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Abstract 

The Development of Limb Accelerations as a Measure of Neuromuscular Impairment and 

Predictor of Ambulatory Ability Following Spinal Cord Injury 

 

Stephanie K. Rigot, PhD 

 

University of Pittsburgh, 2021 

 

 

After a spinal cord injury (SCI), clinicians must quickly decide if they want to focus therapy 

towards gait training or wheeled mobility interventions to maximize an individual's functional 

mobility by discharge. Clinical prediction rules (CPRs) such as those that use age, strength, and 

sensation, can assist clinicians in making those difficult decisions, but for individuals with an 

incomplete SCI, these CPRs are often inaccurate. Additionally, these models only predict whether 

an individual can walk a short distance without physical assistance, which is not a sufficient 

description of functional ambulation. Limb accelerations (LA), captured unobtrusively and at a 

low cost from wearable accelerometers, may provide a responsive and informative movement 

biomarker of neuromuscular impairment that can be used to determine more accurate predictions 

of ambulatory ability among those who would benefit from them the most.  

Our long-term goal is to build a new CPR using LA that predicts functional ambulation 

after SCI, thus enabling appropriately targeted mobility training. As a first step towards this goal, 

we utilized a cross-sectional study to build a foundational knowledge of LA and its relationship to 

measures of neuromuscular impairment (Aim 1) and ambulatory ability (Aim 2) using machine 

learning techniques and a sample with chronic, motor incomplete SCI and known, diverse 

functional abilities. Using a longitudinal study consisting of individuals with acute, incomplete 

SCI, we established that LA is reliable when measured acutely at admission to inpatient 

rehabilitation (Aim 3a). We also investigated the changes in LA over time (Aim 3b) and in relation 

to clinical measures (Aim 4a) and explored the potential utility of LA measured at admission to 
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inpatient rehabilitation to predict long-term ambulatory ability (Aim 4b) for those with acute, 

incomplete SCI. These results demonstrated that LA is a reliable and clinically-relevant metric that 

is likely to improve the prediction of ambulatory ability, thus improving long-term, functional 

outcomes for individuals with SCI. 
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1.0 Overview and Aims 

Ambulation is often a goal of individuals after spinal cord injury (SCI), and therefore, gait 

training is a common intervention during inpatient rehabilitation (IPR).1, 2 In the context of 

decreasing length of stays in IPR,3 clinicians must quickly make critical decisions regarding the 

focus of therapy: towards ambulatory or wheelchair-related interventions. Unfortunately, time 

spent on gait training may be detrimental if the individual does not become a functional ambulator, 

as demonstrated by decreased participation outcomes a year after injury.1 While there are clinical 

prediction rules (CPRs) that estimate the probability of becoming an independent ambulator, these 

rules struggle to delineate ambulators among the population that needs these rules the most, those 

with incomplete SCI.4-7 To predict walking, these rules generally use clinical tests of strength and 

sensation which have been shown to have limited responsiveness and inconsistent reliability.8, 9 

Additionally, because these models only predict the ability to walk versus not walk, they do not 

provide insight into gait quality or efficiency, which are important components of functional 

mobility.6  

Recent analyses of the shortcomings and inaccuracies of current CPRs for ambulation after 

SCI encouraged the use of alternative predictors and machine learning to provide improved 

predictions.6, 7 Recording limb movements using wearable accelerometers is likely to provide more 

insight into an individual’s strength, sensation, and spasticity than traditional physical examination 

measures. Limb accelerations (LA), defined as accelerations from any movement of the limbs 

during sleep at night, may be more responsive to identify differences in neuromuscular impairment 

and ambulatory ability compared to common clinical assessments. Also missing from current 

CPRs is any consideration of personal, psychosocial and environmental factors (PPEF) that 
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influence an individual’s ability to adjust to his or her SCI and thus impact rehabilitation outcomes. 

Successful adjustment to SCI relies on aspects such as an individual’s coping style, social support, 

socioeconomic status, and home and community accessibility, which should all be considered 

when predicting long-term functional outcomes such as ambulatory ability.10-12 

Our overall goal is to improve the prediction of ambulatory ability after SCI through 

establishing LA as a movement biomarker that will provide a more descriptive measure of 

neuromuscular impairment than traditional clinical tests and that can be measured reliably in the 

inpatient setting. This dissertation consists of the findings from 2 studies: one cross-sectional 

among those with chronic (≥ 1 year), primarily motor incomplete SCI (Aims 1 and 2) and one 

longitudinal over the first year post-injury among those with acute, incomplete SCI (Aims 3 and 

4). More specifically, Aim 1 will provide the foundational knowledge of LA by determining which 

LA features explain the greatest amount of variability in measures of neuromuscular impairment 

(lower extremity strength, sensation, and spasticity) among individuals with chronic SCI. In Aim 

2, we will target a sample with chronic, motor incomplete SCI and known, diverse functional 

abilities to evaluate the usefulness of novel predictors (LA and PPEF) and machine learning 

techniques to classify functional categories of ambulatory ability as defined by measures of gait 

speed and endurance. We will also evaluate LA measured longitudinally in a population with 

acute, incomplete SCI to determine which features of LA can be reliably measured from admission 

to IPR through the first 6-months post-discharge (Aim 3a) and which features remain stable over 

that time (Aim 3b). Lastly, utilizing that same sample with acute SCI, we will examine how LA 

changes in relation to measures of ambulatory ability over time (Aim 4a) and explore the utility of 

reliable LA features measured at admission to IPR to predict ambulatory ability at 6-months post-

discharge (Aim 4b).  



 5 

Collectively, these findings will demonstrate the validity and reliability of LA as a clinical 

measure in both chronic and acute populations with SCI, establish the relationship between LA 

and measures of impairment and ambulatory ability, and provide evidence to support the future 

development of a CPR using acutely measured LA to predict long-term measures of functional 

ambulation. 

1.1 Specific Aim 1 

Determine the association between limb accelerations (LA) and clinical measures of 

neuromuscular impairment among individuals with chronic SCI. 

Hypothesis 1: Features of LA such as those related to amplitude and duration of movements 

will be related to clinical assessments of strength, sensation, and spasticity among individuals with 

chronic (≥ 1 year) SCI. 

1.2 Specific Aim 2 

Develop machine learning models to classify ambulatory ability using LA and PPEF among 

a population with chronic, motor incomplete SCI.  

Hypothesis 2: Random forest models including quantitative measures of LA and PPEF will 

produce higher classification accuracies for categories of functional ambulation (speed, endurance) 

than models including only clinical and demographic measures. 



 6 

1.3 Specific Aim 3 

Determine a) which features of LA are reliable between nights when measured at admission 

to IPR and b) which remain stable over the first 6-months post-discharge among participants 

with acute, incomplete SCI. 

Hypothesis 3: A set of LA features can be identified that a) produce at least moderate 

reliability when examining intra-subject variance at admission to IPR and b) produce at least 

moderate stability between time points through 6-months post-discharge. 

1.4 Specific Aim 4 

a) Explore the how LA features which are not stable across the first 6- months following 

discharge (variable LA) change in relation to measures of ambulatory ability and 

impairment over time among participants with acute SCI. 

Hypothesis 4a: The change in variable LA features will be significantly correlated with the 

change in measures of ambulatory ability (need for assistance, speed, endurance) and impairment 

(strength, sensation) from admission through 6-months post-discharge from IPR. 

b) Explore the relationship between reliable LA features measured acutely at admission to 

IPR and ambulatory ability at 6-months post-discharge. 

Hypothesis 4b: Features of LA measured at admission to IPR will be significantly 

correlated or show clear visual separation of categories of ambulatory ability measured at 6-months 

post-discharge. 
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1.5 Overall Impact 

Information gained from these aims will provide insight to guide a future, multisite 

longitudinal study that will assess a new, more effective CPR for ambulatory ability in a larger 

population with acute, incomplete SCI. This new CPR will better aid clinical decision-making for 

individuals with SCI, allowing for optimally targeted therapies to be employed throughout the 

rehabilitation continuum. Additionally, this dissertation will provide a necessary understanding of 

the psychometric properties of LA in both chronic and acute populations with SCI, opening the 

door for many future uses of this metric. 
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2.0 Background 

2.1 Recovery and Rehabilitation after SCI 

Nearly 18,000 people in the United States sustain a spinal cord injury (SCI)a every year 

and almost 300,000 people in the United States are currently living with a SCI.3 An SCI is a life-

changing injury that often leaves an individual with strength and sensory deficits below their level 

of injury, in addition to many other changes such as bowel and bladder function. Once medically 

stable after a new SCI, patients often leave the acute care medical units to go to inpatient 

rehabilitation (IPR) for intensive physical, occupational, and speech therapy as needed, for 3 hours 

every day. It is in IPR that patients work to increase strength, balance, and motor control to restore 

function as much as possible. During this time, they also are learning new compensatory 

techniques and how to use assistive devices to maximize functional mobility and independence. 

Early after an SCI, one of the first questions an individual may ask is “Will I ever walk 

again?” The decision to pursue ambulation or wheelchair focused mobility is not a trivial one. 

Decreasing length of stays from a median of 98 days in the 1970’s to 30 days in 2021, force 

clinicians to quickly make critical decisions regarding the focus of therapy towards walking or 

wheelchair-based interventions.3, 13 Gait training following SCI can be both time and effort 

intensive and for those who regularly walk for mobility, this exertion is worthwhile. However, 

some individuals with the potential to walk may not be receiving gait training during this time 

while the potential for neurorecovery is the highest. Conversely, for someone who will primarily 

 

a All abbreviations are also defined in Appendix A and used consistently through the dissertation. 
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use a wheelchair following discharge, focusing on gait training can result in decreased time 

practicing transfers and wheelchair skills and lead to long-term negative consequences.1, 14-17 The 

challenge in deciding who should complete gait training is exacerbated by the fact that patients 

with new injuries often push for gait training regardless of the extent of injury.2 

Studies have shown that quality of life is more related to effective mobility and functional 

independence than the mode of locomotion.17, 18 Thus, it is important to consider not just if a person 

can walk, but how well and whether walking is likely to be functional. Achieving functional 

ambulation indicates that the individual can walk with minimal assistance and sufficient quality, 

speed, and endurance to be able to safely and efficiently complete their activities of daily living. 

Since the most rapid rate of neurological recovery occurs in the first 3 months and significantly 

declines by 12-18 months post-injury,19 it is critical that time in therapy is optimally utilized early 

after injury to maximize long-term functional mobility. 

2.2 Importance of Understanding Long-term Mobility Prognosis after SCI 

2.2.1 Positive Impacts of Ambulation 

If able to achieve long-term, functional ambulation after SCI, there are many benefits to 

returning to walking. Among individuals with SCI, non-ambulators were found to have increased 

cartilage atrophy and degradation compared to ambulators, which can lead to pain and functional 

limitations.20 Walking has also been associated with improved retention of bone mineral content, 

as up to half of the mineral content below the level of lesion can be lost in the first year after injury 

which significantly increases the risk of osteoporosis and fractures.21 Also, sitting in a wheelchair 
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for extended periods of time can lead to increased risk of joint contractures and decubitus ulcers, 

especially when decreased sensation is present. Standing and walking allows for greater variability 

in positioning, which may decrease the risk of deformities and pressure injuries, as well as decrease 

spasticity.22 Cardiovascular and respiratory benefits have also been noted when ambulating for 

exercise.23 Although gait training is often considered a frustrating experience filled with “ups and 

downs”, individuals with SCI who are ambulatory have also discussed relearning to walk as 

“powerful” and associated with “feeling extremely grateful.”24 Decreased depression and higher 

satisfaction with life scores have been shown among ambulatory individuals compared to those 

who use a wheelchair.17 

2.2.2 Negative Impacts of Ambulation 

While ambulation is achievable for some individuals during initial rehabilitation, only 25 

to 34% of all individuals with SCI become functional ambulators.17, 25 Factors such as spasticity, 

muscle weakness, pain severity, cognitive impairments, balance, proprioception deficits, and the 

need for assistance may limit the ability to ambulate.17, 19 A focus on gait training while in IPR 

may be related to negative outcomes for individuals who will primary be wheelchair users. Our 

analysis of the SCIRehab database, a multicenter study that documented interventions received by 

patients with SCI throughout IPR and at a one-year follow-up, showed that one-third of patients 

who were primarily using a wheelchair at one year after discharge received gait training in IPR.1 

As a percentage of their time in physical therapy, these individuals received significantly less 

transfer and wheeled mobility training, compared to those who used a wheelchair and did not 

receive gait training. In addition, the group of wheelchair users who received gait training reported 

significantly worse measures of Craig Handicap Assessment and Reporting Technique 
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participation at one year, in the domains of physical independence, mobility, and occupation than 

the group of wheelchair users who did not have gait training while in inpatient rehabilitation.1 

Unfortunately, even household or limited ambulators may be at risk for additional 

consequences. Marginal ambulation after SCI is associated with risks of musculoskeletal injury, 

pain, and physiological costs. Compared to wheelchair users, individuals with SCI who ambulate 

were more likely to report a fall, recurrent falls, and a fall-related injury, especially if they required 

assistance to ambulate.26-28 Individuals with SCI who require an assistive device to ambulate also 

reported increased shoulder pain and fatigue compared to both power and manual wheelchair 

users.15 This is likely resulting from the increased demands on a musculoskeletal system that 

already compensates for strength and sensory deficits, as forces of up 170% of an individual’s 

body weight have been measured at the shoulder when walking with crutches after SCI.29, 30 

When individuals with SCI are able to achieve functional ambulation, it is demonstrated to 

be far less efficient and more physiologically demanding than for able-bodied individuals. When 

compared to able-bodied controls, individuals with incomplete SCI were 200% less efficient while 

walking at their preferred velocity, demonstrated by increased oxygen use, heart rate, and lactate 

concentration. Additionally, even when ambulating at their maximal velocity, individuals with SCI 

were still walking 30% slower than able-bodied individuals walking at their preferred pace.31 Self-

selected gait speed in individuals with SCI is generally reported from 0.21 to 0.69 m/s, which is 

far below the able-bodied speed of 1.22 m/s and the average velocity to safely cross a street of 

1.06 m/s.31 Previous research demonstrated that people who walk at low speeds or high energy 

expenditure were limited in functional community ambulation and had poorer physical 

functioning.32 Thus, many of these individuals for whom walking is painful or inefficient may be 

more functional and active in their communities by using a wheelchair for mobility. 
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If an individual is primarily ambulating at discharge from IPR, but cannot sustain 

ambulation and transitions to wheelchair use by 1-year, they may also be prone to more negative 

outcomes. Riggins et al. evaluated 4 groups based upon the primary mode of mobility at discharge 

from IPR and one year later: transition from wheelchair to ambulation, transition from ambulation 

to wheelchair, ambulating at both time points or using a wheelchair at both time points.17 The 

group transitioning from ambulation to wheelchair use had significantly worse participation in the 

domains of mobility, occupation, and social integration, self-perceived health status, satisfaction 

with life, depressive symptoms, and pain severity scores of any mobility group, including the group 

who maintained wheelchair use at both time points.17 These negative effects may persist for up to 

10 years after injury.16 This emphasizes the importance of selecting the most effective mode of 

mobility during IPR in order to prevent the need to transition from ambulation to wheelchair use.  

