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Data-driven models have been widely adopted in solving operations research (OR) prob-

lems, especially those from real applications where the distributions of the random variables

are unknown. Note that these models are mainly inspired by methods from statistics and

machine learning communities. However, many features in the OR problems place additional

challenges in formulating and modeling. These challenges make models that are directly bor-

rowed from other communities less efficient or even invalid. In this dissertation, we examine

four typical OR problems, where they face challenges arising from the small data, complex

objective function, incomplete data, and nonstationary data, respectively.

The first problem is chance-constrained programming under a small-data regime. We

propose one upper bound on the performance of the commonly used scenario approach. To

address the poor performance implied by this upper bound, we propose a new model with

better performance. This model demonstrates a clear physical interpretation and a simple

linear/conic formulation. Moreover, it is shown to be equivalent to distributionally robust

chance-constrained programming under a specific setting. The second problem is maximum

weight cycle and chain packing with inhomogeneous edge existence uncertainty. We fill a

major gap observed in prior studies by proposing the first scalable model to solve this prob-

lem. The proposed model is a mixed-integer linear program, which can be solved directly

by a general-purpose integer programming solver. The third problem studied is distribu-

tionally robust optimization (DRO) with incomplete joint data. We develop a new DRO

framework with incomplete data sets. It presents an integrated framework to jointly analyze

missing data and stochastic decision-making, which enables us to derive theoretical guaran-

tees on the performance of stochastic programming under incomplete data. Several kinds of

ambiguity sets are also discussed. Finally, we examined an inventory problem with highly

unpredictable nonstationary demand. The demand is considered nonstationary and assumed

that future demand cannot be reliably predicted through historical features or data. Man-
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agers can only make decisions based on sequentially observed demand in an online fashion.

We propose methods based on the idea of distinguishing the stochasticity/randomness and

demand distribution changes among the sequentially observed demand.

Keywords: data-driven decision-making, distributionally robust optimization, stochastic

programming, machine learning.
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1.0 Introduction

Data analytics has been introduced in operations research and has achieved a great

success in supply chain management [2, 56], revenue management [50, 68], and healthcare

management [102, 7]. Compared to the problems in the machine learning community, which

signifies the most prosperous field for data-driven models, the problems in operations re-

search (OR) face unique challenges. These challenges prevent decision-makers from direct

extending existing data-driven models from the machine learning community to OR prob-

lems. Therefore, it is of great interest and necessity to develop novel data-driven OR models

to overcome these challenges. In this study, we will explore four common challenges en-

countered in data-driven models of OR. We develop models as well as efficient algorithms

to overcome these challenges. Concrete applications from supply chain management and

healthcare management are utilized to validate the proposed approaches.

We discuss challenges arising from four categories, which are challenges brought by the

small data, complex objective function, incomplete data, and non-stationary data. For

these topics, we study the following four specific problems. The first problem is data-driven

chance constrained programming, where the number of data is very limited. The key idea

of data-driven chance constrained programming is to extract relevant information of the

random variable from its available data and solve the optimization problems correspondingly.

Computational experience suggests that with well-chosen methods and enough observed

data, data-driven chance constrained programming yields tractable optimization problems

whose solutions achieve a good balance between performances and risks. However, in many

real-world applications, the number of available data is very limited. For example, some

real system naturally produces a small number of data because the decision-relevant events

are rare but high-impact, like supply chain disruptions due to earthquakes or hurricanes.

Secondly, many real-world systems are usually non-stationary, indicating that they change

their underlying distributions before they generate sufficient data. This is often observed as

seasonal changes in many fields like portfolio optimization, supply chain design, etc. Thirdly,

decision-makers prefer to and sometimes have to take early and proactive decisions before a
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large amount of data are available. All these factors have motivated a shift of thinking away

from big data towards a small-data paradigm. We show that the widely used sample average

approximation (SAA) and scenario approach (SA) can be very problematic when the data

number is small. We propose a novel framework that greatly improves the performances.

The second problem is a data-driven kidney exchange problem, where the unknown

random variable affects the topology of a network. More specifically, the unknown random

variables represent whether arcs in a graph exist or not. This behavior results in the complex

objective function, which prevents decision-makers from obtaining well-structured convex

optimization problems. Researchers formulated this problem as a maximum weight cycle

and chain packing problem in former studies. However, they all fail to obtain tractable

models. The existing models depend on heuristics to enumerate all possible cases to solve

this problem. We formulate a relevant non-convex optimization problem and propose a

tractable mixed-integer linear programming reformulation to solve it. In addition, we propose

a model that integrates both risks and the expected utilities of the matching by incorporating

conditional value at risk (CVaR) into the objective function, providing a robust formulation

for this problem. Subsequently, we propose an SAA based approach to solve this problem.

We test our approaches on data from the United Network for Organ Sharing (UNOS) and

compare them against state-of-the-art approaches. Our model provides better performance

with the same running time as a leading deterministic approach.

For the third problem, we focus on one state-of-the-art methodology, i.e., distribution-

ally robust optimization, where the available data is incomplete. The motivation comes from

the fact that the state-of-the-art approaches solve the missing data problem and stochastic

programming separately. This leads to heuristic approaches with no theoretical guaran-

tees. Regardless of the rigorousness of this conventional strategy, it overlooks one critical

fact of an optimization model: its optimal solution is often very sensitive to parameters.

Hence, instead of depending on enormous data and sophisticated statistical methods to

ensure accurate estimations, a distributionally robust optimization (DRO) framework that

simultaneously tackles the missing data problem and data-driven stochastic optimization is

proposed. Existing DRO methods all require the data to be complete. We propose ambigu-

ity sets directly based on the incomplete data set and prove the statistical consistency and

2



finite sample guarantees of the corresponding models.

Finally, we focus on the non-stationary data. The real-world data are rarely stationary

in OR applications. In this research, we study one inventory control problem, where the

stochastic demand is not only non-stationary, but also cannot be reliably predicted due to

some unprecedented situations. It follows different distributions in different periods with

unknown transition properties. Although this problem is encountered by many companies

in practice, existing literature rarely studies it due to the complexity involved. We view

this problem from a data science perspective and propose new data-driven frameworks.

The proposed methods include a parametric approach called Integrated-Bayesian (IB) and

a non-parametric approach called separate-lasso (SL). Both methods are theoretically an-

alyzed and empirically benchmarked against several state-of-the-art heuristics in different

data environments. We show that our methods outperform existing methods by identifying

weather observed changes in the daily demand are caused by stochasticity/randomness or

demand season/distribution changes. Because the optimal policy is unobtainable, we defined

a relaxed setting by assuming the demand knowledge in advance. Then, we derive a policy,

OPT, based on the literature. The empirical results reveal that the cost of the proposed

approaches is only 12% higher than that of OPT on average. Furthermore, we compare

the proposed approaches with state-of-the-art heuristics and also apply them to real-world

demand data from one of the world’s largest e-commerce websites.

In the next chapter, we review the relevant literature. In Chapter 3, we study data-

driven chance constrained programming under a small data regime. In Chapter 4, we study

a data-driven kidney exchange problem. In Chapter 5, we study distributionally robust

optimization with incomplete data. Finally, in Chapter 6, we study inventory management

with highly unpredictable nonstationary demand.

3



2.0 Literature review

This research covers a variety of data-driven problems studied in OR. Below, we review

their related works starting from general data-driven optimization. We then discuss two

specific data-driven scenarios, i.e., chance constrained programming and optimization with

incomplete data. Finally, we review two applications, including inventory management under

nonstationary demand and kidney exchange under failures.

2.1 Data-driven Optimization Under Uncertainty

Data-driven optimization has gained much attention recently because real-world data

distributions are usually unknown. Sample average approximation [114, 72] approximates the

unknown distribution through empirical distributions. If the data samples of true unknown

distributions can be generated efficiently, the optimal solution of SAA converges to the true

optimal with the probability 1. Stochastic approximation (SA) [94] is a similar approach

comparing to SAA and is also based on Monte Carlo sampling. It iteratively performs

sub-gradient descent based on the observed samples to approach the true optimal solutions.

The min-max learning frameworks have gain popularity recently as they produce robust

solutions that potentially improve out-of-sample performances. These frameworks appear

in data-driven robust optimization [14] and distributionally robust optimization [37, 47]

problems. In these works, the ambiguity sets are constructed from the available data based on

different ways, for example, moment-based set [37], confidence-region-based set [13], metric-

based set [47, 70, 107] and others [131, 33]. These ideas are also extended and explored in

two-stage stochastic decision-making schemes [64, 136, 71, 32].
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2.2 Optimization Under Missing Data

Missing or incomplete data has been studied widely, especially in machine learning and

statistics [108, 55, 61] literature. One of the most natural options to solve the missing data

problem is to discard any data that include missing values. However, this approach may

lead to biased results [83] or result in the loss of information.

For incorporating incomplete data into the decision-making process, the two most com-

mon and well-developed methods are data imputation and maximum likelihood-based ap-

proaches. The data imputation approaches recover the incomplete data set by estimating

missing values based on the observed data. The criteria are often developed based on the

decision trees [122], support vector regression [130], neural networks [96], etc. The maxi-

mum likelihood-based approaches ideally work for parametric models with missing but rel-

atively complete data. These techniques often aim to find a distribution that maximizes

the observed-data likelihood [82] or seeks EM algorithms [38] because computational issues

concerning non-convex optimization may arise [43].

The statistical approaches developed above solely focus on incomplete data sets. When

these approaches are combined with stochastic optimization models, the performances are

unclear. In this research, we present a new model based on distributionally robust opti-

mization. Instead of first estimating the unknown distribution from the incomplete data

set, we propose integrated models to address the missing data issue and to find optimal

decisions simultaneously. This allows our model to guarantee out-of-sample performances

theoretically.

2.3 Data-driven Chance Constrained Programming

There are three state-of-the-art data-driven approaches, i.e., scenario approach, sample

average approximation, and distributionally robust chance constrained programming. We

next briefly summarize their respective features and weakness, which substantiates our ar-

gument that new modeling and associated computational tools should be developed. The
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scenario approach [24, 25, 27] and sample approximation approach [86, 98] represent the

two most widely studied data-driven methods. Scenario approach requires all samples to

satisfy the chance constraints, which yields simple and tractable mathematical formulations.

However, it relies on sampling enough data to generate high-performance solutions, indicat-

ing that its performance may not be acceptable under a small-data case. Indeed, we derive

in this paper a theoretical upper bound on the probability of the solution derived by the

scenario approach that satisfies the original chance constraints for a given set of samples,

the first one in the literature to the best of our knowledge. For example, when the number

of samples is less than 1
ε

with the violation probability ε less than 0.1, this upper bound

on the probability of the chance constraint is satisfied is less than 0.66. It, therefore, indi-

cates that with more than one-third of the cases, the original chance constraint fails to hold,

which definitely is not desired in practice. Regarding SAA, it is a method similar to scenario

approach, which actually requires a subset of the samples, instead of all of them, to satisfy

the chance constraint. Hence, the probability of its solution satisfying the original chance

constraints is naturally upper bounded by that of scenario approach.

Compared to these two approaches, distributionally robust chance constrained program

(DRCCP) is a recent approach in the literature. We note that it has a much better perfor-

mance for small-data cases. It first constructs a parameterized ambiguity set; then, it derives

a solution according to its performance in the worst-case distributions in that ambiguity set.

The state-of-the-art DRCCP uses the Wasserstein balls to define ambiguity sets. By selecting

appropriate radiuses of balls, the out-of-sample performance is improved compared to SAA.

However, DRCCP suffers from complicated and even intractable formulations, which makes

them difficult to implement in practice. Although recent progress in the literature identifies

some specific settings for which tractable reformulations can be obtained, these conditions

are way too restricted for many practical problems. In [134, 31], single and joint chance

constraints with linear uncertainties in the right-hand or left-hand side are studied. They

show that when the support of the random variable is continuous and unbounded, tractable

reformulations can be obtained. Compared to these two works, [69] also considers the cases

with known and discrete support.
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2.4 Kidney Exchange Under Failures

We here review the basic concepts of kidney exchange problem. Kidney exchange is a

centralized barter market were patients with end-stage renal disease trade willing donors in

cyclic or chain-like transactions [101, 105, 1]. The aim of the kidney exchange clearinghouse

is to find the “best” disjoint set of such swaps—i.e., to solve a cycle and chain packing

problem. Exchanges already account for over 12% of living kidney donations in the US,

and exchange programs are growing worldwide [17]—including via extensions to liver and

lung [48], and even multi-organ [42], exchange. Fielded exchanges face several source of

inefficiency, primarily due to pre-transplant “failure” [76]; that is, most planned transplants

never result in transplantation due to medical or logistical incompatability [41, 57, 5, 4, 39,

59, 88, 73, 3]. In other words, the exchange program cannot be certain whether a compatible

patient and donor will result in a transplant. Exchanges are often represented by directed

graphs (see Section 4.2), where edges indicate potential transplants and edge weights reflect

the medical or social utility of the transplant. If a planned transplant (i.e., edge) fails, its

effects can cascade through the exchange, causing other edges to fail (see Section ??)—thus,

edge failures can severely impact the overall utility of an exchange.

2.5 Data-driven Inventory Management.

Recently, data-driven models have attracted significant attention in the field of inventory

management. Here, we review these studies based on the techniques adopted for handling

data. SAA is the most natural nonparametric data-driven approach [78, 77], which uses the

empirical probability density function to solve the original problem by optimizing the average

objective values over all available data. Adaptive learning frameworks [23, 74, 67, 117] have

been extensively studied in inventory management and are mostly based on stochastic ap-

proximation frameworks. These methods include information of each piece of observed data

by using gradient descent-based steps. Novel approximation methods are often combined to

alleviate the assumptions or improve performance [58, 66].
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Other data-driven frameworks have also been developed to solve different inventory prob-

lems. For example, the operational statistics proposed in [84] are used to solve the newsven-

dor problem and is a parametric approach which assumes that the demand distribution comes

from a family of distributions parameterized by some unknown parameters. It finds these

unknown parameters by combining the optimization and estimation steps to obtain better

results than the statistics derived from separate analyses. [16] proposed forecasting-based

frameworks where they recommended two data-driven frameworks comprising a regression

model and a linear optimization model to set safety stock levels in the newsvendor problem

by incorporating other external factors when forecasting a demand. [109] introduced the

feature-based newsvendor problem and studied it from a machine learning perspective. Two

approaches were proposed and compared for cases with small and big data, which derived

tight generalization error bounds on the expected out-of-sample cost.

Inventory management under nonstationary demand. We classify existing studies

into three categories according to the methods they adopt for handling nonstationary de-

mand. In the first category, the nonstationary demand is explicitly defined, implying that

the demand mechanism is assumed to be known to decision-makers. Studies in this cate-

gory include the nonstationary stochastic lot-sizing problem [6, 133] and those conducted on

inventory management under a Markov-modulated demand process [121, 112, 93]. In the

second category, the mechanism of the nonstationary demand is assumed to be unknown

to the decision-makers, but some well-conditioned forecasts are available. These studies in-

clude [62, 30, 9, 36]. The forecasts are either obtained through forecasting methods based

on certain demand mechanisms [62] or are assumed to be given exogenously [9]. In the final

category, simulation-based approaches are used to study the nonstationary demand based

on a user-specified demand process or real-world data. For example, [90] used a simulation

model to study the seasonal demand defined by a periodic function, whereas [36] proposed

a forecast-based procedure for order-up-to-level policies and demonstrated its superiority

based on simulations performed using real-world data.
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3.0 Data-driven Chance-constrained Programming Under Small-data Regime

In this study, we first theoretically analyze the performances of the two most widely

studied data-driven methods for chance-constrained programming, scenario approach [24],

and sample approximation approach [86], under a small-data setting. The results show

that the upper bound of the probability that these two methods can guarantee the original

chance constraints is less than 0.66. This means that in more than one-third of the cases,

the original chance constraints fail to hold. To improve their out-of-sample performances, we

propose a new model with closed-form linear/conic formulations. This new model introduces

a set of parameters, and it is reduced to the model given by the scenario approach and

sample approximation approaches when all these parameters are set to zero. When the

parameters are larger than zero, our model improves the probability that the original chance

constraints are satisfied. Furthermore, when these parameters take some special forms, our

model is also shown to be equivalent to distributionally robust chance constrained programs

(DRCCPs) whose ambiguity sets are Wasserstein balls. Therefore, our model links the

scenario approach, sample approximation approach, and DRCCPs. And our model provides

a much simpler DRCCP formulation in this small-data case compared to the existing two

tractable reformulations [134, 31].

We formulate our problem in (3.1).

min
x∈X

cTx

s.t. P {x ∈ X ′(ξ)} > 1− ε,

X ′(ξ) =
{
x = [x1,x2]

∣∣(Akξ + ak)
Tx1 + dTk x2 6 bTk ξ, ∀k ∈ [K]

}
.

(3.1)

Specifically, the decision variables are x = [x1,x2] ∈ Rm with x1 ∈ Rm1 and x2 ∈ Rm2

(m1 + m2 = m) in Optimization (3.1). The random variable is assumed to be continuous

and is denoted as ξ ∈ Rn, whose distribution is unknown but N independent observations,

{ξ̂1, · · · , ξ̂N}, are available. Parameter K is larger than or equal to 1, and we use [K] to

denote the set {1, ..., K}. Parameters Ak ∈ Rm1×n, ak ∈ Rm1 , dk ∈ Rm2 , bk ∈ Rn, and ε ∈

(0, 1) are deterministic. Intuitively, (3.1) says the inequalities (Akξ + ak)
Tx1 + dTk x2 6 bTk ξ
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can only be violated with a probability up to ε. Therefore, in the rest of the study, we call

ε the violation probability. We restrict the number of available observations, N , to be less

than
1

ε
indicating a small-data regime.

Former studies on solving Optimization (3.1) can be mainly categorized into three types,

i.e. scenario approach, sample approximation approach, and DRCCP, based on their method-

ologies. Scenario approach [24, 27, 26] solves the chance constraints by requiring the corre-

sponding constraints to hold for every observed sample. That is, it solves (3.1) by replacing

the chance constraint with

(Akξ̂i + ak)
Tx1 + dTk x2 6 bTk ξ̂i,∀k ∈ [K],∀i ∈ [N ], (3.2)

where we use [N ] to denote the set {1, · · · , N}. Under the small-data regime, the confidence

level of using (3.2) can be very low. This can be evidenced from the confidence parameter

defined in [24], where by Theorem 1 in [24], the probability that the optimal solution of

scenario approach with a linear objective function satisfies the chance constraints is no

smaller than 1 − m

ε(N + 1)
(we refer to this probability as confidence level in the rest of

the study). However, when N 6
1

ε
, we obtain 1 − m

ε(N + 1)
6 1 − m

2
, which is less than

zero when the decision variable dimension, m, is larger than 2. Therefore, no theoretical

guarantee can be obtained using this theorem if the data size is small. In this study, we

further validate this point by providing a theoretical analysis with respect to the confidence

level. The result shows that with a probability of at least 0.34, the scenario approach fails to

guarantee the original chance constraints when the violation probability satisfies 0 < ε < 0.1.

This means in more than one-third of the cases, the scenario approach fails to guarantee the

desired chance constraints. The same problem of having a low confidence level also applies

for sample approximation approach [86, 87, 28] because sample approximation requires the

constraints to hold for a subset of the observed samples. When the number of the data is

less than 1
ε
, the sample approximation approach often requires at least (N − Nε) data to

hold, where N − Nε > N − 1. Therefore, it also solves (3.1) based on (3.2). In order to

overcome their drawbacks, we propose a new way for solving data-driven chance constraints
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by replacing the chance constraint with (3.3).

bTk ξ̂i − (Akξ̂i + ak)
Tx1 − dTk x2 > ck‖AT

k x1 − bk‖p, (‖‖p: p-norm), ∀i ∈ [N ], ∀k ∈ [K],

(3.3)

where ck, ∀k ∈ [K] are some non-negative numbers. Formulations (3.3) are derived by

requiring a neighborhood of each data point to satisfy the corresponding constraints, where

details will be given in Section 3.1. Intuitively, (3.3) improves the confidence level by reducing

the feasible regions given by the scenario approach and the sample approximation approach.

We further prove that when ck are chosen as follows,

ck =
θ

ε
,∀k ∈ [K], (3.4)

Optimization (3.1) with chance constraints replaced by (3.3) is equivalent to distribution-

ally robust chance constrained programs (DRCCPs) [70, 134, 31] whose ambiguity sets are a

Wasserstein ball with radius θ, where the radius is measured through p
p−1

-norm. This result

not only provides one theoretical way of tuning our parameters ck through the concentration

properties of Wasserstein metric [52], but also links the scenario approach, sample approx-

imation approach, and DRCCPs in the small-data regime, where all above approaches can

be viewed as some specific choices of parameter ck in our proposed model.

Tractable formulations of DRCCPs with Wasserstein ambiguity sets have been studied

recently in [134, 31]. They both use big-M coefficients to obtain mixed-integer reformulation

to solve this problem. And they both require the radius, θ, to be strictly larger than zero

to ensure correctness. Compared to their formulations, our model (3.3) is big-M free and

allows the parameter θ to be zero exactly. Therefore, our model brings benefits comparing

to the DRCCPs. More specifically, our model is easier for analytical analyses because of

its simple closed-form formulations of the feasible region. And our model is consistent

with the scenario/sample approximation approach by allowing the corresponding radius of

the Wasserstein ball in DRCCP to be exactly zero. Our model is more computationally

robust/stable comparing to the existing DRCCP formulations based on big-M parameters.

We conclude our main results as follows.
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1. We theoretically analyze the performance of the scenario/sample approximation approach

for the data-driven chance constrained programming with a small-data regime. We show

that the upper bound of the probability that the original chance constraints can be

guaranteed is less than 0.66.

2. We propose a linear/conic program, as shown in (3.5), to solve the chance constrained

programming under the small-data regime. The resulting optimizations are mathemati-

cally tractable and have simple closed-form formulations.

min cTx

s.t. bTk ξ̂i − (Akξ̂i + ak)
Tx1 − dTk x2 > ck‖AT

k x1 − bk‖p, ∀i ∈ [N ],∀k ∈ [K].
(3.5)

We show that this model has better out-of-sample performances than the scenario/sample

approximation approach when ck > 0.

3. We prove that our model (3.5) is also equivalent to distributionally robust chance con-

strainted programmings (DRCCPs) under a Wasserstein ball with radius θ when ck =
θ

ε
.

In addition, we show that our reformulations outperform the existing tractable formula-

tions of DRCCPs in two aspects. First, our model is big-M free and has simpler closed-

form formulations. Second, our formulations are consistent with scenario approach when

θ is equal to 0. Two existing formulations of DRCCPs always assume θ > 0 and thus

have numerical problems in implementations when θ is very small.

4. We validate our approaches through computational studies. We prove that our ap-

proaches outperform the scenario approaches and sample approximation approaches un-

der a small-data regime, and are easier and more robust in implementations compared

to existing DRCCPs.

3.1 Confidence Level for Data-driven Chance Constrained Programming

under Small-data Regime

In this section, we first theoretically analyze the performances of the scenario approach

and the sample approximation approach under the small-data regime. Then, we propose our

model for data-driven chance constrained programming based on the former analyses.
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3.1.1 Assumptions and Notations

We assume N independent samples of ξ are available, and they are {ξ̂1, · · · , ξ̂N}. We de-

note (3.6) as OPT1 for simplicity in the rest of the study. When K = 1, OPT1 signifies the

scenario/sample approximation approach for the individual chance constrained program-

ming. On the other hand, when K > 1, OPT1 represents the joint chance constrained

programming.

(OPT1) min cTx (3.6a)

s.t. bTk ξ̂i − (Akξ̂i + ak)
Tx1 − dTk x2 > 0,∀i ∈ [N ],∀k ∈ [K], (3.6b)

x ∈ X . (3.6c)

For simplicity and clarity, we define ε-level solution following the definition used in [24].

Definition 1 (ε-level solution). Let x ∈ X be a candidate solution for (3.1); the support of

ξ is ∆. Then, the violation probability of x is defined as

V (x) = P{ξ ∈∆
∣∣bTk ξ − (Akξ + ak)

Tx− dTk x2 < 0,∃k ∈ [K]}.

Let ε ∈ [0, 1]. We say that x ∈ X is an ε-level robustly feasible solution if V (x) 6 ε.

Following the above definition, the goal of chance constrained programming is to devise

an algorithm that returns an ε-level solution. In data-driven optimization (3.6), because

ξ̂i,∀i ∈ [N ] are randomly selected, the optimal solution, which is denoted by x∗, is a random

variable that depends on multi-sample ξ̂1, · · · , ξ̂N . Correspondingly, we define a confidence

level β, which equals the probability that x∗ is an ε-level solution. The confidence level

defined here follows the same logic as the confidence parameter used in [24]. In the following,

we define the conficdence level β mathematically.
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Definition 2 (confidence level). Suppose the optimal solution of Optimization (3.6) based

on some random samples is x∗. We define the confidence level of x∗ as β ∈ [0, 1], which

equals the probability that x∗ is an ε-level solution (or equivalently, the chance constraint in

(3.1) actually holds for x∗), i.e.

β = Ex∗ {1 [P {x∗ ∈ X ′(ξ)} > 1− ε]} = Ex∗ {1[V (x∗) < ε]} ,

X ′(ξ) =
{
x = [x1,x2]

∣∣(Akξ + ak)
Tx1 + dTk x2 6 bTk ξ, ∀k ∈ [K]

}
.

The expectation is taken with respect to the random variable x∗. Furthermore, because the

randomness of x∗ comes from the multi-sample {ξ̂1, · · · , ξ̂N}, we can also formulate β as

β = Eξ̂1,··· ,ξ̂N {1 [P {x∗ ∈ X ′(ξ)} > 1− ε]} .

In the following, we establish the results for the performances of the scenario approach

and the sample approximation approach using the above defined confidence level β. Clearly,

the confidence level of a solution x∗ is affected by both constraints (3.6b) and (3.6c). Because

we make no assumptions for the feasible set X , the optimal solution x∗ may be purely

determined by X in some cases. Under such cases, the confidence level β is also purely

determined by X . Therefore, to exclude these pathological cases in our study, we make one

following assumption.

Assumption 1. The optimal solution of OPT1 is not purely determined by the objective

function and the set X . This means with probability 1 there is at least one active constraint

(meaning the equality sign holds) in (3.6b) when the optimal solution x∗ is achieved.

This assumption does not limit the generality of our results much because if there is no

active constraints in (3.6b), deriving β is impossible unless additional knowledge or assump-

tions on X are made. We will briefly discuss the cases where Assumption 1 does not hold

at the end of this section.
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3.1.2 Performances of Scenario/Sample Approximation Approach

We first introduce two results revealing the performances of scenario/sample approxima-

tion approach, i.e. OPT1, in the following Theorem 1.

Theorem 1. The confidence level of an optimal solution in OPT1 based on N independent

samples is at most 1− (1− ε)N .

Proof. We use x∗N to denote the optimal solution based on N random samples. Recall that

we define the violation probability of x∗N as

V (x∗N) = P {x∗N /∈ X ′(ξ)} .

Then, following the definition of the confidence level we have

β = P(V (x∗N) 6 ε).

Each sample ξ̂i (1 6 i 6 N) brings a set of constraints, i.e.,

bTk ξ̂i + bk0 − (Akξ̂i + ak)
Tx1 − dTk x2 > 0,∀k ∈ [K]. (3.7)

WLOG, according to Assumption 1, we assume that with probability 1, the k∗-th con-

straint brings active constraint, i.e.,

bTk∗ ξ̂i + bk∗0 − (Ak∗ ξ̂i + ak∗)
Tx1 − dTk∗x2 = 0,∃i ∈ [N ]. (3.8)

Here we want to point out that with probability one, only one sample achieves equality sign

no matter how large the N is. This can be seen by the fact that the probability measure of

all the ξ that satisfy the constraint 3.8 is zero (because variable ξ lose one degree of freedom),

i.e.,

P(ξ
∣∣bTk∗ ξ̂ + bk∗0 − (Ak∗ ξ̂ + ak∗)

Tx1 − dTk∗x2 = 0) = 0

We define V 1(x∗N) as the violation probability of the constraint k∗. Because V (x∗N)

represents the violation probability of all constraints, we have

β = P(V (x∗N) 6 ε) 6 P
(
V 1(x∗N) 6 ε

)
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where V 1(x∗N) = P(bTk∗ ξ̂ + bk∗0 − (Ak∗ ξ̂ + ak∗)
Tx∗1N − dTk∗x

∗
2N < 0). Next, we quantify the

value of the above-defined violation probability V 1(x∗N). We define F (α) as the distribution

(cumulative distribution function) of the violation probability of V 1(x∗).

F (α) = P(V 1(x∗) 6 α) (3.9)

Then, we consider the sample space generated by N samples, ξ̂1, · · · , ξ̂N .

Because we know only one sample contains active constraint, we partition the sample

space into N sets based on the index of the sample containing active constraint. We denote

these sets as Sj (1 6 j 6 N). The probability (measure) of each Sj is the same and can be

formulated as

P(Sj) =

∫ 1

0

(1− α)N−1F (dα). (3.10)

This is because, without loss of generality, P(Sj) equals the probability that only the first

sample contains active constraints (we denote this probability as P(S1)).

