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Developing and Evaluating Innovative Approaches for Estimating Causal Effects of

Low-dose Aspirin on Pregnancy Outcomes

Yongqi Zhong, PhD

University of Pittsburgh, 2021

First trimester pregnancy loss occurs in one third of all pregnancies, and recurrent

pregnancy loss is also prevalent in up to 30% of women with a prior history. Using

intention-to-treat, the Effects of Aspirin in Gestation and Reproduction (EAGeR) trial

found that low-dose aspirin (LDA) led to 4.3 (95% CI -1.2 to 9.6) per 100 women at high

risk of pregnancy loss. However, the estimated effect, which is based on the assignment

to a treatment arm, rather than adherence to a particular treatment protocol, limits the

understanding of potential benefits of LDA on pregnancy.

Existing methods for adherence adjustment to estimate per-protocol effects in ran-

domized trials are subject to the limitations of observational studies, including model

mis-specification due to incorrect confounder selection, or from strong parametric as-

sumptions.

The objective of this dissertation is to evaluate and develop innovative approaches

for estimating the adherence-adjusted effects of LDA on pregnancy. First, to mitigate the

impact of incorrect confounder selection, we evaluated the performance of causal dis-

covery methods in a simulation study using the data resampled from EAGeR. We found

that, the evaluated causal discovery method yielded low accuracy in selecting sufficient

confounder adjustment sets in the M- or Butterfly-structured causal diagrams. Second,

to avoid strong parametric assumptions, we developed an R package implementing the

augmented inverse probability weighting (AIPW), a doubly robust estimator supporting
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stacking machine learning. Our simulation study suggests that, our AIPW package has

excellent performance compared to existing R packages implementing doubly robust es-

timators. Finally, we used the AIPW package with stacking machine learning to estimate

per-protocol effects of LDA in a time-fixed setting from the EAGeR trial. Our results

show that LDA led to 8.0 (95% CI 2.5 to 13.6) more pregnancies per 100 women who ad-

hered to the randomized treatment assignment for at least 5/7 days per week over at least

80% person-week of follow-up, consistent with the previous analysis using parametric g-

formula in a time-varying setting. In conclusion, this dissertation does not only provide

additional evidence of the benefits of LDA on pregnancy, but also the state-of-the-art ap-

proaches for effect estimations in epidemiologic studies.
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1.0 Introduction

1.1 Specific Aims

First trimester pregnancy loss occurs in one third of all pregnancies, and recurrent

pregnancy loss is also prevalent in up to 30% of women with a prior history. Preconcep-

tion low-dose aspirin has shown promises in preventing adverse pregnancy outcomes,

likely due to its pro-circulatory and anti-inflammatory effects that influence critical con-

ception process (e.g. implantation). The Effects of Aspirin in Gestation and Reproduction

(EAGeR) trial estimated an increase of 4.3% in the pregnancy rate (95% CI -1.2% to 9.6%)

among women assigned to preconception low-dose aspirin versus placebo. However, the

estimated effect, which is based on the assignment of treatment rather than adherence,

limits the understanding of potential benefits of low-dose aspirin to improving pregnancy

outcomes. Non-adherence, as well as post-randomization confounding can lead to large

differences in estimated treatment effects, because randomization only accounts for elim-

inating or reducing the imbalance of baseline characteristics among treatment arms. To

disentangle such differences, not only does one require solid understanding of the causal

structure of low-dose aspirin and pregnancy outcomes, but one must also correctly spec-

ify all statistical models used to model these causal relations (e.g. what variables to be

adjusted and which statistical methods to be used). Unfortunately, uncertainty about the

precise causal structure of low-dose aspirin on pregnancy outcome and its correctly spec-

ified statistical models leaves a major gap of understanding in the true biological effects

of low-dose aspirin on pregnancy outcomes.

In the long term, our work will develop a modern framework and tools with advanced
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methodology for identifying effective treatments to improve pregnancy outcomes. Our

overall objective is to develop and evaluate causal inference tools to estimate the ad-

herence adjusted effect of low-dose aspirin on pregnancy. We hypothesize that low-

dose aspirin will increase the pregnancy rate after adjusting for non-adherence and post-

randomization confounding. We will test our hypothesis with the EAGeR study, a mul-

ticenter randomized trial of the effect of daily low-dose aspirin on multiple pregnancy

outcomes (e.g. live birth, pregnancy loss). From 2007 to 2012, this trial recruited 1,228

women (18-40 years) with a lifetime history of one or two pregnancy losses, who are at-

tempting to become pregnant. Participants were followed for up to six menstrual cycles

(for whom did not conceive) or throughout pregnancy.

Aim 1. Evaluate the performance of Bayesian networks in selecting covariate adjust-

ment sets for estimating the effects of low-dose aspirin on pregnancy outcomes.

Widely applied in computer science and bioinformatics, Bayesian networks are a

quantitative representation of causal diagrams used to discover and model complex causal

structures. Using simulation studies, we will first evaluate the performance of different

covariate adjustment in estimating the effects of low-dose aspirin on pregnancy outcomes

(e.g. adjusting the covariates that are statistical related but not the cause of the exposure

and outcome) with the knowledge of true data generating mechanisms. Then, we will

evaluate the performance of Bayesian networks in identifying the true causal structure

and selecting the best optimal adjustment sets for effect estimations.

Aim 2. Develop an R package for augmented inverse probability weighting (AIPW) to

estimate the effects of low-dose aspirin on pregnancy outcomes.

Methods in Aim 1 guides the use of covariate adjustment sets for modeling the mech-

anism of taking low-dose aspirin and the mechanism relating to pregnancy outcomes.
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However, it is not typically possible to correctly specify all statistical models given in-

vestigators’ uncertainty about the true data generating mechanisms. The AIPW, a doubly

robust estimator, is able to provide a valid estimation of causal effects as long as either the

outcome or the exposure model is correctly specified. We will develop a new R package

for AIPW which is robust to an extent of statistical model mis-specifications, and compare

the performance of our package to existing packages that also implement doubly robust

estimators.

Aim 3. Determine the adherence adjusted effects of low-dose aspirin on pregnancy

outcomes with Bayesian networks and AIPW.

We will estimate the effect of adherence to preconception low-dose aspirin use on the

pregnancy outcomes by adjusting for post-randomization confounding. First, we will

use the methods evaluated in Aim 1 to select a covariate adjustment set reflecting the

causal structure among low-dose aspirin, pregnancy outcomes, and factors relating to

non-adherence. Second, we will use the AIPW package developed in Aim 2 to estimate

the adherence adjusted effects and compare to other commonly used methods (e.g. g-

computation).

In completing these aims, this study will provide better understanding of the per-

formance of Bayesian networks and AIPW in estimating the causal relationships among

low-dose aspirin, pregnancy outcomes and factors leading to non-adherence. Not only

will this potentially inform the complex causal relationships between low-dose aspirin

and pregnancy loss, but we will also provide a more comprehensive framework and tools

guiding the use of graphical models and other advanced analytical techniques in repro-

ductive epidemiological studies to prevent adverse pregnancy outcomes.
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1.2 Significance

Burden of adverse pregnancy outcomes increases over the past decades in the United

States.

As an adverse event affecting women’s physical and mental health, pregnancy loss

is a common complication among conceived women—one third of women in their early

pregnancy had pregnancy loss (or miscarriage).[1, 2] According to the CDC, risk of preg-

nancy loss increased 1% per year among US women from 1990 to 2011. Pregnancy loss

is also considered as a risk factor for future fertility.[3] In addition to pregnancy loss and

fertility, the prevalence of preterm birth in the US shows an increasing trend from 2014

to 2016—about 1 out of 10 infants were born before 37 weeks of gestation.[4] Thus, more

research on adverse pregnancy outcomes prevention is needed.[5]

Preconception low-dose aspirin is promising to prevent adverse pregnancy outcomes.

Low-dose aspirin, a commonly used, cheap, over-the-counter medication, is promis-

ing to prevent pregnancy loss for its pro-circulatory and anti-inflammatory effects. The

effect of postconceptional use of low-dose aspirin on early pregnancy loss has been stud-

ied over the past decades, whose evidence is mixed.[6, 7, 8, 9, 10, 11] However, postcon-

ceptional use of low-dose aspirin is still being prescribed for pregnancy loss prevention

without solid evidence. Preconception low-dose aspirin, on the other hand, shows more

promises than postconceptional low-dose aspirin, since preconception low-dose aspirin

could directly influence the critical windows of pregnancy (e.g. implantation) so as to

improve pregnancy rate and to prevent adverse pregnancy outcomes.

Discrepancies in different estimated treatment effects limit the potential benefits of

low-dose-aspirin on pregnancy outcomes.
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The Effects of Aspirin in Gestation and Reproduction (EAGeR) is a landmark ran-

domized controlled trial (RCT), which was among the first to examine the effect of pre-

conception LDA on pregnancy outcomes in women with one or two prior pregnancy

losses. The study investigators found an increased probability of 4.3% in pregnancy

(95% CI -1.2% to 9.6%) among women assigned to preconception low-dose aspirin versus

placebo.[12, 13, 14, 15] This estimated intention-to-treat effect was unable to yield suffi-

cient statistical evidence to change the clinical guideline. However, non-adherence was

a documented problem in EAGeR, suggesting that the per-protocol effect may suffice to

provide solid statistical evidence. Our work will address the differences in estimated

treatment effects of low-dose aspirin on pregnancy outcomes.

Non-adherence may lead to large differences in the estimated treatment effects in RCTs.

Intention-to-treat analysis uses treatment assignment as the exposure for treatment

effect estimation, regardless of whether a subject is adherent to the assigned treatment

or not; whereas the per-protocol analysis is based on adherence status in addition to the

treatment assignment. Ideally, the estimated intention-to-treat effect is identical to per-

protocol effect because all participants were assumed to adhere to the assigned treatment

throughout the trial.[16] However, because of non-adherence, the estimation of intention-

to-treat effect might not reflect the clinical effectiveness of the treatment.[17] The mag-

nitude and direction of changes in intention-to-treat effect depend on the type of trial

and the pattern of non-adherence[18, 19] For example, intention-to-treat effect could un-

derestimate the actual treatment effect in the safety and non-inferiority trial, leading to

observe the equivalent or similar effect between the treatment and the placebo. This un-

derestimation of intention-to-treat effect in non-inferiority trial would yield conservative

evidence that the proposed treatment is as “effective” as the traditional one.[19] There
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are three commonly used methods for correcting non-adherence in estimating treatment

effect:[20] instrumental variable methods,[21] principal stratification[22] and marginal

structural modelling.[23] All of these methods require solid understanding of variables

which strongly predict the outcome and which tightly link to non-adherence—that is,

post-randomization confounding.

Post-randomization confounding is critical for non-adherence adjustment in estimat-

ing per-protocol effects in RCTs.

One major advantage of RCTs over observational studies is randomization, which, in

expectation, ensures exchangeability between treatment and control groups at baseline.[24]

As a result, the intention-to-treat effect is identified and unconfounded. However, the

per-protocol effect might be confounded as in observational studies,[25] because ran-

domization only accounts for eliminating the imbalance at the time of randomization

and does not guarantee potential violations of exchangeability for the per-protocol effect

estimation.[26] Using EAGeR as an example, although assigning to aspirin or placebo

group did not depend on baseline prognostic covariates (e.g. employment status), whether

adhering to the treatment assignment may be affected by those covariates (e.g., older

age may increase the chance of taking aspirin but decrease the chance of being preg-

nant). Analyzing RCTs with similar analytical approaches and considerations as obser-

vational studies had been recently advocated and successfully applied in some clinical

studies.[17, 25, 27]

Causal diagrams provide novel insights to address non-adherence and post-randomization

confounding in RCTs.

As a routinely used tool by epidemiologists, causal diagrams allow investigators to

evaluate the identifiability of treatment effect with their background knowledge and to
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Figure 1: A causal diagram for the EAGeR trial

Randomization (Z) Adherence (A)

Confounders (C)

Pregnancy (Y)

select a set of covariates used for adjustment.[24, 28, 29, 30] For example, Figure 1 de-

picts the simplified causal relations in an RCTs like EAGeR, where Z denotes treatment

assignment to aspirin by randomization, A is the adherence to assigned treatment, Y is

the outcome and C is the post-randomization confounding; as such, the intention-to-treat

effect can be estimated by P (Y | Z). However, the per-protocol effect cannot be directly

estimated by P (Y | Z,A = 1) because it is confounded by C, similar to the targeted

effects in observational studies. Therefore, we need to estimate P (Y | Z,C,A = 1) to un-

biasedly estimate the effects of adherence with aspirin on pregnancy. In empirical studies,

C in Figure 1 could potentially include multiple post-randomization confounders, which

may be associated with each other. Take EAGeR as an example, side effects and symp-

toms such as bleeding are post-randomization confounders, which are also associated

with each other, holding an intercorrelated causal structure in addition to the adherence-

outcome relations. Without causal diagrams, the potential problems introduced by post-

randomization confounders cannot be easily evaluated. Therefore, the choice of which

method to use for analysis (e.g., traditional regression versus more advanced g methods)

and which variables to adjust for cannot easily be determined.[28]

Graphical models provide potential solutions to address the complexity of modeling

causal relations,[24, 28, 31] such as identifying the covariate adjustment sets.[32, 33, 34]

Our work will evaluate and develop methods relating to these modern causal inference
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methodologies (Aim 1 & 2).

Bayesian networks are able to model the complex casual relations relating to precon-

ception low-dose aspirin and pregnancy outcomes.

While numerous variable selection algorithms exist,[35] such as step-wise regression,

the majority of them do not incorporate causal thinking, which could potentially select

a covariate that introduce bias (e.g., collider).[32, 36, 37] Developed and widely applied

in machine learning and bioinformatics, Bayesian networks are often used to construct a

complex system (e.g. medical diagnostic system).[38, 39, 40] As a quantitative represen-

tation of the causal diagram, Bayesian networks are a multivariate probabilistic graphical

model that can also be used to model and identify causal relations.[41] Unfortunately,

in population health science, few has used the broader framework offered by Bayesian

networks—causal discovery (the process whereby data are used to uncover potential

causal structures with minimal background knowledge).[42, 43] Further, since these ca-

sual discovery algorithms are developed and in bioinformatic data (e.g., normalized gene

expressions),[39, 42, 43] their performance are unknown in selecting covariate adjustment

sets in realistic epidemiologic setting, which contains various types of data (e.g. contin-

uous and categorial) with small to moderate effect sizes. Evaluating the performance of

Bayesian networks would inform our modelling the complex causal relationship among

low-dose aspirin, pregnancy outcomes and factors relating to non-adherence in the EA-

GeR trial. Our Aim 1 will set a foundation for using causal discovery algorithms to select

an optimal covariate adjustment set for treatment effect estimation in RCT and observa-

tional studies.

Doubly robust estimators are robust to the bias introduced by statistical model mis-

specifications.
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After identifying a casual diagram, investigators can use methods evaluated in our

Aim 1 to estimate the treatment effect of interest. Take Figure 1 as an example to estimate

the per-protocol effect [P (Y | Z,A = 1)], IPW requires the estimates from the exposure

model [i.e., P (Z | C,A = 1)], and g-computation requires the estimates from the out-

come model [i.e., P (Y | Z,C,A = 1)].[24, 29, 31] Specifying the exposure or the outcome

model requires knowledge of which variables to be included in the model and what type

of the statistical model to be used.[44, 45] Notably, parametric regressions are often used

to model the exposure and outcome, which require more statistical assumptions, such

as normality.[46] Violating those assumptions results in mis-specifying statistical models,

and further introduces bias in treatment effect estimations. Alternatively, machine learn-

ing methods are becoming population for estimating the exposure and outcome models

because they require few parametric assumptions. However, recent theoretical and em-

pirical studies suggest that estimating treatment effects with machine learning methods

should be accompanied by doubly robust estimators.[46, 47, 48, 49, 50] Doubly robust

estimators combine the estimates from both exposure and outcome models.[51, 52] As a

result, as long as one of the exposure or the outcome model is correctly specified, the dou-

bly robust estimators are able to yield consistent treatment effect estimations, providing a

“second” chance for model specifications (i.e., the doubly robust property).[47, 51, 52, 53]

As a doubly robust estimator, augmented inverse probability weighting (AIPW)[51]

has a number of implementations in different programming languages,[54, 55, 56] which

are often estimated by parametric models (e.g. linear/logistic regressions). Unfortu-

nately, only a handful of the programs implementing AIPW enable use of machine learn-

ing methods and few of them can be tailored for RCTs. Our Aim 2 will fill this gap by

developing a state-of-the-science R package. Not only will this package will equip us to
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estimate the adherence adjusted effects of low-dose aspirin on pregnancy outcome, but

also will allow epidemiologists to investigate the causal effects of other exposures to im-

prove adverse pregnancy outcomes in both observational studies and RCTs.

