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Abstract 

Projection-based Topology Optimization Method for Linear and Nonlinear Design 

 

Hao Deng, Ph.D. 

 

University of Pittsburgh, 2021 

 

 

 

 

Lighter designs are desirable in many industrial applications and structural optimization is 

an effective way to generate lightweight structures. Topology optimization is an important tool for 

investigating the optimal design of engineering structures. Although continuum topology 

optimization method has already achieved remarkable progress in recent years, there still exist 

several challenges for conventional density-based method such as manufacturability. Additive 

manufacturing (AM) is a rapidly developing technology by which the design can achieve more 

freedom. However, it does not mean that the optimized design generated by topology optimization 

algorithm can be directly manufactured without any geometry post-processing. Besides AM 

techniques, the traditional manufacturing methods of machining and casting are also popular in 

recent years, because the majority of engineering parts are manufactured through these methods. 

It is difficult for conventional density-based method to account for these manufacturing 

constraints. The projection-based topology optimization approach is a new trend in this field to 

properly restrict the optimal solutions by implementing geometric constraints. The nature of 

projection method is to apply new design variables projected in a pseudo-density domain to find 

the optimal solutions. 

  

In this dissertation, several advanced projection-based topology optimization schemes are 

proposed to resolve linear and nonlinear design problems and demonstrated through numerical 

examples. In chapter 2 and 3, a new projection technique is proposed to resolve nonlinear topology 



 v 

optimization problems with large deformation. Chapter 4 describes a novel design method, which 

combines the TPMS (Triply periodic minimal surface) formulation with standard projection-based 

method to design functionally graded TPMS lattice. In chapter 5, a projection-based method is 

combined with moving particles for reverse shape compensation for additive manufacturing 

technique. Chapter 6 describes a density‐based boundary evolving algorithm based on projection 

function for continuum‐based topology optimization. In the chapter 7, a novel projection-based 

method for structural design considering restrictions of multi-axis machining processes is 

proposed.  
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1.0 Introduction 

The primary goal of this dissertation is to propose several advanced projection-based 

methods for structural and shape optimization ranging from linear to nonlinear physical problems. 

The main focus of the proposed methods lies in the implementation of manufacturing constraints 

for optimal designs. The motivation, background and research objective are presented in this 

chapter.  

1.1 Topology Optimization 

Structural topology optimization is a tool for distributing material in a prescribed domain 

to obtain optimized structural performance through an optimal way. Topology optimization 

experienced a rapid development since the pioneering works of Bendsoe and Kikuchi[1]. 

Nowadays, several advanced and powerful methods have been proposed for topology optimization 

(TO), where TO method is already been used in many application fields. A state-of-the-art review 

of recent developments in TO can be found in Refs [2-7]. Solid Isotropic Material Penalty (SIMP) 

method [8] and level set method [9, 10] are the most common TO methods. The SIMP method 

penalizes the intermediate region to obtain a solid-void design, while the level set method 

represents the structural design implicitly via the zero-level set of a function, which does not 

require penalization of intermediate densities and a clear solid-void interface can be found. Instead, 

this advantage of level set method may come at the expense of other challenges such as relatively 

poor convergence [2].  Besides the conventional topology optimization method, several new TO 
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method are proposed in recent years. Guo et al [11, 12] proposed a new computational framework 

called the moving morphable component (MMC), which embeds moving morphable components 

within the level set scheme. This computational scheme incorporates geometry and mechanical 

information into topology optimization in an explicit way, and the structural complexity can be 

easily controlled in an explicit way. Another method called the Moving Morphable Voids (MMVs) 

was also proposed by Guo et al [13, 14], which introduced a set of geometry parameters to describe 

the boundary of the structure in an explicit way. Recently, Tortorelli and colleagues [15] proposed 

a geometry projection method for the continuum-based topology optimization made of discrete 

elements. This method uses a differentiable projection of geometry onto a fixed background mesh 

for optimization. The sensitivities of objective functions with respect to the explicit geometry 

parameterization are readily derived based on the chain rule. Note that this method is in the context 

of density-based computational framework, and hence standard finite element method (FEM) and 

nonlinear programming algorithm can be applied. Furthermore, the projection-based geometry 

description method has been extended to solve stress constraint problem, inverse design of lattice, 

three-dimensional compliance problem, and multi-material designs, etc [16-23]. Meanwhile, 

several other advanced topology optimization methods are proposed in recent years [24-26]. 

Educational code for topology optimization is very important and useful for engineers and 

researchers to get started with. After the Top99 MATLAB code [27]developed by Sigmund for 

simple 2D topology optimization problem, several other codes have been followed, which 

significantly promoted the development of this research field. A table is listed here which reviews 

the published codes in recent years including three major methods:  SIMP [28], level set [29], and 

BESO[30]. These codes are helpful for students and engineers to understand the basic 

mathematical formulation of topology optimization.  
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Table 1.1 Educational code for topology optimization 

Authors and Reference Programming language Method 

(2001) O. Sigmund [27] MATLAB  SIMP 

(2005) Liu Z, Korvink J G et al [31] FEMLAB Level set 

(2010) Challis V J [32]                                       MATLAB                                               Level set 

(2010) Suresh, Krishnan [33] MATLAB SIMP (Pareto) 

(2010) Huang X, Xie Y M. [30] MATLAB BESO 

(2011) Andreassen, Erik, et al [34]                     MATLAB SIMP 

(2012) Talischi, Cameron, et al [35] MATLAB PolyTop 

(2014) Zegard T, Paulino G H [36] MATLAB Ground Structure 

(2015) Aage, Niels, et al. [37] PETSc SIMP 

(2015) Otomori, Masaki, et al. [38] MATLAB   Level set 

(2015) Xia L, Breitkopf P [39]  MATLAB SIMP 

(2016) Pereira, Anderson, et al [40] MATLAB PolyTop 

(2018) Wei, Peng, et al [41] MATLAB Level set 

(2018) Loyola, Rubén Ansola, et al [42] MATLAB SERA 

(2018) Laurain, Antoine. [43] FEniCS Level set 

(2018) Sanders, Emily D., et al. [44] MATLAB PolyMat 

(2018) Dapogny, Charles, et al. [45] FreeFem++ Shape variation 

(2019) Chen Q, Zhang X, Zhu B. [46] MATLAB, APDL SIMP 

(2019) Gao, Jie, et al. [47]                                MATLAB SIMP 

(2019) Liang Y, Cheng G. [48] MATLAB Integer programming 

(2020) Smith H, Norato J A.[49] MATLAB Geometry projection 

(2020) Picelli R, et al. [50] MATLAB TOBS 

(2020) Lin H, Xu A, Misra A, et al. [51] APDL DER-BESO 

(2020) Ferrari F, Sigmund O. [52] MATLAB SIMP 

 

1.2 Soft Material Design 

In recent years, designing the flexible electronics, soft robots and wearable electronic 

devices draws great attention from academia and industry due to their extraordinary mechanical 

response [53-55]. Such devices and structures usually experience large deformations under 

external loading conditions, which is different from the traditional stiff structure design. Recently, 

topology optimization methods are utilized to design flexible and soft structures based on finite 

deformation theory. For the SIMP method, Bruns and Tortorelli [56] embedded a filtering scheme 
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into SIMP method to design compliant mechanism, where the geometric and material 

nonlinearities are considered. Wallin et al [57] compared different stiffness measurement for 

compliant mechanism design under large deformation. Fengwen et al [58] proposed a new energy 

interpolation scheme to stabilize the numerical simulations for topology optimization, where the 

mesh distortion phenomenon is alleviated when structures undergo large deformation. Ivarsson et 

al [59] applied a transient finite strain viscoplastic model in gradient-based topology optimization 

framework to design impact mitigating structures. Li et al [60] extended the shape preserving 

topology optimization approach from linear elastic case to geometrically nonlinear problems, 

where the structural complementary elastic work is chosen as objective function. Luo et al [61]  

proposed a simple and effective additive hyperelasticity technique to circumvent excessive mesh 

distortion in solving the density-based topology optimization of elastic structures undergoing large 

deformation. Ortigosa et al [62] proposed a novel stabilized computational approach for SIMP-

based TO method for hyperelastic material design subjected to very large deformation. For level 

set method, Chen et al [63] proposed an effective level-set-based topology optimization method 

for the design of hyperelastic structures undergoing large deformation. Luo et al [64] presented an 

effective topology optimization methodology for the compliance design of hyperelastic material 

with frictionless contact supports. Chung et al [65] proposed a level-set based topology 

optimization method for designing structures undergoing large deformation due to thermal and 

mechanical loads, where the thermo-mechanical response can be controlled via topology 

optimization. Xue et al [66] performed structural topology optimization under finite deformation 

using explicit geometry description, where a Moving Morphable Void (MMV)-based approach is 

developed for designing large deformation mechanism. Kato et al [67] proposes a method of 

micro-macro concurrent topology optimization for a two-phase nonlinear solid to minimize the 
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end compliance of its microstructure undergoing large deformation. Some other related works can 

be found in Ref [68-71]. 

1.3 Manufacturing Constraint 

In the past, fabrication of complex geometry is limited by manufacturing techniques, but 

recent rapid advancement of 3D printing technology makes these designs achievable nowadays. 

3D printing is recognized as a technology that increasing ‘design freedom’ and allows designers 

and engineers to create unique products. Despite these advantages, AM has its unique limitations 

which should be addressed, and these limitations inevitable limit the geometry complexity to some 

extends. Therefore, manufacturing-oriented topology optimization become a new trend in 

optimization design research field. Besides the AM technique, multi-axis machining is also a 

widely used techniques in subtractive manufacturing for metal component production. The 

unnecessary material is removed by machining tool until the desired shape achieves. For high-

strength aerospace or naval structures, multi-axis machining is an ideal option for manufacturing 

parts. Thus, how to effective generate the designs which are ready for subtractive manufacturing 

is a meaningful research topic.  
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1.4 Research Objectives 

1.4.1 Projection-based Topology Optimization Method for Buckling-induced Design 

Motivated by key advances in manufacturing techniques, the tailoring of materials to 

achieve novel properties such as energy dissipation properties has been the focus of active research 

in engineering and materials science over the past decade. The goal of material design is to 

determine the optimal spatial layout to achieve a desired macroscopic constitutive response. 

However, the manufacturing abilities are the key factors to constrain the feasible design space, eg, 

minimum length and geometry complexity. Conventional density‐based method, where each 

element works as a variable, always results in complicated geometry with large number of small 

intricate features. To address the challenges, a new density field representation technique, named, 

Heaviside function‐based geometric representation algorithm, is proposed in this chapter, where 

density field is represented by truss‐like components. Truss‐like components have less control 

parameters and easier to handle for sensitivities derivation, especially for distance sensitivities. 

Using bar components to explicitly represent density field can explore design space effectively 

and generate simple structures without any intricate small features at borders. Furthermore, this 

density representation method is mesh independent and design variables are reduced significantly 

so that optimization problem can be solved efficiently using small‐scale optimization algorithm, 

eg, sequential quadratic programming.  
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1.4.2 Bézier Skeleton Explicit Density (BSED) Representation Algorithm for Metamaterial 

Design 

Motivated by key advances in manufacturing techniques, the tailoring of materials to 

achieve novel properties such as energy dissipation properties has been the focus of active research 

in engineering and materials science over the past decade. The goal of material design is to 

determine the optimal spatial. A new density field representation technique called the Bézier 

skeleton explicit density (BSED) representation scheme for topology optimization of stretchable 

metamaterials under finite deformation is proposed for the first time. The proposed approach 

overcomes a key deficiency in existing density-based optimization methods that typically yield 

designs that do not have smooth surfaces but have large number of small intricate features, which 

are difficult to manufacture even by additive manufacturing. In the proposed approach, Bézier 

curves are utilized to describe the skeleton of the design being optimized where the description of 

the entire design is realized by assigning thickness along the curves. This geometric representation 

technique ensures that the optimized design is smooth and concise and can easily be tuned to be 

manufacturable by additive manufacturing. In the optimization method, the density field is 

described by the Heaviside function defined on the Bézier curves. Compared to NURBS or B-

spline based models, Bézier curves have fewer control parameters and hence are easier to 

manipulate for sensitivity derivation, especially for distance sensitivities. Due to its powerful curve 

fitting ability, using Bézier curve to represent density field allows exploring design space 

effectively and generating concise structures without any intricate small features at the borders. 

Furthermore, this density representation method is mesh independent and design variables are 

reduced significantly so that optimization problem can be solved efficiently using small-scale 

optimization algorithms such as sequential quadratic programming.  
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1.4.3 Projection-based Method for Flexible Functionally Graded Lattice Design 

The goal is to propose a projection-based implicit modeling method (PIMM) for 

functionally graded lattice optimization, which does not require any homogenization techniques. 

In this method, a parametric projection function is proposed to link the implicit function of 

functionally graded lattice with the finite element background mesh.  To reduce the number of 

design variables, the radial basis function (RBF) is utilized to interpolate the implicit design field.  

The triply periodic minimal surface (TPMS) lattice is employed to demonstrate the proposed 

method.  Compared with conventional homogenization-based topology optimization, the proposed 

method can effectively resolve the stress-constrained lattice design; for example, sharp corners are 

removed from the initial design after optimization. The proposed PIMM method is flexible and 

can potentially be extended to design graded irregular porous scaffold and non-periodic lattice 

infill designs. 

1.4.4 Reverse Shape Compensation via a Projection-based Moving Particle Optimization 

Method 

Reverse shape compensation is widely used in additive manufacturing to offset the 

displacement distortion caused by various sources, such as volumetric shrinkage, thermal cooling, 

etc. Also, reverse shape compensation is also an effective tool for the four-dimensional (4D) 

printing techniques, shape memory polymers (SMPs) , or 3D self-assemble structures to achieve a 

desired geometry shape under environmental stimuli such as electricity, temperature, gravity etc. 

A gradient-based moving particle optimization method for reverse shape compensation is proposed 

to achieve a desired geometry shape under a given stimuli. The geometry is described by discrete 
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particles, where the radius basis kernel function is used to realize a mapping from particle to 

density field, and finite element analysis is used to compute the deformation under the external 

stimulus.  The optimization problem is formulated in detail, and MMA optimizer is implemented 

to update the location of discrete particles based on sensitivity information. In this work, self-

weight due to gravity imposed on linear elastic structures is considered as the source of 

deformation.  The objective of the problem is then to find the initial shape so that the deformed 

shape under gravity is close to desired geometry shape. The computational framework for reverse 

shape compensation described here has the potential to be extended to consider linear and non-

linear deformation induced by other external stimuli. 

1.4.5 Projection-based Boundary Evolving Method for Large Deformation Design  

We propose a density-based boundary evolving algorithm for continuum-based topology 

optimization. The boundary of voids in the design domain is described by RBF (radial basis 

function) function controlled by RBF knots in polar coordinate, where the voids are projected onto 

a fixed grid using Heaviside function. For merging overlapped multiple voids, the p-norm function 

is introduced to describe composite density field. The differentiability of the projection-based 

boundary description algorithm allows for the sensitivity analysis via the chain rule, and therefore, 

it enables an efficient gradient-based optimization method. The goal of this chapter is to optimize 

the initial design to generate buckling-induce mechanism under large deformation, and without 

loss of generality, the hyperelastic material model is chosen to describe the material behavior. 

Notably, this method possesses the merit of level set method, where the intermediate density only 

exists at the boundary of topology shape. At the same time, the proposed method is still in the 
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density-based optimization framework and standard sensitivity analysis of density-based methods 

can be directly derived based on the chain rule. 

1.4.6 Projection-based Topology Optimization Method for Multi-Axis Machining  

This chapter proposes a novel projection-based method for structural design considering 

restrictions of multi-axis machining processes. A new mathematical formulation based on 

Heaviside function is presented to transform the design field into a geometry which can be 

manufactured by multi-axis machining process. The formulation is developed for 5-axis 

machining, which can be also applied to 2.5D milling restriction. The filter techniques are 

incorporated to effectively control the minimum size of void region. The standard compliance 

minimization problem is demonstrated to explore different machinable freeform designs using 

proposed approach.  
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2.0 Projection-based Topology Optimization Method for Buckling-induced Design 

2.1 Large Deformation Optimization Problem Description 

The last decade has witnessed rapid incorporation of soft rubberlike elastomers that exhibit 

instantaneous elastic response up to large strains into a wide range of engineering applications. For 

instance, soft electronics or soft robotics, largely constructed from soft rubberlike materials are 

capable to achieve bio-induced functionality. Compared to small deformation problem, both 

material and geometry nonlinearity need to be considered for large deformation topology 

optimization problem. Hyperelastic material model is a general mathematical model to describe 

the deformation behavior of soft material under external response. A hyperelastic material is a type 

of constitutive model for which the stress–strain relationship derives from a strain energy density 

function. 

2.2 Nonlinear Finite Element Analysis based on Total Lagrangian Formulation 

The analysis model of a hyperelastic body under external loading is briefly described in 

this section. This is a classical theory and well-developed in the past few years [72-76].  When a 

hyperelastic body undergoes a large deformation, the deformed configuration and undeformed 

configuration are presented in Figure 2.1. Here, the subscript ‘0’ denote the undeformed state. The 

total Lagrangian formulation, which uses the undeformed geometry as reference, is applied here 

to obtain the structural equilibrium equation. Hyperelastic materials belong to a particular class of 
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elastic materials where the stress field in the material can be determined by differentiating strain 

density energy with respect to strain without considering deformation history.  

 

Figure 2.1 Deformation of a continuum body from its undeformed configuration to a deformed configuration 

 

A point locates at 𝑿 at initial state transfers to 𝒙 in the deformed configuration, and the 

displacement vector is 𝒖 = 𝒙 − 𝑿. Transformation can be described by deformation gradient 𝑭,   

                                                   𝐹 = 𝑰 +
𝜕𝒖

𝜕𝑿
= 𝑰 + ∇0𝒖                                                               (2.1) 

Note that 𝑰 is second-order identity tensor. Spatial equilibrium equation for a deformable body is 

written as, 

𝑑𝑖𝑣 𝝈 + 𝒇 = 𝟎                                                       (2.2)                                                    

where 𝝈 is Cauchy stress tensor, 𝒇 is body force. In this chapter, the Mooney-Rivlin model [77], 

which is one of the most popular hyperelastic material model, is adopted here to describe the strain 

energy function. The principle of minimum potential energy and variational method are used to 

obtain quasi-static physical equations for hyperelastic materials. To simplify our problem, 

conservative external force is assumed here, which is independent of structural deformation. The 

governing equation (2.2) is resolved using the finite element method with the Newton-Raphson 

scheme as described in Ref [74]. It is necessary to note that both material nonlinearity and 

geometric nonlinearity need to be taken into consideration during hyperelastic material 

deformation analysis. For hyperelastic materials, the stress is obtained directly from strain energy. 
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Several models have been proposed to model these materials such as the Mooney-Rivlin model. 

The three invariants of the right Cauchy-Green deformation tensor are expressed as follows:  

𝐼1 = 𝑪: 𝑰 

𝐼2 = 𝑪: 𝑪                                                               (2.3)    

𝐼3 = 𝑑𝑒𝑡(𝑪) 

where 𝑪 is the right Cauchy–Green deformation tensor, and 𝑰 is identity tensor. Mathematical 

operator (:) denotes double contraction of two tensors. The strain energy expression of Mooney-

Rivlin model, which include the effect of the first and second invariants 𝐼1 and 𝐼2, can be written 

as follows:  

𝜓(𝐽1, 𝐽2, 𝐽3) = 𝐴10(𝐼1𝐼3
−1 3⁄ − 3) + 𝐴01(𝐼2𝐼3

−2 3⁄ − 3) +
𝐾

2
(𝐼3
1 2⁄ − 1)2          (2.4)               

where 𝐴10 and 𝐴01 are two nonzero parameters, which need to be determined through material 

testing. 𝐾 is the bulk modulus. Most hyperelastic materials such as rubber have a large bulk 

modulus, which means a small volume change leads to a large hydrostatic pressure.  

2.3 The Challenges and Solutions for Capturing Nonlinear Behavior 

There are several challenges to optimize metamaterial to achieve extreme damping 

behavior. Some of the challenges are induced by the optimization formulation such as failure 

constraint and cost function, the others are inherent to the highly complex nonlinear behavior of 

instability that we try to capture. To resolve the challenges for capturing nonlinear behavior, 

essential numerical algorithm is introduced and implemented as follows. a) Because of the 

geometric nonlinearity, a so-called “element instability” phenomenon will happen, which is caused 
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by excessive mesh distortion of the low-density elements. Once element in low density area are 

instable, failing to capture the equilibrium state is an inevitable issue arisen in FEM analysis due 

to the non-convergence of the Newton-Raphson method. Two simple techniques are developed in 

the past, namely “convergence criterion relaxation” [78] and the “element removal” [79]. 

However, above two schemes do not present satisfactory performance for very large deformation 

such as snap through behavior. Recently, a new energy interpolation scheme [80] is proposed by 

Wang et.al to alleviate mesh excessive distortion phenomenon. Based on this method, two different 

FEM models are applied at low stiffness regions and high stiffness regions, which is achieved 

using energy interpolation with a threshold projection function.  Here, we apply energy 

interpolation scheme to resolve mesh excessive distortion. b) Snap through and snap back 

phenomenon pose some of the most difficult problems in nonlinear analysis. How to effectively 

trace such a complex load path is quite necessary for optimization design. The Newton-Raphson 

method is a popular and efficient algorithm to solve nonlinear equations, while this method always 

fails in load-control analysis when snap through behavior happens. One way to circumvent this 

issue is by applying displacement control, but still cannot avoid the issue of the snap-back 

behavior. The arc length method (ALCM) [81] is a common method to solve a system of equations 

when there exists one or more critical points. Although arc length method is well developed in 

recent years, one of the major limitations of this method is in correctly determining the direction 

of load increment [82]. Meanwhile, numerical instability near instability points is the other issue 

for ALCM. Generalized displacement control method [83] has been proposed as an alternative 

method to follow loading path, which already shows great potential for complex nonlinear 

problems. Recently, a modification of GDCM (MGDCM) method is proposed [84], which presents 

more robust performance and ability to capture equilibrium paths with high curvature. In this 
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chapter, MGDCM path-following algorithm is adopted to trace load-displacement curves. c)  

Stability points are important concepts closely related to energy dissipation ability of unit cell. One 

way to detect and compute critical points is through the bi-section method where the sign of the 

diagonals of tangent stiffness matrix need to be monitored. However, convergence rate is slow for 

bi-section method. An efficient way to compute the singular points using extended system is 

proposed in Ref. [85] and the detailed implementation procedure can be found in Ref. [86].  

However, Hessian matrix becomes ill-conditioned when the solution point approaches the critical 

point. To overcome this inherent difficulty, a modified solution technique for extended system 

based on rank-one updated algorithm is proposed by [86] to improve the condition number of 

tangent stiffness. Here, we apply extended system to determine the critical points. 

2.4 Two-Dimensional Geometric Projection based on Heaviside Function 

To controlling the structural complexity of an optimal design, a new density projection 

algorithm is described in this section to explicit describe and control geometric shape. Considering 

requirement of practical manufacturing, optimal design with controllable structural complexity is 

preferred such as bars or beams. Actually, several methods were reported for controlling the 

complexity in topology optimization design such as Norato.et al [15, 18] and Tortorelli.et al [20]. 

However, there still exist some weakness such as generating reasonable initial configuration and 

avoiding exceeding material 0-1 bounds at local regions. To address above challenges, an 

alternative geometric mapping method is proposed in this chapter as following. The design is 

defined by a set of line segments, which control the density distribution using Heaviside Function. 

Each line segment is parameterized by the location of two end points. The width of the line segment 
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is determined by parameter 𝑤 in Heaviside Function. The minimum distance from any point 𝒑 in 

design domain to line segment is defined as following [87],  

𝒅(𝒙𝑳, 𝒙𝑹, 𝒑) = {

‖𝒃‖  𝒊𝒇 𝒂 ∙ 𝒃 ≤ 𝟎
‖𝒈‖  𝒊𝒇 𝟎 < 𝒂 ∙ 𝒃 < 𝒂 ∙ 𝒂
‖𝒆‖  𝒊𝒇 𝒂 ∙ 𝒃 > 𝒂 ∙ 𝒂

                                           (2.5) 

with  

                                            

{
 

 
𝒂 = 𝒙𝑳 − 𝒙𝑹  
𝒃 = 𝒑 − 𝒙𝑹
𝒆 = 𝒑 − 𝒙𝑳

𝒈 = [𝑰 −
𝟏

‖𝒂‖
𝒂⨂𝒂] 𝒃

                                                  (2.6) 

where the operator ‖∙‖ represents the Euclidean 2-norm, and ⨂ denotes Kronecker product of two 

matrices. The geometric representation of above vectors is demonstrated in Figure 2.2. To illustrate 

the definition of minimum distance, the minimum distance 𝒅 from a point on a circle to a line 

segment is plotted in blue lines as shown in Figure 2.3. 