P(Sj) = P(S1) = P( the first sample contains active constraints ) (3.11)

= P( last N − 1 samples do not violate the constraint ). (3.12)

Additionally, if the violation probability is α. Then, for each of the last N − 1 samples, the

probability that it does not violate the constraint is 1− α.

P( last N − 1 samples do not violate the constraint )

=

∫ 1

0

(1− α)N−1F (dα).

Because the sample space is partitioned into N sets with equal size, we get

N

∫ 1

0

(1− α)N−1F (dα) = 1. (3.13)

The distribution function F (α) has the unique solution in (3.13) based on the results in [27],

which is

F (α) = α.
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Finally, the probability P(V 1(x∗N) 6 ε) is calculated accordingly as follows.

P(V 1(x∗N) 6 ε) = N

∫ ε

0

(1− α)N−1d(α) = N
−(1− α)N

N

∣∣∣∣∣
ε

0

= 1− (1− ε)N .

Therefore, we obtain

β 6 1− (1− ε)N .

By Theorem 1, the confidence level of the optimal solutions in scenario/sample approx-

imation approach is upper bounded by 1 − (1 − ε)N . The above results are enough for us

to evaluate the performances of scenario/sample approximation approach as summarized in

Proposition 1.

Proposition 1. When N <
n′

ε
(n′ > 0), we obtain 1− (1− ε)N < 1− (1− ε)n

′
ε . In addition,

1 − (1 − ε)
n′
ε is monotone increasing with respect to ε. When the violation probability is

between 0 and 0.1, i.e. 0 < ε < 0.1, we have 1 − (1
e
)n
′
< 1 − (1 − ε)

n′
ε < 1 − 0.349n

′
.

Specifically, when n′ = 1, we obtain 0.63 < 1− (1− ε) 1
ε < 0.66.

Proposition 1 says the upper bound of the confidence level of the optimal solutions

in scenario/sample approximation approach ranges from 0.63 and 0.66 when the violation

probability is between 0 and 0.1 if N <
1

ε
. Based on the definition of the confidence level,

we know that under more than one-third of the cases, the scenario/sample approximation

approach cannot guarantee the original chance constraints or, equivalently, obtain an ε-level

solution. To overcome this problem, we propose a new model in the next subsection.

Finally, we briefly discuss the cases where there is no active constraints brought by the

chance constraints in OPT1. If there are no active constraints, the optimal solution lies

strictly inside the feasible region given by the chance constraints; therefore, the confidence

level is greater than that of the cases where there are active constraints.
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3.1.3 Our method

The low confidence of the optimal solutions of the scenario approach indicates that the

feasible region in (3.2) is too large in most cases. To overcome this problem, we propose a

new method in (3.14). Its main idea is to allow more ξ to satisfy the chance constraint by

making the values around the observed data ξ̂i, i ∈ [N ] to be inside the feasible region given

by the optimal solution x∗. We introduce the details in the following.

Our model is formulated in (3.14), which is denoted as OPT2 in the rest of the paper.

The parameter ci is a user-specified non-negative number.

(OPT2) min cTx (3.14a)

s.t. (bk −AT
k x1)T ξ̂i − aTk x1 − dTk x2 + bk0 (3.14b)

> ci‖bk −AT
k x1‖p, ∀i ∈ [N ],∀k ∈ [K], (3.14c)

x ∈ X . (3.14d)

As just introduced at the beginning, the main idea of our approach is to allow the values

around the observed data samples to satisfy the constraints (3.6b), i.e.,

(bk −AT
k x1)Tξ − aTk x1 − dTk x2 + bk0 > 0, ∀k ∈ [K],

simultaneously. Following this idea, we define vector ξ′i as the difference between the observed

i-th sample ξ̂i and one possible value of ξ around ξ̂i. Therefore, our approach requires the

following constraints to hold for all possible ξ′i.

(bk −AT
k x1)T (ξ̂i + ξ′i)− aTk x1 − dTk x2 + bk0 > 0,∀i ∈ [N ],∀k ∈ [K]. (3.15)

Clearly, the choice of ξ′i depends on the structure of the probability density function and the

support of ξ, which is unknown in most general cases. Therefore, we simply restricts

‖ξ′i‖q 6 ci, where ci > 0.
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Intuitively, this means we include all values inside a q-norm ball centered at ξ̂i with radius

ci, and this also means that the number of the candidate ξ′i is infinity. However, we show

that by restricting

(bk −AT
k x1)Tξi − aTk x1 − dTk x2 + bk0 > ci‖bk −AT

k x1‖p,∀i ∈ [N ],∀k ∈ [K], (3.16)

it is sufficient to guarantee that (3.15) holds for any ξ′i defined above. The inequalities (3.15)

are equivalent to

(bk −AT
k x1)T ξ̂i − aTk x1 − dTk x2 + bk0 > (AT

k x1 − bk)
Tξ′i,∀i ∈ [N ],∀k ∈ [K].

By Holder’s inequality, we obtain

(AT
k x1 − bk)

Tξ′i 6 ‖AT
k x1 − bk‖p‖ξ′i‖q, with

1

p
+

1

q
= 1,

where the equality sign holds if and only if |AT
k x1 − bk|p and |ξ′i|q are linearly dependent.

Because the norm of ξ′i is bounded, we have

(AT
k x1 − bk)

Tξ′i 6 ci‖AT
k x1 − bk‖p.

Therefore, by restricting (3.16) in OPT2, we proved

(bk −AT
k x1)Tξi − aTk x1 − dTk x2 + bk0 > ci‖bk −AT

k x1‖p

> (AT
k x1 − bk)

Tξ′i, ∀i ∈ [N ], ∀k ∈ [K],

for any ξ′i defined above.

3.2 Relationships with DRCCPs

We explore the relationships between our model and DRCCPs. In Subsection 3.2.1, we

show that OPT2 is equivalent to the DRCCPs under Wasserstein balls if {ci,∀i} are chosen

as the same fixed positive number when ξ ∈ Rn and N <
1

ε
.
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3.2.1 Equivalence to DRCCP under a special case

We first present the main results for individual chance constraints, then we show it for

joint chance constraints. Additionally, in this subsection, we focus on one special case where

N <
1

ε
and ξ ∈ Rn. For clarity, we restate OPT2 here when K = 1.

(OPT2) min cTx

s.t. (b−ATx1)Tξi − aTx1 − dTx2 + bk0 > ci‖b−ATx1‖p,∀i ∈ [N ],

x ∈ X .

The main result is summarized in Theorem 2.

Theorem 2. Suppose the number of observations, N , is less than
1

ε
(ε > 0), and the

coefficient of ξ, (b−ATx1), is not zero. By choosing ci =
θ

ε
(θ > 0), OPT2 is equivalent to

min cTx

s.t. min
P∈Bθ(P̂)

EP
{

1[(b−ATx1)Tξ − aTx1 − dTx2 + bk0 > 0]
}
> 1− ε,

(3.17)

where the ambiguity set Bθ(P̂) is a Wasserstein ball with radius θ centered at P̂ representing

the empirical distribution of ξ.

Before proving Theorem 2, we first define the Wasserstein ball mathematically in Defi-

nition 3 and 4.

Definition 3. For an arbitrary q-norm ‖ · ‖q, define M ′ = {Q : EQ[‖ξ‖] =
∫
Rn ‖ξ‖qQ(dξ) <

∞}. The Wasserstein distance between two distributions Q1, Q2 ∈M ′ is defined as

W (Q1,Q2) := inf{(
∫
R2n

‖ξ1 − ξ2‖qΠ(dξ1, dξ2)) :

Π is a joint distribution of ξ1 and ξ2 with marginals Q1 and Q2, respectively}.

Definition 4. A Wasserstein ball centered at P̂ with radius θ is defined as:

Bθ(P̂) ={H ∈M ′ : W (H, P̂) 6 θ}. (3.18)
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Optimization (3.17) represents the DRCCPs under the wasserstein distance, where its

tractable reformulations have been studied in [134, 31]. Both of them obtain the big-M

reformulation by assuming θ > 0. In OPT2, we allow θ = 0 exactly. For the ease of proof,

we use the following Lemma 1 from [31].

Lemma 1. Optimization (3.17) is equivalent to

min cTx

s.t. εNt+ eT s > θN‖ATx1 − b‖p

(b−ATx1)T ξ̂i − aTx1 − dTx2 + bk0 +Mqi > t+ si,∀i ∈ [N ]

M(1− qi) > t+ si,∀i ∈ [N ]

q ∈ {0, 1}N , s 6 0, t ∈ R,x ∈ X .

(3.19)

for θ > 0, where M is a suitably large (but finite) positive constant, and e is a vector of all

ones.

Next, we prove Theorem 2.

Proof. First of all, when θ = 0, (3.17) is equivalent to scenario approximation. (Operations

SAA) Therefore, it is obvious (3.17) and OPT2 are equivalent. When θ > 0, by Lemma 1,

(3.17) is equivalent to the following problem.

min
q,s,t,x

cTx

s.t. εNt+ eT s > θN‖ATx1 − b‖p,

(b−ATx1)T ξ̂i − aTx1 − dTx2 + bk0 +Mqi > t+ si,∀i ∈ [N ],

M(1− qi) > t+ si,∀i ∈ [N ],

s 6 0, t ∈ R,x ∈ X .

(3.20)
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Suppose the optimal solution for (3.20) satisfies qi = 0 when i ∈ I1 and qi = 1 when

i ∈ I2 for some sets I1 and I2. Then, problem (3.20) is equivalent to:

min
s,t,x

cTx

s.t. εNt+ eT s > θN‖ATx1 − b‖p,

(b−ATx1)T ξ̂i − aTx1 − dTx2 + bk0 > t+ si,∀i ∈ I1,

0 > t+ si,∀i ∈ I2,

s 6 0, t ∈ R,x ∈ X .

(3.21)

The Lagrange multiplier of (3.21) is

min
s60,t∈R,x∈X

max
λ>0,βi>0

cTx− λ(εNt+ eT s− θN‖ATx1 − b‖p) +
∑
i∈I2

βi(t+ si)

−
∑
i∈I1

βi

[
(b−ATx1)T ξ̂i − aTx1 − dTx2 + bk0 − t− si

]
,

(3.22)

which is equivalent to (following minimax theorem as (3.22) is linear with respect to variables

s, t when λ, βi are fixed and is also linear respect to λ, βi when s, t are fixed):

min
x∈X

max
λ>0,βi>0

min
s60,t∈R

cTx + λθN‖ATx1 − b‖p −
∑
i∈I1

βi(b−ATx1)T ξ̂i +
∑
i∈I1

βia
Tx1

+
∑
i∈I1

βid
Tx2 −

∑
i∈I1

βibk0

− λεNt+
∑
i∈I1

βit+
∑
i∈I2

βit

− λeT s +
∑
i∈I1

βisi +
∑
i∈I2

βisi

(3.23)

The optimal solution of the original problem exists and is bounded, therefore, (3.23) is

bounded meaning the coefficient of t is zero, and the coefficients of s are non-positive. Thus,
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solving (3.23) gives

min
x∈X

max
λ>0,βi>0

cTx + λθN‖ATx1 − b‖p −
∑
i∈I1

βi(b−ATx1)T ξ̂i +
∑
i∈I1

βia
Tx1 +

∑
i∈I1

βid
Tx2

−
∑
i∈I1

βibk0

s.t.
∑
i

βi = λεN,

βi 6 λ, ∀i.
(3.24)

Replacing λ with βi gives:

min
x∈X

max
βi>0

cTx +

[∑
i βi
εN

θN‖ATx1 − b‖p −
∑
i∈I1

βi(b−ATx1)T ξ̂i +
∑
i∈I1

βia
Tx1

]

+
∑
i∈I1

βid
Tx2 −

∑
i∈I1

βibk0

s.t. βi 6

∑
i βi
εN

, ∀i.

(3.25)

Because N 6
1

ε
, constrains βi 6

∑
i βi
εN

hold trivially for all βi > 0. We drop these constraints,

which gives:

min
x∈X

max
βi>0

∑
i∈I2

βi
θ

ε
‖ATx1 − b‖p +

∑
i∈I1

βi

[
θ

ε
‖ATx1 − b‖p − (b−ATx1)T ξ̂i + aTx1

+ dTx2 − bk0

]
+ cTx.

(3.26)

Again, the original problem is feasible and bounded indicating that (3.26) is bounded. There-

fore, the coefficients of βi are all non-positive. However, we have ‖ATx1 − b‖p > 0 because

we assume ‖ATx1−b‖p 6= 0. Then the primal solution is infeasible unless I2 = ∅. Therefore,

we have I2 = ∅. In addition, for i ∈ I1, we restrict their coefficients to be non-positive, which

gives

min
x∈X

cTx

s.t. (b−ATx1)T ξ̂i − aTx1 − dTx2 + bk0 >
θ

ε
‖ATx1 − b‖p, ∀i.

23



3.2.2 Joint chance constraint

We summarize the main results for joint chance constrained programming in Theorem

3. We also restate OPT2 when K > 1 here for clarity.

(OPT2) min cTx

s.t. (bk −AT
k x1)Tξi − aTk x1 − dTk x2 + bk0

> ci‖bk −AT
k x1‖p, ∀i ∈ [N ],∀k ∈ [K],

x ∈ X .

Theorem 3. Suppose the number of observations, N , is less than
1

ε
(θ > 0), and the

coefficient of ξ, (AT
k x1 − bk), is not zero. When ci =

θ

ε
, OPT2 is equivalent to

min
x∈X

cTx

s.t. EP∈Bθ(P̂) {1[x ∈ X ′(ξ)]} > 1− ε,

X ′(ξ) =
{
x = [x1,x2]

∣∣(Akξ + ak)
Tx1 + dTk x2 6 bTk ξ + bk0,∀k ∈ [K]

}
,

(3.27)

where the ambiguity set Bθ(P̂) is a Wasserstein ball with radius θ centered at P̂ representing

the empirical distribution of ξ.

The ambiguity set follows the same definition as before. The proof of Theorem 3 follows

the same idea of the proof of Theorem 2, which is given in A.1.

3.3 Computational Study

In this section, we conduct numerical experiments to study our proposed model. We first

compare our approach with the scenario/sample approximation approach in Section 3.3.1,

where our model is shown to be greatly improving the out-of-sample performance. Then, we

compare our model with the DRCCPs in Section 3.2, where our model is shown to be more

robust and always gives the correct solution.
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We study the following chance-constrained problem (3.28), which has applications in

many real-world problems including portfolio optimization and inventory management. In

portfolio optimization [60], ξi represents the random return of the i-th assets. The goal is

to find the value at risk, x, at level ε for these I assets. In inventory management [116], ξi

represents the random demand at day i. The goal is to determine an inventory level, x, such

that the probability of having outstocks is less than ε during I days.

min
x

x (3.28a)

s.t. P(
∑
i∈[I]

ξi 6 x) > 1− ε. (3.28b)

3.3.1 Benefits over scenario/sample approximation approach

We assume I = 4, ε = 2.5%. Random variables ξi, i ∈ [I] are independent with each other

and follow normal distribution N(5, 5). We conduct two sets of experiments by simulating

10 and 20 samples for each ξi. Each experiment is repeated for 100 times. Scenario approach

and our approach are used to solve (3.28) for comparisons. We evaluate the out-of-sample

performance of the chance constraint by computing P∗, i.e.

P∗ = E[1(
∑
i∈[I]

ξi 6 x̂)],

where the expectation is taken over the true distribution of ξi, and x̂ represents the data-

driven solution based on different approaches. We set ci =
θ

ε
and vary the value of θ. The

mean values of P∗ are summarized in Figure 1.

Scenario/sample approximation approach achieves an average P∗ that is lower than the

desired value, i.e. 1−ε = 0.975, which validates our former discussions on the low confidence

level of this approach under the small-data regime. Our approach improves the performance

of P∗ by increasing θ.
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Figure 1: Blue line: scenario/sample approximation approach. Red line: our approach.

Yellow line: Goal.

3.3.2 Benefits over existing DRCCP formulations

In this section, we show the existing formulations, (3.19) and ( A.1), of DRCCP are

numerically unstable when θ goes to zero. The M in (3.19) and ( A.1) is fixed as 1010. The

parameters follow the same settings introduced in the last section. We assume 20 samples

for each ξi are available. For these samples, we solve Problem (3.28) through both DRCCP

and our approaches using different values of θ = {0, 0.005, · · · , 0.04}. We record the optimal

solution and conclude the results in Figure 2.

From the results, our formulation always gives the correct solutions; however, the DRCCP

formulation produces wrong solutions when θ 6 0.025.

3.3.2.1 Multidimensional knapsack problem We also apply our method to the dis-

tributionally robust multidimensional knapsack problem (DRMKP) [134] to further compare

our approach with the DRCCP formulation with big-M coefficients. In a DRMKP, there

are m items and K knapsacks. Parameters cj represents the value of item j for all j ∈ [m];

ξk = (ξk1, · · · , ξkm) represents the vector of random item weights in knapsack k; and bk > 0

represents the capacity limit of knapsack k, for all k ∈ [K]. The decision variable xj ∈ {0, 1}
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Figure 2: Blue line: DRCCP. Orange line: our approach.

represents if the jth item is picked or not. We use the Wasserstein ambiguity set with

L∞-norm as distance metric. With the above notations, DRMKP is formulated in (3.29).

max
x∈X

cTx

s.t. inf
P∈Bθ(P̂)

P
[
ξTk x 6 bk,∀k ∈ [K]

]
> 1− ε.

(3.29)

We generated 10 random instances with m = 20 and K = 10. For each instance, we

generated N = 800 empirical samples of ξk from a uniform distribution over a box [1, 10]m.

For each j ∈ [m], we independently generated cj from the uniform distribution on the interval

[1, 10], while for each k ∈ [K], we set bk = 100. We tested these 10 random instances with

risk parameter ε = 0.001. We set the big M to 1000 in this problem.

The results are summarized in Table 1 and 2. Table 1 records the time difference between

BigM formulation [134, 31] and our formulation. A positive number indicates that our

method takes less time. Table 2 records the optimality gap of the BigM formulation, where

the optimality gap is defined in (3.30). The optimal values are obtained through our models.

gap =
∣∣∣V alue−Opt.V al

Opt.V al

∣∣∣. (3.30)
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Table 1: Time differences (in seconds) between the BigM formulation and our model.

θ = 10−5 10−6 10−7 10−8 10−9 10−10

1 3.457 0.93 1.081 1.883 -3.966 -0.884

2 -0.591 0.626 0.829 0.957 1.116 -3.319

3 1.285 1.088 1.159 -0.742 -1.537 -0.97

4 0.529 1.386 1.833 3.036 -0.854 -1.995

5 3.862 0.85 1.221 0.086 -0.632 -0.567

6 3.522 0.851 1.079 -0.578 -0.42 -1.826

7 0.845 3.308 1.426 -0.733 -0.861 -1.632

8 1.787 2.878 0.807 0.676 -0.66 -1.173

9 1.398 1.502 2.332 1.746 -0.84 0.952

10 0.35 1.705 2.056 2.915 -1.206 -1.439

Table 2: Optimality gap of the BigM formulation.

θ = 10−5 10−6 10−7 10−8 10−9 10−10

1 0.00% 0.00% 0.00% 0.00% 5.30% 4.70%

2 0.00% 0.00% 0.00% 0.00% 1.30% 3.10%

3 0.00% 0.00% 0.00% 4.40% 6.50% 4.20%

4 0.00% 0.00% 0.00% 0.00% 4.00% 3.40%

5 0.00% 0.00% 0.00% 3.50% 2.90% 4.80%

6 0.00% 0.00% 0.00% 5.10% 4.70% 5.30%

7 0.00% 0.00% 0.00% 4.50% 7.10% 4.20%

8 0.00% 0.00% 0.00% 0.00% 6.90% 5.30%

9 0.00% 0.00% 0.00% 0.00% 6.00% 8.90%

10 0.00% 0.00% 0.00% 0.00% 4.40% 5.60%
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Regardless the computation time is seldom an issue for small-data problems, Table 1 shows

that our model and the BigM formulation have similar computation times. Moreover, our

approaches take less time to determine the optimal solution when θ ∈ {10−5, 10−6, 10−7}.

Although the BigM formulation outperforms our model when θ ∈ {10−8, 10−9, 10−10}, the

BigM formulation suffers from computational issues in these cases, which can be evidenced

from Table 2.
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4.0 Maximum Weight Cycle and Chain Packing with Inhomogeneous Edge

Existence Uncertainty: An Application on Kidney Exchange

4.1 Introduction

Patients with end-stage renal failure often find kidney donors who are willing to donate a

life-saving kidney, but who are medically incompatible with the patients. Kidney exchanges

are organized barter markets that allow such incompatible patient-donor pairs to enter as a

single agent—where the patient is endowed with a donor “item”—and engage in trade with

other similar agents, such that all agents “give” a donor organ if and only if they receive an

organ in return. In practice, organized trades occur in large cyclic or chain-like structures,

with multiple agents participating in the exchange event. Planned trades can fail for a variety

of reasons, such as unforeseen logistical challenges, or changes in patient or donor health.

These failures cause major inefficiency in fielded exchanges, as if even one individual trade

fails in a planned cycle or chain, all or most of the resulting cycle or chain fails. Ad-hoc,

as well as optimization-based methods, have been developed to handle failure uncertainty;

nevertheless, the majority of the existing methods use very simplified assumptions about

failure uncertainty and/or are not scalable for real-world kidney exchanges.

Motivated by kidney exchange, we study a stochastic cycle and chain packing problem,

where we aim to identify structures in a directed graph to maximize the expectation of

matched edge weights. All edges are subject to failure, and the failures can have noniden-

tical probabilities. To the best of our knowledge, the state-of-the-art approaches are only

tractable when failure probabilities are identical. We formulate a relevant non-convex opti-

mization problem and propose a tractable mixed-integer linear programming reformulation

to solve it. In addition, we propose a model that integrates both risks and the expected

utilities of the matching by incorporating conditional value at risk (CVaR) into the objec-

tive function, providing a robust formulation for this problem. Subsequently, we propose a

sample-average-approximation based approach to solve this problem. We fill a major gap in

prior work by proposing the first scalable algorithm (meaning it uses a number of variables
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polynomial in the input size) for maximizing expected matching weight, with non-identical

failure probabilities. This is an important step forward, as failure probabilities are known to

be inhomogeneous–some edges are inherently riskier than others [41]. We provide a mixed-

integer linear program for our approach, which is compact and can be solved directly by a

general-purpose integer programming solver (e.g., CPLEX, Gurobi, or SCIP).

Additionally, we propose a modified version of the kidney exchange problem which bal-

ances the mean expected weight with the worst-case weight (“risk”) of an exchange with

known nonidentical edge failure probabilities; we achieve this balance using a conditional

value-at-risk (CVaR) objective. We are not the first to propose a CVaR approach for kid-

ney exchange; however, previous CVaR-based approaches do not allow for arbitrary length

limits on cycles and chains–which are used by all fielded exchanges. With cycle and chain

length limits, the kidney exchange problem with a CVaR objective is challenging, as there

is no closed-form expression for the objective function. Thus, we propose a sample-average-

approximation-based method and develop an equivalent mixed-integer linear programming

representation.

4.1.1 Uncertainty in Kidney Exchange

Many prior approaches address edge existence uncertainty in kidney exchange, often with

the objective of maximizing expected matching weight, assuming all edges have identical fail-

ure probability. [39] provides a scalable formulation in this case, and [41] extends this to

consider inhomogeneous edge probabilities; however the latter model can require enumer-

ation of all feasible cycles and chains, which can be intractable for even small exchanges.

Similar approaches have been proposed, but still assume that all edges have equal failure

probability [4, 35]. Rather than maximizing expected edge weight, other approaches take the

risk-averse perspective, aiming to maximize the worst-case matching weight [91, 29]; these

approaches are often too conservative, as the worst case in kidney exchange is often arbitrar-

ily bad (i.e., in the worst case, all planned transplants fail). [138] propose a CVaR method

that endogenously balances structure length with risk; however, their model is not amenable

to length caps on cycles and/or chains, a requirement in all fielded kidney exchanges.
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Several other optimization-based approaches have been proposed, using recourse [5],

forms of “fallback” options [88, 11, 129], and pre-match edge queries [19, 18, 92]. These

methods involve additional decision stages, and are not directly comparable in our setting.

Next we describe the formal model of kidney exchange and edge existence uncertainty.

4.2 Preliminaries

We represent a kidney exchange as a directed graph G = (E, V ) where each vertex vi ∈ V

is an incompatible patient-donor pair, or a non-directed donor (NDD, i.e., a donor without

a paired patient). Directed edges e = (vi, vj) represent potential transplants from the donor

of node i to the patient of node j; edge weights we > 0 represent the medical or social utility

of each potential transplant. We assume that edge failure probabilities pe ∈ [0, 1] are known

in advance and are not necessarily homogeneous. That is, if edge e = (vi, vj) is matched,

then with probability pe the patient of vj would still fail to receive a kidney from vi’s donor.

Kidney exchanges consist of two types of swaps: cycles consist of several patient donor

pairs, while chains begin with an NDD and continue through one or more patient pairs [106].

The goal of the kidney exchange clearing problem (KEP) is often to select the set of vertex-

disjoint cycles and chains in G which maximize overall edge weight. We refer to any set

of vertex-disjoint cycles and chains as a matching. For example, let w denote the vector

of weights for all cycles and chains in the graph, let x denote a vector of binary decision

variables, and letM denote the set of feasible matchings (i.e., binary vectors x corresponding

to vertex-disjoint cycles and chains); in this case the KEP is expressible as maxx∈M x
>w.

Cycles and chains are quite vulnerable to edge failure: if any edge in a cycle fails, then

none of the transplants in the cycle can proceed, because at least one of the patients will be

left without a compatible donor. If an edge participating in a chain fails, then none of the

edges following that failed edge can proceed.1 We consider modified versions of the KEP

which account for edge failures, using known edge failure probabilities.

1We assume that chains can be partially executed. Some fielded exchanges cancel the entire chain if even
one edge fails.
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4.3 Maximizing Expected Matching Weight

We are primarily interested in maximizing the expected weight of a matching; indeed this

is the focus of most prior work (see Section 4.1.1). We refer to this as the stochastic KEP.

First we characterize the objective of this problem—the expected matching weight. With

known edge failure probabilities, the expected weight of a cycle or chain is expressible in

closed form.

Discounted weight of a cycle. The discounted weight of a k-cycle c reflects the fact that

the whole cycle will fail if any single transplant fails. We use we to denote the weight of edge

e in the cycle, c.

u(c) =

(∑
e∈c

we

)[∏
e∈c

(1− pe)

]
.

Discounted weight of a chain. The expected weight u(κ) of the k-chain κ ≡ (v1, ..., vk+1),

where v1 is a non-directed donor (NDD), is defined as

u(κ) =
k∑
i=2

pi

(
i−1∑
j=1

wj

)
i−1∏
j=1

(1− pj)+(
k∑
i=1

wi

)
k∏
i=1

(1− pi).

(4.1)

In the above, pi and wi denotes the failure probability and weight of edge (vi, vi+1),

respectively. The first term above is the sum of expected weights for the chain executing

exactly i− 1 = {1, ..., k − 1} steps and then failing on the ith step. The second term is the

resulting weight if the chain executes completely.

Using the above expressions, we can write the stochastic KEP as follows. With some

abuse of notation, let (C,K) ∈ M denote a feasible matching consisting of cycles C and

chains K. Problem 4.2 is an equivalent formulation of the stochastic KEP.

max
(C′,K′)∈M

∑
c′∈C

u(c′) +
∑
κ′∈K

u(κ′) (4.2)

Next we describe our solution approach for Problem 4.2, and an equivalent compact mixed-

integer linear program formulation.
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4.3.1 Compact Formulation for Maximizing Expected Matching Weight

Here we present a new compact formulation to maximize the expected weight in the case

of non-identical edge failure probabilities. Compact means that the counts of variables and

constraints are polynomial in the size of the input. We compare the size of this model with

other state-of-the-art approaches in Section 4.3.2.

In [41], the authors propose a solution approach for Problem 4.2, which enumerates all

feasible cycles and chains in the graph. However the number of cycles and chains grows

exponentially with the size of the graph, meaning this formulation is not compact. Further,

it is intractable to even write this model in memory for large exchanges or long chain lengths.

We propose an exact, compact representation for Problem 4.2, using an equivalent ex-

pression for expected chain weight u(κ) given in Lemma 2.

Lemma 2. The discounted weight u(κ) of the k-chain κ = (v1, ..., vk+1) is

u(κ) =
k∑
i=1

wi

i∏
j=1

(1− pj) ,

where wi and pi are the edge weight and failur probability of the ith edge, (vi, vi+1), in the

chain, for i = 1, . . . , k.

In other words, the discounted weight of a chain can be expressed as the sum of the

“discounted weights” of each edge in the chain, i.e. u(κ) =
∑k

i=1w
′
i, where w′i ≡ wi

∏i
j=1(1−

pj), where we refer to
∏i

j=1(1− pj) as the discount factor.