2.3 Current Methods for Prediction of Ambulation after SCI 

The American Spinal Injury Association Impairment Scale (AIS) determined as part of the 

examination standardized by the International Standards for Neurological Classification of Spinal 

Cord Injury (ISNCSCI) was often used to guide the prognosis of ambulation. The AIS is a measure 

of impairment of a traumatic SCI from A (complete SCI) to E (normal), determined by light touch 

(LT) and pinprick sensation to all spinal levels from C2 to S4-5 and manual muscle test (MMT) 

motor scores from the upper (C5-T1) and lower (L2-S1) limbs. MMT consists of “the use of 

observation, palpation, and force application by an examiner to determine the strength of a muscle 

action”, while LT testing consists of the clinician touching a specific dermatome location while 

the individual’s eyes are closed and determining if they can feel the touch (Table 2.1).8, 9, 33 
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Table 2.1: Scoring of clinical tests 

Clinical Test Scoring 

Manual Muscle 

Test (MMT) to 

Assess 

Strength33 

0= Total paralysis 

1= Palpable or visible contraction 

2= Active movement, full range of motion with gravity eliminated 

3= Active movement, full range of motion against gravity 

4= Active movement, full range of motion against gravity and moderate resistance in a muscle 

specific position 

5= (Normal) active movement, full range of motion against gravity and full resistance in a 

functional muscle position expected from an otherwise unimpaired person 

Light Touch 

(LT) Test to 

Assess 

Sensation33 

0= Absent 

1= Altered, either decreased/impaired sensation or hypersensitivity 

2= Normal 

Modified 

Ashworth Scale 

(MAS) to 

Assess 

Spasticity34 

0= No increase in muscle tone 

1= Slight increase in muscle tone, manifested by either a catch and release or minimal 

resistance at the end of the range of motion when the affected part is moved in flexion or 

extension 

1+= Slight increase in muscle tone, manifested by a catch followed by minimal resistance 

throughout the remainder (less than half) of range of motion 

2= More marked increase in muscle tone but through most of the range of motion the affected 

part easily moved 

3= Considerable increase in muscle tone, passive movement difficult 

4= Affected part rigid in flexion or extension 

 

Individuals with complete SCI (AIS A) generally have a low likelihood of ambulating, as 

less than 8.5% typically regain functional ambulation.3, 19, 35, 36 Although individuals with 

diagnoses of AIS B SCI (sensory incomplete, motor complete) may not be ambulating initially at 

admission to IPR, approximately 18-33% will recovery the ability to functionally ambulate and 

this recovery maybe be related to better sensory preservation after injury.35, 36 Overall, about 52-

75% of individuals with AIS C SCI (motor incomplete with more than half of the motor levels 

below the level of injury unable to lift against gravity [MMT score < 3/5]) will regain ambulation, 

but this seems to vary dramatically by age as individuals less than 50 years of age have higher 

rates of recovering functional ambulation (71-91% of < 50 years vs 25-42% > 50 years).35, 36 While 

the vast majority of individuals with AIS D SCI (motor incomplete with at least half of the motor 

levels below the level of injury able to lift against gravity [MMT score ≥3/5]) are able to walk 

household distances (≥ 92%), approximately 20% cannot achieve community ambulation.3, 35, 37, 38 
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Factors that affect whether an individual recovers ambulation and the rate at which they do so 

include the level and severity of injury, lower extremity motor function, spasticity, trunk control, 

age, sensation, proprioception, balance, and cognitive impairments.19 

Clinicians primarily use clinical judgement to determine the ambulatory prognosis of a 

patient with a new SCI and plan their therapeutic interventions accordingly. One study showed 

that while clinicians were fairly accurate in predicting ambulatory ability of patients 3-months 

post-discharge, their mobility predictions were less accurate when only including participants with 

motor incomplete (AIS C and D) injuries.39 Another study evaluated the accuracy of both patient’s 

ambulatory prediction and the predictions of therapists and found that neither group was successful 

in predicting if the patient would walk 1-year after injury. About 66% of patients predicted that 

they would be able to walk household distances and 45% of therapists believed they could do so, 

but only 38% were actually able to ambulate a year later. Physicians of various specialties and 

years of experience were not able to accurately predict whether individuals would be able to walk 

household distances one year after injury. Specifically for individuals with AIS C injuries, 

physicians ranged from 42-84% accuracy with 4 of the 6 physicians (67%) incorrectly predicting 

more than 30% of patients.37  

CPRs are developed to help guide clinicians in critical decision-making regarding patient 

treatment and intervention selection. These tools can also be useful in providing education to 

patients about expected outcomes.40-42 Decision-making tools to improve the quality of care and 

efficiency of IPR for individuals with SCI have been evaluated with positive outcomes in clinical 

practice.42-44 
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2.3.1 van Middendorp CPR 

Although a number of CPRs exist regarding ambulation in the SCI population,5, 36, 45-48 the 

most cited rule in research and clinical settings for predicting ambulation in people with an acute, 

traumatic SCI is a logistic regression model created by van Middendorp et al. (“van Middendorp 

CPR”).4 This CPR uses LT sensation and MMT motor scores at L3 and S1, collected in the first 

15 days after injury and age (< 65 years, ≥ 65 years) to generate a score from -10 to 40 that is 

associated with the probability of walking independently at one year. The ability to walk 

independently was defined by the Spinal Cord Independence Measure item 12 as the ability to 

walk indoors, on an even surface less than 10 meters without physical assistance or supervision. 

In the derivation and validation models, the areas under the receiver operating characteristics 

curves (AUC) were .956 and .967, respectively, representing excellent discriminative ability in 

predicting individuals with SCI as walking or not walking (AUC= 1 is perfect discrimination, .5 

is unable to detect any difference between the 2 groups).4 Additionally, the van Middendorp CPR 

was demonstrated high accuracies when externally validated in other samples with traumatic SCI 

(AUC range= 0.889- 0.939)5, 49, 50 and among a group with non-traumatic SCI (AUC= 0.94, OCA= 

82%).51 
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Figure 2.1: Validation group plot from the van Middendorp CPR4 displaying 95% confidence interval as 

vertical bars. Vertical stripes at the horizontal borders represent those who could (top) and could not 

(bottom) walk independently.b 

 

2.3.2 Clinical Utility of the van Middendorp CPR 

Recently, researchers have begun to assess how the van Middendorp CPR compares to 

ambulatory predictions by clinicians based on clinical judgement and the overall clinical utility of 

this CPR in affecting clinical decision-making and outcomes. The van Middendorp CPR slightly 

 

b Reprinted from The Lancet, 377, van Middendorp JJ, Hosman AJ, Donders AR, Pouw MH, Ditunno JF Jr., Curt A, 

Geurts AC, Van de Meent H, EM-SCI Study Group, A clinical prediction rule for ambulation outcomes after traumatic 

spinal cord injury: a longitudinal cohort study, 1004-1010, Copyright (2011), with permission from Elsevier. 
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outperformed physician predictions by 81% vs. 79% accuracy, but the difference was not 

significant. Particularly when predicting ambulation for individuals with AIS C injuries, the 

differences between the van Middendorp CPR and predictions from physician ranged from 32% 

higher predictions using the van Middendorp CPR to 10% lower.37 

In our medical center, the van Middendorp CPR was also assessed to determine the clinical 

utility of this CPR. This was done by sharing the van Middendorp CPR score with the primary 

therapist after the initial evaluation in IPR for individuals with SCI whose ambulation prognosis 

was judged by the therapist to be difficult to determine (n=52).42 The majority of the sample 

included in the study had AIS C and D injuries, further highlighting the challenges of predicting 

walking outcomes in this population. Therapists reported knowing the probability of walking was 

useful for 88% of cases for patients with non-traumatic SCI for establishing prognosis or setting 

goals. However, for individuals with moderate impairments whose CPR scores ranged from 10-17 

(predicted probability of independent ambulation from 35-78%), 50% of therapists did not find the 

CPR prediction useful. Since the individuals in this range are often the most difficult group to 

determine a mobility prognosis based upon clinical judgement, this finding emphasizes the 

weakness of the van Middendorp CPR for predictions with this population. Compared to therapists 

with greater than 10 years of experience, newer therapists were more likely to find the CPR results 

useful (68% vs 18%, p= 0.001) and more likely to share the CPR results with the patient (50% vs 

14%, p= 0.011).42 Thus, an improved CPR may be particularly useful to new therapists and for 

patients with motor incomplete SCI. 

This analysis also found that ambulation goals as described by the Functional 

Independence Measure (FIM), were not related to CPR probability of independent ambulation. 

Even among participants with very high probabilities of ambulating (98-99%), there was a wide 
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range of FIM goals from ambulating with total assistance to modified independent.42 This suggests 

that factors beyond just clinical impairment and age are incorporated into clinical judgement 

regarding a patient’s mobility prognosis. The FIM score is based on an individual’s level of 

assistance to walk 150 feet (45.7 meters), while the van Middendorp CPR is only predicting an 

individual’s ability to walk 32.8 ft (10 meters). Thus, the lack of relation between van Middendorp 

CPR predictions and FIM goal setting or goal achievement may emphasize that the van 

Middendorp CPR’s outcome is not a sufficient measure of functional ambulation and that other 

factors that are not accounted for in the van Middendorp CPR may influence functional, 

community ambulation more than household ambulation. Therefore, CPRs for long-term 

ambulation after SCI are useful in clinical settings especially for less experienced therapists, but 

would likely be improved by more descriptive predictors than only clinical measures of 

impairment, more accurate CPR predictions for individuals with incomplete injuries, and a CPR 

outcome that better captures functional ambulation. 

2.3.3 Additional CPRs for Ambulation 

Additional CPRs for ambulation that are simpler52 or use a sample with only motor 

incomplete SCI,53 a variety of predictors,53 more functional descriptions of impairment,36 or 

improved model building and analysis techniques36, 53 are described in Appendix B. However, each 

of these CPRs also present with methodological or clinical application flaws that are further 

discussed in the appendix. 
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2.4 Areas for Improvement in Current CPRs for Ambulation 

As touched upon in the previous sections, many models have been developed for the 

prediction of ambulation after SCI, but they suffer from a variety of methodological issues that 

could be addressed in future CPRs to improve the accuracy and clinical utility. Multiple recent 

publications have highlighted 4 major areas of improvement for CPRs: uninformative predictors, 

biased sample populations, non-functional ambulatory outcomes, and suboptimal model 

evaluation and validation.6, 37, 42, 51, 54 The following sections describe the issues that have led to 

the identification of each area of improvement and propose solutions to resolve them in future 

CPRs. 

2.4.1 Uninformative and Unresponsive Predictors 

2.4.1.1 Characteristics of a Useful Predictor 

For a predictor to be useful in a CPR, it must be demonstrated to be valid, meaning that it 

is measuring what it is supposed to be measuring.55-57 Face validity is the intuitive “feeling” that a 

measurement seems to be valid at its “face value”. Face validity is difficult to quantify, but is 

demonstrated based upon the understanding of how the predictor is measured.57 Construct validity 

is the demonstrated relationship that a measurement is comparable to a different measure assessing 

a similar concept and not similar to unlike measures. Likewise, concurrent validity quantifies the 

relationship between the novel measure and the “gold standard” or another previously validated 

measure of the construct that is intended to be measured. For example, if a predictor is intended to 

measure strength, then it would demonstrate concurrent validity if it is related to other measures 

of strength, such as MMT scores, but not to measures such as sex and age that may affect an 
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individual’s strength, but are not direct measures of it. To demonstrate concurrent validity, the 

predictor should be related to Biodex dynamometry which is generally considered the gold 

standard measure of strength.57 Predictive validity is a form of criterion validity and determines if 

the measure has the ability to accurately predict a future outcome. In the case if CPRs, the CPR 

itself would provide evidence of predictive validity, but preliminary analyses such as correlations 

can also demonstrate this domain.57 

A predictor must also be reliably measured such that the same measurements result in the 

same predictions consistently even if measured under slightly different circumstances or at 

different times. While there are many domains of reliability, the primary areas that are important 

for use in a CPR are consistent measurements within each researcher or clinician (intra-rater 

reliability) and between different raters while measuring the same participant (inter-rater 

reliability), and consistency of repeated measurements (test-retest reliability).55-57 When a 

researcher or clinician is performing a clinical test manually (e.g., MMT and LT assessments), 

there is a level of subjectivity in scoring as well as differences in how the individual performs the 

test (e.g., due to the tester’s strength or experience). These may result in different scores when an 

individual is measured by the same tester (low intra-subject reliability), when different testers 

score the same subject (low inter-rater reliability), or when multiple measurements are performed 

without any other changes (low test-retest reliability). Using objective measures that are calculated 

algorithmically and without any bias from the tester ensure that whoever is performing the 

measurement is not influencing the outcome.55-57 

Intra-subject reliability (or variability) is also important for a predictor to ensure that 

changes within the participant do not unduly influence the CPR results (Figure 2.2).55-57 A 

predictor should have high intra-subject reliability, meaning that each time you measure the 
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predictor in a relatively short time frame and given the same conditions, the measurement should 

produce the same results. In this instance, having high intra-subject reliability would be effectively 

the same as high test-retest reliability. If a predictor had low intra-subject reliability, then the CPR 

may produce vastly different results each time it is calculated even within the same participant 

when no other characteristics have changed that should influence the CPR findings.55-57  

 

Figure 2.2: Examples of a predictor with high (left, good) and low (middle, bad) intra-subject reliability and 

high inter-subject variability (right, good) between 2 participants (black and blue) and multiple collection 

times (nights). 

 

In contrast to intra-subject reliability, a predictor should have high inter-subject variability 

which indicates that the value of the predictor changes considerably between different participants 

with different presentations. If the predictor had low inter-subject variability, then every 

participant would have approximately the same values and the predictor would not be very 

informative of different abilities in the CPR.55-57 Inter-subject variability is a measure of 

responsiveness which is defined as “the ability of the instrument, device, tool, test, or scale to 

accurately detect meaningful changes”.57 In the case of a CPR for ambulation, predictors must be 
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able to differentiate between different ambulatory abilities when measured early after injury, such 

as soon after admission to IPR. Measures such as sensitivity and specificity (or precision and recall 

in multiclass cases) are often used to calculate responsiveness in classification situations. 

Understanding how a predictor is responsive to changes over time is also useful, though 

not critical, to understand when building a CPR. A measure that is stable, or does not considerably 

change over time, provides the ability to use it as a predictor at any time after injury and would 

produce the same results. These predictors represent stable characteristics that are not likely to be 

influenced by changes in neurorecovery, therapy, or other external factors. Most common 

predictors used in previous CPRs are clinical measures that are expected to change over time in 

someone who experiences neurorecovery and may be more likely to ambulate, such as strength 

and sensation.4, 5, 53, 58-63 Since someone’s strength soon after an SCI may be predictive of future 

motor recovery,47, 59, 64, 65 measures of strength may be useful as a predictor and as a clinical 

outcome measure of neurorecovery. Although these factors are not time invariant like the stable 

predictors, they change in a predictable fashion over time and may be more responsive to changes 

than other clinical measures. 