 

Figure 2.2 Geometry representation 

 

   

Figure 2.3 Minimum distance 
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To perform topology optimization algorithm on a fixed grid, geometric projection from 

line segments to a density field is achieved by a smoothed Heaviside function, stated as, 

                                      𝜌 =
1

2
(1 + tanh(𝛽(𝑤 − 𝑑)) �̿� + 𝜌𝑚𝑖𝑛                                        (2.7) 

where �̿� denotes density of the segment, and the segment can be considered as non-existent if �̿� =

0. 𝑤 is a threshold used to determine the width of projection domain and parameter 𝛽 determines 

the properties of density transition region. Parameter 𝛽 have significant effects on boundary of 

geometry projection as shown in  Figure 2.4. Increasing value of 𝛽 makes boundary become more 

distinct, and width of geometry projection is determined by 𝑤 as plotted in Figure 2.5. 𝜌𝑚𝑖𝑛 is a 

small non-negative value. Obviously, discrete geometric component is successfully represented by 

projection based on Heaviside function, which is a more direct approach to define geometry 

projection compared to the method proposed by Totorelli [20]. 

(a)  𝛽 = 1                                     (b)  𝛽 = 5                                 (c) 𝛽 = 10 

 

Figure 2.4 The effect of parameter 𝜷 on geometry projection (a) 𝜷 = 𝟏 (b) 𝜷 = 𝟓 (c) 𝜷 = 𝟏 
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(a) 𝑤 = 0.5                                   (b) 𝑤 = 1                                      (c) 𝑤 = 1.5 

   

Figure 2.5 The effect of parameter 𝒘 on geometry projection (a) 𝒘 = 𝟎. 𝟓 (b) 𝒘 = 𝟏 (c) 𝒘 = 𝟏. 𝟓 

 

Above section describes the projection from a single discrete component to density layout. 

For multiple discrete components, composite density needs to be defined as following, 

ρj̃ = max ρij  (𝑖 = 1…𝑛, 𝑗 = 1…𝑚)                                       (2.8) 

where 𝑛 denotes number of components, and 𝑚 represents total element number. Due to the non-

differentiable nature of maximum function, p-norm formulation is applied to achieve smooth 

approximation of maximum function. Thus, the composite density is defined as, 

ρj̃ = (∑ ρij
𝑝𝑛

𝑖=1 )
1/𝑝

                                                       (2.9) 

Note that if 𝑝 tends to +∞, the value in p-norm formulation above approximates the maximum of 

density ρij ,while , for finite 𝑝 value, p-norm function always exceeds the maximum density. As 

mentioned by Ref [20], composite density may exceed the 1. However, for two-dimension design, 

it is necessary to restrict composite density between 0 and 1. To overcome this numerical issue, a 

special density projection (SDP) function is introduced as following, 

ρj̅ = tanh (3ρj̃)                                                         (2.10)                                                                                                

The curve property of above projection function is shown in Figure 2.6. Compared to Ref [20], 

differentiability during optimization is guaranteed using SDP function instead of applying 
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discontinuous minimum function to avoid artificially high stiffness (ρj̃ > 1) at local regions. 

Using p-norm function combined with SDP can effectively constrain the composite density 

between 0 and 1, the similar numerical approach applying lower bound KS (LKS) function can be 

found in Ref [33]. 

 

Figure 2.6 Curve of special density projection function 

2.5 Sensitivity Analysis of Geometry Projection 

To solve the topology optimization based on discrete geometric components, the sensitivity 

of the geometry projection with respect to the composite density is required. The chain rule is 

applied as following,  

𝜕ρj̅

𝜕𝚾
=

𝜕ρj̅

𝜕ρj̃

𝜕ρj̃

𝜕ρij

𝜕ρij

𝜕𝚾
                                                        (2.11)   

where 𝚾 = [𝒙𝑳, 𝒙𝑹, 𝜌,̿ 𝑤]. The first two terms in above equations are given by, 

𝜕ρj̅

𝜕ρj̃
= 3 − 3 tanh(3ρj̃)

2
                                               (2.12) 

𝜕ρj̃

𝜕ρij
= (∑ ρij

𝑝𝑛
𝑖=1 )

1

𝑝
−1
(∑ ρij

𝑝−1𝑛
𝑖=1 )                                      (2.13) 
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k denotes the index of discrete geometry component. where 𝛿𝑖𝑘 is Kronecker delta, defined as:  

{
𝛿𝑖𝑘 = 1 𝑖𝑓 𝑖 = 𝑘
𝛿𝑖𝑘 = 0 𝑖𝑓 𝑖 ≠ 𝑘

                                                     (2.14) 

the derivative of ρj̃ with respect to the end points 𝒙𝑳 and 𝒙𝑹 is given by, 

                 
𝜕ρj̃

𝜕𝒙𝑳
= (∑ ρij

𝑝𝑛
𝑖=1 )

1

𝑝
−1
(∑ ρij

𝑝−1 𝜕ρij

𝜕𝑑𝑖𝑗

𝑛
𝑖=1 )

𝜕𝑑𝑖𝑗

𝜕𝒙𝑳
                              (2.15) 

𝜕ρj̃

𝜕𝒙𝑹
= (∑ ρij

𝑝𝑛
𝑖=1 )

1

𝑝
−1
(∑ ρij

𝑝−1 𝜕ρij

𝜕𝑑𝑖𝑗

𝑛
𝑖=1 )

𝜕𝑑𝑖𝑗

𝜕𝒙𝑹
                             (2.16) 

Then sensitivities of the minimum distance 𝑑 with respect to end points is given by, 

                         
𝜕𝑑

𝜕𝒙𝑳
=

{
 
 

 
 −

𝒃

‖𝒃‖
  𝑖𝑓 𝒂 ∙ 𝒃 ≤ 0

1

‖𝒈‖
[
1

‖𝒂‖2
((𝒂⨂𝒃)𝑇 + (𝒂 ∙ 𝒃)𝑰) − 𝑰]𝒈   𝑖𝑓 0 < 𝒂 ∙ 𝒃 ≤ 𝒂 ∙ 𝒂

𝟎   𝑖𝑓 𝒂 ∙ 𝒃 ≥ 𝒂 ∙ 𝒂

            (2.17) 

and      

𝜕𝑑

𝜕𝒙𝑹
=

{
 
 

 
 −

𝒃

‖𝒃‖
  𝑖𝑓 𝒂 ∙ 𝒃 ≤ 0

−
1

‖𝒈‖‖𝒂‖2
((𝒂⨂𝒃)𝑇 + (𝒂 ∙ 𝒃)𝑰)𝒈   𝑖𝑓 0 < 𝒂 ∙ 𝒃 ≤ 𝒂 ∙ 𝒂

−
𝒆

‖𝒆‖
   𝑖𝑓 𝒂 ∙ 𝒃 ≥ 𝒂 ∙ 𝒂

                  (2.18)                          

As mentioned by Ref. [15], the sensitivities of signed distance above are continuous across the 

branches of the function. 

2.6 Initial Guess of Geometric Component Distribution 

As depicted by previous literatures [15], random initial guess of geometry component is 

chosen as initial value of optimization progress. It is feasible to use random initial distribution for 

linear problem. One weakness of random initialization is that the ends of geometry component 
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always cannot connect to other components. Thus, there exist gaps between geometry components, 

which is undesirable for solving geometry nonlinear problem in that excessive mesh distortion 

may happen in the gap region during FEM analysis. Hence it is essential to find an initial layout 

which should be a connected path of geometry components between loads and the boundary 

conditions. As described by Ref [19], the value of failure constraint is highly sensitive to a small 

change of geometric component design variables, and some worse initial values leads to 

unreasonable optimal design. Thus, a reasonable initial value of design variables is of great 

significance for convergence of optimization progress. However, how to construct an initial 

connected design is still a tricky problem, especially for nonlinear TO problem. From our 

numerical experiments, a density based optimal design can work as a guidance for geometric 

component initialization. Inspired by this point, an identification process is proposed in this chapter 

to construct a reasonable initial values of design variables. This identification progress can be 

divided into two parts. This first part is topology optimization using density-based methods, a 

coarse layout should be achieved, which can work as a design guidance for TO with geometric 

component. It is worth to mention that there is no need to reach an ideal 0-1 solution for density 

based TO. A coarse layout with a large amount of intermediate density during optimization 

progress is enough to work as guidance. This is a computational inexpensive procedure and limit 

iterations are enough for optimization progress. The second part is an identification progress, 

which can be regarded as a sub optimization problem. The sub optimization problem is formulated 

as follows, 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑(�̿�𝐺(𝒙𝑳, 𝒙𝑹, 𝜌,̿ 𝑤) − 𝑋𝐼)
2                                       (2.19)                          
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where parameters 𝒙𝑳, 𝒙𝑹, 𝜌,̿ 𝑤 are design variables of geometric components. �̿�𝐺 denotes density 

projection from geometric components. 𝑋𝐼 represents objective density from density-based 

optimization results. Hence, this cost function can be explained as finding an optimal initial layout 

of geometric component to minimize the difference between geometry projection with desired 

density distribution from density-based optimal results. Due to the limited parameters needed to 

be identified, sequential quadratic programming (SQP) method [88] is implemented here to find a 

local minimum of cost function. Detailed description of identification progress will be 

demonstrated in numerical examples. 

2.7 A Comparison between Geometry Projection Algorithm and Traditional Density-based 

Method 

Geometry projection algorithm is a new explicit geometry control method, which is capable 

of giving an explicit control of the minimum structural length scale in a very straightforward way 

with use of some purely geometric constraints. From one aspect, geometry projection algorithm is 

mesh independent, which means that design variables are not dependent on mesh density and 

adaptive mesh refinement is direct to implement without density mapping. From computational 

complexity aspect, geometry projection algorithm belongs to model reduction category to some 

extent. Clearly, the design variables reduce significantly after projection, which can be solved by 

regular small-scale optimization solver (e.g. sequential quadratic programming [89] ) instead of 

implementing large-scale optimization algorithm such as MMA. This also enables highly resolved 

finite element analysis without increasing the dimension of the non-linear programming problem, 

a desirable property. In such a situation, reduction of design variables is able to improve the 
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efficiency of sensitivity computation progress significantly. Besides, the geometric projection 

method can produce truss-like material layout, which is ideal for additive manufacturing because 

final optimized layouts do not contain small unfavorable features, e.g. local complicated curves. 

The minimum length of optimal design can be directly controlled by parameters of Heaviside 

function. The Heaviside function-based geometric projection method proposed in this article can 

also be applicable to metal design. From the manufacturing point for metal, the processes that 

require supports, can self-support so long as the overhang is above a particular angle to the 

horizontal. Therefore, modifying the design to make it self-support shows a great potential in 

reduction of material usage. Apparently, using discrete bars to represent density field is promising 

for self-support designs, because the angle of every component is convenient to handle by adding 

angle constraint for each component in optimization progress, this part will be studied further in 

the future. 

2.8 Mathematical Formulation for Energy Dissipation Design based on Negative Stiffness 

Behavior 

To formulate the optimization problem for high energy dissipative metamaterials, a brief 

review of mechanical behavior of a simple negative stiffness structures is provided here.  

Considering a phase transforming chain, whose unit cell is composed by a sinusoidal beam. Each 

sinusoidal beam in a chain can work as a compliant bi-stable mechanism. The characteristic 

normalized force-displacement response of one unit cell is shown in Figure 2.7 in blue solid line, 

where the force-displacement curve of unstable element contains a spinodal region (Regime 2) due 

to non-monotonicity of stiffness. Note that force-displacement response is approximated by a 
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linear response. Considering a chain containing several unit cells, the chain presents hysteresis 

behavior and mechanical energy will dissipate during one loading and unloading circle. In fact, 

mechanical behavior of the chain under displacement control changes significantly with change of 

element number, and the maximum possible dissipation per element in a chain equals the energy 

dissipation achieved by applying force control [90]. As shown in Figure 2.7, the area encompassed 

by the red dash curve represents the maximum energy dissipation per element under displacement 

control if a chain containing infinite  unit cells, named as the theoretical absorption capacity [90].  

 

Figure 2.7 Mechanical response of a basic cell 

 

Theoretical energy absorption capacity is a key point for material design due to unit cell 

being far smaller than the macro structural length scale. For real snap-through structures, 

mechanical response is a curve (see numerical examples) and the exact mathematical description 

of enclosed area is difficult to define for a robust topology optimization algorithm. A simplified 

expression is thus applied by approximating the enclosed area by a trapezoid defined by four points 

on the red curve as shown in Figure 2.7.  Note that Point 1 is the instability point during loading 

and Point 2 is the point after the structure snaps through to.  Point 3 is the instability point during 

unloading, while Point 4 is the point after snapping through. The area of a trapezoid can be 

expressed as, 
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  Ω = (𝑑2 − 𝑑1 +𝑑3 − 𝑑4) ∙ (𝜆1 − 𝜆3)                                    (2.20)                          

Above equation is the cost function in numerical examples.  

Material softening phenomenon means that a deformed structure is no longer able to resist 

additional force and the reversible capacity is destroyed. Although materials such as some special 

rubbers [91] can resist even more than 300% strain without softening, the capacity of most other 

soft material to endure large strain is still very limited. When designing bi-stable structures, 

traditional continuum-based hyperelastic models do not include material strain energy bound 

which leads to unbounded energy accumulation. Evidently, this is unphysical and may result in 

unreasonable engineering design when using traditional hyperelastic materials. Considering that 

large strain is unavoidable during snap through behavior, failure criterion plays a key role in 

simulating the material to avoid unreasonable design, as the energy of real hyperelastic material 

needs to be constrained for design and may be defined as material failure energy.  Such a limiter 

is a direct criterion to measure recoverability of material. Actually, different failure criteria is 

available for hyperelastic materials: (1) the maximum principal stress (2) the maximum principal 

stretch (3) the maximum shear stress (4) von Mises stress and (5) the strain energy. As experiment 

implemented by K.Y.Volokh [92], the strain energy is almost constant for the failure states under 

different loads and tension tests compared to other failure criteria, and von-Mises stress shows a 

wider range of scattering compared to strain energy. Thus, using strain energy as failure criteria is 

more accurate and reasonable for measuring failure of soft material. Due to the local nature of the 

element strain energy, it is difficult to optimize each material point due to high computational cost 

of matrix inversion. One effective method is to use the p-norm function [93] to integrate each 

element energy into one objective. Element strain energy needs to be penalized with 𝜌𝑖
𝑞  to avoid 
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the singularity phenomenon when element density approaches zero, see Ref. [93] by Holmberg for 

a detailed discussion. The strain energy in p-norm form can be expressed by:  

  𝐸𝑃𝑁 = [
1

𝑁
∑ (𝛾𝑖𝜌𝑖

𝑞𝐸𝑖(𝒙))
𝑁
𝑖=1

𝑝
]

1

𝑝
                                             (2.21)                                                           

where 𝛾𝑖 is an interpolation factor, 𝑁 is element number of the whole model, and 𝐸𝑖is strain energy 

for each element. Note that the energy interpolation scheme introduced by Wang.et al [80] 

indicates that energy for the whole structure is blended with nonlinear and linear parts. For low 

density region, the energy of elements is obtained based on linear theory, while the objective 

function related to hyperelastic element strain energy should exclude linear energy part. Thus, 

removing energy contributions from these linear elements is necessary, and hence interpolation 

factor 𝛾𝑖 is used to multiply to the element strain energy. More details regarding interpolation 

factor 𝛾𝑖 can be found in  Ref. [80]. It is essential to note that the failure constraints at two limit 

points (peaks) are applied to design bi-stable element instead of monitoring strain energy at each 

equilibrium state, which is almost impossible for implementation. In general, we can choose 

several equilibrium states as shown in Figure 2.8 to apply failure constraint so that failure criteria 

is satisfied at these states. The strain energy in p-norm form at state 𝑗 is written as 𝜃𝑗 . In this 

chapter, we apply failure criteria at two limit points, which can be easily extended to multiple 

equilibrium states. 
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Figure 2.8 Strain energy constraint applied at different equilibrium state under displacement control 

2.9 Optimization Formulation 

The above algorithm requires that an initial snap-through behavior is needed so that limit 

points exist. For a regular design domain, an initial snap through behavior does not exist, like a 

square domain. Thus, the priority is that modifying the force-displacement curve through topology 

optimization so that a negative stiffness behavior occurs. One way to realize bi-stable behavior for 

arbitrary domain is through controlling two points on the displacement-force curve as described 

by Ref [21]. Therefore, the optimization progress can be divided into two independent stages. The 

first stage modifies the displacement-force curve to show negative stiffness, the second stage, 

which is based on the final design of stage I, optimize material layout to maximize energy 

dissipation ability. Once the snap-through behavior appears, the stage I will stop. The stage II starts 

based on the result inherited from the optimized layout of stage I. The stopping criteria for the 

stage II is the change of objective value less than 1%. Thus, the optimization problem is separated 

into two parts, the first part is to tailor the material to shown snap-through behavior. The 

optimization problem in the first part is formulated as described in Ref [21]. More details can be 
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found in Ref [21]. Once the structures present snap-through behavior. The second optimization 

part is formulated as follows, 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒   𝛺 = (𝑑2 − 𝑑1 +𝑑3 − 𝑑4) ∙ (𝜆1 − 𝜆3)  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

𝑉(𝑥)

|𝛺|
− 𝑣𝑓

∗ ≤ 0

𝑐 [
1

𝑀
∑ (𝜃𝑗)
𝑀
𝑗=1

𝑝
]

1

𝑝
< 1   (𝑎𝑡 𝑙𝑖𝑚𝑖𝑡 𝑝𝑜𝑖𝑛𝑡𝑠) 

                         (2.22)          

Note that cost function is area of trapezoid determined by four points as described in Figure 2.7. 

Here 𝑑 denotes displacement and 𝜆 is force factor. Subscript number 𝑖 (𝑖 = 1,2,3,4) represents 

index of point.  𝜃𝑗  in the constraint denotes the p-norm strain energy at state 𝑗. 

                                                            𝜃𝑗 = [
1

𝑁
∑ (

𝐸𝑖(𝒙)

�̅�
)𝑁

𝑖=1

𝑝

]

1

𝑝
                                                             (2.23)          

where �̅� is the strain energy limit and 𝑝 is p-norm factor.  𝑐 is an adaption parameter, which is 

computed from the previous optimization iteration. Details description of the parameter 𝑐 is found 

in Ref. [93]. 𝑣𝑓
∗ and |Ω| represent prescribed volume fraction and area of design domain. Gradient-

based optimization method is employed here to solve the optimization problem above efficiently 

by deriving accurate sensitivities of the objective function and constraints.      

Identifying the initial distribution of geometry component is an essential procedure for 

topology optimization. This procedure is described in detail in above section. With the initial 

design variable of geometry component, Heaviside function is applied to project the geometry 

components to the density field. Nonlinear finite element is formulated based on energy 

interpolation scheme, and the path-following algorithm is realized to trace the force-displacement 

curve. Limit points are directly computed through extended system with nearby initial points 

obtained by path-following algorithm. With the information from limit points, the value of cost 

function and constraints is evaluated, and sensitivity based on adjoint method is obtained. Hence, 

the design variable can be updated by the sensitivity information using MMA algorithm [94]. The 
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flow chart of discrete geometry component optimization algorithm is shown in Figure 2.9. The 

optimization algorithm can be divided into three stages. Stage I apply traditional density-based 

method to obtain a coarse design that presents snap-through behavior. An inverse sub-optimization 

problem is achieved to fit geometric components to the material layout obtained in stage I. The 

final stage use density representation algorithm proposed in this chapter to maximize energy 

dissipation considering failure constraint in prescribed domain. The details of algorithm 

implementation are demonstrated in Figure 2.10. 

 

Figure 2.9 Flow chart of optimization algorithm 

 

 

Figure 2.10 Details of algorithm implementation 
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2.10 Numerical Examples 

In this section, three cases are demonstrated to present the effectiveness of our algorithm. 

In these three cases, material failure is considered in the design as a constraint to affect the material 

layout. The initial geometry component distribution is identified from density based numerical 

results. The method of moving asymptotes (MMA) [94] is applied to solve optimization problem, 

which constructs and solves a sequence of convex approximation sub-problem based on 

sensitivities during optimization progress to update the design point. Note that the parameters used 

in these cases are dimensionless. The penalty parameter and p-norm factor are chosen as 𝑝𝑒𝑛𝑎𝑙 =

3 and 𝑝 = 10. Plane strain assumption is applied in analysis and design. 

2.10.1 Slender Beam Design without Failure Constraint 

A slender beam structure is shown in Figure 2.11, which is clamped at both ends and a 

transverse concentrate force is applied at the center of top line. Due to symmetry of design domain 

and boundary conditions, half domain is chosen to design. Design domain is discretized by 

30 × 100 4-node bilinear elements. Soft material mechanical behavior is described by the 

Mooney-Rivlin model with 𝐴10 = 34, 𝐴01 = 5.8 and 𝐾 = 2000. The volume constraint in the 

optimization is 30% of the design domain. In the first numerical case, the objective is maximizing 

the energy dissipation capacity, where material failure constraint is not taken into consideration. 

Before applying TO method with discrete geometry component, an initial material layout should 

work as a guidance to generate initial design variable of discrete geometry component. Hence a 

density-based topology optimization progress is implemented to achieve snap through behavior. 

This progress contains two stages, the first stage should be redistributing material within design 
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domain to generate a bi-stable structure, named as stage I. Once a snap through behavior presents 

during optimization progress, stage II started with initial density distribution inherited from final 

design of stage I. The solution at the end of stage I is shown in Figure 2.12. The inverse sub-

optimization problem is resolved using SQP (sequential quadratic programming) method, and 

identified geometric component is plotted in Figure 2.14. The identification progress converges 

after 160 iterations as shown in Figure 2.13 . Note that the design domain is made of 5 geometry 

components, and the projection parameter 𝑤 is constrained by 1 < 𝑤 < 2. The optimized material 

layout is presented in Figure 2.15. To make a comparison with traditional density-based method, 

the material layout obtained by density-based method is shown in Figure 2.17. It is worth to 

mention that the optimized result using our proposed method has simple geometry shape, and the 

border of the material layout is composed of straight line instead of complex curves. This simple 

material layout is better for manufacturing in engineering. Moreover, through constraining the 

width of geometry component, the minimum length of final optimized design can be directly 

controlled. The mechanical response of initial identified configuration is presented in Figure 2.16 

(red line), while the response of optimized material layout is shown in blue line. Obviously, the 

energy dissipation capacity increases significantly after optimization. 

 

Figure 2.11 Slender beam design domain 
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Figure 2.12 Solution at the end of Stage I 

 

 

Figure 2.13 Identification progress (𝟏 < 𝒘𝒃𝒂𝒓 < 𝟐) 

 

 (a) Density distribution                                      (b) Geometric component distribution 

 

Figure 2.14 Initial discrete component distribution (a) Density distribution (b) Geometric component 

distribution 
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(a) Density distribution                                         (b) Geometric component distribution 

 

Figure 2.15 Discrete component distribution (component number: 5) (a) Density distribution                                         

(b) Geometric component distribution (𝟏 < 𝒘𝒃𝒂𝒓 < 𝟐) 

 

 

Figure 2.16 Force-displacement curve 

 

 

Figure 2.17 Optimized results based on traditional density-based method 
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2.10.2 Slender Beam Design with Failure Constraint 

In this numerical example, material softening phenomenon happens at 20% strain under 

uniaxial tension, which corresponding to failure strain energy value around 4. A solution at the 

end of stage I is plotted in Figure 2.18 with intermediate density area. It is worth to mention that 

the density layout shown in Figure 2.18 presents snap through behavior. The volume constraint in 

the optimization is 40% of the design domain. This material layout will work as a desired density 

objective to guide the initial layout of geometry component. Sequential quadratic programming 

(SQP) method is implemented here to find a local minimum of cost function  

The initial identified geometry component is presented in Figure 2.19, and the design 

domain is made of 15 geometry components. Note that the initial geometry components have 

already presented negative stiffness mechanical properties after numerical testing. Thus, 

optimization progress for the discrete geometry component can directly skip to the second stage 

with present initial design variables. To achieve the geometry control of final numerical results, 

the projection parameter 𝑤 is constrained by 𝑤 < 2, and location parameters 𝒙𝑹and 𝒙𝑳 are 

constrained by the boundary of slender beam design. The optimal geometry component layout is 

shown in Figure 2.20. After around 110 iterations, the optimization progress converges as plotted 

in Figure 2.22, where the red line represents value of strain energy in p-norm formulation. Note 

that the constraint of strain energy will converge to 1 after optimization, which means the 

maximum element strain energy in the design domain reaches failure energy. The evolution of 

optimization progress is presented in Figure 2.21. It is worth to mention that our objective is to 

maximize dissipation energy, which is equivalent to minimize the negative value of energy 

dissipation. Therefore, we find that value of objective function is negative. 
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It can be clearly observed that the optimal layout has arched shape. When the structure 

moves downwards under external force, the arched shape begin to buckle.  During this progress, 

the compression energy of the whole structure increases at first and then decreases faster than the 

bending energy. The components on the left and right side enhance stiffness of the overall 

structure, which results in a higher difference between two buckling forces at limit points and 

hence a higher theoretical energy absorption capacity. The force-displacement curve plotted in 

Figure 2.24, which finds that the force minimum located at the second stable point is positive, 

which means the structure can recover by itself without actively pulling it back. The deformation 

at two limit points are shown in Figure 2.23. 