Models adjusting for adherence reveal the biological effect of low-dose aspirin on

pregnancy outcomes.

Because of non-adherence, the biological effect of preconception low-dose aspirin is

underestimated by the intention-to-treat effect reported in the EAGeR.[17, 25, 27] Previ-

ous publications of EAGeR found that preconception low-dose aspirin increases of preg-

nancy rate;[12] and further, conception also led to a 10% decrease in adherence among

EAGeR participants. Based on the drop of adherence rate after conception, we hypothe-

size that low-dose aspirin could increase pregnancy rate after adjusting for non-adherence

and post-randomization confounders. With the methods and tools developed in Aim 1 &

2, our Aim 3 will determine the time-fixed effects of preconception low-dose aspirin on

pregnancy in the EAGeR trial.[15]

1.3 Overall Impact

Successful completion of this work will 1) yield better understanding of the graphi-

cal models (e.g. Bayesian networks) in selecting covariate adjustment set for estimating

the causal effects relating to adverse pregnancy outcomes; 2) provide a modern statistical

program (the AIPW package) for effect estimations in both observational studies and ran-

domized trials in reproductive epidemiology; and 3) reveal the complex causal relation-

ships among low-dose aspirin, pregnancy outcomes and factor relating to non-adherence

by using graphical models and doubly robust programs. These will further serve as a
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more informed framework for using modern causal inference methods to improve popu-

lational reproductive health.

1.4 Innovation

Existing research on aspirin and pregnancy outcomes has been dominated by stud-

ies that report the intention-to-treat effect only with parametric models (e.g., logistic

regression),[6, 7, 8, 9, 10, 57, 12, 13, 16] which limits the understanding of the biological

effects of aspirin on pregnancy outcomes. Although intention-to-treat effect has been a

gold standard for clinical trials,[16] it underestimates the biological effect because of non-

adherence.[18, 19] In addition, the statistical assumptions of parametric models may lead

to model mis-specifications, introducing bias for the treatment effect estimations.[46, 49]

Our proposed work is highly innovative:

1. Rarely applied in population health setting, Bayesian networks facilitate identifying

the causal relationships among low-dose aspirin, pregnancy outcomes and factors re-

lating to non-adherence, providing in-depth insights on the complex causal structures

for per-protocol estimations.[41]

2. Tailored for randomized trials, the AIPW package will be flexible and robust to model

mis-specifications, assuring that the per-protocol effect are appropriately estimated

with adjustment of non-adherence and post-randomization confounders.[52, 53, 58]

3. Machine learning methods are data-adaptive so as to avoid the model mis-specifications

introduced by the assumptions from parametric models.[46, 48, 49] Machine learning

methods have been suggested to apply with doubly robust estimators. The AIPW

package will be implemented with cross-fitting, statistical technique to address the
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issues in estimating treatment effects with machine learning methods (e.g. high bias,

high mean square error).[46, 47, 48, 49, 50]
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2.0 Challenges in automating confounder selection with causal discovery methods

2.1 Introduction

Directed acyclic graphs (DAGs) have now become a cornerstone of many epidemio-

logic analyses. Epidemiologists often use DAGs to conceptualize the causal relationships

relevant to the exposure-outcome relation of interest.[59, 60] When interest lies in esti-

mating the effect of an exposure on an outcome, DAGs, along with a set of rules for

reading DAGs (such as d-separation), can be used to identify covariates that should be

included or excluded from the adjustment set to minimize bias in the exposure-outcome

effect estimate.[61, 59, 32, 33, 34] General recommendations are to adjust for pre-treatment

covariates,[33, 34, 62] except when there is a strong belief that such adjustment would in-

troduce or amplify bias (e.g., M-bias, or Z-bias).[33, 34, 36, 37, 63, 64]

However, correct identification of a confounder set that eliminates bias requires cor-

rect specification of the underlying DAG. Given that true causal relations underlying the

data are rarely (if ever) known, it is not typically possible to identify a single set of co-

variates that suffice to yield unbiased causal effect estimates. In most settings, domain-

specific knowledge may be compatible with a wide array of causal diagrams, leading to

completely different confounder adjustment sets. Furthermore, even if the true causal re-

lations were known, uncertainty may arise when choosing between a covariate set that is

minimally sufficient [61, 59, 33, 34] and a set that includes covariates that might improve

statistical efficiency. [62, 65]

Though not commonly employed in epidemiology, DAGs can be used in other ways.

Instead of relying on domain-specific knowledge to generate a DAG, and using d-separation

13



to identify an adjustment set for causal inference,[61, 59, 32, 33, 34] one may attempt to use

data to generate a DAG in a process of causal discovery.[66, 67, 61, 39, 68, 43] With minimal

background knowledge, causal discovery proceeds by testing the graphical properties of

input data and trying to recover causal relations of the variables in the dataset. [61, 39, 43]

In principle, use of causal discovery algorithms can yield insights on the causal relations

underlying a given dataset. These insights can then be used for several purposes, in-

cluding a preliminary selection of covariates to adjust for confounding in the process of

causal inference.[69, 70] Indeed, such procedures have already been employed in other

disciplines where domain-specific knowledge is limited.[71]

In this paper, we illustrate the process of causal discovery, and evaluate the perfor-

mance of causal discovery algorithms in correctly selecting covariates adjustment sets.

Additionally, since average treatment effects (ATEs) are often of interest to epidemiolo-

gists, we examine the bias in estimating ATEs using plasmode simulations constructed

to resemble realistic epidemiologic scenarios. We evaluate the performance of causal dis-

covery algorithms in conjunction with a range of estimators for the ATE.

2.2 Methods

2.2.1 Data Generating Mechanisms

We simulated data to explore the performance of different causal discovery algorithms

using data from the Effects of Aspirin in Gestation and Reproduction (EAGeR) trial.[15]

The data generating mechanism in Figure 2 was used to create scenarios with M- and

Butterfly-biases, where adjusting for the collider alone (i.e., C1 in Figure 2) would intro-
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duce bias.[61, 36, 37, 64] M-bias and butterfly-bias were selected because they entail par-

ticularly difficult challenges for causal discovery algorithms, and have been implicated in

realistic epidemiologic settings.[72, 36]

The EAGeR study is a multicenter randomized trial of the effect of daily low-dose

aspirin on pregnancy outcomes in 1,228 women aged 18-40 years with one or two prior

pregnancy loss, who were attempting to become pregnant. We resampled 1, 228 observa-

tions from the EAGeR baseline data, consisting of the randomized treatment assignment

indicator (Z), number of prior pregnancy losses (C2), and high sensitivity C reactive pro-

tein (hsCRP, denoted as C3). We also resampled a set of discrete, continuous, and ordinal

covariates denoted B, which are meant to represent variables in the dataset that are in-

directly associated with the causal system under study through an unmeasured variable

U . These variables B were included as correlated nuisance variables that are not of any

relevance to the effect of interest, but that may influence the performance of causal dis-

covery algorithms. Characteristics of these variables are shown in Table 1. Details about

the EAGeR trial are available elsewhere.[12, 14, 15]

With these resampled variables, we use the following three logistic regression mod-

els (Equation 1-3) to simulate a dichotomous exposure A (e.g., adherence to aspirin in

EAGeR), outcome Y (e.g., live birth) and collider/confounder C1, with marginal proba-

bilities of 0.25, 0.5, 0.5, respectively.[73] The parameters of these logistic regression models

were chosen to yield a DAG as displayed in Figure 2.
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Table 1: Baseline covariates from the EAGeR trial used for simulations

Variables Values n (%) / mean (SD)

C2: Num. previous pregnancy losses (%) 1 825 (67.2)

2 403 (32.8)

C3: hsCRP level (%) Low: < 2 mg/L 785 (63.9)

Medium: [2, 10) mg/L 377 (30.7)

High: ≥ 10 mg/L 66 ( 5.4)

Z: Randomized treatment assignment (%) Low-dose Aspirin=1 615 (50.1)

Placebo=0 613 (49.9)

B:

Eligibility stratum (%) New 679 (55.3)

Alcohol use in the past year (%) Never 820 (66.8)

Sometimes 382 (31.1)

Often 26 ( 2.1)

Smoking in the past year (%) Yes 152 (12.4)

Employed (%) Yes 920 (74.9)

Age (mean (SD)) 28.74 (4.80)

Months of conception attempts prior to

randomization (mean (SD))

4.03 (3.45)

BMI (mean (SD)) 26.32 (6.57)

Mean arterial pressure (mean (SD)) 85.54 (9.55)

logit[P (C1 = 1 | C2, C3)] = βC10 + βC1C2C2 + βC1C3C3 (1)

logit[P (A = 1 | Z,C1, C2)] = I(Z = 1)(βA0 + βAZZ + βAC1C1 + βAC2C2) (2)

logit[P (Y = 1 | A,C1, C3)] = βY0 + βY AA+ βY C1C1 + βY C3C3 (3)
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Figure 2: A causal diagram for butterfly (M) bias with an instrumental variable

A Y
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C3C2 U
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0.57, 1, 1.75
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0.5, 2

0.5, 2

0.5, 2
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0.8*

• Numbers on the edges represent the ORs between variables
• P (A = 1 | Z = 1, C1, C2) ≥ 0 and P (A = 1 | Z = 0, C1, C2) = 0

where β = log(OddsRatio), βAZ = log(0.8) .

This data generating mechanism yields a dataset with one instrument (Z), one expo-

sure (A), one outcome (Y ), three covariates for the M-/Butterfly- structure (C1 . . . C3) and

eight correlated nuisance variables (B). To explore the impact of different strength and

directions of the associations, we set the odds ratios (ORs) of {0.5, 2} for the M structure of

the DAG (i.e., {C2 → A,C2 → C1, C3 → C1, C3 → Y }), {0.5, 1, 2} for the exposure-collider-

outcome relations (i.e., {C1 → A,C1 → Y }), and {0.57, 1, 1.75} for the exposure-outcome

relation (i.e., {A → Y }). These associations are shown in Figure 2. The combinations of

associations among the simulated variables resulted in a total of 42 · 32 · 3 = 432 data gen-

erating mechanisms that could be classified into four types of structures: 192 butterfly-

structure DAGs; 48 M-structure DAGs; 96 butterfly-structure DAGs without an arrow

between C1 and Y (or left-triangle structure), and 96 butterfly-structure DAGs without an
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arrow between C1 and A (or right-triangle structure). For each scenario, we analyzed a

total of 2,000 Monte Carlo (MC) datasets, each with a sample size of 1,228 observations,

yielding a total of 864,000 datasets explored.

2.2.2 Statistical Analysis Plan

2.2.2.1 Average treatment effect

We used the data generated above to estimate the average treatment effect of A on Y .

The average treatment effect (ATE) is defined as the average outcome if all observations

were exposed versus unexposed. This effect can be quantified on the risk difference scale

as:

ATERD = E(Y 1 = 1)− E(Y 0 = 1)

where Y 1 and Y 0 are the potential outcomes that would be observed if the exposure (A)

was set to 1 and 0, respectively.

Under exchangeability, consistency, no interference, and positivity, the average of

potential outcomes can be quantified as E(Y a) = E[E(Y |A = a, C)], which is the es-

timated mean of the observed outcomes among those with A = a, averaged over the

observed distribution of C. This estimand is often quantified with inverse probability

weighting (IPW), g-computation (sometimes referred to as the parametric g formula),

augmented inverse probability weighting (AIPW), or targeted maximum likelihood es-

timation (TMLE).[74, 75, 76, 77] Details about these estimators are provided in the Ap-

pendix A.1.
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2.2.2.2 Manual confounder adjustment set selection

Under the causal diagram depicted in Figure 2, several different adjustment sets can

yield an unconfounded estimator of the ATE.[61, 59, 37] These are confounder adjustment

sets containing C1 with C2 and/or C3 for the butterfly-structure, any sets other than C1

only for the M-structure, sets containing C3 or {C1, C2} for left-triangle-structure, and sets

containing C2 or {C1, C3} for right-triangle-structure DAGs (Table 2).

Table 2: Confounder adjustment sets that block the backdoor paths from A to Y

DAG type Num. DAGs Admissible adjustment sets1

Butterfly 192 {C1, C2}, {C1, C3}, {C1, C2, C3}

M 48 Any2 except {C1}

Left-triangle 96 {C3} , {C2, C3}, {C1, C2}, {C1, C3}, {C1, C2, C3}

Right-triangle 96 {C2} , {C2, C3}, {C1, C2}, {C1, C3}, {C1, C2, C3}
1 Adjustment sets with nuisance variables B are not shown in this table.
2 Empty adjustment set {Ø} / unadjusted estimate is admissible.
Bold sets are common admissible adjustment for all 432 DAGs.

Based on our knowledge of the true data generating mechanism, we manually choose

four possible confounder adjustment scenarios to evaluate the absolute bias and mean

squared error (MSE) of each estimator under different settings. These four scenarios are:

adjusting for direct causes of the exposure and the outcome, which are {C1, C2, C3} in

butterfly, left-triangle, right-triangle DAGs, and {C2, C3} for M-structured DAGs (i.e., all

causes with collider scenario in Table 3); adjusting for nuisance variables B in addition

to the all cause scenario (i.e., all covariates scenario in Table 3); adjusting for the collider

C1 only, which would introduce bias in the M-structure data generating mechanism or

in the structures that C1 does not fully block the backdoor path (e.g., in the butterfly-

structure);[32, 36, 37, 64] adjusting for an empty set of covariates, which would provide
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unadjusted estimates.

Table 3: Covariate adjustment scenarios for estimating average treatment effects in the

M-/butterfly-structure causal diagram

Scenarios Adjustment Set

Manual Covariate Selection

All Causes (with Collider)X {C1,
1C2, C3}

All CovariatesX {C1, C2, C3, B}

Collider Only {C1}

Empty Set / Unadjusted {Ø}

Automated Covariate Selection by Causal Discovery2

All Causes3 Direct cause(s) of A and/or Y
1 C1 was not adjusted for in M-structured DAGs.
2 Default and tuned MMHC algorithms (conditional independence test = mu-
tual information with α = 0.05, 0.1) with minimal prior knowledge for restric-
tions (i.e., forced edges: Z → A → Y and forbidden edges: covariates point-
ing to Z or Z pointing to covariates and Y ). Instrumental variable Z was not
adjusted.
3 Accuracy of correct covariate adjustment set is evaluated with causes of A
and/ Y
X Adjustment set that is guaranteed to block the backdoor path from A to Y
for all 432 DAGs

2.2.2.3 Automated confounder adjustment set selection with causal discovery

Defining a DAG with domain-specific knowledge is equivalent to assuming that the

causal structure represents the mechanism that generated the data. Causal discovery is a

data-driven approach that tries to recover the causal structure by identifying the DAG(s)

that ”fit” the data (e.g., detecting dependencies among variables). [66, 67, 61, 39, 68, 43]

Here, we use the Max-Min Hill Climbing (MMHC) algorithm in the simulated data above

in an attempt to identify the relevant confounder adjustment sets automatically.[78] The

MMHC has been shown to perform well in settings similar to epidemiologic data,[70, 79]
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and is relatively straightforward to use via bnlearn R package.[80] A brief introduction to

the MMHC causal discovery algorithm is provided in Appendix A.2.

We explore the performance of the MMHC algorithm with two parameter settings

(default and tuned). The default setting involves conditional independence tests with a

significance level of α = 0.05 to construct the skeleton of the DAG, and a score function

defined via the Bayesian Information Criterion (BIC). The tuned setting is identical to

the default setting, with the exception of setting α to 0.1 for a denser graph.[60] For the

purpose of confounder selection, several preprocessing steps before fitting the MMHC

algorithm should be used. These include first categorizing continuous data into quintiles,

applying restrictions to the DAG based on reasonable background knowledge (e.g., forc-

ing edges Z → A → Y , and forbidding other edges from pointing into the instrumental

variable Z and from pointing into the candidate confounders from the exposure and the

outcome).

