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Abstract: Graph traversal is widely used in map routing, social network analysis, causal discovery
and many more applications. Because it is a memory-bound process, graph traversal puts significant
pressure on the memory subsystem. Due to poor spatial locality and the increasing size of today’s
datasets, graph traversal consumes an ever-larger part of application execution time. One way to
mitigate this cost is memory prefetching, which issues requests from the processor to the memory
in anticipation of needing certain data. However, traditional prefetching does not work well for
graph traversal due to data dependencies, the parallel nature of graphs and the need to move
vast amounts of data from memory to the caches. In this paper, we propose a compressed sparse
row representation-based graph accelerator on the Hybrid Memory Cube (HMC), called CGAcc.
CGAcc combines Compressed Sparse Row (CSR) graph representation with in-memory prefetching
and processing to improve the performance of graph traversal. Our approach integrates the
prefetching and processing in the logic layer of a 3D stacked Dynamic Random-Access Memory
(DRAM) architecture, based on Micron’s HMC. We selected HMC to implement CGAcc because it can
provide quite high bandwidth and low access latency. Furthermore, this device has multiple DRAM
layers connected to internal logic to control memory access and perform rudimentary computation.
Using the CSR representation, CGAcc deploys prefetchers in the HMC to exploit the short transaction
latency between the logic and DRAM layers. By doing this, it can also avoid large data movement
costs. In the runtime, CGAcc pipelines the prefetching to fetch data from DRAM arrays to improve
memory-level parallelism. To further reduce the access latency, several optimized internal caches
are also introduced to hold the prefetched data to be Processed In-Memory (PIM). A comprehensive
evaluation shows the effectiveness of CGAcc. Experimental results showed that, compared to a
conventional HMC main memory equipped with a stream prefetcher, CGAcc achieved an average
3.51× speedup with moderate hardware cost.

Keywords: compressed sparse row; graph traversal; hybrid memory cube

1. Introduction

We now live in the Big Data era, and thus, today’s memory-bound applications put even
more pressure on the memory system than before, forcing memory techniques to advance and new
approaches to be adopted. Many new memory systems have recently been developed, such as
Wide-I/0, fully-buffered DIMM, buffer-on-board, High-Bandwidth Memory (HBM) and the Hybrid
Memory Cube (HMC) [1]. These memory systems significantly improve on conventional DDR4
memory. For example, the latest generation of HMC can provide 480 GB/s of peak bandwidth, which
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is almost 20× greater than DDR4. Applications with regular access patterns can gain substantial
benefit from these new technologies, especially when combined with prefetching and deeply parallel
memory architectures.

However, if an application shows an irregular access pattern, the prefetch technique and parallel
architecture will not be able to substantially improve the performance of such applications. This also
means that such applications may not enjoy the benefits of high bandwidth, which the prefetch
technique and parallel architecture rely on. These applications do not work very well due to their
unpredictable access patterns, poor spatial locality and sometimes data-dependent accesses. Graph
traversal is such an application that has an irregular access pattern. However, it is widely used in many
situations, such as road routing, analyzing social networks to find relationships, analyzing gene graphs,
detecting causal relationships, and so on. Due to the unique property of graphs, graph traversal is
quite time consuming, especially when a graph has a massive number of vertexes and edges. In fact,
the size of a real-world graph can be very huge. For example, the California road network has nearly
two million vertexes. In Section 2.4, we show that graph traversal suffers from a high memory stall
ratio and a large cache miss rate.

Prefetching is a conventional way to accelerate memory-bound workloads. This technique can
efficiently reduce the high memory transaction latency by learning an application’s access pattern to
maintain a relatively high accuracy to predict and fetch the next likely accessed data. Unfortunately,
the access pattern for a graph is typically irregular, data-dependent and non-sequential. This conclusion
has already been testified in many previous works [2,3]. The memory behavior of DFS-like traversal
has something in common with BFS-like traversal, but great difference exists as well. The common
point is that the access pattern in both BFS-like traversal and DFS-like traversal is indirect, which means
the next access address can be known only if the current data have been fetched. The difference is
that BFS-like traversal can confirm the following K vertexes when the current vertex and its expanded
edges are confirmed, while DFS-like traversal can only confirm the next vertex when the current vertex
and one of its expanded edges are confirmed. It has been said that it is very difficult to implement
DFS at the hardware level, because a stack structure is needed to keep metadata during the DFS
procedure [4]. In comparison, the acceleration of BFS-like traversal is more promising. This paper
aims to provide support for the acceleration of this BFS-like indirect memory access pattern, which can
also be generalized to other similar access patterns shown in Section 3.4. Thus, applications that rely
on graphs are very challenging for conventional prefetchers to predict the access pattern accurately.
Several classical prefetchers, such as stride and pointer prefetch, are reported to be inefficient for graph
traversal [3,5]. It is also difficult to use special-purpose devices (e.g., GPU) to accelerate memory access
because graph processing cannot be easily parallelized [6]. In recent years, many works have tried
to customize optimized distributed frameworks (MapReduce, Spark) for parallel graph processing
problems, such as Distributed GraphLab [7], GraphX [8], JMGPA [9], DPM [10], and so on. These works
try to build a special-purpose distributed framework to accelerate graph processing at the software
level and have been reported to achieve great speedup. However, these methods cannot take full
advantage of hardware at the software level.

Fortunately, graph traversal itself has a simple and well-defined principle that offers hope for
prefetching. This principle can be described as follows: the memory controller will use the current
fetched data as a memory address and then fetch the data that are located at that address. Thus, based
on knowing where to locate the data used in the near future, we can try to fetch these data as early as
possible. By integrating a logic layer under several Dynamic Random-Access Memory (DRAM) layers,
3D stacked memory makes it possible for the memory system to undertake some computational tasks
rather than just being treated as a storage device. In this paper, we use Micron’s Hybrid Memory
Cube (HMC) to design an accelerator for graph traversal. The current HMC specification [1] provides
for a high-bandwidth main memory with integrated logic to handle simple atomic commands and
control memory access. These simple atomic commands contain some arithmetic operations, logic
operations, bitwise operations, and so on. Some operations have unique limitations. An atomic
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operation command incurs read, update and write operations, and these operations happen atomically,
which means that subsequent commands to the same bank are scheduled after the writing of the atomic
command is complete. For example, for a two-operator add operation, one of the operators should be
constant. Adding to this baseline design, we propose CGAcc, a compressed sparse row representation
graph traversal accelerator on HMC. CGAcc deploys three prefetchers on HMC’s logic layer, and these
prefetchers are arranged as a pipeline to reduce the transaction latency cooperatively. We use the
Compressed Sparse Row (CSR) because it is the de facto representation for sparse graphs, which
applies for almost all realistic large-scale graph applications. Some prior work has shown the efficiency
of CSR compared to other formats. In comparison to the standard HMC, our evaluations show that
CGAcc achieved an average 3.51× speedup (up to 7.4× speedup) with modest hardware cost.