 

Figure 2.18 Solution at the end of Stage I 

 

 

Figure 2.19 Initial geometry component layout 
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Figure 2.20 Optimized geometry component layout 

 

 

         Figure 2.21 Evolution of optimization progress 

 

 

Figure 2.22 Convergence history 
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  (a) First stable point                                           (b) Second stable point 

 

Figure 2.23 Deformation at two stable points: (a) First limit point and (b) Second limit point 

 

 

Figure 2.24 Force-displacement curve 

2.11 Conclusions 

In this chapter, extreme energy dissipation metamaterial design considering failure 

constraint through topology optimization algorithm is demonstrated in details. Approximation of 

theoretical energy absorption is formulated through mathematical expression and strict 

sensitivities are deducted by adjoint method. Material failure is measured by strain energy and p-

norm formulation are utilized. To explicit control and express geometric shape, an alternative 

projection method is presented for continuum-based topology optimization made of geometric 

components. This geometric projection algorithm is completely based on a fixed grid and hence 
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inherit the advantages of density-based TO method. By applying the chain rule, the sensitivities 

with respect to geometry parameters are convenient to derive. This guarantees the application of 

gradient-based optimization frame with standard nonlinear programming algorithms. The density 

mapping algorithm in this article is based on Heaviside function, which is possessed of strong 

generality and can be extended to apply curved skeleton to control complex geometry shape in the 

future. Two typical cases are presented in detail, and truss-like optimal results are readily to 

achieve. Compared to ground structure methods, geometric projection method has more freedom 

to place and size the components. Note that the SDP function is introduced to resolve the issue that 

the density may exceed the upper limit 1 at overlapping region. From numerical results, method 

proposed in this article has the ability to remove redundant components, and identification progress 

is effective to find initial layout and construct connected load path between the load and boundary.  
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3.0 Topology Optimization Design of Stretchable Metamaterials with Bezier Skeleton 

Explicit Density (BSED) Representation Algorithm 

3.1 Current Progress of Topology Optimization for Flexible Material Design 

Stretchable electronics has been studied for almost 20 years and several novel applications 

ranging from bio-integrated devices to wearable technologies can be found. Demand for higher 

performing mechanical design raises new challenges in soft system designs. For instance, wearable 

electronics, which deals with complex, flexible and stretchable biological systems, require that 

artificial material to be able to exhibit high stretchability while retaining stiff to transfer loading. 

Unfortunately, conventional electronics made of silicon or polymers are rigid and brittle in nature 

and hence are not ideal for wearable electronics due to lacking the ability to stretch. A number of 

ground-breaking ideas have recently been proposed to achieve the above functional requirements 

such as (I) application of unconventional materials (e.g. hydrogel [95]) and (II) novel structures 

with new mechanical characteristics. In this chapter, we focus on designing new metamaterial to 

achieve certain functionality such as stretchability and compliance. With the advent of additive 

manufacturing technology, the ability to fabricate complicated geometries made of varies materials 

from metal to soft materials is possible. Thus, metamaterial design becomes an emerging field in 

research in that it may be utilized to generate novel material to satisfy the desired functional 

requirement. As reported in [96], some designed lattice structures made of metamaterials show 

ultrahigh reversible stretchability, which opens the door to design stretchable electronics. 

Compared to traditional metamaterial design optimization performed using linear finite element 

analysis, designing metamaterial with high stretchability requires considering geometrical and 
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material nonlinearity. Determining the effective homogenized properties of nonlinear materials at 

finite deformation is challenging and is an active field of research. Elastomer test [74], such as 

uniaxial tension, is one feasible method to determine effective properties of novel metamaterial. 

Similar to the methods applied in Ref. [97], three elastomer testing methods (uniaxial tension, 

equi-biaxial tension, pure shear) are applied in this chapter to evaluate effective material 

properties.  

Traditional density-based method, where each element works as a design variable, always 

results in complex geometry with large number of small intricate features, while these small 

features are not amenable for manufacturability for AM or post-processing that can cause a loss in 

geometric accuracy. To address the above challenge, a new density field representation technique 

called the Bézier skeleton explicit density (BSED) representation scheme for topology 

optimization of stretchable metamaterials is proposed in this chapter for the first time.  First, Bézier 

curves are widely used in computer graphics to produce curves which appear reasonably smooth 

at all scales and are employed in the proposed approach to describe the skeleton of the design being 

optimized so that the entire design is described by assigning the Bézier curve with certain 

thickness. The proposed approach ensures that the optimized design is smooth and concise, and 

can easily be manufactured by AM.  Second, the density field is described by the Heaviside 

function defined on the Bézier curves in the optimization model.  Compared to NURBS or B-

spline based models, Bézier curves have fewer control parameters and hence are easier to 

manipulate for sensitivity derivation, especially for distance sensitivities. Due to its powerful curve 

fitting ability, using Bézier curve to represent density field allows exploring design space 

effectively and generating concise structures without any intricate small features at the borders. 

Furthermore, this density representation method is mesh independent and design variables are 
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reduced significantly so that optimization problem can be solved efficiently using small-scale 

optimization algorithms such as sequential quadratic programming. 

3.2 Bezier Representation 

To represent the skeleton based on curve segment, the so-called Bézier polygon is 

introduced. Every polynomial curve segment can be represented by Bézier polygon, where the 

curve segment lies in the convex hull of its Bézier polygon. Note that a Bézier curve is a 

parametric curve that uses Bernstein polynomials as a basis. 

3.2.1 Bernstein Polynomials 

The Bernstein polynomials of degree n is defined as follows, 

𝐵𝑖
𝑛(𝑢) = (

𝑖
𝑛
) 𝑢𝑖(1 − 𝑢)𝑛−𝑖, 𝑖 = 0,⋯ , 𝑛                                    (3.1)          

 

where 

(
𝑖
𝑛
) =

𝑛!

𝑖!(𝑛−𝑖)!
                                                              (3.2)          

The Bernstein polynomials over [0,1] of different degree 𝑛 (4, 5, 6) are plotted in Figure 3.1. 

(a)  𝑛 = 4                                       (b) 𝑛 = 5                                         (c) 𝑛 = 6 
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Figure 3.1 The Bernstein polynomials of degree n over [0, 1]: (a) n=4, (b) n=5, and (c) n=6. 

 

All polynomials of degree less than 𝑛 can be represented by Bernstein polynomials 

bases 𝐵𝑖
𝑛, and hence the Bézier representation of polynomial curve 𝝌(𝑢) is defined as:  

𝝌(𝑢) = ∑ 𝝍𝒊
𝑛
𝑖=0 𝐵𝑖

𝑛(𝑢)                                                   (3.3)          

where 𝝍𝒊 is coefficient of the Bernstein polynomial bases. Using the following affine 

transformation 

𝑢 = 𝛼(1 − 𝑡) + 𝛾𝑡,   𝛼 ≠ 𝛾, 𝑡 ∈ [0,1]                                      (3.4)          

the n th degree Bézier representation of polynomial curve can be written as: 

𝝌(𝑡) = ∑ 𝝌𝒊
𝑛
𝑖=0 𝐵𝑖

𝑛(𝑡)                                                  (3.5)                                                                                                             

where coefficients 𝝌𝒊 are called Bézier points, which are the vertices of the Bézier polygon of 

curve 𝝌(𝑡) over the interval [𝑎, 𝑏]. Parameter 𝑡 is called local parameter. A high-order Bézier 

curve segment with five control points is shown in Figure 3.2, where the blue dotted line and blue 

dots represent Bézier polygon and control points, respectively. Equation (3.5) can be expressed 

explicitly as follows:  

𝝌(𝑡) = ∑ (
𝑛
𝑖
)𝑛

𝑖=0 (1 − 𝑡)𝑛−𝑖𝑡𝑖𝝌𝒊 (𝑡 ∈ [0,1])                              (3.6)          
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Figure 3.2 A high-order (n=4) curve segment with its 𝐁�́�𝐳𝐢𝐞𝐫 polygon 

3.3 Geometry Mapping based on Heaviside Function 

The design is defined by a set of curved-based skeletons, which control the density 

distribution using the Heaviside function. Each curved-based skeleton is described by a single 

Bézier curve. The width of the skeleton is determined by a parameter 𝑤 in the Heaviside function. 

The minimum distance from any point 𝒑 in the design domain to the skeleton curve is 

demonstrated in Figure 3.3, where the blue solid line represents the minimum distance. Given a 

point 𝒑 and a Bézier curve 𝝌(𝑡), the point projection (minimum distance) can be described as 

finding a solution 𝑡0, such that, 

‖𝒑 − 𝝌(𝑡0)‖ = 𝑚𝑖𝑛{‖𝒑 − 𝝌(𝑡)‖}, 𝑡 ∈ [0,1]                               (3.7)                                                            

If 𝑡0 ∉ {0.1}, the following necessary condition should be satisfied, 

𝝌′(𝑡0) = 0                                                                  (3.8)                                                                                                                                                                      

where 𝝌′(𝑡) denotes the derivative of 𝝌(𝑡). Thus, the above point projection problem can be solved 

by a root-finding problem of a polynomial equation. 
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Figure 3.3 Points projection on a curved skeleton 

 

To perform topology optimization algorithm on a fixed grid, geometric mapping from 

curved-based skeletons to a density field is achieved by a smoothed Heaviside function stated as:  

𝜌 =
1

2
(1 + tanh(𝛽(𝑤 − 𝑑)) �̿� + 𝜌𝑚𝑖𝑛                                   (3.9)                                                                                                                                                                           

where �̿� denotes density of the segment, and the segment can be considered as non-existent if �̿� =

0. 𝑑 represents the projection distance from centroid of grid to skeleton.  𝑤 is a threshold used to 

determine the width of mapping domain and parameter 𝛽 determines the properties of density 

transition region. The parameter 𝛽 has significant effect on the boundary of geometric projection 

as shown in Figure 3.4. Increasing value of 𝛽 makes boundary become more distinct, and width of 

geometry mapping is determined by 𝑤 as plotted in Figure 3.5. 𝜌𝑚𝑖𝑛 is a small non-negative value. 

Obviously, the thickness of skeleton can be modified directly through parameter 𝑤, which is able 

to control the minimum length of the optimized design. 

(a) 𝛽 = 0.3                       (b) 𝛽 = 1                         (c) 𝛽 = 5 

 

Figure 3.4 The effect of parameter 𝜷 on density field (a) 𝜷 = 𝟎. 𝟑 (b) 𝜷 = 𝟏 (c) 𝜷 = 𝟓 
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Figure 3.5 The Effect of parameter 𝒘 on geometry mapping: (a) 𝒘 = 𝟏, (b) 𝒘 = 𝟑, and (c) 𝒘 = 𝟓 for 𝜷 = 𝟓 

 

To explicitly express geometry control based on curved skeleton, the relationship between 

curved skeleton and mapping density field is plotted in Figure 3.6. The boundary enveloping line 

of mapping density, which can effectively reflect the effect of skeleton thickness on density field. 

Note that the boundary enveloping line becomes non-smooth if mesh density of FEM is not 

enough. 

 

Figure 3.6 Geometry mapping from skeleton to density field (a) Skeleton, (b) Density mapping, and (c) 

Boundary enveloping line 
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3.4 Density Field Mapping of Multiple Curved Components 

The previous section describes the mapping from a single component to density layout. For 

multiple curved components, composite density needs to be defined as follows:  

ρj̃ = max ρij (𝑖 = 1,2⋯𝑛, 𝑗 = 1,2⋯𝑚)                                   (3.10)                                                                                                                                                                           

where 𝑛 denotes number of components and 𝑚 represents total element number. Due to the non-

differentiable nature of maximum function, p-norm formulation is applied to achieve smooth 

approximation of the maximum function. Thus, the composite density is defined as: 

ρj̃ = (∑ ρij
𝑝𝑛

𝑖=1 )
1/𝑝

                                                  (3.11)                                                                                                                                                                                                                                                                                 

Note that if 𝑝 tends to +∞, the value in the p-norm formulation above approximates the maximum 

of density ρij, while for finite 𝑝 value, p-norm function always exceeds the maximum density. In 

this chapter, the value of 𝑝 is set to be 10. As mentioned in Ref. [20], composite density may 

exceed unity. However, for two-dimension design, it is necessary to restrict composite density 

between 0 and 1. To overcome this numerical issue, a special density projection (SDP) function is 

introduced as follows:  

ρj̅ = tanh (3ρj̃)                                                      (3.12)                                                                                                                                                                                                                                                                                                                                                                            

The curve property of the above projection function is shown in Figure 2.1. Compared to Ref. [20], 

differentiability during optimization is guaranteed using SDP function instead of applying 

discontinuous minimum function to avoid artificially high stiffness (ρj̃ > 1) at local regions. Note 

that  ρj̅ , which is the actual input data for FEM analysis, represents the real physical density in 

this work.  
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Figure 3.7 Property of special density projection function 

 

 

Figure 3.8 Density field mapping of two curved components (𝒘 = 𝟑, 𝜷 = 𝟓) 

3.5 Characterization of Material Behavior in Elastomer Test 

For a periodic material, effective material properties can be evaluated using a unit cell as 

illustrated in Figure 3.9. Homogenization methods can be regarded as an effective method to 

calculate material properties for small deformation problems. For finite deformation problem, the 
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effective material properties strongly depend on each deformation state and accurately predict 

material nonlinear behavior is still a challenging problem. Applying standard elastomer testing 

method is one feasible way to simplify the problem. Three major strain states including uniaxial 

tension, equal biaxial tension, and simple shear are applied in this chapter to evaluate effective 

material properties, and designs under three different strain states are presented to exhibit high 

stretchability and stiffness.  

 

Figure 3.9 Schematic illustration of a unit cell and periodic materials 

 

 

Figure 3.10 Three major strain states 

 

In the elastomer tests, the material behavior can be characterized using the unit cell under 

MPCs boundary conditions. For uniaxial tension test, materials are uniformly stretched along 

longitudinally as shown in Figure 3.10. In such a situation, each node on the left and right 
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boundaries need to satisfy the displacement boundary condition, which means that a constant 

displacement difference 𝑢𝑐 is assumed such that 𝑢𝑟 − 𝑢𝑙 = 𝑢𝑐. Note that 𝑢𝑟 and 𝑢𝑙 represent 

displacement on right and left boundary, respectively. It is important to mention that the transverse 

displacement for upper and lower boundary should also satisfy displacement boundary conditions.  

For finite element analysis, multi-point constraints (MPCs) is an effective way to impose 

displacement difference boundary conditions [98]. MPCs enforce relations among the degrees of 

freedoms at two or more distinct nodes in a FE model. For multi-point constraints, a set of linear 

equations that couple the DOFs by the constraints, are called “constraint equations”. In such a 

situation, the constraint equations can be written as, 

Au=Q                                                                 (3.13)                                                                                                                                                                                                                                                                                                                                                                             

where 𝐴 is a constant matrix and 𝑄 is a constant vector.  𝑢 is global displacement vector. The 

schematic illustration of MPCs boundary conditions is demonstrated in Figure 3.11. 

 

Figure 3.11 Schematic illustration of MPCs boundary conditions 

 

To implement the above equations in nonlinear finite element analysis. Three different 

methods are available to impose above constraint equations, namely: (1) Transformation equation 

method, (2) Lagrange multiplier method, and (3) penalty function method. In this chapter, the 

penalty function method is applied to impose displacement difference conditions in FEM analysis. 
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For nonlinear finite element with constraint equations, the following equilibrium equation is 

constructed:  

𝑹(𝒖) + (𝑨𝑻𝜶𝑨)𝒖 − 𝑭 − 𝑨𝑻𝜶𝑸 = 𝟎                                     (3.14)       

where 𝑹(𝒖) is internal force and 𝑭 is external force. 𝜶 is diagonal matrix of penalty weights, with 

𝜶𝒊𝒊 > 0 and 𝜶𝒊𝒋 = 𝟎 (𝒊 ≠ 𝒋). It is worth to mention that penalty term in above equations can be 

physically interpreted as additional forces to enforce the constraint approximately. Note that 𝑨𝑻𝜶𝑨 

is referred to as penalty matrix, and the constraints can be satisfied exactly if the penalty weight 

𝜶𝒊𝒊 tends to infinity. Actually, choosing a right penalty need to balance the trade-off between 

reducing the constraint violation and limiting the solution error due to ill-conditioning system. In 

this chapter, the value of penalty weight is chosen as 𝛼𝑖𝑖 = 10
8.  

3.6 Generalized Energy Failure Criterion for Hyperelastic Materials 

When designing stretchable metamaterial, the critical problem is that how to guarantee 

material reversible capacity under large deformation without plastic deformation or fracture. For 

regular 3D printing materials, the elastic regime of these materials is usually limited to 10% or 

less, such as ABS (Acrylonitrile butadiene styrene). For inorganic electronic materials such as 

silicon, small strains (around 1%) can lead to rupture. Therefore, the primary goal of designing 

stretchable metamaterial is resisting irreversible deformation. For metallic materials, von Mises 

stress or strain can work as a criterion to measure material failure behavior, while the failure 

mechanism is more sophisticated for soft materials. For centuries, scientists have made great 

efforts to develop theories for predicting mechanical failure of materials, and eventually the 

“generalized energy criterion” is proposed to be one universal law for various different kinds of 



 51 

materials. Based on continuum thermodynamics, material failure in solid material is triggered by 

internal interactions between material particles, which is represented macroscopically by a 

specified elastic strain energy density. Energy-based failure criterion is regarded as a universal 

criterion for different types of materials.  The failure of materials usually originates from a specific 

plane, and basic failure mechanisms contain two physical conditions: Shearing failure driven by 

shear stress and cleavage driven by the normal stress as presented in Figure 3.12. Fracture of 

material needs energy to break the atomic bonding to form the crack, and the energy density 

associated with the failure is defined presented in Figure 3.12 

 

Figure 3.12 Illustrations on the two basic failure mechanisms of Hyperelastic materials 
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When designing soft materials, material models such as the Mooney-Rivlin model cannot 

model the softening of the material at large strains since the model assumes that the strain energy 

of the model materials can increase without bound. However, it is clear that no real material can 

store unlimited amount of energy without failure under finite deformation. As described in Ref. 

[99], real hyperelastic materials may experience softening when material strain is large enough. 

Volokh [100-104] further developed this theory and proposed the softening hyperelasticity 

approach, which describes strain softening by introducing the energy limiter. Meanwhile, Rittel et 

al [105] have observed the existence of material energy limiter in experiments. Traditional 

continuum-based hyperelastic models do not include energy limiter which leads to unbounded 

energy accumulation. Evidently, this is unphysical and may result in unreasonable engineering 

design when using traditional hyperelastic materials. To design stretchable metamaterial, the 

energy of real hyperelastic material needs to be limited the design load and may be defined as 

material failure energy. Such a limiter is a direct criterion to measure recoverability of material. In 

fact, different failure criteria have been utilized to describe failure of hyperelastic materials, which 

include the (1) maximum principal stress, (2) maximum principal stretch, (3) maximum shear 

stress, (4) von Mises stress, and (5) strain energy. Based on the experiment conducted by Volokh 

[92], the results show that strain energy is almost constant for the failure states induced by various 

loading modes ranging from uniaxial to equal biaxial tension. The von Mises stress exhibits a 

wider range of scattering as compared to strain energy. The maximum stresses and stretches vary 

significantly with the variation of loads from uniaxial to equal biaxial tension. Thus, using strain 

energy as failure criterion is more accurate and reasonable for measuring failure of soft material 

and hence will be utilized also in the optimization algorithm development.  
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3.7 Optimization Method 

This study focuses on designing materials to present better stretchability and stiffness under 

finite deformation. The optimization formulation is described in detail in this section.  

3.7.1 Design parameterizations 

For structures experiencing large strains, excessive mesh distortion in low-density region 

often occurs, which always leads to divergence of nonlinear finite element analysis. Remeshing 

can alleviate this issue but is a cumbersome and computationally expensive process. To make 

optimization robust, an energy interpolation form proposed by Wang et al [58] is adopted here to 

relieve excessively distorted mesh in low-density area:  

Φ𝑒(𝒖𝑒) = [Φ(𝛾𝑒𝒖𝑒) − Φ𝐿(𝛾𝑒𝒖𝑒) + Φ𝐿(𝒖𝑒)]𝐸𝑒                              (3.15)           

where Φ() is the stored elastic energy density for base material and Φ𝐿() is the stored elastic 

energy density under small deformation. 𝐸𝑒 is a scaling parameter (i.e. 𝐸𝑒 = 1 for solid material 

and 𝐸𝑒 = 𝜀 (𝜀 is a very small value) for void region). Linear element is chosen to describe material 

deformation behavior for low-density elements, which is insensitive to large deformation. In 

contrast, high-density elements need to be analyzed by non-linear analysis. In the equation above, 

the interpolation factor 𝛾𝑒 equals to unity for solid elements, while 𝛾𝑒 = 0 corresponds to void 

element. The interpolation factor should satisfy that the stored energy corresponds to linear energy 

when 𝛾𝑒 = 0, while the elastic energy is simply depicted by the nonlinear energy term if  𝛾𝑒 = 1. 

A continuous and smooth method based on the Heaviside projection function is applied to ensure 

a smooth and differentiable transition between these two regions, which is successfully tested by 
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the fictitious domain approach [58]. Therefore, the threshold parameter 𝛾𝑒 can be modeled as 

follows: 

 𝛾𝑒 =
tanh(𝛽1𝑥𝑡)+tanh(𝛽1(�̅�𝑒

𝑝𝑙−𝑥𝑡))

tanh(𝛽1𝑥𝑡)+tanh(𝛽1(1−𝑥𝑡))
                                               (3.16)                                                                                    

where 𝑥𝑡  is a threshold used to determine the element behavior, and �̅�𝑒 is the element density. In 

most cases, 𝑥𝑡 = 0.01 and 𝛽1 = 500 are reasonable values to separate these two distinct regions 

in the optimization progress. The scaled parameter 𝐸𝑒  for each element can be interpolated as:  

𝐸𝑒 = �̅�𝑒(𝜲)
𝑝𝑙(1 − 𝜀) + 𝜀                                                 (3.17)                                                                                                                

where 𝜀 is a very small value (i.e. 𝜀 = 10−5). 𝑝𝑙 is penalization parameter and is set to a value of 

3 in this work unless otherwise stated.  Note that 𝜲 is the design variable. 

3.7.2 Optimization Formulations 

The optimization problem for designing stretchable and stiff metamaterial can be 

formulated to maximize material stiffness with local failure constraint for a given finite strain: 

max𝒇 = 𝒍𝑻𝒇𝒊𝒏𝒕(𝒖)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

𝑉(𝜲)

|𝛺|
− 𝑣𝑓

∗ ≤ 0

𝑐 [
1

𝑁
∑ (

𝐸𝑖(𝜲)

�̅�
)𝑁

𝑖=1

𝑝

]

1

𝑝
< 1

                                          (3.18)                                                                                                                

where 𝒍 is a zero vector with unit entries at the degrees of freedom on the boundary, and 𝒍𝑻𝒇𝒊𝒏𝒕(𝒖) 

represents reaction force on the boundary due to prescribed displacement. 𝐸𝑖(𝜲) is strain energy 

for every element and �̅� is prescribed energy limiter for material failure. Note that the p-norm 

formulation is applied to measure local maximum element strain energy and 𝑐 is an adaptive 

parameter. 𝑁 denotes element number, and p-norm parameter is chosen as 𝑝 = 10. 𝑉(𝜲) is the 
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volume of the design, |Ω| is the total volume of the initial fixed design domain, and 𝑣𝑓
∗ is the 

prescribed volume constraint. 

3.7.3 General Sensitivity Derivation based on Adjoint Method 

Gradient-based optimization method is employed here to solve the optimization problem 

above efficiently by deriving accurate sensitivities of the objective function and constraints. In the 

current study, gradients can be evaluated analytically using the adjoint method. For adjoint 

method, a general formulation corresponding to the nonlinear model is described in this section. 