2.4.1.2 Common Clinical Measures May Not Be the Best Predictors 

The most common predictors used in CPRs are clinical measures such as MMT and LT 

scores to assess strength and sensation at specific spinal levels. These measures have the benefit 

of being able to be performed quickly and without any additional equipment and are routinely 

available in electronic health records for retrospective analyses since they are included in the 

ISNCSCI exam. However, these clinical measures of strength and sensation lack sufficient 

reliability, validity, and responsiveness to be optimal predictors of ambulatory ability. 
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Since MMT has a significant reliance on the tester’s experience, applied resistance, and 

strength, it can be an inaccurate representation of the actual strength of the muscle group.8 This 

has also led to substantial variability in the test-retest and inter-rater reliability, especially among 

muscle groups that are capable of providing larger forces, like the knee extensors and 

plantarflexors.8 This is particularly problematic since the knee extensors (L3) and plantarflexors 

(S1) are frequently included in CPRs.4, 52 

Additionally, MMT has demonstrated limited responsiveness and is prone to ceiling 

effects, which can mask small differences in strength that may be clinically relevant to detect, and 

are especially important in the application of prediction models.8, 66 For example, studies have 

shown that clinicians commonly scored an MMT as 5 (“normal”) when other measurements have 

shown muscle strength to only be 50% of the maximal contraction. Similarly, a muscle groups 

scored as of 4 (“good”) using MMT have been shown to be generating as little as 10% of their 

maximal output during the MMT.8, 67, 68 While there are other options to record an individual’s 

strength such as hand-held and Biodex dynamometry, MMT is often preferred due to its quick ease 

of use with no additional equipment, space, or expenses required.8, 69 

Due to only having a 3 point scoring scale and only assessing one domain of sensation, LT 

sensation tests have shown limited responsiveness and validity when examining neurological 

changes.9 Similar to the strength assessments, it has been shown that the tester’s experience can 

have a large influence on the test-retest reliability and that there is a positive correlation between 

the amount of tester training and the reliability.9 As LT scores are included in the most used CPRs,4, 

52 the inability to reliably assign a responsive sensory score is likely a limiting factor in the 

predictive ability of the current models. 
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Lastly, spasticity is often not included in the most common CPRs for ambulation, yet it has 

been reported as a common barrier to achieving ambulation.19, 42 In multiple populations, the 

amount of spasticity has had a significant relationship with the ability to walk70 and spasticity has 

been reported as one of the top three therapist-reported factors that interfere with therapy post-

SCI.71-74 The Modified Ashworth Scale (MAS) assigns a score based upon the resistance to passive 

movement of a joint by a clinician. The validity of this measure to quantify spasticity among 

individuals with SCI as well as limited inter-rater reliability, significant changes in reliability 

depending on the muscle being assessed and amount of tester training have brought the usefulness 

of this measure into question.75-77 Thus, the need for a more accurate measure is needed to assess 

spasticity and provide additional information for a predictive model for ambulation. 

2.4.1.2.1 Novel Predictors: LA and PPEF 

If a more responsive measure of neuromuscular impairment could be utilized early after a 

new SCI, it may give insight into the potential neurological and functional recovery that has not 

been well predicted previously.59 In multiple animal models, slight movement of a hind-limb joint 

after SCI has been found to be an early indicator of neuroplasticity that may lead to significant 

improvement in function, including the recovery of ambulation.64, 65 In humans, Waters et al. found 

that slight motor recovery soon after injury was predictive of functional motor recovery later on.59 

Inexpensive accelerometers allow for the collection of vast amounts of objective movement 

data with minimal administrative burden and have previously been used with individuals with SCI 

to quantify ambulation,78 wheelchair propulsion,79 physical activity,80, 81 sleep characteristics,82 

and activities of daily living.83 We define LA as accelerations from any limb movements occurring 

while asleep at night and may include periodic limb movements, spasms, positional shifts, rolling, 

and turning. We will focus our initial analysis on LA while asleep at night as there may be many 
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factors that influence the amount of daytime LA such as an individual’s occupation and leisure 

time activities. While asleep, an individual most likely moves mostly subconsciously for comfort, 

pressure relief, or in response to other sensations.84, 85 These movements encompass aspects of 

sensation to cue the individual to move and strength to perform the movement. Additionally, it has 

been shown that supine positioning may increase spasticity, thus, spasticity may be more prevalent 

while laying down to sleep at night.86, 87 Therefore, we believe that measuring LA at night will 

provide the least biased measure of LA that is most likely to be related to impairment and 

ambulatory ability. It is important to note that when sleep studies were compared between the 

hospital and home settings, characteristics of sleep were improved at home, but the periodic limb 

movements were similar in both settings.88 This indicates that while sleep may improve once an 

individual is discharged home, the movements may not significantly change. Additionally, since 

an individual’s sleep quality may affect the intra-subject variability of LA and factors such as 

alcohol and caffeine consumption and exercise can affect sleep quality, it is important to include 

these factors in analyses including LA. 

In a population of children with Duchenne muscular dystrophy an activity monitor was 

used to calculate the frequency and amplitude of movements over the course of a week at baseline 

and one year and compared to measures of functional capacity. A moderate to good relationship 

was found between the intensity of movements and both knee extension strength and the 6-minute 

walk test (6MWT, measure of walking endurance), demonstrating the strong potential for LA to 

be related to neuromuscular impairment and functional mobility.89 

Also missing from current models that predict ambulation after SCI is any consideration 

for PPEF that may impact training, challenge, and/or enhance the sustainability of walking for 

functional mobility. Many factors may influence whether an individual may walk such as 
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resilience, self-efficacy, coping strategies, social support, home and community 

accessibility/barriers, socioeconomic status, comorbidities, pain, and sleep quality, and none of 

these factors are included in current CPRs.10-12, 90, 91 While studies have evaluated the influence of 

PPEF in the SCI population,92-97 how PPEF affect mobility outcomes has not been examined.  

Aim 1 evaluated the association between LA and neuromuscular impairment (strength, 

sensation, and spasticity) in a sample with chronic SCI to establish that LA is a clinically 

meaningful measure. Aim 2 evaluated the use of LA and PPEF to classify categories of functional 

ambulation among a sample with chronic, motor incomplete SCI. Aims 3 and 4 established the 

reliability and stability of LA when measured acutely (Aim 3) and explore the utility of LA 

collected at admission to IPR as related to ambulatory ability at 6-months post-discharge (Aim 4). 

Although it was not assessed in a longitudinal sample in this dissertation, PPEF was also collected 

and is planned to be included in a future CPR using both PPEF and LA measured at admission to 

IPR to predict long-term functional ambulation. 

2.4.2 Biased Sample Populations 

As previously mentioned, predictions using clinical judgment are most inaccurate for 

individuals with motor incomplete SCI and the van Middendorp CPR does not substantially 

improve predictions or clinical utility for this population.37, 42, 48 An analysis of the van Middendorp 

CPR by Phan et al. found that the disproportionately high number of individuals with low (AIS A, 

49% of derivation population) or high (AIS D, 22% of derivation population) probabilities of 

walking included in those CPRs led to the misleadingly high predictive accuracies when all AIS 

classes were presented as a single cohort.6 However, when a new cohort of 675 patients were 

predicted using the van Middendorp CPR the AUC were .730, .691, .850, and .516 for AIS classes 
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A, B, C, and D, respectively. The drastic decrease in AUC values compared to those reported by 

van Middendorp et al., demonstrates the bias of previous CPRs. This has caused a misperception 

that these models will produce accurate results for individuals with any AIS grade injury, when it 

appears its accuracy largely depends on the AIS class and is often not accurate for those with 

incomplete SCI.  

2.4.2.1 Targeted Sample Population 

Individuals with incomplete injuries present with varying degrees of strength and sensation 

initially and are most likely to experience neurologic recovery, thus making prediction of 

ambulation difficult.19, 37, 39, 98 Therefore, individuals with incomplete SCI would most benefit from 

a better understanding of ambulatory prognosis.19, 98 We carefully targeted individuals for all aims 

with a variety of impairment levels and functional abilities such that our analyses are not biased 

towards only those with AIS A or D injuries. Additionally, while most CPRs only include 

individuals with traumatic SCI, the clinical utility of the van Middendorp CPR was highest when 

used among a sample with non-traumatic SCI.42 Therefore, participants with both traumatic and 

non-traumatic non-progressive SCI will be included in the studies. Those with progressive SCI 

(e.g., spinal tumor) were not included because their level of impairment can change over time 

which results in CPRs not being clinically useful in this population. 

For Aims 1 and 2, a sample with chronic SCI was utilized because these participants can 

be recruited in larger numbers, tested cross-sectionally, and ensure a diverse range of functional 

abilities are collected. For Aim 1, participants were enrolled regardless of level of injury to ensure 

that we captured the full range of impairment. To ensure the distribution of impairment scores in 

Aim 1 was not overly skewed by the low scores from the motor complete SCI population, we 

enrolled those participants in lower proportions than the motor incomplete SCI sample. For Aim 
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2, the sample consisted of motor incomplete SCI as those with motor complete injuries were not 

likely to be walking and a future CPR would only focus on those with incomplete SCI.99, 100  

For the longitudinal study (Aims 3 and 4), only participants with incomplete SCI (AIS B, 

C, or D) or for whom a walking prognosis was not clear were included. Additionally, the current 

analysis of the longitudinal study is a pilot analysis as part of a larger study. Data collection of this 

population is still ongoing to enroll enough participants to build a CPR that is only targeting the 

those with incomplete SCI who would benefit from improved mobility prediction the most. 

2.4.3 Non-functional Ambulatory Outcome 

Another area for improvement in current models is that they only provide a binary 

assessment of the ability to ambulate short distances independently and do not predict important 

characteristics of gait such as need for assistance, speed, or endurance.4, 5, 36, 45-47, 53 The van 

Middendorp CPR and others that attempt to predict household ambulation (short distances of 32-

150 feet indoors) are inherently flawed, as community mobility is generally of greater importance 

to individuals with SCI and clinicians.37 This could lead to negative psychological consequences 

for individuals if they are not able to achieve community ambulation.19, 101 Previous CPRs may be 

misleading and may guide the focus of therapy towards gait training and away from more 

functional wheelchair-based interventions. If an individual is only able to ambulate a short distance 

with a slow gait speed or requires significant bracing or assistive devices to walk, then walking 

may not be the most efficient mode of mobility, despite the potential to ambulate independently 

(i.e., without physical assistance or supervision from another person). Phan et al. noted that using 

a binary instead of a continuous outcome may not be truly indicative of an individual’s recovery 

and reduces the subtleties in differences between the two functional abilities.6 Therefore, CPR 
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outcomes should give a more thorough, non-binary description of an individual’s ability to achieve 

functional ambulation in terms of the need for assistance, gait speed, and walking endurance. 

2.4.3.1 Functional Ambulatory Outcomes 

Three measures of ambulatory ability were used to provide a comprehensive understanding 

of the likelihood of gaining functional ambulation, including the need for assistance (devices, 

bracing, or hands-on assistance from a caregiver), speed, and endurance. We used a triad of 

measures to capture these constructs, as the Walking Index for SCI II (WISCI-II), 10 meter Walk 

Test (10mWT), and 6MWT which have collectively been reported as the most comprehensive 

ambulatory assessments for individuals with SCI.102-104 Although keeping the measures as 

continuous outcomes is ideal for providing the most thorough prediction possible, continuous 

outcomes are likely too variable to be able to predict accurately without an extremely large sample 

population that was not feasible for the current studies. Therefore, we were mindful when 

categorizing the ambulatory outcomes to ensure that the categories still increased resolution over 

current binary CPR outcomes and provided a comprehensive description of functional 

ambulation.2, 105, 106 

2.4.4 Suboptimal Model Evaluation and Validation 

Most current CPRs could benefit from more advanced analytical methods to build and 

evaluate the prediction model. Logistic regression is commonly used to produce a mathematical 

equation that can predict the probability of walking (binary outcome).4, 5 This standard statistical 

technique is generally the only algorithm assessed, has difficulty handling large or high 

dimensional datasets without additional regularization, and requires statistical assumptions to be 
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met.107 Phan et al. noted that using logistic regression models and small numbers of clinical 

variables as predictors may not be sufficient to produce an effective CPR and that new variables 

and machine learning models may be useful.6  

Additionally, most CPRs use only AUC and/or OCA as the primary metrics to evaluate the 

predictions. It has been suggested that AUC may be a misrepresentation of the model performance 

and that it should only be presented in combination with other measures such as sensitivity and 

specificity for binary outcomes or precision and recall for multiclass outcomes.6, 108 Both AUC 

and OCA can also be significantly affected by imbalanced data. For example, as explained in 

Section 2.4.2, the van Middendorp CPR appeared to perform accurately for all participants when 

viewing the AUC for the entire sample. When each AIS class was examined individually, it was 

found that the portion of the sample that had AIS A injuries skewed the overall results due to that 

portion of the sample being much larger and better predicted than the other AIS grades.109 

Reporting a variety of metrics that evaluate different aspects of the results including group-level 

classifications will provide a more accurate and comprehensive understanding of performance. 

While the van Middendorp CPR was validated with a separate test set, many of the other 

CPRs were not. If a model is intended for use in the prediction of unseen data, then you cannot 

fully understand how it is expected to perform until it is assessed using a held-out test set that was 

not included in building the model. Methods such as cross-validation can estimate this 

performance, but all model building steps must be performed inside each cross-validation fold 

(nested cross-validation) or the model will be biased. Issues such as model overfitting may result 

in overly-favorable training set performances. Without sufficient validation from a held-out test 

set of data, biased or overfit models may lead to reporting overly-optimistic results when the model 

is unlikely to perform as well in practice with new samples.4, 53, 109 
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2.4.4.1 Machine Learning and Model Evaluation 

Machine learning is a field of computer science in which patterns and predictions occur by 

learning from data. This “learning” occurs by unveiling possible hidden structure or regularity 

patterns in an automated manner. Machine learning is useful for large data sets or when the data 

set has a wide number of attributes that cannot be efficiently analyzed using traditional statistical 

techniques.107 Machine learning techniques are often used in the analysis of accelerometer data to 

detect and classify activities with high degrees of accuracy (often >90%).110-114 Accelerometer data 

has been analyzed using machine learning techniques in the SCI population specifically.83, 115, 116 

Generalization is often pursued empirically through training and testing datasets, making the 

prediction robust on unseen data. Since we are using small datasets or many more potential features 

than samples, we can use machine learning methods that reduce dimensionally and assess our 

results on unseen data in an unbiased fashion. Additionally, we will report outcomes per-class as 

appropriate using multiple metrics to provide a comprehensive view of model performance and 

accuracy. 

2.5 Impact of Improved CPRs for Ambulation on Clinical Practice 

The ultimate innovation of this proposal comes from applying the aforementioned 

techniques to a clinical problem that is directly impacting patient care and outcomes for individuals 

with SCI. This dissertation aims to provide essential knowledge about LA to support the future 

development of a CPR to assist clinicians in planning care and helping to ensure individuals with 

SCI are provided with evidence-based and patient-centered interventions. These measures of 

ambulatory ability can help clinicians to set real-world expectations for patients by comparison 
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with easily understood constructs like the time it takes to cross the street, average able-bodied 

walking speed, and the need for bracing and equipment. This added information can serve to 

bolster patient motivation when walking is achievable and set realistic expectations when other 

mobility interventions like wheelchair skills are more appropriate. 
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3.0 General Experimental Methods 

Portions of this chapter are reprinted from Archives of Physical Medicine and 

Rehabilitation, In Press Journal Pre-Proof, Rigot SK, Boninger ML, Ding D, McKernan G, Field-

Fote EC, Hoffman J, Hibbs R, Worobey LA, Towards Improving the Prediction of Functional 

Ambulation after Spinal Cord Injury Through the Inclusion of Limb Accelerations During Sleep 

and Personal Factors, Copyright (2021), with permission from Elsevier. 