In this automated confounder selection process, we use the direct causes of exposure

and outcome as the confounder adjustment set (all causes scenario in Table 3). These

causes are identified in the DAGs generated by the MMHC algorithms. The original data

were used for ATE estimation, instead of the discretized data that were used to fit the

MMHC algorithms.

2.2.3 Performance Evaluation

To evaluate the accuracy of confounder selection, we define the correct confounder

adjustment set as the direct causes of exposure and outcome (all cause scenario in Table

3) that blocks any backdoor paths. With this definition, accuracy is computed as the

number of correctly selected confounder adjustment sets divided by the total number of
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scenarios. For more details about the accuracy, we further calculate the probability of the

MMHC algorithms in selecting C1, C2, C3, and confounder adjustment sets using their

combinations (i.e.,
(
3
0

)
+
(
3
1

)
+
(
3
2

)
+
(
3
3

)
= 8 sets), respectively. Similarly, this probability

is defined as the number of selected covariate/confounder adjustment set divided by the

number of DAGs * 2000 MC.

We also evaluate the impact of different confounder adjustment scenarios in Table 3

on the performance of ATE estimation using g-computation, IPW, AIPW and TMLE. The

correctly specified parametric regression model for the data generating mechanisms was

used to generate 1 million observations to obtain the estimates of the true parameter value

(ATEtrue). For each data generating mechanism of the total 432 DAGs, absolute bias and

mean squared error (MSE) are computed, defined asAbs.Bias = E(|ÂTE−ATEtrue|) and

MSE = E[(ÂTE − ATEtrue)
2], respectively. To simplify the analyses, if the MMHC al-

gorithms yielded an empty confounder adjustment set, unadjusted estimates (i.e., P̂ (Y =

1|A)) were used instead of g-computation, IPW, AIPW and TMLE. Among all 432 DAGs,

median with 25% and 75% quartiles (Q1, Q3) of the absolute bias and MSE are reported,

stratified by confounder selection scenarios. To compare the median (Q1,Q3) of absolute

bias across scenarios, we compute a relative absolute bias using the all cause scenario

from manual selection as the reference, defined as the median (Q1,Q3) of each scenario

divided by the median (Q1,Q3) of the manually selected all cause setting. Distributions

of the absolute bias and MSE for the 432 DAGs are visualized in the Appendix A.5, with

the strata of manual and automated selections, types of DAG and the four estimators.

Simulations, ATE estimation, and causal discovery were conducted in R (3.6.0) on

a Linux-based computing cluster supported by the University of Pittsburgh Center for

Research Computing, and analyses of the performance were conducted in R (3.6.2) on a
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local Apple Computer (Catalina 10.15.7).[81]

2.3 Results

2.3.1 Accuracy of causal discovery algorithms in confounder selection

Overall, both the default and the tuned MMHC algorithms yielded low accuracy in

selecting appropriate confounder adjustment sets. Figure 3 shows that the accuracy of

MMHC is highest in M-structure DAGs, followed by left-triangle, right-triangle and but-

terfly DAGs. These results are also provided in tabular format in Appendix A.3. The

difference in accuracy between the four types of DAGs is related to the number of ad-

missible confounder adjustment options and the probability of C1, C2 and C3 being se-

lected. For example, the butterfly structures have only three admissible adjustment sets

that block all backdoor paths, whereas the left- or right-triangle structures each have five

admissible adjustment sets that block all backdoor paths.

Figure 4 shows the probability that a confounder is selected by MMHC. In the butter-

fly DAG, the probability of selecting C1 is much higher than C2 and C3, resulting in an

insufficient adjustment set (also see Figure 3: 40% in selecting C1 only). Besides that, C3 is

more likely to be selected than C2 in all types of DAG. This explains the higher accuracy

of the MMHC algorithms in left-triangle DAGs than in right-triangle DAGs, because any

adjustment sets containing C3 are admissible for left-triangle DAGs while sets containing

C2 for are admissible right-triangle DAGs. The nuance variables B were almost never

selected by the MMHC algorithms.

The tuned MMHC performs slightly better than the default one (overall: 54.8% vs
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52.8% in Figure 11), since the tuned MMHC is more likely to select confounder adjustment

sets containing C2 and less likely to yield an empty adjustment set (Figure 11 & 12). As

such, tuning MMHC only improves the accuracy in right-triangle (42.2% vs. 38.7%) and

butterfly DAGs (37.9% vs 35.1%).
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Figure 3: Accuracy of the tuned MMHC algorithm in selecting correct confounder adjust-

ment set
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Figure 4: Probability of covariates selected by the tuned MMHC, stratified by DAG type
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2.3.2 Absolute bias and MSE of ATE estimation using manual and automated adjust-

ment set selection

Table 4 presents medians and interquartiles of absolute bias and MSE in estimating

ATE. With manual confounder selection, the median absolute biases are small and simi-

lar in all of our scenarios (median range= 0.9− 5.8 · 10−4). Automated confounder selec-

tion using either MMHC algorithm yields slightly higher bias than all manual selection

scenarios except the unadjusted estimates. The tuned MMHC algorithm has better per-

formance than the default, as expected. Median and interquartiles of MSE are similar

among all scenarios regardless of confounder adjustment scenarios.

Figure 13-14 in the Appendix A.5 show the distributions of the absolute bias and

MSE among 432 DAGs. Within a specific confounder selection scenario and one type of

DAG, g-computation, IPW, AIPW and TMLE have similar distributions of absolute bias

(Figure 13). In the manual confounder selection settings, there is no visual difference in

the absolute bias distributions between scenarios adjusting for all causes and for all co-

variates. Interestingly, although an empty adjustment set is admissible for an M-structure

DAG, the distributions of absolute bias for unadjusted estimates are similar to those ad-

justing for the collider only. This is likely due to the negligible impact of collider bias

in a range of scenarios.[32] Compared to manual selection, automated selection generally

yields higher absolute biases only in the butterfly-structure DAG but no visible difference

in other types of DAGs. In Figure 14, g-computation has lower MSE when adjusting for

all causes or covariates in the manual selection setting, compared to all other scenarios or

estimators.
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Table 4: Absolute bias and mean squared error (MSE) of average treatment effect from

different confounder adjustment sets by manual and automated selection methods

Abs. Bias (·10−4) Relative Abs. Bias MSE (·10−4)

CovSet Median (Q1, Q3) Median (Q1, Q3) Median (Q1, Q3)

Manual Confounder Selection

All Causes (with Collider)X 0.90 (0.44, 1.51) (Reference) 1.09 (1.06, 1.12)

All CovariatesX 0.91 (0.42, 1.49) 1.01 (0.97, 0.99) 1.11 (1.08, 1.14)

Collider Only 1.23 (0.63, 2.24) 1.37 (1.43, 1.49) 1.10 (1.07, 1.13)

Empty Set / Unadjusted 5.82 (2.69, 17.39) 6.48 (6.17, 11.53) 1.16 (1.11, 1.40)

Automated Confounder Selection: MMHC default

All Causes 1.71 (0.78, 3.11) 1.90 (1.80, 2.06) 1.11 (1.08, 1.15)

Automated Confounder Selection: MMHC tuned

All Causes 1.58 (0.74, 2.83) 1.76 (1.69, 1.87) 1.11 (1.08, 1.15)
X Admissible adjustment set that blocks the backdoor path from A to Y for all 432 DAGs
1 Median (Q1, Q3) of absolute bias relative to adjusting for all causes with manual confounder selection
2 Accuracy of correct confounder adjustment set is evaluated with causes of A and/or Y

2.4 Discussion

We evaluated the performance of causal discovery algorithms in identifying relevant

confounders using plasmode simulations with data generated from an actual epidemi-

ologic study. Our results suggest current causal discovery algorithms underperform in

selecting confounder adjustment sets using the data with small to moderate effect sizes

and sample sizes. While the data generating mechanisms we explored were complex,

they arguably align with many scenarios of epidemiologic interest.[72, 36] As a result, we
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found that using automated confounder selection methods as a step in the process of esti-

mating causal effects would yield higher bias than a more traditional approach involving

manual confounder selection with the knowledge of true data generating mechanisms.

Causal discovery algorithms have been used and evaluated in other fields.[71, 78, 82,

70, 83] This prior work has shown that causal discovery algorithms hold some promise

in correctly identifying underlying DAGs with minimal background knowledge.[71, 83]

However, thus far, most evaluations have relied on data that are highly dissimilar to

those encountered in epidemiology. This includes datasets simulated to resemble gene

expression data, where all relevant variables follow a standard normal distribution, or

where variables are all discrete, and in settings where effect sizes are large.[78, 84, 85, 86,

87, 88]

Unfortunately, most epidemiologic studies rely on data that consist of a mix of con-

tinuous, discrete, and ordinal variables, potentially with small effect sizes, and small to

moderate sample sizes. These complications have implications for how well causal dis-

covery algorithms can perform, as we have shown. For example, mixing ordinal and

discrete variables can influence average effect sizes. In our simulations, despite having

the same conditional associations, the marginal effect size of C3 is larger than C2, because

C3 (hsCRP) has three levels while C2 (number of prior pregnancy losses) has only two. As

such, C3 is more likely to be selected than C2 by a causal discovery algorithm, explaining

in part the low accuracy of the MMHC algorithms.

The MMHC algorithm has shown good performance in simpler graphical structures

with high-dimensional data.[70, 79] For example, random graphs, a simple graph struc-

ture whose edges are generated based on a probability distribution,[89] are often used

for evaluating causal discovery algorithms.[90, 88] However, the underlying causal struc-
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tures of epidemiologic data are more complex than those evaluated DAGs.[60] As such,

our M-/Butterfly-structure DAG presents a complex but realistic challenge for these methods.[72,

36] Although we had incorporated with a reasonable amount of background knowledge

into the MMHC algorithms (e.g., forcing the directions), we still observed a low accuracy

of causal discovery methods. Our results imply that the performance would be worse if

the automated confounder selection is purely data-adaptive without imposing any back-

ground knowledge.

In our study, using causal discovery to select confounders yielded higher absolute bias

in ATE estimation than adjusting for all covariates in the dataset. This result is applica-

ble in low-dimensional settings since our simulated dataset only contained 11 covariates.

However, in high-dimensional setting, adjusting for all covariates may not be feasible for

several reasons, including the curse of dimensionality,[91, 92] or the inclusion of vari-

ables that introduce or amplify bias.[63, 93] Hence, causal discovery may be useful for

pre-screening confounders in high-dimensional data.[62] Notably, before using these al-

gorithms, investigators may need to preprocess the data (e.g., discretization),[80, 87] use

sophisticated tuning methods (e.g., imposing structural priors),[66, 94] and consider the

assumptions and limitations of different causal discovery methods (e.g., parametric as-

sumptions used for hypothesis testing in Appendix A.2, causal faithfulness condition,

inability to distinguish DAGs in the same Markov equivalence class).[95, 96]

In conclusion, while causal discovery algorithms hold some promise, epidemiologists

should be aware of their limitations in accurately selecting sufficient confounder adjust-

ment sets. Given the uncertainty of true data generating mechanisms in observational

studies, use of sophisticated causal discovery based variable selection algorithms should

be accompanied with an appropriate degree of caution. Future development of causal
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discovery methods is needed for epidemiologic studies, such as better handling a mixed

type of data, incorporating statistical models that perform well with small effect sizes,

and adapting for complex causal structures.
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3.0 AIPW: An R Package for Augmented Inverse Probability Weighted Estimation of

Average Causal Effects

3.1 Introduction

Machine learning methods are increasingly being used to estimate cause-effect rela-

tions. Numerous examples exist, including using random forests, gradient boosting, or

a combination of learners (e.g., stacking) for propensity score weighting, stratification, or

matching, or via marginal standardization with a regression based estimator.[97, 98, 99,

100, 101, 53] However, there is a growing body of theoretical and simulation evidence

suggesting that, without some form of statistical bias correction, using machine learning

methods to estimate causal effects can result in high bias, high mean squared error (MSE),

and less than nominal confidence interval (CI) coverage. [46, 47, 102, 49, 50]

In contrast, doubly robust estimators possess a statistical bias correction property,[103]

and are thus less susceptible to problems with bias, MSE, and CI coverage when ma-

chine learning methods are used. Hence, when estimating causal effects with machine

learning methods, doubly robust estimators, such as targeted maximum likelihood es-

timation (TMLE) or augmented inverse probability weighting (AIPW), should be used.

[49, 104, 105, 102, 50] Several software programs that implement doubly robust estima-

tors are currently available in a number of different programming languages, including

SAS,[54] Stata,[55] R,[75, 106, 56, 107, 108] python,[109] and MATLAB.[110] However,

only a handful of them enable use of machine learning methods.[75, 106, 107] Addition-

ally, most share important limitations known to either affect the performance of dou-

bly robust estimation, or lower their relevance to epidemiologists. Most importantly,
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these limitations include the inability to implement sample splitting or cross-fitting, and

the estimation of effects on a single scale of measurement (e.g., additive effects). To

address these limitations, we developed the AIPW package, which implements aug-

mented inverse probability weighting [51] for a binary exposure in the R programming

environment.[81] Compared to other packages for implementing doubly robust estima-

tors via machine learning methods, the AIPW package:

1. allows different covariate sets to be specified for the exposure and the outcome mod-

els, which may be important when analyzing data from randomized trials;

2. obtains appropriate standard errors for estimates of the average treatment effect by

implementing k-fold cross-fitting;

3. relies on a user-friendly parallel processing framework for computationally heavy

tasks;

4. enables estimation directly from the fitted objects from existing doubly robust imple-

mentations (e.g., tmle[75], or tmle3[106]) in the R programming language.

In this paper, we illustrate the AIPW estimator, and how to use it in our package. Ad-

ditionally, we highlight the differences between various software implementations of

these estimators in the R programming language, including AIPW, CausalGAM,[56]

npcausal,[107] tmle [75] and tmle3.[106]
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3.2 Methods

3.2.1 Motivation and data generating mechanisms

Here we outline the datasets motivating our illustration of augmented inverse prob-

ability weighting, and the use of the AIPW package. We rely on the Effects of Aspirin in

Gestation and Reproduction (EAGeR) study, a multicenter randomized trial of the effect

of daily low-dose aspirin on pregnancy outcomes in women at high risk of miscarriage.

The trial recruited 1,228 women aged 18-40 years attempting to become pregnant. Details

on the EAGeR trial and data are described elsewhere.[12, 13, 14, 15]

We simulate two different datasets from EAGeR to illustrate the use of the AIPW

package. We use a simulation approach because: (i) the actual data are not publicly avail-

able; and (ii) true exposure effects are known in simulation settings. Data are generated

based on the causal relations depicted in Figure 5.

Figure 5: Causal diagrams for a randomized controlled trial and an observational study

Wg A Y

WQ

A Y

W

(a) Randomized Controlled Trial (b) Observational Study

U U

Figure 5a illustrates a data generating mechanism for a randomized trial in which the

treatment A is assigned conditionally based on a measured covariate Wg. For example,
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in a study designed to explore the impact of aspirin on pregnancy outcomes in women

with previous pregnancy losses, one may decide to randomize to aspirin versus placebo

1:1 for women with only one prior pregnancy loss, but elect to randomize 3:1 for women

with more than one prior pregnancy loss. Similarly, Figure 5b illustrates a simple causal

diagram for an observational study of the relation between an exposure A (e.g., whether

a given woman took aspirin during the study’s follow-up), an outcome of interest Y (e.g.,

an indicator of whether live birth occurred during follow-up), and a set of confounders

of the exposure-outcome relation W .

