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Gatekeeper: A Reliable Reconfiguration Protocol for Real-Time Ethernet

Systems

Brendan Kristopher Luksik, M.S.

University of Pittsburgh, 2021

Real-time Ethernet systems are becoming increasingly popular for avionics and embedded

applications. By regulating network traffic according to predefined configurations, these

protocols enable highly deterministic communication, while still conforming to the Ethernet

standard. However, the strengths of a statically configured system become weaknesses when

the system requirements are changed. In the worst case, the entire network may need to

be reloaded with new configurations, resulting in significant downtime. As a result, there

is significant growing interest in reconfiguring real-time Ethernet networks online, without

loss of connectivity. Several recent works focus on minimizing frame loss and configuration

conflicts during online reconfiguration. Unfortunately, in doing so, they also sacrifice the

system’s ability to tolerate faulty components.

In this paper, Gatekeeper, the first reconfiguration protocol for real-time Ethernet

systems that minimizes downtime in both the presence and absence of faults, is described.

Gatekeeper consists of two main sub-protocols: 1) a reliable distribution protocol that

ensures consistent configurations are deployed on all non-faulty devices (i.e., switches and

network cards), and 2) a dependable test-and-migrate reconfiguration protocol that allows

the system to gain confidence that the configurations are correct as they are rolled out

to an increasing number of devices. We evaluated Gatekeeper’s scalability to different

system sizes, its timing and communication overheads, and it’s correctness in the presence

of different faulty configurations. Our results show that Gatekeeper can tolerate a faulty

device with as little as 3% communication overhead, and while running faster than naive

non-fault-tolerant solutions in large networks.

iv



Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.0 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.0 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Real-Time Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Time-Triggered Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Multi-Plane Ethernet Architectures . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Network Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.5 The Case for Reliable Reconfiguration Techniques . . . . . . . . . . . . . . . 11

4.0 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.2 Failure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2.1 Distribution Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1.1 End-System Stage . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1.2 Switch Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.2 Conversion Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.2.1 Bootstrap Stage . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.2.2 Resolution Stage . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Evaluation on a Time-Triggered System . . . . . . . . . . . . . . . . . . . . 27

4.4 Calculating Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.0 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Communication Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Runtime Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Network Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



6.0 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.0 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vi



List of Tables

1 Bytes of payload data used in each message of Gatekeeper . . . . . . . . . . 32

2 Time required to perform each operation of Gatekeeper . . . . . . . . . . . . 33

vii



List of Figures

1 An example of a three-plane Time-Triggered Ethernet system . . . . . . . . . . 10

2 The control flow of Gatekeeper . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Software architecture for TTE prototype implementation of Gatekeeper . . . 28

4 Evaluation testbed for Gatekeeper . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Relative message cost of Gatekeeper compared to FastRec . . . . . . . . . . 34

6 Relative data cost of each information component . . . . . . . . . . . . . . . . . 35

7 Aysmptotic behavior in terms of relative data overhead vs. increasing the number

of end systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Communication overhead for the reconfiguration of systems containing 4 to 48

end systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

9 The converging sawtooth pattern of scaling both switches and end systems . . . 36

10 Runtime overhead of each operation in Gatekeeper and FastRec . . . . . . . 37

11 Runtime scaling for protocols vs size of system . . . . . . . . . . . . . . . . . . 38

12 Runtime overhead focusing on only on the competitive portion of the data . . . 39

13 Network downtime for Gatekeeper and FastRec . . . . . . . . . . . . . . . . 40

viii



Preface

This work was supported by SHREC industry and agency members and by the IUCRC

Program of the National Science Foundation under Grant No. CNS-1738783.

I would like to thank Andrew Loveless and the NASA Johnson Space Center Avionics

Networks Team for their expertise, guidance, and feedback. I would also like to thank the

students of SHREC for their in help navigating the research process. Finally, I would like to

thank my family for their infinite patience and support throughout this process.

ix



1.0 Introduction

Avionic, automotive, and industrial domains are increasingly adopting real-time Ether-

net variants as their networks of choice. Some examples include Time-Triggered Ethernet

(TTE) [11], Avionics Full Duplex (AFDX) [3], and IEEE 802.1 AVB [9]. These protocols

provide many advantages over standard Ethernet, such as support for different traffic criti-

calities, time-synchronization, ordering guarantees, more deterministic timing, and built-in

redundancy schemes to avoid the need for message re-transmission. The behavior of each

protocol is determined by a static configuration, which is developed offline and loaded onto

the network. This configuration is implemented as a matching set of tables, each intended

for use by one device in the system. The tables govern the timing of, and paths taken by,

frames sent over the network.

Real-time Ethernet protocols are generally used in static applications with fixed re-

quirements. As a result, the network configurations in these systems do not typically have

to change once the system is deployed. For example, airplane avionics networks and au-

tomotive networks rarely require any network configuration updates, unless a problem is

identified with the previous configuration. Moreover, even if network configuration updates

are required, they can be made during well-defined periods of downtime, such as between

flights, when the system is in a safe state.

In contrast, emerging systems, such as spacecraft for deep space exploration [1] and

Industry 4.0 platforms [7], are envisioned to operate continuously without downtime and are

required to evolve over time in response to changing mission requirements. One way to meet

the needs of these systems is to start with broad configurations that can accommodate many

different future traffic flows. However, this approach requires significant overprovisioning,

and thus wasted network resources, for systems with long service lifetimes. Moreover, it is

impossible to predict every future requirements change.

A more desirable approach for these emerging systems is to change the network configura-

tion as needed when the requirements evolve. Unfortunately, online network reconfiguration

has significant challenges. Most obviously, it must be done in a way that minimizes network
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unavailability for the end devices. Also, it must be done in a way that controls the in-

teraction between devices with different configurations. Otherwise communication between

devices with subtly incompatible configurations can result in incorrect system behavior. Fi-

nally, it must be done in a way that maintains the network’s resilience to faulty components.

Often times, fault tolerance guarantees that a network makes for a fully configured network

no longer hold for a partially configured one.

There has been much work in minimizing reconfiguration disruptions in real-time Ether-

net networks [13] [15]. In general, these techniques focus on maximizing network availability

and maintaining consistency between configuration changes. However, they take for granted

that the network hardware operates reliably during the reconfiguration process. In critical

applications like spaceflight [1], this is an unacceptable assumption. Instead, care must be

taken to ensure the system ends up in a correct state, even if some faulty devices attempt

to disrupt the reconfiguration protocol.

In this thesis, Gatekeeper is introduced, a new protocol for the reliable online re-

configuration of fault-tolerant, real-time Ethernet networks. Gatekeeper combines two

sub-protocols. The first, a reliable distribution protocol, uses Byzantine consensus to de-

ploy new configuration tables to the network devices. Using Byzantine consensus prevents

faulty devices from blocking correct devices from accepting configuration tables, as well as

ensures that different non-faulty devices cannot accept conflicting configurations. The sec-

ond, a group-based test-then-migrate protocol, provides a mechanism for a select group of

network devices to gain confidence that the new network configuration is correct before it is

rolled out to the rest of the network. Moreover, it provides opportunities to catch common

configuration errors while they are still easily recoverable.

Gatekeeper was then evaluated by creating a prototype controller and testing it on a

TTE system. Cost scaling equations were then calculated for overhead in both communica-

tion and execution time, and the growth of the protocol to large systems was characterized.

The results show that data overhead always approaches a consistent cost dictated by the

configuration, which can be optimized as low as 3% of the cost to do an equivalent non-

fault-tolerant deployment. Crucially, the results also show that the protocol minimizes the

downtime of the system, regardless of fault placement or scale of the system.
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In summary, this thesis make the following contributions.

• Gatekeeper: an online reconfiguration protocol able to deploy configurations in the

presence and absence of faults for a variety of real-time Ethernet protocols.

• A prototype of Gatekeeper for TTEthernet systems

• An experimental evaluation of Gatekeeper including observed benchmarks and calcu-

lated scaling characteristics.
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2.0 Related Works

Gatekeeper joins a large body of research working towards seamless reconfiguration

of real-time Ethernet systems. A popular reconfiguration paradigm in industrial networks

is the reconfiguration agent [6] [5]. Such agents auto-detect and auto-configure new tables

rather than simply deploying them, a key feature in the Industry 4.0 design principle [7].