There are many previous works about the optimization of graph processing. Before the wide use
of compressed sparse row representation, some works focused on the pointer prefetching because
the linked structure is the base data structure in graphs. Some typical work (e.g., content-directed
prefetching [5], jump-pointer prefetching [11], and so on [12,13]) is based on pointer prefetching.
Limited by the graph representation, the speedup improvements of these works were moderate.
Recent works mainly focused on the CPU side, targeted the conventional memory architecture,
incorporated a newly-optimized prefetcher in the CPU cache and treated memory as a slave that
receives memory accesses passively. Examples of such kinds of works include the Indirect Memory
Prefetcher (IMP) [14], PrefEdge [15], the explicit graph prefetcher [2], Minnow [16], and so on.
Generally, the key principle of all of these works is to use spare time for prefetching the data in
advance, which is different from our design. While this solution is mainstream for conventional
memory, it faces problems such as over-fetching and cache pollution, imbalance between prefetch
access and common memory accesses, expensive data movement cost, and so on. Inspired by the
novel three-dimensional memory architecture, HMC is also used as an accelerator to implement
optimization for some specific scenarios. For instance, neurocube [17] is a programmable and scalable
digital neuromorphic architecture included in the logic layer of HMC. It can effectively accelerate some
neural network applications. Other similar work (e.g., GraphH [18], HMCSP [19]) treated the HMC
as a co-processor that can undertake parts of computational tasks. CGAcc treats the HMC as a smart
master that takes on active responsibility of the graph traversal. In addition, compared to these works,
CGAcc concentrates on CSR-based graph representation and can obtain good speedup with moderate
cost. Some hardware-level works aim at designing a specific architecture for graph processing using
an FPGA (Field-Programmable Gate Array), NVM (Non-Volatile Memory), and so on. Examples of
these kinds of works include OmniGraph [20], GraphR [21], and so on. These hardware-level works
need extensional devices for acceleration; thus, the overhead is larger than CGAcc because CGAcc is
deployed in HMC, and HMC can be treated as the main memory system in a computer system. Some
software-level works optimized graph processing by enriching the instruction set architecture [22]
or customizing the compiler [23]. Software-level works cannot make full use of hardware. Besides,
complex management frameworks or strategies are always needed to make the design work well,
which is also very costly.

This paper makes the following contributions:

1. We characterize the performance bottleneck of graph traversal, analyze the benefit of using
3D stacked memory for traversal and motivate the design of CGAcc. In our approach,
the memory system is as an active partner rather than a passive or co-processing device as
in most previous works.

2. We propose CGAcc, a CSR-based graph traversal accelerator for the HMC. This design is based
on knowledge of the workflow and structure of graph traversal. CGAcc augments the HMC’s
logic layer with prefetching, which operates in a pipeline to reduce transaction latency and data
movement cost.
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3. We evaluate CGAcc under a variety of conditions to consider several design trade-offs.
The experimental results demonstrate that CGAcc offers excellent performance improvement
with modest hardware cost.

The rest of the paper is organized as follows. Section 2 presents background information about
the HMC, CSR-based graph traversal and conventional prefetching. We also describe the problem of
graph traversal for conventional memory and illustrate the opportunity for optimization. Section 3
presents the design of CGAcc. Sections 4 and 5 describe our experimental methodology and evaluation
results. Sections 6 and 7 summarize the related work and the conclusions.

2. Background

2.1. HMC Overview

The Hybrid Memory Cube (HMC) is a 3D stacked memory architecture based on DRAM. Micron
Corp. announced the HMC in 2011, targeting an improvement in performance by 15× compared
with DDR3. The first specification for the HMC was published in 2013. It used 16-lane or eight-lane
full duplex differential serial links, with each lane having 10, 12.5 or 15 Gb/s SerDes. The second
version of HMC was released in 2014. In this version, the HMC has more choices for SerDes rates that
range from 12.5 Gb/s–30 Gb/s, leading to an aggregate link peak bandwidth of 480 GB/s. Up to eight
HMC packages can be chained together with cube-to-cube links to provide even higher bandwidth.
The newest HMC supports four SerDes links connected to an HMC controller. In an HMC system,
a packet-based protocol is used to transmit memory commands and data. Figure 1a illustrates the
requester-responder pair to handle a packet transaction.
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Figure 1. Overview and structure of the Hybrid Memory Cube (HMC). DRAM: Dynamic Random-Access
Memory; TSV: Through-Silicon Via. (a) Overview of the HMC. (b) Structure of the HMC.

The latest HMC’s structure is shown in Figure 1b. Generally, four or eight DRAM dies are stacked
on top of a single logic die. Through-Silicon Vias (TSVs) are used to connect these dies, or layers.
The logic layer can provide multiple functions, such as data refresh, error correction, data routing and
DRAM sequencing. Some simple, but useful processing in memory is also included, which offers an
opportunity to further embed processing in the logic layer. Within an HMC, portions of dies from the
same physical locations are combined to form a vertical sub-structure, called a vault. Each vault has its
own controller on the logic layer to maximize memory-level parallelism. A vault has several banks,
and each bank has a fixed 16-MB capacity.

2.2. Graph Traversal with CSR

To reduce capacity cost and improve storage efficiency, CSR representation is widely used to
represent graphs [24]. For a CSR-based graph, three arrays (i.e., vertex, edge, visited) are used.
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These arrays hold indexes rather than pointers. Figure 2 and the code below show the workflow and
pseudocode of a CSR-based graph traversal example, respectively. In Figure 2, the notation such as
a− b means an edge from vertex a to vertex b. In the parameter list of the pseudocode, WorkList,
Vertex_List, Edge_List and Visitedrepresent the entry of each array. Vertex_cnt and Edge_cnt refer to
the number of vertexes and edges, while Root means the start point of the graph traversal procedure.
The index of a work vertex leads to the corresponding two locations (Index and Index + 1) in the
vertex array. These two values, which are fetched from vertex arrays, illustrate the range that the data
should take from the edge array. Similarly, the edge data will be used as the index for the visited array.
Finally, the visited array will be accessed to determine whether this vertex has been visited, and if
not, the vertex will be pushed into the work list as a new vertex. Note that although we illustrate a
directed graph example, CGAcc supports all kinds of graphs, regardless of whether they are acyclic,
directed or undirected. This is because CGAcc is such a design that focuses on optimizing the current
hardware system. There is no difference in handling different kinds of graphs from the viewpoint
of the hardware. HMC just needs to handle read/write operations and simple arithmetic operations
such as address calculation. Part of the timeline for traversing this sample graph is compared between
using a conventional memory and CGAcc in the following sections.
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Vertex List
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Figure 2. Compressed sparse row-based graph traversal overflow. The notation such as a− b means
an edge from vertex a to vertex b. Part of the timeline for traversing this sample graph is compared
between using conventional memory and CGAcc in the following sections.

