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N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels found at nearly 

all vertebrate excitatory synapses that contribute to a multitude of nervous system functions. 

Unique biophysical properties, including high Ca2+ permeability, voltage-dependent Mg2+ block, 

and slow gating kinetics, allow NMDARs to control the magnitude and timing of Ca2+ influx 

following synaptic events. Ca2+ influx through NMDARs drives an array of signaling pathways that 

regulate critical neuronal functions such as synaptic plasticity and cell survival. Abnormal NMDAR 

activity is involved in a remarkable range of nervous system disorders including schizophrenia, 

major depressive disorder, stroke, neuropathic pain, and neurodegenerative diseases. 

Specifically, NMDAR overactivation can lead to accumulation of toxic levels of Ca2+ that initate 

cell death signaling pathways. Because of the core involvement of NMDARs in normal brain 

physiology as well as brain pathologies, NMDARs are attractive targets for neurotherapeutic 

drugs. The NMDAR channel blocker memantine, a clinically approved treatment for Alzheimer’s 

disease, displays a combination of clinical utility and tolerability unique amongst NMDAR 

antagonists. We recently discovered that memantine enhances NMDAR desensitization by 

stabilizing a Ca2+-dependent desensitized receptor state. Stabilization of a Ca2+-dependent state 

by memantine offers a rational mechanism by which memantine can target specific NMDAR 

subpopulations involved in disease: preferential inhibition of NMDARs in neurons experiencing 

long durations of high Ca2+ influx. Therefore, we systematically investigated the relation between 

channel blocker potency, intracellular Ca2+ concentration ([Ca2+]i, and NMDAR desensitization. 

We found that while potency of memantine depended on [Ca2+]i, the potency of another clinically 
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useful channel blocker, ketamine, was [Ca2+]i-independent. Utilizing this discrepancy, we 

compared the memantine and ketamine binding sites and identified a residue in the NMDAR 

transmembrane domain that strongly contributes to NMDAR desensitization and memantine 

potency. Lastly, we characterized novel NMDAR channel blockers and discovered that potency 

of a memantine derivative was also dependent on [Ca2+]i. The data presented in this dissertation 

provide key insight into how [Ca2+]i affects channel blocker activity and NMDAR desensitization, 

and ultimately improve our understanding of the structural and functional mechanisms underlying 

the effects of channel blocking drugs on NMDAR function. 
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1.0 GENERAL INTRODUCTION 

Armed with only a limited vocabulary, neurons can generate an effectively infinite number 

of specific, meaningful messages to elicit an astoundingly diverse array of thoughts, behaviors, 

and experiences. While we possess a superficial grasp of neuronal vernacular, enough to 

recognize and even translate certain phrases, our understanding of basic construction of these 

remarkably complex messages is still limited. Understanding how to combine symbols to form 

words and phrases, and how these words and phrases can be combined to express complex 

statements, is critical to achieving literacy in a new language. Like letters to written English, ion 

channel signals are the constitutive units of the neuronal language – meaningless in isolation, but 

immensely powerful when organized.  

Ion channels are proteins that allow ions to flow across cell membranes and are necessary 

for the transmission of information between nervous system cells. Neurons, the cells responsible 

for the majority of signaling in the nervous system, transmit information to and receive information 

from other neurons through specialized structures called synapses. Synaptic transmission 

involves the release of molecules known as neurotransmitters from a presynaptic neuron onto the 

cell membrane of a postsynaptic neuron, where receptor proteins bind the neurotransmitter. 

These neurotransmitter receptors then convert the chemical signal from the presynaptic neuron 

into a physiological response in the postsynaptic neuron. The transduction of chemical signals 

into electrical responses is performed by ligand-gated ion channels, neurotransmitter receptors 

that activate in response to agonist binding and permit ion flux across cellular membranes. The 

cumulative opening of many ligand-gated ion channels alters the concentrations of intracellular 

ions and the membrane voltage of the postsynaptic neuron, which both have profound 

consequences on neuronal function. The specific combination of ion channels opened by 
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concomitant synaptic inputs either electrically excites or inhibits the cell, determining whether the 

signal will be propagated to other downstream neurons. Ligand-gated ion channel activity can 

also alter the concentrations of intracellular ions in the postsynaptic neuron, which can lead to the 

strengthening or weakening of specific synaptic inputs and regulate gene expression. Through 

these mechanisms, ion channels govern the activity of individual neurons and, in turn, shape the 

neuronal ensembles that drive higher-level nervous system function. 

Ionotropic glutamate receptors (iGluRs), a family of ligand-gated ion channels activated 

by the amino acid glutamate, are the primary mediators of fast excitatory transmission in the 

central nervous system. Among iGluRs, N-methyl-D-aspartate receptors (NMDARs) are 

particularly important for both the electrical and chemical components of signal transduction. 

NMDARs are expressed in nearly all nervous system cells and normal NMDAR activity is vital 

both to basic neuronal physiology and higher-level brain function. Likewise, NMDAR dysfunction 

is a central feature of many nervous system disorders, making NMDARs attractive 

pharmacological targets for treatment of various neurological and psychiatric disorders. 

Unfortunately, modulating NMDAR activity with therapeutic drugs has proven to be excruciatingly 

complicated due to the near-ubiquitous involvement of NMDARs in normal brain function. 

Compounds that inhibit NMDARs by binding in and blocking ion flux through the NMDAR channel, 

known as channel blockers, are currently the most clinically efficacious NMDAR-targeting 

neurotherapeutic drugs. While the mechanism of inhibition employed by channel blockers seems 

quite simple, channel blockers exert additional, more nuanced effects on ion channel function that 

may contribute to their clinical profiles. The work presented in this dissertation details the ability 

of NMDAR channel blockers, with a primary focus on the clinically useful NMDAR channel blocker 

memantine, to act as dual-mechanism inhibitors that both block and modulate the gating of the 

NMDAR channel. 
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This introduction aims to accomplish four main tasks. First, I will discuss ion channel gating 

and the relation between channel gating and channel block. Second, I will review the basic 

characteristics of NMDARs, the receptor at the center of this dissertation research, and the 

inherent complexity of their pharmacology. Next, I will detail the effects of channel blockers on 

NMDAR state transitions to illustrate how channel blockers can act as powerful tools for the study 

of NMDAR channel function. I will then introduce the concept of state-specific antagonism and 

describe a strategy for targeting of specific NMDAR states with channel blockers.  

1.1  ION CHANNEL GATING 

(Adapted from Appendix A (Phillips et al., 2020)) 

Neuronal information processing depends on the distribution and properties of the ion 

channels found in neuronal membranes. Channel gating, perhaps the most basic characteristic 

of ion channels alongside ion permeation, refers to the ability of ion channels to either open and 

allow transmembrane ion flux or to close and prevent ion flux. The gating mechanisms employed 

by ligand-gated ion channels are divided into three general categories: activation, deactivation, 

and desensitization. Activation refers to the transition of ion channels from closed to open states 

following application of agonist. Deactivation refers to the transition of channels from open to 

closed states following removal of agonist. Desensitization is canonically defined as a decrease 

in the fraction of channels that are in the open state (termed open probability, or Popen) in the 

maintained presence of agonist (Katz & Thesleff, 1957). Desensitization is typically a direct 

consequence of agonist binding. A fourth gating mechanism that resembles desensitization but 

is not driven by agonist binding has been referred to both as desensitization and inactivation 

(Mayer & Westbrook, 1985; Legendre et al., 1993; Hille, 2001; Glasgow et al., 2017), although 
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inactivation is a term typically used to describe a different mechanism employed by voltage-gated 

channels (Hille, 2001). While driven by different underlying mechanisms, both desensitization and 

inactivation ultimately describe nonconducting channel states that do not respond to typical 

activating stimuli (Katz & Thesleff, 1957; Hille, 2001). Gating mechanisms of ion channels are 

finely tuned and are essential to normal nervous system function, with even minor aberrations of 

channel gating often resulting in disease. While most known channelopathies involve dysfunction 

of voltage-gated channels, naturally occurring genetic variants that alter the gating of ligand-gated 

ion channels are increasingly associated with neurological disorders, including epilepsy, 

intellectual disability, and autism (Yuan et al., 2015). 

Studies of drugs that inhibit channel function provide valuable insight into ion channel 

gating mechanisms. Channel blockers, antagonists that bind in and prevent ion flux through ion 

channels, have been successfully used to probe both the structure of ion channel pores and the 

kinetics of channel gating. Channel gating requires conformational changes in or near the channel 

pore (i.e., the transmembrane ion conduction pathway), and channel blockers are known to 

interact differentially with channels in open, closed, inactivated, and desensitized states 

(Heidmann & Changeux, 1986; Benveniste & Mayer, 1995; Blanpied et al., 2005; Purohit & 

Grosman, 2006; Glasgow et al., 2017). Thus, channel blockers are exceptionally well-positioned, 

both figuratively and literally, for use as analytic probes in studies of channel gating.  

1.1.1 Reciprocal interactions between channel block and channel gating 

Channel gating can profoundly influence channel block, and channel block can profoundly 

influence channel gating. The initial binding of channel blockers often depends on gating state. 

Most blockers of ligand-gated ion channels can only enter and bind to the channel while agonist 

is bound and the channel is in the open state (Figure 1A). Such blockers are descriptively named 
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open channel blockers and are the focus of this dissertation. In some cases, open channel 

blockers are also termed “use-dependent” (Courtney, 1975). A blocker is termed use-dependent 

if inhibition by the blocker (1) requires activation of the channel, and (2) increases with duration 

of channel activation until an equilibrium between blocker binding and unbinding is reached 

(Figure 1A). The actions of almost all known ligand-gated ion channel blockers have been found 

to be at least partially dependent on channel opening, binding either exclusively or with much 

faster kinetics when the channel is open.  

Channel blocker unbinding also depends on gating transitions. If closure of the channel 

gate and agonist unbinding can occur while the blocker is bound, the blocker may become 

“trapped” in the channel (Figure 1C,D), unable to unbind until agonist is reapplied. Interestingly, 

some trapping blockers display the ability to escape from a fraction of blocked channels even 

after removal of agonist, a phenomenon termed “partial trapping” that is not fully understood 

(Blanpied et al., 1997; Sobolevsky & Yelshansky, 2000; Mealing et al., 2001; Bolshakov et al., 

2003; Kotermanski et al., 2009). On the other hand, sequential or “foot-in-door” channel blockers 

physically occlude closure of the channel gate (Figure 1E).  

The depth of the blocking site, size of the channel blocker, location of the channel gate, 

and gating-associated conformational changes all contribute to whether channels can close while 

the blocker is bound. These features dictate the structural interactions between channel blockers 

and the receptor’s gating machinery, which in turn determine the influence that the channel 

blocker can reciprocally exert on gating transitions.  

Bound channel blockers can affect gating transitions in three general ways. Blockers can:  

1. Alter agonist binding and/or unbinding kinetics; 

2. Stabilize channel open states; 

3. Stabilize channel closed states. 
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For example, the binding of large sequential blockers to open channels prevents both 

transition of channels into closed states (Figure 1E) and agonist unbinding (Armstrong, 1971; 

Ruff, 1977; Neher & Steinbach, 1978; Benveniste & Mayer, 1995; Sobolevsky et al., 1999). In 

contrast, smaller trapping blockers can interact with either open or closed channel states and can 

therefore have many possible effects on channel gating (Figure 1D). For example, trapping 

blockers can stabilize open or closed channels and/or facilitate entry into or recovery from 

desensitized states (Blanpied et al., 2005; Glasgow et al., 2017; Song et al., 2018). The inherent 

intertwining of channel gating and block allows channel blockers to be leveraged as powerful tools 

for the study of ion channel structure and function. 
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Figure 1. Interplay between channel gating and open channel block.   

A, Schematic depicting inhibition of current (black line) by a prototypical open channel blocker. Three 

agonist applications (green bars) are shown. The first agonist application in the absence of blocker shows 

the control response. The second agonist application, which follows the application and removal of a blocker 

(red bar), shows that the blocker cannot access its binding site when the channel is closed. The third agonist 

application, which is made in the presence of a blocker, shows that the blocker can access its binding site 

and inhibit agonist-activated current when the channel is in the open state. Entry of a blocker into open 

channels accelerates the apparent decay of the response and decreases the steady state response. 

Because the blocker cannot bind until the channel opens, peak current in response to the first agonist 
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application in the presence of the blocker may be unaffected, as shown here. However, if blocker binding 

is fast relative to current activation kinetics, the peak response may be reduced. B, Ion channels can 

transition between open, ion permeable states and closed, impermeable states. kc is transition rate into 

closed state and ko is transition rate into open state. C–E, The size of channel blocking compounds (red) 

and depth of the blocking site affects blocker interactions with the channel gate. C, Small channel blockers, 

such as inorganic cations, can block open channels without preventing channel closure or affecting gating 

transitions. kon is blocker binding rate and koff is blocker unbinding rate. When the channel is blocked by a 

blocker that does not interact with the gate, channel closing rate is k’c and channel opening rate is k’o. D, 

Small-to-intermediate-sized organic channel blockers can block open channels without preventing channel 

closure, but nevertheless can interact with the channel gate, either accelerating or decelerating gating 

transitions. When the channel is blocked by a blocker that interacts with the gate, channel closing rate is 

k’’c and channel opening rate is k’’o. E, Large, organic, sequential/foot-in-door blockers can block open 

channels and prevent channel closure. k’’’c is channel closing rate when the channel is blocked by a 

sequential/foot-in-the-door blocker.  
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1.2 IONOTROPIC GLUTAMATE RECEPTORS 

iGluRs are members of the pore loop superfamily of ion channels, integral membrane 

proteins that mediate the majority of ion flux across neuronal membranes (Hille, 2001; Traynelis 

et al., 2010). Fast excitatory synaptic transmission in the central nervous system is primarily 

mediated by iGluRs, and proper functioning of iGluRs is vital to synaptogenesis, synaptic 

plasticity, signal integration, and information transfer between neurons (Traynelis et al., 2010; 

Paoletti et al., 2013). Due to the integral roles iGluRs play in neuronal function and their ubiquitous 

expression, aberrant iGluR activity contributes to a wide variety of neuronal dysfunctions that can 

drive nervous system disorders (Zorumski & Olney, 1993; Javitt, 2004; Lau & Zukin, 2007; Bowie, 

2008; Burnashev & Szepetowski, 2015; Lee et al., 2015; Yuan et al., 2015; Salpietro et al., 2019). 

iGluRs are divided into three main classes by structure: α-amino-3-hydroxyl-5-methyl-4-

isoxazole-propionate receptors (AMPARs), kainate receptors (KARs), and the aforementioned 

NMDARs. A fourth division of the iGluR family, δ receptors, shares substantial sequence 

homology with other iGluRs. Surprisingly, despite forming functional ion channels (Ady et al., 

2014; Benamer et al., 2018; Gantz et al., 2020), δ receptors show no ligand-gated ion channel 

function (Yamazaki et al., 1992; Araki et al., 1993; Lomeli et al., 1993; Orth et al., 2013). All iGluRs 

assemble as complexes of four membrane-spanning subunits that form a central pore. Each 

iGluR subunit contributes exclusively to one subtype of iGluR: GluA1–4 form AMPARs, GluN1, 

GluN2A-D, and GluN3A-B form NMDARs, and GluK1–5 form KARs. Despite this wide diversity, 

all iGluR subunits possess a similar general structure (shown in Figure 2A using an NMDAR as 

an example) consisting of four discrete, semiautonomous domains, namely, an extracellular 

amino-terminal domain (ATD), an extracellular ligand-binding domain (LBD), a transmembrane 

domain (TMD), and an intracellular carboxy-terminal domain (CTD, which was deleted from the 

structure shown in Figure 2). Each iGluR subunit possesses an agonist-binding site located within 
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the LBD. The four TMDs of iGluRs form the pore, and thus the site of channel blocker binding 

(Figure 2B). Within the TMD lies the glutamine (Q) – arginine (R) – asparagine (N) (QRN) site, a 

site found at the tip of the re-entrant loop (M2 loop) in the iGluR pore (Figure 2C) that helps form 

the selectivity filter and plays a crucial role in the differential cation selectivity and channel block 

of the three iGluR classes (Hume et al., 1991; Sommer et al., 1991; Burnashev, Monyer, et al., 

1992; Burnashev, Schoepfer, et al., 1992; Premkumar & Auerbach, 1996). Recent mid- and high-

resolution structures of AMPAR (Twomey et al., 2017, 2018; Twomey & Sobolevsky, 2018; 

Nakagawa, 2019) and NMDAR (Song et al., 2018; Chou et al., 2020) TMDs provided great insight 

into iGluR gating transitions and channel block. 

1.3  NMDA RECEPTORS 

NMDARs display numerous biophysical properties unique amongst the iGluR family, 

including high Ca2+ permeability, slow gating kinetics, dependence on co-agonism for gating, and 

voltage-dependent block by magnesium (Mg2+) ions (Mayer et al., 1984, 1987; Nowak et al., 1984; 

Johnson & Ascher, 1987; Vicini et al., 1998; Wyllie et al., 1998; Traynelis et al., 2010). These 

characteristics allow NMDARs to control Ca2+ influx during synaptic activity and therefore play a 

pivotal role in synaptic development and plasticity (Sheng et al., 1994; Malenka & Bear, 2004; 

Akgül & McBain, 2016). NMDARs are obligate heterotetramers, typically composed of two GluN1 

subunits (eight splice variants), which bind glycine or d-serine, and two GluN2 subunits (GluN2A–

GluN2D), which bind glutamate. A third group of subunits, GluN3A-B, also bind glycine/d-serine 

(although d-serine acts only as a partial agonist (Grand et al., 2018)) and can assemble with 

GluN1 and GluN2 subunits to form NMDARs activated by glutamate and glycine/d-serine. 

Interestingly, GluN3 subunits can also assemble just with GluN1 subunits to form unconventional 
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NMDARs activated solely by glycine/d-serine. However, these GluN1/3 receptors only pass weak 

currents in physiological conditions, so their role in neuronal function is largely unknown, though 

recent work has begun to shed light on their contribution to learning mechanisms (Grand et al., 

2018; Otsu et al., 2019). Conventional NMDARs consisting of two GluN1 subunits and two GluN2 

subunits rely on the binding of both glutamate and glycine/d-serine for activation (Johnson & 

Ascher, 1987; Mothet et al., 2000) and, unlike AMPARs and KARs, require all four agonist binding 

domains to be occupied for the channel to transition to the open state (Benveniste & Mayer, 1991; 

Clements & Westbrook, 1991; Schorge et al., 2005). Additionally, conventional NMDARs possess 

a conserved asparagine at the QRN site of each subunit (Figure 2C) that confers sensitivity to 

block by Mg2+ and high Ca2+ permeability, even relative to Ca2+-permeable AMPAR and KARs 

(Mori et al., 1992; Burnashev et al., 1995; Premkumar & Auerbach, 1996).  
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Figure 2. General NMDAR structure and putative blocking site. 

A, Recently published structure of an NMDAR in an “active” state showing domain topology shared by all 

iGluR subtypes (ATD, amino-terminal domain; LBD, ligand-binding domain; TMD, transmembrane domain; 

Protein Data Bank (PDB) code 6WHT; (Chou et al., 2020)). GluN1 subunit is depicted in dark blue and 

GluN2B in cyan. Horizontal lines show the approximate locations of the outer and inner surfaces of the 

membrane. B, Blow-up of NMDAR TMD (boxes in A) with docked channel blocker memantine (space-filling; 

carbons are red, nitrogen is orange) displaying typical site of channel block. Most channel blocking 

compounds show intimate interaction with the external tip of the iGluR selectivity filter formed by the re-
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entrant M2 loops of each subunit (opaque; M1, M3, and M4 transmembrane helices are transparent for 

visualization of blocking site). C, Magnified view of memantine coordination by the QRN site asparagine 

residues GluN1 N616 and GluN2B N615 (shown in stick format), which are critically involved in NMDAR 

channel blocker binding (Mori et al., 1992; Ferrer-Montiel et al., 1998; Lemke et al., 2014; Mesbahi-Vasey 

et al., 2017; Fedele et al., 2018). Autodock Vina was used for molecular docking of memantine to PDB 

6WHT, and structural images were prepared using the program Visual Molecular Dynamics (VMD) 

(Humphrey et al., 1996; Trott & Olson, 2010; Chou et al., 2020).   
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1.3.1 Diversity of NMDAR subunits 

NMDAR subtype is defined by the identity of the subunits that compose a receptor. The 

subunit composition of NMDARs, primarily the identity of the glutamate-binding GluN2 subunits, 

dictates their functional characteristics. Many key biophysical properties of NMDARs are 

governed by the GluN2 subunit. There is a clear dichotomy between the GluN2A-B subunits and 

the GluN2C-D subunits in terms of gating kinetics, channel conductance, ion permeability, and 

channel block. GluN1/2A and GluN1/2B diheteromers display far faster activation and 

desensitization kinetics, higher permeability to Ca2+, greater single channel conductance, and 

stronger voltage-dependent channel block by Mg2+ than GluN1/2C and GluN1/2D diheteromers 

(Monyer et al., 1992, 1994; Burnashev et al., 1995; Kuner & Schoepfer, 1996; Qian et al., 2005; 

Gielen et al., 2009; Traynelis et al., 2010; Siegler Retchless et al., 2012; Wyllie et al., 2013; 

Paoletti et al., 2013; Glasgow et al., 2015). Of particular importance to the work presented in this 

dissertation, desensitization of NMDARs substantially differs by subtype. While desensitization of 

GluN1/2C and GluN1/2D receptors is extremely weak, GluN1/2A and GluN1/2B receptors both 

display multiple forms of desensitization (Monyer et al., 1994; Krupp et al., 1996, 1998). The 

biophysical differences between NMDAR subtypes contribute to their role neuronal function, 

primarily by shaping the duration of the synaptic response, and thus have great influence on 

neuronal function and plasticity (Nevian & Sakmann, 2004, 2006; Urakubo et al., 2008; Carter & 

Jahr, 2016). GluN2 subunit expression also differs greatly by subcellular localization, brain region, 

and over the course of development (Monyer et al., 1992, 1994; Watanabe et al., 1992; Ishii et 

al., 1993; Akazawa et al., 1994; Zhong et al., 1995; Misra et al., 2000; Brickley et al., 2003; Dunah 

& Standaert, 2003; Martel et al., 2012; Kellermayer et al., 2018), further enhancing the impressive 

diversity of roles NMDARs can play in neuronal function. 
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Most characterization of the functional differences found between NMDAR subtypes has 

been performed on diheteromeric receptors, which are comprised of two GluN1 subunits and two 

identical GluN2 subunits, expressed in heterologous cells. However, nearly all neurons express 

multiple different GluN2 subunits, which can co-assemble to form triheteromeric receptors 

comprised of two GluN1 subunits and two different types of GluN2 subunits. Multiple studies have 

reported evidence of GluN1/2A/2B, GluN1/2A/2C, and GluN1/2B/2D receptors in neurons (Sheng 

et al., 1994; Chazot et al., 1994; Luo et al., 1997; Chazot & Stephenson, 1997; Dunah et al., 1998; 

Tovar & Westbrook, 1999; Misra et al., 2000; Piña-Crespo & Gibb, 2002; Brickley et al., 2003; 

Dunah & Standaert, 2003; Lu et al., 2006; Brothwell et al., 2008; Rauner & Köhr, 2011; Gray et 

al., 2011; Tovar et al., 2013; Huang & Gibb, 2014; Bhattacharya et al., 2018; Swanger et al., 

2018). Furthermore, GluN1/2A/2B receptors are likely to be the most prevalent form of NMDAR 

expressed in the neocortex and hippocampus (Sheng et al., 1994; Luo et al., 1997; Gray et al., 

2011; Rauner & Köhr, 2011; Paoletti et al., 2013; Tovar et al., 2013; Stroebel et al., 2018). Though 

triheteromeric receptors are difficult to study in isolation, recent advances have allowed for 

functional isolation or expression of modified isolated triheteromeric NMDARs in heterologous 

cells (Hansen et al., 2014; Stroebel et al., 2014; Yi et al., 2017). Triheteromeric NMDARs display 

distinct biophysical characteristics relative to their diheteromeric counterparts. For example, 

GluN1/2A/2B receptors exhibit agonist affinity, maximal Popen, and gating kinetics intermediate to 

GluN1/2A and GluN1/2B diheteromers. Interestingly, the intermediate properties of triheteromers 

are not simply the average of the properties expressed by their related diheteromers but instead 

may be shifted toward one of the GluN2 subunits (Hansen et al., 2014; Stroebel et al., 2014, 2018; 

Sun et al., 2017; Bhattacharya et al., 2018), generating a sort of “dominance” by one of the two 

GluN2 subunits. In all, the 360 possible combinations of GluN1 splice variants and GluN2 subunits 

give NMDAR receptors the potential to express a staggering array of functional diversity. 
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1.3.2 NMDAR-mediated Ca2+ influx – a double-edged sword 

NMDARs are involved in nearly all aspects of synaptic function and play a critical role in 

synaptic plasticity (Malenka & Bear, 2004; Lüscher & Malenka, 2012). The unique combination of 

slow gating kinetics, voltage-dependent channel block by Mg2+, and high Ca2+ permeability 

possessed by NMDARs allows them to dictate the timing and magnitude of Ca2+ influx following 

synaptic activity. These features also allow NMDARs to act as coincidence detectors. For 

example, if one weak synaptic input releases glutamate onto a postsynaptic neuron, NMDARs 

will open, but will not pass substantial current due to Mg2+ block. However, if that same weak 

synaptic input releases glutamate while the postsynaptic cell is depolarized due to other strong 

synaptic inputs, Mg2+ will unblock from the NMDARs at the weak synapse and Ca2+ will flow into 

the postsynaptic compartment. Ca2+ acts as a powerful second messenger and initiates an 

extensive array of signaling cascades that can either weaken or strengthen synaptic connections. 

Intracellular Ca2+ concentration ([Ca2+]i) regulates the expression of synaptic plasticity, with brief 

bouts of high [Ca2+]i pushing the synapse toward potentiation while sustained, small increases in 

[Ca2+]i push synapses toward depression. Interestingly, recent studies have also reported that 

glutamate binding to the GluN2 subunit can elicit NMDAR-mediated synaptic depression without 

the need for Ca2+ influx (Nabavi et al., 2013; Babiec et al., 2014; Stein et al., 2015). However, this 

non-ionotropic mechanism of NMDAR signaling still requires the maintenance of resting levels of 

[Ca2+]i (Nabavi et al., 2013), illustrating the importance of tightly regulated [Ca2+]i to synaptic 

plasticity. 

NMDAR-mediated Ca2+ influx is also heavily involved in neuronal survival. Physiological 

levels of NMDAR signaling promote activity of the cAMP response element binding protein 

(CREB), which is critical for both neuronal survival and plasticity, and the PI3K-Akt signaling 

pathway, which counters pro-apoptotic signaling (Brunet et al., 1999; Hardingham, 2006; Dick & 
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Bading, 2010). However, excessive NMDAR activity leads to buildup of abnormally high [Ca2+]i 

and subsequent activation of cell death signaling pathways (Choi, 1987, 1992; Tymianski et al., 

1993; Lau & Tymianski, 2010), a process known as excitotoxicity. Excitotoxicity is heavily involved 

in many neuropathologies and is a key feature of cell death following ischemia, Huntington’s 

disease, Alzheimer’s disease, and Alzheimer’s disease-related dementias (Zorumski & Olney, 

1993; Lipton, 1999, 2004; Hynd et al., 2004; Koutsilieri & Riederer, 2007; Dong et al., 2009; 

Olivares et al., 2012; Mota et al., 2014; Gardoni & Di Luca, 2015; Wang & Reddy, 2017). Some 

studies have suggested that subcellular localization or NMDAR subtype plays a role in 

determining whether NMDAR activity drives a cell toward survival rather than death, with GluN2A-

containing synaptic receptors signaling for cell survival and GluN2B-containing extrasynaptic 

receptors eliciting cell death (Hardingham et al., 2002; Léveillé et al., 2008; Papadia et al., 2008; 

Okamoto et al., 2009; Kaufman et al., 2012; Martel et al., 2012; Yan et al., 2020). However, other 

reports argue against such a clear dichotomy and show that synaptic, GluN2A-containing 

NMDARs are involved, perhaps even necessary and sufficient, for eliciting excitotoxicity (von 

Engelhardt et al., 2007; Papouin et al., 2012; Wroge et al., 2012; Zhou et al., 2013). Despite this 

debate, it is clear that NMDAR-mediated Ca2+
 influx must be tightly regulated for maintenance of 

proper neuronal function. 

1.4  NMDA RECEPTOR CHANNEL BLOCK 

Due to their many roles in normal and pathological brain function, NMDARs are attractive 

targets for development of neurotherapeutics. NMDAR channel blockers are currently the most 

clinically useful NMDAR-targeting drugs and show great promise in the treatment of multiple 

nervous system disorders, including neurodegenerative diseases, major depressive disorder, and 
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neuron death following ischemia (Krystal et al., 1994; Parsons, Danysz, & Quack, 1999; Parsons 

et al., 2007; Zhou et al., 2011; Danysz & Parsons, 2012; Persson, 2013; Kafi et al., 2014; Abdallah 

et al., 2015; Kong et al., 2017; Nair & Sahoo, 2019). NMDAR channel blockers display a strikingly 

diverse array of clinical effects, despite sharing overlapping binding sites and a similar general 

mechanism of inhibition ((Ferrer-Montiel et al., 1998; Kashiwagi et al., 2002); the putative blocking 

site for memantine is shown in Figure 2B,C). For example, the clinically relevant blockers 

memantine and ketamine share similar chemical properties and binding kinetics but possess 

vastly different effects on brain function. Ketamine is a drug of abuse and poorly tolerated, but 

possesses impressive efficacy in treating neuropathic pain and major depressive disorder 

(Noppers et al., 2010; Zhou et al., 2011; Persson, 2013; Miller et al., 2014; Abdallah et al., 2015). 

On the other hand, memantine possesses weaker efficacy in treatment of neuropathic pain and 

little to no effect on major depressive disorder, but is well-tolerated with few side effects and 

shows efficacy in the treatment of neurodegenerative disorders such as Alzheimer’s disease 

(Parsons, Danysz, & Quack, 1999; Parsons et al., 2007; Lipton, 2004; Chen & Lipton, 2006; 

Olivares et al., 2012; Gideons et al., 2014; Kafi et al., 2014; Amidfar et al., 2018). 

Despite the clinical relevance of organic NMDAR channel blockers, the most important 

NMDAR channel blocker is undoubtably the inorganic cation Mg2+. In 1984, Linda Nowak and the 

Ascher lab reported that the peculiar voltage sensitivity displayed by NMDARs was a 

consequence of channel block by endogenous extracellular Mg2+ ions (Nowak et al., 1984), a 

discovery soon replicated by another research group (Mayer et al., 1984). Channel block by Mg2+
 

is perhaps the most distinctive feature of NMDARs and has extreme impact on normal brain 

function. Mg2+ blocks NMDARs at resting membrane potentials and unbinds as the cell becomes 

depolarized. The voltage-dependence of Mg2+ block enables NMDARs to act as coincidence 

detectors that sense postsynaptic depolarization near-simultaneously with presynaptic glutamate 

release. The coincidence-detection ability of NMDARs is a key component of synaptic plasticity 
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as well as learning and memory (Malenka, 1994; Rudhard et al., 2003; Chen, Errington, et al., 

2009; Lüscher & Malenka, 2012).  Mg2+ block is also critical for proper excitation-inhibition balance 

and autonomic nervous system function, as deficiencies in Mg2+ block can lead to severe 

pathological phenotypes and death (Single et al., 2000; Rudhard et al., 2003; Chen, Errington, et 

al., 2009; Lemke et al., 2014). 

Likely due to its vast physiological and clinical relevance, the biophysical underpinnings 

of NMDAR channel block have been extensively studied. Most, if not all, well-characterized 

NMDAR channel blockers with slow kinetics display some degree of use dependence and 

voltage-dependent binding. Most NMDAR channel blockers are monovalent or divalent cations 

and display far greater inhibition at negative than at positive membrane potentials (MacDonald et 

al., 1991; Parsons et al., 1995; Antonov & Johnson, 1996; Blanpied et al., 1997; Sobolevsky et 

al., 1999; Sobolevsky & Yelshansky, 2000; Bolshakov et al., 2003; Gilling et al., 2009). Nearly all 

known NMDAR channel blockers show some effect on channel gating (Johnson & Qian, 2002) 

and channel blockers are found to modulate nearly every aspect of gating (Wright & Nowak, 1992; 

Vorobjev & Sharonova, 1994; Costa & Albuquerque, 1994; Antonov et al., 1995; Benveniste & 

Mayer, 1995; Antonov & Johnson, 1996; Li-Smerin & Johnson, 1996; Blanpied et al., 1997, 2005; 

Chen & Lipton, 1997; Sobolevsky et al., 1998, 1999; Sobolevsky & Yelshansky, 2000; 

Sobolevsky, 2000; Glasgow et al., 2017). The striking diversity in the clinical effects of NMDAR 

channel blockers may in part arise from their diverse effects on channel gating.  

1.4.1 Sequential blockers of NMDARs prevent channel closure and agonist dissociation 

The sequential/foot-in-door blockers 9-aminoacridine (Table 1), tetrapentylammonium, 

and the amantadine derivative IEM-1857 are thought to force NMDARs to remain in open states 

by sterically prohibiting gate closure after entering the channel (Benveniste & Mayer, 1995; 
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Koshelev & Khodorov, 1995; Antonov & Johnson, 1996; Sobolevsky et al., 1999; Sobolevsky, 

2000). Importantly, occupancy of the channel by IEM-1857, tetrapentylammonium, or 9-

aminoacridine also prevents agonist dissociation and channel desensitization (Benveniste & 

Mayer, 1995; Antonov & Johnson, 1996; Sobolevsky et al., 1999), suggesting that blocker 

unbinding and subsequent channel closure are required for agonist dissociation. This finding is 

consistent with models of sequential channel block of nAChRs proposed by (Adams, 1975, 1976; 

Ruff, 1977; Neher & Steinbach, 1978). An experimental procedure used to test whether a channel 

blocker prevents channel closure and agonist dissociation is to determine if the blocker induces 

“tail currents”. A tail current is a transient increase in receptor-mediated current observed upon 

rapid and simultaneous removal of blocker and agonist from the extracellular solution. If a blocker 

prevents channel closure, channels pass through the open, unblocked state following blocker 

unbinding, resulting in a tail current. However, any antagonist that unblocks more quickly than 

agonists unbind can induce tail currents; thus, observation of tail currents does not provide 

unambiguous evidence that a blocker acts via a sequential mechanism. More powerful evidence 

that a blocker prevents channel closure can be provided by (1) observation that a blocker chops 

single-channel currents into “bursts” of brief openings, and that the total channel open time during 

bursts is independent of blocker concentration (Neher & Steinbach, 1978), and (2) observation 

that the blocker concentration that inhibits responses by 50% (the IC50) is inversely proportional 

to the receptor’s Popen, a prediction that can be tested, e.g., by recording the IC50 of a blocker over 

a range of agonist concentrations (Johnson & Qian, 2002). The finding that channel occupation 

by sequential blockers prevents agonist unbinding as well as channel closing provided 

fundamental information on state transitions of ligand-gated ion channels. 

Organic channel blocking compounds were remarkably useful in determining the location 

of the channel gate itself. The size of a blocking molecule is a key determinant of whether the 

blocker prevents channel closure or is trapped in the channel upon gate closure. Experiments 



 

21 

 

comparing block by IEM-1857 and the similar but smaller blocker IEM-1754 (Table 1) found that 

while binding of IEM-1857 prevented channel closure independent of voltage, IEM-1754 only 

prevented channel closure at relatively depolarized membrane potentials. At more hyperpolarized 

potentials, IEM-1754 is “pulled” by the membrane electric field deeper into the channel where it 

no longer prevents channel closure, instead acting as a trapping channel blocker (Antonov & 

Johnson, 1996). The voltage dependence of IEM-1754 block, as well as its interactions with 

permeant ions, demonstrated that IEM-1754 has two blocking modes, one in which the blocker 

associates with a shallower site and places the bulk of the molecule in the way of the gate, and a 

second in which the blocker associates with a deeper site and permits closure of the gate 

(Antonov & Johnson, 1996; Antonov et al., 1998; Qian & Johnson, 2002). This finding strongly 

supported the idea that the NMDAR channel gate lies at the extracellular entrance to the channel, 

an idea that was recently validated by crystal and cryo-EM structures of ligand-bound NMDARs 

(Tajima et al., 2016; Chou et al., 2020). 

1.4.2 Channel block by Mg2+ does not appear to affect NMDAR state transitions 

The majority of NMDAR channel blockers affect gating, but at least one blocker exists as 

an exception to this rule: Mg2+ (Table 1). Binding of Mg2+ to the NMDAR channel does not prevent 

gate closure, agonist dissociation, or desensitization (Nowak et al., 1984; Ascher & Nowak, 1988; 

Benveniste & Mayer, 1995; Sobolevsky & Yelshansky, 2000). Further evidence that Mg2+
 has no 

effect on channel gating is provided by the relation between its equilibrium dissociation constant 

(Kd) and IC50. The relation between Kd and IC50 directly depends on how a channel blocker affects 

channel transitions after binding. Kd ≈ IC50 suggests that a blocker has no effect on gating, Kd > 

IC50 implies that a blocker stabilizes channel closed states, and Kd < IC50 implies that a blocker 

stabilizes channel open states. The latter is the case for sequential blockers, which inhibit less 



 

22 

 

effectively as Popen decreases (IC50 = Kd/Popen; (Hille, 2001; Johnson & Qian, 2002)). Mg2+ boasts 

nearly equivalent Kd and IC50 (Qian et al., 2002), suggesting that Mg2+ occupancy of the channel 

has no effect on state transitions.  

The unusual ability of Mg2+ to block without altering gating could be due to its small size. 

A large conformational change in the extracellular region of the NMDAR channel is associated 

with gating, a conclusion supported by structural studies [(Chou et al., 2020) and the observation 

that large organic blockers prevent channel closure. Although smaller organic blockers generally 

permit channel closure, stabilizing or destabilizing interactions with channel residues may alter 

channel gating kinetics. It is possible that the small size of Mg2+ (which is likely to be mostly 

dehydrated when blocking the channel (Mesbahi-Vasey et al., 2017)), coupled with its limited 

interactions with channel residues outside of the ion selectivity filter (Mesbahi-Vasey et al., 2017), 

allows binding in the NMDAR channel without affecting gating machinery. Also, in contrast to most 

organic blockers, Mg2+ has not been directly shown to act as a use-dependent open channel 

blocker or as a trapping blocker. Mg2+ displays extremely rapid binding and unbinding kinetics 

(Nowak et al., 1984; Ascher & Nowak, 1988; Sobolevsky & Yelshansky, 2000), preventing 

accurate determination in whole-cell recordings of the rapid component of block or unblock, 

measurements required for demonstration of use dependence and trapping. Kinetic modeling 

studies, however, suggested that Mg2+ does indeed act as an open channel blocker (Sobolevsky 

& Yelshansky, 2000).  

Despite the lack of effects of Mg2+ block on NMDAR gating, depolarization-induced Mg2+ 

unblock clearly depends on gating. Mg2+ unblock from GluN1/2A and GluN2B receptors displays 

a slow component as well as an extremely rapid component (Spruston et al., 1995; Vargas-

Caballero & Robinson, 2003; Kampa et al., 2004; Clarke & Johnson, 2006, 2008; Clarke et al., 

2013). Although kinetic models in which Mg2+ block affects gating transitions and/or agonist 

binding rates reproduced slow Mg2+ unblock (Vargas-Caballero & Robinson, 2003; Kampa et al., 
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2004), substantial experimental evidence demonstrated that Mg2+ does not affect NMDAR state 

transitions (Nowak et al., 1984; Ascher & Nowak, 1988; Benveniste & Mayer, 1995; Sobolevsky 

& Yelshansky, 2000). This disagreement was reconciled by the discovery of the inherent (i.e., 

Mg2+-independent) voltage-sensitivity of NMDAR gating, which underlies the slow component of 

Mg2+ unblock (Clarke & Johnson, 2008; Clarke et al., 2013). Thus, the interplay between Mg2+ 

block and NMDAR gating is unidirectional, whereas Mg2+ block depends on NMDAR gating, but 

NMDAR gating is unaffected by Mg2+ block. 

1.4.3 Trapping channel blockers modulate NMDAR state transitions 

Trapping channel blockers display more subtle effects on gating than sequential blockers. 

Early studies using a combination of patch-clamp electrophysiology and kinetic modeling 

concluded that the amino-adamantane derivatives memantine and amantadine and the 

phencyclidine derivative NEFA have clear effects on channel gating (Blanpied et al., 1997; Chen 

& Lipton, 1997; Dilmore & Johnson, 1998; Sobolevsky et al., 1998). Initial proposals for the effects 

of amino-adamantane derivatives on NMDAR gating were wide-ranging, including models that 

suggested memantine and amantadine could stabilize open receptor states, as well as models 

that suggested memantine may stabilize closed receptor states (Blanpied et al., 1997; Chen & 

Lipton, 1997; Sobolevsky et al., 1998). It is possible that these discrepancies arose from the 

abilities of amino-adamantane derivatives to escape from some blocked channels after agonist 

removal (partial trapping), and to inhibit NMDARs via association with a site accessible in the 

absence of agonist (Blanpied et al., 1997; Chen & Lipton, 1997; Sobolevsky et al., 1998; 

Kotermanski et al., 2009; Glasgow et al., 2018).  

Thorough evidence that amino-adamantane derivatives affect closed-state transitions 

came through investigation of the discrepancy between the Kd and IC50 of amantadine. 
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Amantadine’s Kd (110 μM) is considerably greater than its IC50 (~35 μM; (Sobolevsky & Koshelev, 

1998; Sobolevsky et al., 1998; Bolshakov et al., 2003; Blanpied et al., 2005)). Kd > IC50 implies 

that a blocker’s mechanism of inhibition likely involves stabilization of channel closed states, either 

through decreasing the rate of channel opening, increasing the rate of channel closure, or both. 

Such blockers therefore have two inhibitory actions: (1) blocking current flow through open 

channels and (2) stabilization of closed channels. Amantadine is an example of such a dual-

mechanism channel inhibitor. Investigation of amantadine block of single-channel and whole-cell 

NMDAR current revealed that binding of amantadine not only accelerates channel closure, but 

that this acceleration of channel closure is actually the predominant mechanism of inhibition by 

amantadine at concentrations lower than 100 μM (Blanpied et al., 2005). 

Recent studies reported additional drug-specific and NMDAR subtype-specific effects of 

channel blockers on gating transitions. Investigation of mechanisms by which memantine and 

ketamine preferentially target distinct populations of NMDARs led to the discovery that memantine 

and ketamine have differential, subtype-specific effects on NMDAR desensitization (Glasgow et 

al., 2017). While ketamine accelerated recovery from desensitization of GluN1/2B receptors, 

memantine binding profoundly slowed recovery from desensitization of GluN1/2A receptors. The 

effect of memantine on GluN1/2A receptor desensitization was not observed in low-Ca2+ 

conditions, suggesting that memantine stabilizes a Ca2+-dependent desensitized state of 

GluN1/2A receptors. A comparison of IC50 values measured in low and high Ca2+ conditions with 

Kd values predicted by a kinetic model found that in high Ca2+, Kd > IC50, whereas in low Ca2+, Kd 

≈ IC50, suggesting that memantine only alters GluN1/2A gating when Ca2+-dependent 

desensitization can occur (Glasgow et al., 2017).  

Visualization of NMDARs bound to trapping channel blockers was provided by recent 

structural studies. Song et al. crystalized the closed GluN1/2B channel in complex with the high 

affinity blocker MK-801 and utilized long-timescale molecular dynamics to investigate the 
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mechanism of block by MK-801 and memantine (Song et al., 2018). Both blockers were found to 

bind within the central cavity of the ion channel and promote closure of the channel gate, perhaps 

via a mechanism similar to amantadine (Blanpied et al., 2005). Although this result may seem to 

contrast with the previous finding that memantine did not affect GluN1/2B receptor desensitization 

(Glasgow et al., 2017), it is important to note that (1) memantine could affect GluN1/2B channel 

closure without affecting desensitization, and (2) the crystalized MK-801-NMDAR construct 

lacked both the ATD and CTD, which play key roles in gating and desensitization (Ehlers et al., 

1996; Krupp et al., 1996, 1998, 2002; Villarroel et al., 1998; Vissel et al., 2002; Maki et al., 2012; 

Chou et al., 2020). Stabilization of closed channels by NMDAR channel blockers could have 

profound physiological implications by effectively increasing the potency of blockers under 

specific conditions.  
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Table 1. NMDAR channel blockers and their effects on gating.  

Magnesium is depicted coordinating six water molecules (waters are replaced with the critical Asn residues 

when Mg2+ is blocking the channel), and all organic blockers are depicted in bond-line format. Blockers 

structures are scaled to depict approximate relative sizes. 

Compound Structure Type of Blocker Effects on Gating 

Magnesium 

 

Unclear - due to fast unblocking 

kinetics, trapping of Mg2+ has not 

been directly demonstrated. 

None (Nowak et al., 1984; 

Ascher & Nowak, 1988; 

Sobolevsky & Yelshansky, 

2000; Johnson & Qian, 

2002). 

9-

aminoacridine 
 

Sequential (Benveniste & Mayer, 

1995; Koshelev & Khodorov, 1995).  

Stabilizes open state, 

prevents agonist dissociation 

(Benveniste & Mayer, 1995; 

Koshelev & Khodorov, 1995). 

IEM-1754 

 

Depolarized potentials: sequential. 

Strongly negative potentials: 

trapping (Antonov & Johnson, 

1996). 

Depolarized potentials: 

Stabilizes open state 

(Antonov & Johnson, 1996). 

Amantadine 

 

Partial trapping (Blanpied et al., 

1997; Sobolevsky & Yelshansky, 

2000). 

Accelerates channel closure 

of native NMDARs and 

GluN1/2B receptors 

(Blanpied et al., 2005). 

Memantine 

 

Partial trapping (Blanpied et al., 

1997; Chen & Lipton, 1997; 

Mealing et al., 1999; Kotermanski & 

Johnson, 2009; Kotermanski et al., 

2009). 

Slows GluN1/2A receptor 

recovery from Ca2+-

dependent desensitization 

(Glasgow et al., 2017). 

Ketamine 

 

Trapping (MacDonald et al., 1987; 

Mealing et al., 1999). 

Accelerates GluN1/2B 

receptor recovery from 

desensitization (Glasgow et 

al., 2017). 
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1.5 PHARMACOLOGICAL TARGETING OF SPECIFIC NMDARS STATES 

Many NMDAR channel blockers, including amantadine and memantine, act by blocking 

and stabilizing NMDAR closed states (Blanpied et al., 2005; Glasgow et al., 2017). Stabilization 

of closed states by a channel blocker effectively enhances the potency of the blocker (Section 

1.4.3). The ability to both block and modulate the gating of NMDAR receptors could lend additional 

specificity to channel blockers. Desensitized states are closed channel states the occupancy of 

which can vary by NMDAR subtype and physiological context (Benveniste et al., 1990; Krupp et 

al., 1996, 1998; Villarroel et al., 1998; Glasgow et al., 2017). Therefore, targeting specific receptor 

desensitized states could allow for preferential inhibition of select populations of NMDARs based 

on NMDAR subtype, physiological context, or both. This concept, known as state-specific or 

context-specific antagonism, is a rational strategy for the design of improved neurotherapeutic 

agents with reduced off-target and negative side effects. In this section, I will provide background 

on a context and subtype specific form of NMDAR desensitization, Ca2+-dependent 

desensitization, and discuss the rationale behind the targeting of Ca2+-dependent desensitized 

receptor states for neurotherapeutic purpose. 

1.5.1 Targeting NMDA receptor desensitization  

There are multiple distinct NMDAR desensitization processes, including glycine-

dependent desensitization, Ca2+-dependent desensitization, and glycine-and-Ca2+-independent 

desensitization (Mayer et al., 1989; Benveniste et al., 1990; Lerma et al., 1990; Lester et al., 1990; 

Sather et al., 1990; Legendre et al., 1993; McBain & Mayer, 1994). Glycine-dependent 

desensitization can only occur in subsaturating glycine concentrations, and results from negative 

allosteric interaction between the glutamate and glycine binding sites in which the binding of 
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glutamate to the GluN2 subunit decreases the affinity of glycine to the GluN1 subunit. This 

reduction in affinity encourages glycine to unbind from the GluN1 subunit, which results in channel 

closure (Benveniste et al., 1990; Lester et al., 1993). Since the decay in the NMDAR response is 

a direct consequence of agonist unbinding, there is some debate as to whether glycine-dependent 

desensitization is a form of “true” desensitization (McBain & Mayer, 1994), as desensitization is 

canonically defined as a decrease in receptor POpen while agonist is still bound  (Katz & Thesleff, 

1957). Mechanisms of glycine-and-Ca2+-independent desensitization (Sather et al., 1990) are less 

clear, but most evidence suggests that glycine-and-Ca2+-independent desensitization is mediated 

through the extracellular NTD regions of GluN2 subunits in a subtype-dependent manner (Krupp 

et al., 1998; Villarroel et al., 1998). 

Ca2+-dependent desensitization results from an increase in [Ca2+]i, due either to NMDAR-

mediated Ca2+
 influx or Ca2+ from other sources (Legendre et al., 1993; Vyklický, 1993; Medina et 

al., 1994). The terms used to refer to desensitization processes that are Ca2+-dependent has been 

inconsistent and include glycine-independent desensitization and the commonly-used Ca2+-

dependent inactivation (Legendre et al., 1993; Tong & Jahr, 1994; Tong et al., 1995; Krupp et al., 

2002; Iacobucci & Popescu, 2020). Regardless of name, all share the common features of (1) 

decreasing NMDAR POpen while agonist is still bound and (2) dependence on elevation of [Ca2+]i. 

Therefore, unless otherwise stated, I will be referring to all desensitization processes regulated 

by [Ca2+]i as Ca2+-dependent desensitization (CDD) in this dissertation.  

The mechanisms underlying CDD involve a combination of molecular interactions that are 

not yet fully understood, but the Ca2+-binding/Ca2+-activated proteins calmodulin (CaM), α-actinin, 

and calcineurin have all been implicated in CDD. CDD is certainly mediated, at least in part, 

through the binding of Ca2+-bound CaM to the GluN1 C-terminal domain (CTD; (Ehlers et al., 

1996; Zhang et al., 1998; Krupp et al., 1999; Rycroft & Gibb, 2002)). α-actinin binds to the GluN1 

CTD and has been proposed to stabilize an open, conducting NMDAR state (Wyszynski et al., 
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1997; Krupp et al., 1999). The interplay between CaM and α-actinin is complex, with evidence 

suggesting that Ca2+-bound CaM displaces α-actinin from its binding site on the GluN1 CTD, 

promoting desensitization (Wyszynski et al., 1997; Krupp et al., 1999; Merrill et al., 2007). 

Calcineurin has been suggested to interact with the GluN2A CTD and promote CDD through 

interaction with CaM (Tong et al., 1995; Krupp et al., 2002; Rycroft & Gibb, 2004). NMDAR CDD 

also depends on NMDAR subtype, but the mechanism underlying CDD in each subtype is 

unclear. CDD has been reported in GluN1/2A, GluN1/2B, and GluN1/2D receptors, but not 

GluN1/2C receptors (Krupp et al., 1996; Medina et al., 1996; Iacobucci & Popescu, 2020). 

GluN1/2A receptors are the only subtype to show CDD in all studies concerning NMDAR CDD, 

while studies of GluN1/2B receptor and GluN1/2D receptors have provided less consistent 

findings. Regardless of the underlying mechanisms, CDD is a key part of an endogenous 

negative-feedback loop that reduces Ca2+ influx through NMDARs in response to increases in 

[Ca2+]i and thus protects neurons from excessive buildup of [Ca2+]i.  

