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Stochastic Bayesian Games for the Cybersecurity of Nuclear Power Plants

Lee Tylor Maccarone, PhD

University of Pittsburgh, 2021

The goal of this research is to reduce the likelihood of successful attacks on nuclear

power plants. Cyber-physical systems such as nuclear power plants consist of interconnected

physical processes and computational resources. Because the cyber and physical worlds are

integrated, vulnerabilities in both the cyber and physical domains can result in physical

damage to the system. Nuclear power plants can be targeted by a variety of adversaries

— each with a unique motivation and set of resources. To secure nuclear power plants and

other cyber-physical systems, we require an approach to security that also accounts for the

interactions of human decision-makers.

This research uses a game-theoretic approach to nuclear cybersecurity. The cybersecurity

of the plant can be viewed as a non-cooperative game between a defender and an attacker.

The field of game theory provides a mathematical framework to analyze the interactions

of the defender and attacker as both players seek to accomplish their objectives. In this

research, a stochastic Bayesian game is used to optimize cybersecurity decision-making. A

stochastic Bayesian game is a combination of a stochastic game and a Bayesian game. The

stochastic elements of the game enable the consideration of uncertainty in the interactions

of the attacker and defender. The Bayesian elements of the game enable the consideration of

the uncertainty regarding the attacker’s characteristics. This combination is useful for the

analysis of nuclear power plant cybersecurity because it enables plant defenders to optimize

their security decisions in the presence of uncertainty.
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1.0 Introduction

The goal of this research is to reduce the likelihood of successful attacks on nuclear power

plants (NPPs). Cyber-physical systems (CPSs) such as NPPs consist of interconnected

physical processes and computational resources [51]. Because the cyber and physical worlds

are integrated, vulnerabilities in both the cyber and physical domains can result in physical

damage to the system [79]. A cyber attack that has an adverse effect on physical processes

is called a cyber-physical attack. NPPs are subject to federal cyber and physical security

regulations, but are still susceptible to attack by various adversaries in an ever-evolving

threat landscape. If this research is successful, we should be able to do the following: predict

how adversaries might target an NPP, quantify NPP security, and optimally allocate security

resources to defend the NPP.

There are many examples of NPPs being targeted by both internal and external threats.

In 2003, the safety display of the Davis-Besse NPP was disabled by the Microsoft SQL Server

worm [92]. This attack was not directed at the Davis-Besse plant, but was accidentally

introduced to the system by a contractor’s infected computer. In 2009, a former employee at

Energy Future Holdings hacked the Comanche Peak NPP’s energy forecast system through a

VPN that was not deactivated after his employment was terminated [53]. Perhaps the most

famous incident of a successful attack on a nuclear system is Stuxnet [25]. Stuxnet damaged

Iranian centrifuges by masking system measurements while causing the centrifuges to operate

erratically [48]. While this attack did not target a commercial NPP, it demonstrates the

potentially severe consequences of a cyber-physical attack.

The Department of Homeland Security acknowledged that NPPs could be vulnerable to

cyber-physical attacks, and has identified two cyber-physical security goals in the Nuclear

Reactors, Materials, and Waste Sector-Specific Plan: (1) to reduce physical and cyber risks

to nuclear sector assets and (2) to enable a risk-informed approach to security and resiliency

enhancements [85]. This research addresses both of these goals by developing an approach

to analyze the cyber-physical security of an NPP.
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In addition, we must also consider the behavior of the humans who interact with the

NPP. NPPs can be targeted by a variety of adversaries such as state agents, hacktivists, and

disgruntled employees — each with a unique motivation and set of resources [60]. To secure

NPPs and other CPSs, we require an approach to cyber-physical security that accounts for

the interactions of human decision-makers. By considering the cyber-physical properties of

an NPP and the behavior of the human decision-makers who interact with it, we can develop

effective security strategies to protect the plant.

1.1 Research Objectives

We will reduce the likelihood of successful attacks on NPP by achieving the following

research objectives:

1. Predict how an adversary might target a nuclear power plant

First, we must be able to assess the impact of a given attack on the NPP. This requires

an understanding of both the cyber and physical characteristics of the plant. An example

of a cyber characteristic is the NPP’s network structure, and an example of a physical

characteristic is the dynamics of plant systems. Using this information, we can assess

the potential impact of a given cyber-physical attack and determine if the attack could

be attractive to an adversary.

Second, we must be able to assess whether an adversary with knowledge of an attack’s

potential impact would choose to conduct the attack. A range of factors influence whether

an adversary will attack a system, and how the adversary will conduct the attack. These

factors include the cost of the attack, the benefit gained by the adversary if the attack

is successful, and the penalty incurred by the adversary if the attack is unsuccessful.

The adversary’s decisions are also dependent on the costs, benefits, and penalties of

those defending the plant. For example, an adversary may be more likely to attack a

component if it is expensive for the defender to protect it. This interaction of adversary

and defender cost parameters must be studied to predict how an adversary might target

an NPP.
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2. Quantify nuclear power plant security

We will provide metrics that quantify the security level of the NPP. These metrics will

describe the expected state of the NPP if a given security strategy is selected. For

example, the operational capacity of the NPP can be described using metrics such as the

mean time-to-failure and mean availability. The economics of the NPP can be described

by considering the security costs and the financial consequences of a successful attack,

among other factors. Using these metrics, we can analyze the efficacy of defense strategies

with respect to the spectrum of attack strategies.

3. Optimally allocate security resources to defend a nuclear power plant

With a quantitative understanding of the attacker’s and defender’s behavior, we can

determine how to most effectively protect the NPP. Security strategies may include

plant equipment upgrades such as redundant sensors or cybersecurity upgrades such

as improved firmware scanning. Cyber and physical security must both be considered to

defend a nuclear power plant from cyber-physical attacks.

By achieving these objectives, we have developed a technique to optimally defend an

NPP given our knowledge of the potential attackers. This approach will enable security

engineers to enhance the security of NPP with respect to the modern cyber-physical threat

landscape. The methods developed in this research will be readily applicable to other critical

infrastructure and cyber-physical systems.

1.2 Research Approach

The goal of this research is to reduce the likelihood of successful attacks on nuclear

power plants. Cyber-physical systems such as nuclear power plants consist of interconnected

physical processes and computational resources. Because the cyber and physical worlds are

integrated, vulnerabilities in both the cyber and physical domains can result in physical

damage to the system. Nuclear power plants can be targeted by a variety of adversaries
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— each with a unique motivation and set of resources. To secure nuclear power plants and

other cyber-physical systems, we require an approach to security that also accounts for the

interactions of human decision-makers.

This dissertation presents a game-theoretic approach to nuclear cybersecurity. The

cybersecurity of the plant can be viewed as a non-cooperative game between a defender and

an attacker. The field of game theory provides a mathematical framework to analyze the

interactions of the defender and attacker as both players seek to accomplish their objectives.

The purpose of game theory is to identify the optimal strategy for each player.

The cyber-physical security of an NPP system is studied using a stochastic Bayesian game

(SBG). An SBG is a combination of a stochastic game and a Bayesian game. Stochastic

game theory enables us to analyze interactions between players where the outcome of

the interactions is uncertain. Bayesian game theory enables us to consider uncertainties

regarding the characteristics of the players. This combination of stochastic and Bayesian

games is useful for the analysis of NPP cybersecurity because it enables plant defenders to

optimize their security decisions in the presence of uncertainty.

The SBG is used to identify an optimal cybersecurity strategy by applying two

techniques: Bayesian learning and Harsanyi-Bellman ad hoc coordination (HBA). Using

Bayesian learning, the defender can use his observations of the attacker’s actions and the

game history to update his beliefs about the attacker’s characteristics as the game is played.

HBA can then be used by the defender to select a cybersecurity strategy in real-time. HBA

combines game-theoretic equilibrium concepts with optimal control to identify the optimal

strategy.

1.3 Contributions

Although game theory has been applied to address a variety of security challenges, little

research has been done to apply game theory to the cybersecurity of nuclear power plants.

Some security problems have been cast as stochastic games and as Bayesian games, but

combined stochastic Bayesian games have not yet been used to address security challenges.
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Stochastic Bayesian games have been used in the fields of artificial intelligence and multi-

agent systems, but the application of these games for the cybersecurity of nuclear power

plants is new.

This research provides new insight regarding the practical implementation of game theory

for nuclear cybersecurity. Mathematicians have developed a significant body of literature

surrounding game theory, but literature describing its implementation is scarce. This work

demonstrates several techniques to bridge the gap between theory and practice. These

techniques rely on tools familiar to cybersecurity experts, but their application to a game-

theoretic approach is new.

The main contributions of this work to the field of NPP cybersecurity are:

1. an approach to characterize threats to NPPs and model them as attacker types in a

Bayesian game

2. an approach to construct the state space of a stochastic security game

3. an approach to define the transition function of a stochastic security game

4. a novel application of stochastic Bayesian games to cybersecurity challenges

5. methods to approximate Harsanyi-Bellman ad hoc coordination solution methods for

stochastic Bayesian games with large action spaces

1.4 Broader Impact

While this research is focused specifically on applications for commercial nuclear power

plants, the approach can be generalized to defend other critical infrastructures. For example,

the chemical sector consists of several hundred thousand chemical plants that convert raw

materials to a variety of chemical products. Similar to commercial nuclear power plants,

many chemical plants are CPSs that must operate within strict limitations to safely produce

the desired chemical product. A cyber-physical attack on a chemical plant could result in

faulty products, damaged machinery, environmental hazards, and unsafe conditions for plant

employees and the surrounding public. Other critical infrastructure sectors such as critical
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manufacturing, dams, communications, energy, and transportation are susceptible to similar

operating restrictions and may suffer similar consequences if attacked by a threat agent [81].

This research is applicable to protect these critical infrastructures from cyber-physical

attacks from the spectrum of threat agents. Using the proposed stochastic Bayesian game

framework, defenders can identify optimal strategies to protect the system, even when

faced with uncertainty about the threat agents. This will enable critical infrastructure

sectors to implement defenses that provide adequate protection for the system, and to avoid

overspending on superfluous security measures.

This research is also applicable to military systems. A 2013 task force report issued by

the Defense Science Board emphasizes the severity of the cyber-threat to critical military and

intelligence systems [20]. If the United States enters a conflict with a peer adversary, they

could be susceptible to a variety of attacks disrupting communication systems, the supply

chain, and offensive capabilities. Many of the postulated attacks could be cyber-physical

with severe consequences.

By applying this research, military security analysts could effectively allocate finite

security resources to ensure the greatest likelihood of mission success. The stochastic

Bayesian game approach enables analysts to leverage intelligence gathered about the

adversary, and to account for uncertainty in that intelligence. Resources can then be

allocated to adequately defend mission-critical assets without overspending or interfering

with the ability to complete the mission.

1.5 Dissertation Overview

This dissertation is structured as follows. Chapter 2 describes the state of the art and

limits of current practice. Chapter 3 provides an overview of stochastic Bayesian games

— the foundation of the research approach. Chapter 3 also describes how the defender

can apply Bayesian techniques to learn about the attacker as the game is played and how

the defender can select an optimal security strategy in real-time using Harsanyi-Bellman

ad hoc coordination. Chapter 4 describes the construction of the development of our
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case study, Chapter 5 provides examples of the game played against each attacker, and

Chapter 6 provides the results and discussion. Finally, Chapter 7 concludes the dissertation

and summarizes our research contributions.
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2.0 State of the Art and Limits of Current Practice

This chapter presents the state of the art and limits of current practice of cybersecurity

analysis techniques for industrial control systems (ICSs). First, we broadly discuss various

approaches to cybersecurity for ICSs, and their limitations. Second, we discuss game-

theoretic approaches to cybersecurity, and their limitations. We conclude with a summary

of the key limitations that are addressed by this research.

2.1 ICS Cybersecurity Methods

The importance of securing CPS in critical infrastructure was identified by various

researchers in the early 2000’s [16, 90, 11], and was addressed by the U.S. Department

of Energy (DOE) in 2002 [84]. As part of the President’s Critical Infrastructure Board

established in 2001, the DOE provided a list of recommendations for organizations to increase

the security of supervisory control and data acquisition (SCADA) networks and establish an

effective cyber security program. Unfortunately, it was not until the Stuxnet attack of 2010

that the security of CPS became more widely discussed [89, 76]. More recently, a ransomware

attack forced the Colonial Pipeline to shut down for five days, thereby causing fuel shortages

on the east coast of the United States [88]. This section presents several methods used to

secure CPS.

2.1.1 Expert-Elicited Models

Expert-elicited models are computational models derived from expert characterization

of the system [36]. Experts characterize the system by considering factors such as the

importance of ICS components and functions, and how these resources could be targeted by
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an attacker. These characterizations are quantified and used as inputs to a computational

model. The computational model is then analyzed to identify effective security strategies to

ensure mission success.

The expert-elicited approach consists of three general steps [36]. In the first step, the

system is described by its function and components, and the connections between components

identified. The vulnerabilities of components and the consequences of their compromise

are also identified. In the second step, experts are consulted to estimate numerical

parameters describing the system and its components, such as component importance and

the consequence of the component being compromised. In the third step, the expert-elicited

parameters are used by the mathematical model to characterize risk to the system. The

complexity of the model can vary significantly.

The NIST Common Vulnerability Scoring System (CVSS) is an example of an expert-

elicited model [28]. The CVSS is used to measure the severity of vulnerabilities in cyber-

systems. To use the CVSS, experts first characterize the system using several categorical

variables. These variables include descriptions of the exploitability of a vulnerability and

the vulnerability’s impact on confidentiality, integrity, and availability. Several equations are

then used to calculate the vulnerability’s score on a scale from zero to ten. A vulnerability

with a greater score are considered to be more severe than one with a lower score. The CVSS

exploitability parameters are discussed in greater detail in Section 4.5.1.

One limitation of expert-elicited models is the introduction of unintentional bias by the

experts [36]. Experts often tend to describe the system in terms of its normal operation and

intended uses. Resources are often prioritized by their importance during normal operations

and resources that are rarely used are often neglected. Some of these limitations can be

mitigated to some degree by using a large group of experts, or by conducting red-team

exercises. Cybersecurity approaches for ICSs should be able to address security scenarios

outside of normal operations.
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2.1.2 Attack Graphs

Attack graphs are a modelling tool used to show the sequence of actions taken by an

attacker to achieve a goal [36]. Attack graphs are generally used to assess the intrusion

methods and path of attacker given the initial conditions of the system. Attack graphs can

be used to gain insight about system features such as the network topology and access control

mechanisms. The nodes in an attack graph represent system resources and privileges, and

the edges represent the reachability to one resource from another [3].

An example of an attack graph for a network is shown in Figure 1. The attacker begins at

the top, and is trying to reach the target at the bottom. The green triangle node represents

the initial conditions of the attacker and the red octagon represents the attack target. Initial

conditions of the network are represented by the blue rectangles. Based on the attacker’s

initial capabilities and the conditions of the network, the attacker can conduct exploit 1A or

exploit 2 to attempt to reach the target. Exploit 2 leads directly to the target, but exploit

1A results in an intermediate condition that, when combined with another initial condition

of the network, enables the attacker to launch exploit 1B to reach the target.

Many graph-based methods are deterministic and do not account for the difficulty of

attack actions. These attack graphs provide insight regarding which states are theoretically

reachable, but do not provide insight regarding the path of least resistance for the attacker.

Consider the example in Figure 1. Although the right path requires fewer steps than left

path, if exploit 2 is sufficiently difficult, the attacker might instead choose exploit 1A and

1B. Some graphs do account for path difficulty to provide probabilistic security assessments,

such as those in [104, 66].

One limitation of attack graphs is the inability to model dynamic defense strategies. This

means that the attacker proceeds through the attack graph given an initial defense strategy

that does not change. This is a reasonable assumption for many passive cybersecurity actions

such as access control, but does not accurately model active cybersecurity actions such as

intrusion detection systems.

Another limitation of attack graphs is the inability to model cyclical behaviors. Attack

graphs are generally directed acyclic graphs, meaning that each edge has a direction and
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Figure 1: An example of an attack graph.
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that following the directions along the edges will not result in a closed loop. This property

is useful for analyzing the graph, and is appropriate for many cybersecurity applications.

The general justification for this property is that the attacker is not likely to yield access

or privileges to ICS devices once he has obtained them. This assumption is often valid, but

does not capture the situation where the defender partially expunges the attacker from the

system.

2.1.3 Petri Nets

Petri nets are another graphical mathematical tool used to evaluate cybersecurity. They

were originally developed to model chemical reactions, but have since been applied to

many other systems and processes. Other applications include biological systems [105],

cryptography [18], communication protocols [37], and automatic control [31].

Petri nets contain two types of elements: places and transitions [71]. Places are

represented by ellipses and model passive components. Transitions are represented by

bars or rectangles and model active components. Transitions and places are connected by

directional arrows called arcs. Arcs do not connect places to other places or transitions to

other transitions.

Places can contain an integer number of tokens, represented by dots inside the place. A

particular configuration of tokens over the Petri net is called a marking. A transition can

only occur, or be fired, if each of the input places has at least one token. When a transition

is fired, one token is withdrawn from each of the input places and one token is added to each

of the output places. The progression of the Petri net’s markings represents the dynamics

of the modelled system [19].

An example of a Petri net is shown in Figure 2 [19]. Places are designated by P and

transitions are designated by T . The places P2, P4, and P6 have tokens. The transitions T2

and T5 are enabled. The transition T6 is not enabled because P7 does not have a token.

There are several methods to analyze Petri nets [103]. One example is reachability

analysis. Reachability analysis provides the markings that can be reached from an initial

marking. To conduct a reachability analysis, a reachability tree is constructed, where each
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Figure 2: An example of a Petri net [19].

node in the tree is a particular marking, and each arc in the tree is a transition firing.

A similar idea to reachability is coverability. Coverability problems examine whether a

particular marking is part of a reachable marking.

In the context of cybersecurity, Petri nets can be used to model an attacker’s exploitation

of system vulnerabilities. Tokens can be used to represent the access or privileges gained by

the attacker through an exploit. Transitions can be fired once the attacker has accumulated

the necessary privileges and tokens to allow the attack to continue. Given the initial marking

of the Petri net, reachability analysis can show which privileges can be obtained by the

attacker throughout the course of the attack.

One limitation of Petri nets is that solving complex nets can be computationally

expensive [103]. For complex Petri nets, constructing a reachability tree is not feasible

and coverability graphs may exhibit poor behavior. Simulation-based approaches are often
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used to study reachability for these nets. Large-scale simulation efforts generally involve

the initialization of the Petri net with a given marking, and randomly selecting enabled

transitions to fire. While this approach is straightforward, it is time-consuming.

2.2 Game-Theoretic Approaches to Cybersecurity

In order to properly allocate security resources in a CPS, one must consider the

motivations and resources of all decision-makers who interact with the system. By

considering these factors, we can avoid allocating excessive security resources towards low-

impact components or allocating insufficient resources towards high-impact components.

This prioritization is simple when only one decision-maker interacts with the system, but

becomes complex when multiple decision-makers with different priorities must be considered.

The field of game theory enables us to analyze the interactions of multiple rational

decision-makers. The security of a CPS can be viewed as a non-cooperative game between

a defender and an attacker. The attacker’s objectives vary, and may include environmental

damage, economic damage, physical damage, or loss of life. The defender’s objectives include

maximizing profits, maintaining system operations, and avoiding environment, health, or

safety incidents. Game theory was first applied to cyber-physical security challenges in the

early 2000’s to study network intrusion detection and network security [54, 9, 7]. Since then,

many researchers have applied game theory to analyze the security of CPSs. The remainder

of this chapter discusses different types of games and their application to the security of

CPSs.

2.2.1 Strategic Form Games

The most simple type of game is the strategic form game. Strategic form games are used

to describe scenarios where the players make decisions simultaneously. These games can

provide basic insight towards the interaction between decision-makers and are often used as

a starting point before developing more complex games.
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Several strategic form games with national security applications are discussed in [15].

Applications include arms races, optimal threats, crisis stability, and deterrence. For

example, consider the deterrence game. In this game, there are two parties capable of

inflicting harm upon the other. Each party believes that the other party will retaliate to

an attack with a particular probability. By studying this game, the conditions are identified

where neither party takes offensive action and the conflict is avoided. Although these games

were developed to describe interactions between nations with nuclear weapons capabilities,

there are parallels with the development of offensive cyber-capabilities.

A strategic form game was also used to identify effective security strategies for an ICS in

[59, 58]. In this game, the attacker chooses a set of sensors to attack and the defender chooses

a set of sensors to defend. If particular sets of sensors are successfully hacked, the attacker

can compromise the defender’s observability of the system and cause damage unbeknownst

to the defender. An effective security strategy was identified by applying a game-theoretic

framework to examine the cost and benefit of each attack and defense. This example is

discussed in greater detail in Appendix A.

Several strategic form games with network security applications are discussed in [8].

Applications include intrusion detection, malicious behavior on social networks, wireless

networks, and vehicular networks. In the vehicular networks example, vehicles can

communicate with one another and with roadside units. The roadside units can tunnel

data to improve communication between vehicles. The attacker can choose regions of

the road to target with communication jamming attacks. A game-theoretic approach is

used to determine the optimal distribution of the roadside units to maintain an effective

communication network.

2.2.2 Stochastic Games

The field of stochastic game theory is used to study the interactions of decision-makers

when the outcome of the decisions are uncertain [27]. As decisions are made by each

player, the game traverses a set of states that describe the progress of the game. At each

decision point, the players choose an action. The resulting actions provide the probability of
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transitioning to each state in the stochastic state space. Each player receives an immediate

reward resulting from the actions and state transition. Each player seeks to maximize his

cumulative reward earned throughout the game. Using optimization techniques, we can

determine the optimal action for each player at each state and determine each player’s

expected cumulative reward.

Stochastic games are applied to address network security applications in [8]. Applications

include intrusion detection, the security of interconnected systems, and malware filter

placement. While these systems are not inherently cyber-physical, the stochastic game-

theoretic approach can be extended to ICSs and CPSs.

A stochastic game was used to study the cybersecurity of a boiling water power plant [65].

The states were defined by the operational status of the plant and observability of the cyber-

attack. The game was conducted in continuous time with an accompanying continuous-time

model of the plant. The effects of various parameters such as the penalty to the attacker if

caught, attack detection probability, and attack speed were examined to identify favorable

cybersecurity scenarios for the plant.

Stochastic games have also been studied for the response to cyber-incidents in nuclear

power plants. A case study was given for a digital feedwater system in [108]. The game

was characterized as a discrete-time competitive Markov decision process and the states

were defined by the operational status of the ICS devices and plant components. Fault

tree and event tree analysis were used to describe the transitions between states. A dynamic

programming approach was used to find a Nash equilibrium. The Nash equilibrium provided

the optimal defense action for each state in the game.

2.2.3 Bayesian Games

Bayesian games are used to study interactions where at least one player has uncertainty

about the characteristics of the other players. Within the context of a security game, the

defender may be unsure about the parameters describing the attacker. The defender could

16



then construct several attacker “types”, each of which describes the attacker with a different

set of parameters. The defender then assigns a probability to each type, and the game can

be solved with traditional game theory methods [33, 34, 35].

Bayesian games have been applied to various physical security challenges. For example,

consider the approach developed in [78] for airport security patrols. The security challenge is

cast as a Bayesian Stackelberg game — a game where one player must commit to an action

before the other player. For the airport security problem, the defender must first commit to

a patrol schedule before the attacker selects a target. An efficient algorithm was designed to

identify the best defense strategy and randomize patrols within that strategy.

Bayesian games are applied to network security application in [8]. Examples include

intrusion detection and the security of wireless networks. While these systems are not

inherently cyber-physical, the Bayesian game-theoretic approach can be extended to ICSs

and CPSs.

Bayesian games are applied to a cyber-physical manufacturing setting in [107]. A

medium-sized manufacturing facility with a continuous production line is studied. The

facility could be targeted by an insider or a cybercriminal with varying risk attitudes. Using

this approach, an effective security strategy can be identified based on the defender’s beliefs

about the attacker’s characteristics.

2.2.4 Limits of Current Practice

Most stochastic games are structured as two-player games. While this approach provides

some insight into security problems, it is not representative of the security challenges faced

by NPP. NPP face a variety of adversaries with different capabilities and motivations. For

example, an NPP must be resilient to threats such as state actors, terrorists, disgruntled

employees, and cyber criminals. These threats have different technical abilities, resources,

and goals. To accurately use game theory to inform security decisions, these threats and

their objectives must be addressed.

It can be difficult to estimate the values of parameters used to describe the adversaries

in a game. For example, it is difficult to estimate the reward that the attacker will gain if
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an attack is successful. These rewards are functions of the subjective value that the attacker

places on non-monetary outcomes such as the loss of life and press coverage. One method

of addressing these uncertainties is by applying a Bayesian game structure. Little research

exists that combines the benefits of a Bayesian game with the framework of a stochastic

game [4].

Another challenge in analyzing stochastic games is managing the size of the stochastic

state space. For example, consider a system consisting of n components, each of which has

two possible states (e.g. functional and nonfunctional). The resulting stochastic state space

will have a dimension of 2n states to account for each possible combination of component

states. A large state space presents computational challenges and challenges in interpreting

the results of the game. Methods are desired to manage the size of the stochastic state space

so that the analysis of the game can be used to inform practical security decisions.

Many game-theoretic security approaches rely on the Nash equilibrium as the game’s

solution concept. A Nash equilibrium occurs when each player has selected a strategy that

is a best response to the strategies of the other players. The Nash equilibrium is an attractive

solution concept because each player can predict the equilibrium, and predict that each other

player will predict it, and so on. No player has an incentive to unilaterally deviate from the

equilibrium — doing so would only decrease that player’s payoff.

While the Nash equilibrium solution method is widely implemented, it is not valid if it

cannot be predicted by all players in the game. For complex stochastic games, it is possible

that not all players will model the game in the same manner and arrive at the same Nash

equilibrium. This becomes increasingly challenging if the game has multiple Nash equilibria.

Another challenge with the Nash equilibrium solution is that it provides a static defense

strategy. If both players select the strategies corresponding to the same Nash equilibrium

solution, then a static defense strategy is not only appropriate, it is optimal. But, if the

players do not arrive at the same Nash equilibrium solution, it would be advantageous to

allow the defense strategy to change over time to arrive at a best response to the adversary’s

strategy.
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2.3 Summary of Limits of Current Practice

In summary, this research will address the following key limits of current practice:

1. Lack of research on stochastic Bayesian games for security applications

2. Challenge of determining game-theoretic parameters

3. Lack of formal methods to manage the size of the stochastic state-space

4. Challenge of validating the Nash equilibrium as a solution method

5. Challenge of designing dynamic defense strategies

By addressing these limitations, we will be able to apply stochastic and Bayesian game

theory to design holistic cyber-physical defense strategies for NPP that address a variety of

adversaries.

19



3.0 Stochastic Bayesian Games

This chapter provides a theoretical foundation for this work. Stochastic and Bayesian

games are used to address different types of uncertainty in a game. In a stochastic game, the

outcomes of the players’ actions are uncertain. In a Bayesian game, the players are uncertain

about the parameters that govern the decision-making of the other players. This chapter

will discuss stochastic and Bayesian games in greater detail, and introduce the combination

of these two types of games: a stochastic Bayesian game.