2.3. Conventional Prefetching Techniques

Stride prefetch: Stride prefetch is a classical technique that prefetches data according to a
pre-defined distance relative to the current memory address. Stride prefetch works well for sequential
access patterns such as arrays and matrices. However, graph traversal is irregular and data-dependent,
which causes stride prefetch to be inefficient. Stride prefetch can even cause performance degradation.
Previous work reported that using two distinct prefetchers in the L1 and L2 cache yielded only a 17%
performance speedup [2].
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CSR-BASED GRAPH TRAVERSAL
(WorkList, Vertex_List, Edge_List, Visited, Vertex_cnt, Edge_cnt, Root)

1 for Cur_vertex = Root to Vertex_cnt
2 if Visited[Cur_vertex] == True
3 Continue
4 Vertex.push(Cur_vertex)
5 Visited[Cur_vertex] = True
6 while Vertex.Empty() == False
7 Vertex. Index = Vertex. top()
8 Vertex.pop()
9 Edge_Start = Vertex_List[Vertex_Index]

10 Edge_End = Vertex_List[Vertex_Index + 1]
11 for Edge_Index = EdgeStart to Edge_End
12 Visited_Index = Edge_List[Edge_Index]
13 if Visited[Visted_Index] = False
14 Vertex.push(Visited_Index)

Stream prefetch: Stream prefetching works based on access pattern history. The CPU profiles
several access addresses (known as “streams”) during a time window. Memory accesses with similar
patterns can issue a prefetch instruction according to the saved stream. This scheme works well
because memory accesses tend to have a re-occurring pattern, and thus, the technique primarily relies
on spatial locality. Figure 3 shows a performance comparison between a CPU and cache without/with
stream prefetch. We deployed a stream prefetcher on the L2 cache to evaluate the speedup. The graph
shows that stream prefetch had a small speedup of 6.5% in the best case. Although the benefit of stream
prefetching for graph traversal is limited, it outperforms stride prefetching by about 5%, according
to a previous work [2]. According to these results, in our experiments, we used a two-level memory
system armed with a stream prefetcher as a state-of-the-art baseline.

Software prefetch: Many programming frameworks provide support for prefetching through
annotations (programmer or compiler) that mark critical code sections suitable for prefetch. For graph
traversal, software prefetching has minimal improvement. According to Figure 3, any read (load)
accesses to obtain data will cause memory stalls. Like any other prefetch scheme, inaccurate software
prefetching can incur too many additional memory accesses, which cause contention for memory
resources or pollute the cache.
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Figure 3. Speedup of graph traversal benchmarks without prefetch (N_Pref) and with stream
prefetch (Pref).

2.4. Bottleneck in Graph Traversal

Graph traversal suffers from memory stalls and cache misses due to limited spatial locality. Spatial
locality for traversal only exists in certain edge lists for a vertex. We evaluated graph traversal on nine
graph benchmarks from the SNAP dataset [25]. Detailed descriptions of these workloads are shown in
Table 1. Figure 4 shows the stall ratio traversal for these graphs. The figure shows that nearly all of the
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benchmarks had a high stall rate, which approaches 90% on average. Here, we especially illustrate the
comparison of Nstall rate between the situation without a prefetcher and with a prefetcher, as Figure 5
shows. From this figure, we can conclude that the prefetcher provided almost no benefit to the Nstall
rate because the Nstall ratio difference was less than 0.1%. Figure 6 shows the high L1 miss rate of the
benchmarks as well. On average, the L1 miss rate was 58.9%. With stream prefetching, there was only
a 7.2% improvement. According to prior work, accessing the edge array accounts for the majority of
the misses [2]. In most cases, the edge array is several times larger than the visited and vertex arrays,
which contributes to most of the misses. The miss rate is still high for the visited and vertex arrays
because accesses to these arrays happen in a data-dependent order. In turn, the high cache miss rate
for graph traversal directly leads to poor performance.

Table 1. Benchmark description.

Workload Vertex Edge Description

Wiki 2,394,385 5,021,410 Wikipedia talk (communication) network
CA_Road 1,965,206 2,766,607 Road network of California
YouTube 1,134,890 2,987,624 YouTube online social network

Email 265,214 420,045 Email network from an EU research institution
Google 875,713 5,105,039 Web graph from Google
Watson 2,041,302 12,203,772 Watson gene graph

Amazon 262,111 1,234,877 Amazon product co-purchasing network from 2 March 2003
DBLP 317,080 1,049,866 DBLP collaboration network

Knowledge 138,612 1,394,826 Knowledge graph
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Figure 4. Stall ratio of graph traversal benchmarks without prefetch (N_Pref) and with stream
prefetch (Pref).
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Figure 5. NStall ratio of graph traversal benchmarks without prefetch (N_Pref) and with stream
prefetch (Pref).
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Figure 6. L1 miss rate graph traversal benchmarks without prefetch (N_Pref) and with stream
prefetch (Pref).

3. Architecture

We present an architecture called CGAcc that accelerates CSR-based graph traversal using 3D
stacked DRAM. Figure 7 gives an overview of CGAcc. As noted earlier, in this paper, we use Micron’s
HMC, and CGAcc is integrated into the HMC’s logic layer. CGAcc incorporates several structures,
including registers, buffers and control. Memory accesses for graph traversal can be divided into
three parts, according to the target arrays (i.e., vertex, edge and visited). Accesses that are targeted to
different graph vertexes are data-independent and inherently pipelineable. CGAcc processes accesses
with separate prefetchers in a pipeline to hide transaction latency. In addition, it incorporates an
internal cache to further reduce transaction latency.

CPU SIDE

LO
G

IC
 L

A
Y

E
R

Link 0 Link 1 Link 2 Link 3

Switch

VC0 VC1 VC32

DRAM LAYER

CGACC

GCAcc

R
e

g
is

te
r 

G
ro

u
p

s

VEP EP VSP

VEC EC VSC

EBVEB VSB

PB
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Figure 7. Overview of CGAcc. EB: Edge Buffer; EP: Edge Prefetcher; PB: Prefetch Buffer; VB: Vertex
Buffer; VEP: Vertex Prefetcher; VSB: Visited Buffer; VSP: Visited Prefetcher; EC: Edge prefetch Cache;
VSC: Visited prefetch Cache.

Figure 2 shows an example of graph traversal, and Figure 8 compares a part of the timeline for
traversing this sample graph by using a conventional memory and CGAcc. The comparison shows that
memory accesses can be overlapped with CGAcc. For instance, the accesses to different graph vertexes
in time slots t3 and t4 can be prefetched independently with CGAcc, but must be done sequentially for
a conventional memory.