 

Although the analyses and subject populations differ between the cross-sectional (Aims 1 

and 2) and longitudinal (Aims 3 and 4) studies, the data collection was largely the same. At each 

time point, participants completed questionnaires, clinical measures, ambulatory assessments as 

able, and wore accelerometers continuously for up to 1 week. The cross-sectional study 

participants completed this process once, while for the longitudinal study data was collected upon 

admission to IPR, just prior to discharge, and 3-, 6- and 12-months post-discharge. For the 

longitudinal study, the admission and discharge collections were targeted to occur in the first and 

last weeks of the IPR stay, respectively, with the questionnaires, clinical, and ambulatory 

assessments occurring as close to beginning or end of the week as possible. Follow-up collections 

for the longitudinal study began within 3 weeks before or after the target date. The cross-sectional 

study utilized participants with chronic SCI (any severity for Aim 1, motor incomplete for Aim 2), 

while the longitudinal study (Aim 3 and 4) was among individuals with acute, incomplete SCI. 
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3.1 Questionnaires 

Participants self-reported demographic characteristics and PPEF using questionnaires. 

Table 3.1 describes the questionnaires used in the cross-sectional study and which variables were 

extracted from each questionnaire. Similar questionnaires were collected at each time point in the 

longitudinal study. Since these questionnaires were not used in the current analyses, they are not 

described specifically.  

PPEF assessed included personal and health characteristics,33, 54, 97 socioeconomic 

status,117-119 pain,120, 121 environmental facilitators/barriers,122 physical and mental health,123 social 

support,124 self-efficacy,125 and resilience.126 These factors represent physical and psychological 

domains that may influence walking outcomes. For the pain questionnaire, Craig Hospital 

Inventory of Environmental Factors- Short Form, and Pittsburgh Sleep Quality Index (PSQI), 

having a higher score is associated with a less favorable outcome, while for the Medical Outcomes 

Study 36-Item Short-Form Health Survey (SF-36), Medical Outcome Study Social Support 

Survey, Moorong Self-efficacy Scale, and Spinal Cord Injury- Quality of Life Resilience Short 

Form a higher score is associated with a more favorable outcome. These factors were selected as 

they are stable and unlikely to change substantially after an acute SCI, making them more likely 

to be useful in a longitudinal CPR.117, 122, 126-131  

To evaluate other factors that may contribute to nighttime movements, participants were 

asked to complete a questionnaire each night that asks about medication use,132 alcohol and 

caffeine consumption,133-135 amount of daily activity, participation in sports,134 and fatigue level.136 

Participants could also record times that the accelerometers were removed during the day to 

improve compliance monitoring and analysis. For each morning of accelerometer data collection, 

participants completed a sleep log that records the time they went to sleep and woke up, the self-
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reported quality of sleep that night, and if they considered that night to be “typical” of how they 

normally sleep.137 Participants were called, emailed, or checked on in-person most days during 

their data collection to assist in completing the daily questionnaire and sleep log as needed. In 

combination, these measures will allow us accurately determine times asleep and capture external 

factors that may influence movements during sleep. 

Table 3.1: Self-reported demographic and PPEF questionnaire variables used in the analyses. Variables that 

are commonly found in an elctronic health record are shown in grey and questionnaire-specific PPEF 

variables are shown in white. 

Measure Description Components Included in Analyses 

Demographics33, 54, 97, 117-

119 

Personal, health, and SCI 

characteristics, measures of 

socioeconomic status 

• Age 

• Annual household income 

• Body mass index (BMI) 

• Comorbidities (if present): 

o Any 

o Cardiopulmonary 

o Depression or Anxiety 

• Highest education completed 

• Household size 

• Marital status 

• Medical insurance type 

• Metropolitan classification 

• Race/ethnicity 

• SCI level of injury (tetraplegia/ paraplegia) 

• Sex 

• Veteran status 

• Years since injury 

Pain Questionnaire120, 121 Pain intensity over the last week 

using components from the 

International SCI Pain Basic 

Dataset and Brief Pain Index 

• If pain present 

• Average pain intensity  

• Number of pain locations 

Pain Questionnaire120, 121 Pain interference over the last 

week using components from the 

International SCI Pain Basic 

Dataset and Brief Pain Index 

• Pain interference with respect to: 

o General activity 

o Mood 

o Pain 

o Sleep 

o Social activity 

Craig Hospital Inventory 

of Environmental 

Factors- Short Form122 

Barriers and facilitators to 

participation (accessibility, 

accommodation, resource 

availability, social support) 

• Frequency score 

• Magnitude score 

• Frequency-magnitude score 
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Table 3.1 Continued 

Measure Description Components Included in Analyses 

Medical Outcomes Study 

36-Item Short-Form 

Health Survey (SF-36)123  

Assessment of physical and 

mental health 
• Domain scores: 

o Emotional role limitations 

o Energy/fatigue 

o General health perceptions 

o Mental health 

o Pain 

o Physical functioning 

o Physical role limitations 

o Social functioning 

Medical Outcome Study 

Social Support Survey124 

Assessment of various 

dimensions of social support  
• Overall support index 

• Subscales: 

o Affectionate  

o Emotional/informational 

o Positive social interaction 

o Tangible 

Moorong Self-efficacy 

Scale125 

Belief in an individual’s ability to 

achieve desired outcomes 

Converted to percent of maximum score: 

• Total score 

• Subscales: 

o General 

o Personal function  

o Social function 

Pittsburgh Sleep Quality 

Index (PSQI)138  

Subjective sleep characteristics 

over the past month  
• Global score (sum of 7 components) 

• Overall sleep quality (global score >5 [poor 

sleep quality] or ≤5) 

• Components: 

o Daytime dysfunction 

o Disturbances 

o Duration 

o Efficiency 

o Latency 

o Sleep quality 

Sleep/Activity Log132-134, 

136, 137 

Log of factors that are known to 

affect sleep that is completed 

each day of the data collection 

• Dichotomized to if it occurred over the 

collection period (yes/no): 

o Alcohol use (in 6 hours prior to sleep) 

o Caffeine use (in 6 hours prior to sleep) 

o Exercise 

o Sleep medication use 

• Averaged over nights collected (score 0-10) 

o Fatigue rating 

o Sleep rating 

Spinal Cord Injury- 

Quality of Life 

Resilience Short Form126 

An individual’s ability to 

psychologically adapt to their 

SCI 

• Total t score 
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3.2 Clinical and Ambulatory Assessments 

3.2.1 Clinical Assessments 

Clinical measures included MMT, LT, and MAS scores, to assess strength, sensation, and 

spasticity, respectively (Table 3.2).33, 34 Scoring for each clinical assessment is described in Table 

2.1. The strength and sensation assessments were completed as described by the ISNCSCI for 

Aims 3 and 4; for the cross-sectional study due to setup constraints, they were completed with the 

participant in a seated position. 

Table 3.2: Clinical variables used in the analyses 

Assessment Description Components Included in Analyses 

MMT Motor and LT 

Sensation scores33 

Clinical measures of 

strength and sensory 

impairment 

• Key muscles/sensory points from each level from L2-S1  

• Knee flexion (MMT only) 

• Lower extremity score (sum of scores from L2-S1) 

• Upper extremity score (sum of scores from C5-T1) 

• SCI severity (AIS A, B, C or D calculated from clinical exam) 

MAS34 Clinical measure of 

spasticity (score of 

1+ treated as 1.5) 

• Ankle plantarflexors  

• Knee flexors 

 

3.2.2 Ambulatory Assessments 

Participants who self-reported the ability to walk completed WISCI-II, 10mWT, and 

6MWT, to assess their need for assistance (physical assistance, bracing, or AD), speed, and 

endurance, respectively.102, 104 Participants were able to use their normal bracing and equipment. 

The WISCI-II is a hierarchical scale with the minimal score of 0 indicating “unable to stand and/or 

participate in assisted walking” and a maximal score of 20 indicating “ambulates with no devices, 

no braces and no physical assistance, 10m.”102, 104 For the 10MWT, participants were instructed to 
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walk 10 meters at their preferred pace while their speed was timed. For the 6MWT, participants 

were instructed to ambulate as far as possible on a level, straight surface for 6 minutes (inclusive 

of standing rest breaks) and the total distance walked was recorded.102, 104 Participants received a 

score of 0 on all 3 tests if they were non-ambulatory. Participants were allotted as many breaks as 

needed between tests to ensure the clinical and ambulatory assessments were minimally affected 

by fatigue. All 3 ambulatory ability assessments have demonstrated excellent inter- and intra-rater 

reliability and good responsiveness to detect changes in locomotion.102-104 Additionally, the 

10mWT and 6MWT have often demonstrated strong correlations to each other, however they have 

been found to capture different aspects of ambulatory ability and are both important to include.103 

When possible, the measures of ambulatory ability were kept as continuous outcomes. 

(Aim 4). However, at times to maximize the clinical utility of the models and to avoid overfitting 

while still providing increased resolution over current binary CPR outcomes, we categorized the 

WISCI-II, 10mWT, and 6MWT into 3 clinically relevant divisions based on current literature 

(Table 3.3, Aims 2 and 4b).2, 103, 105, 106  

Table 3.3: Categorical measures of ambulatory ability 

Measure Category Description 

Walking Index for SCI II (WISCI-II) Requires physical assistance (or non-ambulatory) 

Requires an AD, but no physical assistance 

Requires no AD or physical assistance 

10 meter Walk Test (10mWT)103, 105 Non-ambulatory (0 m/s) 

Household ambulator (0.01 - 0.44 m/s) 

Community ambulator (> 0.44 m/s) 

6 Minute Walk Test (6MWT)2, 106 Non-ambulatory (0 m) 

Household ambulator (1 - 204 m) 

Community ambulator (> 204 m) 
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3.2.3 Assessors for Clinical and Ambulatory Measures 

For the cross-sectional study, nearly all clinical and ambulatory assessments were 

completed by one of two physical therapists on the research team. For the longitudinal study, the 

inpatient clinical and ambulatory assessments were extracted from the electronic health record 

when available to decrease participant burden and because these same measures utilized in the 

study are routinely collected in our IPR unit. Research staff were able to monitor some of these 

assessments to ensure they were being completed and recorded correctly.  

Due to the COVID-19 pandemic and restrictions placed on in-person research, the follow-

up data collections for the longitudinal study were collected remotely for many participants. If 

participants were attending physical therapy (home health or outpatient) and provided permission, 

then we coordinated the collection of the clinical and ambulatory assessments with the 

participant’s physical therapist. If the participant was not attending physical therapy, then they 

were given the option to self-assess the ambulatory tests. Participants were provided with a pre-

measured string with markers to ensure that the distance and portions measured were correct. They 

were also provided ample verbal and written instructions including pictures and examples. Due to 

the excellent reliability of the ambulatory measures, differences in raters were not likely to 

substantially impact the consistency of the assessments.102-104 When completing a remote data 

collection, if the participant was not attending physical therapy or had a recent medical visit where 

these measures were recorded, then we were not able to obtain the strength, sensation, and 

spasticity measurements as they cannot be self-assessed.  
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3.3 Measuring LA 

3.3.1 Wearable Sensors 

ActiGraph GT9X Link tri-axial accelerometers were worn on the non-dominant wrist and 

both ankles continuously for 1-7 days (Figure 3.1 and Figure 3.2).139, 140 Bilateral ankle monitors 

were used to account for asymmetric impairments, while upper limb accelerations were measured 

to account for whole-body movements such as rolling. The non-dominant wrist was used to 

minimize the noise from non-purposeful movements that may affect the measurement of activities 

such as counting steps during the daytime. 

 For the cross-sectional study, the ankle accelerometers are worn on the lateral sides of the 

ankles and secured by a padded, adjustable velcro strap. Although not utilized in the present 

analysis, a Modus StepWatch activity monitor was also used in the longitudinal study to measure 

steps and other walking-related metrics. The StepWatch must be worn on the lateral side of the 

ankle of the stronger (or dominant if equal strength) lower limb the for best accuracy. For the 

longitudinal study, the ActiGraphs were worn on the medial side of both ankles and adjustments 

were made to the axis orientation in the analysis to account for the different positioning.  

The accelerometers were only to be removed for periods of water exposure and participants 

were not to modify any of their normal activities. Participants were instructed in safe use and 

donning/doffing of the devices and were provided with printed instructions to ensure skin integrity 

and proper placement. Additionally, for the longitudinal study, clinical staff working on the IPR 

unit where inpatient data collection occurred were trained on proper use and placement of all study 

devices to assist participants as needed. All study materials were returned at the end of the data 

collection period in-person or via a pre-paid USPS envelope. 
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a)  

b)  c)  

Figure 3.1: Examples of proper accelerometer placement on a) the non-dominant wrist for both studies, b) 

the lateral ankles for the cross-sectional study (Aims 1 and 2), and c) the medial ankle for the longitudinal 

study (Aims 3 and 4, lateral ankle shows StepWatch activity monitor that was not used in the current 

analysis). The ankle accelerometers are marked by yellow velcro for easier identification of proper 

placement.  

a) b)  

Figure 3.2: Examples of the gravitational vector orientation for the ActiGraph GT9X Link accelerometer for 

the right ankle of a participant when laying a) supine and b) sidelying on the left side with his or her head on 

the left side of the page and feet on the right side. The accelerometers are worn and computationally adjusted 

as needed such that, the x axis runs anterior-posterior, the y axis runs superior-inferior, and the z axis runs 

medial-lateral. 
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In the SCI population, ActiGraph sensors have been safely used to assess physical activity 

and energy expenditure among wheelchair users81, 141 and sleep assessment among individuals with 

tetraplegia.142 ActiGraph accelerometers were also shown to have excellent agreement with 

manually counted steps during physical therapy sessions in IPR among individuals with 

incomplete SCI.143 Additionally, the ActiGraph sensors have been shown to be accurate in 

predicting in-lab versus at-home activity in ambulatory participants with incomplete SCI.115  

For these analyses, only the period while the participant was asleep at night was analyzed 

to minimize biases that might be present in daytime data based on the individual’s therapy, 

interests, or occupation and not their actual abilities. Due to the nature of SCI and the spasticity 

that often is associated, participants presented with extreme variation in the number of movements 

per night with some participants having several hundred and some having very few.140 This 

variation often caused substantial under or over-estimates of sleep times when automatically 

detected by algorithms. Therefore, the sleep logs were utilized as the primary method to determine 

when the participants were asleep, while sleep detection algorithms and visual analyses were used 

to manually adjust times if needed.140 To account for any changes to sleep patterns from 

participants not being in their home environment or otherwise having unusual sleep, only nights 

identified as “typical” on the sleep log were included in the analysis. 

3.3.2 Pre-processing and Feature Extraction 

Drawing from previous analyses,89, 111, 112, 144-163 we identified LA as accelerations from 

any limb movements occurring while asleep, which could include rolling, turning, periodic limb 

movements, spasms, and positional shifts. LA pre-processing and feature extraction steps are 

described in (Figure 3.3). Using Matlab 2020a, raw accelerations (sampled at 30 Hz, Figure 3.4) 
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from all limb accelerometers were band-pass filtered (0.25-10 Hz) to analyze only accelerations 

that are likely due to human movements (i.e. removing gravitational accelerations and high 

frequency noise) and the vector magnitude was calculated from each monitor over the collection 

period.111, 162, 163 The start and end of each movement was identified as when the standard deviation 

(SD) of the magnitude in a moving window was greater or less than pre-defined thresholds (Figure 

3.5). Thresholds were determined by visually identifying the values that corresponded to the initial 

increase in acceleration magnitude (SD > 0.03 m/s2) and return to baseline (SD < 0.02 m/s2). To 

ensure the movement was not artifact, the SD had to be above the thresholds for at least 0.5 

seconds.144 The movement was discarded if the root mean square (RMS) of the movement 

magnitude was not at least equivalent to the local RMS of the noise plus two SD as accelerations 

that are this small may not represent true movement. Movements were combined if they occurred 

within 2 seconds of each other.112, 144 
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Figure 3.3: Flowchart showing the analysis steps for LA feature extraction from raw accelerations. 
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Figure 3.4: Raw accelerations from 1 ankle across portions of 3 days with green and red lines indicating the 

start and end of each night of sleep, respectively. 