3.1 Preliminaries

This section provides an overview of preliminary game theory concepts. These concepts

provide the necessary framework to discuss more sophisticated games. We introduce the

game theory vernacular within the context of strategic form games. Strategic form games

are used to model situations where players select their strategies simultaneously. We discuss

the components of a game, and introduce the Nash equilibrium – the fundamental solution

method used in game theory.

A strategic form game is defined by three components:

1. Players: the agents who are participating in the game

2. Strategies: the set of choices available to each player

3. Utilities: the numerical payoffs for each player. The utilities are functions of the strategies

chosen by the players.

Strategic form games are often represented using matrices. Consider the prisoners’

dilemma game shown in Table 1. Utilities for each player are given for each strategy

intersection, with Row’s utility listed first. In this game, two prisoners are each given an

opportunity to reduce their sentences. Each prisoner is spoken to individually, and told that
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Table 1: Prisoners’ dilemma in the strategic form.

Column

Cooperate (C) Not cooperate (NC)

R
ow

Cooperate (C) -2, -2 10, -5

Not cooperate (NC) -5, 10 0, 0

their sentence will be reduced if they cooperate and implicate the other prisoner. If neither

prisoner cooperates, their sentences remain unchanged, and if both prisoners cooperate, both

prisoners receive worse sentences.

A best response is a player’s optimal strategy, given the strategies selected by the other

players. For player i with utility function ui, strategy s∗i is a best response to the strategies

s−i chosen by the other players (denoted by −i subscript) if

ui(s
∗
i , s−i) ≥ ui(si, s−i) ∀si (3.1)

In the prisoners’ dilemma game, the best response to cooperation is cooperation. The

best response to not cooperating is also cooperation. Because cooperating is always more

profitable than not cooperating, it is said that not cooperating is strictly dominated by

cooperating. A rational player would never select a strategy that is strictly dominated

because there is always a more profitable strategy than the dominated strategy. Therefore,

in this prisoner’s dilemma game, it is always best for each prisoner to cooperate, regardless

of the strategy chosen by the other prisoner.

Suppose both prisoners choose to cooperate. Here each prisoner is playing a best response

to the strategy of the other prisoner. This is called a Nash equilibrium. A strategy profile

(s∗i , s
∗
−i) is a Nash equilibrium if

ui(s
∗
i , s
∗
−i) ≥ ui(si, s

∗
−i) ∀si, i (3.2)
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At a Nash equilibrium, no individual player has an incentive to unilaterally change his

strategy. In this game, deviation from the Nash equilibrium of (C,C) to (NC,C) or (C,NC)

would reduce the utility of the deviating player from -2 to -5.

Note that although (C,C) is a Nash equilibrium, it is not the most profitable outcome

for the players. The strategy profile (NC,NC) yields a greater utility for both players.

Why, then, is (C,C) the game’s solution rather than (NC,NC)? Noncooperation is not the

solution because it is not a stable strategy profile. Although (NC,NC) results in greater

payoffs than (C,C), there is incentive for players to unilaterally deviate from the (NC,NC)

profile. For example, suppose Row believes Column will not cooperate. Row will then either

receive a utility of ten for cooperating, or a utility of zero for not cooperating. Cooperating

is Row’s best response. Column can reason similarly about Row’s actions. Therefore, both

players choose to cooperate.

Nash proved that at least one Nash equilibrium exists for every finite strategic form game

[63]. There is one nuance to this statement: the Nash equilibrium is not guaranteed to be an

equilibrium in pure strategies. The equilibrium may include mixed strategies, i.e. probability

distributions over the pure strategies. Given a set of pure strategies, Si = {s1, s2, . . . , sN},

a mixed strategy is defined as a probability vector σ = (p1, p2, . . . , pN) where 0 ≤ pk ≤ 1 for

k = 1, . . . , N , and
∑N

k=1 p
k = 1. A pure strategy can be expressed as a mixed strategy where

one pure strategy is assigned a probability of one and all other pure strategies are assigned

a probability of zero. Pure strategies that are assigned positive probability are said to be in

the support of the mixed strategy. We will discuss mixed strategy Nash equilibria with an

example.

Consider the game of matching pennies shown in Table 2. In matching pennies, each

player has a penny, and each secretly places it in either the heads or tails position. Row

receives positive utility if the pennies match, and Column receives positive utility if the

pennies do not match.

The best responses for each player are identified by underlined utilities in Table 2. In

this game, there is no pure strategy profile where both players are playing a best response,

therefore there is not a pure strategy Nash equilibrium. There is a mixed strategy Nash

equilibrium where each player assigns a probability of 0.5 to heads and a probability of
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Table 2: Match pennies in the strategic form.

Column

Heads (H) Tails (T )

R
ow

Heads (H) 1, -1 -1, 1

Tails (T ) -1, 1 1, -1

0.5 to tails. The utility earned by each player at a mixed strategy Nash equilibrium is an

expected value taken over the mixed strategies. For a general two-player game played by i

and j, the expected utility of a mixed-strategy for i is

ui(σi, σj) =
∑
x∈Si

∑
y∈Sj

σi(sx)σj(sy)ui(x, y) (3.3)

In the matching pennies game, the expected utility for both players at the Nash equilibrium

is zero.

An example of a strategic form game for cybersecurity applications is given in Appendix

A. Now that we have defined basic game theory concepts, we can begin our discussion of

Bayesian games, stochastic games, and stochastic Bayesian games.

3.2 Bayesian Games

A Bayesian game is a game of incomplete information in which some players do not

necessarily know the payoffs of other players. Each uncertain player constructs a set of

“types” that describe each possible set of parameters governing the other players. Within the

context of NPP security, Bayesian games can be used to address the defender’s uncertainty

about the attacker’s parameters.

Consider the Bayesian game shown in table 3. In this game, an NPP defender is

attempting to protect the plant from a threat, but is unsure whether the attacker is a
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Table 3: A Bayesian security game. For each strategy intersection, the defender’s payoff and

attacker’s payoff are provided.

Type 1: Disgruntled Employee

Probability = 0.8

Attack 1 Attack 2

Defense 1 0, 2 -10, 1

Defense 2 -3, 10 0, -2

Type 2: Terrorist

Probability = 0.2

Attack 1 Attack 2

Defense 1 0, -1 -10, 10

Defense 2 -3, 3 0, 4

disgruntled employee or a terrorist. A separate game matrix is constructed for each attacker

type. Within each matrix, the rows correspond to the defender’s strategies, the columns

correspond to the attacker’s strategies, and the utilities of both players are specified for

every strategy intersection.

In this game, it can be seen that if the attacker is Type 1, then Attack 1 strictly dominates

Attack 2. If the defender knew he were facing a Type 1 attacker, he would then conclude

that if the attacker is going to select Attack 1, he should select Defense 1 to maximize his

payoff. Similarly, if the attacker is Type 2, then Attack 2 strictly dominates Attack 1. If the

defender knew he were facing a Type 2 attacker, he would then conclude that if the attacker

is going to select Attack 2, he should select Defense 2 to maximize his payoff. Bayesian game

theory provides a method for the defender to choose his strategy given that he is uncertain

about the attacker’s true type.

A probability distribution is first assigned to the set of player types to describe the

player’s uncertain belief about each player type’s likelihood. With the assumption that the

types and type distributions are common knowledge, the Bayesian game can be transformed

from a game of incomplete information to a game of imperfect information, and solved using

standard Nash equilibrium techniques [29]. The equilibrium of the game in Table 3 occurs

when the defender plays Defense 1, a Type 1 attacker plays Attack 1, and a Type 2 attacker

plays Attack 2.
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The attacker may also be uncertain about the parameters that govern the defender. For

example, the attacker may be uncertain whether the defender is risk-averse or risk-embracing.

A Bayesian game can be constructed in which both players have uncertainty regarding their

opponent’s parameters. Again, with the assumption that the types and type distributions

are common knowledge, the Bayesian game can be transformed into a game of imperfect

information and solved using Nash equilibrium techniques.

3.2.1 Bayesian Games in the Extensive Form

The extensive form is a representation of a game where the actions chosen by the players

are represented as a decision tree. The extensive form can include the assumption that the

players have a common prior belief regarding the distribution of types. The common prior

assumption is enacted by introducing a chance node, Nature, that stochastically assigns the

types to each player. Information sets are used to define the knowledge that is available to

each player, such as Nature’s type assignments and the actions selected by the other players

[22].

Consider a Bayesian simultaneous game played by i and j. Let the set Θi = {θ1
i , θ

2
i }

contain the types of i and let the set Θj = {θ1
j , θ

2
j} contain the types of j, where the

superscript notation indexes the types within their respective sets. Let the probability that i

is type θ1
i and j is type θ2

j be denoted p12 and let the probability of the other types be similarly

defined. Let the action sets available to the player be Ai = {a1
i , a

2
i } and Aj = {a1

j , a
2
j}. In

this game, the players choose their actions simultaneously and without communication. Let

the utility functions be ui(si, sj, θi, θj) and uj(si, sj, θi, θj), where si/j is the player’s strategy

for action selection. The extensive form of this Bayesian game is shown in Figure 3.

The extensive form of a game consists of nodes and branches. Nodes in the tree represent

a point where a decision is to be made, and branches represent each of the possible decisions.

Nodes that are owned by players are shaded and chance nodes are not shaded. At a player’s

node, that player must choose from the set of actions available to determine the progress

of the game. At a chance node, the progress of the game is dependent on a probability

distribution over the branches.
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Figure 3: The extensive form of a Bayesian simultaneous game.
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In the game in Figure 3, the only chance node is the Nature node that assigns the

players their types. Chance nodes can also be used to model scenarios where the outcome

of the players’ actions is uncertain. For example, consider a scenario where an attacker

has caused a device in an NPP to fail. For the device failure to cause a larger system

failure, redundant plant systems and safety systems must also fail. The outcome of the

attack is therefore dependent not only on the actions selected by the players, but also on the

occurrence of external events. These external events can be represented by chance nodes,

and their probabilities can be determined using risk analysis tools such as event tree analysis

[91] or Bayesian networks [26].

Information sets are used to model the players’ knowledge of their types and the actions

chosen by the other players. In the game in Figure 3, i’s information sets are shown by the

red rounded rectangles, and j’s information sets are shown by the blue rounded rectangles.

All of the nodes contained in a given information set are indistinguishable to that player.

Consider the information set for i of type θ1
i . This information set is preceded by both types

of j because i does not know whether Nature has assigned j type θ1
j or θ2

j . It is also preceded

by the full action set of j for both types because while i is choosing an action, i does not

know the action chosen by j. The other information sets are similarly constructed.

3.2.2 Bayesian Nash Equilibria

The solution method of Bayesian games is called a Bayesian Nash equilibrium. The

Bayesian Nash equilibrium is a strategy profile where each type of each player has selected a

best response to the strategies of the other players. Every finite Bayesian game has at least

one Bayesian Nash equilibrium [33, 34, 35].

Before discussing the Bayesian Nash equilibrium, we must define notation. The

components of a Bayesian game are the players, their actions, their strategies, their types,

their utility functions, and the probability distribution over the types.

Players Let I denote the set of players. Let i ∈ I denote an individual player i. Let I be

the total number of players. For notational convenience, let the subscript notation “−i”

denote all players except player i.
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Types Let Θi denote the set of types belonging to player i. Let θi ∈ Θi be a type of i.

Actions Let Ai,θ denote the set of actions available to player i of type θ. Let ai,θ ∈ Ai,θ be

an action selected by player i of type θ.

Strategies Let si, denote a strategy chosen by player i. A player’s strategy specifies

the actions selected by every type of that player. Let a strategy profile be denoted

s = (s1, . . . , sI). A strategy profile defines the action chosen by every type of every

player.

Utility functions Let ui(s1, . . . , sI , θ1, . . . , θI) be the utility function of player i. Generally,

the utility is a function of the strategies selected by the players and their types.

Probability distribution Let p(θ1, . . . , θI) be the probability distribution over the types.

The expected utility of player i with type θi is

E [ui(si, s−i, θi, θ−i)] =
∑

θ−i∈Θ−i

p(θ−i | θi)ui(si, s−i(θ−i), θi, θ−i) (3.4)

The best response of a player to the strategies of the other players is the strategy that

maximizes the player’s expected utility.

A Bayesian Nash equilibrium is a strategy profile where all types of all players have

selected best responses to the other players’ strategies. By this definition, no type has

incentive to unilaterally deviate from its equilibrium strategy. A strategy profile s∗ =

(s∗1, . . . , s
∗
I) is a Bayesian Nash equilibrium if

E
[
ui(s

∗
i , s
∗
−i, θi, θ−i)

]
≥ E

[
ui(si, s

∗
−i, θi, θ−i)

]
(3.5)

for all i ∈ I, for all si ∈ Si, and for all θi that have a positive probability.
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3.2.3 Solution Methods

A Bayesian game can be transformed into a normal-form game using the Harsanyi

transformation. The Harsanyi transformation uses the common prior assumption to

transform the incomplete information game to an imperfect information game. An example

of the Harsanyi transformation is shown in Table 4. The row player has one type and the

column player has two types. In both the original and the transformed game, the row player

has two pure strategies. In the original game, the column player has two pure strategies,

but in the transformed game the column player has four strategies. A single pure strategy

in the transformed game includes a pure strategy for each of the column player’s types in

the original game (strategy Y Z indicates that Type 1 plays Y and Type 2 plays Z). In

general, if the column player has α pure strategies and β types, the column player in the

normal-form game has αβ pure strategies. The payoffs for the players are calculated as a

weighted sum of the payoffs from the Bayesian game, where the weighting factors come from

the type distribution. Once the game is in normal form, several solution methods can be

used [102].

The Nash equilibria of Bayesian games in the extensive form can be found using software

such as Gambit [61]. Gambit is open-source software used to analyze finite non-cooperative

games. Gambit has both a command line interface and a graphical user interface, and is

particularly useful for visualizing game theory problems. Analyzing large games in Gambit

is not feasible. Using Gambit, we can identify each player’s Nash equilibrium strategy and

expected utility for games of a reasonable size. Large Bayesian games require specialized

algorithms to be solved [67, 68, 78]. An example application is given in Appendix B.

3.3 Stochastic Games

A stochastic game is a dynamic system that evolves as the players take action. As

the game progresses through time, it traverses a finite set of states, S, that describe the

environment of the players’ interaction. Consider the simple stochastic game played by an
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NPP defender and an attacker in Figure 4. In this example, the stochastic state space

includes three states. In the normal operating state, the plant is operating as expected. In

the penetrated state, the attacker has breached the plant’s defenses. Finally, in the damaged

state the attacker has caused damage to the plant. In this game, the damaged state is an

absorbing state — the game concludes when this state is reached.

Stochastic games may be modelled in continuous or discrete time. This work considers

discrete-time games. At each discrete time step in the game, each player selects from a finite

set of actions. The defender’s action set could include physical defenses such as maintaining

guard stations, and cyber defenses such as maintaining antivirus software. Similarly, the

attacker’s action set could include both cyber and physical attacks.

The actions selected by each player affect the probability of the state transitioning to

each of the other states in the stochastic state space. Within the context of a security game,

these transition probabilities are dependent on a variety of factors, including the skill of the

players and the complexity of their actions. Consider the transitions available in the game’s

normal state. If an attacker attempts to exploit a well-known vulnerability but the defender

has opted to address that vulnerability, then the game is likely to transition to the normal

state rather than the penetrated state.

Let the set of actions available to player i/j at state s be denoted ai/j(s). When both

players select their actions, the resulting action profile ai,j = (ai(s), aj(s)) determines the

probability of transitioning from state s to every other state in the stochastic state space.

After an action profile has been selected, the transition to the next state is determined

stochastically by a transition vector given by a function

T (s, ai, aj) =
(
p(s1|s, ai, aj), p(s2|s, ai, aj), . . . , p(sN |s, ai, aj)

)
(3.6)

For this work, given N states,
∑N

s′ p(s
′|s, ai, aj) = 1 for all s. This is not required in general,

and the value 1 −
∑N

s′ p(s
′|s, ai, aj) gives the stopping probability in cases where the sum

does not equal one. The stopping probability is the probability that the game ends in current

state given the action profile.

After each decision point, each player receives an immediate utility that is a function

of the current state, the actions selected by all players, and the state to which the game
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transitions. Within the context of a security game, the immediate utility of the defender is

generally a function of the cost of the selected defense action and the stochastic outcome

of the defense and attack action profile. The immediate utility for the attacker is similarly

defined. A cumulative utility function is defined to assess the immediate utilities earned by

the players throughout the game. An example of a cumulative utility function is

ui(s
0, σi, σj) =

∞∑
t=0

βtiE[ri(s
t, ati,j, s

t+1)] (3.7)

The cumulative utility is dependent on i’s and j’s strategies, σi and σj, and the initial

state, s0. The discount factor β ∈ (0, 1) describes i’s preferences for utility earned earlier

in the game relative to utility earned later in the game [27, 75]. The superscript t on the

discount factor is an exponent, and the superscript on the state and action profile variables

is a time index. The function E[·] denotes the expectation over the states and strategies for

the immediate utility function, ri.

Strategies in stochastic games are rules that determine the actions selected by a player

at any point in the game. There are four types of strategies: Markov strategies, semi-

Markov strategies, stationary strategies, and behavior strategies [27]. Markov strategies

provide a decision rule, ft for every time t = 0, 1, 2, . . . , where ft is determined by t and st.

Semi-Markov strategies are Markov strategies that are also dependent on the initial state

s0. Stationary strategies provide a decision rule that is only a function of the current state

(i.e. a Markov strategy without time dependence). Finally, behavior strategies are the most

general type of strategy. They provide a decision rule ft that is a function of t and the

history, H t = (s0, a0
i,j, s

1, a1
i,j, . . . , a

t−1
i,j , s

t), where superscripts are time indices. Behavior

strategies are used in this work.

3.3.1 Nash Equilibrium

Here we present the ε-Nash equilibrium of a two-player stochastic game with semi-Markov

strategies [108]. The existence of Nash equilibria in more complicated stochastic games and

the solution methods to find them are both areas of ongoing research [69, 62].
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First we define the value, vi(s
0), of a game with initial state s0 for player i as the quantity

ui(s
0, πi, π−i) such that

inf
π2

sup
π1

ui(s
0, πi, π−i) = sup

π1

inf
π2

ui(s
0, πi, π−i) (3.8)

The strategy profile (π1, π2) is an ε-Nash equilibrium if there are no unilateral deviations

that result in profit greater than or equal to ε. That is,

vi(s
0) ≥ ui(s

0, πi, π
∗
−i)− ε, ∀πi, i ∈ {1, 2} (3.9)

If ε is zero, the ε-Nash equilibrium is a Nash equilibrium.

An ε-Nash equilibrium can be found by solving the optimization problem given in

Equation 3.10, where the objective function is given by Equation 3.11 and Equation 3.12

defines a variable for notational convenience [108].

minimize
v1,v2,π1,π2

ψ(v1, v2, π1, π2)

subject to
∑
ai∈Ai

πi(s, ai)h−i(s, ai, a−i) ≤ v−i(s), ∀s ∈ S, i ∈ {1, 2}, ai ∈ Ai(s)

∑
ai∈Ai

πi(s, ai) = 1, ∀s ∈ S, i ∈ {1, 2}

πi(s, ai) ≥ 0, ∀s ∈ S, i ∈ {1, 2}, ai ∈ Ai(s)

(3.10)

ψ(v1, v2, π1, π2) =
2∑
i=1

∑
s∈S

[
vi(s)−

∑
a1∈A1(s)

∑
a2∈A2(s)

π1(s, a1)π2(s, a2)hi(s, a1, a2)

]
(3.11)

hi(s, a1, a2) =
∑
s′∈S

p(s′|s, a1, a2)
[
ri(s, a1, a2, s

′) + βvi(s
′)
]

(3.12)

The first constraint is obtained from the definition of the Nash equilibrium. The second

and third constraints are required to ensure that the mixed strategies are well-defined discrete

probability distributions. The nonlinear characteristics of this optimization problem present

challenges in finding the global optimum rather than a local optimum [108].
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3.4 Stochastic Bayesian Games

A stochastic Bayesian game (SBG) combines the features of stochastic games and

Bayesian games. The stochastic elements of the SBG enable the consideration of uncertainty

in the interactions of the attacker and defender. As in a stochastic game, a set of states define

the environment for the players’ interactions, and the state transitions occur stochastically as

a function of the players’ actions. The Bayesian elements of the SBG enable the consideration

of the uncertainty regarding the attacker’s characteristics. As in a Bayesian game, a set

of types are defined to describe possible behaviors of at least one of the players. This

combination is useful for the analysis of NPP security because it enables plant defenders

to optimize their security decisions in the presence of uncertainty. The remainder of this

section will discuss the application of an SBG to the security of a nuclear system.

3.4.1 Bayesian Learning of the Adversary’s Parameters

As the SBG is played, the defender can learn the characteristics of the attacker. As

the players interact through the SBG, the defender can use the attacker’s actions to

draw conclusions about the attacker’s game-theoretic parameters. The defender can draw

conclusions about not only the parameters of a single type of attacker, but about the

parameters governing the behavior of all potential attackers in the attacker’s type space

[6].

The defender first hypothesizes a set of possible attacker types, ΘA. For every θj ∈ ΘA,

the defender has an initial belief, P (θj|H0), which defines the probability that the attacker

has type θj given the initial information H0 available to the defender. The defender also

has an initial estimate, p0
j ∈ [pminj , pmaxj ], of the game-theoretic parameters governing each

type θj. At each time t > 0, a new estimate of the parameters, ptj, can be calculated based

on the updated history, H t−1, available to the defender. Here we use approximate Bayesian

updating to estimate ptj. Approximate Bayesian updating is summarized in Algorithm 1.
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Algorithm 1 Approximate Bayesian updating [6]

1: Represent the belief P (ptj|H t−1, θj) as p̂: a polynomial of degree d

2: Represent the belief P (at−1
j |H t−1, θj, p) as f̂ : a polynomial of degree d

3: Compute the polynomial product ĝ = f̂ · p̂

4: Collect samples D = (p(l), ĝ(p(l)))

5: Fit polynomial ĥ of degree d to D

6: Compute I =
∫ pmax

pmin
|ĥ(p)|dp

7: Set new belief P (ptj|H t, θj) = ĥ/I

8: Extract new estimate pt from P (ptj|H t, θj)

A demonstration of approximate Bayesian updating is shown in Figure 5. Figure 5a

shows the prior belief over p given H t−1 and type θj, and the true value of p. This belief is

shown as a polynomial of degree d. Figure 5b shows the belief regarding the action given

H t−1 and θj as a function of p. This belief is sampled, and fit with a polynomial, f̂ . Figure 5c

shows the polynomial product of the prior belief and f̂ . This polynomial is sampled, and

represented as polynomial ĥ with degree d. This belief is normalized to obtain the posterior

belief. The posterior belief is shown in Figure 5d. The updated estimate of p is selected as

the value with the greatest belief density.

The use of polynomial approximations in approximate Bayesian updating does present

one challenge — the approximations may result in negative values of the belief within the

range of p values [6]. Two countermeasures must be taken to address this challenge. The first

countermeasure is to take the absolute integral of ĥ to obtain I. The second countermeasure

is to only sample points from ĝ that have positive values. This helps prevent propagation of

negative minima.

Using the new estimate ptj for type θj, the current belief regarding the type distribution

is updated by

P (θj|H t) ∝ P (at−1
A |H

t−1, θj, p
t
j)P (θj|H t−1) (3.13)
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The probability functions used to calculate P (θj|H i) are dependent on the information

available to the defender, the attacker’s action, the type definitions, and the estimates of the

type’s parameters.

3.4.2 Harsanyi-Bellman Ad Hoc Coordination

The typical solution method applied in game theory is the Nash equilibrium. At a Nash

equilibrium, each player’s strategy is the best response to the strategies of the other players.

Because of this property, no player has an incentive to unilaterally deviate from the Nash

equilibrium. For this solution method to predict the play of a real game, the equilibrium

must be identified by all players and that fact must be common knowledge. For a complex

stochastic security game, this assumption may not be valid. Instead, we opt for a solution

method that informs security decisions in real-time as the game is played.

The solution method we select for the SBG is Harsanyi-Bellman Ad Hoc coordination

(HBA) [5, 4]. In contrast to the predictive nature of the Nash equilibrium, HBA is a tool

used to select actions in real-time as the game evolves. HBA combines the concepts of

the Bayesian Nash equilibrium [34] and Bellman optimal control [13] to calculate optimal

actions based on the action history observed by the players. Given a postulated set of types

describing the opponent, HBA first uses the action history to calculate a discrete probability

distribution over the type set. Using this updated type distribution, HBA then calculates

the optimal strategy to maximize that player’s expected cumulative reward.

Mathematically, HBA is defined as atD ∼ arg maxaD E
aD
st (H t), where EaD

st (H t) is the

expected cumulative reward for the defender, D, after history H t, including taking action

aD in state s at time t. For a two-player game, the expected cumulative reward is given by

EaD
s (Ĥ) =

∑
θj∈ΘA

P (θj|Ĥ)
∑
ai∈Aj

πj(Ĥ, ai, θj)Q
aD,i
s (Ĥ) (3.14)

The set of hypothesized attacker types is given by ΘA and θj is a type within the set.

The posterior P (θj|Ĥ) is the probability of type θj given the history, Ĥ. The set of actions

available to the attacker is denoted by Aj and an action within the set is given by ai. The

mixed-strategy of the attacker is given by πj and returns the probability of the attacker
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selecting action ai if he is type θj. The term Q
aD,i
s (Ĥ) is the expected cumulative reward for

the defender after the occurrence of action profile aD,i in state s and is given by

QaD,i
s (Ĥ) =

∑
s′∈S

p(s′|s, aD,i)
[
rD(s, aD,i, s

′) + β max
ak∈AD

Eak
s′

(
Ĥ, ak,i, s

′
)]

(3.15)

The transition function is given by p(s, aD,i, s
′) and defines the probability of transitioning

from state s to state s′ as a result of action profile aD,i. The set of all states is denoted by

S. The immediate reward function of the defender is given by rD and the discount factor,

β, is applied to the expected cumulative reward.

Assuming the independence of types, we can define the posterior Pj(θj|H t) from

Equation 3.14 as

P (θj|H t) =
L(H t|θj)P (θj)∑

θ̂j∈Θj
L(H t|θ̂j)P (θ̂j)

(3.16)

where L(H t|θj) is given by the product posterior

L(H t|θj) =
t−1∏
τ=0

πj(H
τ , aτj , θj) (3.17)

Using this formulation for a pure type distribution, HBA will make correct predictions

given sufficient time [4]. There are two caveats to this guarantee. The first caveat is that no

types can be ruled out a priori, i.e., all types must have positive prior beliefs. The second

caveat is that although HBA is guaranteed to make correct predictions, it is not guaranteed

to learn the true type distribution. This is because some types may not be distinguishable

by their strategies. An example of such a type distribution can be found in [4].