To construct datasets governed by the data generating mechanisms in Figure 5, we

sampled (with replacement) baseline covariates from the EAGeR data. For the simulated

RCT (N=1,228, Figure 5a), A denotes the binary treatment assignment, Y is the binary

outcome, Wg represents the covariate that affects the treatment assignment, which in our

case was deemed to be the eligibility stratum indicator, sampled with replacement from

the EAGeR trial. Similarly, WQ is a set of baseline prognostic covariates, which were also

sampled with replacement from the EAGeR trial, and included the number of prior preg-

nancy losses, age, the months of conception attempts prior to randomization, BMI and

mean arterial blood pressure (denoted as W1...5, respectively). Our simulated treatment

A was generated such that P (A = 1|Wg = 1) = 0.75 and P (A = 1|Wg = 0) = 0.25. The

outcome Y was simulated from a logistic regression model defined as:

logit[P (Y = 1 | A,WQ)] = 2.20 + 0.56A+ 0.05W1 − 0.01W2 − 0.08W3 − 0.03W4 − 0.01W5

The above model defines the treatment effect via a conditional OR of 1.75. In our sim-

ulated setting, this yielded true marginal effects of 0.13, 1.29 and 1.71 on the risk differ-

ence, risk ratio, and odds ratio scales, respectively (Table 5, row 1). We used the correctly
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specified parametric regression model in a sample of 1 million observations to obtain the

estimate of the true effects to serve as our parameters of the true causal effect parameter

values.

For the simulated observational study governed by the data generating mechanism

in Figure 5b, A, Y and W denote a binary exposure, a binary outcome, and a set of bi-

nary, categorical, and continuous confounders (i.e., the aforementioned Wg and W1...5),

respectively. The propensity score model used to generate A was defined as:

logit[P (A = 1 | W )] = −0.29 + 0.56Wg − 0.23W1 + 0.01W2 + 0.02W3 − 0.02W4 + 0.01W5

Similarly, the outcome Y was simulated from an outcome model defined as:

logit[P (Y = 1 | A,W )] = 2.03+0.56A−0.37Wg+0.30W1−0.01W2−0.08W3−0.05W4−0.01W5

such that the true conditional OR for the exposure-outcome relation was 1.75. This yielded

true marginal effects of 0.13, 1.36, and 1.70 on the risk difference, risk ratio, and odds ratio

scales, respectively, which were again obtained using the approach described above.

Realizations of both of these datasets are included in the AIPW package, and can be

obtained using the data(eager_sim_rct) and data(eager_sim_obs) function.

3.2.2 Basic implementation of AIPW

The AIPW package was developed to estimate treatment effects of a binary exposure.

Such effects include average treatment effects (ATE) commonly targeted in observational

studies, which include intention-to-treat (ITT) effects when a randomization indicator is

available. These effects can be defined on the risk difference (RD), risk ratio (RR) and
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odds ratio (OR) scales as:[111]

RD = E(Y 1 = 1)− E(Y 0 = 1)

RR =
E(Y 1 = 1)

E(Y 0 = 1)

OR =
E(Y 1 = 1)

1− E(Y 1 = 1)

/
E(Y 0 = 1)

1− E(Y 0 = 1)

where Y 1 and Y 0 denote the potential outcomes that would be observed if the exposure

was set to 1 and 0, respectively.

Under consistency, exchangeability, positivity, and no interference, the average of po-

tential outcomes that would be observed under A = a are identified as the average of

estimated outcomes, that is: E(Y a) = E[E(Y | A = a,W )], which for simplicity we de-

note as ψ(a). Several estimators can be constructed by combining predictions from the

propensity score model with predictions from the outcome model. These predictions can

be obtained from parametric regression, such as logistic regression. However, machine

learning methods can also be used when these predictions are combined via a doubly

robust estimator such as AIPW. This is because double robustness can yield estimators

with low bias and valid standard errors, even when the propensity score and outcome

model estimators have high bias and no generally valid method for obtaining standard

errors.[46, 47, 102, 49, 50]

Under the data generating mechanism depicted in Figure 5a, the propensity score

predictions should be obtained conditional on Wg (i.e., P̂i(A = 1|Wg)), which could be

used for constructing an inverse probability weighting estimator, such as: [74, 112]

ψ̂IPW (a) =
1

n

n∑
i=1

I(Ai = a)

P̂ (A = a | Wg,i)
· Yi (4)

where a ∈ {0, 1} and i represents ith observation. For improved performance, the es-
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timated propensity scores can be truncated, which the AIPW package implements by

default at the 2.5% percentile.[113]

Alternatively, outcome model predictions P̂ (Y = 1 | A,WQ) can be used to construct

a g computation estimator, defined as [114, 74]

ψ̂gComp(a) =
1

n

n∑
i=1

P̂ (Y = 1 | A := a,WQ,i) (5)

where the := symbol denotes that we set each individual’s value forA in the sample to the

argument’s value a. This equation represents the average of predictions from the outcome

model by setting A = a over each confounder level.

When the propensity score model or the outcome model are used alone to estimate

average treatment effects, they must in general be built from correct parametric models.

In contrast, one can use both the propensity score and the outcome models together in an

AIPW estimator as follows:[114, 51, 103, 56, 115]

ψ̂(a)AIPW =
1

n

n∑
i=1

{
I(Ai = a)

P̂ (A = a|Wg,i)
[Yi − P̂ (Y = 1|Ai,WQ,i)] + P̂ (Y = 1|A := t,WQ,i)

}
(6)

A TMLE estimator of the same quantities can also be constructed using alternative techniques.[75,

105]

As with the TMLE estimator, missing outcome data can be accounted for with the

AIPW package if the covariate set W (i.e., both WQ and Wg) enables one to assume out-

comes are missing at random conditional on W (Appendix B.1).[75, 116]

As long as either the outcome or the exposure model is correctly specified, consistent

estimates of the mean potential outcome can be obtained; i.e., the doubly robust prop-

erty of AIPW.[117] Additionally, because of certain statistical properties of doubly ro-

bust estimators,[49] one can use machine learning methods to quantify the exposure and
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the outcome models while minimizing the slow convergence rates (i.e., large MSE) and

overfitting problems that typically characterize use of machine learning methods with

sample-splitting or cross-fitting.[49, 50] Appendix B.2 describes the implementation of

cross-fitting used in the AIPW package, as well as a general description of the relation

between sample splitting and cross-fitting.

Standard errors (SE) for the AIPW on the RD scale can be constructed by taking

the standard deviation of the estimated efficient influence function evaluated at each

observation.[118] Similarly, standard error estimates for the estimated RR and OR can

be constructed using the delta method. All derivations are provided in Appendix B.3.

3.2.3 Package implementation

The AIPW package can easily be used to obtain ATE estimates on the RD, RR, and OR

scales in several different ways. Using the simulated RCT data provided in the package,

Figure 6 provides some example code that could be used to obtain the results presented

in Table 5, row 2.

39



Figure 6: Example code that can be used to implement an augmented inverse probability

weighted estimator via the AIPW package using the simulated RCT data available in the

package.

1 library(AIPW)
2 library(SuperLearner)
3 set.seed(1234)
4 #load simulated dataset (RCT)
5 data(eager_sim_rct)
6 #Specify SuperLearner libraries
7 sl.lib = c("SL.gam","SL.earth","SL.ranger","SL.xgboost")
8 #Create a vector of covariates
9 Cov = c("loss_num","age", "time_try_pregnant","BMI","meanAP")

10 #create a new AIPW object called AIPW_SL
11 AIPW_SL <- AIPW$new(Y = eager_sim_rct$sim_Y,
12 A = eager_sim_rct$sim_Tx,
13 W.g = eager_sim_rct$eligibility,
14 W.Q = subset(eager_sim_rct,select=Cov), #covariates
15 Q.SL.library = sl.lib, #outcome model
16 g.SL.library = sl.lib, #exposure model
17 k_split = 10, #num of folds for cross-fitting
18 verbose=TRUE)
19 #fit the data stored in the AIPW_SL object
20 AIPW_SL$fit()
21 #summarise the results using truncated propensity scores
22 AIPW_SL$summary(g.bound = 0.025)

The AIPW package was developed with the object-oriented programming design via

the R6 class.[119, 120] Similar to TMLE, the AIPW function can employ the Super Learner

stacking algorithm.[121, 122] In the example code in Figure 6, we combine four learners

via stacking, including generalized additive model (GAM in gam package),[123] multi-

variate adaptive regression splines (earth),[124] random forests (ranger)[125] and extreme

gradient boosting (xgboost)[126] to fit the propensity score and outcome models. Addi-

tionally, the AIPW function enables k-fold cross-fitting, which can provide more accurate

standard error estimates when machine learning methods are used.[127, 49] Users must

specify the k split ≥ 2 argument to enable cross-fitting for the AIPW. This AIPW_SL object
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is then fitted with the stored arguments using fit() as depicted in line 20 of Figure 6,

and the results are summarised using the summary() function (line 22). The propensity

score can be truncated using the g.bound argument in summary(): propensity scores lower

than g.bound or higher than 1− g.bound are set to g.bound or 1− g.bound, respectively. For

comparison, results from corresponding software implementations are also provided in

Table 5.

Full details on using the AIPW are available from the Comprehensive R Archive Net-

work at http://CRAN.R-project.org/package=AIPW or our Github repository at

https://github.com/yqzhong7/AIPW. This includes details on a range of scenarios

that may be encountered with data in randomized trials or observational studies, as well

as options in the AIPW package that can be used to tailor analyses. In addition, methods

for providing average treatment effects among the treated (ATT) along with their SE are

described online and in the package help documentation.[128]

3.2.4 Performance evaluation via a simulation study

To evaluate the performance of our AIPW package, and compare it to existing im-

plementations of double-robust estimators, we conducted a simulation study in observa-

tional study data. A sample of n = 200 from the observational data generating mecha-

nism (Figure 5b) is provided with the AIPW package. We use this data generating mech-

anism to evaluate and compare AIPW and other doubly robust implementations in the R

programming language (i.e., CausalGAM, npcausal, tmle, tmle3).[56, 107, 75, 106] Two

thousand Monte Carlo simulations, each with a sample size of 200 observations, were

conducted. Because CausalGAM does not support estimating effects on the multiplica-

tive scale, we only evaluated the performance for the RD scale. Performance was eval-
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uated via estimated bias [E(R̂D) − RDtrue] and MSE [E[(R̂D − RDtrue)
2]] for the point

estimates, as well as mean 95% CI width [E(R̂Dupper − R̂Dlower)] and 95% CI coverage

[P (R̂Dlower < RDtrue < R̂Dupper)] for the asymptotic standard errors.[129] We also pro-

vide information on mean runtime per Monte Carlo run (in seconds; sequentially, without

parallel processing).

To explore the performance of different estimators, five sets of analyses were per-

formed. First, the true outcome and propensity score models (GLMs) were used to esti-

mate the RD in all five packages along with g-computation (via the true outcome model)

and stabilized inverse probability weighting (IPW, via the true propensity score model).

Second, only generalized additive models (GAMs) (gam) were used to estimate the RD

without cross-fitting in each of the five packages implementing doubly robust estimators.

Third, GAMs were used with 10-fold cross-fitting for AIPW, npcausal, tmle and tmle3

packages, the only four packages that enable implementation of cross-fitting. Fourth, we

used the Super Learner to stack gam, earth, ranger and xgboost into one meta-algorithm

for RD estimation in AIPW, npcausal, tmle and tmle3 without cross-fitting.[121, 122, 130,

131] Because CausalGAM only supports GAMs, we could not evaluate this package with

the stacked meta-learner. Lastly, we repeated the latter AIPW and TMLE analyses, but

this time using 10-fold cross-fitting, using the AIPW, npcausal, tmle and tmle3 packages.

Simulations were conducted in R (version 3.6.2) and details about the models used for

estimation (e.g. tuning parameters) are provided in the Github repository at https://

github.com/yqzhong7/AIPW_Simulation/blob/main/AIPW_simulation.md.
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3.3 Results

Table 5 presents the ATE estimates from the four doubly robust packages in the ex-

ample RCT data provided with the package. When estimated via the AIPW package, we

obtained a risk difference of RDAIPW=0.136 (95%CI 0.070, 0.201) for the average treat-

ment effect if all subjects were treated versus untreated. Similarly, the corresponding risk

ratio and odds ratio obtained from the AIPW package were RRAIPW=1.305 (95%CI 1.143,

1.490) and ORAIPW=1.727 (95%CI 1.323, 2.253). Additionally, despite the differences in

implementation and estimation, the other packages yielded estimates that were consis-

tent with those obtained from AIPW. Estimates from all packages were close to the true

estimates.

Performance results from our simulations are shown in Table 6. In general, among

2000 simulated observational datasets, each with a sample size of 200, there was no sub-

stantive difference in the bias and MSE between any of the packages used. As expected,

the bias using GLMs and GAMs were similar, but were generally lower than the bias

using Super Learner. Among packages using GAMs, we observed that the CausalGAM

yielded a bias about twice as the AIPW, npcausal, tmle and tmle3. Among the pack-

ages enabling Super Learner without cross-fitting, bias of the AIPW and tmle were about

twice as npcausal and tmle3. In terms of 95% confidence intervals, coverage was less

than nominal [i.e., P (R̂Dlower < RDtrue < R̂Dupper) < 95%] without cross-fitting except

when correct parametric models used, while the coverage improved to nominal when

cross-fitting was enabled. Notably, cross-fitting in our setting largely improved the per-

formance of the AIPW package, especially using Super Learner—its bias decreased from

-0.009 to -0.002 and CI coverage increased from 93.0% to 95.6%—which are comparable
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to its performance using the true GLMs (Bias = -0.002 and CI Coverage = 94.8%).

Figure 7 shows the pairwise comparisons of the ATE estimates from the simulation

results using GLMs in Table 6. Panels on the diagonal are the distributions of estimates,

and the lower triangular area includes pairwise scatter plots of all estimates. In the scatter

plot panels vertical and horizontal lines both depict the RDtrue = 0.13. Estimates near the

intersection of the true RD lines are less biased from both methods compared in the scatter

plot. Interestingly, the estimates are highly correlated between the singly robust estima-

tors (Pearson’s correlation between g-computation and IPW =0.99) and among doubly

robust estimators (Pearson’s correlations ≥ 0.97), respectively; however, the correlations

are only moderate between singly and doubly robust estimators (Pearson’s correlation

= 0.44). Similarly, Appendix B.4 shows the pairwise comparisons of the ATE estimates

using GAMs and Super Learner in Table 7; all packages also yielded highly correlated

estimates despite the different estimation methods.

3.4 Discussion

In this paper, we presented a new R implementation of the augmented inverse proba-

bility weighted (AIPW) estimator, via the AIPW package. This package provides a flexi-

ble implementation of the AIPW estimator via stacking (e.g., super learner with paramet-

ric and machine learning algorithms). Designed for randomized trials and observational

studies, the AIPW package can provide average causal effect estimates for a binary ex-

posure on the risk difference, risk ratio, and odds ratio scales, as well as support various

features such as cross-fitting, parallel processing, and allowing different covariate sets for

the exposure and the outcome models.

44



For convenience, we summarised the key functionality of the AIPW package and its

comparisons with CausalGAM, npcausal, tmle and tmle3 in Table 7. Comparing the

two packages implementing augmented inverse probability weighting, the AIPW pack-

age is more flexible than the CausalGAM because it supports estimations in multiplica-

tive scales, models using stacking machine learning algorithms via SuperLearner[130] or

sl3[131], and cross-fitting. Compared to tmle and tmle3, the AIPW package holds similar

features, and additionally, it supports using the fitted tmle and tmle3 object as input for

AIPW estimation.

Indeed, while often used in observational data, doubly robust estimators can be im-

portant when analyzing data from randomized trials; in fact, they can be asymptoti-

cally efficient under essentially no assumptions. In such a setting, researchers may often

wish to adjust for covariates to increase the efficiency of the unconditional intention-to-

treat effect.[132, 133, 134, 58] However, when adjusting for covariates, one may inadver-

tently introduce misspecification biases, thus detracting from one of the major benefits

of randomization.[133, 134] Notably, doubly robust estimators can avoid such biases for

randomized trials, because the data generating mechanism for treatment allocations (i.e.,

randomization stratum) is known by investigators.

Adjusting for covariates in an RCT via double robust estimation requires consider-

ing different covariate sets for the propensity score and outcome models. For instance,

covariates that were not used to assign treatment need not generally be included in the

exposure model, even though they might be included in the outcome model. The AIPW

package easily allows specifying different covariate sets for the outcome and the exposure

models, and can thus be used for doubly-robust estimation in randomized trials. In ad-

dition, the AIPW package enables model specification using machine learning methods,
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which can avoid the strict assumptions imposed by parametric models.

