structure that suggests a natural bottlenecking within the PPI network near critical

cellular machinery [282]. These concepts together suggest targeting bottlenecks

(high-betweenness proteins) as a means of mitigating escape via alternative paths. In

future work, other network topology measures (e.g., degree, Burt’s Constraint, or closeness)

could be tested in the subnetwork and subnetwork construction and could be varied to

consider different subsets of either the virus interacting proteins or the internal-essential

host factors. Even so, the results suggest that construction of the virus-specific subnetwork

provides major advantages in host factor discovery and can significantly expand drug

candidate repertoires beyond virus interacting proteins. Furthermore, since the connecting
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proteins do not directly interact with the virus, they may be more resistant to concerns

related to drug-mediated selective pressure.

This analysis proves the ability of a disease-specific subnetwork to narrow the field of

network biology to a scope that replicates the specificity of the host response to disease.

The proteins identified in this method should be prioritized for drug target development and

repurposing.

5.2 Controllability of Virus-Host PPI Networks

While the virus-host network delivers disease specific insights, alone it represents only

a static snapshot of a highly dynamic system. Complex behavior within the cell over the

course of infection cannot be ignored in determining the causes of cellular dysregulation. A

comparison of healthy and infected cell snapshots achieves a more dynamic understanding

of the disease system without requiring extensive, time course data used in mathematical

modeling. Instead, the focus rests on the differences between the two networks where the

observed changes are disease specific. Controllability provides a framework to identify which

proteins are responsible for driving total system behavior, a process that contributes to the

overall understanding of disease needed to advance drug development.

In Aim 2, controllability methods were applied to both influenza A virus and SARS-

CoV-2 infections. For influenza, network-wide increases in topology post infection reveal

wide-reaching effects of viral control on cellular behavior during infection, particularly in

proteins that are both virus interacting and driver proteins. Controllability results reveal

two general conclusions about the roles of these protein groups. First, viruses are more likely

to interact with host proteins that offer a greater advantage in guiding total cell behavior.

Additionally, driver proteins act as an obstacle in gaining control of the system as they require

additional manipulation. Over 75% of driver proteins are able to act as non-driver nodes

given certain control configurations, lending to the idea of viral escape routes: alternative

pathways of gaining control under suboptimal conditions.
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Surprisingly, robust controllability does not identify varying protein regulation between

the healthy and infected cell (all classifications are the same for the HIN and VIN).

However, global controllability identifies a set of 24 proteins that exhibit notable changes

between the HIN and VIN. An increase in topological relevance post-infection implies that

the controllability-predicted proteins’ importance to the cell is unique to infection. 12 of

the 24 proteins are experimentally validated as interferon regulated genes centered around

the NF-kB pathway that is known to be inhibited by influenza virus [283, 201]. Though

the set of 24 proteins are not significantly enriched for host factors of influenza A

replication in past siRNA screening studies, these experiments test only part of the genome

by design, meaning the search must be active. In total, these 24 proteins hold topological,

functional, and controllability relevance and are recommended for drug targeting efforts.

An analysis of the SARS-CoV-2 virus-host network in comparison to the healthy host

network reveals many of the same topological and controllability insights; the majority of

controllability classifications remain the same for both viruses. However, the predicted

regulators of the cell demonstrate low overlap with those identified for influenza A virus

(3/16 predicted regulators), proving that the method is a predictor of disease specific

proteins. The changes to controllability classification of the 16 predicted regulators indicate

a loss of control that could represent viral interruption of normal host function or

activation of a new pathway. As in the analysis of influenza, the majority of predicted

proteins are topologically more important to the infected cell system. The usefulness of the

developed controllability pipeline was proven in the timely and effective prioritization of

drug targets that could be repurposed for COVID-19. Eight controllability-identified

proteins are registered as pre-existing drug targets [188, 168], six of which were identified

by other groups within the context of SARS-CoV-2 virus and three of which have targeting

compounds that are experimentally verified as downregulators of SARS-CoV-2 replication.

Relevance to viral infection including the cellular stress response, protein translation, and

cellular transport further prove the disease specificity of the predicted proteins. Five

compounds of interest targeting PVR, SCARB1, and NUP210 are recommended for viral

inhibition studies for the first time. An animal model is needed to assess the potential of
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vitamin E and sphingosine-1-phosphate for SARS-CoV-2 viral inhibition, a promising lead

as they are known inhibitors of influenza A viral activity [214, 220].

A major advantage of the pipeline developed in this aim is that the generality of this

analysis can be used to improve the prediction of drug targets for any pathogen-host

interaction given available protein interaction data. The limits of these methods lie in

limited availability of large-scale, dependable databases of protein-protein interactions.

Foundational maximum matching algorithms for the calculation of driver proteins must be

performed with directed networks. While larger directed networks than the network from

Vinayagam et al. [183] are available [284], the network used here contains only

experimentally derived data opposed to computationally predicted interactions, assuring

biological confidence in the results within this study. A robust controllability analysis of

the computationally predicted network presented in Uhart et al. [284] finds that 29% of

proteins are categorized as indispensable where approximately 20% of proteins in the

Vinayagam network are classified as the same, though there is 89% overlap in directed

edges between the two networks. This suggests that methods for predicting protein

interactions may over represent these key proteins within the analysis, even in combination

with experimental results. However, larger networks will move towards a more complete

analysis of infected cell behavior and possibly reveal further proteins of interest. Therefore,

the future of this field depends on continued establishment of large, confident, directed PPI

networks.