Vertex 4 Edge 4-0 Visited 0 Edge 4-3 Visited 3

Vertex 4 Edge 4-0 Visited 0

Visited 3Edge 4-3

CGAcc

t1 t2 t3 t4 t5

Vertex Edge Visited

Vertex 5

Vertex 5

Figure 8. Example timeline of steps for graph traversal. This figure compares a part of the timeline for
traversing the sample graph in Figure 2 by using a conventional memory and CGAcc.
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To achieve the overlap, CGAcc does a graph traversal on behalf of the CPU. The CPU sets up
and hands off a traversal to CGAcc. By using the internal computational components, CGAcc does
all address computations and memory operations on the memory side to walk through the graph
in a pipeline. This computation is a simple form of Processing In-Memory (PIM) tailored to graphs.
The PIM capability avoids unnecessary memory transfers to/from the CPU and the memory and
avoids polluting the CPU cache with the traversal. Most critically, CGAcc can exploit the internal
parallelism and high bandwidth of the HMC to traverse a graph without involvement of the CPU.
Thus, CGAcc overcomes the sequentiality and inefficient way of handling memory accesses by a
conventional memory and improves the memory performance of a traversal. It is worth noting that
CGAcc is a pure hardware architecture-level design, which means it is totally transparent to the
operating system and the programmers. Neither the operating system nor software stack are involved.
Figure 9 shows the workflow after a programmer calls a function to begin graph traversal.

Hardware (CPU)

Operating System

Software Stack (respond to library call)

Call BFS(root) in real 

application

Hardware 

(HMC with CGACC)

Programmer

Figure 9. BFSworkflow from programmer to hardware.

3.1. CGAcc Structure

In this section, we introduce the components of CGAcc, which are illustrated in Figure 7.

(1) Register group: A collection of registers that maintains metadata and status information about
a graph traversal. First, the Activation Register (AR) is used to enable CGAcc. When the CPU
initiates a traversal, it sends an activation request to CGAcc, which includes a start vertex index.
This request is recorded in the AR. Second, the Continual Register (CR) is used to store the
current maximum start vertex index. This register is needed because a graph may contain several
unconnected subgraphs. When the current subgraph is finished traversing, the address in CR
will be used as the start vertex of the following traversal. Lastly, the End subgraph Register (ER)
is used to record the end of the currently processed subgraph. For some on-line algorithms that
only need partial traversal, there is no essential difference for CGAcc in traversing a complete
graph or a partial graph. CGAcc just keeps fetching data from these three arrays on the memory
side and sending the traversal order in the runtime. The CPU can stop the traversal procedure by
setting the ER register if only partial traversal is needed.

(2) Prefetch group: The core of CGAcc. Because CSR represents graphs with three arrays, elements
from these arrays can be prefetched by separate prefetchers. Thus, the prefetch group includes
the Vertex Prefetcher (VEP), Edge Prefetcher (EP) and Visited Prefetcher (VSP). VEP receives
and uses a new vertex index to access the visited array and to fetch vertex data, according to
the visited status. The VEP reads the AR to start and then reads the CR to get the address of
the next start vertex when notified that processing of the current subgraph is finished. In other
cases, the VEP receives requests that contain the new vertex index from the VSP. When vertex
data are fetched, the VEP will send some requests to the EP to fetch edge data. After edge data
(extended by the current processing vertex) are fetched, the EP will send a request to the VSP to
fetch visited data. It receives a request from the EP and then determines whether this vertex is
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new by simply snooping to see if there exists a write access. The only situation where write access
is issued to a visited array is when a new vertex (i.e., never visited before) is visited, and the value
in its corresponding location in the visited array will be written as true. In this case, this vertex
should be sent to the VEP as an expanded vertex for the following traversal.

(3) Internal cache: Used to reduce transaction latency. The cache is arranged as three small buffers:
Vertex prefetch Cache (VEC), Edge prefetch Cache (EC) and Visited prefetch Cache (VSC). These
buffers cache a portion of the vertex, edge and visited arrays. For a memory access by a particular
prefetcher, the corresponding cache is accessed first. The data are directly fetched on a cache hit.
Otherwise, the prefetcher associated with the array performs a memory access to the DRAM.
The EC and VSC use Least Recently Used (LRU) replacement. The VEC uses an optimized
replacement policy, which is described in Section 3.3. Although these prefetchers are independent,
they share cache resources as part of CGAcc. These internal caches store data from different arrays
(i.e., vertex, edge and visited arrays). At runtime, every prefetcher can access an arbitrary cache if
necessary. For example, the VEP will not only access the data in the VEC, but also data in the VSC
because the VEP will handle both the vertex and visited array.

(4) FIFO (First-In, First-Out) buffer: In our design, FIFO buffers (i.e., Vertex Buffer (VEB), Edge Buffer
(EB) and Visited Buffer (VSB)) are needed for each prefetcher. Each buffer has entries to hold
address information. The value in each entry is evicted after it has been accessed. These buffers
store data in a specific way. Each entry in the VEB stores one address. The VEP uses this address
to issue two accesses. Each entry in the EB is used to store an address pair (Addrs, Addre). The EP
uses this address pair to issue multiple accesses. Finally, each entry in the VSB stores one address,
and the VSP uses this address to issue one access.

3.2. CGAcc Operation

Graph traversal has a unique property that can be exploited: the currently-fetched data can
be used as the next memory access address. Consequently, the next visited vertex can be known
in advance. It is worth noting that the main optimization target of CGAcc is BFS graph traversal,
as described in Section 2.2. Three loads will be issued if the next vertex needs to be determined. In a
conventional memory, after the access to the vertex array, the accesses to edge and visited arrays
are issued sequentially and continuously until all extended vertexes are traversed, which is time
consuming. In fact, memory accesses in a traversal can be divided into three categories: to vertex array,
to edge array and to visited array. These accesses can be pipelined. CGAcc leverages this property
by arranging the VEP, EP and VSP (prefetch group) into a pipeline. Address calculation is also done
in the prefetch group. For some more complicated cases (e.g., depending on calculations or random
operation), CGAcc requires further support. For example, CGAcc needs to deploy more computational
components to support random or more complicated operations so that all the tasks can be done on
the memory side. This will be the subject of our future work.

CGAcc acts like a master rather than a slave, which means the CPU only needs to send a start
request. After the request is accepted, CGAcc continues to fetch data until all graph vertexes are
accessed. When a new vertex is found, which means the traversal order is confirmed, CGAcc will send
the index of the new-found vertex back to the CPU as the traversal result.