Dependence on context (i.e., increased [Ca2+]i) and NMDAR subtype make CDD an 

attractive target for pharmacological modulation. Indeed, previous data from our lab revealed that 

memantine stabilizes a Ca2+-dependent desensitized state of GluN1/2A receptors (Glasgow et 

al., 2017). Enhancement of CDD by memantine suggests a logical mechanism for 

neuroprotection: preferential inhibition of NMDARs in cellular populations subjected to 

pathological levels of Ca2+ influx, i.e., NMDARs likely to mediate excitotoxic cell death (Zorumski 

& Olney, 1993; Rothman & Olney, 1995; Okamoto et al., 2009). In turn, characterization of the 

memantine-NMDAR complex may give insight into the structural underpinnings and mechanisms 

of CDD. The goals of the research presented in this dissertation are: 

1. To characterize the relation between NMDAR CDD and channel block by memantine.  

2. To investigate the structural basis of the relation between CDD and channel block. 



 

30 

 

3. To better understand mechanisms of channel block through characterization of novel NMDAR 

channel blockers. 



 

31 

 

2.0 CA2+-DEPENDENT DESENSITIZATION REGULATES SUBTYPE-SPECIFIC BLOCK OF 

NMDA RECEPTORS BY MEMANTINE 

2.1 OVERVIEW 

N-methyl-D-aspartate receptors (NMDARs) are key mediators of neuronal Ca2+ influx. 

NMDAR-mediated Ca2+
 influx plays a central role in synaptogenesis, synaptic plasticity, dendritic 

integration, and neuronal survival. However, excessive NMDAR activity can lead to buildup of 

pathological levels of Ca2+ inside neurons, which initiates cellular signaling pathways that result 

in neuronal death. Thus, drugs targeting NMDARs are of great clinical interest. The NMDAR 

channel blocker memantine is a well-tolerated Alzheimer’s disease medication that also shows 

promise in treatment of other neurological disorders. Interestingly, memantine enhances 

desensitization of NMDARs in a subtype- and Ca2+-dependent manner. Furthermore, memantine 

inhibits NMDARs more effectively in conditions that allow for increased Ca2+ influx and buildup, 

which suggests that memantine could preferentially target overactive NMDAR subpopulations. 

However, the direct effect of intracellular Ca2+ on NMDAR inhibition by memantine has not been 

systematically examined. Utilizing specially designed Ca2+-buffering solutions and whole-cell 

patch-clamp recordings, we demonstrated that NMDAR channel block by memantine is directly 

related to intracellular Ca2+ concentration. We discovered that memantine potency increases 

alongside increasing intracellular Ca2+, and that the effect of intracellular Ca2+ on memantine 

action depends on NMDAR subtype. These results present a previously unexamined form of 

state-specific antagonism, Ca2+-dependent NMDAR channel block, that could have a profound 

impact on the design of drugs that selectively target NMDAR subpopulations involved in disease. 
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2.2 INTRODUCTION 

NMDA receptors (NMDARs) are ionotropic glutamate receptors that possess a unique set 

of biophysical properties, including dependence of gating on co-agonism, voltage-dependent 

block by Mg2+, high permeability to Ca2+, and slow gating kinetics (Mayer et al., 1984, 1987; 

Nowak et al., 1984; Johnson & Ascher, 1987; Vicini et al., 1998; Wyllie et al., 1998; Traynelis et 

al., 2010). This unique combination of properties allows NMDARs to control the magnitude and 

timing of Ca2+ influx during synaptic activity. Ca2+ influx due to NMDAR activity is vital to many 

aspects of neuronal function, including neuronal survival, synaptic development, and synaptic 

plasticity (Sheng et al., 1994; Malenka & Bear, 2004; Hardingham, 2006; Akgül & McBain, 2016).  

The magnitude of NMDAR-mediated Ca2+ influx is a crucial determinant of the signaling 

pathways elicited by NMDAR activity.  Low levels of NMDAR activity sustain small, prolonged 

increases of intracellular Ca2+ concentration ([Ca2+]i), which supports signaling cascades involved 

in synaptic depression. In contrast, intense, transient NMDAR activation leads to brief bouts of 

high [Ca2+]i, which activates signaling cascades that drive synaptic potentiation (Lisman et al., 

2002; Lüscher & Malenka, 2012). Sustained high [Ca2+]i, however, initiates signaling cascades 

that result in neuronal death (Choi, 1987, 1992; Tymianski et al., 1993; Lau & Tymianski, 2010). 

Cell death elicited by NMDAR overactivation, known as excitotoxicity, is a key feature of many 

nervous system disorders including Alzheimer’s disease, Alzheimer’s disease-related dementias, 

Huntington’s disease, and cell death following stroke or ischemia (Zorumski & Olney, 1993; 

Lipton, 1999, 2004; Hynd et al., 2004; Koutsilieri & Riederer, 2007; Dong et al., 2009; Olivares et 

al., 2012; Mota et al., 2014; Gardoni & Di Luca, 2015; Wang & Reddy, 2017). Thus, NMDAR-

mediated Ca2+ influx must be tightly regulated for proper nervous system function. 

Although NMDARs are attractive targets for modulation by neurotherapeutic drugs, 

NMDAR pharmacology has proven remarkably complex. Due to the near-ubiquitous involvement 
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of NMDARs in normal neuronal function, arbitrary inhibition of NMDARs generates unacceptable 

side effects (Olney et al., 1989; Zorumski & Olney, 1993; Krystal et al., 1994; Muir, 2006). The 

specific inhibition of select subpopulations of NMDARs involved in disease may provide an 

avenue around the detrimental side effects of broad-scale NMDAR inhibition. A potential strategy 

for targeting specific NMDAR subpopulations is to target NMDARs based on subunit composition. 

NMDAR subunits are encoded by seven genes: a single GRIN1 gene encodes the GluN1 subunit, 

four GRIN2 genes encode GluN2A-GluN2D subunits, and two GRIN3 genes encode GluN3A-

GluN3B subunits. To add to this broad subunit diversity, the GluN1 subunit also has 8 distinct 

splice variants (Traynelis et al., 2010). NMDARs are heterotetrameric complexes typically 

assembled from two obligatory GluN1 subunits and two GluN2 subunits (Karakas & Furukawa, 

2014; Lee et al., 2014). The specific combination of GluN1 splice variants and GluN2 subunits 

governs many NMDAR characteristics including subcellular localization, intracellular signaling 

partners, and biophysical features such as agonist affinity, gating kinetics, channel block, and 

pharmacology (Hardingham & Bading, 2010; Siegler Retchless et al., 2012; Paoletti et al., 2013; 

Hansen et al., 2014; Glasgow et al., 2015; Stroebel et al., 2018; Yi et al., 2018).  

Most attempts to selectively target NMDAR subpopulations have focused on developing 

drugs that can distinguish between NMDARs that contain different GluN2 subunits. In addition, 

most characterization of subtype-selective inhibitors of NMDAR has been performed on 

diheteromeric receptors composed of two GluN1 subunits and two identical GluN2 subunits. 

However, neurons can also co-express multiple different GluN2 subunits that can co-assemble to 

form complex triheteromeric receptors (Tovar et al., 2013; Bhattacharya et al., 2018; Stroebel et 

al., 2018; Yi et al., 2018), the pharmacology of which is poorly understood. Perhaps due to this 

vast subtype diversity, subtype-selective antagonism has not yet produced clinically useful drugs, 

although some compounds have shown promise (Preskorn et al., 2008; Ibrahim et al., 2012). 
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The most clinically successful NMDAR antagonists are channel blockers. Open channel 

blockers are drugs that bind in and prevent ion flux through open ion channels. However, most 

open channel blockers can elicit powerful and dangerous side effects, likely due to indiscriminate 

inhibition of large populations of NMDARs (Olney et al., 1989; Zorumski & Olney, 1993; Krystal 

et al., 1994). In stark contrast to other moderate and high-affinity NMDAR channel blockers, the 

adamantane derivative memantine is remarkably well-tolerated (Parsons, Danysz, & Quack, 

1999; Chen & Lipton, 2006). Memantine is a clinically approved treatment for Alzheimer’s disease 

(Witt et al., 2004; Mecocci et al., 2009; Danysz & Parsons, 2012) and shows promise in treating 

many other disorders including Parkinson’s disease, Alzheimer’s disease-related dementias, 

post-stroke cell death and dementia, schizophrenia, and disorders associated with rare de novo 

mutations of NMDAR subunits (Sonkusare et al., 2005; Lipton, 2006; Parsons et al., 2007; 

Berthier et al., 2009; Olivares et al., 2012; Pierson et al., 2014; Johnson et al., 2015; Di Iorio et 

al., 2017; Zheng et al., 2018). A leading hypothesis regarding the clinical safety of memantine is 

that memantine may preferentially inhibit subpopulations of NMDARs involved in disease (Zhao 

et al., 2006; Léveillé et al., 2008; Okamoto et al., 2009; Xia et al., 2010), which may arise from 

the ability of memantine to modulate NMDAR gating.  

Memantine acts not only by blocking ion flux through NMDARs, but also by stabilizing a 

desensitized state of the NMDAR channel. Desensitized states are closed, agonist-bound states 

the occupancy of which can vary significantly by NMDAR subtype and physiological context 

(Benveniste et al., 1990; Krupp et al., 1996, 1998; Villarroel et al., 1998; Glasgow et al., 2017). 

We recently reported that memantine enhances NMDAR desensitization in a subtype- and 

context-specific manner (Glasgow et al., 2017). Memantine profoundly slows recovery of 

GluN1/2A receptors, but not GluN1/2B receptors, from desensitization. The effect of memantine 

on desensitization was absent in low extracellular Ca2+, and memantine inhibition of GluN1/2A 

receptors was shown to be more powerful in conditions supporting high levels of Ca2+
 influx 
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(Glasgow et al., 2017). These data suggest that memantine stabilizes a Ca2+-dependent 

desensitized state of the GluN1/2A receptor. Ca2+-dependent desensitization (CDD; also termed 

Ca2+-dependent inactivation) is elicited by increases in [Ca2+]i (Legendre et al., 1993; Rozov & 

Burnashev, 2016; Iacobucci & Popescu, 2017, 2020) and acts as an endogenous negative-

feedback loop by reducing NMDAR-mediated Ca2+ influx in response to increasing [Ca2+]i.  

Stabilization of a Ca2+-dependent state by memantine offers a rational mechanism by which 

memantine can target specific NMDAR subpopulations involved in disease: preferential inhibition 

of NMDARs in neurons experiencing long durations of high Ca2+ influx, i.e. subpopulations of 

NMDARs involved in excitotoxicity. Selective inhibition of overactive NMDARs is an ideal property 

of a neuroprotective drug, and the elucidation of the mechanistic underpinnings of Ca2+-

dependent inhibition of NMDARs by memantine may aid in the design of more efficacious 

neuroprotectants.  

Here we further investigated the relation between NMDAR CDD and the mechanism of 

action of memantine. Through electrophysiological recordings and manipulation of [Ca2+]i, we 

found that memantine inhibition of GluN2A-containing NMDARs is directly dependent on [Ca2+]i. 

This [Ca2+]i dependence of memantine action is also dependent on the ability of the receptor to 

access a Ca2+-dependent desensitized state. We found that although both GluN1/2A and 

GluN1/2A receptors exhibit CDD, [Ca2+]i-dependent inhibition by memantine is a GluN2A-specific 

phenomenon, suggesting that the relation between CDD and memantine inhibition is subtype-

specific. Together, these results strongly support the hypothesis that memantine stabilizes a Ca2+-

dependent desensitized state of GluN2A-containing NMDARs and present a previously 

uncharacterized form of state-specific NMDAR antagonism. 
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2.3 MATERIALS AND METHODS 

2.3.1 Cell culture and transfection 

Experiments were performed in tsA201 cell cultures (European Collection of Authenticated 

Cell Cultures) or primary cortical neuron cultures. tsA201 cells were maintained as previously 

described (Glasgow & Johnson, 2014) in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% fetal bovine serum and 1% GlutaMAX (Thermo Fisher Scientific). Cells 

were plated at a density of 105 cells/dish in 35 mm petri dishes on 15 mm glass coverslips treated 

with poly D-lysine (0.1 mg/mL) and rat-tail collagen (0.1 mg/mL). 18-24 hours after plating, the 

cells were transfected using FuGENE 6 (Promega) with complementary DNA (cDNA) coding for 

enhanced green fluorescent protein (EGFP; Genbank ACS32473 in pCI-neo or pIRES) to identify 

transfected cells, WT rat GluN1-1a (GluN1; GenBank X63255 in pcDNA3.1 or U08261 in pCI-

neo), and either GluN2A (GenBank M91561 in pcDNA1 or D13211 in pIRES), GluN2B (GenBank 

M91562 in pcDNA1), GluN2C (GenBank M91562 in pcDNA1), or GluN2D (GenBank L31611 in 

pcDNA1). EGFP was expressed using one of two plasmids: pCI-neo:EGFP:GluN1-1a or 

EGFP:pIRES:GluN2A, both kind gifts from Dr. Kasper Hansen.  pCI-neo:EGFP:GluN1-1a was 

constructed by inserting cDNA encoding EGFP in pCI-neo under transcriptional control of the 

CMV promoter, between the CMV promoter and the GluN1 open reading frame (Yi et al., 2018). 

EGFP:pIRES:GluN2A was constructed by inserting cDNA encoding EGFP between the CMV 

promoter and the GluN2A open reading frame in pIRES, with the internal ribosome entry site (i.e., 

the IRES) between the EGFP and GluN2A open reading frames. Both plasmids allow for co-

expression of independent EGFP and NMDAR subunit proteins.  For experiments with GluN1/2A 

receptors, cells were transfected with cDNA ratios of 1 GluN1: 1 GluN2. Cells were transfected 

with cDNA ratios of either 1 GluN1: 1 GluN2 or 1 GluN1: 2 GluN2 for experiments with GluN1/2B, 



 

37 

 

GluN1/2C, and GluN1/2D receptors. 200 μM of the competitive NMDAR antagonist dl-APV was 

added to medium at the time of transfection to prevent NMDAR-mediated cell death. 

Primary cortical cultures (provided by Karen Harnett-Scott and Dr. Elias Aizenman of the 

University of Pittsburgh) were prepared from embryonic day 16 rats of both sexes. Pregnant rats 

(Charles River Laboratories) were sacrificed via CO2 inhalation. Brains of embryonic rats were 

dissected, and cortices were dissociated with trypsin. Dissociated neurons were then plated at a 

density of 6.6 *105 to 7.0 * 105 cells/well on 15 mm glass coverslips in 6-well plates. Coverslips 

were acid-etched and treated with either poly-L-ornithine or poly-D-lysine prior to plating. Neurons 

were maintained in D10FC medium during days in vitro (DIV) 1-18. Non-neuronal cell proliferation 

inhibited on DIV 15 by adding 1-2 μM cytosine arabinosine (AraC) to D10FC. AraC and D10FC 

were removed on DIV18 and cells were maintained in D2C medium from DIV18 onward. 

2.3.2 Electrophysiology  

Patch-clamp electrophysiological experiments were performed in the whole-cell voltage-

clamp configuration. Recordings from tsA201 cells were performed 18-30 hours after transfection. 

Recordings from cultured neurons were performed after DIV 15 to allow for adequate GluN2A 

subunit expression, which occurs after roughly two weeks in vitro (Zhong et al., 1994; Li et al., 

1998; Sinor et al., 2000). Pipettes were fabricated from borosilicate capillary tubing (outer 

diameter = 1.5 mm, inner diameter = 0.86 mm) using a Flaming Brown P-97 electrode puller 

(Sutter Instruments) and fire-polished to a resistance of 3.0 – 4.5 MΩ for tsA201 cell recordings 

or 3.5 – 5.0 MΩ for neuronal recordings. Whole-cell currents were amplified with Axopatch 1D or 

Axopatch 200A amplifiers and digitized using a Digidata 1440A digitizer (Molecular Devices). 

Current signals were low-pass filtered at 5 kHz and sampled at 20 kHz using pCIamp10.7 

(Molecular Devices). Series resistance was compensated between 85 – 90% in all experiments, 
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and data from cells with series resistance > 20 ΜΩ was excluded from analysis. In all experiments, 

an empirically determined liquid junction potential of -6 mV between the internal and external 

solutions was corrected. For experiments in Figures 4 – 7 and 10, data was collected 5 – 10 min 

after break-in. 

Control bath solution (referred to as external solution) for tsA201 cell experiments 

contained (in mM): 140 NaCl, 2.8 KCl, 10 HEPES, 0.01 EDTA, 0.1 glycine, and either 0.1 or 1 

CaCl2. For all neuronal experiments, external solution contained 140 NaCl, 2.8 KCl, 10 HEPES, 

0.01 EDTA, 0.01 glycine (lowered from tsA201 cell experiments to prevent activation of inhibitory 

glycine receptors), and 0.1 CaCl2, with 0.2 μM tetrodotoxin (TTX) added to prevent synaptic 

events or action potential escape. Agonists and antagonists were added to external solutions on 

day of experiments. 1 mM glutamate (diluted from 1 M stock) was used for tsA201 cell 

experiments, and 10 μM NMDA (diluted from 10 mM stock) for neuronal experiments. Various 

concentrations of memantine and ketamine (both diluted from 10 mM stocks in dH2O) were used 

for both tsA201 cell and neuronal experiments. For IC50 measurements, antagonist solutions were 

prepared via serial dilution. Control, agonist, and antagonist solutions were delivered to the 

patched cell via ten polyimide barrels using our in-house fabricated rapid-switching fast perfusion 

system (Glasgow & Johnson, 2014). Switches between solutions were performed by moving the 

barrel position relative to the patched cell with a voice-coil motor controlled by a custom program 

(Blanpied et al., 1997). Solution flow rate was maintained at 1 – 2 mL/min for all experiments. 

2.3.3 Intracellular solution preparation and determination of free [Ca2+] 

All intracellular (pipette) solutions contained 120 – 130 mM CsCl, 10 mM HEPES, and 4 

mM MgATP and were pH balanced to 7.2 ± 0.05 with CsOH. To allow for study of the effects of 

known, constant [Ca2+]i on channel block, each intracellular solution also contained calculated 
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concentrations of CaCl2 and empirically determined concentrations of BAPTA, HEDTA, or NTA to 

buffer Ca2+
 to desired concentrations. Because estimation of free Ca2+ concentrations ([Ca2+]F) in 

buffered solutions are subject to multiple sources of error (McGuigan et al., 2016), we utilized the 

Ligand Optimization Method (LOM (McGuigan et al., 1991, 2006)) to (1) aid in the design of 

intracellular solutions containing known concentrations of buffered [Ca2+]F and (2) empirically 

determine [Ca2+]F following solution preparation. The LOM is a multi-step process that obtains the 

best fit of the Nicolsky-Eisenman equation (Nicolsky et al., 1967) to data measured with a Ca2+-

selective electrode by optimizing four parameters vital to accurate determination of [Ca2+]F: the 

slope of the electrode at [Ca2+] < 10 μM (s), the lumped interference constant (Σ) describing the 

nonlinearity of the electrode at low [Ca2+]F, the total concentration of the Ca2+-binding buffer ([B]T), 

and the Kd of the buffer.  

All solutions used for the LOM were prepared from a background solution containing 120 

mM CsCl and 10 mM HEPES and balanced to pH 7.2 with CsOH. Ionic content of the background 

solution was designed to mimic our typical intracellular solutions. Seven calibration solutions, 

necessary for determination of s, were prepared by adding CaCl2 to background solution to 

produce total [Ca2+] ([Ca2+]T) ranging from 0.5 - 10 mM. 10 Ca2+-buffer solutions containing 10 

mM of the calcium chelators BAPTA, HEDTA, or NTA (measured by weight) and known 

concentrations of [Ca2+]T were prepared from background solution using the ratiometric method 

(McGuigan et al., 2014). All measurements of [Ca2+]F were made at 25o C using a Ca2+-selective 

combination electrode that converts effective concentrations of free Ca2+ ions into electrical 

potentials according to the Nernst equation (Orion 9720BNWP, ThermoFisher) and a pH meter in 

mV mode (Accument AR15, ThermoFisher). To obtain values for fitting of the Nicolsky-Eisenman 

equation, electrical potentials of the calibration solutions were first measured in order of 

descending [Ca2+]T, followed by measurement of electrical potentials of the Ca2+-buffer solutions 

in order of descending [Ca2+]T. Relative potentials (ΔE) for each solution were then calculated for 
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each solution by subtracting the potential measured in the [Ca2+]T = 10 mM calibration solution. 

The relative potentials were then fit using the program CaSALE, a custom R script written 

specifically for use with the LOM (kindly provided by Dr. James Kay; (McGuigan et al., 2014)) that 

automizes the iterative optimization of s, Σ, [B]T, and Kd. Values of optimized parameters are listed 

in Table 2. 

After LOM curves were obtained for each Ca2+ buffer (Figure 3), [Ca2+]Ts required to give 

desired [Ca2+]F in our intracellular solutions were calculated using the optimized [B]T, and Kd 

values with Equation 1: 

Buffers with Kd closest to the target [Ca2+]F were used for each solution: BAPTA (Kd = 144 

nM) for [Ca2+]F < 1 μM, HEDTA (Kd = 2.24 μM) for [Ca2+]F 1 – 10 μM, and NTA (Kd = 81.5 μM) for 

[Ca2+]F > 10 μM. The calculated [Ca2+]T was added to background solution containing the specified 

buffer and 4 mM MgATP and the solution was pH balanced with CsOH. ΔE was then recorded 

for the prepared solution and was used, along with the optimized s and Σ values, to confirm the 

final [Ca2+]F with Equation 2: 

where E0
 represents the intrinsic potential of the recording system, a parameter determined by 

CaSALE calculations. Final [Ca2+]F were confirmed to vary from the value predicted by the LOM 

curve by less than 2% on average (Table 3). All Ca2+-buffer solutions were prepared using the 

LOM except for the [Ca2+]F = 5 μM solution, which was prepared using the program 

MAXCHELATOR (Bers et al., 2010) and later measured using the LOM. The original intention 

was to prepare a [Ca2+]F = 10 μM solution using MAXCHELATOR estimates, but MAXCHELATOR 

does not account for buffer purity or the effect of background solution composition on buffer Kd 

[Ca2+]F =  10
ΔE − Eo

s  –  Σ 

[Ca2+]T =
([Ca2+]F )([B]T + [Ca2+]F +  Kd)

[Ca2+]F +  Kd
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values (McGuigan et al., 2016; Tran et al., 2018). The HEDTA Kd value utilized by 

MAXCHELATOR is substantially higher than most measurements in solutions of similar 

composition to our intracellular solution (Tran et al., 2018) as well as our LOM measurements 

(MAXCHELATOR Kd = 7.2 μM; LOM Kd = 2.24 μM) which resulted in preparation of a solution 

with substantially lower [Ca2+]F than predicted (MAXCHELATOR predicted [Ca2+]F = 10 μM; LOM 

measured [Ca2+]F = 4.87 μM), illustrating the importance for precise measurement of [Ca2+]F in 

buffered solutions. 

2.3.4 Analysis 

All electrophysiology data were analyzed with Clampfit 10.7 (Molecular Devices) and 

Prism 7-9 (Graphpad). Baseline current was subtracted from all current measurements. 

Concentration-inhibition relations for channel blockers were measured using the protocol shown 

in Figure 4A. Agonist was applied until current reached steady-state (ISS), then sequentially 

increasing concentrations of antagonist were applied in the presence of constant [agonist]. Each 

antagonist solution was applied until a steady level of inhibition was reached (10 – 20 s for 

GluN1/2A receptors, 20 – 30 s for GluN1/2B GluN1/2C, and GluN1/2D receptors and in neuronal 

experiments). Antagonists were then removed and agonist alone was reapplied to allow recovery 

from channel block. Cells in which current did not recover to at least 85% of the steady-state 

current elicited by the initial agonist application were excluded from analysis. IC50 values were 

estimated by fitting concentration-inhibition data with the Hill equation, Equation 3: 

IDrug

IGlu
=

1

1 + (
[Drug]

IC50
)nH
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where IDrug represents the mean ISS over the final 1 s of drug application at a particular [Drug], IGlu 

is the average of the mean ISS over the final 1 s of the agonist application preceding drug 

application and the mean ISS over the final 1 s of the agonist application following recovery from 

inhibition, and nH is the Hill coefficient. IC50 and nH were free parameters during fitting. The effect 

of [Ca2+]i on memantine potency was quantified with a modified version of the Hill equation,  

Equation 4:  

where IC50 represents the memantine IC50 measured at each [Ca2+]i, maxIC50 represents the 

maximal IC50 (the IC50 recorded at [Ca2+]i < 1 nM), minIC50 represents the minimal IC50  value, 

CaEC50 represents the [Ca2+]i that elicits a half maximal effect on memantine potency, and nH is 

the Hill coefficient. CaEC50 and nH were free parameters during fitting.  

The time course of recovery from desensitization (RfD) for GluN1/2A receptors was 

measured using the protocol shown in Figure 5. Patched cells were subjected to repeated 

glutamate applications in the absence of antagonist or the presence of the indicated antagonist 

concentration following inter-application intervals of 1, 2, 5, 10, 20, 50, 100, and 200 s in random 

order or in order of increasing or decreasing duration. Figure 5 shows an example experiment 

using inter-application intervals of increasing length. Peak currents (IPeak) following each inter-

application interval were measured as the mean current over a 30 ms window centered around 

the peak absolute current. Ipeaks were then normalized to the IPeak following the 200 s inter-

application interval to account for current rundown or changes in recording parameters. Cells 

where normalized IPeak for any inter-application interval exceeded 1.2 were excluded from 

analysis. Plot of normalized IPeaks as a function of inter-application interval were fit with either 

single or double exponential functions to determine time constants for RfD. To allow for 

IC50 =  minIC50 +  
maxIC50 − minIC50

1 + (
[Cai

2+]
CaEC50

)

 nH
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comparison with single exponential time constants (τ), double exponential time constants were 

converted to a weighted time constant (τw) using Equation 5:  

where τfast, Afast, τslow, and Aslow represent the time constant and amplitude of the fast component 

and the time constant and amplitude of the slow component, respectively.  

For experiments measuring the effect of [Ca2+]i on desensitization, desensitization was 

quantified as a ratio of Iss to IPeak. Iss was measured as in IC50 experiments. IPeak was measured as 

in RfD experiments.  

 

  

τw =  
(τfast ∗ Afast)  + (τslow ∗ Aslow)

Afast +  Aslow
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Table 2. Ligand Optimization Method parameters.  

 

 

  

Optimized Parameter BAPTA HEDTA NTA 

s (mV/decade Ca2+) 28.7 28.8 28.3 

Σ 8.47 * 10-9 7.64 * 10-18 1.79 * 10-16 

[B]T (M) 9.49 * 10-3 9.04 * 10-3 8.71 * 10-3 

Kd (M) 1.44 * 10-7 2.24 * 10-6 8.15* 10-5 

E0
 (mV) 57.4 57.5 56.5 
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Figure 3. Ligand Optimization Method.  

A-C, Ligand Optimization Method for BAPTA (A), HEDTA (B), and NTA (C). Line represents best fit of the 

Nicolsky-Eisenmann equation to ΔE values after final optimization of [B]T, Kd, s, and Σ. Points represent 

measurements from calibration (green) or buffer (blue) solutions.  
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Table 3. Measured [Ca2+]F values  Ca2+-Buffer solutions. 

#5 μM solution prepared using MAXCHELATOR predictions, with [Ca2+]F measured under the assumption 

that  [B]T did not substantially vary between solutions. All other solutions prepared using LOM predictions. 

All [Ca2+]F values measured using LOM after final solution preparation. 

Target [Ca2+]F 
(M) 

Buffer [Ca2+]T (M) 
Predicted ΔE 

(mV) 
Measured ΔE 

(mV) 
Measured [Ca2+]F 

(M) 

1 * 10-8 BAPTA 6.16 * 10-4 -164.58 -164.6 9.98 * 10-9 

1 * 10-7 BAPTA 3.89 * 10-3 -142.51 -142.5 1.00 * 10-7 

1 * 10-6 HEDTA 2.79 * 10-3 -115.07 -115.1 9.98 * 10-7 

#5 * 10-6 HEDTA 6.20 * 10-3 NA -95.3 4.87 * 10-6 

1 * 10-5 HEDTA 7.39 * 10-3 -86.30 -86.3 1.00 * 10-5 

5 * 10-5 NTA 3.36 * 10-3 -64.99 -65.0 5.01 * 10-5 
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2.4 RESULTS 

2.4.1 Ca2+-dependent block of GluN1/2A receptors by memantine 

Memantine augments desensitization of GluN1/2A receptors by slowing recovery from, 

and therefore increasing occupancy of, a Ca2+-dependent desensitized receptor state (Glasgow 

et al. 2017). To further parse the relation between memantine block and CDD, we used whole cell 

patch-clamp recordings to measure memantine potency while “clamping” [Ca2+]i with Ca2+-

buffering pipette solutions containing known [Ca2+]F and high concentrations of Ca2+ buffer. 

Estimation of [Ca2+]F in buffered solutions is often performed using freely available software 

(Schoenmakers et al., 1992; McGuigan et al., 2006; Bers et al., 2010) and requires the Ca2+-

binding affinity (Kd) and the purity of the buffer ([B]T) to be known. However, reported Kd values 

for commonly used Ca2+ buffers vary considerably and the purity of many Ca2+ buffers is reduced 

by binding to H2O while in solid form (McGuigan et al., 2016). Thus, accurate estimation of [Ca2+]F 

in buffered solutions difficult. To avoid misestimation of [Ca2+]F in our pipette solutions, we utilized 

the Ligand Optimization Method ((Luthi et al., 1997; McGuigan et al., 2006, 2007, 2016); see 

Methods section for details) to obtain accurate Kd and [B]T values for each buffer used and 

empirically measure the [Ca2+]F in our pipette solutions (Table 3). Furthermore, we performed 

recordings in low extracellular [Ca2+] ([Ca2+]e = 0.1 mM) to minimize the impact of Ca2+ influx on 

[Ca2+]i and limit any confounding effects of [Ca2+]e on NMDAR channel function (Ascher and 

Nowak 1988, Maki and Popescu 2014). Thus, we were able to isolate and examine the effect of 

[Ca2+]i on memantine potency.  

Recordings from transfected tsA201 cells expressing GluN1/2A diheteromers revealed a 

clear dependence of memantine potency on [Ca2+]i (Figure 4A-D). Memantine inhibition was 

augmented by [Ca2+]i. Memantine IC50 values significantly decreased as [Ca2+]i increased, 
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culminating in a striking ~4-fold difference in potency between the lowest and highest [Ca2+]i 

conditions (Figure 4C; [Ca2+]i < 1 nM IC50 = 2.76 ± 0.27; [Ca2+]i = 50 μM IC50 = 0.70 ± 0.06 μM, n 

= 5). This effect appeared to saturate at roughly [Ca2+]i = 5 μM (Figure 4C,D). Memantine inhibition 

was sensitive not only to levels of [Ca2+]i consistent with active signaling (1 μM) and pathological 

conditions (5 – 50 μM) in neurons, but also low [Ca2+]i’s at (100 nM) or even below (10 nM) resting 

levels, indicating that memantine potency is sensitive to [Ca2+]i across a physiologically important 

range. To quantify the effect of [Ca2+]i on inhibition by Mem, we fit the memantine IC50 data as a 

function of [Ca2+]i using a modified version of the Hill equation (Equation 4). The relatively linear 

middle portion of the [Ca2+]i-Memantine IC50 curve spans the entire range of physiological [Ca2+]i 

observed in neurons, with the half maximal effect of [Ca2+]i reached at [Ca2+]i = 54 nM (Figure 4D). 

These results suggest that memantine inhibition of GluN1/2A receptors is dynamically regulated 

by physiological fluctuations in [Ca2+]i.  

Although it is likely that the primary effect of [Ca2+]i on NMDARs in our experiments is 

modulation of CDD, manipulating [Ca2+]i may alter other NMDAR channel properties that broadly 

affect channel block (Lan et al., 2001; Skeberdis et al., 2006; Murphy et al., 2014). To determine 

whether the effect of [Ca2+]i on memantine IC50 could be attributed to a general effect of [Ca2+]i on 

channel block, we measured the effect of [Ca2+]i on the IC50s of the prototypical NMDAR channel 

blocker Mg2+ and of another clinically important organic channel blocker, ketamine. Neither Mg2+ 

IC50 (Figure 4E,F) nor ketamine IC50 (Figure 4G,H) showed any dependence on [Ca2+]i, 

suggesting that [Ca2+]i has no broad effects on channel block. The [Ca2+]i-independent nature of 

ketamine potency is consistent with our previous findings that ketamine has no effect on CDD 

(Glasgow et al., 2017), supporting the idea that the [Ca2+]i dependence of memantine IC50 is 

inherently intertwined with CDD. 
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Figure 4. Ca2+-dependent block of GluN1/2A receptors by memantine. 

 A, Overlay of WT GluN1/2A receptor currents used to measure memantine (Mem) concentration-inhibition 

curves during application of glutamate (Glu; black bar) and memantine (red bars) For visualization of 

differences in inhibition, only traces in conditions of [Ca2+]i < 1 nM (grey), [Ca2+]i = 1 μM (teal), and [Ca2+]i = 

10 μM (blue) are shown. [Ca2+]e = 0.1 mM to prevent Ca2+ influx from altering [Ca2+]i. Currents are 

normalized to steady state current measured in 0 memantine. B, Memantine concentration-inhibition curves 

for [Ca2+]i = 10 μM (blue), 1 μM (teal), 100 nM (light blue), 10 nM (gold), and < 1 nM (grey). Lines depict fit 

of Hill equation (Equation 3) to data. C, Summary of memantine IC50 values measured at the indicated 

[Ca2+]i (< 1 nM Ca2+
i: IC50 = 2.76 ± 0.27 μM, n = 9; 10 nM Ca2+

i: IC50 = 1.93 ± 0.07 μM, n = 6; 100 nM Ca2+
i: 

IC50 = 1.76 ± 0.12 μM, n = 5; 1 μM Ca2+
i: IC50 = 1.07 ± 0.04 μM, n = 4; 5 μM Ca2+

i: IC50 = 0.69 ± 0.06 μM, n 

= 5 10 μM Ca2+
i: IC50 = 0.69 ± 0.05 μM, n = 5; 50 μM Ca2+

i: IC50 = 0.70 ± 0.06 μM, n = 5). ANOVA with 

Sidak’s post hoc test. *p < 0.05, **p < 0.01, ****p < 0.0001. D, Curve describing the effect of [Ca2+]i on 

memantine IC50. Line depicts fit of Equation 4 to data. Memantine becomes more potent (i.e. IC50 

decreases) as [Ca2+]i increases. Dashed line at memantine IC50 = 0.69 μM depicts minimum IC50. Dotted 

lines and open circle show the [Ca2+]i required to induce a half-maximal effect on memantine IC50 ([Ca2+]i = 

54 nM). E, Mg2+ concentration-inhibition curves for [Ca2+]i < 1 nM (grey) and [Ca2+]i = 10 μM (blue). Lines 

depict fit of Hill equation to data. F, Summary of Mg2+ IC50 values measured at [Ca2+]i of < 1 nM (grey; IC50 
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= 39.9 ± 3.3 nM, n = 6) and 10 μM (blue; IC50 = 38.3 ± 2.7 nM, n = 7). 2-tailed Student t-test, p = 0.72. G, 

Ketamine concentration-inhibition curves for [Ca2+]i < 1 nM (grey) and [Ca2+]i = 10 μM (blue). Lines depict 

fit of Hill equation to data. H, Summary of ketamine IC50 values measured at [Ca2+]i of < 1 nM (grey; IC50 = 

0.82 ± 0.04, n = 6) and 10 μM (blue; IC50 = 0.78 ± 0.03 μM, n = 7). 2-tailed Student t-test, p = 0.46. For C, 

F, and H, points represent individual values, bars and error bars depict mean ± SEM. For B, D, E, and G, 

data are depicted as mean ± SEM and some error bars are smaller than symbols. Intracellular Ca2+-

buffering conditions for each internal solution used (i.e. [Ca2+]T and buffer) are given in Table 3, and [B]T for 

each buffer is given in Table 2.  
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2.4.2 Ca2+-dependent desensitization is required for Ca2+-dependent block of GluN1/2A 

receptors by memantine  

To determine whether memantine enhances GluN1/2A receptor desensitization by 

stabilizing a Ca2+-dependent desensitized receptor state, we assessed the involvement of the 

GluN1 C-terminal domain (CTD) in two key phenomena: the effect of memantine on recovery of 

GluN1/2A receptors from desensitization, and the effect of [Ca2+]i on memantine potency. The C0 

region of the GluN1 CTD, a short sequence located ~30 amino acid resides after the 

transmembrane domain, is included in all GluN1 splice variants and is the primary structural 

mediator of NMDAR CDD via its interactions with calmodulin (Ehlers et al., 1996; Zhang et al., 

1998; Krupp et al., 1999). Truncation of the GluN1 subunit proximal to C0 (GluN1ΔCTD) 

eliminates CDD (Ehlers et al., 1996; Zhang et al., 1998; Krupp et al., 1999) without affecting other 

desensitization mechanisms (Krupp et al., 1998), allowing us to examine whether entry into a 

Ca2+-dependent desensitized state is required for the effects of [Ca2+]i on memantine action.  

We measured the time course of recovery from desensitization (RfD) of GluN1/2A WT and 

GluN1ΔCTD/2A mutant receptors in the presence and absence of 3 μM memantine to assess 

whether the GluN1 CTD is involved in memantine’s ability to stabilize a Ca2+-dependent 

desensitized state. Consistent with previous results (Glasgow et al., 2017), memantine greatly 

slowed RfD of WT GluN1/2A receptors in [Ca2+]e = 1 mM (Figure 5A,B,E,G) but showed no effect 

on RfD in [Ca2+]e = 0.1 mM (data not shown). The effect of memantine on RfD in [Ca2+]e = 1 mM 

was ablated by truncation of the GluN1 CTD (Figure 5C,D,F,G). RfD of GluN1ΔCTD/2A mutant 

receptors showed no sensitivity to memantine and did not significantly differ from RfD of WT 

receptors in the absence of memantine (Figure 5G), confirming that the effect of memantine on 

GluN1/2A receptor desensitization requires accessibility of a Ca2+-dependent desensitized state.  
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We then compared memantine IC50 values in [Ca2+]e = 0.1 mM for WT and GluN1ΔCTD 

mutant receptors in conditions of low ([Ca2+]i <1 nM) and high ([Ca2+]i = 5 μM) intracellular Ca2+. 

WT receptors again displayed robust [Ca2+]i-dependence of block by memantine. However, [Ca2+]i 

had no effect on block of GluN1ΔCTD/2A receptors (Figure 6). Additionally, GluN1ΔCTD mutant 

IC50 values in both conditions did not significantly differ from the WT value in the low [Ca2+]i 

condition (Figure 6C), revealing that the sensitivity of memantine IC50 to [Ca2+]i is entirely 

dependent on the GluN1 CTD. Consistent with our hypothesis, truncation of the GluN1 CTD also 

ablated CDD (Figure 6 D,E). Together, our results provide powerful evidence that the slowing of 

GluN1/2A receptor RfD by memantine and the [Ca2+]i dependence of memantine inhibition both 

result from stabilization of a Ca2+-dependent desensitized state. 
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Figure 5. The GluN1 C-terminal domain is required for enhancement of GluN1/2A receptor 

Ca2+-dependent desensitization by memantine. 

A-D, Representative current traces of WT GluN1/2A (A, B) and GluN1ΔCTD/2A receptor responses to 1 

mM Glu (black bars) after inter-application intervals of decreasing duration in the absence (A, C) and 

presence (B, D) of 3 μM memantine (red bars). Dotted line placed at IPeak after the 200 s inter-application 

interval to allow for visualization of differences between peaks. E, F, Exponential fits to time course of RfD 

data. Symbols depict normalized IPeak values (see Section 2.3.4) for WT receptors (E) or GluN1ΔCTD/2A 

receptors (F). Data are depicted as mean ± SEM and some error bars are smaller than symbols. G, 

Summary and comparison of time constant of RfD values (WT Control τ = 4.66 ± 0.95 s, n = 8; WT Mem τw 

= 44.56 ± 3.46 s; GluN1ΔCTD Control τ = 2.58 ± 0.32 s; n = 4; GluN1ΔCTD Mem τ = 2.58 ± 0.32 s; n = 4). 

ANOVA with Tukey’s post hoc test; ****p < 0.0001. Points represent individual values, bars and error bars 

depict mean ± SEM. Intracellular solutions contained 10 mM BAPTA and no added CaCl2. 
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Figure 6. Ca2+dependent block by memantine requires the GluN1 C-terminal domain. 

A, Representative GluN1ΔCTD/2A receptor currents used to measure memantine concentration-inhibition 

relations in conditions of [Ca2+]i = <1 nM (grey) and 5 μM (blue) in 0.1 mM Ca2+
e. B, Concentration-inhibition 

curve for memantine at [Ca2+]i = <1 nM and 5 μM. Points represent mean; error bars smaller than points. 

C, Summary of memantine IC50 values for WT GluN1/2A and GluN1ΔCTD/2A receptors in conditions of 

[Ca2+]i  <1 nM and [Ca2+]i = 5 μM. GluN1 CTD truncation ablates the effect of [Ca2+]I on memantine IC50 (for 

GluN1ΔCTD/2A receptors, [Ca2+]i < 1 nM: 2.13 ± 0.27 μM, n = 4; [Ca2+]i = 5 μM: 2.18 ± 0.34 μM, n = 4). 2-

way ANOVA (interaction p < 0.001) with Tukey post hoc test for multiple comparisons (***p < 0.001, ****p 

< 0.0001). Points represent individual values, bars and error bars show mean ± SEM. D, Overlay of 

GluN1ΔCTD/2A receptor currents used to measure desensitization with [Ca2+]i = <1 nM (grey) and 5 μM 

(blue) in 0.1 mM Ca2+
e. Currents are normalized to IPeak. E, Comparison of ISS/IPeak values across conditions 

of [Ca2+]i  <1 and [Ca2+]i = 5 μM. No difference in desensitization was observed (Student t-test). Intracellular 

Ca2+-buffering conditions for each internal solution used (i.e. [Ca2+]T and buffer) are given in Table 3, and 

[B]T for each buffer is given in Table 2. 
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2.4.3  [Ca2+]i-dependent block by memantine depends on receptor subtype 

NMDARs display great diversity in subunit composition. The GluN2 subunit strongly 

influences many biophysical properties of NMDARs, including channel block and desensitization 

(Krupp et al., 1996, 1998; Siegler Retchless et al., 2012; Glasgow et al., 2015, 2017). However, 

the dependence of CDD on GluN2 subunit identity, and therefore the dependence of [Ca2+]i-

dependent block by memantine on GluN2 subunit identity, is still ambiguous. CDD has been 

reported in GluN1/2A, GluN1/2B, and GluN1/2D receptors, but not GluN1/2C receptors (Krupp et 

al., 1996; Iacobucci & Popescu, 2020). However, while GluN1/2A CDD is well-characterized 

(Ehlers et al., 1996; Krupp et al., 1996, 1999, 2002; Zhang et al., 1998; Iacobucci & Popescu, 

2017, 2020), our understanding of GluN1/2B and GluN1/2D CDD is far less clear. GluN1/2A 

receptors display obvious CDD across a broad array of experimental conditions (Ehlers et al., 

1996; Krupp et al., 1996; Iacobucci & Popescu, 2017, 2020). On the other hand, studies of CDD 

in GluN1/2B receptors have drawn inconsistent conclusions. GluN1/2B receptors were originally 

reported not to display CDD (Krupp et al., 1996), but recent studies have detailed that CDD of 

GluN1/2B receptors can be achieved in conditions of very high [Ca2+]i (Iacobucci & Popescu, 

2020). Furthermore, we have previously shown that memantine enhances CDD of GluN1/2A 

receptors but has no effect on GluN1/2B receptor desensitization(Glasgow et al., 2017), 

suggesting that either GluN1/2A and GluN1/2B receptors are differentially sensitive to Ca2+ or that 

distinct mechanisms underlie CDD of GluN1/2A and of GluN1/2B receptors. Furthermore, CDD 

of GluN1/2D receptors has only been investigated using experiments manipulating [Ca2+]e (Krupp 

et al., 1996; Iacobucci & Popescu, 2020). Therefore, we sought to further elucidate the link 

between CDD and [Ca2+]i-dependent block by memantine by investigating the effect of [Ca2+]i on 

desensitization and memantine inhibition of each diheteromeric GluN1/2 receptor subtype.  
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We performed recordings from transfected tsA201 cells expressing GluN1/2A, GluN1/2B, 

GluN1/2C, or GluN1/2D receptors to measure desensitization and memantine potency in 

conditions of [Ca2+]i <1 nM and [Ca2+]i = 10 μM. As expected, GluN1/2A receptors exhibited both 

robust [Ca2+]i dependence of block by memantine (Figure 7A,E,I)  and strong CDD, showing 

substantially larger steady-state current/peak current ratios (Iss/IP) with [Ca2+]i <1 nM than with 

[Ca2+]i = 10 μM (Figure 7A,M). In contrast, GluN1/2B receptors displayed weak CDD (Figure 

7B,N), but inhibition by memantine was entirely insensitive to [Ca2+]i (Figure 7B,F,J). The lack of 

[Ca2+]i dependence of memantine block of GluN1/2B receptors is consistent with our previous 

observations that memantine has no effect on GluN1/2B receptor RfD (Glasgow et al., 2017). 

[Ca2+]i had no effect on either desensitization or memantine inhibition of GluN1/2C (Figure 

7C,G,K,O) or GluN1/2D receptors (Figure 7D,H,L,P). Interestingly, the GluN1/2A memantine IC50 

for cells with [Ca2+]i = 10 μM is nearly identical to the IC50 values in all other subtypes regardless 

of condition. Furthermore, inhibition of GluN1/2A receptors in cells with [Ca2+]i < 1 nM was 

substantially weaker than memantine inhibition of any other NMDAR subtype tested, regardless 

of condition (Figure 7I-L). These finding suggests two intriguing possibilities. First, Ca2+
i may drive 

the memantine binding site in the GluN1/2A channel into a conformation that resembles the 

binding site in the other NMDAR subtypes. Second, the GluN1/2A receptor may access a 

conformation in conditions of low [Ca2+]i that is inaccessible by the other subtypes and exhibits 

weaker affinity for memantine. The accessibility of an additional state with weaker memantine 

affinity by GluN1/2A receptors may explain the discrepancies between memantine IC50 for 

GluN1/2A receptors and other GluN1/2 diheteromers reported previously (Parsons, Danysz, 

Bartmann, et al., 1999; Dravid et al., 2007).  
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Figure 7. GluN2 subunit identity determines the effect of [Ca2+]i on memantine potency and 

NMDAR desensitization. 

A-D, Overlay of current traces used to measure memantine concentration-inhibition curves for indicated 

NMDAR subtype in cells with [Ca2+]i < 1 nM (grey) and [Ca2+]i = 10 μM (blue). [Ca2+]e = 0.1 mM. Traces are 

normalized to ISS before application of memantine to facilitate comparison of inhibition between [Ca2+]i 

conditions. Black bar depicts Glu application; red bars depict memantine applications. Insets depict overlay 

of response (normalized to IPeak) to 1 mM Glu in the absence of memantine used to measure ISS/IPeak. E-H, 

Concentration-inhibition curves for indicated NMDAR subtype and [Ca2+]i. Points and error bars show mean 
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± SEM. Some error bars are smaller than points. I-L, Summary of IC50 values for indicated receptor subtype 

and [Ca2+]i. Inhibition of GluN1/2A receptors by memantine depends on [Ca2+]i. GluN1/2B, GluN1/2C, and 

GluN1/2D receptor inhibition is unaffected by [Ca2+]i. M-P, Summary of ISS/IPeak values for indicated receptor 

subtype and [Ca2+]i. GluN1/2A and GluN1/N2B receptors show CDD. Desensitization of GluN1/2C and 

GluN1/2D receptors does not depend on [Ca2+]i. Points represent individual values, bars and error bars 

show mean ± SEM; 2-tailed Student t-test, **p < 0.01, ***p < 0.001,****p < 0.0001. Intracellular Ca2+-

buffering conditions for each internal solution used (i.e. [Ca2+]T and buffer) are given in Table 3, and [B]T for 

each buffer is given in Table 2. Memantine IC50 and ISS/IPeak numeric values for all subtypes are summarized 

in Table 4. 
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Table 4. Memantine block and desensitization of GluN1/2 diheteromeric receptors in low 

and high [Ca2+]i. 

Values represent means ± sem (n).  

 Memantine IC50 (μM) ISS/IPeak 

NMDAR Subtype [Ca2+]i  <1 nM [Ca2+]i = 10 μM [Ca2+]i  <1 nM [Ca2+]i = 10 μM 

GluN1/2A 2.76 ± 0.27 (9) 0.69 ± 0.05 (5) 0.77 ± 0.02 (12) 0.53 ± 0.05 (5) 

GluN1/2B 0.90 ± 0.06 (9) 0.83 ± 0.03 (7) 0.79 ± 0.01 (14) 0.72 ± 0.02 (6) 

GluN1/2C 0.73 ± 0.03 (5) 0.76 ± 0.04 (3) 0.95 ± 0.01 (8) 0.94 ± 0.03 (3) 

GluN1/2D 0.59 ± 0.02 (5) 0.63 ± 0.03 (5) 0.92 ± 0.02 (9) 0.93 ± 0.01 (5) 
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2.4.4 The relation between Ca2+-dependent channel block and Ca2+-dependent 

desensitization depends on NMDAR subtype 

Why do we observe a relation between CDD and memantine block of GluN1/2A receptors, 

but not GluN1/2B receptors, in our experiments? First, in conditions of low [Ca2+]i the GluN1/2A 

receptor channel may sample a conformation inaccessible to GluN1/2B receptors that exhibits 

weaker memantine affinity. Alternatively, GluN1/2B receptors could require greater buildup of 

Ca2+
i and/or greater duration of exposure to high [Ca2+]i to reach full desensitization, limiting 

expression of [Ca2+]i-dependent memantine block. To test this second possibility, we increased 

[Ca2+]i to 50 μM and measured GluN1/2A and GluN1/2B receptor desensitization and memantine 

potency at intervals of 5, 10, and 15 min after whole-cell break-in. We found that although 50 μM 

Ca2+
i did not elicit greater GluN1/2B desensitization than 10 μM Ca2+

i at 5 min post break-in, both 

GluN1/2A (Figure 8A,B) and GluN1/2B (Figure 9A,B) desensitization greatly increased with 

duration of exposure to 50 μM Ca2+
i. This increase in desensitization is similar to a previously 

described form of [Ca2+]i-and-time-dependent desensitization (Tong & Jahr, 1994; Krupp et al., 

2002).   

Despite the substantial increase in desensitization over time, memantine IC50 remained 

stable at all time points for both GluN1/2A (Figure 8C) and GluN1/2B receptors (Figure 9C). As in 

previous experiments, memantine IC50 was dependent on [Ca2+]i for GluN1/2A receptors (Figure 

8D) but not GluN1/2B receptors (Figure 9D). Together, these results confirm that memantine 

block of GluN1/2B receptors is unaffected by [Ca2+]i or desensitization. These results also confirm 

that the relation between CDD and memantine block of NMDARs is subtype-specific, and that 

Ca2+-dependent memantine block is unique to GluN1/2A receptors.  

To investigate the mechanism underlying this time-dependent form of CDD, we also 

measured GluN2B CDD at intervals of 5, 10, and 15 after whole-cell break-in while blocking kinase 
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activity with the SRC-family tyrosine kinase inhibitor dasatinib and the broad-spectrum kinase 

inhibitor staurosporine (500 nM each). Interestingly, although CDD was still observed (no kinase 

inhibition: ISS/IPeak = 0.79 ± 0.01 at [Ca2+]i < 1 nM 5-10 min post break-in (Figure 7N); with kinase 

inhibition: Iss/IPeak = 0.67 ± 0.01 at 50 μM [Ca2+]i 5 min post break-in (Figure 9F)), the degree of 

desensitization did not increase with duration of exposure to high [Ca2+]i (Figure 9E,F), suggesting 

that this time-dependent form of GluN1/2B receptor desensitization relies on kinase function.  
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Figure 8. Desensitization, but not memantine inhibition, of GluN1/2A receptors depends on 

duration of exposure to high [Ca2+]i. 

