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Abstract: Nanometer-curved surfaces are abundant in biological systems as well as in nano-sized
technologies. Properly functionalized polymer-grafted nanoparticles (PGNs) adhere to surfaces
with different geometries and curvatures. This work explores some of the energetic and mechanical
characteristics of the adhesion of PGNs to surfaces with positive, negative and zero curvatures using
Coarse-Grained Molecular Dynamics (CGMD) simulations. Our calculated free energies of binding of
the PGN to the curved and flat surfaces as a function of separation distance show that curvature of the
surface critically impacts the adhesion strength. We find that the flat surface is the most adhesive, and
the concave surface is the least adhesive surface. This somewhat counterintuitive finding suggests
that while a bare nanoparticle is more likely to adhere to a positively curved surface than a flat surface,
grafting polymer chains to the nanoparticle surface inverts this behavior. Moreover, we studied
the rheological behavior of PGN upon separation from the flat and curved surfaces under external
pulling force. The results presented herein can be exploited in drug delivery and self-assembly
applications.

Keywords: adhesion; self-assembly; drug delivery; curved surface; template-assisted self-assembly;
nanotechnology; single-molecule system; polymer nanocomposite

1. Introduction

Polymer nanocomposites are an important class of material with numerous appli-
cations [1–3]. Chemical versatility has made polymers good candidates to enhance the
physiochemical properties of nanoparticles. Among different combination of polymers
and nanoparticles in polymer nanocomposites, the polymer-grafted nanoparticles (PGNs)
motif can be exploited in a wide variety of applications such as Janus particles, drug
delivery systems and self-assembled structures [4–7]. This motif usually consists of a
nanoparticle, as a spherical hard core, coated with polymer chains that are tethered at one
end. Grafted polymer chains are selected to either modify the chemical properties of the
nanoparticles or their morphology and geometry. These modifications, for instance, can
sterically stabilize a dispersion of nanoparticles and prevent their aggregation, or enable
us to tailor the interaction of the nanoparticles with targeted surfaces [8–12]. Of particular
relevance to this research area is controlling the adhesion of nanoparticles to different
surfaces, which is a challenge in numerous applications [13,14]. For instance, nanoparticles
that are used in enhancing inflammation resolution during atherosclerosis need to bind to
a curved endothelial layer during delivery [15]. The strength of this binding determines
the effectiveness of the delivery. Another example is the colloidal probe technique, which
uses a polymer-grafted colloidal particle attached to the end of a cantilever to measure
the interaction forces between the colloidal particle and a surface [16]. The geometry of
the surface is not limited to flat and smooth. Therefore, consideration of the effect of
various curvatures on the colloid-surface interaction forces can help expand this technique
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to include various degrees of roughness and concave surfaces as well. However, only
limited studies have been conducted to date on the adhesion of PGNs as a function of
surface curvature [17–19].

Another aspect of our study focuses on its application in the self-assembly and synthe-
sis of shape-controlled nanostructures [20–23]. It has been shown that surface roughness
significantly influences attachment of colloids to a surface [24–26]. Based on this behavior,
physical templates have been utilized to control the self-assembly of colloids into desired
shapes [27,28]. When a PGN is attached to a surface due to the attractive force, the mobile
nature of the tethered polymer chains causes faster diffusion of the particle over the surface
and steering it towards the global minimum state. Modifying the surface with controlled
curvature elements can serve as a method for designing these global minima, and subse-
quently the organization of the nanoparticles on the surface. PGNs provide more flexibility
in the assembly process as well as the capability to synthesize more complicated final
structures. Furthermore, the liquid-like behavior of the tethered polymer chains results in
a capillary attracting force between the nanoparticle and the surface, which is known as
one of the main categories of the self-assembly techniques [29,30].