The objective of Optimization (4.4) uses Lemma 2 to express the total discounted weight

of all matched cycles and chains, assuming non-uniform edge failure probabilities. This is

achieved using two sets of variables, oek (the discount factor of edge e at position k in a chain)

and vc (the success probability of cycle c). Optimization (4.4) uses the following parameters:

• G: kidney exchange graph, consisting of edges e ∈ E and vertices v ∈ V = P ∪ N ,

including patient-donor pairs P and non-directed donors (NDDs) N

• C: a set of cycles on exchange graph G

• L: chain cap (max. number of edges in a chain)

• we: edge weights for each edge e ∈ E
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• wc: cycle weights for each cycle c ∈ C, defined as wc =
∑

e∈cwe

• δ−(i): the set of edges into vertex i

• δ+(i): the set of edges out of vertex i

• pe: failure probability for edge e ∈ E

Edges between an NDD n ∈ N and a patient-donor vertex d ∈ P may only take position

1 in a chain, while edges between two patient-donor pairs may take any position 2, . . . , L in

a chain. For convenience, we define the function K for each edge e, such that K(e) is the set

of all possible positions that edge e may take in a chain.

K(e) =

{1}, e begins in n ∈ N,

{2, . . . , L}, e begins in d ∈ P.
(4.3)

The following decision variables are used.

• zc ∈ {0, 1}: 1 if cycle c is used in the matching, and 0 otherwise

• yek ∈ {0, 1}: 1 if edge e is used at position k in a chain, and 0 otherwise

• oek ∈ [0, 1]: discount factor of edge e at position k in a chain

Our formulation is given in (4.4).

max
y,z,o

∑
e∈E

∑
k∈K(e)

weyekoek +
∑
c∈C

wczcvc (4.4a)

s.t. {y, z} ∈ X , (4.4b)∑
e ∈ δ−(i)∧
k ∈ K(e)

oekyek >
∑

e∈δ+(i)

oe,k+1ye,k+1

1− pe
,

i ∈ P, k ∈ {1, . . . , L− 1}, (4.4c)

0 6 oek 6 1− pe, e ∈ E, k ∈ K(e), (4.4d)

vc =
∏
e∈c

1− pe, c ∈ C, (4.4e)
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where X denotes the set of feasible decision variables for the PICEF formulation of kidney
exchange [39], defined as

X =



∑
e∈δ−(i)

∑
k∈K(e)

yek +
∑

c ∈ C :

i ∈ c

zc 6 1, i ∈ P ;

∑
e ∈ δ−(i)∧
k ∈ K(e)

yek >
∑

e∈δ+(i)

ye,k+1,
i ∈ P
k ∈ {1, ..., L− 1};∑

e∈δ+(i)

ye1 6 1, i ∈ N ;

yek ∈ {0, 1}, e ∈ E, k ∈ K(e);

zc ∈ {0, 1}, c ∈ C;

(4.5)

The constraints of X are interpreted as follows: 1) the first constraint in (4.5) requires

that each patient-donor vertex i ∈ P may only participate in one cycle or one chain; 2) the

second constraint requires that each patient-donor vertex i ∈ P can only have an outgoing

edge at position k + 1 in a chain if it has an incoming edge at position k; 3) the third

constraint requires that each NDD i ∈ N may only participate in one chain.

Constraints (4.4c), (4.4d), and (4.4e) define the discounted weight of chains and cycles.

We briefly describe how the discounted weight of cycles and chains are represented in this

formulation:

• For a cycle, the success probability is vc =
∏

e∈c 1− pe. Thus the discounted weight of

all cycles is expressed as
∑

c∈C wczcvc.

• For a chain, the discounted weight is expressed using Lemma 2. Consider the following

example: suppose a k-chain consists of edges e1, . . . , ek. Suppose that i is the first

patient-donor pair in this chain– so e1 is the edge into i, and e2 is the edge out of i;

that is, e1 ∈ δ−(i) and e2 ∈ δ+(i). From constraints (4.4c) we have oe1,1 > 1
1−pe2

oe2,2

for vertex i. The sums in constraint (4.4c) contain no other terms, because X requires

that only one edge into vertex i and one edge out of vertex i can be matched. Therefore,

(1− pe2)oe1,1 > oe2,2.

Similarly, (1 − pej+1
)oej ,j > oej+1,j+1 for j = 2, . . . , k − 1. Since Optimization (4.4) is a

maximization problem, the optimal values of variables oe,j will satisfy oej ,j =
∏j

i=1(1 −

pei), for 1 6 j 6 k. Accordingly,
∑

e∈E
∑

k∈K(e) weyekoek represents the total discounted

weight of all chains according to Lemma 2.
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4.3.2 MIP Reformulation of Optimization (4.4)

Although Optimization (4.4) exactly maximizes expected edge weight under non-identical

edge failure probabilities, it is a nonconvex optimization problem. In this section, we refor-

mulate it as a mixed-integer linear program which can be solved usings general-purpose

solvers. Proposition 2 concludes our results; the main idea is to define a set of new variables

Oek to replace yekoek in Optimization (4.4).

Proposition 2. Optimization (4.4) is equivalent to

max
y,z,O,o

∑
e∈E

∑
k∈K(e)

weOek +
∑
c∈C

wczc(
∏
e∈c

1− pe)

s.t. {y, z} ∈ X ,
{y,O,o} ∈ X ′,

(4.6)

where X follows the definition in (4.4), and X ′ is defined as

X ′ =



∑
e∈δ−(i)∧k∈K(e)

Oek ≥
∑

e∈δ+(i)

Oe,k+1

1− pe
;

i ∈ P, k ∈ {1, . . . , L− 1},
Oek ≤ yek, e ∈ E, k ∈ K(e);
Oek ≤ oek, e ∈ E, k ∈ K(e);
Oek ∈ [0, 1], e ∈ E, k ∈ K(e);
0 ≤ oek ≤ 1− pe, e ∈ E, k ∈ K(e).


(4.7)

Optimization (4.6) can be solved using standard solvers such as CPLEX and Gurobi.

4.3.2.1 Scalability We compare our model size with state-of-the-art approaches in lit-

erature. We summarize all approaches in Table 3. The size of each model (the number of

variables and constraints) is expressible in terms of the chain cap L, and the number of edges

(|E|), cycles (|C|), total vertices (|V |), NDD vertices (|N |), and patient-donor pair vertices

|P |. For ease of exposition we assume |N | = O(|V |) and |P | = O(|V |). In Table 3, columns

indicate the type of uncertainty considered in the problem (stochastic, robust (i.e., worst-

case, CVaR, or none), whether or not edge failure probability is assumed to be homogeneous,

whether or not the formulation includes a cycle and chain cap2, and the number of variables

and constraints in each formulation.

2Without cycle or chain cap, kidney exchange can be reduced to bipartite matching.
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Table 3: Comparison of stochastic and robust approaches to kidney exchange.

Formulation Uncertainty Homogeneous pe Chains Cycle/Chain Cap # Vars. # Constr.

PC-TSP [5] None N/A Yes Yes/Yes O(|E| · |V |+ |V |2 + |C|) O(|E| · |V |+ |V |2 + |V | · 2|V | + |C|)

PICEF [40] Stoch. Yes Yes Yes/Yes O(L · |E|+ |C|) O(L · |V |+ L · |E|+ |C|)

ROBUST[91] Robust N/A Yes Yes/Yes O(|E| · |V |+ |V |2 + |C|) O(|E| · |V |+ |V |2 + |C|)

SMCF-VaR/CVaR [138] Stoch. No No –/No I assume |Ω| = 2|E|,O(2|E|(|V |+ |E|)) O(2|E|(|V |+ |E|))

DPS-18 [41] Stoch. No Yes Yes/Yes O(|V |L + |C|) O(|V |)

Our model (4.6) Stoch. No Yes Yes/Yes O(L · |E|+ |C|) O(L · |V |+ L · |E|+ |C|)

Our size is comparable with PICEF, while accounting for non-identical failure proba-

bilities. DPS-18 [41] considers non-identical failure probabilities at the cost of representing

every single chain and cycle as a decision variable, and thus this model grows exponentially

with the chain cap L; in contrast, the number of variables in our formulation is polynomial

in L. Real exchanges often use a cycle cap of 3, which is sufficiently small that all cycles

can be enumerated in practice–even on realistic graphs with hundreds of vertices. If ex-

changes grow much larger in the future (e.g., thousands of vertices), or if cycle lengths are

increased substantially, we further propose a branch-and-price implementation to solve the

corresponding problems brought by huge |C| in Appendix B.3.

4.4 Extensions to Mean-risk Kidney Exchange Model

Next we introduce a kidney exchange model which balances both the mean expected

weight and the worst-case weight (“risk”) of a matching, using known non-identical edge

failure probabilities. We achieve this balance using a conditional value-at-risk (CVaR) ob-

jective. This approach is motivated by the fact that the expected weight of a matching can

be misleading when the worst-case outcome can be arbitrarily bad. This is especially true

in kidney exchange, where a single edge failure can impact an entire cycle or chain.
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4.4.1 Mean-risk Model

At a high level, the CVaR objective for kidney exchange is expressed as

µ+ γ × µα,

where µ is the expected matching weight and µα is the α × 100% (α ∈ (0, 1]) worst-case

mean weight–that is, the mean matching weight in the worst α× 100% of all outcomes. The

parameter γ is set by the user, and controls the trade-off between average performance and

the risk of the solution.

For tractability and simplicity, we define W as an |E|-dimensional vector with

We = −
∑
k∈K(e)

yek −
∑
c∈C

1(e ∈ c)zc, ∀e ∈ E.

That is, We = −1 if edge e is used, and We = 0 otherwise. We use w ∈ R|E| to represent the

random discounted edge weights under known edge failure probabilities. Correspondingly,

〈w,W〉 represents the loss (negative weight) of a matching. The α × 100% worst-case

(highest) mean loss is equivalent to the CVaR objective [103] at level α. The corresponding

optimization problem is expressed in (4.8), by introducing an auxiliary variable d. We use

(x)+ to denote max(0, x), and the expectation in (4.8) is taken over the distribution of

random edge weights under the known edge failure probabilities. As before, X denotes the

set of feasible matchings using the PICEF formulation.

min
y,z,d

E(〈w,W〉) + γ

[
d+

1

α
E
[
(〈w,W〉 − d)+

]]
s.t. {y, z} ∈ X .

(4.8)
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4.4.2 An SAA-based Approach for Optimization (4.8)

The main difficulty in solving Optimization (4.8) is that term E
[
(〈w,W〉 − d)+

]
does not

have a simple closed-form reformulation under the known edge failure probabilities. Thus,

we propose an approach based on Sample Average Approximation (SAA) [5] to solve (4.8).

The main idea is to first sample N realizations of edge existence according to the known

edge failure probabilities; for each realization we formulate a mixed-integer linear program

representing the matching weight under this realization. Finally, we combine all N models

to obtain an optimization problem that is (approximately) equivalent to Optimization (4.8)

based on these N realizations. Algorithm 1 gives a pseudocode description of this approach.

Algorithm 1 SAA

1: Initialization: N ;
2: STEP 1:
3: Sample N edge existence realizations {r̂en ∈ {0, 1},∀e ∈ E}, n = 1, . . . , N ;
4: STEP 2:
5: Solve Optimization (4.9).

This algorithm has only two steps: first it samples N realizations of edge existence from

the known edge failure probabilities, where r̂en is 1 if edge e succeeds in realization n, and

0 if it fails. These realization variables are used as input to Optimization (4.9), which uses

decision variables Ŵn to represent the realized edge discount factor for realization n–that is,

Ŵen is 1 if edge e is matched and succeeds in realization n and 0 otherwise (see Appendix

B.2 for details). Using these decision variables, the objective of Optimization (4.9) includes

two terms: the mean matching weight, and the CVaR objective–both approximated using

all N samples (i.e., the sample-average approximation). Thus, Optimization (4.9) represents

the SAA of (4.8) under the N sampled realizations.
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Proposition 3. Optimization (4.9) is equivalent to the SAA of (4.8) under N edge existence

realizations represented by r̂en, with

min
1

N

N∑
n=1

〈w,Ŵn〉+ γ

(
d+

1

α

1

N

N∑
n=1

Πn

)
s.t. Ŵen = −

∑
k∈K(e)

Oekn −
∑
c∈C

1(e ∈ c)zcvcn,∀e, n,

Πn > 0,∀n,

Πn > 〈w,Ŵn〉 − d,∀n,

{y, z} ∈ X ,

{y, z} ∈ X ′,

oekn 6 r̂en,∀e, k, n,

vcn = min
e∈c
{r̂en},∀c, n,

(4.9)

where X follows the definition in (4.4), and X ′ is defined as

∑
e∈δ−(i)∧k∈K(e)

Oekn >
∑

e∈δ+(i)

Oe,k+1,n,

∀i ∈ P, k ∈ {1, . . . , L− 1}, n ∈ N ;

Oekn 6 yek, e ∈ E, k ∈ K(e), n ∈ N ;

Oekn 6 oekn, e ∈ E, k ∈ K(e), n ∈ N ;

oekn, Oekn ∈ [0, 1], e ∈ E, k ∈ K(e), n ∈ N ;

N = {1, . . . , N}.


Optimization (4.9) can be understood by viewing 〈w,Ŵn〉 as the realized edge weight

under the n-th realization with matching {y, z}.
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5.0 A Study on Distributionally Robust Optimization with Incomplete Joint

Data

Stochastic programming is a powerful framework for optimization under uncertainty. It

generally assumes that a probability distribution of random variable ξ is available and seeks

an optimal solution in terms of expected performance. In practice, the distribution of ξ

is often unknown; consequently, data-driven approaches have been proposed to solve this

problem. These data-driven methods work well if well-conditioned historical data for ξ are

available. However, if ξ is multidimensional, the joint data of ξ are often hard to obtain in

the real-world complex data environment due to the following issues:

• Missing data in some dimensions for ξ.

• Sharing of data is limited among dimensions representing different components.

• Different sizes of data in different dimensions.

Today missing data is one of the most commonly encountered problems in practical OR prob-

lems. For example, in large-scale transportation management systems (TMSs) that are used

to monitor the traffic conditions to improve the traffic congestions, the collected traffic data

is far from complete. The mobility monitoring program of the Texas Transportation Insti-

tute (TTI) reports that after screening erroneous data, TMS data archives can be anywhere

from 16% to 93% complete [118]. Another example is that many records in the industrial

databases have fields that are not filled. A database of Honeywell studied in [75] is shown

to be less than 50% complete.

The most popular method to solve the missing data problem is data imputation, where

missing values are imputed prior to running optimization and other analyses on the complete

data set. It is highly flexible and convenient, therefore, many variants of data-imputation

are proposed, including popular Expectation-Maximization [38], mean impute [83], k-nearest

neighbors [126], support vector regression [130], and random forest [122]. We refer readers

to [15] for more comprehensive and detailed reviews. However, this type of method does

not incorporate the missing data directly into the final decision-making problem and suffers
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from two major issues for stochastic optimization. First, theoretical guarantees are hardly

obtained. This is because the analysis on the missing data and the derivation of the optimal

solutions of the stochastic optimization are conducted separately. Second, separated analysis

or estimate-then-optimize methods are known to give sub-optimal solution in many recent

studies [84, 37, 63, 49]. One simple example is the newsvendor problem in supply chain

management, where the outstocking cost is often much higher than the inventory holding

cost. In this type of problems, decision-makers prefer to order “more” products than “less”

because of the penalty of having outstocks. However, statistical methods that overlook the

decision-making problem often aim to find the “unbiased” estimations towards the unknown

demand, which subsequently render sub-optimal decisions [84].

Distributionally robust optimization [37, 71, 53, 49, 137] signifies one powerful modeling

paradigm that incorporates the estimation step and the optimization step. It first constructs

some ambiguity sets P based on the available data set; optimization techniques are then pro-

posed to solve these models with respect to the worst-case distributions within the ambiguity

sets. However, to the best of our knowledge, existing DRO works have not considered any

ambiguity sets based on the incomplete data points. Researchers in [137] do consider a

missing data problem encountered in incomplete trajectories data. But their main goal is

to reconstruct the missing location-duration path choices. And their ambiguity set is still

based on the complete historical data. In this study, we aim to study the distributionally

robust optimization models with ambiguity sets constructed directly based on incomplete

data. This model hedges against the uncertainties brought by the missing values. We prove

that the performance of the proposed DRO framework can be theoretically guaranteed. Ad-

ditionally, we conduct empirical experiments to show that our DRO model outperforms the

classic approaches on incomplete data sets.

The main contribution of this study is to provide a DRO framework for problems with

incomplete data set. We assume only partially observed data are available, meaning that

the components for each piece of data are randomly missing. Furthermore, we provide finite

sample guarantees of our DRO model by introducing the observed information matrix [45]

into our analysis. And we prove the statistical consistency results using the properties of

maximum likelihood estimation. Tractable reformulations of the presented models and ex-
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tensions to two-stage stochastic programming are presented. We also propose and comment

on several kinds of possible ambiguity sets. All of them are based on incomplete data. Their

properties and reformulations are discussed. Finally, we conduct computational studies to

evaluate the performances of the proposed approaches compared to data-imputation-based

approaches based on both synthetic and real-world data. We conclude and highlight the

following contributions of this study.

1. A new DRO framework based on incomplete data is proposed. It extends the current

studies on DRO by proposing ambiguity sets that are constructed directly based on the

incomplete data set. W The first two kinds of ambiguity sets utilize two general metrics

used in the DRO community. The last kind of ambiguity set is inspired by the special

structures existing in our model. We show this ambiguity set is asymptotically optimal

in the sense that it contains the true distribution with the highest probability among all

ambiguity sets having the same volume.

2. The proposed work is fundamentally different from the popular data-imputation-based

methods. It signifies an integrated model that solves the missing data problem and

stochastic programming simultaneously instead of following an estimate-then-optimize

procedure. By adopting a DRO framework, the proposed models are robust towards

the uncertainties of the missing values. Therefore, it greatly improves the out-of-sample

performances in applications where the optimal solutions are sensitive to the unknown

parameters. We also illustrate this point through computational studies on the multi-

item inventory control problem and portfolio optimization.

3. We obtain theoretical guarantees and tractable reformulations for the proposed models.

More specifically, we first derive the finite sample guarantees of our model by providing a

probabilistic upper bound to their out-of-sample performances. Our analyses are based

on the asymptotic normality and the observed information matrix (empirical fisher infor-

mation). We then prove the statistical consistency guarantee, which means the solution

of our model converges to the true optimal in probability when the number of observed

data goes to infinity. Finally, we show that these reformulations can be efficiently solved

if the cost functions of the original stochastic program are convex, and the feasible regions

are convex or mixed-integer linear sets.

44



5.1 Notations and Background

5.1.1 Preliminary

Throughout this study, we use the following notations and assumptions. A stochastic

program can be formulated as

min
x∈X

E[Q(x, ξ)], (5.1)

where Q(x, ξ) represents a cost function with respect to decision x, and X represents the

feasible region of x. In this study, we study the problem whose random variable ξ has known

finite support. Finite discrete support sets are common and studied in many operations

research problems [10, 51, 110, 135]. For example, in portfolio selection [89], decision-makers

want to select a portfolio from a finite number of scenarios about possible returns to minimize

some dis-utility function. Additionally, for problems with continuous random variables,

methods like scenario construction [113] are often used to select some representative scenarios

to simplify the problems. This also makes those random variables have known finite discrete

support sets. Finally, we assume set X is not empty, and Q(x, ξ) is bounded for x ∈ X , ξ ∈ Ξ

to avoid discussing trivial cases.

We assume ξ is an I-dimensional vector ξ ∈ Ξ ⊂ RI , and we refer to ξi as the i-th

component. If an observation of ξ is incomplete meaning that the values of some components

are missing, it is very difficult to represent these missing values using the notation ξ. To this

goal, we define two new vectors s and sobs to clearly index complete and incomplete data.

We first explain the vector s representing the complete data of ξ as follows. Because the

support of ξ is finite, we index each possible value of ξi with si which is a natural number, i.e.

si ∈ {1, · · · , J} without loss of generality. Correspondingly, this gives an I-dimensional index

vector s ∈ NI , which has one-to-one correspondence with ξ. Therefore, each s represents one

scenario of ξ. The set containing all scenarios is denoted as S, and its cardinality is |S|. We

define another vector sobs ∈ {0,N}I representing the incomplete data. It follows the same

definition as s except that its components can take the value of zero. If its i-th component

equals zero, i.e., sobs,i = 0, it indicates that the value of the i-th component is missing. We
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want to emphasize that our model treats the zeros as categorical data. The above procedure

does not mean we replace all missing values with 0.

In the rest of the study, we use s and ξ interchangeably. We use the following common

signs for different types of convergence of random variables. 1) Converge in probability:
p−−→. 2) Converge almost surely:

a.s.−−−→. 3) Converge in distribution:
d−−→ .

Terminologies in data-driven stochastic programming. We briefly review some com-

monly used terminologies and notations in data-driven stochastic programming.

We use P = {P(s),∀s ∈ S} to denote a joint distribution of s, and P∗ = {P∗(s), ∀s ∈ S}

represents the true unknown joint distribution of s. We call P∗ the true distribution. Then

the true optimal cost, O∗, is defined as

O∗ = min
x∈X

EP∗ [Q(x, s)],

where the expectation is taken with respect to the true distribution P∗. Any corresponding

optimal solution x∗ is called the true optimal solution.

Suppose a data set of s contains N i.i.d. data points in total. A data-driven solution

for (5.1) is defined as a feasible solution x̂N ∈ X based on this data set. The out-of-sample

performance of x̂N is defined as

EP∗ [Q(x̂N , s)]. (5.2)

However, the out-of-sample performance cannot be directly evaluated because P∗ is un-

known. Therefore, we seek an upper bound ÔN to obtain the performance guarantees of the

type

P(EP∗ [Q(x̂N , s)] 6 ÔN) > 1− α, (5.3)

where α ∈ (0, 1). And we refer to 1−α as the reliability, which measures the probability that

the out-of-sample performance is bounded by ÔN . We will explicitly define ÔN later. The

corresponding Equation (5.3) is directly referred to as the finite sample guarantee throughout

the rest of the study.
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5.1.2 Distributionally Robust Optimization Framework with Missing Data

DRO model begins by defining an ambiguity set P for the unknown joint distribution

based on the observed incomplete data set; P contains different possible joint distributions

P that includes the true distribution P∗ with a prescribed probability, P(P∗ ∈ P) > 1− α,

for 0 < α < 1. The parameter α can be used to reflect the conservatism of the model.

After designing P , a distributional robust approach finds the best solution, assuming the

worst-case distribution within P as shown in (5.4),

min
x∈X

max
P∈P

∑
s∈S

P(s)Q(x, s). (5.4)

Most existing DRO frameworks construct the ambiguity set to hedge against the uncertain-

ties brought by the finite sample size based on different types of concentration inequalities.

The key difference of the DRO framework studied in this study is that the ambiguity set

includes the uncertainties coming from the incomplete data set. We point out the benefits

of our model comparing to the other methods of solving missing data problems as follows.

Benefits of Model (5.4). Compared to the traditional approaches of solving missing

data problems, Model (5.4) is unique in that it integrates the missing data directly into

the final decision-making process. This is achieved by combining the information of the

incomplete data set (captured by P) and the derivation of x ∈ X into one optimization

problem. Classical methods use separate analysis [46, 123], which first estimates P and then

derives the optimal x. It is recognized in literature [84, 63] that separate analyses ignoring

the potential estimation errors can lead to sub-optimal solutions and/or heuristic methods

with no performance guarantees.

In the following, we propose a method to construct the ambiguity set based on the

incomplete data set; the obtained optimal decision from the incomplete data not only allows

the theoretical guarantees but also improves the performance in practical problems.
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5.2 Main Model

The main idea of our model is to combine the maximum likelihood estimation into the

classical DRO framework (5.4). We first discuss our model under one specific ambiguity

set, as will be introduced later. Then, we introduce the concepts of asymptotic normality

and the observed information matrix to obtain the theoretical guarantees, which contain two

main points. First, we prove the consistency result in Section 5.2.2. The consistency follows

the definition in [127] meaning that the solution of our model converges in probability to the

true optimal solution as the observed data size N goes to infinity. Second, we investigate

the finite sample guarantee (5.3) in Section 5.2.3, where it shows the objective value of our

model serves as a probabilistic upper bound of the out-of-sample performance. Finally, we

discuss several other kinds of ambiguity sets with tractable reformulations in Section 5.2.4.

Assumption and notations. Before introducing our model, we recall the setting of the

incomplete data and make one technical assumption. The incomplete data, or more intu-

itively the partially observed data, means that the values of the components are missing at

random, and the number of observed dimensions for each data point ranges randomly from

1 to I.

Recall that vector sobs ∈ ({0},N)I can be used to represent the partially observed data,

where its i-th component sobs,i = 0 indicates that the value of the i-th component is missing.

Correspondingly, we further define an indicator vector φobs ∈ {0, 1}I to indicate the observed

dimensions of sobs (φobs,i = 1 represents the i-th dimension is observed; 0 otherwise). Finally,

for a fixed sobs we define S(sobs) as a set that

S(sobs) = {s ∈ S|s� φobs = sobs} , (5.5)

where � represents the component-wise multiplication. Intuitively, set S(sobs) contains all

the complete data s that match the observed components in sobs. The n-th partially observed

data is denoted as ŝn,obs (n = 1, · · · , N), which is the n-th realization of sobs.

We make a common assumption on the missing data mechanism called missing at random

(MAR) [83]. This assumption intuitively means that the missing probability of a missed value
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is independent of this value itself. Mathematically, this means the probability of observing

one sobs given s is fixed for all s ∈ S(sobs) as shown below.

P(sobs|s) = P(sobs|s′), s, s′ ∈ S(sobs) (5.6)

If the missing probability of a component depends on the values of itself, the missing data

mechanism itself has to be known or modeled explicitly to recover the missing values.

5.2.1 Ambiguity Set P ′ based on Partially Observed Data

We propose an ambiguity set P ′ centering around a nominal distribution (P̂) based on

some metric ‖‖̇ as shown in (5.7).

P′ = {P is a distribution function. : ‖P− P̂‖ 6 τ}, τ > 0. (5.7)

Before explaining the details about (5.7), we want to point out that this nominal distribution

is chosen as one optimal estimator of the maximum likelihood estimation (MLE) based

on the incomplete data set. The ambiguity set P ′ has a user tunable parameter τ called

distance tolerance to control the robustness. We will further prove the relationship between

τ and out-of-sample performance. This ambiguity set enjoys several good properties. 1)

The nominal distribution, or the center of the ambiguity set equivalently, represents a joint

distribution that has the largest likelihood to generate the observed incomplete data set; 2)

Ambiguity set P ′ is consistent with the popular metric-based/likelihood-based ambiguity sets

[47, 99, 65, 49]. Because in these works, researchers define the center of the ambiguity set as

the empirical distribution, which can be viewed as one optimal solution of (nonparametric)

MLE [97]; 3) We will show that P ′ allows us to obtain the finite sample guarantee of Model

(5.4) directly through the distance tolerance and ensure the obtained solution to converge

to the true optimal as data size increases even though the data are partially observed.

Formulation of P ′ with L1 norm In what follows, we define the ambiguity set mathe-

matically in (5.8) by using the L1 norm and will focus on this ambiguity set in the next two

subsections. Other kinds of ambiguity sets will be further discussed in Section 5.2.5. The L1

norm is special in this problem because the random variables with known discrete support

49



often represent categorical variables instead of ordinal ones, like the portfolio selection and

data of transportation routes introduced before. And L1 norm is the only meaningful norm

here when the data is nominal. More details about L1 norm on this point are listed in C.1

for interested readers.

P ′ =

P = {P(s),∀s ∈ S} :

∑
s∈S

P(s) = 1,

P(s) > 0, ∀s ∈ S,∑
s∈S |P(s)− P̂(s)| 6 τ.

 (5.8)

Set P ′ follows the general definition in (5.7). It contains all the joint distributions that

are close to a nominal distribution P̂, and a distance tolerance τ controls the conservatism.

Intuitively, we call the nominal distribution P̂ as the center of the ambiguity set.

We obtain the center P̂ of the ambiguity set through MLE. In Proposition 1, we show

that this procedure is equivalent to solving a convex optimization.

Definition 1. The nominal distribution P̂ is one optimal solution of the following optimiza-

tion

max
P

N∑
n=1

ln

 ∑
s∈S(ŝn,obs)

P(s)


s.t. P(s) > 0,∀s,∑

s∈S

P(s) = 1,

(5.9)

where we use S(ŝn,obs) to denote all the s ∈ S that match the observed part of the n-th data

ŝn,obs as defined in (5.5).

Proof. Please refer to C.2 for detailed proofs.

Optimization (5.9) is a maximization of a concave function under linear constraints,

which can be solved through convex optimization techniques. For example, Optimization

(5.9) can be solved efficiently through projected gradient descent [22] or general convex

solvers like CVXOPT.

50



5.2.2 Consistency

In this section, we validate that the optimal solution of (5.4) under the ambiguity set (5.8)

converges to the true optimal solution in probability as the data size increases to infinity.

Intuitively, this result implies that the obtained optimal decision of our model is as good as a

decision made under the complete information when the available data size is large enough.

Mathematically, we aim to prove that given the distance tolerance τ converging to zero,

and the number of data samples, N , goes to infinity, the solution to the proposed DRO

model converges in probability to the true optimal solution. We establish this desired result

in Theorem 1. To prove Theorem 1, we rely on first proving Lemma 1 and Lemma 2.