A, Overlay of GluN1/2A receptor responses in conditions of [Ca2+]i = 50 μM recorded at 5 (light red) and 15 

(red) min after break-in. Currents are normalized to IPeak. B, Progression of GluN1/2A receptor 

desensitization as a function of duration of exposure to [Ca2+]i = 50 μM. Desensitization greatly increases 

with duration of exposure to high [Ca2+]i (5 min: Iss/IPeak = 0.60 ± 0.04; 10 min: Iss/IPeak= 0.48 ± 0.06; 15 min: 

Iss/IPeak = 0.29 ± 0.04). Repeated measures one-way ANOVA with test for linear trend (***p < 0.001). C, 

Memantine IC50 plotted as a function of duration of exposure to [Ca2+]i = 50 μM. Memantine potency is not 

related to duration of exposure to high [Ca2+]i (5 min: IC50 = 0.73 ± 0.02 μM; 10 min: IC50 = 0.74 ± 0.07 μM; 

15 min: IC50 = 0.70 ± 0.06 μM). Repeated measures one-way ANOVA with test for linear trend (p = 0.29). 

D, Summary and comparison of memantine IC50 values in conditions of [Ca2+]i < 1 nM (IC50 = 2.76 ± 0.27), 

[Ca2+]i = 10 μM (IC50 = 0.69 ± 0.05 μM), and [Ca2+]i = 50 μM (red; IC50 = 0.70 ± 0.06 μM). Data replotted 

from Figure 4C. Data were recorded at 5 – 10 min post break-in for measurement of IC50 values plotted for 
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the [Ca2+]i < 1 nM and [Ca2+]i = 10 μM groups, and at 15 min post break-in for [Ca2+]i = 50 μM.  Memantine 

potency in [Ca2+]i = 50 μM is stronger than in [Ca2+]i < 1 nM (p*** < 0.001) but does not differ from potency 

in [Ca2+]i = 10 μM; analysis same as reported in Figure 4C (one-way ANOVA with Tukey post hoc test). 

Points represent individual values, bars and error bars depict mean ± SEM. Intracellular Ca2+-buffering 

conditions for each internal solution used (i.e. [Ca2+]T and buffer) are given in Table 3, and [B]T for each 

buffer is given in Table 2. 
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Figure 9. Desensitization, but not memantine inhibition, of GluN1/2B receptors depends on 

duration of exposure to high [Ca2+]i 

A, Overlay of GluN1/2B receptor responses in conditions of [Ca2+]i = 50 μM recorded at 5 (light red) and 15 

(red) min after break-in. Currents are normalized to IPeak. B, Progression of GluN1/2B receptor 

desensitization as a function of duration of exposure to [Ca2+]i = 50 μM. Desensitization greatly increases 

with duration of exposure to high [Ca2+]i (5 min: Iss/IPeak = 0.73 ± 0.04; 10 min: Iss/IPeak= 0.60 ± 0.07; 15 min: 

Iss/IPeak = 0.41 ± 0.04). Repeated measures one-way ANOVA with test for linear trend (****p < 0.0001). C, 

Memantine IC50 plotted as a function of duration of exposure to [Ca2+]i = 50 μM. Memantine potency is not 

related to duration of exposure to high [Ca2+]i (5 min: IC50 = 0.78 ± 0.07 μM; 10 min: IC50 = 0.76 ± 0.06 μM; 

15 min: IC50 = 0.80 ± 0.04 μM). Repeated measures one-way ANOVA with test for linear trend (p = 0.55). 
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D, Summary of memantine IC50 values in conditions of [Ca2+]i < 1 nM (IC50 = 0.90 ± 0.06), [Ca2+]i = 10 μM 

(IC50 = 0.85 ± 0.05 μM), and [Ca2+]i = 50 μM (IC50 = 0.79 ± 0.05 μM). Data were recorded at 5 – 10 min post 

break-in for measurement of IC50 values plotted for the [Ca2+]i < 1 nM and [Ca2+]i = 10 μM groups, and at 

15 min post break-in for [Ca2+]i = 50 μM. Memantine inhibition of GluN1/2B receptors does not depend on 

[Ca2+]i. One-way ANOVA with Tukey post hoc test. Points represent individual values, bars and error bars 

depict mean ± SEM. E, Overlay of GluN1/2B receptor responses recorded at 5 (light red) and 15 (red) min 

after break-in with [Ca2+]i = 50 μM and kinase activity inhibited. Currents are normalized to IPeak. F, 

Progression of GluN1/2B receptor desensitization as a function of duration of exposure to [Ca2+]i = 50 μM 

with kinase activity inhibited. Kinase inhibition removed the dependence of desensitization on duration of 

exposure to high [Ca2+]i (5 min: Iss/IPeak = 0.67 ± 0.01; 10 min: Iss/IPeak= 0.67 ± 0.03; 15 min: Iss/IPeak = 0.63 ± 

0.04). Repeated measures one-way ANOVA with test for linear trend (p = 0.07). Intracellular Ca2+-buffering 

conditions for each internal solution used (i.e. [Ca2+]T and buffer) are given in Table 3, and [B]T for each 

buffer is given in Table 2. 
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2.4.5 Ca2+-dependent block of native NMDARs by memantine 

We next examined whether memantine inhibition of native NMDARs is [Ca2+]i-dependent. 

Transfected cell lines offer the advantage of studying isolated NMDAR subtypes. However, 

properties of native NMDARs can differ from recombinant receptors due to differences in 

posttranslational modifications and interactions with distinct proteins or lipids (Chazot et al., 1995; 

Kornau et al., 1995; Standley & Baudry, 2000; Kloda et al., 2007; Sornarajah et al., 2008). Many, 

if not all, neurons also co-express multiple different GluN2 subunits, which can coassemble to 

form triheteromeric receptors (Stroebel et al., 2018). To examine the effect of [Ca2+]i on 

memantine block of native NMDARs, we performed IC50 measurements in cultured primary 

cortical neurons while clamping [Ca2+]i at <1 nM or [Ca2+]i = 50 μM using the same internal 

solutions as experiments with tsA201 cells. Our cortical neuronal cultures almost exclusively 

express GluN1, GluN2A, and GluN2B subunits (Qian et al., 2005), with GluN2A subunit 

expression beginning at ~14 days in vitro (Zhong et al., 1994; Li et al., 1998; Sinor et al., 2000). 

Therefore, all IC50 measurements in cultured neurons were performed after DIV 14. Since the 

GluN2B subunit is highly expressed in cortical neurons, and often co-assembles with GluN1 and 

GluN2A subunits to form GluN1/2A/2B triheteromers (Sheng et al., 1994; Luo et al., 1997; Gray 

et al., 2011; Rauner & Köhr, 2011; Tovar et al., 2013), we performed IC50 measurements in both 

the absence and presence of the highly selective GluN1/2B receptor antagonist CP101,606. At 1 

μM, CP101,606 inhibits ~90% of GluN1/2B receptor currents while only inhibiting GluN1/2A/2B 

receptor currents by ~25% (Hansen et al., 2014). Thus, experiments without CP101,606 allowed 

us to assess the effect of [Ca2+]i on memantine block of the entire population of NMDARs, and 

experiments with CP101,606 allowed us to assess the effect of [Ca2+]i on memantine block of 

native GluN2A-containing NMDARs. 
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Experiments without CP101,606 showed that memantine inhibition of native NMDARs 

strongly depends on [Ca2+]i, revealing a ~2-fold increase in memantine potency in conditions of 

[Ca2+]i = 50 μM relative to [Ca2+]i <1 nM (Figure 10A-C). Potency of ketamine was again found to 

be [Ca2+]i-independent (Figure 10D,E). Surprisingly, the memantine IC50 value in [Ca2+]i = 50 μM 

and both ketamine IC50 values were skewed upward in comparison to experiments in tsA201 cells 

(Figure 4C,H). This could potentially be due to weaker space clamp of the larger, heavily branched 

neurons in comparison to the much more electrotonically compact tsA201 cells. In contrast, the 

memantine IC50 values in conditions of [Ca2+]i < 1nM, were roughly equivalent across our neuronal 

and tsA201 cell recordings (Figure 4C), suggesting that GluN1/2B receptors were also 

contributing to our observed IC50 values. Indeed, inhibition of GluN1/2B receptors with CP101,606 

significantly increased the memantine IC50 measured in [Ca2+]i <1 nM conditions (Figure 10C) 

without affecting IC50 values measured in [Ca2+]i = 50 μM, augmenting the dependence of 

memantine potency on [Ca2+]i. These results provide firm evidence that memantine inhibition of 

native GluN2A containing NMDARs heavily depends on [Ca2+]i.  
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Figure 10. Memantine inhibition of native NMDARs is [Ca2+]i-dependent. 

A, Overlay of current traces used to measure memantine concentration-inhibition curves from native 

NMDARs in cultured cortical neurons at [Ca2+]i < 1 nM (grey) and [Ca2+]i = 50 μM (red). Traces are 

normalized to steady-state current before application of memantine to facilitate comparison of inhibition 

between conditions. Black bar depicts Glu application; red bars depict memantine applications; blue bar 

depicts application of the selective GluN1/2B antagonist CP101,606 (1 μM). B, Memantine concentration-

inhibition curves measured in conditions of [Ca2+]i < 1 nM (gray) and [Ca2+]i = 50 μM (red) in DIV 15-22 

cultured cortical neurons. Curves and fractional current values measured in the absence of CP101,606 are 

depicted with dashed lines and open circles; curves and fractional current values measured in the presence 

of CP101,606 are depicted with solid lines and circles. C, Summary of memantine IC50 values measured at 

[Ca2+]i of < 1 nM and 50 μM in the presence and absence of CP101,606. Memantine potency was 

significantly lower at [Ca2+]i < 1 nM than [Ca2+]i = 50 μM in the absence (2.63 ± 0.12 μM vs 1.48 ± 0.12 μM) 

and presence (3.46 ± 0.34 μM vs 1.56 ± 0.0.08 μM) of CP101,606. CP101,606 weakened memantine 

potency in conditions of [Ca2+]i < 1 nM (3.46 ± 0.34 μM vs 2.63 ± 0.12 μM). One-way ANOVA with Tukey’s 

post hoc test; *p < 0.05, **p < 0.01, ****p < 0.0001. D, Ketamine concentration-inhibition curves for [Ca2+]i 

< 1 nM (grey) and [Ca2+]i = 50 μM (red) in the presence of CP101,606. E, Summary of ketamine IC50 values 

measured at [Ca2+]i of < 1 nM (grey; IC50 = 1.44 ± 0.14), and 50 μM (red; IC50 = 1.55 ± 0.09 μM). For B and 
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D, data are depicted as mean ± SEM and some error bars are smaller than symbols. For C and E, points 

represent individual values, bars and error bars depict mean ± SEM. Intracellular Ca2+-buffering conditions 

for each internal solution used (i.e. [Ca2+]T and buffer) are given in Table 3, and [B]T for each buffer is given 

in Table 2. 
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2.5 DISCUSSION 

Preferential targeting of specific receptor states could have broad implications for the 

pharmacological profile of memantine. The state-specific nature of memantine inhibition allows 

memantine activity to be regulated by both physiological context and NMDAR subtype, which 

likely contributes to memantine’s ability to inhibit select subpopulations of NMDARs. Here, we 

systematically investigated the relation between NMDAR desensitization and memantine 

inhibition. We uncovered a previously uncharacterized form of state-specific antagonism of 

NMDARs, [Ca2+]i-dependent channel block, that confers both context and subtype dependence 

to the action of memantine. We found that inhibition of GluN1/2A receptors by memantine is 

powerfully dependent on [Ca2+]i, with memantine potency increasing ~4-fold as [Ca2+]i was raised 

from < 1 nM to 5 μM. Experiments utilizing mutant receptors that do not exhibit CDD revealed that 

the [Ca2+]i-dependence of memantine inhibition is intrinsically intertwined with CDD. Together, 

these results strongly support the hypothesis that the [Ca2+]i dependence of memantine inhibition 

results from stabilization of a Ca2+-dependent desensitized NMDAR state. Our findings 

demonstrate a logical mechanism by which memantine can preferentially target specific NMDAR 

subpopulations and act as a neuroprotectant: preferential inhibition of receptor subpopulations 

subjected to intense stimulation and prolonged durations of high [Ca2+]i, i.e., NMDARs mediating 

excitotoxicity.   

Our findings mesh well with previous results detailing the effects of NMDAR activity level 

on memantine potency and the ability of memantine to enhance CDD (Glasgow et al., 2017). 

Memantine inhibits GluN1/2A receptor responses to long duration glutamate exposures more 

effectively than responses to brief, synaptic-like applications (Glasgow et al., 2017). This is 

consistent with our results, as long glutamate applications would allow for prolonged buildup of 

[Ca2+]i, resulting in higher occupancy of Ca2+-dependent desensitized states, and therefore 
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increased memantine potency. Glasgow et al., 2017 also reported that memantine slows 

GluN1/2A receptor RfD in a [Ca2+]e-dependent manner, suggesting that memantine stabilizes a 

Ca2+-dependent desensitized receptor state. We replicated these results and then expanded on 

the relation between CDD and the mechanism of action of memantine by directly testing whether 

receptor machinery required for CDD is also required for the effects of Ca2+ on memantine action. 

Truncation of the GluN1 CTD, a region required for CDD, ablates both the effect of memantine 

on RfD (Figure 5) and the effect of [Ca2+]i on memantine potency (Figure 6), confirming that 

memantine action powerfully depends on CDD of GluN1/2A receptors.  

Our findings also provide insight into mechanisms of NMDAR desensitization. NMDAR 

CDD is elicited by a complex series of molecular interactions involving calmodulin, α-actinin, and 

various kinases and phosphatases (Tong et al., 1995; Wyszynski et al., 1997; Zhang et al., 1998; 

Krupp et al., 1999; Rycroft & Gibb, 2002, 2004; Merrill et al., 2007). However, whether multiple 

forms of CDD exist is currently unknown. Our investigation of the relation between memantine 

potency and CDD revealed that desensitization of GluN1/2A and GluN1/2B receptors is increased 

both by increasing [Ca2+]i and by prolonging the duration of exposure of receptors to high [Ca2+]i. 

Our data showing that both GluN1/2A and GluN1/2B receptors exhibit CDD (Figure 7) is 

consistent with a recent study reporting that GluN1/2A and GluN1/2B receptors undergo CDD 

(Iacobucci & Popescu, 2020). Interestingly, although memantine potency for GluN1/2A receptors 

increased alongside increasing [Ca2+]i, memantine potency was unaffected by the progressive 

increase in desensitization elicited by prolonged exposure to [Ca2+]i (Figure 8). Memantine 

potency for GluN1/2B receptors was also unrelated to this progressive, time-dependent increase 

in desensitization (Figure 9). In addition, the time-dependent desensitization we observed in 

Figure 8 & 9 experiments appears remarkably similar to a previously reported form of glycine-

independent desensitization that depends on duration of exposure to [Ca2+]i (Lieberman & Mody, 

1994; Tong & Jahr, 1994; Medina et al., 1995; Krupp et al., 2002). Overall, our results suggest 



 

72 

 

that the [Ca2+]i-dependent and the [Ca2+]i-and-time-dependent phenomena we observe may 

represent different, separable forms of CDD. This conclusion is bolstered by our experiments 

testing the role of kinase activity on GluN1/2B receptor CDD. Although we still observed CDD of 

GluN1/2B receptors with kinase inhibitors in the pipette, the progressive time-dependent increase 

in desensitization was completely ablated (Figure 9). These results provide strong evidence for 

the existence of two separable forms of CDD with different underlying mechanisms. 

Ketamine acts as a powerful negative control in our experiments. Unlike memantine, 

ketamine does not affect GluN1/2A desensitization (Glasgow et al., 2017) and its potency shows 

no dependence on [Ca2+]i in recombinant (Figure 4) or native NMDARs (Figure 10). This further 

supports our conclusion that the [Ca2+]i dependence of memantine potency is derived from 

stabilization of a specific receptor state by memantine, and that the relation between CDD and 

channel block is not due to general effects of [Ca2+]i on channel block. Differences between the 

effects of memantine and ketamine on NMDAR gating are particularly interesting. Memantine and 

ketamine, despite sharing overlapping binding sites in the NMDAR channel (Ferrer-Montiel et al., 

1998; Kashiwagi et al., 2002), exhibit strikingly divergent clinical profiles (Krystal et al., 1994; 

Parsons, Danysz, & Quack, 1999; Chen & Lipton, 2006; Johnson et al., 2015). The difference we 

observe between the effects of [Ca2+]i on memantine and ketamine potency could direct each 

drug to target distinct NMDAR subpopulations, a mechanism proposed to underpin some of the 

differences observed between the clinical profiles of memantine and ketamine (Gideons et al., 

2014; Johnson et al., 2015; Kavalali & Monteggia, 2015).  

NMDAR CDD and the effect of [Ca2+]i on memantine potency both depend on NMDAR 

subunit composition (Figure 7). However, perhaps surprisingly, the expression of CDD by an 

NMDAR subtype does not necessitate that memantine block of that subtype is [Ca2+]i-dependent. 

We report that while both GluN1/2A receptors and GluN1/2B receptors exhibit CDD, only 

memantine block of GluN1/2A receptors is regulated by [Ca2+]i. Interestingly, the memantine IC50 
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for GluN1/2A receptors in cells with [Ca2+]i = 10 μM was nearly identical to the IC50 values 

measured in both low and high [Ca2+]i conditions for the other NMDAR subtypes. In contrast, 

memantine inhibition of GluN1/2A receptors in cells with [Ca2+]i < 1 nM was weaker than 

memantine inhibition of any other NMDAR subtype tested, regardless of condition. Therefore, our 

results suggest that GluN1/2A receptors, in conditions of low [Ca2+]i, exhibit a unique 

conformational state that (1) other subtypes are unable to access and (2) exhibits weaker affinity 

for memantine. The existence of a unique GluN1/2A receptor state with weaker affinity for 

memantine, and the ability of [Ca2+]i to reduce occupancy of this state and increase memantine 

potency, may allow memantine to act somewhat like a low-pass filter for GluN1/2A receptor 

activity. In conditions of weak NMDAR stimulation, memantine would permit relatively normal 

activity of GluN1/2A receptors while limiting activity of GluN1/2B, GluN1/2C, and GluN1/2D 

NMDARs. As stimulation increases, buildup of [Ca2+]i initiates CDD mechanisms that push 

GluN1/2A-containing receptor channels into a conformation that resembles the binding sites of 

other NMDAR subtypes, increasing memantine inhibition of GluN1/2A receptors. This filter-like 

action of memantine could contribute to its surprising combination of clinical efficacy and 

tolerability by permitting NMDAR activity in healthy neurons while limiting NMDAR activity in 

neurons subjected to pathological insults. Importantly, our experiments show that memantine 

inhibition of GluN1/2A receptors is dynamically regulated by fluctuations of [Ca2+]i across both 

physiological and pathological ranges, and that memantine inhibition of a mixed population of 

native NMDARs containing both GluN2A- and GluN2B-containing receptors is [Ca2+]i-dependent. 

Thus, the [Ca2+]i dependence of inhibition of NMDARs by memantine has the potential to 

profoundly impact the effects of memantine on neuronal function. 
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3.0 STRUCTURAL BASIS OF CA2+-DEPENDENT CHANNEL BLOCK OF NMDA 

RECEPTORS BY MEMANTINE 

3.1 OVERVIEW 

N-methyl-D-aspartate receptors (NMDARs) are Ca2+-permeable ligand-gated ion 

channels expressed at nearly all excitatory vertebrate synapses. NMDAR-mediated Ca2+ influx is 

essential for many critical neuronal functions and NMDAR dysfunction is implicated in numerous 

nervous system pathologies. Thus, drugs targeting NMDARs are of great clinical interest. 

Memantine and ketamine are both clinically useful NMDAR open channel blockers with similar 

pharmacological properties but paradoxically different clinical profiles. Recent work from our lab 

has revealed key biophysical differences in how memantine and ketamine act on NMDARs. 

Inhibition of NMDARs by memantine, but not ketamine, is dynamically regulated by intracellular 

Ca2+ concentration ([Ca2+]i), a phenomenon resulting from the ability of memantine to stabilize a 

Ca2+-dependent desensitized NMDAR state. Here, we integrate molecular dynamics simulations 

with whole-cell recordings to identify differences in the memantine and ketamine binding sites and 

test the role of these differential interactions in the relation between channel blocker binding and 

NMDAR desensitization. We discovered that mutation of a single residue in the NMDAR pore 

alters memantine potency without affecting ketamine potency, greatly affects NMDAR 

desensitization, and influences the [Ca2+]i dependence of memantine potency. These experiments 

provide evidence supporting the hypothesis that the differential effects of memantine and 

ketamine on NMDAR desensitization result from their differential interactions with residues in the 

NMDAR channel. 
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3.2 INTRODUCTION 

NMDARs are ionotropic glutamate receptors involved in nearly every aspect of synaptic 

function including synaptogenesis, synaptic transmission, and synaptic plasticity. This ubiquitous 

involvement in synaptic function allows NMDARs to regulate neuronal function on a large scale 

by contributing to excitation/inhibition balance, neuronal oscillations, and dendritic integration. 

Unsurprisingly, aberrant NMDAR activity contributes to a wide breadth of neuronal dysfunctions 

that can drive nervous system disorders (Javitt, 2004; Zhou & Sheng, 2013). Modulating NMDAR 

activity with therapeutic drugs has proven to be excruciatingly complicated. The NMDAR open 

channel blockers memantine and ketamine provide two particularly interesting examples of the 

complex effects of NMDAR antagonism. Both memantine and ketamine show significant 

therapeutic utility, but despite sharing similar affinities, binding kinetics, and overlapping binding 

sites in the NMDAR transmembrane domain (TMD), possess wildly divergent clinical profiles 

(Ferrer-Montiel et al., 1998; Parsons, Danysz, & Quack, 1999; Kashiwagi et al., 2002; Chen & 

Lipton, 2006; Emnett et al., 2013; Johnson et al., 2015). Ketamine, but not memantine, shows 

great efficacy in the treatment of pain and major depressive disorder (Persson, 2013; Abdallah et 

al., 2015; Kavalali & Monteggia, 2015) but is a drug of abuse and produces/exacerbates 

symptoms of schizophrenia (Krystal et al., 2003; Bondi et al., 2012; Corazza et al., 2013). In 

contrast, Mem is well-tolerated, approved for treatment of Alzheimer’s disease, and shows 

promise in treatment of other disorders including, paradoxically, schizophrenia (Chen & Lipton, 

2006; Lipton, 2006; Parsons et al., 2007; Danysz & Parsons, 2012; Parsons & Raymond, 2014; 

Di Iorio et al., 2017). Our current understanding of the mechanisms of action of memantine and 

ketamine is unable to account for their divergent systemic effects. 

Some clinical differences between memantine and ketamine, such as the hypnotic effect 

of ketamine (Chen, Shu, et al., 2009), result from actions at different non-NMDAR targets. 
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However, there is substantial evidence that the effects of memantine and ketamine depend 

predominantly on inhibition of NMDARs ((Javitt, 2004; Wenk et al., 2006; Parsons et al., 2007; 

Bondi et al., 2012), but see (Zanos et al., 2016) for additional potential mechanisms of Ket in 

depression). Furthermore, differences between memantine and ketamine pharmacokinetics 

minimally contribute to the observed differences in their behavioral effects (Kotermanski et al., 

2013). Therefore, understanding the mechanisms underlying the differential effects of memantine 

and ketamine requires deeper insight into the biophysical action of each drug on NMDARs.  

To this end, an attractive target of study is our discovery that inhibition of NMDAR by 

memantine, but not ketamine, is dynamically regulated by intracellular Ca2+ concentration 

([Ca2+]i). In Chapter 2 we reported that increasing [Ca2+]i increases memantine potency, and that 

the [Ca2+]i dependence of memantine inhibition results from stabilization of a Ca2+-dependent 

desensitized NMDAR state. This state specificity allows memantine to both block current flow 

through open receptors and stabilize closed receptors to varying degrees based on [Ca2+]i. Ca2+ 

dynamics and handling vary heavily by subcellular region and neuronal subtype (Schwaller, 2010; 

Higley & Sabatini, 2012), and desensitization of NMDARs plays a key role in shaping postsynaptic 

responses and plasticity (Jones & Westbrook, 1996; Urakubo et al., 2008). Thus, the [Ca2+]i 

dependence of memantine inhibition could provide a mechanism through which memantine 

preferentially targets different subpopulations of NMDARs than ketamine, potentially 

underpinning many of the striking dissimilarities observed between the two drugs. Additionally, 

the [Ca2+]i dependence of memantine inhibition suggests an innovative, logical mechanism of 

neuroprotection: preferential inhibition of NMDARs that are exposed to large and prolonged 

increases of Ca2+
i, i.e. receptors likely to mediate excitotoxic cell death (Zorumski & Olney, 1993; 

Rothman & Olney, 1995; Hasbani et al., 1998; Hardingham & Bading, 2010; Wroge et al., 2012; 

Zhou et al., 2013). 
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The mechanism by which memantine stabilizes closed channels is currently unknown. 

Given that memantine and ketamine show differential effects on GluN1/2A receptor 

desensitization, it is likely that the structural interactions between each drug and the GluN1/2A 

channel also differ. However, despite their clinical relevance, there have been no direct 

comparisons of the memantine and ketamine binding sites. Here, we utilize a powerful 

combination of molecular simulations with atomistic GluN1/2A TMD models and whole-cell 

electrophysiology in transfected cells to investigate the relation between channel blocker-

GluN1/2A channel interactions, desensitization, and the [Ca2+]i dependence of memantine 

inhibition. 

3.3 MATERIALS AND METHODS 

3.3.1 Molecular modeling  

All simulations were carried out using fully atomistic models of the GluN1/2A TMD. The 

GluN1/2A TMD model shown in Figure 11 (referred to as the 2017 model) and used for initial 

docking simulations for memantine and ketamine was developed in collaboration with the 

Kurnikova Lab of Carnegie Mellon University (Mesbahi-Vasey et al., 2017). The 2017 model was 

initially constructed by homology modeling based on NaK (PDB 2AHY; (Shi et al., 2006)) and 

AMPAR (PDB 3KG2; (Sobolevsky et al., 2009)) crystal structures and was refined with targeted 

MD simulations to incorporate data from an NMDAR crystal structure (PDB 3KG2; (Lee et al., 

2014)). I developed and optimized models of memantine and ketamine using the software 

Gaussian 09 (M.J. Frisch, 2009). All docking simulations were carried out using the software 

Autodock Vina (Trott & Olson, 2010) with the assistance of Dr. Chamali Narangoda of the 
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Kurnikova Lab.  For docking simulations, side chains of memantine and ketamine were allowed 

to rotate while protein side chains were held rigid. Memantine and ketamine were docked to 20 

different snapshots of the closed 2017 model. Each docking simulation produced 9 predicted 

docking poses for each drug. The most commonly predicted poses were then assessed for 

consistency with experimental predictions of channel blocker binding sites, i.e. whether the 

charged amine group of the blocker was in close proximity to the critical asparagine residues  

GluN1 N616 and GluN2A N614, which are heavily implicated in NMDAR channel block 

(Burnashev, Schoepfer, et al., 1992; Mori et al., 1992; Kuner & Schoepfer, 1996; Ferrer-Montiel 

et al., 1998; Kashiwagi et al., 2002; Chen & Lipton, 2005; Mesbahi-Vasey et al., 2017). 

The GluN1/2A TMD model shown in Figure 14 (referred to as the 2019 model) and used 

for molecular dynamics (MD) simulations was developed from a cryo-EM density structure 

template (PDB 6MM9; (Jalali-Yazdi et al., 2018)) by our collaborators Drs. Dhilon Patel and Maria 

Kurnikova of Carnegie Mellon University. After generation of the model, it was placed in an 

equilibrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer, solvated with 

water, Na+ and Cl- ions, and equilibrated. Initial docking of memantine to this model was also 

performed with Autodock Vina. MD simulations were carried out with the MD software package 

Amber18 using the pmemd.cuda program (Case et al., 2017). Pressure and temperature of the 

simulated system were maintained at 1 bar and 300 K, respectively. MD simulations of memantine 

binding to the NMDAR channel were carried out for WT as well as GluN1/2A(F641A) and 

GluN1/2A(F641W) receptors. Two 200 ns simulations were performed for each receptor-

memantine complex. MD simulations were performed by Dr. Dhilon Patel with my assistance. 
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3.3.2 Cell culture and transfection 

All experiments were performed in tsA201 cell cultures (European Collection of 

Authenticated Cell Cultures). tsA201 cells were maintained as previously described (Glasgow & 

Johnson, 2014) in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal 

bovine serum and 1% GlutaMAX (Thermo Fisher Scientific). Cells were plated at a density of 105 

cells/dish in 35 mm petri dishes on 15 mm glass coverslips treated with poly D-lysine (0.1 mg/ml) 

and rat-tail collagen (0.1 mg/ml). 18-24 hours after plating, the cells were transfected using 

FuGENE 6 (Promega) with complementary DNA (cDNA) coding for enhanced green fluorescent 

protein (EGFP; Genbank ACS32473 in pCI-neo) to identify transfected cells, WT rat GluN1-1a 

(GluN1; GenBank U08261 in pCI-neo), and either WT GluN2A (GenBank M91561 in pcDNA1) or 

GluN2A mutated at residue 641. Mutations were made using the Stratagene QuikChange II XL 

sited directed mutagenesis kit. EGFP was expressed using a specialty plasmid, pCI-

neo:EGFP:GluN1-1a (a kind gift from Dr. Kasper Hansen), that allows for co-expression of 

independent EGFP and GluN1 subunit proteins. pCI-neo:EGFP:GluN1-1a was constructed by 

inserting cDNA encoding EGFP in pCI-neo under transcriptional control of the CMV promoter, 

between the CMV promoter and the GluN1 open reading frame (Yi et al., 2018).  Cells were 

transfected with cDNA ratios of 1 GluN1: 1 GluN2A. 200 μM of the competitive NMDAR antagonist 

dl-APV was added to medium at the time of transfection to prevent NMDAR-mediated cell death.  

3.3.3 Electrophysiology 

All patch-clamp electrophysiological experiments were performed in the whole-cell 

voltage-clamp configuration. Recordings from tsA201 cells were performed 18-30 hours after 

transfection. Pipettes were fabricated from as described in Chapter 2 (2.3.2). Whole-cell currents 
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were amplified with Axopatch 1D, 200A, or 200B amplifiers and digitized using a Digidata 1440A 

digitizer (Molecular Devices). Current signals were low-pass filtered at 5 kHz and sampled at 20 

kHz using pCIamp10.7 (Molecular Devices). Series resistance was compensated between 85 – 

90% in all experiments. An empirically determined liquid junction potential of -6 mV between the 

internal and external solutions was corrected for in all experiments.  

Control bath solution (referred to as external solution) for tsA201 cell experiments 

contained (in mM): 140 NaCl, 2.8 KCl, 10 HEPES, 0.01 EDTA, 0.1 glycine, and either 0, 0.1 or 1 

CaCl2. Agonist (1 mM glutamate from 1 M stock) and antagonists (various memantine and 

ketamine concentrations from 10 mM stock in dH2O) were added to external solutions on day of 

experiments. For IC50 experiments, antagonist solutions were prepared via serial dilution. Control, 

agonist, and antagonist solutions were delivered to the patched cell via polyimide barrels using 

our in-house fabricated rapid-switching fast perfusion system (Glasgow & Johnson, 2014). 

Switches between solutions were performed by moving the barrel position relative to the patched 

cell with a voice-coil motor controlled by a custom program (Blanpied et al., 1997). Solution flow 

rate was maintained at 1 – 2 mL/min for all experiments.  

3.3.4 Intracellular solution preparation 

All intracellular solutions contained 125 – 130 mM CsCl, 10 mM HEPES, and 4 mM 

MgATP and were pH balanced to 7.2 ± 0.05 with CsOH. For experiments in Figures 12, 13, 15, 

and 16, intracellular solutions contained 10 mM BAPTA. For experiments comparing the effects 

of [Ca2+]i block and desensitization, we utilized the Ligand Optimization Method (LOM (McGuigan 

et al., 1991, 2006)) as described in Chapter 2.3.3 to help prepare an intracellular solution 

containing an empirically determined [Ca2+]F of 10 μM. For experiments in Figure 17, the [Ca2+]i = 
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10 μM internal solution contained 10 mM HEDTA and 7.34 mM CaCl2;  the [Ca2+]i < 1 nM 

contained 10 mM BAPTA and no added CaCl2. 

3.3.5 Analysis 

All electrophysiologic data were analyzed with Clampfit 10.7 (Molecular Devices) and 

Prism 7-9 (Graphpad). Baseline current was subtracted from all current measurements. 

Concentration-inhibition relations for channel blockers were measured using the protocol shown 

in Figure 12A. Agonist was applied until current reached steady-state, then sequentially 

increasing concentrations of antagonist were applied the in the presence of constant [agonist]. 

Each [antagonist] was applied until a steady level of inhibition was reached (10 – 20 s). 

Antagonists were then removed and agonist alone was reapplied to allow recovery from channel 

block. Cells in which current did not recover to at least 85% of the steady-state current elicited by 

the initial agonist application were excluded from analysis. IC50 values were estimated as 

described in Chapter 2.3.4.  

For experiments investigating the effects of Ca2+ and the GluN2A mutations on 

desensitization, desensitization was quantified as a ratio of steady-state current (Iss) to peak 

current (Ipeak) Iss was measured as the mean current taken over the final 1 s of agonist application. 

Ipeak was measured as the mean current over a 30 ms window set 5 ms centered on the peak 

absolute current. To allow for comparison of effects of mutations on CDD, ISS/IPeak in 1 mM 

extracellular Ca2+ (Ca2+
e) was normalized to ISS/IPeak in 0.1 mM Ca2+

e. 



 

82 

 

3.4 RESULTS 

3.4.1 GluN2A residue 641 is predicted to interact with memantine, but not ketamine 

The differential effects of memantine and ketamine on the stability of closed GluN1/2A 

channels suggests that the two channel blockers may differentially interact with channel residues. 

To assess whether memantine and ketamine interact with distinct channel residues, we utilized 

computational simulations to model the memantine and ketamine binding sites in the NMDAR 

channel. Using our recently published atomistic model of the GluN1/2A TMD (Mesbahi-Vasey et 

al., 2017), we generated models of memantine and ketamine docked to a closed NMDAR channel 

using the software Autodock Vina (Trott & Olson, 2010). The most commonly predicted binding 

poses for memantine and ketamine placed them above the selectivity filter with their hydrophobic 

moieties nestled between the GluN1-GluN2A interface (Figure 11C,D). We then identified and 

compared residues within 3 Å of the predicted memantine and ketamine binding sites. Importantly, 

both memantine and ketamine were predicted to bind in close proximity to critical asparagine 

residues (GluN1 N616 and GluN2A N614; Figure 11E,F) that are key components of the NMDAR 

selectivity filter and heavily implicated in channel block (Burnashev, Schoepfer, et al., 1992; Mori 

et al., 1992; Kuner & Schoepfer, 1996; Ferrer-Montiel et al., 1998; Kashiwagi et al., 2002; Chen 

& Lipton, 2005; Mesbahi-Vasey et al., 2017).  

The predicted binding sites of memantine and ketamine heavily overlapped. Most residues 

within 3 Å of the docked blockers were identical. However, we identified a phenylalanine (F) 

residue in the M3 helix of the GluN2A subunit (F641) predicted to interact with memantine, but 

not ketamine (Figure 11E,F). To test the accuracy of this prediction, we experimentally 

investigated whether GluN2A 641 contributes to memantine or ketamine potency by making a 

relatively conservative phenylalanine to leucine mutation at GluN2A 641 and measuring 
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memantine and ketamine IC50 (Figure 12A-F; Table 5). Interestingly, the GluN2A(F641L) mutation 

increased memantine potency relative to WT receptors (Figure 12G). The GluN2A(F641L) 

mutation had no effect on ketamine potency (Figure 12H).  These results support the idea that 

memantine and ketamine form differential interactions with GluN1/2A channel residues.  
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Figure 11. Docking of memantine and ketamine to 2017 GluN1/2A TMD model. 

A, B, Bond-line structures of memantine (A) and ketamine (B) shown with protonated amines, the 

predominant form of each blocker at neutral pH (memantine pKa = 10.3 (Freudenthaler et al., 1998); 

ketamine pKa = 7.5 (Budavari, 1989)). C, D, View of entire 2017 GluN1/2A TMD model (Mesbahi-Vasey et 

al., 2017) with memantine (C) and ketamine (D) docked within the channel. GluN1 is depicted as gray-blue 

ribbons; GluN2A is depicted as cyan ribbons. Blockers are depicted as space-filling structures. Box depicts 

regions blown up in E and F. E, F, Magnified view of docking sites for memantine (E) and ketamine (F). 

Both blockers share close proximity with key asparagine residues and generated similar docking scores 

(memantine = - 7.1 kcal/mol; ketamine = - 8.8 kcal/mol). Residue N2A(F641) is predicted to be within 3 Å 

of memantine, but not ketamine. All other residues within 3 Å are shared. Colors: C = pink (drug), green 

(side chain); N = blue; O = red; S = yellow; Cl = gold.  
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Figure 12. GluN2A F641 influences memantine potency but not ketamine potency. 

A, B, Representative current traces for experiments measuring memantine (A) and ketamine (B) IC50s for 

WT GluN1/2A receptors in [Ca2+]e = 1 mM. C, D, Representative current traces for experiments measuring 

memantine (C) and ketamine (D) IC50s for mutant GluN1/2A(F641L) receptors. Bars represent glutamate 

or memantine applications at indicated concentrations. E, F, IC50 curves used to estimate memantine (E) 
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and ketamine (F) potency at WT GluN1/2A and mutant GluN1/2A(F641L) receptors. Green line and 

symbols represent values for WT receptors; blue line and symbols represent values for mutant receptors. 

Data are depicted as mean ± SEM; some error bars are smaller than symbols. Lines depict best fit of Hill 

equation (Equation 3) to data. G, H, Summary and comparison of IC50 values for memantine (G) and 

ketamine (H) at WT GluN1/2A and GluN1/2A(F641L) receptors. Memantine IC50 was significantly lower for 

GluN1/2A(F641L) receptors than WT receptors. Ketamine IC50 did not differ between groups. IC50 values 

are summarized in Table 5.  
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3.4.2 Size of GluN2A residue 641 influences inhibition by memantine, but not ketamine 

Interestingly, the GluN2A(F641L) mutation reduced memantine IC50. This effect could be 

due to multiple factors, including direct steric effects of the GluN2A F641 side chain on memantine 

binding, changes in receptor dynamics that contribute to memantine binding, or alteration of CDD. 

To further assess the contribution of GluN2A F641 to memantine potency, we generated 

additional mutant receptors with either a small residue (alanine; A) or a large aromatic residue 

(tryptophan; W) at position GluN2A F641 and measured memantine IC50 (Figure 13; Table 5). We 

found that mutations to smaller residues (A or L) significantly increased memantine potency 

(Figure 13A,B,I,K). Mutation to the larger W residue decreased memantine potency in comparison 

to GluN1/2A(F641A), GluN1/2A(F641L), and WT receptors (Figure 13C,D,I,K). Thus, size of 

GluN2A residue 641 influences memantine potency.  

To ensure that the GluN1/2A(F641A) and GluN1/2A(F641W) mutations do not elicit 

changes in NMDAR dynamics that broadly affect channel block, we also measured and compared 

ketamine IC50s. Importantly, none of the GluN2A F641 mutations altered ketamine potency 

(Figure 13 E-H,J,L; Table 5). These results confirm that mutation of GluN2A F641 does not 

broadly affect channel block and support the model predictions that GluN2A F641 specifically 

contributes to the memantine binding pocket. 
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Figure 13. Size of GluN2A residue 641 influences memantine, but not ketamine, potency. 

A-H, Representative GluN1/2A receptor currents used to measure memantine (A-D) and ketamine (E-H) 

concentration-inhibition relations in 1 mM Ca2+
e. Traces are shown in order (Left → Right) of increasing 

residue size at position GluN2A 641. Peaks of Glu responses for GluN2A(F641A) and GluN2A(F641L) are 

truncated. I, J, Concentration-inhibition curves for memantine (I) and ketamine (J). Legend inset in I 

identifies amino acid residue at GluN2A position 641. Data expressed as mean ± SEM; error are bars 

smaller than symbols for WT, F641A, and F641W receptors. K, L, Summary of memantine IC50 values (K) 

and ketamine IC50 values (L). Memantine IC50 depends on residue size at GluN2A position 641, with IC50 

decreasing with residue size (K). Ketamine IC50 does not depend on residue size at GluN2A position 641 

(L). Points represent individual values, bar represents mean, and error bars depict SEM. **p < 0.01 , ***p 

< 0.001; ****p < 0.0001; one-way ANOVA with Tukey post hoc analysis. IC50 values are summarized in 

Table 5.  
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3.4.3 GluN2A residue 641 regulates memantine binding via inter-subunit interactions  

Multiple possible mechanisms could account for the effect of GluN2A residue 641 size on 

memantine IC50. Firstly, the large WT F and mutant W residues could form direct, energetically 

unfavorable interactions with memantine, limiting the stability of the TMD-memantine complex. 

Any steric hindrance generated by the larger residues would be removed by mutating GluN2A 

F641 to smaller residues (i.e., A or L), resulting in improved stability of memantine in the TMD. 

Another possibility is that GluN2A F641 may interact with other TMD residues that help form the 

memantine binding pocket, which could allow GluN2A F641 to indirectly affect memantine 

potency. However, our experimental data do not allow us to distinguish between direct and 

indirect contributions of GluN2A F641 to memantine binding. Therefore, we turned to molecular 

dynamics (MD) simulations to further investigate the role of GluN2A F641 in memantine binding.  

For MD simulations, we used an updated, more advanced NMDAR TMD model developed from 

a recent cryo-EM density structure of a GluN1/2A receptor (Jalali-Yazdi et al., 2018). The 2019 

model (Figure 14A,B) holds the advantage over the 2017 model (Figure 11; (Mesbahi-Vasey et 

al., 2017) of being constructed based on an GluN1/2A receptor template rather than NaK, 

AMPAR, and GluN1/2B receptor channel templates. In addition, the 2019 model includes the 

linker residues connecting the first and second transmembrane helices (M1 and M2) as well as 

the helical pre-M1 region.  

To investigate the role of GluN2A F641 on memantine binding, we docked memantine to 

the 2019 model using Autodock Vina (Trott & Olson, 2010) and used the docking positions as 

starting points for MD simulations. We then performed MD simulations with the memantine-TMD 

complex immersed in a POPC lipid bilayer (Figure 14A). Interestingly, we observed no direct 

interactions between GluN2A F641 and memantine in our simulations. Therefore, we performed 

in silico mutagenesis experiments to explore the mechanism by which the GluN2A(F641A) and 
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GluN2A(F641W) mutants affect memantine binding. Simulations with GluN2A(F641A) and 

GluN2A(F641W) mutants again did not show direct interaction of memantine with GluN2A residue 

641. However, we instead observed that mutation of GluN2A F641 produced a pronounced 

change in an adjacent GluN1 residue, GluN1 M641.  

Our simulations revealed that GluN1 M641 adopts one of two possible conformations 

depending on the size of GluN2A 641. In GluN1/2A(F641A) receptors, the GluN1 M641 side chain 

adopts a conformation projecting into the channel cavity, where it forms an energetically favorable 

interaction with memantine (Figure 14C). In contrast, the F641 residue of the WT GluN2A subunit 

forms an energetically favorable interaction with GluN1 M641, encouraging the side chain of 

GluN1 M641 to adopt a conformation projecting away from the channel cavity into a position 

where it is unlikely to interact with memantine (Figure 14D). In GluN1/2A(F641W) receptors, the 

interaction between GluN1 M641 and the large GluN2A W641 residue is strengthened, further 

restricting the movement of the GluN1 M641 side chain to this “outward” conformation and thus 

limiting its ability to interact with memantine (Figure 14E). In simpler terms, the large GluN2A 

F641 and mutant GluN2A W641 side chains can effectively compete with memantine for 

interaction with GluN1 M641. In contrast, the mutant GluN2A(F641A) residue is too small to 

strongly interact with GluN1 M641, allowing GluN1 M641 to preferentially adopt the “inward” 

conformation in which it favorably interacts with memantine. The results of our simulations mesh 

well with our experimental data showing that memantine potency depends on the size of GluN2A 

641 (Figure 13). Thus, our modeling results suggest that GluN2A residue 641 indirectly regulates 

memantine binding via inter-subunit interactions. 
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Figure 14. Mutation of GluN2A residue 641 affects dynamics of GluN1 M641.  

A, Top-down view of 2019 GluN1/2A TMD model showing symmetry and central channel. For all panels, 

protein is depicted using a ribbon diagram; GluN1 subunits are blue and orange, GluN2A subunits are red 

and green. Memantine is shown as a stick model in the center of the channel. B, Snapshot of 2019 

GluN1/2A TMD-memantine complex inserted into POPC bilayer. POPC head groups are shown as yellow 

sticks, with phosphates as purple spheres and fatty acid chains as pink spheres. C, Zoomed in top-down 

snapshot of memantine bound in GluN1/2A(F641A) receptor channel. Red arrows show large distance 

between GluN1 M641 and GluN2A A641. Due to lack of interaction with GluN2A(F641A), GluN1 M641 

projects toward the center of the channel and engages in memantine binding. D, Zoomed in top-down 

snapshot of memantine binding site in WT GluN1/2A receptor channel. Black arrows show distance 

between GluN1 M641 and GluN2A F641. Due to interaction with GluN2A F641, GluN1 M641 adopts a 

conformation away from the center of the channel cavity, limiting favorable interactions with memantine. E, 

Zoomed in top-down snapshot of memantine binding site in GluN1/2A(F641W) receptor channel. Black 
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arrows show short distance between GluN1 M641 and GluN2A(F641W). Due to strong interaction with 

GluN2A(F641W), GluN1 M641 adopts a conformation away from the center of the channel cavity, 

preventing its favorable interaction with memantine.  

Images adapted for this figure were generated by Dr. Dhilon Patel. 
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3.4.4 GluN2A residue 641 plays a key role in both Ca2+-independent and Ca2+-dependent 

desensitization of NMDARs 

In addition to affecting memantine potency, mutation of GluN2A F641 has obvious effects 

on NMDAR desensitization (Figure 12C,D; Figure 13A,B,E,F). Given the link between memantine 

potency and CDD (Chapter 2), we next sought to investigate the role of GluN2A F641 in NMDAR 

desensitization.  We measured desensitization of WT and mutant receptors in conditions of 0.1 

and 1 mM Ca2+
e to determine the effects of GluN1/2A F641 mutations on both Ca2+-independent 

and Ca2+-dependent desensitization. Experiments in 0.1 mM Ca2+
e allowed us to assess effects 

of mutations specifically on Ca2+-independent desensitization, while experiments in 1 mM Ca2+
e 

allowed us to assess effects of mutants on total desensitization due to both Ca2+-dependent and 

Ca2+-independent mechanisms. GluN1/2A(F641A) and GluN1/2A(F641L) receptors exhibited 

robust desensitization in both 0.1 mM and 1 mM Ca2+
e (Figure 15A,B). Interestingly, 

GluN1/2A(F641L) receptors exhibited stronger desensitization (i.e., smaller Iss/IPeak) than 

GluN1/2A(F641A) receptors in 0.1 mM Ca2+
e (Figure 15C), despite showing similar Iss/IPeak in 1 

mM Ca2+
e (Figure 15D). This suggests that GluN1/2A(F641L) receptors undergo greater Ca2+-

independent desensitization than GluN1/2A(F641A) receptors. As expected, WT receptors 

displayed moderate desensitization in 1 mM Ca2+
e and weak desensitization in 0.1 mM Ca2+

e. 

GluN1/2A(F641W) mutants displayed weak desensitization in both conditions, and significantly 

weaker desensitization than WT receptors in 1 mM Ca2+
e (Figure 15D). These results, similarly to 

our IC50 experiments, revealed a clear role of GluN2A residue 641 in desensitization, with 

desensitization in both 0.1 and 1 mM Ca2+ generally decreasing as residue size at position 

GluN2A 641 increases (Figure 15C,D).  

We then assessed the effect of GluN2A 641 mutations on CDD by comparing ISS/IPeak 

values recorded in 0.1 and 1 mM Ca2+
e. We found a clear relation between GluN2A 641 residue 
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size and CDD (Figure 16).  GluN1/2A(F641A) (Figure 16A,E), GluN1/2A(F641L) (Figure 16B,F), 

and WT (Figure 16C,G) receptors displayed clear CDD, with GluN1/2A(F641A) receptors 

exhibiting robust CDD. In contrast, desensitization of GluN1/2A(F641W) receptors showed no 

dependence on [Ca2+]e (Figure 16D,H). Interestingly, despite strongly affecting Ca2+-independent 

desensitization (Figure 15C), the GluN1/2A(F641L) mutation had no effect on CDD in comparison 

to WT (Figure 16I). This surprising result may suggest that the structure of Ca2+-dependent 

desensitized states may differ from Ca2+-independent desensitized states. Overall, these 

experiments suggest that CDD, like memantine IC50 and nonspecific NMDAR desensitization, 

depends on the size of GluN2A residue 641, with CDD generally decreasing as residue size 

increases (Figure 16I). These results are consistent with our previous data supporting the idea 

that memantine IC50 and NMDAR desensitization are inherently intertwined. 
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Figure 15. Mutation of GluN2A(F641) alters NMDAR desensitization. 

A, B, Representative GluN1/2A receptor currents used to measure ISS/IPeak for WT receptors and indicated 

GluN2A F641 mutants in 0.1 mM Ca2+
e (A) and 1 mM Ca2+

e (B). Traces are normalized to IPeak for 

visualization of differences in desensitization. C, D, Summary of values for WT receptors and GluN2A(F641) 

mutants in 0.1 mM Ca2+
e (C) and 1 mM Ca2+

e (D). Mutation of GluN1/2A(F641) significantly altered 

desensitization in both 0.1 mM Ca2+
e and 1 mM Ca2+

e. Points represent individual values, bar represents 

mean, and error bars depict SEM; *p < 0.05, ****p < 0.0001; one-way ANOVA with Tukey post hoc analysis. 

ISS/IPeak values summarized in Table 5. 
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Figure 16. Size of GluN2A residue 641 plays a key role in [Ca2+]i-dependent desensitization. 

A – D, Representative current traces from WT and mutant GluN1/2A(F641X) receptors used to measure 

ISS/IPeak in 0.1 (grey) and 1 mM Ca2+
e (N2A(F641A), red; N2A(F641L), blue; WT, green; N2A(F641W), 

purple). Traces are shown in order (Left → Right) of increasing residue size at position GluN2A 641. Traces 

are normalized to IPeak for visualization of differences in desensitization. E – H, Comparison of ISS/IPeak values 

measured in 0.1 and 1 mM Ca2+
e for WT and mutant GluN1/2A(F641X) receptors. GluN1/2A(F641A) (E), 

GluN1/2A(F641L) (F), and WT (G) receptors all display significant CDD. GluN1/2A(F641W) receptors do 

not display CDD (H). Points represent individual values, connecting lines show pairs. Data analyzed with 
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paired t-test. I, Summary of normalized ISS/IPeak values (1 mM Ca2+
e ISS/IPeak normalized to 0.1 mM Ca2+

e 

ISS/Ipeak) for WT receptors and GluN2A(F641) mutants. CDD depends on residue size at GluN2A position 

641, with the amount of CDD increasing as residue size decreases. Points represent individual values, bar 

represents mean, and error bars depict SEM; one-way ANOVA with Tukey post hoc analysis. For E – I, *, 

p < 0.05; **, p < 0.01;  ***, p < 0.001; ****, p < 0.0001. ISS/IPeak and normalized ISS/IPeak values summarized 

in Table 5. 
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Table 5. Memantine block and desensitization of WT and GluN1/2A(F641) mutant receptors. 

Values represent means ± sem (n).  