Implementations either insert a scheduler into the link-layer path to manage dataflows and

transitions [29], or provide a central controller which can communicate gate control lists to

real-time devices [21]. While they do automate device and traffic detection, configuration

agent protocols usually require hardware modifications along side the software or constitute

their own standard, limiting the breadth of their applicability.

More generally acceptable solutions often involve K-phase protocols. K-phase reconfig-

uration uses version tags to tie each frame to only one configuration. These protocols aim

for lossless, consistent network updates, using rules to guide each flow’s transition. Using

versions enables incremental updating and stability for co-existing configurations [10]. Us-

ing accurate time to coordinate the phase commits improves on temporal overhead [18] [17].

To this end, the Time4 algorithm introduces the idea of flow-swapping which can solve

deadlocking scenarios in K-phased approaches [16]. While successful at maximizing network

availability, these algorithms require tight coordinate of full end-to-end paths, which makes

them vulnerable to fault manifestations.

Scheduled real-time Ethernet protocols can leverage their temporal nature to achieve

lossless reconfiguration. Creation and analysis of dependence graphs is used to allocate

points-in-time to reconfigure individual dataflows during windows where such flows are not

in use [13] [15]. Originally requiring software-defined network (SDN) architectures, improved

versions of zero-loss reconfiguration protocols can be applied to reliable, remote systems,

such as satellites. The improved protocols work by both generating an update schedule and

load-balancing traffic from the incoming configuration to limit contention with the outgoing

configuration [30]. This allows for reset scheduling of networks become possible, where as

prior presented methods could handle only minor additions or subtractions to the standing

4



schedule. The shortcoming of this group of work is that zero-loss is only achievable if the

scheduling data arrives at each node properly, which cannot always be taken for granted.

Lastly, it is worth touching on the idea of frame consistency, or the goal of having

every packet processed properly and exactly once during a reconfiguration period. This idea

underpins much of the K-phase and schedule-based reconfiguration techniques. SDNs have

been a prime candidate for creating frame-consistency techniques because of their dedicated

control structure. Consistent network updates can be abstracted [23] by making use of

one-touch and unobservable updates [22]. Using such mechanisms raises the concern of

schedulability, though this has recently been addressed for both online and offline scenarios

by [19]. Even though these flow scheduling update paradigms continue to improve in cost-

bounding and schedulability, they rely on computational analyses of the content of the

schedule. This is an expensive task and can limit the ability to deploy new schedules if

unresolved conflicts arise during scheduling.

The existing body of work addresses rigorous assurance that data is not lost during

reconfiguration, but in all cases the functionality of all devices in the system is taken for

granted. However, that cannot always be the case. Gatekeeper brings the consideration

of fault-tolerance to the body of research, and, as will be shown in its design, can work as a

standalone protocol or act as a framework around these methods which removes the affects

of faulty actors and simplifies constraints on schedulability.
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3.0 Background

In this section, background into real-time Ethernet networks, the protocol chosen for eval-

uation, and information about real-time Ethernet reliability and reconfiguration techniques

is given. A case for the proposed reliable reconfiguration techniques is also made.

3.1 Real-Time Ethernet

Switched Ethernet is becoming increasingly common in embedded applications due to

its many favorable characteristics. For example, Ethernet is compatible with a wide array

of commercial-off-the-shelf devices and boasts a large and active community of developers.

Additionally, the protocol is scalable, and new components can be easily introduced to

expand existing setups. As a result, Ethernet networks are well suited to support modern

industrial, avionic, and automotive embedded applications [25].

However, switched Ethernet has an important downside. Frames in a switch cannot si-

multaneously access the same egress port, and thus must be serialized by the device. This

results in frames being unpredictably delayed on busy devices, or even dropped if frame

buffers are exhausted. While these communication bottlenecks are acceptable in consumer-

grade applications, they are intolerable in real-time embedded environments, where the use-

fulness of data expires after set deadlines. For real-time distributed systems, communication

characteristics need to be predictable in order to ensure that requirements are met. This

means enforcing bounded latencies and preventing the need for frame retransmission.

To achieve more predictable timing, a variety of real-time Ethernet variants have been

introduced, all of which coordinate access to network resources [3] [24] [8]. Each protocol uses

either a priori calculations or set rules to reserve network hardware for privileged (critical)

traffic. For example, the AFDX protocol defines a minimum gap between frames constituting

a data flow and reserves enough buffer space within each switch to handle all traffic flows

at runtime [3]. TTE, meanwhile, uses time-division multiplexing to define transmission
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windows across the network in which only pre-selected frames can be sent. Other protocols,

like PROFINET IRT, segment the wire’s bandwidth into best-effort and real-time segments

and oscillate usage on a common clock between the two modes [20]. These mechanisms

allow critical traffic to enjoy predictable timing characteristics, often while co-existing with

traditional Ethernet frames.

The rules governing the behavior of the network are stored in a system wide configura-

tion, which typically does not change during normal system operation. This configuration

typically take the form of a set of tables, one corresponding to each device in the network.

Matching tables are necessary to ensure that timing constraints are consistent and the appro-

priate amount of buffer space is reserved, allowing frames to have guaranteed transmission

characteristics. Such guarantees are only possible if every piece of hardware in the trans-

mission path applies a matched set of constraints about when, as well as down which paths,

data is forwarded.

3.2 Time-Triggered Ethernet

The main real-time Ethernet protocol of interest to this work is Time-Triggered Ethernet

(TTE). TTE is a link-layer networking protocol which enables deterministic frame delivery

through time-division multiplexing. The TTE (SAE AS6802) standard describes the time-

triggered transmission protocol and a control protocol to keep network time aligned. This

standard is often combined with the rate-constraining ARINC 664p7 protocol in commer-

cial hardware. Both protocols are able to co-exist with traditional IEEE 802.3 best-effort

Ethernet frames and hardware. This combined 3-class network is also referred to as a TTE

network.

The time-triggered (TT) traffic protocol schedules windows of time for privileged frames

to traverse dedicated paths with sub-microsecond jitter. For logically aligned flows of frames,

called virtual links (VLs), time is reserved on each link in the transmission path at a scheduled

frequency. During these windows, frames of a VL are the highest priority of any traffic and

are forwarded exactly according to the set schedule. Dozens to hundreds of TT VLs can
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co-exist in a network, but at no point can any of their transmission windows collide over a

physical resource (link, egress port, buffer, etc). This is prevented ahead of time by statically

scheduling each VL. Producing viable schedules is discussed below. So long as TT frames

exist within properly scheduled windows, they are guaranteed not to be dropped and take a

highly deterministic time to transmit [24].

The rate-constrained (RC) traffic protcol (ARINC 664p7) reserves portions of network

bandwidth to provide deterministic upper-bounds on transmission latency. The bandwidth

reservation is enforced by requiring a period of time between each frame in a VL, called

a bandwidth allocation gap (BAG). As long as the sender does not transmit frames faster

than the BAG, the RC frames are prioritized over lesser traffic while in flight. RC frames

are also guaranteed to not be dropped, as long the bandwidth for any link is not exceeded.

This, too, is something scheduled ahead of time to ensure that network resources support the

requested bandwidths. RC frames have much more temporal flexibility than TT frames, but

have longer latencies and much higher jitters because of the protocol tolerates more bursty

behavior than TT traffic [3].

To establish a tight notion of time, TTE networks employ protocol control frames (PCFs).

The TTE standard describes a synchronization protocol in which timestamps from a group

of end systems are gathered and averaged by a switch [24]. The switch then distributes

corrections to every end system within the synchronization domain to establish a tight global

time. This well-coordinated time means that the windows for TT frames can be made very

small and that RC BAGs can be checked accurately across each hop. These synchronization

communications use PCF VLs, which must be scheduled like TT or RC traffic. However,

PCF VLs are independent of other data VLs, so multiple data schedules can exist on one

synchronization domain if the PCF VLs between the two configurations match.