Using HBA can be computationally expensive for complicated SBGs. The computation

time for implementing the recursive HBA algorithm is exponentially related to the number

of types, actions, and states in the game [4]. One way to address this challenge is by

implementing stochastic sampling methods in the HBA algorithm [5]. HBA with stochastic

sampling is given by atD ∼ arg maxaD E
aD
st (H t), where

EaD
s (Ĥ) =

1

nW

∑
θj∈ΘA

P (θj|Ĥ)
∑
wi∈W

QaD,i
s (Ĥ, wi) (3.18)

QaD,i
s (Ĥ, wi) = rD(s, aD,i, s

′) + βEak
s′

(
Ĥ, ak,i, s

′
)

(3.19)
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A path is denoted by wi, the set of all sampled paths is denoted by W , and the number

of sampled paths is nW . A path is the same structure as H; it is defined by a sequence of

states and the action profiles occurring in those states. The states and actions used in Q are

defined by the path. The values Pj(θj|H t) and L(H t|θj) are given by Equations 3.16 and

3.17, respectively.

3.4.3 Application of SBGs to Cybersecurity Decisions

In this work, we use an SBG to analyze a cybersecurity scenario for an NPP system. The

players are a defender and an attacker. The defender is unsure about the characteristics of

the attacker, and constructs a set of types to model the attacker’s behavior. The defender

makes cybersecurity decisions and the attacker chooses offensive actions to damage the NPP.

As the players take action, the SBG transitions among a set of states that describe the state of

the NPP and its ICS devices. Over time, the defender makes inferences about the attacker’s

characteristics using approximate Bayesian updating. Given his updated beliefs about the

attacker’s characteristics, the defender uses HBA to select the optimal cybersecurity strategy

to maximize his cumulative utility,
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Table 4: An example of the Harsanyi transformation.

Column Type 1

Probability = p

Y Z

W a,A b,B

X c,C d,D

Column Type 2

Probability = 1− p

Y Z

W e,E f, F

X g,G h,H

Harsanyi-Transformed Game

Y Y Y Z ZY ZZ

W pa+ (1− p)e, pa+ (1− p)f, pb+ (1− p)e, pb+ (1− p)f,

pA+ (1− p)E pA+ (1− p)F pB + (1− p)E pB + (1− p)F

X pc+ (1− p)g, pc+ (1− p)h, pd+ (1− p)g, pd+ (1− p)h,

pC + (1− p)G pC + (1− p)H pD + (1− p)G pD + (1− p)H

Normal State Penetrated State Damaged State

Figure 4: A simple stochastic security game.
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(a) Prior belief over p.
(b) Belief regarding the action as a function
of p.

(c) Polynomial product of the prior and the
action belief.

(d) The posterior belief over p.

Figure 5: Approximate Bayesian updating example.
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4.0 Construction of the Stochastic Bayesian Game

Constructing an SBG is not a trivial task. In this chapter, we discuss several tools that

can be used by cybersecurity teams to construct an SBG. These are existing tools in the

fields of nuclear engineering, cybersecurity, and risk analysis, but their application to the

construction of an SBG is new.

First, the system under consideration must be defined and understood. In this work, we

study the residual heat removal system of a boiling water reactor. We present an overview of

a boiling water reactor, the residual heat removal system, and their functional requirements.

Second, we identify the players who interact with the system. We define the plant

defender and identify the priorities of the defender. We also characterize the threats against

the NPP using Intel Corporation’s Threat Agent Risk Assessment. This methodology is a

tool used to identify the threat agents who pose the greatest risk to a computer system. The

threat agents are modelled as attacker types in the SBG.

Third, we define the state space of the game. The states describe the environment for

the players’ interactions. To define the states we use System-Theoretic Process Analysis.

System-Theoretic Process Analysis is a risk assessment tool that examines the functional

interactions between components and the environment to prevent losses.

Fourth, we define the actions available to each player at each state in the game. For the

defender, actions include defensive cybersecurity controls such as implementing a firewall or

disabling a device’s wireless capabilities. For the attacker, actions include cyber attacks such

as malicious code injection via a USB drive. Each attacker type may have a different set of

available actions at some or all of the states.

Fifth, we define the transition probabilities between the states. These probabilities are

dependent on the actions chosen by the players. To define the transition probabilities, we use

the NIST Common Vulnerability Scoring System and event tree analysis. The NIST Common

Vulnerability Scoring System is used to quantify the risk posed by a given vulnerability.

Event tree analysis is used to identify the probability of several outcomes given the occurrence

of an initiating event such as a cyber attack.
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Sixth, we define the utility functions for both players. The immediate utility functions

define the rewards earned by the players after each time step of the game. Immediate utilities

are a function of the actions chosen by both players and the state history. A cumulative

utility function aggregates the immediate utilities over the course of the game.

Seventh, we define the decision algorithms used by the players. There are three com-

ponents to the defender’s decision-making: Bayesian learning of the attacker’s parameters,

estimation of the attacker’s true type, and HBA to select an action. The attacker uses a

single decision algorithm to select an action.

4.1 The Residual Heat Removal System

The SBG approach will be demonstrated on a subsystem of a boiling water reactor

(BWR). A diagram of a BWR is shown in Figure 6. Coolant is pumped through the reactor

vessel to remove heat from the nuclear fuel in the reactor core. The coolant is passed

through moisture separators and the resulting steam is passed through a turbine to generate

electricity. The steam is condensed by a heat sink such as a cooling tower and pumped back

through the reactor vessel. Control rods are used to control the power of the core. The

reactor vessel is surrounded by a containment building to prevent the release of radioactive

material.

An SBG will be used to study the cybersecurity of the BWR’s residual heat removal

(RHR) system. The RHR system is used for both cooling and reactor vessel coolant inventory

control. An overview of the RHR system is shown in Figure 7. The RHR system consists of

two interconnected systems that are nearly identical. System I is on the left side of Figure 7

and System II is on the right. Motor-operated valves (MOVs) are implemented in both

systems. MOVs that are normally closed are shaded and MOVs that are normally open are

not shaded. Each system contains two pumps, a heat exchanger, and the necessary piping,

valves, and instrumentation [83, 30].

The RHR has six operational modes, but for this case study we analyze the low pressure

coolant injection (LPCI) mode [30]. The design goal of LPCI mode is to prevent the fuel
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Figure 6: Boiling water reactor (BWR) overview.
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Figure 7: Residual heat removal (RHR) system.
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cladding temperature from exceeding 1,204 ◦C during a loss-of-coolant accident (LOCA).

Following a LOCA, LPCI mode cools the fuel by maintaining water level in the reactor

vessel. RHR pumps draw water from the suppression pool and feed it to the reactor vessel

through the recirculation system piping. Two out of four RHR pumps must inject after a

design-basis LOCA to provide sufficient cooling [30].

LPCI mode can be initiated manually or automatically. LPCI mode is initiated

automatically by one-out-of-two-twice logic for either low reactor water level or high drywell

pressure. This means that water level and drywell pressure are each measured by four

independent sensors. The four sensors are configured as two pairs. To automatically initiate

LPCI mode, one sensor from each pair must measure the initiating signal [30].

The sequence of LPCI mode operations are:

1. LPCI mode initiation signal is generated by low reactor water level or high drywell

pressure.

2. RHR pumps A, B, and C start two seconds after the LPCI initiation signal.

3. RHR pump D starts seven seconds after the LPCI initiation signal to prevent overloading

of the bus.

4. The valves in the suction path between the RHR pumps and suppression pool are

normally open, so no action is required. These valves are 31A, B, C, and D.

5. The containment spray and test isolation valves close so that the RHR pumps discharge

to the recirculation system. These valves are 38A and B, 39A and B, 40A and B, 41A

and B, and 42A and B.

6. Minimum flow valves close when LPCI injection flow exceeds a threshold. These valves

are 45A and B.

7. The heat exchanger bypass valves open and cannot be closed for three minutes. These

valves are 34A and B.

8. The LPCI injection valves open when the reactor vessel pressure drops below a threshold.

These valves are 37A and B. Valves 36A and B are normally open, so no action is required.

9. The recirculation pump discharge valves close once reactor pressure has dropped below

a threshold. These valves are DV-A and DV-B.

10. The LPCI system delivers water to the reactor vessel to cool the fuel.
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Network Switch
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Figure 8: Network topology of the RHR system.

Hazards are conditions that can cause losses under certain circumstances. Hazards are

discussed in greater detail during our discussion of System-Theoretic Process Analysis in

Section 4.3.1. We consider the following hazards for the RHR system in LPCI mode.

H1: Loss of flow path alignment capability to RHR subsystems

H2: Damage to (or loss of) RHR pumps

H3: Excessive removal of suppression pool inventory

H4: Reactor trip

H5: RHR does not initiate

H6: Inadequate flow for intended operation

H7: Cooling provided via RHR while reactor is at-power

The network topology used in this case study is shown in Figure 8. In this topology, the

RHR system is controlled by four programmable logic controllers (PLCs) that communicate

over a network switch. For each RHR system, one PLC controls the pumps and one PLC

controls the valves.

To accomplish their goals, the threat agents could choose to target one or more of the

devices shown in the RHR network topology. After deriving the goals and capabilities of the

threat agents, the SBG approach will be used to select an optimal defense strategy.
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4.2 The Players

The SBG is played by two players: a defender and an attacker. The defender is a

multidisciplinary cybersecurity team at the NPP. Although the attacker is modelled as

a single player, the construction of the SBG enables the analysis of the full spectrum of

adversaries. The following sections describe each player in greater detail.

4.2.1 The Defender

The defender is a nuclear power plant cybersecurity team. The cybersecurity team should

be multidisciplinary and be involved in the design of the SBG. Relevant fields include system

theory, risk analysis, nuclear engineering, industrial control systems, security engineering,

financial engineering, threat analysis, artificial intelligence, and game theory. Each of these

fields provides essential input to the game-theoretic approach.

Expertise in threat analysis, cybsersecurity, and security engineering is useful in the

definition of the attacker. NPPs face a variety of hostile threat agents and an understanding

of the threats is necessary to define attacker types in the SBG. In this work, we use Intel

Corporation’s Threat Agent Risk Assessment to identify the threats to the NPP and to select

the threat agents who pose the greatest risk to the NPP.

Expertise in system theory, industrial control systems, and risk analysis is useful in the

construction of the stochastic state space. System-Theoretic Process Analysis will be used

to define the states of the SBG. System-Theoretic Process Analysis is a risk assessment

tool that examines the functional interactions between components and the environment to

prevent damage to the system. This tool enables us to identify ways that the attacker might

damage the NPP and allows us to construct a state space that includes those scenarios.

Expertise in risk analysis, nuclear engineering, and mechanical engineering is useful in

the definition of state transition functions. Some state transition functions will be defined

using event tree analysis. Event tree analysis defines the probability of several outcomes

given the occurrence of an initiating event. In this case, the initiating event is a cyber attack

and the outcome is damage to the NPP.
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Expertise in industrial control systems, security engineering, and cybersecurity is useful

in the definition of action sets for the players. At each state in the SBG, both players have

a set of actions from which to choose. For the defender, these actions may include actions

such as configuring firewalls or installing antivirus software. For the attacker, these actions

can include eavesdropping attacks or modifying functions on programmable logic controllers.

Expertise in these fields is necessary to understand what actions are available to the attacker

and how we might defend against them.

Expertise in financial engineering, cybersecurity, nuclear engineering, and threat analysis

is useful in the definition of utility functions for both players. As the players take action

in the SBG, they earn immediate utilities that are a function of the action taken and the

resulting state transition. Those immediate utilities are then aggregated by a cumulative

utility function that guides the long-term behavior of the players throughout the game.

Expertise in these fields is necessary to accurately quantify the costs and benefits of the

players’ actions.

Expertise in the fields of artificial intelligence and game theory is required to construct

the SBG and optimize the defender’s actions. The construction of the SBG involves elements

of both stochastic and Bayesian game theory. Rather than use traditional Nash equilibrium

solution methods, we use Harsanyi-Bellman ad hoc coordination. Harsanyi-Bellman ad hoc

coordination is an artificial intelligence method that combines the Bayesian Nash equilibrium

and Bellman optimal control to optimize the defender’s actions as the game is played.

The goal of the defender is to maintain normal operation of the plant and to prevent the

occurrence of losses. Losses are events that are unacceptable to plant stakeholders. Losses

are discussed in greater detail during our discussion of System-Theoretic Process Analysis

in Section 4.3.1. The defender’s losses are:

L1: Loss of power generation Since 1990, nuclear energy has generated approximately

20% of the net electricity generation in the United States [87]. To continue meeting this

demand and to maintain a high capacity factor, outages at NPP must be minimized.

Some power outages are necessary for the NPP to refuel and perform inspection and

maintenance activities. Refueling occurs every 18 to 24 months. Planned outages

normally occur in the fall and spring when there is lower demand for electricity [86].
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Some guidelines have been published to optimize planned NPP outages [45]. Unplanned

outages should be minimized. Both planned and unplanned outages have a significant

financial impact on the NPP. Revenue is lost because the NPP is not generating power.

The NPP must also buy power to replace the power that it would typically generate. The

NPP also continues to pay employees and usually hires additional specialized workers to

perform maintenance activities. A cyber attack that causes a loss of power generation

at an NPP would have a severe financial impact.

L2: Environmental damage Accidents at NPPs have the potential to cause significant

environmental damage, despite defense in depth design. Defense in depth is a design

approach that includes multiple redundant and independent safety features to prevent

and mitigate accidents [95]. The main benefit of defense in depth approaches is that no

one safety feature is solely responsible for ensuring NPP safety. For example, there are

multiple layers of protection to prevent the release of radioactive materials from the NPP.

These layers are the fuel matrix, the fuel cladding, the reactor vessel, and the containment

system. Even with a defense in depth approach, it is possible for radioactive materials

to be released during an accident. A cyber attack on an NPP that defeats defense in

depth safety systems could cause similar environmental damages.

L3: Personnel injury or death Personnel safety is highly valued by the nuclear power

industry. Several organizations such as the Institute of Nuclear Power Operations, the

U.S. Nuclear Regulatory Commission, and the International Atomic Energy Agency have

published guidelines for developing a safety culture at NPPs [38, 74, 46, 42]. The injury

or death of an NPP employee is a rare and significant accident. The industrial safety

accident rate for the U.S. nuclear industry is shown in Figure 9 [64]. The injury or death

of an NPP employee due to a cyber attack would be a significant event.

L4: Damaged public opinion According to a 2019 poll, 49% of U.S. adults support

nuclear power, 49% oppose nuclear power, and 47% believe nuclear power is safe [70].

Polls have shown that public opinion of nuclear energy can be negatively related to the

occurrence of accidents at NPPs. Table 5 shows U.S. adults’ support for constructing

nuclear power plants in their area, before and after the Three Mile Island accident in

March 1979 [72]. Although no deaths occurred as a result of the accident, public opinion
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Figure 9: U.S. nuclear industry safety accident rate [64]. The industry safety accident rate

is the number of accidents resulting in lost work, restricted work, or fatalities per 200,000

worker hours.

of nuclear energy worsened. A successful cyber attack on an NPP may have a similar

affect on public opinion. Damaged public opinion could be costly to the nuclear power

industry because public opinion is connected to government policy. Negative public

opinion could lead to over-regulation or a reduction of the nuclear industry’s share of

total energy generation.

L5: Major equipment damage Major equipment damage can have severe financial

consequences for an NPP. Several NPP have shut down because of equipment repair

costs [10]. For example, Crystal River 3 shut down in February 2013 after 36 years of

operation because of the high cost of containment repairs. San Ofre 2 and San Ofre 3

shut down in June 2013 after 30 and 29 years of operation because of the high cost of

replacing new steam generators. Equipment damage caused by a cyber attack could have

a similar financial impact on an NPP.

L6: Core damage Core damage is a serious event that can be coupled with the release of

radioactive materials [43]. An example of an NPP accident causing core damage is the
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Table 5: U.S. adults’ support for constructing nuclear power plants in their area, before and

after the Three Mile Island accident in March 1979 [72].

Opinion Jun. 11-14, 1976 Apr. 6-9, 1979

Against 45% 60%

Not against 42% 33%

No opinion 13% 7%

Three Mile Island (TMI) accident [106, 82]. High fuel temperatures and oxidation of the

fuel cladding caused much of the fuel in the core to melt. Because of severe core damage,

the disassembling and defueling procedures had to be significantly modified [23]. Around

100,000 kg of damaged fuel had to be removed from the reactor vessel [106]. The clean-up

of the damaged reactor station cost required more than 1,000 workers, took nearly 12

years, and cost approximately $973 million [106]. Core damage caused by a cyber attack

could have a similar impact.

L7: Loss of sensitive data The NPP is responsible for protecting various data from

unauthorized disclosure. This data is pertinent to national security interests, the

protection of radioactive materials, and other sensitive information. Requirements for

controlling this data are specified in various federal regulations. Three types of data are

protected by the U.S. Nuclear Regulatory Commission [94].

Classified information Classified information pertinent to NPP is usually one of two

types. The first type is national security information (NSI). NSI is information that

is classified by an executive order and must be protected to preserve national security.

The second type is restricted data (RD). RD is information that is classified by the

Atomic Energy Act [93] and must be protected to prevent the development or use of

nuclear weapons. Requirements for access to this data and information safeguarding

are given in 10 CFR §25 and 10 CFR §95 [98, 96].
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Table 6: Losses and their assigned consequence magnitudes.

Loss Description Consequence ($)

L1 Loss of power generation −2× 106

L2 Environmental damages −1× 1011

L3 Personnel injury −3× 106

L4 Damaged public opinion −7× 105

L5 Major equipment damage −4× 107

L6 Core damage −1× 108

L7 Loss of sensitive data −1× 106

Safeguard information (SGI) This is a type of sensitive unclassified information

required to be protected under Section 147 of the Atomic Energy Act [93]. It is

pertinent to the physical protection of operating power reactors and other radioactive

material. Performance requirements for the protection of SGI are specified in 10 CFR

§73.21 [99], and specific requirements for the protection of safeguards information

are specified in 10 CFR §73.22 and 10 CFR §73.23 [100, 101].

Sensitive unclassified non-safeguards information (SUNSI) This is a type of

information that is not publicly available and is not related to nuclear safeguards.

Some examples are personal and private information and proprietary information.

Any information related to the protection or accounting of special nuclear material

that is not designated NSI, RD, or SGI must be protected as specified in 10 CFR

§2.390 [97].

The consequence magnitude for each loss is given in Table 6. This is a number that

captures the impact of the loss to the defender. We define the unit of the loss magnitude

to be dollars. In this work we assume that environmental damages and personnel injury are

the most severe losses and we assume that damaged public opinion and loss of sensitive data

are the least severe losses.
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It is important to clearly define the defender’s losses before defining the attacker types.

Different attacker types may have different capacities to cause losses, and each may care

about causing different losses. In the following section, we select the attacker types by

considering their capacity and desire to cause losses for the NPP.

4.2.2 The Attacker

The attacker’s types can be defined using a threat taxonomy. Several taxonomies have

been created to describe cyber-threats. First, the International Atomic Energy Agency

created a list of internal and external threats to nuclear facilities and defined their resources,

time span of attack, tools used, and motivations [44]. Second, the United States Defense

Science Board has created a tiered threat taxonomy system that describes threats in terms of

their financial resources, skill, and potential impact [20]. Third, Intel Corporation compiled

a Threat Agent Library (TAL) that defines 21 unique threat agents [39]. In this work, we

use Intel’s TAL.

After selecting a threat taxonomy, we must assess the risk each threat agent poses to the

NPP. Each threat agent has specific motivations, goals, and capabilities defined by the TAL.

Additionally, each defender type also has specific priorities regarding consequence prevention.

Using this information, we estimate the risk posed by each threat agent to the NPP and

each defender type, and identify the agents who pose the greatest risk for each type. In

this work, we use Intel’s Threat Agent Risk Assessment (TARA) methodology to select the

critical threat agents. Each of the critical threat agents are modelled as a type in the SBG.

4.2.2.1 Threat Agent Library The hostile threat agents in Intel’s TAL are given in

Table 7. Each threat agent is defined by nine attributes: intent, access, outcome, limits,

resource, skill level, objective, visibility, and motivation [39, 41].

Intent This attribute defines whether the threat agent is malicious.

Hostile An agent with hostile intent deliberately intends to harm the NPP. We only

consider hostile threat agents in this work.
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Non-hostile An agent with non-hostile intent accidentally harms the NPP. The

non-hostile agents in the TAL are reckless employees, untrained employees, and

information partners.

Access This attribute defines the scope of the threat agent’s access to the NPP.

Internal These threat agents have internal access to the NPP.

External These threat agents have external access to the NPP.

Outcome This attribute defines the primary goal of the agent.

Theft An agent with the theft outcome seeks to steal assets from the NPP.

Business advantage An agent with the business advantage outcome seeks to develop

a competitive advantage over the NPP in the marketplace.

Damage An agent with the damage outcome seeks to cause harm to NPP employees,

NPP assets, or the general public.

Embarrassment An agent with the embarrassment outcome seeks to portray the NPP

negatively to the public.

Technical advantage An agent with the technical advantage outcome seeks to develop

technical capability using resources developed or implemented by the NPP.

Limits This attribute defines the limitations that constrain the threat agent.

Code of conduct An agent with code of conduct limits follows a code of conduct that

exceeds relevant laws and statutes. This limit only applies to non-hostile threat

agents, therefore it is not used in this work.

Legal An agent with legal limits follows relevant laws and statutes.

Extra-legal (minor) An agent with minor extra-legal limits may commit minor or

non-violent crimes.

Extra-legal (major) An agent with major extra-legal limits may commit major crimes

resulting in significant damage.

Resource This attribute defines the resources available for the threat agent to conduct an

attack on the NPP.

Individual An agent with individual resources acts independently.

Club An agent with club resources is a part of a social group.
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Contest An agent with contest resources is acting as a part of a short-term event with

a particular goal.

Team An agent with team resources is part of a formally organized group.

Organization An agent with organization resources is a part of a group larger than a

team with greater resources.

Government An agent with government resources has control over public assets and

is highly resourced.

Skill level This attributes defines the abilities of the threat agent.

None An agent with no skill has no expertise regarding the NPP or cybersecurity.

Minimal An agent with minimal skill can use existing techniques to target the NPP.

Operational An agent with an operational skill level understands the technical domain

of the NPP and and can create new attacks.

Adept An agent with an adept skill level is an expert in the technical domain of the

NPP and can create sophisticated new attacks.

Objective This attribute defines the method by which the agent intends to achieve his

outcome. An agent can have multiple objectives.

Copy This objective is to replicate an NPP asset.

Deny This objective is to prevent the use of an NPP asset.

Destroy This objective is to destroy an NPP asset, rendering it unusable.

Injure This objective is to damage an NPP asset, thereby reducing its functionality.

Take This objective is to steal an NPP asset.

Don’t care The “don’t care” objective means that the agent either makes opportunis-

tic decisions or does not have a preference for which objectives are achieved. The

cyber vandal, irrational individual, radical activist, and sensationalist were assigned

the “don’t care” objective in the TAL. Rather than creating a separate category of

“don’t care” for these agents, we represent them as having all five of the remaining

objectives.

Visibility This attribute defines the agent’s efforts to conceal his identity.

Overt An overt agent does not attempt to conceal the attack or his identity.
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Covert A covert agent does not attempt to conceal the attack, but does attempt to

conceal his identity.

Clandestine A clandestine agent attempts to conceal both the attack and his identity.

Don’t care An agent who doesn’t care either does not have a plan or does not have a

preference regarding secrecy.

Motivation This attribute defines both the agent’s cause for targeting the NPP and the

agent’s drive. Each agent has a defining motivation, but several agents also have a co-

motivation, subordinate motivation, binding motivation, or personal motivation. In this

work, we only consider the defining motivation for each threat agent.

Accidental An agent with this motivation does not intend to damage the NPP. This

motivation applies to non-hostile threat agents and is not used in this work.

Coercion An agent with this motivation is manipulated to target the NPP on behalf

of another party.

Disgruntlement An agent with this motivation seeks revenge against the NPP for

prior perceived mistreatment.

Dominance An agent with this motivation seeks to establish superiority over the NPP.

Ideology An agent with this motivation targets the NPP to express a set of core beliefs.

Notoriety An agent with this motivation targets the NPP to achieve fame.

Organizational gain An agent with this motivation targets the NPP for the benefit

of the agent’s business or organization.

Personal financial gain An agent with this motivation targets the NPP for monetary

compensation.

Personal satisfaction An agent with this motivation targets the NPP for personal

pride or fulfillment.

Unpredictable An agent with this motivation targets the NPP without an identifiable

cause or structure.

4.2.2.2 Threat Agent Risk Assessment We select the relevant threat agents from the

TAL using Intel Corporation’s Threat Agent Risk Assessment (TARA) methodology [40].

The TARA methodology is shown in Figure 10 and described below.

55



Table 7: Hostile agents from Intel Corporation’s Threat Agent Library [39]

Threat Agent Description

Anarchist Individual who rejects structure

Civil activist Non-violent supporter of a cause

Competitor Business rival

Corrupt government official Abuser of political power

Cyber vandal Thrill-seeker without strong agenda

Data miner External individual who gathers data

Disgruntled employee Current or former employee with malicious intent

Government cyberwarrior State-sponsored attacker with significant resources

Government spy State-sponsored trusted insider

Internal spy Insider gathering data for profit

Irrational individual Individual without a rational plan

Legal adversary Opponent in legal proceedings

Mobster Participant in organized crime

Radical activist Destructive supporter of a cause

Sensationalist Fame-seeker

Terrorist Person using violence to advance a socio-political agenda

Thief Intends to steal for profit

Vendor Business partner seeking competitive advantage
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1. Measure current threat agent risks

2. Distinguish threats that exceed acceptable risk

3. Derive primary objectives of those threat agents

4. Identify methods likely to manifest

5. Determine the most important collective exposures

6. Align strategy to target the most significant exposures

Figure 10: Intel Corporation’s Threat Agent Risk Assessment [40].
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The first step of TARA is to measure current threat agent risks to the NPP. This step is

an initial assessment of the risk of each threat agent to the NPP. This assessment is based on

expert opinion and is conducted for each threat agent in the TAL. TARA does not specify

the method to determine each agent’s risk. To determine a threat agent’s risk, we must first

determine which losses are desired by the agent. To determine each agent’s desired losses,

we consider their motivations, limits, visibility, and desired outcomes. Table 8 summarizes

this process for each threat agent.

TARA does not specify the method to determine each agent’s risk. To calculate the

risk posed by a threat agent, we use the traditional definition of risk as the product of

consequence and likelihood. The total risk of a threat agent is given by equation 4.1.

Risk =
∑

Losses

Consequence× Likelihood (4.1)

The consequences are the defender’s losses. The assumed loss consequences used in this work

are given in Table 6.

The likelihood is the probability that the threat agent in question could cause that loss

and is based on expert opinion. To estimate these likelihoods, we consider the threat agent’s

access, resources, skill level, access, and visibility. Agents with internal access, organization

and government resources, operational and adept skill level, and overt visibility receive the

greatest likelihoods. The risk posed by each threat agent is calculated using equation 4.1,

the estimated likelihoods, and loss magnitudes given in Table 6. Table 9 summarizes this

process for each threat agent.