5.3 ODE Modeling of Host Immune Response

Experimental quantification of cytokine and immune cell counts along with distinct

differences in clinical presentation make it clear that the invoked immune response for

influenza A virus may be highly strain specific [54]. H5N1, a severely pathogenic strain,

elicits higher weight loss, inflammation, tissue damage, and viral titers when compared to

H1N1, a low pathogenic, seasonal strain. However, despite demonstrated differences in

presentation, the disease mechanisms underlying these observations are unknown.
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Mathematical models of immune response dynamics are uniquely positioned to discern the

biological processes responsible for the differences identified in strain specific behavior.

However, model parameters have always been trained to data from a singular viral strain.

Aim 3 contains a computational assessment of differential immunoregulation to identify the

biological drivers of strain-specific behavior and determine if current modeling practices are

suitable to predict differences in disease pathology observed in vivo between varying

strains. A review of three published models of influenza virus infection found that recent

models are unable to reproduce expected interferon trends and heavily depend on the

infected cell state to downregulate viral replication. These results demonstrate the failure

of current modeling standards to sufficiently incorporate the interferon pathway, knowledge

that guides future model development efforts.

Two models of varying complexity were trained simultaneously to data from low

pathogenic H1N1 strain and the highly pathogenic H5N1 strain of influenza A virus. The

first model is representative of both the innate and adaptive immune response.

Parameterization of the model found that strain-specific estimation of virus-related

parameters was not sufficient to produce differential immunodynamics seen across strains.

The addition of parameter bM,IFN , the effect of the presence of macrophages on interferon

production, resulted in simulations comparable to those observed in vivo, suggesting the

surrounding mechanisms can be seen as a contributor to strain-specific behavior. This may

be the result of evidence that H5N1 infected resident macrophages prompt an increased

interferon response [262]. Further, a sensitivity analysis reveals that some virus-related

parameters such as viral replication rate have little effect on strain-specific virus trajectory

during infection, suggesting that only certain viral characteristics dictate strain behavior.

Driven by the inability of the first model to reproduce late infection CTL counts and

the error introduced to the system by the lack of training data for epithelial cells, a pared

down model was used to re-explore the strain specificity of the innate immune response.

MCMC parameterization finds no well fit solution when forcing all parameters to be equal

between H1N1 and H5N1 fits asserting that there are strain-specific mechanisms represented

within the three-state model. Testing strain independence in each parameter alone, and

in combination with the four virus parameters revealed the importance of the interferon
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response to the differential immunodynamics. AIC was used to compare the quality of each

parameterization to account for the varying number of shared parameters across strains.

Strain-dependent estimation of parameter pV,IFN , the production rate of interferon, yields

the optimal fit of the parameterizations explored, again asserting that host dynamics may

be at the root of observed differences. Comparing the rankings of error and AIC reveals

that while independent estimation of all parameters across strains results in the lowest error

values, the cost incurred by the additional degrees of freedom is high resulting in the lowest

AIC ranking. Biologically, this suggests that mechanistic differences in the host immune

response are minimal in number. A global sensitivity analysis supports this idea showing

minimal sensitivity to changes in parameters themselves. Instead, state variance can be

attributed to the interactions between parameters, particularly parameters of the interferon

state that contribute largely to the viral state. In total, results support the attribution of

strain-specific immunodynamics to mechanisms of interferon production.

The three-state model could be expanded to include additional states as long as

identifiability remains intact. Alternatively, the addition of parameters that are

representative of immune functions affecting the virus, interferon and MCP1 states could

be integrated into the existing equations such as the induction of interferon in infected

macrophages that has been noted as a marker of severity in H5N1 infection specifically

[285]. The shared parameter MCMC framework is highly generalizable to other cohorts of

data including age or sex specific studies, making it a highly valuable tool for investigating

disparate kinetics between groups of interest and, ultimately, the drivers of observed

clinical behavior. Additionally, conclusions from cohort specific studies may prove useful

for informing and simplifying future modeling work with additional cohorts. For example,

if modeling efforts turn toward an emergent influenza A virus strain in the future, one may

hypothesize that the parameters shared between other influenza strains may hold true.

Investigation may support this hypothesis, saving time and effort, or prove the hypothesis

false, indicating a mechanistic difference in the emerging strain. In total, the results

enclosed serve as a starting point model of the early innate immune response and a

prototype for powerful comparative studies.
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The results of these three aims offer a greater understanding of the immunodynamics of

viral infection and contribute novel tools to the field of systems biology. The power of

computational methods lie in the ability to invent and build on existing methodologies of

processing big data to efficiently extract meaningful biological conclusions. Through

collaborative work with immunologists and experimental biologists as well as computer

scientists and bioinformaticians, the future promises advances in the treatment of disease

to the great benefit of global public health.
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Appendix A Scale Free Network
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Figure A1. Degree distribution of network proteins
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Appendix B Drugs Targeting Prioritized Targets for COVID-19

Table B1. The targets and associated compounds for all eight genes prioritized for COVID-19
treatment.