 
 

IC50 (μM) ISS/IPeak 
Normalized 

ISS/IPeak 

Receptor Memantine Ketamine [Ca2+]e =  0.1 mM [Ca2+]e =  1 mM 
1/0.1 mM 

[Ca2+]e 

GluN1/2A(F641A) 1.07 ± 0.05 (6) 0.94 ± 0.07 (3) 0.36 ± 0.02 (4) 0.27 ± 0.03 (4) 0.73 ± 0.02 (4) 

GluN1/2A(F641L) 1.11 ± 0.12 (11) 0.99 ± 0.27 (4) 0.23 ± 0.02 (6) 0.19 ± 0.02 (6) 0.83 ± 0.02 (6) 

WT  1.83 ± 0.05 (5) 0.89 ± 0.08 (7) 0.78 ± 0.01 (7) 0.65 ± 0.01 (9) 0.85 ± 0.01 (7) 

GluN1/2A(F641W) 2.25 ± 0.05 (6) 0.98 ± 0.07 (4) 0.78 ± 0.03 (5) 0.73 ± 0.03 (5) 0.93 ± 0.03 (5) 
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3.4.5 GluN2A residue 641 contributes to the effects of [Ca2+]i on desensitization and 

memantine inhibition of NMDARs 

Given the role of GluN2A F641 in memantine potency and desensitization, we next 

assessed whether mutation of GluN2A F641 affects the [Ca2+]i dependence of memantine 

inhibition. We measured desensitization and memantine IC50 for GluN2A(F641A), WT, and 

GluN2A(F641W) receptors while using specially prepared, Ca2+-buffering pipette solutions to 

maintain [Ca2+]i at either < 1 nM or 10 μM. We did not include GluN2A(F641L) receptors in these 

experiments, as the L mutation showed no effect on CDD (Figure 16I). Inhibition of 

GluN2A(F641A) and WT receptors by memantine was powerfully dependent on [Ca2+]i (Figure 

17A,B,E). Despite showing enhanced CDD in comparison to WT receptors, memantine inhibition 

of GluN2A(F641A) receptors did not exhibit greater dependence on [Ca2+]i, perhaps suggesting 

that the [Ca2+]i dependence of memantine inhibition reaches a floor at IC50 ≈ 0.7 μM (Figure 17E). 

Surprisingly, memantine inhibition of GluN1/2A(F641W) mutants also displayed some degree of 

[Ca2+]i dependence. However, the effect of [Ca2+]i on memantine block of GluN1/2A(F641W) 

mutants was much weaker than the effects observed in WT or GluN1/2A(F641A) receptors 

(Figure 17E), which is consistent with our previous data showing that the GluN2A(F641W) 

mutation weakens CDD (Figure 16D,H,I). 

As expected, desensitization of both GluN1/2A(F641A) and WT receptors was augmented 

by high [Ca2+]i (Figure 17F). However, in surprising contrast to experiments manipulating [Ca2+]e, 

desensitization of GluN2A(F641W) receptors was also dependent on [Ca2+]i. Furthermore, the 

magnitude of [Ca2+]i-dependent desensitization of GluN2A(F641W) receptors was similar to that 

exhibited by WT receptors (Figure 17F). This result seems inconsistent with the idea that the 

effects of the GluN2A(F641W) mutation on memantine potency are related to its effects on 

desensitization. However, it is possible that the desensitization elicited by our experiments 
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manipulating [Ca2+]i may result from a different mechanism than our previous experiments 

manipulating [Ca2+]e (Figure 16). Regardless of mechanism, it is clear that mutation of GluN2A 

F641 has profound implications for the [Ca2+]i dependence of memantine inhibition of GluN1/2A 

receptors.  

  



 

101 

 

 

Figure 17. GluN2A residue 641 influences [Ca2+]i-dependent desensitization and the [Ca2+]i 

dependence of memantine inhibition. 

A, B, Concentration-inhibition curves for memantine inhibition of (A) GluN1/2A(F641A) and (B)  

GluN1/2A(F641W) receptors in conditions of [Ca2+]i < 1 nM  and [Ca2+]i = 10 μM. Line depicts best fit of 

data to the Hill equation (Equation 3). Points and error bars show mean ± SEM. Some error bars are 

smaller than points. C, Summary of the [Ca2+]i dependence of memantine IC50 for WT receptors and 

GluN2A(F641) mutant receptors. IC50 values are compared between conditions of [Ca2+]i < 1 nM  and [Ca2+]i 

= 10 μM (black significance symbols and brackets) and across identity of GluN2A residue 641 (gray 

significance symbols and brackets). D, Summary of the [Ca2+]i dependence of desensitization of WT 

receptors and GluN2A(F641) mutant receptors. ISS/IPeak values are compared between conditions of [Ca2+]i 

< 1 nM  and [Ca2+]i = 10 μM and across identity of GluN2A residue 641. Points represent individual values, 

bar represents mean, and error bars depict SEM. Data for E – F analyzed by way of two-way ANOVA with 

Tukey post hoc analysis; *, p < 0.05; **, p < 0.01;  ***, p < 0.001; ****, p < 0.0001. 
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3.5 DISCUSSION 

Inhibition of NMDARs by memantine, but not ketamine, is dynamically regulated by 

intracellular Ca2+ concentration ([Ca2+]i), a phenomenon resulting from the ability of memantine to 

stabilize a Ca2+-dependent desensitized NMDAR state. In this chapter, we integrated 

computational simulations of NMDAR structure with electrophysiological experiments to 

investigate the role that differential blocker-NMDAR TMD interactions may play in the relation 

between NMDAR channel block and desensitization. We provide multiple lines of evidence in 

support of the hypothesis that the differential effects of memantine and ketamine on NMDAR 

desensitization result from their differential interactions with residues in the NMDAR channel, but 

significant caveats must be considered when interpreting modeling results and data from mutant 

receptors. 

Our docking simulations identified a TMD residue, GluN2A F641, that was predicted to 

interact with memantine but not ketamine. Electrophysiological experiments supported this 

prediction, as mutation of GluN2A F641 altered memantine potency without affecting ketamine 

potency. However, docking simulations have significant limitations, such as use of rigid protein 

and ligand structure, and our electrophysiological data only test for functional effects of the 

mutations on memantine potency, not structural interactions. Indeed, our more sophisticated MD 

simulations suggested that GluN2A F641 does not form direct interactions with memantine. Our 

MD simulations instead describe a mechanism by which GluN2A F641 can indirectly influence 

memantine potency – by influencing the structure of the memantine binding site (Figure 14). 

Indirect effects of other residues on blocker potency have been previously reported (Siegler 

Retchless et al., 2012), supporting the plausibility of this result. Interestingly, GluN1 M641, a 

residue predicted to be (1) involved in memantine binding and (2) influenced by GluN2A F641, 

was predicted by docking simulations to be in close proximity to both the memantine and ketamine 
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binding sites (Figure 11). However, GluN2A F641 does not contribute to ketamine potency 

(Figures 12 and 13), suggesting that memantine and ketamine may differentially interact with 

residues shared by their overlapping binding sites. A clear next step for the comparative analysis 

of the memantine and ketamine binding sites is experimentally testing the contribution of GluN1 

M641 to memantine and ketamine potency. 

An attractive interpretation of our data is that size of GluN2A residue 641 regulates 

desensitization, which in turn regulates memantine potency. Indeed, we found that mutation of 

GluN2A F641 to a smaller A residue enhances CDD and memantine potency, while mutation of 

GluN2A F641 to a larger W residue weakens desensitization and memantine potency (Figures 

13, 15, and 16). Although the idea that GluN2A 641 residue size regulates memantine inhibition 

and NMDAR desensitization via a common mechanism is enticing, the effects of Ca2+
 on 

memantine inhibition and desensitization of GluN2A(F641L) and GluN2A(F641W) mutants are 

complex.  

GluN1/2A(F641L) mutant receptors display increased memantine potency (Figure 13) and 

Ca2+-independent desensitization in comparison to WT receptors (Figure 15), but similar 

magnitudes of CDD (Figure 16). This finding argues against the idea that the effects of GluN2A 

F641 mutation on CDD underlies their differences in memantine potency. Interestingly, the data 

for GluN1/2A(F641L) mutants also shows far greater variability than data for other receptors 

tested, in nearly all experiments. It is possible that the relatively high flexibility of L contributes to 

the variability we see in its data as well as its differences from the other receptors. In contrast to 

WT and the other mutant GluN2A 641 residues, which are either large and rigid (W and F) or 

small with no meaningful rotatable bonds (A), L can sample a broad range of conformations. 

Therefore, the GluN1/2A(F641L) mutant may form unexpected contacts that stabilize or 

destabilize multiple states that we cannot easily resolve with electrophysiological experiments. 

Investigation of the effects of [Ca2+]i on desensitization and memantine inhibition of 
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GluN1/2A(F641L) receptors would allow for further comparison with WT and the other mutant 

receptors, and in silico mutagenesis MD simulations may provide further insight into the role of 

residue flexibility on the electrophysiological characteristics of GluN1/2A(F641L) receptors. 

The effects of Ca2+
 on memantine inhibition and desensitization of GluN1/2A(F641W) 

mutant receptors are also intriguing. GluN2A(F641W) receptors did not exhibit CDD in 

experiments manipulating [Ca2+]e (Figure 16), but both desensitization and memantine inhibition 

of GluN2A(F641W) receptors were dependent on [Ca2+]i (Figure 17). This could be interpreted as 

evidence for the existence of multiple mechanisms of CDD, similar to our interpretation of Chapter 

2 data (2.4.4) regarding the time dependence of [Ca2+]i-dependent desensitization. However the 

[Ca2+]i-and-time-dependent form of CDD, which is likely to be the form displayed by 

GluN1/2A(F641W) receptors due to the similarity in conditions for experiments in Figures 8 and 

17 (high [Ca2+]i internal solutions, 5-10 min wait time post-break in), showed no relation to the 

[Ca2+]i dependence of memantine potency of WT receptors (Figure 8). Furthermore, 

desensitization of GluN2A(F641W) receptors in conditions of high [Ca2+]i is comparable to that 

exhibited by WT receptors, but memantine inhibition of GluN2A(F641W) receptors was shown to 

be less dependent on [Ca2+]i than inhibition of WT receptors (Figure 17). This reduction in 

sensitivity to [Ca2+]i is consistent with the reduced CDD exhibited by GluN1/2A(F641W) receptors 

in experiments manipulating [Ca2+]e (Figure 16), but inconsistent with results from experiments 

manipulating [Ca2+]i (Figure 17). Therefore, although it is clear that GluN2A(F641W) receptors 

undergo some form of CDD, the relation between CDD and the [Ca2+]i dependence of memantine 

inhibition of GluN1/2A(F641W) mutants remains unclear. 

Interpretation of GluN2A(F641A) receptor data was far more straightforward, but not 

without some surprises. Despite exhibiting a lower memantine IC50 than WT receptors in 

conditions of 1 mM [Ca2+]e with a 10 mM BAPTA internal solution (Figure 13) and displaying 

increased CDD in experiments manipulating [Ca2+]e (Figure 16), memantine IC50 for 
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GluN2A(F641A) receptors did not differ from WT receptors in either [Ca2+]i condition (Figure 17). 

This suggests that memantine inhibition of GluN2A(F641A) receptors and WT receptors is 

similarly sensitive to [Ca2+]i. However, it is equally possible that the IC50 values generated by our 

experiments, which utilized extremely low (< 1 nM) and high (10 μM) [Ca2+]i conditions, may only 

represent the maximal and minimal memantine IC50 values for GluN2A(F641A) receptors, i.e. the 

floor and ceiling levels of the effect of [Ca2+]i on memantine IC50. Generation of a [Ca2+]i-

memantine IC50 curve (as shown in Figure 4 for WT receptors) would allow for a more direct 

assessment of differences in the effect of [Ca2+]i on memantine inhibition of GluN1/2A(F641A) 

and WT receptors. 
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4.0 ELECTROPHYSIOLOGICAL CHARACTERIZATION OF NOVEL NMDA RECEPTOR 

CHANNEL BLOCKING COMPOUNDS  

Chapter 4 is adapted from Appendix B (Leiva et al., 2018). Minor revisions were made to 

language and structure to facilitate integration of additional data. 

4.1 OVERVIEW 

NMDAR activity is critical for many types of synaptic plasticity and is a key player in 

memory formation and learning. Conversely, aberrant NMDAR activation is implicated in a variety 

of nervous system disorders. Excessive NMDAR activity can lead to build up of pathological levels 

of intracellular calcium and lead to cell death, a process known as excitotoxicity. Pharmacological 

targeting of NMDARs with channel blockers has shown therapeutic promise for protection from 

excitotoxicity as well as treatment of Alzheimer’s disease. Despite sharing similarities in binding 

site and mechanism of inhibition, the clinical utility of NMDAR channel blockers with differing 

structure can vary dramatically. Further investigation into how channel blockers differentially affect 

receptor function may provide insight into their varying clinical efficacy and aid in future drug 

design. Here we characterize and compare the Alzheimer’s disease drug memantine with four 

novel channel blockers. We find that subtle variation in channel blocker structure alters blocker 

characteristics. Excitingly, we show that potency of the novel channel blocker RL-208 depends 

on [Ca2+]i. The experiments and data detailed in this chapter lay the groundwork for future studies 

that will determine the structural determinants of [Ca2+]i-dependent channel block, potentially 

aiding in the design of more clinically efficacious NMDAR channel blocking drugs.  
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4.2 INTRODUCTION 

NMDARs are expressed at nearly all vertebrate synapses and play key roles in neuronal 

development, plasticity, and survival. Ca2+ influx through NMDARs is a signal of paramount 

importance for synaptic plasticity, including long-term potentiation and long-term depression, 

physiological processes that are the cellular basis of many forms of learning and memory (Morris, 

2013). However, NMDAR overstimulation triggers excessive Ca2+ influx and leads to 

excitotoxicity, which is the primary mediator of neuronal death following stroke and is believed to 

play a key role in the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease 

(AD) and Parkinson’s disease (PD) (Zorumski & Olney, 1993; Lipton, 1999, 2004; Hynd et al., 

2004; Koutsilieri & Riederer, 2007; Dong et al., 2009; Olivares et al., 2012; Mota et al., 2014; 

Gardoni & Di Luca, 2015; Wang & Reddy, 2017). Hence, NMDAR antagonists able to prevent 

overactivation of NMDARs are of interest as neuroprotective drugs. 

Multiple types of NMDAR antagonists have been tested in clinical trials. Several 

competitive NMDAR antagonists failed trials for neurodegenerative disorders and related 

conditions, likely due to nonspecific NMDAR inhibition, i.e., the blocking of both physiological and 

pathological NMDAR activity, which leads to unacceptable side effects (Ikonomidou & Turski, 

2002; Lipton, 2004; Muir, 2006). NMDAR open channel blocking antagonists have also been 

tested as therapeutic agents. In contrast to competitive antagonists, NMDAR channel blockers 

bind at sites that overlap with the Mg2+ binding site and can only bind and unbind when the channel 

is open (Blanpied et al., 2005; Johnson & Kotermanski, 2006; Johnson et al., 2015). Most NMDAR 

channel blockers also failed clinical trials, and several were found to be neurotoxic when 

administered at high doses to control animals (Olney et al., 1989), including dizocilpine (MK-801), 

phencyclidine, and ketamine. Nevertheless, two adamantane derivatives, amantadine and 

memantine, which are low- (amantadine) and moderate- (memantine) affinity voltage-dependent 
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NMDAR channel blockers, have been found to be moderately effective for treatment of PD and 

AD (Danysz et al., 1997; Lipton, 2006; Danysz & Parsons, 2012; Hubsher et al., 2012; Alam et 

al., 2017). 

Several hypotheses have been proposed to explain the divergent clinical effects of 

NMDAR channel blockers. The kinetics of recovery from inhibition, which are much faster for 

memantine than dizocilpine, have been proposed to be a major determinant of clinical tolerability 

(Chen & Lipton, 2006; Lipton, 2006, 2007). Another hypothesis is that the utility of memantine 

may derive from an ability to preferentially inhibit extrasynaptic NMDARs, activation of which has 

been proposed to be especially neurotoxic (Hardingham & Bading, 2010; Gladding & Raymond, 

2011; Parsons & Raymond, 2014). However, it is clear that overactivation of synaptic NMDARs 

also can be neurotoxic (Wroge et al., 2012; Zhou et al., 2013), so it unlikely that preferential 

inhibition of extrasynaptic NMDARs fully explains memantine’s high tolerability. Another recent 

proposal is that clinical safety may be associated with preferential inhibition of NMDARs that 

undergo Ca2+-dependent desensitization following exposure to high intracellular Ca2+, a property 

exhibited by memantine but not ketamine (Glasgow et al., 2017). The work presented in Chapter 

2 of this dissertation further supports this idea, revealing that memantine inhibition depends on 

intracellular Ca2+ concentration ([Ca2+]i). The [Ca2+]i dependence of memantine inhibition could 

provide a mechanism through which memantine preferentially targets different subpopulations of 

NMDARs than ketamine. It also suggests a logical mechanism of neuroprotection: preferential 

inhibition of NMDARs that are exposed to large and prolonged increases of Ca2+
i, i.e. receptors 

likely to mediate excitotoxic cell death (Zorumski & Olney, 1993; Rothman & Olney, 1995; Hasbani 

et al., 1998; Hardingham & Bading, 2010; Wroge et al., 2012; Zhou et al., 2013). Thus, many 

features of NMDAR channel blockers could potentially contribute to their clinical effects. 

Unfortunately, although memantine is well-tolerated by patients, it possesses limited 

clinical efficacy (Matsunaga et al., 2015). For this reason, new moderate-affinity NMDAR 
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antagonists with similar but distinct pharmacological properties are of interest (Chen & Lipton, 

2006; Lipton, 2006, 2007). Thus, we began a project to design, synthesize, and characterize novel 

NMDAR channel blocking compounds to help us better understand mechanisms of channel block, 

with the end goal of developing new NMDAR-targeting neurotherapeutics with improved 

pharmacological profiles. In this chapter, I provide electrophysiological characterization of four 

novel channel blockers (Figure 18): the benzo-derivative EV-19 and the polycyclic amine 

memantine analogues RL-202, RL-208, and MFV-4.  
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Figure 18. Structure of memantine and novel channel blockers. 

Structures of organic channel blockers characterized in Chapter 4. All blockers are displayed in charged 

form and shown in bond-line format. EV-19, RL-202, RL-208, and MFV-4 were all designed and synthesized 

in the lab of our collaborator Dr. Santi Vázquez (University of Barcelona). 
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4.3 MATERIALS AND METHODS 

4.3.1 Cell culture and transfection 

All electrophysiological experiments were performed at room temperature using the 

tsA201 cell line (European Collection of Authenticated Cell Cultures). Cells were maintained as 

previously described (Glasgow & Johnson, 2014) in DMEM supplemented with 10% fetal bovine 

serum, 1% GlutaMAX (Thermo Fisher Scientific), and for some experiments 1% 

penicillin/streptomycin (Sigma). Cells were plated at 1 x 105 cells/dish in 35 mm petri dishes with 

three 15 mm glass coverslips treated with poly D-lysine (0.1 mg/ml) and rat-tail collagen (0.1 

mg/ml, BD Biosciences). 

12-24 hours after plating, tsA201 cells were transiently cotransfected (FuGENE 6 

Transfection Reagent) with mammalian expression plasmids containing complementary DNA 

(cDNA) coding for enhanced green fluorescent protein (EGFP GenBank ACS32473 in pIRES) to 

identify transfected cells, WT rat GluN1-1a (GluN1; GenBank X63255 in pcDNA3.1), and GluN2A 

(D13211 in pIRES). EGFP was expressed using a specialty plasmid, EGFP:pIRES:GluN2A, gifted 

by Dr. Kasper Hansen. EGFP:pIRES:GluN2A was constructed by inserting cDNA encoding EGFP 

in pIRES between the CMV promoter and the GluN2A open reading frame, and allows for co-

expression of independent EGFP and NMDAR subunit proteins. Cells were transfected with cDNA 

ratios of 1 GluN1: 1 GluN2A. Culture medium was supplemented with 200 μM dl-APV at the time 

of transfection to prevent NMDAR-mediated cell death.  
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4.3.2 Solution preparation 

For experiments in Figures 19 - 23, intracellular pipette solution contained (in mM): 130 

CsCl, 10 HEPES, 10 BAPTA, and 4 MgATP with pH balanced to 7.2 ± 0.05 with CsOH and an 

osmolality of 280 ± 10 mOsm. To allow for study of the effects of constant [Ca2+]i on channel block 

by RL-208 (Figure 26), a high free Ca2+ (Ca2+
F) internal solution containing 130 CsCl, 10 HEPES, 

10 HEDTA, 6.2 CaCl2, and 4 MgATP (pH balanced to 7.2 ± 0.05 with CsOH; osmolality = 280 ± 

10 mOsm) was prepared using predictions from the program MAXCHELATOR (Bers et al., 2010). 

The original intention was to [Ca2+]F = 10 μM solution using MAXCHELATOR estimates, but 

MAXCHELATOR does not account for buffer purity or background solution composition and uses 

non-standardized buffer Kd values (McGuigan et al., 2016; Tran et al., 2018). Therefore, I 

empirically measured [Ca2+]F using the Ligand Optimization Method (LOM; as described in 

Chapter 2.3.3) to gather an accurate estimate of [Ca2+]F in this solution. We found that the HEDTA 

Kd value utilized by MAXCHELATOR is substantially higher than measurements made by the 

LOM for our solutions (MAXCHELATOR Kd = 7.2 μM; LOM Kd = 2.24 μM). This inaccuracy 

resulted in preparation of a solution with substantially lower [Ca2+]F than predicted 

(MAXCHELATOR predicted [Ca2+]F = 10 μM; LOM measured [Ca2+]F = 4.89 μM). Therefore, 

[Ca2+]F ≈ 5 μM for the high [Ca2+]i internal solution used for experiments in Figure 26. 

Extracellular recording solution contained (in mM) 140 NaCl, 2.8 KCl, 1 CaCl2 (or 0.1 for 

experiments in Figure 26), 10 HEPES, 0.01 EDTA, and 0.1 glycine, and was balanced to pH 7.2 

± 0.05 with NaOH and to osmolality 290 ± 10 mOsm with sucrose. Channel blockers were diluted 

from concentrated stock solutions (memantine stock = 10 mM in dH20; MgCl2 stock = 1 M in dH2O; 

EV-19 stock = 10 mM in 140 mM NaCl and 2% DMSO; RL-202, RL-208, and MFV-4 stocks = 40 

mM in 100% DMSO) in extracellular solution each day of experiments. 
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4.3.3 Electrophysiology 

Whole-cell voltage-clamp recordings were performed 18 – 30 hours after transfection. 

Pipettes were pulled from borosilicate capillary tubing (OD = 1.5 mm, ID = 0.86 mm) using a 

Flaming Brown P-97 electrode puller (Sutter Instruments) and subsequently fire-polished to a 

resistance of 2.5 – 4.5 MΩ using an in-house fabricated microforge. Whole-cell currents were 

recorded using either an Axopatch 1D or Axopatch 200A patch-clamp amplifier (Molecular 

Devices). The current signal was low-pass filtered at 5 kHz and sampled at 20 kHz in pCIamp 10 

(Molecular Devices). Series resistance was compensated 80-90% in all experiments. A -6 mV 

liquid junction potential between the intracellular pipette solution and extracellular solution was 

corrected in all experiments. Glutamate and drug solutions were delivered to the cell via an in-

house fabricated ten-barreled gravity-fed fast perfusion system (Glasgow & Johnson, 2014). 

4.3.4 Analysis 

Concentration-inhibition relations for EV-19 and Mg2+ were measured using the protocol 

shown in Figure 19A. Glutamate was applied until current reached steady state, then sequentially 

increasing concentrations of antagonist (channel blocker) were applied in the presence of 

constant [glutamate] until a steady level of inhibition was reached (10 – 20 s). Antagonists were 

then removed and agonist alone was reapplied to allow recovery from channel block. 

Concentration-inhibition relations for memantine, RL-202, RL-208, and MFV-4 were measured 

using the protocol shown in Figures 20 – 23, A and B. Glutamate was applied until current reached 

steady-state (20 s), then channel blocker at the plotted concentration was applied in the presence 

of constant [agonist] until a new steady-state current level was reached (30 s). Glutamate in the 

absence of drug was then reapplied for 30 s to allow drug unbinding and recovery from inhibition. 
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Cells in which recovery from inhibition did not reach 90% of steady-state current during initial 

glutamate application were excluded from analysis. IC50 and nH (Hill coefficient) were estimated 

by fitting Equation 3 to concentration-inhibition data as described in Chapter 2.3.4. 

Voltage dependence of channel block by each blocker was measured using the protocol 

shown in Figures 19 – 23, C and D. Cells were subjected to voltage jumps from -65 mV to nine 

voltages ranging from -105 to +55 mV. The protocol at each voltage consisted of: a 4-s wait in 

extracellular solution following the voltage step; application of 1 mM glutamate for 10 s; application 

of drug with 1 mM glutamate for 15 s; application of 1 mM glutamate for 15 s to allow drug 

unbinding; application of extracellular solution for 2 s. Voltage was then returned to -65 mV for 4 

s before the next voltage jump was made. ~2 times the IC50 of each drug was used in voltage 

dependence experiments. Voltage dependence of block was calculated using the Woodhull 

equation, Equation 6: 

where IC50(–65 mV) is the IC50 at –65 mV calculated in concentration-inhibition experiments, and 

V0 represents the change in voltage (in mV) that results in an e-fold change in the IC50 of the drug. 

IDrug/IGlu was calculated as described for concentration-inhibition data. V0 was the only free 

parameter during fitting. An estimate of the fraction of the total membrane voltage field felt by the 

blocker at its binding site (δ;(Woodhull, 1973)) was calculated using Equation 7: 

where R, T, z and F have their usual meanings. Note that, although δ is useful for comparing 

voltage dependence of blockers, voltage dependence of NMDAR channel block is influenced by 

IDrug

IGlu
=

1

1 +
[Drug]

IC50(−65 mV)e
Vm+65

V0

 

δ =
RT

V0zF
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permeant ions (Antonov et al., 1998). Therefore, δ should be used only as a rough estimate of 

binding site location in the voltage field. 

4.3.5 Molecular modeling  

The closed GluN1/2A TMD model used for docking simulations for memantine, RL-202, 

and RL-208 was developed in collaboration with the Kurnikova Lab of Carnegie Mellon University 

(Mesbahi-Vasey et al., 2017) as described in Chapter 3.3.1. I developed and optimized models 

of memantine, RL-202, and RL-208 using the software Gaussian 09 (M.J. Frisch, 2009), and 

performed docking simulations using the software Autodock Vina (Trott & Olson, 2010) with the 

assistance of Dr. Chamali Narangoda as described in Chapter 3.3.1.  

4.4 RESULTS 

4.4.1 Characteristics of NMDAR inhibition by EV-19  

We characterized NMDAR inhibition by EV-19 using whole-cell patch-clamp recordings 

from tsA201 cells expressing GluN1/2A receptors. Inhibition by EV-19 was measured as a 

function of drug concentration (Figure 19A) and used to calculate the EV-19 IC50 in cells held at -

65 mV. The IC50 of EV-19 was found to be 4.40 ± 0.15 μM. (Figure 19B, C), well within the range 

of therapeutically beneficial NMDAR antagonists (e.g. ketamine IC50 ~ 1 μM; memantine IC50 ~ 1 

– 2 μM; amantadine IC50 ~ 40 – 75 μM (Bresink et al., 1996; Parsons et al., 1996, 2007; Blanpied 

et al., 1997, 2005; Parsons & Gilling, 2007; Kotermanski & Johnson, 2009; Otton et al., 2011; 

Leiva et al., 2018)).  
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NMDAR channel blockers share overlapping binding sites in the NMDAR channel 

(Burnashev, Schoepfer, et al., 1992; Mori et al., 1992; Kashiwagi et al., 2002; Chen & Lipton, 

2005). Thus, many organic NMDAR channel blockers (e.g. amantadine, memantine, and 

ketamine) show competitive binding with the endogenous blocker Mg2+ (MacDonald et al., 1991; 

Kotermanski & Johnson, 2009; Otton et al., 2011; Nikolaev et al., 2012; Glasgow et al., 2018). To 

ascertain whether EV-19 inhibits NMDARs via channel block, we tested the effect of extracellular 

Mg2+ on EV-19 potency. As predicted, the inclusion of 0.2 mM Mg2+ in the recording solution led 

to a substantial rightward shift in the EV-19 IC50 curve and a significant increase in EV-19 IC50 

(IC50 = 4.40 ± 0.15 μM in 0 Mg 2+ vs 21.41 ± 0.56 μM in 0.2 mM Mg2+; p < 0.0001, two-sample 

Student t-test, n = 10 and 6, respectively; Figure 19B, C). This roughly 5-fold decrease in EV-19 

potency suggests a competitive interaction between Mg2+ and EV-19 in the NMDAR channel. 

We next determined the voltage dependence of inhibition by 10 μM (~2-fold IC50 at -65 

mV) EV-19. As predicted of a positively charged channel blocker, inhibition by EV-19 was 

markedly weaker at depolarized potentials (Figure 19D-F). Equation 6 and Equation 7 were 

used to quantify V0, the change in voltage (in mV) that results in an e-fold change in the IC50 of a 

drug, and δ, an estimate of the fraction of the total transmembrane voltage field felt by the blocker 

at its binding site (Woodhull, 1973). Inhibition of GluN1/2A receptors by EV-19 is strongly voltage-

dependent, as reflected by the drug’s small V0 (25.43 ± 0.54 mV) and large δ (1.01 ± 0.02). The 

EV-19 V0 and δ values are similar to previously reported values for monovalent organic channel 

blockers (e.g. V0 ~ 26 – 30 mV, δ ~ 0.8 – 1.0 for memantine, ketamine, and recently synthesized 

polycyclic amines (Blanpied et al., 1997; Parsons, Danysz, & Quack, 1999; Gilling et al., 2009; 

Otton et al., 2011; Leiva et al., 2018)). The profound dependence of EV-19 inhibition on [Mg2+] 

and on membrane potential strongly supports the conclusion that EV-19 inhibits NMDARs by 

binding in and blocking the NMDAR channel. 
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Figure 19. Characteristics of GluN1/2A receptor channel block by EV-19.  

A, Representative current trace from one cell depicting inhibition of GluN1/2A receptors by EV-19 at -65 

mV. Current evoked by application of 1 mM glutamate (Glu; black bars) was reduced as [EV-19] (red bars) 

increased. B, Concentration-inhibition relation for EV-19 in 0 Mg2+ (black line, filled symbols) and in 0.2 mM 

Mg2+ (purple line, open symbols). Symbols represent means, error bar are smaller than symbols. Lines 

show best fits of Equation 3 to data. C, Comparison of IC50 values in 0 and 0.2 mM Mg2+.  0.2 mM Mg2+ 

greatly reduces EV-19 potency (IC50 = 4.40 ± 0.15 μM in 0 Mg 2+ vs 21.41 ± 0.56 μM in 0.2 mM Mg2+; n = 

10 and 6, respectively; p < 0.0001, two-sample Student t-test, n = 10 and 6, respectively). Data shown as 

individual values, line and error bars depict mean ± SEM. D, Representative current traces from one cell 

depicting the voltage dependence of inhibition by 10 μM EV-19. For clarity, traces from only five of the 

tested membrane potentials are displayed. E, Current-voltage relation for GluN1/2A receptors in 1 mM Glu 

(filled symbols) and 1 mM Glu + 10 μM EV-19 (open symbols). Current at each voltage (IVm) was normalized 
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to current at 55 mV (I55 mV) for each cell. Symbols represent means, error bars represent SEM; some error 

bars are smaller than symbols. F, Mean current-voltage relation data replotted as fractional current in the 

presence of 10 μM EV-19. Solid line shows best fit of Equation 6 to estimate V0 (25.43 ± 0.54 mV; n = 7). 

V0 was subsequently used to calculate δ (1.01 ± 0.02; n = 7) with Equation 7. Error bars in F are smaller 

than symbols. Colors of symbols in E and F correspond to colors of example traces in D; black symbols 

represent measurements at voltages not shown in D. Summary of IC50, V0, and δ values are given in Table 

6. 
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4.4.2 Concentration and voltage dependence of NMDAR inhibition by memantine 

analogues  

Whole-cell patch-clamp recordings from tsA201 cells expressing GluN1/2A receptors 

were used to assess the pharmacological properties of three promising memantine analogues, 

primary amines RL-202 and RL-208 and guanidine MFV-4. Experiments measuring the IC50 and 

voltage-dependence of block by compound memantine were performed for comparison. In cells 

held at -65 mV, inhibition by each drug was measured at increasing drug concentrations (Figures 

20 - 23, A) and used to calculate the IC50 and Hill coefficient (nH, which reflects the steepness of 

the concentration-inhibition curve; Equation 3). The IC50 value and Hill coefficient measured for 

memantine (Figure 20B) are similar to previously-reported values measured under similar 

conditions (Gilling et al., 2007, 2009; Glasgow et al., 2017). RL-202, RL-208 and MFV-4 were 

found to have moderate IC50 values (Figures 21 – 23, B). The IC50s of RL-208 (1.01 ± 0.13 μM) 

and MFV-4 (0.48 ± 0.09 μM) were significantly lower than the IC50s of memantine (1.84 ± 0.39 

μM) or RL-202 (2.78 ± 0.25 μM), and the IC50 of memantine was significantly lower than the IC50 

of RL-202 (Figure 24A). There were no significant differences between the nH of the drugs, i.e., 

1.07 ± 0.27, 0.98 ± 0.08, 1.01 ± 0.11, and 1.00 ± 0.03 for memantine, RL-202, RL-208 and MFV-

4, respectively.  

To measure voltage dependence of inhibition by memantine, RL-202, RL-208 and MFV-

4, inhibition elicited by roughly twice the IC50 of each drug was measured at 9 different voltages 

(examples from 5 voltages are shown in Figures 20 - 23, C). The inhibition produced by the drugs 

decreased as voltage was depolarized (Figures 20 - 23, C and D), as expected of positively 

charged channel blockers. Fitting of Equation 6 to current-voltage data was used to quantify V0, 

the change in voltage (in mV) that results in an e-fold change in the IC50 of a drug. Equation 7 

was used to calculate δ, an estimate of the fraction of the total transmembrane voltage field felt 
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by the blocker at its binding site. The value of δ is calculated from the value of V0; strong voltage 

dependence is reflected by a large δ and a small V0. All compounds displayed strongly voltage-

dependent block, i.e., for memantine, V0 = 28.0 ± 2.2 mV and δ = 0.91 ± 0.08; for RL-202, V0 = 

26.5 ± 1.8 mV and δ = 0.99 ± 0.05; for RL-208, V0 = 29.9 ± 1.9 mV and δ = 0.87 ± 0.05; for MFV-

4, V0 = 33.6 ± 1.5 mV and δ = 0.76 ± 0.03 (Figures 20 – 23, D). The voltage dependence of 

inhibition was found to be significantly weaker for MFV-4 than for either memantine or RL-202 

(Figure 24B). 
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Figure 20. Concentration and voltage dependence of NMDAR inhibition by memantine.  

A, Representative current traces from one cell depicting effect of memantine on GluN1/2A receptor 

currents. Application of 1 mM Glu (black bars) elicited an inward current that was antagonized by application 

of memantine (red bars). B, Concentration-inhibition relation for memantine. Line shows best fit of Equation 

3 (IC50 = 1.84 ± 0.39 μM, nH = 1.07 ± 0.27; n=5). C, Representative voltage (Vm; top) and current (bottom) 

traces depicting effect of membrane potential upon inhibition by 3 μM memantine. Traces from 5 of the 9 

membrane potentials tested are displayed for clarity. D, Current-voltage relation of inhibition by memantine. 

Line shows best fit of Equation 6 (V0 = 28.0 ± 2.2; n=5).  Points in B and D represent mean fractional 

currents measured at each concentration (B) or voltage (D); error bars represent SEM and are sometimes 

smaller than symbols. Comparison of the concentration and voltage dependence of NMDAR inhibition by 

memantine, RL-202, RL-208 and MFV-4 is shown in Figure 24. Summary of IC50, V0, and δ values are given 

in Table 6.  
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Figure 21. Concentration and voltage dependence of NMDAR inhibition by RL-202.  

A, B, Same as Figure 20A, B, except concentration-inhibition measurements made using RL-202. Line in 

B shows best fit of Equation 3 (IC50 = 2.78 ± 0.25 μM, nH = 0.98 ± 0.08; n=7). C, D, Same as Figure 20C, 

D, except measurements of voltage-dependence made using 5 μM RL-202. Line in D shows best fit of 

Equation 6 (V0 = 26.5 ± 1.8; n=7). Comparison of the concentration and voltage dependence of NMDAR 

inhibition by memantine, RL-202, L-208 and MFV-4 is shown in Figure 24. Summary of IC50, V0, and δ 

values are given in Table 6. 
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Figure 22. Concentration and voltage dependence of NMDAR inhibition by RL-208.  

A, B, Same as Figure 20A, B, except concentration-inhibition measurements made using RL-208. Line in 

B shows best fit of Equation 3 (IC50 = 1.01 ± 0.13 μM, nH = 1.01 ± 0.11; n=7). C, D, Same as Figure 20C, 

D, except measurements of voltage-dependence made using 2 μM RL-208. Line in D shows best fit of 

Equation 6 (V0 = 29.9 ± 1.9; n=8). Comparison of the concentration and voltage dependence of NMDAR 

inhibition by memantine, RL-202, RL-208 and MFV-4 is shown in Figure 24. Summary of IC50, V0, and δ 

values are given in Table 6.  
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Figure 23. Concentration and voltage dependence of NMDAR inhibition by MFV-4.  

A, B, Same as Figure 20A, B, except concentration-inhibition measurements made using MFV-4. Line in B 

shows best fit of Equation 3 (IC50 = 0.48 ± 0.09 μM, nH = 1.00 ± 0.03; n=4). C, D, Same as Figure 20C, D, 

except measurements of voltage-dependence made using 1 μM MFV-4. Line in D shows best fit of 

Equation 6 (V0 = 33.6 ± 1.5; n=4). Comparison of the concentration and voltage dependence of NMDAR 

inhibition by memantine, RL-202, RL-208 and MFV-4 is shown in Figure 24. Summary of IC50, V0, and δ 

values are given in Table 6. 
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Figure 24. Comparison of NMDAR channel blocker properties.  

A, Comparison of blocker IC50 values measured at -65 mV. B, Comparison of voltage dependence of 

inhibition by the blockers. All comparisons made by one-way ANOVA with Tukey post hoc analysis; *p<0.01, 

**p<0.001, ***p<0.0001. Sample size denoted by number inside column. 
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Table 6. IC50 and voltage dependence of inhibition for memantine and novel channel 

blockers. 

Values represent means ± sem (n).  

Channel blocker IC50 (μM) V0 (mV) δ 

Memantine 1.84 ± 0.39 (5) 28.0 ± 2.2 (5) 0.91 ± 0.08 (5) 

EV-19 4.40 ± 0.15 (10) 25.43 ± 0.54 (7) 1.01 ± 0.02 (7) 

RL-202 2.78 ± 0.25 (7) 26.5 ± 1.8 (8) 0.99 ± 0.05 (8) 

RL-208 1.01 ± 0.13 (8) 29.9 ± 1.9 (8) 0.87 ± 0.05 (8) 

MFV-4 0.48 ± 0.09 (4) 33.6 ± 1.5 (4) 0.76 ± 0.03 (4) 
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4.4.3 Docking predicts overlapping binding sites for RL compounds and memantine 

To provide insight into the binding sites of the novel polycyclic amines, we performed and 

compared docking simulations of memantine, RL-202, and RL-208. Docking simulations of 

memantine predicted a binding pose in the channel between the GluN1 and GluN2A subunits 

(Figure 25A,D) and in close proximity to GluN1 residue M641 and critical asparagine residues 

(GluN1 N616 and GluN2A N614) that are key components of the NMDAR selectivity filter and 

heavily implicated in channel block ((Burnashev, Schoepfer, et al., 1992; Mori et al., 1992; Kuner 

& Schoepfer, 1996; Ferrer-Montiel et al., 1998; Kashiwagi et al., 2002; Mesbahi-Vasey et al., 

2017); Figure 25G). This predicted memantine binding pose is identical to previous docking 

simulations (shown in Figure 11), highlighting the consistency of Autodock Vina simulations. RL-

202 and RL-208 were also predicted to bind in the channel above the selectivity filter, between 

the GluN1 and GluN2A subunits (Figure 25B,C,E,F). Nearly all residues predicted to be in close 

proximity with the RL compounds were shared with memantine (Figure 15G,H,I). The “R-group” 

containing the primary amine of RL-208 is predicted to project slightly farther out into the channel 

than the R-groups of memantine and RL-202, potentially allowing it to interact with an additional 

critical asparagine (GluN1 614; Figure 25I), and memantine is predicted to interact with additional 

hydrophobic residues GluN2A F641 and GluN1 A627. The similarities between the predicted 

binding sites is consistent with our data showing the general similarities between the 

electrophysiological characteristics of memantine and the RL compounds. 
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Figure 25. Predicted binding sites of memantine, RL-202, and RL-208. 

A – C, Top-down view of memantine (A), RL-202 (B), and RL-208 (C) docked to the GluN1/2A channel. D 

– F, Full scale view of memantine (D), RL-202 (E), and RL-208 (F) docked within the GluN1/2A receptor 

channel model (Mesbahi-Vasey et al., 2017). GluN1 is depicted as gray-blue ribbons; GluN2A is depicted 

as cyan ribbons. Blockers are depicted as space-filling structures. Boxes in (D) – (F) depicts regions blown 

up in (G) – (I). G – I, Magnified view of docking sites for memantine (G), RL-202 (H), and RL-208 (I). 

Residues are shown as stick models. All three blockers are predicted to bind in close proximity with key 

asparagine residues. Memantine, but not the RL compounds, is predicted to bind in close proximity to 

residues GluN1 A627, GluN2A F641 (labeled in G), and GluN2A V612. RL-208 is predicted to interact with 

GluN1 N614 of both GluN1 subunits. All other residues within 3 Å are shared. Drug C = pink (drug) or green 

(amino acid side chain); N = blue; O = red; S = yellow. 
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4.4.4 [Ca2+]i dependence of inhibition by RL-208 

Given the similarities between both the electrophysiological characteristics and the 

predicted binding sites of memantine and the RL compounds, we next tested whether inhibition 

of GluN1/2A receptors by RL-208 depended on [Ca2+]i. We measured the RL-208 IC50 in 

conditions of low (< 1 nM) and high (5 μM) [Ca2+]i and found that inhibition of RL-208 was heavily 

dependent on [Ca2+]i. RL-208 potency was roughly 3-fold higher in conditions of [Ca2+]i = 5 μM 

than conditions of [Ca2+]i < 1 nM (Figure 26). The degree of [Ca2+]i-dependence of RL-208 potency 

is similar to that observed for memantine (Figure 4).  
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Figure 26. Inhibition by RL-208 depends on [Ca2+]i. 

A, Concentration-inhibition curve for RL-208 at [Ca2+]i <1 nM and [Ca2+]i =  5 μM, measured using recordings 

from recombinant GluN1/2A receptors. Points represent mean; error bars smaller than points. B, Summary 

of RL-208 IC50 values for GluN1/2A receptors in conditions of [Ca2+]i = <1 and 5 μM. RL-208 potency 

depends on [Ca2+]i ([Ca2+]i < 1 nM: 2.34 ± 0.14 μM; [Ca2+]i = 5 μM: 0.88 ± 0.06 μM). Unpaired Student’s t-

test, ***p < 0.001.  
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4.5 DISCUSSION 

NMDAR channel blockers are clinically useful therapeutic drugs, but their clinical profiles 

can be surprisingly diverse and difficult to predict. Amongst channel blockers, memantine is 

particularly interesting due to its combination of clinically efficacy and high tolerability (Parsons, 

Danysz, & Quack, 1999; Lipton, 2004; Parsons & Gilling, 2007; Parsons et al., 2007; Johnson et 

al., 2015). Here we characterize and compare with memantine four novel NMDAR antagonists, 

the benzo-derivative EV-19 and the novel memantine analogues RL-202, RL-208, and MFV-4. All 

drugs tested displayed IC50s well within the 0.5 – 75 μM range of therapeutically beneficial 

NMDAR antagonists (Bresink et al., 1996; Parsons et al., 1996, 2007; Blanpied et al., 1997, 2005; 

Parsons & Gilling, 2007; Kotermanski & Johnson, 2009; Otton et al., 2011; Leiva et al., 2018). 

Multiple lines of evidence support the conclusion that EV-19, RL-202, RL-208, and MFV-4 all act 

as channel blockers. EV-19 potency is greatly reduced in the presence of the prototypical NMDAR 

channel blocker Mg2+ (Figure 19), suggesting competition for binding. Docking simulations predict 

that RL-202 and RL-208 share nearly identical binding sites to memantine (Figure 25), which is 

known to bind in the NMDAR channel. Finally, inhibition by all four drugs is voltage-dependent 

(Figures 19, 21-24), which is a hallmark of positively charged channel blockers.  

Interestingly, subtle differences between the memantine analogues had substantial 

influence on their potency. RL-202, despite having the most similar structure to memantine out of 

the novel compounds tested, was found to have a 1.5-fold higher IC50 than memantine. Even 

more impressively, RL-208 was found to have a > 2.5-fold lower IC50 than RL-202, despite 

differing by only a single CH2. MFV-4, which possesses multiple additional carbons and nitrogens 

in comparison to memantine and the RL compounds, was the most potent blocker tested. It is 

possible that guanidine group of MFV-4 allows for easier coordination by the critical asparagine 

residues, or the additional carbons form additional energetically favorable interactions with 
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hydrophobic residues surrounding the pore, resulting in increased potency. Sophisticated MD 

simulations would provide crucial insight into the mechanism of interaction between each novel 

compound and the GluN1/2A TMD, giving us a strong starting point for experiments that further 

probe the effect of blocker structure on potency.  

Unlike potency, structure had little influence over the voltage dependence of inhibition by 

each blocker. Even the benzodiazepine derivative EV-19, despite its slightly higher IC50 and vastly 

different structure, exhibited comparable V0 and δ values to memantine and the memantine 

analogs (will tabulate values). MFV-4 was the only blocker to show a significant difference in 

voltage dependence, displaying slightly weaker voltage dependence than memantine and RL-

202. This could be related to the ability of MFV-4’s guanidine R-group to easily delocalize its 

positive charge due to resonance, in contrast to the other blockers which possess primary amine 

R-groups. Although the mechanisms underlying the pharmacological differences between 

memantine, its analogs, and EV-19 are still unclear, our data provides strong evidence that even 

small differences in NMDAR channel blocker structure can greatly influence potency. 

 It is important to note that we observed differences between EV-19 IC50s measured using 

intracellular Ca2+ measurements from cerebellar granule neurons (1.93 ± 0.21 μM, personal 

communication with Santi Vazquez of University of Barcelona) and patch-clamp recordings from 

tsA201 cells expressing GluN1/2A receptors (Figure 19). We also observed a similar trend In 

previous comparisons of NMDAR channel blocker IC50s across these two experimental 

preparations, with intracellular Ca2+ measurements from cerebellar granule neurons again 

generating lower IC50 values for memantine, the RL compounds, and MFV-4 than whole-cell 

recordings (Leiva et al., 2018). This discrepancy may result from inherent differences between 

the recording techniques and/or from expression of GluN2 subunits other than GluN2A by 

cerebellar granule neurons. Further investigation of EV-19, RL-203, RL-208, and MFV-4 potency 
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across NMDAR subtype and in cultured neurons will help us further understand the subtle 

differences between these compounds. 

Excitingly, our data shows that inhibition of GluN1/2A receptors by RL-208 depends on 

[Ca2+]i. RL-208 is the first channel blocker other than memantine to display [Ca2+]i-dependent 

channel block. This is perhaps unsurprising, given the similarities in the predicted memantine and 

RL-208 binding sites. The [Ca2+]i dependence of RL-208 potency suggests that RL-208 also 

stabilizes a Ca2+-dependent desensitized receptor state, and may preferentially target receptors 

exposed to high [Ca2+]i for prolonged durations. A clear next step is to test whether RL-202 

potency is also [Ca2+]i-dependent. An ideal neuroprotective drug would show weak interaction 

with receptors unaffected by pathological insults while strongly inhibiting receptors involved in 

neurotoxicity. Thus, the weaker potency of RL-202 could make it a strong candidate for a 

neuroprotectant if its potency shows strong [Ca2+]i dependence. Furthermore, investigation of the 

[Ca2+]i dependence of EV-19, RL-202, MFV-4 potency would lay the groundwork for future studies 

that determine the structural determinants [Ca2+]i-dependent channel block. Understanding the 

structural bases of the mechanisms of action of channel blockers will improve our understanding 

of how channel blockers affect NMDAR gating and may help guide the development of more 

clinically efficacious NMDAR-targeting neurotherapeutics. 
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5.0 GENERAL DISCUSSION 

The work presented in this dissertation focuses on the interplay between the effects of 

intracellular Ca2+ (Ca2+
i) on NMDAR channel block and desensitization. Through investigation of 

the relation between NMDAR desensitization and channel block, we discovered that potency of 

the clinically efficacious channel blocker memantine was powerfully dependent on [Ca2+]i. In 

contrast, potency of neither the endogenous channel blocker Mg2+ nor another clinically useful 

channel blocker, ketamine, was found to be [Ca2+]i-dependent. Utilizing this discrepancy, we then 

further probed the mechanism underlying the relation between memantine block and NMDAR 

desensitization by comparing the memantine and ketamine binding sites. We identified a residue 

in the GluN2A transmembrane domain (TMD) that strongly contributes to NMDAR desensitization 

and memantine potency, providing insight into how memantine may interact with the NMDAR 

channel. Finally, we characterized novel NMDAR channel blockers to help us better understand 

how blocker structure contributes to the pharmacological characteristics of channel block. 

Excitingly, we discovered that potency of a memantine derivative was also dependent on [Ca2+]i, 

providing optimism for the directed design of future NMDAR channel blockers with improved 

therapeutic benefits. This chapter discusses the implications of our findings on our understanding 

of NMDAR desensitization, the relation between channel block and NMDAR gating, and the utility 

of memantine and other state-specific NMDAR-targeting antagonists for treatment of nervous 

system pathologies. 
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5.1 MULTIPLE MECHANISMS OF, AND NAMES FOR, CA2+-DEPENDENT 

DESENSITIZATION 

Despite a wealth of research, the mechanisms underlying CDD have been the subject of 

much debate. The confusion surrounding CDD mechanisms is due, in part, to the lack of 

consistent definitions and terminology used to refer to CDD processes that are potentially driven 

by distinct mechanisms. The data presented in this dissertation, particularly from experiments 

addressing the relation between desensitization and NMDAR block by memantine, provide new 

evidence that helps delineate different CDD mechanisms. 

There are likely, at minimum, two separable forms of CDD: a fast mechanism that occurs 

over the course of 0.01 – 5 s, and a slow mechanism that takes minutes to develop. A rapid 

reduction in NMDAR activity caused by NMDAR-mediated Ca2+ influx was first reported by Mayer 

and Westbrook in 1985 and was referred to as desensitization (Mayer & Westbrook, 1985). Eight 

years later, the Westbrook lab revisited the effect of intracellular Ca2+ on rapid NMDAR 

desensitization and termed it Ca2+-dependent inactivation (CDI) to “avoid confusion with other 

forms of NMDA receptor desensitization” (Legendre et al., 1993). Other studies reported slower 

forms of NMDAR desensitization, referred to as glycine-insensitive desensitization or “Ca2+-

dependent activation of NMDAR desensitization”, that were regulated by Ca2+ and related to the 

duration of elevated [Ca2+]i (Sather et al., 1992; Lieberman & Mody, 1994; Tong & Jahr, 1994; 

Tong et al., 1995). Despite being observed under different experimental conditions (i.e. outside-

out patches vs whole cell recordings, long recordings vs short recordings, etc.), these 

desensitization processes were eventually absorbed by the monolithic term CDI (Iacobucci & 

Popescu, 2017, 2020). 

Many interactions between NMDARs and downstream signaling molecules, 

predominantly the Ca2+-binding/Ca2+-activated proteins calmodulin (CaM) and α-actinin, have 
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been implicated in processes referred to as CDI (Ehlers et al., 1996; Wyszynski et al., 1997; 

Zhang et al., 1998; Krupp et al., 1999; Rycroft & Gibb, 2002; Iacobucci & Popescu, 2017). The 

most complete hypothesis for a CDI mechanism posits that buildup of [Ca2+]i leads to activation 

of CaM, which displaces α-actinin from its binding site on the GluN1 CTD, releasing the channel 

from the actin cytoskeleton (Zhang et al., 1998; Krupp et al., 1999). The displacement of α-actinin 

by CaM could even lead to desensitization by itself, since the α-actinin-GluN1 interaction is 

thought to stabilize an open NMDAR state (Wyszynski et al., 1997; Krupp et al., 1999). Some 

evidence suggests that direct binding of Ca2+ by α-actinin can drive the dissociation of α-actinin 

from GluN1 without the need for CaM (Krupp et al., 1999), but it is well-accepted that direct 

interaction of CaM with the GluN1 CTD is the primary driver of CDI (Ehlers et al., 1996; Zhang et 

al., 1998; Rycroft & Gibb, 2002, 2004; Iacobucci & Popescu, 2017). Thus, CDI is most accurately 

defined as a fast CDD process that depends on the direct binding of CaM to the GluN1 CTD. 