Creating schedules for TTE systems must be done statically offline. To generate accurate

windows for TT and PCF frames, and to avoid over-reserving for RC frames, parameters such

the physical topology, the hardware delays, the payload sizes, and transmission frequency,

etc, are gathered into a formal description of the language [28]. This represents the full list

of constraints a target network has to meet.
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The network description is input into a scheduler. In this work a tool called TTE-

plan is used, where the constraints are met using a general problem-solver algorithm [28].

The scheduler attempts to satisfy the rules and outputs device-wise schedules describing

the activity each piece of hardware will experience. It is not guaranteed that an arbitrary

description is schedulable however, as constraints may conflict and be impossible to satisfy.

Scheduled solutions are input into a configuration builder, called TTEbuild. This trans-

forms the device schedules into the configuration table binaries used by network hardware.

This step is where device characteristics like memory space and functionality support are

checked. A schedule is only a high-level specification and so only satisfies logical constraints

of the traffic needs. Configuration tables are built against hardware specifications for each

target device so the schedule can be properly fit to the network resources.

3.3 Multi-Plane Ethernet Architectures

Ethernet networks contain two types of devices, end systems and switches. End systems

are computation devices with a physical interface to the network. Typically, end systems

take the form of a host processor and a tightly-coupled network interface card (NIC) acting

together to generate or receive data. Switches forward frames frames between the end sys-

tems. Real-time Ethernet architectures and hardware are similar to and often compatible

with standard Ethernet equipment. As such, standard Ethernet components can exist within

these networks. Typically though, standard Ethernet end systems cannot attach to multiple

planes simultaneously, even though they may communicate with real-time end systems. As

such, these devices cannot exhibit the necessary fault tolerance and will be ignored in this

research.

To improve fault tolerance, real-time Ethernet systems can be configured in a multi-plane

architecture, as shown in Figure 1. In this network model, each switch and connection is

replicated to create independent channels for data transmission, called planes. Real-time

Ethernet end systems typically replicate outgoing frames and simultaneously transmit them

onto each of these planes, where the copies travel independently to the destination device
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Figure 1: An example of a three-plane Time-Triggered Ethernet system

[28]. Each end system receiving data uses a redundancy management policy for handling the

copies of each frame. This may be voting on received frames, passing the first valid copy,

etc [14].

The multi-plane architecture is a common fault-tolerance technique found across many

domains, especially avionics. These systems are highly reliable and mission-critical, and the

approach is a straightforward way to create the desired level of reliability at the network

level. The Airbus A380 and 400M aircraft use a duplicated AFDX avionics backbone for

command and control [4]. The European Space Agency’s Ariane 6 launcher [2] uses a 3-plane

TTE network, as does the Sikorsky Skyraider S-97 helicopter. NASA’s Orion space vehicle

also uses a 3-plane TTE network, as will NASA’s Lunar Gateway space station [1].

3.4 Network Reconfiguration

Network reconfiguration is necessary for adapting the statically configured hardware ta-

bles to evolving traffic requirements and timing. Table entries must account for frame payload

sizes, bandwidth usage, and redundancy management for each traffic flow in the network.

Since real-time table entries cannot be dynamically managed by the network hardware, a
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new table must be provided to a device each time shifting system requirements dictate the

addition, subtraction, or change of parameters.

To change a device’s configuration table, a new table is pushed from a source to the

target device and loaded into active memory. Tables destined for end systems are usually

given to the co-located host processor and then pushed to the network interface hardware.

Switches can accept configurations over the network through a programming interface. In

most cases, reconfiguring a system entails bringing the system offline one device at a time

as a technician controls the distribution of tables.

On the hardware evaluated for this research, switches can be configured over the network

via trivial file transfer protocol (TFTP). Two tables must be pushed to each switch, for

both the internal controller end system and the switch engine. Throughout the rest of this

research, these two configuration files are abstracted as a single table. End systems require

a single table, which can be loaded directly from a host process via the TTEthernet API.

Performing this process while the network remains online can lead to unexpected be-

havior. Critical frames need a dedicated path while in flight, but reconfiguration can block

available routes. Further, unless the whole network shifts configurations simultaneously,

two partial configurations will co-exist. During that period, frames may cross between con-

figurations or be dropped depending how the traffic policing policies align. The order in

which devices transition between configurations must be structured so dataflows swap with-

out dropping in-flight frames. As was shown in Section 2, this has been an ongoing area of

research.

3.5 The Case for Reliable Reconfiguration Techniques

The importance of fault-tolerant reconfiguration can be seen in a case study considering

NASA’s Gateway vehicle. The Gateway vehicle’s mission within the Artemis program is to

act as a partially crewed lunar-orbiting space station. The first two modules will be launched

in 2024, but the station will grow to become more sophisticated over time. It is expected to
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host a wide variety of visiting vehicles and be able to adapt to new modules flown up over

time, much like its predecessor, the ISS.

Reliable reconfiguration of its TTE avionics network is critical to Gateway’s mission. The

vehicle specification carries an explicit 1 fault tolerance requirement for the avionics [1]. As

new modules are delivered and the station expands, the network will need to be periodically

updated to accommodate the new data flows between modules. Further, visiting vehicles, a

more regular occurrence, will need to access the Gateway network. The network will need

to be updated to prepare for a new vehicle to visit. In either case, this may have to be

done in the presence of faults. With the flight lifetime of many rad-tolerant devices limited,

the vehicle is likely to outlive some of its components. Reconfiguration will inevitably be a

regular network function, but any automated reconfiguration protocol will have to be able

to overcome a faulty device, as replacement parts will not always be available.
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4.0 Approach

In this section, the approach is outlined. First, the network model and fault assumptions

are laid out. Second, the design of the protocol is presented and formally verified. Third, the

experimental setup is described. Finally, the additional calculations necessary to evaluate

Gatekeeper are defined and described.

4.1 Models

4.1.1 Network Model

Gatekeeper is designed for a network comprised of S switches and E end systems

connected in a full-duplex Ethernet architecture. Switches are arranged into a multi-plane

architecture of m planes. Each plane is generally expected to be either a daisy-chain or

active star topology, though this is not an absolute requirement. End-system devices are

comprised of a general-purpose host processor and a real-time Ethernet network interface

card (NIC), which has ≥ m physical interfaces and transmits data according to protocol

parameters. These components are tightly coupled over a host-NIC communication bridge,

like Peripheral Component Interconnect Express (PCIe), Quad Serial Peripheral Interface

(QSPI), SpaceWire, or similar.

The system is considered to be synchronous as every operation can be completed within

a bounded amount of time. Real-time Ethernet communication latency always has an upper

bound, and each computation required by Gatekeeper has a deterministic amount of work.

As such, all devices can synchronize based on either reception of a message or by a timeout

when a message is omitted.

End systems are assumed to have been assigned predetermined roles in Gatekeeper.

There are three roles which can be taken: bystander, witness, and initiator. A bystander is

an end system that receives a new table of the deployed configuration but does not assist in
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maintaining control of the deployment. A witness is an end system that coordinates with

other witness end systems to maintain consensus and control during the reconfiguration

period. For Byzantine consensus, the total group of witnesses should have at least 2f+1

members. An initiator is an end system that is initially given the configuration to distribute

around the network. Initiators can be a subset of witnesses or a separate group, and there

should be f+1 members of this group.

Finally, the placement of role-playing end systems is considered. Network reliability is

usually thought of in terms of end-to-end communication, but real-time Ethernet reconfig-

uration necessitates communication from end system to switch. Since each switch exists in

only one plane, redundant paths are much harder to leverage for these messages. Instead,

strategic placement of initiators and witnesses is used to ensure switches are reliably reached.

The details for such placement are discussed in Section 4.2.1.2.

4.1.2 Failure Model

Gatekeeper is designed to tolerate Byzantine faults occurring in end systems and

asymmetrically omissive faults in switches. This corresponds to the standard failure modes

documented in the SAE AS6802 standard [24] used extensively in TTE and ARINC 664p7 [3]

networks. The total number of faults tolerated by Gatekeeper is two less than the number

of planes in the network, or f=m-2. The faults can be located among an arbitrary group of

switches and end systems.