 

 

Figure 3.5: An example of acceleration magnitude for 1 movement indicated by the start (green) and end 

(red) lines. 

 

Features were calculated from each identified movement episode based upon features 

previous used in PLM, gait, sleep assessment, and other accelerometer analyses.89, 111, 112, 144-163 

This resulted in 98 LA features being extracted from each movement measured from each 

accelerometer throughout the night for each “typical” night collected. Although some machine 

learning analyses can utilize many related samples per participant, these models are likely to 

overfit given our sample size and are not applicable to all of the planned analyses.164-167  

Based on preliminary analyses, we determined that the best method to result in 1 set of 

representative, yet stable features per participant was to use the median and interquartile range 

(IQR) of each feature across all movements from either lower limb per night then across all 
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“typical” nights per collection to result in 196 features per participant. We assessed the use of only 

the stronger/weaker or dominant/non-dominant limbs, but found the best preliminary results when 

combining the limbs such that all movements identified by either lower limb per night had LA 

features extracted before being condensed into 1 set of representative movement features per night 

using the median and IQR. Other methods assessed to combine individual movements into 1 

feature set per participant were to take the mean and SD across all movements per night and then 

across all typical nights or to take the median/IQR or mean/SD of all movements across the 

collection without separating by night. Additionally, we also counted the number of movements 

that fell into sized bins per category (e.g., short, moderate, and long duration movements), but due 

to the arbitrary nature of assigning the cutoff values for many features, this was not utilized.  

Features that were visually examined to have high within-subject variability (indicating an 

unreliable feature) or low between-subject variability (uninformative feature) when examined 

visually using boxplots were excluded. Some of the features provided detailed information 

regarding the direction and type of movement being performed were likely not reliably measured 

due small variations in the accelerometer position on the ankle throughout the night or occasional 

misplacements of the accelerometers noted mostly in the acute setting for the longitudinal analysis. 

Thus, the positional features that remained in the analysis were ones that related to overall changes 

in position and were robust to small fluctuations in accelerometer positioning. For example, the 

features quantifying the pre-movement angles with respect to each axis were initially calculated to 

provide information regarding a participant’s position (e.g., supine, side-lying, etc.). However, if 

the accelerometer is moved slightly on the limb, then this information was inaccurate or 

inconsistent. Thus, these features were removed, but features that measured the total change in the 

angle or gravitational vectors remained since those features were not as sensitive to the exact start 
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and end positions. Additionally, some features were removed that were found to be repetitive with 

another feature (highly correlated, but not identical features were still included at this stage). This 

all resulted in the exclusion of 63 features and a final LA feature set of 133 features being included 

in further analyses. Those 133 LA features are described in Table 3.4. The “Feature Short Name” 

is the name used to reference the LA feature throughout the dissertation.
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Table 3.4: Descriptions and abbreviation key of LA features extracted and included in the analysis. “Feature Short Name” is the name used to reference 

the LA feature throughout the dissertation. All features are calculated per ankle accelerometer and per movement and combined by taking the median 

and IQR across nights unless otherwise noted (* indicates a feature calculated per night, † indicates maximum across nights also calculated). 

Feature 

Category Feature Feature Short Name Feature Description Larger value indicates… 

Change in 

angle of 

inclination 155, 

157-159 

Net Angle Net Change Change from the start and end position angles Larger net change in body position 

Rate Angle Rate Change Total change in position divided by duration of 

movement 

Faster positional changes 

Total Angle Total Change Total change in position throughout movement Larger positional changes 

Change in 

gravitational 

acceleration 
154, 159, 162 

x Grav Change X Describes changes in body positions with 

respect to the gravitational (DC) vector 

Larger change in proportion of 

gravitational vector in each direction y Grav Change Y 

z Grav Change Z 

Correlation 

coefficients 

between axes 
154, 160, 162 

x-y Corr XY Describes the relationship between axes during 

a movement 

Movements occurring in more 

consistent directions x-z Corr XZ 

y-z Corr YZ 

Frequency 

domain 146-154, 

161 

Bandwidth Bandwidth Range of frequencies that contain 95% of the 

total power 

Movements use a larger range of 

frequencies 

Centroid frequency Centroid Freq Frequency that divides the spectral power 

distribution into two equal parts 

Higher frequency movements 

1st dominant frequency Dom Freq 1 Frequency at maximum spectral power 

2nd dominant frequency Dom Freq 2 Frequency at 2nd highest peak of spectral 

power 

Dominant frequency in low 

frequency range 

Dom Low Freq Isolating just frequencies most likely to 

contain human movements (0.6-2.5 Hz) 

Mean/Median frequency Mean Freq, Med Freq Estimate of mean/median normalized 

frequency 

Ratio power at dominant 

frequency to total 

Power Dom Freq 1/ Total Proportion of the total power that occurs at the 

dominant frequency 

Higher proportion of the total energy 

occurred at the dominant frequency 

Power at 1st dominant frequency Power Dom Freq 1 Maximum power More powerful movements 

Power at 2nd dominant frequency Power Dom Freq 2 Max power at 2nd highest peak of power 

spectrum 

Power at dominant frequency in 

low frequency range 

Power Dom Low Freq Power at frequencies most likely to contain 

human movement (0.6 - 2.5 Hz) 

Ratio of high frequency power to 

total 

Power High Freq/Total Proportion of power that may likely be noise 

and not produced from movement (> 3.5 Hz) 

More noisy movement signals 

Total power Power Total Area under the power spectral density curve Higher energy, more powerful 

movements 
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Table 3.4 Continued 

Feature Category Feature Feature Short Name Feature Description Larger value indicates… 

Limb movement 

percentages 

Bilateral ankle Bilat Ankle % Proportion of movements where both 

ankles are moving simultaneously 

Possible increased synergistic 

movements or lack of motor control to 

isolate limbs independently 

Unilateral ankle Unilat Ankle % Proportion of movements where only the 

unilateral ankle is moving 

Possible increased spasticity or strength 

on one lower limb 

Wrist and bilateral ankles Whole Body % Proportion of whole body movements (i.e., 

rolling) 

More whole body movements 

Wrist and unilateral ankle Wrist Ankle % Proportion of movements where both the 

ankle and wrist are moving simultaneously 

Possible increased strength on one side of 

the body 

Median crossings 
89, 149, 150 

Number of crossings Num Med Crossings, 

Num Med Crossings Norm 

Measure of movement smoothness Less smooth movements 

Periodic limb 

movements 

(PLM) 112, 152 

* Number of series Num PLM Norm Total number of movements meeting 

approximate criteria to be defined as PLM 

More series of short, repetitive 

movements (likely spastic or PLM) 

* Index PLM Index Total number of movements meeting 

approximate criteria to be defined as PLM 

divided by the number of hours asleep 

(>15 events/hour is indicative of possible 

dysfunction) 

* Percentage of movements PLM % Percent of all movements occurring during 

the night that could be classified as PLM 

Higher proportion of total movements are 

occurring in short, repetitive series (likely 

spastic or PLM) 

Relationship to 

recent 

movements 146, 

147, 149, 160, 162 

Dominant frequency in last 90s Dom Freq Last 90s Frequency of recent movement series More movements occurring in series 

Cross-correlation/ covariances 

in last 90s 

Close Cross Cov/Corr Peak, 

Max Cross Cov/Corr, 

Mean Cross Cov/Corr Peaks 

Num Cross Cov/Corr Peaks 

Similarity between recent movement 

(calculates: maximum value, closest and 

mean peak values, number of peaks) 

More similar/repetitive recent movements 

Number of movements in last 

90s 

Move Last 90s Quantifies if movement occurred as part of 

a series 

More short, frequent movements are part 

of a series 

Time since previous movement Time Since Prev Seconds since last movement ended More sparse movements 

Signal 

characteristics 146-

148, 160 

Entropy rate Entropy Rate Measure of signal regularity More regular movement accelerations 

(samples within a movement are more 

related and less random) 

Lempel-Ziv complexity Lempel-Ziv Comp Measure of complexity-probability Less predictable, more complex 

accelerations 

Maximum Lyapunov exponent Lyapunov Exp Measure of local dynamic stability 

(sensitivity to perturbations) 

More chaos/divergent accelerations, less 

stable 

Wavelet energy Wave Approx, 

Wave Energy 1, Wave 

Energy 2, Wave Energy 3 

Approximation, 1st - 3rd details of the 

wavelet transform to evaluate the relative 

energy in each time-frequency band 

Higher energy concentration 

Wavelet entropy Wave Entropy Measure of signal disorder More random process/more disorder 
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Table 3.4 Continued 

Feature 

Category Feature Feature Short Name Feature Description Larger value indicates… 

Statistical 146, 147, 

149-153, 162 

Area under the curve AUC Acc, 

AUC Acc Norm 

Total change in velocity Larger total change in speed 

Signal magnitude area SMA Acc 

Duration † Duration How long each movement lasts Longer movements 

Kurtosis Kurtosis Describes weight of the movement's tails 

relative to the center of the movement 

More widely spread accelerations (less 

distinguishable max value) 

Maximum to RMS Max-RMS Acc Measure of movement smoothness More jerky movements 

Maximum Max Acc Measure of acceleration magnitude Larger changes in speed 

Range Range Acc Maximum to minimum acceleration 

Median Med Acc Median of acceleration magnitude Larger magnitude movements 

Root mean square (RMS) RMS Acc RMS of acceleration magnitude 

SD SD Acc Variability of acceleration magnitude Larger variation within movements 

Skewness Skewness Describes the symmetry of the temporal 

spread of a movement 

Positively skewed movements: largest 

acceleration for movements occur early 

and then there are longer slow-down 

periods 

Timing 112, 156, 162 * Number of movements Move/night, Move/hour Number of movements (calculates: 

movements per night, movements per hour) 

More movements 

When movements occurred in 

night 

Start Move %, 

End Move % 

Determine if movement are clustered in a 

certain portion of the night or well 

distributed 

Movements occur later in the night 

* Time asleep Time Asleep Hours asleep Longer time asleep 

Velocity and 

distance 155, 156 

Median velocity Med Vel Movement speed Faster movements 

RMS velocity RMS Vel 

Total distance Total Dist Total meters traveled Further distance moved 
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4.0 Cross-Sectional Study Among Individuals with Chronic SCI 

4.1 Study Population 

Participants were recruited locally using a research registry as well as at the 2018 and 2019 

National Veterans Wheelchair Games and the 2019 National Disabled Veterans Winter Sports 

Clinic. Participants were enrolled if they were at least 18 years of age, had a chronic (≥ 1 year), 

non-progressive SCI. Participants were excluded if they had a medical diagnosis of a condition 

that may affect sleep (e.g., sleep apnea or restless leg syndrome), were unable to wear activity 

monitor devices on wrist and ankles continuously for up to 1 week (e.g., due to autonomic 

dysreflexia or sores), or had an injury to the legs that would significantly impair ambulation (e.g., 

amputation or severe trauma). If the individual had a lower extremity motor score (LEMS) of zero 

(no voluntary movement) they were classified into the motor complete SCI group, otherwise if 

some voluntary lower limb movement is present, they were classified into the motor incomplete 

SCI group. All participants completed informed consent as approved by the VA Pittsburgh 

Healthcare System Institutional Review Board.  

4.2 Sample Size Considerations 

Traditional statistical models can be used as a conservative method for estimating power 

with machine learning approaches. This is especially true when considering that machine learning 

techniques tend not to require as large of sample sizes to produce accurate results.168 Since Aims 
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1 and 2 have overlapping samples, we identified the number of individuals with chronic, motor 

complete SCI from Aim 1 and the number of individuals with motor incomplete SCI from Aim 2, 

as this resulted in the largest samples needed to complete all analyses.  

For the original analysis for Aim 1, we had planned to compare LA between individuals 

with able-bodied controls and motor complete and incomplete SCI. We estimated sample size for 

Aim 1 using a one-way ANOVA with three impairment groups which required a total sample size 

of 66 participants (n= 22 in each group) to detect a significance level of α= 0.05 with power= 0.8 

and an effect size of 0.40. Using a regression model based on the analysis for Aim 2, we would 

need an estimated 58 subjects to detect a significant R2 increase (from 0) for each individual 

predictor with acceptable power (≥ 0.8), assuming small to moderate effect sizes (f2 = 0.11; alpha= 

0.1; G*Power 3.1.9.2). To ensure a final sample size of 22 participants with motor complete SCI 

and 58 with motor incomplete SCI and accounting for a 15% rate of missing or non-usable data, 

we had planned to recruitment a goal of 25 and 68 participants with motor complete and incomplete 

SCI, respectively.  

Due to funding delays, restrictions on research from the COVID-19 pandemic, and other 

recruiting difficulties, we did not achieve these goals. We were able to recruit 36 participants with 

motor incomplete SCI and 13 with motor complete SCI. Based upon preliminary results, we 

estimated the actual effect size for the analyses would be much larger (0.39 - 1.13) than was used 

for the sample size calculations, and thus our power analysis was likely conservative. Thus, we 

implemented more strict forms of cross-validation and other machine learning methods to account 

for the smaller sample size and continued the analysis with the 49 total participants with chronic 

SCI.  
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4.3 Aim 1: Association Between LA and Neuromuscular Impairment 

4.3.1 Introduction 

For decades researchers have been trying to understand which clinical variables are related 

to or able to predict long-term ambulatory ability after a new SCI. Although many different clinical 

variables have been assessed as predictors of ambulation, such as AIS/Frankel Grades,45, 48, 53, 63, 

169 demographic information such as age and sex,4, 5, 45, 58 and somatosensory evoked potentials,53 

the most common predictors are simple clinical measures of strength and sensation.4, 5, 53, 58-63 

Clinical measures such as MMT, LT, and the MAS to assess strength, sensation, and spasticity, 

respectively, are performed frequently after an SCI. These measures have the advantages of being 

quick to perform, requiring no additional equipment, and the MMT and LT are included in the 

ISNCSCI exam. 

Despite the many attempts to use strength and sensation as predictors of ambulation, 

studies have shown that these predictors are not able to consistently produce accurate predictions 

of ambulatory ability, especially among those with incomplete SCI.7, 51, 109 While these tests may 

be sufficient for clinical use, they likely lack the reliability and responsiveness needed to provide 

adequate predictions for individuals with incomplete SCI. Additionally, spasticity is not generally 

included in prediction models, despite being one of the top three therapist-reported factors that 

interfere with therapy post-SCI and its known relationship to pain and function.71-74 Spasticity can 

at times be helpful for mobility, but it can also often increase pain, lead to contractures, and 

destabilize balance which negatively affect ambulatory ability.170, 171 

We proposed that measuring an individual’s actual movement would be a more sensitive 

and responsive measure of an individual’s level of impairment than traditional clinical tests. Since 
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daytime activity can be biased by an individual’s interests, occupation, participation in 

rehabilitative therapy, and activity level, measuring movement characteristics at night may be less 

affected by these external factors. For example, a movement at night may be triggered by the tactile 

sensation of pressure building in an area of the body and then an individual must possess the 

strength to be able to voluntarily adjust their positioning.84, 85 Additionally, it has been shown that 

supine positioning may increase spasticity, thus, spasticity may be more prevalent while laying 

down to sleep at night.86, 87 Therefore, LA, defined as accelerations from any movement occurring 

while asleep at night, may be able to capture more responsive information about an individual’s 

neurological impairment than clinical measures, such as MMT, LT, and the MAS. 