Compound Name Target

Gene

Drug Status Identified

by

Drugbank

/research

associations

Identified

in Gordon

et al (2020)

(**active

viral

inhibition,

*untested)

Ternatin 4 (DA3) EIF4AE Pre-clinical X**

Zotatifin (eFT226) EIF4AE Clinical Trial X**

4E2RCat EIF4AE Pre-clinical X

4E1Rcat EIF4AE Pre-clinical X

7-methyl-GpppA EIF4AE Experimental X

7-methyl-7,8-

dihydroguanosine-5’-

diphosphate

EIF4AE Experimental X

7-methyl-guanosine-5’-

triphosphate

EIF4AE Experimental X

LY2275796 EIF4AE Investigational X

S-[(1-Hydroxy-2,2,5,5-

tetramethyl-2,5-

dihydro-1H-pyrrol-3-

yl)methyl]

methanesulfonothioate

EIF4AE Experimental X
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Table B1. (Continued)

Compound Name Target

Gene

Drug Status Identified

by

Drugbank

/research

associations

Identified

in Gordon

et al (2020)

(**active

viral

inhibition,

*untested)

Rapamycin (Sirolimus) EIF4AE,

LARP1

Approved X X

Mycophenolic acid IMPDH2 Approved X X**

Ribavirin IMPDH2 Approved X X

Merimepodib IMPDH2 Clinical Trial X

Mycophenolate mofetil IMPDH2 Approved X

NADH IMPDH2 Approved X

Selenazole-4-

carboxyamide-adenine

dinucleotide

IMPDH2 Experimental X

6-Chloropurine

Riboside,

5’-Monophosphate

IMPDH2 Experimental X

Inosinic Acid IMPDH2 Experimental X

VX-148 IMPDH2 Investigational X

Azathioprine IMPDH2 Approved X

RapaLink-1 LARP1 Pre-clinical X

Sapanisertib

(INK128/MlN128)

LARP1 Clinical Trial X

Selinexor NUP210,

RAE1

Approved X*
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Table B1. (Continued)

Compound Name Target

Gene

Drug Status Identified

by

Drugbank

/research

associations

Identified

in Gordon

et al (2020)

(**active

viral

inhibition,

*untested)

Myristic acid PVR Experimental X

Sphingosine PVR Experimental X

Phosphatidyl serine SCARB1 Approved X

Tocopherol SCARB1 Approved X

alpha-Tocopherol

acetate

SCARB1 Approved X

Tocofersolan SCARB1 Approved X

Vitamin E SCARB1 Approved X

PHA-665752 SCARB1,

NUP210

Experimental X

E-52862 SIGMAR1 Clinical Trial X

RS-PPCC SIGMAR1 Pre-clinical X

PD-144418 SIGMAR1 Pre-clinical X**

Dextromethorphan SIGMAR1 Approved X X

Haloperidol SIGMAR1 Approved X X**

PB28 SIGMAR1 Pre-clinical X**

Siramesine SIGMAR1 Clinical Trial X**

Cloperastine SIGMAR1 Approved X**

BD1008 SIGMAR1 Pre-clinical X

Carbapentane SIGMAR1 Approved X

Ifenprodil SIGMAR1 Approved X
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Table B1. (Continued)

Compound Name Target

Gene

Drug Status Identified

by

Drugbank

/research

associations

Identified

in Gordon

et al (2020)

(**active

viral

inhibition,

*untested)

Progesterone SIGMAR1 Approved X

Clemastine SIGMAR1 Approved X**

Hydroxychloroquine SIGMAR1 Approved X**

Olanzapine SIGMAR1 Approved X

Pimozide SIGMAR1 Approved X

Rimcazole SIGMAR1 Pre-clinical X

Phencyclidine SIGMAR1 Illicit X

Noscapine SIGMAR1 Approved X

Pentazocine SIGMAR1 Approved X

Dimethyltryptamine SIGMAR1 Experimental,

illicit

X

Remoxipride SIGMAR1 Approved X

Amitriptyline SIGMAR1 Approved X

Prasterone SIGMAR1 Approved X

Captodiame SIGMAR1 Experimental X

Cocaine SIGMAR1 Approved,

illicit

X

Pentoxyverine SIGMAR1 Approved X

Hydrocodone SIGMAR1 Approved,

illicit,

investigational

X
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Appendix C Review Model Equations

PAWELEK

H′ = −βHV − φHF + ρF

I′ = βHV − δI−KIF

R′ = φHF− ρF

V′ = pI− cV

F′ = qI− dF

(C.1)

SAENZ

H′ = −βHV − φHF

E′1 = βHV − k1E1,

W′ = φFH−mβVW − αW

E′2 = mβVW − k′E2R
′ = αW

I′ = k1E1 + k′E2 − δI,

V′ = pI− cVF′ = nqE2− dF + qI

(C.2)

HANCIOGLU

H ′ = bHDD(H +R) + aRR− γHV V H − bHFFH

I ′ = γHV V H − aII − bIEEI

R′ = bHFFH − aRR

V ′ = γV I − γV ASAV − γV HHV − αV V − av1V
av2V+1

M ′ = (1−M) (bMDD + bMV V )− aMM

F ′ = bFM + cF I − bFHHF − aFF

E ′ = bEMME − bEIIE + aE(1− E)

P ′ = bPMMP + aP (1− P )

A′ = bAP − γAV SAV − aAA

S ′ = rP (1− S)

(C.3)
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Appendix D Innate-Adaptive Model Parameters