End-system devices are able to exhibit Byzantine failures, meaning they are capable of

altering or omitting any data they touch. This can occur in an asymmetric way which can

present differently to devices around the the system. A broad failure model is necessary

because host devices can be any kind of processor, and ensuring they are guaranteed to

reduce faults to a narrower failure mode may not be feasible. Further, host devices run

foreign applications which may contain their own faults, which are impossible to consider at

a network level. Because host devices are expected to participate in Gatekeeper, Byzantine

behavior must be tolerated, even if the network hardware is extremely reliable.
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Faulty switches can exhibit asymmetrically omissive behavior and may arbitrarily drop

data but cannot pass on altered data. This downgrade from a Byzantine failure model

is a realistic expectation for systems of interest. Ethernet switches are independent, self-

contained, and not affected by faults induced in other components. This makes it possible

to more thoroughly analyze any potential failure states which could occur. Further, many

techniques such as CRCs already exist for ensuring data integrity within switches. Addi-

tionally, high-reliability versions of real-time devices are built to reduce faults to this failure

mode. For example, TTE switching hardware is available in high-reliability models, which

use a command and monitor (COM-MON) architecture for this purpose [26].

4.2 Design

In this section the design of Gatekeeper is described. Formal proof of the guarantee

is laid out as the protocol is described. Overall, Gatekeeper has three major goals.

1. Consistency. Non-faulty devices in the system are never configured with conflicts.

2. Minimized downtime. Network reconfiguration occurs without disrupting the traffic

flows.

3. Fail-safe. Gatekeeper is guaranteed to either fully deploy the configuration or prevent

deployment if errors occur.

Gatekeeper relies on two key ideas: maintaining Byzantine consensus while distribut-

ing configuration data and testing subsets of devices as they convert to a new configuration.

The protocol uses two phases, termed Distribution and Conversion, to deploy new configu-

rations. The Distribution Phase ensures that the correct portion of the configuration arrives

at each network device. The Conversion Phase then coordinates device transitions from the

existing configuration to the new one. This design is depicted in Figure 2.

Gatekeeper first uses a root of trust to generate one-way hashes of each configuration

table and sign them before handing the new configuration to the initiators. A root of trust can

take many forms. From the Gateway example, mission control would play this role, testing
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Figure 2: The control flow of Gatekeeper

and vetting a new configuration on a ground test system, generating the hash metadata,

and uploading it and the configuration to the vehicle. Generating this metadata is key to

ensuring the protocol’s consistency goal, allowing Gatekeeper to reduce communication

costs, and the number of ways an end system can fail.

The Distribution Phase uses a two-stage algorithm to copy the configuration tables to

all devices in the network from a set of initiator devices. In the first stage, called the

End System Stage, the initiators and the witnesses agree on the configuration, and all end

systems are distributed their tables. In the second, termed the Switch Stage, witness end

systems coordinate with the initiators to provide the switches with their configurations.

At the conclusion of this phase, the appropriate configuration tables are available at every

non-faulty device in the network, ready to be loaded in the conversion phase.
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Next, the Conversion Phase uses a two-stage algorithm for transitioning devices to the

new configuration. In the first stage, termed the Bootstrap Stage, a plane is selected to first

be loaded with the new configuration and exercised to test how it handles real-time Ethernet

traffic. The second stage, the Resolution Stage, completes the protocol by reconfiguring the

end systems and any remaining planes in the network. At the conclusion of this phase, the

network will be operational under the new configuration.

To make Gatekeeper’s design possible, two primitives are necessary, reliable broadcast

and group test. Reliable broadcast is required to ensure that consensus of transmitted data is

achieved among valid end systems. Group test is necessary to guarantee that faulty switches

cannot cause disruption. In the following sections, the protocol and these primitives are

described in more detail.

4.2.1 Distribution Phase

Before distributing new tables in the network, the tables must be preprocessed by a

root of trust. First, the root of trust produces a set of hashes, one for each table. This is

called the Hash Set. For simplicity, it is assumed each device maps to a unique index in

the Hash Set, and that end system hashes come before switch hashes. Next, the root of

trust signs the Hash Set to produce a digital signature, which it attaches to the set. The

signed Hash Set uniquely represents the new network configuration. The initiators then use

Hash Set to distribute tables to the end systems and switches.

4.2.1.1 End-System Stage

The end system distribution protocol is shown in Algorithm 1. Let H be the signed

Hash Set, R be the set of initiators, W be the set of witnesses, T be the set of tables, and

MyIndex be the index of the end system taking a given action.

First, an initiator uses a reliable broadcast [12] protocol to send the signed Hash Set

to all end systems. At the conclusion of this step, all non-faulty end systems agree on the

correct Hash Set. Reliable broadcast is a staple of Byzantine consensus algorithms and is

fulfilled by three requirements:
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• Validity - All correct receivers will eventually possess a message if a correct sender

broadcasts it.

• Agreement - If one correct device decides on a message value, then all correct devices

will decide the same.

• Integrity - A correct device decides on only one, correct value, ie. the one broadcast.

Reliable broadcasts can be realized through many mechanisms, such as voting on inputs

from a multi-plane architecture, using application-level CRCs, or using other cryptographically-

assured methods. In Gatekeeper, the multi-plane architecture prevents data retransmis-

sion, which ensures the sender of the broadcast speaks only once. The reception ports perform

a hybrid majority vote on the received message. This set up ensures integrity, agreement,

and validity for any critical traffic transmission [14].

The initiators then all send each configuration table to the corresponding end system.

Each end system only accepts a table if it matches the corresponding entry in their accepted

Hash Set. Lemma 1 demonstrates that the system will only decide to deploy correct con-

figurations, and Lemma 2 shows that configuration will be successfully distributed to end

systems.

Lemma 1. All non-faulty end systems possess the correct Hash Set before the tables are

distributed.

Proof. First, we prove that for each initiator ri, either all non-faulty end systems accept

the same Hash Set from ri, or reject it. Since the Hash Set is broadcasted with a reliable

broadcast, it is the same for all non-faulty end systems. Since the witnesses broadcast their

accept bits also using reliable broadcast, it is also the same for all non-faulty end systems.

Thus, all non-faulty end systems either choose to accept the same Hash Set, or reject it.

Next, we prove that, if an initiator ri is faulty, it cannot cause the non-faulty end systems

to accept an incorrect Hash Set. A non-faulty end system accepts the Hash Set if it is

authenticated by > f witnesses, of which ≥ 1 must be non-faulty. A non-faulty witness only

authenticates a Hash Set if it is signed correctly by the root of trust. Thus, any Hash Set

accepted by the non-faulty end systems must be correct.
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for ri ∈ R do
ri ByzantineBroadcast(H);
All Receive (H) from ri;
for wj ∈W do

if Sign(H) = Sign(RootOfTrust) then
wj ByzantineBroadcast(accept );

else
wj ByzantineBroadcast(reject );

end

end

consensus← 0;
for wj ∈W do

All Receive(bit) from wj ;
if bit = accept then

consensus++;
end

end
if consensus > f then

break;
end

end

for ri ∈ R do
for j ← 0 ... (E − 1) do

ri Send(T [j]) to end system j;
end
All Receive(MyTable) from ri;
if Hash(MyTable) = H[MyIndex] then

accept configuration table;
end

end
Algorithm 1: Distribution Phase, End System Stage
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Next, we prove that all non-faulty end systems will end up with the correct Hash Set.

Since there are ≥ f + 1 initiators, there is ≥ 1 non-faulty initiator. That means that, if all

other initiators are faulty and fail to get the Hash Set accepted, ≥ 1 non-faulty initiator will

broadcast the correct Hash Set to all end systems. In the worst case, 2f + 1 − f = f + 1

witnesses accept the broadcast, which causes all non-faulty end systems to accept the correct

Hash Set.

Lemma 2. At the conclusion of the algorithm, all non-faulty end systems possess their

correct configuration table.

Proof. All initiators send each table to the corresponding end system. Since there are≥ f+1

initiators, there is ≥ 1 non-faulty initiator that sends the correct table to each end system

over the redundant planes. Since there are ≥ f + 2 planes, at least one plane is non-faulty.