A new traversal starts when the VEP detects that the AR has been set by the CPU. After that,
the VEP will use the value in the CR and the CR + offset (the value of offset alliesto the data structure
of the vertex array) to determine the addresses for the next two read accesses to the vertex array.
These two reads fetch and insert data into the EB. As described in Section 3.1, the EB stores the address
pairs. Every time, the EP takes the first element of the queue’s head as an address and issues a load
access to the edge array. At the same time, the first element of this queue entry is incremented by the
offset. Once the first element is equal to the second element, the entry is evicted from the EB. The VSP
issues load accesses using the head value of the VSB, which is then excited. Meanwhile, a Boolean
judgment will be made, and if the result is false (which also means the new extended vertex is never
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visited), the vertex address for this vertex will be calculated with the PIM part on the logic layer and
inserted into the VEB. Each prefetcher fetches data until its corresponding buffer is empty. A traversal
stops when all vertexes have been visited.

Table 2 describes CGAcc’s operation: the events (left column) indicate actions that cause a
particular operation (right column). CGAcc can outperform conventional prefetching due to shorter
memory access latency (CPU side to DRAM layer vs. logic layer to DRAM layer) and the overlap of
the CSR traversal operations among the prefetchers.

Table 2. Events that cause prefetcher actions. AR: Activation Register; CR: Continual Register; ER: End
subgraph Register.

Operations Event Action

1. Operations in VEP

AR = True
ActiveCGAcc
VEB.insert[CR]
AR = False

VEB[top] = Addr

Pre f etchAddr(Vertex[n])
Pre f etchAddr + O f f set(Vertex[n + 1])
EvictVEB[top]
EB.insert(Vertex[n])
CR = Maximum(CR, Addr + O f f set)

ER = True VEB.insert(CR)
ER = False

2. Operations in EP EB[top] = {Addrs, Addre}

While Addrs! = Addre
Pre f etchAddrs[Edge[n]]
Addres+ = O f f set

EvictEB[top]
VSB.insert(Edge[n])

3. Operations in VSP VSB[top] = Addr

Pre f etchAddr[Visited[n]]
EvictVSB[top]
I f Visited[n] == False :

CalculateNewAddr
VEB.insert(NewAddr)

3.3. Optimization of On-Chip Cache

The CSR graph structure offers room for further optimization. In particular, the vertex information
can be fetched in advance. As described above, when a read accesses the visited array, it means that
the same vertex in the vertex array will be accessed in the near future. According to graph traversal,
a write access to the visited array will follow a read access. The read is to the same vertex of the visited
array if and only if the vertex has not been visited. When a read is made to the visited array (which can
be detected by CGAcc), the corresponding vertex address can be calculated based on the visited array
address, and two prefetches to the vertex array can be done simultaneously. Through this optimization,
it is highly possible that memory accesses, which target the vertex array, will hit the cache. This is
because the data were prefetched and stored in the cache, and if not, the data would be ready soon.
Thus, if a data miss happens, the access just waits for the prefetched data to be inserted into the cache.

To support this optimization and ensure that the right data will be placed into the VEC, CGAcc
deploys two registers: the Access Order Register (AOR) and the Vertex Order Register (VOR). The AOR
is used to mark the order of every prefetch access. The initial value of the AOR is set to one. The value
of AOR represents the order of prefetch access. This value accumulates when a write access to the
visited array is detected. This data prefetching is out-of-order, which means that sometimes the
prefetched data may not be used immediately. In this situation, the data are temporarily stored in
a buffer. The VOR is used to mark the vertex access order. The initial value of VOR is set to zero,
and the value of VOR accumulates while every pair of accesses to the vertex array is issued. The initial
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values of AOR and VOR are set to one and zero because every prefetch access is issued before the next
processing vertex access is issued.

When prefetched data (usually in a response access, which has the same order information as the
request access) come back to the buffer (Prefetch Buffer (PB), used to cache the prefetched data that the
VEP will access in the near future), the memory controller on the logic layer checks the order value to
see whether it matches with the VOR. If the values match, the data will be evicted from the buffer and
inserted into the vertex cache. Note that sometimes, the read access to the vertex array may directly hit
the vertex cache, where the value of the VOR becomes larger than the value of the AOR. In this case,
the prefetched data are dropped rather than inserted into the cache.

3.4. Generalized CGAcc

CGAcc is designed to accelerate breadth-first search traversal for CSR representation, it can also
be applied to other applications with similar access patterns on CSR graphs.

BFS-like applications: CGAcc is most accurately called a “domain-specific accelerator”, which can
assist many applications, especially graph-related applications. “BFS-like” means the access pattern
of the application is similar to the access pattern of BFS. CGAcc actually works well for a series
of applications that show a similar access pattern to BFS. Single-Source-Shortest-Path (SSSP) is one
application that has a similar access pattern to BFS, although their purposes differ. The Bellman–Ford
algorithm [26] (or its derivative version, SPFA [27]) is widely used in a typical SSSP procedure in case
some negative edges appear in a graph. Essentially, this algorithm is a relaxation that goes though all
vertexes to relax the shortest path to other vertexes. The biggest difference in data structure between
BFS and SSSP is that every entry in the visited array is only accessed once in BFS, while the visited array
(i.e., distance) can be accessed multiple times in SSSP. Other similar applications include Connected
Components (CCs), Kcore, Graph Coloring (GC), and others. CGAcc works well without modification
or with slight adjustment of these applications.

Sequential Iteration Prefetching (SIP): SIP is a common access pattern in graph applications.
The most obvious characteristic of this pattern is sequential iteration through vertex and edge data.
Applications like Degree Centrality (DC), Triangle Counting (TC) and PageRankare representative
benchmarks that have this kind of access pattern. Stride prefetch would do well if vertex and edge
data were stored sequentially. Unfortunately, with the CSR format, the edge value is indexed by the
vertex value, which makes the data access data-dependent and irregular and leads to inefficiency for a
typical prefetcher. Nevertheless, with CSR, there is a similarity to the BFS-like applications. The only
modification we need to make to CGAcc is to adjust the VSP to a fixed offset rather than the visited
array, which has no relationship with the new vertex insertion. This is a simple generalization, and no
extra hardware is needed.

Other access patterns: CGAcc can be applied to applications other than graph traversal. CGAcc
takes advantage of the short latency between the logic and DRAM layers to shorten data transfer
time, and thus, the data movement cost will be greatly reduced if many tasks are offloaded to the
HMC. Furthermore, the prefetchers are arranged in a pipeline to improve the efficiency cooperatively.
Thus, some memory-bound applications can be accelerated if they have obvious data dependence,
which means the pipeline work style can effectively hide latency. For instance, CSR-based Sparse
Matrix multiply Vector (CSR-SPMV) can be accelerated with CGAcc. By offloading most of the
data load and computing tasks to the logic layer, CGAcc can fetch data in a pipelined way to
do multiplication, improving performance. For other applications with different access patterns,
the number of prefetchers may need to be adjusted for the best performance.
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4. Experimental Setting

4.1. System Configuration

To evaluate CGAcc, we implemented it in the CasHMC simulator [28]. CasHMC is a cycle-accurate
and trace-driven simulator that models the latest HMC. We used Intel PIN [29] to collect memory traces
of graph traversal. The memory traces were collected across all parts of the algorithm (i.e., the traces
included graph construction and initialization). We modeled an 8-core 2-GHz chip multi-processor with
in-order cores. The buffers and cache in CGAcc were measured using CACTI 7.0 [30]. A conventional
memory system with two-level cache (32 KB, 2-way L1 cache, 4-way L2 cache) and stream prefetching
was used for the baseline.