An asterisk superscript in Table 9 indicates that the parameter differs from the original

definition in the TAL. The disgruntled employee, government cyberwarrior, and irrational

individual were assigned visibility of “Multiple/Don’t Care” in the TAL. For simplicity,

we have assigned one visibility category for each agent. The disgruntled employee and

government cyberwarrior are assigned a visibility of “Covert” and the irrational individual is

assigned a visibility of “Overt”. In this work, the club and contest resources are consolidated

into one club category. This change only affects the cyber vandal.

The second step of TARA is to distinguish threat agents that exceed baseline acceptable

risks. First, an acceptable risk baseline must be defined for the NPP. This baseline is based on
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expert opinion and threat intelligence. One way to determine the acceptable risk baseline is to

consider only the loss with the greatest consequence. Next, identify the maximum allowable

probability for that loss. Because the worst loss was assigned a consequence magnitude of

one, the acceptable risk baseline is then the product of the loss consequence and maximum

allowable probability.

Alternative approaches to distinguishing the high-risk threat agents involve measuring

their relative risk. The preferable selection method is defining a risk threshold, but these

methods can be used if a risk threshold cannot be determined. Some examples are:

• Select the threat agents with risk greater than a given percentage of the risk of the most

significant threat agent.

• Calculate the total risk posed by all threat agents. Select the threat agents with the

highest scores that make up a given percentage of the total risk.

• Approximate the total risk posed by all threat agents as the sum of the risk posed by

all agents except the least significant agent. Calculate the percent error between the

approximated total risk and the total risk including all threat agents. If the percent

error is below a given threshold, repeat for the next least significant threat agent and

calculate the percent error between the new approximated total and the total from the

previous iteration. Repeat until the percent error exceeds the threshold.

The risk of each threat agent is plotted in Figure 11. In this case, one group of threat

agents clearly poses the greatest risk. The risks of the radical activist, disgruntled employee,

government cyberwarrior, and terrorist exceed the next threat agent by approximately three

orders of magnitude. An acceptable risk baseline between $2.7 × 106 and $5.0 × 108 would

result in the selection of these threat agents.

Although the four threat agents have varying motivations, they all seek the outcome of

causing damage, and three of the four also seek to cause embarrassment. Three of the threat

agents also have major extra-legal limits. This combination of outcomes and limitations

leads all four of the selected threat agents to desire all of the defender’s losses. This alone

does not lead to their high risk levels. The skill and resources of these threat agents are also

significant. The radical activist, government cyberwarrior, and terrorist all have adept skill
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Figure 11: Threat agent risks on logarithmic scale.
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levels, and at least organization resources. In comparison, the disgruntled employee has an

operational skill level and individual resources, but still poses a significant risk because of

his internal access.

The attacker’s types and their loss magnitudes are given in Table 10. All of the attacker’s

types seek to cause each of the NPP losses, so all of the attacker’s loss magnitudes are greater

than zero. Note that the attacker’s loss magnitudes do not need to be directly correlated

with the defender’s loss magnitudes. We have assumed these values based on the motivations

and desired outcomes of the threat agents as defined by the TAL. These values are assumed

for demonstration purposes. In practice, additional threat intelligence should also be used.

The third step of TARA is to derive primary objectives of those threat agents. The

primary objectives are a combination of the threat agent’s motivations and capabilities that

are defined by the TAL. This step was completed in the first step when we identified each

threat agent’s desired losses in Table 8.

The fourth step of TARA is to identify methods likely to manifest. A method is a

combination of threat agent objectives and the means by which the threat seeks to accomplish

them. These methods are used to define the actions available to the threat agents at each

state in the SBG. This step is not necessary for the selection of attacker types for the SBG,

but will be done in conjunction with System Theoretic Process Analysis as the states of the

SBG are defined.

The fifth step of TARA is to determine the most important collective exposures. The

exposures are the intersection of attack vectors and the methods likely to manifest. This

step is not necessary for the selection of attacker types for the SBG, but it is mentioned

because its purpose is addressed later in game construction using System Theoretic Process

Analysis.

The sixth step of TARA is to align strategy to target the most significant exposures.

This is the decision-making portion of TARA. This step is not necessary for the selection of

attacker types, but it is mentioned because its purpose is addressed by applying Harsanyi-

Bellman ad hoc coordination to the SBG.

Each selected threat agent is modelled as a type in the SBG. Recall that a type is

a construction in a Bayesian game that represents a player’s belief about the parameters

63



T
ab

le
10

:
T

h
e

at
ta

ck
er

’s
ty

p
es

an
d

co
rr

es
p

on
d
in

g
lo

ss
m

ag
n
it

u
d
es

.

T
y
p

e
N

a
m

e
|L

1
|(

$)
|L

2
|(

$)
|L

3
|(

$)
|L

4
|(

$)
|L

5
|(

$)
|L

6
|(

$)
|L

7
|(

$)

θ1 A
R

ad
ic

al
a
ct

iv
is

t
3
×

10
9

2
×

10
6

2
×

10
6

5
×

10
1
0

4
×

10
7

5
×

10
8

3
×

10
7

θ2 A
D

is
g
ru

n
tl

ed
em

p
lo

ye
e

3
×

10
1
0

2
×

10
4

3
×

10
6

5
×

10
8

3
×

10
9

3
×

10
1
0

2
×

10
8

θ3 A
G

ov
.

cy
b

er
w

a
rr

io
r

3
×

10
1
2

1
×

10
6

1
×

10
6

1
×

10
6

1
×

10
9

2
×

10
1
1

5
×

10
7

θ4 A
T

er
ro

ri
st

2
×

10
9

5
×

10
1
1

7
×

10
7

1
×

10
6

1
×

10
7

3
×

10
8

1
×

10
6

64



governing another player. The types characterize the attributes of the threat as defined

by the TAL. At each state in the SBG, both players choose from a set of actions. For the

defender, these strategies include sets of cyber components to be defended, and the means by

which they are defended. For the attacker, these actions include sets of cyber components to

be attacked, and the means by which they are attacked. The actions available to the players

are defined using System Theoretic Process Analysis in Section 4.3. As a result of the actions

that are selected and the resulting state transition, each player receives an immediate reward.

The immediate rewards are aggregated over the course of the game by a cumulative reward

function. The reward functions of each type are a function of the threat agent’s resources,

capabilities, and motivations. The reward functions for each type are defined in Section 4.6.

In this section, we identified the players of the SBG. The defender’s capabilities

were defined and the defender’s losses were identified and prioritized. Portions of Intel

Corporation’s TARA methodology were used to define the attacker types. The threat agent

attributes defined in the TAL were used to identify losses of interest to each agent and to

calculate the risk posed to the NPP by each agent.

The disgruntled employee, government spy, radical activist, government cyberwarrior,

terrorist, and corrupt government official were as the critical threat agents. The majority

of these threat agents seek to cause all of the potential losses to the system, thus increasing

their estimated risk. The majority of these threat agents have major extra-legal limits,

organization or government resources, and adept skill level. The visibility of the agents

varies. It is also noteworthy that the two agents with the greatest risk have internal access

to the NPP. This resulted in a greater estimated probability of those agents to successfully

cause a loss. Each of the selected threat agents are modelled as types in the SBG.

4.2.3 The Type Distribution

Now that the attacker’s types have been defined, we must define their probability

distributions. In practice, these distributions should be estimated from threat intelligence

data. Data of importance include the global political climate, known threat agent activity,

insider information, and recent threats to the NPP.
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Table 11: The probability distributions of the types.

θjA θ1
A θ2

A θ3
A θ4

A

p(θjA) 0.15 0.35 0.30 0.20

For this case study, we assume the type distributions in Table 11. We assume the

defender assigns the greatest probability to the disgruntled employee type, followed by the

government cyberwarrior, terrorist, and radical activist.

This distribution is the defender’s initial estimate of the probability distribution over the

attacker’s types. As the SBG is played, the defender can use Bayesian learning to update

the type distribution. The updated distribution is then used in HBA to select the optimal

cybersecurity strategy given the defender’s beliefs about the attacker.

4.3 Stochastic State Space

In an SBG, the states define the setting of the players’ interactions. The stochastic state

space must characterize the plant over the operating range of consideration and throughout

the course of all postulated attacks. For complex systems with many digital devices, the

unaltered state space may be too large for the security game to be tractable. For example,

consider a system with 25 components, each of which has two operational states: operational

or nonoperational. For this system, there would be a minimum of 225 = 33, 554, 432 states

corresponding to each possible combination of the individual components’ operational states.

A large state space presents challenges both in computation and in interpretation of results.

Thus, a method is needed to constrain the size of the stochastic state space.
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4.3.1 System-Theoretic Process Analysis

System-theoretic process analysis (STPA) can be used to manage the size of the stochastic

state space. STPA is a hazard analysis technique that considers both component failures

and unsafe interactions of system components to model accident causation [52]. STPA has

been applied to study a variety of cyber-physical systems including offshore supply vessel

positioning systems [2], buoy tender control systems [77], and railroad systems [21]. STPA

has also been applied to nuclear systems as part of Hazards and Consequences Analysis of

Digital Systems (HAZCADS) [24].

The application of STPA to the construction of an SBG is summarized in the following

four steps.

Step 1: Define the Purpose of Analysis This step involves three sub-tasks: identify-

ing losses, identifying system-level hazards, and identifying system-level constraints.

Losses are consequences that are unacceptable to stakeholders. These losses may be

aligned with the goals of the attacker. Losses may involve environmental conditions that

cannot be controlled. We have already defined the losses in Section 4.2.1.

Hazards are system states that will lead to at least one loss if a specific set of

environmental conditions are met. A system boundary should be defined to separate

the system from its environment. The system is typically defined to include all aspects

over which the system designers can exert control. Hazards specify an overall system

state and do not refer to specific system components. The RHR hazards that we will

consider in this work are listed in our description of the RHR system in Section 4.1.

Constraints are conditions that must be met to prevent hazards. Each constraint must

be traceable to at least one hazard. Constraints are often the inverse of the hazard. An

example of a constraint for a nuclear power plant is to initiate the RHR system at the

correct time. This constraint prevents the hazard of the RHR failing to initiate. The

other RHR constraints follow a similar structure. For brevity, we do not list all of the

RHR constraints here.

Step 2: Model the control structure The control structure is a functional model of the

interactions of the controllers with the controlled process through feedback and control
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Table 12: Hacked devices and potential hazards.

PLC-1A & PLC-2A &
PLC-1A PLC-1B PLC-2A PLC-2B Switch PLC-1B PLC-2B

H1 X X X

H2 X X X X X

H3 X X X

H4 X X X

H5 X X X

H6 X X X X X

H7 X X X

actions. In this case, the network topology in Figure 8 is an adequate model of the control

structure. A more detailed model may be required for more complex control structures.

Step 3: Identify the unsafe control actions Unsafe control actions (UCAs) are con-

trol actions that can lead to a hazard under certain conditions. A UCA describes the

source of the control action, the type of control action, and the context of the control

action. STPA is used primarily as a risk analysis tool to study unintended malfunctions

of digital control systems. In contrast, we are applying STPA to study the deliberate

attack of a digital control system by a malicious actor. We recognize that the purpose of

defining UCAs is to understand the events that may lead to hazards. To meet this goal,

we list the sets of penetrated devices that may cause hazards under certain conditions.

Table 12 shows which hazards can occur as a consequence of different combinations of

hacked devices. We do not list every action profile leading to each hazard because there

are multiple ways some devices can be hacked. For example, loss of flow path alignment

(H1) may occur if the defender does not disable wireless on PLC-1B, and the attacker

chooses to conduct a wireless exploit on PLC-1B. This action profile reflects the attacker’s

capability to cause a failure, but does not specify the specific method used to cause the

failure. For example, an attacker with administrator privileges on PLC-1B could choose

to open or close different combinations of valves in System I to cause H1.
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Figure 12: Generalized state space of an SBG.

Step 4: Identify loss scenarios. A loss scenario summarizes the events that can lead to

hazards. These scenarios capture the evolution of NPP operation from a normal state

to a loss state. The stochastic state space is developed based on the loss scenarios.

The generalized stochastic state space is shown in Figure 12. The game originates in a

normal state where the plant is operating as intended. From the normal state, the attacker

may be able to breach the plant’s defenses and cause the game to enter a penetrated state.

From a penetrated state, the attacker may be able to cause a hazard, or the attacker may need

to escalate his privileges within the plant before causing a hazard. If certain environmental

conditions occur, the game may transition from a hazard state to a loss state. Most losses

are represented by absorbing states; when they are reached, the game concludes. Some losses

may not necessitate the end of the game, in which case, they are not assigned a separate

state. At all of the non-absorbing states, the defender may be able to cause the game to

transition back to the normal state.

There are a total of 45 states in the SBG. A full list of states is given in Table 13. We

use one normal state to represent standard operation of the RHR system. There are 31

penetrated states where the attacker has compromised various sets of ICS devices. There

are 31 penetrated states because there are five ICS devices and we assume that each device is

either penetrated or operating normally (25 − 1 = 31). There are no escalated states in this
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game. There are seven hazard states representing the hazards listed in Section 4.1. There

are six absorbing loss states. Loss of sensitive data (L7) is considered to be a non-terminal

loss, so it are not designated its own states.

4.4 The Actions

Defining the players’ actions requires an understanding of the industrial control system

devices, the RHR system, and the players. An understanding of the control system

devices is required to identify device vulnerabilities, malicious actions that can exploit

those vulnerabilities, and cybersecurity control actions that can address those vulnerabilities.

Knowledge of the RHR system is needed to understand how exploits can lead to negative

consequences in the system. Finally, knowledge about the players is needed to understand

their capabilities and goals. Many considerations about the players have been addressed

using TARA and the type definitions. This sections lists the actions available to the players

at each state in the SBG.

4.4.1 Normal and Penetrated States

The attacker and defender each have several choices to make regarding each component

in the RHR system. For the defender, these choices address the configurations of the

industrial control system devices. For the attacker, these choices address the attack vector

for circumventing the defender’s cybersecurity controls. These choices are available to the

players in the normal and penetrated states. Each choice comes with a cost for that player.

The defender’s choices are given in Table 14 and the attacker’s choices are given in Table 15.

We assume that the default configuration of each PLC is that authentication is off and

wireless communication is enabled. The defender can choose to enable authentication on

each PLC and can choose to disable wireless communication on each PLC. If the defender

has properly enabled authentication, the attacker will not be able to connect to the PLC.

If the defender has properly disabled wireless, the attacker will not be able to conduct the
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Table 13: States in the SBG.

Penetrated Devices
Index Description PLC-1A PLC-1B PLC-2A PLC-2B Switch

0 Normal
1 Penetrated X
2 Penetrated X
3 Penetrated X X
4 Penetrated X
5 Penetrated X X
6 Penetrated X X
7 Penetrated X X X
8 Penetrated X
9 Penetrated X X
10 Penetrated X X
11 Penetrated X X X
12 Penetrated X X
13 Penetrated X X X
14 Penetrated X X X
15 Penetrated X X X X
16 Penetrated X
17 Penetrated X X
18 Penetrated X X
19 Penetrated X X X
20 Penetrated X X
21 Penetrated X X X
22 Penetrated X X X
23 Penetrated X X X X
24 Penetrated X X
25 Penetrated X X X
26 Penetrated X X X
27 Penetrated X X X X
28 Penetrated X X X
29 Penetrated X X X X
30 Penetrated X X X X
31 Penetrated X X X X X
32 Hazard: H1 — — — — —
33 Hazard: H2 — — — — —
34 Hazard: H3 — — — — —
35 Hazard: H4 — — — — —
36 Hazard: H5 — — — — —
37 Hazard: H6 — — — — —
38 Hazard: H7 — — — — —
39 Loss: L1 — — — — —
40 Loss: L2 — — — — —
41 Loss: L3 — — — — —
42 Loss: L4 — — — — —
43 Loss: L5 — — — — —
44 Loss: L6 — — — — —
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Table 14: The cybersecurity choices available to the defender in the normal and penetrated

states.

PLCs Switch
Action Cost ($) Action Cost ($)

Enable authentication 3× 103 Enable authentication 3× 103

Disable wireless 2× 102 Enable firewall 1× 105

Access control 6× 105

Table 15: The cybersecurity choices available to the attacker in the normal and penetrated

states.

PLCs
Action θ1

A Cost ($) θ2
A Cost ($) θ3

A Cost ($) θ4
A Cost ($)

Connect 6.0× 105 1.0× 102 4.0× 104 1.0× 105

Wireless exploit 8.0× 107 7.0× 103 3.0× 107 4.0× 107

Switch
Action θ1

A Cost ($) θ2
A Cost ($) θ3

A Cost ($) θ4
A Cost ($)

Connect 6.0× 105 1.0× 102 4.0× 104 1.0× 105

Cyber attack 4.0× 104 2.0× 105 2.0× 104 3.0× 104

Physical attack 2.5× 106 5.0× 103 1.5× 106 2.5× 106
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wireless exploit. The attacker requires local access for the wireless exploit, but does not

require local access to connect with an unsecured PLC. The defender can also choose to

implement access control to restrict who is able to physically access the PLC. If the defender

has properly implemented access control, only approved personnel can access the PLC.

We assume that the default configuration of the switch is that authentication is off,

the firewall is off, and there is no access control. If the defender has properly enabled

authentication, the attacker will not be able to connect to the PLC. The defender can choose

to enable the firewall. In practice, there are many possibilities for firewall configuration, but

here we assume a binary decision to either enable or not enable the firewall. The attacker can

choose whether to attempt an attack. If the defender has enabled the firewall, the attacker

will not be able to conduct the attack. The defender can also choose to implement access

control to restrict who is able to physically access the switch. If the defender has properly

implemented access control, only approved personnel can access the switch.

A complete action for a player consists of selecting an option for each available choice.

This is the most secure action for the defender in the normal state or a penetrated state:

• enable authentication on all of the PLCs

• disable wireless on all of the PLCs

• enable authentication on the switch

• enable the firewall on the switch

• implement access control for the switch

Note that the players are not constrained to make the same choice for all of the PLCs. For

example, the defender could choose to enable authentication on PLC-1A and not enable

authentication on the other PLCs.

In the penetrated states, the attacker and defender also have choices to make that are

not directly related to individual ICS devices. These decisions affect whether the attack

regresses from a penetrated state to the normal state, or whether the attack progresses to a

hazard state.

Penetration recovery In all penetrated states, the defender may attempt to initiate

recovery action. If the recovery is successful, the attacker is expunged from the system
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and the game returns to the normal state. For simplicity, we assume a flat cost of

$1× 106 for recovery from all penetrated states, regardless of the number of devices that

have been penetrated or the manner by which they have been penetrated. This is based

on the assumption that during a known cyber attack, a thorough investigation would be

conducted to examine all potentially affected NPP devices.

Hazard initiation In some penetrated states, the attacker may choose to cause a hazard

to occur. The hazard options are dependent on the devices that are penetrated in that

particular state, as shown in Table 12. We assume that there is no additional cost to the

attacker for allowing a hazard to occur. For simplicity, we assume that the attacker can

only select one hazard at a time.

The defender and attacker both have the option to abstain from any action. We assume

that there is no cost to either player to abstain from action.

4.4.2 Hazard States

In the hazard states, the attacker and defender have choices to make that are not directly

related to individual ICS devices. These decisions affect whether the attack regresses from

a hazard state to the normal state, or whether the attack progresses to a loss state.

Hazard recovery In all hazard states, the defender may attempt to initiate recovery

action. If the recovery is successful, the attacker is expunged from the system and

the game returns to the normal state. For simplicity, we assume a flat cost of $6 × 106

for recovery from all hazard states.

Loss initiation In all hazard states, the attacker may choose to allow a loss to occur.

The potential losses corresponding to each hazard are discussed in greater detail in

Section 4.5. We assume that there is no additional cost to the attacker for allowing a

loss to occur. Unlike the hazard initiation action, we assume that the attacker is only

able to choose whether or not to allow a loss to occur — the attacker is not able to

choose the specific loss. This is because the occurrence of a loss is dependent on other

environmental conditions and safety systems beyond the attacker’s control.
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4.4.3 Loss States

Losses that are modelled as states in the SBG have the most severe consequences. These

loss states are absorbing states. The game ends when an absorbing state is reached, therefore

there are no actions available to either of the players in any of the loss states.

4.5 State Transitions

Now that the states and actions have been defined, we can define the state transition

function. The state transition function is a discrete probability distribution over all of the

states in the SBG. The transition function is dependent on the originating state, the action

chosen by the defender, and the action chosen by the attacker.

We consider four types of transitions in this research: penetration transitions, hazard

transitions, loss transitions, and recovery transitions. Penetration transitions describe the

probability of the attacker breaching NPP defenses to gain access to the system. Hazard

transitions describe the probability of the attacker causing a hazard given his level of access to

the plant. Loss transitions describe the probability that a hazard causes a loss, and accounts

for environmental factors beyond the players’ control. Finally, recovery transitions describe

the probability that the defender returns the game to the normal state from a penetrated or

hazard state.

4.5.1 Penetration Transitions

Penetration transition describe the probability of the attacker penetrating the system,

given the attacker and defender’s actions. Penetration transitions are estimated using the

TAL and the exploitability metrics defined by the Common Vulnerability Scoring System

[28]. There are four CVSS metrics:

1. Attack Vector: The attack vector metric measures the context required for an attacker

to exploit a vulnerability. The metric can be assigned values of “Physical” if the attacker

needs to physically interact with the component, “Local” if the the component is not
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Table 16: The success rates of the cybersecurity choices available to the defender in the

normal and penetrated states.

PLCs Switch
Action Rate Action Rate

Enable authentication 0.95 Enable authentication 0.95
Disable wireless 0.99 Enable firewall 0.90

Access control 0.96

bound to the network, “Adjacent” if the component is bound to the network but the

attack is limited at the protocol level to an adjacent topology, or “Network” if the

component is bound to the network and the component is remotely exploitable.

2. Attack Complexity: The attack complexity metric measures the conditions outside of the

attacker’s control that must be met for a vulnerability to be exploited. The metric can

be assigned values of “High” if the attack’s success is dependent on conditions outside

of the attacker’s control, and “Low” if specialized access conditions do not exist.

3. Privileges Required: The privileges required metric measures the privileges the attacker

must have to exploit the vulnerability. The metric can be assigned values of “High” if

the attacker requires administrative privileges over the component, “Low” if the attacker

requires basic user privileges, and “None” if the attacker does not require authorization.

4. User Interaction: The user interaction metric measures whether another user besides the

attacker to participate in the exploitation of the component. The metric can be assigned

values of “Required” or “None”.

The estimated success rates of the defender’s actions are given in Table 16 and the

success rate of the attacker’s actions are given in Table 17. These estimates are dependent

on expert opinion and are an area of ongoing research. These estimates may be validated

using representative capture-the-flag games with cybersecurity professionals.

These success rates are used to calculate the probability of transitioning from one state to

each of the other states given the actions that were chosen. We do this is in three steps. The

first step is to calculate the probability that a given attack vector is successful. The second
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Table 17: The success rates of the cybersecurity choices available to the attacker in the

normal and penetrated states.

PLCs
Action θ1

A Rate θ2
A Rate θ3

A Rate θ4
A Rate

Connect 0.85 0.99 0.98 0.92
Wireless exploit 0.70 0.85 0.95 0.75

Switch
Action θ1

A Rate θ2
A Rate θ3

A Rate θ4
A Rate

Connect 0.85 0.99 0.98 0.92
Cyber attack 0.75 0.65 0.97 0.85
Physical attack 0.80 0.98 0.90 0.78

step is to calculate the probability that a component is penetrated given several attempted

attack vectors. The third step is to calculate the probability of transitioning from one state

to another given the devices that are penetrated in those states.

Step 1: Attack vector success Consider an attack action α with success rate pα and a

corresponding defense action, δ, with success rate pδ. In the trivial case that an attack

is not initiated, the probability that the component is penetrated is zero. If an attack is

initiated, there are two possibilities:

1. The first case is that an attack is implemented and the corresponding defense is not

implemented. In this case, the probability that the device is penetrated is equal to

the attack’s success rate, pα.

2. The second case is that an attack is implemented and the corresponding defense is

also implemented. In this case, we assume that the defense and attack actions are

independent and the probability that the device is penetrated is pα(1− pδ).

Step 2: Component penetration There may be multiple attack vectors by which a

component can be penetrated. Consider a component that can be penetrated via any

one of n attack vectors. Let Ai be the event that attack vector i is successful, then
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p(Ai) is the result obtained from the first step. The probability that a component is

penetrated is given by p(
⋃n
i=1 Ai). Using the identity p (

⋃n
i=1 Ai) = 1 − p (

⋂n
i=1 Ac

i) and

assuming independence of all Ai, the probability that the component will be penetrated

is 1 −
∏n

i=1 p(Ac
i), where superscript c indicates the complement. The probability that

the component will not be penetrated is trivially
∏n

i=1 p(Ac
i).

Step 3: State transition We are now able to consider transitions between states. Here

we consider a transition where some components become penetrated. Transitions where

components go from a penetrated status to normal status are addressed in Section 4.5.4.

Consider a transition from state s0 to state s1. Let N be a set of components that go

from a normal status in s0 to a penetrated status in s1, and let M be a set of components

that have normal status in both s0 and s1. Let p(i) be the probability that component i

is penetrated. Assuming all components are independent, the probability of transitioning

from s0 to s1 is
∏N

i p(i)
∏M

j (1 − p(j)). The results from the first and second steps are

substituted into p(i) and p(j) as appropriate.

4.5.2 Hazard Transitions

Hazard transitions describe the probability of a hazard occurring as a result of the

attacker penetrating the system. We assume the hazard initiation success rate is the same for

a given hazard and attacker type, regardless of the penetrated state, as long as the criteria in

Table 12 have been met. The assumed hazard initiation success rates are given in Table 18.

The disgruntled employee has the greatest success rates because of his insider knowledge

of the plant. The government cyberwarrior also has high success rates because of his access

to government resources. The radical activist and terrorist have the lowest success rates of

the types, because they do not have the knowledge or resources of the other types. All of

the types have relatively high success rates because of their high skill levels.

4.5.3 Loss Transitions

Loss transitions describe the probability of a loss occurring as a result of existing hazards

and environmental conditions. Whether the attacker is able to damage the plant is dependent
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Table 18: The success rates of the attacker’s hazard initiation.

Hazard θ1
A Rate θ2

A Rate θ3
A Rate θ4

A Rate

H1 0.65 0.80 0.75 0.68
H2 0.80 0.90 0.87 0.80
H3 0.67 0.80 0.75 0.65
H4 0.57 0.75 0.70 0.60
H5 0.74 0.85 0.83 0.75
H6 0.61 0.80 0.75 0.64
H7 0.58 0.75 0.71 0.61

not only on the actions selected by the players, but also on the state of the plant. To account

for the state of the plant, event tree analysis can be used [91]. Consider the example shown

in Figure 13. In this example, the initiating event is a hazard. If the defender’s corrective

action fails and a plant safety system fails, a loss will occur. Probabilities of success are

assigned to each action to determine the probability of the loss if the hazard occurs.

In this game, we assume the transition probabilities shown in Table 19. Table 19 gives

the probability that a given hazard causes a given absorbing loss. For simplicity, we assume

that each hazard can only cause one absorbing loss.

4.5.4 Recovery Transitions

Recovery transitions describe the probability of the defender expunging the attacker from

the plant to return the plant to a normal operating state. These transitions can be estimated

using expert opinion and the NIST Guide for Cybersecurity Event Recovery [12]. There are

two types of recovery in the SBG: penetration recovery and hazard recovery.