With the observational data, our simulation study shows comparable performance of

the AIPW package relative to other packages. Indeed, excellent performance was ob-

served even with a relatively small sample size (n=200). Performance would be expected

to improve as the sample size increases.[49]

Cross-fitting yielded major improvements in bias and confidence interval coverage of

doubly robust methods in our simulation study, in line with a growing body of literature.[46,

47, 102, 49, 50] Intuitively, sample splitting or cross-fitting can be used to mitigate over-

fitting. If cross-fitting is not used, the same data would be used twice for two different

tasks—once for estimating nuisance quantities (i.e., propensity scores and outcome model

predictions), and once for averaging over them to form the estimator.[127, 47] Mathemat-

ically, cross-fitting (along with consistency of nuisance estimators, at any rate) ensures a

so-called empirical process term is asymptotically negligible—without sample splitting

one would need to rely on unverifiable assumptions about the true model that may not

hold with high dimensional data.[135] Hence, complex machine learning methods should

be accompanied by sample splitting or cross-fitting for effect estimation.

Many machine learning methods, along with cross-validation, sample splitting or

cross-fitting procedures, often rely on pseudo-random number generators to complete the

estimation procedure. With such procedures, reproducibility can be attained by setting

“seeds” that determine the exact settings in which the pseudo-random number generators

operate. Unfortunately, this can make the results from a given study highly dependent

on the value of the selected seed, particularly when cross-fitting is used. Several options

are available that reduce the extent to which results depend upon a selected seed value.

These include using a higher number of folds for cross-fitting, repeating the cross-fitting
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procedure iteratively in a given dataset,[47, 136] or, if one is willing to make unverifiable

assumptions (i.e., Donsker condition), avoiding cross-fitting entirely.[135]

At present, the AIPW package relies on a single application of cross-fitting, which

may result in seed dependence. Future versions of the package will include options for

an iterative cross-fitting procedure. However, users concerned about seed dependence

in the current package could select a large number of cross-fitting folds to mitigate this

potential issue.

Theoretically, AIPW and TMLE estimators are asymptotically equivalent. Differences

between the two arise only due to finite sample differences. These relationships are pre-

sented in Figure 7, and Appendix B.5 & B.6 with a sample size of 200 from 2000 Monte

Carlo samples. It also provides a degree of validation for our AIPW package by compar-

ing it to existing, well-known, doubly robust R programs.

Our implementation of AIPW estimation is based on a particularly well-studied estimator.[51,

103, 128] However, it is important to note that there are several different variations of the

AIPW estimator distinct from the one we use. Some of these are known to perform better

in certain settings, such as when there are potential near positivity violations.[116, 137]

Our use of propensity score truncation does alleviate some of the concerns raised by such

positivity violations. Yet researchers should be aware of the existence of alternative AIPW

estimation methods.

Future planned implementations for the AIPW package include supporting categori-

cal exposures by incorporating missing data mechanisms,[116, 75] and an iterative cross-

fitting procedure.[47, 136] Runtime of the AIPW package depends on the algorithms in-

cluded in the stacked learner and the implementation of stacking. Our preliminary (and

unvalidated) findings suggest that the sl3 package is faster than the SuperLearner.[131]
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For convenience, we find that using SuperLearner for small jobs and sl3 for more com-

plex models tends to optimize run time.[131] Furthermore, to optimize run time, we have

enabled use of parallel processing packages available in R. Given the AIPW package is

hosted on GitHub, future maintenance (e.g., bug reporting) can be requested on GitHub

issues.

Altogether, doubly robust estimators are a powerful tool to investigate cause-effect

relations with machine learning methods. The novel AIPW package addresses the limi-

tations of existing programs implementing doubly robust estimators and facilitates epi-

demiologists to conduct causal inference with flexible machine learning methods.
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3.5 Tables and Figures

Table 5: Estimated average treatment effects of a simulated randomized controlled trial

based on EAGeR

RD RR OR

Package Est. SE LCL UCL Est. SE LCL UCL Est. SE LCL UCL

True Est. 0.132 - - - 1.285 - - - 1.708 - - -
AIPW 0.136 0.033 0.070 0.201 1.305 0.068 1.143 1.490 1.727 0.136 1.323 2.253
CausalGAM 0.134 0.033 0.070 0.198 - - - - - - - -
npcausal 0.133 0.035 0.065 0.201 - - - - - - - -
tmle 0.135 0.026 0.083 0.186 1.306 0.054 1.176 1.451 1.719 0.107 1.394 2.121
tmle3 0.138 0.034 0.071 0.205 1.310 0.070 1.141 1.503 1.764 0.140 1.339 2.323

1 SE are asymptotic estimation (by delta method)
2 SuperLearner was used for AIPW, npcausal and tmle, and sl3 for tmle3. Algorithms include GAM, earth, ranger and
xgboost.
3 10-fold cross-fitting was use for AIPW, npcausal, tmle and tmle3. (tmle only support cross-fitting in the outcome model.)
4 Three different estimations were done for tmle3 since it can only output one type of estimand per estimation
5 The estimates of true causal effect parameter values were generated by the correctly specified parametric regression model
with a sample size of 1 million (Figure 1a)
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Table 6: Performance of the AIPW package in estimating the average treatment effect (risk

difference) in a simulated observational study based on EAGeR

Package/Method Bias (SE) MSE MeanCIwidth Coverage (SE) MeanRuntimeSec

True Model: GLM + No sample splitting
gComp -0.002 (0.002) 0.005 0.271 94.8% (0.5%) 1.82
IPW -0.002 (0.002) 0.005 0.280 95.8% (0.4%) 0.01
AIPW -0.002 (0.002) 0.005 0.268 94.8% (0.5%) 0.36
CausalGAM -0.003 (0.002) 0.005 0.267 94.8% (0.5%) 0.07
npcausal -0.002 (0.002) 0.005 0.267 94.6% (0.5%) 0.24
tmle -0.002 (0.002) 0.005 0.261 94.4% (0.5%) 0.29
tmle3 -0.002 (0.002) 0.005 0.268 94.8% (0.5%) 0.31

GAMs + No sample splitting
AIPW -0.002 (0.002) 0.005 0.261 93.8% (0.5%) 1.16
CausalGAM -0.004 (0.002) 0.005 0.266 92.7% (0.6%) 0.19
npcausal -0.002 (0.002) 0.005 0.260 93.9% (0.5%) 0.98
tmle -0.002 (0.002) 0.005 0.257 94.0% (0.5%) 0.86
tmle3 -0.002 (0.002) 0.005 0.261 93.9% (0.5%) 4.54

GAMs + k=10 sample splitting
AIPW -0.002 (0.002) 0.005 0.310 96.6% (0.4%) 7.92
npcausal -0.002 (0.002) 0.006 0.319 96.5% (0.4%) 3.55
tmle -0.002 (0.002) 0.005 0.272 95.6% (0.5%) 5.15
tmle3 -0.002 (0.002) 0.005 0.308 96.5% (0.4%) 7.51

SuperLearner + No sample splitting
AIPW -0.009 (0.002) 0.005 0.246 93.0% (0.6%) 14.65
npcausal -0.005 (0.002) 0.005 0.232 90.3% (0.7%) 21.71
tmle -0.009 (0.002) 0.005 0.251 93.8% (0.5%) 13.44
tmle3 -0.005 (0.002) 0.005 0.246 92.2% (0.6%) 36.76

SuperLearner + k=10 sample splitting
AIPW -0.002 (0.002) 0.005 0.281 95.6% (0.5%) 128.48
npcausal -0.004 (0.002) 0.005 0.285 95.5% (0.5%) 183.54
tmle -0.006 (0.002) 0.005 0.266 94.5% (0.5%) 43.38
tmle3 -0.004 (0.002) 0.005 0.272 95.2% (0.5%) 48.52

* Cross-fitting was conducted in the outcome model only because of its implementation.
1 Sample size (n) = 200; Number of simulation (nSim) = 2000; RDtrue = 0.128; Numbers within parentheses are
Monte Carlo SEs of the performance indicator estimates
2 Asymptotic SEs were used for CI calculation in AIPW, CausalGAM, tmle and tmle3. CIs for gComp and IPW
were obtained by 200 bootstraps and sandwich estimators, respectively
3 SuperLearner was used for tmle and AIPW and sl3 for tmle3; Algorithms include GAMs, earth, ranger and xg-
boost
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Table 7: Comparisons of R packages implementing doubly robust (DR) estimators

Packages AIPW CausalGAM npcausal tmle tmle3

Version evaluated 0.6.3.1 0.1-4 0.1.0 1.4.0.1 0.1.7
DR estimator AIPW AIPW AIPW TMLE TMLE
Available model Super

Learner

GAMs Super

Learner

Super

Learner

Super

Learner
Cross-fitting Yes No Yes Yes Yes
Different

covariate sets

Yes Yes Yes1 Yes2 Yes

Exposure type Binary3 Binary Binary,

Categorical,

Continuous

Binary3 Binary,

Categorical,

Continuous
Propensity score

truncation

Yes Yes No Yes Yes

Outcome type Binary &

Continuous

Binary &

Continuous

Binary &

Continuous

Binary &

Continuous

Binary &

Continuous
Missing data

support

Missing

outcome

No No Missing

outcome

Missing

outcome
ATE estimate

scale

RD, RR, OR RD RD RD, RR, OR RD, RR, OR

SE type Asymptotic Asymptotic,

Sandwich,

Bootstrap

Asymptotic Asymptotic Asymptotic

Parallel

processing

Yes No No No Yes

1 Users need to manually input propensity scores for different covariate sets.
2 When different covariate sets is enabled, tmle only supports glm for estimation.
3 Continuous and categorical exposures can be used but need to be binarized.[75]
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Figure 7: Pairwise comparison of ATE estimates with the true data generating functions

using different methods
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4.0 Estimating Per-Protocol Treatment Effects Using Machine Learning in

Randomized Clinical Trials

4.1 Introduction

Intention-to-treat (ITT) effects from randomized controlled trials (RCT) are the gold

standard for evaluating treatment effects. Importantly, ITT effects capture the impact of

assigning treatments to individuals. The ITT approach does not provide estimates of

the effects that would be observed if all individuals adhered with a desired treatment

protocol.[16, 17, 25] That is, in the presence of non-adherence, the ITT effects may differ

in important ways from the effect of taking the treatment under study in a specified way

(protocol).[17, 15]

Recently, several researchers have called for formal per-protocol analyses of random-

ized trials,[17, 138] and several recent per-protocol analyses have demonstrated impor-

tant deviations from the ITT estimates when non-adherence is accounted for.[15, 139, 140,

141, 142, 143, 144, 145] Unfortunately, when per-protocol effects are targeted in random-

ized trials, all of the limitations associated with observational studies must be considered,

such as confounding bias.[17, 15] Machine learning methods can be used with contempo-

rary causal inference methods to overcome some of these limitations,[49, 50] and estimate

per-protocol effects adjusting for confounding variables. However, compared to tradi-

tional regression models, machine learning methods may be better suited to avoiding

problems with model mis-specification.[146, 121] For example, a model would be mis-

specified if a linear regression were used to fit two variables with non-linear relations

(e.g., perinatal mortality and maternal hemoglobin).[147] Many machine learning algo-
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rithms can avoid these problems,[146, 121] but they have not yet been applied to scenarios

where per-protocol effects are of primary interest.

In this paper, we illustrate the use of machine learning methods to estimate the per-

protocol effects of low-dose aspirin on pregnancy in the Effects of Aspirin in Gestation

and Reproduction trial. We demonstrate how machine learning methods can be used to

estimate per-protocol effects with causal inference methods, and discuss the feasibility

and trade-offs of using machine learning methods for adherence-adjusted analyses.

4.2 Method

4.2.1 Study Design

We used the data from the Effects of Aspirin in Gestation and Reproduction (EAGeR)

trial (ClinicalTrials.gov: NCT00467363), a multicenter, block randomized, double-blind,

placebo-controlled trial. EAGeR recruited women aged 18-40 years who were actively

trying to become pregnant with one or two prior pregnancy loss and no history of in-

fertility from four university medical centers in the United States from 2007 to 2012. A

total of 1228 were recruited and randomized. For up to six menstrual cycles, participants

were followed biweekly in their first two cycles and monthly afterwards while attempting

pregnancy. If a pregnancy was observed, follow-up continued throughout pregnancy for

the live birth outcome (the registered primary endpoint of the trial). Institutional review

board approvals at each clinical site and data coordinating center were obtained. A Data

Safety and Monitoring Board was also formed to ensure participants’ safety and monitor

the efficacy of the trial. Missing data were addressed via single imputation. Details about
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study design, eligibility criteria, baseline characteristics and other relevant information

has been published elsewhere.[12, 13, 14, 15]

4.2.2 Treatment and Adherence

With 1:1 randomization allocation, the treatment group (n=615) received preconception-

initiated daily low-dose aspirin (81 mg) plus folic acid (400 µg) and the control group

(n=613) received placebo plus folic acid (400 µg). For women who became pregnant,

study treatment was to continue until the 36th week of gestation. A total of 1227 women

were included in the analysis of the current study (one participant has missing follow-up

data).

Adherence was assessed via bottle weight measurements in both groups during reg-

ular follow-up visits. Weekly adherence status was determined by evaluating whether a

participant took their assigned pills for at least 5 out of 7 days (equivalent to 70%) during

a given week. A woman was deemed adherent with our study protocol if she took 5/7

pills for at least 80% of their follow-up time before becoming pregnant, or entire follow-

up time for those without pregnancy. Notably, this adherence status is a dichotomized,

time-fixed variable, which is commonly used in a typical per-protocol analysis but differs

from the previous analyses of this trial.[15]

4.2.3 Outcome

Human chorionic gonadotropin (hCG) detected pregnancy during the defined treat-

ment period was the primary outcome for this analysis. Pregnancies were determined

by a positive result on a ”real-time” hCG pregnancy test (Quidel Quickvue), which was

sensitive to 25 mIU/ML hCG. The test was conducted at each study visit when expected
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menses are absent, or by batched urine hCG testing using daily first-morning urine col-

lected at home, stored on the last 10 days of each participant’s first cycle after randomiza-

tion, and analyzed in the laboratory.

4.2.4 Baseline Covariates and Post-randomization Confounders

Baseline data on demographic, behavioral and pregnancy history information was ob-

tained by questionnaires, including age, race, education, marital status, income, exercise,

alcohol and cigarette use in the past year, number of prior pregnancy losses and num-

ber of months attempting pregnancy prior to randomization. Physical measurements of

height and weight were used to calculate body mass index (BMI) at baseline. Blood sam-

ples were also collected to measure serum high-sensitivity C reactive protein (hsCRP),

using an immunoturbidmetric assay (Roche COBAS 6000 autoanalyzer) with a detection

limit of 0.015 mg/L.

Post-randomization confounders, including unusual (or excessive) bleeding and nau-

sea and/or vomiting were collected via questionnaire at regular intervals over the course

of follow-up. Similar to overall adherence status, we dichotomized these two post-randomization

confounders by setting the values to 1 if a woman experienced unusual bleeding, or nau-

sea and/or vomiting ≥ 1/7 days (20%) per week for at least 50% and 20% of their follow-

up time, respectively.

4.2.5 Statistical Analysis

In this study, we selected a protocol in which women would adhere to their assigned

treatment for at least 5/7 days of a given week and for over 80% of the time in which they

were followed before pregnancy. This allows us to evaluate whether consistently taking
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aspirin (versus placebo) has any beneficial impact on the probability of experiencing an

hCG-detected pregnancy. To examine the impact of different adherence thresholds on the

overall findings, as well as the number of adherent and non-adherent individuals in the

samples, we explored protocols under assigned treatment for at least 4/7, 5/7, 6/7 days

of a given week over 60%, 70%, 80% person-time.

To estimate the per-protocol effect of interest with machine learning methods, we

used an augmented inverse probability weighting (AIPW) estimator with an ensemble

machine learner known as the Super Learner (or stacked generalization).[51, 122, 121, 77]

Per-protocol effects were quantified on both the risk difference (RD) and the risk ratio

(RR) scales for the dichotomous pregnancy outcome.