Parameter Meaning

β Infectivity of the virus

λ Replication rate of healthy epithelial cells

δ Natural death rate of infected epithelial cells

KCTL Clearance rate of infected cells by CTLs

p Viral replication rate

q Depletion of free virions by interferon

c Clearance of virus by antibodies

bIFN,M Activation of macrophages due to IFN

muM Decay rate of macrophages

bI,IFN Increase in IFN due to infected cells

θIFN Saturation of IFN increase

bM,IFN Increase in IFN due to macrophages

µIFN Decay rate of IFN

bM,CTL Increase in CTLs due to macrophages

µCTL Decay rate of activated CTLs

M0 Initial condition for macrophages

CTL0 Initial condition for CTLs

n Hill kinetic parameter; constant
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Appendix E Innate Model Parameters

Parameter Meaning

k Viral growth rate

K Maximum Viral Capacity

rIFN,V Viral inhibition by interferon response

dV Viral decay rate

pV,IFN Interferon production rate resulting from viral presence

dIFN Interferon decay rate

k1 Maximum rate of MCP1 production

k2 Dissociation constant in MCP1 production

n Activation threshold of interferon for macrophage production of MCP1

dMCP1,IFN MCP1 decay rate
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S. Peñaranda, B. Bankamp, K. Maher, M. h. Chen, S. Tong, A. Tamin, L. Lowe,
M. Frace, J. L. DeRisi, Q. Chen, D. Wang, D. D. Erdman, T. C. Peret, C. Burns, T. G.
Ksiazek, P. E. Rollin, A. Sanchez, S. Liffick, B. Holloway, J. Limor, K. McCaustland,
M. Olsen-Rasmussen, R. Fouchier, S. Günther, A. D. Osterhaus, C. Drosten, M. A.
Pallansch, L. J. Anderson, and W. J. Bellini, “Characterization of a novel coronavirus
associated with severe acute respiratory syndrome,” Science, vol. 300, pp. 1394–1399,
5 2003.

[27] L. Lu, W. Zhong, Z. Bian, Z. Li, K. Zhang, B. Liang, Y. Zhong, M. Hu, L. Lin, J. Liu,
X. Lin, Y. Huang, J. Jiang, X. Yang, X. Zhang, and Z. Huang, “A comparison of
mortality-related risk factors of COVID-19, SARS, and MERS: A systematic review
and meta-analysis,” 10 2020.

[28] P. Dabisch, M. Schuit, A. Herzog, K. Beck, S. Wood, M. Krause, D. Miller, W. Weaver,
D. Freeburger, I. Hooper, B. Green, G. Williams, B. Holland, J. Bohannon, V. Wahl,
J. Yolitz, M. Hevey, and S. Ratnesar-Shumate, “The influence of temperature,
humidity, and simulated sunlight on the infectivity of SARS-CoV-2 in aerosols,”
Aerosol Science and Technology, vol. 55, no. 2, pp. 142–153, 2021.

[29] A. A. Rabaan, S. H. Al-Ahmed, M. K. Al-Malkey, R. A. Alsubki, S. Ezzikouri,
F. Hassan Al-Hababi, R. Sah, A. Al Mutair, S. Alhumaid, J. A. Al, F. Alshahrani,
D. Bahadur Shrestha, M. Isaqali Karobari, and S. Arabia, “Airborne transmission of
SARS-CoV-2 is the dominant route of transmission: droplets and aerosols King Fahad
Medical City,” Tech. Rep. 1.

[30] Q. X. Long, X. J. Tang, Q. L. Shi, Q. Li, H. J. Deng, J. Yuan, J. L. Hu, W. Xu,
Y. Zhang, F. J. Lv, K. Su, F. Zhang, J. Gong, B. Wu, X. M. Liu, J. J. Li, J. F. Qiu,
J. Chen, and A. L. Huang, “Clinical and immunological assessment of asymptomatic
SARS-CoV-2 infections,” Nature Medicine, vol. 26, pp. 1200–1204, 8 2020.

[31] F. Zhang, R. Gan, Z. Zhen, X. Hu, X. Li, F. Zhou, Y. Liu, C. Chen, S. Xie, B. Zhang,
X. Wu, and Z. Huang, “Adaptive immune responses to SARS-CoV-2 infection in
severe versus mild individuals,” Signal Transduction and Targeted Therapy, vol. 5,
pp. 1–11, 12 2020.

126



[32] T. Struyf, J. J. Deeks, J. Dinnes, Y. Takwoingi, C. Davenport, M. M. Leeflang,
R. Spijker, L. Hooft, D. Emperador, S. Dittrich, J. Domen, S. R. Horn, and A. Van den
Bruel, “Signs and symptoms to determine if a patient presenting in primary care or
hospital outpatient settings has COVID-19 disease,” 7 2020.

[33] J. Liu, S. Li, J. Liu, B. Liang, X. Wang, H. Wang, W. Li, Q. Tong, J. Yi, L. Zhao,
L. Xiong, C. Guo, J. Tian, J. Luo, J. Yao, R. Pang, H. Shen, C. Peng, T. Liu, Q. Zhang,
J. Wu, L. Xu, S. Lu, B. Wang, Z. Weng, C. Han, H. Zhu, R. Zhou, H. Zhou, X. Chen,
P. Ye, B. Zhu, L. Wang, W. Zhou, S. He, Y. He, S. Jie, P. Wei, J. Zhang, Y. Lu,
W. Wang, L. Zhang, L. Li, F. Zhou, J. Wang, U. Dittmer, M. Lu, Y. Hu, D. Yang,
and X. Zheng, “Longitudinal characteristics of lymphocyte responses and cytokine
profiles in the peripheral blood of SARS-CoV-2 infected patients,” EBioMedicine,
vol. 55, p. 102763, 5 2020.