The governing equilibrium equation in residual form can be written as follows:  

𝚿 = 𝑹− 𝑭 = 𝟎                                                        (3.19)                                                                                                                                                   

Any other constraint equations for the physical problem are expressed as follows:  

                                  𝓗 = 𝟎                                                                 (3.20)                                                                                                                                                               

For a given function ℱ, which can work as objective or constraint, an augmented Lagrangian 

function 𝐺 is formulated based on the adjoint method:  

                                            𝑮 =  𝓕 + 𝝍𝑻𝚿+ 𝜿𝑻 ∙ 𝓗                                                (3.21)                                                                                                                                                                                                                                                          

where 𝝍 and 𝜿 are Lagrange multiplier. For arbitrary vectors 𝝍 and 𝓗, the equation 𝐺 =  ℱ can 

be established. Thus, achieving the derivative 
𝜕𝐺

𝜕𝝆
 is equivalent to obtaining the sensitivities of the 

augmented Lagrangian function 𝐺 with respect to material density 𝜌. A general procedure to obtain 

the derivative of 𝐺 using the chain rule can be expressed as:  

           
𝝏𝑮

𝝏𝝆
=

𝝏 𝓕

𝝏𝝆
+
𝝏 𝓕

𝝏𝑼

𝝏𝑼

𝝏𝝆
+𝝍𝑻 (

𝝏𝚿

𝝏𝝆
+
𝝏𝚿

𝝏𝑼

𝝏𝑼

𝝏𝝆
) + 𝜿𝑻 ∙ (

𝝏𝓗

𝝏𝝆
+
𝝏𝓗

𝝏𝑼

𝝏𝑼

𝝏𝝆
)                    (3.22)                                                                                                                                                                                                                                                                                          
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where 𝑼 is the global displacement vector and operator 
𝜕

𝜕𝜌
 represents a derivative with respect to 𝜌 

. Re-arranging above Equation as follows: 

𝜕𝐺

𝜕𝜌
= (𝝍𝑻 𝜕𝚿

𝜕𝑼
+ 𝜿𝑻

𝜕𝓗

𝜕𝑼
+
𝜕 ℱ

𝜕𝑼
)
𝜕𝑼

𝜕𝜌
+
𝜕 ℱ

𝜕𝜌
+𝝍𝑻 𝜕𝚿

𝜕𝜌
+ 𝜿𝑻

𝜕𝓗

𝜕𝜌
                       (3.23)                                                                                                                                                                                                                                                                                                                                   

Choosing 𝝍 and 𝜿 such that 

𝝍𝑻 𝜕𝑹

𝜕𝑼
+ 𝜿𝑻

𝜕𝓗

𝜕𝑼
+
𝜕 ℱ

𝜕𝑼
= 𝟎                                              (3.24)                                                                                                                                                                                                                                                                                                                                   

The parameter 𝜓 and 𝜅 are known as adjoint vector. Thus, 

𝜕𝐺

𝜕𝜌
=

𝜕 ℱ

𝜕𝜌
+𝝍𝑻 𝜕𝚿

𝜕𝜌
+ 𝜿𝑻

𝜕𝓗

𝜕𝜌
                                            (3.25)                                                                                                                                                                                                                                                                                                                                           

The above derivation is usually referred to as the discrete adjoint method. 

3.7.4 Sensitivity of Objective and Constraints 

Note that element density 𝜌 is chosen as design variable in this section, and sensitivity with 

respect to Bézier-based representation parameters 𝚾 can be obtained by the chain rule. For MPCs 

boundary conditions, the equilibrium equations can be written as:  

                           𝒓 = 𝑹(𝒖) + (𝑨𝑻𝜶𝑨)𝒖 − 𝑭 − 𝑨𝑻𝜶𝑸 = 𝟎                                (3.26)                                                                                                                                                                                                                                                                                                                                                  

Based on design parametrization, the adjoint method described in above section is employed to 

obtain the sensitivities of the objective and constraint functions 𝜃, with respect to density 𝜌, given 

as:  

                  
𝝏𝜽

𝝏𝝆
=

𝝏𝜽(𝒖)

𝝏𝝆
+ 𝝀𝑻

𝝏𝒓

𝝏𝝆
                                                    (3.27)                                                                                                                                                                                                                                                                                                                                                  

The adjoint variable vector 𝜆 is obtained by solving the following equation:  

                             (𝑲∗)𝑻𝝀 = −(
𝝏𝜽(𝒖)

𝝏𝝆
)
𝑻

                                               (3.28)                                                                                                                                                                                                                                                                                                                                                  

where  
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                                     𝑲∗ = (𝑲𝒕 + (𝑨
𝑻𝜶𝑨))                                                 (3.29)                                                                                                                                                                                                                                                                                                                                                          

Note that 𝑲𝒕 is the tangent stiffness matrix at the equilibrium state, and superscript 𝑻 denotes the 

transpose of the matrix.  

3.8 Initial Guess of Geometric Component Distribution      

As in previous works [15], random initial guess of geometry component is chosen to initiate 

optimization. It is feasible to use random initial distribution for linear problem. One weakness of 

random initialization is that the ends of one geometry component do not always connect with other 

components. Thus, this non-connectivity issue is undesirable for solving geometry nonlinear 

problem in that excessive mesh distortion may happen in the gap region during FEM analysis. 

Hence it is essential to find an initial layout which should be a connected path of geometry 

components between loads and the boundary conditions. As described by Ref. [19], the value of 

failure constraint is highly sensitive to a small change of geometric component design variables, 

and hence some perturbed initial values could lead to unreasonable optimal design. Thus, a 

reasonable initial value of design variables is of great significance for convergence of optimization 

progress. However, how to construct an initial connected design is still a tricky problem, especially 

for nonlinear optimization problem. From our numerical experiments, a density based optimal 

design can work as a guidance for geometric component initialization. Inspired by this experience, 

an identification process is proposed in this chapter to construct a reasonable initial values of 

design variables. This identification progress can be divided into two parts. This first part is 

topology optimization using density-based methods to obtain a coarse layout, which can be used 

as a design guidance for optimization with geometric component. It is worth to mention that there 
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is no need to reach an ideal 0-1 solution for density based optimization. A coarse layout with a 

large amount of intermediate densities during optimization progress (i.e. iteration=10) is enough 

to yield an initial layout. The second part is an identification progress, which can be regarded as 

an auxiliary optimization problem. The auxiliary optimization problem is formulated as follows:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑(�̿�𝐺(𝝌𝒊, 𝜌,̿ 𝑤) − 𝑋𝐼)
2                                          (3.30) 

where parameters 𝝌𝒊, 𝜌,̿ 𝑤 are the design variables of geometric components.  �̿�𝐺 denotes density 

projection from geometric components. 𝑋𝐼 represents objective density from density-based 

optimization results. Hence, this optimization problem aims to find an optimal initial layout of 

geometric component by minimizing the difference between geometry projection with desired 

density distribution from density-based optimal results. Due to the limited parameters needed to 

be identified, sequential quadratic programming (SQP) method [88] is implemented here to find a 

local minimum of the cost function. Detailed description of the identification progress will be 

demonstrated in numerical examples. It is worth to mention that the material layouts do not have 

distinct difference under three different loading conditions after the few initial optimization 

iterations (i.e. 10). For simplicity, we apply the density-based optimized material layout under 

uniaxial tension as initial configuration to the proposed optimization method for all numerical 

examples.  

3.9 2D Optimized Results under Uniaxial Tension 

For material design under uniaxial tension, we design materials with symmetry along both 

axial directions. To characterize material behavior using the unit cell as presented in Figure 3.13, 

MPCs boundary conditions are applied along four sides of the design domain. �̅� is a constant 
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displacement difference between right and left edges. The strain energy limit for base material is 

set to 1.1, which corresponds to 10% strain under uniaxial tension. The goal is to maximize the 

material stiffness under 30% strain along the horizontal direction without local material failure. 

The design domain is discretized with 100 × 100 quadrilateral elements with element size equals 

to 1. The loading and boundary conditions together with the design domain are plotted in Figure 

3.13. The constant displacement difference is set to �̅� = 30. The width of the Bézier skeleton is 

set to be  2 < 𝑤 < 3 , and volume fraction constraint is chosen as 0.3. Note that the value of p-

norm for strain energy aggregation is chosen as 𝑝 = 10. In fact, increasing the value of 𝑝 is better 

to improve the approximation of the maximum, while a value of 𝑝 that is too high will result in 

convergence difficulty during optimization. Due to the highly nonlinear nature, the move limit for 

MMA algorithm need to be small enough to ensure that no gap exists during optimization progress, 

which will lead to excessive mesh distortion in finite element analysis. The move limit is chosen 

as  0.01  after several numerical tests. The optimized material layout is shown in  Figure 3.14 (a). 

For comparison, the optimized density results without failure constraint is plotted in Figure 3.14 

(b). Based on optimization results considering failure constraint, only four effective Bézier-based 

components remain after optimization has been completed, which demonstrates that the optimizer 

is able to remove redundant geometric components from the initial design. We would like to 

mention that there is no need to employ higher order Bézier curves, because 15 initial components 

have enough degrees of freedom to explore the design domain. The 5 × 5 lattice structures 

obtained based on the optimized design are shown in Figure 3.16. It is interesting to find that the 

optimized metamaterial considering failure constraint shares high similarity to the so-called 

“horseshoe” serpentine design, which is widely used in stretchable electronics. Besides stretchable 

electronics, these serpentine-shaped structures can be found in many expandable systems made by 
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stiff materials such as cardiovascular stents. The “horseshoe” serpentine structure is presented in 

Figure 3.17. In fact, “horseshoe” microstructures can rotate to accommodate the applied 

displacement, leaving much smaller intrinsic strain in the base materials compared with the applied 

strain. The contours of strain energy distribution with a thousand lines are presented in Figure 3.18. 

The maximum local strain energy of optimized results without failure constraint almost reaches 

20, while the material stiffness is around 4 times compared to the optimized design considering 

failure constraint. The optimized compliance of unit cell based on BSED is 17.4.  To make a 

comparison, an optimized result with standard density-based method is presented in Figure 3.19. 

For the standard density-based method, where each element works as a design variable, the 

staggered boundary can be found in the optimized result as shown in Figure 3.19. Some post-

processing techniques are needed to generate smooth material layouts. Small holes are also found 

in the optimized results, which is not preferred for additive manufacturing [106] due to precision 

limitation. For the design generated with BSED method, the designs are described by Bézier curve 

with certain thickness, the boundary can be smooth enough due to explicit geometric description 

without any limitation of FEM mesh resolution. The other merit of BSED is that it is easier to 

generate standard CAD model and edited in general CAD software [107], because the optimal 

design is described by parametric space, which is ready to directly define geometry in software 

using feature-based modeling [108], instead of converting the STL (stereolithography) file to ISO 

standard exchange format (i.e. STEP file [109]). Meanwhile, the number of design variables is 

reduced significantly compared to standard density-based method. The optimized compliance of 

unit cell with standard density-based method is 15.8, which is slightly lower than optimized result 

generated by BSED method. This is reasonable due to more freedom in the design space. 
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Figure 3.13 Design domain of a unit cell in uniaxial tension 

 

(a) with failure constraint                                  (b) without failure constraint 

    

Figure 3.14 Optimized density results in uniaxial tension (a) with failure constraint and (b) without failure 

constraint 
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(a) with failure constraint                                    (b) without failure constraint                              

 

Figure 3.15 Optimized 𝐁�́�𝐳𝐢𝐞𝐫 skeleton (a) with failure constraint and (b) without failure constraint 

 

(a) with failure constraint                                     (b) without failure constraint 

                                    

Figure 3.16 5 by 5 lattice structures consisted of the optimized unit cell design (a) with failure constraint and 

(b) without failure constraint 

 

 

Figure 3.17 The “horseshoe” serpentine shape structure 
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(b) with failure constraint                                   (b) without failure constraint 

                                 

Figure 3.18 Strain energy distribution for the undeformed configuration (a) with failure constraint (b) 

without failure constraint 

      (a) Undeformed configuration                            (b) Deformed configuration 

                                          

Figure 3.19 Optimized result with standard density-based method (a) Undeformed configuration (b) 

Deformed configuration 

3.10 2D Optimized Results under Equal Biaxial Tension 

In this subsection, we apply the proposed optimization formulation to design materials 

under equal biaxial tension, see Figure 3.20. We aim at designing high stiffness materials subjected 

to 30% strain along both longitudinal and transverse directions without local failure. The 
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dimension and material properties are the same as previous numerical example, where 100 × 100 

quadrilateral elements with element size equals to 1 are used to discretize the design domain. The 

same optimization parameters are applied in this numerical example. The maximum allowed 

volume is 30% of the design domain volume. The optimized microstructure considering failure 

constraint is presented in Figure 3.21(a), while the result without constraint is shown in Figure 

3.21(b). Figure 3.22 show the optimized Bézier skeletons. The optimized result show “horseshoe” 

structures along both directions. Note that only the geometric components with �̿� > 0.1 are 

displayed. For design without failure constraint, the optimized microstructure shares much 

similarity with the honeycomb structure, see Figure 3.23(b). The perspective of the full periodic 

microstructure is demonstrated in Figure 3.23.  The strain energy contours are found in Figure 

3.24, where deformation at 30% strain along both directions is plotted in Figure 3.25.  

 

Figure 3.20 Design domain of a unit cell in equal biaxial tension 
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(a) with failure constraint                                    (b) without failure constraint 

               

Figure 3.21 Optimized density results in equal biaxial tension (a) with failure constraint and (b) without 

failure constraint 

 

    (a) with failure constraint                                   (b) without failure constraint 

                         

Figure 3.22 Optimized 𝐁�́�𝐳𝐢𝐞𝐫 skeleton (a) with failure constraint and (b) without failure constraint 
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(a) with failure constraint                                         (b) without failure constraint 

                             

Figure 3.23 A 5 by 5 lattice structure consisted of the optimized unit cell (a) with failure constraint and (b) 

without failure constraint 

(a) with failure constraint                                           (b) without failure constraint 

                              

Figure 3.24 Strain energy distribution on undeformed configuration (a) with failure constraint and (b) 

without failure constraint 
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Figure 3.25 Strain energy distribution contours on deformed configuration 

3.11 Conclusions and Discussions 

In this chapter, a Bézier skeleton explicit density (BSED) representation algorithm is 

proposed for the topology optimization of stretchable metamaterial. Material failure is measured 

by strain energy and p-norm formulation are utilized. A Heaviside function is applied to create a 

mapping from geometry skeleton to mesh grids, where the skeleton is described by the Bézier 

curves. This density representation method successfully inherits the main advantages of density-

based topology optimization. Sensitivities of the objectives and constraints with respect to control 

parameters can be readily derived by using the chain rule. Standard nonlinear programming 

algorithms are applied in this algorithm. The initial configuration for the proposed method is 

obtained by performing optimization using standard density-based method on coarse mesh for a 

few iterations, which would lead to a well-connected layout. From the numerical examples, 

redundant geometry members can be removed, and the thickness of skeleton can be easily 

controlled by parameters of Heaviside function. Due to the powerful curve fitting ability, using 

Bézier curve to represent density field can explore design space effectively compared to bar-like 
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structures, and generate manufacturing friendly structures without any intricate small features in 

optimal design. Furthermore, this density representation method is mesh independent and the 

design variables are reduced significantly so that the optimization problem can be solved 

efficiently using regular optimization algorithm. From the numerical results, the optimized 

material layout shares high similarity to the “horseshoe” structures, which are widely found in soft 

electronics design. Therefore, the method proposed in this chapter shows great potential and opens 

the door for designing manufacturable microstructures to achieve extreme stretchable materials 

that can be utilized for applications such as stretchable electronics and soft robotics. 
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4.0 Projection-based Method for Flexible Functionally Graded Lattice Design 

4.1 Current Progress of Optimization for Lattice Structure Design 

Cellular materials or lattice structures have been utilized in numerous applications and are 

common in nature, such as bone, wood, sponge, etc. Recently, these porous materials are designed 

to achieve multi-functional material for weight reduction, energy absorption or heat transfer [110, 

111]. Lattice structures made by metal are widely applied to product design in the field of 

orthopedic regenerative medicine [112]. These include, for example, design of bone scaffolds and 

implants to replicate the biomechanical properties of host bones. Porous metallic structure is an 

ideal candidate for repairing or replacing damaged bone because of its tunable mechanical 

properties. More importantly, porous metals can be designed to be open-celled to promote in-

growth of bone tissue, which accelerates the osseointegration process.  Conventional processes are 

difficult or impossible to fabricate porous media due to intricate internal architecture. Recent 

advancement in additive manufacturing (AM) enables fabrication of lattice structures which has 

significantly increased the demands for implants with customized mechanical performance [112]. 

In fact, open-celled lattice structures are preferred for additive manufacturing for many reasons 

including [113]: a) inherent porosity can minimize residual stress to reducing printed part 

distortion, b) reduce support materials due to self-supporting unit cells, and c) no enclosed voids 

so that the powder can be easily removed. Several approaches are proposed in recent years to 

generate lattice structures, such as generic ground truss structure approaches etc. [113, 114]. Triply 

periodic minimum surfaces (TPMS) is becoming a promising microstructure for designing 

scaffolds due to its extraordinary mechanical performance. TPMS is composed of three-
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dimensional continuous smooth surfaces, for which the average curvatures at each surface point is 

zero. These structures are called biomimetic structures, which is widely found in biological 

systems in nature, such as butterfly wings. Due to its geometric properties, these structures have 

the advantages of lightweight, high strength, and high specific surface area. Another merit of 

TPMS is that these structures can be defined using implicit equations. Besides, TPMS has already 

been proven to be a versatile source for biomorphic scaffold designs, and provided a viable and 

stable environment to replace damaged bones because of the smooth bending properties and 

optimized fluid permeability [115]. In this chapter, we focus on the design of functionally graded 

lattice structure with TPMS unit cell due to its extraordinary mechanical properties.  

Topology optimization (TO) for designing functionally graded lattice is a hot topic in 

recent years.  Several efficient topology optimization methods have been proposed based on 

homogenization theory by assuming that the two scales are separated [116-123], and some 

algorithms were developed based on reduced order modeling technique [124-126]. In recent years, 

some new hierarchical lattice structure design methods have been proposed as well. Xia [127] 

reviews recent advances in designing multiscale structural modeling and design of nonlinear 

structures. Yvonnet et al [128] proposed a topology optimization method for lattice structures in 

the case of non-separated scales, where a non-local numerical homogenization method is 

implemented. Recent advances in scale-related periodic design, the prefect connectivity between 

different optimized unit cell is guaranteed [118, 120, 129-133].   

The conventional computer-aided design (CAD) technique creates geometric objects using 

surfaces, which is an ideal solution for visualization and conventional subtractive manufacturing 

process, such as computer numerical control (CNC) cutting machine tools. However, this surface-

based shape representation method is not an ideal for designs for additive manufacturing (AM). 



 71 

The AM technology builds an object in a layer-by-layer way, which can be applied to print 

extremely complex designs such as porous scaffolds or lattice structures. In general, geometric 

model for AM can be implemented using voxels, tetrahedra, parametric solids, or implicit field 

function [134] defined in three-dimensional space. However, using voxel points or a set of 

tetrahedra can be expensive in terms of storage space. Moreover, representation with voxels or 

tetrahedra provide only an approximation of the real object. For parametric representation, it is 

extremely tedious and difficult to design lattice structures using constructive solid geometry (CSG) 

[135].  Compared to the above methods, a ready-to-print geometric object is to describe a geometry 

as a 3D function 𝐹(𝑥, 𝑦, 𝑧), which directly informs the AM machine to determine whether the point 

𝑷(𝑥, 𝑦, 𝑧) should be printed. Recent research has shown that geometry modeling using implicit 

functions are particularly suitable for modeling lattice and porous media. This AM-friendly 

modeling method has attracted great attention from academia and industry for AM design and has 

already been used to model any complex geometry in general. More importantly, this implicit field 

modeling method for AM has already been commercialized and achieve great success by a 

software company called nTopology, Inc. The main advantages of implicit modeling are as 

follows: i) An implicit geometry is directly defined in the physical space, which can directly 

provide precise information of objects to a 3D printer. ii) Implicit modeling is a lightweight 

geometric modeling technique without requirement of massive storage space. iii) Recent research 

has shown that implicit functions are particularly suitable for modeling microporous structures 

[134, 136]. Therefore, using implicit function to model porous media or lattice scaffold is a more 

advanced and feasible approach for future AM-oriented design.   
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4.2 Implicit Modeling for Functionally Graded Lattice 

4.2.1 Generation of Functionally Graded Lattices based on Implicit Modeling 

In general, lattice unit cells can be constructed using surface-based representation method. 

Using the TPMS as an example, the structure can be defined by an implicit function (i.e. 

𝑓(𝑥, 𝑦, 𝑧) = 𝑡), where 𝑡 is the parameter that governs the offset from the level sets, and 𝑡 can vary 

in design domain. There are several different types of TPMS as described in Ref. [113]. The four 

typical structures of TPMS [137] are shown in Figure 4.1. The TPMS can be utilized to create 

lattice structures with unique mechanical characteristics. Furthermore, the lattice structures 

generated by TPMS have a higher surface-to-volume ratio compared with traditional strut-based 

lattice structures [138]. The gyroid is one of the most popular TPMS with robust mechanical 

performance. In this chapter, we focus on the lattice design based on the gyroid minimum surface. 

(a) G (‘Gyroid’)          (b) P (‘Schwarz P’)        (c) D (‘Diamond’)            (d) N (‘Neovius’) 

 

Figure 4.1 Triply periodic minimal surface (TPMS) 

In general, explicit TPMS formulation can be constructed using inequality conditions 

expressed as follows [113]: 

𝑓(𝑥, 𝑦, 𝑧)2 ≤ 𝑡   (𝑡 > 0)                                           (4.1) 

 



 73 

The control equations for the gyroid surface is 

𝑓𝐺(𝑥, 𝑦, 𝑧) = sin(𝜆𝑥𝑥) ∙ cos(𝜆𝑦𝑦) + sin(𝜆𝑦𝑦) ∙ cos(𝜆𝑧𝑧) + sin(𝜆𝑧𝑧) ∙ cos(𝜆𝑥𝑥)   (4.2) 

where 𝜆𝑖(𝑖 = 𝑥, 𝑦, 𝑧) is the function periodicity, expressed as:  

𝜆𝑖 =
2𝜋

𝐿𝑖
 (𝑤𝑖𝑡ℎ 𝑖 = 𝑥, 𝑦, 𝑧)                                                    (4.3)              

where 𝐿𝑖 is the absolute dimension which defines the length of a unit cell. To design functionally 

graded lattice structures, the material grading in three-dimensional space can be realized by 

operating through 4D representation (𝑥, 𝑦, 𝑧, 𝑡), where the 𝑡 is an iso-value matrix in the (𝑥, 𝑦, 𝑧) 

space. Therefore, a functionally graded lattice can be represented in an implicit way as follows:  

𝑓(𝑥, 𝑦, 𝑧)2 ≤ 𝑡(𝑥, 𝑦, 𝑧)                                                       (4.4)                                                                                                                  

where the 𝑡(𝑥, 𝑦, 𝑧) controls the spatial variation of unit cell volume fraction in three-dimensional 

Cartesian space. Therefore, designing functionally graded (FG) TPMS lattice is equal to varying 

the variable 𝑡(𝑥, 𝑦, 𝑧) in the design domain. The design domain for 𝑡(𝑥, 𝑦, 𝑧) in Cartesian space 

can be discretized by voxels. The continuous function 𝑡(𝑥, 𝑦, 𝑧) in space can be reconstructed 

through field values at every voxel. In fact, the periodicity 𝜆𝑖 can be also varied in three-

dimensional Cartesian space. However, the periodicity is fixed in the design domain for the present 

work. 