Intuitively, Lemma 1 states that a unique maximum exists for (5.9) when the data size

N →∞, and the corresponding solution of this unique maximum is the true joint distribution

P∗.

Lemma 1. Define F (sobs|P) =
∑

s∈S(sobs)

P(s). Let

L(P) = lim
N→∞

1

N

N∑
n=1

lnF (ŝn,obs|P) = E [lnF (sobs|P)] ,

where the expectation is taken over the probability mass function of sobs. Then, L(P) attains

its maximum uniquely at P∗, where P∗ represents the true joint distribution.

Proof. Please refer to C.3 for detailed proofs.

Based on Lemma 1, Lemma 2 further proves that the center P̂ of the ambiguity set

P ′ converges in probability to the true joint distribution P∗ as the data size increases to

infinity. The main idea behind Lemma 2 is to prove the uniform law of large numbers for

the objective function of (5.9), which is achieved by constructing a dominating function of

it.

Lemma 2. When the number of samples, N , goes to infinity, the solution P̂ of (5.9) con-

verges in probability to P∗.

Proof. Please refer to Appendix C.4 for detailed proofs.

51



Finally, we establish the consistency results by using Lemma 1 and 2. We use τ(N) to

imply that the distance tolerance τ is a function of the sample size N .

Theorem 1 (Consistency). Let τ(N) satisfy

lim
N→∞

τ(N) = 0.

Assume x̂N and ÔN are one optimal solution and the corresponding objective value of the

proposed model, i.e.

min
x∈X

max
P∈P ′

E[Q(x, s)],

under the incomplete data set of size N . Let x∗ and O∗ be one optimal solution and the

objective value of

min
x∈X

EP∗ [Q(x, s)],

where the expectation is taken with respect to the true unknown joint distribution. Then

ÔN
p−−→ O∗. Furthermore, if the maximizer x∗ is unique, then x̂N

p−−→ x∗.

Proof. Please refer to C.5 for detailed proofs.

5.2.3 Finite sample guarantee

In this section, we establish the finite sample guarantee that is defined in (5.3). We show

that the optimal value of the objective function (5.4) serves as a probabilistic upper bound of

the out-of-sample performance under the finite number of incomplete data. The main steps

in our proofs are as follows. We first prove that the deviation between the true distribution

and the nominal distribution can be approximated by a normal distribution asymptotically.

Additionally, this normal distribution has mean zero and a variance-covariance matrix that

depends only on the true distribution function and the missing data mechanism. Because we

assume the true distribution function and the detailed missing probabilities of components

are unknown, this variance-covariance matrix cannot be directly obtained. We propose to

obtain it via observed information matrix [45, 85, 44], which can be viewed as a data-driven

version of this variance-covariance matrix. Then, we obtain the finite sample guarantee

based on the obtained asymptotic normal distribution.
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Notations. We assume set

S+ = {s ∈ S|P̂(s) > 0} = {s{1}, · · · , s{b}}

contains b different s. Their corresponding P̂(s) are represented with a vector

p = [p1, · · · , pb]; we also define {a1, · · · , ab} to be the corresponding number of observations

for these b different s in the data set. Suppose we also observe q different incomplete data

(the number of observed dimensions is less than I) s
{j}
obs , j = 1, · · · , q, and each s

{j}
obs appears

bj times in the data set. We define a vector δj ∈ {0, 1}b, j = 1, · · · , q, where δji = 1 if the

observed dimensions of s
{j}
obs match that of s{i}, i.e.

s{i} � φ{j}obs = s
{j}
obs .

Recall that φobs ∈ {0, 1}I was defined as the indicator vector of observed dimensions.

Proposition 1 states that for a fixed distance tolerance τ , the deviation between the true

joint distribution P∗ and the center P̂ of the ambiguity set is less than a distance tolerance τ

with probability at least α, where α is a function of τ and the observed data. The main idea

behind Proposition 1 is to show that the difference, i.e., P∗ − P̂, can be well approximated

by a random variable with distribution N(0,Σ). More details are provided in the appendix.

Proposition 1. Suppose the true joint distribution is P∗. The nominal joint distribution P̂

satisfies
∑
s∈S

|P∗(s)− P̂(s)| 6 τ, with probability at least α, where

α =

∫
[− τ

b
, τ
b

]b

1√
(2π)b|Σ∗|

exp

(
−1

2
xTΣ∗−1x

)
dx,

and Σ∗ ∈ Rb×b is the asymptotic variance-covariance matrix of P̂ − P∗. We obtain Σ∗

empirically, which is denoted as Σ below.

Σ =

Σb−1 vb

vTb var(b)


with Σb−1 ∈ Rb−1×b−1, vb ∈ Rb−1. For matrix Σ, we define var(b) = 1TΣb−11 and vb =

Σb−11, where 1 denotes one (b − 1)-dimensional column vector whose all elements equal to

1. In addition,

53



Σ−1
b−1 = diag(

a1

p2
1

, · · · , ab−1

p2
b−1

) +
ab−1

p2
b−1


1 · · · 1
...

. . .
...

1 · · · 1

+


ψ11 · · · ψ1,b−1

...
. . .

...

ψb−1,1 · · · ψb−1,b−1

 ,

where

ψik =

q∑
j=1

bj(δji − δjb)(δjk − δjb)
(δTj p)2

, 1 6 i, k 6 b− 1.

Proof. Please refer to Appendix C.6 for detailed proofs.

Following the results of Proposition 1, we directly establish the finite sample guarantee,

which is defined in (5.3), in Theorem 2 below.

Theorem 2 (Finite sample guarantee). Suppose P∗ represents the true joint distribution,

and x̂N and ÔN are one optimal solution and the corresponding objective value of Model

(5.4) with ambiguity set P ′ under N data. Then, we have

P
[
EP∗ [Q(x̂N , s)] 6 ÔN

]
> α,

where α follows the definition in Proposition 1.

So far we have seen that the proposed ambiguity set allows our DRO model with favorable

asymptotic and finite sample guarantees when only incomplete data sets are available. In

the next subsection, we show that this DRO model is also mathematically tractable for a

variety number of cases.
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5.2.4 Worst-case reformulation

In a classical stochastic program, the cost function is defined as

Q(x, s) = q(s)Tx,

and the feasible region X is a polytope. Then, solving our model is equivalent to solving a

linear program. In general, if Q(x, s) is convex with respect to x, and X is a convex set or

mixed-integer linear set [34], our model is mathematically tractable. We conclude the results

in Proposition 2 and its proofs.

Proposition 2. Optimization

min
x∈X

max
{P(s),∀s∈S}∈P ′

∑
s∈S

P(s)Q(x, s)

is equivalent to

min
B

γ + eτ +
∑
s∈S

(ws − ls)P̂(s)

s.t. Q(x, s) 6 γ + ws − ls,∀s ∈ S,

ws + ls − e = 0,∀s ∈ S,

x ∈ X ,

(5.10)

where B = {x, γ, ws > 0, ls > 0, e > 0}.

Proof. Please refer to C.7 for detailed proofs.

Finally, the above results can be extended to two-stage stochastic programming cases,

where related results are summarized in C.8.
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5.2.5 Other ambiguity sets

In general cases, other metrics can be used in (5.7) to construct the ambiguity set.

These ambiguity sets enjoy the same asymptotic result (consistency) and similar finite-

sample guarantees. This is because the center of the ambiguity set is fixed to be P̂ in (5.7),

which implies the difference between the center and the true joint distribution can still be

well approximated by a normal random variable asymptotically. We discuss several kinds of

ambiguity sets in this subsection and their reformulations.

1. f-divergence-based ambiguity set. In this case, we define the distance between P and

P̂, i.e., ‖P− P̂‖, to be an f-divergence[81], which is a function Df (P||P̂) that measures

the difference between two probability distributions. We list some f-divergence examples

below in Table 4. We want to point out that the L1 norm discussed before can also be

viewed as a special case of f-divergence (total variation).

P ′ =

P = {P(s),∀s ∈ S} :

∑
s∈S

P(s) = 1,

P(s) > 0, ∀s ∈ S,

Df (P||P̂) 6 τ.

 (5.11)

Table 4: Some f-divergence examples.

Divergence Df (P||P̂)

Kullback-Leibler
∑

s∈S P(s) log(P(s)

P̂(s)
)

Burg entropy
∑

s∈S P̂(s) log( P̂(s)
P(s)

)

J-divergence
∑

s∈S [P(s)− P̂(s)] log(P(s)

P̂(s)
)

χ2-distance
∑

s∈S
(P(s)−P̂(s))2

P(s)

Hellinger distance
∑

s∈S(
√

P(s)−
√

P̂(s))2

Total variation
∑

s∈S |P(s)− P̂(s)|

The DRO with f-divergence-based ambiguity sets is mostly tractable, which are presented

in [12]. We refer readers to it for tractable reformulations by replacing the center of the
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uncertainty set discussed in their study with the nominal distribution defined in our

study. Finally, we can obtain a similar finite-sample guarantee based on the results in

Proposition 1. We conclude it as follows.

Corollary 1 (Finite sample guarantee.). Suppose P∗ represents the true joint distribu-

tion, and x̂N and ÔN are one optimal solution and the corresponding objective value of

Model (5.4) with ambiguity set based on f-divergence Df (P||P̂) under N data. Then, we

have

P
[
EP∗ [Q(x̂N , s)] 6 ÔN

]
> α.

And α is defined as

α =

∫
x∈X ′

1√
(2π)b|Σ|

exp

(
−1

2
xTΣ−1x

)
dx,

where X ′ = {x = (P− P̂)S+
∣∣∣Df (P||P̂) 6 τ}. We use (P− P̂)S+ to denote that we only

keep the dimensions that appear in set S+. Therefore, x has b components/dimensions

in total.

2. p-Wasserstein distance-based ambiguity set. We define ‖P − P̂‖ as Wp(P, P̂)

representing the p-Wasserstein distance defined in Definition 2.

P ′ =

P = {P(s),∀s ∈ S} :

∑
s∈S

P(s) = 1,

P(s) > 0, ∀s ∈ S,

Wp(P, P̂) 6 τ.

 (5.12)

Definition 2 (p-Wasserstein metric). The p-Wasserstein distance (p ∈ [1,+∞)) between

distribution P and P̂ supported on Ξ is defined as

Wp(P, P̂) := inf{(
∫

Ξ2

d′p(ξ, ξ′)Π(dξ, dξ′))
1
p : Π is a joint

distribution of ξ and ξ′ with marginals P and P′},

where d′ is a metric on Ξ.
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Wasserstein distance is studied widely in DRO literure [49, 54] recently. It is shown

to have superior performances with tractable reformulation in a number of cases. We

conclude its general reformulation for our model below.

Proposition 3 ([53]). With p-Wasserstein distance-based ambiguity set, Model (5.4) is

equivalent to

min
x∈X ,λ>0

{λτ p +
∑
s∈S

P̂ (s)[sup
s′∈S
{Q(x, s′)− λd′p(s′, s)}]} (5.13)

As shown above, the tractability of using p-Wasserstein distance-based ambiguity set

depends on if we can solve

sup
s′∈S
{Q(x, s′)− λd′p(s′, s)}

efficiently. This further depends on the structure of the support S and the choice of

metric d′, which is beyond the scope of this study.

3. Ellipsoid ambiguity set. We define a family of ambiguity sets called ellipsoid ambi-

guity sets. We make one regularization assumption here to simplify the notations used.

We assume the nominal distribution P̂ contains no zero-value components. We will ex-

plain later why this does not limit the generality. In this case, we measure the distance

between P and P̂, i.e., ‖P− P̂‖, through

(P− P̂)TΣ−1(P− P̂).

Recall that Σ−1 is the inverse of the observed information matrix derived in Section

5.2.3.

P ′ =

P = {P(s), ∀s ∈ S} :

∑
s∈S

P(s) = 1,

P(s) > 0, ∀s ∈ S,

(P− P̂)TΣ−1(P− P̂) 6 τ.

 (5.14)

First of all, we want to point out although many existing studies have also proposed

ellipsoid ambiguity sets [37, 132, 80], they mostly define it through the support by as-

suming the first (µ) and second moment information (Σ0) are known or partially known.
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For example, one popular ambiguity set is defined to include all the distributions such

that the corresponding random variable ξ satisfies

(ξ − µ)TΣ0(ξ − µ) 6 τ.

The ellipsoid in our problem is different from them because it is defined in the probability

space.

Intuitively, the ellipsoid ambiguity set defined here represents one asymptotic “optimal”

ambiguity set in our model. This is because we proved the difference, (P−P̂), can be well

approximated by a normal random variable. The boundary of the ellipsoid ambiguity

set is exactly one contour of this normal distribution. Therefore, this ambiguity set

contains the true distribution with the highest probability among all the ambiguity sets

that have the same volume. We illustrate the above result in a 2-dimensional example.

In Figure 3a, we plot the corresponding PDF of P̂−P∗, and its corresponding contours

are plotted in Figure 3b. The potential benefit of this ambiguity set is that it allows

small variations for components with small variance and large variations for components

with large variance. Additionally, if one component in P̂ remains zero asymptotically,

it means this scenario will never happen and can be safely removed from the support.

Therefore, the regularization assumption we made before does not limit the generality.

Figure 3: PDF of the difference between P∗ and P̂ and its contours.
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Finally, we also prove that DRO with this kind of ellipsoid ambiguity set is still tractable.

The result is summarized in Proposition 4, which is a second-order conic programming.
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Proposition 4. The DRO with ellipsoid ambiguity set is equivalent to

min
x,y,β,γ

y + P̂TQ(x) + P̂Tβ

s.t. x ∈ X ,

βs > 0,∀s

y > 0,

y2 > τ(Q(x)− γ + β)TΣ(Q(x)− γ + β),

(5.15)

where we use γ to represent an |S|-dimension vector whose all elements equal γ.

Proof. Please refer to C.9 for detailed proofs.

5.3 Computational Study

We also conduct computational studies to validate the superiority of the proposed model

in some real-world applications. We first study a multi-item two-stage inventory control

problem based on the synthetic data in Section 5.3.1. In this experiment, we show the im-

provements in the out-of-sample performances of our models compared to a data-imputation-

based approach. In Section 5.3.2, we study a portfolio optimization problem based on the

real-world historical returns of exchange-traded funds (ETFs) and the US central bank (FED)

rate of return from 2006 to 2016 [21], where our approaches also achieve better out-of-sample

performance consistently.

5.3.1 Multi-item two-stage inventory control problem

5.3.1.1 Problem formulation Multi-item two-stage inventory control problem [8] can

be described in two periods. At the beginning of the second period, the decision-maker

observes m product demands b ∈ Rm following an unknown joint distribution P. The

demand of product i can be served by either placing an order with unit cost a1i in the first

period, which will be delivered at the beginning of the second period, or by placing an order

with unit cost a2i (a2i > a1i) at the beginning of the second period which will be delivered
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immediately. The excess product units after the second period incur a unit holding cost hi.

If there is a shortfall in the available quantity, then a unit outstocking cost pi is incurred.

We denote the level of inventory for each item by Ii(b), i = 1, · · · ,m. The decision-maker

wishes to determine the first-stage and second-stage ordering quantities, x1i and x2i(b), for

all products to minimize the total ordering, backlogging and holding costs. The problem can

be formulated as the following two-stage optimization problem in (5.16).

min
m∑
i=1

a1ix1i + E

[
m∑
i=1

a2ix2i(b) +
m∑
i=1

max{−piIi(b), hiIi(b)}

]
s.t. Ii(b) = x1i + x2i(b)− bi, i = 1, · · · ,m,

x1i > 0, i = 1, · · · ,m,

x2i > 0, i = 1, · · · ,m,

(5.16)

Correspondingly, our model for (5.16) under the incomplete data is formulated as

min
m∑
i=1

a1ix1i + max
P∈P

E

[
m∑
i=1

a2ix2i(b) +
m∑
i=1

max{−piIi(b), hiIi(b)}

]
s.t. Ii(b) = x1i + x2i(b)− bi, i = 1, · · · ,m,

x1i > 0, i = 1, · · · ,m,

x2i > 0, i = 1, · · · ,m,

(5.17)

where the ambiguity set P is defined through (5.8). Its tractable reformulation is discussed

in C.8.

5.3.1.2 Computational results We compare our models with the data-imputation-

based approach. We consider m = 3 products whose demands are defined as

Di = D1i +D0, i = 1, 2, 3,

where D0 follows a Poisson distribution, Pois(10), and D1i follows a Poisson distribution

Pois(5i+ 5). We first randomly generate 300 samples to serve as the known support in this

problem. Then, we conducted 100 experiments by generating different random samples. In

each experiment, we randomly generate 10 joint data and assume each component will be
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missed with a probability 0.5. We set the inventory parameters as follows, ai1 = 2, a2i = 300,

hi = 1, and pi = 240.

To evaluate the quality of our models, we draw the boxplots of the out-of-sample per-

formances of the proposed models under different deviation tolerance, τ . We also compare

them with one data-imputation-based approach. Because the support of the random vari-

able is assumed to be known, each incomplete data is imputed to the nearest support with

respect to the L1 norm in this approach. Then, the optimal solution is obtained based on

the empirical distribution of the complete data set. We conclude the results in Figure 4.

Results. With partially observed data, our model has similar performances as the data-

imputation-based approach when τ = 0. However, when τ = 0.1 or 1, the performances

are improved significantly, where the 0.75 percentile is greatly reduced and, 0.25 percentile

remains stable. In general, our model achieves much lower average inventory costs.

Figure 4: Out-of-sample performance.
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5.3.2 Portfolio optimization

We also benchmark the proposed approaches through one real-world data set: portfolio

optimization, where the missing data is a common problem [100, 124]. In the subsequent

numerical experiments, we show that our approach outperforms the data-imputation-based

approach on the real-world data set. The experimental data come from the historical returns

of exchange-traded funds (ETFs) and the US central bank (FED) rate of return [21]. The
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data set roughly covers ten years, from January 2006 to December 2016, and includes 2520

data for each asset.

We define the model of portfolio optimization in Section 5.3.2.1. The experimental

settings are presented in Section 5.3.2.2, which introduces the data set and the implemented

methods. Section 5.3.2.6 concludes the results and discussions.

5.3.2.1 Mean-risk portfolio optimization model under missing data Mean-risk

portfolio optimization [49] considers m assets with returns captured by a random vector ξ =

[ξ1, · · · , ξm] whose joint distribution is P. A portfolio is denoted by a vector x = [x1, · · · , xm],

where

x ∈ X = {x ∈ Rm
+ |

m∑
i=1

xi = 1}.

Each xi represents the percentage of the investment in asset i for each 1 6 i 6 m. The

objective function aims to minimize a weighted sum of the mean of negative returns and the

conditional value-at-risk as shown in (5.18):

min
x∈X

E
[
〈−ξ,x〉

]
+ ρCVaRα(〈−ξ,x〉) (5.18)

where ρ > 0.

CVaR at level α, 0 < α 6 1 represents the average of the α×100% worst portfolio losses.

Replacing CVaR in (5.18) with its definition [103], we have

min
x∈X ,d∈R

E(〈−ξ,x〉) + ρ

[
d+

1

α
EP(〈−ξ,x〉 − d)+

]
. (5.19)

When only incomplete observations of ξ are available, we aim to solve Optimization (5.20):

min
x∈X ,d∈R

max
P∈P ′

E(〈−ξ,x〉) + ρ

[
d+

1

α
EP(〈−ξ,x〉 − d)+

]
. (5.20)

5.3.2.2 Numerical settings

5.3.2.3 Data preprocessing In the preprocessing step, we round each data to the near-

est thousandth and remove the data of the first 500 days because these data follow very

different patterns due to the well-known financial crisis of 2007-2008, as shown in Figure 5.
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Figure 5: Daily returns of Asset #1 (iShares Core U.S. Aggregate Bond ETF).
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5.3.2.4 Training set and test set We explain the way to generate the training set and

test set. The training set is assumed to be known to the decision-makers, and the test set

is assumed to be unknown to the decision-makers and is used to evaluate the out-of-sample

performance.

• We model the support based on previous years’ data. That is we approximate the known

support S of the returns ξ with the first 300 data.

• We iteratively use the data from day [301+30×(i−1)] to day (300+30×i) (approximately

one month) as the training set, 1 6 i 6 57. The rest of the data are used as the test set.

Therefore, we obtain 57 pairs of the training set and test set.

We use the first m = 10 assets in the original data set for all the experiments. Therefore,

the data set used in the experiments contains 10 assets with 2020 daily returns each. To

model the partially observed data, we assume each dimension of the data in the training set

will be missing with a fixed probability 0.5.

5.3.2.5 Implemented approaches We aim to compare Model (4.8) to a classic data-

imputation-based procedure. We explain the implementation details of each approach in

the following. The data-imputation-based procedure first recovers the unknown distribution

using nearest neighbor imputation; then it solves Model (5.19) through the empirical distri-
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bution based on the completed data set. In the first step because the support S is known,

each incomplete data is imputed to the nearest support with respect to the L1 norm. Be-

sides, if several supports achieve the smallest distance at the same time, one random support

among them is used.

5.3.2.6 Results We conclude the main numerical results on the partially observed data

in this section, where our model achieves better out-of-sample performance than the data-

imputation-based procedure. We conducted 10 groups of experiments under different values

of τ , where τ = 0.01, 0.02, · · · , 0.1. Each group of experiments contains 57 experiments as

discussed in Section 5.3.2.2. We present the out-of-sample performance in the following.

5.3.2.7 Out-of-sample performance The out-of-sample performance is defined as the

value of

min
d∈R

EP̂(〈−ξ, x̂〉) + ρ

[
d+

1

α
EP̂(〈−ξ, x̂〉 − d)+

]
, (5.21)

where P̂ represents the empirical distribution of the test set, and x̂ represents the portfolio

obtained from corresponding models based on the training set. We repeat each experiments

for 10 times (random missing components) to obtain the standard deviation. The results are

concluded in Figure 6.

Our model outperforms consistently by achieving lower values in (5.19) and smaller

standard deviation. As the value of τ increases, the performance of our model first increases

and then stays stable. And the standard deviations are also decreasing, which indicates

fewer fluctuations in the costs in practice.
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Figure 6: Out-of-sample performance (×0.001).
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6.0 Inventory Management with Highly Unpredictable Non-stationary

Demand

6.1 Introduction

Inventory management facing nonstationary demand is a fundamental problem in supply

chain analyses, with classical results dating back to at least [111]. This problem has been

studied with many variants, such as Markov-modulated demand problems [121, 112, 93],

nonstationary stochastic lot-sizing problems [6, 20, 133], and simulation and forecast-based

studies [62, 30, 9, 36]. However, these studies have largely relied on assumptions about

the demand process to allow for direct or indirect predictions of future demand. More

specifically, they assumed that the demand process is either known or that future demand can

be effectively predicted through certain features or parameterized models. Although these

assumptions can be satisfied in some practical cases, future demands are highly unpredictable

in certain industrial contexts. For example, when the demand for one product is largely

affected by some unprecedented factors (such as Covid-19), no historical data can be used

to develop a forecasting model or to verify whether the conditions of a certain mathematical

model are met. Another example is the demand patterns shown in Figure 7. It plots the

demand data of a product from one of the world’s largest online retailers, where the demand

pattern is barely repeated. This implies that historical data provide little reference for future

cases. Typically, in such challenging data environments, decision-makers in practice adjust

inventory policies based on the most recent sequentially observed demand. In this study,

we focus on deriving inventory policies under such challenging data environments. The

only data that can be used are the sequentially observed daily demands. We examine the

problems encountered by data-driven methods in the literature and propose new methods

with improved performance.

The two most widely used approaches to infer future demand solely based on the observed

demand are sample average approximation and exponential smoothing. SAA approximates

the future demand distribution through the observed empirical distribution, whereas expo-
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Figure 7: Real-world demand data for a particular product of an online retailer
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nential smoothing is a weighted moving average method. The benefit of using SAA is that

if the unprecedented demand data come from a single distribution, the empirical distribu-

tion used by SAA represents an optimal (nonparametric maximum likelihood) estimator for

the true demand distribution. In contrast, exponential smoothing is effective at capturing

demand distribution changes or nonstationarity. However, these two approaches also have

some evident drawbacks. SAA is not effective when dealing with nonstationarity, and expo-

nential smoothing suffers from overfitting. To prove this point, we apply these two methods

to estimate the mean value of daily demand for the two types of demand shown in Figure

8 and 9. Figure 8 presents the daily demand generated from one distribution with non-

zero variance, and Figure 9 plots that generated from two “noiseless” (the variance is zero)

demand distributions.

The performances of SAA and exponential smoothing are summarized in Figure 10 and

11. In the first demand setting, we expect a good prediction to be a straight line that is close

to 100. Therefore, exponential smoothing performs worse than SAA in this case. This is

because exponential smoothing tends to partially “forget” a previously encountered demand.

However, all historical demand data contain useful information for future predictions because

they originate from the same distribution. When the smoothing factor α is 0.5, severe
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Figure 8: Noisy stationary demand.
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Figure 9: Noiseless nonstationary demand.

0 10 20 30 40 50 60 70 80 90 100
40

50

60

70

80

90

100

110

overfitting occurs. As indicated by the orange dotted line in Figure 11, the performance of

SAA is considerably rendered after the demand pattern changes.

Figure 10: Noisy stationary demand.
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Figure 11: Noiseless nonstationary demand.
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The real-world demand is a combination of Figure 8 and 9, meaning that it is stochas-

tic/noisy (having nonzero variance) and nonstationary. Therefore, neither of the approaches

can effectively capture the behaviors on the basis of sequentially observed demand data,

which makes it even more difficult to obtain good inventory control policies. This paper

proposes two novel methods to adjust inventory policies based on the sequentially observed

demand data: integrated Bayesian (IB) approach and seperate lasso (SL) approach. How-

ever, our approaches can handle nonstationarity while behaving similarly to SAA during

periods with stationary demand. This point is demonstrated in Figure 13, where SL is com-
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pared with SAA and exponential smoothing. We find that the SL approach is as stable as

SAA (robust to stochasticity) before the demand pattern changes. After day 50, SL follows

up the demand distribution change even more rapidly than exponential smoothing and then

remains more stable.

Figure 12: Real-world demand.
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Figure 13: Comparisons.
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In what follows, we define our problem settings and summarize the main results. This

study’s primary assumption is that we do not use historical data, or the available historical

data/features cannot be used to predict future demand due to certain unprecedented situa-

tions. In particular, we assume that the demand follows different distributions for different

periods, where neither distributions nor their transition properties are known. Therefore,

any historical data observed long ago may belong to a demand distribution that is com-

pletely different from the present distribution. Hereafter, we refer to this setting as highly

unpredictable.

Given the highly unpredictable data setting, we study frameworks for adjusting the in-

ventory decisions by using sequentially observed demand data. We consider this problem in

two situations: the first case represents a data environment that assumes an uncertainty set

comprising all possible demand distributions (given exogenously). The second case repre-

sents a data environment in which information about the uncertainty sets is not available.

We develop a parametric IB approach and a nonparametric SL approach for these two sit-

uations, respectively. While the proposed approaches can be extended to incorporate many

inventory policy classes, we demonstrate the effectiveness of our approaches by focusing on

the widely used (r,Q) policy. The main idea of both these methods is to distinguish be-
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tween stochasticity and nonstationarity. Therefore, both methods outperform SAA when

nonstationary appears and outperform exponential smoothing during stationary phases.

The IB approach assumes that an uncertainty set comprising all possible demand distri-

butions is available and conducts an integrated analysis of demand distribution estimation

and cost minimization to derive an inventory policy. At the end of each day, it obtains

the inventory policy for the next day by greedily minimizing the expected inventory costs,

which are evaluated based on a Bayesian analysis of the observed demand. With further

theoretical analysis, we propose an easy-to-implement algorithm. The SL approach is a

nonparametric approach, which does not make any assumption related to the possible distri-

bution and uses separate analysis steps for the demand determination and policy derivation.

We first formulate a lasso-based model to determine the demand data belonging to the cur-

rent demand distribution at the end of each day. Then, we propose a distributionally robust

optimization (DRO) model to determine the inventory policies for the next day. In addition,

theoretical analyses are conducted to derive an easy-to-implement algorithm and explore its

performance.

We also evaluate the performances of IB and SL approaches empirically by evaluating

them through multiple sets of experiments. In this problem, the optimal inventory policies

are unobtainable because a reliable forecast of future demand is not available. Therefore,

we obtain baseline inventory policies (OPT) under a relaxed setting, where demand season

changes and demand distributions for all demand seasons are assumed to be known at the

beginning. Accordingly, we derived inventory policies (OPT) by following the methods

introduced in [20]. We compare the inventory costs of IB and SL with those of OPT under

nine different demand data settings, classified based on the magnitude of demand variance

and length of each demand season. As shown in Table 5, both IB and SL achieve, on average,

approximately 1.12 times the costs of OPT.

In the second set of experiments, we benchmark IB and SL against state-of-the-art

approaches: sample average approximation (SAA), rolling horizon (RH), and exponential

smoothing (ES). SAA is used to derive the inventory policies on a daily basis according

to the observed empirical distributions. RH derives inventory policies according to the ob-

served empirical distributions in some prescribed horizons. ES predicts future demand, and
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accordingly, derives the inventory policies by using exponential smoothing. Under the nine

previously mentioned demand data settings, IB and SL consistently outperform all these

approaches (Table 5). Finally, we apply our methods to datasets obtained from one of the

world’s largest e-commerce websites. Although the demand data are highly nonstationary

and stochastic, we observed that the proposed approaches are able to capture the hidden

patterns and achieve lower inventory costs.