Stacking is a machine learning technique that combines several different algorithms

into a single “meta-algorithm”. The benefit of using stacking, as opposed to a single re-

gression model or machine learning algorithm (e.g., the LASSO regression or random

forests), is flexibility: stacking algorithms can combine the strengths of each individual

algorithm based on how they fit the data, thus avoiding the need of the potentially strong

assumptions that single algorithms rely on for validity. The stacking technique first trains

several machine learning models individually as the “first” layer. Estimates (or predic-

tions) of the individual models from the first layer are then used as the input for the

“second” layer which is the meta-algorithm. Cross-validation is used to determine the

importance of each first-layer algorithm in the overall meta-algorithm, and to avoid po-

tential overfitting.[122, 121]

In this study, we stacked five regression models (from traditional to flexible): a stan-

dard generalized linear model with main effects only, a standard generalized linear model

with main effects and all two-way interactions, multivariate adaptive regression splines
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(MARS),[124] random forests,[148] and extreme gradient boosting.[126] For MARS, ran-

dom forest, and extreme gradient boosting, a grid of tuning parameters was included

in the stacking algorithm. All algorithms were combined into the meta-algorithm via

non-negative least squares. The predictions from these stacked models were then used to

construct the augmented IP weighting estimator.

Augmented IP weighting is a so-called “doubly robust” estimator that relies on es-

timating the exposure model (i.e., propensity score) and the outcome model separately

(both modeled with the stacking algorithm), and then combining the predictions from

these models into a single estimator that quantifies the average treatment effect.[51] Aug-

mented IP weighting is consistent as long as at least one of the exposure model or the out-

come model is correctly specified. Further, augmented IP weighting performs well (i.e.,

parametric 1/n mean squared error and closed-form confidence intervals), even when

using flexible machine learning methods.[49, 77] Using the stacked machine learning al-

gorithm describe above, we estimated propensity scores by modeling the exposure with

the aforementioned baseline covariates (exposure model) and constructed the outcome

model using the exposure and those covariates. Cross-fitting, an additional layer of fitting

process on top of the stacking machine learning, is applied in the augmented IP weighting

estimator to obtain valid inference (e.g., low bias) and to further avoid over-fitting.[49, 77]

Sensitivity analyses were conducted by using other thresholds of time-fixed adher-

ence status, which is a combination of adhered to at least 4, 5, 6 days (60%, 70%, 80%)

in a given week over at least 60%, 70%, 80% person-week of follow-up. In addition, we

also provided the ITT estimate, unadjusted per-protocol effects (with different thresh-

olds) as well as the per-protocol effects estimated by g-computation,[76] inverse proba-

bility (IP) weighting[74] and targeted maximum likelihood estimation (TMLE),[149] re-
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spectively. G-computation and IP weighting were constructed with standard generalized

linear model with main effects only. TMLE is also a doubly robust estimator, which per-

forms well when machine learning methods are used. We constructed the TMLE estima-

tor using the same stacking machine learning algorithms for the augmented IP weighting.

Further, we repeated all analyses adjusting for post-randomization confounders (i.e., un-

usual bleeding, nausea and/or vomiting).

All analyses were performed in R (3.6.2). We conducted the augmented IP weighting

estimation using the AIPW package. The AIPW package supports the SuperLearner pack-

age for stacking machine learning with cross-validation, and provides a user-friendly in-

terface for cross-fitting.[130, 77] A prior simulation study using the data resampled from

EAGeR has shown excellent statistical performance for the AIPW package.[77] TMLE was

conducted with the tmle package.[75] The code needed to reproduce our analyses is avail-

able in the Appendix C.2.

4.3 Results

Figure 8 presents the number of participants who adhered to the protocol, which

decreases as the adherence threshold increases. Overall, 858 (70.0%) of the 1227 trial

participants were adherent to their assigned study medication, and 784 (63.9%) of par-

ticipants became pregnant. Table 8 shows the randomized treatment assignment, out-

come, baseline characteristics and post-randomization confounders by adherence status.

Adhering to at least 5/7 pills in a given week over at least 80% person-time was sta-

tistically associated with the hCG-detected pregnancy outcome as well as non-Hispanic

White race/ethnicity, high school education, marital status, annual income, history of
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smoking in the past year, and hsCRP at baseline, but not with the randomized treatment

assignment.

The estimated per-protocol effect of low-dose aspirin on hCG-detected pregnancy is

shown in Table 9. Among those who adhered to the treatment protocol, low-dose aspirin

increased the probability of hCG-detected pregnancy by 0.080 (95% Confidence Interval

or CI, 0.025 to 0.136). This per-protocol risk difference of low-dose aspirin is about double

the ITT estimate (0.043, 95%CI, -0.011 to 0.096). Similar per-protocol effects were also

observed when adjusting for unusual bleeding, and nausea and/or vomiting (RD: 0.084,

95%CI, 0.028 to 0.140). Risk ratios for the estimated per protocol effects are also presented

in Table 9.

Using other adherence thresholds, our sensitivity analyses with AIPW and machine

learning show the per-protocol effects are larger as the adherence to assignment treatment

increases. These estimated per protocol effects ranged from 0.056 (95% CI, 0.0001 to 0.112)

to 0.090 (95%CI, 0.034 to 0.145) when adherence thresholds ranged from 4/7 days for at

least 60% person-time of follow-up to 6/7 for at least 80% person-time (See Figure 20).

Using other estimation methods, the per-protocol estimates remain similar, including the

unadjusted estimates (Table 12 and Figure 20).

4.4 Discussion

We demonstrate the use of stacking machine learning with augmented IP weighting

in estimating the per-protocol effects in the EAGeR trial. Our time-fixed per-protocol

analyses results were consistent with previous findings of the per-protocol effect of as-

pirin that accounted for the time-varying nature of adherence and select time-varying
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confounders.[15] However, unlike previous research, we used nonparametric machine

learning methods to estimate these effects. Our analyses demonstrate a novel approach

for per-protocol effect estimation using advanced statistical methods. In addition, our

results suggest preconception low-dose aspirin increases hCG-detected pregnancies for

women with one or two prior pregnancy losses, who adhered to 5/7 days of low-dose

aspirin over 80% of the follow-up.

Supervised machine learning algorithms have been widely adopted to predict various

health outcomes.[150, 151, 152] While they can also be used for effect estimation, addi-

tional steps are needed.[50, 49] Importantly, these include the need to adjust for relevant

confounders, and to use doubly robust methods such as AIPW.

The benefits of using machine learning with doubly robust methods lie primarily in

the ability to avoid strong parametric modeling assumptions. Machine learning models

are more flexible and data-adaptive than traditional regression models for prediction.[146,

121] For example, whether to include an interaction term in a regression model is deter-

mined by the investigators’ domain-specific knowledge, whereas tree-based models (e.g.,

random forests) adopt a more data-adaptive approach to interaction inclusion.[153, 154]

Failure to include an interaction term may result in model mis-specification and lead to

biased effect estimation. However, as a result of this increased data-adaptiveness and ex-

tra modeling flexibility, tree-based models, and flexible machine learning in general, are

more likely to overfit the data and can suffer larger mean squared error.[153] To mitigate

these issues, combining tree-based methods such as random forests, as well as regression

based methods such as generalized linear regressions and MARS are advisable.[49, 121]

In our study, we stacked five different machine learning models for an even more flexible

algorithm and used cross-validation to mitigate overfitting.
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We used supervised machine learning methods with doubly-robust estimators to quan-

tify the per protocol effect of aspirin on hCG-detected pregnancy. In a randomized trial

where all participants are fully adherent with the treatment protocol, per-protocol ef-

fects will be identical to ITT effects.[155] However, in the EAGeR trial, the ITT effects of

low-dose aspirin on hCG-detected pregnancy differed substantially from the estimated

per protocol effect due to non-adherence with the specified protocol over the course of

follow-up. In many settings captured by pragmatic trials, perfect adherence is unlikely,

and a practical adherence level has to be chosen based on either clinical knowledge or the

data at hand. In EAGeR, the adherence rate declined overtime and dropped drastically

after the start of pregnancy.[15] We chose a protocol of taking 5/7 pills in a given week

over at least 80% person-time as the adherence level because existing literature suggests

some biological effect of low-dose aspirin could be achieved at this adherence level,[15]

and because of the relatively short half-life of aspirin.[156]

In a well-conducted trial, an ITT approach provides unbiased estimates of the as-

signed treatments on defined outcomes. The ITT estimates capture the impact of the

“treatment strategy” and generally can be interpreted as the effectiveness of recommend-

ing or prescribing one treatment as compared to another. In contrast, an appropriately

adjusted per protocol analysis can be used to estimate the effect of taking the active

treatment according to the specifications allowing estimation of the treatment efficacy.

Similar to most per-protocol analyses, our study relied on time-fixed adherence status,

which is an important limitation. Although our effect estimates of low-dose aspirin on

hCG-detected pregnancy are similar to the prior study that accounted for time-varying

adherence,[15] limitations should be considered when conducting time-fixed per-protocol

analysis. First, in conducting a time-fixed analysis, we had to collapse time-varying ad-
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herence status into a single time-point, losing detailed information of how adherence

changed over follow-up. Second, time-fixed analyses are generally unable to appropri-

ately adjust for time-varying confounders, such as unusual bleeding and nausea. For

example, at a given time-point, adherence to treatment is associated with an increased

likelihood of side effects (e.g., unusual bleeding), which is further associated with a de-

creased of adherence at the next time-point. As such, post-randomization confounders

such as unusual bleeding and nausea could simultaneously mediate and confound the

effect of adherence status, requiring an analytic approach that we did not use.[76] In ad-

dition, other common limitations of observational studies should also be considered in

the per-protocol analysis, such as unmeasured confounders.

Despite these limitations, we found that our unadjusted estimates are similar to es-

timates we obtained by improperly adjusting for post-randomization confounders (un-

usual bleeding, and nausea and/or vomiting), but properly adjusting for baseline con-

founders (e.g., age, marital status, annual income). Additionally, these results are closely

aligned with results from a prior study where post-randomization confounding was prop-

erly adjusted for, albeit with methods that were much less flexible (parametric g computation).[15]

This lends additional empirical support to the use of daily low-dose aspirin in increasing

hCG detected pregnancies.

Our analytic approach using time-fixed adherence has a broad application in other

analysis principles of RCT as well as in observational studies, especially for those with

only one time-point. For example, our approach can be directly applied to the as-treated

analysis in RCTs, such as a trial for evaluating the efficacy of emergency contraception.

Modified ITT (despite not being consistently defined)[157, 158] can be incorporated with

our approach as well, because the modification of ITT may not be free of confounding
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(e.g., only including participants with drug initiation for a non-blinded study). Further,

adjusting for covariates with machine learning in (modified) ITT analysis can improve

statistical efficiency for higher precision of treatment effect estimates.[58]

In conclusion, machine learning methods with doubly robust estimators, such as AIPW,

can be used to estimate per-protocol treatment effects. Assumptions are embedded im-

plicitly and explicitly in different analytic plans. Health scientists should evaluate the

benefits and disadvantages before implementing these advanced methods.
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4.5 Tables and Figures

Figure 8: Number of participants adhered to assigned treatment by different thresholds
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Participants at the shaded adherence levels [i.e., at least 4, 5, 6 days (60%, 70%, 80%) in a given week over
at least 60%, 70%, 80% person-week of follow-up] were selected for the main per-protocol analysis and
pertinent sensitivity analyses.
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Table 8: Treatment assignment, outcome, baseline covariates and post-randomization

confounders by adhering to 5/7 pills (70%) per week over 80% person-week of follow-up

Variables Non-adherent Adherent p

N=369 (30.0%) N=858 (70.0%)

Treatment

Daily low-dose aspirin (%) 190 (51.5) 425 (49.5) 0.53

Outcome

hCG-detected pregnancy (%) 107 (29.0) 677 (78.9) <0.001

Baseline covariates

Non-Hispanic White (%) 334 (90.5) 827 (96.4) <0.001

High School Education (%) 302 (81.8) 755 (88.0) 0.004

Married (%) 312 (84.6) 811 (94.5) <0.001

Employed (%) 283 (76.7) 636 (74.1) 0.34

Annual income (≥ 40000) (%) 213 (57.7) 608 (70.9) <0.001

Exercise per week (%) 0.320

Low 106 (28.7) 216 (25.2)

Moderate 140 (37.9) 360 (42.0)

High 123 (33.3) 282 (32.9)

Number of previous pregnancy loss (%) 0.61

1 125 (33.9) 278 (32.4)

2 244 (66.1) 580 (67.6)

Number of previous live birth (%) 0.11
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0 173 (46.9) 352 (41.0)

1 125 (33.9) 308 (35.9)

2 68 (18.4) 179 (20.9)

3 3 (0.8) 19 (2.2)

Alcohol (ever consumed in past year) (%) 137 (37.1) 271 (31.6) 0.06

Tobacco (ever smoked past year) (%) 71 (19.2) 81 (9.4) <0.001

Age (mean (SD)) 2 28.41 (5.01) 28.88 (4.70) 0.12

Number of months attempting pregnancy

prior to randomization (mean (SD)) 4.25 (3.50) 3.93 (3.42) 0.14

BMI (mean (SD)) 26.73 (6.52) 26.13 (6.57) 0.14

hsCRP (mean (SD)) 3.34 (6.99) 2.58 (4.12) 0.02

Post-randomization confounders

Unusual bleeding (%) 346 (93.8) 783 (91.3) 0.14

Nausea and/or vomiting (%) 69 (18.7) 138 (16.1) 0.26
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Table 9: Effects of low-dose aspirin on hCG-detected pregnancy among women adhered

to the assigned treatment: 5/7 pills (70%) per week over at least 80% person-week of

follow-up

RD RR

Method Est. SE LCL UCL Est. SE LCL UCL

Intention-to-treat 0.043 0.027 -0.011 0.096 1.069 0.043 0.982 1.163

Per-protocol analysis adjusted for baseline covariates

Machine Learning + AIPW 0.080 0.028 0.025 0.136 1.107 0.036 1.032 1.188

Per-protocol analysis adjusted for baseline covariates and post-randomization confounders∗

Machine Learning + AIPW 0.084 0.029 0.028 0.140 1.113 0.037 1.036 1.196
* Adjusted for bleeding [≥ 1/7days(20%) per week over ≥ 50% person-week] and nausea and/or vomiting [≥
1/7days(20%) per week over ≥ 20% person-week]
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5.0 Conclusion

The primary objective of this dissertation was to develop, evaluate, and apply ad-

vanced causal inference methods and tools to estimate treatment effects for improving

pregnancy outcomes. The methods and tools we evaluated show both challenges and

promises of using artificial intelligence and machine learning methods in real epidemio-

logic data. This chapter is meant to summarize the key findings of this dissertation in the

context of the Effects of Aspirin in Gestation and Reproduction (EAGeR) study, and to

discuss the strengths and limitations as well as the public health implications and future

directions for the use of advanced artificial intelligence and machine learning methods in

reproductive/perinatal epidemiology and other areas of epidemiology.

5.1 Summary of Findings

Aim 1. Evaluate the performance of Bayesian networks in selecting covariate adjust-

ment sets for estimating the effects of low-dose aspirin on pregnancy outcomes.

Causal discovery methods (or structural learning of Bayesian networks) underper-

form in selecting sufficient confounders in our simulations. These approaches have shown

good performance in other setting, such as discovering biological pathways using ge-

nomics data.[78, 84, 85, 86, 87, 88] However, these data tend to be characterized as simple

causal (or graphical) structures, such as random graphs (the occurrence of edges follows

a distribution function).[89] To mimick the complexity of epidemiologic data, our simula-

tion study used data resampled from the EAGeR trial to generate challenging analytic sce-
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narios characterized by M-/butterfly- bias. The evaluations of the max-min hill-climbing

causal (MMHC) discovery algorithm generally show poor performance, suggesting that

causal discovery algorithms require more development and refinement prior to using

them in epidemiologic settings. Specifically, we found low accuracy in selecting correct

confounder adjustment sets that appropriately block all backdoor paths from the expo-

sure to the outcome. Our finding suggests causal discovery methods should not be used

in lieu of domain-specific knowledge for generating causal diagrams to select confounder

adjustment sets.

Aim 2. Develop an R package for augmented inverse probability weighting (AIPW) to

estimate the effects of low-dose aspirin on pregnancy outcomes.

An increasing number of recent studies suggest doubly robust estimators with cross-

fitting should be used when estimating causal effects with machine learning methods.

However, existing programs that implement doubly robust estimators do not all support

machine learning methods and cross-fitting, or provide estimates on multiplicative scales.