Our understanding of the slower form of CDD is far less advanced. Slow CDD, originally 

referred to as a glycine-independent desensitization mechanism, can be broadly defined as a 

progressive increase in desensitization following whole-cell break-in or outside-out patch 

formation (Sather et al., 1992; Lieberman & Mody, 1994; Tong & Jahr, 1994; Villarroel et al., 

1998). Glycine-independent desensitization, or at least a form of it, was shown to depend on Ca2+ 

by experiments that prevented rises of [Ca2+]i either through chelation of Ca2+ by high intracellular 

[BAPTA] or through manipulation of NMDAR-mediated Ca2+ influx (Lieberman & Mody, 1994; 

Tong & Jahr, 1994; Medina et al., 1995; Krupp et al., 2002). There are clear kinetic differences 

between this Ca2+-dependent, glycine-independent desensitization process and the CaM-binding-

dependent CDI. CDI occurs over the course of milliseconds (Legendre et al., 1993; Ehlers et al., 

1996; Zhang et al., 1998; Krupp et al., 1999). In contrast, this Ca2+-dependent, glycine-

independent desensitization develops over the course of minutes (Lieberman & Mody, 1994; Tong 

& Jahr, 1994; Medina et al., 1995; Krupp et al., 2002). Despite this obvious difference in time-
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scale, the slower form of CDD has also been referred to as CDI (Iacobucci & Popescu, 2017, 

2020).  

The molecular mechanisms underlying slow CDD are unclear. The most heavily implicated 

driver of slow CDD is calcineurin, a Ca2+-CaM-activated serine/threonine protein phosphatase. 

Calcineurin has been reported to regulate NMDAR desensitization in response to prolonged 

elevations of [Ca2+]i or transient synaptic Ca2+ influx (Lieberman & Mody, 1994; Tong & Jahr, 

1994; Tong et al., 1995; Krupp et al., 2002; Rycroft & Gibb, 2004). Inhibition of calcineurin has 

been reported to ablate the time-dependent, Ca2+ dependent increase in desensitization following 

whole-cell break-in or outside-out patch formation (Lieberman & Mody, 1994; Tong & Jahr, 1994; 

Krupp et al., 2002). Krupp et al. 2002 further narrowed down the mechanism of slow CDD by 

showing that (1) dephosphorylation of multiple sites on the GluN2A CTD by calcineurin is 

necessary for slow CDD and (2) that truncation of the GluN1 CTD had no effect on slow CDD, 

fully distinguishing slow CDD from CDI. However, a recent study (Iacobucci & Popescu, 2017) 

reported that calcineurin inhibition had no effect on desensitization elicited by prolonged exposure 

to [Ca2+]i (high [Ca2+]F in pipette, 15 min post-break-in). To further complicate matters, Iacobucci 

& Popescu 2017 (who refer to this Ca2+-dependent, progressive increase in desensitization as 

CDI) also reported that truncation of the GluN1 CTD ablated the sensitivity of all forms of NMDAR 

desensitization to [Ca2+]i. These inconsistencies make it difficult to definitively state that the slow 

and fast CDD processes are mediated by distinct mechanisms. 

Through investigating the mechanisms underlying the [Ca2+]i dependence of memantine 

potency, we uncovered evidence supporting the existence of distinct Ca2+-dependent 

desensitized states. Our data support the hypothesis that the [Ca2+]i dependence of memantine 

potency arises from the ability of memantine to stabilize a Ca2+-dependent desensitized GluN1/2A 

receptor state. Stabilization of a receptor state by memantine necessitates an energetically 

favorable interaction between memantine and that state, or in other terms, increased affinity of 
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memantine for that state. Both memantine potency and NMDAR desensitization increase with 

increasing [Ca2+]i, and ablating CDD also ablates the effect of [Ca2+]i. This suggests that 

memantine has a higher affinity for this Ca2+-dependent desensitized state. We also found that 

desensitization of GluN1/2A receptors is further increased by prolonging the duration that 

receptors are subjected to high [Ca2+]i. However, memantine inhibition of GluN1/2A receptors 

does not progressively increase alongside this progressive [Ca2+]i-and-time-dependent increase 

in desensitization. Therefore, our data suggest there are at least two distinct Ca2+-dependent 

desensitized conformational states: one conformation with a higher affinity for memantine, and 

one conformation with unchanged affinity for memantine. 

 Our data makes a strong case for the existence of two distinct desensitized 

conformational states, both dependent on [Ca2+]i, with different interactions with memantine. 

However, it is difficult to conclude definitively which mechanisms underlie which desensitization 

process. It is almost certain that the desensitization process that produces the state stabilized by 

memantine is relatively fast. This conclusion is supported by our data showing that the [Ca2+]i 

dependence of memantine potency does not depend on duration of exposure to [Ca2+]i, as well 

as by previous data from our lab showing that memantine potency increases in conditions that 

allow for increased buildup of [Ca2+]i via NMDAR-mediated influx over short timescales (Glasgow 

et al., 2017). Notably, in our experiments, both the [Ca2+]i dependence of memantine potency and 

a form of CDD are reliant on the presence of the GluN1 CTD. This suggests that the mechanism 

of CDD related to memantine potency is likely similar to the “canonical” CDI mechanism, which 

requires interactions between CaM, α-actinin, and the GluN1 CTD (Zhang et al., 1998; Krupp et 

al., 1999). The slower [Ca2+]i-and-time-dependent desensitization in our experiments is similar to 

the slow form of CDD previously reported by the Jahr and Westbrook labs (Tong & Jahr, 1994; 

Krupp et al., 2002). This conclusion, however, is complicated by conflicting data from the 

Westbrook and Popescu labs regarding the roles of calcineurin and the GluN1 CTD in the slow 
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mechanism of CDD (Krupp et al., 2002; Iacobucci & Popescu, 2017). Future experiments 

assessing the role of calcineurin in the [Ca2+]i dependence of memantine potency and the role of 

the GluN1 CTD in [Ca2+]i-and-time-dependent desensitization will help clarify the mechanism 

underlying the slow form of CDD observed in our experiments. 

5.2 STRUCTURAL UNDERPINNINGS OF [CA2+]I-DEPENDENT CHANNEL BLOCK 

Our results support the idea that the [Ca2+]i dependence of memantine potency arises from 

the ability of memantine to stabilize a Ca2+-dependent desensitized GluN1/2A receptor state, 

which suggests that memantine has a higher affinity for receptors in this state. This finding has 

the potential to deepen our understanding of the structural features underlying the conformational 

changes that occur during NMDAR state transitions. Understanding the structural features that 

govern the relation between memantine potency and CDD may also aid in the design of future 

channel blockers that more selectively target specific receptors states. Our experiments have 

identified several key structural features that contribute to both the [Ca2+]i dependence of 

memantine potency and CDD. 

The most obvious structural feature of the NMDAR that contributes to both the [Ca2+]i 

dependence of memantine potency and CDD is the GluN1 CTD. Both the [Ca2+]i dependence of 

memantine potency and CDD require the GluN1 CTD. However, the GluN1 CTD is relatively 

distant from regions making up the NMDAR pore. Therefore, in order to reach the conformation 

stabilized by memantine, the channel must receive some long-distance allosteric signal from the 

GluN1 CTD. NMDARs are particularly notorious for long-distance allosteric transduction between 

receptor domains (Paoletti et al., 1997, 2000; Zheng et al., 1998, 2001; Rachline et al., 2005; 

Gielen et al., 2008, 2009; Siegler Retchless et al., 2012; Tajima et al., 2016; Sun et al., 2017; 
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Jalali-Yazdi et al., 2018; Esmenjaud et al., 2019; Vyklicky et al., 2021). Unfortunately, how 

conformational changes in the GluN1 CTD contribute to channel gating is unknown, and there are 

currently no NMDAR crystal or cryo-EM structures that include the GluN1 CTD (or any other 

NMDAR subunit CTD). Improved structural models may provide further insight into the role of 

TMD-CTD coupling in CDD and the [Ca2+]i dependence of memantine potency. 

Our investigation into the role of the GluN2 subunit in the effects of [Ca2+]i on memantine 

potency also provided insights into the structural underpinnings of the relation between 

memantine potency and CDD. The identity of the GluN2 subunit determines the effects of [Ca2+]i 

on desensitization and memantine potency. [Ca2+]i dependence of memantine inhibition is a 

GluN2A subunit-specific phenomenon;  block of GluN1/2B, GluN1/2C, and GluN1/2D receptors 

by memantine is [Ca2+]i-independent. Memantine inhibition of GluN1/2A receptors in cells with 

[Ca2+]i < 1 nM was significantly weaker than memantine inhibition of any other NMDAR subtype 

tested, regardless of condition. This suggests that GluN1/2A receptors can sample a unique 

channel conformation, inaccessible to other subtypes, with weak memantine affinity. In contrast, 

the memantine IC50 measured for GluN1/2A receptors with [Ca2+]i = 10 μM was nearly identical to 

the IC50 values measured for all other NMDAR subtypes, regardless of condition. This finding 

suggests that Ca2+
i drives the GluN1/2A channel, and its memantine binding site, into a 

conformation that is similar to the other receptor subtypes. The high degree of sequence 

homology in the pore-lining regions of the GluN2 subunits (Traynelis et al., 2010; Siegler 

Retchless et al., 2012) suggests that that variations in channel conformations between the 

subtypes result from differences in regions outside the channel. Furthermore, given that the 

GluN1 CTD is an essential determinant of CDD and the Ca2+ dependence of memantine potency, 

it is highly likely that differences in inter-subunit interactions govern the subtype-dependent 

differences in the effects of [Ca2+]i on desensitization and memantine potency. Indeed, Vissel et 

al. 2002 identified a region in the GluN2A M2-M3 loop that was critical for CDD perhaps due to 
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interaction with residues 834 – 843 of the GluN1 CTD C0 region (Vissel et al., 2002).  Investigation 

of the role of the GluN2A M2-M3 loop in memantine potency may provide further insight into the 

structural interactions governing the [Ca2+]i dependence of GluN1/2A receptor inhibition by 

memantine. 

Little is known about conformational changes or residue-residue interactions at the level 

of the TMD during NMDAR desensitization. Our simulations and experiments in Chapter 3 

identified residues in the NMDAR TMD, GluN1 M641 and GluN2A F641, that may play key roles 

in NMDAR desensitization and the [Ca2+]i dependence of memantine potency. We found that both 

desensitization and memantine inhibition of GluN1/2A receptors is influenced by a residue in the 

GluN2A M3 helix, GluN2A F641. Mutation of GluN2A F641 had powerful effects on NMDAR 

desensitization, with mutation of the WT F residue to smaller residues (A or L) in comparison to 

the larger WT F residue greatly increasing desensitization. Interestingly, though both mutations 

enhanced desensitization, the GluN2A(F641A) and GluN2A(F641L) mutations displayed key 

differences in which type of desensitization they enhanced. GluN1/2A(F641L) receptors only 

enhanced Ca2+-independent desensitization, while GluN1/2A(F641A) receptors enhanced both 

Ca2+-independent desensitization and CDD in comparison to WT receptors. These finding 

suggests intriguing possibilities for the role of GluN2A F641 in desensitization. Firstly, our data 

suggests that GluN2A F641 is likely involved in interactions that affect the relative stability of open 

and closed states of the NMDAR channel. Secondly, the differential ability of the GluN2A(F641A) 

and GluN2A(F641L) mutations to stabilize different desensitized states suggests that different 

desensitized states have different conformations at the level of the TMD. This idea is further 

supported by our finding that memantine stabilizes a specific Ca2+-dependent desensitized 

receptor state rather than broadly stabilizing all closed states. Using MD simulations to identify 

channel residues that differentially interact with GluN2A(F641A) and GluN2A(F641L), and then 

experimentally testing the role of these residues in desensitization, may be a fruitful strategy for 
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determining structural differences between Ca2+-independent and Ca2+-dependent desensitized 

states. 

Interestingly, our results do not suggest that mutation of GluN2A F641 influences 

memantine inhibition simply by affecting NMDAR desensitization. Although our MD simulations 

did not suggest a direct interaction between GluN2A F641 and memantine, the simulations 

suggested that GluN2A F641 instead regulated memantine potency through interaction with 

GluN1 M641. GluN1 M641 was predicted to form energetically favorable interactions with both 

memantine and GluN2A F641. Simulations suggested that the size of GluN2A residue 641 

contributes to its strength of interaction with GluN1 M641, with larger residues forming stronger 

interactions. Stronger interaction of GluN1 M641 with GluN2A F641 reduces interaction of GluN1 

M641 with memantine, increasing memantine IC50 in comparison to the IC50 for GluN1/2A(F641A) 

receptors. This modeling prediction is supported by our experimental data, which show that size 

of the residue at GluN2A 641 is correlated with memantine IC50. Thus, our simulations suggest 

that memantine and GluN2A F641 compete for interaction with GluN1 M641. It is important to 

note, however, that neither our simulations nor our experiments rule out the possibility that 

interaction of GluN2A F641 with GluN1 M641 could regulate desensitization. Larger GluN2A 641 

residues and stronger interaction with GluN1 M641 may aid in stabilizing a receptor open state, 

reducing desensitization, while mutation of GluN2A 641 to smaller residues may remove this 

interaction with GluN1 M641, allowing for stronger interaction of GluN1 M641 with memantine 

and stabilization of a receptor closed/desensitized state. This prediction could be tested by 

experimentally investigating the effects of GluN1 M641 mutations on desensitization, memantine 

potency, and the Ca2+ dependence of memantine potency. 

Excitingly, we found that memantine is not the only channel blocker that displays [Ca2+]i-

dependent potency. Inhibition of GluN1/2A receptors by the novel memantine analog RL-208 

increased 2-3-fold between conditions of [Ca2+]i < 1 nM and [Ca2+]i = 5 μM, which suggests that 
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RL-208 also stabilizes a Ca2+-dependent desensitized receptor state. There are clear structural 

similarities between memantine and RL-208. Both memantine and RL-208 (see Figure 18) are 

essentially polycyclic carbon balls with multiple methyl groups and a primary amine. It is likely that 

these general structural features govern the ability of memantine and RL-208 to stabilize a Ca2+-

dependent desensitized receptor state. Further structural comparison of memantine and RL-208 

with ketamine (see Figure 11 for structure), which does not display [Ca2+]i-dependent potency, 

reveals several notable differences that may contribute to the differential interactions these drugs 

have with desensitized states.  

Both memantine and RL-208 (Figure 18) are primary amines, while ketamine (Figure 11) 

is a secondary amine. It is possible that the additional methyl group attached to the ketamine 

nitrogen forms interactions with residues near the critical Asn residues that are unable to be 

reached by memantine and RL-208. Ketamine is much “flatter” and more flexible than memantine 

and RL-208. Ketamine consists of two 6-carbon rings - a phenyl chloride and a cyclohexanone - 

adjoined by a single C-C bond. In comparison to the polycyclic carbon balls that make up the bulk 

of memantine and RL-208, the flatter rings of ketamine can more easily form energetically 

favorable interactions with hydrophilic or aromatic residues in the channel pore (Dougherty, 2007). 

Additionally, the single C-C bond that connect the ketamine rings is rotatable, allowing ketamine 

to adopt a greater number of conformations than memantine and RL-208. In contrast, the rigid, 

bulky, and relatively symmetric memantine and RL-208 molecules have a greater potential to 

favorably coordinate with hydrophobic residues. Indeed, simulations and structural modeling 

performed by Song et al. 2018 suggested that memantine may stabilize a closed channel state 

by coordinating with hydrophobic residues near the bundle crossing (Song et al., 2018), a TMD 

region critically involved in iGluR gating (Chang & Kuo, 2008; Sobolevsky et al., 2009; Twomey 

& Sobolevsky, 2018).  A clear next step is to investigate the dependence of RL-202, MFV-4, and 

EV-19 potency on [Ca2+]i, which will allow us to further examine the structural features that dictate 
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whether a channel blocker can stabilize a Ca2+-dependent desensitized receptor state. In addition, 

by expanding our structural comparison of the binding sites beyond the conservative range used 

for Chapter 3 experiments, we can identify additional TMD residues that differentially contribute 

to the binding of the memantine analogs and ketamine. This may lead us toward identification of 

additional residues involved in CDD. Thus, although the structural underpinnings of [Ca2+]i-

dependent channel block are still unresolved, memantine, ketamine, and the novel channel 

blockers should serve as effective experimental probes for interrogating the structure of a Ca2+-

dependent desensitized state and, subsequently, the mechanisms underlying [Ca2+]i-dependent 

channel block.  

5.3 LIMITATIONS OF MOLECULAR MODELING 

Molecular modeling can aid in the interpretation of complicated electrophysiological data 

and facilitate the development of novel hypotheses. However, results of simulations are easy to 

overinterpret and both our docking and MD simulations are subject to notable limitations. Docking 

simulations, when used alone, have many weaknesses. The predominant limitation of docking 

simulations is the use of rigid protein structures. We utilized a stochastic conformational search 

method in which rotatable bonds in the ligand (i.e., the channel blocker) can be rotated by the 

program to give the most favorable conformations, as determined by a predefined scoring 

function, for docking to specific regions of the protein (Trott & Olson, 2010). Though this allowed 

us to partially account for the conformational dynamics of the blockers, the protein was held static 

during docking. Therefore, our docking simulations were limited to static snapshots of the 

GluN1/2A TMD taken from an MD simulation. In addition, scoring functions used to determine 

favorable docking sites are only general approximations of the free energy of the ligand-protein 
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complex (Sousa et al., 2006; Gaillard, 2018). Therefore, Autodock Vina simulations alone are 

unable to distinguish between resides that directly contribute to the binding of a ligand and 

residues that are merely in close proximity to a ligand’s predicted binding site. Autodock Vina also 

does not account for solvent molecules, which can play key roles in NMDAR channel block 

(Mesbahi-Vasey et al., 2017). Thus, Autodock simulations are best used as a preliminary tool to 

predict the general site of ligand-protein interactions before experimental validation. 

To overcome some of the limitations of docking simulations, we utilized atomistic MD 

simulations to further model interactions of memantine with the GluN1/2A TMD. Our MD 

simulations highlighted a weakness of Autodock Vina simulations, suggesting that a residue 

predicted to contribute to the memantine binding site by Autodock Vina (GluN2A F641) did not 

directly interact with memantine. In addition, these simulations provided a logical explanation for 

the effect of GluN1/2A F641 mutations on memantine IC50 that was consistent with our 

electrophysiological data. However, our MD simulations are limited in scope. We are currently 

limited to only modeling TMD dynamics. NMDAR desensitization is heavily modulated by regions 

distal to the TMD, primarily the NTD and the CTD (Ehlers et al., 1996; Krupp et al., 1996, 1998, 

2002; Villarroel et al., 1998; Vissel et al., 2002; Thomas et al., 2006). However, the impact of 

these distal regions on the structural dynamics of the TMD is not incorporated into our current 

model. This limitation is predominantly due to the lack of knowledge concerning how long-range 

conformational signaling affects TMD structure, as well as the computational burden associated 

with atomistic simulation of large-scale conformational changes.  

It is also important to note that we are simulating the binding of memantine to a closed 

channel state of unknown identity. Since there are no crystal or cryoEM structures of NMDARs in 

confirmed desensitized states, little is known about the conformational differences between 

different closed states. However, the ability of memantine to stabilize only a specific desensitized 

state suggests that different closed states have different conformations at the level of the TMD. 
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Furthermore, as noted previously, our models do not contain the GluN1 CTD, a structural 

component necessary for CDD and [Ca2+]i-dependent memantine block. Therefore, it is possible 

that our MD simulations do not capture interactions between memantine and the TMD that are 

relevant to CDD. Despite these limitations, our simulations provided interesting insights into the 

structure of the memantine binding site, demonstrating the power of integrating theoretical and 

experimental approaches. 

5.4 THERAPEUTIC RELEVANCE OF STATE-SPECIFIC NMDAR INHIBITION 

Indiscriminate inhibition of NMDARs can generate deleterious side effects in patients, 

including sedation, psychosis, and even neurotoxicity (Olney et al., 1989; Zorumski & Olney, 

1993; Krystal et al., 1994, 2003; Chen & Lipton, 2006). Therefore, for an NMDAR antagonist to 

be clinically acceptable, it must somehow inhibit NMDARs involved in pathological processes 

while leaving NMDAR activity involved in normal physiology relatively intact. State-specific 

inhibition, the targeting of specific receptor states, could allow for preferential inhibition of select 

populations of NMDARs and thus limit off-target and negative side effects. In this dissertation, we 

present multiple lines of evidence that memantine acts not only by blocking ion flux through 

NMDARs, but also by stabilizing a desensitized state of the NMDAR channel. Thus, our results 

strongly support the idea that memantine is a state-specific inhibitor of GluN1/2A receptors. 

The ability to stabilize a Ca2+dependent desensitized receptor state enables memantine 

to differentially target NMDARs based on a combination of physiological context (i.e. activity level) 

and subunit composition. Indeed, our experiments revealed that memantine inhibition of 

GluN1/2A receptors is dynamically regulated by fluctuations of [Ca2+]i in both physiological and 

pathological ranges, with higher [Ca2+]i leading to greater memantine inhibition. These results 
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have clear implications for neuroprotection. The [Ca2+]i dependence of memantine potency should 

allow memantine to inhibit NMDARs in cellular populations subjected to pathological levels of 

Ca2+ influx, i.e., NMDARs likely to mediate excitotoxic cell death (Zorumski & Olney, 1993; 

Rothman & Olney, 1995; Okamoto et al., 2009; Hardingham & Bading, 2010), more readily than 

NMDARs involved in normal physiological signaling. Thus, our results provide a logical 

explanation for how memantine may preferentially target subpopulations of NMDARs involved in 

disease, which has long been a leading hypothesis regarding the unique clinical safety of 

memantine (Zhao et al., 2006; Léveillé et al., 2008; Okamoto et al., 2009; Xia et al., 2010).  

In addition to clear implications for neuroprotection, the subtype- and context-specificity of 

memantine action may allow memantine to preferentially target specific subpopulations of 

neurons. GluN2A-containing receptors are likely the most prevalent NMDARs expressed by 

neurons in the adult hippocampus and cortex (Rauner & Köhr, 2011; Tovar et al., 2013; Stroebel 

et al., 2018). However, while mature excitatory pyramidal cells almost exclusively express GluN2A 

and GluN2B subunits, inhibitory interneurons strongly express GluN2A as well as GluN2C and 

GluN2D subunits (Monyer et al., 1994; Kinney et al., 2006). The differential subunit expression 

pattern observed between excitatory neurons and inhibitory neurons has major implications for 

channel block. GluN1/2A and GluN1/2B receptors, and GluN1/2A/2B triheteromeric receptors, 

are much more sensitive to Mg2+ block than GluN1/2C and GluN1/2D receptors (Monyer et al., 

1994; Kuner & Schoepfer, 1996; Hansen et al., 2014). The subtype-dependence of Mg2+ block 

has a profound effect on the subtype selectivity of memantine. Given that memantine and Mg2+ 

compete for binding in the NMDAR channel, memantine inhibits GluN1/2C and GluN1/2D 

receptors more effectively than GluN1/2A and GluN1/2B receptors in physiological [Mg2+] 

(Kotermanski & Johnson, 2009). Therefore, the high expression level of GluN2C and GluN2D by 

inhibitory in comparison to excitatory neurons should direct memantine to preferentially inhibit 

NMDAR responses in inhibitory neurons. Indeed, experiments recording from prefrontal cortex 
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slices have reported that memantine inhibits spiking activity of inhibitory interneurons more 

effectively than excitatory neurons (Povysheva & Johnson, 2016). 

The GluN2A specificity of the [Ca2+]i dependence of memantine inhibition likely 

compounds with the effect of Mg2+
 competition on subtype selectivity of memantine. Data 

presented in Chapter 2 suggest that GluN1/2A receptors, in conditions of low [Ca2+]i, sample a 

unique conformational state that exhibits weaker affinity for memantine and cannot be accessed 

by GluN1/2B, GluN1/2C, or GluN1/2D receptors. Therefore, in the absence of strong excitation, 

memantine potency for GluN1/2A receptors is greatly reduced by both Mg2+ competition and the 

[Ca2+]i dependence of memantine potency. Furthermore, endogenous Ca2+-buffering capacity and 

dynamics can vary greatly between neuronal class due to differential expression of Ca2+-buffering 

proteins. In particular, parvalbumin interneurons exhibit fast spiking activity and unique Ca2+
 

dynamics that allow for prolonged elevations of Ca2+
i (Schwaller, 2010). Thus, the GluN2 

expression pattern, high-frequency activity, and slow, large Ca2+ transients displayed by many 

inhibitory interneurons make them prime targets for preferential inhibition by memantine.  

The ability of memantine to preferentially target inhibitory neurons could contribute to its 

neurotherapeutic benefits, particularly for Alzheimer’s disease. Alzheimer’s patients have been 

reported to have decreased cortical activity, reduced metabolism in the prefrontal cortex, and 

strong degeneration of excitatory neurons in comparison to inhibitory neurons (Hof et al., 1991; 

Rombouts et al., 2000; Hof & Morrison, 2004; Schroeter et al., 2012). Therefore, evidence 

suggests that the excitation/inhibition (E/I) balance of cortical activity is altered by the progression 

of Alzheimer’s disease, with a shift toward inhibition. By preferentially inhibiting inhibitory neurons, 

memantine would allow for increased excitatory neuron activity and lead to a shift of the E/I 

balance back toward physiological levels.  

Many NMDAR channel blockers are thought to preferentially target inhibitory interneurons 

and increase cortical excitation (Moghaddam et al., 1997; Sharp et al., 2001; Jackson et al., 2004; 



 

149 

 

Homayoun & Moghaddam, 2007; Widman & McMahon, 2018). However, excessive inhibition of 

inhibitory neurons and subsequent runaway excitation has been proposed to be the mechanism 

by which poorly tolerated NMDAR channel blockers such as ketamine, MK-801, and 

phencyclidine produce psychotomimetic effects and kill neurons (Sharp et al., 2001; Homayoun 

& Moghaddam, 2007). Why, then, does memantine not produce these unacceptable side effects? 

It is possible that the [Ca2+]i dependence of memantine inhibition of GluN1/2A receptors acts as 

a fail-safe preventing runaway excitation. Under normal conditions, memantine may preferentially 

target GluN1/2C and GluN1/2D receptors on inhibitory neurons over GluN1/2A and GluN1/2B 

receptors on excitatory neurons due to differences in Mg2+ block. Then, as excitatory neuron 

activity increases due to disinhibition, Mg2+ block of GluN1/2A receptors is relieved and [Ca2+]i 

increases in excitatory neurons. As [Ca2+]i increases, memantine inhibition of GluN1/2A receptors 

in excitatory neurons increases to levels similar to that of GluN1/2B, GluN1/2C, and GluN1/2D 

receptors. This increase in memantine potency at GluN1/2A receptors, when coupled with Mg2+ 

unblock, could weaken the preference of memantine for inhibitory interneurons. Thus, the [Ca2+]i 

dependence of memantine inhibition of GluN1/2A receptors could allow memantine to subtly 

increase cortical excitability while preventing runaway excitation. Though this hypothesis is likely 

oversimplified, it highlights that subtle mechanistic differences in pharmacodynamics may have 

substantial impact on the clinical profiles of channel blockers. 

5.5 FUTURE DIRECTIONS 

In this dissertation, we present the first characterization of a novel form of state-specific 

NMDAR antagonism, [Ca2+]i-dependent channel block of GluN1/2A receptors by memantine. 

Through examination of the [Ca2+]i dependence of memantine potency, we also gathered insights 



 

150 

 

into NMDAR desensitization and the structure of the memantine binding site. Lastly, we 

characterized the electrophysiological properties of newly synthesized NMDAR channel blockers, 

and discovered that potency of a memantine analog is also dependent on [Ca2+]i. This section will 

highlight additional questions generated by our data that have not yet been addressed.  

The experiments presented in Chapter 2 only scratch the surface of the effects of [Ca2+]i 

on desensitization and memantine inhibition of triheteromeric NMDARs and native NMDAR 

populations. GluN1/2A/2B receptors are likely to be the most prevalent form of NMDAR expressed 

in the adult neocortex and hippocampus (Sheng et al., 1994; Luo et al., 1997; Gray et al., 2011; 

Rauner & Köhr, 2011; Paoletti et al., 2013; Tovar et al., 2013; Stroebel et al., 2018). Although we 

showed that memantine inhibition of a mixed population of native NMDARs containing both 

GluN2A- and GluN2B-containing receptor is [Ca2+]i-dependent, we have not directly tested 

whether memantine inhibition of triheteromeric NMDARs is [Ca2+]i-dependent. As mentioned 

previously, isolation of triheteromeric receptors is difficult. Current methods that allow for 

investigation of triheteromeric NMDARs in transfected cells rely on modifications to receptor 

regions involved in either Mg2+ (Hatton & Paoletti, 2005) block or desensitization (Hansen et al., 

2014; Stroebel et al., 2014), and thus are unsuitable for our purposes. Development of new 

methods for isolation of triheteromeric NMDARs will be critical for evaluating the relation between 

desensitization and channel block of GluN1/2A/2B receptors.  

The [Ca2+]i dependence of memantine potency may contribute to the preferential targeting 

of inhibitory interneurons. Previous work from our lab has shown that memantine inhibition of 

synaptic NMDAR responses in excitatory neurons is enhanced in conditions allowing for buildup 

of Ca2+
i (Glasgow et al., 2017). However, the effect of [Ca2+]i on memantine inhibition of inhibitory 

neurons has not been directly tested, nor compared with the effect of [Ca2+]i on memantine 

inhibition of excitatory neurons. Furthermore, different types of inhibitory neurons express distinct 

Ca2+-binding proteins and exhibit different Ca2+-buffering dynamics (Schwaller, 2010). Thus, 
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future experiments comparing the effects of [Ca2+]i on desensitization and memantine inhibition 

of different types of inhibitory neurons may provide insight into the effects of endogenous Ca2+
 

buffers on CDD and memantine inhibition.  

Our simulations and experiments in Chapter 3 provided insight into the structure of the 

memantine binding site. However, interpretations of our simulation results are limited due to our 

lack of knowledge about structures of NMDAR desensitized states and our inability to model long-

distance domain-domain interactions. Future studies could ameliorate some of these issues 

through utilization of elastic network models (ENMs). Elastic network models treat the protein 

backbone as harmonic springs between Cα atoms, greatly reducing the computational 

requirements for simulations (Atilgan et al., 2001; Bahar et al., 2010). Due to this reduction in 

computational cost, ENMs are particularly useful for modeling long-range conformational changes 

that are typically beyond the scope of atomistic MD simulations. Although ENMs are coarse-

grained models that lack the resolution of atomistic MD simulations, simulations with ENMs have 

been successfully integrated with atomistic MD simulations to provide interesting insights into the 

conformational dynamics of iGluRs (Dutta et al., 2015; Krieger et al., 2015, 2019; Lee et al., 2019). 

Therefore, integration of our MD simulations with ENM simulations may be a useful strategy for 

investigating the role of non-TMD regions in CDD and memantine binding.  

We have so far only identified two blockers, memantine and RL-208, that show [Ca2+]i-

dependent potency. However, we have only examined the effects of [Ca2+]i on potencies of four 

channel blockers in total: memantine, RL-208, ketamine, and Mg2+. Characterization of the effects 

of [Ca2+]i on the potencies of EV-19, RL-202, and MFV-4 will provide further insight into the 

structural properties that determine whether a blocker stabilizes a Ca2+-dependent desensitized 

GluN1/2A receptor state. Atomistic simulations of blocker binding will also provide further insight 

into the structural mechanisms governing GluN1/2A receptor CDD and channel block. Overall, 

the concepts presented in this dissertation will hopefully guide future research utilizing this 
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powerful combination of experimental and computational/theoretical approaches to ultimately aid 

in the future design of more clinically efficacious NMDAR-targeting neurotherapeutics and deepen 

our understanding of NMDAR structure and channel block. 
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APPENDIX A INTERPLAY BETWEEN GATING AND BLOCK OF LIGAND-GATED ION 

CHANNELS  

Phillips, M.B., Nigam, A., & Johnson, J.W. (2020) Interplay between Gating and Block of Ligand 
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Abstract: Drugs that inhibit ion channel function by binding in the channel and preventing current flow, 

known as channel blockers, can be used as powerful tools for analysis of channel properties. Channel 

blockers are used to probe both the sophisticated structure and basic biophysical properties of ion 

channels. Gating, the mechanism that controls the opening and closing of ion channels, can be profoundly 

influenced by channel blocking drugs. Channel block and gating are reciprocally connected; gating 

controls access of channel blockers to their binding sites, and channel-blocking drugs can have profound 

and diverse effects on the rates of gating transitions and on the stability of channel open and closed states. 

This review synthesizes knowledge of the inherent intertwining of block and gating of excitatory ligand-

gated ion channels, with a focus on the utility of channel blockers as analytic probes of ionotropic 

glutamate receptor channel function. 

Keywords: ligand-gated ion channel; channel block; channel gating; nicotinic acetylcholine receptor; 

ionotropic glutamate receptor; AMPA receptor; kainate receptor; NMDA receptor 

 

1. Introduction 

Neuronal information processing depends on the distribution and properties of the ion channels 

found in neuronal membranes. Channel gating, perhaps the most basic characteristic of ion channels, refers 

to the ability of ion channels to either open and allow transmembrane ion flux or to close and prevent ion 

flux. The gating mechanisms employed by ligand-gated ion channels are divided into three general 

categories, namely, activation, deactivation, and desensitization. Activation refers to the transition of ion 

channels from closed to open states following application of agonist. Deactivation refers to the transition 

of channels from open to closed states following removal of agonist. Desensitization is canonically defined 

as a decrease in the fraction of channels that are in the open state (termed open probability, or Popen) in the 

maintained presence of agonist [1]. Desensitization is typically a direct consequence of agonist binding. A 

fourth gating mechanism that resembles desensitization but is not driven by agonist binding was referred 

to both as desensitization and inactivation [2–4], although inactivation is a term typically used to describe 

a different mechanism employed by voltage-gated channels [5]. Although driven by different underlying 

mechanisms, both desensitization and inactivation ultimately describe nonconducting channel states that 

do not respond to typical activating stimuli [1,5]. Gating mechanisms of ion channels are finely tuned and 

are essential to normal nervous system function, with even minor aberrations of channel gating often 

resulting in disease. While most known channelopathies involve dysfunction of voltage-gated channels, 

naturally occurring genetic variants that alter the gating of ligand-gated ion channels are increasingly 

associated with neurological disorders, including epilepsy, intellectual disability, and autism [6]. 

Studies of drugs that inhibit channel function provide valuable insight into ion channel gating 

mechanisms. Channel blockers, antagonists that bind in and prevent ion flux through ion channels, have 

been successfully used to probe both the structure of ion channel pores and the kinetics of channel gating. 

Channel gating requires conformational changes in or near the channel pore (i.e., the transmembrane ion 
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conduction pathway), and channel blockers are known to interact differentially with channels in open, 

closed, inactivated, and desensitized states [3,7–10]. Thus, channel blockers are exceptionally well-

positioned, both figuratively and literally, for use as analytic probes in studies of channel gating. Here, we 

discuss the interaction between channel block and channel gating of excitatory ligand-gated ion channels, 

with a focus on ionotropic glutamate receptors. 

 

Reciprocal Interactions between Channel Block and Channel Gating  

Channel gating can profoundly influence channel block, and channel block can profoundly influence 

channel gating. The initial binding of channel blockers often depends on gating state. Most blockers of 

ligand-gated ion channels can only enter and bind to the channel while agonist is bound and the channel 

is in the open state (Figure 1A). Such blockers are descriptively named open channel blockers and are the 

focus of this review. In some cases, open channel blockers are also termed “use-dependent” [11]. A blocker 

is termed use-dependent if inhibition by the blocker (1) requires activation of the channel, and (2) increases 

with duration of channel activation until an equilibrium between blocker binding and unbinding is reached 

(Figure 1A). The actions of almost all known ligand-gated ion channel blockers have been found to be at 

least partially dependent on channel opening, binding either exclusively or with much faster kinetics when 

the channel is open.  

Channel blocker unbinding also depends on gating transitions. If closure of the channel gate and 

agonist unbinding can occur while the blocker is bound, the blocker may become “trapped” in the channel 

(Figure 1C,D), unable to unbind until agonist is reapplied. Interestingly, some trapping blockers display 

the ability to escape from a fraction of blocked channels even after removal of agonist, a phenomenon 

termed “partial trapping” that is not fully understood [12–16]. On the other hand, sequential or “foot-in-

door” channel blockers physically occlude closure of the channel gate (Figure 1E). The depth of the blocking 

site, size of the channel blocker, location of the channel gate, and gating-associated conformational changes 

all contribute to whether channels can close while the blocker is bound. These features dictate the structural 

interactions between channel blockers and the receptor’s gating machinery, which in turn determine the 

influence that the channel blocker can reciprocally exert on gating transitions.  

Bound channel blockers can affect gating transitions in three general ways. Blockers can:  

4. Alter agonist binding and/or unbinding kinetics; 

5. Stabilize channel open states; 

6. Stabilize channel closed states. 

For example, the binding of large sequential blockers to open channels prevents both transition of 

channels into closed states (Figure 1E) and agonist unbinding [7,17–20]. In contrast, smaller trapping 

blockers can interact with either open or closed channel states and can therefore have many possible effects 

on channel gating (Figure 1D). For example, trapping blockers can stabilize open or closed channels and/or 

facilitate entry into or recovery from desensitized states [3,8,21]. The inherent intertwining of channel 

gating and block allows channel blockers to be leveraged as powerful tools for the study of ion channel 

structure and function. 
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Figure 1. Interplay between channel gating and open channel block. (A) Schematic depicting inhibition of 

current (black line) by a prototypical open channel blocker. Three agonist applications (green bars) are 

shown. The first agonist application in the absence of blocker shows the control response. The second agonist 

application, which follows the application and removal of a blocker (red bar), shows that the blocker cannot 

access its binding site when the channel is closed. The third agonist application, which is made in the 

presence of a blocker, shows that the blocker can access its binding site and inhibit agonist-activated current 

when the channel is in the open state. Entry of a blocker into open channels accelerates the apparent decay 

of the response and decreases the steady state response. Because the blocker cannot bind until the channel 

opens, peak current in response to the first agonist application in the presence of the blocker may be 

unaffected, as shown here. However, if blocker binding is fast relative to current activation kinetics, the peak 

response may be reduced. (B) Ion channels can transition between open, ion permeable states and closed, 

impermeable states. kc is transition rate into closed state and ko is transition rate into open state. (C–E) The 
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size of channel blocking compounds (red) and depth of the blocking site affects blocker interactions with 

the channel gate. (C) Small channel blockers, such as inorganic cations, can block open channels without 

preventing channel closure or affecting gating transitions. kon is blocker binding rate and koff is blocker 

unbinding rate. When the channel is blocked by a blocker that does not interact with the gate, channel closing 

rate is k’c and channel opening rate is k’o. (D) Small-to-intermediate-sized organic channel blockers can block 

open channels without preventing channel closure, but nevertheless can interact with the channel gate, 

either accelerating or decelerating gating transitions. When the channel is blocked by a blocker that interacts 

with the gate, channel closing rate is k’’c and channel opening rate is k’’o. (E) Large, organic, sequential/foot-

in-door blockers can block open channels and prevent channel closure. k’’’c is channel closing rate when the 

channel is blocked by a sequential/foot-in-the-door blocker.  

Nicotinic Acetylcholine Receptors  

Since the turn of the 20th century, the study of nicotinic acetylcholine receptors (nAChRs) has played 

a critical role in our understanding of ionotropic receptor biophysics and pharmacology. The very concept 

of transmitter receptors arose from the observation that application of nicotine to denervated striated 

muscle elicited muscle contraction, resulting in John Newport Langley’s inference of the presence of a 

“receptive substance” on muscle fibers [22]. The nAChR has served as the prototypical ion channel since 

its discovery, being the first ion channel to be isolated, characterized, structurally imaged, and cloned [23–

31]. nAChRs additionally served as the subject for the first kinetic models of ion channel function [1,32] 

and for the development of patch-clamp electrophysiology [33,34]. Consistent with their vast historical 

importance, nAChRs mediate neuromuscular transmission and play key roles in nervous system function. 

Cholinergic signaling through nAChRs heavily modulates excitatory and inhibitory transmission in 

hippocampal and mesolimbic circuits, and thus is vital in shaping synaptic plasticity and learning [35–40]. 

Unsurprisingly, aberrant expression or activation of nAChRs is heavily implicated in many neurological 

and neuromuscular disorders, including addiction, schizophrenia, epilepsy, Alzheimer’s disease, 

myasthenia gravis, and Lambert–Eaton myasthenic syndrome, making nAChRs a major neurotherapeutic 

target [41–49].  

nAChRs are excitatory, cation-selective members of the Cys-loop receptor superfamily, a major class 

of ligand-gated ion channels named for a conserved loop of 13 amino acid residues formed by disulfide-

bonded cysteine residues in their extracellular domain. Other members of the Cys-loop family include the 

cation-selective serotonin (5-HT3) and zinc-activated (ZAC) receptors, as well as the anion-selective γ-

aminobutyric acid (GABAA) and glycine (Gly) receptors [50]. Like all Cys-loop receptors, nAChRs are 

pentameric protein complexes with broad subunit diversity. nAChRs are assembled from a large catalog 

of subunits consisting of 10 α subunits (α1–10; although α8 is only expressed in avian species), four β 

subunits (β1–4), and the singular γ, δ, and ε subunits. This high subunit diversity is augmented further by 

the “sidedness” of each subunit, which allows the specific order in which subunits assemble to affect the 

receptor’s biophysical properties, resulting in more than 1000 possible nAChR subtypes [38]. All 

neuromuscular junction (NMJ) nAChRs are heteropentameric, composed of α1, β1, γ, and either δ or ε 

subunits at a respective ratio of 2:1:1:1. Neuronal nAChRs, on the other hand, assemble either as α-

homomers or as heteromers composed of α(2–10) subunits complexed with β(2–4) subunits. Homomeric 

α7 and heteromeric α4β2 (2 α4, 3 β2) are the most commonly expressed nAChR subtypes in the brain [51–

53].  

All nAChR subunits possess a modular structure composed of a large extracellular N-terminal domain 

(NTD; the location of the Cys-loop), three-membrane spanning regions (M1-M3), a variable intracellular 

loop, another transmembrane region (M4), and a short extracellular C-terminal domain. Although most 

nAChR subtypes possess two acetylcholine (ACh) binding sites formed within the NTD at the interface 

between α subunits and their neighboring subunits, the precise location and properties of agonist binding 
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sites differs broadly depending on subunit composition. For NMJ nAChRs, binding sites form at the α–γ 

or α–ε and at the α–δ subunit interfaces. Neuronal nAChRs again show greater diversity, with heteromeric 

receptors typically possessing two ACh binding sites located at α–β interfaces and homomeric receptors 

possessing five potential ACh binding sites [54–56]. The transmembrane regions (M1-M4) form a central, 

water-filled pore lined by the M2 transmembrane region that serves as a conduction pathway for the 

permeable cations Na+, K+, and Ca2+ [57,58]. Gating of nAChRs is initiated by binding of agonist in the 

extracellular domain, which begins a series of conformational changes that propagate to the 

transmembrane region and induce opening of the channel gate. Gating transitions of nAChRs are also 

heavily dependent on receptor subtype, but cycle through three basic states, namely, a resting closed state, 

an open state, and a desensitized state. nAChRs pass through multiple additional states after agonist 

binding prior to channel opening [59] and display many desensitized states. In fact, desensitization was 

first defined by Katz and Thesleff through the study of NMJ nAChR currents [1].  

 

Channel Block of nAChRs  

As with nearly every aspect of ion channel research, nAChRs were also the first ion channels to be 

investigated using antagonists. Experiments utilizing the arrow poison curare and the snake venom α-

bungarotoxin produced thorough descriptions of competitive antagonism and served as the starting point 

for the isolation of nAChRs and characterization of their function [29,60,61]. Early studies using channel 

blockers to investigate gating of ligand-gated ion channels also largely focused on nAChRs. Local 

anesthetics and barbiturates act as nonselective nAChR blockers (but also target voltage-gated Na+ channels 

[5] and GABAA receptors [62], respectively) and were among the first drugs used to probe ligand-gated ion 

channel block. Treatment of muscle fibers with local anesthetics (most notably, the lidocaine derivatives 

QX-222 and QX-314) converted the normally single exponential decay of motor endplate currents into a 

double exponential decay [63,64], an effect also observed with the barbiturates thiopentone, 

amylobarbitone, and methohexitone [65,66]. These observations served as the basis of a slew of studies that 

characterized the basic features of ion channel block. Adams provided the first extensive characterization 

of use-dependent ligand-gated ion channel block, providing (1) compelling evidence that nAChR channel 

blockade was strongly voltage-dependent, suggesting that the blocker binding site was within the 

membrane electric field, and (2) the first model of sequential channel block of a ligand-gated ion channel 

(Figure 1E; [65–67]). Around the same time, Ruff proposed a similar conceptual model for sequential 

channel block of nAChRs [19]. This model was soon validated by Neher and Steinback, who used single-

channel recordings to show that binding of QX-222 blocked current flow and that open, blocked channels 

could not close (Figure 1E; [20]). These pioneering studies laid the groundwork for the use of channel 

blockers as experimental probes for the study of ion channel gating and function.  

More recent studies of nAChR-channel blocker interactions provided further insight into nAChR 

gating mechanisms. Block of nAChRs by choline and millimolar concentrations of ACh prolong channel 

open times without affecting desensitization [10,68,69]. These findings led to the development of the “dual-

gate” hypothesis of nAChR gating, which posits that nAChR activation and desensitization are mediated 

by distinct gates. Photolabeling experiments utilizing chlorpromazine further supported this dual-gate 

model, showing that (1) chlorpromazine has multiple binding sites in the nAChR channel and (2) the state 

of the receptor (i.e., desensitized, activated, or non-activated) directs the binding of chlorpromazine to 

specific sites in the channel [9,70–72]. Structural and functional evidence supporting the dual-gate model 

of activation and desensitization have been further found for an array of other pentameric ion channels 

[73], providing yet another example of the power of channel blockers as analytic tools. 

 

Ionotropic Glutamate Receptors  
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Ionotropic glutamate receptors (iGluRs) are members of the pore loop superfamily of ion channels, 

integral membrane proteins that mediate the majority of ion flux across neuronal membranes [5]. Fast 

excitatory synaptic transmission in the central nervous system is primarily mediated by iGluRs, and proper 

functioning of iGluRs is vital to synaptogenesis, synaptic plasticity, signal integration, and information 

transfer [74,75]. Due to the integral roles iGluRs play in neuronal function and their ubiquitous expression, 

aberrant iGluR activity contributes to a wide variety of neuronal dysfunctions that can drive nervous 

system disorders [6,76–82]. 

iGluRs are divided into three main classes by structure: α-amino-3-hydroxyl-5-methyl-4-isoxazole-

propionate receptors (AMPARs), kainate receptors (KARs), and N-methyl-D-aspartate receptors 

(NMDARs). A fourth division of the iGluR family, δ receptors, shares substantial sequence homology with 

other iGluR subtypes. Surprisingly, despite forming functional ion channels [83–85], δ receptors show no 

ligand-gated ion channel function [86–89] and are therefore not discussed in this review. All iGluRs 

assemble as complexes of four membrane-spanning subunits that form a central pore. Each iGluR subunit 

contributes exclusively to one subtype of iGluR: GluA1–4 form AMPARs, GluN1, GluN2A-D, and 

GluN3A-B form NMDARs, and GluK1–5 form KARs. Despite this wide diversity, all iGluR subunits 

possess a similar general structure (shown in Figure 2A using an NMDAR as an example) consisting of 

four discrete, semiautonomous domains, namely, an extracellular amino-terminal domain (ATD), an 

extracellular ligand-binding domain (LBD), a transmembrane domain (TMD), and an intracellular carboxy-

terminal domain (CTD, which was deleted from the structure shown in Figure 2). Unlike nAChRs, each 

iGluR subunit possesses an agonist-binding site located within the LBD. The four TMDs of iGluRs form the 

pore, and thus the site of channel blocker binding (Figure 2B). Within the TMD lies the glutamine (Q) – 

arginine (R) – asparagine (N) (QRN) site, a site found at the tip of the re-entrant loop (M2 loop) in the iGluR 

pore (Figure 2C) that helps form the selectivity filter and plays a crucial role in the differential cation 

selectivity and channel block of the three iGluR classes [90–93]. Recent mid- and high-resolution structures 

of AMPAR [94–97] and NMDAR [21,98] TMDs provided great insight into iGluR gating transitions and 

channel block. 
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Figure 2. General N-methyl-D-aspartate (NMDA) receptor structure and putative blocking site. (A) Recently 

published structure of N-methyl-D-aspartate receptor (NMDAR) in an “active” state showing domain 

topology shared by all iGluR subtypes (ATD, amino-terminal domain; LBD, ligand-binding domain; TMD, 

transmembrane domain; Protein Data Bank (PDB) code 6WHT; [98]). GluN1 subunit is depicted in dark blue 

and GluN2B in cyan. Horizontal lines show the approximate locations of the outer and inner surfaces of the 

membrane. (B) Blow-up of NMDAR TMD (boxes in A) with docked channel blocker memantine (space-

filled; carbons are red, nitrogen is orange) displaying typical site of channel block. Most channel blocking 

compounds show intimate interaction with the external tip of the iGluR selectivity filter formed by the re-

entrant M2 loops of each subunit (opaque; M1, M3, and M4 transmembrane helices are transparent for 

visualization of blocking site). (C) Magnified view of memantine coordination by the QRN site asparagine 

residues GluN1 N616 and GluN2B N615, which are critically involved in NMDAR channel blocker binding 
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[99–103]. Autodock Vina was used for molecular docking of memantine to PDB 6WHT, and structural 

images were prepared using the program Visual Molecular Dynamics (VMD) [98,104,105]. 

Characteristics of AMPA and Kainate Receptor Block  

AMPARs and KARs display a number of common characteristics not shared with NMDARs. AMPARs 

and KARs can form both homomers and heteromers that possess four glutamate binding sites. Gating of 

AMPARs and KARs does not require all four subunits to be bound to an agonist, allowing single-channel 

currents to show multiple conductance levels depending on LBD occupancy [106–108]. Gating transitions 

of AMPARs and KARs are also very fast compared to NMDARs. Channel deactivation occurs within 5–10 

ms of agonist removal and desensitization generates a >90% decrease in current within 20 ms of channel 

opening in the continued presence of an agonist [75]. These rapid gating transitions allow AMPARs and 

KARs to mediate the time course of the fast component of synaptic transmission [109]. 

 

Channel Block of AMPAR and KAR is Regulated by Channel Gating  

Channel block of AMPARs and KARs is remarkably similar and is primarily governed by RNA editing 

at the QRN site in the channel pore. While the exons for all AMPAR and KAR subunits code for an 

uncharged glutamine (Q) at this site, RNA for the GluA2, GluK1, and GluK2 subunits can be edited, 

resulting in a change from the conserved glutamine to a positively charged arginine (R; [110–112]). GluA2-

lacking AMPARs and GluK1/2-lacking KARs, which contain the unedited Q at the QRN site, are permeable 

to calcium (Ca2+) and are readily blocked by endogenous intracellular polyamines such as spermine 

[91,92,111,113–116]. However, incorporation of a single edited GluA2, GluK1, or GluK2 subunit into an 

AMPAR or KAR, i.e., a subunit with a positively charged R at the QRN site, abolishes Ca2+ permeability as 

well as polyamine block [113–115]. Interestingly, editing at the QRN site also controls inhibition of KARs 

by fatty acids, with only fully edited KARs displaying sensitivity to fatty acid inhibition [117]. Although 

fatty acid inhibition is only weakly voltage-dependent and may involve interactions with residues outside 

the pore [118], the involvement of the QRN site suggests a possible interaction within the pore. For the 

remainder of this section, we focus on AMPARs and KARs with Q at the QRN site of each subunit. 