Table 5: Comparisons of IB and SL with OPT and other heuristics (i.e., SAA, RH, and ES).

The numbers presented in this table indicated the ratio of the total inventory cost for the

corresponding method and the costs of OPT for different data environments; smaller values

indicate lower costs.

Data environment 1 2 3 4 5 6 7 8 9

OPT 1 1 1 1 1 1 1 1 1

IB 1.04 1.2 1.12 1.05 1.23 1.14 1.04 1.2 1.08

SL 1.07 1.14 1.14 1.06 1.15 1.15 1.05 1.13 1.09

SAA 1.52 1.35 1.25 1.52 1.36 1.28 1.31 1.23 1.27

RH 1.2 1.28 1.19 1.19 1.28 1.23 1.15 1.15 1.14

ES 1.1 1.27 1.14 1.11 1.28 1.16 1.08 1.18 1.17

6.2 Problem Formulation

We consider the inventory management problem for a warehouse with set-up costs, pro-

portional holding, and penalty costs. We assume that the demand is nonstationary, implying

that it follows different distributions for different time periods. We refer to one continuous

period that follows the same demand distribution as one demand season. The managers are

unaware of the demand process, number of demand seasons, starting times, and distributions

of demand seasons. We assume that the demand is highly unpredictable, meaning that we do

not have historical data, or the available historical data or features cannot be used to predict

the future demand reliably. We assume that all orders are placed and will be received at the

beginning of each day. Moreover, it takes L days for one order to be delivered. The ordering
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cost comprises of a fixed cost for placing an order. A linear holding cost is charged for every

unit carried from one day to the next, whereas a linear penalty cost is incurred for each

unit of outstocking at the end of the day. Mathematically, suppose that one demand season

starts on day s. At the end of day t, the observed demand data points are {ds, · · · , dt}. Our

goal is to develop a model F that maps the observed data into inventory policies for day

t+ 1, as shown below.

F ({ds, · · · , dt}) = 〈Rt+1, Qt+1〉 (6.1)

This study focuses on the widely used (R,Q) policy for demonstration (EOQ model with

type-1 service level). However, the proposed approach can be extended to other policy

classes. More specifically, we obtain the reorder point and order quantity as

Qt =

√
2K ′µt
h

,Rt = (PL
t )−1(

p

p+ h
), (6.2)

where µt and PL
t are the mean values of the daily demand and the cumulative distribution

function (CDF) of the L-day demand. Both are unknown and must be determined from the

data.

One key point in making a good prediction in such challenging data environments is

to distinguish between the randomness inside particular demand distributions and demand

distribution changes. If the demand is stationary and all changes in the daily demand are

caused by randomness, the function F should ideally use all the demands in {ds, · · · , dt}

to derive the inventory policies. Otherwise, if the last demand distribution starts at t′

(s < t′ < t), the function F should use the demand in {d′t, · · · , dt} to derive the inventory

policies. Therefore, our methods focus on identifying the sources of the changes observed in

the demand data to improve performance.
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6.3 IB Approach

In this section, we propose a heuristic IB approach to obtain the (Rt, Qt) policy. We

assume an uncertainty set of possible demand distributions (given exogenously). This ap-

proach adopts a Bayesian analysis and conducts an integrated analysis of demand distribu-

tion estimation and inventory cost minimization. Our further theoretical analyses based on

Proposition 1 help us establish an easy-to-implement algorithm.

Before focusing on the main concepts of the IB approach, we first introduce a method

called “dynamic rolling horizon”, in which the starting day of the current horizon is always

set as the first day of the current assumed/determined demand season. The time horizon

is rolled over every time a new demand season is determined by our algorithm. Therefore,

we assume that there are at most two demand distributions inside the current horizon. In

the following section, we briefly introduce the main idea of the IB approach, through which

we greedily derive the ordering policies of each day based on the demand distribution inside

the uncertainty set, the inventory policy of which minimizes the current expected inventory

costs. That is, at the end of day t, we base our next ordering policies for day t + 1 on one

distribution, pk∗ , from the uncertainty set, where k∗ is the optimal solution of Optimization

(6.3), whose objective function represents the expected inventory costs with respect to the

policies based on distribution pk′ . Here, we explain Problem (6.3) and detail it in Section

6.3.1

min
k′=1,··· ,K

K∑
k=1

P(Bk|At)Ck
k′ . (6.3)

We use P(Bk|At) to denote the probability that the current demand distribution is pk given

the observed demand data on day t. We use Ck
k′ to denote the expected inventory costs of

basing ordering policies on demand distribution pk′ given that the actual demand distribution

is pk, which can be estimated or analytically calculated. In (6.3), we determine P(Bk|At)

through Bayesian analysis. Then, we choose the optimal distribution by solving (6.3), which

is equivalent to a simple threshold test on P(Bk|At) as will be shown in Proposition 4.

Finally, we obtain the ordering policies by using the determined demand distribution.
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6.3.1 Main procedure

We present the details of the IB approach, described using Algorithm 2. This approach

involves two main steps. Step 1 evaluates the possibilities of the current demand distribution,

which can be achieved via Bayes’ rule. We denote the starting day of the current time horizon

as day s. At the end of day t, the demand inside the current time horizon is {ds, · · · , dt}.

The uncertainty set for the possible demand distributions is P = {p1, p2, · · · , pK}, and the

initial demand distribution is denoted as pk1 . We use µ(pk) to represent the mean value of

distribution pk and use F−1
pk

(α) (0 < α < 1) to indicate the α quantile of a random variable

following distribution pk. First, two events are defined as follows:

• Event At : The observed demand is {ds, · · · , dt}.

• Event Bk : The current demand distribution is pk.

The probability that the current demand distribution is pk after observing {ds, · · · , dt} can

be denoted as P(Bk|At). By using the dynamic rolling horizon, there exists a maximum of

two demand distributions inside the current horizon. P(Bk|At) can be calculated as follows:

P(Bk|At) =
P(At|Bk)P(Bk)∑K
j=1 P(At|Bj)P(Bj)

, (6.4)

where P(At|Bk) =
1

t− s

t∑
j=s+1

pk1(ds) · · · pk1(dj−1)pk(dj) · · · pk(dt), ∀k 6= k1, (6.5)

and P(At|Bk1) = pk1(ds) · · · pk1(dt). (6.6)

P(At|Bk) is the likelihood of observing {ds, · · · , dt} given that the current distribution

is pk. Eq. (6.5) provides an expression for P(At|Bk), because if the current distribution

changes, k 6= k1, then each possible day inside the current planning horizon has an equal

probability of being the switching day as we make no assumption regarding the transition

property. For the same reason, all P(Bk) are equal. Thus, we have

P(Bk|At) =
P(At|Bk)∑K
j=1 P(At|Bj)

.

In Step 2, a threshold test is used to select the demand distribution and inventory poli-

cies, with the aim of minimizing the future expected costs. Optimization (6.7) is formulated
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Algorithm 2 IB

1: Initialization: input T, s← 1; t = 2 : T
2: STEP 1:
3: Pk =

∑t
j=s+1 pk1(ds) · · · pk1(dj−1)pk(dj) · · · pk(dt), ∀k = 1, · · · ,K;

4: P = max
k 6=k1

Pk∑K
j=1 Pj

;

5: k2 = argmaxk 6=k1
Pk∑K
j=1 Pj

;

6: STEP 2: P > θ

7: s← argmaxi
pk1(ds) · · · pk1(di−1)pk2(di) · · · pk2(dt)∑n

j=s+1 pk1(ds) · · · pk1(dj−1)pk2(dj) · · · pk2(dt)
;

8: set the current distribution pk1 as pk2 ;

9: set the order quantity to

√
2K′µ(pk1

)

h , reorder point r = F−1pk1
( p
p+h ).

to minimize the future expected costs over the possible demand distributions in the uncer-

tainty set. In (6.7), Ck
k′ denotes the expected costs of using a policy based on the demand

distribution pk′ while the real demand distribution is pk

min
k′=1,··· ,K

K∑
k=1

P(Bk|At)Ck
k′ . (6.7)

Proposition 4 states that a unique threshold value θ exists for P(Bk2|At) if the policy

based on pk2 achieves the optimal solution for (6.7). The proofs are provided in Appendix

D.1.

Proposition 4. The policy based on demand distribution pk2 achieves the optimal solution

if and only if P(Bk2|At) > θ and

θ =

∑
k 6=k2 P(Bk|At)(Ck

k2
− Ck

k∗)

Ck2
k∗ − C

k2
k2

, where k∗ = arg min
k′ 6=k2

[P(Bk2|At)Ck2
k′ +

∑
k 6=k2

Ck
k′P(Bk|At)].

In practice, it is not difficult to determine Ck
k′ through simulations, because the demand

distribution is fixed to pk, and the inventory policy is defined based on a fixed distribution pk′ .

We also provide an example to analytically derive Ck
k′ in Appendix D.2. Once the demand

distribution is determined, we derive the (Rt, Qt) policy based on the identified distribution.

Finally, the time horizon is rolled over if the inventory policy based on pk2 is used. The new
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time horizon starts on the day with the highest likelihood of being the starting day for the

current demand distribution. Thus, the new starting day, s, is set as i∗, such that

pk1(ds) · · · pk1(di∗−1)pk2(di∗) · · · pk2(dt)∑n
j=s+1 pk1(ds) · · · pk1(dj−1)pk2(dj) · · · pk2(dt)

>
pk1(ds) · · · pk1(di−1)pk2(di) · · · pk2(dt)∑n

j=s+1 pk1(ds) · · · pk1(dj−1)pk2(dj) · · · pk2(dt)
,

(6.8)

for i = s+1, · · · , t. This can be proved by defining an event, Ci, indicating that the switching

day is day i. By following a procedure similar to that described in Eq. (6.4), we obtained

P(Ci|At), which denotes the probability that the current demand season starts on day i,

given the observed demand {ds, · · · , dt} as

P(Ci|At) =
pk1(ds) · · · pk1(di−1)pk2(di) · · · pk2(dt)∑n

j=s+1 pk1(ds) · · · pk1(dj−1)pk2(dj) · · · pk2(dt)
.

In conclusion, by recursively applying the two aforementioned steps at the end of each

day, the IB approach produces a sequence of (Rt, Qt) policies. We summarize these steps in

Algorithm 2, where T denotes the total number of days for this problem.

6.4 SL Approach

In this section, we propose the SL approach for cases where the uncertainty set of possible

demand distributions is not available. This approach formulates a fused-lasso model and

conducts a separate analysis on demand season estimation and inventory cost minimization.

Our theoretical analyses based on Lemma 3 help us derive an easy-to-implement Algorithm

3.

Briefly, the SL approach first identifies the demand data that correspond to the current

demand season based on the observed data. Then, it derives the inventory policies based on

the identified data belonging to the current demand season. The dynamic rolling horizon

heuristic is still used such that we can solve the multi-season problem by analyzing two

consecutive demand seasons. Additionally, a DRO model is proposed to derive inventory

policies based on the demand data to guarantee the out-of-sample performance. This is
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because, in the settings of the SL approach, we do not know the exact demand distributions.

Furthermore, a simple SAA framework hardly guarantees the Type-1 service level because

the amount of demand data is very limited. The proposed DRO framework determines

the inventory policies by considering the worst-case distribution inside an ambiguity set

containing possible demand distributions, which significantly improves the out-of-sample

performance. In what follows, we introduce the main steps of the SL approach, the details

of which will be presented in Section 6.4.1. First, at the end of each day t, we propose Model

(6.9) to identify the possible changes in demand distributions

min
λs,··· ,λt

1

2

t∑
j=s

(dj − λj)2 + β
t∑

j=s+1

|λj − λj−1|. (6.9)

Model (6.9) is adapted based on a fused-lasso model, which has been used in offline change

point detection in the machine learning community [125, 79, 128, 104]. In Model (6.9), the

observed demand data in the current horizon are {ds, · · · , dt}. We use λj to represent the

means of the corresponding demand distributions on day j, s 6 j 6 t. We use s to denote the

starting day of the current time horizon. In addition, β > 0 serves as the penalty parameter

controlling the trade-off between the observation noise,
1

2

t∑
j=s

(dj − λj)2, and demand season

changes,
t∑

j=s+1

|λj − λj−1|. Although fused-lasso models have been studied [104] before, it

is used as an offline unsupervised approach. However, in the SL approach, we develop an

online algorithm based on fused-lasso models relying on the structures of optimal solutions

of consecutive demand seasons. Further analysis reveals that the performance of correctly

detecting the underlying patterns of sequential demand seasons can be guaranteed in our

approach. After the data of the current demand season is identified from Framework (6.9),

we derive the inventory policies for the day t + 1 based on a DRO model, which will be

introduced in Section 6.4.2. In Section 6.4.3, we discuss the selection of a parameter β to

guarantee the performance of the SL approach.
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6.4.1 Main procedure

We present the SL approach in this section. The steps are summarized in Algorithm 3,

and its details are provided in the following section. Recall that we proposed Model (6.10)

to identify data of the current demand season, where dj is the demand for day j, λj is the

mean value of the demand distribution on day j, and β is a constant (s 6 j 6 t)

min
λs,··· ,λt

1

2

t∑
j=s

(dj − λj)2 + β

t∑
j=s+1

|λj − λj−1|. (6.10)

The first term in Optimization (6.10) is the summation of the variance of the demand

observations. The second term reflects the magnitude of demand season changes. Model

(6.10) aims to explore the trade-off between the number of demand seasons (
t∑

j=s+1

|λj−λj−1|)

and the total variance observed (
1

2

t∑
j=s

(dj −λj)2), where the trade-off is controlled by β. We

assume that β > 0 is a given number here and discuss its selection in Section 6.4.3. For two

consecutive demand seasons, the optimal solution in Model (6.10) has special structures as

summarized in Lemma 3.

Lemma 3. For two consecutive demand seasons, the demand data inside the current time

horizon have the same demand distribution if and only if λ =

∑t
j=s dj

t− s+ 1
satisfies |

i−1∑
j=s

(λ −

dj)| 6 β, ∀i = s+ 1, · · · , t+ 1.

For the proof of this lemma, we refer our readers to Appendix D.3. Based on Lemma 3,
we derive the inventory policy for day t + 1 at the end of each day t through the following
two steps. In Step 1, we decide whether a new demand distribution has started or not. First,

we calculate λ =

∑t
j=s dj

t− s+ 1
; then, we determine the largest deviation |

∑i−1
j=s(λ − dj)| (x in

Algorithm 3) for i = s + 1, · · · , t + 1. In Step 2, we compare x with the threshold value β.

Algorithm 3 SL

1: Initialization: T, β, s← 1; t← 1 : T
2: STEP 1:

3: λ← ds + · · · + dt
t− s+ 1

;

4: x← maxs+16i6t+1 |
∑i−1
j=s(λ− dj)|;

5: STEP 2: x > β
6: solve Problem (6.11a) and update s, which is the first day of the current demand distribution;
7: derive inventory policies based on data {ds, · · · , dt} with Model (6.14);
8: derive inventory policies based on data {ds, · · · , dt} with Model (6.14);
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If x > β, indicating that a new demand season is found. We find the data belonging to the
current demand distribution through (6.11).

min
λs,··· ,λt

1

2

t∑
j=s

(dj − λj)2 (6.11a)

s.t.
t∑

j=s+1

||λj − λj−1||0 = 1. (6.11b)

Constraint (6.11b) guarantees that the demand season changes only once. Problem (6.11) is

easy to solve by merely enumerating all t− s scenarios. That is, the optimal solution comes

from the following set of solutions:

λs = · · · = λi−1 =

∑i−1
j=s dj

i− s
, λi = · · · = λt =

∑t
j=i dj

t− i+ 1
, ∀i = s+ 1, · · · , t.

Let us assume that switching on day i yields the minimal objective value. We then use data

from day i to t to derive the current inventory policies according to the DRO model proposed

in Section 6.4.2. We also set s = i as the starting time of the current demand distribution.

If no new demand distribution is detected, we add newly observed data to the dataset and

derive the corresponding inventory policy based on the DRO model. At the end of the next

day, we repeat the above procedures. We summarize these above steps in Algorithm 3, where

the parameter T denotes the final day. In Algorithm 3, the only remaining challenge is to

select a suitable threshold, β. We analyze the effect of β and provide guidelines for choosing

it in Section 6.4.3.

6.4.2 Distributionally robust optimization framework for deriving (R,Q) poli-

cies

Our setting in the SL approach corresponds to a nonparametric case, where we only

have data of the current demand season but do not know the exact forms of the demand

distributions. The most common way to derive the inventory policies is to use the empirical

distribution, which is often referred to as SAA, as shown in (6.12). In (6.12), we use dL
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to denote the random variable of the L-day demand (demand during the lead time). Its

empirical PDF is denoted as p̂L, and the empirical CDF is denoted as P̂L.

min
Q,R

Ep̂L [
K ′dL

QL
+ h

Q

2
− hdL)] + hR

s.t. P̂L(R) > α.

(6.12)

However, for our problem, the size of the available dataset is usually very small because

it requires L days to obtain one L-day demand. Decision-makers may apply methods like

bootstrapping to estimate the empirical distributions. Under these case, the estimation

error involved is large, and the out-of-sample performance of SAA is poor [119]. Therefore,

the Type-1 service level is hard to guarantee. To overcome this drawback, we propose a

model based on distributionally robust optimization (DRO) which is formulated as follows.

In (6.13), the PDF of the L-day demand is denoted as pL and its corresponding CDF is

denoted as PL

min
Q,R

max
pL∈Bθ1

EpL [
K ′dL

QL
+ h

Q

2
− hdL)] + hR

s.t. min
pL∈Bθ1 (p̂L)

PL(R) > α.

(6.13)

Optimization (6.13) considers the pL residing in an ambiguity set Bθ1(p̂L) that achieves the

worst-case Type-1 service level. The constraint restricts this level to be larger than α. The

ambiguity set is controlled by a parameter θ1 and the obtained empirical distribution p̂L.

Model (6.13) improves the out-of-sample performance of the Type-1 service level because the

ambiguity set Bθ1(p̂L) models the estimation errors contained in the empirical distribution.

We refer to an example in our computational experiments here to briefly illustrate this point.

Details on the experiments can be found in Appendix D.5. In Figure 14, the Type-1 service

level is improved by DRO (blue) with appropriate values of θ1 compared with the results of

SAA (red). The yellow line indicates the target Type-1 service level of 97.5%.

Detailed Discussion: We choose to construct ambiguity sets based on the Wasser-

stein distance in this study due to two reasons: First, from the modeling perspective, this

ambiguity set contains infinitely many distributions that are close to the empirical demand

distributions in that the Wasserstein distance equals to the lowest cost of transporting the
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Figure 14: Average Type-1 service level with 2 available demand data.
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probability mass from one distribution to the other. It not only allows the weights of the em-

pirical distribution to be adjusted but also allows the probability mass itself to be adjusted.

Moreover, it guarantees the out-of-sample performance theoretically [49]. Second, from the

computational perspective, Optimization (6.13) has closed-form reformulations that can be

solved efficiently, as we will show later. The details of the proposed model are as follows.

We begin with the definition of the Wasserstein distance and the corresponding Wasserstein

balls used in our model.

Definition 5. For any closed set Ξ ⊂ Rn+m, define

M1(Ξ) = {Q : EQ[‖ξ‖1] =

∫
Ξ

‖ξ‖1Q(dξ) <∞}.

The 1-Wasserstein distance between two distributions Q1, Q2 ∈M1(Ξ) is defined as

W1(Q1,Q2) := inf{
∫

Ξ2

‖ξ1 − ξ2‖1Π(dξ1, dξ2) :

Π is a joint distribution of ξ1 and ξ2 with marginals Q1 and Q2, respectively}.

Definition 6. We use P̂ to denote the empirical demand distribution. A Wasserstein ball

centerred at P̂ with radius θ under 1-Wasserstein distance is defined as:

Bθ(P̂) ={H(L) ∈M1(Ξ) : W1(H(L), P̂) 6 θ}.
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Following the results of [31], we reformulate (6.13) and summarize the results in Propo-

sition 5. The proofs are provided in Appendix D.4.

Proposition 5. Optimization (6.13) is equivalent to

min
Q,R,gk,t,qk

K ′(µ̂+ θ1)

Q
+ h

Q

2
+ h(R− Lµ̂− Lθ1)

s.t. (1− α)N ′t+ eTg > θ1N
′,

R− D̂k +Mqk > t+ gk, ∀k = 1, · · · , N ′

M(1− qk) > t+ gk, ∀k = 1, · · · , N ′

gk 6 0, t ∈ R, qk ∈ {0, 1}, ∀k = 1, · · · , N ′,

(6.14)

where we use D̂k to denote k-th observed L-day demand and µ̂ to denote the empirical mean

of the daily demand. Additionally, we suppose that there exists a total of N observed daily

demands for the current demand season, as well as N ′ observed L-day demands. Clearly,

N ′ = bN/Lc. Here, M is a large but bounded number.

Optimization (6.14) can be solved efficiently. First, variable Q has closed-form solutions:

Q =

√
2K ′(µ̂+ θ1)

h
. (6.15)

Second, after Q is determined, the rest of (6.14) is a mixed-integer linear programming.

The parameter θ1 is tunable by users. We recommend selecting it via cross-validations in

practice, and we also conducted computational studies for the choice of θ1 in Appendix

D.6. Additional empirical experiments with respect to the working inventory costs of the

proposed DRO model can be found in Appendix D.5.
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6.4.3 Choosing the threshold value β

The threshold value, β, plays an essential role in the SL approach. In this section, we

describe the theoretical analysis of β, which is based on two types of errors. In the first

error type, i.e., Type A error, the demand distribution is retained, but the algorithm detects

a change in that distribution. In the second error type, i.e., Type B error, the demand

distribution changes but the algorithm fails to detect that change. As these two error types

cover all possible situations, they can be used to evaluate the efficacy of our approaches.

Next, we describe the theoretical analysis based on error Types A and B errors through a

two-demand season scenario, in which the demand season only changes once. The multisea-

son cases can be viewed as a sequence of two demand season scenarios. We assume normal

distributions for demand distributions as an example. The other distributions employ sim-

ilar analysis steps. We used the following notations and assumptions. For convenience, we

suppose that the current demand season starts from day 1 (s = 1). We denote the current

demand distribution as p1 and the second distribution as p2. The variables, λ1 and λ2 denote

the mean and σ1 and σ2 denote the standard deviations of p1 and p2, respectively. We use

dt to represent the demand data observed on day t. Variable zα is the critical α value of the

standard normal distribution. Proposition 6 summarizes the main results.

Proposition 6. Suppose the demand for one warehouse has remained in the current demand

distribution for n days. If β satisfies β > z 2α−2+n(n−1)
n(n−1)

√
nσ1

2
, then with a probability of at least

2α− 1, Algorithm 3 will not cause any Type A errors.

Suppose the demand for one warehouse has entered the second demand distribution for

m days at the end of day m+n. Let F denote the CDF of the standard normal distribution.

If β satisfies:

F (
β − mn

m+n
(λ1 − λ2)√

nm(mσ2
1+nσ2

2)

(m+n)2

)− F (
−β − mn

m+n
(λ1 − λ2)√

nm(mσ2
1+nσ2

2)

(m+n)2

) < 1− α′,

then with a probability of at least α′, Algorithm 3 will not cause any Type B errors after day

m+ n.
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We use the following lemma in our analysis.

Lemma 4 (Fréchet-Hoeffding bounds). Let us assume that G1, · · · , Gd are marginal distri-

bution functions, and G denotes any joint distribution function with those given marginals;

then, for all x ∈ Rd, x = (x1, · · · , xd),∑d
i=1Gi(xi) + (1− d)+ 6 G(x) 6 min(G1(x1), · · · , Gd(xd).

Proof. Proof.

• Type A error: We define xki as xki =
∑i

t=1(dt − λ(k)), where λ(k) =

∑k
t=1 dt
k

. Then

the fact that there is no Type A error until day n indicates |xki | 6 β for 1 6 i < k and

1 < k 6 n. We do not include the cases where i = k since by definition xkk = 0. Thus,

not having Type A error until day n with a probability at least 2α− 1 is equivalent to

P(|xki | 6 β, ∀1 < k 6 n, 1 6 i < k) > 2α− 1.

First, we prove: xki ∼ N (0, iσ2
1 −

i2σ2
1

k
) for 1 6 i 6 k. Because all dt (1 6 t 6 k) are

the i.i.d samples from distribution N (λ1, σ
2
1) and λ(k) follows the normal distribution

N (λ1,
σ2

1

k
). Thus, xki still follows a normal distribution. We calculate the mean and

variance of xki in the following manner:
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E(xki ) = iλ1 − iλ1 = 0;

Var(xki ) = E((xki )
2
)− E2(xki ) = E(i2λ(k)2 +

i∑
t=1

i∑
j=1

dtdj −
i∑
t=1

2iλ(k)dt)︸ ︷︷ ︸
E((xki )

2
)

− [i2E2(λ(k)) +
i∑
t=1

i∑
j=1

E(dt)E(dj)−
i∑
t=1

2iE(λ(k))E(dt)]︸ ︷︷ ︸
E2(xki )

=
[
i2E(λ(k)2)− i2E2(λ(k))

]
+

[
i∑
t=1

i∑
j=1

E(dtdj)−
i∑
t=1

i∑
j=1

E(dt)E(dj)

]

−

[
i∑
t=1

2iE(λ(k)dt)−
i∑
t=1

2iE(λ(k))E(dt)]

]

=
i2σ2

1

k
+

i∑
t=1

[E(d2
t )− E2(dt)]− 2i

i∑
t=1

[
E(

∑k
j=1 dj

k
dt)− E(

∑k
j=1 dj

k
)E(dt)

]

=
i2σ2

1

k
+ iσ2

1 − 2i
i∑
t=1

[
E(
d2
t

k
)− E2(dt)

k

]
=
i2σ2

1

k
+ iσ2

1 −
2i2σ2

1

k
= iσ2

1 −
i2σ2

1

k
.

Thus, we showed xki ∼ N (0, iσ2
1−

i2σ2
1

k
). In addition, for the variance we have iσ2

1−
i2σ2

1

k
≤

kσ2
1

4
, because the variance of xki is a quadratic function with respect to i and the biggest

variance is accomplished when i =
k

2
. Therefore, we have: Var(xki ) = iσ2

1 −
i2σ2

1

k
6

kσ2
1

4
6
nσ2

1

4
. Next, we prove:

P(|xki | 6 β, ∀1 < k 6 n, 1 6 i < k) > [1 + (n− 1)nF (
2β√
nσ1

)− (n− 1)n]+ (6.16)

and F (x) = P[y < x], where y follows a standard normal distribution.

We further define F|xki | as F|xki |(x) = P[|xki | < x] and Fxki (x) as Fxki (x) = P[xki < x]. We

apply the Fréchet-Hoeffding Bounds on the left side of Formula (6.16):

P(|xki | 6 β, ∀1 < k 6 n, 1 6 i < k) > [1− n(n− 1)

2
+

n∑
k=2

k−1∑
i=1

F|xki |(β)]+ (6.17)
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Since xki ∼ N (0, iσ2
1 −

i2σ2
1

k
), we have:

F|xki |(β) = Fxki (β)− Fxki (−β) = 2Fxki (β)− 1 = 2F (
β√

iσ2
1 −

i2σ2
1

k

)− 1 > 2F (
β√
nσ2

1

4

)− 1.

(6.18)

By substituting Formula (6.18) into Formula (6.17), we proved the following:

P(|xki | 6 β, ∀1 < k 6 n, 1 6 i < k) > [1 + (n− 1)nF (
2β√
nσ1

)− (n− 1)n]+.

Thus, in order to make sure P(|xki | 6 β, ∀1 < k 6 n, 1 6 i < k) > 2α − 1, it suffices to

have:

1 + n(n− 1)F (
2β√
nσ1

)− n(n− 1) > 2α− 1.

Solving above inequality gives: β > z 2α−2+n(n−1)
n(n−1)

√
nσ1

2
.

• Type B error: Let us suppose that we are at day n + m and have entered the second

demand distribution for m days. This is indicative of the fact that the first demand

distribution lasts for n days. If we detect a distribution change at day n + m with a

probability of at least α′, the Type B error is guaranteed to be less than 1 − α′ at day

m+ n. Because

P(max(|xt|) > β) > P(|xn| > β), ∀1 6 t 6 m+ n.

To make sure P(max(|xt|) > β) > α′, we select β so that

P(|xn| > β) > α′. (6.19)

The distribution of the variable xn can be calculated in the following manner: Recall

xn =
∑n

t=1(dt − λ), and λ =

∑m+n
t=1 dt
m+ n

,

xn =
n∑
t=1

dt −
n

m+ n

m+n∑
t=1

dt =
m

m+ n

n∑
t=1

dt −
n

m+ n

n+m∑
t=n+1

dt.
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Since {d1, · · · , dn} come from the distributionN (λ1, σ
2
1) and {dn+1, · · · , dm+n} come from

the distribution N (λ2, σ
2
2). Therefore, variable xn follows the distribution N (

mn

m+ n
(λ1−

λ2),
nm(mσ2

1 + nσ2
2)

(m+ n)2
). Formula (6.19) is equivalent to:

P(|xn| > β) = P(xn < −β) + P(xn > β) = 1− P(xn < β) + P(xn < −β) > α′.