Penetration recovery can be initiated by the defender in any of the penetrated states.

If successful, penetration recovery results in a transition from a penetrated state to the

normal state. For simplicity, we assume a penetration recovery success rate of 0.80 for all

penetrated states. The penetration recovery action trumps any of the attacker’s offensive
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Figure 13: Event tree mapping a hazard to a loss.

actions directed towards ICS components, but the attacker’s hazard initiation trumps the

defender’s penetration recovery. Consider the following examples for clarification.

• In this example, the defender chooses penetration recovery with a success rate of 0.80 and

the radical activist chooses a wireless exploit on PLC-1A with success rate of 0.70. The

probability of transitioning to the normal state is the penetration recovery success rate,

0.80. The probability of transitioning to another penetrated state where the attacker has

penetrated PLC-1A is 0.70(1− 0.80) = 0.14. Finally, the probability of remaining in the

originating penetrated state is (1− 0.70)(1− 0.80) = 0.06.

• In this example, the defender chooses penetration recovery with a success rate of 0.80

and the radical activist chooses H1 hazard initiation with a success rate of 0.65. The

probability of transitioning to the hazard state is the hazard initiation success rate, 0.65.

The probability of transitioning to the normal state is 0.80(1−0.65) = 0.28. Finally, the

probability of remaining in the originating penetrated state is (1−0.80)(1−0.65) = 0.07.

Hazard recovery can be initiated by the defender in any of the hazard states. If successful,

hazard recovery results in a transition from a hazard state to the normal state. For simplicity,

we assume a hazard recovery success rate of 0.70 for all hazard states. The defender’s hazard

recovery action trumps the attacker’s loss initiation action. Consider the example where the

state is the H5 hazard state the defender chooses hazard recovery with a success rate of 0.70,
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Table 19: The probability of hazard states transitioning to loss states, given that the attacker

has chosen loss initiation and the defender’s hazard recovery is unsuccessful.

L1 L2 L3 L4 L5 L6

H1 — 5× 10−6 5× 10−5 — 2× 10−2 5× 10−4

H2 5× 10−2 5× 10−6 5× 10−5 4× 10−2 9× 10−1 5× 10−4

H3 — — — 4× 10−2 — 8× 10−3

H4 9× 10−1 — — 1× 10−1 — —

H5 — 1× 10−5 1× 10−4 — — 1× 10−3

H6 — 1× 10−6 1× 10−5 — — 1× 10−4

H7 2× 10−2 — — — — —

and the attacker chooses loss initiation. If the attacker successfully initiates a loss in the H5

state, the probability of transitioning to L2 is 1×10−5, the probability of transitioning to L3 is

1×10−4, and the probability of transitioning to L6 is 1×10−3. The probability of transitioning

to the normal state is the hazard recovery rate, 0.70. The probability of transitioning to

L2 is (1 − 0.70) × 10−5, the probability of transitioning to L3 is (1 − 0.70) × 10−4, and the

probability of transitioning to L6 is (1 − 0.70) × 10−3. The probability of remaining in the

hazard state is 0.2997.

4.6 Utility Functions

We now consider the utility functions of the players. The utility functions quantify the

outcomes of the game for each player, and serves as the metric of each player’s performance.

There are two types of utility functions: immediate utility functions and cumulative utility

functions. The immediate utility functions quantify the reward or penalty incurred by

each player after one time step in the SBG. The cumulative utility function aggregates

the immediate utilities to quantify performance over the entire game.
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4.6.1 Immediate Utility Functions

The immediate utility function describes the payoff to the player after decisions have

been made in a particular state. In this work, each player’s immediate utility function has

the units of dollars. The general form of player A/D’s immediate utility function resulting

from a transition from stochastic state si to state sj after action profile aD,A = (aD, aA) and

state history sH = {s0, s1, . . . , si, sj} is

rA/D(sH , aD,A) = −ΨA/D(si, aD/A) + ΩA/D(sH) (4.2)

The first term on the right-hand side, ΨA/D, represents the cost incurred by player A/D

for selecting his action. This term is dependent only on the originating state and the action

selected by that player. For the attacker, ΨA is the implementation cost of launching a cyber

attack against the NPP. For the defender, ΨD is the cost of cybersecurity actions for the

NPP.

The expenses for the defender’s defensive cybersecurity choices are given in Table 14 and

the expenses for the attacker’s penetrating choices are given in Table 15. The expenses for

the defender’s recovery actions are given in Sections 4.4.1 and 4.4.2. The attacker incurs no

costs to initiate hazards or losses after penetrating the system. We have assumed these values

based on the access, resources, and skill of the threat agents as defined by the TAL. These

values are assumed for demonstration purposes. In practice, additional threat intelligence

and financial data should also be used. The government resources of the government

cyberwarrior and organization resources of the radical activist and terrorist provide them

with some advantages over the disgruntled employee, but the disgruntled employee’s internal

access to the NPP can also result in some reduced expenses. We assume that there is no

expense to the attacker to abstain from a particular action. We also assume that there is no

expense to the defender to leave a device in its default configuration.

The second term on the right-hand side, ΩA/D, represents the loss or gain incurred by

player A/D as a result of the state transition. To be general, ΩA/D is dependent on sH ,

but often it is only dependent on si and/or sj. Outcomes that could generate a gain for the

attacker and a loss for the defender include the penetration of a device, initiation of a hazard,
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Table 20: Utility ($) given to each player when a device is penetrated.

Device Defender θ1
A θ2

A θ3
A θ4

A

PLC-1A −2.50× 105 7.50× 106 5.00× 107 1.25× 107 2.50× 105

PLC-1B −2.50× 105 7.50× 106 5.00× 107 1.25× 107 2.50× 105

PLC-2A −2.50× 105 7.50× 106 5.00× 107 1.25× 107 2.50× 105

PLC-2B −2.50× 105 7.50× 106 5.00× 107 1.25× 107 2.50× 105

Switch −1.00× 106 3.00× 107 2.00× 108 5.00× 107 1.00× 106

Network −1.00× 106 3.00× 107 2.00× 108 5.00× 107 1.00× 106

or the initiation of a loss. Outcomes that could generate a loss for the attacker and a gain for

the defender include the prosecution of an attacker and publicity about a thwarted attack.

Note that all of these outcomes must be assigned a monetary value for unit consistency.

The rewards given to each player when each device is penetrated are given in Table 20.

These values are consistent with the L7 magnitudes given in Table 6 for the defender and

in Table 10 for the attacker. The rewards for device penetration are dependent on sH .

Each reward is only eligible to be earned once during the game. For example, if PLC-1A

is penetrated by θ1
A, θ1

A earns a reward of $7.50 × 106 and the defender incurs a penalty

of –$2.50 × 105. If the defender returns the game from a penetrated state to the normal

state, the attacker loses control of PLC-1A. If the attacker re-penetrates PLC-1A later in

the game, the attacker does not gain an additional reward from penetrating the device. This

is because the data that was on PLC has already been stolen by the attacker. The incentive

for the attacker to penetrate the PLC again is the potential to cause a hazard or loss. The

defender does incur the penalty each time a device is penetrated.

For every transition to the normal state, the defender earns a reward of $1× 108 and the

attackers do not incur a reward or penalty. For every transition to a penetrated state, the

defender earns a reward of $1 × 107 and incurs the penalties specified in Table 20. This is

because it is assumed that the plant can still operate in some capacity in these states.

The rewards earned by the attacker when the game transitions to a hazard state and the

penalties incurred by the defender are given in Table 21. The hazard rewards and penalties
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Table 21: Utility ($) given to each player when a hazard occurs.

Hazard Defender θ1
A θ2

A θ3
A θ4

A

H1 −1× 1010 5× 107 3× 109 2× 1010 5× 1010

H2 −1× 1010 5× 109 3× 109 3× 1011 5× 1010

H3 −1× 107 5× 109 3× 109 2× 1010 3× 107

H4 −2× 105 3× 108 3× 109 3× 1011 2× 108

H5 −1× 1010 5× 107 3× 109 2× 1010 5× 1010

H6 −1× 1010 5× 107 3× 109 2× 1010 5× 1010

H7 −2× 105 3× 108 3× 109 3× 1011 2× 108

were estimated to be 10% of the maximum loss reward or penalty that may result from that

hazard. These values are only dependent on the hazard, not the penetrated state that causes

the hazard, therefore these values are only a function of sj.

The rewards earned by the attacker when the game transitions to a loss state are given

in Table 10, and the penalties incurred by the defender are given in Table 6. These values

are only dependent on the loss, not the hazard that causes the loss, therefore these values

are only a function of sj.

4.6.2 Cumulative Utility Functions

The cumulative utility functions aggregate the immediate utilities earned by the players

throughout the game, and measures the performance of each player. Each player seeks to

maximize his cumulative utility. The cumulative utility function of player A/D is

uA/D(s0, σA, σD) =
∞∑
t=0

βtA/DE[rA/D(st, atD,A, s
t+1)] (4.3)

The parameter σA/D denotes player A/D’s strategy — the discrete probability distribution

that is assigned to the action set of that player at each state in the stochastic game. The

cumulative utility function is also dependent on the initial state, s0. Here the initial state is

the normal state. The discount factor β ∈ (0, 1) describes players’ preferences for utility
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earned earlier in the game relative to utility earned later in the game. The superscript t on

the discount factor is an exponent, and superscript on the state and action profile variables

is a time index. The function E[·] denotes the expectation over the states and strategies.

The primary practical purpose of the discount factor is to affect the players’ action

selections. A player with a large discount factor is more willing to wait for a large payoff

than a player with a small discount factor. We do not define discount factors for the attacker

because the attacker’s decision method will be governed by a separate algorithm. For the

defender, we define a discount factor of 0.9999. This discount factor reflects the importance

of utility earned at all time steps in the game.

4.7 Decision Algorithms

The final consideration in constructing the SBG is defining the players’ decision-making

processes. Consider the flowchart of SBG simulation shown in Figure 14. At each time

step, the players make their decisions in parallel, and their decisions stochastically affect the

progression of the game. There are three processes for the defender: Bayesian learning of the

attacker’s parameters, estimation of the attacker’s type, and action selection via HBA. For

the attacker, the decision-making process consists of a single algorithm that is dependent

on the game history. This section describes the processes used by the players to select their

actions.

4.7.1 The Defender

The defender uses Bayesian learning and HBA as described in Section 3.4.1 and

Section 3.4.2, respectively. This section describes their implementation in the context of

our game.

4.7.1.1 Bayesian Learning of Attacker’s Parameters We assume that the defender

is unsure about the utility of environmental damage (L2) for each attacker type. We selected
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Table 22: Initial loss estimates for each attacker type.

Type Lower Bound ($) Upper Bound ($) Initial Estimate ($) True Value ($)

θ1
A 1.00× 105 1.00× 107 5.05× 106 2.00× 106

θ2
A 1.00× 104 1.00× 106 5.05× 105 2.00× 104

θ3
A 1.00× 105 1.00× 107 5.05× 106 1.00× 106

θ4
A 1.00× 1010 1.00× 1012 5.05× 1011 7.00× 1011

L2 for several reasons. The first reason is that the utility of L2 is likely to depend on factors

that are not explicitly financial. For example, the attacker’s code of ethics may affect the

desirability of L2, regardless of the financial damage to the NPP or the world. The second

reason is that the value of L2 is the most significant loss to the defender. The defender’s

penalty for L2 is greater than the other loss penalties by at least three orders of magnitude.

The lower bound, upper bound, and initial estimate for each type are given in Table 22.

The initial estimate is assumed to be the average of the lower and upper bounds. We define

the initial belief density over L2 for each type to be a truncated normal distribution centered

about the initial estimate with a standard deviation equal to one half of the range of L2.

The Bayesian learning algorithm uses approximate Bayesian updating to update the

belief density over L2 for each type. In approximate Bayesian updating, belief densities

are approximated as polynomials and convolved to update beliefs. For all polynomial

approximations, we sample 50 points uniformly distributed over the belief density and fit a

fifth-degree polynomial to those points.

4.7.1.2 Estimating the Attacker’s Type The probability of each attacker type is

calculated using Equation 3.16 where the product posterior is given by Equation 3.17. The

product posteriors are calculated using the attacker’s strategy algorithm with the defender’s

estimates of the attacker’s utility of L2. To prevent the premature elimination of any types,

we ensure that the minimum probability assigned to each type at each time step is 0.01. The

product posteriors also require rescaling if values become close to machine epsilon.
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4.7.1.3 HBA Implementation Implementing the full version of HBA given by Equa-

tions 3.14 and 3.15 for this game would be highly computationally expensive. Instead, we

implement the version of HBA with path sampling given by Equations 3.18 and 3.19. The

path-sampling version of HBA has three basic steps:

1. For each defense action available in the current state, compute the cumulative utility for

n paths resulting from that action.

2. Calculate the average cumulative utility for each defense action.

3. Calculate the defense strategy as a uniform distribution over the defense actions that

have the greatest average cumulative utility.

If the paths are stochastically selected, care must be taken to select an appropriate

number of paths. If too few paths are sampled, there is a risk that the average cumulative

utility of the sampled paths may not be close to the true expected utility of the defense

action. If too many paths are sampled, the process may be too computationally expensive.

We tested HBA using various path sampling sizes to determine what sample size was

most cost-effective. We set the number of paths per action, and the paths were stochastically

generated using the state transition function, the attacker’s decision algorithm with the most

current estimates of the attacker’s parameters, and a uniform distribution over the defender’s

subsequent actions. It became clear that a large sample size was not computationally feasible

for this game. When using small sample sizes of stochastically generated paths, the decisions

made by the defender were inconsistent and often clearly suboptimal. To accommodate our

computational limitations, we instead implemented a sampling approach that was partly

deterministic and partly stochastic.

Figure 15 shows two approaches to sampling paths. Each line represents one path

stemming from a particular defense action. The direction of the line represents the utility

earned by the defender over that path, with paths angled upwards having greater utility and

paths angled downwards having lesser utility. The dashed gray line represents an “average”

path that results in the expected cumulative utility for the action in question. Now consider

a small sample of paths given by the red lines. This sample is analogous to an entirely

stochastic sample in the game. The dashed red line represents the “average” path for the
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Average utility
of all paths

Average utility
of blue sample

Average utility
of red sample

Greater utility

Lesser utility

Figure 15: Sampling the upper and lower bounds of the paths provides a more consistent

approximation of the average path utility than performing a purely stochastic sample.

red sample. Because the sample size is small, it is likely that the average utility of the

sample will not match the true expected utility. Now consider the sample given by the blue

lines. This sample is analogous to a partially stochastic sample in the game. The dashed

blue line represents the “average” path for the blue sample. If the expected utility of an

action is close to the midpoint between the lower and upper bounds of the utility, then

intentionally sampling the lower and upper bounds may provide a better approximation of

the true expected utility than sampling a random set of paths.

Because we are constrained by computational cost, we know that we cannot generate

a sufficiently large sample with true stochastic sampling to consistently approximate the

action’s expected utility. For each action in the current state, we generate two paths.

The first path is obtained by the defender always choosing to abstain from cybersecurity

actions after taking the current action. This is expected to approximate a lower bound

on the utility resulting from the current action. This assumption is not valid for scenarios

where the attacker cannot significantly influence the defender’s utility. The second path is

obtained by the defender always choosing the most secure cybersecurity actions after taking
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the current action. This is expected to approximate an upper bound on the utility resulting

from the current action. This approximation is not valid when security costs significantly

outweigh security benefits. Within these paths, the attacker’s actions and state trajectory

are still generated stochastically. The attacker’s actions are generated stochastically using

Algorithm 2 with the defender’s beliefs about the attacker’s utility of L2.

The length of the path can also affect computation time. One option is to allow the path

to continue indefinitely until an absorbing state is reached. The less expensive option is to

limit the paths to a finite number of time steps. The path is terminated if it has not reached

an absorbing state by the time the limit has been reached. In this work, we use a maximum

path length of five time steps. This path length was selected to allow the simulated attacker

approximately two attempts to reach a loss state.

The disadvantage of using a small path length is that the defender’s long-term view of the

game is limited. As an example, consider the situation where the game is in a hazard state,

and the defender must choose between two actions: (1) attempt hazard recovery to return

the game to the normal state, or (2) abstain from action and risk the game transitioning

to a loss state. Hazard recovery has a significant cost, but the defender is able to accrue

rewards when the game is in the normal state and some penetrated states. Transitioning

from a hazard to a loss causes the defender to incur a significant penalty and terminates the

game. Because the path size is limited, the defender may not recognize the full potential of

future rewards in the normal and penetrated states. This defender does not have an accurate

incentive to recover the plant and may choose to abstain from action.

We introduce a utility adjustment factor to account for potential future rewards that

may be omitted by a small path length. The utility factor is added to the expected utility

of the path if the path is not terminated by an absorbing state and the final time step of the

path does not exceed a threshold. The utility factor is given by

UF θ = E[∆uθ]

E[tθ]∑
γ=tp

βγ (4.4)

The utility factor is UF θ and it is specific to the attacker type, θ, that is being faced in the

current path. The time step at the end of the path is given by tp and the expected duration
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Table 23: Parameters of the utility adjustment factor used to evaluate paths in HBA.

Type E[tθ] (time steps) E[∆u] ($)

θ1 24 3.03× 107

θ2 12 2.53× 107

θ3 14 2.61× 107

θ4 17 2.14× 107

of a game played against θ is given by E[tθ]. The utility factor is only implemented if

tp < E[tθ]. The defender’s discount factor is β and E[∆uθ] is the expected utility earned by

the defender in per time step when facing type θ.

The values of E[tθ] and E[∆uθ] were obtained from preliminary simulation data. We

simulated the attacker playing against each type 500 times. In these simulations, the attacker

followed the decision algorithm given in Section 4.7.2 and the defender always chose the

most secure action. The parameters E[tθ] were selected from the mean of the data. The

parameters E[∆uθ] were selected from the medians of the data because the results were

significantly skewed. The simulation results are discussed in greater detail in Chapter 6.

The values of E[tθ] and E[∆uθ] are given in Table 23.

In summary, for HBA we use two paths per action in a given state, where the first path

is given by the least secure subsequent defense actions, and the second path is given by the

most secure subsequent defense actions. We limit the depth of the path to be five time steps

and add a utility adjustment factor for paths that do not reach an absorbing state.

4.7.2 The Attacker

The mechanism of the attacker’s decision-making in the normal and penetrated states

is Algorithm 2. The implementation of this decision algorithm is somewhat arbitrary. In

general, attacker types are not required to follow the same decision algorithm. It is assumed
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Table 24: Type parameters used in the attacker’s decision algorithm.

Parameter θ1
A θ2

A θ3
A θ4

A

η 2.0 1.0 4.0 2.5
ν 1.2 2.0 1.5 0.14

that all attacker types follow this algorithm, but with different parameters. In practice,

additional types may be constructed if there are multiple credible decision algorithms for a

particular threat.

The algorithm evaluates the hazard options accessible to the attacker from the current

state, and compares them to the attacker’s most desirable hazard. If the most desirable

hazard is inaccessible, we calculate the probability that the attacker settles for the best

accessible hazard. The remaining probability is distributed over the actions that could bring

the attacker to a state from which a more desirable hazard is accessible. The probability

distribution over the attacker’s actions is then sampled to determine the attacker’s action.

The following section describes the algorithm in greater detail.

In line 1 of the algorithm, the attacker ranks the hazards by their expected utilities. The

expected utility of hazard H is given by

u(H) =
∑
L∈L

p(L|H)Ωθ(L) (4.5)

The set of all losses is given by L. The parameter p(L|H) gives the probability of loss L

occurring as a consequence of H, assuming no defender intervention. If defender intervention

were included, all expected hazard utilities would be scaled by the same hazard recovery

failure rate, because it is assumed that hazard recovery has the same cost and success rate

for all hazards. The parameter Ωθ(L) is the utility that the attacker of type θ assigns to L.

The hazard with the greatest expected utility is denoted by H∗.

In lines 2–7 of the algorithm, the attacker identifies the best hazard that is accessible

from the current state, s0, and compares that hazard to H∗. For further calculations, the
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Algorithm 2 The attacker’s decision algorithm for normal and penetrated states

1: Rank the hazards by their expected utilities, and identify hazard, H∗, with the greatest

expected utility (Equation 4.5)

2: if at least one hazard is accessible from the current state, s0 then

3: Identify accessible hazard, Ha, that has the greatest scaled utility, µa (Equation 4.6)

4: Calculate p(Ha) (Equation 4.10)

5: Assign p(Ha) to initiation of Ha and assign zero to initiation of all H 6= Ha

6: else

7: Set p(Ha) = 0, µa = 0

8: end if

9: for each hazard, Hi, that is currently unavailable and has utility µi > µa do

10: Calculate p(Hi) (Equation 4.11)

11: for each set of penetrated devices, Dj, that can cause Hi do

12: Identify state, s1, where Dj has been achieved (relative to s0)

13: for each action, α, in the action set do

14: if α targets a transition from s0 to s1 then

15: Calculate estimated utility ũ(α|Hi, s0, s1) (Equation 4.12)

16: else

17: Set ũ(α|Hi, s0, s1) = 0

18: end if

19: end for

20: end for

21: end for

22: for each penetrating action, α in set of all penetrating actions, A do

23: Calculate p(α) (Equation 4.15)

24: end for

25: Sample the discrete probability distribution over all actions to select the action
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utility is scaled to introduce greater sensitivity with respect to L2, the loss with uncertain

utility. The scaled expected utility of a hazard, H, is

µ(H) =
∑
Li 6=L2

p(Li|H)Ωθ(Li) + p(L2|H)Ωθ(L2)Ω̂θ(L2)νθ (4.6)

The circumflex on Ω̂θ signifies the belief that the agent using the decision algorithm has

regarding θ’s utility parameter. For θ, Ωθ = Ω̂θ, but if the defender is using this algorithm to

make predictions about θ’s behavior, the two parameters may differ. Finally, νθ is a scaling

parameter specific to θ. Care should be taken when defining νθ to ensure that the argument

of Equation 4.9 is within the function’s domain. The values of ν for each type are given

in Table 24. The term Ω̂θ(L2)νθ acts a scaling factor used to increase the sensitivity of the

attacker’s action selection to variations in the utility assigned to L2. The scaled utility of

H∗ is µ∗.

The best accessible hazard is denoted by Ha and its scaled utility is µa. The probability

of initiating Ha is obtained by comparing µa to µ∗, and by considering the number of times

the game has returned to the normal state from a penetrated or hazard state. The more

times the game has returned to the normal state, the more likely the attacker is to settle for

a hazard that is less desirable than H∗. To define p(Ha), we began with the general form

p(Ha) =
µa
µ∗

[X tanh(Cη) + 1] (4.7)

The parameter η is the number of times the game has returned to the normal state from a

penetrated or hazard state. The hyperbolic tangent function was selected for its asymptotic

properties as the argument approaches infinity. The parameters X and C were selected such

that p(Ha) approaches one as η increases and as µa approaches µ∗. We define X and C in

Equations 4.8 and 4.9, respectively.

X =
µ∗ − µa
µa

(4.8)

Cθ =
1

ηθ
arctanh

(
0.9µ∗ − µa
µ∗ − µa

)
(4.9)
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The parameter X was defined such that p(Ha) approaches one as µa approaches µ∗.

The parameter Cθ was defined to control the rate at which p(Ha) approaches one, and is

dependent on the characteristics of the attacker type, θ. Types that are more patient have

smaller values of Cθ and types that are less patient have larger values of Cθ. The parameter

ηθ is the number of returns to the normal state for the attacker to settle to the best available

hazard with a 90% chance. The values of ηθ are given in Table 24.

Through algebraic manipulation of Equations 4.7, 4.8, and 4.9, we obtain the probability

of initiating Ha as

p(Ha) =
µ∗ − µa
µ∗

tanh(Cθη) +
µa
µ∗

(4.10)

If no hazards are accessible from s0, the parameters p(Ha) and µa are set equal to zero for

later use in the algorithm.

In lines 9–21 of the algorithm, we calculate the value of attack actions with respect

to achieving access to hazards with scaled utility greater than µa. First, we calculate the

probability of pursuing each hazard Hi with µi > µa. This probability is calculated as the

ratio of µi to the total scaled utility of all hazards that meet the scaled utility criteria. The

probability is

p(Hi) =
µi∑

Hj∈H µj
(4.11)

The set of all hazards with µ > µa is given by H, and the scaled utility of Hj is given by µj.

Next, the algorithm considers each method by which the hazard in question can become

accessible. For example, H1 is accessible if PLC-1B is penetrated, if PLC-2B is penetrated, or

if the switch is penetrated (Table 12). The state, s1, is identified where the set of penetrated

devices, Dj, has been achieved. The state where Dj has been achieved is identified relative

to s0. For example, suppose the game is in state 16 where PLC-1A has been penetrated

and the attacker is considering penetrating PLC-1B to cause H1. PLC-1B is the only device

penetrated in state 8, but the algorithm defines s1 as state 24, where both PLC-1A and PLC-

1B are penetrated. This is because PLC-1A has already been penetrated and the underlying

structure of the game does not offer the attacker any utility or advantage for relinquishing

control of a penetrated device.
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The attacker then evaluates the estimated utility of each attack action with respect to

causing Hi via s1. The estimated utility of action α given that the attacker is targeting Hi

via s1 is

ũ(α|Hi, s0, s1) = −Ψθ(s0, α) +
1

2
(SRAbstain + SRSecure)

∑
L∈L

p(L|Hi)Ωθ(L) (4.12)

The cost of the action is denoted by −Ψθ(s0, α) and is given in Section 4.6. The term

1
2
(SRAbstain + SRSecure) is the average success rate of the action when considering the most

secure and least secure defense actions. These success rates are discussed in greater detail

below. The weighting of the items in the average is arbitrary and for demonstration purposes.

An attacker who believes the defender is more likely to play the most secure option could

assign a greater weighting to the corresponding success rate. The attacker could also assign

weighting to additional defense actions. The summation term is the expected utility of Hi,

where Ωθ(L) is the utility earned by the attacker if loss L occurs (Section 4.6). The set of

all losses is denoted by L.

The attack action has the greatest success rate when the defender abstains from

implementing a defense action. The attack action has the lowest success rate when the

defender implements the most secure defense action. These success rates were already

been calculated when analyzing state transitions, and are described in greater detail in

Section 4.5.1. The success rates are denoted by

SRAbstain = p(s1|s0,Abstain, α, θ) (4.13)

SRSecure = p(s1|s0, Secure, α, θ) (4.14)

Lines 22–25 of the algorithm calculate the probability of each action and select the final

action. This calculation only applies to penetrating actions. The probabilities of hazard

initiation actions were previously calculated in the algorithm. The probability of selecting

penetrating action α is

p(α) = (1− p(Ha))
∑
H∈H

p(H)

∑
s∈S ũ(α|H, s0, s)∑

A∈A
∑

s∈S ũ(A|H, s0, s)
(4.15)
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This equation comes from the probability chain rule. The first term is the probability that

a hazard is not initiated. The term p(H) is the probability that the attacker pursues H

given that a hazard has not been initiated. The fraction is the probability that the attacker

chooses α given that the attacker is pursuing H. It is the ratio of the total estimated utility

of α from all pursuit options for H, to the total estimated utility of all actions for all pursuit

options for H. This approach is similar to Equation 4.11 used to calculate p(Hi).