Polyamine block of iGluRs is strongly voltage-dependent and at least partially use-dependent 

[115,119,120]. Both AMPARs and KARs show birectifying responses in the presence of cytoplasmic 

polyamines [115], suggesting a common block mechanism. Recent cryo-electron microscopy (cryo-EM) 

structures of unedited GluA2(Q) receptors revealed the location and structure of the polyamine binding 

site in the pore [95,96]. Just below the QRN site lies a strongly electronegative portion of the channel, which 

likely contributes to both the cation selectivity of AMPARs [96] and the local membrane electric field 

[119,121,122]. Relief of polyamine block of AMPARs and KARs occurs via two separate mechanisms, i.e., 

permeation through the channel, which occurs at high positive voltages, and unblock to the cytoplasm, 

which occurs at negative voltages [115,123]. Polyamines are also trapping channel blockers and thus can 

only readily unbind when the channel is open [96,119]. Although trapping of polyamines seems 

counterintuitive, since they can unbind to either the intracellular or extracellular space, recent cryo-EM 

experiments provided compelling structural evidence of polyamine trapping. AMPAR structures 

produced by Twomey et al. suggested that closure of a gate near the extracellular entrance to the channel 

prevents polyamine permeation, while constriction of the selectivity filter prevents unbinding to the 

intracellular space by “pinching” the tail of the bound polyamine [96]. Thus, the gating state of AMPARs 

and KARs governs channel block by endogenous polyamines. 

 

Effects of Auxiliary Proteins on Gating of AMPARs and KARs Modulates Block by Endogenous Polyamines  

The interplay between gating and block of AMPARs and KARs is further regulated by the interaction 

of AMPARs and KARs with auxiliary proteins. Beginning with the discovery of the transmembrane AMPA 
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receptor regulatory protein (TARP) stargazin [124], a wealth of studies identifying and characterizing 

additional auxiliary proteins have greatly increased our understanding of AMPAR and KAR regulation. 

Auxiliary proteins play an integral role in the trafficking, synaptic targeting, and gating of non-NMDAR 

iGluRs [121,122,125–131], and several in-depth reviews have been written concerning their function [131–

138].  

Through their regulation of channel gating, auxiliary proteins necessarily regulate channel block of 

AMPARs and KARs. Many auxiliary proteins, including stargazin, cornichon-3, and members of the 

CKAMP/Shisa family, substantially augment AMPAR currents by slowing desensitization and increasing 

mean channel conductance [122,139–146]. Similarly, the KAR auxiliary proteins Neto1 and Neto2 increase 

KAR currents by decreasing desensitization and increasing peak Popen ([121,129–131], but see [128]). 

Interaction with auxiliary proteins that increase channel conductance and/or Popen greatly attenuates 

polyamine block of AMPARs and KARs. Increasing Popen reduces the time that the channel spends in closed 

states, which in turn reduces polyamine trapping and facilitates permeation. Indeed, association of 

AMPARs with stargazin or cornichon-3 and KARs with Neto1/2 greatly increases polyamine permeation 

[121,122]. Although increasing Popen would also be expected to allow polyamines to more readily access 

their binding sites, AMPAR-auxiliary protein interactions were surprisingly found to slow the onset of 

polyamine block at negative voltages [147]. The enhancement of blocker permeation at positive voltages 

and reduction onset of block at negative voltages combine to profoundly weaken polyamine block. 

Association of AMPARs with stargazin or cornichon-3 attenuates polyamine block by 3–15-fold 

[122,140,146,147], and KAR association with Neto1/2 reduces block by 8- to 20-fold [121,148]. In contrast, 

the AMPAR auxiliary protein GSG1L reduces channel conductance while increasing polyamine-dependent 

rectification [125]. The structural underpinnings of this intrinsic relation between polyamine block and the 

regulation of AMPAR and KAR gating by auxiliary proteins are yet to be elucidated. Possible explanations 

include auxiliary protein-induced stabilization of receptor open states [146,149], alteration of pore structure 

due to interactions of auxiliary subunits with the AMPAR/KAR TMD [96,138,144], or interactions between 

auxiliary protein C-terminal domains and AMPAR/KAR intracellular domains [140,148]. 

 

Effects of Polyamine Block on Gating Transitions of AMPARs and KARs  

Although much is known about how channel gating regulates AMPAR and KAR blockade by 

polyamines, there is a dearth of knowledge about how polyamine occupancy of the channel affects AMPAR 

or KAR gating. To our knowledge, there are no reports of modulation of KAR gating by polyamine block. 

Polyamine block of AMPARs is known to contribute to frequency-dependent synaptic facilitation, but this 

effect appears unrelated to polyamine effects on gating. Instead, at negative potentials, repetitive 

stimulation of AMPARs can cause an increase in the rate of polyamine unblock without a concomitant 

increase in the rate of block [119,120,150]. However, there is some evidence that polyamine binding may 

stabilize or accelerate entry into AMPAR closed states [119]. The presence of trapped spermine in the 

channel of unedited GluA2(Q) receptors causes a delay in channel activation upon presentation of agonist, 

suggesting that spermine stabilizes a closed receptor state. Furthermore, kinetic models suggest that the 

observed acceleration of channel deactivation in the presence of spermine could be explained by a doubling 

of the rate of channel closure [119]. Acceleration of channel closure could potentially result from 

polyamines emptying and excluding other permeant ions from the pore, an effect observed in studies of 

voltage-gated potassium channel block [151]. Stabilization of a channel closed state by polyamines could 

also be due to allosteric modulation, a mechanism suggested for certain blockers of Cys-loop receptors [73]. 

Given the roles Ca2+-permeable, non-NMDAR iGluRs play in both normal physiological and disease states 

[138,152–155], it is important to further our understanding of AMPAR and KAR block not only to better 

understand neuronal information processing, but also to aid in the design of more efficacious therapeutics. 
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Characteristics of NMDAR Channel Block  

NMDARs display myriad biophysical properties unique amongst the iGluR family, including high 

Ca2+ permeability, slow gating kinetics, dependence on co-agonism for gating, and voltage-dependent block 

by magnesium (Mg2+) ions [75,156–161]. These characteristics allow NMDARs to control the magnitude and 

timing of Ca2+ influx during synaptic activity and therefore play a pivotal role in synaptic development and 

plasticity [162–164]. NMDARs are obligate heterotetramers, typically composed of two GluN1 subunits 

(eight splice variants), which bind glycine or d-serine, and two GluN2 subunits (GluN2A–GluN2D), which 

bind glutamate. A third group of subunits, GluN3A/B, also bind glycine/d-serine (although d-serine acts 

only as a partial agonist [165]) and can assemble with GluN1 and GluN2 subunits to form NMDARs 

activated by glutamate and glycine/d-serine. Interestingly, GluN3 subunits can also assemble just with 

GluN1 subunits to form unconventional NMDARs activated solely by glycine/d-serine. However, these 

GluN1/3 receptors only pass weak currents in physiological conditions, so their role in neuronal function 

is largely unknown [165]. Conventional NMDARs consisting of two GluN1 subunits and two GluN2 

subunits rely on the binding of both glutamate and glycine/d-serine for activation [156,166] and, unlike 

AMPARs and KARs, require all four agonist binding domains to be occupied for the channel to transition 

to the open state [167–169]. Additionally, conventional NMDARs possess a conserved asparagine at the 

QRN site (Figure 2C) that confers high Ca2+ permeability even relative to Ca2+-permeable AMPAR and 

KARs, as well as sensitivity to block by Mg2+ [90,101,123].  

Channel block of NMDARs has been extensively studied. Known, well-characterized NMDAR 

channel blockers with slow kinetics displayed some degree of use dependence. Another highly conserved 

key feature of NMDAR channel blockers is voltage dependence. Most NMDAR channel blockers are 

monovalent or divalent cations and display far greater inhibition at negative than at positive membrane 

potentials [12,13,15,17,170–173]. Due to their many roles in normal and pathological brain function, 

NMDARs are attractive targets for development of neurotherapeutics. NMDAR channel blockers are 

currently the most clinically useful NMDAR-targeting drugs and show great promise in the treatment of 

multiple nervous system disorders, including neurodegenerative diseases, major depressive disorder, and 

neuron death following ischemia [174–182].  

NMDAR channel blockers display a strikingly diverse array of clinical effects, despite sharing 

overlapping binding sites and a similar general mechanism of inhibition ([99,183]; the putative blocking 

site for memantine is shown in Figure 2B,C). For example, the clinically relevant blockers memantine and 

ketamine share similar chemical properties (Table 1) and binding kinetics but possess vastly different 

effects on brain function. Ketamine is a drug of abuse and poorly tolerated, but possesses impressive 

efficacy in treating neuropathic pain and major depressive disorder [176,180,184,185]. On the other hand, 

memantine possesses weaker efficacy in treatment of neuropathic pain and little to no effect on major 

depressive disorder, but is well-tolerated with few side effects and shows efficacy in the treatment of 

neurodegenerative disorders such as Alzheimer’s disease [177,179,186–190]. The striking diversity in the 

clinical effects of NMDAR channel blockers may in part arises from their diverse effects on channel gating. 

Nearly all known NMDAR channel blockers show some effect on channel gating [191] and channel blockers 

are found to modulate nearly every aspect of gating [3,7,8,12,13,17,173,192–200].  

 

Sequential Blockers of NMDARs Prevent Channel Closure and Agonist Dissociation  

The sequential/foot-in-door blockers 9-aminoacridine (Table 1), tetrapentylammonium, and the 

amantadine derivative IEM-1857 (synthesized at the Institute of Experimental Medicine (IEM), St. 

Petersburg, Russia) are thought to force NMDARs to remain in open states by sterically prohibiting gate 

closure after entering the channel [7,17,173,195,201]. Importantly, occupancy of the channel by IEM-1857, 
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tetrapentylammonium, or 9-aminoacridine also prevents agonist dissociation and channel desensitization 

[7,17,173], suggesting that blocker unbinding and subsequent channel closure are required for agonist 

dissociation. This finding is consistent with models of sequential channel block of nAChRs proposed by 

[19,20,66,67]. An experimental procedure used to test whether a channel blocker prevents channel closure 

and agonist dissociation is to determine if the blocker induces “tail currents”. A tail current is a transient 

increase in receptor-mediated current observed upon rapid and simultaneous removal of blocker and 

agonist from the extracellular solution. If a blocker prevents channel closure, channels pass through the 

open, unblocked state following blocker unbinding, resulting in a tail current. However, any antagonist 

that unbinds more quickly than agonists can induce tail currents; thus, observation of tail currents does not 

provide unambiguous evidence that a blocker acts via a sequential mechanism. More powerful evidence 

that a blocker prevents channel closure can be provided by (a) observation that a blocker chops single-

channel currents into “bursts” of brief openings, and that the total channel open time during bursts is 

independent of blocker concentration [20], and (b) observation that the blocker concentration that inhibits 

responses by 50% (the IC50)  is inversely proportional to the receptor’s Popen, a prediction that can be tested, 

e.g., by recording the IC50 of a blocker over a range of agonist concentrations [191]. The finding that channel 

occupation by sequential blockers prevents agonist unbinding as well as channel closing provided 

fundamental information on state transitions of ligand-gated ion channels.  
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Table 1. NMDAR channel blockers and their effects on gating. 

Compound Structure Type of Blocker Effects on Gating 

Magnesium 

 

Unclear—due to fast 

unblocking kinetics, trapping of 

Mg2+ has not been directly 

demonstrated. 

None [13,202]. 

9-aminoacridine 

 

Sequential [7,201].  

Stabilizes open state 

[7,201]. 

Prevents agonist 

dissociation [7,201]. 

IEM-1754 

 

Depolarized potentials: 

sequential [173]. 

Strongly negative potentials: 

trapping [173]. 

Depolarized potentials: 

Stabilizes open state [173]. 

Amantadine 

 

Partial trapping [12,13]. 

Accelerates channel 

closure of native 

NMDARs and GluN1/2B 

receptors [8]. 

Memantine 

 

Partial trapping 

[8,16,197,203,204]. 

Slows GluN1/2A receptor 

recovery from Ca2+-

dependent desensitization 

[3]. 

Ketamine 

 

Trapping [204]. 

Accelerates GluN1/2B 

receptor recovery from 

desensitization [3]. 

Magnesium is depicted coordinating six water molecules, and all organic blockers are depicted in bond-line 

format. Blockers structures are scaled to depict approximate relative sizes. 

Organic channel blocking compounds were remarkably useful in determining the location of the 

channel gate itself. The size of a blocking molecule is a key determinant of whether the blocker prevents 

channel closure or is trapped in the channel upon gate closure. Experiments comparing block by IEM-1857 

and the similar but smaller blocker IEM-1754 (Table 1) found that while binding of IEM-1857 prevented 

channel closure independent of voltage, IEM-1754 only prevented channel closure at relatively depolarized 

membrane potentials. At more hyperpolarized potentials, IEM-1754 is “pulled” by the membrane electric 

field deeper into the channel where it no longer prevents channel closure, instead acting as a trapping 

channel blocker [173]. The voltage dependence of IEM-1754 block, as well as its interactions with permeant 

ions, demonstrated that IEM-1754 has two blocking modes, one that associates with a shallower site and 

places the bulk of the molecule in the way of the gate, and a second that associates with a deeper site and 

permits closure of the gate [173,205,206]. This finding strongly supported the idea that the NMDAR channel 

gate lies at the extracellular entrance to the channel, an idea that was recently validated by crystal and cryo-

EM structures of ligand-bound NMDARs [98,207]. 

 

Trapping Channel Blockers Modulate NMDAR State Transitions  
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Trapping channel blockers display more subtle effects on gating than sequential blockers. Early 

studies using a combination of patch-clamp electrophysiology and kinetic modeling concluded that the 

amino-adamantane derivatives memantine and amantadine and the phencyclidine derivative NEFA have 

clear effects on channel gating [12,192,193,197]. Initial proposals for the effects of amino-adamantane 

derivatives on NMDAR gating were wide-ranging, including models that suggested memantine and 

amantadine could stabilize open receptor states, as well as models that suggested memantine may stabilize 

closed receptor states [12,192,197]. It is possible that these discrepancies arose from the abilities of amino-

adamantane derivatives to escape from some blocked channels after agonist removal (partial trapping) and 

to inhibit NMDARs via association with a site accessible in the absence of agonist [12,16,192,197,208,209].  

Thorough evidence that amino-adamantane derivatives affect closed-state transitions came through 

investigation of the discrepancy between the equilibrium dissociation constant (Kd) and potency 

(represented by IC50) of amantadine. The relation between Kd and IC50 depends directly on how a channel 

blocker affects channel transitions after binding. Kd < IC50 implies that a blocker stabilizes channel open 

states. This is the case for sequential blockers, which inhibit less effectively as Popen decreases (IC50 = Kd/Popen, 

see Section 6.1; [5,191]). In contrast, Kd > IC50 implies that a blocker’s mechanism of inhibition likely involves 

stabilization of channel closed states, either through decreasing the rate of channel opening, increasing the 

rate of channel closure, or both. Such blockers therefore have two inhibitory actions: (1) blocking current 

flow through open channels and (2) stabilization of closed channels. Amantadine is an example of such a 

dual-mechanism channel inhibitor. Amantadine’s Kd (110 μM) is considerably greater than its IC50 (~35 μM; 

[8,15,192,210]). Investigation of amantadine block of single-channel and whole-cell NMDAR current 

revealed that binding of amantadine not only accelerates channel closure, but that this acceleration of 

channel closure is actually the predominant mechanism of inhibition by amantadine at concentrations 

lower than 100 μM [8]. 

Recent studies reported additional drug-specific and NMDAR subtype-specific effects of channel 

blockers on gating transitions. Investigation of mechanisms by which memantine and ketamine 

preferentially target distinct populations of NMDARs led to the discovery that memantine and ketamine 

have differential, subtype-specific effects on NMDAR desensitization [3]. While ketamine accelerated 

recovery from desensitization of GluN1/2B receptors, memantine binding profoundly slowed recovery 

from desensitization of GluN1/2A receptors. The effect of memantine on GluN1/2A receptor 

desensitization was not observed in low-Ca2+ conditions, suggesting that memantine stabilizes a Ca2+-

dependent desensitized state of GluN1/2A receptors. A comparison of IC50 values measured in low and 

high Ca2+ conditions with Kd values predicted by a kinetic model found that in high Ca2+, Kd > IC50, whereas 

in low Ca2+, Kd ≈ IC50, suggesting that memantine only alters GluN1/2A gating when Ca2+-dependent 

desensitization can occur [3].  

Visualization of NMDARs bound to trapping channel blockers was provided by recent structural 

studies. Song et al. crystalized the closed GluN1/2B channel in complex with the high affinity blocker MK-

801 and utilized long-timescale molecular dynamics to investigate the mechanism of block by MK-801 and 

memantine [21]. Both blockers were found to bind within the central cavity of the ion channel and promote 

closure of the channel gate [21], perhaps via a mechanism similar to amantadine [8]. Although this result 

may seem to contrast with the previous finding that memantine did not affect GluN1/2B receptor 

desensitization [3], it is important to note that (1) memantine could affect GluN1/2B channel closure 

without affecting desensitization, and (2) the crystalized MK-801-NMDAR construct lacked both the ATD 

and CTD, which play key roles in gating and desensitization [98,211–215]. Stabilization of closed channels 

by NMDAR channel blockers could have profound physiological implications by effectively increasing the 

potency of blockers under certain conditions. For example, the ability of memantine to stabilize a Ca2+-

dependent desensitized state suggests a logical mechanism for neuroprotection: Preferential inhibition of 
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NMDARs in cellular populations subjected to pathological levels of Ca2+ influx, i.e., NMDARs likely to 

mediate excitotoxic cell death [79,216–218].  

 

Channel Block by Mg2+ Does Not Appear to Affect NMDAR State Transitions 

The majority of NMDAR channel blockers affect gating, but at least one blocker exists as an exception 

to this rule: Mg2+ (Table 1). Binding of Mg2+ to the NMDAR channel does not prevent gate closure, agonist 

dissociation, or desensitization [7,13,157,219]. Mg2+ boasts nearly equivalent Kd and IC50 values [202], 

further suggesting that Mg2+ occupancy of the channel has no effect on state transitions. The unusual ability 

of Mg2+ to block without altering gating could be due to its small size. A large conformational change in the 

extracellular region of the NMDAR channel is associated with gating, a conclusion supported by structural 

studies [98] and the observation that large organic blockers prevent channel closure. Although smaller 

organic blockers generally permit channel closure, stabilizing or destabilizing interactions with channel 

residues may alter channel gating. It is possible that the small size of Mg2+ (which is likely to be mostly 

dehydrated when blocking the channel [103]), coupled with its limited interactions with channel residues 

outside of the ion selectivity filter [103], allows binding in the NMDAR channel without affecting gating 

machinery. Also, in contrast to most organic blockers, Mg2+ has not been directly shown to act as a use-

dependent open channel blocker or as a trapping blocker. Mg2+ displays extremely rapid binding and 

unbinding kinetics [157,219], preventing accurate determination in whole-cell recordings of the rapid 

component of block or unblock, measurements required for demonstration of use dependence and 

trapping. Kinetic modeling studies, however, suggested that Mg2+ does indeed act as an open channel 

blocker [13].  

Despite the lack of effects of Mg2+ block on NMDAR gating, depolarization-induced Mg2+ unblock 

clearly depends on gating. Mg2+ unblock from GluN1/2A and GluN2B receptors displays a slow component 

as well as an extremely rapid component [220–225]. Although kinetic models in which Mg2+ block affects 

gating transitions and/or agonist binding rates reproduced slow Mg2+ unblock [222,224], substantial 

experimental evidence demonstrated that Mg2+ does not affect NMDAR state transitions [7,13,157,219]. This 

disagreement was reconciled by the discovery of the inherent (i.e., Mg2+-independent) voltage-sensitivity 

of NMDAR gating, which underlies the slow component of Mg2+ unblock [221,225]. Thus, the interplay 

between Mg2+ block and NMDAR gating is unidirectional, whereby Mg2+ block depends on NMDAR 

gating, but NMDAR gating is unaffected by Mg2+ block.  

 

Conclusions  

Channel blockers are invaluable tools for the study of channel gating. The diverse array of effects that 

blockers exert on gating have facilitated numerous seminal discoveries into both the structure and the 

function of receptor channel gating machinery. The abilities to alter the rate of gating transitions and 

stabilize/destabilize channel states enable blockers to act as dual-mechanism drugs, both inhibiting current 

flow and modulating receptor function. The stabilization of specific receptor states also may contribute to 

the surprising diversity in the clinical effects of channel blockers. Future research determining the 

structural mechanisms by which channel blockers influence gating may aid in the directed design of more 

clinically efficacious neurotherapeutics. 
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ABSTRACT. This work reports the synthesis, and pharmacological and electrophysiological 

evaluation of new N-methyl-D-aspartic acid receptor (NMDAR) channel blocking antagonists 
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featuring polycyclic scaffolds. Changes in the chemical structure modulate the potency and voltage 

dependence of inhibition. Two of the new antagonists display properties comparable to those of 

memantine, a clinically approved NMDAR antagonist. 

INTRODUCTION  

The amino acid L-glutamate1-2 is the main excitatory neurotransmitter in the central nervous 

system and activates a wide diversity of receptors comprising ionotropic (iGluRs) as well as 

metabotropic glutamate receptors. iGluRs, ligand-gated ion channels composed of four subunits, 

can be subdivided into three classes based on their subunit composition and their selective 

activation by the agonists (S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid 

(AMPA), kainate and N-methyl-D-aspartic acid (NMDA).3-5 Among iGluRs, the NMDA receptor 

(NMDAR) possesses unique properties including co-agonism, a high permeability for Ca2+ ions, 

and voltage-dependent channel blockade by Mg2+, which has to be relieved to allow ion flow 

through the channel.6-8 

NMDARs are heterotetrameric complexes derived from three main types of subunits, namely 

GluN1, GluN2 and GluN3, of which GluN1 is obligatory.9-14 Usually a single NMDAR is 

composed of two glycine-binding GluN1 subunits plus two glutamate-binding GluN2 subunits. 

There are eight known splice variants of the GluN1 subunit, four GluN2 subunit subtypes (A-D), 

and two GluN3 subunit subtypes (A,B).8,15-17 

NMDARs are expressed at nearly all vertebrate synapses and play key roles in neuronal 

development, plasticity, and survival. Ca2+ influx through NMDARs is a signal of paramount 

importance for synaptic plasticity, including long-term potentiation and long-term depression, 

physiological processes that are the cellular basis of many forms of learning and memory.18 

However, NMDAR overstimulation triggers excessive Ca2+ influx and leads to excitotoxicity, 
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which is the primary mediator of neuronal death following stroke and is believed to play a key role 

in the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD) and 

Parkinson’s disease (PD).9-20 Hence, NMDAR antagonists able to prevent overactivation of 

NMDARs are of interest as neuroprotective drugs. 

Multiple types of NMDAR antagonists have been tested in clinical trials. Several competitive 

NMDAR antagonists failed trials for neurodegenerative disorders and related conditions, possibly 

because they blocked the physiological as well as the pathological effects of NMDARs, leading to 

severe adverse effects.21-23 NMDAR open channel blocking antagonists have also been tested as 

therapeutic agents. In contrast to competitive antagonists, NMDAR channel blockers bind at sites 

that overlap with the Mg2+ site and can only bind and unbind when the channel is open.24-26  Most 

NMDAR channel blockers also failed clinical trials, and several were found to be neurotoxic when 

administered at high doses to control animals,27 including dizocilpine (MK-801), phencyclidine, 

and ketamine (compounds 1, 2, and 3, respectively, in Figure 1). Nevertheless, two adamantane 

derivatives, amantadine and memantine (compounds 4 and 5, respectively, in Figure 1), which are 

low- (amantadine) and moderate- (memantine) affinity voltage-dependent NMDAR channel 

blockers, have found moderately effective for treatment of PD and AD, respectively.28-32 
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Figure 1. Structures of NMDAR channel blocking antagonists 1-6. 

Several hypotheses have been proposed to explain the divergent clinical effects of NMDAR 

channel blockers. The kinetics of recovery from inhibition, which are much faster for memantine 

than dizocilpine, have been proposed to be a major determinant of clinical tolerability.29,33-34 An 

alternative hypothesis is that the utility of memantine may derive from an ability to preferentially 

inhibit extrasynaptic NMDARs, activation of which has been proposed to be especially 

neurotoxic.35-37 It is clear, however, that overactivation of synaptic NMDARs also can be 

neurotoxic.38,39 Another recent proposal is that clinical safety may be associated with preferential 

inhibition of NMDARs that undergo Ca2+-dependent desensitization following exposure to high 

intracellular Ca2+, a property exhibited by 5 but not 3.40 

Although memantine is well-tolerated by AD patients, it possesses limited clinical efficacy.41 

For this reason, new moderate-affinity NMDAR antagonists with similar but distinct 

pharmacological properties are of interest.29,33-34 Thus, we recently started a project aimed to 

design, synthesize, and characterize new polycyclic amines as analogues of 5 with improved 

pharmacological profiles. 

Taking into account that carbocyclic amines other than 4 and 5 display similar affinity to 

NMDARs (e.g, neramexane, 6 in Figure 1),42-45 and that the methyl groups of memantine are 

critical for optimal potency at NMDARs (memantine is roughly fifty-fold more potent than 

amantadine),46-47 we envisaged the synthesis of polycyclic amine 7 (Figure 2) and a few selected 

analogues. These new analogues included amines 8, for considering the impact of the distance 

between the polcyclic cage and the amino group; 9 and 10, for assessing the effect of 

conformational freedom; and guanidine 11, for evaluating the effect of basicity.  
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Figure 2. Chemical structures of new putative NMDAR antagonists 7-11.  

 

RESULTS AND DISCUSSION  

Chemical synthesis. Compounds 9, 10 and 11 were prepared using procedures previously reported 

by our group.48-49 Primary amines 7 and 8 were synthesized following the sequence shown in 

Scheme 1, starting from known anhydride 12.50 Briefly, treatment of anhydride 12 with an excess 

of methanol at reflux furnished hemiester 13 in quantitative yield. Barton’s decarboxylation 

procedure led to ester 14, which upon hydrolysis yielded carboxylic acid 15. From this key 

intermediate, Curtius rearrangement led to primary amine 7. Finally, amine 8 was obtained by 

reduction of amide 16, in turn obtained from 15. Both target amines 7 and 8 were fully 

characterized as their corresponding hydrochlorides. 

 

Scheme 1. Synthesis of primary amines 7 and 8. 
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Pharmacology and Structure-Activity Relationships. To evaluate if the new compounds were 

able to antagonize NMDARs, we measured their effect on the increase in intracellular Ca2+ evoked 

by application of NMDA (100 µM, in the presence of 10 µM of glycine) to cultured rat cerebellar 

granule neurons.51 Pleasingly, inspection of the results shown in Table 1 reveals that all the new 

compounds were clearly more potent than amantadine (IC50 = 92 M) with values of IC50 in the 

low micromolar range. Although differences are small, it seems that conformationally restricted 

secondary amines 9 (5.8  1.0 M) and 10 (5.1  1.0 M) are less potent than secondary amine 8 

(2.8  1.1 M), while directly joining the polar amino group to the polycyclic ring slightly reduces 

the potency (compare 7 vs 8). Overall, guanidine 11 and primary amine 8 were the more potent 

compounds, with IC50 values (2.7  0.4 and 2.8  1.1 M, respectively) only slightly higher than 

that of memantine (1.5  0.1 M). 

 

Table 1. IC50 (M) values for amantadine, memantine and new analogs 7-11 as NMDAR 

antagonists.a 
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 NMDA (100 M) 

Compound IC50 (M) 

4 92  29 

5 1.5  0.1 

7 4.1  1.7 

8 2.8  1.1 

9 5.8  1.0 

10 5.1  1.0 

11  2.7  0.4 
aIC50 is the concentration of a compound that inhibits the measured response by 50%. Data were 

obtained from primary cultures of cerebellar granule neurons as described in Methods by 

measuring the intracellular Ca2+ concentration. Cells were exposed to 100 M NMDA plus 10 M 

glycine. Data shown are means ± SEM of at least three separate experiments carried out on three 

different batches of cultured cells.  

 

Functional block of NMDARs by polycyclic compounds 7-11. We next evaluated 

electrophysiologically the functional ability of compounds 7-11 to block NMDARs. To carry out 

these studies, we performed whole-cell experiments on tsA201 cells transfected with expression 

plasmids codifying rat GluN1 and GluN2A subunits to measure the properties of the newly 

synthesized polycyclic amines. We clamped the cells at -60 mV and then evoked NMDAR currents 

by applying 100 µM NMDA plus 10 µM glycine. After the NMDAR-evoked current reached a 

steady state, we rapidly applied a given blocking compound by means of piezoelectric translation 

of a double-barreled theta glass tubing (<1 ms exchange between solutions). By doing so, we could 

compare the percentage of block for each tested compound. Figure 3 shows a typical example of 

an experiment for the compounds tested (5 and 7-11). Compound 5 at 10 M blocked nearly 90% 

of the activated current while the percentage of block by the newly synthetized compounds varied 

amongst them. Compounds 7 and 8 at 10 M displayed degree of NMDAR block similar to 5, i.e., 

82.5 ± 3.2 % for 7 and 88.3 ± 3.7 % for 8 vs 89.2 ± 1.0 % for 5 (Figure 4A). Compounds 9 and 10 

at 10 M induced less inhibition than 5, i.e., 71.9 ± 3.8 % for 9 and 70.4 ± 5.6 % for 10 vs 89.2 ± 
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1.0 % for 5; (Figure 4A). On the other hand, 10 M of compound 11 induced more inhibition than 

5, although the difference was not significant, i.e., 97.9 ± 1.9 % for 11 vs 89.2 ± 1.0 % for 5. Thus, 

compounds 7, 8 and 11 appeared to block NMDARs with potency similar to that of memantine. 

We also evaluated the ability of the newly synthesized blockers to unbind from the channel pore 

upon drug removal. Unbinding was measured by rapidly removing the blocker in the continuous 

presence of agonists (100 µM NMDA plus 10 µM glycine). Unblock (Fig. 4B) was calculated as 

the percentage of current recovery after a 30-s application of agonists without blocker, when the 

current was at or very near steady state. All tested compounds showed similar abilities to unbind 

from the pore compared with 5, i.e., 94.9 ± 2.2 %, 90.6 ± 3.5 %, 92.5 ± 5.9, 92.3 ± 3.0 % and 93.5 

± 3.4 % for compounds 7, 8, 9, 10 and 11, respectively, vs 94.2 ± 2.1 % for 5 (Figure 4B). 

Finally we assessed the voltage dependence of channel block by the compounds. During the 

recordings we applied two positive pulses to +60 mV for 0.5 s during the sustained NMDA- and 

glycine-evoked current. The first pulse was applied in the presence of the blocking compound at 

10 M and a second +60 mV pulse was applied in the absence of the blocker. Hence, we could 

extract the percentage block at +60 mV. Compound 11, which appeared to be the most potent 

compound when tested at -60 mV, also displayed the greatest inhibition at +60 mV, i.e., 73.0 ± 3.6 

% block for 11 vs 8.1 ± 4.0 % for 5 (Figure 4C). Compounds 7-10 had similar blocking percentages 

at +60 mV to 5, i.e., 2.4 ± 5.1 %, 14.7 ± 4.5 %, 9.0 ± 3.6 % and 10.4 ± 6.4 % for compounds 7, 8, 

9, and 10, respectively; (Figure 4C). 
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Figure 3. Block, unblock and voltage dependence of compounds 5, 7-11. A. Example recording 

showing the protocol used to study the degree of channel block, the voltage dependence and the 

unblocking percentage of compound 5. Whole-cell currents were evoked in tsA201 cells 

expressing GluN1/2A NMDARs by bath application of 100 μM NMDA plus 10 μM glycine. 

Compound 5 was rapidly applied at 10 μM. B-F. Example traces in the same conditions as 

described in A but for compounds 7, 8, 9, 10 and 11, respectively. All compounds were used at 10 

μM. 
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Figure 4. Quantification of block, unblock and percentage of block at +60mV of compounds 5, 7-

11. A. Summary of the blocking percentage at the holding potential of -60 mV for the different 

compounds tested. Asterisks identify mean values with statistically significant differences. The 

number of asterisks indicates the magnitude of the p-value, the probability of measuring by chance 

a difference equal to or greater than the observed difference between indicated mean values. 

**p<0.01 and ***p<0.001 vs compound 5; one-way ANOVA with Tukey post hoc analysis. 

Numbers inside bars denote the number of experiments. B. Degree of unblock, measured as the 

percentage of current recovery after removal of the blocker; no differences between compounds 

was observed (p>0.05 for all compounds compared with compound 5). Numbers inside bars denote 

the number of experiments. C. Percentage of block at +60 mV for the studied compounds. 

***p<0.0001 vs compounds 5, 7, 8, 9, and 10; one-way ANOVA with Tukey post hoc analysis; 

n=17, 7, 7, 8, 10 and 10 for compounds 5, 7, 8, 9, 10 and 11, respectively. 

 

Concentration and voltage dependence of NMDAR inhibition by 5, 7, 8, and 11. Whole-cell 

patch-clamp recordings from tsA201 cells expressing GluN1/2A receptors were used to further 

assess the pharmacological properties of three promising derivatives, primary amines 7, 8, and 11. 

Experiments measuring the IC50 and voltage-dependence of block by compound 5 were performed 

for comparison. In cells held at -65 mV, inhibition by each drug was measured at increasing drug 

concentrations (Figures 5–8, A) and used to calculate the IC50 and Hill coefficient (nH, which 

reflects the steepness of the concentration-inhibition curve; see Equation 2). The IC50 value and 

Hill coefficient measured for 5 (Fig. 5B) are similar to previously-reported values measured under 

the same conditions.42 Compounds 7, 8, and 11 were found to have moderate IC50 values (Figures 

6–8, B). The IC50s of compounds 8 (1.01 ± 0.13 μM) and 11 (0.48 ± 0.09 μM) were significantly 
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lower than the IC50s of 5 (1.84 ± 0.39 μM) or 7 (2.78 ± 0.25 μM), and the IC50 of 5 was significantly 

lower than the IC50 of 7 (Fig. 9A). There were no significant differences between the nH of the 

drugs, i.e., 1.07 ± 0.27, 0.98 ± 0.08, 1.01 ± 0.11, and 1.00 ± 0.03 for compounds 5, 7, 8, and 11, 

respectively. Modest differences between IC50s measured using intracellular Ca2+ measurements 

from cerebellar granule neurons (Table 1) and patch-clamp recordings from tsA201 cells 

expressing GluN1/2A receptors (Figs. 5 – 9) were observed. The differences may have resulted 

from expression of GluN2 subunits other than GluN2A in cerebellar granule neurons, and from 

differences in recording technique.   

To measure voltage dependence of inhibition by 5, 7, 8, and 11, inhibition elicited by roughly 

twice the IC50 of each drug was measured at 9 different voltages (examples from 5 voltages are 

shown in Figures 5–8, C). The inhibition produced by the drugs decreased as voltage was 

depolarized (Figures 5–8, C and D), as expected of positively charged channel blockers. Fitting of 

Equation 3 to current-voltage data was used to quantify V0, the change in voltage (in mV) that 

results in an e-fold change in the IC50 of a drug. Equation 4 was used to calculate δ, an estimate of 

the fraction of the total transmembrane voltage field felt by the blocker at its binding site.52 The 

value of δ is calculated from the value of V0 (Equation 4); strong voltage dependence is reflected 

by a large δ and a small V0. All compounds displayed strongly voltage-dependent block ,i.e., for 

5, V0 = 28.0 ± 2.2 mV and δ = 0.91 ± 0.08; for 7, V0 = 26.5 ± 1.8 mV and δ = 0.99 ± 0.05; for 8, 

V0 = 29.9 ± 1.9 mV and δ = 0.87 ± 0.05; for 11, V0 = 33.6 ± 1.5 mV and δ = 0.76 ± 0.03 (Figures 

5–8, D). The voltage dependence of inhibition was found to be significantly weaker for 11 than 

for either 5 or 7 (Fig. 9B). 
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Figure 5. Concentration and voltage dependence of NMDAR inhibition by 5. A. Representative 

current traces from one cell depicting effect of 5 on GluN1/2A receptor currents. Application of 1 

mM Glu (black bars) elicited an inward current that was antagonized by application of 5 (red bars). 

B. Concentration-inhibition relation for 5. Line shows best fit of Equation 2 (IC50 = 1.84 ± 0.39 

μM, nH = 1.07 ± 0.27; n=5). C. Representative voltage (Vm; top) and current (bottom) traces 

depicting effect of membrane potential upon inhibition by 3 μM 5. Traces from 5 of the 9 

membrane potentials tested are displayed for clarity. D. Current-voltage relation of inhibition by 

5. Line shows best fit of Equation 3 (V0 = 28.0 ± 2.2; n=5).  Points in B and D represent mean 

fractional currents measured at each concentration (B) or voltage (D); error bars represent SEM 

and are sometimes smaller than symbols. Comparison of the concentration and voltage dependence 

of NMDAR inhibition by compounds 5, 7, 8, and 11 is shown in Figure 9. 
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Figure 6. Concentration and voltage dependence of NMDAR inhibition by 7. A, B. Same as Figure 

5A, B, except concentration-inhibition measurements made using 7. Line in B shows best fit of 

Equation 2 (IC50 = 2.78 ± 0.25 μM, nH = 0.98 ± 0.08; n=7). C, D. Same as Figure 5C, D, except 

measurements of voltage-dependence made using 5 μM 7. Line in D shows best fit of Equation 3 

(V0 = 26.5 ± 1.8; n=7). Comparison of the concentration and voltage dependence of NMDAR 

inhibition by compounds 5, 7, 8, and 11 is shown in Figure 9. 
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Figure 7. Concentration and voltage dependence of NMDAR inhibition by 8. A, B. Same as Figure 

5A, B, except concentration-inhibition measurements made using 8. Line in B shows best fit of 

Equation 2 (IC50 = 1.01 ± 0.13 μM, nH = 1.01 ± 0.11; n=7). C, D. Same as Figure 5C, D, except 

measurements of voltage-dependence made using 2 μM 8. Line in D shows best fit of Equation 3 

(V0 = 29.9 ± 1.9; n=8). Comparison of the concentration and voltage dependence of NMDAR 

inhibition by compounds 5, 7, 8, and 11 is shown in Figure 9.   
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Figure 8. Concentration and voltage dependence of NMDAR inhibition by 11. A, B. Same as 

Figure 5 A, B, except concentration-inhibition measurements made using 11. Line in B shows best 

fit of Equation 2 (IC50 = 0.48 ± 0.09 μM, nH = 1.00 ± 0.03; n=4). C, D. Same as Figures 5 C, D, 

except measurements of voltage-dependence made using 1 μM 11. Line in D shows best fit of 

Equation 3 (V0 = 33.6 ± 1.5; n=4). Comparison of the concentration and voltage dependence of 

NMDAR inhibition by compounds 5, 7, 8, and 11 is shown in Figure 9.    
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Figure 9. Comparison of NMDAR channel blocker properties. Sample size denoted by number 

inside column. A. Comparison of blocker IC50 values measured at -65 mV. B. Comparison of 

voltage dependence of inhibition by the blockers. All comparisons made by one-way ANOVA 

with Tukey post hoc analysis; *p<0.01, **p<0.001, ***p<0.0001. 

 

CONCLUSIONS 

We have described the synthesis, pharmacological evaluation and electrophysiology of a novel 

family of N-methyl-D-aspartic acid receptor (NMDAR) channel blockers. Despite profound 

structural modifications, e.g., compare diene 9 with the other compounds, or different pKas, e.g., 

compare amine 10 with guanidine 11, all the inhibitors showed similar potency as NMDAR 

antagonists. However, more subtle changes in the chemical structure modulated both the degree 

of inhibition and voltage-dependence of inhibition by the inhibitors, e.g., compare primary amine 

8 with secondary amine 10 or amine 10 with guanidine 11 (Figures 3 and 4). Primary amines 7 

and 8 displayed voltage-dependence and potency comparable to memantine (5). 

  

METHODS  
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Chemistry. (3,4,8,9-Tetramethyltetracyclo[4.4.0.03,9.04,8]dec-1-yl)amine hydrochloride (7). A 

solution of the acid 15 (182 mg, 1.35 mmol) in DCM (5 mL) was prepared in a two-neck round-

bottom flask equipped with a condenser, a gas outlet and a magnetic stirring. Concentrated H2SO4 

(0.43 mL) was added and the reaction was heated to 50 °C. Then, NaN3 (189 mg, 2.90 mmol) was 

carefully added portionwise. The reaction was kept at 50 °C for 1.5 h. The resulting mixture was 

cooled with an ice bath. Crushed ice (2 g) was added to the reaction and the aqueous layer was 

basified with 2 N NaOH to basic pH. The layers were separated, and the aqueous layer was 

extracted with warmed CH2Cl2 due to the low solubility of the product (6 x 20 mL). The combined 

organics were dried over anhydrous Na2SO4 and filtered. An excess of HCl in 1,4-dioxane was 

added to the residue and the suspension was concentrated under reduced pressure to give the 7·HCl 

as a brown solid (182 mg, 95% yield). The analytical sample was obtained by crystallization from 

hot CH2Cl2, mp 200 °C (sublimation). IR (ATR) : 628, 685, 716, 1010, 1041, 1062, 1090, 1114, 

1147, 1163, 1188, 1232, 1294, 1310, 1341, 1369, 1385, 1452, 1460, 1483, 1501, 1524, 1547, 1620, 

1646, 2072, 2583, 2697, 2790, 2873, 2899, 2961, 3395, 3426 cm-1. 1H-NMR (400 MHz, CD3OD) 

δ: 0.90 [dd, J = 11.4 Hz, J’ = 2.4 Hz, 2H, 5(7)-Ha], 0.98-1.02 [d, J = 10.8 Hz, 2H, 2(10)-Ha], 1.01 

[s, 6H, 3(9)-CH3 or 4(8)-CH3], 1.03 [s, 6H, 4(8)-CH3 or 3(9)-CH3], 1.94 [dd, J = 11.4 Hz, J’ = 1.6 

Hz, 2H, 5(7)-Hb], 1.99 [d, J = 10.8 Hz, 2H, 2(10)-Hb], 2.25 (m, 1H, 6-H). 13C-NMR (100.5 MHz, 

CD3OD) δ: 15.4 [CH3, C3(9)-CH3 or C4(8)-CH3], 15.6 [CH3, C4(8)-CH3 or C3(9)-CH3], 38.9 

[CH2, C5(7)], 40.8 (CH, C6), 42.0 [CH2, C2(10)], 45.8 [C, C3(9) or C4(8)], 46.2 [C, C3(9) or 

C4(8)], 58.1 (C, C1). HRMS-ESI+ m/z [M+H]+ calcd for [C14H23N+H]+: 206.1903, found: 

206.1907. Anal. Calcd for C14H23N·HCl·0.66H2O: C 66.24, H 10.06, N 5.52. Found: C 66.07, H 

9.59, N 5.40. 
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(3,4,8,9-Tetramethyltetracyclo[4.4.0.03,9.04,8]dec-1-yl)methylamine hydrochloride (8). A solution 

of 16 (96 mg, 0.41 mmol) in anhydrous toluene (10 mL) was cooled to 0 °C and Red-Al® (0.7 mL, 

2.05 mmol) was added dropwise. The reaction was heated to reflux overnight. The resulting 

mixture was cooled with an ice bath and aqueous 10 N NaOH solution was added dropwise to 

basic pH. Then, the reaction was stirred for 10 min. The layers were separated and the aqueous 

layer extracted with DCM (3 x 20 mL). The combined organics were dried over anhydrous 

Na2SO4, filtered and HCl/Et2O was added. After concentration under reduced pressure, 8·HCl was 

obtained as a white solid (92 mg, 88% yield). The analytical sample was obtained by washing the 

solid with cooled Et2O, mp 240 °C (sublimation). IR (ATR) ν: 715, 844, 933, 968, 986, 998, 1016, 

1031, 1064, 1097, 1117, 1130, 1163, 1178, 1223, 1297, 1350, 1367, 1383, 1451, 1461, 1479, 1501, 

1514, 1613, 2860, 2916, 2941, 3012 cm-1. 1H-NMR (400 MHz, CD3OD) δ: 0.63 [d, J = 11.2 Hz, 

2H, 2(10)-Ha], 0.79 [broad d, J = 11.2 Hz, 2H, 5(7)-Ha],  0.995 [s, 6H, 3(9)-CH3 or 4(8)-CH3], 

0.999 [s, 6H, 4(8)-CH3 or 3(9)-CH3], 1.76 [d, J = 11.2 Hz, 2H, 5(7)-Hb], 1.82 [d, J = 11.2 Hz, 2H, 

2(10)-Hb], 2.12 (m, 1H, 6-H), 3.01 (s, 2H, CH2NH2). 
13C-NMR (100.5 MHz, CD3OD) δ: 15.8 

[CH3, C3(9)-CH3 or C4(8)-CH3], 16.0 [CH3, C4(8)-CH3 or C3(9)-CH3], 38.2 (CH, C6), 39.3 [CH2, 

C5(7)], 42.1 [CH2, C2(10)], 42.5 (C, C1), 45.9 [C, C3(9) or C4(8)], 47.1 [C, C3(9) or C4(8)], 48.1 

(CH2, CH2NH2). HRMS-ESI+ m/z [M+H]+ calcd for [C15H25N+H]+: 220.2060, found: 220.2050. 

Anal. Calcd for C15H25N·HCl·0.25H2O: C 69.21, H 10.26, N 5.38. Found: C 69.15, H 10.01, N 

5.19. 

Intracellular Ca2+ measurements. The functional assay of antagonist activity at NMDA 

receptors was performed using primary cultures of rat cerebellar granule neurons that were 

prepared according to established protocols.51 Cells were grown on 10 mm poly-L-lysine coated 

round glass cover slips and used for the experiments after 6-9 days in vitro. Cells were loaded with 
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6 M Fura-2 AM (Invitrogen-Molecular Probes) for 30 min. Afterwards a coverslip was mounted 

on a quartz cuvette containing a Mg2+-free Locke-HEPES buffer using a special holder. 

Measurements were performed using a PerkinElmer LS-55 fluorescence spectrometer equipped 

with a fast-filter accessory, under mild agitation and at 37 ºC. Analysis from each sample was 

recorded real-time during 1600 s. After stimulation with NMDA (100 M, in the presence of 10 

M glycine), increasing cumulative concentrations of the compound to be tested were added. The 

percentages of inhibition at every tested concentration were analyzed using a non-linear regression 

curve fitting (variable slope) using the software Prism 5.04 (GraphPad Software Inc.). 

Cell culture, transfection, and recordings for electrophysiology experiments. All 

electrophysiological experiments were performed at room temperature using the tsA201 cell line 

(European Collection of Authenticated Cell Cultures) transiently cotransfected with mammalian 

expression plasmids containing cDNAs encoding the rat GluN1-1a and GluN2A subunits.   

For Figures 3–4, cells were maintained as previously described53 in DMEM:F12 supplemented 

with 10% fetal bovine serum and 1% penicillin/streptomycin (Sigma). Cells were plated at 0.1- 

0.2 x 105 cells/dish in onto 10 mm glass coverslips treated with poly D-lysine. 12–24 hours after 

plating, the cells were transiently transfected using PEI transfection reagent (1 mg/ml) in a 3:1 

ratio (PEI:DNA). Culture medium was supplemented with the competitive NMDAR antagonist D, 

L-2-amino-5-phosphonopentanoate (dl-APV, Sigma, 500 μM) at the time of transfection to 

prevent NMDAR-mediated cell death. Whole-cell voltage-clamp recordings were performed 48 

hours after transfection. Pipettes were pulled from borosilicate capillary tubing (OD = 1.5 mm, ID 

= 0.86 mm) using a PC-10 vertical puller (Narishige Instruments) and subsequently fire-polished 

to a resistance of 3–5 MΩ using an MF-830 forge (Narishige). Intracellular pipette solution 

contained (in mM): 140 CsCl, 10 HEPES, 5 EGTA, 4 Na2ATP and 0.1 Na3GTP with pH balanced 
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to 7.25 with CsOH. Extracellular recording solution contained (in mM): 140 NaCl, 5 KCl, 1 CaCl2, 

10 HEPES and 10 glucose, balanced to pH 7.2 ± 0.05 with NaOH. Drugs were diluted from 

concentrated stock solutions (5 stock = 10 mM in dH20; 7-11 stocks = 10 mM in 75% HEPES 

buffer and 25% ethanol) in extracellular solution each day of experiments. Whole-cell currents 

were recorded using an Axopatch 200B patch-clamp amplifier (Molecular Devices). Current signal 

was low-pass filtered at 1 kHz and sampled at 2 kHz in pClamp 10 (Molecular Devices). Series 

resistance was 10-15 MΩ. Solutions containing agonists (100 μM NMDA and 10 μM glycine) or 

agonists and 10 μM blocker were applied by piezoelectric translation (P-601.30; Physik 

Instrumente) of a theta-barrel application tool made from borosilicate glass (1.5 mm o.d.; Sutter 

Instruments).  

For Figures 5–9, cells were maintained as previously described54 in DMEM supplemented with 

10% fetal bovine serum, 1% GlutaMAX (Thermo Fisher Scientific), and for some experiments 1% 

penicillin/streptomycin (Sigma). Cells were plated at 1 x 105 cells/dish in 35 mm petri dishes with 

three 15 mm glass coverslips treated with poly D-lysine (0.1 mg/ml) and rat-tail collagen (0.1 

mg/ml, BD Biosciences). 12-24 hours after plating, the cells were transfected using FuGENE 6 

Transfection Reagent (Promega) as previously described.54 Culture medium was supplemented 

with 200 μM dl-APV at the time of transfection to prevent NMDAR-mediated cell death. Whole-

cell voltage-clamp recordings were performed 18-30 hours after transfection. Pipettes were pulled 

from borosilicate capillary tubing (OD = 1.5 mm, ID = 0.86 mm) using a Flaming Brown P-97 

electrode puller (Sutter Instruments) and subsequently fire-polished to a resistance of 2.5 – 4.5 

MΩ using an in-house fabricated microforge. Intracellular pipette solution contained (in mM): 130 

CsCl, 10 HEPES, 10 BAPTA, and 4 MgATP with pH balanced to 7.2 ± 0.05 with CsOH and an 

osmolality of 280 ± 10 mOsm. Extracellular recording solution contained (in mM) 140 NaCl, 2.8 
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KCl, 1 CaCl2, 10 HEPES, 0.01 EDTA, and 0.1 glycine, and was balanced to pH 7.2 ± 0.05 with 

NaOH and to osmolality 290 ± 10 mOsm with sucrose. Drugs were diluted from concentrated 

stock solutions (5 stock = 10 mM in dH20; 7, 8, and 11 stocks = 40 mM in 100% DMSO) in 

extracellular solution each day of experiments. Whole-cell currents were recorded using either an 

Axopatch 1D or Axopatch 200A patch-clamp amplifier (Molecular Devices). The current signal 

was low-pass filtered at 5 kHz and sampled at 20 kHz in pClamp 10 (Molecular Devices). Series 

resistance was compensated 80-90% in all experiments. A –6 mV liquid junction potential between 

the intracellular pipette solution and extracellular solution was corrected in all experiments. 

Glutamate and drug solutions were delivered to the cell via an in-house fabricated ten-barreled 

gravity-fed fast perfusion system.40,54  

Data Analysis. The percentage of channel block, unblock and recovery shown in Figures 3 – 4 

were measured with the following protocol: at a holding potential of –60 mV, NMDA (100 μM) 

and glycine (10 μM) were applied until current reached a clear steady-state (about 90 s). Then 

compounds 5, 7, 8, 9, 10 or 11 were rapidly applied by piezo control (1 ms solution exchange) for 

30 seconds as described.55 During the application of the blocker, a 5-s voltage step to +60 mV was 

applied in order to study the voltage dependence of block. Blockers were then removed in the 

presence of agonists to allow recovery of the current. During this period (around 1 min) a second 

voltage step (5 s duration) to +60 mV was applied. Finally, agonists were removed. Percentage of 

block was calculated by dividing steady state current in the presence of the blocker by steady state 

current in the absence of the blocker. Percentage of unblock was calculated by dividing the steady 

state current after blocker removal by the steady state current before blocker application. Finally, 

the voltage dependence (% of block at +60 mV) was calculated by using Equation 1:  
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% 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘 = 100 − (
𝐼+60 (𝐷𝑟𝑢𝑔)

𝐼+60 (𝐴𝑔𝑜𝑛𝑖𝑠𝑡)
∗ 100) 

where I+60(Drug) is the steady state current at the holding voltage of +60 mV in the presence of 

agonists and the blocker, and I+60(Agonist) is the steady state current at +60 mV in the presence of 

agonists but absence of the blocker.  