Lemma 1 implies that all non-faulty end systems possess the correct Hash Set. Thus, all

non-faulty end systems receive a correct table, check it against the correct Hash Set, and

accept the table.

4.2.1.2 Switch Stage

After tables are distributed to the end systems, initiators send them to the switches.

Because switches exist as part of only one plane, the Switch Stage requires a different dis-

tribution mechanism than the End System Stage. The first thing to consider is that any

computing capability a switch can offer is limited, so it is advantageous for the end systems

to handle decision-making. Second, frames transmitted to the switch cannot be duplicated

on independent channels, so faulty switches can now block communication paths.

The switch distribution protocol is shown in Algorithm 2. Again, H is the signed

Hash Set. U is a set of indices of switches that have not yet been configured. Initially,

U contains all switch indices. REQUEST is a command sent to a switch to request a hash of its

table. LOCK is a command sent to a switch to tell it to stop accepting new tables. A switch

only responds to LOCK if it receives ≥ f + 1 LOCK commands.
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for ri ∈ R do
for j ← E ... (E + S − 1) do

ri Send(T [j]) to switch j;
end

for wj ∈W do
for u ∈ U do

wj Send(REQUEST ) to switch u;
h← hash from switch u;
if h = H[u] then

Broadcast(accept );
else

Broadcast(reject );
end

consensus← 0;
for wk ∈W do

wj Receive(bit) from wk;
if bit = accept then

consensus++;
end

end
if consensus > f then

wj Send(LOCK ) to switch u;
U .remove(u);

end

end

end

end
Algorithm 2: Distribution Phase, Switch Stage
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First, an initiator sends each table to the corresponding switch. The witnesses then

request a hash of the table from each switch, and broadcast a bit indicating whether the

received hash matches the Hash Set. The ability to broadcast the hash of a loaded table is a

standard function of some real-time Ethernet switches [27]. If more witnesses accept the table

than reject it, then the switch is considered configured and removed from U . The process

is repeated for every initiator, with witnesses only requesting the tables of unconfigured

switches. To reduce the communication overhead, the initiators could also listen to the

witness broadcasts and maintain U in order to avoid sending tables to already configured

switches.

Importantly, since frames transmitted to switches cannot be duplicated on independent

channels, a faulty switch has the ability to block an end system from communicating with

another switch. The severity of this problem depends on the topology. For simplicity, it is

assumed that all switches are reachable, meaning: (1) there are ≥ f + 1 paths from each

switch to initiators (some of which may be faulty), and (2) there are ≥ 2f + 1 paths from

each switch to witnesses. These conditions are always met in single-hop architectures (like

Figure 1). For multi-hop architectures, they can be met with careful device placement, or

by increasing the number of initiators or witnesses where necessary.

Lemma 3. At the conclusion of the algorithm, all non-faulty switches possess their correct

configuration table.

Proof. First, we prove that a non-faulty switch will never lock an incorrect table. Assume a

switch did lock an incorrect table. This means the switch received ≥ f + 1 LOCK commands

from witnesses, which means ≥ 1 came from a non-faulty witness. A non-faulty witness

only sends LOCK if it receives > f accept broadcasts, which means that ≥ 1 came from a

non-faulty witness. A non-faulty witness only broadcasts accept if the hash it received from

the switch matches the corresponding entry of Hash Set. Thus, the switch table is correct,

which is a contradiction.

Next, we prove that a switch will eventually lock the correct table. All initiators send

each table to the corresponding switch. Since there are ≥ f + 1 initiators, there is ≥ 1

non-faulty initiator. This means that every non-faulty switch receives > 1 correct table.
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Since there are ≥ 2f + 1 witnesses, there are ≥ f + 1 non-faulty witnesses. Each non-faulty

witness will request the switch’s hash, see it matches Hash Set, and broadcast accept. As

a result, all non-faulty witnesses will receive > f accept bits and send LOCK to the switch.

Since there are ≥ f + 1 non-faulty witnesses, the switch receives ≥ f + 1 LOCK commands

and locks in the table.

Though not desirable, isolated switches are tolerated by both the system and Gate-

keeper. Both protocol and network architecture operate on the worst-case assumption

that a plane may be completely incapable of sending data. Even if a switch cannot be re-

configured over-wire, the resulting fault cannot propagate out of a plane, and the system

degrades gracefully. Thus, in situations where path thresholds absolutely cannot be met,

Gatekeeper can still perform the reconfiguration properly with just those devices which

are reachable.

4.2.2 Conversion Phase

Once the Distribution Phase is complete, all non-faulty devices possess their correct con-

figuration tables. However, none of the devices have yet transitioned to using the new tables.

The purpose of the Conversion Phase is to switch devices over to the new configuration, while

minimizing interruption to the network. This is done by leveraging the redundancy of the

network planes (see Section 4.1.1), and migrating the planes to the new configuration one

at a time.

In order to minimize downtime, end systems are reconfigured after the first plane is

reconfigured, but before the other planes. This way, the interruption to the traffic flows be-

tween end systems is determined only by the time needed for the end systems to reconfigure.

End systems can communicate with each other up until the moment they are commanded

to reconfigure. Also, as soon as their reconfiguration is complete, a plane is already ready

to direct their new traffic flows.

In order for this approach to be most effective, it is important to ensure that the first plane

that is reconfigured is non-faulty. Otherwise, end systems will experience some interruption

until the other planes are reconfigured as well. To accomplish this goal, the Conversion
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// Bootstrap Stage
result← Fail;
for i← 0 ... f do

Send(CONVERT) to all switches in plane i;
result← GroupTest (i);
if result = Pass then

break;
end

end

if result 6= Pass then
Exit, configuration is incorrect;

end

// Resolution Stage
Send(CONVERT) to all end systems;
for j ← (i + 1) ... (m− 1) do

Send(CONVERT) to all switches in plane j;
end

Algorithm 3: Conversion Phase

Phase is split into two Stages. The Bootstrap Stage is used to identify the first plane to

migrate, and to ensure it is non-faulty with high probability. The Resolution Stage is used

to carefully migrate the end systems and remaining planes.

4.2.2.1 Bootstrap Stage

The Bootstrap Stage is shown in Algorithm 3, which is executed by all the witnesses.

Let CONVERT be a command sent to a switch telling it to load a new configuration. A switch

only responds to CONVERT if it receives ≥ f + 1 CONVERT commands. Let GroupTest be a

routine used by the witnesses to test a plane after it has been reconfigured.

First, the witnesses send a command to reconfigure the switches in a particular plane.

Next, they execute the GroupTest to determine whether the plane behaves correctly with

the new configuration. This GroupTest can be as simple as communicating a predetermined

pattern between witnesses. If the test completes successfully, then the Bootstrap Stage is

complete and the witnesses proceed with the rest of the Conversion Phase. Otherwise, the

witnesses repeat the process with the next plane. For the Bootstrap Stage to be successful,

it is only necessary to test f + 1 planes.
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The ability for Gatekeeper to select a non-faulty plane in the Bootstrap Stage, and

thus to minimize downtime, depends on the sophistication of the GroupTest. At a minimum,

the GroupTest has the following properties.

1. Adequate evaluation: The test demonstrates that the reconfigured plane has a high

probability of operating successfully until the other planes are reconfigured.

2. No false negatives: If the reconfigured plane is non-faulty, faulty witnesses cannot

cause the test to fail.

3. Consistent results: All non-faulty witnesses agree on whether the test succeeds or

fails. This can be accomplished using a reliable broadcast protocol, as in Algorithm 1.

Lemma 4. At the conclusion of the Bootstrap Stage, ≥ 1 non-faulty plane will still be

configured with the previous configuration.

Proof. The Bootstrap Stage reconfigures the planes one at a time, stopping as soon as

the GroupTest succeeds. Per the assumptions above, a non-faulty plane must pass the

GroupTest. Since there are ≥ f + 2 planes, there are ≥ 2 non-faulty planes. Thus, when the

GroupTest first succeeds, there must be ≥ 1 non-faulty plane that has not been reconfigured.