Numerous experimental and theoretical studies have been performed on understand-
ing the equilibrium as well as the transient behavior of PGNs [31–34]. Beside the chemical
properties of the polymer chains, nanoparticle and the targeted surface, the size of the
nanoparticle, polymer grafting density and polymer chain length are among the parameters
that determine the surface adhesion properties of the PGN. In addition to the properties
of the polymer grafted nanoparticles, the geometry and morphological properties of the
surface onto which the particles are adsorbed also play an important role in the adhesion
strength. In this study, we investigate the effect of surface curvature on the adhesion of a
polymer grafted nanoparticle to the surface. The curvatures (essentially holes in or bumps
on the surface) that we simulate, are about the size of the PGN. At this scale, and depending
on the strength and the range of interaction potential, the surface geometry determines
the amount of free space around the polymer chains and consequently the distribution of
the polymer chains interacting with the surface. Our results show that among the three
surfaces, the flat surface is the most energetically favorable surface that the PGN adheres to.
In contrast, a bare nanoparticle is more likely to adhere to a concave surface, considering
that it has a greater contact area compared to the flat and convex surfaces, as well as a lock
and key geometry [28,35].

This paper is organized as follows. First, we explain the coarse-grained molecular
model and parameters we use to simulate our polymeric system. Results are discussed
in the next section. We first investigate the free energy profile of the interaction between
the PGN and the curved surfaces as a function of separation distance. This is followed by
a discussion of the process of separation of the PGN from the convex, concave and flat
surfaces under external pulling force. Finally, our numerical results are compared to the
predicted values by the Johnson–Kendall–Roberts (JKR) theory that describes the adhesion
mechanics of a deformable object on a rigid surface. Note that in comparing the results
presented here with experimental measurements, one should consider the limitations of
our simplistic model.

2. Method

Our coarse-grained model consists of bead-and-spring polymer chains placed in a
solution with implicit solvent. The CGMD method is used to simulate the dynamics of the
system [36].

Our system consists of a rigid spherical nanoparticle, which itself is a hollow shell
consisting of 1020 smaller particles, each possessing an excluded volume size corresponding
to 1 monomer diameter. The nanoparticle is coated with 100 grafted polymer chains,
randomly distributed over its surface. The monomer of each polymer chain that connects
to the nanoparticle is rigidly attached to a designated spot on the nanoparticle surface.
All the flat and curved surfaces are constructed out of spherical particles having the same
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diameter as that of a polymer monomer, close packed into a lattice one particle thick, and
constrained in place during a simulation.

The specifics of the interactions in the system are as follows. The monomers of polymer
chains as well as the particles that make up the nanoparticle are represented as beads of
equal mass m and effective diameter σ. All pairs of particles in the system, except for the
monomers and the flat surface, interact via a truncated Lennard-Jones (LJ) potential, which
accounts for excluded volume effects:

ULJ(r) =

{
4ε
[(

σ
r
)12 −

(
σ
r
)6
]
+ ε, r < rc

0, r > rc
(1)

here, r is the distance between the particles, ε is a strength of the LJ interaction, and
rc = 21/6σ is a cut-off distance. The parameter ε sets the energy scale of the system.
Adjacent monomers are connected by a finitely extensible nonlinear elastic (FENE) spring
potential defined by [37]:
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where k0 = 100 (ε/σ2) is a spring constant, and r0 = 1.5 σ is the bond’s maximum extension.
Furthermore, the attractive interaction between monomers and the flat surface con-

tains a repulsive (excluded volume) part plus an attractive tail:
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where εb is the potential well depth.
The Langevin equations of motion describing the dynamics of the chain were inte-

grated using the velocity Verlet algorithm with a time step of dt = 0.002 τ, where τ = σ
√

m/ε
is the LJ unit of time. The temperature was set at T = ε/kB, where kB is Boltzmann’s constant.
The radius of the nanoparticle is R0 = 10 σ and each polymer chain has a chain length of
L0 = 50 σ. The whole system is confined in a cubical box with the dimension of 100 σ along
each of its three dimensions. Electrostatic interactions are not included in the interaction
potentials described above: they are beyond the scope of this study.