We have now calculated the probability of all penetration actions and all hazard initiation

actions. The last step of the algorithm is to randomly select an action using the probability

distribution over the actions.

In hazard states, we define the attacker to always select loss initiation. All loss states

in this game are absorbing, therefore there are no decisions to be made in these states for

either player.
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5.0 Simulation Examples

This chapter contains examples of individual games played against each attacker type.

For each example, we provide the state history of the game, the utilities of the players, the

defender’s estimate of the attacker’s utility of L2, and the defender’s belief regarding the type

of the attacker. The aggregate results of the SBG are presented and discussed in Chapter 6.

5.1 Radical Activist Simulation

The state trajectory for the example game played against the radical activist (θ1
A) is

shown in Figure 16. The game has a relatively long duration and cycles between normal,

penetrated, and hazard states five times. These results are consistent with the average

state occurrences shown in Figure 17. The most frequently occurring penetrated states were

states 4 and 16. In state 4, PLC-2A is penetrated, and in state 16, PLC-1A is penetrated.

Excessive removal of suppression pool inventory (state 34) was the hazard that occurred the

most frequently, and damaged public opinion (state 42) was the loss that occurred most

frequently.

The cumulative utilities of the defender and θ1
A are plotted on a logarithmic scale in

Figure 18. The defender loses utility when the game enters hazard states and gains utility

during the returns to the normal state. The loss that occurs in this example costs on the

order of $105 to the defender, so the loss is not very visible on the logarithmic scale. The

attacker steadily gains utility as the game enters the hazard states and makes a significant

gain in utility when damaged public opinion occurs.

The defender’s belief about the utility assigned to L2 by θ1
A is shown in Figure 19. The

dashed blue distribution is the original truncated normal distribution, the dashed orange

distribution is the belief at the final time step of the game, the gray distributions are beliefs

at the intermediate time steps, and the vertical dashed line is the true utility. The estimates
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Figure 16: State trajectory of the example game played against θ1
A.

Figure 17: Average occurrences of each state when HBA is used against each θ1
A.
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Figure 18: Players’ utilities from the example game played against θ1
A.

extracted from these distributions are plotted in Figure 20. The estimate made significant

progress in the first five time steps of the game, but progress slowed because inferences could

not be made in the hazard states and the attacker repeated actions in other states.

The defender’s beliefs regarding the attacker’s type while facing θ1
A are shown in

Figure 21. The beliefs initially favored θ3
A, but quickly converged to the correct type.

5.2 Disgruntled Employee Simulation

The state trajectory for the example game played against the disgruntled employee (θ2
A)

is shown in Figure 22. The game has a relatively short duration and cycles between normal,

penetrated, and hazard states twice. These results are consistent with the average state

occurrences in Figure 23. The most frequently occurring penetrated state was state 2.
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Figure 19: The defender’s belief distributions over the range of the attacker’s possible utilities

assigned to L2 from the example game played against θ1
A.
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Figure 20: The defender’s estimate of the attacker’s utility of L2 from the example game

played against θ1
A.

Figure 21: The defender’s beliefs regarding the attacker’s type from example game played

against θ1
A.
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Figure 22: State trajectory of the example game played against θ2
A.

In state 2, the switch is penetrated. Reactor trip (state 35) was the hazard that occurred

the most frequently and loss of power generation (state 39) was the loss that occurred most

frequently.

The cumulative utilities of the defender and θ2
A are plotted on a logarithmic scale in

Figure 24. The defender loses utility when the game enters hazard states and gains utility

during the returns to the normal state. The loss that occurs in this example costs on the

order of $106 to the defender, so the loss is not very visible on the logarithmic scale. The

attacker gains utility when the game enters the hazard states and makes a significant gain

in utility when loss of power generation occurs.

The defender’s belief about the utility assigned to L2 by θ2
A is shown in Figure 25. The

dashed blue distribution is the original truncated normal distribution, the dashed orange

distribution is the belief at the final time step of the game, the gray distributions are beliefs

at the intermediate time steps, and the vertical dashed line is the true utility. The estimates
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Figure 23: Average occurrences of each state when HBA is used against each θ2
A.

Figure 24: Players’ utilities from the example game played against θ2
A.
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extracted from these distributions are plotted in Figure 26. The estimate did not make

significant progress because the decisions made by θ2
A in the normal and penetrated states

were not significantly sensitive to changes in the utility of L2.

The defender’s beliefs regarding the attacker’s type while facing θ2
A are shown in

Figure 27. The beliefs immediately identified to the correct type.

5.3 Government Cyberwarrior Simulation

The state trajectory for the example game played against the government cyberwarrior

(θ3
A) is shown in Figure 28. The game has a relatively short duration and cycles between

normal, penetrated, and hazard states twice. This game also involves escalation from state

16 where PLC-1A is penetrated to state 22 where PLC-2A and PLC-2B are also penetrated.

These results are consistent with the average state occurrences shown in Figure 29. The

most frequently occurring penetrated states were state 6 and state 24. In state 6, PLC-2A

and PLC-2B are penetrated, and in state 24, PLC-1A and PLC-2A are penetrated. Reactor

trip (state 35) was the hazard that occurred the most frequently and loss of power generation

(state 39) was the loss that occurred most frequently.

The cumulative utilities of the defender and θ3
A are plotted on a logarithmic scale in

Figure 30. The interpretation of this figure is the same as that for the game played against

θ2
A shown in Figure 24.

The defender’s belief about the utility assigned to L2 by θ3
A is shown in Figure 31. The

dashed blue distribution is the original truncated normal distribution, the dashed orange

distribution is the belief at the final time step of the game, the gray distributions are beliefs

at the intermediate time steps, and the vertical dashed line is the true utility. The estimates

extracted from these distributions are plotted in Figure 32. The estimate did not make

significant progress because the decisions made by θ2
A in the normal and penetrated states

were not significantly sensitive to changes in the utility of L2.
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Figure 25: The defender’s belief distributions over the range of the attacker’s possible utilities

assigned to L2 from the example game played against θ2
A.
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Figure 26: The defender’s estimate of the attacker’s utility of L2 from the example game

played against θ2
A.

Figure 27: The defender’s beliefs regarding the attacker’s type from example game played

against θ2
A.
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Figure 28: State trajectory of the example game played against θ3
A.

Figure 29: Average occurrences of each state when HBA is used against each θ3
A.
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Figure 30: Players’ utilities from the example game played against θ3
A.

Figure 31: The defender’s belief distributions over the range of the attacker’s possible utilities

assigned to L2 from the example game played against θ3
A.
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Figure 32: The defender’s estimate of the attacker’s utility of L2 from the example game

played against θ3
A.
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Figure 33: The defender’s beliefs regarding the attacker’s type from example game played

against θ3
A.

The defender’s beliefs regarding the attacker’s type while facing θ3
A are shown in

Figure 33. At the conclusion of the game, the beliefs assigned the greatest probability

to the correct type, but were not able to rule out θ4
A.

5.4 Terrorist Simulation

The state trajectory for the example game played against the terrorist (θ4
A) is shown in

Figure 28. The game has a very short duration and does not return to the normal state once

the NPP has been penetrated. As in the previous example for θ3
A, this game also involves

escalation from state 16 where PLC-1A is penetrated to state 22 where PLC-2A and PLC-2B

are also penetrated. These results are consistent with the average state occurrences shown

in Figure 35. Similar to the example for θ3
A, the most frequently occurring penetrated states

were state 6 and state 24. In state 6, PLC-2A and PLC-2B are penetrated, and in state 24,
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Figure 34: State trajectory of the example game played against θ4
A.

PLC-1A and PLC-2A are penetrated. In comparison to the example for θ3
A, other penetrated

states occur more frequently. Reactor trip (state 35) was the hazard that occurred the most

frequently and loss of power generation (state 39) was the loss that occurred most frequently.

The cumulative utilities of the defender and θ4
A are plotted on a logarithmic scale in

Figure 36. The interpretation of this figure is similar to those for the games played against θ2
A

and θ3
A shown in Figure 24 and Figure 30, respectively. The attacker’s expenses and rewards

are particularly clear in this graph because of the direct progression from the normal state

to the loss state.

The defender’s belief about the utility assigned to L2 by θ4
A is shown in Figure 37. The

dashed blue distribution is the original truncated normal distribution, the dashed orange

distribution is the belief at the final time step of the game, the gray distributions are beliefs

at the intermediate time steps, and the vertical dashed line is the true utility. The estimates

extracted from these distributions are plotted in Figure 38. The estimation performed well

with a final value of 97.6% of the true value.
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Figure 35: Average occurrences of each state when HBA is used against each θ4
A.

Figure 36: Players’ utilities from the example game played against θ4
A.
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Figure 37: The defender’s belief distributions over the range of the attacker’s possible utilities

assigned to L2 from the example game played against θ4
A.
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Figure 38: The defender’s estimate of the attacker’s utility of L2 from the example game

played against θ4
A.
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Figure 39: The defender’s beliefs regarding the attacker’s type from example game played

against θ4
A.

The defender’s beliefs regarding the attacker’s type while facing θ4
A are shown in

Figure 39. The beliefs initially favored θ1
A, but corrected as the game continued. At the

conclusion of the game, the beliefs assigned the greatest probability to the correct type, but

were not able to rule out θ3
A.
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6.0 Results and Discussion

This chapter describes the simulation results for the SBG constructed in Chapter 4. We

simulated the game 500 times for each attacker type. From these simulations, we generate

several security metrics and analyze the performance of the defender’s Bayesian learning

during the game.

6.1 Security Metrics

We can examine several security metrics using the SBG. The first metric is the time-to-

loss. This metric is the time for the game to progress from the normal state to an absorbing

loss state. The second metric is the availability. Availability is the percentage of time during

which the NPP can operate as intended. The third metric is the defender’s utility. This

metric is the quantification of the defender’s performance throughout the entire game. The

final metric is the attacker’s utility, which quantifies the attacker’s performance throughout

the game.

6.1.1 Mean Time-to-loss

The simulation times are plotted in Figure 40. On average, games played against θ1
A

lasted at least twice as long as games played against the other types. For most types, long-

lasting games are relatively rare, but they are common for θ1
A. One reason for this is because

θ1
A has a lower success rate for most actions than the other types. Type θ3

A has the highest

success rates and the shortest average simulation. Types θ2
A and θ4

A also have high success

rates for many actions, particularly θ2
A for actions that benefit from insider access to the

NPP.

It is important to note that termination of the game by reaching a loss is not necessarily

suboptimal. The goal of HBA is to maximize the defender’s cumulative reward, given his
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Figure 40: SBG duration from using HBA against each attacker type.

beliefs about the attacker. The utilities assigned to the losses are critical inputs to HBA’s

decision-making. If an NPP stakeholder viewed the frequency of these losses as unacceptable,

that is a sign that there are errors in the quantification of the losses’ utilities. The utility

of a loss is often dependent on both objective factors, such as the costs of equipment and

labor, and subjective factors, such as reputation within the industry and societal obligations.

If the time-to-loss results are unacceptable, the subjective loss utility factors should be re-

examined.

6.1.2 Mean Availability

The typical condition of the plant throughout a game is given in Figure 41. The most

time is spent in the normal state when playing against θ2
A, and the least amount of time is

spent in the normal state when playing against θ4
A. More time is spent in the penetrated

states when playing against θ4
A than when playing against the other types. When playing

against θ1
A, a relatively large amount of time is spent in hazard states. The relatively small
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amount of time spent in loss states when playing against θ1
A is because the average game

against θ1
A is longer than against the other types, and the loss states are absorbing and can

only occur once per game.

We define availability as the capacity to operate the NPP at the expected capacity.

The NPP meets this criteria while the game is in the normal state or a penetrated state.

The greatest percentage of availability occurs when facing θ4
A. The percent availability when

facing θ4
A is 67.5% while the percent availability for the other types is approximately 60–62%.

6.1.3 The Defender’s Cumulative Utility

The defender’s cumulative utilities are plotted in Figure 42. The defender’s utilities are

skewed because of rare highly costly losses. The defender had the greatest median utility

when facing θ1
A ($1.68× 108) and the median utility when facing all other types was on the

order of $107.

Figure 43 shows the percentage of simulations that resulted in positive utility for the

defender. Notably, although the defender’s median cumulative utility is greatest when facing

θ1
A, facing θ1

A also corresponds to the smallest percentage of simulations that end with positive

utility for the defender. HBA does not assign any special consideration to the number zero.

In other words, a change in utility from -$1 to $1 is equally as valuable as a change in utility

from -$5 to -$3 or from $3 to $5. If obtaining a positive utility is of importance to the

defender, the utility function can be transformed to model this preference.

6.1.4 The Attacker’s Cumulative Utility

The attacker’s cumulative utilities are plotted in Figure 44. The utilities are plotted in

separate histograms because comparison of utility values between players and between types

is generally improper. The utility of type θ1
A had the greatest relative standard deviation.

The utilities of types θ2
A and θ3

A had smaller relative standard deviations, and the utility for

θ4
A was the most consistent. It should be noted that minimizing the utility of each attacker

type is not the defender’s objective. The defender’s objective is to maximize his own utility.
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(a) Facing θ1
A. (b) Facing θ2

A.

(c) Facing θ3
A. (d) Facing θ4

A.

Figure 41: Relative time spent in each plant condition when HBA was used against each

attacker type.
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Figure 42: The defender’s cumulative utility when HBA is used against each attacker type.

Figure 43: The percentage of simulations where the defender’s cumulative utility is positive

when HBA is used against each attacker type.

121



(a) Facing θ1
A. (b) Facing θ2

A.

(c) Facing θ3
A. (d) Facing θ4

A.

Figure 44: The attacker’s cumulative utility when the defender uses HBA against each

attacker type.
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6.2 Bayesian Learning of the Attacker’s Loss Utility

As the game is played, the defender draws inferences about the utility that the attacker

assigns to loss L2. Histograms of these estimates are given in Figure 45. Estimates of L2 for

θ1
A tended to progress towards the true value, but not converge. Estimates of L2 for θ2

A and

θ3
A made little progress from the initial estimate. Estimates for θ4

A were the most accurate.

The first factor affecting the learning of L2 is the short duration of most games. For most

attacker types, the median duration of a game was less than five time steps. It is difficult to

converge to the correct value of L2 when interactions between the players are limited. This

factor had the greatest affect when playing against θ1
A and θ4

A. In these cases, the estimates

often progressed towards the true value without converging.

The second factor affecting the learning of L2 was a lack of new information as the game

was played. For example, choices made in hazard states were defined to be independent of the

loss utilities, therefore inferences cannot be made about L2 in those states. Another example

is when the game enters a state multiple times and the attacker chooses the same action each

time. No new information is obtained in those interactions. These issues arise specifically

from the attacker’s decision-making process defined in Algorithm 2. Other decision-making

processes may not encounter the same challenges. This factor affected the estimation of L2

when playing against all types.

The third factor affecting the learning of L2 is that the attacker’s decisions are sometimes

not sensitive to changes in L2. The utility of L2 can affect the attacker’s decision-making

at two points in Algorithm 2. The first point in the algorithm is when the attacker ranks

the hazards by their expected utility. The expected values of each hazard are plotted as a

function of the utility of L2 in Figure 46. For types θ1
A, θ2

A, and θ3
A, the ranking of hazards

does not change over the range of possible utilities of L2. For θ4
A, there are four regions

over the range of L2 that correspond to different hazard rankings. This likely contributed

to greater success in estimating L2 for θ4
A in comparison to the other types. The second

point in the algorithm is when the attacker assigns probability to each action, with the goal

of achieving a particular hazard. If L2 is of significant utility to the attacker, the attacker

is more likely to select an action that leads to hazards that can cause L2. For θ4
A, L2 has
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(a) Facing θ1
A. (b) Facing θ2

A.

(c) Facing θ3
A. (d) Facing θ4

A.

Figure 45: The defender’s final estimate of the attacker’s loss utility when the defender uses

HBA against each attacker type.
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significant utility relative to the other losses, but for the other types, the utility of L2 is less

significant. For this reason, the utility of L2 is less likely to influence the decision-making of

those types.

Little can be done to improve the estimation of the utility parameter in cases where the

parameter does not significantly affect the attacker’s decision-making. But, if the parameter

does not significantly affect the attacker’s decision-making, it is of little use to the defender

to attempt to estimate it. In this work, L2 was selected for all attacker types because the

occurrence of L2 was of significant importance to the defender, because the utility of L2

varied significantly between attacker types, and for the sake of consistency. For future work

it is recommended to create plots similar to those in Figure 46 for each loss to identify the

parameters that are most likely to affect each type’s decision-making.

6.3 Estimating the Attacker’s Type

As the game is played, the defender updates his beliefs about which attacker type he is

facing. Histograms of these beliefs are given in Figure 47. The true type was consistently

identified when facing θ1
A and θ2

A. When playing against θ3
A, the true type was assigned

the greatest probability, but the probability never exceeded 0.71. The true type was most

challenging to identify when facing θ4
A.

Type θ1
A was most straightforward to identify because θ1

A places significant value on L4

relative to the other attacker types. Although θ2
A did not have a particularly unique valuing of

the losses, θ2
A was also straightforward to identify because θ2

A had the propensity to leverage

insider access to compromise the switch. Types θ3
A and θ4

A were not as easy to identify. This

is because types θ3
A and θ4

A have similar desired losses and similar skill levels.
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(a) Expected value of hazards for θ1
A. (b) Expected value of hazards for θ2

A.

(c) Expected value of hazards for θ3
A. (d) Expected value of hazards for θ4

A.

Figure 46: The expected value of each hazard as a function of the utility of L2. The hazard

preferences of θ4
A change as a function of L2.
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(a) Facing θ1
A. (b) Facing θ2

A.

(c) Facing θ3
A. (d) Facing θ4

A.

Figure 47: The defender’s final estimate of the probability of the attacker’s true type when

the defender uses HBA against each attacker type.
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7.0 Conclusions and Future Work

The goal of this research is to reduce the likelihood of successful attacks on NPPs. This

goal is achieved through the following research objectives:

1. Predict how an adversary might target a nuclear power plant

2. Quantify nuclear power plant security

3. Optimally allocate security resources to defend a nuclear power plant

The first objective was met through the work in Chapter 4 and the real-time learning

components of HBA. In Chapter 4, several approaches were presented to construct an

SBG. The approaches included modeling attack progressions through the NPP as stochastic

elements of the SBG and modeling threats to NPP as Bayesian elements of the SBG. These

approaches can also be used to construct stochastic games and Bayesian games separately.

The real-time learning components of HBA were used to estimate one of the attacker’s

utility parameters and to identify the attacker’s true type. These efforts had mixed success

for reasons discussed in Chapter 6. The limitations of these learning approaches are also

discussed in Section 7.2 below.

The second objective was met through the simulation of the SBG discussed in Chapter 6.

The first security metric is the mean time-to-loss. The time-to-loss is the time that elapses

from the beginning of the game in the normal state to the termination of the game in

a loss state. The second security metric is the mean availability. The availability is the

percentage of time during which the NPP can operate as intended. The third security

metric is the defender’s cumulative utility. The defender’s cumulative utility is a number that

quantifies the defender’s performance throughout the game. The utility is a combination of

objective economic factors and subjective factors such as societal obligations. The attacker’s

cumulative utility can also be considered a security metric, but if the attacker’s utility is of

importance to the defender, that should be included in the construction of the defender’s

utility function.
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The third objective was met through the implementation of HBA. The purpose of HBA is

to maximize the defender’s cumulative utility given the defender’s beliefs about the attacker.

Unlike the static predictive approach of many other game-theoretic methods, HBA leverages

the defender’s knowledge to make decisions in real-time. As the game is played, the defender

can draw inferences about the attacker and incorporate the most current beliefs into HBA

to optimize security decisions.

7.1 Summary of Contributions

The main contributions of this work to the fields of game theory and NPP cybersecurity

are:

1. an approach to characterize threats to NPPs and model them as attacker types in a

Bayesian game

2. an approach to construct the state space of a stochastic security game

3. an approach to define the transition function of a stochastic security game

4. a novel application of stochastic Bayesian games to cybersecurity challenges

5. methods to approximate Harsanyi-Bellman ad hoc coordination solution methods for

stochastic Bayesian games with large action spaces

7.2 Limitations

The first limitation of this research is that this approach can be computationally

expensive. The most significant cost arises from a large action space for the players,

particularly for the defender. At each time step, each defender action must be analyzed

by HBA to identify the optimal security action. This involves sampling paths resulting from

each action to estimate the defender’s utility resulting from that action. Care should be

taken to limit the number of decisions to be made by the defender and to sample action

paths in an efficient manner.
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The second limitation of this research is that the Bayesian learning efforts are dependent

on the defender’s ability to define potential decision-making processes for the attacker types.

If the defender cannot define the attacker’s decision-making method, it is possible that HBA

could learn incorrect parameters and types, and perform poorly.

The third limitation of this research is that learning of the attacker’s parameters and

type may not be feasible for some situations. These situations are:

1. When the interactions between the attacker and defender are of a short duration. Short

games limit the amount of information that can be gathered by the defender, and

therefore limit the inferences that can be drawn from that information.

2. When the attacker’s decision-making is not sensitive to the game-theoretic parameters

of interest. If the attacker’s decisions are not significantly affected by the parameter,

the defender will be unable to draw inferences about the parameter from the attacker’s

actions. If this is the case, the inference of this parameter is not important for the

defender’s decision-making process. But, if estimating the parameter is important for

other reasons such as intelligence gathering, other methods would need to be pursued.

3. When a subset of the attacker types behave similarly. If multiple types select similar

actions when exposed to the same situation, it will be challenging for the defender to

distinguish them. If this is the case, the distinction between the types may not be of

significance for that application. In fact, it may be beneficial to consolidate those types

to reduce computational costs. But, if identifying the true attacker type is important for

other reasons such as intelligence gathering, other methods would need to be pursued.

7.3 Future Work

The SBG model could be improved with future work regarding cybersecurity modeling.

For example, the SBG in this work models a device as being either penetrated or normal.

In reality, the condition of the device is not binary. An attacker could gain a variety of

privileges when compromising an ICS device, and modeling those privileges within the state

space of an SBG could provide greater insight.
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Future work could also improve the SBG model by including more sophisticated economic

modeling of the attacker’s and defender’s expenses. For example, in this work all actions

were assigned a specific cost regardless of the state or game history. In reality, the costs

for security actions may vary over time or be dependent on previous actions. For example,

some actions may have larger initial costs and low maintenance costs, while other actions

may have the opposite.

Future work related to the implementation of HBA could address computational

efficiency. For example, more sophisticated path sampling algorithms could be applied to

ensure an appropriate sample without significant additional costs. If this is accomplished,

larger decision spaces could be analyzed that are closer to the complex cybersecurity

challenges faced in industry.
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Appendix A

Observability Attacks and Game Theory

A game-theoretic approach is presented to analyze observability attacks. The attacker’s

strategy set includes all possible combinations of masked measurements. The defender’s

strategy set includes all possible combinations of measurement reinforcements. The

attacker’s and defender’s utilities are quantified using the responses of the observable and

unobservable states. The observability attack game is analyzed for a nuclear balance of

plant system. Multiple pure-strategy and mixed-strategy Nash equilibria are identified, and

the conditions for their existence are presented. Using this procedure, a security and control

engineer can select the optimal strategy to defend a cyber-physical system from observability

attacks. The development of this problem and its solution are published in [59, 55, 57].

A.1 Attacker Controllability and Observability

The system under attack, G, is described by the linear system,

G :

 ẋ = Ax+Bu

y = Cx
∼

 A B

C 0

 (A.1)

where x ∈ Rn is the state variable, u ∈ Rq is the input to which the attacker has access, and

y ∈ Rp is the measured output. The matrix A ∈ Rn×n is the dynamics matrix. The matrix

B ∈ Rn×q is the input matrix, and C ∈ Rp×n is the output matrix; these matrices describe

how inputs enter the system and how measurements relate to the internal state variables. It

should be noted that a system representation is not unique. While many systems are
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nonlinear, most systems may be linearized about an operating point. This is particularly

true for nuclear power systems that often operate continuously at steady-state conditions.

For more information regarding linear systems, readers are encouraged to refer to [17].

When analyzing cyber-attack scenarios, we must consider two factors: the attacker’s

ability to affect the state of the system, and the attacker’s ability to mask the state of the

system. The system theory concepts of controllability and observability enable us to address

these considerations.

We assume that the nominal system, the one unaffected by the attacker, is both

controllable and observable. That is, if an attacker has access to the inputs of a controllable

system, the system can be driven to any state. All states of the nominal, observable system

can be reconstructed by a defender.

A system is controllable if it is possible to find some input, u, that can steer the state,

x, to any desired value in finite time. Testing for controllability is straightforward [17]:

Test 1 (Controllability). A linear system with representation given in Eq. ( A.1) is

controllable if and only if the matrix

C =
[
B AB A2B · · · An−1B

]
(A.2)

is full row rank.

Similarly, a system is observable if the state, x, can be determined from the observation

of y in finite time. The test for observability is similar to that for controllability:

Test 2 (Observability). A linear system with representation given in Eq. ( A.1) is observable

if and only if the matrix

O =
[
C ′ (CA)′ (CA2)′ · · · (CAn−1)′

]′
(A.3)

is full column rank.

The tests for controllability and observability both depend on the rank of a matrix. Rank

is defined as the number of linearly independent rows (columns) in a matrix. We require a

more practical test for situations when numerical issues must be considered. A more practical

test for rank compares the singular values of the matrix to some positive tolerance [32].
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Test 3 (Matrix Rank). The rank, r, of a matrix, X, can be determined from the singular

values, σi, of X according to the inequalities

σ1 ≥ · · · ≥ σr > ∆ ≥ σr+1 ≥ · · · ≥ σn (A.4)

A matrix is full row rank if r is equal to the number of rows in the matrix.

The tolerance, ∆, is defined to be consistent with the precision of the problem, ε. The

problem precision is dependent on the precision of the data in matrix X. If the data in

X has infinite precision, then ε is equal to the machine precision — the smallest difference

between two numbers that a computer can recognize. If the data in matrix X has finite

precision (e.g. it is obtained experimentally), then ε is equal to the precision of the data.

For a matrix X, the tolerance ∆ is defined by

∆ = ε ‖X‖∞ (A.5)

where the matrix ∞-norm is the maximum absolute row sum of the matrix,

‖X‖∞ = max
i

n∑
j=1

|xij| . (A.6)

The primary advantage of this rank test is that singular values are easy to compute and

many singular value decomposition algorithms exist.

The masking of measurements by an attacker results in the elimination of rows from

C, thereby affecting the rank of the observability matrix in Test 2. It is possible that

without these measurements, a portion of the state space would be made unobservable

by the attacker; that is, even with knowledge of the system, a portion of the system state

cannot be reconstructed or estimated. An intelligent attacker could mask a particular subset

of system measurements, and then directly target those states that are unobservable.