Besides selecting an (ideally) non-faulty plane to reconfigure, the Bootstrap Stage can

also be used to detect errors in the configuration itself. The Bootstrap Stage runs GroupTest

on f + 1 planes in the worst case, of which one must be non-faulty. Per the assumptions

above, GroupTest is guaranteed to succeed for any non-faulty plane. Thus, if no GroupTest

has succeeded at the conclusion of the Bootstrap Stage, there must be a problem with the

new configuration. An example of such a defect would be the constraints for sending and

receiving messages may not be consistent, and thus misalignment of transmission windows

occurs as the new configuration deploys. Per the earlier assumptions, all non-faulty witnesses

agree on the results of each test. Thus, if GroupTest never succeeds, all non-faulty witnesses

are aware and can work together to perform the appropriate recovery action.

Even if the new configuration is incorrect, ≥ 1 plane is guaranteed to still have the

old configuration, so in most cases, the system can continue to operate normally while
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the recovery is performed. The only case which cannot support recovery occurs when the

reconfiguration order puts all non-faulty planes first, leaving only faulty planes after the

bootstrap stage. It is possible to introduce another plane to guarantee recovery by adding

another plane, but due to the associated hardware costs, this is not considered a good

tradeoff.

4.2.2.2 Resolution Stage

At the conclusion of the Bootstrap Stage, one non-faulty plane has been migrated to the

new configuration and passed the GroupTest. In the Resolution Stage, the end systems are

commanded to switch to this new configuration. Afterwards, the other planes are reconfig-

ured as well. The protocol is shown in Algorithm 3, again executed by all the witnesses.

CONVERT is a command used to reconfigure the switches and end systems. Both require

≥ f + 1 CONVERT commands in order to take action.

Whether or not frames are dropped during the Resolution Stage depends on how tightly

coordinated the end systems are when switching to the new configuration. In a TTE archi-

tecture, where devices are tightly synchronized, and the times at which frames are sent and

received are known, drops can be eliminated by having end systems reconfigure at specific

times at which no frames are in transit. Many recent works have studied how to minimize

drops in non-time-triggered networks, or networks in which frames are in transit [19, 18].

Any of these could be used in Gatekeeper.

The end systems can also be treated as groups and migrated piecemeal, similar to the

switches. In cases where network availability is less important than protecting critical end

systems from stepping into defective configurations, a subset of less key end systems can be

tested to ensure that end-to-end paths of the same configuration are function. This is only

particularly useful when there is little confidence that the root of trust will only sign and

upload trustworthy configurations.

After the end systems are reconfigured, all that remains is to reconfigure the planes that

were not reconfigured in the Bootstrap Stage. Once this is done, Gatekeeper terminates.
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Finally, theorem 1 demonstrates that at this termination Gatekeeper has successfully

reconfigured all non-faulty devices.

Theorem 1. At the conclusion of Gatekeeper, all non-faulty devices have loaded their

correct configuration table.

Proof. Lemma 2 implies that, at the conclusion of the Distribution Phase, all non-faulty end

systems possess their correct table. In the Conversion Phase, each witness sends CONVERT to

all end systems. Since there are ≥ 2f + 1 witnesses, ≥ f + 1 witnesses are non-faulty. Thus,

all non-faulty end systems receive ≥ f + 1 CONVERT commands and reconfigure.

Lemma 3 implies that, at the conclusion of the Distribution Phase, all non-faulty switches

possess their correct table. In the Bootstrap Stage, each witness sends CONVERT to all switches

in planes 0...i. Since ≥ f + 1 witnesses are non-faulty, all switches in planes 0...i. receive

≥ f + 1 CONVERT commands and reconfigure. In the Resolution Stage, each witness sends

CONVERT to all switches in the remaining planes. Again, since≥ f+1 witnesses are non-faulty,

all switches in those planes also reconfigure.

4.3 Evaluation on a Time-Triggered System

To evaluate Gatekeeper, a prototype was implemented for a TTEthernet TTE system.

The prototype takes the form of a controller, written in C code, running on each end system

as a bystander, witness, initiator, or a combined witness-initiator. This is shown in Figure 3.

The controller program uses several common Linux utilities:

• sha256sum for generating the SHA-256 hashes needed for consensus

• OpenSSL for using the RSA-2048 signature from the root of trust

• TFTP used by TTEthernet for pushing configuration tables to switches

• SNMP used by TTEthernet for polling for switch hashes & reconfiguration commands

The system is composed of four TTTech A664 Pegasus XMC end systems attached to

quad-core Intel i3-450 host processors via PCIe, and three TTTech 24 port Space ASIC Lab

switches. The network is configured with one switch per plane using 100 Mbps connections.
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Figure 3: Software architecture for TTE prototype implementation of Gatekeeper

Because the end system cards do not have a standard Ethernet interface, the TFTP and

SNMP functions were run through the best effort ports on the end system hosts and a

separate switch to the reach the TTE switches. Testing any faults arising from the specifics

of traditional Ethernet traffic is not critical to characterizing the behavior of the protocol,

saving significant time by not rewriting the utilities to conform to a new interface.

Although in a field-ready implementation, switch LOCK and CONVERT functions should be

able to handle redundant commands to guard against a faulty ”babbling-idiot” node, this

functionality is not tested on the test system. Testing this fault mode is not critical to char-

acterizing performance as the work around shown in Figure 4 achieves similar performance

and implementing necessary changes would require rewrites to switch firmware. For this

evaluation it assumed this specific fault never arises.

The group test for a TTE system is implemented by maintaining two RC VLs across the

life of the system. To create a testable end-to-end path without interrupting the standing

configuration, the end systems contain the definition for both VLs at all times, while the

switches only ever contain one. On the test system, this can be done after the system

is scheduled by striping the appropriate definition from only the switch schedules before

building the configuration tables. The VLs held by the deployed configuration can be driven

any time by the end systems in the original configuration, but can only reach their destination

when a non-faulty plane is reconfigured to have the missing portion of the path.
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Figure 4: Evaluation testbed for Gatekeeper

On this set up, three operating modes of Gatekeeper were evaluated directly: Oper-

ating in the absence of faults, referred to as GKc, operating in the presence of a worst-case

end-system fault, GKes, and operating in the presence of a worst-case switch fault, GKsw. A

worst-case end-system fault is a device acting as both a witness and initiator, which has also

been assigned the first turn in order, acting as either a babbling idiot (worst communication

cost), or fully omissive (worst time cost). A worst-case switch fault occurs when a switch in

the plane first in line for bootstrapping becomes fully omissive.

As a ground truth for this system, a simple reconfiguration protocol called FastRec is

used. FastRec uses a single initiator to distribute each configuration and then reconfigure

them, first with switches, then end systems. Some variants of FastRec are also considered,

which account for some naive optimizations and provide some additional performance context

for Gatekeeper. The FastRec group does not consider fault tolerance and so would break

under the conditions of GKes or GKsw. They only act as the most efficient reconfiguration

method for the testbed system.
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4.4 Calculating Scalability

It is crucial to characterize performance of the system at larger scales. Faults are far

more likely in networks composed of dozens of devices and the reconfiguration period for

such systems is significant. However, limited hardware supply makes implementing larger

systems infeasible for this thesis. Luckily, Gatekeeper’s algorithms are highly deterministic

and were very consistent in operating cost for the configurations tested. This allows for

the construction of equations that can provide accurate scaling characteristics. Cost takes

the form of either communication overhead or execution time overhead, so equations were

generated for both. Below are the equations used for every GK and FastRec variation

presented in experimental results. Note these are specific to a single-fault-tolerant system.

The equations for communication overhead (number of exchanged messages) can be

devised by summing every interaction in terms of its message size and the number of par-

ticipants. This can be repeated again, weighing each term against the size of its messages.