3. Results and Discussion
3.1. Which Curvature Is Thermodinamically More Favorable for the
Polymer-Grafted Nanoparticle?

Numerous studies have been previously carried out to understand the interaction
between two polymer-graphed nanoparticles using self-consistent field theories and molec-
ular dynamics simulations [38–40]. For the two polymer-grafted particle systems in those
studies, the repulsive steric force between polymer chains controls the interaction between
the particles and prevents the particles from aggregation. However, in this study, the PGN
is designed to adhere to the surface. In addition to the steric repulsive force between the
polymer chains and an external surface, we introduce Van der Waals attractions between
them. The interplay between these two forces controls the adhesion strength between the
PGN and the surface.

When the PGN approaches the surface and adheres to it due to the attractive in-
teraction between the polymer chains and the surface, the conformation of the polymer
chains changes. This new conformation dictates the contact surface area between the PGN
and the surface, which consequently determines the adhesion strength. Depending on
numerous parameters, including the polymer chains length, the strength of interaction
between the polymer chains and the surface, and the geometry of the surface, this altered
polymer conformation deviates from the corresponding conformation of a free PGN. In
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template-assisted self-assembly methods, porous materials are used to facilitate the assem-
bly of colloids by favoring the pores to the flat part of the template [41]. However, it is not
immediately obvious whether PGNs are more likely to bind to a flat surface or a curved
one. In this section, we investigate the effect of surface curvature on the adhesion strength
of the PGNs.

In order to illustrate how curvature of a surface can control the adhesion strength
between the surface and a PGN, we study systems with the same PGN interacting with
attractive surfaces having zero (flat), positive (hole) and negative (bump) curvatures
(Figure 1). We set the curvature of the convex and concave on the surface equal to ±1/2 of
the curvature of the nanoparticle. This way, the convex and concave surfaces are curved
enough to differ significantly from a flat surface, and the hole surface is spacious enough to
accommodate the nanoparticle with grafted polymer chains. One measure for evaluating
the binding strength between the PGN and a surface is the Potential Mean Force (PMF). We
calculate it as a function of the separation distance between the center of the mass of the
nanoparticles and the surface, by measuring the force between them at a given separation
according to the following procedure.

Figure 1. Snapshots of three systems of a PGN interacting with attractive substrates having: (a) zero
(flat), (b) positive (hole/concave), and (c) negative (bump/convex) curvatures.

As noted above, the nanoparticle interacts with the surface only through the repulsive
excluded volume force. The potential well depth of the LJ interaction between the polymer
chains and the particles constructing the surfaces is set to εb = 3kBT. To ensure that the
only changing parameters between the three systems is the curvature of the surface, we
set the cut-off of the LJ potential to 2σ. Therefore, the polymer chains only interact with
the particles of the surface which are located in their vicinity, not the ones outside of the
curved area. After the equilibration stage was performed for the PGN, the immobile curved
or flat surfaces consisting of close-packed spherical particles was introduced into each
of the systems as shown in Figure 1. These surfaces were placed in the vicinity of the
nanoparticle, and the system was allowed to equilibrate again until the polymer chains
adapted the curvature of the surface. Identical simulations were run for three surfaces
with different curvatures. Using the equilibrated systems as starting points, 3 × 10 = 30
more systems, differing only in the distance of the surface to the center of the nanoparticle,
with distances up to 20 at intervals of 2, were analyzed. The center of the nanoparticle
was approximately fixed to its initial coordinate by a permanent harmonic bond with the
spring constant k = 100. The force on the nanoparticle was calculated by observing the
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average displacement of the center of the nanoparticle from the initial coordinate, and then
this was used as the displacement in a Hooke’s Law equation. Next, the potential of mean
force (PMF) was calculated by numerically integrating the force exerted by the spring on
the nanoparticle along the direction perpendicular to the surface using the trapezoidal
rule. Since the LJ potential is short-ranged, as we saw in our previous study [8], the PMF
function decays to an asymptotic value (set to 0) as the distance between the nanoparticle
and surface increases, and rises to a positive number at very short distances where repulsive
steric effects dominate.