[34] C. H. Sudre, B. Murray, T. Varsavsky, M. S. Graham, R. S. Penfold, R. C.
Bowyer, J. C. Pujol, K. Klaser, M. Antonelli, L. S. Canas, E. Molteni, M. Modat,
M. Jorge Cardoso, A. May, S. Ganesh, R. Davies, L. H. Nguyen, D. A. Drew, C. M.
Astley, A. D. Joshi, J. Merino, N. Tsereteli, T. Fall, M. F. Gomez, E. L. Duncan,
C. Menni, F. M. Williams, P. W. Franks, A. T. Chan, J. Wolf, S. Ourselin, T. Spector,
and C. J. Steves, “Attributes and predictors of long COVID,” Nature Medicine, vol. 27,
pp. 626–631, 4 2021.

[35] World Health Organization, “Coronavirus disease (COVID-19) Situation Report 118,”
2020.

[36] M. A. Bakowski, N. Beutler, K. C. Wolff, M. G. Kirkpatrick, E. Chen, T.-T. H.
Nguyen, L. Riva, N. Shaabani, M. Parren, J. Ricketts, A. K. Gupta, K. Pan, P. Kuo,
M. Fuller, E. Garcia, J. R. Teijaro, L. Yang, D. Sahoo, V. Chi, E. Huang, N. Vargas,
A. J. Roberts, S. Das, P. Ghosh, A. K. Woods, S. B. Joseph, M. V. Hull, P. G.
Schultz, D. R. Burton, A. K. Chatterjee, C. W. McNamara, and T. F. Rogers,
“Drug repurposing screens identify chemical entities for the development of COVID-19
interventions,” Nature Communications, vol. 12, p. 3309, 12 2021.

[37] T. U. Singh, S. Parida, M. C. Lingaraju, M. Kesavan, D. Kumar, and R. K. Singh,
“Drug repurposing approach to fight COVID-19,” 12 2020.

[38] G. Ciliberto, R. Mancini, and M. G. Paggi, “Drug repurposing against COVID-19:
Focus on anticancer agents,” 5 2020.

[39] FDA, “Know Your Treatment Options for COVID-19 — FDA.”

127



[40] Institute for Health Metrics and Evaluation, “COVID-19 vaccine efficacy summary —
Institute for Health Metrics and Evaluation.”

[41] S. S. Abdool Karim and T. de Oliveira, “New SARS-CoV-2 Variants Clinical, Public
Health, and Vaccine Implications,” New England Journal of Medicine, vol. 384,
pp. 1866–1868, 5 2021.

[42] L. Guillot, R. Le Goffic, S. Bloch, N. Escriou, S. Akira, M. Chignard, and M. Si-Tahar,
“Involvement of Toll-like receptor 3 in the immune response of lung epithelial cells to
double-stranded RNA and influenza A virus,” Journal of Biological Chemistry, 2005.

[43] P. J. Delves and I. M. Roitt, “Advances in immunology: The immune system (Second
of two parts),” 2000.

[44] U. A. Maus, M. Audrey Koay, T. Delbeck, M. Mack, M. Ermert, L. Ermert, T. S.
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[246] C. W. Cluff, J. R. Baldridge, A. G. Stöver, J. T. Evans, D. A. Johnson, M. J. Lacy,
V. G. Clawson, V. M. Yorgensen, C. L. Johnson, M. T. Livesay, R. M. Hershberg,
and D. H. Persing, “Synthetic toll-like receptor 4 agonists stimulate innate resistance
to infectious challenge,” Infection and Immunity, vol. 73, pp. 3044–3052, 5 2005.

[247] A. Tanaka, S. Nakamura, M. Seki, K. Fukudome, N. Iwanaga, Y. Imamura,
T. Miyazaki, K. Izumikawa, H. Kakeya, K. Yanagihara, and S. Kohno, “Toll-like
receptor 4 agonistic antibody promotes innate immunity against severe pneumonia
induced by coinfection with influenza virus and Streptococcus pneumoniae,” Clinical
and Vaccine Immunology, vol. 20, pp. 977–985, 7 2013.

[248] J. Wong, M. Christopher, S. Viswanathan, X. Dai, A. Salazar, L.-Q. Sun, and
M. Wang, “Antiviral Role of Toll-Like Receptor-3 Agonists Against Seasonal and
Avian Influenza Viruses,” Current Pharmaceutical Design, vol. 15, pp. 1269–1274, 3
2009.

[249] C. Cillóniz, K. Shinya, X. Peng, M. J. Korth, S. C. Proll, L. D. Aicher, V. S. Carter,
J. H. Chang, D. Kobasa, F. Feldmann, J. E. Strong, H. Feldmann, Y. Kawaoka, and
M. G. Katze, “Lethal influenza virus infection in macaques is associated with early
dysregulation of inflammatory related genes.,” PLoS pathogens, vol. 5, no. 10, 2009.

149



[250] D. Kobasa, S. M. Jones, K. Shinya, J. C. Kash, J. Copps, H. Ebihara, Y. Hatta, J. H.
Kim, P. Halfmann, M. Hatta, F. Feldmann, J. B. Alimonti, L. Fernando, Y. Li, M. G.
Katze, H. Feldmann, and Y. Kawaoka, “Aberrant innate immune response in lethal
infection of macaques with the 1918 influenza virus,” Nature, vol. 445, pp. 319–323,
1 2007.