For conventional density-based topology optimization, design domain is discretized by 

finite element (FE) mesh, where each element works as a design variable. To connect the implicit 

field with density-based method, a Heaviside function-based projection method is implemented 

here to map the implicit field to the background FE mesh, which enables topology optimization 

algorithm to be performed on a fixed grid.  An approximate Heaviside function can be defined as 

Η𝑎,𝑐(𝑥) =
1

1+𝑒−𝑎∙(𝑥−𝑐)
                                                      (4.5)                                                                                                                                   
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In the above equation, 𝑎 and 𝑐 are two parameters that could control the shape of Heaviside 

function. A projection from the parametric design space 𝑡(𝑥, 𝑦, 𝑧) to density field 𝜌 can be 

expressed as:  

𝜌(𝑥, 𝑦, 𝑧) = Η𝑎0,𝑐0(𝑡(𝑥, 𝑦, 𝑧)) ∙ Η𝑎1,𝑐1(𝑡(𝑥, 𝑦, 𝑧) − 𝑓(𝑥, 𝑦, 𝑧)
2)                  (4.6)                                                                                                                                                                                          

where Η𝑎0,𝑐0 and Η𝑎1,𝑐1are Heaviside function defined in Eq. (4.5) with different control 

parameters. Note that the 𝑡(𝑥, 𝑦, 𝑧) is closely related to the volume fraction of unit cell. Thus, the 

first term is used to control the volume fraction of gyroid lattice. If the volume fraction at point 

(𝑥, 𝑦, 𝑧) is a small value, the first term will tend to zero so that the material at this point can be 

removed. The second term works as a projection to map the gyroid lattice to density field. Hence 

Eq. (4.6) is capable of mapping the design space 𝑡(𝑥, 𝑦, 𝑧) to density field 𝜌(𝑥, 𝑦, 𝑧). In practice, 

the design space 𝑡(𝑥, 𝑦, 𝑧) is a continuous differentiable function in design domain. To effective 

construct implicit field 𝑡(𝑥, 𝑦, 𝑧) in the entire design domain with a single globally continuous and 

differentiable function, the radial basis functions (RBFs) [139] is introduced here to model the 

implicit field 𝑡(𝑥, 𝑦, 𝑧). The RBFs are able to interpolate scattered data to generate smooth surface, 

and is an effective way to approximate complex function. Radial basis functions are radially 

symmetric functions centered at a specific point, called an RBF knot, which can be expressed as 

follows: 

𝜑𝑖(𝒙) = 𝜑(‖𝒙 − 𝒙𝒊‖)                                                   (4.7)                                                                                                                                                                       

where ‖∙‖ denotes the Euclidean norm and 𝒙𝒊 is the position of the knot. There are several possible 

radial basis functions, including thin-plate spline, Gaussians [140], etc. In this chapter, The 

Gaussian function is chosen to work as the RBF kernel, where the explicit form of Gaussian 

function is expressed as follows: 

 𝜑(‖𝒙 − 𝒙𝒊‖) = 𝑒
−(

‖𝒙−𝒙𝒊‖

𝜖
)
2

                                             (4.8)                                                                                                                                                                       



 75 

where 𝜖 is a parameter to control the shape of the Gaussian function. The implicit function 𝑡(𝑥) in 

the design domain can be interpolated via the RBF functions as: 

𝑡(𝑥) = ∑ 𝛼𝑖𝜑𝑖(𝑥)
𝑁
𝑖=1                                                   (4.9)                                                                                                                                                                       

where 𝛼𝑖 is the expansion coefficient of the radial basis function positioned at the 𝑖th knot. The 

above equations can be rewritten as 

                                                 𝒕(𝒙) = 𝝓𝑻(𝒙)𝜶                                                   (4.10)                                                                                                                                                                              

where  

           𝝓(𝑥) = [𝜑1(𝑥), 𝜑2(𝑥),⋯𝜑𝑁(𝑥)]
𝑇,   𝜶 = [𝛼1, 𝛼2, ⋯𝛼𝑁]

𝑻              (4.11)                                                                                                                                                                                       

Using the RBFs to model the implicit function 𝑡(𝑥, 𝑦, 𝑧), we have 

𝑡(𝑥, 𝑦, 𝑧) = 𝝓𝑻(𝑥, 𝑦, 𝑧)𝜶𝒕                                           (4.12)                                                                                                                                                                                                                                        

where 𝜶𝒕 is the design variable, which directly determines the implicit function 𝑡(𝑥, 𝑦, 𝑧). The 

relationship between RBF knot and density is illustrated in Figure 4.2. While each density point is 

located at the center of each element of the FE mesh, the locations of RBF knots and density points 

can be independently chosen and do not need to coincide with each other. Therefore, the density 

field 𝜌(𝑥, 𝑦, 𝑧) can be constructed via the following expression:  

𝜌(𝑥, 𝑦, 𝑧) = 𝛨𝑎0,𝑐0(𝝓
𝑻(𝑥, 𝑦, 𝑧)𝜶𝒕) ∙ 𝛨𝑎1,𝑐1(𝝓

𝑻(𝑥, 𝑦, 𝑧)𝜶𝒕 − 𝑓(𝑥, 𝑦, 𝑧)
2)     (4.13)                                                                                                                                                                                                                                        

Note that the coordinate of (𝑥, 𝑦, 𝑧) should be normalized accordingly to the range of  [0,1]3 for 

optimization purpose.   
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Figure 4.2 RBF knots and density points 

4.2.2 Comparison with Homogenization-based Lattice Design 

Homogenization-based functionally graded lattice design is a popular method in recent 

years [141, 142]. The general procedure of this method is as follows: a) Compute the effective 

mechanical properties of unit cell by Asymptotic Homogenization (AH) method [143], b) 

conventional density-based TO method with effective material properties computed based on AH, 

and c) lattice reconstruction based on density optimized results, where the volume fraction of each 

unit cell is directly determined by material density distribution from density-based TO method. 

The PIMM method can be classified as a non-homogenization method for lattice design based on 

implicit modeling. Compared with homogenization-based topology optimization, the pros and 

cons of the proposed method is listed as follows, 

a) Size effect of lattice structures. The AH method is effective when the unit cell is sufficiently 

small in size compared to macrostructure, while the proposed method is not limited by unit 

cell size. 
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b) Several advanced homogenization-based lattice design methods have been proposed in recent 

years [118], where the configuration of the single unit cell is allowed to optimized and varied 

in space. However, the microscale topology is fixed for the proposed method.  

c) Homogenization-based design method is not feasible for irregular porous scaffold designs 

[144], which is widely applied and preferred for tissue engineering. For example, Voronoi 

foam design [145], where there does not exist any periodicity in space, cannot be designed 

with homogenization-based method. However, because the irregular porous scaffold can be 

described by the implicit field, projection-based method proposed in this work can be readily 

applied in such situations. 

d) The computational cost for the proposed method is higher than the homogenization-based 

method, especially when the length scale of unit cell is small. The proposed method is 

favorable for lattice design where the unit cell is large, while the homogenization is better for 

the situation where the length scale of unit cell is small. 

e) Applying the RBF mapping method to describe the design domain increase the computational 

cost and implementation complexity compared with standard homogenization-based method. 

4.3 Topology Optimization Formulation based on Implicit Modeling 

4.3.1 Minimum Compliance 

In this section, the implicit modeling method described in the section above is utilized to 

develop the TO formulation of compliance minimization [146]. The density field is controlled by 

RBF knots in the design domain. Hence, the TO will iteratively optimize functionally graded 
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lattice through updating the RBF knots in the design domain until the design achieve the optimal 

stiffness. Here, the RBF knots are defined as the design variables for evolving the true density field 

in the design domain during the optimization.  Thus, the optimization problem can be expressed 

as:  

{
 
 

 
 𝐹𝑖𝑛𝑑:  𝜶𝒕

𝑀𝑖𝑛: 𝐶(𝒖,𝜶𝒕) =
1

2
∫ 𝜺(𝒖)𝑻𝑫(𝜌(𝜶𝒕))𝜺(𝒖)𝑑ΩΩ

𝑠. 𝑡: 
1

|Ω|
∫ 𝜌(𝜶𝒕)𝑑ΩΩ

− 𝑉𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒 ≤ 0

                               (4.14)                                                                                                                                                                                                                                        

where 𝐶 is the objective function defined by the structural compliance, 𝜶𝒕 is the weight vector of 

the RBF knots in the design space, 𝜌 is the density distribution in the design domain Ω, and 

𝑉𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒 is the prescribed volume fraction.  In the finite element model, 𝒖 is the unknown 

displacement field, 𝜺 is the strain, and 𝑫 is the elastic tensor matrix.  

4.3.2 Design Sensitivity Analysis based on Chain Rule 

To obtain the sensitivity of objective function with respect to weights of RBF knots, the 

chain rule is employed. The adjoint method is applied to obtain the sensitivity with respect to the 

density field 𝜌:   

𝜕𝐶

𝜕𝜌
= 𝜸𝑇

𝜕𝑲

𝜕𝜌
𝒖                                                         (4.15)                                                                                                                                                                                                                                        

where 𝜸 is the adjoint vector computed from the adjoint equation 𝑲𝜸 = −𝒇, and 𝑲 is the 

assembled stiffness matrix, see Ref. [146]. According to the chain rule, the sensitivity of objective 

𝐶 with respect to design variables  𝜶𝒕 can be expressed as:  

𝜕𝐶

𝜕𝜶𝒕
= ∑

𝜕𝐶

𝜕𝜌𝑖
∙
𝜕𝜌𝑖

𝜕 𝜶𝒕

𝑛𝑒𝑙𝑒
𝑖=1                                                    (4.16)                                                                                                                                                                                                                                                                                                                             



 79 

where 𝑛𝑒𝑙𝑒 is the total number of elements, and 𝜌𝑖 denotes the density of  𝑖𝑡ℎ element. We just 

simply describe the derivation of density 𝜌 with respect to RBF knots  𝜶𝒕 as follows, 

𝜕𝜌

𝜕 𝜶𝒕
= 𝛨𝑎0,𝑐0

′(𝝓𝑻(𝑥, 𝑦, 𝑧)𝜶𝒕) ∙ 𝝓(𝑥, 𝑦, 𝑧) ∙ 𝛨𝑎1,𝑐1(𝝓
𝑻(𝑥, 𝑦, 𝑧)𝜶𝒕 − 𝑓(𝑥, 𝑦, 𝑧)

2) +

𝛨𝑎0,𝑐0(𝝓
𝑻(𝑥, 𝑦, 𝑧)𝜶𝒕) ∙ 𝛨𝑎1,𝑐1

′(𝝓𝑻(𝑥, 𝑦, 𝑧)𝜶𝒕 − 𝑓(𝑥, 𝑦, 𝑧)
2) ∙ 𝝓(𝑥, 𝑦, 𝑧)              (4.17)   

where 𝛨𝑎0,𝑐0
′(∙) and 𝛨𝑎1,𝑐1

′(∙) denote the first derivative of 𝛨𝑎0,𝑐0 and 𝛨𝑎1,𝑐1. The explicit 

formulation of 𝛨𝑎0,𝑐0
′(∙) and 𝛨𝑎1,𝑐1

′(∙) can be readily obtained using symbolic differentiation 

system, which is available in a build-in module in MATLAB [147]. 

4.4 Numerical Examples and Discussion 

In this section, several 2D and 3D numerical examples are demonstrated in details on 

designing functionally graded gyroid lattice structures.  The classic MBB beam in two dimensions 

is first investigated to demonstrate the effective of the proposed implicit modeling method for 

lattice design. The parameters for all numerical examples are chosen as: 𝑎0 = 50, 𝑐0 = 0.2, 𝑎1 =

500, 𝑐1 = 0, 𝜖 = 0.1. The Method of Moving Asymptotes (MMA) is applied to solve optimization 

problem. The number of RBF knots in each direction are chosen based on our experience, less 

RBF knots result in simpler topology shape, while more RBF knots will inevitable increase 

computational cost.  In this chapter, ten RBF knots along each direction are implemented in all 

numerical examples. Note that for two-dimensional problem, the implicit function for describing 

the lattice structure 𝑓2𝐷(𝑥, 𝑦, 𝑧) is chosen as follows:  

𝑓2𝐷(𝑥, 𝑦) = sin(𝜆𝑥𝑥) ∙ cos(𝜆𝑦𝑦)                                     (4.18)   
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4.4.1 Compliance Optimization for MBB Design 

The MBB-beam [148] is a popular test and benchmark problem in topology optimization. 

The symmetry is used for design, and the right half of the beam is modelled. The design of the 

MBB beam with the loading and boundary conditions is illustrated in Figure 4.3(a). The design 

domain is uniformly meshed by 200×200 elements with unit length. The prescribed volume 

fraction is set as 30%. The elastic constants are chosen as follows: elastic modulus E=1 and 

Poisson’s ratio μ=0.3. The 10 × 10 uniformly distributed RBF knots are generated along two 

directions. The initial weights of RBF knots are chosen as 0.1. The periodicity parameters are 

selected as: 𝐿𝑥 = 0.1, 𝐿𝑦 = 0.1. The optimized design is plotted in  Figure 4.3(b). As shown in the 

optimal results, the method proposed in this chapter is able to generate functionally graded lattice 

infill structures.  

 (a) MBB beam example                                   (b) Optimal lattice infill design 

                     

Figure 4.3 (a) MBB beam example (b) Optimal lattice infill design 

4.4.2 Compliance Optimization for Three-dimensional Cantilever Beam Design 

In this section, a three-dimensional cantilever beam example is presented for compliance 

optimization. The cantilever beam is modeled by a 200 × 100 × 60 hexahedral mesh, and the 
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dimension of the design is demonstrated in Figure 4.4. A uniform line force 𝐹 = 1 is applied on 

the right-bottom of the rectangle domain. The 10 × 10 × 10 uniformly distributed RBF knots in 

the design domain. Note that 10 × 10 × 10 uniformly distributed RBF knots applied here are only 

for implementation convenient, which will inevitable results in a difference of length scale in each 

direction. To obtain a cubic unit cell, the number of knots in every direction should be proportional 

to mesh number in each direction. However, it is worth to mention that our method is applicable 

to rectangle unit cell, which is generally not preferred for lattice optimization based on 

homogenization model. Note that left side of rectangle is fixed. The elastic constants are chosen 

as follows: Elastic modulus 𝐸 = 1 and Poisson’s ratio 𝜇 = 0.3. The initial weights of RBF knots 

are chosen as 0.1, and the periodicity parameters are selected as: 𝐿𝑥 = 0.1, 𝐿𝑦 = 0.1, and 𝐿𝑧 =

0.1. The optimization converges after 30 iterations presented in Figure 4.5(b). The optimized 

lattice infill result is presented in Figure 4.5(a).  

 

Figure 4.4 Three-dimensional Cantilever Beam and knots distribution 
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(a) Optimal lattice infill design                          (b) Convergence history 

                      

Figure 4.5 (a) Optimal lattice infill design (b) Convergence history 

4.4.3 Compliance Optimization for 3D Bracket Design 

In this section, a 3D Bracket Design example is presented for compliance optimization. 

The four corners are constrained by the planar joint with a point load 𝐹 = 1 at the center as shown 

in Figure 4.6. The 3D Bracket is modeled by a 160 × 160 × 80 hexahedral mesh, and the 

dimension of the design is demonstrated in Figure 4.6. The 10 × 10 × 10 uniformed distributed 

RBF knots in the design domain. The initial weights of RBF knots are chosen as 0.1, and the 

periodicity parameters are selected as: 𝐿𝑥 = 0.1, 𝐿𝑦 = 0.1, and 𝐿𝑧 = 0.1. The elastic constants are 

chosen as follows: Elastic modulus 𝐸 = 1 and Poisson’s ratio 𝜇 = 0.3. Actually, the method 

proposed in this work is able to produce shape-preserving results which are preferred for AM, 

because 0-1 topology optimization designs sometimes cannot be manufactured such as overhangs, 

and support structures [149] beneath them are needed. Furthermore, removing support structures 

is time-consuming and requires additional post-processing. To produce shape-preserving design, 

the value of parameter 𝑐0 in is set to be 𝑐0 = 0. To make a comparison, two distinct optimization 

results with different values for parameter 𝑐0 are demonstrated in Figure 4.7, and convergence 
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history for the two different designs is presented in Figure 4.8. The optimized compliance values 

are close for these two different designs. As shown in Figure 4.7(c-d), the optimized lattice 

structure is able to maintain the initial geometry configuration, where varied density lattice 

structures are generated, and materials tend to concentrate on four corners and loading point, and 

no block materials are removed. This shape preserving result is preferred for design of complex 

domain, where no overhang constraints are needed if the initial design domain is self-supported.                       

 

Figure 4.6 3D wheel Design and RBF knots distribution 

 

 

Figure 4.7 3D wheel Design (𝒄𝟎 = 𝟎. 𝟐): (a) Front view, and (b) Rear view; 3D wheel shape preserving design 

(𝒄𝟎 = 𝟎): (c) Front view and (d) Rear view    
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Figure 4.8 Convergence history for two design problems: (a) (𝒄𝟎 = 𝟎. 𝟐) and (b) (𝒄𝟎 = 𝟎) 

4.5 Conclusion 

In this chapter, a new projection-based algorithm based on implicit field for gyroid lattice 

design is proposed and demonstrated in details. The PIMM algorithm is able to design functionally 

graded lattice without the need for any homogenization. Thus, the lattice design based on this 

method is not limited to periodic structures, and can be extended to irregular porous scaffold 

designs. This point will be demonstrated and verified in the future. The unit cell size for lattice 

design can be large and not limited by size effects (homogenization necessary condition [150]), 

which is preferred for AM. Now that the geometry is defined by implicit function, the geometry 

information is far less than feature-based geometry modeling [151], which is sometimes extremely 

tedious for modeling porous media or lattice structures, and the data communication between 

implicit field with additive manufacturing systems is well-addressed by Ref. [134].  
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5.0  Reverse Shape Compensation via a Projection-based Moving Particle Optimization 

Method 

5.1 Current Progress of Reverse Shape Compensation 

Shape deformation under external environmental stimuli is a common phenomenon in 

nature or engineering [152]. Stimuli-responsive shape memory polymers (SMPs) have achieve 

remarkable advances in the past decade with a great potential application in biomedical devices, 

electronic engineering. etc. Shape memory polymers (SMPs) is an important stimuli-responsive 

polymer, which can recover their original shape when exposure to external stimuli. Many review 

papers have been published regarding the various SMPs, especially thermal responsive SMPs 

[153]. However, how to achieve a desired shape or prescribed shape with high accuracy under 

external stimuli is still a challenging problem. Similar issues can also be found in additive 

manufacturing. For example, in selected laser melting (SLM) process [154], the part deforms 

during printing process due to complex interrelated factors, including melt pool solidification, 

volumetric shrinkage, thermal cooling in the layer-by-layer building process.  Due to this 

complexity, controlling shape deformation to achieve high geometric accuracy is very challenging 

but highly desirable especially for thin-walled structures. How to control the deformation of 

printed structures is critical for additive manufacturing processes. Recently, some related works 

are reported using shape compensation to reduce deformation in the manufacturing process rather 

than controlling the process parameters. These works are mainly dependent on experimental or 

simulation data to propose a geometry adjust strategy of the initial design to reduce the geometrical 

difference between the target shape and printed shape [155-157]. Lately, Afazov and co-workers 
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[158] developed a new distortion compensation method based on optical 3D scan measurements, 

where the proposed method are validated through experiment and verified that the mitigation of 

distortion in SLM is possible applicable for macro-scale components. Similar works regarding 

distortion compensation via combination between experiment and simulation in SLM can be found 

in Refs. [159, 160].  Applying mathematical programming approach to achieve a shape 

compensation is rarely reported in the previous research. Another application can be found in four-

dimensional (4D) printing techniques. 4D printing [161-163], which is also known as shape-

shifting 3D printing, use smart materials as raw material in additive manufacturing, the idea is 

basically to embed a smart behavior within a design. The structure printed by 4D techniques 

becomes the mechanism, and environment stimuli provides a passive source of energy which 

drives the mechanism to produce the desired behavior or shape. The same question arises here as 

how to design a shape to produce a desired deformed shape under external stimuli. Another 

potential application is design of 3D self-assembly structures. Self-assembly of complex structures 

is common in nature, which is a promising technique to fabricate small scale devices to achieve a 

deterministic 3D shapes under environmental stimuli. For example, Hua Li. etc. [164] proposed 

an analytical model of self-folding of thin-plates into a deterministic 3D shapes through fluid-solid 

interaction based on the beam theory. Similar research can be found in Refs. [165-168]. Thus, 

shape reverse compensation is one of the effective ways to resolve the above issues.  The basic 

idea of shape compensation is that a displacement offset, obtained by multiplying the expected 

deformation of the intended shape with a factor of value between 0 and -1, is added to the desired 

shape so that the deformed shape under environment stimuli coincide with the desired shape. The 

detailed description of reverse shape compensation techniques can be found in Ref. [155]. In this 

chapter, a gradient-based moving particle optimization method is proposed in this chapter to 
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achieve reverse shape compensation, where a mapping from original geometry to deformed 

configuration is realized using radial basis function (RBF) kernel function. The core novelty of 

this chapter is to propose a generalized computational framework for reverse shape compensation 

based on mathematical programming theory which would result in a model without any loose 

parameter.  As a proof-of-concept, the proposed method will be demonstrated on two-dimensional 

(2D) linear elastic design problems in this work and will be extended in the future to treat more 

complex situations arisen from additive manufacturing including SLM and 4D printing, and SMPs, 

3D self-assembly design etc.   

5.2 Formulation of Gradient-Based Moving Particle Optimization Method 

The general shape compensation problem can be formulated as follows. To begin, select 

an arbitrary point 𝑷 on the target geometry as an illustration. The geometry deforms under some 

external stimuli such as temperature, gravity, etc. The deformation mapping function ℱ(∙) means 

that the point P will move to position ℱ(𝑷) under external stimuli. Let the added shape 

compensation to be 𝑺, and the deformation of compensated point 𝑷 + 𝑺 is denoted as ℱ(𝑷 + 𝑺), 

which is a function of shape compensation 𝑺. The goal of shape compensation is to find 𝑺 such 

that:  

𝑷 + 𝑺 + 𝓕(𝑷 + 𝑺) = 𝑷                                                (5.1)   

Above equations can be rewritten as:  

                     𝑺 + 𝓕(𝑷 + 𝑺) = 𝟎                                                    (5.2)                                                                                                   

The deformation mapping function ℱ(∙) can be a linear or nonlinear function. In this chapter, we 

use gravity to work as the external deformation stimulus, and finite element analysis (FEA) for the 



 88 

structural analysis is based on linear elastic theory. The basic idea of the moving particle method 

is representing a geometry described by discrete particles arbitrarily located. As shown in Figure 

5.1, a cube is represented by 11 × 11 particles, where each particle is independent from others and 

can move arbitrarily in the prescribed design domain. To compute the deformation of the cube 

under the gravity field, the particles are first projected onto a finite element mesh to perform FEA 

with prescribed boundary conditions. The radial basis function (RBF) [139] is introduced here to 

map the particle to the FE mesh. The RBFs are a well-known tool to interpolate scattered data to 

generate smooth surface. Radial basis functions are radially symmetric functions centered at a 

specific point, named as RBF knot, which can be expressed as follows:  

𝜑(𝒙,𝑿𝒊) = 𝜑(‖𝒙 − 𝑿𝒊‖)                                                (5.3)                                                                                                   

where ‖∙‖ denotes the Euclidean norm and 𝑿𝒊 is the position of the knot. There are several possible 

radial basis functions, including thin-plate spline, Gaussians [140], etc. In this chapter, The 

Gaussian function is chosen to work as an RBF kernel, the explicit form of Gaussian function is 

expressed as follows:  

𝜑(‖𝒙 − 𝑿𝒊‖) = 𝑒
−(

‖𝒙−𝑿𝒊‖

𝜖
)
2

                                               (5.4)                                                                                                                                                   

where 𝜖 is a parameter to control the shape of the Gaussian function, and 𝑒 denotes the exponential 

function. The function 𝑓(𝑥) (i.e. density field of the deformed and undeformed configuration) in 

the design domain can be interpolated using RBF functions as:  

𝑓(𝑥) = ∑ 𝛼𝑖𝜑(𝒙,𝑿𝒊)
𝑁
𝑖=1                                                   (5.5)                                                                                                                                                                                                                                                            

where 𝛼𝑖 is the expansion coefficient of the RBF positioned at the 𝑖th knot. Above equation can 

be rewritten as:  

𝒇(𝒙) = 𝝓𝑻(𝒙, 𝑿)𝜶                                                       (5.6)                                                                                                                                                                                                                                                                                                                                                                 

where  
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𝝓(𝒙, 𝑿) = [𝜑(𝒙,𝑿𝟏), 𝜑(𝒙, 𝑿𝟐),⋯𝜑(𝒙, 𝑿𝑵)]
𝑇 ,   𝜶 = [𝛼1, 𝛼2, ⋯ 𝛼𝑁]

𝑻               (5.7)                                                                                                                                                                                                                                                                                                                                                                                     

For the projection from the particle to the FE mesh, the formulation can be written as:  

    𝝆𝑓𝑒𝑚(𝒙𝑓𝑒𝑚) = 𝐻(𝝓
𝑻(𝒙𝑓𝑒𝑚, 𝒙𝑝) ∙ 𝑰)                                        (5.8)                                                                                                                                                                                                                                                                                                                                                                                           

 

Figure 5.1 Geometry represented by moving particles 

 

The FEA is based on the density field 𝝆𝑓𝑒𝑚 of the projected geometry deforms under 

gravity field. We define the concept of dual background mesh as shown in Figure 5.2 to formulate 

our optimization problem. Note that the nodal location of the FE mesh denotes as 𝑿𝑓𝑒𝑚, and the 

deformation under gravity is 𝑼𝑓𝑒𝑚. Thus, the deformed position 𝑿𝑑 can be expressed as:  

𝑿𝑑 = 𝑿𝑓𝑒𝑚 + 𝑼𝑓𝑒𝑚                                                       (5.9)                                                                                                                                                                                                                                                                                                                                                                                           

After computing the deformation via FEA, the deformed shape is projected onto a fixed grid 

(fictitious mesh) using the RBF kernel. The density field in the fictitious domain can be written as:  

𝝆𝑓(𝒙Ω) = 𝐻(𝝓𝑻(𝒙Ω, 𝑿𝑑) ∙ 𝜷)                                            (5.10)                                                                                                                                                                                                                                                                                                                                                                                           

where 𝒙Ω is the centroid of the fictitious mesh. 𝜷 is the expansion coefficient, which can be 

expressed as,  

𝜷 = 𝐻(𝝓𝑻(𝑿𝑓𝑒𝑚, 𝒙𝑝) ∙ 𝑰)                                              (5.11)      
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(a)   Finite element mesh                               (b) Fictitious mesh 

                            

Figure 5.2 Dual background mesh (a) Finite element mesh, (b) Fictitious mesh 

 

Note that the dual mesh as shown in Figure 5.2 is independent with each other, and mesh 

size can be different. As shown in Figure 5.3, the rectangle is discretized by uniformly distributed 

particles. The projected density field for FEA is plotted in Figure 5.3(b), and the deformed shape 

in the fictitious domain is presented in Figure 5.3(c).  