The newly developed AIPW package is a state-of-the-art R program, implementing aug-

mented inverse probability weighting, for doubly robust estimation of average causal

effects. The AIPW package addresses the limitations of existing programs that imple-

ments doubly robust estimators. Those features include the supports of stacking machine

learning algorithms via SuperLearner and sl3, cross-fitting for valid effect estimates, and

providing estimates on both additive and multiplicative scales, and flexible covariate ad-

justment for randomized controlled trials. Our simulation shows that the AIPW package

yielded comparable performance to existing R packages that implement doubly robust

estimators (e.g., tmle). We also found that cross-fitting substantially improves the perfor-

mance of doubly robust estimators fit with machine learning algorithms. As a result, our
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AIPW package with stacking machine learning methods is useful to estimate adherence-

adjusted effects of low-dose aspirin on pregnancy outcomes.

Aim 3. Determine the adherence adjusted effects of low-dose aspirin on pregnancy

outcomes with Bayesian networks and AIPW.

Based on the results in the previous aims, we use the AIPW package with ensemble

machine learning to estimate the time-fixed adherence adjusted effect of low-dose aspirin

on hCG-detected pregnancy. Machine learning methods with the AIPW estimator are

more flexible to estimate per-protocol treatment effects than traditional parametric regres-

sion, because these methods are not subject to strict parametric assumptions. As expected,

low-dose aspirin increases the probability of hCG-detected pregnancy by 9.3% (95%CI

6%–18%). Using a different set of assumptions, our time-fixed per-protocol estimation

using machine learning with doubly robust yielded similar results to the prior research

using parametric g-computation with time-varying adherence (RD: 8.0% vs. 7.8%).[15].

Therefore, results of this aim support the previous findings that daily low-dose aspirin

increases pregnancy among women with one or two pregnancy losses who adhered to

the aspirin protocol.

5.2 Strengths and Limitations

This dissertation has a number of important strengths for the practice of epidemiol-

ogy. First, our evaluated methods and developed tools are state-of-the-art in epidemi-

ology, statistics and machine learning. The status quo of effect estimation in epidemiol-

ogy relies on domain-specific knowledge from DAG identification to model specification.

This dissertation uses data-adaptive approaches in machine learning and artificial intelli-
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gence, and provides practical guidance for epidemiologists to adopt these approaches in

epidemiologic studies, outlining the assumptions embedded in their use, as well as the

pros and cons of these approaches. Second, the simulations conducted in this disserta-

tion were constructed to reflect the real epidemiologic scenarios as closely as possible. By

adopting a plasmode simulation approach that relied on data from the EAGeR trial, our

simulated datasets were better able to preserve real relations among certain variables, as

opposed to simply simulating artificial data.[159] In addition, the causal diagrams used

to simulate our data in this dissertation were complex, but are often reasonable assumed

to exist in real epidemiologic data.[36, 72] Third, the AIPW package we developed has

a broad application in various type of epidemiologic data. Using the causal diagrams

depicted in Figure 5, the use-case of the package can be extended to both observational

studies and randomized trials. Further, the AIPW package provides a user-friendly in-

terface for the use of machine learning and cross-fitting, allowing applied scientists to

use these sophisticated methods in the most appropriate way possible. Finally, the per-

protocol effect estimation in this dissertation is conducted with alternative assumptions

(e.g., time-fixed adherence, free from parametric assumptions). Hence, the results from

our analyses provide additional evidence of the benefits of low-dose aspirin on pregnancy

outcomes.

However, several limitations should be considered when interpreting the findings in

this dissertation. First, only a limited number of causal discovery algorithms are evalu-

ated in a limited set of causal diagrams. Therefore, our evaluations may not be generaliz-

able to the latest causal discovery algorithms, such as continuous optimization with neu-

ral networks,[160] or to the data with simple causal structures (e.g., genomics data).[86]

Second, the design of this dissertation assumes that the adherence status does not change
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over time. As such, the tools and approaches evaluated and developed do not consider

time-varying exposure and confounder, as well as time-to-event outcomes. [161, 162] Col-

lapsing the time-varying adherence into a time-fixed status loses detailed information in

the EAGeR trial. Although there are trade-offs between time-fixed and time-varying per-

protocol analyses, time-varying setting is more preferable in most epidemiologic studies

because failure to adjust for post-randomization confounders properly may lead to biased

effect estimation.[114, 163]

5.3 Public Health Implications

Pregnancy loss is a common but severe complication among pregnant women, which

is associated with fertility.[14] As a cheap, safe and generic over-the-counter medication,

aspirin is very promising to increase pregnancy rate and to prevent adverse pregnancy

outcomes among women at higher risk of pregnancy loss. This dissertation provides

additional evidence that low-dose aspirin can improve pregnancy rate among women

who had one or two prior losses. Further, the current work developed the state-of-the-art

tools and methods to determine the benefits of aspirin on pregnancy outcomes, yielding

solutions to alleviate the public health burden of pregnancy loss.

Machine learning and artificial intelligence have geared epidemiologists with new

perspectives to better understand population health problems. However, given the de-

velopment of machine learning are more rapid than many disciplines of health sciences,

the features of these new methods as well as their feasibility, strength and limitations

in public health sciences are not well understood. This dissertation serves as a analytic

framework for using machine learning to estimate treatment effects, and for evaluating
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advanced machine learning methods in epidemiologic studies. As a result, the current

work pushed forward the understanding of machine learning in public health research.

5.4 Future Research Directions

This dissertation opens up several venues for future research, in both methodological

and practical domains. We highlight several important questions remain unanswered in

this dissertation, which are needed to be addressed in future studies.

First, doubly robust estimators with machine learning are should be evaluated and

further optimized in longitudinal setting. To our knowledge, LTMLE is the only tool to

conduct doubly robust estimation for longitudinal data.[161] Current implementations of

machine learning estimators for longitudinal data treat both the confounding variables,

as well as the time component nonparametrically. However, in studies with long follow-

up periods, treating the time component nonparametrically can easily lead to scenarios

where there is not enough data to support nonparametric inference. Roughly, as the num-

ber of time-points increases, the number of variables also increases, leading to precipitous

declines in precision. Hence, more work is needed to better understand the trade-offs be-

tween smoothing effect estimates across time, versus full nonparametric treatment of the

time component.

Second, transportability, generalizability and data fusion of complex cohorts catch re-

cent attentions of methodological research.[164, 165, 166, 167] For example, the findings

from EAGeR may not be directly transported to another populations (e.g., women with-

out prior pregnancy loss).[168, 169] However, current methodological studies on trans-

portablity mainly focus on the use of parametric regressions.[166] As such, the applica-
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bility of machine learning in these problems should be studied in the future.

Finally, high dimensional data provide opportunities in understanding the effective-

ness of medications to improve pregnancy outcome.[93, 170, 171, 151, 172] For example,

electronic health records have a tremendous amount of data, where machine learning

plays a critical role in predicting health outcomes.[151, 172] The intersection of causal in-

ference and machine learning is an active field of methodological studies. Therefore, the

tools and methods in this dissertation need to be evaluated and adapted to high dimen-

sional data for a boarder impact on population health research.
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Appendix A Causal Discovery Appendix

A.1 Average treatment effect estimators

Under consistency, exchangeability, positivity, and no interference, the average of po-

tential outcomes that would be observed under A = a are identified as the average of

estimated outcomes, that is: E(Y a) = E[E(Y | A = a,W )], which we denote as ψ(a).

The inverse probability weighting (IPW) estimator can be constructed from propen-

sity scores by modeling the exposure A as a function of confounders C:[74]

ψ̂IPW (a) =

[
N∑
i=1

I(Ai = a)Yi

P̂ (A = a | Ci)

]/[ N∑
i=1

I(Ai = a)

P̂ (A = a | Ci)

]
(7)

where a ∈ {0, 1} and i represents ith observation.

Counterfactual predictions P (Y = 1 | A := a, C) can be used to construct a g-

computation estimator:[76, 24]

ψ̂gComp(a) =
1

N

N∑
i=1

P̂ (Y = 1 | A := a, Ci) (8)

where the := symbol denotes that we set each individual’s value for A in the sample to

the argument’s value a.

Further, both propensity scores and counterfactual predictions can be used to con-

struct doubly robust estimators, such as augmented inverse probability weighting (AIPW):[114,

51, 77]

ψ̂(a)AIPW =
1

N

N∑
i=1

[
I(Ai = a)

Yi − P̂ (Y = 1|Ai, Ci)
P̂ (A = a|Ci)

+ P̂ (Y = 1|A := a, Ci)

]
(9)
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and targeted maximum likelihood estimation (TMLE) [75, 105] :

ψ̂TMLE(a) =
1

N

N∑
i=1

P̂ u(Y = 1 | A := a, Ci) (10)

where P̂ u is the updated probability of the counterfactual predictions using the “clever

covariate”, which is a function of the propensity score.
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A.2 Introduction to the Max-Min Hill-Climbing (MMHC) causal discovery

algorithm

Here, we describe one particular algorithm that is used for causal discovery, the Max-

Min Hill-Climbing (MMHC) algorithm. Suppose we have a dataset with three discrete

random variables D : {A, Y, C} and a large number of observations, whose true causal

structure can be represented with the following DAG G:

Figure 9: True causal DAG (G) for D : {A, Y, C}

A

C

Y

Our objective is to use dataD to recover the causal DAGG. In causal modeling, the causal

DAG implies a factorization for the joint probability distribution of the variables in the

DAG. Specifically, the joint probability distribution can be written as a product of the

conditional distribution of each variable given its parents in the DAG. That is, each DAG

can be represented by a corresponding structural equation model.[61] In the example in

Figure 9, the true causal DAG (G) can be written as P (A, Y, C) = P (C)P (A | C)P (C | Y ).

This also implies that A is independent of Y given C.

Causal discovery methods generally fall into two types of approaches for learning

the causal DAG from data: (a) Constraint-based approaches try to identify a (family of)

graph(s) that imply the conditional indpendencies that hold in the data, assessed by statis-

tical tests of independence (e.g., the χ2 test). (b) Score-based approaches attempt to iden-

tify graphs that “fit” the data well, using a Bayesian or a penalized likelihood criterion for

structural equation models (or factorization) represented by the graph. The approaches

78



have pros and cons, with constraint-based methods being more scalable and better at re-

covering the DAG skeleton (edges without orientations), and score-based methods being

better at orienting edges and less prone to statistical errors.[78]

MMHC combines the two approaches, and is therefore classified as a hybrid algo-

rithm. The method has two phases: In the constraint-based phase, it uses uses a heuristic

process to find out a set of variables that are (conditionally) associated with a target vari-

able using hypothesis testing, and iterates until all variables have their own sets (so called

candidate parents and children or CPC). As a result, this algorithm will provide the skele-

ton of the DAG (undirected graph) given each variable has a set of associated variables,

right panel of Figure 10.

Figure 10: Simplified processes of MMHC algorithm for recovering G

A

C

Y A

C

Y

In the score-based process, the MMHC algorithm starts with an empty graph to add,

delete or reverse edges, and searches for the optimal scoring DAG. For example, Bayesian

Information Criteria (BIC) can be calculated in the structural equation model of the DAG

in each iteration. The algorithm uses a hill-climbing search to find a structural equation

model that has an optimal BIC. To limit the search space and improve computational

efficiency, the edge-adding process is restricted within the skeleton obtained from the

constraint-based phase (i.e., the CPC). For example, the left-panel of Figure 10 represents

the skeleton obtained from the constraint-based phase. The hill-climbing algorithm only

can add edges between A,C and Y,C (i.e., no edge can be added between A, Y as shown
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in the right-panel). The method will asymptotically discover the correct DAG, assuming

no statistical errors.
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A.3 Accuracy of MMHC algorithm in selecting correct confounder adjustment set

Figure 11: Accuracy of MMHC algorithm in selecting correct confounder adjustment set
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Table 10: Accuracy of MMHC algorithm in selecting correct confounder adjustment set

Default Tuned

Num. DAGs DAG type Accuracy/ Adjustment Set Prob (SE) Prob (SE)

Accuracy 52.77% (0.05%) 54.84% (0.05%)

Selected Adjustment Set

C1 Only 27.61% (0.05%) 27.03% (0.05%)

C2 Only 1.99% (0.02%) 2.25% (0.02%)

C3 Only 25.44% (0.05%) 22.69% (0.05%)

{C1,C2} 7.14% (0.03%) 8.14% (0.03%)

{C1,C3} 20.28% (0.04%) 21.24% (0.04%)

{C2,C3} 10.52% (0.03%) 11.84% (0.03%)

{C1,C2,C3} 2.28% (0.02%) 2.56% (0.02%)

432 Overall

Empty/Unadjusted 4.70% (0.02%) 4.19% (0.02%)

Accuracy 35.07% (0.08%) 37.92% (0.08%)

Selected Adjustment Set

C1 Only 40.21% (0.08%) 39.50% (0.08%)

C2 Only 0.61% (0.01%) 0.67% (0.01%)

C3 Only 16.16% (0.06%) 13.51% (0.06%)

{C1,C2}X 9.06% (0.05%) 10.22% (0.05%)

{C1,C3}X 23.24% (0.07%) 24.61% (0.07%)

{C2,C3} 6.36% (0.04%) 7.04% (0.04%)

{C1,C2,C3}X 2.76% (0.03%) 3.09% (0.03%)

192 Butterfly

Empty/Unadjusted 1.55% (0.02%) 1.31% (0.02%)
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Default Tuned

Num. DAGs DAG type Accuracy / Adjustment Set Prob (SE) Prob (SE)

Accuracy 99.96% (0.01%) 99.95% (0.01%)

Selected Adjustment Set

C1 Only× 0.04% (0.01%) 0.05% (0.01%)

C2 Only 6.33% (0.08%) 7.15% (0.08%)

C3 Only 55.83% (0.16%) 52.48% (0.16%)

{C1,C2} 0.02% (0.00%) 0.03% (0.01%)

{C1,C3} 0.01% (0.00%) 0.02% (0.00%)

{C2,C3} 22.67% (0.14%) 26.02% (0.14%)

{C1,C2,C3} 0.00% (0.00%) 0.00% (0.00%)

48 M

Empty/Unadjusted 15.05% (0.12%) 14.17% (0.11%)

Accuracy 78.71% (0.09%) 78.75% (0.09%)

Selected Adjustment Set

C1 Only 9.52% (0.07%) 10.2% (0.07%)

C2 Only 3.60% (0.04%) 4.09% (0.05%)

C3 OnlyX 29.61% (0.10%) 25.79% (0.10%)

{C1,C2}X 0.19% (0.01%) 0.23% (0.01%)

{C1,C3}X 34.89% (0.11%) 37.07% (0.11%)

{C2,C3}X 13.26% (0.08%) 14.82% (0.08%)

{C1,C2,C3}X 0.73% (0.02%) 0.81% (0.02%)

96 Left-triangle

Empty/Unadjusted 8.14% (0.06%) 6.93% (0.06%)
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Default Tuned

Num. DAGs DAG type Accuracy / Adjustment Set Prob (SE) Prob (SE)

Accuracy 38.65% (0.11%) 42.23% (0.11%)

Selected Adjustment Set

C1 Only 34.29% (0.11%) 32.4% (0.11%)

C2 OnlyX 0.95% (0.02%) 1.09% (0.02%)

C3 Only 24.63% (0.10%) 23.05% (0.10%)

{C1,C2}X 13.80% (0.08%) 15.94% (0.08%)

{C1,C3}X 9.87% (0.07%) 9.27% (0.07%)

{C2,C3}X 10.02% (0.07%) 11.40% (0.07%)

{C1,C2,C3}X 4.00% (0.04%) 4.52% (0.05%)

96 Right-triangle

Empty/Unadjusted 2.38% (0.03%) 2.25% (0.03%)

Probability and SE are calculated with n = number of DAGs * 2000 MC.
X Admissible adjustment set that blocks the backdoor path from A to Y
× Any adjustment set except the marked one.
Bold sets are common admissible adjustment for all 432 DAGs.
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A.4 Probability of covariates selected by the default and the tuned MMHC,

stratified by DAG type

Figure 12: Probability of covariates selected by the default and the tuned MMHC, strati-

fied by DAG type
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A.5 Distributions of absolute bias and mean squared error (MSE) of average

treatment effect estimation

Figure 13: Distribution of absolute bias
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• Each observation in the plot represents the absolute bias estimated in one of 432 DAGs using 2000 MC
• If MMHC algorithms yielded an empty confounder adjustment set, unadjusted estimates are used as

the corresponding estimates from g computation, IPW, AIPW and TMLE.
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Figure 14: Distribution of MSE
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• Each observation in the plot represents the MSE estimated in one of 432 DAGs using 2000 MC
• If MMHC algorithms yielded an empty confounder adjustment set, unadjusted estimates are used as

the corresponding estimates from g computation, IPW, AIPW and TMLE.
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Appendix B AIPW Appendix

B.1 AIPW with missing outcome

Let Ri be an indicator of whether the outcome for individual i is observed (Ri = 0

if missing), and W be all of the covariates from WQ and Wg. In the presence of missing

outcome data, the AIPW estimator in the main text (formula 3) can be written as:

ψ̂(a)AIPW =
1

n

n∑
i=1

{
I(Ai = a,Ri = 1)

P̂ (A = a,R = 1|Wi)
[Yi − P̂ (Y = 1|Ai,Wi, Ri = 1)]+

P̂ (Y = 1|A := a,Wi, Ri = 1)

}

The propensity scores P̂ (A = a,R = 1|Wi) is obtained by estimating the joint proba-

bility of treatment and (non)missingness:

P̂ (A = a,R = 1|Wi) = P̂ (R = 1|Wi, A = a)P̂ (A = a|Wi),

which incorporates missing data mechanism with W . In other words, analyses assume

missing at random (MAR) conditional on W , and thus such analyses require W include

covariates that render MAR as close to true as possible.