[251] G. A. Bocharov and A. A. Romanyukha, “Mathematical model of antiviral immune
response III. Influenza a virus infection,” Journal of Theoretical Biology, vol. 167,
no. 4, pp. 323–360, 1994.

[252] J. Guarner and R. Falcón-Escobedo, “Comparison of the pathology caused by H1N1,
H5N1, and H3N2 influenza viruses,” 2009.

[253] C. Korteweg and J. Gu, “Pandemic influenza a (H1N1) virus infection and avian
influenza a (H5N1) virus infection: A comparative analysis,” 2010.

[254] C. Xia, M. Vijayan, C. J. Pritzl, S. Y. Fuchs, A. B. McDermott, and B. Hahm,
“Hemagglutinin of Influenza A Virus Antagonizes Type I Interferon (IFN) Responses
by Inducing Degradation of Type I IFN Receptor 1,” Journal of Virology, vol. 90,
pp. 2403–2417, 3 2016.

[255] F. Ma, B. Li, Y. Yu, S. S. Iyer, M. Sun, and G. Cheng, “ Positive feedback regulation
of type I interferon by the interferonstimulated gene STING ,” EMBO reports, vol. 16,
pp. 202–212, 2 2015.

[256] C. Y. Wu, H. Y. Chuang, and C. H. Wong, “Influenza virus neuraminidase regulates
host CD8+ T-cell response in mice,” Communications Biology, vol. 3, pp. 1–10, 12
2020.

[257] W. Li, G. Wang, H. Zhang, G. Xin, D. Zhang, J. Zeng, X. Chen, Y. Xu, Y. Cui, and
K. Li, “Effects of NS1 variants of H5N1 influenza virus on interferon induction, TNFα
response and p53 activity,” Cellular and Molecular Immunology, vol. 7, pp. 235–242,
5 2010.

[258] I. Meunier and V. von Messling, “NS1-mediated delay of type I interferon induction
contributes to influenza A virulence in ferrets,” Journal of General Virology, 2011.

[259] A. S. Perelson, F. G. Hayden, C. A. Macken, C. Beauchemin, and P. Baccam, “Kinetics
of Influenza A Virus Infection in Humans,” Journal of Virology, 2006.

150



[260] L. Pinky and H. M. Dobrovolny, “The impact of cell regeneration on the dynamics of
viral coinfection,” Chaos, 2017.

[261] A. Handel, I. M. Longini, and R. Antia, “Antiviral resistance and the control of
pandemic influenza: The roles of stochasticity, evolution and model details,” Journal
of Theoretical Biology, vol. 256, no. 1, pp. 117–125, 2009.

[262] P. Woo, E. Tung, K. Chan, C. Lau, S. Lau, and K. Yuen, “Cytokine Profiles Induced
by the Novel SwineOrigin Influenza A/H1N1 Virus: Implications for Treatment
Strategies,” The Journal of Infectious Diseases, 2009.

[263] K. P. Hui, H. S. Li, M. C. Cheung, R. W. Chan, K. M. Yuen, C. K. Mok, J. M.
Nicholls, J. S. Peiris, and M. C. Chan, “Highly pathogenic avian influenza H5N1
virus delays apoptotic responses via activation of STAT3,” Scientific Reports, 2016.

[264] WHO, “FAQs: H5N1 influenza,” 2011.

[265] K. L. Lin, Y. Suzuki, H. Nakano, E. Ramsburg, and M. D. Gunn, “ CCR2 +
Monocyte-Derived Dendritic Cells and Exudate Macrophages Produce Influenza-
Induced Pulmonary Immune Pathology and Mortality ,” The Journal of Immunology,
vol. 180, pp. 2562–2572, 2 2008.

[266] S. L. Deshmane, S. Kremlev, S. Amini, and B. E. Sawaya, “Monocyte chemoattractant
protein-1 (MCP-1): An overview,” 2009.

[267] Z. S. Singer, P. M. Ambrose, T. Danino, and C. M. Rice, “Quantitative measurements
of early alphaviral replication dynamics in single cells reveals the basis for
superinfection exclusion,” Cell Systems, 2021.

[268] T. Yoshimura, E. A. Robinson, S. Tanaka, E. Appella, and E. J. Leonard, “Purification
and amino acid analysis of two human monocyte chemoattractants produced by
phytohemagglutinin-stimulated human blood mononuclear leukocytes.,” Journal of
immunology (Baltimore, Md. : 1950), 1989.

[269] J. N. Weiss, “The Hill equation revisited: uses and misuses,” The FASEB Journal,
vol. 11, pp. 835–841, 9 1997.

[270] S. L. Waldrop, K. A. Davis, V. C. Maino, and L. J. Picker, “Normal Human CD4+
Memory T Cells Display Broad Heterogeneity in Their Activation Threshold for
Cytokine Synthesis,” The Journal of Immunology, vol. 161, no. 10, 1998.

151



[271] Y. Itoh and R. N. Germain, “Single cell analysis reveals regulated hierarchical T
cell antigen receptor signaling thresholds and intraclonal heterogeneity for individual
cytokine responses of CD4+ T cells,” Journal of Experimental Medicine, vol. 186,
pp. 757–766, 8 1997.

[272] H. Akaike, “A New Look at the Statistical Model Identification,” IEEE Transactions
on Automatic Control, vol. 19, no. 6, pp. 716–723, 1974.

[273] W. Pan, “Akaike’s information criterion in generalized estimating equations,”
Biometrics, vol. 57, pp. 120–125, 3 2001.