The memory system was configured as a 4 GB HMC with 32 vaults and four high-speed serial
links (30 Gb/s) connected to the HMC controller at the CPU side. Thirty-two TSV lanes shared the
10 GB/s vault data bandwidth, which means each TSV lane had a 2.5-Gb/s bandwidth. Timing
parameters were set according to the HMC Specification 2.1 [1]. The detailed configuration is listed in
Table 3.

Table 3. System configuration. EC: Edge prefetch Cache; VEC: Vertex prefetch Cache; VSC: Visited
prefetch Cache.

Processor 8-Core, 2 GHz, In-Order

Cache
(for baseline)

L1 Cache: 32 KB, 2-way
L2 Cache: 2 MB, 4-way

Vault controller
close-page, 32 buffer size
16 command queue size

Link
4 SerDeslink, 30-Gb/s lane speed

480-GB/s max link bandwidth

On-chip cache

VEC: 16 KB, direct-mapping, latency: 0.15 ns
power: 5.9 mW, area: 0.03 mm2

EC,VSC: 64 KB, direct-mapping, latency: 0.3 ns
power: 21.1 mW, area: 0.07 mm2 each

HMC

32 TSVs, 2.5 Gb/s
timing: tCK = 0.8 ns, tRP = 10

tRCD = 13, tCL = 13, tRAS = 27
tWR = 10, tCCD = 4

On-chip buffer VEB, VSB: 1 KB, EB, PB: 32 KB

4.2. Workloads

The CSR-based graph traversal program was obtained from Graph-BIG [31]. Our benchmarks
included nine real-world graphs from the SNAPdataset [25], which covers a variety of sizes and
disciplines. The detailed information for each graph is listed in Table 1.

5. Evaluation

The speedup of CGAcc was evaluated relative to the baseline. In addition, we carried out several
sensitivity studies to analyze different configurations of CGAcc.

5.1. Performance

Figure 10 shows a performance comparison of the baseline and CGAcc. Compared to the baseline,
CGAcc achieved an average speedup of 3.51×. The performance gain can be attributed to several
factors: (1) The prefetchers can directly access data from the DRAM layer in less time. Generally,
the transaction latency between the logic and DRAM layers is half of the transaction latency between
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the CPU and the DRAM layer. That is, CGAcc can process graph traversal “near memory” with
much shorter latency. (2) Memory accesses are split into three parts according to their target array,
and each one is assigned to a corresponding prefetcher. This pipeline helps hide transaction latency
and improves memory-level parallelism. (3) The deployment of the cache in CGAcc further reduces
transaction latency. The cache is direct-mapped, and the size is set according to the evaluation in
Section 5.2. Accessing such a small cache costs less than 1 cycle in the HMC. Section 3.3 describes the
optimization of the internal cache. To illustrate the impact of this optimization work, we compared
the performance between the situations with and without this optimization. As Figure 11 shows,
for almost all of the graph cases, the performance was better when cache optimization was applied.
On average, the speedup reached 4.0%. This performance gain comes from the prefetching of data that
are likely to be accessed in the near future.
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Figure 10. Comparison of the performance between baseline and CGAcc.
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Figure 11. Comparison of the performance with/without cache optimization.

Previous work [2] described the latest state-of-the-art prefetcher for graph traversal. This prior
work was based on conventional DRAM, and the prefetcher was placed in the CPU’s cache system.
We compared the performance of the graph prefetcher and CGAcc on common benchmarks. Figure 12
shows the results. On average, CGAcc had a 1.59× speedup compared with the graph prefetcher.
We noticed that the speedup varied in different benchmarks. For example, the Web-Google benchmark
had nearly the same speedup of (2.63× vs. 2.70×). However, California Road-Net had a relatively big
difference of (1.9× vs. 7.4×). The reason for the speedup divergence is that we split memory accesses
according to the array, and the imbalance between processing each category causes the prefetcher
that has the heaviest task to be the bottleneck. Thus, CGAcc has better performance for sparse graphs
(a sparse matrix generally contains flat numbers of vertexes and edges; the majority of real-world
graphs are sparse matrices). As for the graph prefetcher in previous work, it could achieve flat speedup
for arbitrary cases, but CGAcc outperformed it.
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Figure 12. Comparison of the performance on a few benchmarks between graph prefetcher and CGAcc.

5.2. Effect on On-Chip Cache

We studied the effects of the on-chip cache on the capacity and associativity to determine the
most suitable configuration. Table 4 shows the different latencies of the on-chip cache under different
configurations. Essentially, the latency to access the on-chip cache made almost no difference because
the frequency of the HMC was 1.25 GHZ, which means that any latency less than 0.8 ns would cost
one cycle. Thus, the hit rate and the access latency to the CGAcc’s cache directly affect performance.
In this evaluation, we set the size value of each cache to be the same for simplicity.

Figure 13 shows a performance comparison between different cache capacity configurations.
Considering the hardware cost of the logic layer, the cache capacity was limited to a maximum of
128 KB. From these results, as expected, as cache capacity increased, the speedup also increased. When
normalized to 16 KB, the speedup was 1.17×, 1.51×and 1.52×, respectively for 32 KB, 64 KB and
128 KB. As performance is tightly related to the CGAcc cache hit rate, Figure 14 shows this parameter.
We noticed that the hit rate of EC and VSC increased as cache size increased, but the hit rate of
VEC was chaotic. This is because the EC and VSC use a classical LRU replacement policy, and thus,
the properties of the hit rate and performance obey the typical LRU rules, as summarized above.
However, as described in Section 3.3, the access from the VEP keeps accessing the VEC until it hits,
which makes the hit rate of the VEC unpredictable. Therefore, it is not as necessary to make the VEC
large, and the hit rate of the VEC does not affect the performance much. We also observed that the
speedup seemed to saturate after capacity exceeded 64 KB. This is because the access latency increased
when the memory capacity increased. In conclusion, we set the capacity of the EC and VSC to 64 KB,
and we set the capacity of the VEC to 16 KB.
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Figure 13. Comparison of the performance for different on-chip cache capacities.
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(c) VSC hit rate comparison
Figure 14. Comparison of the on-chip cache hit rate for different on-chip cache capacities.

We also evaluated four cache associativities: direct-mapped, four-way-set, eight-way-set and
fully-associative. Figures 15 and 16 show the performance and cache hit rate for these configurations
when cache capacity was set to 64 KB. In Figure 16, we used the normalized results because the hit rates
for various associativities had tiny differences. Fully-associative had the highest hit rate. Considering
the actual hardware cost and transaction latency, we set the cache associativity to be directly mapped.
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Figure 15. Performance comparison for different on-chip cache associativities.
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Figure 16. Comparison of the on-chip cache hit rate for different on-chip cache associativities.