When missing outcomes are detected, the arguments in the AIPW package enabling

different covariate sets for the outcome (WQ) and exposure (Wg) models are disabled. This

is because the propensity scores with (non)missing data can be factorized into two ways:

P̂ (A = a,R = 1|Wi) = P̂ (R = 1|WQi, A = a)P̂ (A = a|Wgi)

= P̂ (R = 1|WQi)P̂ (A = a|Wgi, R = 1).
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In other words, it requires conditioning on both outcome covariates WQ for missing data

mechanism and Wg for exposure mechanism.
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B.2 Implementation of sample splitting and cross-fitting

To implement sample splitting, one needs to subset the input data into k equal-size

folds randomly, then fit the exposure and the outcome models with (k − 1)/k data, and

finally use the fitted models to estimate propensity scores and outcome model predictions

with the 1/k held-out sample.[127, 47] (Figure S1a)

Figure 15: Illustration of sample splitting

Split the sample in k-equal 
size folds

Train ML model with CV 
using k-1/k data

Obtain estimates in the 
holdout sample

CV

Sample splitting (First iteration of cross-fitting)

ML: Stacking machine learning; CV: Cross-validation; k=3 in this example.

Cross-fitting is a more efficient version of sample splitting.[47] While sample splitting

only uses 1/k of the sample for estimating propensity score and outcome model, cross-

fitting iterates the process sample-splitting k times until estimates of the exposure and

outcome for all observations are obtained.(Figure S1b).
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Figure 16: Illustration of cross-fitting
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using k-1/k data
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Second iteration of cross-fitting

Kth iteration of cross-fitting

ML: Stacking machine learning; CV: Cross-validation; k=3 in this example.

In the AIPW package with the SuperLearner, when k split = 2, 10-fold cross-validation

(CV) will be used for training stacking machine learning algorithms; when k split ≥ 3,

k split − 1 fold CV will be used (e.g., 2-fold CV is used for k split = 3), with the CV-fold

assignment remains the same throughout cross-fitting. With the sl3 package, 10-fold CV

will be used regardless of k split.
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B.3 Derivation of the standard errors of risk ratio and odds ratio for the AIPW

estimator

Suppose we have an iid sample Z1, ..., Zn ∼ P with Z = (A, Y,WQ,Wg) where Y ∈

{0, 1}. We assume the usual consistency, positivity, and no unmeasured confounding

conditions.

Let

π̂(a | wg) = P̂(A = a | Wg = wg) and µ̂(wQ, a) = P̂(Y = 1 | WQ = wQ, A = a)

denote estimators of the chance of receiving exposure level A = a given covariate Wg =

wg, and the chance of observing outcome Y = y among those with covariates WQ = wQ

and exposure A = a.

Under typical n−1/4-type rate conditions, the following estimator is root-n consistent

and asymptotically normal

P̂(Y a = 1) =
1

n

n∑
i=1

[
1(A = a)

π̂(a | Wgi)

{
Yi − µ̂(WQi, a)

}
+ µ̂(WQi, a)

]

for the marginal counterfactual probability P(Y a = 1) = E{E(Y | X,A = a)}. Note we

use counterfactual expressions like P(Y a = 1) as shorthand, but all the results here follow

for the observational expressions E{E(Y | X,A = a)} regardless of whether these equal

the corresponding counterfactual expressions.
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Therefore the following are estimators for the marginal risk ratio and odds ratio:

ψ̂rr =
P̂(Y 1 = 1)

P̂(Y 0 = 1)

ψ̂or =
P̂(Y 1 = 1)/{1− P̂(Y 1 = 1)}
P̂(Y 0 = 1)/{1− P̂(Y 0 = 1)}

Since both the RR and OR are non-negative, normal approximations will work best if

we construct confidence intervals on the log scale and then exponentiate.

Let ϕa(Z; π, µ) = 1(A=a)
π(a|Wgi)

{
Yi− µ(WQi, a)

}
+ µ(WQi, a) denote the uncentered influence

function for P(Y a = 1) = E{E(Y | X,A = a)} so that

P̂(Y a = 1) =
1

n

n∑
i=1

ϕa(Zi; π̂, µ̂)

Also let

Σ = cov

ϕ0(Z; π, µ)

ϕ1(Z; π, µ)

 =

 var{ϕ0(Z; π, µ)} cov{ϕ0(Z; π, µ), ϕ1(Z; π, µ)}

cov{ϕ0(Z; π, µ), ϕ1(Z; π, µ)} var{ϕ1(Z; π, µ)}



denote the covariance matrix of the influence functions, with elements Σ =

Σ00 Σ01

Σ01 Σ11

.

An estimate of the covariance matrix is simply given by

Σ̂ =

 v̂ar{ϕ0(Z; π̂, µ̂)} ĉov{ϕ0(Z; π̂, µ̂), ϕ1(Z; π̂, µ̂)}

ĉov{ϕ0(Z; π̂, µ̂), ϕ1(Z; π̂, µ̂)} v̂ar{ϕ1(Z; π̂, µ̂)}


where ĉov and v̂ar are just empirical covariances/variances.
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Then under usual n−1/4-type rate conditions on (π̂, µ̂) we have

√
n


P̂(Y 0 = 1)

P̂(Y 1 = 1)

−
P(Y 0 = 1)

P(Y 1 = 1)


 N(0,Σ)

Therefore by the delta method, we have

√
n
(

log ψ̂rr − logψrr

)
 N

0,

 −1
P(Y 0=1)

1
P(Y 1=1)


T

Σ

 −1
P(Y 0=1)

1
P(Y 1=1)




so that a 95% CI for ψrr is given by

exp

log ψ̂rr ±
1.96√
n

√√√√ 1∑
a=0

Σ̂aa

P̂(Y a = 1)2
− 2Σ̂01

P̂(Y 0 = 1)P̂(Y 1 = 1)



Similarly the delta method also gives

√
n
(

log ψ̂or − logψor

)
 N

0,

 −1
P(Y 0=1)P(Y 0=0)

1
P(Y 1=1)P(Y 1=0)


T

Σ

 −1
P(Y 0=1)P(Y 0=0)

1
P(Y 1=1)P(Y 1=0)




so that a 95% CI for ψor is given by

exp

log ψ̂or ±
1.96√
n

√√√√ 1∑
a=0

Σ̂aa

P̂(Y a = 1)2P̂(Y a = 0)2
− 2Σ̂01

P̂(Y 0 = 1)P̂(Y 0 = 0)P̂(Y 1 = 1)P̂(Y 1 = 0)


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B.4 Pairwise comparison of RD estimates using doubly robust packages with

different estimation methods

Figure 17: Pairwise comparison of RD estimates using doubly robust packages with dif-

ferent estimation methods
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Diagonal panels are the density plots of estimates from each package, lower diagonal panels are scatter
plots of estimates between two packages, and upper diagonal panels are Pearson correlations of estimates
between two packages. In the scatter plots, horizontal and vertical lines refer to RDtrue = 0.128, and
diagonal lines are references with a slope = 1 and an intercept of 0
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B.5 Pairwise comparison of log(RR) estimates with the true data generating

functions using different methods

Figure 18: Pairwise comparison of log(RR) estimates with the true data generating

functions using different methods
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Diagonal panels are the density plots of estimates from each package, lower diagonal panels are scatter
plots of estimates between two packages, and upper diagonal panels are Pearson correlations of estimates
between two packages. In the scatter plots, horizontal and vertical lines refer to log(RRtrue) = 0.31, and
diagonal lines are references with a slope = 1 and an intercept of 0
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B.6 Pairwise comparison of log(OR) estimates with the true data generating

functions using different methods

Figure 19: Pairwise comparison of log(OR) estimates with the true data generating

functions using different methods
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between two packages. In the scatter plots, horizontal and vertical lines refer to log(ORtrue) = 0.53, and
diagonal lines are references with a slope = 1 and an intercept of 0
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B.7 Performance of the AIPW package in estimating the average treatment effect

[log(RR) and log(OR)]

Table 11: Performance of the AIPW package in estimating the average treatment effect

[log(RR) and log(OR)] using true GLM model without cross-fitting in a simulated obser-

vational study based on EAGeR

Package/Method Bias (SE) MSE MeanCIwidth Coverage (SE)

log(RR)

gComp 0.001 (0.004) 0.032 0.707 96.2% (0.4%)

IPW 0.001 (0.004) 0.033 0.719 96.4% (0.4%)

AIPW 0.001 (0.004) 0.033 0.675 94.8% (0.5%)

tmle 0.001 (0.004) 0.032 0.671 94.8% (0.5%)

tmle3 0.001 (0.004) 0.033 0.687 95.0% (0.5%)

log(RR)

gComp -0.002 (0.007) 0.087 1.171 95.7% (0.5%)

IPW -0.002 (0.007) 0.090 1.195 96.1% (0.4%)

AIPW -0.002 (0.007) 0.090 1.119 94.8% (0.5%)

tmle -0.002 (0.007) 0.087 1.114 94.8% (0.5%)

tmle3 -0.002 (0.007) 0.090 1.141 95.1% (0.5%)
1 Sample size (n) = 200; Number of simulation (nSim) = 2000; log(RRtrue) = 0.31;
log(ORtrue) = 0.53; Numbers within parentheses are Monte Carlo SEs of the performance
indicator estimates
2 Asymptotic SEs were used for CI calculation in AIPW, tmle and tmle3. CIs for gComp
and IPW were obtained by 200 bootstraps and sandwich estimators, respectively
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Appendix C Effect Estimation Appendix

C.1 Sensitivity analyses of the per-protocol effects of low-dose aspirin on

hCG-detected pregnancy

Table 12: Sensitivity analyses of the effects of low-dose aspirin on hCG-detected preg-

nancy among women adhered to the assigned treatment: 5/7 pills per week over at least

80% person-week of follow-up using different estimation methods

RD RR

Method Machine Learning Est. SE LCL UCL Est. SE LCL UCL

Intention-to-treat No 0.043 0.027 -0.011 0.096 1.069 0.043 0.982 1.163

Per-protocol analysis adjusted for baseline covariates

AIPW Yes 0.080 0.028 0.025 0.136 1.107 0.036 1.032 1.188

TMLE Yes 0.078 0.025 0.030 0.126 1.104 0.031 1.038 1.174

G-computation No 0.073 0.027 0.019 0.125 1.097 0.035 1.024 1.173

IPW No 0.075 0.028 0.019 0.130 1.099 0.036 1.024 1.180

Per-protocol analysis adjusted for baseline covariates and post-randomization confounders

AIPW Yes 0.084 0.029 0.028 0.140 1.113 0.037 1.036 1.196

TMLE Yes 0.078 0.025 0.030 0.126 1.104 0.031 1.038 1.174

G-computation No 0.073 0.027 0.020 0.125 1.097 0.034 1.024 1.172

IPW No 0.073 0.028 0.018 0.128 1.097 0.036 1.022 1.177

Unadjusted per-protocol analysis

Unadjusted No 0.078 0.028 0.023 0.132 1.103 0.035 1.029 1.183
* Adjusted for unusual bleeding [≥ 1/7days(20%) per week over ≥ 50% person-week] and nausea and/or vomiting
[≥ 1/7days(20%) per week over ≥ 20% person-week]
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Figure 20: Sensitivity Analyses of the Effects of low-dose aspirin on hCG conception using

different adherence levels and estimation methods
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Setup
Load necessary packages and dataset

packages <- c("tidyverse", "AIPW", "SuperLearner",
"earth","ranger","xgboost")

for (package in packages) {
if (!require(package, character.only=T, quietly=T)) {

install.packages(package,repos='http://lib.stat.cmu.edu/R/CRAN')
}

}

#read dataset
eager_analysis <- read_csv("eager_pp_df_20200615.csv")

Intention-to-treat

# unadjusted estimates
get_all_est <- function(x){

mat <- as.matrix(x)
p1 <- mat[2,2]/sum(mat[2,])
p0 <- mat[1,2]/sum(mat[1,])
res <- data.frame(

#Est./ SE
RD = c(p1-p0,

sqrt(p1*(1-p1)/sum(mat[2,])+p0*(1-p0)/sum(mat[1,]))),
logRR = c( log(p1/p0),

sqrt((1-p1)/mat[2,2]+(1-p0)/mat[1,2])),
logOR = c( log((p1/(1-p1))/(p0/(1-p0))),

sqrt(1/mat[2,2]+1/mat[1,2]+1/mat[1,1]+1/mat[2,1]))
) %>%

rbind(., .[1,] - 1.96 * .[2,], .[1,] + 1.96 * .[2,]) %>%
bind_cols(N = sum(mat),

Param = c("Est.","SE","LCL","UCL"),
Method = "Unadj")

return(res)
}
#ITT estimates
itt <- get_all_est(table(eager_analysis$treatment,eager_analysis$conception))
itt

Per-protocol
Machine Learning + AIPW Adjusting for Baseline Covariates

# Set seeds
set.seed(123)
# Define learners for stacking machine learning via SuperLearner
earth_learner <- create.Learner("SL.earth",tune=list(degree=c(2,3)))
ranger_learner <- create.Learner("SL.ranger", tune=list(min.node.size = c(30),

num.trees=c(500),
max.depth=c(2,3)))

xgboost_learner <- create.Learner("SL.xgboost", tune=list(minobspernode = c(30),

C.2 R code for per-protocol effect estimation
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ntrees=c(500),
max_depth=c(2,3),
subsample=c(1)))

sl.lib <- c("SL.glm", "SL.glm.interaction",
earth_learner$names,ranger_learner$names, xgboost_learner$names)

# Subset dataset to those adhered to the protocol
df <- eager_analysis %>% filter(weeks_0.7_pt_0.8==1)

# select baseline covariates
bl_cov <- df %>%

select(income_1:hsCRP) %>%
as.data.frame()

# AIPW estimation via AIPW package
aipw_fit1 <- AIPW$new(Y=df$conception,

A=df$treatment,
W=bl_cov,
g.SL.library = sl.lib,
Q.SL.library = sl.lib,
k_split = 10,
verbose = TRUE)$

fit()$
summary(g.bound=0.025)$
# check positivity
plot.p_score()

Machine Learning + AIPW Adjusting for Baseline Covariates + Post-randomization Con-
founders

# select post-randomization confounders
postRand_confounder <- df %>%

select(bleed_0.2_pt_0.5,nausea_0.2_pt_0.2) %>%
as.data.frame()

# AIPW estimator via AIPW package
aipw_fit2 <- AIPW$new(Y=df$conception,

A=df$treatment,
W=cbind(bl_cov,postRand_confounder),
g.SL.library = sl.lib,
Q.SL.library = sl.lib,
k_split = 10,
verbose = TRUE)$

fit()$
summary(g.bound=0.025)$
# check positivity
plot.p_score()
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