Concentration-inhibition relations were measured using the protocol shown in Figures 5–8, A and 

B. Glutamate (1 mM) was applied until current reached steady-state (20 s), then 5, 7, 8, or 11 at 

the plotted concentration was applied in the presence of glutamate until a new steady-state current 

level was reached (30 s). Glutamate in the absence of drug was then reapplied for 30 s to allow 

drug unbinding and recovery from inhibition. Cells in which recovery from inhibition did not reach 

90% of steady-state current during initial glutamate application were excluded from analysis. IC50 

and nH (Hill coefficient) were estimated by fitting Equation 2 to concentration-inhibition data: 

𝐼𝐷𝑟𝑢𝑔

𝐼𝐺𝑙𝑢
=

1

1 + (
[𝐷𝑟𝑢𝑔]

𝐼𝐶50
)𝑛𝐻

 

where IDrug/IGlu was calculated as the mean current over the final 1 s of drug application (IDrug) 

divided by the average of the mean steady state currents (final 1 s) elicited by glutamate before 

and after drug application (IGlu). IC50 and nH were free parameters during fitting. 

Voltage dependence of block by 5, 7, 8, and 11 was measured using the protocol shown in Figures 

5–8, C and D. Cells were subjected to voltage jumps from -65 mV to nine voltages ranging from 

-105 to +55 mV. The protocol at each voltage consisted of: a 4-s wait in extracellular solution 

following the voltage step; application of 1 mM glutamate for 10 s; application of drug with 1 mM 

glutamate for 15 s; application of 1 mM glutamate for 15 s to allow drug unbinding; application 

of extracellular solution for 2 s. Voltage was then returned to -65 mV for 4 s before the next voltage 
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jump was made. ~2 times the IC50 of each drug was used in voltage dependence experiments. 

Voltage dependence of block was calculated using Equation 3: 

 

𝐼𝐷𝑟𝑢𝑔

𝐼𝐺𝑙𝑢
=

1

1 +
[𝐷𝑟𝑢𝑔]

𝐼𝐶50(−65 𝑚𝑉)𝑒
𝑉𝑚+65

𝑉0

 

 

where IC50 (–65 mV) is the IC50 at –65 mV calculated in concentration-inhibition experiments, and 

V0 represents the change in voltage (in mV) that results in an e-fold change in the IC50 of the drug. 

IDrug/IGlu was calculated as described for concentration-inhibition data. V0 was the only free 

parameter during fitting. An estimate of the fraction of the total membrane voltage field felt by the 

blocker at its binding site (δ)52 was calculated using Equation 4: 

 

𝛿 =
𝑅𝑇

𝑉0𝑧𝐹
 

 

Where R, T, z and F have their usual meanings. Note that, although δ is useful for comparing 

voltage dependence of blockers, voltage dependence of NMDAR channel block is influenced by 

permeant ions.56 Therefore, δ should be used only as a rough estimate of binding site location in 

the voltage field. 
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ABBREVIATIONS 

AD, Alzheimer’s disease; AMPA, (S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic 

acid; iGluRs, ionotropic glutamate receptors; NMDA, N-methyl-D-aspartic acid; NMDAR, 

NMDA receptor; PD, Parkinson’s disease. 

REFERENCES 

1. Parsons, C. G., Danysz, W., Quack, G. (1998) Glutamate in CNS disorders as a target for 

drug development: an update. Drug News & Perspectives 11, 523-569. 

2. Zhou, Y., Danbolt, N. C. (2014) Glutamate as a neurotransmitter in the healthy brain. J. 

Neural Transm. 121, 799-817. 

3. Dingledine, R., Borges, K., Bowie, D., Traynelis, S. F. (1999) The glutamate receptor ion 

channels. Pharmacol. Rev. 51, 7-61. 

4. Mayer, M. L., Armstrong, N. (2004) Structure and function of glutamate receptor ion 

channels. Ann. Rev. Physiol. 66, 161-181. 

5. Traynelis, S. F., Wollmuth, L. P., McBain, C. J., Menniti, F. S., Vance, K. M., Ogden, K. 

K., Hansen, K. B., Yuan, H., Myers, S. J., Dingledine, R. (2010) Glutamate receptor ion 

channels: structure, regulation, and function. Pharmacol. Rev. 62, 405-496. 

6. McBain, C. J., Mayer, M. L. (1994) N-methyl-D-aspartic acid receptor structure and 

function. Physiol. Rev. 74, 723-760. 

7. Danysz, W., Parsons, C. G. (1998) Glycine and N-methyl-D-aspartate receptors: 

physiological significance and possible therapeutic applications. Pharmacol. Rev. 50, 597-

664. 

8. Iacobucci, G. J., Popescu, G. K. (2017) NMDA receptors: linking physiological output to 

biophysical operation. Nat. Rev. Neurosci. 18, 236-249.  

9. Karakas, E., Furukawa, H. (2014) Crystal structure of a heterotetrameric NMDA receptor 

ion channel. Science 344, 992-997. 

10. Lee, C.-H., Lü, W., Michel, J. C., Goehring, A., Du, J., Song, X., Gouaux, E. (2014) 

NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511, 

191-197. 

11. Zhu, S., Stein, R. A., Yoshioka, C., Lee, C.-H., Goehring, A., Mchaourab, H. S., Gouaux, 

E. (2016) Mechanism of NMDA receptor inhibition and activation. Cell 165, 704-714. 

12. Zhou, Q., Sheng, M. (2013) NMDA receptors in nervous system diseases. 

Neuropharmacology 74, 69-75. 

13. Tajima, N., Karakas, E., Grant, T., Simorowski, N., Díaz-Avalos, R., Grigorieff, N., 

Furukawa, H. (2016) Activation of NMDA receptors and the mechanism of inhibition by 

ifenprodil. Nature 534, 63-68. 

14. Lü, W., Du, J., Goehring, A., Gouaux, E. (2017) Cryo-EM structures of the triheteromeric 

NMDA receptor and its allosteric modulation. Science 355, eaal3729. 

15. Cull-Candy, S., Brickley, S., Farrant, M. (2001) NMDA receptor subunits: diversity, 

development and disease. Curr. Opin. Neurobiol. 11, 327-335. 

16. Paoletti, P., Bellone, C., Zhou, Q. (2013) NMDA receptor subunit diversity: impact on 

receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14, 383-400. 



 

206 

 

17. Glasgow, N. G., Siegler Retchless, B., Johnson, J. W. (2015) Molecular bases of NMDA 

receptor subtype-dependent properties. J. Physiol. 593, 83-95. 

18. Morris, R. G. (2013) NMDA receptors and memoring encoding. Neuropharmacology 74, 

32-40. 

19. Kalia, L. V., Kalia, S. K., Salter, M. W. (2008) NMDA receptors in clinical neurology: 

excitatory times ahead. Lancet Neurol. 7, 742-755. 

20. Mota, S. I., Ferreira, I. L., Rego, C. (2014) Dysfunctional synapse in Alzhimer’s disease – 

A focus on NMDA receptors. Neuropharmacology 76, 16-26. 

21. Ikonomidou, C., Turski, L. (2002) Why did NMDA receptor antagonists fail clinical trials 

for stroke and traumatic brain injury? Lancet Neurol. 1, 383-386. 

22. Lipton, S. A. (2004) Failures and successes of NMDA receptor antagonists: molecular 

basis for the use of open-channel blockers like memantine in the treatment of acute and 

chronic neurologic insults. NeuroRx 1, 101-110. 

23. Muir, K. W. (2006) Glutamate-based therapeutic approaches: clinical trials with NMDA 

antagonists. Curr. Opin. Pharmacol. 6, 53-60. 

24. Blanpied, T. A., Clarke, R. J., Johnson, J. W. (2005) Amantadine inhibits NMDA receptors 

by accelerating channel closure during channel block. J. Neurosci. 25, 3312-3322. 

25. Johnson, J. W., Kotermanski, S. E. (2006) Mechanism of action of memantine. Curr. Opin. 

Pharmacol. 6, 61-67. 

26. Johnson, J. W., Glasgow, N. G., Povysheva, N. V. (2015) Recent insights into the mode of 

action of memantine and ketamine. Curr. Opin. Pharmacol. 20, 54-63. 

27. Olney, J.W., Labruyere, J., Price, M.T. (1989). Pathological Changes Induced in 

Cerebrocortical Neurons by Phencyclidine and Related Drugs. Science 244: 1360-1362.   

28. Danysz, W., Parsons, C. G., Kornhuber, J., Schmidt, W. J., Quack, G. (1997) 

Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents—

preclinical studies. Neurosci. Biobehav. Rev. 21, 455-468. 

29. Lipton, S. A. (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: 

memantine and beyond. Nat. Rev. Drug Discovery 5, 160-170. 

30. Hubsher, G., Haider, M., Okun, M. S. (2012) Amantadine: the journey from fighting flu to 

treating Parkinson disease. Neurology 78, 1096-1099. 

31.  Danysz, W., Parsons, C. G. (2012) Alzheimer’s disease, -amyloid, glutamate, NMDA 

receptors and memantine – searching for the connections. British J. Pharmacol. 167, 324-

352. 

32. Alam, S., Lingenfelter K. S., Bender, A. M., Lindsley, C. W. (2017) Classics in chemical 

neuroscience: memantine. ACS Chem. Neurosci. 8, 1823-1829. 

33. Chen, H.-S. V., Lipton, S. A. (2006) The chemical biology of clinically tolerated NMDA 

receptor antagonists. J. Neurochem. 97, 1611-1626. 

34. Lipton, S. A. (2007) Pathologically activated therapeutics for neuroprotection. Nat. Rev. 

Neurosci. 8, 803-808. 

35. Hardingham, G. E., Bading, H. (2010) Synaptic versus extrasynaptic NMDA receptor 

signaling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11, 682-696. 

36. Gladding, C. M., Raymond, L. A. (2011) Mechanisms underlying NMDA receptor 

synaptic/extrasynaptic distribution and function. Mol. Cell Neurosci. 48, 308-320. 

37. Parsons, M. P., Raymond, L. A. (2014) Extrasynaptic NMDA receptor involvement in 

central nervous system disorders. Neuron 82, 279-293. 



 

207 

 

38. Wroge, C.M., J. Hogins, L. Eisenman, S. Mennerick (2012) Synaptic NMDA receptors 

mediate hypoxic excitotoxic death. J. Neurosci. 32(19): 6732-6742. 

39. Zhou, X., D. Hollern, J. Liao, E. Andrechek, H. Wang (2013) NMDA receptor-mediated 

excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors. Cell 

Death Dis. 4: e560. 

40. Glasgow, N. G., Povysheva, N. V., Azofeifa, A. M., Johnson, J. W. (2017) Memantine and 

ketamine differentially alter NMDA receptor desensitization. J. Neurosci. 37, 9686-9704. 

41. Matsunaga, S., Kishi, T., Iwata, N. (2015) Memantine monotherapy for Alzheimer’s 

Disease: a systematic review and meta-analysis. PLoS One 10, e0123289. 

42. Glling, K., Jatzke, C., Wollenburg, C., Vanejevs, M., Kauss, V., Jirgensons, A., Parsons, 

C. G. (2007) A novel class of amino-alkylcyclohexanes as uncompetitive, fast, voltage-

dependent, N-methyl-D-aspartate (NMDA) receptor antagonists – in vitro characterization. 

J. Neural Transm. 114, 1529-1537. 

43. Rammes, G. (2009) Neramexane: a moderate-affinity NMDA receptor channel blocker: 

new prospects and indications. Expert Rev. Clin. Pharmacol. 2, 231-238. 

44. Camps, P., Duque, M. D., Vázquez, S., Naesens, L., DeClercq, E., Sureda, F. X., López-

Querol, M., Camins, A., Pallàs, M., Prathalingam, S. R., Kelly, J. M., Romero, V., Ivorra, 

D., Cortés, D. (2008) Synthesis and pharmacological evaluation of several ring-contracted 

amantadine analogs. Bioorg. Med. Chem. 16, 9925-9936. 

45. Valverde, E., Sureda, F. X., Vázquez, S. (2014) Novel benzopolycyclic amines with 

NMDA receptor antagonist activity. Bioorg. Med. Chem. 22, 2678-2683. 

46. Blanpied, T.A., Boeckman, F.A., Aizenman, E., Johnson, J.W. (1997) Trapping channel 

block of NMDA-activated responses by amantadine and memantine. J. Neurophysiol. 77, 

309-323. 

47. Limapichat, W., Yu, W. Y., Branigan, E., Lester, H. A., Dougherty, D. A. (2013) Key 

biding interactions for memantine in the NMDA receptor. ACS Chem. Neurosci. 4, 255-

260. 

48. Torres, E., Leiva, R., Gazzarrini, S., Rey-Carrizo, M., Frigolé-Vivas, M., Moroni, A., 

Naesens, L., Vázquez, S. (2014) Azapropellanes with anti-influenza A virus activity. ACS 

Med. Chem. Lett. 5, 831-836. 

49. Rey-Carrizo, M., Barniol-Xicota, M., Ma, C., Frigolé-Vivas, M., Torres, E., Naesens, L., 

Llabrés, S., Juárez-Jiménez, J., Luque, F. J., DeGrado, W. F., Lamb, R. A., Pinto, L. H., 

Vázquez, S. (2014) Easily accessible polycyclic amines that inhibit the wild-type and 

amantadine-resistant mutants of the M2 channel of influenza A virus. J. Med. Chem. 57, 

5738–5747. 

50. Avila, W. B., Silva, R. A. (1970) 3,4,8,9-Tetramethyltetracyclo[4.4.0.03,9.04,8]decane-1,6-

dioic anhydride. J. Chem. Soc. D, 94-95. 

51. Canudas, A. M., Pubill, D., Sureda, F. X., Verdaguer, E., Camps, P., Muñoz-Torrero, D., 

Jiménez, A., Camins, A., Pallàs, M. (2003) Neuroprotective effects of (+/–)-huprine Y on 

in vitro and in vivo models of excitotoxicity damage. Exp. Neurol. 180, 123–130. 

52. Woodhull, A. M. (1973) Ionic Blockage of Sodium Channels in Nerve. J. Gen. Physiol. 

61, 687-708. 

53. Gratacos-Batlle, E., Yefimenko, N., Cascos-García, H., Soto, D. (2014) AMPAR 

interacting protein CPT1C enhances surface expression of GluA1-containing receptors. 

Front. Cell. Neurosci. 8, 469. 



 

208 

 

54. Glasgow, N. G., Johnson, J. W. Whole-Cell Patch-Clamp Analysis of Recombinant NMDA 

Receptor Pharmacology Using Brief Glutamate Applications, in Patch-Clamp Methods 

and Protocols, M. Martina and S. Taverna, Editors. 2014, Springer New York: New York, 

NY. p. 23-41. 

55. Soto, D., Olivella, M., Grau, C., Armstrong, J., Alcon, C., Gasull, X., Gómez de Salazar, 

M., Gratacòs-Batlle, E., Ramos-Vicente, D., Fernández-Dueñas, V., Ciruela, F., Bayés, À., 

Sindreu, C., López-Sala, A., García-Cazorla, À., Altafaj, X. (2018) Rett-like severe 

encephalopathy caused by a de novo GRIN2B mutation is attenuated by D-serine dietary 

supplement. Biol Psychiatry 83, 160-172. 

56. Antonov, S. M., Gmiro, V.E., Johnson, J. W. (1998) Binding sites for permeant ions in the 

channel of NMDA receptors and their effects on channel block. Nature Neurosci. 1, 451-

461.  

 

 

GRAPHICAL TABLE OF CONTENTS 

 

 

 



 

209 

 

REFERENCES 

Abdallah, C.G., Averill, L.A., & Krystal, J.H. (2015) Ketamine as a promising prototype for a new 
generation of rapid-acting antidepressants. Ann. N. Y. Acad. Sci., 1344, 66–77. 

Adams, P.R. (1975) A model for the procaine end-plate current. J. Physiol. (Lond.), 246, 61P–
63P. 

Adams, P.R. (1976) Drug blockade of open end-plate channels. J. Physiol. (Lond.), 260, 531–
552. 

Ady, V., Perroy, J., Tricoire, L., Piochon, C., Dadak, S., Chen, X., Dusart, I., Fagni, L., Lambolez, 
B., & Levenes, C. (2014) Type 1 metabotropic glutamate receptors (mGlu1) trigger the gating of 
GluD2 delta glutamate receptors. EMBO Rep., 15, 103–109. 

Akazawa, C., Shigemoto, R., Bessho, Y., Nakanishi, S., & Mizuno, N. (1994) Differential 
expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing 
and adult rats. J. Comp. Neurol., 347, 150–160. 

Akgül, G. & McBain, C.J. (2016) Diverse roles for ionotropic glutamate receptors on inhibitory 
interneurons in developing and adult brain. J. Physiol. (Lond.), 594, 5471–5490. 

Alam, S., Lingenfelter, K.S., Bender, A.M., & Lindsley, C.W. (2017) Classics in chemical 
neuroscience: memantine. ACS Chem. Neurosci., 8, 1823–1829. 

Amidfar, M., Réus, G.Z., Quevedo, J., & Kim, Y.-K. (2018) The role of memantine in the treatment 
of major depressive disorder: Clinical efficacy and mechanisms of action. Eur. J. Pharmacol., 827, 
103–111. 

Antonov, S.M., Gmiro, V.E., & Johnson, J.W. (1998) Binding sites for permeant ions in the channel 
of NMDA receptors and their effects on channel block. Nat. Neurosci., 1, 451–461. 

Antonov, S.M. & Johnson, J.W. (1996) Voltage-dependent interaction of open-channel blocking 
molecules with gating of NMDA receptors in rat cortical neurons. J. Physiol. (Lond.), 493 ( Pt 2), 
425–445. 

Antonov, S.M., Johnson, J.W., Lukomskaya, N.Y., Potapyeva, N.N., Gmiro, V.E., & Magazanik, 
L.G. (1995) Novel adamantane derivatives act as blockers of open ligand-gated channels and as 
anticonvulsants. Mol. Pharmacol., 47, 558–567. 

Araki, K., Meguro, H., Kushiya, E., Takayama, C., Inoue, Y., & Mishina, M. (1993) Selective 
expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem. 
Biophys. Res. Commun., 197, 1267–1276. 

Armstrong, C.M. (1971) Interaction of tetraethylammonium ion derivatives with the potassium 
channels of giant axons. J. Gen. Physiol., 58, 413–437. 



 

210 

 

Ascher, P. & Nowak, L. (1988) The role of divalent cations in the N-methyl-D-aspartate responses 
of mouse central neurones in culture. J. Physiol. (Lond.), 399, 247–266. 

Atilgan, A.R., Durell, S.R., Jernigan, R.L., Demirel, M.C., Keskin, O., & Bahar, I. (2001) Anisotropy 
of fluctuation dynamics of proteins with an elastic network model. Biophys. J., 80, 505–515. 

Babiec, W.E., Guglietta, R., Jami, S.A., Morishita, W., Malenka, R.C., & O’Dell, T.J. (2014) 
Ionotropic NMDA receptor signaling is required for the induction of long-term depression in the 
mouse hippocampal CA1 region. J. Neurosci., 34, 5285–5290. 

Bahar, I., Lezon, T.R., Bakan, A., & Shrivastava, I.H. (2010) Normal mode analysis of 
biomolecular structures: functional mechanisms of membrane proteins. Chem. Rev., 110, 1463–
1497. 

Benamer, N., Marti, F., Lujan, R., Hepp, R., Aubier, T.G., Dupin, A.A.M., Frébourg, G., Pons, S., 
Maskos, U., Faure, P., Hay, Y.A., Lambolez, B., & Tricoire, L. (2018) GluD1, linked to 
schizophrenia, controls the burst firing of dopamine neurons. Mol. Psychiatry, 23, 691–700. 

Benveniste, M., Clements, J., Vyklický, L., & Mayer, M.L. (1990) A kinetic analysis of the 
modulation of N-methyl-D-aspartic acid receptors by glycine in mouse cultured hippocampal 
neurones. J. Physiol. (Lond.), 428, 333–357. 

Benveniste, M. & Mayer, M.L. (1991) Kinetic analysis of antagonist action at N-methyl-D-aspartic 
acid receptors. Two binding sites each for glutamate and glycine. Biophys. J., 59, 560–573. 

Benveniste, M. & Mayer, M.L. (1995) Trapping of glutamate and glycine during open channel 
block of rat hippocampal neuron NMDA receptors by 9-aminoacridine. J. Physiol. (Lond.), 483 ( 
Pt 2), 367–384. 

Bers, D.M., Patton, C.W., & Nuccitelli, R. (2010) A practical guide to the preparation of Ca(2+) 
buffers. Methods Cell Biol., 99, 1–26. 

Berthier, M.L., Green, C., Lara, J.P., Higueras, C., Barbancho, M.A., Dávila, G., & Pulvermüller, 
F. (2009) Memantine and constraint-induced aphasia therapy in chronic poststroke aphasia. Ann. 
Neurol., 65, 577–585. 

Bhattacharya, S., Khatri, A., Swanger, S.A., DiRaddo, J.O., Yi, F., Hansen, K.B., Yuan, H., & 
Traynelis, S.F. (2018) Triheteromeric GluN1/GluN2A/GluN2C NMDARs with Unique Single-
Channel Properties Are the Dominant Receptor Population in Cerebellar Granule Cells. Neuron, 
99, 315–328.e5. 

Blanpied, T.A., Boeckman, F.A., Aizenman, E., & Johnson, J.W. (1997) Trapping channel block 
of NMDA-activated responses by amantadine and memantine. J. Neurophysiol., 77, 309–323. 

Blanpied, T.A., Clarke, R.J., & Johnson, J.W. (2005) Amantadine inhibits NMDA receptors by 
accelerating channel closure during channel block. J. Neurosci., 25, 3312–3322. 

Bolshakov, K.V., Gmiro, V.E., Tikhonov, D.B., & Magazanik, L.G. (2003) Determinants of trapping 
block of N-methyl-d-aspartate receptor channels. J. Neurochem., 87, 56–65. 



 

211 

 

Bondi, C., Matthews, M., & Moghaddam, B. (2012) Glutamatergic animal models of 
schizophrenia. Curr. Pharm. Des., 18, 1593–1604. 

Bowie, D. (2008) Ionotropic glutamate receptors & CNS disorders. CNS Neurol Disord Drug 
Targets, 7, 129–143. 

Bresink, I., Benke, T.A., Collett, V.J., Seal, A.J., Parsons, C.G., Henley, J.M., & Collingridge, G.L. 
(1996) Effects of memantine on recombinant rat NMDA receptors expressed in HEK 293 cells. 
Br. J. Pharmacol., 119, 195–204. 

Brickley, S.G., Misra, C., Mok, M.H.S., Mishina, M., & Cull-Candy, S.G. (2003) NR2B and NR2D 
subunits coassemble in cerebellar Golgi cells to form a distinct NMDA receptor subtype restricted 
to extrasynaptic sites. J. Neurosci., 23, 4958–4966. 

Brothwell, S.L.C., Barber, J.L., Monaghan, D.T., Jane, D.E., Gibb, A.J., & Jones, S. (2008) NR2B- 
and NR2D-containing synaptic NMDA receptors in developing rat substantia nigra pars compacta 
dopaminergic neurones. J. Physiol. (Lond.), 586, 739–750. 

Brunet, A., Bonni, A., Zigmond, M.J., Lin, M.Z., Juo, P., Hu, L.S., Anderson, M.J., Arden, K.C., 
Blenis, J., & Greenberg, M.E. (1999) Akt promotes cell survival by phosphorylating and inhibiting 
a Forkhead transcription factor. Cell, 96, 857–868. 

Budavari, S. (1989) The Merck Index: AnEncyclopedia of Chemicals, Drugs, and Biologicals, 11th 
edn. Merck, Rahway, NJ, USA. 

Burnashev, N., Monyer, H., Seeburg, P.H., & Sakmann, B. (1992) Divalent ion permeability of 
AMPA receptor channels is dominated by the edited form of a single subunit. Neuron, 8, 189–
198. 

Burnashev, N., Schoepfer, R., Monyer, H., Ruppersberg, J.P., Günther, W., Seeburg, P.H., & 
Sakmann, B. (1992) Control by asparagine residues of calcium permeability and magnesium 
blockade in the NMDA receptor. Science, 257, 1415–1419. 

Burnashev, N. & Szepetowski, P. (2015) NMDA receptor subunit mutations in 
neurodevelopmental disorders. Curr. Opin. Pharmacol., 20, 73–82. 

Burnashev, N., Zhou, Z., Neher, E., & Sakmann, B. (1995) Fractional calcium currents through 
recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J. Physiol. 
(Lond.), 485 ( Pt 2), 403–418. 

Carter, B.C. & Jahr, C.E. (2016) Postsynaptic, not presynaptic NMDA receptors are required for 
spike-timing-dependent LTD induction. Nat. Neurosci., 19, 1218–1224. 

Case, D.A., Cerutti, D.S., Cheatham, T.E.I., Darden, T.A., Duke, R.E., Giese, T.J., Gohlke, H., 
Goetz, A.W., Greene, D., Homeyer, N., Izadi, S., Kovalenko, A., Lee, T.S., LeGrand, S., Li, P.L.C., 
Liu, J., Luchko, T., Luo, R., Mermelstein, D., Merz, K.M., Monard, G., Nguyen, H., Omelyan, I., 
Onufriev, A., Pan, F., Qi, R., Roe, D.R., Roitberg, A., Sagui, C., Simmerling, C.L., Botello-Smith, 
W.M., Swails, J., Walker, R.C., Wang, J., Wolf, R.M., Wu, X., Xiao, L., York, D.M., & Kollman, 
P.A. (2017) Amber18 . University of San Francisco. 



 

212 

 

Chang, H.-R. & Kuo, C.-C. (2008) The activation gate and gating mechanism of the NMDA 
receptor. J. Neurosci., 28, 1546–1556. 

Chazot, P.L., Cik, M., & Stephenson, F.A. (1995) An investigation into the role of N-glycosylation 
in the functional expression of a recombinant heteromeric NMDA receptor. Mol Membr Biol, 12, 
331–337. 

Chazot, P.L., Coleman, S.K., Cik, M., & Stephenson, F.A. (1994) Molecular characterization of N-
methyl-D-aspartate receptors expressed in mammalian cells yields evidence for the coexistence 
of three subunit types within a discrete receptor molecule. J. Biol. Chem., 269, 24403–24409. 

Chazot, P.L. & Stephenson, F.A. (1997) Molecular dissection of native mammalian forebrain 
NMDA receptors containing the NR1 C2 exon: direct demonstration of NMDA receptors 
comprising NR1, NR2A, and NR2B subunits within the same complex. J. Neurochem., 69, 2138–
2144. 

Chen, H.S. & Lipton, S.A. (1997) Mechanism of memantine block of NMDA-activated channels in 
rat retinal ganglion cells: uncompetitive antagonism. J. Physiol. (Lond.), 499 ( Pt 1), 27–46. 

Chen, H.-S.V. & Lipton, S.A. (2005) Pharmacological implications of two distinct mechanisms of 
interaction of memantine with N-methyl-D-aspartate-gated channels. J. Pharmacol. Exp. Ther., 
314, 961–971. 

Chen, H.-S.V. & Lipton, S.A. (2006) The chemical biology of clinically tolerated NMDA receptor 
antagonists. J. Neurochem., 97, 1611–1626. 

Chen, P.E., Errington, M.L., Kneussel, M., Chen, G., Annala, A.J., Rudhard, Y.H., Rast, G.F., 
Specht, C.G., Tigaret, C.M., Nassar, M.A., Morris, R.G.M., Bliss, T.V.P., & Schoepfer, R. (2009) 
Behavioral deficits and subregion-specific suppression of LTP in mice expressing a population of 
mutant NMDA receptors throughout the hippocampus. Learn. Mem., 16, 635–644. 

Chen, X., Shu, S., & Bayliss, D.A. (2009) HCN1 channel subunits are a molecular substrate for 
hypnotic actions of ketamine. J. Neurosci., 29, 600–609. 

Choi, D.W. (1987) Ionic dependence of glutamate neurotoxicity. J. Neurosci., 7, 369–379. 

Choi, D.W. (1992) Excitotoxic cell death. J. Neurobiol., 23, 1261–1276. 

Chou, T.-H., Tajima, N., Romero-Hernandez, A., & Furukawa, H. (2020) Structural basis of 
functional transitions in mammalian NMDA receptors. Cell, 182, 357–371.e13. 

Clarke, R.J., Glasgow, N.G., & Johnson, J.W. (2013) Mechanistic and structural determinants of 
NMDA receptor voltage-dependent gating and slow Mg2+ unblock. J. Neurosci., 33, 4140–4150. 

Clarke, R.J. & Johnson, J.W. (2006) NMDA receptor NR2 subunit dependence of the slow 
component of magnesium unblock. J. Neurosci., 26, 5825–5834. 

Clarke, R.J. & Johnson, J.W. (2008) Voltage-dependent gating of NR1/2B NMDA receptors. J. 
Physiol. (Lond.), 586, 5727–5741. 



 

213 

 

Clements, J.D. & Westbrook, G.L. (1991) Activation kinetics reveal the number of glutamate and 
glycine binding sites on the N-methyl-D-aspartate receptor. Neuron, 7, 605–613. 

Corazza, O., Assi, S., & Schifano, F. (2013) From “Special K” to “Special M”: the evolution of the 
recreational use of ketamine and methoxetamine. CNS Neurosci Ther, 19, 454–460. 

Costa, A.C. & Albuquerque, E.X. (1994) Dynamics of the actions of tetrahydro-9-aminoacridine 
and 9-aminoacridine on glutamatergic currents: concentration-jump studies in cultured rat 
hippocampal neurons. J. Pharmacol. Exp. Ther., 268, 503–514. 

Courtney, K.R. (1975) Mechanism of frequency-dependent inhibition of sodium currents in frog 
myelinated nerve by the lidocaine derivative GEA. J. Pharmacol. Exp. Ther., 195, 225–236. 

Danysz, W. & Parsons, C.G. (2012) Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors 
and memantine--searching for the connections. Br. J. Pharmacol., 167, 324–352. 

Danysz, W., Parsons, C.G., Kornhuber, J., Schmidt, W.J., & Quack, G. (1997) 
Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents--preclinical 
studies. Neurosci. Biobehav. Rev., 21, 455–468. 

Di Iorio, G., Baroni, G., Lorusso, M., Montemitro, C., Spano, M.C., & di Giannantonio, M. (2017) 
Efficacy of memantine in schizophrenic patients: A systematic review. J. Amino Acids, 2017, 
7021071. 

Dick, O. & Bading, H. (2010) Synaptic activity and nuclear calcium signaling protect hippocampal 
neurons from death signal-associated nuclear translocation of FoxO3a induced by extrasynaptic 
N-methyl-D-aspartate receptors. J. Biol. Chem., 285, 19354–19361. 

Dilmore, J.G. & Johnson, J.W. (1998) Open channel block and alteration of N-methyl-D-aspartic 
acid receptor gating by an analog of phencyclidine. Biophys. J., 75, 1801–1816. 

Dong, X., Wang, Y., & Qin, Z. (2009) Molecular mechanisms of excitotoxicity and their relevance 
to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin, 30, 379–387. 

Dougherty, D.A. (2007) Cation-pi interactions involving aromatic amino acids. J. Nutr., 137, 
1504S–1508S; discussion 1516S. 

Dravid, S.M., Erreger, K., Yuan, H., Nicholson, K., Le, P., Lyuboslavsky, P., Almonte, A., Murray, 
E., Mosely, C., Barber, J., French, A., Balster, R., Murray, T.F., & Traynelis, S.F. (2007) Subunit-
specific mechanisms and proton sensitivity of NMDA receptor channel block. J. Physiol. (Lond.), 
581, 107–128. 

Dunah, A.W., Luo, J., Wang, Y.H., Yasuda, R.P., & Wolfe, B.B. (1998) Subunit composition of N-
methyl-D-aspartate receptors in the central nervous system that contain the NR2D subunit. Mol. 
Pharmacol., 53, 429–437. 

Dunah, A.W. & Standaert, D.G. (2003) Subcellular segregation of distinct heteromeric NMDA 
glutamate receptors in the striatum. J. Neurochem., 85, 935–943. 



 

214 

 

Dutta, A., Krieger, J., Lee, J.Y., Garcia-Nafria, J., Greger, I.H., & Bahar, I. (2015) Cooperative 
Dynamics of Intact AMPA and NMDA Glutamate Receptors: Similarities and Subfamily-Specific 
Differences. Structure, 23, 1692–1704. 

Ehlers, M.D., Zhang, S., Bernhadt, J.P., & Huganir, R.L. (1996) Inactivation of NMDA receptors 
by direct interaction of calmodulin with the NR1 subunit. Cell, 84, 745–755. 

Emnett, C.M., Eisenman, L.N., Taylor, A.M., Izumi, Y., Zorumski, C.F., & Mennerick, S. (2013) 
Indistinguishable synaptic pharmacodynamics of the N-methyl-D-aspartate receptor channel 
blockers memantine and ketamine. Mol. Pharmacol., 84, 935–947. 

Esmenjaud, J.-B., Stroebel, D., Chan, K., Grand, T., David, M., Wollmuth, L.P., Taly, A., & Paoletti, 
P. (2019) An inter-dimer allosteric switch controls NMDA receptor activity. EMBO J., 38. 

Fedele, L., Newcombe, J., Topf, M., Gibb, A., Harvey, R.J., & Smart, T.G. (2018) Disease-
associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion 
channel properties. Nat. Commun., 9, 957. 

Ferrer-Montiel, A.V., Merino, J.M., Planells-Cases, R., Sun, W., & Montal, M. (1998) Structural 
determinants of the blocker binding site in glutamate and NMDA receptor channels. 
Neuropharmacology, 37, 139–147. 

Freudenthaler, S., Meineke, I., Schreeb, K.H., Boakye, E., Gundert-Remy, U., & Gleiter, C.H. 
(1998) Influence of urine pH and urinary flow on the renal excretion of memantine. Br. J. Clin. 
Pharmacol., 46, 541–546. 

Gaillard, T. (2018) Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark. J. 
Chem. Inf. Model., 58, 1697–1706. 

Gantz, S.C., Moussawi, K., & Hake, H.S. (2020) Delta glutamate receptor conductance drives 
excitation of mouse dorsal raphe neurons. Elife, 9. 

Gardoni, F. & Di Luca, M. (2015) Targeting glutamatergic synapses in Parkinson’s disease. Curr. 
Opin. Pharmacol., 20, 24–28. 

Gideons, E.S., Kavalali, E.T., & Monteggia, L.M. (2014) Mechanisms underlying differential 
effectiveness of memantine and ketamine in rapid antidepressant responses. Proc. Natl. Acad. 
Sci. USA, 111, 8649–8654. 

Gielen, M., Le Goff, A., Stroebel, D., Johnson, J.W., Neyton, J., & Paoletti, P. (2008) Structural 
rearrangements of NR1/NR2A NMDA receptors during allosteric inhibition. Neuron, 57, 80–93. 

Gielen, M., Siegler Retchless, B., Mony, L., Johnson, J.W., & Paoletti, P. (2009) Mechanism of 
differential control of NMDA receptor activity by NR2 subunits. Nature, 459, 703–707. 

Gilling, K., Jatzke, C., Wollenburg, C., Vanejevs, M., Kauss, V., Jirgensons, A., & Parsons, C.G. 
(2007) A novel class of amino-alkylcyclohexanes as uncompetitive, fast, voltage-dependent, N-
methyl-D-aspartate (NMDA) receptor antagonists--in vitro characterization. J. Neural Transm., 
114, 1529–1537. 



 

215 

 

Gilling, K.E., Jatzke, C., Hechenberger, M., & Parsons, C.G. (2009) Potency, voltage-
dependency, agonist concentration-dependency, blocking kinetics and partial untrapping of the 
uncompetitive N-methyl-D-aspartate (NMDA) channel blocker memantine at human NMDA 
(GluN1/GluN2A) receptors. Neuropharmacology, 56, 866–875. 

Gladding, C.M. & Raymond, L.A. (2011) Mechanisms underlying NMDA receptor 
synaptic/extrasynaptic distribution and function. Mol. Cell. Neurosci., 48, 308–320. 

Glasgow, N.G. & Johnson, J.W. (2014) Whole-cell patch-clamp analysis of recombinant NMDA 
receptor pharmacology using brief glutamate applications. Methods Mol. Biol., 1183, 23–41. 

Glasgow, N.G., Povysheva, N.V., Azofeifa, A.M., & Johnson, J.W. (2017) Memantine and 
ketamine differentially alter NMDA receptor desensitization. J. Neurosci., 37, 9686–9704. 

Glasgow, N.G., Siegler Retchless, B., & Johnson, J.W. (2015) Molecular bases of NMDA receptor 
subtype-dependent properties. J. Physiol. (Lond.), 593, 83–95. 

Glasgow, N.G., Wilcox, M.R., & Johnson, J.W. (2018) Effects of Mg2+ on recovery of NMDA 
receptors from inhibition by memantine and ketamine reveal properties of a second site. 
Neuropharmacology, 137, 344–358. 

Grand, T., Abi Gerges, S., David, M., Diana, M.A., & Paoletti, P. (2018) Unmasking GluN1/GluN3A 
excitatory glycine NMDA receptors. Nat. Commun., 9, 4769. 

Gray, J.A., Shi, Y., Usui, H., During, M.J., Sakimura, K., & Nicoll, R.A. (2011) Distinct modes of 
AMPA receptor suppression at developing synapses by GluN2A and GluN2B: single-cell NMDA 
receptor subunit deletion in vivo. Neuron, 71, 1085–1101. 

Hansen, K.B., Ogden, K.K., Yuan, H., & Traynelis, S.F. (2014) Distinct functional and 
pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron, 
81, 1084–1096. 

Hardingham, G.E. (2006) Pro-survival signalling from the NMDA receptor. Biochem. Soc. Trans., 
34, 936–938. 

Hardingham, G.E. & Bading, H. (2010) Synaptic versus extrasynaptic NMDA receptor signalling: 
implications for neurodegenerative disorders. Nat. Rev. Neurosci., 11, 682–696. 

Hardingham, G.E., Fukunaga, Y., & Bading, H. (2002) Extrasynaptic NMDARs oppose synaptic 
NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci., 5, 405–414. 

Hasbani, M.J., Hyrc, K.L., Faddis, B.T., Romano, C., & Goldberg, M.P. (1998) Distinct roles for 
sodium, chloride, and calcium in excitotoxic dendritic injury and recovery. Exp. Neurol., 154, 241–
258. 

Hatton, C.J. & Paoletti, P. (2005) Modulation of triheteromeric NMDA receptors by N-terminal 
domain ligands. Neuron, 46, 261–274. 



 

216 

 

Heidmann, T. & Changeux, J.P. (1986) Characterization of the transient agonist-triggered state 
of the acetylcholine receptor rapidly labeled by the noncompetitive blocker [3H]chlorpromazine: 
additional evidence for the open channel conformation. Biochemistry, 25, 6109–6113. 

Higley, M.J. & Sabatini, B.L. (2012) Calcium signaling in dendritic spines. Cold Spring Harb. 
Perspect. Biol., 4, a005686. 

Hille, B. (2001) Ion Channels Of Excitable Membranes, 3rd edn. Sinauer Associates Is An Imprint 
Of Oxford University Press, Sunderland, Mass. 

Hof, P.R., Cox, K., Young, W.G., Celio, M.R., Rogers, J., & Morrison, J.H. (1991) Parvalbumin-
lmmunoreactive Neurons in the Neocortex are Resistant to Degeneration in Alzheimer?s Disease. 
J. Neuropathol. Exp. Neurol., 50, 451–462. 

Hof, P.R. & Morrison, J.H. (2004) The aging brain: morphomolecular senescence of cortical 
circuits. Trends Neurosci., 27, 607–613. 

Homayoun, H. & Moghaddam, B. (2007) NMDA receptor hypofunction produces opposite effects 
on prefrontal cortex interneurons and pyramidal neurons. J. Neurosci., 27, 11496–11500. 

Huang, Z. & Gibb, A.J. (2014) Mg2+ block properties of triheteromeric GluN1-GluN2B-GluN2D 
NMDA receptors on neonatal rat substantia nigra pars compacta dopaminergic neurones. J. 
Physiol. (Lond.), 592, 2059–2078. 

Hubsher, G., Haider, M., & Okun, M.S. (2012) Amantadine: the journey from fighting flu to treating 
Parkinson disease. Neurology, 78, 1096–1099. 

Hume, R.I., Dingledine, R., & Heinemann, S.F. (1991) Identification of a site in glutamate receptor 
subunits that controls calcium permeability. Science, 253, 1028–1031. 

Humphrey, W., Dalke, A., & Schulten, K. (1996) VMD: visual molecular dynamics. J Mol Graph, 
14, , 27. 

Hynd, M.R., Scott, H.L., & Dodd, P.R. (2004) Glutamate-mediated excitotoxicity and 
neurodegeneration in Alzheimer’s disease. Neurochem. Int., 45, 583–595. 

Iacobucci, G.J. & Popescu, G.K. (2017) Resident Calmodulin Primes NMDA Receptors for Ca2+-
Dependent Inactivation. Biophys. J., 113, 2236–2248. 

Iacobucci, G.J. & Popescu, G.K. (2020) Ca2+-Dependent Inactivation of GluN2A and GluN2B 
NMDA Receptors Occurs by a Common Kinetic Mechanism. Biophys. J., 118, 798–812. 

Ibrahim, L., Diaz Granados, N., Jolkovsky, L., Brutsche, N., Luckenbaugh, D.A., Herring, W.J., 
Potter, W.Z., & Zarate, C.A. (2012) A Randomized, placebo-controlled, crossover pilot trial of the 
oral selective NR2B antagonist MK-0657 in patients with treatment-resistant major depressive 
disorder. J Clin Psychopharmacol, 32, 551–557. 

Ikonomidou, C. & Turski, L. (2002) Why did NMDA receptor antagonists fail clinical trials for stroke 
and traumatic brain injury? Lancet Neurol., 1, 383–386. 



 

217 

 

Ishii, T., Moriyoshi, K., Sugihara, H., Sakurada, K., Kadotani, H., Yokoi, M., Akazawa, C., 
Shigemoto, R., Mizuno, N., & Masu, M. (1993) Molecular characterization of the family of the N-
methyl-D-aspartate receptor subunits. J. Biol. Chem., 268, 2836–2843. 

Jackson, M.E., Homayoun, H., & Moghaddam, B. (2004) NMDA receptor hypofunction produces 
concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc. Natl. 
Acad. Sci. USA, 101, 8467–8472. 

Jalali-Yazdi, F., Chowdhury, S., Yoshioka, C., & Gouaux, E. (2018) Mechanisms for zinc and 
proton inhibition of the glun1/glun2a NMDA receptor. Cell, 175, 1520–1532.e15. 

Javitt, D.C. (2004) Glutamate as a therapeutic target in psychiatric disorders. Mol. Psychiatry, 9, 
, 979. 

Johnson, J.W. & Ascher, P. (1987) Glycine potentiates the NMDA response in cultured mouse 
brain neurons. Nature, 325, 529–531. 

Johnson, J.W., Glasgow, N.G., & Povysheva, N.V. (2015) Recent insights into the mode of action 
of memantine and ketamine. Curr. Opin. Pharmacol., 20, 54–63. 

Johnson, J.W. & Kotermanski, S.E. (2006) Mechanism of action of memantine. Curr. Opin. 
Pharmacol., 6, 61–67. 

Johnson, J.W. & Qian, A. (2002) Interaction between channel blockers and channel gating of 
NMDA receptors. Biologicheskie Membrany, 19(1), 110–115. 

Jones, M.V. & Westbrook, G.L. (1996) The impact of receptor desensitization on fast synaptic 
transmission. Trends Neurosci., 19, 96–101. 

Kafi, H., Salamzadeh, J., Beladimoghadam, N., Sistanizad, M., & Kouchek, M. (2014) Study of 
the neuroprotective effects of memantine in patients with mild to moderate ischemic stroke. Iran 
J Pharm Res, 13, 591–598. 

Kampa, B.M., Clements, J., Jonas, P., & Stuart, G.J. (2004) Kinetics of Mg2+ unblock of NMDA 
receptors: implications for spike-timing dependent synaptic plasticity. J. Physiol. (Lond.), 556, 
337–345. 

Karakas, E. & Furukawa, H. (2014) Crystal structure of a heterotetrameric NMDA receptor ion 
channel. Science, 344, 992–997. 

Kashiwagi, K., Masuko, T., Nguyen, C.D., Kuno, T., Tanaka, I., Igarashi, K., & Williams, K. (2002) 
Channel blockers acting at N-methyl-D-aspartate receptors: differential effects of mutations in the 
vestibule and ion channel pore. Mol. Pharmacol., 61, 533–545. 

Katz, B. & Thesleff, S. (1957) A study of the desensitization produced by acetylcholine at the 
motor end-plate. J. Physiol. (Lond.), 138, 63–80. 

Kaufman, A.M., Milnerwood, A.J., Sepers, M.D., Coquinco, A., She, K., Wang, L., Lee, H., Craig, 
A.M., Cynader, M., & Raymond, L.A. (2012) Opposing roles of synaptic and extrasynaptic NMDA 
receptor signaling in cocultured striatal and cortical neurons. J. Neurosci., 32, 3992–4003. 



 

218 

 

Kavalali, E.T. & Monteggia, L.M. (2015) How does ketamine elicit a rapid antidepressant 
response? Curr. Opin. Pharmacol., 20, 35–39. 

Kellermayer, B., Ferreira, J.S., Dupuis, J., Levet, F., Grillo-Bosch, D., Bard, L., Linarès-Loyez, J., 
Bouchet, D., Choquet, D., Rusakov, D.A., Bon, P., Sibarita, J.-B., Cognet, L., Sainlos, M., 
Carvalho, A.L., & Groc, L. (2018) Differential Nanoscale Topography and Functional Role of 
GluN2-NMDA Receptor Subtypes at Glutamatergic Synapses. Neuron, 100, 106–119.e7. 

Kinney, J.W., Davis, C.N., Tabarean, I., Conti, B., Bartfai, T., & Behrens, M.M. (2006) A specific 
role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 
immunoreactivity in cultured interneurons. J. Neurosci., 26, 1604–1615. 

Kloda, A., Lua, L., Hall, R., Adams, D.J., & Martinac, B. (2007) Liposome reconstitution and 
modulation of recombinant N-methyl-D-aspartate receptor channels by membrane stretch. Proc. 
Natl. Acad. Sci. USA, 104, 1540–1545. 

Kong, M., Ba, M., Ren, C., Yu, L., Dong, S., Yu, G., & Liang, H. (2017) An updated meta-analysis 
of amantadine for treating dyskinesia in Parkinson’s disease. Oncotarget, 8, 57316–57326. 

Kornau, H.C., Schenker, L.T., Kennedy, M.B., & Seeburg, P.H. (1995) Domain interaction 
between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science, 269, 
1737–1740. 

Koshelev, S.G. & Khodorov, B.I. (1995) Blockade of open NMDA channel by tetrabutylammonium, 
9-aminoacridine and tacrine prevents channels closing and desensitization. MEMBRANE AND 
CELL BIOLOGY C/C OF BIOLOGICHESKIE MEMBRANY, 9, 93–110. 

Kotermanski, S.E. & Johnson, J.W. (2009) Mg2+ imparts NMDA receptor subtype selectivity to 
the Alzheimer’s drug memantine. J. Neurosci., 29, 2774–2779. 

Kotermanski, S.E., Johnson, J.W., & Thiels, E. (2013) Comparison of behavioral effects of the 
NMDA receptor channel blockers memantine and ketamine in rats. Pharmacol. Biochem. Behav., 
109, 67–76. 

Kotermanski, S.E., Wood, J.T., & Johnson, J.W. (2009) Memantine binding to a superficial site 
on NMDA receptors contributes to partial trapping. J. Physiol. (Lond.), 587, 4589–4604. 

Koutsilieri, E. & Riederer, P. (2007) Excitotoxicity and new antiglutamatergic strategies in 
Parkinson’s disease and Alzheimer's disease. Parkinsonism Relat. Disord., 13 Suppl 3, S329–
31. 

Krieger, J., Bahar, I., & Greger, I.H. (2015) Structure, Dynamics, and Allosteric Potential of 
Ionotropic Glutamate Receptor N-Terminal Domains. Biophys. J., 109, 1136–1148. 

Krieger, J., Lee, J.Y., Greger, I.H., & Bahar, I. (2019) Activation and desensitization of ionotropic 
glutamate receptors by selectively triggering pre-existing motions. Neurosci. Lett., 700, 22–29. 

Krupp, J.J., Vissel, B., Heinemann, S.F., & Westbrook, G.L. (1996) Calcium-dependent 
inactivation of recombinant N-methyl-D-aspartate receptors is NR2 subunit specific. Mol. 
Pharmacol., 50, 1680–1688. 



 

219 

 

Krupp, J.J., Vissel, B., Heinemann, S.F., & Westbrook, G.L. (1998) N-terminal domains in the 
NR2 subunit control desensitization of NMDA receptors. Neuron, 20, 317–327. 

Krupp, J.J., Vissel, B., Thomas, C.G., Heinemann, S.F., & Westbrook, G.L. (1999) Interactions of 
calmodulin and alpha-actinin with the NR1 subunit modulate Ca2+-dependent inactivation of 
NMDA receptors. J. Neurosci., 19, 1165–1178. 

Krupp, J.J., Vissel, B., Thomas, C.G., Heinemann, S.F., & Westbrook, G.L. (2002) Calcineurin 
acts via the C-terminus of NR2A to modulate desensitization of NMDA receptors. 
Neuropharmacology, 42, 593–602. 

Krystal, J.H., D’Souza, D.C., Mathalon, D., Perry, E., Belger, A., & Hoffman, R. (2003) NMDA 
receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm 
shift in medication development. Psychopharmacology, 169, 215–233. 

Krystal, J.H., Karper, L.P., Seibyl, J.P., Freeman, G.K., Delaney, R., Bremner, J.D., Heninger, 
G.R., Bowers, M.B., & Charney, D.S. (1994) Subanesthetic effects of the noncompetitive NMDA 
antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine 
responses. Arch. Gen. Psychiatry, 51, 199–214. 

Kuner, T. & Schoepfer, R. (1996) Multiple structural elements determine subunit specificity of 
Mg2+ block in NMDA receptor channels. J. Neurosci., 16, 3549–3558. 

Lan, J.Y., Skeberdis, V.A., Jover, T., Grooms, S.Y., Lin, Y., Araneda, R.C., Zheng, X., Bennett, 
M.V., & Zukin, R.S. (2001) Protein kinase C modulates NMDA receptor trafficking and gating. Nat. 
Neurosci., 4, 382–390. 

Lau, A. & Tymianski, M. (2010) Glutamate receptors, neurotoxicity and neurodegeneration. 
Pflugers Arch., 460, 525–542. 

Lau, C.G. & Zukin, R.S. (2007) NMDA receptor trafficking in synaptic plasticity and 
neuropsychiatric disorders. Nat. Rev. Neurosci., 8, 413–426. 

Lee, C.-H., Lü, W., Michel, J.C., Goehring, A., Du, J., Song, X., & Gouaux, E. (2014) NMDA 
receptor structures reveal subunit arrangement and pore architecture. Nature, 511, 191–197. 

Lee, E.-J., Choi, S.Y., & Kim, E. (2015) NMDA receptor dysfunction in autism spectrum disorders. 
Curr. Opin. Pharmacol., 20, 8–13. 

Lee, J.Y., Krieger, J., Herguedas, B., García-Nafría, J., Dutta, A., Shaikh, S.A., Greger, I.H., & 
Bahar, I. (2019) Druggability Simulations and X-Ray Crystallography Reveal a Ligand-Binding 
Site in the GluA3 AMPA Receptor N-Terminal Domain. Structure, 27, 241–252.e3. 

Legendre, P., Rosenmund, C., & Westbrook, G.L. (1993) Inactivation of NMDA channels in 
cultured hippocampal neurons by intracellular calcium. J. Neurosci., 13, 674–684. 