[274] S. Portet, “A primer on model selection using the Akaike Information Criterion,”
Infectious Disease Modelling, vol. 5, pp. 111–128, 1 2020.

[275] W. Sakamoto, “Bias-reduced marginal Akaike information criteria based on a Monte
Carlo method for linear mixed-effects models,” Scandinavian Journal of Statistics,
vol. 46, pp. 87–115, 3 2019.

[276] A. Saltelli, R. B. C. S. . D. Analysis, and u. 1998, “An alternative way to compute
Fourier amplitude sensitivity test (FAST),” Elsevier.

[277] S. Marino, I. B. Hogue, C. J. Ray, and D. E. Kirschner, “A methodology for performing
global uncertainty and sensitivity analysis in systems biology,” 9 2008.

[278] L. Hao, Q. He, Z. Wang, M. Craven, M. A. Newton, and P. Ahlquist, “Limited
Agreement of Independent RNAi Screens for Virus-Required Host Genes Owes More
to False-Negative than False-Positive Factors,” PLoS Computational Biology, vol. 9,
9 2013.

[279] Y. Gong and Z. Zhang, “Alternative signaling pathways: When, where and why?,”
FEBS Letters, vol. 579, pp. 5265–5274, 10 2005.

[280] G. Weng, U. S. Bhalla, and R. Iyengar, “Complexity in biological signaling systems.,”
Science (New York, N.Y.), vol. 284, pp. 92–6, 4 1999.

[281] H. Kitano, “Biological robustness,” Nature Reviews Genetics, vol. 5, pp. 826–837, 11
2004.

152



[282] M. Csete and J. Doyle, “Bow ties, metabolism and disease.,” Trends in biotechnology,
vol. 22, pp. 446–50, 9 2004.

[283] N. Kumar, Z.-t. Xin, Y. Liang, H. Ly, and Y. Liang, “NF-B Signaling Differentially
Regulates Influenza Virus RNA Synthesis,” Journal of Virology, 2008.

[284] M. Uhart, G. Flores, and D. M. Bustos, “Controllability of protein-protein interaction
phosphorylation-based networks: Participation of the hub 14-3-3 protein family,”
Scientific Reports, 2016.

[285] K. P. Y. Hui, S. M. Y. Lee, C.-y. Cheung, I. H. Y. Ng, L. L. M. Poon, Y. Guan, N. Y. Y.
Ip, A. S. Y. Lau, and J. S. M. Peiris, “Induction of Proinflammatory Cytokines in
Primary Human Macrophages by Influenza A Virus (H5N1) Is Selectively Regulated
by IFN Regulatory Factor 3 and p38 MAPK,” The Journal of Immunology, vol. 182,
pp. 1088–1098, 1 2009.

153


	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	2.1. Functional Enrichment Analysis of Virus Subnetwork
	2.2. Functional Enrichment Analysis of Virus Subnetwork Interacting Proteins
	3.1. Driver Proteins for Influenza A Virus
	3.2. Robust Controllability for Influenza A Virus
	3.3. Global Controllability for Influenza A Virus
	3.4. Global Proteins for Influenza A Virus
	3.4. (Continued)
	3.5. Summary of Results for Influenza Controllability 
	3.6. Driver Proteins for SARS-CoV-2
	3.6. (Continued)
	3.7. Robust Controllability for SARS-CoV-2
	3.8. Robust Proteins for SARS-CoV-2
	3.9. Global Controllability for SARS-CoV-2
	3.10. Global Proteins for SARS-CoV-2
	3.11. Prioritized Drugs to Repurpose for COVID-19
	4.1. Sensitivity of the Innate-Adaptive Model
	4.2. Minimum Error and AIC Values for Innate Model Studies
	B1. Drugs Targeting Prioritized Targets for COVID-19
	B1. (Continued)
	B1. (Continued)
	B1. (Continued)

	List of Figures
	0.1. Visual Summary of Dissertation Aims
	1.1. Demonstration of Parameter Identifiability and Local Minimum Error Solutions
	1.2. Network Topology
	2.1. The Virus Interacting Network
	2.2. A Disease Specific Subnetwork
	2.3. The Network Characteristics of the Virus Interacting Proteins of Influenza A Virus
	2.4. Protein Abundance versus Protein Degree Correlation
	2.5. The Topology of the Influenza A Virus Subnetwork
	2.6. Hit Rates of Subnetwork Host Factors
	3.1. Example of Classic Controllability
	3.2. Overview of Robust and Global Controllability
	3.3. Topology of HIN and VIN for Influenza A Virus
	3.4. Random Validation of Influenza Controllability
	3.5. Topology of Influenza Random Validation
	3.6. Topology Comparison of Influenza Controllability Proteins
	3.7. siRNA Validation of Influenza A Controllability Predictions
	3.8. Topology of HIN and VIN for SARS-CoV-2
	3.9. Random Validation of SARS-CoV-2 Controllability
	3.10. Topology of SARS-CoV-2 Random Validation
	3.11. Topology Comparison of SARS-CoV-2 Controllability Proteins
	4.1. Model Diagrams for Saenz, Pawelek, and Hancioglu Models
	4.2. Time-dependent sensitivity of Pawelek, Saenz, and Hancioglu Models
	4.3. Innate-Adaptive Model Scheme
	4.4. Multi-strain MCMC Parameterization
	4.5. Innate-Adaptive Model Fits Varying Virus and IFN Production
	4.6. Innate-Adaptive Model Parameter Distributions while Varying Virus and IFN Production
	4.7. Innate-Adaptive Model Fits Varying All Parameters
	4.8. Innate-Adaptive Model Parameter Distributions while Varying All Parameters
	4.9. Innate Model Schematic
	4.10. Energy per Iteration for Innate Model
	4.11. Innate Model Fits for All Independent and All Shared Parameterizations
	4.12. Parameter Distributions for All Independent and All Shared Parameterizations of Innate Model
	4.13. Innate Model Fits for Solo Independent Parameterizations
	4.14. Innate Model Fits for Virus Independent Parameterizations
	4.15. Innate Model Sensitivity
	A1. Degree Distribution of Network Proteins