This leads to F (
β − mn

m+n
(λ1 − λ2)√

nm(mσ2
1+nσ2

2)

(m+n)2

)− F (
−β − mn

m+n
(λ1 − λ2)√

nm(mσ2
1+nσ2

2)

(m+n)2

) < 1− α′.

As discussed previously, β allows a trade-off between the noise and bias. A larger value

of β reduces the Type A error, whereas a smaller value of β reduces the Type B error.

Therefore, β can be tuned accordingly.

6.5 Computational Studies

In this section, we present the computational studies conducted to empirically evaluate

the IB and SL approaches. We benchmark these approaches against state-of-the-art ap-

proaches. In addition, the optimal policy for our data-driven model is considered unknown.

Therefore, we demonstrate the effectiveness of our approaches by comparing them with a

policy derived under a relaxed setting, where the distribution information and changes in

the demand distributions are known in advance.

6.5.1 Benchmarking the Proposed Approach

We benchmark the IB and SL approaches against three approaches: SAA, RH, and ES.

SAA is widely used in data-driven inventory management [78, 77], where the optimal (R,Q)

policies are derived according to the observed empirical distribution. RH is a modification

of SAA under nonstationary demand [93], where the inventory policy at the end of each

day is updated according to the empirical distribution observed in some prescribed horizons.

To determine these horizons in our experiments, the average length of the demand seasons

is assumed to be known. ES is a powerful demand forecasting method that has achieved
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considerable success in practice. In this study, we adopted a single exponential smoothing

method because our demand model does not comprise trends or seasonalities. In this ap-

proach, we predicted mean µt, and variance during the lead time σ2
t according to the methods

introduced in [120]. Then, we obtained order quantity Qt and reorder point Rt according to

Qt =

√
2Kµt
h

and Rt = Lµt + z p
p+h

√
σ, where z p

p+h
represents the standard normal deviate

such that P(Z < z p
p+h

) = p
p+h

.

We compared our approaches with OPT by assuming that the demand distributions

and their changes are known a priori. OPT obtains inventory policies according to the

methods introduced in [20]. This method precomputes the (s, S) policies for all possible

stationary demand distributions and tabulates the results. Then, it solves the nonstationary

problem through a stationary problem by averaging the demand means over an estimate of

the expected time between two orders. The corresponding optimal (s, S) is obtained through

interpolations from the (s, S) values in the table.

We compare the performances of IB, SL, SAA, RH, and ES under both (R,Q) and (s, S)

policies. For convenience, we calculate all (s, S) policies in this study based on (R,Q) policy

approximations: s = R, S = R+Q. Moreover, we consider nine different demand data envi-

ronments based on the length of the demand seasons and the magnitude of demand variance.

The details are provided in Section 6.5.1.1. We show that 1) the proposed approaches, IB

and SL, achieve reasonable average performances compared to OPT; they achieve approxi-

mately 1.12 times the costs of OPT on average; 2) IB and SL outperform SAA, RH, and ES

consistently; 3) IB outperforms SL when the ratio of the difference in means to the variance

is large for two consecutive demand seasons; otherwise, SL performs better than IB.

6.5.1.1 Experimental settings We considered nine different demand settings to com-

pletely evaluate all approaches. The various demand settings are classified based on two

features: 1) the length of the demand season and 2) the variance of the demand distribu-

tions. More specifically, we defined three types of demand season lengths: 1) long season,

where each season randomly contains 100 − 140 days, 2) short season, where each season

randomly contains 10 − 30 days, and 3) varying seasons, where each season randomly con-

tains 10− 100 days. We also defined three types of demand variances: 1) high variance, in
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which the variance of the demand equals two times the mean; 2) medium variance, where

the variance of the demand equals the mean; and 3) low variance, where the variance of the

demand equals half the mean. In addition, in our experiments, we assume that there exist

10 demand seasons for short and varying season settings and 5 demand seasons for the long

season setting.

We randomly selected the demand distributions of different demand seasons from a set

of normal distributions with mean {10, 30, 50, 70, 90}. The inventory parameters are set

as follows: holding cost rate h = 1, stockout cost rate p = 50, fixed ordering cost K =

10000, and lead time L = 7 days. For RH, the length of each horizon is equal to the

average length of the demand seasons (which are assumed to be known for RH) under the

corresponding demand settings. All parameters used in each model are tuned based on nine

separate datasets under the aforementioned settings. More specifically, we set the smoothing

parameter to 0.2 for ES. We assume that SL does not know the distributions and set the

threshold value β as 3
√
t
√
µ on day t based on Proposition 6 in all experiments, where

µ represents the empirical mean of the current time horizon. To make a fair comparison

with SAA, we set the parameter θ1 in the proposed DRO model to 0 in all experiments.

In addition, the empirical distribution of the demand during the lead time is estimated by

obtaining n data points based on the first nL observed daily demand points (n is chosen

as large as possible). When the number of the observed daily demands is less than L,

sampling with replacement (bootstrapping) is used to obtain one demand data during the

lead time. Note that both the choices of θ1 and the empirical distributions in our methods

are not good. However, we show that the proposed methods still perform better overall

because they can distinguish between the demand season changes and the changes caused by

randomness. This means that, in practice, with better choices of θ1 and better estimations

of the empirical distribution, our methods can yield even better results than those reported

in this study.

Furthermore, we define a term called cost ratio,

ratio(∗) =
Cost(∗)

Cost(OPT)
, (6.20)
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where ∗ represents any of the methods introduced previously. We use Cost() to represent

the total inventory costs of using the corresponding methods and use the OPT costs as the

baseline. Thus, we eliminate the variations in costs caused by different demand settings.

6.5.1.2 Comparisons among IB, SL, and OPT First, we compare the performances

of the proposed approaches, IB and SL, with OPT. For each method, we simulate a non-

stationary demand according to the nine demand settings described above. We conduct

100 experiments under each demand setting and then calculate the average inventory costs

incurred during these 900 experiments for all approaches. The detailed results are presented

under the (R,Q) policy in Table 6 and the (s, S) policy in Table 7. Although the proposed

methods assume that the demand seasons are unknown and highly unpredictable, they still

achieve approximately 1.12 times the cost of OPT on average. When the length of the

demand season is long, IB achieves only 1.04 times the cost of OPT on average.

Table 6: Results based on (R,Q) policy.

data environment IB SL OPT

long season & low variance 1.04 1.07 1

short season & low variance 1.20 1.14 1

varying season & low variance 1.12 1.14 1

long season & medium variance 1.05 1.06 1

short season & medium variance 1.23 1.15 1

varying season & medium variance 1.14 1.15 1

long season & high variance 1.04 1.05 1

short season & high variance 1.20 1.13 1

varying season & high variance 1.08 1.09 1

Average 1.12 1.11 1

Table 7: Results based on (s, S) policy.

data environment IB SL OPT

long season & low variance 1.06 1.06 1

short season & low variance 1.29 1.16 1

varying season & low variance 1.09 1.09 1

long season & medium variance 1.04 1.06 1

short season & medium variance 1.29 1.17 1

varying season & medium variance 1.11 1.11 1

long season & high variance 1.04 1.06 1

short season & high variance 1.16 1.14 1

varying season & high variance 1.09 1.08 1

Average 1.13 1.10 1

6.5.1.3 Comparisons among IB, SL, SAA, RH, and ES In this section, we compare

the performances of the proposed approaches, IB and SL, with SAA, RH, and ES that were

introduced at the beginning of Section 6.5.1. For each method, we simulate nonstationary

demand according to the nine demand settings, and under each demand setting, we conduct

100 experiments. Finally, we calculate the average inventory costs incurred for these 900
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experiments for all approaches. The results are presented with the (R,Q) policy in Table

8 and the (s, S) policy in Table 9. We use the same metric (6.20) for all approaches. As

indicated by the results, the proposed methods outperform SAA, RH, and ES consistently

under all demand settings.

Table 8: Results based on (R,Q) policy.

IB SL SAA RH ES

long season & low variance 1.04 1.07 1.52 1.20 1.10

short season & low variance 1.20 1.14 1.35 1.28 1.27

varying season & low variance 1.12 1.14 1.25 1.19 1.14

long season & medium variance 1.05 1.06 1.52 1.19 1.11

short season & medium variance 1.23 1.15 1.36 1.28 1.28

varying season & medium variance 1.14 1.15 1.28 1.23 1.16

long season & high variance 1.04 1.05 1.31 1.15 1.08

short season & high variance 1.20 1.13 1.23 1.15 1.18

varying season & high variance 1.08 1.09 1.27 1.14 1.17

Average 1.12 1.11 1.34 1.20 1.17

Table 9: Results based on (s, S) policy.

IB SL SAA RH ES

long season & low variance 1.06 1.06 1.23 1.13 1.10

short season & low variance 1.29 1.16 1.33 1.26 1.23

varying season & low variance 1.09 1.09 1.23 1.14 1.16

long season & medium variance 1.04 1.06 1.23 1.11 1.09

short season & medium variance 1.29 1.17 1.34 1.27 1.24

varying season & medium variance 1.11 1.11 1.26 1.15 1.17

long season & high variance 1.04 1.06 1.20 1.12 1.08

short season & high variance 1.16 1.14 1.23 1.14 1.21

varying season & high variance 1.09 1.08 1.26 1.11 1.15

Average 1.13 1.10 1.26 1.16 1.16

6.5.1.4 A comparison between IB and SL for different data environments In

this section, we conduct a detailed comparison between IB and SL to further investigate

their performances in different data environments. We demonstrate that IB is preferred when

decision-makers know the uncertainty set of demand distributions and the bias-variance ratio

is large for two consecutive demand seasons. Otherwise, SL is recommended. Mathemat-

ically, suppose that the first and second demand seasons have mean values of µ1, µ2 and

standard deviations of σ1, σ2, while the bias-variance ratio is defined as
|µ1 − µ2|

σ1

.

To eliminate the effects of different inventory parameters, we consider a scenario contain-

ing only two consecutive seasons and compare error Types A and B (defined in Section 6.4.3).

In all our experiments, Type A errors are measured as the failure rate; that is, the value

of the Type A error equals the number of experiments that have Type A errors divided by

the total number of experiments. Hence, it ranges from 0 to 1. Type B errors are measured

based on the average time required to detect a change in the distribution (i.e., the delay in

detecting the switching date in cases where no Type A error occurs). Therefore, the range

for Type B errors can be any positive number. Thus, to determine the best approach, we

92



first ensure that the Type A error is close to 0. Then we consider the Type B error to be as

small as possible.

Comparison: We compare the performances of the proposed algorithms in cases where

the uncertainty set is available when the bias-variance ratio is 3 or 6. In each setting, we

randomly generate 10 datasets by assuming that the first demand distribution is N (104, 104)

and the second demand distribution is N (10300, 10300) (for a bias-variance ratio of 3) or

N (10600, 10600) (for a bias-variance ratio of 6). Each demand distribution lasts 50 days.

We assume that the uncertainty set of distributions used in the IB approach is:

P = {N (9400, 9400),N (9700, 9700),N (10000, 10000),N (10300, 10300),N (10600, 10600)}

(for a bias-variance ratio of 3) or

{N (9400, 9400),N (10000, 10000),N (10600, 10600),N (11200, 11200),N (11800, 11800)}

(for a bias-variance ratio of 6). In the SL approach, the threshold value is equal to 3
√
t
√
µ

on day t, where µ is the mean value for the data in the current demand season (Proposition

6). The results are listed in Tables 10 and 11.

Table 10: Bias-variance ratio of 3.

Type A error Type B error

IB 0.6 1.5

SL 0 5.5

Table 11: Bias-variance ratio of 6.

Type A error Type B error

IB 0.1 1

SL 0 2.7

The SL approach outperforms the IB approach when the bias-variance ratio is 3. Al-

though the IB approach detects the demand season changes much more rapidly, with an

average of 1.5 days, the Type A error is as high as 0.6, which indicates that it mistakenly

treats noise as demand season changes in more than half the datasets. The SL approach

does not cause any Type A error and achieves a reasonable Type B error of 5.5 days. When

the bias-variance ratio is large, the chances of making Type A errors decrease significantly

for the IB approach, which detects the demand season changes instantly after day 1. The

SL approach takes an average of 2.7 days to identify the changes.
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6.5.2 Real-world datasets from one of the world’s largest e-commerce websites

In this section, we illustrate the proposed approach on datasets obtained from one of the

world’s largest e-commerce websites. First, we intuitively show that our method can suc-

cessfully find the hidden patterns when the daily demand is highly noisy and nonstationary.

This dataset comprises 650 demand data points for a specific product. We have no prior

knowledge of the possible demand distributions. Thus, we use the SL approach based on

Proposition 6, where the threshold values are still equal to 3
√
t
√
µ on day t with µ being

the mean value for the data in the current detected demand season. Figure 15 demonstrates

the demand season (red line) dynamically detected by our approach as well as the demand

data (blue line) that belongs to it. The red line captures the primary trend of the blue line.

Thus, although the daily demand is highly unpredictable, our method successfully identifies

the hidden patterns.

Figure 15: Detected demand seasons.
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Second, we evaluate the performance by comparing the total inventory management

costs. We adopt the same setting as mentioned in the previous section. The dataset contains

15 products. We can only compare SL with SAA and ES because we do not know the true

demand seasons. The results are presented in Table 12. According to the results, our

methods and ES outperform SAA. This is because the real-world demand in the dataset

is highly nonstationary. Our method also outperforms ES because of its robustness to the

noise during each demand season.
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Table 12: The average costs for 15 products.

SL SAA ES

Costs (R,Q) 71528 219310 75726

Costs (s, S) 74317 102500 76577
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7.0 Summary

In this dissertation, we address four common issues related to data-driven models in OR

problem.

In Chapter 3, we derive one tight upper bound of the performance of the scenario ap-

proach for the chance constrained programming for a fixed number of data. Then, we propose

a linear/conic program to solve the chance constrained programming under the small-data

regime. The resulting optimizations have simple closed-form formulations and improve the

performances. Additionally, our model (3.5) is shown to be equivalent to DRCCPs under

specific settings.

In Chapter 4, We fill a major gap in prior work by proposing the first scalable algorithm

(meaning it uses a number of variables polynomial in the input size) for maximizing expected

matching weight, with non-identical failure probabilities. This is an important step forward,

as failure probabilities are known to be inhomogeneous–some edges are inherently riskier

than others. We provide a mixed-integer linear program for our approach, which is compact

and can be solved directly by a general-purpose integer programming solver (e.g., CPLEX,

Gurobi, or SCIP).

In Chapter 5, we develop a new DRO framework based on incomplete data sets. The pro-

posed models have two major contributions. First, it provides theoretical guarantees for the

stochastic programming under incomplete data set, whereas currently used estimate-then-

optimize procedures do not. It represents an integrated analysis of missing data and stochas-

tic optimization, which is fundamentally different from the most popular data-imputation

approaches. Second, it extends the study of distributionally robust optimization by intro-

ducing ambiguity sets directly based on the partially observed data or incomplete data set.

Several kinds of ambiguity sets with their reformulations are discussed.

In Chapter 6, we examined a practical data-driven inventory problem. The demand is

considered nonstationary and stochastic. The demand process is highly unpredictable mean-

ing future demand can not be reliably predicted through historical features and data. Two

solution approaches were presented: (a) the IB approach is proposed for the case in which
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an uncertainty set of possible demand distributions is known, and (b) the SL approach is

proposed when the uncertainty set is unknown. Both approaches were theoretically ana-

lyzed and empirically benchmarked against state-of-the-art heuristics. Real-world data were

utilized to verify both approaches. While this study focused on a particular inventory man-

agement problem, the frameworks can be used for other dynamic decision-making problems

facing nonstationary data that are revealed over time.
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Appendix A

Appendix for Chapter 3

A.1 Proof of Theorem 3

Again, we base our proof on one established Lemma 5 in [31] for simplicity.

Lemma 5. Optimization (3.27) is equivalent to

min cTx

s.t. εNt+ eT s > θN

pi +Mqi > t+ si,∀i ∈ [N ]

(bk −AT
k x1)T ξ̂i − aTk x1 − dTk x2 > pi‖bk −AT

k x1‖∗,∀i ∈ [N ], k ∈ [K]

M(1− qi) > t+ si,∀i ∈ [N ]

q ∈ {0, 1}N , s 6 0, t ∈ R,x ∈ X ,p ∈ RN ,

(A.1)

for θ > 0, where M is a suitably large (but finite) positive constant, and e is a vector of all

ones.

Proof. First of all, when θ = 0, (3.27) is equivalent to the sample average approximation.

Therefore, (3.27) and OPT2 are equivalent.

When θ > 0, by Lemma 5, it is equivalent to solve Problem ( A.2).

min
s,t,q,p,x

cTx

s.t. εNt+ eT s > θN,

pi +Mqi > t+ si,∀i ∈ [N ],

(bk −AT
k x1)T ξ̂i − aTk x1 − dTk x2 > pi‖bk −AT

k x1‖∗,∀i ∈ [N ], k ∈ [K],

M(1− qi) > t+ si,∀i ∈ [N ],

q ∈ {0, 1}N , s 6 0, t ∈ R,x ∈ X .

(A.2)
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Suppose the optimal solution for ( A.2) satisfies qi = 0 for i ∈ I1 and qi = 1 for i ∈ I2.

The problem ( A.2) can be reformulated to:

min
s,t,p,x

cTx

s.t. εNt+ eT s > θN,

(bk −AT
k x1)T ξ̂i − aTk x1 − dTk x2 > pi‖bk −AT

k x1‖∗,∀i ∈ [N ], k ∈ [K],

0 > t+ si,∀i ∈ I2,

pi > t+ si,∀i ∈ I1,

s 6 0, t ∈ R,x ∈ X .

(A.3)

The Lagrange multiplier of ( A.3) equals

min
s60,t,p,x

max
λ>0,βi>0,γi,k>0

cTx− λ(εNt+ eT s− θN)−
∑
i∈I1

βi(pi − t− si)−
∑
i∈I2

βi(−t− si)

−
∑

i∈[N ],k∈[K]

γi,k

[
(bk −AT

k x1)T ξ̂i − aTk x1 − dTk x2 − pi‖bk −AT
k x1‖∗

]
s.t. x ∈ X .

(A.4)

Optimization ( A.4) is linear with respect to variables s, t,p when λ, βi, γi,k are fixed,

and is also linear respect to λ, βi, γi,k when s, t,p are fixed. Therefore, we can switch the

min and max based on the minimax theory as shown below.

min
x

max
λ>0,βi>0,γi,k>0

min
s60,t,p,

cTx− λ(εNt+ eT s− θN)−
∑
i∈I1

βi(pi − t− si)−
∑
i∈I2

βi(−t− si)

−
∑

i∈[N ],k∈[K]

γi,k

[
(bk −AT

k x1)T ξ̂i − aTk x1 − dTk x2 − pi‖bk −AT
k x1‖∗

]
s.t. x ∈ X

(A.5)

The original problem is feasible indicating ( A.5) is bounded, which means the coefficients

of t and p are zero, and the coefficients of s are less than zero. Therefore, we first rearrange
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each term to find the coefficients:

min
x

max
λ>0,βi>0,γi,k>0

min
s60,t,p,

cTx + t(−λεN +
∑
i∈I1

βi +
∑
i∈I2

βi)

+
∑
i∈I1

(βi − λ)si +
∑
i∈I2

(βi − λ)si

−
∑
i∈I1

βipi +
∑

i∈[N ],k∈[K]

γi,kpi‖bk −AT
k x1‖∗

+ λθN −
∑

i∈[N ],k∈[K]

γi,k

[
(bk −AT

k x1)T ξ̂i − aTk x1 − dTk x2

]
s.t. x ∈ X .

(A.6)

Secondly, we place the corresponding constraints to these coefficients:

− λεN +
∑
i∈I1

βi +
∑
i∈I2

βi = 0⇒
∑
i∈[N ]

βi = λεN,

βi − λ 6 0, ∀i ∈ [N ],

− βi +
∑
m∈[M ]

γi,m‖bm −AT
mx1‖∗ = 0, ∀i ∈ I1,

∑
m∈[M ]

γi,m‖bm −AT
mx1‖∗ = 0, ∀i ∈ I2.

Therefore, ( A.5) is equivalent to

min
x

max
λ>0,βi>0,γi,k>0

cTx + λθN −
∑

i∈[N ],k∈[K]

γi,k

[
(bk −AT

k x1)T ξ̂i − aTk x1 − dTk x2

]
s.t.

∑
i∈[N ]

βi = λεN,

βi − λ 6 0, ∀i ∈ [N ],

− βi +
∑
k∈[K]

γi,k‖bk −AT
k x1‖∗ = 0, ∀i ∈ I1,

∑
k∈[K]

γi,k‖bk −AT
k x1‖∗ = 0, ∀i ∈ I2.
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We replace λ with λ =

∑
i∈[I] βi

εN
. In addition, because βi > 0 and we assume N 6

1

ε
, we

have

βi 6
∑
i∈[N ]

βi = λεN 6 λ
N

N
= λ

for all i ∈ [N ]. Therefore, we remove the redundant constraints and obtain

min
x

max
βi>0,γi,k>0

cTx +

∑
i∈[N ] βi

εN
θN −

∑
i∈[N ],k∈[K]

γi,k

[
(bk −AT

k x1)T ξ̂i − aTk x1 − dTk x2

]
s.t. − βi +

∑
k∈[K]

γi,k‖bk −AT
k x1‖∗ = 0, ∀i ∈ I1,

∑
k∈[K]

γi,k‖bk −AT
k x1‖∗ = 0, ∀i ∈ I2,

which is equivalent to

min
x

max
βi>0,γi,k>0

∑
i∈I1

θε ∑
k∈[K]

γi,k‖bk −AT
k x1‖∗ −

∑
k∈[K]

γi,k

[
(bk −AT

k x1)T ξ̂i − aTk x1 − dTk x2

]
+
∑
i∈I2

θ

ε
βi + cTx.

(A.7)

Therefore, to maintain the feasibility, we obtain I2 = ∅, and the coefficients of γi,k are less

than zero in ( A.7).

min
x∈X

cTx

s.t.
θ

ε
‖bk −AT

k x1‖∗ 6 (bk −AT
k x1)T ξ̂i − aTk x1 − dTk x2,∀k ∈ [K], i ∈ [N ].

(A.8)
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Appendix B

Appendix for Chapter 4

B.1 Proof of Lemma 2

Proof. The expected discounted weight of a chain with k edges is expressed as

u(k) =
k∑
i=2

pi(
i−1∑
j=1

wj)
i−1∏
j=1

(1− pj)

+ (
k∑
i=1

wi)
k∏
i=1

(1− pi).

The coefficient on weight wi (the ith edge in the chain), for any 1 ≤ i ≤ k, is expressed

as
∏i

j=1(1− pj). Thus,

u(k) =
k∑
i=1

wi

i∏
j=1

(1− pj).

B.2 Optimization (4.8) under one realization of edge existence

Before showing the equivalence between the SAA of (4.8) and (4.9), we first obtain the

objective value of (4.8) under one fixed realization of edge existence. The objective value of

(4.8) is obtained in ( B.1), where we assume the fixed realization is re ∈ {0, 1}, e ∈ E, where

1 means the edge exists, and 0 otherwise.

In ( B.1), we use two sets of variables oek ∈ {0, 1} and vc ∈ {0, 1}, which indicate the

validity of chains and cycles, respectively.

• For any cycle c, c is only valid (vc = 1) if all edges in c exist. Therefore, we restrict

vc = mine∈c{re}.
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• For any chain, an edge e at position k is only valid (oek = 1) if 1) this edge exists (re = 1)

and 2) the prior edges in this chain are valid too. Therefore, we use oek 6 re to guarantee

this edge e exists. The constraint ( B.1c) serves the goal to guarantee the prior edges

are valid. To see this point, we consider the following example. Suppose edge e1 ∈ δ−(i)

and e2 ∈ δ+(i). Both edges are selected in one chain with ye1,k = 1, ye2,k+1 = 1. If edge

e fails (re1 = 0), then oe1,k = 0 restricting oe2,k+1 to be zero too. Therefore, all the edges

after position k in this chain will be invalid.

min
y,z,o,v,d

−∑
e∈E

∑
k∈K(e)

weyekoek −
∑
c∈C

wczcvc


+ γ

[
d+

1

α
(−
∑
e∈E

∑
k∈K(e)

weyekoek −
∑
c∈C

wczcvc − d)+

]
(B.1a)

s.t. {y, z} ∈ X , (B.1b)∑
e∈δ−(i),k∈K(e)

oekyek ≥
∑

e∈δ+(i)

oe,k+1ye,k+1,

i ∈ P, k ∈ {1, . . . , L− 1}, (B.1c)

oek 6 re, e ∈ E, k ∈ K(e), (B.1d)

vc = min
e∈c
{re}, c ∈ C; (B.1e)

oek ∈ [0, 1], e ∈ E, k ∈ K(e). (B.1f)

Optimization ( B.1) has a tractable reformulation as shown in Proposition 7.

Proposition 7. Optimization ( B.1) is equivalent to

min
y,z,o,v,d

〈w,Ŵ〉+ γ

[
d+

1

α
(〈w,Ŵ〉 − d)+

]
s.t. {y, z} ∈ X ,X ′

Ŵe = −
∑

k∈K(e)

Oe,k −
∑
c∈C

1(e ∈ c)zcvc, ∀e,

oe,k 6 re,∀e, k,
vc = min

e∈c
{re}, ∀c.

(B.2)
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where X ′ is defined as

X ′ =



∑
e∈δ−(i)∧k∈K(e)Oe,k >

∑
e∈δ+(i)Oe,k+1,

i ∈ P, k ∈ {1, . . . , L− 1};
Oe,k 6 ye,k, e ∈ E, k ∈ K(e);
Oe,k 6 oe,k, e ∈ E, k ∈ K(e);
oe,k, Oe,k ∈ [0, 1], e ∈ E, k ∈ K(e).



By comparing Optimization ( B.2) and (4.9), it is easy to see that the objective value of

(4.9) equals the average realized weights of N realizations. Therefore, we get the conclusion

that Optimization (4.9) is equivalent to the SAA of Optimization (4.8).

B.3 A branch and price implementation

In this section, we present a method for scaling our model to graphs with high cycle

capacities. Theoretically, the number of cycles of length at most M is O(|P |M), making

explicit representation and enumeration of all cycles infeasible for large enough instances. To

solve this problem, we propose a branch and price algorithm, which uses column generation to

incrementally consider the possible cycles in a graph. Similar ideas in other kidney exchange

problems have also been explored [57, 39]. We show that our formulation with non-identical

failure probabilities also scales well with large cycle numbers.

The detailed procedure is introduced as follows; for convenience, we use a vector X to

denote the solution X = [y, z]. First, we define a set Xf that indicates the fixed components

in the solution X. For example, Xf = {Xi = 0, Xj = 1} means the i-th and j-th components

in X are fixed to 0 and 1, respectively. Our algorithm begins with Xf = ∅. Next, an LP

relaxation ( B.3) based on a (random) subset of cycles C ′ (C ′ ⊂ C) is solved.
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max
y,z,O,o

∑
e∈E

∑
k∈K(e)

weOek +
∑
c∈C′

wczc

(∏
e∈c

1− pe

)
(B.3a)

s.t.
∑

e∈δ−(i)

∑
k∈K(e)

yek +
∑

c∈C′:i∈c

zc 6 1, i ∈ P, (B.3b)

∑
e∈δ−(i)∧k∈K(e)

yek >
∑

e∈δ+(i)

ye,k+1, (B.3c)

i ∈ P, k ∈ {1, . . . , L− 1}, (B.3d)∑
e∈δ+(i)

ye1 6 1, i ∈ N, (B.3e)

yek ∈ [0, 1], e ∈ E, k ∈ K(e), (B.3f)

zc ∈ [0, 1], c ∈ C ′, (B.3g)∑
e∈δ−(i)∧k∈K(e)

Oek >
∑

e∈δ+(i)

Oe,k+1

1− pe
, (B.3h)

i ∈ P, k ∈ {1, . . . , L− 1}, (B.3i)

Oek 6 yek, e ∈ E, k ∈ K(e), (B.3j)

Oek 6 oek, e ∈ E, k ∈ K(e), (B.3k)

Oek ∈ [0, 1], e ∈ E, k ∈ K(e), (B.3l)

0 6 oek 6 1− pe, e ∈ E, k ∈ K(e). (B.3m)

The following step is to find positive price cycles: cycles that have the potential to

improve the objective value if included in the model. The price of a cycle c is defined as[
wc
∏

e∈c(1− pe)−
∑

i∈c λi
]
, where λi are the dual values corresponding to the constraints (

B.3b). While there exist any positive price cycles, optimality of the reduced LP has not yet

been proved. This can be evidenced from Proposition 8, which can be proved through the

strong duality of linear programming.