As can be seen in Figure 2, the system with the flat surface gives rise to the PMF with
the deepest well, as compared to the convex and concave surfaces. Therefore, while it is
thermodynamically more favorable for a bare nanoparticle to bind to concave surfaces
due to a greater contact surface area as compared to flat and convex surfaces, the PGN is
more likely to adhere to the flat surface [28,35], all other parameters in the systems being
the same. This result means that by tethering polymer chains to a nanoparticle, we can
completely change its binding properties to surfaces with different geometries.

Figure 2. PMF of the nanoparticle center of mass as a function of distance from the surface for the
systems with three different curvatures: zero (flat), positive (hole) and negative (bump).

3.2. How Does the Rheology of Polymer Chains Change upon Seperation from the Surface?

As mentioned earlier, the nanoparticle in our system is modeled as a rigid body.
However, since the polymer chains that surround the nanoparticle are highly flexible, we
can regard the PGN as a soft particle which deforms upon binding to the surface as its
polymer chains spread to maximize its contact with the attractive surface and thus reduce
the total energy of the system. Depending on the conformation and the potential applied
between the polymer monomers and the surface, the rheology of the polymer chains
around the rigid nanoparticle may vary. In this subsection we see how the conformation of
the polymer chains changes upon separation from the curved and flat surfaces.

One of the parameters that describes this rheology is the thickness of the layer of
polymer chains confined between the rigid nanoparticle and the surface (tc), as shown
schematically in Figure 3. The measured thicknesses obtained by averaging over a long
trajectory for three systems at equilibrium are presented shown in Table 1. As can be
seen in Table 1, the smallest tc corresponds to the flat surface, which has the deepest
free energy well among the three systems. On the other hand, the hole system has the
thickest polymer layer confined between the nanoparticle and the surface. Comparison
of tc between the bump and hole systems tells us that a thinner polymer layer confined
between the nanoparticle and surface does not necessarily imply stronger adhesion.
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Figure 3. Schematic drawing of the nanoparticle on surfaces with zero, positive and negative
curvatures. The region between the two dotted lines shows the thickness of the layer consisting of
polymer chains confined between the nanoparticle and the surface, tc.

Table 1. Parameters describing the rheology of polymer chains around the nanoparticle adhered to
the surface with different curvatures. tc is the thickness of the polymer chain layer confined between
the rigid nanoparticle and surface, and nc is the number of polymer monomers in contact with the
surface. a0 and as represent the surface areas of the interface between the PGN and the surfaces at
equilibrium and upon separation, i.e., at the moment that the last particles belonging to the polymer
chains detache from the surface, for the flat and curved surfaces.

Flat Hole (Concave) Bump (Convex)

tc 1.2 σ 2.1 σ 1.7 σ
nc 2625 2460 1820
a0 1225 πσ2 1193 πσ2 1109 πσ2

as/a0 0.78 0.98 0.61

Another parameter that we have calculated for the equilibrium simulation is the mean
value of the number of monomers in contact with the surface, nc. While the flat surface
shows the highest number of monomers in contact, the bump system with shallowest
PMF well depth possesses the smallest number of monomers in contact with the surface,
which means nc can be a good measure for the adhesion strength, as might be expected.
Note that our attractive potential is short-range. For long-range interactions, the rheology
of the polymer chains on the attractive surface might be different, and consequently the
correlation between the PMF well depth and the nc might not hold anymore.

Figure 4 shows the bottom view of our systems interacting under equilibrium con-
ditions. It can be seen that in the system with the flat surface, tc is so small that in some
snapshots of our equilibrium system, there are no monomers confined between the flat
surface and the nanoparticle, so that the yellow surface of the nanoparticle is visible from
the bottom view. The surface area of the interface for the flat surface can be estimated as
a circle and using a0 = πr2

c , where rc is the approximate mean value of the radius of the
contact area. For the other two systems with concave and convex surfaces, the surface areas
of the interfaces can be estimated as sphere caps with the radius of rc and depth/bump
height of hc which equals to a0 = π(r2

c + h2
c ). As can be seen in Table 1, and as expected, a0

shows the same trend as nc with the PMF well depth.