To provide foundational knowledge of LA as a meaningful clinical metric, we aim to 

determine the association between LA and current clinical measures of neuromuscular impairment 

among individuals with chronic SCI. We hypothesize that features of LA such as those related to 

amplitude and duration of movements will be most strongly related to clinical assessments of 

strength, sensation, and spasticity among individuals with chronic SCI. Determining the 

relationship between clinical measures of impairment and LA will provide evidence of face, 

construct, and concurrent validity for LA and support the clinical use of LA as a predictor of 

ambulation (additional information about validity in Section 2.4.1.1). 

4.3.2 Methods 

Individuals with chronic, motor complete and incomplete SCI were included in this 

analysis as described in Sections 4.1 and 4.2. Since individuals with motor complete SCI will have 

a LEMS= 0, they were intentionally enrolled in a smaller proportion in comparison to the number 

of participants with motor incomplete SCI and LEMS > 0. Each participant completed 
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questionnaires, clinical, and ambulatory assessments as applicable during 1 in-person visit and 

then wore the ActiGraph GT9X Link accelerometers for 1-5 days as described in Section 3.0. 

4.3.2.1 Analysis 

4.3.2.1.1 Input Variables: LA and Covariates 

The raw accelerations were processed as described in Section 3.3.2 to extract 133 LA 

features per participant (Table 3.4). Since both LA and each impairment outcome were measured 

bilaterally, analyses were performed to assess independence between sides (Appendix D.1). Due 

to the high correlation between LA features and impairment outcomes between the stronger and 

weaker lower limbs and covariates assessed once per participant, only 1 sample was calculated per 

participant by combining the LA features from each limb as described in Section 3.3.2. 

Three feature sets were produced during the analysis that contain: the LA features alone, 

LA features and other possible covariates/confounders, and the covariates/confounders alone (just 

referred to as “covariates” for simplicity). Since the impairment outcomes were measured cross-

sectionally, the measurement of both impairment and LA could be affected by factors such as pain, 

demographics, sleep quality, exercise, sleep medication, or consumption of caffeine or alcohol.120, 

121, 123, 132-134, 136-138 For example, if an individual has slept poorly, they may be less able to exert 

themselves during the strength measurements, less focused during the sensation assessment which 

may introduce more error, and have atypical movements during their sleep the following night 

(e.g., less movements if sleeping more soundly). Therefore, it is important to assess how these 

covariates may affect the relationship between LA and impairment, and how much additional 

variance in impairment is explained by adding LA to the covariates. All covariates included in the 

models are listed in Appendix Table D.1.  
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All features were normalized so that all LA and covariate features carried equal weight in 

the machine learning model. Since LA needs to be reproducible for clinical use even if new 

samples are added, we scaled each feature such that the minimum value was recorded as 0 and the 

maximum as 1. 

4.3.2.1.2 Output Variables: Strength, Sensation, and Spasticity 

Measures of strength, sensation, and spasticity were used as the dependent variables in 

models as an estimate of neuromuscular impairment. Strength was quantified by the LEMS which 

sums the MMT motor scores from the L2 to S1 myotomes across both lower limbs for a score 

between 0 (total paralysis) to 50 (normal, Table 2.1, Table 3.2). Lower limb LT sensation was 

similarly calculated by summing the individual LT sensation scores from each dermatome across 

the lower limbs (L2-S1) for a total score between 0 (no sensation) and 20 (full sensation).33 

Strength and sensation scores were used as continuous outcomes.  

Spasticity was measured by the MAS for the knee flexors and ankle plantarflexors of both 

lower limbs. Since MAS had a skewed distribution in our sample with many participants having 

no spasticity, it was categorized into 3 groups: no, mild, and moderate spasticity. Participants were 

categorized as “no spasticity” if they had a MAS score of zero for all lower limb areas assessed. 

Participants were categorized as “mild spasticity” if they had some spasticity (MAS > 0) recorded, 

but all MAS scores were less than 2 for both lower limbs. Participants were categorized as having 

“moderate spasticity” if any MAS score was 2 or higher. The cutoff score of 2 was used based 

upon the finding by Baunsgaard et al., that about 80% of MAS scores reported in a sample with 

SCI had a score of 0, 1, or 1+. Therefore, if a participant had a score of 2 or higher it was above 

average and could be considered as moderate to severe spasticity.77  
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4.3.2.1.3 Machine Learning Models 

A three-step process was used to 1) determine the optimal LA and covariate features using 

algorithms with built-in feature selection, 2) reestablish the baseline model performance for just 

the selected features using algorithms without feature selection, and 3) add the selected LA features 

to the covariates model to determine the additional explained variance in each impairment outcome 

(Figure 4.1). The least absolute shrinkage and selection operator (LASSO) implemented with least 

angle regression (LARS) and logistic regression with ℓ1 regularization algorithms were utilized to 

select the important features for the continuous outcomes (strength and sensation) and categorical 

outcome (spasticity), respectively. The full description of the algorithms is provided in Appendix 

D.1. These models were chosen based upon their efficiency, ability to perform feature selection as 

part of the model building process, and ability to determine the relative strength of each selected 

feature to the impairment outcome. The coefficient values and features selected by the models can 

provide information about the relative importance of each feature as related to the impairment 

outcome. Approaches using a LASSO or similar machine learning models have been used to assess 

improvements lower limb rehabilitation using accelerometers after anterior cruciate ligament 

reconstruction.172, 173 Specifically among individuals with SCI, similar methods have been used to 

predict neurological recovery from MRI findings,174 classifying activities in-lab versus at-home 

among ambulatory participants,115 and determining the association between an unsupervised home 

sleep apnea test and sleep-disordered breathing and nocturnal hypercapnia.175  
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Figure 4.1: Impairment algorithms used for each analysis step in Aim 1 

 

For both the LASSO LARS and logistic regression with ℓ1 regularization models, 10-fold 

cross-validation was used to determine the regularization parameters and then the model was 

trained and evaluated on the full dataset. The features selected by the LASSO LARS and logistic 

regression models for each impairment outcome when including only LA or covariate features 

were recorded. To assess the variance explained by the selected covariate features and then by the 

addition of LA features, linear regression models were used for the strength and sensation 

outcomes and logistic regression without regularization was used for spasticity. Due to slight 

differences in the analysis methods, the models built using the algorithms with or without feature 

selection produce slightly different results when the same final feature sets are used. Therefore, 

models were assessed using linear regression and logistic regression without regularization and 

only the selected features from the previous models to ensure that an accurate baseline model 

performance was recorded. Those baselines would then be compared to the model performance 
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when selected LA and covariate features were combined to determine the additional amount of 

variance in each impairment outcome that was explained by adding LA compared to the model 

with covariates alone. 

4.3.2.1.4 Model Evaluation 

For the continuous strength and sensation outcomes, the coefficient of determination (R2) 

was used to determine the model’s ability to explain the variability of the impairment outcome.176 

The adjusted R2 was also assessed as a correction to the R2 for the number of features included in 

the model so that models with different numbers of features can be compared more equitably. 

Other evaluation metrics included mean and median absolute error which are calculated by taking 

the absolute value of the difference between each predicted and measured impairment score and 

then taking the average or median across the sample. Mean squared error (average of the squared 

difference between the predicted and measured score) was also included as it weighs larger errors 

more heavily. Lastly, root mean squared error was calculated as this evaluates the standard 

deviation of the prediction errors by taking the square root of the mean squared error. For each of 

the measures of error, a lower score is preferable. 

The OCA, precision, recall, and F1-score were used to describe the spasticity multinomial 

model performance (Appendix B). OCA represents the percentage of participants that were 

correctly classified. Precision represents the accuracy of the true classifications (i.e., positive 

predictive value) while recall represents the fraction of the correctly identified positive 

classifications (i.e., true positive rate, equivalent to sensitivity for binary classification). The F1-

score is the weighted average of precision and recall.177, 178 For all classification metrics, a higher 

score (range=0-1) is indicative of higher accuracy and better model performance. Additionally, the 

full confusion matrices were examined to look at errors in classification and per-class statistics. 
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4.3.3 Results 

4.3.3.1 Participants 

Thirty-six participants with motor incomplete SCI and 13 with motor complete SCI 

completed the data collection. Eight participants (n= 6 motor incomplete and n=2 complete SCI) 

were excluded because they self-reported that they had no “typical” nights recorded during the 

collection period. One additional participant with complete SCI was excluded because the 

accelerometers were likely removed at night and no movements were recorded. Data collection 

was completed for 2 participants before the spasticity measures were added to the study, so the 

spasticity analysis has 38 participants included, while the strength and sensation analyses have 40 

participants. The demographics for participants that were included in the analysis are shown in 

Table 4.1. Participants were primarily male, non-Hispanic White, Veterans, with paraplegia who 

used a manual wheelchair as their primary mode of mobility.  
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Table 4.1: Participant demographics 

Categorical Demographics 

Motor Incomplete 

n (% of group) 

Motor Complete  

n (% of group) Total N (%) 

Sex    

Female 4 (13.3) 2 (20.0) 6 (15.0) 

Male 26 (86.7) 8 (80.0) 34 (85.0) 

Race/Ethnicity    

Non-Hispanic White 14 (46.7) 6 (60.0) 20 (50.0) 

Non-Hispanic Black 10 (33.3) 3 (30.0) 13 (32.5) 

Non-Hispanic Other Race 3 (10.0) 0 (0.0) 3 (7.5) 

Hispanic (Any Race) 3 (10.0) 1 (10.0) 4 (10.0) 

Veteran    

Not Veteran 5 (16.7) 0 (0.0) 5 (12.5) 

Veteran 25 (83.3) 10 (100) 35 (87.5) 

Annual Household Income    

<$25,000 9 (30.0) 2 (20.0) 11 (27.5) 

$25,000-$49,999 3 (10.0) 5 (50.0) 8 (20.0) 

$50,000-$74,999 5 (16.7) 2 (20.0) 7 (17.5) 

≥$75,000 9 (30.0) 1 (10.0) 5 (12.5) 

Decline to Answer or Unknown 4 (13.3) 0 (0.0) 4 (10.0) 

Education    

High School Diploma/GED 17 (56.7) 2 (20.0) 19 (47.5) 

Associate's Degree 7 (23.3) 4 (40.0) 11 (27.5) 

Bachelor's Degree 4 (13.3) 2 (20.0) 6 (15.5) 

Graduate Degree 2 (6.7) 2 (20.0) 4 (10.0) 

SCI Injury Level    

Paraplegia 19 (63.3) 9 (90.0) 28 (70.0) 

Tetraplegia 11 (36.7) 1 (10.0) 12 (30.0) 

SCI AIS Classification (Calculated)    

A 0 (0.0) 6 (60.0) 6 (15.0) 

B 0 (0.0) 4 (40.0) 4 (10.0) 

C 15 (50.0) 0 (0.0) 15 (37.5) 

D 15 (50.0) 0 (0.0) 15 (37.5) 

Data Collection Location    

Local 8 (22.2) 0 (0.0) 8 (20.0) 

Adapted Sporting Event 22 (73.3) 10 (100) 32 (80.0) 

Primary Mode of Mobility    

Walk 5 (16.7) 0 (0.0) 5 (12.5) 

Manual Wheelchair 20 (73.5) 8 (80.0) 28 (70.0) 

Power Wheelchair/Scooter 4 (8.8) 2 (20.0) 6 (15.0) 

Equally Walk and Wheel 1 (3.3) 0 (0.0) 1 (2.5) 

Continuous Demographics 

Motor Incomplete 

Mean ± SD (Range) 

Motor Complete 

Mean ± SD (Range) 

Total Mean ± SD 

(Range) 

Age 54.0 ± 10.5 (25-70) 52.9 ± 14.2 (34-77) 53.7 ± 11.4 (25-77) 

Body Mass Index (BMI) 28.2 ± 5.4 (18.5-38.7) 24.4 ± 3.7 (18.7-30.4) 27.2 ± 5.2 (18.5-38.7) 

Years Since Injury 18.8 ± 12.5 (3.0-48.7) 16.0 ± 9.5 (5.6-28.9) 18.1 ± 11.8 (3-48.7) 
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4.3.3.2 Impairment Scores 

Impairment scores for all participants are shown in Table 4.2. Participants with motor 

incomplete SCI had LEMS scores spanning nearly the entire possible range from 2 to 49. Similarly, 

both motor complete and incomplete SCI groups had participants spanning the entire range of LT 

sensation scores, though those with motor complete SCI had lower scores on average than those 

with motor incomplete SCI. Ten (25%), 7 (17.5%) and 15 (39.5%) of participants had strength, 

sensation, and spasticity scores of 0, respectively. The 60.5% of individuals in this study presenting 

with spasticity is slightly lower than other studies that have found approximately 65-78% of 

individuals with SCI having symptoms of spasticity.74, 77, 179 

Table 4.2: Strength, sensation, and spasticity impairment scores 

Continuous Impairment Outcomes 

Motor Incomplete Motor Complete All Participants 

Mean ± SD (Range) Mean ± SD (Range) Mean ± SD (Range) 

Strength (LEMS) 26.9 ± 15.0 (2-49) 0.0 ± 0.0 8.2 ± 8.1 (0-49) 

Sensation (Lower Limb Summed LT) 10.9 ± 6.5 (0-20) 3.8 ± 6.6 (0-20) 9.1 ± 7.2 (0-20) 

Categorical Impairment Outcomes n (% of group) n (% of group) n (%) 

Spasticity (Lower Limb Categorized MAS)    

No Spasticity (MAS=0) 13 (46.4) 2 (20.0) 15 (39.5) 

Mild Spasticity (MAS all < 2) 9 (32.1) 5 (20.0) 14 (36.8) 

Moderate Spasticity (≥1 location with MAS ≥ 2) 6 (21.4) 3 (30.0) 9 (23.7) 

 

4.3.3.3 Strength (LEMS) 

Sixteen LA and 19 covariate features were selected using the LASSO LARS models which 

independently explained 67.0% and 49.2% of the variance (adjusted R2) in lower limb strength, 

respectively (Table 4.3). When LA features were combined with covariates, an additional 35.5% 

of the variance in strength could be explained (adjusted R2= 0.847), as compared to the model with 

only covariates. The features with the greatest association with higher strength scores from the 

models with LA features were larger variations in energy (Wave Approx- IQR) and local dynamic 

stability (Lyapunov Exp- IQR, variations in the response to perturbations), fewer variations in the 
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similarity between recent movements (Max Cross Cov- IQR), smoother movements (Num Med 

Crossings Norm- Med), and faster rotational movements (Angle Rate Change- Med, Appendix 

Table D.4 and Appendix Table D.5). When only covariates were included in the model, having 

more pain (SF-36: Pain), a higher BMI, and fewer pain locations were among the features most 

related to greater strength. However, when LA and covariate features were combined, the LA 

features maintained a similar order of association, while the covariate features that were most 

related to strength in the LA + covariates model were amongst the features that had the lowest 

associations with strength for the covariate model (more years since injury, more sleep 

disturbances generally [PSQI: Sleep Disturbance], and better average sleep rating during 

collection). 

Table 4.3: Strength and sensation LASSO LARS and linear regression model results 

Strength (LEMS) 

Analysis Step 

Feature 

Set 

Number of 

Features 

Selected (Initial) 

Adj. 