(a) Particle distribution                 (b) Density field in FE mesh  (c) Density field in fictitious domain 

                   

Figure 5.3 (a) Particle distribution, (b) Density field in the FE mesh, (c) Density field in fictitious domain 
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5.3 Optimization Formulation and Sensitivity Analysis 

As described in above section, the density field in the fictitious domain 𝝆𝑓 is controlled by 

the particle position. The target geometry is also represented in the fictitious domain using density 

field 𝝆𝑜𝑏𝑗. The objective is to minimize the difference between the density field between 𝝆𝑓 and 

𝝆𝑜𝑏𝑗. Thus, the optimization problem can be formulated as follows:  

{
Minimize: 𝜒 =

1

2
(𝝆𝑓(𝒙𝑝) − 𝝆𝑜𝑏𝑗)

𝑇
(𝝆𝑓(𝒙𝑝) − 𝝆𝑜𝑏𝑗), (𝒙𝑝 < 𝒙𝑝 < 𝒙𝑝)

subject to:  𝑲(𝝆𝑓𝑒𝑚)𝑼𝑓𝑒𝑚 = 𝒇
          (5.12)                                                                                                                                                                                                                                                                                                                                                                                                        

where 𝒇 is the self-weight loads due to gravity, and 𝒙𝑝 and 𝒙𝑝 denote the lower and upper limits 

of design variables. 𝝆𝑓𝑒𝑚 is density field use for FEA. For the structure meshed with four-node 

quadrilateral elements, 𝑲 is global stiffness matrix and 𝑼𝑓𝑒𝑚 is the corresponding node 

displacement. The elemental self-weight load vector can be expressed as [169],  

𝒇 = 𝑉𝜌𝑔�̅�                                                              (5.13)                                                                                                                                                                                                                                                                                                                                                                                                        

                 �̅� = [0 −0.25 0 −0.25 0 −0.25 0 −0.25]𝑇                     (5.14)                                                                                                                                                                                                                                                                                                                                                                                                        

where 𝑔 is the gravity parameter. 𝜌 is element density, and 𝑉 is volume of each element. The 

detailed implementation of the proposed optimization framework is described in the flowchart as 

shown in Figure 5.4.  Note that the FEA is based on linear elastic theory, and hence material and 

geometry nonlinearity are not considered in this chapter, which will be investigated in the future.  
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Figure 5.4 Optimization flow of the proposed gradient-based shape compensation method 

5.4 Shape Interpolation based on Artificial Neural Network (ANN) 

Applying the RBF-based particle method to represent geometry model is hard to capture 

the intricate surface feature near the boundary. In most cases, accurate describing complex shape 

needs large number of particles, which inevitable results in high computational cost. In fact, there 

is no need to use highly dense particles to predict the deformation. A small number of particles 

which are capable to capture the major mechanical feature of target shape are sufficient to describe 

the basic deformation pattern, and other deformation mode of tiny intricate feature can be directly 

interpolated with interpolation techniques. Shape interpolation technique is a hot topic in computer 

animation. In computer animation field, shape interpolation is to create a sequence of intermediate 

shapes form two or multiple given poses of an object, which allows generating a shape sequence 

based on key frames designed by artist. In recent years, several interpolation methods are proposed 

to generate intermediate shapes based on key frames as described in Ref [170-172]. We borrow 

this concept to achieve shape reconstruction based on basic deformation pattern. An interpolation 

technique based on artificial neural network is proposed here to reconstruct the accurate geometry 
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deformation. The detailed shape reconstruction algorithm is described as follows. Consider a shape 

represented by point cloud as shown in Figure 5.5. The blue point and red point denote the 

undeformed and deformed shape, respectively. Assume that the deformed pattern of point cloud 

with sparse points is known, the goal is to predict the deformation pattern of dense point cloud. 

The mathematical formulation can be written as follows, 

(𝑢, 𝑣) = ℱ(𝑥, 𝑦)                                                    (5.15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

where (𝑥, 𝑦) denotes the initial position of point. ℱ is a unknow mapping function needed to be 

determined, 𝑢 and 𝑣 denote the deformation in 𝑥 or 𝑦 direction. The feedforward networks [173], 

with one or more layers between the input and output layers, are mainly used for function 

approximation. The typical architectures of feedforward networks are illustrated in Figure 5.5, 

which contains input, hidden layers, and output. The mathematical formulation of deep 

feedforward neural networks can be defined as, 

ℕ(𝑥, 𝑦, 𝜽) = ℕ(𝒂(𝑳+𝟏) (𝒉(𝑳)(𝒂(𝑳)(…𝒉(𝟏)(𝒂(𝟏)(𝑥, 𝑦

where ℕ denotes feedforward networks, and the 𝜽 is parameter of network. The hidden layer is 

defined as  𝒉(𝒍)(𝒙), a network with L hidden layers can be expressed as, where 𝒂(𝒍)(𝒙) is a linear 

operation, expressed as, 

𝒂(𝒍)(𝒙) = 𝑾(𝒍)𝒙 + 𝒃(𝒍

where 𝑾(𝒍) is weight matrix and 𝒃(𝒍) is bias vector for the 𝑙 𝑡ℎ layer. The weight matrix 𝑾(𝒍)(𝒍 =

𝟏, 𝟐,⋯𝑳) and bias 𝒃(𝒍)(𝒍 = 𝟏, 𝟐,⋯𝑳) can be combined into a single parameter 𝜽. 𝒉(𝒍)(𝒍 =

𝟏, 𝟐,⋯𝑳) are hidden-layer activation functions (kernel functions). In fact, ANN is a universal 

approximator for nonlinear functions. It has been proven that a three-layer feedforward neural 

networks can approximate any continuous multivariate function to any accuracy [174]. Here, we 

apply the feed forward neural network to represent mapping function ℱ(∙) as follows, 
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ℱ(𝑥, 𝑦) = ℕ(𝑥, 𝑦, 𝜽

where 𝜽 is unknown weights and biases. The objective function of training process can be written 

as follows,  

{
𝐹𝑖𝑛𝑑: (𝜽𝟏, 𝜽𝟐)

𝑀𝑖𝑛: ∑ (‖ℕ1(𝑥𝑖, 𝑦𝑖, 𝜽𝟏)  − 𝑢(𝑥𝑖, 𝑦𝑖)‖2 + ‖ℕ2(𝑥𝑖, 𝑦𝑖, 𝜽𝟐)  − 𝑣(𝑥𝑖, 𝑦𝑖)‖2)
𝑁
𝑖=1



where ℕ𝑘 (𝑘 = 1,2) is the feedforward neural network, and (𝑥𝑖, 𝑦𝑖) is the point where the 

deformation pattern is known. Two independent networks are applied to approximate u and v, 

respectively. Operator ‖∙‖2 denotes 2-norm. (𝑥, 𝑦) denotes the coordinate of point. The 

backpropagation learning algorithm [175] is applied here to train the neural networks. The 

activation function is chosen as hyperbolic tangent function. The training network used in this 

chapter has four hidden layers, and each layer of network contains 10 neurons. The optimized 

weights and biases are obtained once the training process converging. The deformation pattern of 

new point (dense point cloud) can be directly predicted using trained networks ℕ𝑘 (𝑘 = 1,2) as 

following, 

                                                             {
𝑢𝑒 = ℕ1(𝑥𝑒 , 𝑦𝑒 , 𝜽𝟏)

𝑣𝑒 = ℕ2(𝑥𝑒 , 𝑦𝑒 , 𝜽𝟐)
                                                     (5.20) 

(𝑥𝑒 , 𝑦𝑒) is the position of the new point.  

 

Figure 5.5 Shape interpolation based on neural networks 
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5.5 Numerical Examples 

In this section, two 2D numerical examples are demonstrated to illustrate performance of 

the proposed method for shape compensation. Unless stated otherwise, the following material 

parameters are assumed as: 𝐸 = 1 for material elastic modulus and Poisson’s ratio 𝜇 = 0.3. The 

shape is represented by level set of density field (𝜌 = 0.1), and FEA is based on the linear elastic 

model. In the FE model, the 200 × 200 equal sized planar 4-node elements with element length 

0.2 are generated. The mesh of fictitious domain is coincident with FE mesh. Note that the move 

limit of MMA optimizer is chosen as 𝑚 = 0.005. It is worth to mention that the discretization of 

target shape is chosen as initial distribution of particles.  

5.5.1 Reverse Shape Compensation for Self-weight Horizontal Cantilever Beam 

In the first example, a simple horizontal cantilever beam (Figure 5.6) is the target geometry, 

which is discretized by 4 × 31 particles as shown in Figure 5.7. The target geometry is a horizontal 

rectangle with a fixed boundary on the left side. The geometry deforms under self-weight loads, 

where the gravity parameter is chosen as 𝑔 = 0.02. The width of the RBF kernel function is chosen 

as 0.6. The mapping geometry in the FE mesh is plotted in Figure 5.8(a), which works as the target 

density field. The deformed configuration of initial shape under self-weight loads is presented in 

Figure 5.8(b). The objective is to achieve a reverse shape compensation so that the deformed shape 

is as close to the target shape (Figure 5.8 (a)) as possible. The initial particle position is plotted in 

Figure 5.7(a), and the optimal particle position can be found in Figure 5.7(b). The optimization 

evolution progress is plotted in Figure 5.10. The optimal shape is demonstrated in Figure 5.9(a), 
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where the deformed shape in fictitious domain is plotted in Figure 5.9(b). The optimization 

progress converges after 80 iterations and convergence history is presented in Figure 5.10.  

 

Figure 5.6 Cantilever beam 

 

            (a) Initial configuration                                 (b) Optimal configuration 

                           

Figure 5.7 Particle distribution (a) Initial configuration (b) Optimal configuration 

 

              (a) Undeformed configuration                        (b) Deformed configuration 

                                        

Figure 5.8 Initial geometry shape (a) Undeformed configuration (b) Deformed configuration 
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                (a) Undeformed configuration                       (b) Deformed configuration 

                                           

Figure 5.9 Optimal geometry shape (a) Undeformed configuration (b) Deformed configuration 

 

 

Figure 5.10 Shape evolution during optimization 
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Figure 5.11 Convergence history 

5.5.2 Reverse Shape Compensation for Truss Structures 

Truss structures or thin-walled structures are widely used in engineering. The reverse shape 

compensation design problem of truss structures is investigated in the present study. Three 

different truss structures are presented in Figure 5.12 to work as target shape, where the left side 

of truss structures is fixed. The gravity parameter is chosen as g=0.1, while the other parameters 

remain the same as the previous examples. The optimal particle distribution and configuration are 

presented in Figure 5.13 and Figure 5.14. The convergence history is plotted in Figure 5.15. It is 

worth to mention that one layer of particles is capable to capture the major geometric feature of 

target shape, while some small features like sharp corner is blurred. To accurate reconstruct the 

real optimized shape, the shape interpolation technique is implemented. The reconstructed 

geometric shapes are presented in Figure 5.16.  
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Figure 5.12 Geometric prototype 

 

Figure 5.13 Optimal particle distribution 

 

 

Figure 5.14 Optimal configuration 
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Figure 5.15 Convergence history 

 

 

Figure 5.16 Shape reconstruction    

5.6 Conclusions 

In this chapter, a gradient-based moving particle optimization method is proposed to 

achieve reverse shape compensation under gravity stimuli. The geometry is represented by 

particles, where each particle can move freely in the design domain. Dual background mesh is 

implemented to achieve a mapping from undeformed geometry to deformed configuration. The 

update of particle positions is based on sensitivity information, and MMA optimizer is 

implemented to minimize the objective function. Two numerical examples are demonstrated in 

detail, where different target shapes and boundary conditions are examined to verify the 

effectiveness of the proposed method. As shown in numerical examples, the optimal shape is 
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reasonable from mechanics point of view, and no voids or gaps are generated inside the shape. The 

method described here is a general computational framework for reverse shape compensation, 

which has the capability to treat more complex situation, such as temperature change. etc. 

Meanwhile, further study regarding geometric and material nonlinearity will be conducted in the 

future. Besides, the proposed method has the potential to be applied to engineering application 

such as distortion compensation in additive manufacturing or four-dimensional (4D) printing 

techniques 

 

 

                                                                                                                                    

               

 

 

                       

 

 

 

                                                              

                                    

 

 



 102 

6.0 A Density-based Boundary Evolving Method for Buckling-induced Design under Large 

Deformation 

6.1 Current Progress of Large Deformation Design with Topology Optimization 

Structural topology optimization is a tool for distributing material in a prescribed domain 

to obtain optimized structural performance through an optimal way. In recent years, designing the 

flexible electronics, soft robots and wearable electronic devices draws great attention from 

academia and industry due to their extraordinary mechanical response [53-55]. Such devices and 

structures usually experience large deformations under external loading conditions, which is 

different from the traditional stiff structure design. Recently, topology optimization methods are 

utilized to design flexible and soft structures based on finite deformation theory. For the SIMP 

method, Bruns and Tortorelli [56] embedded a filtering scheme into SIMP method to design 

compliant mechanism, where the geometric and material nonlinearities are considered. Wallin et 

al [57] compared different stiffness measurement for compliant mechanism design under large 

deformation. Fengwen et al [58] proposed a new energy interpolation scheme to stabilize the 

numerical simulations for topology optimization, where the mesh distortion phenomenon is 

alleviated when structures undergo large deformation. Ivarsson et al [59] applied a transient finite 

strain viscoplastic model in gradient-based topology optimization framework to design impact 

mitigating structures. Li et al [60] extended the shape preserving topology optimization approach 

from linear elastic case to geometrically nonlinear problems, where the structural complementary 

elastic work is chosen as objective function. Luo et al [61]  proposed a simple and effective additive 

hyperelasticity technique to circumvent excessive mesh distortion in solving the density-based 
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topology optimization of elastic structures undergoing large deformation. Ortigosa et al [62] 

proposed a novel stabilized computational approach for SIMP-based TO method for hyperelastic 

material design subjected to very large deformation. For level set method, Chen et al [63] proposed 

an effective level-set-based topology optimization method for the design of hyperelastic structures 

undergoing large deformation. Luo et al [64] presented an effective topology optimization 

methodology for the compliance design of hyperelastic material with frictionless contact supports. 

Chung et al [65] proposed a level-set based topology optimization method for designing structures 

undergoing large deformation due to thermal and mechanical loads, where the thermo-mechanical 

response can be controlled via topology optimization. Xue et al [66] performed structural topology 

optimization under finite deformation using explicit geometry description, where a Moving 

Morphable Void (MMV)-based approach is developed for designing large deformation 

mechanism. Kato et al [67] proposes a method of micro-macro concurrent topology optimization 

for a two-phase nonlinear solid to minimize the end compliance of its microstructure undergoing 

large deformation. Some other related works can be found in Ref [68-71]. 

 

For structures experiencing large deformation, local buckling phenomenon always 

happens, which makes the force-displacement response highly nonlinear. Compared with topology 

optimization design under finite deformation, designing buckling-induced device is more 

challenging. Structural instability such as snap-through behavior is widely found in nature. At the 

beginning, buckling behavior is undesirable in engineering due to the resultant capacity reduction 

and catastrophic failure. Other than reduction of load-carrying capacity, high-rate motion and 

sudden energy release are two critical features of many buckling phenomena. For example, the 

designs are capable of snapping from their initial shape to a buckled shape with a significant 
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amount of energy release, and a load drop, named as negative stiffness, can be found in force-

displacement response. Because of these two features, buckling behavior becomes an ideal 

mechanism for adaptive and smart applications [176]. Several successfully applications are found 

in recent years, such as design of absorbers [177], dampers [178], isolators [179], self-locking 

structures [180], and morphing structures [181], etc. Limited applications of topology optimization 

in buckling-induced design undergoing large deformation are found in recent years. Bruns et al 

[182] developed a robust arc-length method and applied this method in topology optimization 

problem to design structures that exhibit snap-through. Bruns and Sigmund [183] developed a 

general approach for the design of mechanisms that experience more complex snap-through 

behavior, where a multiphase design strategy is outlined. Lindgaard and Dahl [183] studied 

different compliance and buckling criterion and applied for topology optimization of a point loaded 

curved beam problem to maximize the snap-through buckling load. James and Waisman [21] 

proposed a novel design method based on TO for a bi-stable cardiovascular stent device, which is 

able to snap into expanded configuration under a small trigger force. Bhattacharyya et al [184] 

proposed a novel method to design a camber morphing mechanism for a bi-stable airfoil based on 

topology optimization. 

 

The level set and density-based methods for topology optimization are often regarded as 

two different approaches, which results in two competing and parallel research directions with 

little overlap. The density-based method is convenient to derive the sensitivities and easy for 

programming, which also present a better numerical stability during optimization [2]. Level set 

method does not require penalization of intermediate densities and a clear solid-void interface can 

be found during optimization. Andreasen et al [185] pointed out that these two methods share more 
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similarity instead of difference, where a crisp interface level set optimization approach based on a 

cut element method is proposed. This algorithm is still in the framework of density-based method, 

while the clear solid-void boundary can be found during optimization. Here, an alternative 

computational scheme is proposed to combine the advantages of two approaches for buckling-

induced design, where the boundary of topology is described in an explicit way based on RBF 

interpolation.  It is worth to mention that the proposed computational method is in the framework 

of density-based method. Compared to the existing explicit TO method such as MMV or 

projection-based method, the differences are listed below:  

a) The MMV approach is in the framework of level set method, where shape sensitivity is 

required for topology optimization [186]. Instead of using RBF function to describe the 

boundary, the MMV method apply smooth closed B-splines to explicitly represent the 

boundary of voids.  

b) For the MMV method, the merger of multiple void components is based on reconstructing B-

spline curves as described in Ref. [187]. For the method proposed in this chapter, a simple 

merger method based on the p-norm function is implemented.  

c) The proposed method is in the framework of density-based approach, where the sensitivity of 

standard density-based TO method can be directly employed to obtain the design sensitivity 

via the chain rule. Note that shape sensitivity is not required for optimization as in MMV.  

d) Compared with existing projection-based method proposed by Narato et al [188]. Instead of 

describing solid component, we explicit describe the boundary of void geometry with RBF 

functions, where the shape is controlled by RBF knots instead of fixed geometry primitives. 

Meanwhile, the geometry components do not disappear during optimization so that the 

intermediate density is only near the boundary region.  
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6.2 A Projection-based Boundary Evolving Method 

Geometry projection method proposed by Norato et al [188] applies discrete geometry 

component to represent density field (solid region) based on distance function. Instead of 

representing the solid area, we use the discrete geometry component to represent the void area in 

this chapter.  To achieve more design freedom, the void area is described by boundary represented 

by RBF function in polar coordinate as shown in Figure 6.1. Compared with bar representation, 

geometry shape described in polar coordinate has more flexibility and some typical shapes 

described in polar coordinate are presented in Figure 6.2. The basic idea is that the design can be 

generated through removing the void area from the initial design domain as shown in Figure 6.3. 

Note that the boundary of void is described using RBF formulation in polar coordinate, which will 

be demonstrated in the following section.  

 

Figure 6.1 Curve described in polar coordinate 
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(a) 𝑟 = 1                      (b) 𝑟 = |𝑠𝑖𝑛 (2𝜃)|            (c) 𝑟 = 1 + cos (𝜃)        (d) 𝑟 = |𝑠𝑖𝑛 (3𝜃)|                    

                                             

Figure 6.2 Basic shapes described in polar coordinate 

 

 

Figure 6.3 An illustration of design with void representation 

 

To describe the shape of void in an explicit way, a parametrized projection for void 

description based on distance function in polar coordinate can be defined as follows, 

ℱ(𝑥, 𝑦; 𝑥0, 𝑦0) = Η(√(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 − 𝑟(𝜃))                      (6.1) 

where (𝑥0, 𝑦0) is the origin of polar coordinate, (𝑥, 𝑦) is the coordinate of arbitrary point 𝑃0 in the 

design domain, and 𝑟(𝜃) is the distance from point 𝑃 on the shape boundary to the origin of polar 

coordinate (see Figure 6.1). Also, Η(∙) denotes the Heaviside function defined as:  

H(∆) =
1

1+𝑒−Θ(∆−𝜇)
                                                     (6.2) 

where Θ and 𝜇 are two parameters to control the shape of Heaviside function. ∆ is the input of 

Heaviside function. The effect of parameter Θ on density field can be found in Figure 6.4. The 

value of these two parameters are chosen as Θ = 100, 𝜇 = 0 in this chapter. Note that the 
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intermediate density only exist near the boundary as shown in Figure 6.4(c), where the ersatz 

material approach is implemented to describe the material behavior near the boundary. This 

material interpolation scheme is the same as standard level set method proposed by Allaire et al 

[10]. 

 (a) Θ = 10                                       (b) Θ = 50                                       (c) Θ = 100                                          

                                    

Figure 6.4 The effect of parameter 𝚯 on density field 

 

To effectively represent the boundary of void with a single globally continuous and 

differentiable function, the radial basis functions [139] are introduced here to describe the 

boundary shape.  The RBFs can interpolate scattered data to generate smooth surface and is an 

effective way to approximate complex function. Radial basis functions are radially symmetric 

functions centered at a specific point, called an RBF knot, which can be expressed as follows: 

𝜑𝑖(𝒙) = 𝜑(‖𝒙 − 𝒙𝒊‖)                                                       (6.3) 

where ‖∙‖ denotes the Euclidean norm and 𝑥𝑖 is the position of the knot. There are several possible 

radial basis functions, including thin-plate spline, Gaussians [140], etc. In this chapter, The 

Gaussian function is chosen to work as the RBF kernel, where the explicit form of Gaussian 

function is expressed as follows:  

𝜑(‖𝒙 − 𝒙𝒊‖) = 𝑒
−(

‖𝒙−𝒙𝒊‖

𝜖
)
2

                                            (6.4) 
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where 𝜖 is a parameter to control the shape of the Gaussian function. The boundary 𝑟(𝑥) in the 

polar coordinate can be represented via the RBF functions as follows:  

𝑟(𝜃) = ∑ 𝛼𝑖𝜑(𝜃, 𝜗𝑖)
𝑁
𝑖=1                                                 (6.5) 

where 𝑟(𝜃) is the distance from arbitrary point in design domain to origin of polar coordinate, and 

𝜃 is the angle in polar coordinates. 𝜗𝑖 is the control knot, which is uniformly distributed in the 

range of [0,2𝜋], and 𝛼𝑖 is the expansion coefficient of the radial basis function of the 𝑖th knot. The 

above equation can be also written as following form:  

𝑟(𝜃, 𝜶) = 𝝓𝑻(𝜃, 𝝑)𝜶                                                  (6.6) 

where  

𝝓(𝜃, 𝝑) = [𝜑(𝜃, 𝜗1), 𝜑(𝜃, 𝜗2),⋯𝜑(𝜃, 𝜗𝑁)]
𝑇,   𝜶 = [𝛼1, 𝛼2, ⋯𝛼𝑁]

𝑻              (6.7) 

where 𝑁 is the number of RBF knots. Thus, the density field enveloped by the RBF boundary can 

be explicitly represented as:  

𝜌(𝑎, 𝑏, 𝜶) = H(𝑟(𝜃, 𝜶) − √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2)                           (6.8)   

where H(∙) denotes the Heaviside function. 𝜌 denotes the density value at point (𝑥, 𝑦) and 𝜃 is the 

corresponding angle in polar coordinate, and (𝑎, 𝑏) are the coordinates of the polar origin. For void 

region, the density field can be easily expressed as:  

�̅� = 1 − 𝜌(𝑎, 𝑏, 𝜶)                                                   (6.9)  

6.3 Merge of Multiple Void Geometry Components 

In previous section, a projection from single void geometry component to density field is 

described in detail. For multiple void components, composite density is defined as follows:  
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  �̃�𝑗 = 1 −max ρ𝑖𝑗 (𝑖 = 1,2⋯𝑛, 𝑗 = 1,2⋯𝑚)                           (6.10) 

where 𝑛 denotes the number of void components and 𝑚 represents total element number. Note that 

𝜌𝑖𝑗 = 𝜌𝑗(𝑎𝑖, 𝑏𝑖, 𝜶𝒊) = 𝐻 (𝑟(𝜃𝑗 , 𝜶𝒊) − √(𝑥𝑗 − 𝑎𝑖)
2
+ (𝑦𝑗 − 𝑏𝑖)

2
), where  (𝑎𝑖, 𝑏𝑖, 𝜶𝒊) is the control 

parameters of 𝑖 𝑡ℎ void component. (𝑥𝑗 , 𝑦𝑗 , 𝜃𝑗) denotes the coordinate and corresponding polar 

angle related to the center of 𝑗 𝑡ℎ element. The p-norm formulation is applied to approximate the 

maximum function, which is defined as follows:  

�̃�𝑗 = 1 − (∑ ρ𝑖𝑗
𝑝𝑛

𝑖=1 )
1/𝑝

                                               (6.11) 

Note that the physical meaning of �̃�𝑗 denotes the volume fraction of solid within the 𝑗 𝑡ℎ element. 