Table 4. Access latency of the on-chip cache configuration (ns).

16 KB 32 KB 64 KB 128 KB

Direct-Mapped 0.167 0.227 0.316 0.431
Four-Way-Set Assoc 0.420 0.454 0.464 0.523
Eight-Way-Set Assoc 0.753 0.779 0.812 0.868

Full Assoc 0.304 0.573 0.709 1.191

5.3. Effect on Graph Density

We also explored the effect of graph density. We considered two cases: (1) fix the vertexes, increase
the edges; (2) fix the edges, increase the vertexes. To adjust the number of vertexes and edges flexibly,
we used the Kronecker graph generator from Graph 500 [32]. For Case 1, we set the vertex factor to 16,
which means the number was 65,536, and the edge factor varied from 5–25, which means the number
varied from 655,360–3,276,800. For Case 2, we set the edge number to be 1,048,576, and the vertex
number varied from 32,768–524,288.

Figures 17 and 18 show a performance comparison for Cases 1 and 2. Figure 17 shows that
although the difference was not so obvious, CGAcc had the highest speedup in s16e15, which
outperformed the average speedup by 1.7%. The speedup gaps between different graphs came
from the imbalance of tasks assigned to each prefetcher. To make the data clear, we add Table 5 to
show the speedup of CGAcc in this sensitivity test. For Case 2, the situation was similar to Case 1,
but we noticed that when the vertex factor increased from 18–19 (i.e., the number of vertexes doubled),
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the speedup had significant degradation. The VEC was saturated when the factor was 18, and when
there were more vertexes, the VEP became a bottleneck, which slowed down the whole system
performance.
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Figure 17. Comparison of performance between the baseline and CGAcc on edges.
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Figure 18. Comparison of the performance between baseline and CGAcc on vertexes.

Table 5. Speedup of CGAcc in the sensitivity test on edges.

Graph Case s16e5 s16e10 s16e15 s16e20 s16e25 Gmean

Speedup 6.68 6.53 6.71 6.50 6.58 6.60

5.4. Generalized CGAcc

We explored the effects of CGAcc on other applications. For the BFS-like applications, we evaluated
SSSP, Kcore and Graph Coloring (GC). For the sequential-iteration benchmarks, we evaluated Degree
Centrality (DC), Triangle Count (TC) and PageRank. These benchmarks came from the GraphBig
benchmark [31]. For illustration, we evaluated these benchmarks on three graphs: Amazon, Google
and CARoad. Figure 19 shows the speedup of CGAcc on BFS-like benchmarks compared to the
baseline and graph prefetcher. This result showed that CGAcc could work well for other applications:
it obtained more than a 4× speedup on average for these three graphs and outperformed the graph
prefetcher by 2.1× on average. The speedups for BFS-like applications were slightly smaller than
BFS’s speedup because the extra memory accesses (e.g., more accesses to the visited array in SSSP)
caused one or more prefetchers to become a bottleneck. For sequence-iteration applications, Figure 20
shows that although the speedup was not as high as BFS-like applications, CGAcc could still achieve a
2.9× speedup on average and outperformed the graph prefetcher by 1.6×. In comparison to BFS-like
applications, the lower speedup happened because sequential-iteration applications cannot always
benefit from pipeline processing and use sequential access more often. Thus, the benefit mainly
comes from the short latency between the logic and DRAM layers, rather than the pipeline processing
provided by CGAcc.
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Figure 19. Comparison of the performance between the baseline, graph prefetcher and CGAcc on
BFS-like applications. GC, Graph Coloring; SSSP, Single-Source-Shortest-Path.


����� 
��������"��
����
����� 
��������"��
����
����� 
��������"��
����
�

�

�

�

�

�

�

��
��
��

�
��

��
��
�

��
�!

��
��

 

�
 �
 ��

	��� �
������ �

���

Figure 20. Comparison of performance between baseline, graph prefetcherand CGAcc on
sequential-iteration applications.

5.5. CGAcc Prefetch Buffer

We explored reasonable sizes for the FIFO buffer described in Section 3.1. These buffers are used
to store addresses for the following prefetching. Figure 21 records the entry amounts used, in which
the blue, red, yellow and green lines refer to VEB, EB, VSB and PB, respectively. The VEB and VSB cost
only a few entries because VEP and VSP can rapidly issue the read access as soon as the top entry of
the corresponding buffer is not empty. EB and PB cost more entries. For the EB, this cost is incurred
because every entry in the EB contains a pair of addresses, and each entry will not be evicted until the
two addresses in a pair are the same (i.e., when the EP finishes traversing all edges). For the PB, the
reason is that the prefetched data have to be stored until the VSB confirms whether the current vertex
is visited or not, and during this time, the buffer will be cumulatively consumed. According to these
results, we set the VEB and VSB to be 1 KB, while the EB and PB were set to be 32 KB.

Figure 21. Entries’ consumption for each buffer. Blue, red, yellow and green lines refer to VEB, EB,
VSB and PB, respectively.
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5.6. Hardware Overhead

As described above, the main hardware overhead of CGAcc comes from five parts: (1) five
registers for metadata and status; (2) a small buffer to cache prefetched data; (3) input buffers for the
prefetchers; (4) a prefetch buffer for optimization; and (5) prefetch logic. In terms of overhead, the
caches and buffers are the biggest factor. Based on the sensitivity analysis in Sections 5 and 5.5, CGAcc
has two 64-KB and one 16-KB directly-mapped caches to buffer the vertex, edge and visited arrays,
respectively. The queue buffers are relatively small, and the prefetch buffer is 66 KB. In summary,
the total size requirement is 210 KB for the logic layer, which is modest.