Proposition 8. Suppose the dual variables corresponding to the constraints ( B.3b) are λi,

i ∈ P . Then the optimal λi, i ∈ P , satisfy

wc
∏
e∈c

(1− pe)−
∑
i∈c

λi 6 0.
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Therefore, we incrementally add (one or more) cycles that have positive prices, i.e.

wc
∏

e∈c(1− pe)−
∑

i∈c λi > 0 into C ′ until no positive price cycles exist in C. Afterwards,

if the optimal solutions of the relaxed LP, i.e. ( B.3), are integral, then they are the desired

optimal solutions. Otherwise, branching occurs by following the standard branch-and-bound

tree search. For example, suppose the i-th component of X is fractional, then we fix Xi = 0

or Xi = 1. We record these fixed components in set Xf and repeat above procedures with

the new set Xf . We conclude the above discussions in the following Algorithm 4. By running

BranchAndPrice(G, ∅), we obtain the optimal solution.

Algorithm 4 BranchAndPrice(G, Xf )
1: Generate a subset C ′ ⊂ C;
2: Solve LP relaxation ( B.3) based on C ′ and fixed components in Xf ;
3: while maxc∈C wc

∏
e∈c(1− pe)−

∑
i∈c λi > 0 do

4: Add c∗ = argmaxc∈Cwc
∏
e∈c(1− pe)−

∑
i∈c to C ′;

5: end while
6: X = [y, z]← solve LP relaxation ( B.3) based on C ′ and fixed components in Xf ;
7: if X is fractional then
8: Find fractional binary variable Xi ∈X closest to 0.5;
9: X1 = BranchAndPrice(G,Xf ∪Xi = 0);

10: X2 = BranchAndPrice(G,Xf ∪Xi = 1);
11: Return X1 or X2 that gives larger objective values in the original Problem (4.6).
12: else
13: Return X.
14: end if
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Appendix C

Appendix for Chapter 5

C.1 L1 norm for Nominal data

In this section, we show that the L1 norm is a natural result in our ambiguity set when the

data are nominal rather than ordinal. We achieve this goal by revealing relationships between

our ambiguity set and the Wasserstein balls in the probability space. The Wasserstein metric

has attracted widespread attention in machine learning and optimization recently because

of its nice properties to capture the similarities between distributions.

We begin with an introduction of the Wasserstein distance.

Definition 3 (Wasserstein metric). The Wasserstein distance between distribution P and P′

supported on Ξ is defined as

W (P,P′) := inf{(
∫

Ξ2

d′(ξ, ξ′)Π(dξ, dξ′)) : Π is a joint

distribution of ξ and ξ′ with marginals P and P′},

where d′ is a metric on Ξ.

Correspondingly, the definition of a Wasserstein ball is as follows.

Definition 4. A Wasserstein ball centered at P̂ with radius θ is defined as:

Bθ(P̂) ={P : W (P, P̂) 6 θ,P(Ξ) = 1}.
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C.1.0.1 Metric d′ for nominal data. The metric d′ in Definition 3 measures the

“costs” of moving unit mass from ξ to ξ′. When the data are nominal, the metric d′ is

naturally defined as

d′(ξ, ξ′) =

0 if ξ = ξ′

1 if ξ 6= ξ′
, (C.1)

without considering scaling. The following Proposition 5 characterizes the Wasserstein ball

equipped with the metric defined in ( C.1) around the nominal distributions.

P ′ =

P = {P(s),∀s ∈ S} :

∑
s∈S P(s) = 1,

P(s) > 0, ∀s ∈ S,∑
s∈S |P(s)− P̂(s)| 6 τ.

 (C.2)

By comparing Q to the ambiguity set P ′, the equivalence is clearly seen, which validates

that the L1 norm is a meaningful and natural metric for measuring the deviations in nominal

data. (Recall that we use ξ and s interchangeably.)

Proposition 5. Suppose one nominal distribution is P̂(s). Then a Wasserstein ball with

radius τ around this nominal distribution is equivalent to ( C.3) if the metric defined in (

C.1) is used.

Q =


{P(s),∀s ∈ S}} :

P(s) = P̂(s) + d(s),∀s ∈ S,

0 6 P̂(s) + d(s) 6 1,∀s ∈ S,∑
s∈S d(s) = 0,∑
s∈S |d(s)| 6 τ.


, (C.3)

Proof. The Wasserstein distance defined in Definition 4 can be formulated as an optimal

transportation problem. This indicates that the Wasserstein distance is equivalent to the op-

timal cost of transporting the probability mass of one distribution P̂ to another distribution

P, where the unit transportation cost is determined by a metric d′.

Suppose the cost of transporting the unit probability mass from s to s′ is d′(s, s′), which

is defined as d′(s, s′) = 0 if s = s′, otherwise, d′(s, s′) = 1. Then the Wasserstein distance

between a distribution P and P̂, W (P, P̂), is equivalent to the objective value of the following
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optimization problem ( C.4a). We use P̂ to denote the initial probability mass. We denote P

as the probability mass after the transportation. In addition, we define ms,s′ as the amount

of the probability mass transferred from s to s′.

min
∑
s∈S

∑
s′∈S

d′(s, s′)ms,s′ (C.4a)

s.t. P(s) = P̂(s)−
∑
s′

ms,s′ +
∑
s′

ms′,s,∀s, s′ ∈ S, (C.4b)

0 6 P(s) 6 1,∀s ∈ S, (C.4c)

ms,s′ > 0,∀s, s′ ∈ S. (C.4d)

The objective function calculates the total cost of the transportation plan defined by ms,s′ .

The Constraint ( C.4b) restricts the probability mass to be P(s) after the transportation.

Next, we prove the above optimization is equivalent to:

min
∑
s∈S

|d(s)| (C.5a)

s.t. P(s) = P̂(s) + d(s),∀s, (C.5b)

0 6 P(s) 6 1,∀s ∈ S, (C.5c)∑
s∈S

d(s) = 0. (C.5d)

First, by setting d(s) = −
∑

s∈S ms,s′ +
∑

s′∈S ms′,s, it is easy to verify:

∑
s∈S

d(s) = −
∑
s∈S

∑
s′∈S

ms,s′ +
∑
s∈S

∑
s′∈S

ms′,s = 0.

Second, the optimal solutions in the above optimization has the following properties. If

d(s) = −
∑

s′∈S ms,s′ +
∑

s′∈S ms′,s > 0 for s, it is optimal to set ms,s′ = 0 for all s′ in order

to minimize the objective function ( C.4a). Correspondingly, if d(s) < 0 for s, it is optimal

to set m(s′, s) = 0 for all s′ ∈ S. In addition, ms,s′ = 0 always holds if s = s′ in order to

minimize the objective function. Without loss of generality, let S+ be the set of s where

d(s) > 0 and S− be the set of s where d(s) < 0. Then

∑
s∈S

|d(s)| =
∑
s∈S+

∑
s′,s′ 6=s

ms′,s +
∑
s∈S−

∑
s′,s′ 6=s

ms,s′
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In addition, the optimal form of ms,s′ discussed above also indicates∑
s∈S

∑
s′∈S

d′(s, s′)ms,s′ =
∑
s∈S+

∑
s′,s′ 6=s

ms′,s +
∑
s∈S−

∑
s′,s′ 6=s

ms,s′ =
∑
s∈S

|d(s)|

by following the definition of metric d′. Therefore, Optimization ( C.4a) and ( C.5a) are

equivalent.

Therefore, the Wasserstein distance W (P, P̂) equals to the objective value of Optimiza-

tion ( C.5a). Correspondingly, a Wasserstein ball W (P, P̂) 6 τ is equivalent to:

Q =


{P(s),∀s ∈ S}} :

P(s) = P̂(s) + d(s),∀s ∈ S,

0 6 P̂(s) + d(s) 6 1,∀s ∈ S,∑
s∈S d(s) = 0,∑
s∈S |d(s)| 6 τ.


.

C.2 Proof of Proposition 1

Proof. In the following, we define a function θmis(s, sobs) : S×Sobs → [0, 1], which represents

the probability of observing sobs for a given scenario s. Here, we define Sobs as a set containing

all possible sobs. Therefore, the function θmis characterizes the missing data mechanism.

According to the MAR assumption, θmis(s, sobs) is a fixed value for one sobs and all s ∈ S(sobs),

i.e.

θmis(s, sobs) = θmis(s
′, sobs),∀s, s′ ∈ S(sobs),

because the missing probability does not depend on the missed values. In addition,

θmis(s, sobs) = 0, ∀s 6∈ S(sobs),

because only s that matches the observed part of sobs are able to produce sobs under the

missing mechanism θmis. We use f(sobs|θmis,P) to denote the probability mass function

(PMF) of observing sobs given the joint distribution P and a missing data mechanism defined

by θmis. Recall that ŝn,obs represents the n-th observed data, or the n-th realization of sobs.
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Using the above notations, MLE is formulated as

max
P(s)>0

N∑
n=1

ln f(ŝn,obs|θmis,P) (C.6a)

= max
P(s)>0

N∑
n=1

ln

 ∑
s∈S(ŝn,obs)

P(s)θmis(s, ŝn,obs)

 (C.6b)

= max
P(s)>0

N∑
n=1

ln

[ ∑
s∈S(ŝn,obs)

P(s)
]
θmis(s, ŝn,obs)

 (C.6c)

= max
P(s)>0

N∑
n=1

ln

 ∑
s∈S(ŝn,obs)

P(s)

+
N∑
n=1

ln[θmis(s, ŝn,obs)] (C.6d)

Equality ( C.6b) follows the fact that only s that match the observed part of the n-th

data ŝn,obs, i.e. s ∈ S(ŝn,obs), are able to produce ŝn,obs under the missing data mechanism

θmis. The Equality ( C.6c) follows the fact that θmis(s, ŝn,obs) is a fixed value for all s in

S(ŝn,obs) by the definition of MAR. Therefore, solving ( C.6) is equivalent to solving

max
P(s)

N∑
n=1

ln

 ∑
s∈S(ŝn,obs)

P(s)


s.t. P(s) > 0,∀s,∑

s∈S

P(s) = 1.

C.3 Proof of Lemma 1

Proof. In the following, we still use θmis to denote the missing data mechanism (see Ap-

pendix C.2). We use f(sobs|θmis,P) to denote the PMF of observing sobs given the joint

distribution P and a missing data mechanism defined by θmis, which can be represented by

f(sobs|θmis,P) =
∑

s∈S(sobs)

P(s)θmis(s, sobs). (C.7)
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Recall that L[P] = E [lnF (sobs|P)], where the expectation is taken over the probability

mass function of sobs, and F (sobs|P) =
∑

s∈S(sobs)
P(s).

L[P]− L[P∗] = E
[
ln

F (sobs|P)

F (sobs|P∗)

]
(C.8a)

6 E[
F (sobs|P)

F (sobs|P∗)
− 1] = E[

F (sobs|P)

F (sobs|P∗)
]− 1 (C.8b)

=
∑
sobs

F (sobs|P)

F (sobs|P∗)
f(sobs|θmis,P∗)− 1 (C.8c)

=
∑
sobs

F (sobs|P)

F (sobs|P∗)

 ∑
s∈S(sobs)

P∗(s)

 θmis(s, sobs)− 1 (C.8d)

=
∑
sobs

F (sobs|P)

F (sobs|P∗)
F (sobs|P∗)θmis(s, sobs)− 1 (C.8e)

=
∑
sobs

F (sobs|P)θmis(s, sobs)− 1 (C.8f)

=
∑
sobs

∑
s∈S(sobs)

P(s)θmis(s, sobs)− 1 (C.8g)

=
∑
sobs

f(sobs|θmis,P)− 1 = 1− 1 = 0. (C.8h)

The Inequality ( C.8b) holds because ln x 6 x− 1, ∀x > 0. The Equality ( C.8d) follows the

definition of f(sobs|θmis,P∗), and θmis(s, sobs) is fixed for all s ∈ S(sobs) according to MAR.

The last step ( C.8h) also again follows the definition of f(sobs|θmis,P).

The inequality ln
F (sobs|P)

F (sobs|P∗)
6

F (sobs|P)

F (sobs|P∗)
− 1 is an equality if and only if

F (sobs|P) = F (sobs|P∗)

holds almost surely, which only happens when P = P∗. This is because under the definition

of the partially observed data, the dimension of the observed part in sobs ranges from 1 to

I. Then, P = P∗ holds trivially when the dimension of the observed part equal to I. In

conclusion, L(P) attains its maximum uniquely at P∗.
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C.4 Proof of Lemma 2

Proof. In this proof, we aim to show that the center P̂ of the ambiguity set converges in

probability to the true joint distribution P∗, i.e. P̂
p−−→ P∗, where we recall their definitions

in ( C.9) and ( C.10) with feasible set Q ( C.11). All expectations in this proof are taken

with respect to the probability mass function of sobs.

P∗ = argmaxP∈Q E [lnF (sobs|P)] , (C.9)

P̂ = argmaxP∈Q
1

N

N∑
n=1

lnF (ŝn,obs|P), (C.10)

where Q = {P|P(s) > 0,
∑
s∈S

P(s) = 1,∀s}. (C.11)

To this goal, for a given ε with

0 < ε 6 min
s∈S+

[P∗(s)], where S+ = {s ∈ S|P∗(s) > 0}, (C.12)

we define another feasible set Q(ε) and two corresponding joint distributions P∗(ε) and P̂(ε)

as shown below. The feasible set Q(ε) adds additional constraints
∑

s∈S(sobs)

P(s) > ε to Q.

Obviously, Q(ε) = Q when ε equals 0.

P∗(ε) = argmaxP∈Q(ε) E [lnF (sobs|P)] , (C.13)

P̂(ε) = argmaxP∈Q(ε)

1

N

N∑
n=1

lnF (ŝn,obs|P), (C.14)

where Q(ε) = {P|P(s) > 0,
∑
s∈S

P(s) = 1,
∑

s∈S(sobs)

P(s) > ε,∀s}. (C.15)

In the rest of the paper, ε follows the definition in ( C.12). Therefore, we aim to first prove

P̂(ε)
a.s.−−−→ P∗(ε) for an arbitrary small ε. Then, we prove P∗(ε) = P∗ and limε→0 P̂(ε) = P̂.

Finally, the above established results indicate P̂
a.s.−−−→ P∗, which proves the desired P̂

p−−→

P∗. We present the details below.

• We first prove P̂(ε)
a.s.−−−→ P∗(ε). We use the following Lemma.

Lemma 3 ([95]). If
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1. A set Ω is compact.

2. A function f̃(x,ω) is continuous at each ω ∈ Ω for almost all x, and measurable

function of x at each ω.

3. There exists a dominating function d(x) such that E[d(x)] <∞, and

|f̃(x,ω)| 6 d(x),∀ω ∈ Ω.

Then, E[f̃(x,ω)] is continuous in ω, and

sup
ω∈Ω
| 1
N

N∑
n=1

f̃(xn,ω)− E[f̃(x,ω)]| a.s.−−−→ 0.

We let the f̃ = lnF (sobs|P) and Ω = Q(ε) in the above Lemma, and we verify the

conditions as follows.

1. First, it is clear that set Q(ε) is compact.

2. Second, by definition,

lnF (sobs|P) = ln
∑

s∈S(sobs)

P(s).

Using the following properties of the continuous function, 1) sum of continuous

functions is continuous, and 2) function composition of two continuous functions is

continuous, we obtain the conclusion that lnF (sobs|P) is continuous with respect to

P for every sobs.

3. Following the definition of Q(ε), we have:

ln ε 6 ln
∑

s∈S(sobs)

P(s) = lnF (sobs|P) 6 0.

This proves that there exists a dominating function: ln
1

ε
, e.g. | lnF (sobs|P)| 6 ln

1

ε
.
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Therefore, we establish the uniform convergence results according to the above lemma.

sup
P∈Q(ε)

∣∣∣∣ 1

N

N∑
n=1

lnF (ŝn,obs|P)− E [lnF (sobs|P)]

∣∣∣∣ a.s.−−−→ 0.

This indicates that
1

N

N∑
n=1

lnF (ŝn,obs|P) converges almost sure to E[lnF (sobs|P)] uni-

formly in set Q(ε). Therefore, the maximizer of
1

N

N∑
n=1

lnF (ŝn,obs|P) converges almost

sure to the maximizer of E[lnF (sobs|P)], which is

P̂(ε)
a.s.−−−→ P∗(ε).

• Second, we show P∗(ε) = P∗.

In Lemma 1, the unique maximizer P∗ is shown to be the true joint distribution. By the

definition of ε, i.e. 0 < ε 6 mins∈S+ P∗(s), inequality
∑

s∈S(sobs)

P∗(s) > ε holds trivially for

P∗ as shown below.

∑
s∈S(sobs)

P∗(s) > min
s∈S+

P∗(s) > ε.

Therefore, adding constraints
∑

s∈S(sobs)

P∗(s) > ε to Q in ( C.9) does not change the

optimal solution, which indicates that P∗ is also the maximizer of max
P∈Q(ε)

E [lnF (sobs|P)] .

P∗ = argmaxP∈Q(ε) E [lnF (sobs|P)]

This completes our proof for P∗(ε) = P∗.

• Third, we show lim
ε→0

P̂(ε) = P̂. This result can be simply verified because lim
ε→0
Q(ε) = Q.
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Finally, we establish the desired result. Because ε is defined as 0 < ε 6 min
s∈S+

P∗(s), the result

P̂(ε)
a.s.−−−→ P∗(ε)

holds for an arbitrarily small ε > 0. Because P∗(ε) = P∗, we obtain

P̂(ε)
a.s.−−−→ P∗.

In addition, limε→0 P̂(ε) = P̂. Therefore, we obtain

P̂
a.s.−−−→ P∗,

indicating P̂
p−−→ P∗.

C.5 Proof of Theorem 1

Proof. We define ODRO(x, N) as the objective value of

max
P∈P ′

∑
s∈S

P(s)Q(x, s) (C.16)

under N data of s. Without loss of generality, we denote the optimal solution of ( C.16) as

P̂∗ = {P̂
∗
(s),∀s}, i.e.

max
P∈P ′

∑
s∈S

P(s)Q(x, s) =
∑
s∈S

P̂
∗
(s)Q(x, s).

We define

O(x) =
∑
s∈S

P∗(s)Q(x, s), (C.17)

where P∗(s) is the true joint distribution. We first prove

sup
x∈X

|ODRO(x, N)−O(x)| p−−→ 0. (C.18)
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Because Q(x, s) is bounded for x ∈ X , we assume |Q(x, s)| 6 C without loss of generality.

Then, we obtain

sup
x∈X

|ODRO(x, N)−O(x)| (C.19a)

= sup
x∈X

|
∑
s∈S

P̂
∗
(s)Q(x, s)−

∑
s∈S

P∗(s)Q(x, s)| (C.19b)

= sup
x∈X

∣∣∑
s∈S

[P∗(s)− P̂
∗
(s)]Q(x, s)

∣∣ (C.19c)

6 C
∑
s∈S

|P∗(s)− P̂
∗
(s)| (C.19d)

= C
∑
s∈S

|P∗(s)− P̂(s) + P̂(s)− P̂
∗
(s)| (C.19e)

6 C
∑
s∈S

|P∗(s)− P̂(s)|+ C
∑
s∈S

|P̂
∗
(s)− P̂(s)| (C.19f)

6 C
∑
s∈S

|P̂(s)− P∗(s)|+ Cτ(N). (C.19g)

Inequalities ( C.19d) and ( C.19f) follow the fact that |a+ b| 6 |a|+ |b|. Inequality ( C.19g)

holds because {P̂
∗
(s),∀s} ∈ P ′, where

P ′ =

{P(s),∀s ∈ S} :

∑
s∈S |P(s)− P̂(s)| 6 τ(N), ∀s ∈ S,∑
s∈S P(s) = 1,

P(s) > 0, ∀s ∈ S.

 (C.20)

The term Cτ(N) in ( C.19g) goes to zero by the definition of τ(N), i.e. limN→∞ τ(N) = 0.

The other term satisfies

∑
s∈S

|P̂(s)− P∗(s)| p−−→ 0

because of Lemma 2. Therefore,

sup
x∈X

|ODRO(x, N)−O(x)| p−−→ 0, (C.21)

which intuitively means that ODRO(x, N) converges to Q(x) uniformly in X when N goes

to infinity.
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Because ÔN andO∗ are the minimum ofODRO(x, N) andO(x), respectively. The uniform

convergence ( C.21) directly indicates ÔN
p−−→ O∗. We also present one detailed proof of

ÔN
p−−→ O∗ in the following.

We prove by contradiction. Suppose ÔN does not converge to O∗ in probability, which

is equivalent to

∃ε > 0, lim
N→∞

P(|ÔN −O∗| > ε) 6= 0

Without loss of generality, we assume there exists ε′ > 0 such that limN→∞ P(ÔN − O∗ <

−ε′) = q with q > 0 and the corresponding minimizers of ODRO(x, N) and O(x) are x̂N and

x∗, which can be formulated as

lim
N→∞

P(ÔN −O∗ < −ε′) = lim
N→∞

P(ODRO(x̂N , N)−O(x∗) < −ε′) = q.

Because x∗ is the minimizer of O(x), we have O(x̂N) > O(x∗), which indicates

ODRO(x̂N , N)−O(x̂N) 6 ODRO(x̂N , N)−O(x∗).

Therefore,

lim
N→∞

P (ODRO(x̂N , N)−O(x̂N) < −ε′) > q. (C.22)

However, ( C.22) contradicts the uniform convergence result ( C.21), which is

sup
x∈X
|ODRO(x, N)−O(x)| p−−→ 0.

Therefore, we proved ÔN converges to O∗ in probability, i.e.

ÔN
p−−→ O∗. (C.23)

In addition, if the maximizer x∗ of O∗ is unique, we obatin x̂N
p−−→ x∗ directly from (

C.23).
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C.6 Proof of Proposition 1

Proof. In this proof, we prove the results that [0, τ) is an asymptotic (1 − α) confidence

interval for
∑

s∈S |P
∗(s)− P̂(s)|, where α can be determined through the observed data. In

the rest of this proofs, all expectations are taken over the probability mass function of sobs.

Without loss of generality, we assume P∗(s) > 0 for ∀s ∈ S in this proof for convenience.

This assumption is valid because if P∗(s) = 0 for some s meaning this scenario s never

happens, then P̂(s) equal to 0 trivially in Optimization ( C.6) when the sample size is large.

Therefore, it will not affect our discussions for the asymptotic behaviors of
∑

s∈S |P
∗(s) −

P̂(s)|.

In order to determine α for a given τ > 0, we first prove that the difference between the

center of the ambiguity set and the true unknown joint distribution, i.e. P̂−P∗, converges

in distribution (weakly) to a normal distribution. Recall the former definitions

LN(P) =
1

N

N∑
n=1

lnF (ŝn,obs|P) =
1

N

N∑
n=1

ln[
∑

s∈S(ŝn,obs)

P(s)], (C.24)

L(P) = lim
N→∞

1

N

N∑
n=1

lnF (ŝn,obs|P) = E[lnF (sobs|P)]. (C.25)

Recall that the joint distribution P ∈ [0, 1]|S| has |S| dimensions, and the nominal

distribution P̂ is defined as the optimal solution of:

max LN(P) (C.26a)

s.t. P(s) > 0,∀s, (C.26b)∑
s∈S

P(s) = 1. (C.26c)

We replace one P(s∗) with

P(s∗) = 1−
∑

s∈S,s6=s∗

P(s) (C.27)

in LN(P), where s∗ is an arbitrary element in S. Originally, LN(P) is a function of |S|

variables. After replacing P(s∗) ( C.27), we denote it as LN(P0) for clarification, which is a

function of |S|−1 variables. Same procedure is applied to L(P), and we denote the resulting
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L(P) as L(P0). We also define P̂0 and P∗0 as the vectors of P̂ and P∗ excluding P̂(s∗) and

P∗(s∗), respectively. In this way, we eliminate the constraint of
∑
s∈S

P(s) = 1 in ( C.26a).

When N is large, constraints {P(s) > 0,∀s} are redundant in Optimization ( C.26a);

this is because terms {ln P(s),∀s} appear in LN(P), where ln P(s) goes to −∞ when P(s)

approaches 0. Therefore, we can also eliminate the constraints of {P(s) > 0, ∀s} in ( C.26a).

Following the above discussions, we define ∇ as a standard Laplace operator with di-

mension |S| − 1. Because P̂0 is the maximizer of LN(P0), we have ∇LN(P̂0) = 0. We

expand the function ∇LN(P̂0) by the Taylor series at point P∗0, which is valid because LN

is a smooth function having derivatives of all orders everywhere in its domain according to

( C.24). Therefore, we have

∇LN(P̂0) = ∇LN(P∗0) +∇2LN(P′0)(P̂0 −P∗0) = 0, (C.28)

with one P′0 ∈ [P∗0, P̂0]. Because LN(P′0) contains |S| − 1 independent variables, Matrix

∇2LN(P′0) has full rank and is invertible. From ( C.28) we get

P̂0 −P∗0 = −[∇2LN(P′0)]−1∇LN(P∗0) and
√
N(P̂0 −P∗0) = −[∇2LN(P′0)]−1

√
N∇LN(P∗0).

(C.29)

1. We first check the term
√
N∇LN(P∗0). In Lemma 2, we proved P∗0 is the maximizer of

L(P0), which is equivalent to ∇L(P∗0) = 0 (same Laplace operator). Accordingly, we

reformulate the numerator of ( C.29) as

√
N∇LN(P∗0) =

√
N(∇LN(P∗0)− 0) =

√
N (∇LN(P∗0)−∇L(P∗0))

(∗)
=
√
N

[
∇ 1

N

N∑
n=1

lnF (ŝn,obs|P∗0)−∇E[lnF (sobs|P∗0)]

]

=
√
N

[
1

N

N∑
n=1

∇ lnF (ŝn,obs|P∗0)− E[∇ lnF (sobs|P∗0)]

]
.

Above equality (*) holds by definitions ( C.24) and ( C.25). In the last step, we can

interchange the integration (E) and differentiation (∇) because the support of sobs is

finite.
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By using Central Limit Theorem and defining φP∗0
= ∇ lnF (sobs|P∗0) and

φnP∗− = ∇ lnF (ŝn,obs|P∗0) for convenience, we conclude

√
N∇LN(P∗0) =

√
N

[
1

N

N∑
n=1

∇ lnF (ŝn,obs|P∗0)− E[∇ lnF (sobs|P∗0)]

]
(C.30)

=
√
N

[
1

N

N∑
n=1

φnP∗0 − E(φP∗0
)

]
d−−→ N (0,Cov(φP∗0

)). (C.31)

Recall that ∇L(P∗0) = 0 is equivalent to E(φP∗0
) = 0 by definition ( C.25) and, the covari-

ance matrix of a random variable x is defined as Cov(x) = E(xxT )− E2(x). Therefore,

we obtain

N (0,Cov(φP∗0
)) = N (0,E(φP∗0

φP∗0
T )− E2(φP∗0

)) = N (0,E(φP∗0
φP∗0

T )). (C.32)

2. We next check ∇2LN(P′0). By the definition of LN and interchanging the summation

and differentiation, we obtain

∇2LN(P′0) = ∇2 1

N

N∑
n=1

lnF (ŝn,obs|P′0) =
1

N

N∑
n=1

∇2 lnF (ŝn,obs|P′0).

When sample size N →∞, we proved P̂0
p−−→ P∗0 in Lemma 2, which indicates P′0

p−−→

P∗0 because P′0 ∈ [P∗0, P̂0]. Therefore, the law of large number indicates

1

N

N∑
n=1

∇2 lnF (ŝn,obs|P′0)
p−−→ E

[
∇2 lnF (sobs|P∗0)

]
= E(∇φP∗0

). (C.33)

In the next, we characterize the asymptotic behaviors of ( C.29) based on ( C.31) and (

C.33) according to Slutsky’s Lemma:

Lemma 4 (Slutsky’s Lemma). Let {Xn}, {Yn} be sequences of vector random variables. If

Xn converges in probability to a constant matrix C ∈ Rm1×m2; and Yn converges in distribu-

tion to a random variable Y ∈ Rm2, then XnYn
d−→ CY .
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Following Lemma 4 and ( C.29), we obtain

√
N(P̂0 −P∗0) = −[∇2LN(P′0)]−1

√
N∇LN(P∗0)

d−−→ [E(∇φP∗0
)]−1N (0,E(φP∗0

φP∗0
T )),

where [E(∇φP∗0
)]−1N (0,E(φP∗0

φP∗0
T )) = N

(
0, [E(∇φP∗0

)]−1E(φP∗0
φP∗0

T )[E(∇φP∗0
T )]−1

)
.

The second line follows basic algebra. Equivalently, the above formula is equivalent to

P̂0 −P∗0 −N
(

0,
1

N
[E(∇φP∗0

)]−1E(φP∗0
φP∗0

T )[E(∇φP∗0
T )]−1

)
d−−→ 0,

which tells that the difference between (P̂0 − P∗0) and a normal distribution converges in

distribution to zero. We denote the asymptotic variance-covariance matrix as Σ∗0 for conve-

nience.