The value of p-norm formulation will approximate the maximum of density ρij once the value of 

p tends to infinity. For finite 𝑝 value, p-norm function always exceeds the maximum density. The 

value of 𝑝 is chosen as 𝑝 = 6 in this chapter. If a larger 𝑝 is chosen, the fluctuation of convergence 

history may be found. A small value of 𝑝 always leads to a smooth and stable convergence. After 

numerical testing, the 𝑝 = 6 is a reasonable choice. Note that the value of term (∑ ρ𝑖𝑗
𝑝𝑛

𝑖=1 )
1/𝑝

may 

exceed unity. Thus, a Heaviside function is introduced to restrict composite density between 0 and 

1, which is defined as follows:  

ρ̿𝑗 =
(tanh(3�̃�𝑗)+1)

2
                                                       (6.12)  

where ρj̿ is physical density, which is the actual density field in the finite element analysis (FEA).  

To prevent ρj̿ becoming very close to zero, which may result in stiffness matrix singular. A small 

value 𝜀0 = 1 × 10−5 is assigned to physical density of void region, and actual physical density 

becomes (ρj̿ + 𝜀0). The composite density concept is borrowed from Ref [188]. The merger of 

two void geometry components is presented in Figure 6.5.  



 111 

 

Figure 6.5 Merger of density field 

 

6.4 Sensitivity Analysis based on Chain Rule 

To employ gradient-based optimization algorithms to resolve topology optimization 

problems, sensitivities of design variables are required. Because the proposed method is in the 

framework of density-based method, the sensitivities of design variables can be obtained through 

chain rule as follows, 

𝒅ℂ(𝜌(𝚾))

𝒅𝚾
=

𝒅ℂ(𝜌(𝚾))

𝒅𝜌

𝝏𝜌

𝝏𝚾
                                                     (6.13) 

where ℂ denotes the objective or constraint functions. 𝚾 is the design variable (𝚾 = [𝑎, 𝑏, 𝜶]), and 

𝜌 is the physical density for FEM analysis. Therefore, the design sensitivities can be derived as 

follows, 

𝜕ρ̿𝑗

𝜕𝚾
=

𝜕ρ̿𝑗

𝜕�̃�𝑗

𝜕�̃�𝑗

𝜕ρ𝑖𝑗

𝜕ρ𝑖𝑗

𝜕𝚾
                                                      (6.14) 

The first two terms in above equations are given by, 

                                                        
𝜕ρ̿𝑗

𝜕�̃�𝑗
= 3 −  3 𝑡𝑎𝑛ℎ(3�̃�𝑗)

2
                                            (6.15) 

                                    
𝜕�̃�𝑗

𝜕ρ𝑖𝑗
= −(∑ ρ𝑖𝑗

𝑝𝑛
𝑖=1 )

1

𝑝
−1
ρ𝑖𝑗

𝑝−1                                          (6.16) 
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For single void component, the sensitivity of 𝜌(𝑎, 𝑏, 𝜶) with respect to design variables can be 

written as, 

𝜕𝜌(𝑎,𝑏,𝜶)

𝜕𝑎
= H′ ∙ (

𝜕𝑟(𝜃)

𝜕𝜃

𝜕𝜃

𝜕𝑎
+ ((𝑥 − 𝑎)2 + (𝑦 − 𝑏)2)−

1

2 ∙ (𝑥 − 𝑎))                 (6.17) 

𝜕𝜌(𝑎,𝑏,𝜶)

𝜕𝑏
= H′ ∙ (

𝜕𝑟(𝜃)

𝜕𝜃

𝜕𝜃

𝜕𝑏
+((𝑥 − 𝑎)2 + (𝑦 − 𝑏)2)−

1

2 ∙ (𝑥 − 𝑏))                  (6.18) 

𝜕𝜌(𝑎,𝑏,𝜶)

𝜕𝛼𝑗
= H′ ∙ 𝜑(𝜃, 𝜃𝑗)  (𝑗 = 1,2,⋯𝑁)                                 (6.19) 

where H′ denote the first order derivative of Heaviside function. The term 
𝜕𝑟(𝜃)

𝜕𝜃
 can be expressed 

as, 

𝜕𝑟(𝜃)

𝜕𝜃
= [

𝜕𝜑(𝜃,𝜃1)

𝜕𝜃
,
𝜕𝜑(𝜃,𝜃2)

𝜕𝜃
, ⋯

𝜕𝜑(𝜃,𝜃𝑁)

𝜕𝜃
] ∙ [𝛼1, 𝛼2, ⋯ 𝛼𝑁]

𝑇                   (6.20) 

where  

𝜕 𝜑(𝜃,𝜃𝑖)

𝜕𝜃
= −2

𝜃−𝜃𝑖

𝜖2
𝑒−(

𝜃−𝜃𝑖
𝜖
)
2

  (𝑖 = 1,2⋯𝑁)                            (6.21) 

6.5 Nonlinear Finite Element Analysis for Buckling-induced Mechanism 

6.5.1 Nonlinear Finite Element Analysis based on Total Lagrangian Formulation 

As shown in Figure 6.6, a body is described by continuously distributed points 𝑃 in domain 

B called material points. The body deforms under external force, and the new configuration of 

deformed body is denoted as:  

𝒙 = 𝜑(𝑿, 𝑡)                                                          (6.22) 
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where 𝜑 denotes the one-to-one mapping function. 𝑥 is the location of a material point 𝑃 at time 

𝑡, and 𝑿 represents the location of material point 𝑃 in the reference configuration. It is worth to 

mention that the present motion is described with respect to the initial material coordinates, which 

can be also referred to as the Lagrangian description of motion.  

 

Figure 6.6 Deformation of a continuum body from its undeformed configuration to a deformed configuration 

 

To describe the deformation, a tensor 𝐅 is introduced to relate the initial and current 

configuration, which is defined as follows:  

𝑑𝒙 = 𝐅𝑑𝐗                                                         (6.23) 

𝐅 denotes the deformation gradient. The above strain tensor is referred to the initial configuration. 

Spatial equilibrium equation for a deformable body is written as:  

𝑑𝑖𝑣 𝝈 + 𝒇 = 𝟎                                                      (6.24) 

where 𝝈 is Cauchy stress tensor and 𝒇 is body force. Materials for which the constitutive behavior 

is only a function of current state of deformation are known as elastic. Furthermore, the material 

is termed hyperelastic when the work done by the stresses during deformation is only dependent 

on the initial and final configuration state. Note that the hyperelastic material is path independent. 

Elastic potential Ψ per unit undeformed volume is defined as the work done by stresses during 

deformation. The Mooney-Rivlin model [77], which is one of the most popular hyperelastic 

material model, is adopted here to describe the strain energy function. The strain energy expression 
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of Mooney-Rivlin model, which include the effect of the invariants 𝐼1 , 𝐼2, and  𝐼3 can be written 

as follows:  

Ψ = 𝐴10(𝐼1𝐼3
−1 3⁄ − 3) + 𝐴01(𝐼2𝐼3

−2 3⁄ − 3) +
𝐾

2
(𝐼3
1 2⁄ − 1)2                  (6.25) 

where 𝐴10 and 𝐴01 are two nonzero parameters, which need to be determined through material 

testing. 𝐾 is the bulk modulus. Most hyperelastic materials such as rubber have a large bulk 

modulus, which means a small volume change leads to a large hydrostatic pressure. 

6.5.2 The Path-following Algorithm for Nonlinear Buckling Structures 

Buckling-induced structures experience complex deformation behavior beyond the limit 

points. To accurately capture the highly nonlinearity of buckling-induced mechanism, the arc-

length method is proposed, which is an incremental-iterative numerical technique based on FEM. 

This technique is originally pioneered by Wempner [189], and Crisfield [81]. For arc-length 

method, a constraint equation called the arc-length equation is added to the original nonlinear 

equations [81]. The augmented nonlinear systems are obtained, which resolve the incremental load 

factor along with the incremental displacements. The governing equations of nonlinear elasticity 

problem can be formulated as follows:  

𝐑(𝒖, 𝜆) = 𝐅int(𝒖) − 𝜆𝐅ext = 𝟎                                         (6.26) 

where 𝒖 is the nodal displacement vector, and 𝜆 is the load factor.  𝐅int denotes the internal force 

vector, 𝐅ext the external force vector, and 𝐑 is the residual vector. The solutions of the above 

equations are obtained through an incremental approach with iterative technique.  
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6.5.3 Fictitious Domain Approach 

For geometrically nonlinear topology optimization, low density area (low stiffness) may 

become excessively distorted under large deformation. This phenomenon is dominated for 

standard density-based method, which inevitably leads to numerical instability in FEA. To 

effectively alleviate local excessive distortion during optimization, a fictitious domain approach is 

proposed by Wang et al [58]. The basic idea of this method is that high density element is modelled 

with geometrically nonlinear element, while linear element is assigned to low density area to avoid 

excessive element distortion. To conceptualize this idea, an energy interpolation scheme is 

proposed by Wang et al [58] to describe material behavior as follows:  

     Ψ(𝒖𝑒) = [Ψ(𝛾𝑒𝒖𝑒) − Ψ𝐿(𝛾𝑒𝒖𝑒) + Ψ𝐿(𝒖𝑒)]𝐸𝑒                                (6.27) 

where 𝐸𝑒 is elastic modulus of solid element, and 𝒖𝑒 is the elemental nodal displacement vector. 

Ψ denote the stored strain energy of nonlinear element, and Ψ𝐿 denotes the stored energy of linear 

element.  In the equation above, the interpolation factor 𝛾𝑒 equals to unity for solid elements 

(𝜌 = 1), while 𝛾𝑒 = 0 corresponds to void element. The interpolation factor should satisfy that the 

stored energy corresponds to linear energy when 𝛾𝑒 = 0, while energy is simply depicted by 

nonlinear energy if  𝛾𝑒 = 1. To distinguish the high-density elements and low-density elements 

with a smooth continuous approach, a Heaviside function is introduced to ensure a smooth and 

differentiable transition. The elemental strain energy of intermediate density region is named as 

transition elements. For the TO method proposed in this chapter, since the intermediate density 

region is only near the boundary of topology, the transition elements only locate at boundary area 

as shown in Figure 6.7. In fact, if there exist large number of intermediate density regions in 

optimization, the excessive element distortion may still happen under large deformation using 
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fictitious domain method. However, this issue can be successfully circumvented by our proposed 

method. Threshold parameter 𝛾𝑒 can be modeled as follows [58]: 

                          𝛾𝑒(𝑥) =
tanh(𝛽1𝑥0)+tanh(𝛽1(𝑥−𝑥0)

tanh(𝛽1𝑥0)+tanh(𝛽1(1−𝑥0))
                                               (6.28) 

where 𝑥0 is a threshold. In most cases, 𝑥0 = 0.01 and 𝛽1 = 500 are chosen in optimization 

progress.  

  

Figure 6.7 Fictitious domain method 

 

6.6 Topology Optimization Formulation 

6.6.1 Optimization Problem Formulation 

To achieve a buckling-induced design, an optimization algorithm is implemented here to 

tailor the nonlinear response of initial design to achieve snap-through behavior. In general, an 

initial design, like a cube, does not show buckling phenomenon under finite deformation. How to 

modify the initial design to present snap-through behavior is a key objective in this chapter. A 
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feasible way is that controlling the two points on force-displacement curve to push the right 

equilibrium point downward so that the force factor of right point is less than that of left 

equilibrium point. This point is demonstrated in detail as shown in Figure 6.8. To ensure that the 

optimized structure is stiff enough, a constraint at left point (point 1) is applied, which plays key 

role for buckling-induced design. A formal statement of the optimization problem can be 

formulated as follows:  

𝑚𝑖𝑛 𝜆2
    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝜆1 ≥ 𝜆0     (𝜆0 > 0)

 
𝑉(𝜌)

|𝛺|
− 𝑣𝑓

∗ ≤ 0
                                         (6.29) 

where |Ω| is design domain area and 𝑣𝑓
∗ is prescribed volume fraction. 𝜆0  is a force lower limit at 

point 1. 𝜆1and 𝜆2 are force factors at point 1 and 2, respectively. 𝑉(𝜌) denotes volume of material 

layout. If the algorithm manages to find a solution such that  𝜆2 < 𝜆1, then the corresponding 

design will exhibit snap-through behavior. Note that the choice of 𝜆0 , 𝑢0 and 𝑢1 is dependent on 

numerical experience.  

 

Figure 6.8 Sample force-displacement curves for initial design and optimized design 
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6.6.2 Sensitivity Analysis 

To obtain an optimized design, gradient-based methods are required for formulating 

nonlinear programming problem. In this chapter, the gradients of objective and constraint 

functions with respect to design variables are evaluated using adjoint method [190] through 

analytical derivation. Since displacement 𝑢 is prescribed, Lagrange multipliers 𝝁𝟏and 𝜇2 are 

introduced to obtain the derivative of force factor 𝜆 with respect to physical density 𝜌. The 

nonlinear equilibrium equations are expressed in residual form as follows:  

𝑹 = 𝑭𝒊𝒏𝒕 − 𝜆 ∙ 𝑭𝒆𝒙𝒕 = 𝟎                                             (6.30) 

The basic form of force 𝑭𝒆𝒙𝒕 is as follows, 

𝑭𝒆𝒙𝒕 = [𝟎,⋯𝟎, 𝐹𝑐 , 𝟎,⋯𝟎]                                             (6.31) 

where 𝐹𝑐 is a constant force at a specific loading DOF. Without loss of generality, the augmented 

objective function is written as,  

𝜒 = 𝜆 + 𝝁𝟏
𝑻(𝑭𝒊𝒏𝒕 − 𝜆 ∙ 𝑭𝒆𝒙𝒕) + 𝜇2(𝑭

𝒆𝒙𝒕𝑻𝑼− 𝑢∗)                       (6.32) 

where 𝝁𝟏
𝑻 and 𝜇2 are constants that need to be determined through adjoint equations, and 𝑢∗ is the 

prescribed value. 𝑭𝒆𝒙𝒕 is constant force vector. 𝜆 is the force factor of arbitrary point on the 

equilibrium force-displacement curve. Thus, the derivative for 𝜒  with respect to density 𝜌 is given 

by:  

          
𝜕𝜒

𝜕𝜌
= (1 − 𝝁𝟏

𝑻𝑭𝒆𝒙𝒕)
𝜕𝜆

𝜕𝜌
+ 𝝁𝟏

𝑻 𝜕𝑭
𝒊𝒏𝒕

𝜕𝜌
+ (𝝁𝟏

𝑻𝑲+ 𝜇2𝑭
𝒆𝒙𝒕𝑻)

𝜕𝑼

𝜕𝜌
                (6.33) 

where 𝑲 is tangent stiffness. Choosing 𝒖𝟏 and 𝜇2 to eliminate terms 
𝜕𝜆

𝜕𝜌
 and 

𝜕𝑼

𝜕𝜌
 , and adjoint 

equations can be reformulated as follows:  

    𝝁𝟏
𝑻𝑭𝒆𝒙𝒕 = 1                                                     (6.34) 
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      𝑲𝝁𝟏 = −𝜇2𝑭
𝒆𝒙𝒕                                                 (6.35) 

Thus, 

          𝝁𝟏 =
1

𝑭𝒆𝒙𝒕
𝑻
𝑲−𝟏𝑭𝒆𝒙𝒕

𝑲−𝟏𝑭𝒆𝒙𝒕                                      (6.36) 

     𝜇2 = −
1

𝑭𝒆𝒙𝒕
𝑻
𝑲−𝟏𝑭𝒆𝒙𝒕

                                               (6.37) 

Therefore, the sensitivity of force factor with respect to physical density is expressed as:  

     
𝜕𝜆

𝜕𝜌
= (

1

𝑭𝒆𝒙𝒕
𝑻
𝑲−𝟏𝑭𝒆𝒙𝒕

𝑲−𝟏𝑭𝒆𝒙𝒕)
𝑇

∙
𝜕𝑭𝒊𝒏𝒕

𝜕𝜌
                              (6.38) 

where the term 
𝜕𝑭𝒊𝒏𝒕

𝜕𝜌
 is easily obtained, and the detailed description can be found in Ref. [57]. It is 

worth to mention that sensitivity of the objective with respect to parameters (𝑎, 𝑏, 𝜶) can be 

derived through chain rule. Note that above sensitivity analysis is applicable for arbitrary point on 

the equilibrium force-displacement curve. Therefore, the sensitivity of force factor at point 1 and 

point 2 with respect to density 𝜌 can be expressed as, 

             
𝜕𝜆1

𝜕𝜌
= (

1

𝑭𝒆𝒙𝒕
𝑻
𝑲𝟏

−𝟏𝑭𝒆𝒙𝒕
𝑲𝟏

−𝟏𝑭𝒆𝒙𝒕)
𝑇

∙
𝜕𝑭𝟏

𝒊𝒏𝒕

𝜕𝜌
                             (6.39) 

             
𝜕𝜆2

𝜕𝜌
= (

1

𝑭𝒆𝒙𝒕
𝑻
𝑲𝟐

−𝟏𝑭𝒆𝒙𝒕
𝑲𝟐

−𝟏𝑭𝒆𝒙𝒕)
𝑇

∙
𝜕𝑭𝟐

𝒊𝒏𝒕

𝜕𝜌
                             (6.40) 

where 𝑲𝟏and 𝑲𝟐 are tangent stiffness matrix at point 1 and point 2, and 𝑭𝟏
𝒊𝒏𝒕 and 𝑭𝟐

𝒊𝒏𝒕 are the 

internal force vectors at point 1 and point 2. 

6.6.3 Optimization Flow 

The detailed implementation of the proposed method for buckling-induced design is 

described in the flowchart (see Figure 2.1). At the beginning, the parameters are initialized, where 

several internal holes are generated in design domain like the level set method [29]. The physical 
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density field can be computed through the proposed method, where the boundary is explicitly 

described by RBF functions controlled by their knots. Nonlinear FEA is implemented to trace the 

force-displacement response, where MGDCM algorithm and fictitious domain method are applied. 

Note that for a prescribed displacement 𝑢∗, the Newton-Raphson method is applied to determine 

the exact force factor 𝜆∗ at 𝑢∗. (The initial point of Newton-Raphson method is obtained through 

MGDCM algorithm). Once the solutions are obtained, the objective and constraint functions are 

computed, and sensitivity analysis 
𝜕𝜆1

𝜕𝜌
 and  

𝜕𝜆2

𝜕𝜌
 are conducted as described in section 6.6.2. Note 

that the chain rule should be used to compute the sensitivity with respect to design variables. The 

MMA optimizer is implemented to update the design variables, where a small moving limit is 

chosen to avoid fluctuation of optimization. Note that the material behavior is described by the 

Mooney-Rivlin model [191] in our optimization model.   

 

Figure 6.9 Optimization flow 
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6.7 Numerical Examples 

6.7.1 Numerical Example 1  

In this section, several numerical examples presented to demonstrate the effectiveness of 

the proposed projection-based boundary evolving algorithm. Before we apply the proposed 

method to design the buckling-induced mechanism, a linear-elastic compliance minimization 

problem is presented first to demonstrate the effectiveness of the proposed algorithm. In this 

example, an isotropic elastic material with elastic modulus 𝐸 = 1 and Poisson’s ratio of 𝑣 = 0.3. 

The boundary and loading are demonstrated in Figure 6.10. The loading 𝐹 = 1 is applied at the 

midpoint of right edge. The objective is minimizing compliance with volume fraction constraint 

(𝑣 < 0.3), which is standard benchmark for topology optimization [34]. The detailed description 

of objective function and sensitivity analysis can be found in Ref. [34]. Unless specified, the 

moving limit of MMA algorithm is chosen as 𝑚 = 0.01, and the kernel width of RBF function is 

𝜀 = 0.1. The initial design and optimized design are demonstrated in Fig. 11. As shown in Fig. 

11(a), the initial design contains 4 voids, and the geometry of each void is represented by an RBF-

based curve with 73 uniformly distributed knots. The evolving history of density field is plotted in 

Figure 6.12. It is worth to mention that the intermediate density is only near the boundary of 

topology as shown in Figure 6.12. The convergence history is demonstrated in Figure 6.13, where 

the optimization progress converges after 40 iterations.  
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Figure 6.10 Problem definition 

 

              (a) Initial design                                         (b) Optimized design 

                                   

Figure 6.11 Square beam example (a) Initial design (b) Optimized design 

 

Figure 6.12 Evolving history of density field   
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Figure 6.13 Convergence history   

6.7.2 Numerical Example 2 

This example focuses on the design of buckling-induced mechanism using the proposed 

optimization method.  The rectangle domain is presented in Figure 6.14, where 200 × 100 plane 

strain elements are generated with element length 0.5 for FEA. The lower edge is constrained along 

the loading direction; left and right corners are constrained in horizontal direction. The downward 

displacement loading is applied at the mid-point of the upper edge. The material parameters of 

Mooney-Rivlin model is chosen as: 𝐴10 = 34, 𝐴01 = 5.8 and 𝐾 = 2000. Unless specified, the 

plane strain assumption is applied for nonlinear FEA. As shown in Figure 6.15(a), the initial design 

contains 7 voids, and the geometry of each void is represented by an RBF-based curve with 73 

uniformly distributed knots. The parameters of optimization problem are selected as: 𝑢1 = 5, 𝑢2 =

10 and 𝜆0 = 20. The constant force is chosen as 𝐹𝑐 = 4, and the volume fraction constraint is 

𝑣𝑓
∗ = 0.3. Note that the total number of design variables of each void is 75, where two extra degrees 

of freedom are coordinates of origin. The optimized design is plotted in Figure 6.15(b). Note that 
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the hinge-like components appear in the final optimized design. The optimization progress 

converges after 45 iterations and the optimization history is shown in Figure 6.16. The deformation 

of the optimized designs at different loading steps is demonstrated in Figure 6.17. Obviously, the 

beam with two hinges will rotate approximate 90 degrees when the loading displacement 𝑢 = 15.8 

as shown in Figure 6.17. The force-displacement curve is plotted in Figure 6.18. Note that there is 

no buckling occurs in the initial design, while the negative stiffness behavior is found in the 

optimized design after optimization.  

 

Figure 6.14 Problem definition 

 

 (a) Initial design                                                   (b) Optimized design 

           

Figure 6.15 (a) Initial design (b) Optimized design 
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Figure 6.16 Evolving history of optimized design 

 

Figure 6.17 Deformation at different loading steps 
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Figure 6.18 Force-displacement response 

 

To make a comparison, different constraint parameter values are chosen to check their 

effect on the optimized designs. Other optimization parameters are the same as in the previous 

example. In this case, the constraint parameters are chosen as 𝑢1 = 5, 𝑢2 = 15 and 𝜆0 = 15. The 

initial design is shown in Figure 6.19(a), and the optimized design is plotted in Figure 6.19(b). The 

force-displacement response is plotted in Figure 6.21, where the negative stiffness phenomenon 

appears after 𝑢 = 12. The buckling mode is different compared with the previous case. Note that 

the buckling happens when the hinge-like component rotates as shown in Figure 6.20. In the 

present example, the limit point locates at the 𝑢 ≈ 12 with force factor 𝜆 ≈ 28. This example 

shows that the buckling design is quite sensitive to design parameter value change.  