Examining the structure of the state space provides insight to how the states are related

to the measurements and therefore how an attacker might mask an attack. A Kalman

decomposition is a transformation of the system that partitions the states according to
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their controllability and observability. There exists a transformation, T , that transforms the

system representation to the following Kalman decomposition:

 Â B̂

Ĉ D

 =

 T−1AT T−1B

CT D

 =


A1 A12 B1

0 A2 B2

0 C2 D

 (A.7)

The details of how to construct this transformation can be found in [14]. In this

representation, the state space has been partitioned into the unobservable states x1 ∈ Rn1

and the observable states x2 ∈ Rn2 . It is clear that the unobservable states are not seen

in the measurement y. Because of the structure of the dynamics matrix, the unobservable

states do not affect the observable states, and remain hidden even when the system model

is known.

A.2 Stealthy Observability Attacks

When a system is observable, internal state variables can be estimated by a state

observer using a system model, control inputs, and system measurements. By masking

system measurements, an attacker may cause part of the state space to become unobservable.

Unobservable states cannot be reconstructed by state observers or operators. An intelligent

attacker can mask specific measurements to cause certain states of interest to become

unobservable — this is called an observability attack [59].

Given that an attacker has managed to render a portion of the state space unobservable,

we must now consider how the attacker can affect those states. We will consider a specific

type of input, an impulse excitation with the vector input,

u(t) = vδ(t), (A.8)

where the vector v ∈ Rq is a vector amplitude of the impulse; the impulse is modeled by

the Dirac delta function. Such an input is attractive because it is transient and short-lived;
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thus, it might be missed by operators. For a unit impulse excitation

δ(t) = lim
τ→0

1/τ 0 < t < τ

0 otherwise

(A.9)

This is appropriate for excitations that pulse the system, but the pulse lasts for a duration,

τ , much less than the system’s characteristic time constant, Tc: τ � Tc. For multi-input

systems, both the magnitudes and signs of each element of the vector input, v, are important.

In the case of a power plant, these impulses could be the large magnitude short-duration

pulses of a valve, pump, or switch.

The attacker’s objective is to choose v to maximize the response of the unobservable

states, x1, while minimizing the response of the observable states, x2. By achieving this

objective, the attacker can maximize the damage to the unobservable portion of the plant

while remaining undetected.

The magnitudes of the unobservable and observable responses to the impulse are

Unobservable ‖x∗1‖
2 = v′(B′Q1B)v (A.10)

Observable ‖x∗2‖
2 = v′(B′Q2B)v (A.11)

where Q1 and Q2 are solutions to the Lyapunov equations

A′Qi +QiA+ C ′iCi = 0, i = 1, 2 (A.12)

for the unobservable and observable subsystems respectively.

Once the attacker has rendered a portion of the state space unobservable, the attacker

can modify control inputs to drive those states to undesirable values.

‖x1‖ > limit ⇒ damage. (A.13)

To avoid detection, the attacker must also limit the effect of the modified control inputs on

the states that remain observable.

‖x2‖ < threshold ⇒ undetectable. (A.14)
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If the attack limits the response of the observable states while controlling the unobservable

states, it is said to be stealthy.

The stealth of an attack can be quantified using a metric called the stealth ratio.

This ratio compares the magnitude of the unobservable response to that of the observable

response. The details of how to construct this metric can be found in [59].

SR =
‖x∗1‖
‖x∗2‖

(A.15)

An attack is considered stealthy if SR� 1.

An attempted observability attack can be described using three stealth categories:

1. Observable: The entire state-space remains observable and the entirety of the attack can

be seen.

2. Unstealthy: A portion of the state-space has been rendered unobservable, but the

response of the unobservable states is small relative to the response of the observable

states.

3. Stealthy: A portion of the state-space has been rendered unobservable, and the response

of the unobservable states is large relative to the response of the observable states.

An observability attack can be analyzed using game theory, where the attacker and defender’s

utilities are functions of the attack stealth.

A.3 Game-Theoretic Approach

Using game theory, we will analyze the observability attack and select an effective defense.

There are three components to a game:

1. Players: These are the individuals or entities participating in the game. The observability

attack will be formulated as a two-player simultaneous game. The two players are an

attacker targeting the plant and a defender protecting the plant. All parameters pertinent

to the attacker will be denoted with a subscript, A, and all parameters pertinent to the

defender will be denoted with a subscript, D.
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2. Strategies: These are the actions taken by the players in the game.

a. Pure Strategy: The ith strategy of the defender is denoted siD. The entire set of

strategies available to the defender is denoted SD = {siD|i = 1 . . . N}. The attacker’s

strategies, siA, and strategy set, SA, are similarly defined.

b. Mixed Strategy: A mixed strategy is a probability distribution over a player’s pure

strategy set. Let σD denote a mixed strategy of the defender. Let σD(sD) denote

the probability of the defender playing pure strategy sD. The support of σD is the

set of pure strategies to which σD assigns a positive probability. Let σA and σA(sA)

be similarly defined for the attacker. There are an infinite number of possible mixed

strategy profiles.

3. Utilities: These are the payoffs to the players that result from the strategy profile of the

game. In other words, each player’s utility is dependent on both the strategy that they

employ and the strategy of their opponent. The defender’s utility for playing strategy

siD when the attacker plays strategy sjD is πijD = πD(siD, s
j
A). The attacker’s utility, πijA ,

is similarly defined.

A matrix of both players’ strategies and their resulting utilities is constructed to analyze

the game; see table 25. Each row in the utility matrix corresponds to one of the defender’s

strategies, siD, and each column corresponds to one of the attacker’s strategies, sjA. Each

entry in the matrix shows the defender’s utility, πijD, and the attacker’s utility, πijA . Using

these quantified utilities, we can evaluate the observability attack game to determine which

defense strategy is likely to yield the greatest benefit.

It should be noted that these utility parameters could be a function of risk metrics

determined by another formal risk analysis. The pairing of these game-theoretic techniques

and traditional risk assessment methodologies such as probabilistic risk assessment may

provide greater insight for complex systems. This is particularly appropriate for nuclear

power systems, which have a long history of using probabilistic risk assessment tools to

evaluate the safety of plants [80].

Using the process of iterated elimination of dominated strategies, we can eliminate

strategies that no rational player would select. One of the defender’s strategies, siD, is
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Table 25: An example of the observability attack game. The utilities for the attacker and

defender are provided for each intersection of defender and attacker strategies.

Attacker

s1
A s2

A · · · sMA
D

ef
en

de
r

s1
D π11

D , π
11
A π12

D , π
12
A · · · π1M

D , π1M
A

s2
D π21

D , π
21
A π22

D , π
22
A · · · π2M

D , π2M
A

...
...

...
...

sND πN1
D , πN1

A πN2
D , πN2

A · · · πNMD , πNMA

said to be dominated by another strategy, sjD, if sjD yields the defender a utility at least as

great as that yielded by siD for each of the attacker’s strategies. That is, siD is dominated by

sjD if,

πD(sjD, s
k
A) ≥ πD(siD, s

k
A) ∀skA ∈ SA (A.16)

A dominated strategy can be eliminated from the game because no rational player would

select it. In the process of iterated elimination of dominated strategies, all dominated

strategies are eliminated for one player, then for the next player. After the first round

of elimination, there may be strategies that were not dominated in the first round, but are

dominated in the reduced form of the game. These strategies can be removed from the game

in a second round of elimination. Iterated elimination of dominated strategies continues

until none of the players have any dominated strategies.

An effective defense strategy can be selected using the concepts of a best response and

a Nash equilibrium. A player’s best response to an opponent’s strategy is the strategy that

will yield the greatest utility for that player [22]. A defense strategy skD is the defender’s

best response to the attacker’s strategy sjA if

πD(skD, s
j
A) ≥ πD(siD, s

j
A) ∀siD ∈ SD (A.17)

The attacker’s best response is similarly defined.
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A Nash equilibrium is defined as a strategy profile such that each player’s strategy is an

optimal response to the other player’s strategy. At a Nash equilibrium, neither player has

an incentive to deviate from the equilibrium strategy if the other player’s strategy remains

unchanged. Nash equilibria may include pure and/or mixed strategies. In a mixed-strategy

Nash equilibrium, a unilateral deviation to any of the pure strategies in the support of a

given player’s mixed strategy will yield that player an expected utility equal to the expected

utility of playing the mixed strategy [29]. Let a player’s mixed strategy at a Nash equilibrium

be denoted by σ∗. The Nash equilibrium definition for this game is

π∗D(σ∗D, σ
∗
A) ≥ πD(sD, σ

∗
A) ∀sD ∈ SD (A.18)

π∗A(σ∗D, σ
∗
A) ≥ πA(σ∗D, sA) ∀sA ∈ SA (A.19)

Note that if the attacker’s and/or the defender’s strategy at the Nash equilibrium is pure,

σ∗A and/or σ∗D in the previous inequalities can be replaced with s∗A and s∗D as necessary. The

expected utilities of both players at a Nash equilibrium are

E[π∗D(σ∗D, σ
∗
A)] =

∑
sD∈SD

∑
sA∈SA

πD(sD, sA)σD(sD)σA(sA) (A.20)

E[π∗A(σ∗D, σ
∗
A)] =

∑
sA∈SA

∑
sD∈SD

πA(sD, sA)σA(sA)σD(sD) (A.21)

Having discussed the foundational elements of game theory, we will now introduce the

application of game theory to observability attacks.

A.3.1 Game Overview

In this observability attack game, the defender will attempt to protect the system while

the attacker attempts an observability attack. The attacker will choose strategies that

mask certain measurements from the defender, thus altering the system’s observability. The

defender will choose strategies that reinforce certain measurements, thereby thwarting the

attacker. The attacker’s and defender’s utilities both depend in part upon the resulting

stealthiness of the plant for the selected pair of strategies. The structure of this game is

similar to that used in [55, 56].

140



A.3.2 The Defender

The set of the defender’s strategies includes reinforcing all possible combinations of

measurements in the system. Examples of reinforcement include the installation of redundant

sensors on a separate network or implementing trusted patches. It is assumed that if the

defender has reinforced a sensor that the attacker has targeted, then the attack on that

sensor is unsuccessful. It is assumed that the attacker has gained access to all control

inputs, therefore the option of defending actuators is not included in the defender’s strategy

set.

The defender’s utilities, πijD, are calculated as a function of the attack stealth and the

cost of reinforcing measurements.

πijD = −LijD − E
i
D (A.22)

The attack stealth contributes to the defender’s utility through the term LijD. This term

is dependent on both the strategy of the defender and that of the attacker, and there are

three cases depending upon whether the attack is observable, unobservable but unstealthy,

or unobservable but stealthy:

1. If the set of successfully masked measurements does not alter the results of the

observability test, the attack is observable and the defender incurs a loss of LOD.

2. If the stealth ratio is small, the attack is unstealthy and the defender incurs a loss of LUD.

3. If the stealth ratio is sufficiently large, the attack is stealthy and the defender incurs a

loss of LSD.

We assume that 0 < LOD < LUD < LSD. For ease of demonstration, we have assumed that the

defender’s utility is dependent on attack stealth and not on which portion of the state space

has been stealthily attacked.

In this paper, we assume that the cost of defense is proportional to the number of

reinforced measurements. This assumption is applicable to a large class of problems. The

fixed cost of defense increases for a greater number of sensors, and variable cost increases
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due to greater operation and maintenance costs. In general, while a cost curve may not in

fact be linear, this linear assumption is sufficient for this paper and it provides first-order

insight to the problem.

The total cost of defending the system is represented by Ei
D. The cost of defending

the system is computed as the product of the number of reinforced measurements, niD,

for defense strategy siD, and the cost of reinforcing a measurement, CD. We assume that

CD > 0. It is assumed that the cost of reinforcing each measurement is identical and that

each measurement must be reinforced individually.

A.3.3 The Attacker

The set of the attacker’s strategies includes masking all possible combinations of

measurements in the system. Some combinations may be more feasible than others due

to the number of masked measurements required to launch a stealthy attack. It is assumed

that the attacker has gained access to all system control inputs and can access all of them

for each strategy.

The attacker’s utilities, πijA , are calculated as a function of the attack stealth and the

cost of masking measurements.

πijA = Gij
A − E

j
A (A.23)

The attack stealth contributes to the attacker’s utility through the term Gij
A. This term

is dependent on both the strategy of the attacker and that of the defender, and there are

three cases depending upon whether the attack is observable, unobservable but unstealthy,

or unobservable but stealthy:

1. If the set of successfully masked measurements does not alter the results of the

observability test, the attack is observable and the attacker receives a gain of GO
A.

2. If the stealth ratio is small, the attack is unstealthy and the attacker receives a gain of

GU
A.

3. If the stealth ratio is sufficiently large, the attack is stealthy and the attacker receives a

gain of GS
A.
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We assume that 0 < GO
A < GU

A < GS
A. For ease of demonstration, we have assumed that the

attacker’s utility is dependent on attack stealth and not on which portion of the state space

has been stealthily attacked.

In this paper, we will assume that the cost of attack is proportional to the number of

masked measurements. The reasoning for this assumption is similar to that for the defender’s

cost assumptions. The total cost of attacking the system is represented by Ej
A. The cost of

attacking the system is computed as the product of the number of masked measurements,

njA, for attack strategy sjA, and the cost of masking a measurement, CA. We assume that

CA > 0. It is assumed that the cost of masking each measurement is identical and that

each measurement must be masked individually. It is assumed that the attacker has gained

access to all control inputs for all strategies, therefore the cost of hijacking actuators is not

included in the calculation of the attacker’s utility.

A.4 Balance of Plant Model

We demonstrate an observability attack on the balance of plant (BOP) of a pressurized

water reactor (PWR). The purpose of the BOP is to deliver the energy generated by the

primary system in a usable form to a turbine-generator. In a pressurized water reactor plant,

the BOP extracts thermal energy from the primary reactor loop, and converts that thermal

energy to electricity. The BOP contains the following coupled components: U-tube steam

generator, steam turbine, condenser, and pump. The steam generator is a heat exchanger

used to extract thermal energy from the primary loop. The steam is then passed to a turbine

that drives a generator to produce electricity. The output of the turbine is then condensed

to a liquid state and pumped back to the steam generator. A schematic of the system is

shown in figure 48. The model used in this work is identical to that used in [59, 55, 56].
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System Inputs

# Unit Description

1 mm Narrow-range level reference

2 kg/s Steam flow rate

3 kg/s Additive flow rate from turbine reheat cycle

System Outputs

# Unit Description

1 mm Narrow-range level measurement

2 mm Wide-range level measurement

3 MPa High-pressure turbine first-stage pressure drop

4 N m Turbine torque

Figure 48: The balance of plant system with global system inputs and measurements

identified.
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A.4.1 U-Tube Steam Generator

The U-tube steam generator model developed by [47] has been implemented in this work.

The optimal algebraic controller designed by [1] has been used to stabilize and control the

steam generator. The controller tracks a narrow-range water level reference input.

Two control inputs are associated with the steam generator system: the narrow-range

reference level, u1, and the steam flow rate exiting the steam generator, u2. The actuator of

the narrow-range water level is the feedwater control valve, and the actuator of the steam

flow rate is the turbine control valve.

Two measurements are associated with the steam generator system: the narrow-range

water level, y1, and the wide-range water level, y2. The narrow-range water level is based on

the pressure differential between two points near the water level. The wide-range water level

is based on the pressure differential between the top and bottom of the steam generator.

While the narrow-range water level reflects the steam/water mixture level, the wide-range

water level reflects the mass of water in the steam generator [49].

A.4.2 Steam Turbine

A generalized model of a steam turbine with high, medium, and low pressure sections

was developed by [50]. That model has been modified in this work to include one high-

pressure turbine and three low-pressure turbines to be consistent with common PWR turbine

configurations. After passing through the high-pressure turbine, the steam goes through a

reheat cycle and then passes through the three low-pressure turbines.

Two control inputs are associated with the turbine system: the steam flow rate entering

the turbine, u2, and the additive steam flow rate from the turbine reheat cycle, u3. As

previously mentioned, the actuator of the steam flow rate is the turbine control valve. The

actuator of the additive steam flow rate from the reheat cycle is the reheat control valve.

Two measurements are associated with the turbine system: the pressure drop across the

first stage of the high-pressure turbine, y3, and the total torque produced by the turbine

system, y4. The pressure drop across the first stage of the high-pressure turbine is related

to the total power produced.
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A.4.3 Condenser

The condenser is implemented to change the phase of the turbine outlet from high quality

steam to saturated liquid. This saturated liquid is then pumped to the steam generator as

feedwater. The condenser dynamics are assumed to be sufficiently rapid to be omitted from

the system model. The condenser is assumed to operate at nominal conditions. No inputs

or measurements are included for the condenser system.

A.5 Results and Discussion

A game-theoretic approach has been applied to examine the observability attack scenario.

Each pure strategy is defined in table 26. The observability outcome for each pure strategy

profile is given in table 27. We first use iterated elimination of dominated strategies to

eliminate strategies that would never be played by a rational individual. Next, we identify

the pure-strategy and mixed-strategy Nash equilibria of the game, and present the conditions

for their existence. Finally, we demonstrate the analysis for a numerical example.

A.5.1 Iterated Elimination of Dominated Strategies

Using iterative elimination of dominated strategies, we will reduce the dimension of the

observability attack game. First, let us examine the attacker’s strategies. We will begin

by comparing the attack strategies that incur the same cost (i.e. have the same number of

masked sensors, nA), and then compare the remaining strategies. We take this approach

because the cost of conducting the attack is the same for strategies that have the same nA,

and we can easily determine if a strategy is dominated by referring to table 27 for the attack

stealth.

First let us examine strategies with nA = 1. It is seen that s2
A is dominated by s1

A

because s1
A does at least as well as s2

A against each of the defender’s strategies. For eight

of the defender’s strategies, the outcome is observable when the attacker plays either s1
A or

s2
A. For the other eight defender strategies, the attacker is better off playing s2

A because s2
A
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Table 26: The strategies of the attacker and defender. The defender’s strategy siD includes a

set of reinforced signals of quantity nD. The attacker’s strategy sjA includes a set of masked

signals of quantity nA.

Strategy n Signals

s1 1 1

s2 1 2

s3 2 1 2

s4 1 3

s5 2 1 3

s6 2 2 3

s7 3 1 2 3

s8 1 4

Strategy n Signals

s9 2 1 4

s10 2 2 4

s11 3 1 2 4

s12 2 3 4

s13 3 1 3 4

s14 3 2 3 4

s15 4 1 2 3 4

s16 0

results in an unstealthy attack while s1
A results in an observable attack. By similar reasoning,

s4
A and s8

A are also dominated by s1
A. For nA = 2, we can see that s5

A, s6
A, s10

A , and s12
A are

dominated by s3
A. We note that at this stage of iterative elimination, s3

A does not dominate

s9
A, and s9

A does not dominate s3
A, therefore neither will be eliminated. For nA = 3, we can

see that s7
A, s13

A , and s14
A are dominated by s11

A . The only domination that occurs between

strategies of varying nA is that s15
A is dominated by s11

A . The dominated strategy has a greater

cost of attack than the dominating strategy, and results in stealth gains less than or equal

to those of the dominating strategy. Thus, the remaining undominated attacker strategies

are s1
A, s3

A, s9
A, s11

A , and s16
A . The columns corresponding to all dominated attacker strategies

can be eliminated from the game matrix.

We will now examine the defender’s strategies using the same methodology as was

used for the attacker’s strategies. It is important to note that the dominated attacker

strategies have been removed from the game matrix, therefore we will only consider the

game outcomes corresponding to the intersection of the remaining attacker strategies and
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Table 27: Stealth outcomes of the observability attack game: (O) observable attack; (U)

unstealthy attack; (S) stealthy attack.

s1
A s2

A s3
A s4

A s5
A s6

A s7
A s8

A s9
A s10

A s11
A s12

A s13
A s14

A s15
A s16

A

s1
D O O O O O O O O O O O O O O O O

s2
D U O U O U O U O S O S O U O U O

s3
D O O O O O O O O O O O O O O O O

s4
D U O S O U O S O S O S O S O S O

s5
D O O O O O O O O O O O O O O O O

s6
D U O U O U O U O S O S O S O S O

s7
D O O O O O O O O O O O O O O O O

s8
D U O S O U O S O U O S O U O S O

s9
D O O O O O O O O O O O O O O O O

s10
D U O U O U O U O U O U O U O U O

s11
D O O O O O O O O O O O O O O O O

s12
D U O S O U O S O U O S O U O S O

s13
D O O O O O O O O O O O O O O O O

s14
D U O U O U O U O U O U O U O U O

s15
D O O O O O O O O O O O O O O O O

s16
D U O S O U O S O S O S O U O S O
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Table 28: Normal form of the reduced observability attack game. The defender’s utility is

listed in the first row of each cell, followed by the attacker’s utility.

s1
A s3

A s9
A s16

A

s1
D

−LOD − CD −LOD − CD −LOD − CD −LOD − CD
GO
A − CA GO

A − 2CA GO
A − 2CA GO

A

s16
D

−LUD −LSD −LSD −LOD
GU
A − CA GS

A − 2CA GS
A − 2CA GO

A

all defender strategies. For nD = 1, we can see that s2
D, s4

D, and s8
D are dominated by s1

D.

For nD = 2, we can see that s6
D, s10

D , and s12
D are dominated by s3

D. For nD = 3, we can see

that s14
D is dominated by s7

D. Comparing across strategies of varying nD, we can see that s1
D,

s3
D, s5

D, s7
D, s9

D, s11
D , s13

D , and s15
D all have the same stealth outcomes for each attack strategy.

The strategy s1
D dominates the other strategies because it has the lowest value of nD and

therefore incurs the lowest cost to the defender. Thus, the remaining undominated defender

strategies are s1
D and s16

D . The rows corresponding to all dominated defender strategies can

be eliminated from the game matrix.

Iterated elimination of dominated strategies continues until no strategy can be elimi-

nated. The attacker’s strategy s11
A is now seen to be dominated by s9

A because s11
A has stealth

outcomes equal to s9
A, but also a greater nA. No additional defender strategies are domi-

nated. The reduced normal form of the observability game is given in table 28. The existence

of pure-strategy and mixed-strategy Nash equilibria will now be examined.

A.5.2 Pure-Strategy Nash Equilibria

There are four potential pure-strategy Nash equilibria in the observability attack game.

The existence of each equilibrium is dependent on the relative magnitudes of the attacker’s

and defender’s utility parameters. To verify that a pure-strategy profile is indeed a Nash

149



equilibrium, it is sufficient to check that unilateral deviations by each player to another

pure strategy does not result in a greater utility for that player. Each pure-strategy Nash

equilibrium is discussed below.

A.5.2.1 No reinforcement or masking The pure strategy profile (s16
D , s

16
A ) is a Nash

equilibrium of the observability game if two conditions are satisfied.

1. CA > GU
A −GO

A

The first condition is that the cost of attacking must outweigh the benefit of achieving

an unstealthy attack rather than an observable attack. This condition is obtained by

examining the attacker’s pure strategy deviation to s1
A.

2. CA >
1
2
(GS

A −GO
A)

The second condition is that the cost of attacking must outweigh the benefit of achieving a

stealthy attack rather than an observable attack. This condition is obtained by examining

the attacker’s pure strategy deviation to s3
A or s9

A.

It is already noted that s16
D is the defender’s best response to s16

A ; therefore no additional

conditions regarding the defender’s utility parameters are necessary.

A.5.2.2 No reinforcement and one masking The pure strategy profile (s16
D , s

1
A) is a

Nash equilibrium of the observability game if three conditions are satisfied.

1. CD > LUD − LOD
The first condition is that the cost of defense must outweigh the loss of an unstealthy

attack rather than an observable attack. This condition is obtained by examining the

defender’s pure strategy deviation to s1
D.
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2. CA < GU
A −GO

A

The second condition is that the benefit of achieving an unstealthy attack rather than

an observable attack must outweigh the cost of attacking. This condition is obtained by

examining the attacker’s pure strategy deviation to s16
A .

3. CA > GS
A −GU

A

The third condition is that the cost of attacking must outweigh the benefit of achieving a

stealthy attack rather than an unstealthy attack. This condition is obtained by examining

the attacker’s pure strategy deviation to s3
A or s9

A.

A.5.2.3 No reinforcement and two maskings The pure strategy profiles (s16
D , s

3
A)

and (s16
D , s

9
A) are Nash equilibria of the observability game if three conditions are satisfied.

1. CD > LSD − LOD
The first condition is that the cost of defense must outweigh the loss of an stealthy attack

rather than an observable attack. This condition is obtained by examining the defender’s

pure strategy deviation to s1
D.

2. CA < GS
A −GU

A

The second condition is that the benefit of achieving an stealthy attack rather than an

unstealthy attack must outweigh the cost of attacking. This condition is obtained by

examining the attacker’s pure strategy deviation to s1
A.

3. CA <
1
2
(GS

A −GO
A)

The third condition is that the benefit of achieving a stealthy attack rather than an

observable attack must outweigh the cost of attacking. This condition is obtained by

examining the attacker’s pure strategy deviation to s16
A .

A.5.2.4 Impossible pure-strategy equilibria Some pure-strategy profiles cannot

result in Nash equilibria. These results are evident from the best responses that were

previously identified. The strategy profile (s1
D, s

16
A ) cannot be a Nash equilibrium because the
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defender increases his utility from−LOD−CD to−LOD by deviating to s16
D . The strategy profiles

(s1
D, s

1
A), (s1

D, s
3
A), and (s1

D, s
9
A) cannot be Nash equilibria because the attacker increases his

utility from GO
A − CA or GO

A − 2CA to GO
A by deviating to s16

A .

A.5.3 Mixed-Strategy Nash Equilibria

There are five support combinations that define the game’s potential mixed-strategy

Nash equilibria. The existence of each equilibrium is dependent on the the magnitudes of

the attacker’s and defender’s utility parameters. All conditions are obtained by restricting

the probability of playing a support strategy to be greater than or equal to zero and less

than or equal to one. In all cases, the support of the defender’s mixed strategy is the set of

the two strategies s1
D and s16

D . Each mixed-strategy Nash equilibrium is discussed below.

A.5.3.1 One masking and two maskings In this mixed-strategy equilibrium, the

attacker’s support is the set of two strategies: masking one measurement and masking two

measurements. There are two potential supports for the attacker’s strategy because there

are identical results if the attacker plays s3
A or s9

A. The mixed strategies for both players are

defined below.

σ1
D[s1

D, s
16
D ] = σ2

D[s1
D, s

16
D ] =

[
1− CA

GSA−G
U
A
, CA

GSA−G
U
A

]
(A.24)

σ1
A[s1

A, s
3
A] = σ2

A[s1
A, s

9
A] =

[
1− CD

LSD−L
U
D
, CD

LSD−L
U
D

]
(A.25)

The existence of these two equilibria is dependent on two conditions:

1. CD < LSD − LUD
The first condition is that the loss of a stealthy attack rather than an unstealthy attack

must outweigh the cost of defense.

2. CA < GS
A −GU

A

The second condition is that the benefit of achieving a stealthy attack rather than an

unstealthy attack must outweigh the cost of attacking.
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A.5.3.2 Zero maskings and one masking In this mixed-strategy equilibrium, the

attacker’s support is the set of two strategies: abstaining from masking and masking one

measurement. The mixed strategies for both players are defined below.