R2 R2 

Mean 

Absolute 

Error 

Median 

Absolute 

Error 

Mean 

Squared 

Error 

Root Mean 

Squared 

Error 

1. LASSO LARS for 

feature selection 

LA 15 (133) 0.469 0.687 8.17 7.87 93.56 9.67 

Covariates 19 (24) 0.394 0.689 8.08 7.67 92.86 9.64 

2. Linear regression to 

reestablish baseline 

LA 15 0.670 0.805 6.71 6.61 58.13 7.62 

Covariates 19 0.492 0.740 7.52 7.32 77.75 8.82 

3. Linear regression 

for additional variance 

explained by LA 

LA + 

Covariates 

34 0.847 0.984 1.68 1.18 4.68 2.16 

Sensation (Lower Limb LT) 

Analysis Step 

Feature 

Set 

Number of 

Features 

Selected (Initial) 

Adj. 

R2 R2 

Mean 

Absolute 

Error 

Median 

Absolute 

Error 

Mean 

Squared 

Error 

Root Mean 

Squared 

Error 

1. LASSO LARS for 

feature selection 

LA 15 (133) 0.566 0.733 2.91 2.50 13.32 3.65 

Covariates 2 (24) 0.111 0.157 5.70 5.44 42.07 6.49 

2. Linear regression to 

reestablish baseline 

LA 15 0.717 0.826 2.21 1.88 8.68 2.95 

Covariates 2 0.222 0.262 5.11 5.25 36.83 6.07 

3. Linear regression 

for variance explained 

by LA 

LA + 

Covariates 

17 0.714 0.839 2.03 1.69 8.05 2.84 
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4.3.3.4 Sensation (LT) 

The sensation model containing only LA features explained more of the variance in lower 

limb sensation (adjusted R2= 0.717) than just covariates (adjusted R2= 0.222, Table 4.3). When 

combined, LA explained an additional 49.2% of the variance in sensation (adjusted R2= 0.714) 

compared to the model with covariates alone. The features selected per model are shown in 

Appendix Table D.6 and Appendix Table D.7. Only 2 covariates were associated with higher 

sensation scores: fewer pain locations and better sleep efficiency (PSQI: Sleep efficiency). 

Additional analyses were performed to minimize the chance that the much lower model 

performance for the covariates model was due to a data irregularity (Appendix D.3) and no 

irregularity was identified. Having a less variable time between movements (Time Since Prev- 

IQR), more consistent movement directions (Corr YZ- Med), lower frequency movements (Dom 

Freq 1- Med), and less variability in the similarity between recent movements (Num Cross 

Cov/Corr Peaks- IQR) were most strongly associated with more intact sensation.  

4.3.3.5 Spasticity (MAS) 

Spasticity categories were more accurately classified using 7-10 selected LA features (F1-

Score= 0.765) than 5-6 covariate features (F1-Score= 0.668). When combined, the LA + covariates 

model achieved nearly 90% accuracy in classifying spasticity categories, including increases in 

F1-score and OCA of 0.228 and 13.2%, as compared to the model using only covariates. For all 

models, no participants were falsely predicted as having moderate spasticity (precision= 1). Recall 

was generally the highest for the mild spasticity category, indicating that those who actually had 

mild spasticity were more likely to be correctly classified than those with no or moderate spasticity. 

For the LA + covariates model, the moderate spasticity group had the highest F1-score (0.941), 

while the mild spasticity group had the lowest F1-score (0.875, no spasticity F1-score= 0.889). 
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In the model with only LA features, the features most associated with having no spasticity 

included less power at the second dominant frequency (Power Dom Freq 2- Med), lower 

percentage of movements that met PLM criteria (PLM %), moving in more variable directions 

(Corr YZ- Med), more variable energy (Wave Approx- IQR), and more variability in the similarity 

to recent movements (Num/Close Cross Corr/Cov Peak- IQR, Appendix Table D.8 and Appendix 

Table D.9). LA features associated with moderate spasticity include less variable movement 

disorder (Wave Entropy- IQR), lower and less variable energy (Wave Energy 2- Med, Wave 

Approx- IQR) and, moving in more consistent directions (Corr YZ- Med), less variable symmetry 

of movements (Skewness- IQR), more frequent movements (Move/hour), and more movements 

that met PLM criteria (PLM Index). For the covariates, having a longer time since injury, not using 

sleep medication during the data collection, and having more pain interference with sleep (Pain 

Interfere: Sleep) were associated with having no spasticity while using sleep medication, having 

worse nightly sleep ratings (Ave Sleep Rating), sleeping for shorter durations (PSQI: Sleep 

Duration) and having fewer sleep disturbances (PSQI: Sleep Disturbances) were associated with 

having moderate spasticity. 

Table 4.4: Spasticity logistic regression analysis results* 

Analysis Step Feature Set 

Number of Features 

Selected (Initial) F1-Score Precision Recall OCA 

1. Logistic regression with ℓ1 

regularization for feature 

selection 

LA 7-10 (133) 0.814 0.833 0.816 0.816 

Covariates 5-6 (24) 0.764 0.790 0.763 0.763 

2. Logistic regression to 

reestablish baseline for selected 

covariates model 

LA 7-10 0.765 0.820 0.763 0.763 

Covariates 5-6 0.668 0.741 0.684 0.684 

3. Logistic regression for 

additional variance explained 

by LA 

LA + 

Covariates 

12-16 0.896 0.918 0.895 0.895 

* Precision, recall, and F1-score represent the weighted average of the per-class scores. 
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4.3.4 Discussion 

By demonstrating that machine learning models consisting of only LA features were able 

to explain approximately 67% of the variance in measures of lower limb strength and 72% of the 

variance in sensation as well as an F1-score of 0.765 when classifying participants into spasticity 

categories, we have provided evidence of face and construct validity for LA as a measure of 

impairment. Further, the adjusted R2 increased by 72% and 222% for the strength and sensation 

models, respectively, when LA was added to the covariate features, as compared to using the 

covariates alone. Similarly, the F1-score for the spasticity classification was 34% higher when 

including LA, as compared to when only using covariate features. This shows that LA provides 

additional, unique information that is related to measures of strength, sensation, and spasticity 

beyond what could be measured using covariate and confounding variables. The models that only 

included covariates consistently had the poorest performance, thus emphasizing the additional 

utility and information that LA can provide beyond what is available through demographic 

information and questionnaires. This further supports that LA features are directly related to 

measures of impairment, not just a proxy for sleep quality or another related metric. 

Although an R2 of 1 would explain 100% of the variance in the outcome and would be 

considered a perfect result for a model, we would not expect or want LA to explain that much 

variance in this case. As explained in Section 2.4.1, the clinical measures used as the outcomes in 

this analysis have inherent weaknesses and lack the responsiveness required to differentiate 

between individuals for prediction models, especially among motor incomplete SCI.8, 9, 34 Since 

all features of LA are continuous and there are 133 features available, LA is able to provide 

variability and detailed information about impairment that clinical measures may currently lack. 
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Thus, the finding of LA having a strong, yet imperfect relationship to each impairment outcome is 

supporting the aim of the analysis and clinical use of LA as a measure of impairment.  

It was hypothesized that LA features such as those measuring amplitude and duration of 

movements would be most related to the measures of impairment, which is somewhat supported 

by the findings. Although movement duration was not selected for any of the models, other features 

such as the percentage of movements that meet the criteria for PLM were selected. By definition, 

PLM must be short duration movements that occur in series.112, 152 Therefore, having a higher 

percentage or larger number of movements that meet the criteria for PLM or PLM indices, being 

related to better sensation, greater strength, and less spasticity provides support for this hypothesis.  

Although more intuitive statistical LA features such as the RMS and maximum movement 

acceleration were not related to any of the impairment measures, multiple features evaluating the 

spectral power and energy of movements in the frequency domain were related to each measure 

of impairment (e.g., Power Dom Freq 2- Med, Power Dom Freq 1/Total- IQR, Wave Approx- 

IQR, etc.). Additionally, these features often had some of the strongest associations with the 

measures of impairment. Both the statistical and frequency domain features consist of similar 

information about the intensity of movements, but the statistical features are with respect to time 

while features like power and energy are with respect to the movement frequency or both time and 

frequency. Therefore, it makes intuitive sense that higher energy movements may be associated 

with greater strength and worse spasticity. Similar features have also been found to be related to 

improvements in the lower limb after rehabilitation148 and have been able to differentiate between 

healthy controls and individuals with Parkinson’s Disease and peripheral neuropathy, further 

indicating the clinical relevance of these measures.146 
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The finding of moderate spasticity being associated with more frequent, less variable, 

lower energy movements supports visual findings seen during the analysis (Figure 4.2). For some 

participants, very frequent, low amplitude movements would be observed while they were asleep 

and these findings were thought to be associated with PLM or spastic movements.180-184 These 

findings support that individuals presenting with these movements are more likely to have more 

severe spasticity. Alternatively, participants with less consistent movements (lower Corr YZ- Med, 

higher Num Cross Cov Peaks- IQR, Close Cross Cov/Corr Peaks- IQR), higher and more variable 

energy movements (Wave Energy 2- Med, Wave Approx- IQR) and a smaller proportion of 

movements meeting the criteria for PLM (PLM %) were more likely to have no spasticity. Since 

both voluntary and subconscious movements are more likely to occur in variable directions and 

with variable timing (e.g., when rolling or adjusting positioning periodically throughout the night), 

it is logical to infer that participants with more frequent, consistent, repetitive movements may 

have more spasticity while those with more variable, less consistent movements have little to no 

spasticity. 

 

Figure 4.2: Example of potential spastic movements in the acceleration magnitude vs time plot from 1 

participant’s ankle across the whole night and zoomed in for additional detail. This participant had a T7 AIS 

C injury and MAS scores of 2 at the knee flexors and 1 at the plantarflexors for each lower limb. 
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Movement consistency also played a large role in the estimation of strength and sensation 

scores. Seven of the 16 LA features (43.8%) selected for strength and 6 of 15 (40.0%) of the LA 

features selected for sensation were associated with movement consistency or related 

characteristics. Having less consistent movements and wider variability of movements overall, but 

less variable recent movements were associated with greater strength. Someone with limited 

strength may also be limited in the types or directions of movements they can perform; thus, they 

may have a more limited variety of movements as compared to someone with greater strength. For 

example, if an individual has a low LEMS due to only having motor function of the knee extensors, 

they may be able to voluntarily straighten their knee during the night, but not be able to move their 

leg in other directions. This would result in movements consistently occurring in a particular 

direction and likely presenting with similar characteristics, as opposed to someone with greater 

strength that could move in a variety of directions. 

 Additional measures of movement consistency that were related to greater strength include 

having a wider range of local dynamic stability and chaos (higher Lyapunov Exp- IQR), smoother 

movements (lower Num Med Crossings Norm- Med), and more negatively skewed movements 

(lower Skewness- Med). These findings are supported by previous studies that have shown that 

healthy controls generally had smoother movements and more negative skewness than individuals 

with Parkinson’s disease146 and Lyapunov exponent being related to improvements in lower limb 

rehabilitation.148 

Limb movement percentages and velocity and distance features were not selected in any 

of the impairment models using LA. Features associated with the change in the angle of inclination 

or gravitational acceleration were also infrequently selected. This may infer that the distribution 

of which limbs are moving and the exact amounts and directions may not be as related to 
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impairment, which further supports that the consistency and variety of movements may be more 

meaningful than the specifics of the movements being performed. Velocity and distance features 

are calculated through integration of the acceleration of each movement and are highly correlated 

with other features that statistically describe the acceleration (Med Acc, AUC Acc, SMA, etc.) and 

frequency characteristics (Power). Since frequency and time-frequency features were frequently 

chosen in the models and the LASSO LARS algorithm is intended to minimize collinearity, it may 

not be that the velocity and distance features are not related to impairment, but just that they were 

less in informative than other related features. 

Although LA features were specifically extracted to be clinically meaningful individually, 

they provide the most beneficial and comprehensive information when interpreted together.146 

Additionally, since all LA features are extracted using the same data set and the computational 

time to extract additional features is minimal, there is no additional burden to extract one versus 

many LA features. Therefore, in addition to providing support for LA as a clinical metric, this 

analysis demonstrates the potential benefits of having versatile set of detailed features related to 

impairment available from one data collection with minimal burden the to the participant. 

4.3.4.1 Limitations 

Especially in small sample sizes, attention must be paid to machine learning models to 

ensure that overfitting does not occur and that the results are an appropriate estimation for the goal 

of the analysis. For prediction models, it is critical that the model is assessed using a separate, 

unseen test set. If this does not occur, the model performance will appear inappropriately favorable 

as compared to when it is used in practice, since the model was assessed with the same data that 

was used in building it. A nested, leave-one-out cross-validation model was initially considered to 

estimate the performance of the LA and covariate features in calculating estimates for each 
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outcome. This model uses all participants but 1 for an inner-loop cross-validation to calculate 

model parameters and then tests the model built using those optimal parameters on the 1 held-out 

sample. It then iterates until each participant is used as an independent test set in the outer-loop. 

This method is able to estimate the model performance on unseen data while maximizing the size 

of the training set and without inducing bias.185-187 However, for the current analysis, we only 

aimed to determine the association between the measures of impairment and LA in a cross-

sectional sample and do not intend to use LA as a predictor of impairment, as this is not clinically 

useful. Thus, holding out a separate test set of samples or using a computationally intensive 

analysis such as nested cross-validation to assess the model performance on unseen data was not 

deemed necessary. Additionally, due to the large variability inherent to continuous outcomes (e.g., 

the LEMS 0-50 range of outcomes for strength), very large sample sizes are frequently required to 

obtain an adequate prediction and was logistically not possible for the current analysis.  

For the strength model with both LA + covariates, 35 features were included which is a 

large number given the sample of 40 participants. This large number of features combined with 

the unadjusted R2 for that model of 0.984 likely indicate that this model is overfit and would not 

generalize well to unseen data. As this analysis is only aimed at assessing the relationship between 

LA, covariates, and impairment and is not intended for prediction, this is not a critical issue. 

Despite the overfitting, there is still clearly additional variance explained by adding LA to the 

covariate features with respect to the strength outcome. Overfitting is not apparent in the sensation 

and spasticity models. Therefore, the results from this analysis are valid for estimating the 

relationship between LA and measures of impairment in our sample and additional steps were 

taken (cross-validation for feature selection parameters, targeted participant recruitment, etc.) to 

minimize the bias in the analysis and maximize the generalizability of the findings.  
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Although efforts were made to recruit a diverse sample particularly with respect to AIS 

grade, ambulatory ability, and the impairment outcomes, it is still possible that the sample does 

not fully capture the demographic characteristics of the whole SCI population.3 In addition to the 

model validation, the specific distribution of demographic characteristics among our sample 

population should be considered when generalizing the findings from this study to the wider 

population with SCI. 

Although only nights “typical” to how the participant normally sleeps were included in the 

analysis, it is possible that LA was affected by unusual sleep patterns, especially for the portion of 

the sample that had data collected while participating in adaptive sports events. Covariates that 

were likely to affect the LA data collection such as exercising, consuming alcohol, and daily and 

overall sleep quality were included in the models to ensure that these factors were accounted for 

in the analysis. The minimal change or decreased performance of the models when covariates were 

included supports that LA was not substantially affected by these factors.  

Although preliminary analyses to visually evaluate the intra- and inter-subject variance 

using boxplots were performed to improve the reliability and usefulness of LA and resulted in the 

core set of 133 features (described in Section 3.3.2), a formal reliability analysis has not been 

performed. LA features must be found to be reliable to ensure that the current findings represent 

the true relationship between LA and impairment and are not the result of chance from inconsistent 

LA features. 