         (a) Initial design                                                   (b) Optimized design 

                                

Figure 6.19 (a) Initial design (b) Optimized design 

 



 127 

 

Figure 6.20 Deformation at different loading steps 

 

 

Figure 6.21 Force-displacement response 

6.8 Conclusion 

In this chapter, a new computational scheme for topology optimization is proposed, where 

the boundary of voids is described based on RBF interpolation method in an explicit way, and p-

norm function is implemented to merge the multiple voids. The proposed method is applied to 

design snap-through mechanism undergoing large deformation. The main advantages of the 
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proposed approach can be summarized as: (1) The proposed computational scheme is in the 

framework of density-based method, where the sensitivity analysis for standard density-based 

method is directly utilized based on the chain rule. (2) The intermediate density only locates at the 

boundary region, which shares the advantages of level set based methods. The proposed method 

is better for circumventing the excessive mesh distortion issue in low density area. (3) Since the 

structural geometry is explicitly described, it is easy to incorporate some manufacturing 

constraints, e.g., feature size, curvature of the structural boundary, etc. This point will be examined 

in the future. (4) Merging multiple voids based on p-norm functions is straightforward and simple 

for numerical implementation. As demonstrated in numerical examples, the proposed method is 

capable of optimizing the initial design to generate buckling-induced mechanism with appropriate 

moving limit of MMA algorithm, and no divergence occurs during optimization.  
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7.0 A Novel Mathematical Formulation for Projection-based Topology Optimization 

Method Considering Multi-Axis Machining Constraint 

7.1 Current Progress of Topology Optimization for Multi-axis Machining 

Topology optimization has become an important tool to determine the optimal shape for 

maximum performance subject to given design constraints. These performance objective functions 

and design constraints affect the applicability of the design and typically include the mass, 

compliance, stress, or displacement due to loading conditions. New methods have since been 

implemented such as the Solid Isotropic Material with Penalization (SIMP) method [192] and the 

level-set method [29], both of which can be found in commercial software. For the SIMP method, 

each element is assigned a density variable to control the material distribution and remove material 

from gradient-based optimization. For the level-set method, the boundary of the shape geometry 

is the zero level-set of an implicit function. The parameters defining the function are optimized to 

produce the optimal shape.  

These methods can produce complex shapes not typically considered by a human engineer 

or designer. Consequently, it can be difficult to manufacture these designs as well and can require 

extensive post-processing [193]. To control the geometric complexity, other new methods have 

been developed such as moving morphable components (MMC) [11, 13], moving morphable voids 

(MMV) [194], and geometry projection [195].  MMC and MMV use controlled geometries to add 

or remove material from the design domain and determine the optimal shape. Geometry projection 

methods [19, 188] use geometries to describe the density distribution on a background mesh. 
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Additionally, integrating the topology optimization process with CAD has been addressed as well 

to further reduce post-processing [196]. 

This chapter mainly focuses on the multi-axis machining constraints, which is a widely 

used techniques in subtractive manufacturing for metal component production. For multi-axis 

machining, the relative position and orientation of cutting tools and workpiece can be manipulated 

in 4 or 5 degrees of freedom. The unnecessary material is removed by machining tool until the 

desired shape achieves. Compared with 2.5D milling, the multi-axis machining allows more design 

freedom. Besides machining, metal additive manufacturing is also a well-known technique to print 

free-form design with high design freedom, while the material strength and fatigue properties of 

parts made of AM still have large gap compared to metal machining. For high-strength aerospace 

or naval structures, multi-axis machining is an ideal option for manufacturing parts. Thus, topology 

optimization approaches considering machining constraint is a necessary and valuable research to 

achieve a trade-off between the available manufacturing technologies. In recent years, a few 

effective approaches for multi-axis machining-based topology optimization are proposed. For 

2.5D milling, Liu et al [197] proposes an explicit feature-based level-set method, where the feature 

fitting algorithm is incorporated into the boundary evolvement process. Furthermore, Liu and 

Albert [198] proposed a novel CAD-based topology optimization system for milling constraint, 

where feature and dynamic modeling history is incorporated into the optimization process. For 

multi-axis machining, Amir et al [199] presented a topology optimization framework using 

convolutions in configuration space to enable manufactured design using multi-axis machining, 

where an inaccessibility measure field of design domain is introduced to identify non-

manufacturable features. Nigel et al [200] proposed a level-set-based topology optimization 

method for multi-axis machining, where the advection velocity at every iteration is modified to 
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ensure the manufacturability conditions. This level-set-based method simulates the subtractive 

process by cutting materials accessible to the machine in every iteration until optimization 

converges. Matthijs et al [201] proposed a density-based approach incorporating multi-axis 

restrictions, where a filter technique based on KS aggregation function [202] is introduced to 

transform an input design field into a manufacturable geometry. Besides the multi-axis machining, 

several other related topology optimization studies regarding casting constraints can also be found 

in Ref [203-206]. 

The aim of this chapter is to propose a novel density-based approach to optimize parts for 

multi-axis machining restrictions, where a concise aggregation-free density projection formulation 

is demonstrated. The subtractive manufacturing constraints can be satisfied after density 

projection.  

7.2 Mathematical Formulation for Multi-axis Machining 

7.2.1 Machining Restriction 

The milling head is generally described by a cylinder capped with a hemisphere oriented 

in the milling direction. The end of the head cylinder is assumed to extend infinitely far away from 

the cutting surface. For 3 axis machining, the workpiece is still while the cutting tool moves along 

the 3 mutually perpendicular axes to mill the part, which is a most widely used technique to create 

mechanical parts. While for 5-axis machining process, the milling tool can be oriented to approach 

the surface from an arbitrary direction. The machinable part is determined by whether all its surface 

points are accessible by tool bit without any intersection with the interior of the part. As described 
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by Ref [201], machinability means that the density field must be monotonically increasing in the 

insertion direction without any internal holes. To enforce the milling constraints, a Heaviside 

function-based projection method is proposed here to construct the monotonically increasing 

density field in the milling direction. 

 

Figure 7.1 Density Mapping from fictitious field to physical field 

This subsection outlines the conceptual idea for the proposed mathematical formulation 

considering multi-axis machining constraint. The physical field is used for FEM analysis. The 

physical density field is computed through the cumulative summation of fictitious density along 

reverse milling direction as shown in Figure 7.1. The Heaviside function is introduced here to map 

the fictitious density to physical density as follows, 

𝜌𝑝 = H2 (∑ H1(𝜌𝑓
(𝑗)
)𝑗∈ℳ )                                               (7.1) 
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where notation ∑(∙) means cumulative summation of fictitious element density along reverse 

milling direction. ℳ is the set of elements along reverse milling direction. The element set ℳ can 

be determined based on following flowchart, 

 

Figure 7.2 Flowchart of computing set 𝓜 

As shown in flowchart, 𝑑0 is a threshold, and the operation ∥∙∥ denotes the Euclidean norm. 

As demonstrated in Figure 7.2, the grey element in physical field 𝜌𝑝 is computed through 

summation of blue element (ℳ) in fictitious density field 𝜌𝑓. Η1(∙) and Η2(∙) denote the Heaviside 

functions defined as:  

{
Η1(𝑥) =

tanh(10𝑥−3)+1

2

Η2(𝑥) =
tanh(6𝑥−3)+1

2

                                            (7.2) 
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The shape of Heaviside functions is plotted as follows, 

              

Figure 7.3 Heaviside functions  

To effectively control the minimum size of void area, we introduce the void field to work 

as design variables. The relationship between void field and fictitious domain can be defined as 

follows, 

𝜌𝑓 =
1

∑ 𝑑𝑓𝑖𝑖∈𝑁𝑓

∑ 𝑑𝑓𝑖(1 − 𝜌𝑣
(𝑖)
)𝑖∈𝑁𝑓                                        (7.3)                                

where 𝑑𝑓𝑖 is weight factor for filter defined as: 

𝑑𝑓𝑖 = 𝑚𝑎𝑥(0, 𝑟𝑚𝑖𝑛 − Δ(𝑓, 𝑖))                                           (7.4)                                

𝑟𝑚𝑖𝑛 is the filter radius. Δ(𝑓, 𝑖) denotes the distance between the center of element 𝑖 and 𝑓. 𝑁𝑓 is 

the set of elements 𝑖 for which the distance Δ(𝑓, 𝑖) less than 𝑟𝑚𝑖𝑛. More details regarding filtering 

techniques can be found in Ref [34]. Therefore, the physical density 𝜌𝑝 can be explicitly expressed 

as,  

𝜌𝑝 = H2 (∑ H1 (
1

∑ 𝑑𝑓𝑖𝑖∈𝑁𝑓

∑ 𝑑𝑓𝑖(1 − 𝜌𝑣
(𝑖)
)𝑖∈𝑁𝑓 )𝑓∈ℳ )                        (7.5)                                

For multiple milling directions (𝑖 = 1,⋯ , 𝑛), the composite physical density field can be simply 

expressed as, 

𝜌𝑝̅̅ ̅ = ∏ (𝜌𝑝
(𝑖))𝑛

𝑖=1                                                      (7.6)                                
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where 𝜌𝑝
(𝑖) denote the physical density computed from the 𝑖 milling direction. A typical projection 

from void density field to physical density field is demonstrated in Figure 7.4. 

 

Figure 7.4 Projection from the void field to physical field 

 

7.2.2 Sensitivity Analysis 

Given a response 𝑓(𝜌𝑣), the sensitivity with respect to the design variables 𝜌𝑣 can be 

obtained through the chain rule as follows, 

𝜕𝑓

𝜕𝜌𝑣
(𝑙) =

𝜕𝑓

𝜕𝜌𝑝̅̅ ̅̅

𝜕𝜌𝑝̅̅ ̅̅

𝜕𝜌𝑣(𝑙)
=

𝜕𝑓

𝜕𝜌𝑝̅̅ ̅̅
∑ (

𝜕𝜌𝑝
(𝑖)

𝜕𝜌𝑣
(𝑙) ∏ (𝜌𝑝

(𝑗))𝑛
𝑗=1;𝑗≠𝑖 )𝑛

𝑖=1                           (7.7)                                

where Einstein summation applies to all repeated subscripts. 𝑛 is the number of machining 

direction. The explicit form of the term 
𝜕𝜌𝑝

(𝑖)

𝜕𝜌𝑣
(𝑙)  can be expressed as, 

𝜕𝜌𝑝
(𝑖)

𝜕𝜌𝑣
(𝑙) = H2

′ ∙ (∑
𝜕H1(

1

∑ 𝑑𝑓𝑖𝑖∈𝑁𝑓

∑ 𝑑𝑓𝑖(1−𝜌𝑣
(𝑖)
)𝑖∈𝑁𝑓
)

𝜕𝜌𝑣
(𝑙)𝑓∈ℳ(𝑖) )                        (7.8)                                
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where  

𝜕H1(
1

∑ 𝑑𝑓𝑖𝑖∈𝑁𝑓

∑ 𝑑𝑓𝑖(1−𝜌𝑣
(𝑖)
)𝑖∈𝑁𝑓
)

𝜕𝜌𝑣
(𝑙) = H1

′ ∙

𝜕(
1

∑ 𝑑𝑓𝑖𝑖∈𝑁𝑓

∑ 𝑑𝑓𝑖(1−𝜌𝑣
(𝑖)
)𝑖∈𝑁𝑓
)

𝜕𝜌𝑣
(𝑙)               (7.9)                                

where H1
′and H2

′ denote the first derivative of Heaviside function. The detailed form of 
𝜕𝑓

𝜕𝜌𝑣
(𝑙) can 

be easily derived, which is omitted here. 

7.3 Numerical Examples 

7.3.1 Machining-based Optimization for a 2D Cantilever Beam 

The first 2D numerical example for machining-based topology optimization is 

demonstrated in Figure 7.5. The design domain is uniformed meshed by 100 × 100 quad elements 

with unit length. The loading 𝐹 = 1 is applied on the right-bottom corner, and left side is fully 

fixed. The volume fraction constraint �̅� is chosen as 0.2. The elastic constants are chosen as 

follows: Elastic modulus 𝐸 = 1 and Poisson’s ratio 𝜇 = 0.3. The filter radius for design variable 

is chosen as 𝑟𝑚𝑖𝑛 = 4. The initial void field (design variable) is plotted in Figure 7.7. To make a 

comparison, different milling direction constraints are applied to produce optimized design. The 

reference solution without any manufacturing constraints is demonstrated in Figure 7.6. 

Obviously, the reference solution cannot be manufactured if machining operations are limited in 

the 𝑥, 𝑦-plane. The initial and optimized designs for single milling orientation are demonstrated in 

Figure 7.7, and convergence history is plotted in Figure 7.8. Compared with the reference solution, 

the optimized part for unidirectional milling restriction shows strong limitation of design freedom, 
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which also has great impact on structural compliance. Note that the designs with single milling 

orientation constraint are considerably more compliant with respect to reference design. For 

multiple tool orientations, the optimized designs are shown in Figure 7.9, and convergence history 

is plotted in Figure 7.10. The structural performance with multiple directions is better than the 

single orientation, while the compliance value still higher than the reference design. This simple 

2D numerical example proves the effectiveness of proposed method to force the optimization 

process towards a different solution considering multi-axis machining constraints. 

 

Figure 7.5 Two-dimensional Cantilever Beam 

 

Figure 7.6 Reference design (Compliance: 50.05) 
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(a) Initial design                                                              (b) Optimized design 

                                                              

(a)   Initial design                                                           (b) Optimized design 

                                                 

Figure 7.7 Designs obtained using single tool orientation 

                   

(a) Orientation (1,0)                                          (b) Orientation (0,1)                                                   

                  

Figure 7.8 Convergence history 
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(a) Initial design                                                                (b) Optimized design 

                                      

(a) Initial design                                                              (b) Optimized design 

                                

Figure 7.9 Designs obtained using multiple tool orientations 

 

(a) 2 Orientations                                                   (b) 4 Orientations                                                   

    

Figure 7.10 Convergence history 
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7.3.2 Machining-based Optimization for 3D Cantilever Beam 

In this subsection, we focus on verifying the effectiveness of proposed method for 3D 

designs. In the first test example, a three-dimensional cantilever beam example is presented for 

compliance minimization. The unit force is applied at the midpoint of right-bottom edge, and the 

left end is fully fixed. The design domain is discretized by a 144 × 48 × 48 hexahedral mesh with 

unit element length. The elastic constants are chosen as follows: Elastic modulus 𝐸 = 1 and 

Poisson’s ratio 𝜇 = 0.3. The volume fraction constraint is set to be 0.3. The filter radius for multi-

axis machining optimization is chosen as 𝑟𝑚𝑖𝑛 = 4. A reference solution is demonstrated in Figure 

7.13, where no machining constraints are applied. As shown in Figure 7.13, optimized design 

exists hollow chamber, which is not accessible by machine tools. It is worth to mention that the 

initialization of fictitious field for optimization is shown in Figure 7.12. To ensure the 

manufacturability of the optimized design, the results of two-orientation machining optimization 

for the Cantilever beam are plotted in Figure 7.14. The orientation of machine tool is described by 

the vector (𝑎, 𝑏, 𝑐) in the local coordinate as shown in Figure 7.11. The compliance value of 

designs obtained from different orientations (Figure 7.14) is close and slightly higher than the 

reference design. For multi-axis machining constraints, the optimized result is demonstrated in 

Figure 7.15 with 6 different milling orientations. However, compliances differ slightly between all 

designs, which denotes the amount of directions is not very influential for current issue.  
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Figure 7.11 Three-dimensional Cantilever Beam 

 

 

Figure 7.12 Initialization of fictitious field 

 

 

Figure 7.13 Reference solution without machining constraints (Compliance:10.43) 
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Figure 7.14 Two orientation machining constraints  
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Figure 7.15 Multiple machining tool orientations (Compliance=11.85) 

 

To further examine the effects of filter radius on final optimized design, different filter 

sizes 𝑟𝑚𝑖𝑛 are selected to produce diverse designs as shown in Figure 7.16. The machining tool 

orientations (6 directions) are shown in Figure 7.15. As mentioned by Ref [207-209], filter size is 

a straightforward and effective way to control the member size of optimal design. As plotted in 

Figure 7.16, for small radius size (𝑟𝑚𝑖𝑛 = 1), small and narrow hollow chambers are found, which 

may not be accessible by machine tool. However, the hollow chamber size increases after 

increasing the filter radius 𝑟𝑚𝑖𝑛, while the compliance values (𝐶) of multiple designs are close in 

this case. 
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Figure 7.16 Machinable designs with different filter radius 

7.3.3 Machining-based Optimization for 3D MBB Beam 

In this section, an MBB Design example is presented for compliance minimization. The 

unit force is applied at the center of top face. Left and right bottom edges are fully fixed as shown 

in Figure 7.17. Due to the symmetry, only half of the MBB beam is chosen to optimize, where the 

half design domain is discretized by 144 × 48 × 48 hexahedral mesh with unit element length. 

The material properties are the same as the previous example. The filter size for design variables 

is selected as 𝑟𝑚𝑖𝑛 = 4. The volume constraint is chosen as �̅� = 0.2. The reference result without 

machining constraints obtained from standard density-based method is shown in Figure 7.19. This 

reference design is not manufacturable through machining as it contains several inaccessible 

internal surfaces. Similar to the previous example, we start by considering a two-opposite direction 

for milling operation. The initialization of fictitious field for optimization is demonstrated in 

Figure 7.18. Several machinable designs are generated through the proposed method as 

demonstrated in Figure 7.20. The machinable MBB designs have very different optimized 
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configurations compared to the reference case, while the compliance values of machinable designs 

are remarkably competitive with reference.  

 

Figure 7.17 Machinable designs with different filter radius 

 

 

Figure 7.18 Initialization of fictitious field 

 

                       

Figure 7.19 Reference design (Compliance=10.72) 
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Figure 7.20 Two opposite milling directions   

 

For a multi-axis milling scenario, the set of milling orientations is extended as shown in 

Figure 7.21. As plotted in Figure 7.21, the machinable design is obtained by 6 mutually orthogonal 

milling directions. The compliance value (C=10.05) of optimized design is slightly outperform 
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than the reference design (C=10.72). Clearly, the reference design is only a local optimum, as 

gradient-based method is only able to converge to a local minimum.  

        

Figure 7.21 Multiple milling directions (Compliance: 10.05) 

7.4 Conclusion 

In recent years, developing advanced topology optimization methods for conventional 

subtractive manufacturing becomes a new trend in this field. In this chapter, a novel mathematical 

formulation to impose multi-axis machining restrictions in the framework of density-based method 

is proposed. A simple density mapping method based on Heaviside function for multi-axis 

restrictions is demonstrated in detail, where no aggregation functions (E.g. KS-function [202]) are 

involved. Several 2D and 3D numerical examples are demonstrated to validate the effectiveness 

of proposed method. The current study does not consider precisely controlling the length to 

diameter ratio (L:D ratio) of machinable design [210]. In general, some small features generated 

by topology optimization are hard to reach like a thin and deep pocket. For multi-axis machining, 

deep and narrow areas require specialized tooling and are time-consuming to produce. These 

narrow areas may require additional equipment setup and increase the cost of a component. 
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Increasing the filter radius as described in the proposed method can effectively reduce these narrow 

regions. In the future research, the length to diameter ratio will be investigated and incorporated 

into the current optimization framework. 
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8.0 Conclusions 

8.1 Main Contributions 

The research works in this dissertation are mainly focused on development of projection-

based methods for topology and shape optimization. The projection-based topology optimization 

approach is able to properly restrict the optimal solutions by implementing geometric constraints. 

The core of projection method is to applying new design variables projected in a pseudo-density 

domain to find the optimal solutions. The main contributions of this dissertation are summarized 

as follows, 

(1) The projection-based method is proposed to maximum extreme energy dissipation 

of metamaterial considering failure constraint, where the geometric dimension can be 

controlled in a straightforward way. Approximation of theoretical energy absorption is 

formulated through mathematical expression and strict sensitivities are deducted by adjoint 

method. Material failure is measured by strain energy and p-norm formulation are utilized. To 

explicit control and express geometric shape, an alternative projection method is presented for 

continuum-based topology optimization made of geometric components. This geometric 

projection algorithm is completely based on a fixed grid and hence inherit the advantages of 

density-based TO method. By applying the chain rule, the sensitivities with respect to geometry 

parameters are convenient to derive. This guarantees the application of gradient-based 

optimization frame with standard nonlinear programming algorithms. The density mapping 

algorithm in this article is based on Heaviside function, which is possessed of strong generality 

and can be extended to apply curved skeleton to control complex geometry shape in the future.  
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(2) A 𝐁�́�𝐳𝐢𝐞𝐫 skeleton explicit density (BSED) representation algorithm is proposed 

for the topology optimization of stretchable metamaterial, where manufacturing friendly 

structures without any intricate small features are generated for optimal design. Material 

failure is measured by strain energy and p-norm formulation are utilized. A Heaviside function is 

applied to create a mapping from geometry skeleton to mesh grids, where the skeleton is described 

by the Bézier curves. This density representation method successfully inherits the main advantages 

of density-based topology optimization. Sensitivities of the objectives and constraints with respect 

to control parameters can be readily derived by using the chain rule. Due to the powerful curve 

fitting ability, using Bézier curve to represent density field can explore design space effectively 

compared to bar-like structures. Furthermore, this density representation method is mesh 

independent and the design variables are reduced significantly so that the optimization problem 

can be solved efficiently using regular optimization algorithm.  

(3) A new projection-based algorithm based on implicit field for gyroid lattice design 

is proposed, where the proposed method is able to design functionally graded lattice without 

the need for any homogenization. Thus, the lattice design based on this method is not limited to 

periodic structures, and can be extended to irregular porous scaffold designs. The unit cell size for 

lattice design can be large and not limited by size effects (homogenization necessary condition 

[150]), which is preferred for AM. Now that the geometry is defined by implicit function, the 

geometry information is far less than feature-based geometry modeling [151], which is sometimes 

extremely tedious for modeling porous media or lattice structures, and the data communication 

between implicit field with additive manufacturing systems is well-addressed by Ref. [134].  

(4) A gradient-based moving particle optimization method is proposed to achieve 

reverse shape compensation under gravity stimuli, which is a general computational 
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framework for reverse shape compensation. The geometry is represented by particles, where 

each particle can move freely in the design domain. Dual background mesh is implemented to 

achieve a mapping from undeformed geometry to deformed configuration. The update of particle 

positions is based on sensitivity information, and MMA optimizer is implemented to minimize the 

objective function. The method described here has the capability to treat more complex situation, 

such as temperature change. etc. Besides, the proposed method has the potential to be applied to 

engineering application such as distortion compensation in additive manufacturing or four-

dimensional (4D) printing techniques 

(5) A new computational scheme for topology optimization is proposed, where the 

boundary of voids is described based on RBF interpolation method in an explicit way, and 

p-norm function is implemented to merge the multiple voids. The proposed method is applied 

to design snap-through mechanism undergoing large deformation. The main advantages of the 

proposed approach can be summarized as: (1) The proposed computational scheme is in the 

framework of density-based method, where the sensitivity analysis for standard density-based 

method is directly utilized based on the chain rule. (2) The intermediate density only locates at the 

boundary region, which shares the advantages of level set based methods. The proposed method 

is better for circumventing the excessive mesh distortion issue in low density area. (3) Since the 

structural geometry is explicitly described, it is easy to incorporate some manufacturing 

constraints, e.g., feature size, curvature of the structural boundary, etc. (4) Merging multiple voids 

based on p-norm functions is straightforward and simple for numerical implementation.  

(6) A novel projection-based mathematical formulation to impose multi-axis 

machining restrictions in the framework of density-based method is proposed. A simple 

density mapping method based on Heaviside function for multi-axis restrictions is demonstrated 
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in detail, where no aggregation functions (E.g. KS-function [202]) are involved. In general, some 

small features generated by topology optimization are hard to reach like a thin and deep pocket. 

These narrow areas may require additional equipment setup and increase the cost of a component. 

Increasing the filter radius as described in the proposed method can effectively reduce these narrow 

regions.  

8.2 Future Works 

Though several different projection-based methods are shown in this dissertation to control 

the geometric shape and dimension, there are still a lot of important topics that need to be further 

carefully investigated. The potential future works based on the research works in this dissertation 

are summarized as follows. 

(1) For buckling-induced and stretchable metamaterial design, extending the current 

method to three-dimensional design is a challenging thing, which should be addressed in the 

future. How to effectively accelerate the finite element solution process for large scale nonlinear 

problems is a critical issue needed to be resolved. Meanwhile, employing GPU to accelerate the 

solution process is another promising direction in the future. 

(2) Projection-based Moving Particle Optimization Method will be extended to large 

deformation problem or elastic-plasticity problem. In the present computational framework, 

only the small deformation is considered, and finite element analysis is still based on the linear 

elastic theory. Compared with nonlinear problem, the linear problem is stable for optimization 

even though the sensitivity is not fully correct due to some small derivation mistakes. However, 

for large deformation problem, the correctness of sensitivity derivation becomes more critical and 
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small deviation of sensitivities may result in divergence of optimization. Meanwhile, large 

deformation problem is sensitive to mesh distortion, where the local mesh distortion may result in 

failure of FEM analysis. However, the large deformation is common in soft matter deformation 

under stimuli or thin-walled structures produced by AM techniques. For parts produced by additive 

manufacturing, the local plasticity deformation is inevitable due to residual stress, which is caused 

by material expansion and shrinkage due to temperature change in manufacturing process. Thus, 

effective reverse shape compensation algorithm based on elastic-plasticity material model is 

essential to achieve the real application of proposed method for AM parts.  

(3) Topology optimization design with multi-axis machining restrictions should be 

extended to considering the tool shape and size. In general, tool length limitations have a strong 

impact on part optimal shape and performance, how to effectively consider the tool length 

limitations and incorporated into current computational scheme is a challenge and should be 

further explored in the future. 
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