σ3
D[s1

D, s
16
D ] =

[
1− CA

GUA−G
O
A
, CA

GUA−G
O
A

]
(A.26)

σ3
A[s1

A, s
16
A ] =

[
CD

LUD−L
O
D
, 1− CD

LUD−L
O
D

]
(A.27)

The existence of this equilibrium is dependent on two conditions:

1. CD < LUD − LOD
The first condition is that the loss of an unstealthy attack rather than an observable

attack must outweigh the cost of defense.

2. CA < GU
A −GO

A

The second condition is that the benefit of achieving an unstealthy attack rather than

an observable attack must outweigh the cost of attacking.

A.5.3.3 Zero masking and two maskings In this mixed-strategy equilibrium, the

attacker’s support is the set of two strategies: abstaining from masking and masking two

measurements. There are two potential supports for the attacker’s strategy because there

are identical results if the attacker plays s3
A or s9

A. The mixed strategies for both players are

defined below.

σ4
D[s1

D, s
16
D ] = σ5

D[s1
D, s

16
D ] =

[
1− 2CA

GSA−G
O
A
, 2CA

GSA−G
O
A

]
(A.28)

σ4
A[s3

A, s
16
A ] = σ5

A[s9
A, s

16
A ] =

[
CD

LSD−L
O
D
, 1− CD

LSD−L
O
D

]
(A.29)
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The existence of these equilibria is dependent on two conditions:

1. CD < LSD − LOD
The first condition is that the loss of a stealthy attack rather than an observable attack

must outweigh the cost of defense.

2. CA <
1
2
(GS

A −GO
A)

The second condition is that the benefit of achieving a stealthy attack rather than an

observable attack must outweigh the cost of attacking.

A.6 Summary and Conclusions

Cyber-physical systems are dependent on the integration of computational resources with

physical processes. While modern instrumentation and control systems allow for advanced

methods of monitoring and controlling systems, they also introduce new vulnerabilities.

Because the cyber and physical worlds are connected, vulnerabilities in cyberspace can have

consequences in the physical world.

Observers provide one technique to reconstruct signals masked by an attacker; however, if

the system is unobservable, the attacker may be able to steer some states to undesirable levels

while avoiding detection. To avoid detection, the attacker would design an attack input to

cause damage to the unobservable states while minimizing damage to the observable states.

This is called an observability attack.

A game-theoretic approach was presented to identify optimal strategies to defend against

observability attacks. An attacker incurred a cost to mask a measurement in the system and

received a benefit that was dependent on the stealth of the resulting attack. A defender

incurred a cost to reinforce a measurement and suffered a loss that was dependent on the

stealth of the resulting attack. For a nuclear balance of plant system, pure-strategy and

mixed-strategy Nash equilibria were identified and the conditions for their existence were

presented.

154



This technique can be used to analyze cyber-physical systems during the design process

and to prioritize security upgrades for systems in operation. This technique is appropriate

when the relative magnitudes of the attacker’s and defender’s utility parameters can be

estimated. It is noteworthy that exact values of both player’s utility parameters are not

required to determine which Nash equilibria exist. By determining which Nash equilibria

exist and estimating each player’s utility parameters, security and control engineers can

identify optimal strategies to defend against observability attacks.
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Appendix B

Bayesian Game Examples

In a Bayesian game, some players have incomplete information about the other players.

Within the context of critical infrastructure cybersecurity, plant defenders have incomplete

information about threat agents, and threat agents have incomplete information about plant

defenders. A Bayesian game provides a quantitative method for security teams to identify

optimal defense strategies.

The Bayesian game-theoretic approach is demonstrated on the residual heat removal

system of a boiling water reactor. Threat agents are modelled as types in the game using

a threat agent library that defines each threat’s characteristics. Similarly, different types

of defenders are modelled by considering consequences of importance to plant stakeholders.

Using these type definitions, utility functions are defined for each player. Nash equilibria

of the Stackelberg game and two simultaneous games are identified and discussed. Using

this procedure, a security team at a nuclear power plant can select the optimal strategy to

defend the plant from cyber-threats.

B.1 Bayesian Game Theory

Bayesian games are discussed in Chapter 3. This section provides additional background

about Bayesian game theory.

B.1.1 Stackelberg Games

Another factor to consider in constructing the Bayesian game is whether the game is

simultaneous or Stackelberg. In a simultaneous game, both players choose their strategies
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Figure 49: The extensive form of a Bayesian Stackelberg game.

at the same time. In a Stackelberg game, a leader chooses a strategy, then the follower

chooses a strategy after observing the leader’s strategy. A Stackelberg game is appropriate

for many security applications where a defender first implements a security strategy and

then the attacker implements an offensive strategy after observing the defenses.

Consider a Bayesian Stackelberg game played by i and j. The notation is the same as

the example in Chapter 3, except here i is the leader and has a single type. The extensive

form of this Bayesian game is shown in Figure 49. An information set is constructed for i

because i does not know whether j is type θ1
j or θ2

j . There are no additional information sets

for j because i is a single type and j observes i’s strategy before selecting a strategy.

B.1.2 Decomposed Optimal Bayesian Stackelberg Solver

Here we discuss the Decomposed Optimal Bayesian Stackelberg Solver (DOBSS)

presented in [68]. DOBSS is a mixed-integer linear program that has been shown to quickly

solve Bayesian Stackelberg games. This efficiency is partly because DOBSS does not require
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the Harsanyi transformation to identify the Nash equilibrium. Within the context of a

security game, the leader is the defender and the follower is the attacker. The defender is

assumed to have a single type and the attacker is assumed to have multiple types. The

assumption that the defender has a single type is dependent on the assumption that the

attacker’s utility is independent of the defender’s type, and is often a reasonable assumption

for security applications.

DOBSS is the following optimization problem,

maximize
q,z,m

∑
i∈X

∑
θ∈Θ

∑
j∈Q

pθRθ
ijz

θ
ij

subject to
∑
i∈X

∑
j∈Q

zθij = 1

∑
j∈Q

zθij ≤ 1

qθj ≤
∑
i∈X

zθij ≤ 1

∑
j∈Q

qθj = 1

0 ≤
(
mθ −

∑
i∈X

Cθ
ij

(∑
h∈Q

zθih

))
≤ (1− qθj )M∑

j∈Q

zlij =
∑
j∈Q

z1
ij

zθij ∈ [0, 1]

qθj ∈ {0, 1}

mθ ∈ R

Let x be a vector denoting the leader’s strategy, and let i be a pure strategy contained

in x. Then, xi is the probability i is played in x. Let θ ∈ Θ denote the follower’s types, and

let qθ be a vector denoting θ’s strategy, where j is a pure strategy contained in q. Let X and

Q denote the index sets of the leader’s and follower’s pure strategies, respectively. Let Rθ
ij

and Cθ
ij be the payoff matrices for the leader and follower, respectively, when the follower is
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type θ. Let pθ be the a-priori probability of type θ. Let M be a large positive number and let

mθ be an upper bound on θ’s reward for any action. Finally, let zθij = xiq
θ
j . This relationship

can be used to calculate the leader’s optimal pure strategy.

DOBSS returns the optimal mixed strategy for the defender and a pure-strategy best

response for the attacker. A mixed-strategy best response is not required for the attacker,

because any pure strategy that is part of the support of a mixed-strategy best response

is also a best response. For greater detail regarding the derivation of DOBSS, readers are

referred to [68].

B.2 Bayesian Game Construction

This section describes the construction of the Bayesian games. Several aspects are similar

to the methods discussed in Chapter 4. The system under consideration is the RHR system

described in Chapter 4. There are some differences in the construction of the game, the most

notable of which is the definition of defender types.

B.2.1 The Defender’s Types

The defender’s types can be defined based on the defender’s preferential relationships on

avoiding negative losses. When given the choice between two losses, L1 and L2, a defender

of one type may prefer to incur L1, while a defender of another type may prefer to incur

L2. In general, if there are n consequences, this expression of preferences results in n! types.

The number of types is even greater when the defender’s preferences are cardinal rather

than ordinal. Simplifying assumptions or a brief list of consequences are required to define

a manageable set of types for the defender.

We define the defender’s types in terms of the losses described in Section 4.2.1. Here

we also consider loss of sensitive data to be a loss (L7). For each loss, we assume a range

of values describing its magnitude. These values are assumed for demonstration purposes.
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Table 29: The defender’s losses and their possible values.

Consequence Description Lower Limit ($) Upper Limit ($)

L1 Loss of power generation 1× 106 3× 106

L2 Environmental damage 1× 109 5× 1011

L3 Personnel injury or death 1× 106 5× 106

L4 Damaged public opinion 5× 105 1× 106

L5 Major equipment damage 1× 107 5× 107

L6 Core damage 1× 107 1× 108

L7 Loss of sensitive data 5× 105 5× 106

In practice, these values could be informed by business analysts, engineering teams, and

regulators. The consequences and their possible magnitudes are summarized in Table 29.

The defender’s types are defined by the magnitudes of these consequences. For this case

study, we define five types for the defender. The defender’s types and corresponding loss

magnitudes are given in Table 30.

We define each type based on whether the loss magnitudes are large or small within their

individual ranges. For the environmentalist type, the loss magnitudes for environmental

damage and core damage are at the top of their respective ranges. Similarly, the

humanitarian type assigns large values to personnel injury or death, the industrialist assigns

large values to loss of power generation, damaged public opinion, major equipment damage,

and core damage, and the data defender assigns large values to loss of sensitive data. The

true type of the defender assigns loss magnitudes that are in the middle or upper end of

their respective ranges. The defender is aware that his true type is θ1
D, but the attacker is

unaware of the defender’s true type.

The definition of multiple defender types is generally only needed for Bayesian games

with simultaneous decisions. With the assumption that the attacker’s utility is independent

of the defender’s type, only one defender type is needed for Bayesian Stackelberg games.
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Table 31: The probability distributions of the types.

θiD θ1
D θ2

D θ3
D θ4

D θ5
D

p(θiD) 0.30 0.30 0.25 0.10 0.05

θjA θ1
A θ2

A θ3
A θ4

A

p(θjA) 0.35 0.25 0.30 0.10

This is because in a Stackelberg game, the attacker observes the defender’s action, then acts

to maximize his own utility. The assumption that the attacker’s utility is independent of the

defender’s type is often reasonable.

B.2.2 Type Distributions

For this case study, we assume the type distributions in Table 31. We assume the

defender assigns the greatest probability to the terrorist type, followed by the government

cyberwarrior, disgruntled employee, and radical activist. We assume that the attacker

assigns high probability to the true defender, environmentalist, and humanitarian, and low

probability to the industrialist and data defender.

With the assumption that the distribution of types is common knowledge to the players,

the Bayesian game can be transformed from a game of incomplete information to a game

of imperfect information. This is a strong but necessary assumption to find the Bayesian

Nash equilibrium. The assumption of common knowledge of the type distributions is most

reasonable if a large amount of intelligence used to construct the game is open-source, or

common knowledge among the players.
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B.3 The Players’ Actions

The actions available to the players are nearly identical to those discussed in Chapter 4.

There are some minor differences, so we discuss all actions here for clarity.

The attacker and defender each have several choices to make regarding each component

in the RHR system. For the defender, these choices address the configurations of the

industrial control system devices. For the attacker, these choices address the attack vector

for circumventing the defender’s cybersecurity controls. The choices available to each player

are summarized in Table 32.

We assume that the default configuration of each PLC is that authentication is off and

wireless communication is enabled. The defender can choose to enable authentication on

each PLC and can choose to disable wireless communication on each PLC. If the defender

has enabled authentication, the attacker will not be able to connect to the PLC. If the

defender has disabled wireless, the attacker will not be able to conduct the wireless exploit.

The attacker requires local access for the wireless exploit, but does not require local access

to connect with an unsecured PLC.

We assume that the default configuration of the switch is that the firewall is off. The

defender can choose to enable the firewall. In practice, there are many possibilities for

firewall configuration, but here we assume a binary decision to either enable or not enable

the firewall. The attacker can choose whether to attempt an attack. If the defender has

enabled the firewall, the attacker will not be able to conduct the attack.

We assume that the default configuration of the communication network is that all

communication is unencrypted. The defender can choose to enable encryption. In practice,

there are several encryption standards from which to choose and communication between

different devices can have different encryption protocols. Here we assume a binary decision

to either encrypt or not encrypt all communication. The attacker can choose whether or

not to attempt to eavesdrop. If the attacker has compromised a PLC or the switch, and the

network is unencrypted, then the attacker has also compromised the communication between

the hacked device and the devices that are directly connected to it.
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For each of the attack and defense scenarios, we have assumed that the attack will be

unsuccessful if the defender has implemented the corresponding defense. In practice, the

outcome is not deterministic. The outcome is dependent on the ability of both players to

execute their selected actions. For example, a complex and sophisticated custom attack

may not be executed correctly, even if the attacker has the financial resources to conduct

the attack. The probability that an attack is successful given that a specific defense has

implemented can be estimated using expert judgment, capture-the-flag experiments, and

metrics such as the Common Vulnerability Scoring System [58, 28]. The stochastic nature

of the attack outcomes can be represented using chance nodes on the extensive form of the

Bayesian game.

A complete action for a player consists of selecting an option for each available choice.

For simplicity, we consolidate the defender’s choices across the PLCs. Specifically, we give

the defender the choice to enable authentication on all or none of the PLCs and the choice to

disable wireless on all or none of the PLCs. We allow the attacker the option to connect or

exploit individual PLCs. An example of a complete defender action is: enable authentication

on all of the PLCs, disable wireless on all of the PLCs, enable the firewall on the switch, and

enable encryption on the communication network. An example of a complete attacker action

is: connect to PLC-1A and PLC-1B and do not connect PLC-2A and PLC-2B, conduct a

wireless exploit on PLC-2A and PLC-2B and do not exploit PLC-1A and PLC-1B, do not

attack the switch, and eavesdrop on the communication network.

B.3.1 Action Profiles and Consequences

In this game, the outcome of a cyber attack depends upon several factors. Two obvious

factors are the actions chosen by the players. The set of actions chosen by the players during

a particular play of the game is referred to as an action profile. In contrast, a strategy profile

specifies the actions taken by all types of all players. In addition to the action profile, the

outcome of an attack is also dependent on other NPP systems that interact with the RHR

system. To cause severe consequences, not only must the cyber attack be successful, but

also redundant plant systems and safety systems must fail.
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First, we will consider the consequences that only depend upon the game’s action profile.

The loss of sensitive data consequence is assumed to be the only consequence that is

dependent solely on the action profile. This is because most of the consequences are physical

and are also dependent on other NPP systems. We assume the damaged public opinion

consequence can only occur if another physical consequence occurs. Data loss can occur if

any of the attacker’s offensive actions are not defended.

Second, we will consider the consequences that depend upon the game’s action profile

and other NPP systems. To model the game’s dependency on other NPP systems, we first

consider the hazards of the RHR system (Section 4.1. Each hazard may be caused by

certain action profiles. Table 12 shows which hazards can occur as a consequence of different

combinations of hacked devices. We do not list each action profile because there are multiple

ways some devices can be hacked.

Many of the defender’s severe consequences are dependent on the failure mode of the

RHR system and the failure of other NPP systems. For example, if both RHR systems

operating in LPCI mode fail, the core spray system can also provide core cooling. The

probability of failure of other plant systems can be calculated using a risk analysis method

like fault tree analysis or Bayesian networks. The probabilities that we have assumed for

this example are shown in Table 33. Note the probability that each hazard causes L7 is zero.

This is because L7 is not a physical loss, and is not dependent on any of the hazards we

have identified. Additionally, while L4 may occur as a result of a physical failure, it may

also occur as a direct result of the action profiles.

B.3.2 The Players’ Utility Functions

The players’ utility functions quantify the outcome of the game and enable us to identify

effective security strategies. The utility functions capture the cost of the players’ actions

and the impact of a successful attack. The utility functions are given by Equations B.1 and

B.2.
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Table 33: The probability of hazards causing losses.

L1 L2 L3 L4 L5 L6 L7

H1 — 5× 10−6 5× 10−5 — 2× 10−2 5× 10−4 —

H2 5× 10−2 5× 10−6 5× 10−5 4× 10−1 1× 100 5× 10−4 —

H3 — — — 3× 10−1 — 8× 10−3 —

H4 1× 100 — — 9× 10−1 — — —

H5 — 1× 10−5 1× 10−4 — — 1× 10−3 —

H6 — 1× 10−6 1× 10−5 — — 1× 10−4 —

H7 2× 10−2 — — — — — —

uD(sD, sA, θD) = ΨD(sD) + E[ΩD(sA, sD, θD)] (B.1)

uA(sD, sA, θA) = ΨA(sA, θA) + E[ΩA(sA, sD, θA)] (B.2)

The utility functions of the players have two terms. The first term, ΨD/A, is the expense

associated with the player’s strategy. The second term, E[ΩD/A], is the expected value of

the gain or loss from a successful attack.

The first terms in Equations B.1 and B.2 are the costs to the players for selecting

their strategies. For the defender, this term is the expense of implementing cybersecurity

measures. We assume that the expenses for the defender’s strategy are the same for all of

the defender’s types. This is because the type definitions for the defender are based on the

defender’s loss magnitudes, not the defender’s capabilities. This term may be positive in

some applications. For example, if a cybersecurity action is expected to improve operational

efficiency, the plant may expect a profit from implementing the action. For the attacker, this

term is the expense of conducting a cyber attack. The attacker’s expenses are dependent

on the attacker’s type. For both players, we assume that this term is not dependent on the

opponent’s strategy or type.

The expenses for the defender’s and attacker’s choices are summarized in Table 34. We

have assumed these values based on the access, resources, and skill of the threat agents as
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defined by the TAL. These values are assumed for demonstration purposes. In practice,

additional threat intelligence and financial data should also be used. The government

resources of the government cyberwarrior and organization resources of the radical activist

and terrorist provide them with some advantages over the disgruntled employee, but the

disgruntled employee’s internal access to the NPP can also result in some reduced expenses.

We assume that there is no expense to the attacker to abstain from a particular action.

We also assume that there is no expense to the defender to leave a device in its default

configuration.

The second terms in Equations B.1 and B.2 are the expected values of the reward or

penalty from a successful attack. The terms are expected values because the success of an

attack is often dependent on the failure of other NPP systems outside of the players’ control

(as described in Section B.3.1). For both players, this term is a function of the game’s

strategy profile, and the individual player’s type. We assume that the defender only cares

about whether or not a loss occurs, and that the perpetrator of the attack is irrelevant; that

is, the second term is not a function of the attacker’s type. We make a similar assumption

for the attacker.

To find the expected values of the gain or loss from a successful attack, we need to know

the magnitude of the attack outcome and the probability that the attack is successful. The

magnitudes of the attack outcomes come from each player’s type definition. The consequence

magnitudes for the defender’s types are given in Table 30 and the consequence magnitudes

for the attacker’s types are given in Table 10. The probability of attack success is often

dependent on the failure of other redundant NPP systems. The probability of each loss

given a particular hazard is shown in Table 33. We restrict the attacker to only cause one

hazard. If the attacker has the capability to cause multiple hazards, we assume the attacker

will choose the hazard resulting in the greatest value of E[ΩA].
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Table 35: Nash equilibrium of the Bayesian Stackelberg game.

Player Type Strategy Expected utility

Defender True defender Enable PLC authentication -$30,800
Disable PLC wireless
Enable switch firewall
Encrypt communication network

Attacker Radical activist Abstain from all attacks $0
Attacker Disgruntled employee Abstain from all attacks $0
Attacker Gov. cyberwarrior Abstain from all attacks $0
Attacker Terrorist Abstain from all attacks $0

B.4 Results and Discussion

In this section we discuss the results for three formulations of the Bayesian cybersecurity

game: a Stackelberg game and two simultaneous games. The first simultaneous game has

one defender type, and the second simultaneous game has four defender types.

B.4.1 Stackelberg Game

In this Stackelberg formulation of the Bayesian game, the defender has a single type

and the attacker has four types. DOBSS was used to solve the Stackelberg game. In the

Stackelberg game, first the defender chooses a strategy without knowledge of the true type

of the attacker, then the attacker chooses a strategy after observing the defender’s strategy.

The Nash equilibrium solution of the Stackelberg game is summarized in Table 35. In this

game, the Nash equilibrium solution is for the defender to implement all security measures,

and for every attacker type to abstain from attacking. At the Nash equilibrium, the defender

incurs the cost of defense implementation, and the attackers do not lose or gain utility.

This Nash equilibrium is expected, given the structure of the game. In constructing the

game, we have assumed that if a defender has implemented a defense for a given attack, the

attack will be unsuccessful. If the defender were to choose not to implement a defense, the

attacker would be able to observe that and exploit that specific vulnerability. But, if the
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defender has infallibly implemented all defenses, and the attacker can observe the defender’s

strategy before selecting his strategy, it is expected that the attacker would abstain from

attacking. It would not be rational for the attacker to incur the cost of attacking while

knowing that no reward can be gained.

B.4.2 Simultaneous Game with One Defender Type

Solving Bayesian simultaneous games with large strategy spaces and large numbers of

types is computationally expensive. To make the problem more tractable, we assume the

attacker’s strategy space consists of the set of hacked devices necessary to cause a physical

failure (Table 12), and the method by which those devices are hacked. This reduces the

attacker’s pure strategy space from 1,024 strategies to 18 strategies. Each individual PLC

can be hacked either by connecting or by wireless exploit, each pair of PLCs can be hacked

by the four combinations of connecting and wireless exploits, and the switch and network can

only be hacked together if the attacker attacks the switch and eavesdrops on the network.

The attacker can also abstain from attacking.

This simultaneous game was solved using Gambit. A Nash equilibrium of the

simultaneous game is summarized in Table 36. At this Nash equilibrium, the defender

implements all defenses with near-certainty, and is expected to only incur the cost of strategy

implementation. The radical activist, disgruntled employee, and terrorist types abstain from

attacking and do not gain or lose utility. The government cyberwarrior type has a large

probability of abstaining, but also a significant probability of attacking the switch and

network, and near-zero probability of attacking PLC-2B. The government cyberwarrior’s

expected utility is nonzero because of the positive probability assigned to attacks on PLC-

2B, the switch, and network. It is positive because there is a small chance the attacker

could target a vulnerability the defender has not addressed. The expected utilities for both

the defender and attacker are close to the cost of implementing the dominant pure strategy

because the probability of a consequence given the Nash equilibrium strategy profile is close

to zero.
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Enumerating over all possible Nash equilibria in a Bayesian simultaneous game is

computationally expensive. This is one Nash equilibrium of the game, but more equilibria

may exist. For example, it is likely that a similar equilibrium exists where the government

cyberwarrior connects to or wirelessly exploits PLC-1B instead of PLC-2B. This is for three

reasons: (1) PLC-1B and PLC-2B serve similar roles in the RHR system, (2) compromising

PLC-1B or PLC-2B can lead to the same failures, and (3) it costs the same amount to attack

either PLC. It is also possible that other equilibria exist where the government cyberwarrior

abstains from attacking, and one of the other attacker types assigns positive probability to an

attack strategy. If multiple equilibria are found to exist, methods such as Pareto dominance,

risk dominance, or focal points can be used to identify the most credible equilibrium [29, 73].

B.4.3 Simultaneous Game with Four Defender Types

In this game, we use the same action sets as in the previous simultaneous game. Instead

of using one defender type, we consider four types: the true defender, environmentalist,

humanitarian, and industrialist, as defined in Section B.2.1. To reduce computational

expense, we eliminate the data defender type and we increase the probability of the

industrialist type from 0.10 to 0.15.

This simultaneous game was solved using Gambit. A Nash equilibrium of the

simultaneous game is summarized in Table 37. The results of this game are similar to that

of the previous simultaneous game. At this equilibrium, the true defender, environmentalist,

and industrialist types all implement every cybersecurity defense, and the humanitarian

type implements every defense with near-certainty. The humanitarian type implements

every defense slightly more frequently than the defender in the previous simultaneous game.

The radical activist, disgruntled employee, and terrorist types abstain from attacking and

do not gain or lose utility. The government cyberwarrior type has a large probability of

abstaining, but also a significant probability of attacking the switch and network, and near-

zero probability of attacking PLC-2B. The cyberwarrior has slightly greater probability of
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abstaining from attack in this game than in the previous simultaneous game. The government

cyberwarrior’s expected utility is nonzero because of the positive probability assigned to

attacks on PLC-2B, the switch, and network.

Similar to the simultaneous game with one defender type, it is possible that more Nash

equilibria exist. For the same reasons as above, it is likely that a similar equilibrium exists

where the government cyberwarrior connects or wirelessly exploits PLC-1B instead of PLC-

2B. It is also possible that other equilibria exist where the government cyberwarrior abstains

from attacking, and one of the other attacker types assigns positive probability to an attack

strategy. Similarly, it is also possible that other equilibria exist where the humanitarian

type implements all defenses and one of the other defender types assigns positive probability

to more than one pure strategy. If multiple equilibria are found to exist, methods such as

Pareto dominance, risk dominance, or focal points can be used to identify the most credible

equilibrium [29, 73].

B.5 Summary and Conclusions

A strong cybersecurity program is essential to protect the critical assets of commercial

nuclear power plants. As cyber-physical systems, nuclear power plants must have an effective

cybersecurity program to ensure efficient and safe operations in the physical world. Nuclear

power plants may be targeted by a variety of threat agents with varying motivations and

capabilities. Nuclear power plant security teams must defend against this spectrum of threats

while remaining cost-effective. To meet this need, a Bayesian game-theoretic approach was

presented.

A Bayesian game-theoretic approach enables nuclear power plant security teams to

identify an optimal cybersecurity strategy, given their knowledge of potential threat agents.

Several tools were presented to assist security teams in the construction of a Bayesian game.

Using these tools, a security team can identify the threats that pose the greatest risk to the

plant, and model those threats as types in a Bayesian game. The construction and solution

of several Bayesian games were demonstrated for a residual heat removal system.
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The games constructed in this paper indicate that it is best for the defender to implement

all cybersecurity actions to protect the residual heat removal system. The Stackelberg game

indicated that the defender should implement all defenses, and the two simultaneous games

indicated that the defender should implement all defenses with a probability close to one.

Although these results may appear obvious in retrospect, they do not devalue the merit of

the analysis. The results may not be as intuitive for games where the potential cybersecurity

costs are larger relative to the magnitude of the defender’s consequences if the plant system

is hacked.

From the attacker’s perspective, it was demonstrated that the attacker should not attack

in the Stackelberg game, and the attacker should nearly always abstain from attacks in

the simultaneous games. The defender benefited from the uncertainty introduced in the

simultaneous game with multiple defender types. The attacker should abstain 93% of the

time in the simultaneous game with one defender type, but the attacker should abstain 95%

of the time in the simultaneous game with four defender types. If the attacker does choose

to attack in either of the simultaneous games, it is most likely that the attacker would target

the switch and communication network. Although this is considered a modification of the

original game, the defender could choose to leverage those results by closely monitoring the

switch and communication network.

Implementing a Bayesian cybersecurity game requires a multi-disciplinary team. Risk

engineers and nuclear engineers provide insight into NPP processes and safety systems.

Industrial control engineers and cybersecurity experts provide insight into the offensive

and defensive actions that can be included in the game. Threat intelligence experts are

valuable for the construction of the attacker’s types. Using a Bayesian game-theoretic

approach, cybersecurity teams can optimally allocate resources to protect the plant, given

their knowledge of malicious threat actors.
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