(P̂0 −P∗0)−N (0,Σ∗0)
d−−→ 0

Because P(s∗) is fulled determined by the rest of the P(s), i.e.,

P(s∗) = 1−
∑

s∈S,s6=s∗

P(s),

and the summation of normal random variables still follows normal distribution. Therefore,

we have

(P̂−P∗)−N (0,Σ∗)
d−−→ 0. (C.34)

The new variance-covariance matrix Σ∗ can be determined according to Σ∗0 and P(s∗) =

1 −
∑

s∈S,s6=s∗

P(s). Without loss of generality, we let the last dimension of P̂ denote the

probability corresponding to s∗ for convenience. Therefore, the new asymptotic variance-

covariance matrix, Σ∗, can be explicitly written as

Σ∗ =

Σ∗0 vs∗

vTs∗ var(s∗)

 ,
where var(s∗) = 1TΣ∗01 and vs∗ = Σ∗01. We use 1 to denote a (|S| − 1)-dimensional column

vector whose all elements equal to 1.
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Therefore, we obtain a lower bound of the probability that the true joint distribution P∗

deviates from P̂ by a distance tolerance τ as follows.

P(
∑
s∈S

|P∗(s)− P̂(s)| 6 τ) > P(|P∗(s)− P̂(s)| 6 τ

|S|
,∀s ∈ S)

=

∫
[− τ
|S| ,

τ
|S| ]
|S|

(2π)−
|S|
2 det(Σ∗)−

1
2 exp

(
−1

2
xTΣ∗−1x

)
dx = α.

This asymptotic variance-covariance matrix Σ∗ can be obtained empirically based on the

observed information matrix [45, 44]. More specifically, the asymptotic variance-covariance

matrix equals the inverse of the observed information matrix, which intuitively can be viewed

as a sample-based version of Σ∗. We present the details as follows.

Recall the notations: we assume the set S+ = {s ∈ S|P̂(s) > 0} contains b different s, i.e.

|S+| = b. And we denote them as s{k}, k = 1, · · · , b. Their corresponding P̂(s) are denoted

with a vector p = [p1, · · · , pb]. In addition, we define ai as the number of observations of s{i}

for i = 1, · · · , b. Suppose we observe q different incomplete data (the number of observed

dimensions is less than I) s
{l}
obs, l = 1, · · · , q, and each s

{l}
obs appears bl number of times in

the data set. We define a vector δj ∈ {0, 1}b, j = 1, · · · , q, where δji = 1 if the observed

s
{j}
obs matches the i-th s{i}, i.e. s{i} � φ{j}obs = s

{j}
obs . (Here φ

{j}
obs ∈ {0, 1}I is defined as the

corresponding indicator vector (5.5) of observed dimensions in s
{j}
obs .)

Then the likelihood function

l =
N∑
n=1

ln

 ∑
s∈S(ŝn,obs)

P(s)


is equivalent to

l =
b∑
i=1

ai ln pi +

q∑
j=1

bj ln(δTj p),
b∑
i=1

pi = 1 (C.35)

following the above definitions. Intuitively, the first term in ( C.35) represents the log-

likelihood of the observed complete data and the second term represents the log-likelihood

of the incomplete data. We replace pb with pb = 1 −
b−1∑
i=1

pi, and define the corresponding

Laplace operator ∇ with dimension b− 1.
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Therefore, the observed information matrix of ( C.35) has dimension (b − 1) × (b − 1)

and is defined as Σ−1
b−1 = −∇∇T l, which can be explicitely reformulated as

Σ−1
b−1 = −∇∇T l = diag(

a1

p2
1

, · · · , ab−1

p2
b−1

) +
ab−1

p2
b−1


1 · · · 1
...

. . .
...

1 · · · 1

+


ψ11 · · · ψ1,b−1

...
. . .

...

ψb−1,1 · · · ψb−1,b−1



with

ψik =

q∑
j=1

bj(δji − δjb)(δjk − δjb)
(δTj p)2

.

Following the same procedure introduced for Σ∗, the b×b-dimensional covariance matrix

Σ ∈ Rb×b is calulcated according to pb = 1−
∑b−1

i=1 pi. That is

Σ =

Σb−1 vb

vTb var(b)

 ,

where var(b) = 1TΣb−11 and vb = Σb−11. We use 1 to denote a (b− 1)-dimensional column

vector whose all elements equal to 1.

Therefore, we find the value α accordingly.

α =

∫
[− τ

b
, τ
b

]b
(2π)−

b
2 det(Σ)−

1
2 exp

(
−1

2
xTΣ−1x

)
dx.
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C.7 Proof of Proposition 2.

Proof. Recall that the proposed model is formulated as ( C.36)

min
x∈X

max
{P(s),∀s∈S}∈P ′

∑
s∈S

P(s)Q(x, s), (C.36)

with ambiguity set

P ′ =

{P(s),∀s ∈ S} :

∑
s∈S |P(s)− P̂(s)| 6 τ,∑
s∈S P(s) = 1,

P(s) > 0, ∀s ∈ S.

 (C.37)

Therefore, we formulate ( C.36) explicitly in ( C.38).

min
x∈X

max
P(s),r(s)

∑
s∈S

P(s)Q(x, s)

s.t. τ −
∑
s∈S

r(s) > 0,

r(s)− P̂(s) + P(s) > 0,∀s ∈ S,

r(s)− P(s) + P̂(s) > 0,∀s ∈ S,∑
s∈S

P(s) = 1,

P(s) > 0, ∀s ∈ S.

(C.38)

The Lagrangian of ( C.36) is

min
x∈X

max
P(s)>0,r(s)

min
B′

∑
s∈S

P(s)Q(x, s)− γ(
∑
s∈S

P(s)− 1)

+
∑
s∈S

ws(r(s)− P(s) + P̂(s))

+
∑
s∈S

ls(r(s)− P̂(s) + P(s)) + e(τ −
∑
s∈S

r(s)),

(C.39)
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where we use B′ to denote {γ, ws > 0, ls > 0, e > 0} due to the space issue. Following the

minimax theorem, Problem ( C.39) is equivalent to:

min
x∈X

min
B′

max
P(s)>0,r(s)

∑
s∈S

P(s)[Q(x, s)− γ − ws + ls]

− γ(−1) +
∑
s∈S

r(s)(ws + ls − e)

+ eτ +
∑
s∈S

(ws − ls)P̂(s),

(C.40)

Solving the maximization problem directly in ( C.40) gives

min
B

γ + eτ +
∑
s∈S

(ws − ls)P̂(s)

s.t. Q(x, s)− γ − ws + ls 6 0, ∀s ∈ S

ws + ls − e = 0, ∀s ∈ S.

(C.41)

where B = {x ∈ X , γ, ws > 0, ls > 0, e > 0}.

C.8 Extensions to two-stage stochastic programming

We extend the results obtained so far to the two-stage stochastic programming.

min
x∈X

f(x) + E[Q(x, s)]. (C.42)

We make one commonly used assumption [115, 136] to guarantee that the second-stage

problem is bounded and always feasible for a given first-stage decision; that is the two-

stage stochastic programming has a relatively complete recourse and is bounded. We denote

the second-stage optimal cost Q(x, s) explicitly as miny∈Y(x,s) h(x,y, s), with Y(x, s) being

the feasible region for the second-stage decision y (sometimes we use Y to denote it for

convenience). Then, the corresponding model under the incomplete data is ( C.43). We

assume the dimensions of x and y are m1 and m2, x ∈ Rm1 and y ∈ Rm2 .

min
x∈X

f(x) + max
{P(s),∀s∈S}∈P

∑
s∈S

P(s)[min
y∈Y

h(x,y, s)] (C.43)
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The objective function of ( C.43) minimizes the expectation of the second-stage cost with

respect to a worst-case distribution inside the ambiguity set P .

Model ( C.43) uses ambiguity set (5.8). We provide one reformulation in Corollary 2

according to Theorem 2 and discuss its tractability.

Corollary 2. Optimization

min
x∈X

f(x) + max
{P(s),∀s∈S}∈P ′

∑
s∈S

P(s)[min
y∈Y

h(x,y, s)]

is equivalent to

min
B′

f(x) + γ + eτ +
∑
s∈S

(ws − ls)P̂(s)

s.t. h(x,ys, s) 6 γ + ws − ls,∀s ∈ S,

ys ∈ Y(x, s),∀s ∈ S,

ws + ls − e = 0,∀s,

x ∈ X ,

(C.44)

where B′ = {x, γ, ws > 0, ls > 0, e > 0}.

Tractability. In a classical two-stage stochastic program, the second-stage cost is defined as

h(x,y, s) = q(s)Ty, and Y = {y|T (s)x+W (s)y 6 r(s)}, where q(s) ∈ Rm1 , T (s) ∈ Rm3×m1 ,

W (s) ∈ Rm3×m2 , and r(s) ∈ Rm3 . Then, Optimization ( C.44) is a single-stage linear program

if X only consists of linear constraints. In general, if f(x) and h(x,y, s) are convex with

respect to x and y, and X , Y are convex sets or mixed-integer linear sets [34], ( C.44) is

mathematically tractable.

C.9 Proof of Proposition 4.

Proof. Recall that the proposed model is formulated as

min
x∈X

max
{P(s),∀s∈S}∈P ′

∑
s∈S

P(s)Q(x, s), (C.45)
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with ambiguity set

P ′ =

{P(s),∀s ∈ S} :

(P− P̂)TΣ−1(P− P̂) 6 τ,∑
s∈S P(s) = 1,

P(s) > 0, ∀s ∈ S.

 (C.46)

The Lagrangian is

min
x∈X

max
P(s)

min
β>0,λ>0,γ

∑
s∈S

P(s)Q(x, s)− γ(
∑
s∈S

P(s)− 1)

+ λ[τ − (P− P̂)TΣ−1(P− P̂)] + PTβ

= min
x∈X

max
P(s)

min
β>0,λ>0,γ

λτ + γ + PTQ(x)−PTγ − λPTΣ−1P + 2λPTΣ−1P̂

− λP̂TΣ−1P̂ + PTβ,

(C.47)

where we define γ as an |S|-dimension vector whose all elements equal to γ for convenience.

The objective function is concave with respect to P for fixed {β, λ, γ}, and is convex with

respect to {β, λ, γ} for fixed P. Therefore, following the minimax theorem, it is equivalent

to ( Σ−1 is symmetric by definition)

min
x∈X

min
β>0,λ>0,γ

max
P(s)

λτ + γ + PTQ(x)−PTγ − λPTΣ−1P + 2λPTΣ−1P̂

− λP̂TΣ−1P̂ + PTβ

(C.48)

Solving the inner maximization problem, we obtain

QT (x)− γT − λ[PTΣ−1 + PT (Σ−1)T ] + 2λP̂TΣ−1 + βT = 0,

⇒QT (x)− γT − 2λPTΣ−1 + 2λP̂TΣ−1 + βT = 0,

⇒QT (x)− γT + 2λP̂TΣ−1 + βT = 2λPTΣ−1,

⇒QT (x)Σ− γTΣ + 2λP̂T + βTΣ = 2λPT ,
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Therefore, we obtain

min
x∈X ,β>0,λ>0,γ

max
P(s)

λτ + γ + PTQ(x)−PTγ − λPTΣ−1P + 2λPTΣ−1P̂

− λP̂TΣ−1P̂ + PTβ

⇒ min
x∈X ,β>0,λ>0,γ

1

2λ

[
QT (x)Σ− γTΣ + 2λP̂T + βTΣ

]
(Q(x)− γ + 2λΣ−1P̂ + β)

− 1

2
(QT (x)Σ− γTΣ + 2λP̂T + βTΣ)Σ−1 1

2λ

[
ΣQ(x)−Σγ + 2λP̂ + Σβ

]
λτ + γ − λP̂TΣ−1P̂

⇒ min
x∈X ,β>0,λ>0,γ

1

2λ

[
QT (x)Σ− γTΣ + 2λP̂T + βTΣ

]
(Q(x)− γ + 2λΣ−1P̂ + β)

− 1

4λ
(QT (x)Σ− γTΣ + 2λP̂T + βTΣ)

[
Q(x)− γ + 2λΣ−1P̂ + β

]
λτ + γ − λP̂TΣ−1P̂

⇒ min
x∈X ,β>0,λ>0,γ

1

4λ

[
QT (x)Σ− γTΣ + 2λP̂T + βTΣ

]
(Q(x)− γ + 2λΣ−1P̂ + β)

λτ + γ − λP̂TΣ−1P̂

⇒ min
x∈X ,β>0,λ>0,γ

1

4λ

(
QT (x)− γT + 2λP̂TΣ−1 + βT

)
Σ
(
Q(x)− γ + 2λΣ−1P̂ + β

)
λτ + γ − λP̂TΣ−1P̂

⇒ min
x∈X ,β>0,λ>0,γ

λτ + γ +
1

4λ

(
QT (x)− γT + βT

)
Σ (Q(x)− γ + β) + P̂TQ(x)

− P̂Tγ + P̂Tβ + λP̂TΣ−1P̂− λP̂TΣ−1P̂

⇒ min
x∈X ,β>0,λ>0,γ

λτ + γ +
1

4λ

(
QT (x)− γT + βT

)
Σ (Q(x)− γ + β) + P̂TQ(x)

− P̂Tγ + P̂Tβ

(C.49)

Define V = Q(x)− γ + β, the above optimization is equivalent to

min
x∈X ,β>0,λ>0,γ

λτ + γ +
1

4λ
VTΣV + P̂TQ(x)− P̂Tγ + P̂Tβ

Because Σ is a positive definite matrix, VTΣV > 0 if V 6= 0. Therefore, the optimal λ

equals to

λ =
1

2
√
τ

√
VTΣV.
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Plugging in this optimal λ gives

min
x∈X ,β>0,γ

γ +
√
τ
√

VTΣV + P̂TQ(x)− P̂Tγ + P̂Tβ. (C.50)

In addition, P̂Tγ = γ because P̂ is a distribution function.

In conclusion, the original optimization is equivalent to

min
x,y,β,γ

y + P̂TQ(x) + P̂Tβ

s.t. x ∈ X ,

βs > 0,∀s

y2 > τ(VTΣV),

y > 0,

V = Q(x)− γ + β,

(C.51)

where we use γ to represent an |S|-dimension vector whose all elements equal to γ. The

reformulation is a second-order conic programming.
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Appendix D

Appendix for Chapter 6

D.1 Proof of Proposition 4 in Section 6.3.1

Proposition 4. The policy based on demand distribution pk2 achieves the optimal solution

if and only if P(Bk2|At) > θ and

θ =

∑
k 6=k2 P(Bk|At)(Ck

k2
− Ck

k∗)

Ck2
k∗ − C

k2
k2

, where k∗ = arg min
k′ 6=k2

[P(Bk2|At)Ck2
k′ +

∑
k 6=k2

Ck
k′P(Bk|At)].

Proof. Proof. Because the policy based on pk2 achieves the lowest cost, the following in-

equality holds:

P(Bk2 |At)Ck2
k2

+
∑
k 6=k2

Ck
k2

P(Bk|At) 6 min
k′ 6=k2

[P(Bk2|At)Ck2
k′ +

∑
k 6=k2

Ck
k′P(Bk|At)]. (D.1)

Suppose the right side of Eq. ( D.1) achieves the minimum at k∗, then Eq. ( D.1) is equivalent

to

P(Bk2|At) >
∑

k 6=k2 P(Bk|At)(Ck
k2
− Ck

k∗)

Ck2
k∗ − C

k2
k2

.

By defining θ as the value of the right side of the above inequality, the policy based on pk2

will be chosen if and only if

P(Bk2|At) > θ.

131



D.2 Derivation of Ck
k′

Lemma 6. Suppose that we derive the inventory policy according to a demand distribution

pk′ = Poisson(λ) and the actual demand distribution is pk = Poisson(λ̂). If λ < λ̂, then the

expected cost of this policy is:

Ck
k′ =

√
K ′h

2
(
λ̂√
λ

+
√
λ) + hzα

√
L
√
λ+ (p− h)L(λ̂− λ) + pzα

√
L(
√
λ̂−
√
λ).

If λ > λ̂, the expected cost of this policy is:

Ck
k′ =

√
K ′h

2
(
λ̂√
λ

+
√
λ) + hzα

√
L
√
λ+ hL(λ− λ̂),

where the fixed cost of placing orders is denoted as K ′. The holding cost of each item (per

day) is h. The lead time is L and the Type-1 service level is α. The penalty per item (per

day) for violating the Type-1 service level α is p.

Proof. Proof. We approximate the Poisson distribution with a mean λ through a normal

distribution N (λ, λ). The warehouse begins to order when the inventory level hits r and

receives these products after L days. The reorder point r is: r = Lλ+ zα
√
Lλ and the order

quantity Q equals to: Q =

√
2K ′λ

h
.

When λ̂ < λ, the expected inventory level just before the ordered products arriving is

L(λ− λ̂) + zα
√
Lλ. After the products arrive, the inventory level becomes Q + L(λ− λ̂) +

zα
√
Lλ. After some time, the same procedure continues when the inventory level touches r

again. Therefore, the cost of this model can be viewed as an EOQ model with a safety stock

L(λ− λ̂) + zα
√
Lλ. The time between orders is T =

Q

λ̂
=

1

λ̂

√
2K ′λ

h
. So the average cost for

λ̂ < λ is

Cost =
K ′

T
+ h

Q

2
+ hL(λ− λ̂) + hzα

√
Lλ

=

√
K ′h

2
(
λ̂√
λ

+
√
λ) + hzα

√
Lλ+ hL(λ− λ̂).

When λ < λ̂, the warehouse still places an order of quantity Q when the inventory level

hits r. During the lead time L days, the extra expected number of products is L(λ̂−λ). The
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required safety stock is zα
√
Lλ̂. However, the realized safety stock is zα

√
Lλ − L(λ̂ − λ).

Therefore, the penalty cost is p[zα
√
Lλ̂− zα

√
Lλ+L(λ̂−λ)]. In addition, the time between

orders is T =
Q

λ̂
=

1

λ̂

√
2K ′λ

h
, so the average inventory cost is:

Cost =
K ′

T
+ h

Q

2
+ h[zα

√
Lλ− (λ̂− λ)L] + p[zα

√
L(
√
λ̂−
√
λ) + L(λ̂− λ)]

=

√
K ′h

2
(
λ̂√
λ

+
√
λ) + hzα

√
Lλ+ (p− h)L(λ̂− λ) + pzα

√
L(
√
λ̂−
√
λ).

The following Figure 16 illustrates the expected inventory level of this warehouse. Regardless

of the starting point, the expected inventory level after one cycle is exactly the same as shown

in Figure 16 because the ordering point r is fixed.

Figure 16: Expected inventory level of three cases. The blue one is λ = λ̂. The yellow one

is λ < λ̂. The red one is λ > λ̂. We use S = zα
√
Lλ to denote the safety stock. Q is the

order quantity and r is the reorder point.

Time

0 10 20 30 40 50 60 70 80

In
v
e

n
to

ry

S-s
S

S+s*

r

Q+S-s
Q+S

Q+S+s*

D.3 Proofs of Lemma 3

In this section, we illustrate the optimal conditions of Problem (6.10) in Section 6.4.
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Lemma 3. For two consecutive demand seasons, the demand data inside the current time

horizon have the same demand distribution if and only if λ =

∑t
j=s dj

t− s+ 1
satisfies |

i−1∑
j=s

(λ −

dj)| 6 β, ∀i = s+ 1, · · · , t+ 1.

Proof. Proof. Recall that the Problem (6.10) is

min
λs,··· ,λt

1

2

t∑
j=s

(dj − λj)2 + β

t∑
j=s+1

|λj − λj−1|.

We find the KKT conditions of Problem (6.10). First, the above problem can be refor-

mulated as follows:

min
λs,··· ,λt,ms+1,··· ,mt

1

2

t∑
j=s

(dj − λj)2 + β
t∑

j=s+1

|mj|

s.t. mj = λj − λj−1, ∀s+ 1 6 j 6 t.

(D.2)

By using the Lagrangian multiplier, we obtain:

1

2

t∑
j=s

(dj − λj)2 + β
t∑

j=s+1

|mj|+
t∑

j=s+1

xj(−mj + λj − λj−1). (D.3)

• By setting the first differentials of Formula ( D.3) with respect to λj as zero, we obtain:

xs+1 = λs − ds, (D.4)

xj − xj+1 = dj − λj, ∀j ∈ {s+ 1, · · · , t− 1}, (D.5)

xt = dt − λt. (D.6)

We can clearly see that the dual variables xj, s+ 1 6 j 6 t are equivalent to

xj =

j−1∑
i=s

(λi − di).

It must be noted that by Formula ( D.6) we have: xt =
∑t−1

j=s(λj−dj) = dt−λt, which is

equivalent to
t∑

j=s

(λj−dj) = 0. Therefore, we can naturally define one more dual variable

xt+1 =
∑t

j=s(λj − dj) that is always zero.
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• By setting the first differential (sub-gradient) of Formula ( D.3) with respect to mj as

zero, we obtain the following optimality conditions:

Sgn(mj)β − xj = 0, ∀s+ 1 6 j 6 t, (D.7)

where Sgn(x) =


1, x > 0

[−1, 1], x = 0

−1, x < 0

. (D.8)

Therefore, if mj = λj − λj−1 6= 0, xj must equal β or −β. Otherwise, there is no

constraints on xj. Thus, we can write it as: (|xj|−β)(λj−λj−1) = 0. In conclusion, we have

the KKT conditions:

xt+1 = 0,

|xj| 6 β, s+ 1 6 j 6 t+ 1,

(|xj| − β)(λj − λj−1) = 0, s+ 1 6 j 6 t+ 1,

xj =

j−1∑
i=s

(di − λi), s+ 1 6 j 6 t.

Thus, if λ =

∑t
i=s di

t− s+ 1
satisfies |xj| = |

∑j−1
i=s (λ − di)| 6 β, ∀j = s + 1, · · · , t + 1, all

KKT conditions are met, which indicates that this is an optimal solution.

On the other hand, if a demand distribution can achieve the optimal solution, we have

λ =

∑t
i=s di

t− s+ 1
because of xt+1 = 0. Additionally, we require |xj| = |

∑j−1
i=s (λ − di)| 6 β for

j = s+ 1, · · · , t+ 1, since |xj| 6 β.
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D.4 Proof of Proposition 5 in Section 6.4.2

Proposition 5. Optimization (6.13) is equivalent to

min
Q,R,gk,t,qk

K ′(µ̂+ θ1)

Q
+ h

Q

2
+ h(R− Lµ̂− Lθ1)

s.t. (1− α)N ′t+ eTg > θ1N
′,

R− D̂k +Mqk > t+ gk, ∀k = 1, · · · , N ′

M(1− qk) > t+ gk, ∀k = 1, · · · , N ′

gk 6 0, t ∈ R, qk ∈ {0, 1}, ∀k = 1, · · · , N ′,

(6.14)

where we use D̂k to denote k-th observed L-day demand and µ̂ to denote the empirical mean

of the daily demand. Additionally, we suppose that there exists a total of N observed daily

demands for the current demand season, as well as N ′ observed L-day demands. Clearly,

N ′ = bN/Lc. Here, M is a large but bounded number.

We use the following Lemma for the proof.

Lemma 7 ([31]). Consider an individual chance constrained program with a set S(x) = {ξ ∈

Rk|(Aξ + a)Tx < bT ξ} and with X being compact:

min cTx

s.t. x ∈ X̂ = {x ∈ X | sup
P∈Bθ(P̂ )

P[ξ̂ /∈ S(x)] 6 ε}

It is equivalent to the following mixed integer conic program.

min
q,s,t,x

cTx

s.t. εNt+ eT s > θN‖b−ATx‖∞,

(b−ATx)T ξ̂k − aTx +Mqk > t+ sk,∀k

M(1− qk) > t+ sk,∀k

qk ∈ {0, 1}N , sk 6 0, t ∈ R,x ∈ X , ∀k

where M is some sufficiently large but bounded variable.
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Proof. Proof.

The constraint minpL∈Bθ1 (p̂L) P
L(R) > α is equivalent to

max
pL∈Bθ1 (p̂L)

P(R 6 D) 6 1− α,

where D represents the random variable whose CDF is PL. By viewing ξ as D, ε as 1− α,

and x as R in Lemma 7, we can set A = 0, a = −1, and b = −1 correspondingly. Therefore,

the constraint is equivalent to

(1− α)N ′t+ eTg > θ1N
′,

− D̂k − (−1)R +Mqk > t+ gk,∀k,

M(1− qk) > t+ gk,∀k,

qk ∈ {0, 1}N , gk 6 0, t ∈ R,x ∈ X ,∀k.

The objective function is directly obtained by the definition of the Wasserstein ball. By the

definition, the values of the observed demand can change at most |θ1| in average. And the

worst-case distribution for the constraint part is achieved when observed demand become

larger (because higher reorder points represent higher cost). Therefore, the worst-case dis-

tribution has mean value of µ̂+ θ1. In conclusion, we obtain the final formulation as shown

in (6.14).

D.5 Working inventory costs for (Rt, Qt) policies obtained by the DRO model

This section presents the empirical experiments conducted to study the working inventory

costs of the proposed DRO model. To evaluate the out-of-sample expected working inventory

cost, we define a variable AD as the average difference between the out-of-sample expected

working inventory costs of our methods and the theoretically derived optimal costs. In (

D.9), we use λt to denote the true mean of the demand distribution on day t and Q̂t to

denote the order quantity determined by the proposed approaches. The values of λt are
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unknown in our approaches but are known when calculating the theoretical optimal order

quantities Qt.

AD =
1

T

T∑
t=1

(
Kλt

Q̂t

+ h
Q̂t

2
)− 1

T
min
Qt>0

T∑
t=1

(
Kλt
Qt

+ h
Qt

2
)

=
1

T

T∑
t=1

(
Kλt

Q̂t

+ h
Q̂t

2
)− 1

T

T∑
t=1

√
2Kλth.

(D.9)

During the experiments, the demand is assumed to be revealed sequentially, and we use the

proposed approaches to derive their inventory policies. We then calculate and plot the value

of AD.

Experiment setting: The time horizon contains four demand seasons. The demand dis-

tributions for these four sequential demand seasons are N (10000, 10000), N (10500, 10500),

N (11000, 11000), and N (10000, 10000). Each demand season lasted for N days, and we var-

ied N (N = 30, 35, · · · , 100) to generate 15 scenarios. We conducted 50 experiments for both

approaches under each scenario. The IB approach derives the inventory policies according

to the uncertainty set, which is set as

{N (9000, 9000),N (9500, 9500),N (10000, 10000),N (10500, 10500),N (11000, 11000)}

during the experiments. The SL approach derives inventory policies using the DRO frame-

work., which can be tuned by adjusting θ1 to guarantee the Type-1 service level. We notice

that an appropriate θ1 causes very little change in AD, which is expected because the work-

ing inventory costs are generally not sensitive to order quantities. Therefore, we simply set

θ1 as zero to evaluate the working inventory costs. The parameters for the warehouse are set

to ensure that the lead time is less than each order period: holding cost rate h = 2× 10−5,

fixed cost of placing orders K = 8 and lead time L = 3.

The results are shown in Figure 17. Each graph plots the average values of AD with

respect to the length of each demand season. First, we conclude that the value of AD is

sublinear with respect to the length of demand seasons when the number of demand seasons

is fixed. This property is highly desirable, as it indicates that all methods approach the

optimal value as the number of demand data increases. Second, when the demand season

lasts for a long period of time, the average values of AD are relatively smaller than the daily

cost, which indicates that the performance of the derived policies is very close to the optimal
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performance. For example, the largest AD is approximately 4 × 10−5 when each demand

season lasts for 100 days, whereas the theoretically derived optimal expected daily working

inventory cost is
√

2Khλ (λ = 10000). Therefore, the ratio of AD to the theoretically derived

optimal daily cost, AD√
2Kλh

, is approximately 2× 10−5.

Figure 17: The average difference with respect to the number of days in each demand season.
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Figure 19: Separate-lasso

30 40 50 60 70 80 90 100

Length of each demand season

3.5

4

4.5

5

5.5

6

6.5

7

7.5
A

D
10

-5

D.6 Type-1 service level in DRO model

This section validates our claim that during each demand season, the proposed DRO

model improves the out-of-sample Type-1 service level compared to SAA. The Type-1 service

level is affected by choice of the θ1. Therefore, we computed the average out-of-sample

Type-1 service level with respect to different values of θ1 under different demand observation

numbers.

Experiment setting: The daily demand distribution is set to N (10000, 10000), and the

lead time is L = 3. We vary the number of observations (2, 5, 10, 20) of the demand during

the lead time. For each scenario, 100 experiments are conducted, each of which is tested

under different values of θ1. The average Type-1 service levels for the 100 experiments are

recorded.
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Figure 20: Average Type-1 service level. Yellow line: target service level. Blue line: DRO.

Red line: SAA.

Figure 21: 2 observations
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Figure 22: 5 observations
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Figure 23: 10 observations
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Figure 24: 20 observations
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The results are summarized in Figure 20, which indicates that the proposed DRO frame-

work improves the Type-1 service level compared to SAA. Overall, SAA yields a Type-1

service level that is lower than the target ones. This becomes a severe issue when the num-

ber of demand observations is small. For example, if there are only 2 observations, the

average Type-1 service level achieved by SAA is only approximately 66%. The DRO model

improves the Type-1 service level by increasing θ1, and the optimal value of θ1 (the inter-

section of the blue and yellow lines) decreases with respect to the increase in the number

of observations. In conclusion, the proposed DRO model provides more robust and better

solutions to the reorder points for (R,Q) policies especially at the beginning of each new

demand season detected by our approaches.
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