The total interactions can be known, given the number of end systems (E), switches (S),

witnesses (W ), and initiators (R) as well as the number of messages needed to drive a group

test (G), yielding in the most condensed form:

FastRec = 2(E + S) (4-1)

FastRecRep = 4(E + S) (4-2)

GKc = R ∗ E + S + (4S + E + 1)W + G + 2 (4-3)

GKes = R ∗ E + 2S + (7S + E + 2)W + G + 4 (4-4)

GKsw = R(E + 1) + S + (4S + 3R + E)W + 2G + 1 (4-5)

GKcomOp = E + S + (4S + E + 1)W + G + 2 (4-6)
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The equations for execution time can be found by considering the major stages of the

protocol and placing the divisions over each component of logic that may be cyclic. These

are consensus (C), distribution (D) for both end systems and switches, bootstrapping (B),

the group test (G), and reconfiguration (K). In the case of time, timeouts for silent actors

must also be accounted for, denoted as (TO). This yields:

FastRecNaive = (DSW + KSW )S + (DES + KES)E (4-7)

FastRecSmart = (DSW + KSW )S + (DES + KES∗)E (4-8)

GKc = C + DES ∗ E + DSW ∗ S + B + KES + 2KSW + G (4-9)

GKes = CTO + C + DESTO
+ DSWTO

+ DSW + BTO + G + KES + 2KSW (4-10)

GKsw = C + DESE + DSW (S − 1) + 2DSWTO
+ BTO + B + 2G + KES + KSW (4-11)
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5.0 Experimental Results

In this section, Gatekeeper is evaluated to address three metrics 1) communication

cost as the system scales, 2) runtime cost as the system scales, and 3) stability of network

availability in the presence of faults. The primary varible manipulated is number of end

systems. Though the effects of the number of switches are also noted, they will always tend

to be the smaller group due to their high cost to SWaP-C considerations. Setups with large

switch over end system ratios are rare. The scaling results were calculated from the equations

presented in Section 4.4 and the cost values observed from the testbed (shown in Tables 1

and 2).

Table 1: Bytes of payload data used in each message of Gatekeeper

Size of Gatekeeper Messages

Message/File Size [Bytes]

End System Table 1938 (Avg.)

Switch Table 4508

One Vote 2

One Cmd 2

SHA-256 Hash 32

RSA-2048 Sig. 256

Signature File 350

Hash Vector File 715

SNMP Get 96+129 (Call+Resp.)

SNMP Set 98+101 (Call+Resp.)

In defining these cost values, the following considerations were made. In the prototype,

votes and commands, like CONVERT and LOCK, are composed of a tag and value contained in

two bytes. The end-system table sizes are tied to the number of VLs defined for each, so,

for these calculations, the average size is used. The switches require two tables to operate,
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and the value here is the sum of both. SNMP interactions include a call and response frame

conjoined into one operation.

Table 2: Time required to perform each operation of Gatekeeper

Execution Time of Gatekeeper Operations [s]

Action Time (Measured) Timeout

Round of Consensus 0.492 2.0

ES Table Distribution 0.023 / Table 2.0

SW Table Distribution 0.483 / Table 5.0

SW Table Validation 0.068 / Table 5.0

Bootstrap Round 0.88 2.0

Group Test 1.010 2.0

ES Reconfiguration 9.070 / Device –

SW Reconfiguration 0.293 / Device 5.0

To keep all end systems synchronized, every operation needs a timeout to be assigned.

Operations of the Gatekeeper controller were assigned a timeout of 2.0 s while timeouts

of the Linux utilities are 5.0 s. The larger timeout is used because it is the default for most

of the underlying utilities.

5.1 Communication Overhead

In investigating communication overhead, both the number of messages required and the

total bytes transmitted were evaluated. The ground truths of this evaluation are FastRec and

FastRecRep. FastRec shows the most efficient way a TTE configuration can be deployed,

while FastRecRep shows the naive overhead of duplicating the whole process from a second

initiator. The relative overhead is always considered with respect to FastRec.

First, considering the overhead in terms of number of messages generated, the test system

implementation of Gatekeeper required 114% more messages than FastRec under GKc,
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157% under GKsw and 221% under GKes. This is to be expected since FastRec generates

only table distribution and reconfiguration messages. As the size of the system grows, the

clear trend of overhead decays towards a limit determined by the number of repeat operations

necessary to overcome a fault. This as shown in Figure 5.
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Figure 5: Relative message cost of Gatekeeper compared to FastRec

Next, total bytes transmitted were evaluated. This properly weighs the impact of each

message. The number of bytes for each message was measured from the egress port of

each end system, which makes broadcast and unicast messages equivalently costly for these

calculations. As shown in Figure 6, the overhead takes two major components. The first

is control cost, composed of voting, commanding, synchronization, consensus-holding, and

SNMP operations. The second is configuration cost, composed of the configuration and

any redundant copies of tables used in distribution. The test system overhead for GKc is

57%, while GKsw generates a total of 80% overhead and GKes generates 122%. All runs of

prototype GK generate some redundancy cost, though only a worst-case end-system fault

drives more overhead than FastRecRep.

Scaling the relative data cost by increasing the number of end systems is depicted in

Figure 7. GKsw mirrors the trend from Figure 5 and approaches a limit of 98%. Meanwhile,

GKes approaches 90% overhead and GKc approaches 83%. In all cases, daisy-chaining a

second switch in the network (‘2hop’) increased the overhead. Figure 8, shows the total
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bytes transmitted as the systems scale. As seen, all protocols scale roughly linearly with

more end systems.
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Figure 7: Aysmptotic behavior in terms of relative data overhead vs. increasing the number

of end systems

In varying both the number of switches and end systems, as depicted in Figure 9, the

convergence of each mode to a limit continues, but now with a “sawtooth” pattern caused by

each increase in switches. For GKc and GKsw, additional switches drive down the overhead

since the ratio of end systems to switches is decreased. These trends will converge together
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as the overhead of a faulty switch diminishes at scale. For GKes, the overhead increases with

each switch since the total data to transmit goes up.
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Figure 9: The converging sawtooth pattern of scaling both switches and end systems

The trends for GKcomOp are present throughout the communication analysis. This is

a variation of Gatekeeper created by only using one end system at a time to distribute
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end-system tables. In the presence of faults, valid end systems can poll other initiators for

more copies of tables. With no faults, this option leaves no configuration redundancy but

forces costs of controller complexity and runtime. This tradeoff means GKcomOp requires

35% less overhead on the test system (Figure 6), scales down as the system grows (Figure 7),

and can reach as low as 3% overhead in a large system (Figure 9).

5.2 Runtime Overhead

The runtime overhead was evaluated to ensure Gatekeeper exhibits acceptable per-

formance at scale. Measurements for this metric are in milliseconds, as that is the scale at

which the execution time of Gatekeeper become highly time-stable. The ground truths

for this section are FastRecSmart and FastRecNaive. FastRecNaive distributes tables to and

then reconfigures each device one at a time, much as a technician manually working on the

system would. FastRecSmart does not wait for the result of the reconfiguration command,

overlapping most of the time cost. FastRecSmart does have to pause between switch and

end-system reconfiguration, because a switch cannot pass on data while it reconfigures itself.

0

10

20

30

40

50

60

70

FastRecSmart FastRecNaive GKc GKes GKsw

Ex
ec

u
ti

o
n

 T
im

e 
[s

]

Breakdown of Execution Time 

Resolve Planes

Convert ESs

Bootstrapping

Distributing SW Cfg

Distributing ES Cfg

Concensus

Figure 10: Runtime overhead of each operation in Gatekeeper and FastRec

37



As seen in Figure 10, FastRecSmart is the fastest mechanism for the testbed at 12.662

s. GKc lags behind at 13.775 s. Though GKes experiences timeouts for every control action

(totalling 30.106 s), it is still faster than FastRecNaive’s approach (38.708 s). Because it

triggers the most high-cost utility timeouts, GKsw has the worst overhead at 64.116 s.
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Figure 11: Runtime scaling for protocols vs size of system

As shown in Figure 11, FastRecNaive immediately falls behind the other protocols at

scale, as reconfiguring each device in isolation is the least efficient way to perform the opera-

tion. Figure 12 more closely shows GK and FastRecSmart. Gatekeeper takes on a tiered

pattern as the system grows. While end systems require 0.092 s per new device, switches are

introduced three at a time, requiring 2.5 s more for each new hop. FastRecSmart requires

0.283 s per new device giving it a more linear cost.