Figure 4. Bottom view of the PGN in contact with (a) flat, (b) concave and (c) convex rigid surfaces
(from left to right). The surface area accessed by the polymer chains is different for each system,
which affects the number of interacting particles and consequently the adhesion strength.
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To further investigate the relationship between the adhesion strength and the rheology
of polymer chains, we simulate the separation of PGN from the surface by applying an
external pulling force on the nanoparticle. The applied force is increased at a constant rate of
0.0028 kBT/στ on the center of mass of the nanoparticle. We continue the simulation until the
nanoparticle is completely separated from the surface (Video S1 in Supplementary Materials
illustrates this behavior). Figure 5 shows the applied force versus the displacement of
the nanoparticle’s center of mass for our three systems. As is evident from the figure, by
increasing the pulling force, the distance between the PGN and the surface gradually grows
until at some critical force the PGN suddenly jumps apart from the interacting surface. This
behavior has been also predicted by The Johnson–Kendall–Roberts (JKR) theory [42,43].
This model describes how two elastic bodies adhere together and what deformation they
undergo when in contact with each other. To see how accurate this theory predicts the
separation threshold, we calculate the surface area of the interface between the PGN and
the surface at the point where they separate. For a flat surface, the JKR theory predicts
that separation occurs abruptly once the contact surface area reaches to as/a0 = 0.4. We
also observe this abrupt separation in our pulling simulation. However, according to our
results in Table 1, this number is ~0.78. This discrepancy reflects the intrinsic differences
between our system and the elastic sphere interacting with a rigid surface assumed in the
JKR theory and our PGN. For instance, as one can see in Figure 4, the boundaries of the
contact regions are diffuse and fluid-like, while JKR theory assumes that the boundaries
are sharp and well-defined. This result tells us that the JKR theory cannot predict the
rheological behavior of the PGNs quantitatively and numerical methods provide more
accurate information about this system.

Figure 5. Force versus displacement of the center of mass of the nanoparticle for three systems under
external force. The force increases at the same rate for each of the three systems. The sudden increase
of displacement determines where the separation of the deformable polymer-grated nanoparticles
from the rigid attractive surface occurs. While according to the results depicted in Figure 2, the
adhesion of the nanoparticle to the surface with the hole is stronger than to the surface with the
bump, due to the conformation of polymer chains confined between the nanoparticle and surface,
the separation occurs at a smaller force for the nanoparticle in the hole.

Another interesting observation one can make comparing Figures 2 and 5 is that while
the system with convex surface (bump) shows the shallowest free energy well among other
systems, the smallest separation force corresponds to the system with the concave surface.
The reason that the hole system shows a bigger displacement at a smaller force comparing
to the other two systems may be the thick layer of polymer chains confined between the
surface and the nanoparticle, tc. Since the monomers contributing in that layer are not
adhered to the surface, they do not resist against the applied pulling force. As a result,
the displacement grows quickly up to the point that the PGN completely separates from
the surface. Different methods for separating the PGN from the surface, such as applying
displacement with a constant rate, might result in a different separation onset behavior
among our systems.
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4. Conclusions

Adhesion of a PGN to attractive surfaces with zero, positive and negative curvatures
was evaluated using CGMD. According to the calculated PMFs, the flat surface shows the
strongest, and the convex surface shows the weakest adhesion to the PGN. Moreover, we
studied the separation of PGN from surfaces by applying an external pulling force to the
PGN. Our results agreed qualitatively with the JKR theory prediction. It may be possible
to exploit the results presented here in drug delivery and self-assembly applications.

Supplementary Materials: The following are available online https://www.mdpi.com/2624-8549/
3/1/28/s1. Video S1: detachment of PGN from the flat surface under pulling force.
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