Leiva, R., Phillips, M.B., Turcu, A.L., Gratacòs-Batlle, E., León-García, L., Sureda, F.X., Soto, D., 
Johnson, J.W., & Vázquez, S. (2018) Pharmacological and electrophysiological characterization 
of novel NMDA receptor antagonists. ACS Chem. Neurosci., 9, 2722–2730. 



 

220 

 

Lemke, J.R., Hendrickx, R., Geider, K., Laube, B., Schwake, M., Harvey, R.J., James, V.M., 
Pepler, A., Steiner, I., Hörtnagel, K., Neidhardt, J., Ruf, S., Wolff, M., Bartholdi, D., Caraballo, R., 
Platzer, K., Suls, A., De Jonghe, P., Biskup, S., & Weckhuysen, S. (2014) GRIN2B mutations in 
West syndrome and intellectual disability with focal epilepsy. Ann. Neurol., 75, 147–154. 

Lerma, J., Zukin, R.S., & Bennett, M.V. (1990) Glycine decreases desensitization of N-methyl-D-
aspartate (NMDA) receptors expressed in Xenopus oocytes and is required for NMDA responses. 
Proc. Natl. Acad. Sci. USA, 87, 2354–2358. 

Lester, R.A., Clements, J.D., Westbrook, G.L., & Jahr, C.E. (1990) Channel kinetics determine 
the time course of NMDA receptor-mediated synaptic currents. Nature, 346, 565–567. 

Lester, R.A., Tong, G., & Jahr, C.E. (1993) Interactions between the glycine and glutamate 
binding sites of the NMDA receptor. J. Neurosci., 13, 1088–1096. 

Léveillé, F., El Gaamouch, F., Gouix, E., Lecocq, M., Lobner, D., Nicole, O., & Buisson, A. (2008) 
Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA 
receptors. FASEB J., 22, 4258–4271. 

Li, J.H., Wang, Y.H., Wolfe, B.B., Krueger, K.E., Corsi, L., Stocca, G., & Vicini, S. (1998) 
Developmental changes in localization of NMDA receptor subunits in primary cultures of cortical 
neurons. Eur. J. Neurosci., 10, 1704–1715. 

Li-Smerin, Y. & Johnson, J.W. (1996) Effects of intracellular Mg2+ on channel gating and steady-
state responses of the NMDA receptor in cultured rat neurons. J. Physiol. (Lond.), 491 ( Pt 1), 
137–150. 

Lieberman, D.N. & Mody, I. (1994) Regulation of NMDA channel function by endogenous Ca(2+)-
dependent phosphatase. Nature, 369, 235–239. 

Lipton, P. (1999) Ischemic cell death in brain neurons. Physiol. Rev., 79, 1431–1568. 

Lipton, S.A. (2004) Paradigm shift in NMDA receptor antagonist drug development: molecular 
mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and 
other neurologic disorders. J. Alzheimers Dis., 6, S61–74. 

Lipton, S.A. (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: memantine 
and beyond. Nat. Rev. Drug Discov., 5, 160–170. 

Lipton, S.A. (2007) Pathologically activated therapeutics for neuroprotection. Nat. Rev. Neurosci., 
8, 803–808. 

Lisman, J., Schulman, H., & Cline, H. (2002) The molecular basis of CaMKII function in synaptic 
and behavioural memory. Nat. Rev. Neurosci., 3, 175–190. 

Lomeli, H., Sprengel, R., Laurie, D.J., Köhr, G., Herb, A., Seeburg, P.H., & Wisden, W. (1993) 
The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett., 
315, 318–322. 



 

221 

 

Lu, C., Fu, Z., Karavanov, I., Yasuda, R.P., Wolfe, B.B., Buonanno, A., & Vicini, S. (2006) NMDA 
receptor subtypes at autaptic synapses of cerebellar granule neurons. J. Neurophysiol., 96, 2282–
2294. 

Luo, J., Wang, Y., Yasuda, R.P., Dunah, A.W., & Wolfe, B.B. (1997) The majority of N-methyl-D-
aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits 
(NR1/NR2A/NR2B). Mol. Pharmacol., 51, 79–86. 

Lüscher, C. & Malenka, R.C. (2012) NMDA receptor-dependent long-term potentiation and long-
term depression (LTP/LTD). Cold Spring Harb. Perspect. Biol., 4. 

Luthi, D., Spichiger, U., Forster, I., & McGuigan, J.A. (1997) Calibration of Mg(2+)ࢤselective 

macroelectrodes down to 1 mumol l 1ߝ  in intracellular and Ca(2+)ࢤcontaining extracellular 

solutions. Exp. Physiol., 82, 453–467. 

M.J. Frisch, G.W.T. (2009) Gaussian 09. Gaussian,. 

MacDonald, J.F., Bartlett, M.C., Mody, I., Pahapill, P., Reynolds, J.N., Salter, M.W., 
Schneiderman, J.H., & Pennefather, P.S. (1991) Actions of ketamine, phencyclidine and MK-801 
on NMDA receptor currents in cultured mouse hippocampal neurones. J. Physiol. (Lond.), 432, 
483–508. 

MacDonald, J.F., Miljkovic, Z., & Pennefather, P. (1987) Use-dependent block of excitatory amino 
acid currents in cultured neurons by ketamine. J. Neurophysiol., 58, 251–266. 

Maki, B.A., Aman, T.K., Amico-Ruvio, S.A., Kussius, C.L., & Popescu, G.K. (2012) C-terminal 
domains of N-methyl-D-aspartic acid receptor modulate unitary channel conductance and gating. 
J. Biol. Chem., 287, 36071–36080. 

Malenka, R.C. (1994) Synaptic plasticity in the hippocampus: LTP and LTD. Cell, 78, 535–538. 

Malenka, R.C. & Bear, M.F. (2004) LTP and LTD: an embarrassment of riches. Neuron, 44, 5–
21. 

Martel, M.-A., Ryan, T.J., Bell, K.F.S., Fowler, J.H., McMahon, A., Al-Mubarak, B., Komiyama, 
N.H., Horsburgh, K., Kind, P.C., Grant, S.G.N., Wyllie, D.J.A., & Hardingham, G.E. (2012) The 
subtype of GluN2 C-terminal domain determines the response to excitotoxic insults. Neuron, 74, 
543–556. 

Matsunaga, S., Kishi, T., & Iwata, N. (2015) Memantine monotherapy for Alzheimer’s disease: a 
systematic review and meta-analysis. PLoS One, 10, e0123289. 

Mayer, M.L., MacDermott, A.B., Westbrook, G.L., Smith, S.J., & Barker, J.L. (1987) Agonist- and 
voltage-gated calcium entry in cultured mouse spinal cord neurons under voltage clamp 
measured using arsenazo III. J. Neurosci., 7, 3230–3244. 

Mayer, M.L., Vyklicky, L., & Clements, J. (1989) Regulation of NMDA receptor desensitization in 
mouse hippocampal neurons by glycine. Nature, 338, 425–427. 



 

222 

 

Mayer, M.L. & Westbrook, G.L. (1985) The action of N-methyl-D-aspartic acid on mouse spinal 
neurones in culture. J. Physiol. (Lond.), 361, 65–90. 

Mayer, M.L., Westbrook, G.L., & Guthrie, P.B. (1984) Voltage-dependent block by Mg2+ of NMDA 
responses in spinal cord neurones. Nature, 309, 261–263. 

McBain, C.J. & Mayer, M.L. (1994) N-methyl-D-aspartic acid receptor structure and function. 
Physiol. Rev., 74, 723–760. 

McGuigan, J.A., Lüthi, D., & Buri, A. (1991) Calcium buffer solutions and how to make them: a do 
it yourself guide. Can. J. Physiol. Pharmacol., 69, 1733–1749. 

McGuigan, J.A.S., Kay, J.W., & Elder, H.Y. (2006) Critical review of the methods used to measure 
the apparent dissociation constant and ligand purity in Ca2+ and Mg2+ buffer solutions. Prog. 
Biophys. Mol. Biol., 92, 333–370. 

McGuigan, J.A.S., Kay, J.W., & Elder, H.Y. (2014) An improvement to the ligand optimisation 
method (LOM) for measuring the apparent dissociation constant and ligand purity in Ca2+ and 
Mg2+ buffer solutions. Prog. Biophys. Mol. Biol., 116, 203–211. 

McGuigan, J.A.S., Kay, J.W., & Elder, H.Y. (2016) Ionised concentrations in calcium and 
magnesium buffers: Standards and precise measurement are mandatory. Prog. Biophys. Mol. 
Biol., 121, 195–211. 

McGuigan, J.A.S., Kay, J.W., Elder, H.Y., & Lüthi, D. (2007) Comparison between measured and 
calculated ionised concentrations in Mg2+/ATP, Mg2+/EDTA and Ca2+/EGTA buffers; influence 
of changes in temperature, pH and pipetting errors on the ionised concentrations. Magnes Res, 
20, 72–81. 

Mealing, G.A., Lanthorn, T.H., Murray, C.L., Small, D.L., & Morley, P. (1999) Differences in degree 
of trapping of low-affinity uncompetitive N-methyl-D-aspartic acid receptor antagonists with similar 
kinetics of block. J. Pharmacol. Exp. Ther., 288, 204–210. 

Mealing, G.A., Lanthorn, T.H., Small, D.L., Murray, R.J., Mattes, K.C., Comas, T.M., & Morley, P. 
(2001) Structural modifications to an N-methyl-D-aspartate receptor antagonist result in large 
differences in trapping block. J. Pharmacol. Exp. Ther., 297, 906–914. 

Mecocci, P., Bladström, A., & Stender, K. (2009) Effects of memantine on cognition in patients 
with moderate to severe Alzheimer’s disease: post-hoc analyses of ADAS-cog and SIB total and 
single-item scores from six randomized, double-blind, placebo-controlled studies. Int. J. Geriatr. 
Psychiatry, 24, 532–538. 

Medina, I., Filippova, N., Bakhramov, A., & Bregestovski, P. (1996) Calcium-induced inactivation 
of NMDA receptor-channels evolves independently of run-down in cultured rat brain neurones. J. 
Physiol. (Lond.), 495 ( Pt 2), 411–427. 

Medina, I., Filippova, N., Barbin, G., Ben-Ari, Y., & Bregestovski, P. (1994) Kainate-induced 
inactivation of NMDA currents via an elevation of intracellular Ca2+ in hippocampal neurons. J. 
Neurophysiol., 72, 456–465. 



 

223 

 

Medina, I., Filippova, N., Charton, G., Rougeole, S., Ben-Ari, Y., Khrestchatisky, M., & 
Bregestovski, P. (1995) Calcium-dependent inactivation of heteromeric NMDA receptor-channels 
expressed in human embryonic kidney cells. J. Physiol. (Lond.), 482 ( Pt 3), 567–573. 

Merrill, M.A., Malik, Z., Akyol, Z., Bartos, J.A., Leonard, A.S., Hudmon, A., Shea, M.A., & Hell, 
J.W. (2007) Displacement of alpha-actinin from the NMDA receptor NR1 C0 domain By 
Ca2+/calmodulin promotes CaMKII binding. Biochemistry, 46, 8485–8497. 

Mesbahi-Vasey, S., Veras, L., Yonkunas, M., Johnson, J.W., & Kurnikova, M.G. (2017) All atom 
NMDA receptor transmembrane domain model development and simulations in lipid bilayers and 
water. PLoS One, 12, e0177686. 

Miller, O.H., Yang, L., Wang, C.-C., Hargroder, E.A., Zhang, Y., Delpire, E., & Hall, B.J. (2014) 
GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the 
rapid antidepressant actions of ketamine. Elife, 3, e03581. 

Misra, C., Brickley, S.G., Farrant, M., & Cull-Candy, S.G. (2000) Identification of subunits 
contributing to synaptic and extrasynaptic NMDA receptors in Golgi cells of the rat cerebellum. J. 
Physiol. (Lond.), 524 Pt 1, 147–162. 

Moghaddam, B., Adams, B., Verma, A., & Daly, D. (1997) Activation of glutamatergic 
neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to 
dopaminergic and cognitive disruptions associated with the prefrontal cortex. J. Neurosci., 17, 
2921–2927. 

Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B., & Seeburg, P.H. (1994) Developmental 
and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron, 
12, 529–540. 

Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., 
Sakmann, B., & Seeburg, P.H. (1992) Heteromeric NMDA receptors: molecular and functional 
distinction of subtypes. Science, 256, 1217–1221. 

Mori, H., Masaki, H., Yamakura, T., & Mishina, M. (1992) Identification by mutagenesis of a 
Mg(2+)-block site of the NMDA receptor channel. Nature, 358, 673–675. 

Morris, R.G.M. (2013) NMDA receptors and memory encoding. Neuropharmacology, 74, 32–40. 

Mota, S.I., Ferreira, I.L., & Rego, A.C. (2014) Dysfunctional synapse in Alzheimer’s disease - A 
focus on NMDA receptors. Neuropharmacology, 76 Pt A, 16–26. 

Mothet, J.P., Parent, A.T., Wolosker, H., Brady, R.O., Linden, D.J., Ferris, C.D., Rogawski, M.A., 
& Snyder, S.H. (2000) D-serine is an endogenous ligand for the glycine site of the N-methyl-D-
aspartate receptor. Proc. Natl. Acad. Sci. USA, 97, 4926–4931. 

Muir, K.W. (2006) Glutamate-based therapeutic approaches: clinical trials with NMDA 
antagonists. Curr. Opin. Pharmacol., 6, 53–60. 

Murphy, J.A., Stein, I.S., Lau, C.G., Peixoto, R.T., Aman, T.K., Kaneko, N., Aromolaran, K., 
Saulnier, J.L., Popescu, G.K., Sabatini, B.L., Hell, J.W., & Zukin, R.S. (2014) Phosphorylation of 



 

224 

 

Ser1166 on GluN2B by PKA is critical to synaptic NMDA receptor function and Ca2+ signaling in 
spines. J. Neurosci., 34, 869–879. 

Nabavi, S., Kessels, H.W., Alfonso, S., Aow, J., Fox, R., & Malinow, R. (2013) Metabotropic 
NMDA receptor function is required for NMDA receptor-dependent long-term depression. Proc. 
Natl. Acad. Sci. USA, 110, 4027–4032. 

Nair, A.S. & Sahoo, R.K. (2019) Efficacy of memantine hydrochloride in neuropathic pain. Indian 
J. Palliat. Care, 25, 161–162. 

Nakagawa, T. (2019) Structures of the AMPA receptor in complex with its auxiliary subunit 
cornichon. Science, 366, 1259–1263. 

Neher, E. & Steinbach, J.H. (1978) Local anaesthetics transiently block currents through single 
acetylcholine-receptor channels. J. Physiol. (Lond.), 277, 153–176. 

Nevian, T. & Sakmann, B. (2004) Single spine Ca2+ signals evoked by coincident EPSPs and 
backpropagating action potentials in spiny stellate cells of layer 4 in the juvenile rat 
somatosensory barrel cortex. J. Neurosci., 24, 1689–1699. 

Nevian, T. & Sakmann, B. (2006) Spine Ca2+ signaling in spike-timing-dependent plasticity. J. 
Neurosci., 26, 11001–11013. 

Nicolsky, B.P., Shultz, M.M., Belijustin, A.A., & Lev, A.A. (1967) Recent Developments in the Ion-
Exchange Theory of the Glass Electrode and Its Application in the Chemistry of Glass. In 
Eisenman, G. (ed), Glass Electrodes for Hydrogen and Other Cations. Marcel Dekker, INC, New 
York, pp. 174–218. 

Nikolaev, M.V., Magazanik, L.G., & Tikhonov, D.B. (2012) Influence of external magnesium ions 
on the NMDA receptor channel block by different types of organic cations. Neuropharmacology, 
62, 2078–2085. 

Noppers, I., Niesters, M., Aarts, L., Smith, T., Sarton, E., & Dahan, A. (2010) Ketamine for the 
treatment of chronic non-cancer pain. Expert Opin. Pharmacother., 11, 2417–2429. 

Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., & Prochiantz, A. (1984) Magnesium gates 
glutamate-activated channels in mouse central neurones. Nature, 307, 462–465. 

Okamoto, S., Pouladi, M.A., Talantova, M., Yao, D., Xia, P., Ehrnhoefer, D.E., Zaidi, R., Clemente, 
A., Kaul, M., Graham, R.K., Zhang, D., Vincent Chen, H.S., Tong, G., Hayden, M.R., & Lipton, 
S.A. (2009) Balance between synaptic versus extrasynaptic NMDA receptor activity influences 
inclusions and neurotoxicity of mutant huntingtin. Nat. Med., 15, 1407–1413. 

Olivares, D., Deshpande, V.K., Shi, Y., Lahiri, D.K., Greig, N.H., Rogers, J.T., & Huang, X. (2012) 
N-methyl D-aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer’s 
disease, vascular dementia and Parkinson's disease. Curr Alzheimer Res, 9, 746–758. 

Olney, J.W., Labruyere, J., & Price, M.T. (1989) Pathological changes induced in cerebrocortical 
neurons by phencyclidine and related drugs. Science, 244, 1360–1362. 



 

225 

 

Orth, A., Tapken, D., & Hollmann, M. (2013) The delta subfamily of glutamate receptors: 
characterization of receptor chimeras and mutants. Eur. J. Neurosci., 37, 1620–1630. 

Otsu, Y., Darcq, E., Pietrajtis, K., Mátyás, F., Schwartz, E., Bessaih, T., Abi Gerges, S., Rousseau, 
C.V., Grand, T., Dieudonné, S., Paoletti, P., Acsády, L., Agulhon, C., Kieffer, B.L., & Diana, M.A. 
(2019) Control of aversion by glycine-gated GluN1/GluN3A NMDA receptors in the adult medial 
habenula. Science, 366, 250–254. 

Otton, H.J., Lawson McLean, A., Pannozzo, M.A., Davies, C.H., & Wyllie, D.J.A. (2011) 
Quantification of the Mg2+-induced potency shift of amantadine and memantine voltage-
dependent block in human recombinant GluN1/GluN2A NMDARs. Neuropharmacology, 60, 388–
396. 

Paoletti, P., Ascher, P., & Neyton, J. (1997) High-affinity zinc inhibition of NMDA NR1-NR2A 
receptors. J. Neurosci., 17, 5711–5725. 

Paoletti, P., Bellone, C., & Zhou, Q. (2013) NMDA receptor subunit diversity: impact on receptor 
properties, synaptic plasticity and disease. Nat. Rev. Neurosci., 14, 383–400. 

Paoletti, P., Perin-Dureau, F., Fayyazuddin, A., Le Goff, A., Callebaut, I., & Neyton, J. (2000) 
Molecular organization of a zinc binding n-terminal modulatory domain in a NMDA receptor 
subunit. Neuron, 28, 911–925. 

Papadia, S., Soriano, F.X., Léveillé, F., Martel, M.-A., Dakin, K.A., Hansen, H.H., Kaindl, A., 
Sifringer, M., Fowler, J., Stefovska, V., McKenzie, G., Craigon, M., Corriveau, R., Ghazal, P., 
Horsburgh, K., Yankner, B.A., Wyllie, D.J.A., Ikonomidou, C., & Hardingham, G.E. (2008) 
Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat. Neurosci., 11, 476–
487. 

Papouin, T., Ladépêche, L., Ruel, J., Sacchi, S., Labasque, M., Hanini, M., Groc, L., Pollegioni, 
L., Mothet, J.-P., & Oliet, S.H.R. (2012) Synaptic and extrasynaptic NMDA receptors are gated 
by different endogenous coagonists. Cell, 150, 633–646. 

Parsons, C.G., Danysz, W., Bartmann, A., Spielmanns, P., Frankiewicz, T., Hesselink, M., 
Eilbacher, B., & Quack, G. (1999) Amino-alkyl-cyclohexanes are novel uncompetitive NMDA 
receptor antagonists with strong voltage-dependency and fast blocking kinetics: in vitro and in 
vivo characterization. Neuropharmacology, 38, 85–108. 

Parsons, C.G., Danysz, W., & Quack, G. (1999) Memantine is a clinically well tolerated N-methyl-
D-aspartate (NMDA) receptor antagonist--a review of preclinical data. Neuropharmacology, 38, 
735–767. 

Parsons, C.G. & Gilling, K. (2007) Memantine as an example of a fast, voltage-dependent, open 
channel N-methyl-D-aspartate receptor blocker. Methods Mol. Biol., 403, 15–36. 

Parsons, C.G., Panchenko, V.A., Pinchenko, V.O., Tsyndrenko, A.Y., & Krishtal, O.A. (1996) 
Comparative patch-clamp studies with freshly dissociated rat hippocampal and striatal neurons 
on the NMDA receptor antagonistic effects of amantadine and memantine. Eur. J. Neurosci., 8, 
446–454. 



 

226 

 

Parsons, C.G., Quack, G., Bresink, I., Baran, L., Przegalinski, E., Kostowski, W., Krzascik, P., 
Hartmann, S., & Danysz, W. (1995) Comparison of the potency, kinetics and voltage-dependency 
of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor 
impairment activity in vivo. Neuropharmacology, 34, 1239–1258. 

Parsons, C.G., Stöffler, A., & Danysz, W. (2007) Memantine: a NMDA receptor antagonist that 
improves memory by restoration of homeostasis in the glutamatergic system--too little activation 
is bad, too much is even worse. Neuropharmacology, 53, 699–723. 

Parsons, M.P. & Raymond, L.A. (2014) Extrasynaptic NMDA receptor involvement in central 
nervous system disorders. Neuron, 82, 279–293. 

Persson, J. (2013) Ketamine in pain management. CNS Neurosci Ther, 19, 396–402. 

Phillips, M.B., Nigam, A., & Johnson, J.W. (2020) Interplay between Gating and Block of Ligand-
Gated Ion Channels. Brain Sci., 10. 

Pierson, T.M., Yuan, H., Marsh, E.D., Fuentes-Fajardo, K., Adams, D.R., Markello, T., Golas, G., 
Simeonov, D.R., Holloman, C., Tankovic, A., Karamchandani, M.M., Schreiber, J.M., Mullikin, 
J.C., PhD for the NISC Comparative Sequencing Program, Tifft, C.J., Toro, C., Boerkoel, C.F., 
Traynelis, S.F., & Gahl, W.A. (2014) GRIN2A mutation and early-onset epileptic encephalopathy: 
personalized therapy with memantine. Ann Clin Transl Neurol, 1, 190–198. 

Piña-Crespo, J.C. & Gibb, A.J. (2002) Subtypes of NMDA receptors in new-born rat hippocampal 
granule cells. J. Physiol. (Lond.), 541, 41–64. 

Povysheva, N.V. & Johnson, J.W. (2016) Effects of memantine on the excitation-inhibition 
balance in prefrontal cortex. Neurobiol. Dis., 96, 75–83. 

Premkumar, L.S. & Auerbach, A. (1996) Identification of a high affinity divalent cation binding site 
near the entrance of the NMDA receptor channel. Neuron, 16, 869–880. 

Preskorn, S.H., Baker, B., Kolluri, S., Menniti, F.S., Krams, M., & Landen, J.W. (2008) An 
innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit 
selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory 
major depressive disorder. J Clin Psychopharmacol, 28, 631–637. 

Purohit, Y. & Grosman, C. (2006) Block of muscle nicotinic receptors by choline suggests that the 
activation and desensitization gates act as distinct molecular entities. J. Gen. Physiol., 127, 703–
717. 

Qian, A., Antonov, S.M., & Johnson, J.W. (2002) Modulation by permeant ions of Mg2+ inhibition 
of NMDA-activated whole-cell currents in rat cortical neurons. J. Physiol. (Lond.), 538, 65–77. 

Qian, A., Buller, A.L., & Johnson, J.W. (2005) NR2 subunit-dependence of NMDA receptor 
channel block by external Mg2+. J. Physiol. (Lond.), 562, 319–331. 

Qian, A. & Johnson, J.W. (2002) Channel gating of NMDA receptors. Physiol. Behav., 77, 577–
582. 



 

227 

 

Rachline, J., Perin-Dureau, F., Le Goff, A., Neyton, J., & Paoletti, P. (2005) The micromolar zinc-
binding domain on the NMDA receptor subunit NR2B. J. Neurosci., 25, 308–317. 

Rauner, C. & Köhr, G. (2011) Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-
methyl-D-aspartate receptor population in adult hippocampal synapses. J. Biol. Chem., 286, 
7558–7566. 

Rombouts, S.A., Barkhof, F., Veltman, D.J., Machielsen, W.C., Witter, M.P., Bierlaagh, M.A., 
Lazeron, R.H., Valk, J., & Scheltens, P. (2000) Functional MR imaging in Alzheimer’s disease 
during memory encoding. AJNR Am. J. Neuroradiol., 21, 1869–1875. 

Rothman, S.M. & Olney, J.W. (1995) Excitotoxicity and the NMDA receptor--still lethal after eight 
years. Trends Neurosci., 18, 57–58. 

Rozov, A. & Burnashev, N. (2016) Fast interaction between AMPA and NMDA receptors by 
intracellular calcium. Cell Calcium, 60, 407–414. 

Rudhard, Y., Kneussel, M., Nassar, M.A., Rast, G.F., Annala, A.J., Chen, P.E., Tigaret, C.M., 
Dean, I., Roes, J., Gibb, A.J., Hunt, S.P., & Schoepfer, R. (2003) Absence of Whisker-related 
pattern formation in mice with NMDA receptors lacking coincidence detection properties and 
calcium signaling. J. Neurosci., 23, 2323–2332. 

Ruff, R.L. (1977) A quantitative analysis of local anaesthetic alteration of miniature end-plate 
currents and end-plate current fluctuations. J. Physiol. (Lond.), 264, 89–124. 

Rycroft, B.K. & Gibb, A.J. (2002) Direct effects of calmodulin on NMDA receptor single-channel 
gating in rat hippocampal granule cells. J. Neurosci., 22, 8860–8868. 

Rycroft, B.K. & Gibb, A.J. (2004) Inhibitory interactions of calcineurin (phosphatase 2B) and 
calmodulin on rat hippocampal NMDA receptors. Neuropharmacology, 47, 505–514. 

Salpietro, V., Dixon, C.L., Guo, H., Bello, O.D., Vandrovcova, J., et al. (2019) AMPA receptor 
GluA2 subunit defects are a cause of neurodevelopmental disorders. Nat. Commun., 10, 3094. 

Sather, W., Dieudonné, S., MacDonald, J.F., & Ascher, P. (1992) Activation and desensitization 
of N-methyl-D-aspartate receptors in nucleated outside-out patches from mouse neurones. J. 
Physiol. (Lond.), 450, 643–672. 

Sather, W., Johnson, J.W., Henderson, G., & Ascher, P. (1990) Glycine-insensitive 
desensitization of NMDA responses in cultured mouse embryonic neurons. Neuron, 4, 725–731. 

Schoenmakers, T.J., Visser, G.J., Flik, G., & Theuvenet, A.P. (1992) CHELATOR: an improved 
method for computing metal ion concentrations in physiological solutions. BioTechniques, 12, , 
876. 

Schorge, S., Elenes, S., & Colquhoun, D. (2005) Maximum likelihood fitting of single channel 
NMDA activity with a mechanism composed of independent dimers of subunits. J. Physiol. 
(Lond.), 569, 395–418. 



 

228 

 

Schroeter, M.L., Vogt, B., Frisch, S., Becker, G., Barthel, H., Mueller, K., Villringer, A., & Sabri, 
O. (2012) Executive deficits are related to the inferior frontal junction in early dementia. Brain, 
135, 201–215. 

Schwaller, B. (2010) Cytosolic Ca2+ buffers. Cold Spring Harb. Perspect. Biol., 2, a004051. 

Sharp, F.R., Tomitaka, M., Bernaudin, M., & Tomitaka, S. (2001) Psychosis: pathological 
activation of limbic thalamocortical circuits by psychomimetics and schizophrenia? Trends 
Neurosci., 24, 330–334. 

Sheng, M., Cummings, J., Roldan, L.A., Jan, Y.N., & Jan, L.Y. (1994) Changing subunit 
composition of heteromeric NMDA receptors during development of rat cortex. Nature, 368, 144–
147. 

Shi, N., Ye, S., Alam, A., Chen, L., & Jiang, Y. (2006) Atomic structure of a Na+- and K+-
conducting channel. Nature, 440, 570–574. 

Siegler Retchless, B., Gao, W., & Johnson, J.W. (2012) A single GluN2 subunit residue controls 
NMDA receptor channel properties via intersubunit interaction. Nat. Neurosci., 15, 406–13, S1. 

Single, F.N., Rozov, A., Burnashev, N., Zimmermann, F., Hanley, D.F., Forrest, D., Curran, T., 
Jensen, V., Hvalby, O., Sprengel, R., & Seeburg, P.H. (2000) Dysfunctions in mice by NMDA 
receptor point mutations NR1(N598Q) and NR1(N598R). J. Neurosci., 20, 2558–2566. 

Sinor, J.D., Du, S., Venneti, S., Blitzblau, R.C., Leszkiewicz, D.N., Rosenberg, P.A., & Aizenman, 
E. (2000) NMDA and glutamate evoke excitotoxicity at distinct cellular locations in rat cortical 
neurons in vitro. J. Neurosci., 20, 8831–8837. 

Skeberdis, V.A., Chevaleyre, V., Lau, C.G., Goldberg, J.H., Pettit, D.L., Suadicani, S.O., Lin, Y., 
Bennett, M.V.L., Yuste, R., Castillo, P.E., & Zukin, R.S. (2006) Protein kinase A regulates calcium 
permeability of NMDA receptors. Nat. Neurosci., 9, 501–510. 

Sobolevsky, A. & Koshelev, S. (1998) Two blocking sites of amino-adamantane derivatives in 
open N-methyl-D-aspartate channels. Biophys. J., 74, 1305–1319. 

Sobolevsky, A.I. (2000) Quantitative analysis of tetrapentylammonium-induced blockade of open 
N-methyl-D-aspartate channels. Biophys. J., 79, 1324–1335. 

Sobolevsky, A.I., Koshelev, S.G., & Khodorov, B.I. (1998) Interaction of memantine and 
amantadine with agonist-unbound NMDA-receptor channels in acutely isolated rat hippocampal 
neurons. J. Physiol. (Lond.), 512 ( Pt 1), 47–60. 

Sobolevsky, A.I., Koshelev, S.G., & Khodorov, B.I. (1999) Probing of NMDA channels with fast 
blockers. J. Neurosci., 19, 10611–10626. 

Sobolevsky, A.I., Rosconi, M.P., & Gouaux, E. (2009) X-ray structure, symmetry and mechanism 
of an AMPA-subtype glutamate receptor. Nature, 462, 745–756. 

Sobolevsky, A.I. & Yelshansky, M.V. (2000) The trapping block of NMDA receptor channels in 
acutely isolated rat hippocampal neurones. J. Physiol. (Lond.), 526 Pt 3, 493–506. 



 

229 

 

Sommer, B., Köhler, M., Sprengel, R., & Seeburg, P.H. (1991) RNA editing in brain controls a 
determinant of ion flow in glutamate-gated channels. Cell, 67, 11–19. 

Song, X., Jensen, M.Ø., Jogini, V., Stein, R.A., Lee, C.-H., Mchaourab, H.S., Shaw, D.E., & 
Gouaux, E. (2018) Mechanism of NMDA receptor channel block by MK-801 and memantine. 
Nature, 556, 515–519. 

Sonkusare, S.K., Kaul, C.L., & Ramarao, P. (2005) Dementia of Alzheimer’s disease and other 
neurodegenerative disorders--memantine, a new hope. Pharmacol. Res., 51, 1–17. 

Sornarajah, L., Vasuta, O.C., Zhang, L., Sutton, C., Li, B., El-Husseini, A., & Raymond, L.A. (2008) 
NMDA receptor desensitization regulated by direct binding to PDZ1-2 domains of PSD-95. J. 
Neurophysiol., 99, 3052–3062. 

Sousa, S.F., Fernandes, P.A., & Ramos, M.J. (2006) Protein-ligand docking: current status and 
future challenges. Proteins, 65, 15–26. 

Spruston, N., Jonas, P., & Sakmann, B. (1995) Dendritic glutamate receptor channels in rat 
hippocampal CA3 and CA1 pyramidal neurons. J. Physiol. (Lond.), 482 ( Pt 2), 325–352. 

Standley, S. & Baudry, M. (2000) The role of glycosylation in ionotropic glutamate receptor ligand 
binding, function, and trafficking. Cell Mol. Life Sci., 57, 1508–1516. 

Stein, I.S., Gray, J.A., & Zito, K. (2015) Non-Ionotropic NMDA Receptor Signaling Drives Activity-
Induced Dendritic Spine Shrinkage. J. Neurosci., 35, 12303–12308. 

Stroebel, D., Carvalho, S., Grand, T., Zhu, S., & Paoletti, P. (2014) Controlling NMDA receptor 
subunit composition using ectopic retention signals. J. Neurosci., 34, 16630–16636. 

Stroebel, D., Casado, M., & Paoletti, P. (2018) Triheteromeric NMDA receptors: from structure to 
synaptic physiology. Curr. Opin. Physiol., 2, 1–12. 

Sun, W., Hansen, K.B., & Jahr, C.E. (2017) Allosteric Interactions between NMDA Receptor 
Subunits Shape the Developmental Shift in Channel Properties. Neuron, 94, 58–64.e3. 

Swanger, S.A., Vance, K.M., Acker, T.M., Zimmerman, S.S., DiRaddo, J.O., Myers, S.J., 
Bundgaard, C., Mosley, C.A., Summer, S.L., Menaldino, D.S., Jensen, H.S., Liotta, D.C., & 
Traynelis, S.F. (2018) A Novel Negative Allosteric Modulator Selective for GluN2C/2D-Containing 
NMDA Receptors Inhibits Synaptic Transmission in Hippocampal Interneurons. ACS Chem. 
Neurosci., 9, 306–319. 

Tajima, N., Karakas, E., Grant, T., Simorowski, N., Diaz-Avalos, R., Grigorieff, N., & Furukawa, 
H. (2016) Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature, 
534, 63–68. 

Thomas, C.G., Krupp, J.J., Bagley, E.E., Bauzon, R., Heinemann, S.F., Vissel, B., & Westbrook, 
G.L. (2006) Probing N-methyl-D-aspartate receptor desensitization with the substituted-cysteine 
accessibility method. Mol. Pharmacol., 69, 1296–1303. 



 

230 

 

Tong, G. & Jahr, C.E. (1994) Regulation of glycine-insensitive desensitization of the NMDA 
receptor in outside-out patches. J. Neurophysiol., 72, 754–761. 

Tong, G., Shepherd, D., & Jahr, C.E. (1995) Synaptic desensitization of NMDA receptors by 
calcineurin. Science, 267, 1510–1512. 

Tovar, K.R., McGinley, M.J., & Westbrook, G.L. (2013) Triheteromeric NMDA receptors at 
hippocampal synapses. J. Neurosci., 33, 9150–9160. 

Tovar, K.R. & Westbrook, G.L. (1999) The incorporation of NMDA receptors with a distinct subunit 
composition at nascent hippocampal synapses in vitro. J. Neurosci., 19, 4180–4188. 

Tran, V., Park, M.C.H., & Stricker, C. (2018) An improved measurement of the Ca2+-binding 
affinity of fluorescent Ca2+ indicators. Cell Calcium, 71, 86–94. 

Traynelis, S.F., Wollmuth, L.P., McBain, C.J., Menniti, F.S., Vance, K.M., Ogden, K.K., Hansen, 
K.B., Yuan, H., Myers, S.J., & Dingledine, R. (2010) Glutamate receptor ion channels: structure, 
regulation, and function. Pharmacol. Rev., 62, 405–496. 

Trott, O. & Olson, A.J. (2010) AutoDock Vina: improving the speed and accuracy of docking with 
a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 31, 455–
461. 

Twomey, E.C. & Sobolevsky, A.I. (2018) Structural mechanisms of gating in ionotropic glutamate 
receptors. Biochemistry, 57, 267–276. 

Twomey, E.C., Yelshanskaya, M.V., Grassucci, R.A., Frank, J., & Sobolevsky, A.I. (2017) 
Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature, 549, 60–
65. 

Twomey, E.C., Yelshanskaya, M.V., Vassilevski, A.A., & Sobolevsky, A.I. (2018) Mechanisms of 
Channel Block in Calcium-Permeable AMPA Receptors. Neuron, 99, 956–968.e4. 

Tymianski, M., Charlton, M.P., Carlen, P.L., & Tator, C.H. (1993) Source specificity of early 
calcium neurotoxicity in cultured embryonic spinal neurons. J. Neurosci., 13, 2085–2104. 

Urakubo, H., Honda, M., Froemke, R.C., & Kuroda, S. (2008) Requirement of an allosteric kinetics 
of NMDA receptors for spike timing-dependent plasticity. J. Neurosci., 28, 3310–3323. 

Vargas-Caballero, M. & Robinson, H.P.C. (2003) A slow fraction of Mg2+ unblock of NMDA 
receptors limits their contribution to spike generation in cortical pyramidal neurons. J. 
Neurophysiol., 89, 2778–2783. 

Vicini, S., Wang, J.F., Li, J.H., Zhu, W.J., Wang, Y.H., Luo, J.H., Wolfe, B.B., & Grayson, D.R. 
(1998) Functional and pharmacological differences between recombinant N-methyl-D-aspartate 
receptors. J. Neurophysiol., 79, 555–566. 

Villarroel, A., Regalado, M.P., & Lerma, J. (1998) Glycine-independent NMDA receptor 
desensitization: localization of structural determinants. Neuron, 20, 329–339. 



 

231 

 

Vissel, B., Krupp, J.J., Heinemann, S.F., & Westbrook, G.L. (2002) Intracellular domains of NR2 
alter calcium-dependent inactivation of N-methyl-D-aspartate receptors. Mol. Pharmacol., 61, 
595–605. 

von Engelhardt, J., Coserea, I., Pawlak, V., Fuchs, E.C., Köhr, G., Seeburg, P.H., & Monyer, H. 
(2007) Excitotoxicity in vitro by NR2A- and NR2B-containing NMDA receptors. 
Neuropharmacology, 53, 10–17. 

Vorobjev, V.S. & Sharonova, I.N. (1994) Tetrahydroaminoacridine blocks and prolongs NMDA 
receptor-mediated responses in a voltage-dependent manner. Eur. J. Pharmacol., 253, 1–8. 

Vyklický, L. (1993) Calcium-mediated modulation of N-methyl-D-aspartate (NMDA) responses in 
cultured rat hippocampal neurones. J. Physiol. (Lond.), 470, 575–600. 

Vyklicky, V., Stanley, C., Habrian, C., & Isacoff, E.Y. (2021) Conformational rearrangement of the 
NMDA receptor amino-terminal domain during activation and allosteric modulation. Nat. 
Commun., 12, 2694. 

Wang, R. & Reddy, P.H. (2017) Role of glutamate and NMDA receptors in alzheimer’s disease. 
J. Alzheimers Dis., 57, 1041–1048. 

Watanabe, M., Inoue, Y., Sakimura, K., & Mishina, M. (1992) Developmental changes in 
distribution of NMDA receptor channel subunit mRNAs. Neuroreport, 3, 1138–1140. 

Wenk, G.L., Parsons, C.G., & Danysz, W. (2006) Potential role of N-methyl-D-aspartate receptors 
as executors of neurodegeneration resulting from diverse insults: focus on memantine. Behav. 
Pharmacol., 17, 411–424. 

Widman, A.J. & McMahon, L.L. (2018) Disinhibition of CA1 pyramidal cells by low-dose ketamine 
and other antagonists with rapid antidepressant efficacy. Proc. Natl. Acad. Sci. USA, 115, E3007–
E3016. 

Witt, A., Macdonald, N., & Kirkpatrick, P. (2004) Memantine hydrochloride. Nat Rev Drug Discov, 
3, 109–110. 

Woodhull, A.M. (1973) Ionic blockage of sodium channels in nerve. J. Gen. Physiol., 61, 687–
708. 

Wright, J.M. & Nowak, L.M. (1992) Effects of low doses of bicuculline on N-methyl-D-aspartate 
single-channel kinetics are not evident in whole-cell currents. Mol. Pharmacol., 41, 900–907. 

Wroge, C.M., Hogins, J., Eisenman, L., & Mennerick, S. (2012) Synaptic NMDA receptors mediate 
hypoxic excitotoxic death. J. Neurosci., 32, 6732–6742. 

Wyllie, D.J., Béhé, P., & Colquhoun, D. (1998) Single-channel activations and concentration 
jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors. J. Physiol. 
(Lond.), 510 ( Pt 1), 1–18. 

Wyllie, D.J.A., Livesey, M.R., & Hardingham, G.E. (2013) Influence of GluN2 subunit identity on 
NMDA receptor function. Neuropharmacology, 74, 4–17. 



 

232 

 

Wyszynski, M., Lin, J., Rao, A., Nigh, E., Beggs, A.H., Craig, A.M., & Sheng, M. (1997) 
Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature, 385, 439–
442. 

Xia, P., Chen, H.V., Zhang, D., & Lipton, S.A. (2010) Memantine preferentially blocks 
extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J. Neurosci., 30, 
11246–11250. 

Yamazaki, M., Araki, K., Shibata, A., & Mishina, M. (1992) Molecular cloning of a cDNA encoding 
a novel member of the mouse glutamate receptor channel family. Biochem. Biophys. Res. 
Commun., 183, 886–892. 

Yan, J., Bengtson, C.P., Buchthal, B., Hagenston, A.M., & Bading, H. (2020) Coupling of NMDA 
receptors and TRPM4 guides discovery of unconventional neuroprotectants. Science, 370. 

Yi, F., Traynelis, S.F., & Hansen, K.B. (2017) Selective Cell-Surface Expression of Triheteromeric 
NMDA Receptors. Methods Mol. Biol., 1677, 145–162. 

Yi, F., Zachariassen, L.G., Dorsett, K.N., & Hansen, K.B. (2018) Properties of triheteromeric 
NMDA receptors containing two distinct GluN1 isoforms. Mol. Pharmacol., 93, 453–467. 

Yuan, H., Low, C.-M., Moody, O.A., Jenkins, A., & Traynelis, S.F. (2015) Ionotropic GABA and 
glutamate receptor mutations and human neurologic diseases. Mol. Pharmacol., 88, 203–217. 

Zanos, P., Moaddel, R., Morris, P.J., Georgiou, P., Fischell, J., Elmer, G.I., Alkondon, M., Yuan, 
P., Pribut, H.J., Singh, N.S., Dossou, K.S.S., Fang, Y., Huang, X.-P., Mayo, C.L., Wainer, I.W., 
Albuquerque, E.X., Thompson, S.M., Thomas, C.J., Zarate, C.A., & Gould, T.D. (2016) NMDAR 
inhibition-independent antidepressant actions of ketamine metabolites. Nature, 533, 481–486. 

Zhang, S., Ehlers, M.D., Bernhardt, J.P., Su, C.T., & Huganir, R.L. (1998) Calmodulin mediates 
calcium-dependent inactivation of N-methyl-D-aspartate receptors. Neuron, 21, 443–453. 

Zhao, X., Marszalec, W., Toth, P.T., Huang, J., Yeh, J.Z., & Narahashi, T. (2006) In vitro 
galantamine-memantine co-application: mechanism of beneficial action. Neuropharmacology, 51, 
1181–1191. 

Zheng, F., Erreger, K., Low, C.M., Banke, T., Lee, C.J., Conn, P.J., & Traynelis, S.F. (2001) 
Allosteric interaction between the amino terminal domain and the ligand binding domain of NR2A. 
Nat. Neurosci., 4, 894–901. 

Zheng, F., Gingrich, M.B., Traynelis, S.F., & Conn, P.J. (1998) Tyrosine kinase potentiates NMDA 
receptor currents by reducing tonic zinc inhibition. Nat. Neurosci., 1, 185–191. 

Zheng, W., Li, X.H., Yang, X.H., Cai, D.B., Ungvari, G.S., Ng, C.H., Wang, S.B., Wang, Y.Y., 
Ning, Y.P., & Xiang, Y.T. (2018) Adjunctive memantine for schizophrenia: a meta-analysis of 
randomized, double-blind, placebo-controlled trials. Psychol. Med., 48, 72–81. 

Zhong, J., Carrozza, D.P., Williams, K., Pritchett, D.B., & Molinoff, P.B. (1995) Expression of 
mRNAs encoding subunits of the NMDA receptor in developing rat brain. J. Neurochem., 64, 531–
539. 



 

233 

 

Zhong, J., Russell, S.L., Pritchett, D.B., Molinoff, P.B., & Williams, K. (1994) Expression of mRNAs 
encoding subunits of the N-methyl-D-aspartate receptor in cultured cortical neurons. Mol. 
Pharmacol., 45, 846–853. 

Zhou, H.-Y., Chen, S.-R., & Pan, H.-L. (2011) Targeting N-methyl-D-aspartate receptors for 
treatment of neuropathic pain. Expert Rev Clin Pharmacol, 4, 379–388. 

Zhou, Q. & Sheng, M. (2013) NMDA receptors in nervous system diseases. Neuropharmacology, 
74, 69–75. 

Zhou, X., Hollern, D., Liao, J., Andrechek, E., & Wang, H. (2013) NMDA receptor-mediated 
excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors. Cell Death 
Dis., 4, e560. 

Zorumski, C.F. & Olney, J.W. (1993) Excitotoxic neuronal damage and neuropsychiatric 
disorders. Pharmacol. Ther., 59, 145–162. 

 


	TITLE PAGE
	ABSTRACT
	COMMITTEE MEMBERSHIP PAGE
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	PREFACE
	1.0 GENERAL INTRODUCTION
	1.1  ION CHANNEL GATING
	1.1.1 Reciprocal interactions between channel block and channel gating
	Figure 1. Interplay between channel gating and open channel block.


	1.2 IONOTROPIC GLUTAMATE RECEPTORS
	1.3  NMDA RECEPTORS
	Figure 2. General NMDAR structure and putative blocking site.
	1.3.1 Diversity of NMDAR subunits
	1.3.2 NMDAR-mediated Ca2+ influx – a double-edged sword

	1.4  NMDA RECEPTOR CHANNEL BLOCK
	1.4.1 Sequential blockers of NMDARs prevent channel closure and agonist dissociation
	1.4.2 Channel block by Mg2+ does not appear to affect NMDAR state transitions
	1.4.3 Trapping channel blockers modulate NMDAR state transitions
	Table 1. NMDAR channel blockers and their effects on gating.


	1.5  PHARMACOLOGICAL TARGETING OF SPECIFIC NMDARS STATES
	1.5.1 Targeting NMDA receptor desensitization


	2.0 CA2+-DEPENDENT DESENSITIZATION REGULATES SUBTYPE-SPECIFIC BLOCK OF NMDA RECEPTORS BY MEMANTINE
	2.1 OVERVIEW
	2.2 INTRODUCTION
	2.3 MATERIALS AND METHODS
	2.3.1 Cell culture and transfection
	2.3.2 Electrophysiology
	2.3.3 Intracellular solution preparation and determination of free [Ca2+]
	2.3.4 Analysis
	Table 2. Ligand Optimization Method parameters.
	Figure 3. Ligand Optimization Method.
	Table 3. Measured [Ca2+]F values  Ca2+-Buffer solutions.


	2.4 RESULTS
	2.4.1 Ca2+-dependent block of GluN1/2A receptors by memantine
	Figure 4. Ca2+-dependent block of GluN1/2A receptors by memantine.

	2.4.2 Ca2+-dependent desensitization is required for Ca2+-dependent block of GluN1/2A receptors by memantine
	Figure 5. The GluN1 C-terminal domain is required for enhancement of GluN1/2A receptor Ca2+-dependent desensitization by memantine.
	Figure 6. Ca2+dependent block by memantine requires the GluN1 C-terminal domain.

	2.4.3   [Ca2+]i-dependent block by memantine depends on receptor subtype
	Figure 7. GluN2 subunit identity determines the effect of [Ca2+]i on memantine potency and NMDAR desensitization.
	Table 4. Memantine block and desensitization of GluN1/2 diheteromeric receptors in low and high [Ca2+]i.

	2.4.4 The relation between Ca2+-dependent channel block and Ca2+-dependent desensitization depends on NMDAR subtype
	Figure 8. Desensitization, but not memantine inhibition, of GluN1/2A receptors depends on duration of exposure to high [Ca2+]i.
	Figure 9. Desensitization, but not memantine inhibition, of GluN1/2B receptors depends on duration of exposure to high [Ca2+]i

	2.4.5 Ca2+-dependent block of native NMDARs by memantine
	Figure 10. Memantine inhibition of native NMDARs is [Ca2+]i-dependent.


	2.5 DISCUSSION

	3.0 STRUCTURAL BASIS OF CA2+-DEPENDENT CHANNEL BLOCK OF NMDA RECEPTORS BY MEMANTINE
	3.1 OVERVIEW
	3.2 INTRODUCTION
	3.3 MATERIALS AND METHODS
	3.3.1 Molecular modeling
	3.3.2 Cell culture and transfection
	3.3.3 Electrophysiology
	3.3.4 Intracellular solution preparation
	3.3.5 Analysis

	3.4 RESULTS
	3.4.1 GluN2A residue 641 is predicted to interact with memantine, but not ketamine
	Figure 11. Docking of memantine and ketamine to 2017 GluN1/2A TMD model.
	Figure 12. GluN2A F641 influences memantine potency but not ketamine potency.

	3.4.2 Size of GluN2A residue 641 influences inhibition by memantine, but not ketamine
	Figure 13. Size of GluN2A residue 641 influences memantine, but not ketamine, potency.

	3.4.3 GluN2A residue 641 regulates memantine binding via inter-subunit interactions
	Figure 14. Mutation of GluN2A residue 641 affects dynamics of GluN1 M641.

	3.4.4 GluN2A residue 641 plays a key role in both Ca2+-independent and Ca2+-dependent desensitization of NMDARs
	Figure 15. Mutation of GluN2A(F641) alters NMDAR desensitization.
	Figure 16. Size of GluN2A residue 641 plays a key role in [Ca2+]i-dependent desensitization.
	Table 5. Memantine block and desensitization of WT and GluN1/2A(F641) mutant receptors.

	3.4.5  GluN2A residue 641 contributes to the effects of [Ca2+]i on desensitization and memantine inhibition of NMDARs
	Figure 17. GluN2A residue 641 influences [Ca2+]i-dependent desensitization and the [Ca2+]i dependence of memantine inhibition.


	3.5 DISCUSSION

	4.0 ELECTROPHYSIOLOGICAL CHARACTERIZATION OF NOVEL NMDA RECEPTOR CHANNEL BLOCKING COMPOUNDS
	4.1 OVERVIEW
	4.2 INTRODUCTION
	Figure 18. Structure of memantine and novel channel blockers.

	4.3 MATERIALS AND METHODS
	4.3.1 Cell culture and transfection
	4.3.2 Solution preparation
	4.3.3 Electrophysiology
	4.3.4 Analysis
	4.3.5 Molecular modeling

	4.4 RESULTS
	4.4.1 Characteristics of NMDAR inhibition by EV-19
	Figure 19. Characteristics of GluN1/2A receptor channel block by EV-19.

	4.4.2 Concentration and voltage dependence of NMDAR inhibition by memantine analogues
	Figure 20. Concentration and voltage dependence of NMDAR inhibition by memantine.
	Figure 21. Concentration and voltage dependence of NMDAR inhibition by RL-202.
	Figure 22. Concentration and voltage dependence of NMDAR inhibition by RL-208.
	Figure 23. Concentration and voltage dependence of NMDAR inhibition by MFV-4.
	Figure 24. Comparison of NMDAR channel blocker properties.
	Table 6. IC50 and voltage dependence of inhibition for memantine and novel channel blockers.

	4.4.3 Docking predicts overlapping binding sites for RL compounds and memantine
	Figure 25. Predicted binding sites of memantine, RL-202, and RL-208.

	4.4.4 [Ca2+]i dependence of inhibition by RL-208
	Figure 26. Inhibition by RL-208 depends on [Ca2+]i.


	4.5 DISCUSSION

	5.0 GENERAL DISCUSSION
	5.1  MULTIPLE MECHANISMS OF, AND NAMES FOR, CA2+-DEPENDENT DESENSITIZATION
	5.2 STRUCTURAL UNDERPINNINGS OF [CA2+]I-DEPENDENT CHANNEL BLOCK
	5.3 LIMITATIONS OF MOLECULAR MODELING
	5.4 THERAPEUTIC RELEVANCE OF STATE-SPECIFIC NMDAR INHIBITION
	5.5 FUTURE DIRECTIONS

	APPENDIX A
	APPENDIX B
	REFERENCES