5.3 Network Availability

For this evaluation, an available network is defined as all end systems being operational

with at least one valid path between all points in the system. Downtime exists between the

last moment that is true for the standing configuration and the first moment it is true for
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deployed configuration. For Gatekeeper, this is measured from the moment the system

leaves the sync barrier preceding the end system reconfiguration logic until the last end

system exits the logic. FastRecSmart and FastRecNaive are again ground truths, and their

downtime is measured from the moment that the last switch is reconfigured, until the last

end system completes reconfiguration.

For the testbed system, the minimum time an end system can spend in the reconfiguration

period is 9.070 s. This is composed of three time segments: two 0.5 s pauses inserted to flush

the network of in-flight frames, a vendor recommended 5.0 s delay to allow the system to

stabilize, and the actual time the card takes to reconfigure, 3.07 s. Though this procedure

could be optimized further, this method is applied uniformly between Gatekeeper and

FastRec.

Regardless of fault placement, GK consistently maximizes availability, requiring 9.072 s

to reconfigure. The 0.002 s arises from a rudimentary synchronization mechanism and can

be reduced. Other than expecting this jitter to increase with more end systems joining the

synchronization, 9.072 s remains the downtime for the system at any scale. FastRecSmart
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Figure 13: Network downtime for Gatekeeper and FastRec

increases its overhead by about 0.28 s per new end system, and FastRecNaive requires an

additional 9.07 s per device.

Network availability is where Gatekeeper excels. This is expected as the witnesses

coordinate a moment at which all end systems reconfigure together and the system has

established a plane they can immediately begin synchronizing with. With a quality synchro-

nization, the network downtime is always minimal, regardless of fault placement or number

of devices. Even though FastRec is efficient at deploying the configuration, it carries with it

some small linear availability overhead mainly from the cost to issue each command.
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6.0 Discussion

As shown in the results, Gatekeeper achieves its goal of maximizing network availabil-

ity. While using simple deployment scripts like FastRec may have faster overall performance,

especially at small scale, they always carry some overhead from either causing a configura-

tion mismatch between switches and end systems, serializing end-system reconfiguration,

or both. The minimal possible downtime is the period of time it takes one end system to

reconfigure and a proper implementation of Gatekeeper will always set up this minimum

window, regardless of potential fault.

The cost to achieve availability in a fault-tolerant way is acceptable under the Gate-

keeper scheme. Because all relative trendlines approached some asymptotic limit in the

evaluation, Gatekeeper’s communication overhead will always remain near a predictable

overhead, usually around 96% more thant the most efficient solution, Further, the overall

cost is linear with the size of the system. Additionally, the vast majority of the overhead

comes from redundant copies of end-system tables, which can be optimized away if overall

runtime is not the priority. The exact overhead of a network using Gatekeeper is dictated

by the quantity of redundant configuration data plus the control data over the size of the

original configuration.

Switches also have a notable impact on the communication overhead, tending to be the

more expensive device. In terms of communication, changing the number of switches shift

the relative overhead curve, always opposite the asymptote approached at scale. In real

systems, designers will minimize the number of switches to save on size, weight, power, and

cost. This minimization may cause the sawtooth pattern to emerge, with switches driving

the relative overhead in one direction, usually down, and end systems driving it the other.

However, at large scale, adding or removing single devices is less impactful, smoothing the

curve.

Runtime overhead also tends to be linear and strongly tied to the number of switches

rather than end systems, which makes sense as a group of end systems think for the switch.

While slower than FastRec scripts at small scale, the ability to perfectly overlap the end-
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system overhead enables Gatekeeper to improve over naive solutions at scale. Given the

large reconfiguration time cost for the evaluation test system end systems, this was dramatic

in these results. Further, most runtime cost in the presence of faults is owed to timeouts, a

parameter which is highly tunable and can improve further than the options selected in this

work.

Gatekeeper can achieve such performance characteristics because its control overhead

is tied to the number of faults, not the quantity of devices. This allows a small group of

controllers to lead a potentially large group of devices. The use of the Hash Set allows the

whole system to reduce overheads to sizes that are quickly reduced to noise compared to the

size of the actual configuration. This makes emerging patterns of overhead more expensive

for small systems, like the testbed, but helps quickly stabilize to reasonable costs in larger

systems.
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7.0 Conclusions

While many solutions that seek to improve the reconfiguration process of real-time sys-

tems exist, none are able to withstand the interference of faulty hardware. This leaves an

important gap in the design of systems which are meant to grow and evolve beyond what

can be contained in a single network configuration. Gatekeeper helps address this gap by

creating a deployment mechanism which can withstand faults interrupting the distribution

of data. Further, it shows how a test-and-migrate reconfiguration strategy is effective at

navigating around faults, maximizing availability during the reconfiguration process.

To our knowledge, Gatekeeper represents the first approach to real-time reconfigu-

ration featuring a fault tolerance angle. The protocol is able to both distribute data and

perform the reconfiguration in the presence of faults. More powerfully, Gatekeeper is a as

much a generally applicable strategy, as a strictly defined protocol, and can be coupled with

other state-of-the-art techniques for dataflow and frame consistency and network availability

to further boost its capabilities.

The results demonstrate that the techniques used in Gatekeeper scale linearly in both

execution time and communication cost. Prototype evaluations showed that fault tolerance

can be achieved with just 57% communication overhead, which is superior to naive dupli-

cation solutions. Even in the presence of faults, Gatekeeper successfully reconfigured the

test network with only 120% more communication than the most efficient solution. In all

cases, these overheads were calculated to scale up towards a constant relative overhead,

which is dictated by the ratio of total end system data to switch data in the configuration.

Gatekeeper can be optimized even further to only require about 3% more communication

than communication optimal solutions in systems larger than 24 end systems. This optimal

communication solution, and other tweaks like it, provides exciting design tradeoffs which

can optimize Gatekeeper’s performance at scale.

Gatekeeper is also capable at consistently minimizing network downtime, with or

without faults present. This makes it competitive with similar state-of-the-art methods.

The prototype was able to consistently come within 2 ms of maximum availability, despite
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having a simple synchronization method. Two milliseconds is 0.0001% of the end system

reconfiguration overhead for the test system evaluated, and this tiny quantity of extra down-

time is not expected to appreciably grow in scaled system. Not only does this lead to an

interrupt 1000x less than simple solutions, which carried 1170 ms of unnecessary downtime

on the evaluated system, but scaling calculations suggest that such tight coordination of all

end system reconfiguration can enable Gatekeeper’s total runtime to be faster than even

simple solution in large systems.

A useful avenue for expanding on this research is an in depth analysis of efficient designs

for the group test. Satisfying the three properties is simple for small systems but naive

solutions, like all-to-all broadcasting can exponentially grow reconfiguration costs. Scalable

methods which still deliver highly certain outcomes will be key to applying Gatekeeper

to larger systems.

Additionally, more research into performance in the presence of multiple faults would

improve upon this work. Hardware design limitations generally support only three planes,

but investigating simultaneous faulty end systems would offer insight into best practices

for device arrangements and role assignments. Specifically, multiple faulty devices cause

more constraints for properly applying path thresholds during the switch stage. Efficiently

addressing this design space will be key for large systems to implement Gatekeeper.

Finally, this research could further be built upon by tying Gatekeeper together with

other reconfiguration techniques. As discussed, Gatekeeper’s conversion method ensures

the co-existence of network paths for both old and new configurations. This could simplify

considerations for complex, complementary techniques, like those in Section 2, which could

be used to significantly reduce the minimum downtime achievable by the hardware. Matching

Gatekeeper to a zero frame-loss reconfiguration method has the potential to create fault-

tolerant techniques which are completely invisible to the applications using the network.

44



Bibliography

[1] International avionics system interoperability standards (iasis). Technical report,
Partnership of International Space Station Agencies, 2019.

[2] European Space Agency. Ariane 6. https://www.esa.int/Enabling_Support/

Space_Transportation/Launch_vehicles/Ariane_6. Accessed: 2021-06-30.

[3] ARINC. Aircraft Data Network Part 7: Avionics Full-Duplex Switched Ethernet
Network-ARINC Specification 664 P7-1, 2009.
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