6. Graph Processing- and HMC-Related Work

6.1. Graph Processing-Related Prefetching

Several works have tried to accelerate graph traversal using the prefetching technique. Indirect
patterns like A[B[i]] will lead to irregular memory access pattern, which will worsen the memory
system performance. Yu et al. [14] proposed an efficient hardware Indirect Memory Prefetcher (IMP) to
capture access patterns and hide latency. Essentially, it is a kind of stride-indirect prefetcher, and thus,
the speedup is limited because graph traversal is quite irregular and not a stride-indirect type. On a
GPU, irregular access pattern also causes performance degradation. Lakshminarayana et al. [33]
proposed spare register-aware prefetching for load pairs that have one load dependent on the other,
which is common in graph traversal algorithms. When the target load is detected, prefetch instructions
will be issued, and the data are prefetched into spare registers, which are not used by any active threads.
Based on the predictable access pattern property of graph traversal, Nilakant et al. [15] proposed
PrefEdgeby using a look-ahead function to determine the memory-mapped address that will be used
in the future, then to move the data from the SSD to the DRAM in advance. Through a parallelizing
request to make full use of the maximum throughput from SSDs, PrefEdge can effectively hide the
I/O latency. Ainsworth et al. [2] presented an explicitly-configured graph prefetcher. By snooping the
data flow through the L1 cache and reasonably balancing the prefetching and common memory access
time, it schedules timely loads of data before they are needed. Zhang et al. [16] proposed the Minnow
engine, which augments CMP. Minnow consists of two parts: work list offload and work list-directed
prefetching. Through offloading work list operations, it removes scheduling from the critical path to
improve performance. Work list-directed prefetching is used to launch prefetch threads in respond to
work list scheduling decisions. As we can see, generally, the key principle of all of these works is to
use spare time for prefetching the data in advance, which is different from our design. These works are
also mainly focused on the CPU side, which means the potential computational ability of the memory
system is still not used. To the best of our knowledge, CGAcc is the first work that was specially
designed for CSR-based graphs, using the HMC as a positive master for accelerating graph traversal.

6.2. Pointer-Related Fetchers

Some works concentrate on accelerating graph traversal in which graphs are not present in CSR
format. Cooksey et al. [5] proposed a content-directed data prefetching architecture. This technique
prefetches “likely” virtual addresses, which are observed in memory references. The speedup
is moderate because the technique cannot avoid over-fetching, and it has some cache pollution.
Al-Sukhni et al. [12] proposed the Compiler-Directed Content-Aware Prefetching (CDCAP) technique.
CDCAP uses compiled-inserted prefetch instructions to convey the information of a dynamic
data structure to a prefetching engine. With the help of such information provided by the
compiler [34,35], CDCAP saves excessive prefetch operations. Ebrahimi et al. [36] proposed a low-cost
hardware/software co-operative technique with two parts: compiler-guided prefetch filtering to tell
the hardware the address that needs to be fetched and a prefetch throttling mechanism to manage
multiple prefetchers in a hybrid prefetcher system based on runtime feedback. Roth et al. [11] proposed
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a general Jump-Point Prefetching (JPP) to relieve the long access latency of handling linked structures.
JPP overcomes the pointer-chasing problem by storing explicit jump-pointers. Lai et al. [13] proposed
hardware-based pointer data prefetching. By identifying and storing pointer loads, this prefetcher
fetches speculative virtual address data to a buffer. Limited by the graph representation, the speedups
of these works are moderate. Because of its high efficiency and outstanding storage-saving ability
when handling graph processing, CSR graph representation is quite widely used for large sparse
graphs, which is definitely the feature of real-world graphs. CGAcc focuses on CSR-based graphs and
obtains an impressive speedup.

6.3. HMC as an Accelerator

As a novel three-dimensional memory architecture, the HMC can be used as an accelerator in
addition to the main memory. Some previous works used PIM to offload tasks from the CPU to
memory. Kim et al. [17] proposed neurocube, a programmable and scalable digital neuromorphic
architecture included in the logic layer of 3D memory. Based on the principle of memory-centric
computing, neurocube consists of a cluster of PEs (Processing Engines ) connected by a 2D mesh
network for efficient neural computing. Dai et al. [18] proposed GraphH, which is a PIM architecture
for graph processing on the HMC. Integrated with massive on-chip external hardware and algorithm
optimization support, GraphH can obtain great speedup. Nai et al. [37] presented GraphPIM, which
is similar to GraphH, but with less modification and cost. Some other works used the same concept,
but focused on different optimization domains [38,39]. Based on 3D stacked memory, Hong et al. [40]
proposed a novel Near Data Processing (NDP) architecture for Linked-List Traversal (LLT). This design
includes NDP-aware data localization and LLT batching to reduce transaction latency and improve
performance. Qian et at. [19] presented HMCSP, a simple optimization to extend the HMC’s PIM
capability to reduce the memory transaction latency of sparse matrix multiplication. Generally,
this prior work treated the HMC as a co-processor that can undertake parts of computational tasks.
In comparison, CGAcc treats the HMC as a smart master, which takes on active responsibility of the
graph traversal. In addition, compared to these works, CGAcc concentrates on CSR-based graph
representation and can obtain good speedup with moderate cost.

6.4. Graph Acceleration Architecture

Several prior papers aimed at designing a specific architecture for graph processing. Xu et al. [20]
proposed OmniGraph on an FPGA. It is based on interval-shard and several computational
engines. By combining these engines, OmniGraph can obtain good speedup when accelerating
graph processing. There are also some similar FPGA-based works that show optimization
for SSSP, all-pairs-shortest-path, parallel breadth-first search and strongly-connected components
algorithms [41–44]. Ham et al. [23] proposed domain-specific Graphicionado, which exploits the data
structure-centric datapath specialization and memory subsystem specialization. Dogan et al. [22]
proposed a shared memory multi-core architecture. By introducing hardware-level messaging
instructions into ISA, this design can accelerate synchronization primitives and move computation
towards data more efficiently. These hardware-level works need extensional devices for acceleration,
and thus, the overhead is larger than CGAcc because it is deployed on HMC, which can be treated as
the main memory in the computer system. Software-level works cannot make full use of hardware.
Besides, complex management frameworks or strategies are always needed to keep the design working
well, which is also very costly. Song et al. [21] proposed GraphR. It is a ReRAM-based graph processing
accelerator that consists of two components: memory ReRAM and Graph Engine (GE). The GE is
responsible for processing graph computations, which are performed in a sparse matrix. GraphR
can realize massive parallelism because of the unique feature of ReRAM. However, research about
ReRAM remains in the theoretical stage. CGAcc is based on the HMC, which already has a hardware
production. Thus, it is easier and more promising for CGAcc to be applied in real-world scenarios.
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7. Conclusion

In this paper, we propose a novel compressed sparse row representation-based graph traversal
accelerator on HMC, called CGAcc. Conventional prefetching techniques and parallel frameworks do
not work well in handling irregular access patterns, which is precisely the memory access feature of
graph traversal. Novel 3D stacked memory structures such as the HMC offer low transaction latency,
very high bandwidth and PIM features, thus making them an ideal environment for optimization of
graph traversal on the memory side. Armed with the knowledge of the CSR-based graph traversal’s
work flow and structure, the HMC acts like a master and uses the prefetchers in a pipelined way to
reduce transaction latency and improve the overall performance. Comprehensive evaluations are
described for several real-world graphs, which have numerous vertexes. Compared to a conventional
memory system with stream prefetching, CGAcc could achieve a 3.51× speedup on average with
small hardware cost. There are many research perspectives to improve CGAcc, such as the interaction
with a streaming prefetcher, power gating-based energy-aware optimization, support for some more
complicated graph processing algorithms, and so on. These works will be further explored in the future.
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