	Preface
	1.0 Introduction
	1.1 The Host Immune Response to Viral Infection
	1.1.1 Viral Respiratory Infection
	1.1.1.1 Influenza A Virus
	1.1.1.2 SARS-CoV-2

	1.1.2 The Host Immune Response

	1.2 Computational Methods
	1.2.1 Mathematical Modeling
	1.2.2 Network Modeling


	2.0 Aim 1: Disease Subnetwork Extraction for Host Factor Identification
	2.1 Introduction
	2.2 Materials and Methods
	2.2.1 Protein-Protein Interaction Network Construction and Topology
	2.2.2 Calculation of Abundance-Degree Correlation
	2.2.3 Protein Network Clustering
	2.2.4 Influenza Virus-Host Subnetwork Construction
	2.2.5 Statistical Analyses
	2.2.6 Functional Analysis
	2.2.7 Calculation of Host Factor Enrichment

	2.3 Results
	2.3.1 Virus Interacting Proteins are Central to the PPI Network
	2.3.2 Virus Interacting Host Proteins are Closely Connected in the Human PPI Network
	2.3.3 Constructing the Influenza A Virus Subnetwork
	2.3.4 Functional Enrichment Analysis of the Influenza Virus-Host Subnetwork
	2.3.5 Connecting Proteins of the Influenza Virus-Host Subnetwork are More Enriched for Host Factors than Virus Interacting Proteins 
	2.3.6 The Influenza Virus Subnetwork is Enriched for Host Factors Identified in Six Host Factor Screens

	2.4 Summary

	3.0 Aim 2: Network Controllability for Drug Discovery and Repurposing
	3.1 Introduction
	3.2 Materials and Methods
	3.2.1 Protein-Protein Interaction Network Construction 
	3.2.2 Robust Controllability Classification
	3.2.3 Global Controllability Classification
	3.2.4 Prediction Validation

	3.3 Influenza A
	3.3.1 Results
	3.3.1.1 Addition of Virus Interactions to Host Network has Wide Reaching Effect
	3.3.1.2 Influenza A Virus Interacts with Proteins That Promote Cellular Control
	3.3.1.3 Global Controllability Predicts Key Regulators of Influenza Infection
	3.3.1.4 Partial Genome siRNA Screens Do Not Favor Specific Controllability Classifications

	3.3.2 Summary

	3.4 SARS-CoV-2
	3.4.1 Addition of Virus Interactions to Host Network Significantly Changes Network Topology
	3.4.2 Immune Proteins Become Driver Proteins at the Onset of Infection
	3.4.3 Global Controllability Predicts Key Regulators of SARS-CoV-2 Infection
	3.4.4 Prioritization of Six Drugs to Repurpose for COVID-19 Treatment
	3.4.5 Summary


	4.0 Aim 3: Modeling Strain-Specific Immunodynamics During Viral Infection
	4.1 Introduction
	4.1.1 Model Review
	4.1.2 The Strain-specific Immune Response

	4.2 Multi-strain parameterization of Innate-Adaptive Model
	4.2.1 Materials and Methods
	4.2.1.1 Model Creation
	4.2.1.2 Multi-strain MCMC Parameterization

	4.2.2 Results
	4.2.2.1 H1N1 Model Cannot Predict H5N1-induced Dynamics with Variance in Virus Replication Parameters
	4.2.2.2 H1N1 Model Predicts H5N1-induced Dynamics with Added variance in Macrophage Interferon Production
	4.2.2.3 Sensitivity in Virus Infectivity Leads to Variance in Viral Production
	4.2.2.4 Prediction of additional strain-specific kinetics

	4.2.3 Summary

	4.3 Multi-strain parameterization of Innate Model
	4.3.1 Materials and Methods
	4.3.1.1 Model Creation
	4.3.1.2 Multi-strain MCMC Parameterization
	4.3.1.3 Model Selection
	4.3.1.4 Global Sensitivity

	4.3.2 Results
	4.3.2.1 Quantifying limitations of model goodness of fit 
	4.3.2.2 Strain Independence in Interferon Production Produced Best Fit with Single Parameter Freedom
	4.3.2.3 Independent Estimation of Virus Parameters per Strain Does Not Improve Model Fits
	4.3.2.4 Viral State is Highly Sensitive to Interferon Parameters

	4.3.3 Summary


	5.0 Conclusions
	5.1 Disease-specific Subnetwork
	5.2 Controllability of Virus-Host PPI Networks
	5.3 ODE Modeling of Host Immune Response
	5.4 Publications Resulting from this Dissertation

	Appendix A. Scale Free Network
	Appendix B. Drugs Targeting Prioritized Targets for COVID-19
	Appendix C. Review Model Equations
	Appendix D. Innate-Adaptive Model Parameters
	Appendix E. Innate Model Parameters
	Bibliography