Lastly, although we want LA to capture information that clinical tests lack, using those 

clinical measures as the outcome of the models limits extent to which the relationship between LA 

and impairment can be quantified. This limitation is because we cannot be sure how much of the 

variance in each impairment outcome that was not explained by the LA models is due to variance 
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induced by other sources not captured in this study or is due to the outcome not providing a 

sufficient measure of impairment. In the latter case, if an improved measure of impairment was 

used for each outcome, it is possible that LA would explain more of the variance than was reported 

in the current analysis. Although using alternative methods for assessing strength and tactile 

sensation would have been preferred such as using Biodex Dynamometry and monofilaments,8, 9, 

188 due to logistical constraints that was not possible. Using summed measures of strength and 

sensation over the whole lower limbs and a categorized measure of lower limb spasticity and only 

two clinicians for all assessments should minimize the effect of the limitations in reliability and 

responsiveness seen in the individual MMT, LT, and MAS measurements.56, 189, 190 

While determining the relationship between LA and impairment is important to understand 

the clinical relevance of this metric, measures of function, participation, and quality of life are 

more meaningful outcomes for individuals with SCI. The relationship between LA and ambulation 

with and without the inclusion of personal, psychosocial, and environmental factors (PPEF) was 

assessed in Aim 2. The finding that LA is moderately to strongly related to measures of impairment 

provides sufficient evidence of the validity of this measure, despite possible limitations associated 

with the strength, sensation, and spasticity outcomes. 

4.3.5 Conclusions 

These findings provide evidence of face, construct, and concurrent validity that LA 

measured from movements during sleep are related to measures of strength, sensation, and 

impairment among a sample with chronic SCI. This demonstrates that LA is a clinically 

meaningful metric of neuromuscular impairment that could be useful in many future applications 

including CPRs for ambulation after an acute SCI. 
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4.4 Aim 2: Use of LA and PPEF to Classify Ambulatory Ability 

Reprinted from Archives of Physical Medicine and Rehabilitation, In Press Journal Pre-

Proof, Rigot SK, Boninger ML, Ding D, McKernan G, Field-Fote EC, Hoffman J, Hibbs R, 

Worobey LA, Towards Improving the Prediction of Functional Ambulation after Spinal Cord 

Injury Through the Inclusion of Limb Accelerations During Sleep and Personal Factors, Copyright 

(2021), with permission from Elsevier. 

 

4.4.1 Introduction 

Of the nearly 18,000 people in the United States who sustain a SCI each year, about half 

are likely to regain ambulation with one-third likely to ambulate in the community.191, 192 Although 

walking is often a primary goal of patients,2, 193 there are negative consequences of attempting gait 

training if the person does not become a long-term functional ambulator.194-196 Similarly, there 

may be missed opportunities from not attempting gait training during the period with the highest 

possibility of neurorecovery if a person will likely ambulate in the future.197-200 CPRs have the 

potential to aid clinicians by determining a patient’s likelihood of ambulation early in the rehab 

stay so that therapies and expectations can be adjusted appropriately, which is especially important 

in the context of decreasing length of stays.43, 191, 201 

The most cited CPR for ambulation after SCI is by van Middendorp et al. which uses age, 

strength and sensation to predict the probability of walking 10m independently one year post-

injury.4, 5 This CPR demonstrated high accuracies in the original publication,4 external 

validations,5, 49, 50 and among a group with nontraumatic SCI (area under the curve=0.889-0.967).51 
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When used clinically, the van Middendorp CPR was found to be useful for patient motivation and 

setting realistic expectations.42 Variations of this CPR have also been published that include fewer 

predictors5 and different age cut offs.54 

However, recent publications have highlighted shortcomings of existing CPRs.6, 51, 54 

Outcomes are more poorly predicted for those with an incomplete SCI, the cohort for whom a 

better understanding of ambulatory prognosis would be most useful.19, 98 Further, most CPRs only 

predict whether or not an individual is likely to walk a short distance without assistance, but this 

may not be representative of whether the individual will walk functionally.4, 5, 58, 202 Rather, 

measures of speed and endurance can provide a more comprehensive view of functional 

ambulation and help to guide therapeutic interventions and patient expectations.102, 104 

Additionally, recent studies have highlighted the benefits of leveraging machine learning 

techniques to include a larger number of predictors and identify complex, non-linear relationships 

between predictors.58, 202, 203 

PPEF such as resilience, social support, accessibility, socioeconomic status, and pain can 

influence one’s ability to ambulate but have not been included in previous CPRs.10-12, 90, 91 Further, 

measures of actual movement, which can be collected through low-cost wearable accelerometers, 

may be more reliable, objective, and responsive following SCI than clinical measures.8, 9, 68, 75-77 

In humans and animals, it has been found that slight motor recovery soon after injury was 

predictive of functional motor recovery.59, 64, 65 In a pediatric population with muscular dystrophy, 

a moderate to good relationship was found between the intensity of movements measured with an 

activity monitor and both knee extension strength and the 6MWT, demonstrating the strong 

potential for LA to be related to functional mobility.204 Activity during sleep may encompass 

aspects of sensation to cue the individual to move and strength to perform the movement, as well 
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as other extraneous movements such as those triggered by spasticity.205-209 Since therapy may bias 

daytime activity early after SCI, LA is defined as movements during sleep at night. 

The objective of the current study was to assess the ability of LA and PPEF to classify 

functional measures of ambulation using random forest machine learning models among 

individuals with chronic, motor incomplete SCI. Evaluating this relationship in a cross-sectional 

study is a first step towards the development of a more accurate CPR that can be used early in 

acute rehabilitation to predict long-term functional ambulation after a new SCI. 

4.4.2 Methods 

4.4.2.1 Study Population 

In addition to the study criteria described in Section 4.1, participants were only included if 

they had voluntary leg movement (LEMS > 0). Those with motor complete injuries were not 

included, as they were not likely to be ambulating.99, 100 

4.4.2.2 Questionnaires, Clinical and Ambulatory Assessments 

All questionnaires, clinical and ambulatory assessments were collected as described in 

Section 3.0. Each clinical measure described in Table 3.2 to assess strength, sensation, and 

spasticity was included in the analysis both as the “best” limb (better of scores from right and left) 

and “bilateral” limb scores (sum of limb scores). For spasticity scores, the “worst” limb (higher 

limb spasticity score) was also included.  
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4.4.2.3 Analysis 

4.4.2.3.1 Model Input Variables 

LA features were collected and extracted from raw accelerations as described in Section 

3.2.3. Four sets of features were used to assess the classification accuracy of ambulatory outcomes: 

1) clinical/demographic, 2) LA and clinical/demographic, 3) PPEF and clinical/demographic, and 

4) all features (LA, PPEF, clinical/demographics, Figure 4.3). Clinical/demographic features are 

widely available in clinical settings and include a larger selection than just from the ISNCSCI 

exam that are generally used in previous CPRs.4, 5, 33  

 

Figure 4.3: Flowchart describing the feature sets for Aim 2 
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4.4.2.3.2 Model Outcome Variables 

To maximize the clinical utility of the model and to avoid overfitting while still providing 

increased resolution over current binary CPR outcomes, we categorized ambulatory ability into 3 

clinically relevant divisions based on literature (Table 3.3).2, 103, 105, 106 Due to an insufficient 

distribution of WISCI-II scores, only 10mWT and 6MWT were included in this analysis. 

4.4.2.3.3 Model Selection and Tuning 

Random forest models were used to classify each of the ambulation outcomes in Python 

3.8.178 Random forest is an ensemble method that uses subsets data to build many decision trees 

and then determines final predictions from the majority classifications of the individual trees. This 

results in a robust prediction that is often considered one of the most effective methods for handling 

high-dimensional data due to the ability to automatically handle interactions, ignore uninformative 

features, and resist overfitting.210, 211  

A nested, 4-fold inner-loop and leave-one-out (27-fold) outer-loop cross-validation 

procedure was used to avoid overfitting (Figure 4.4). Within each outer-loop fold, we 

simultaneously performed hyperparameter tuning and feature selection using a grid search 

algorithm with a 4-fold cross-validation using the inner-loop data and then applied the best 

parameters to a model made from the whole inner-loop dataset. This model is then applied to the 

individual, held-out, outer-loop test sample which is classified into 1 of the 3 ambulatory ability 

classes. Due to never pooling the full train and test sets, even with small sample sizes, this method 

produces a nearly unbiased estimate of the true error expected, instead of the overly-optimistic 

results expected without this method.185, 187 While it is possible for the inner-loop to choose 

suboptimal parameters due to overfitting, this would result in more misclassifications when applied 

to the test set and poorer overall model performance. Thus, by utilizing this strict cross-validation 
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method, our small sample would produce a conservative estimate of the possible performance 

expected in a larger sample, unlike other validation methods which would erroneously increase 

the test set accuracy.185-187  

Within in the inner-loop, the random forest models were tuned for the number of features 

to include by selecting between 3-20 features with the highest information gained with respect to 

the ambulatory outcome. Information gain is a feature selection algorithm that measures the 

amount of information gained (reduction in entropy) from the outcome variable by observing a 

given feature. A feature with more information gained provides a greater reduction in outcome 

unpredictability and is therefore more useful as a predictor of the given outcome than a feature 

with less information gained. Only the features that provided the most information about the 

ambulatory outcomes would be included in the final feature set for each outcome. Additionally, 

the random forest models were tuned for the number of features to be included per tree (20-75% 

of number of features selected), number of trees (50-500), and maximum depth of each tree (3-5). 

The ranges for each hyperparameter and which hyperparameters were chosen for tuning were 

based off preliminary analysis and to further minimize the risk of overfitting. Model performance 

was evaluated by overall classification accuracy (OCA), precision, recall, and F1-score that were 

calculated overall and per-class as described in Appendix C. 
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Figure 4.4: Flowchart showing leave-one-out nested cross-validation, with 27 outer-loop folds to estimate 

model performance and 4 inner-loop folds to optimize selection of hyperparameters and number of features. 

 

4.4.3 Results 

4.4.3.1 Participants 

Thirty-four participants completed the study; 6 were excluded from the analysis because 

they self-reported no “typical” nights of sleep during the collection period and 1 was excluded 

because he reported the ability to ambulate but required bracing that wasn’t available during the 

study period. Two additional participants with motor incomplete SCI that were included in the 
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analysis Aim 1 were not included here, as they had been enrolled after this analysis was completed. 

The majority of analyzed participants (n=27, Table 4.5) were male, non-Hispanic White, Veterans, 

high school graduates, with paraplegia, attending adapted sporting events, who primarily used a 

manual wheelchair. 
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Table 4.5: Ambulatory outcomes and demographic information from participants with motor incomplete SCI 

included in the analysis (n=27). 

Ambulatory Outcomes N (%) 

10m Walk Test (10mWT) 103, 212   
Non-ambulatory (0 m/s) 11 (40.7) 

Household ambulator (0.01-.44 m/s) 9 (33.3) 

Community ambulator (>.44 m/s) 7 (25.9) 

6-Minute Walk Test (6MWT) 213, 214   
Non-ambulatory (0 m) 11 (40.7) 

Household ambulator (1-204 m) 11 (40.7) 

Community ambulator (> 204 m) 5 (18.5) 

Categorical Demographics N (%) 

Sex  
Female 4 (14.8) 

Male 23 (85.2) 

Race/Ethnicity  
Non-Hispanic White 14 (51.9) 

Non-Hispanic Black 8 (29.6) 

Non-Hispanic Other Race 3 (11.1) 

Hispanic (Any Race) 2 (7.4) 

Veteran  
Not Veteran 4 (14.8) 

Veteran 23 (85.2) 

Annual Household Income  
<$25,000 8 (29.6) 

$25,000-$49,999 3 (11.1) 

$50,000-$74,999 5 (18.5) 

≥$75,000 8 (29.6) 

Decline to Answer or Unknown 3 (11.1) 

Education  
High School Diploma/GED 14 (51.9) 

Associate's Degree 7 (25.9) 

Bachelor's Degree 4 (14.8) 

Graduate Degree 2 (7.4) 

SCI Injury Level  
Paraplegia 17 (63.0) 

Tetraplegia 10 (37.0) 

SCI AIS Classification (Calculated)  
C 13 (48.1) 

D 14 (51.9) 

Data Collection Location  

Local 6 (22.2) 

Adapted Sporting Event 21 (77.8) 

Primary Mode of Mobility  
Walk 4 (14.8) 

Manual Wheelchair 19 (70.4) 

Power Wheelchair/Scooter 3 (11.1) 

Equally Walk and Wheel 1 (3.7) 

Continuous Demographics Mean ± SD (Range) 

Age 53.4 ± 10.9 (25-70) 

Years Since Injury 17.6 ± 12.0 (3.0-48.7) 
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4.4.3.2 10mWT 

The random forest model using LA and clinical/demographic features resulted in the 

highest classification accuracy (OCA= 0.704), while the clinical/demographics only model had 

the lowest accuracy (OCA= 0.593, Table 4.6, Appendix Table E.2). The model using LA and 

clinical/demographic features correctly classified non-ambulatory participants 82% of the time 

(F1-score= 0.900), while household (F1-score= 0.632) and community ambulators (F1-score= 

0.533) were more frequently misclassified.  

The model using LA and clinical/demographic features selected 3 LA features that were 

representative of movement smoothness (Num Med Crossings- IQR/Med) and variation in local 

dynamic stability (Lyapunov Exp- IQR, Appendix Table E.3). Similarly, when given the 

opportunity to select any available features (“All” feature set), the 2 LA features describing 

movement smoothness were chosen slightly more frequently. PPEF features related to exercise, 

sleep medication, sleep quality, alcohol consumption, emotional role limitations, and pain 

interference with social activity were also chosen from the “All” model. Other features such as 

sensation at L2 and L4, knee flexors and L3 strength, having pain, and being a Veteran were 

frequently chosen in all models. 

 Table 4.6: Random forest model ambulatory ability classification accuracy for each feature set and 

ambulatory outcome. *† 

Feature Set 

10mWT 6MWT 

OCA Precision Recall F1-Score OCA Precision Recall F1-Score 

Clinical & Demographics 0.593 0.576 0.593 0.581 0.667 0.670 0.667 0.667 

LA, Clinical & Demographics 0.704 0.737 0.704 0.715 0.815 0.824 0.815 0.817 

PPEF, Clinical & Demographics 0.667 0.689 0.667 0.669 0.741 0.744 0.741 0.740 

All 0.630 0.637 0.630 0.626 0.741 0.739 0.741 0.739 

* Model with the highest classification accuracy is highlighted grey per ambulatory outcome.  

† Precision, recall, and F1-score represent the weight average of the per-class scores. 
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4.4.3.3 6MWT 

The 6MWT also produced the highest classification accuracy with the LA and 

clinical/demographics feature set (OCA= 0.815, Table 4.6, Appendix Table E.2). Community 

ambulators were classified well (F1-score= 0.889); 2 participants each in the non-ambulatory (F1-

score= 0.818) and household ambulator (F1-score= 0.783) groups were misclassified.  

LA features of movement smoothness were frequently selected, while variations in local 

dynamic stability (Lyapunov Exp- IQR), movement timing (Start/End Move %- IQR/Med), and 

variation in positioning changes were selected less frequently (Grav Change Z- IQR, Appendix 

Table E.4). Commonly selected PPEF features from the “All” model included sleep medication 

use, exercise, and sleep quality. Frequently selected clinical/demographic features were similar to 

the 10mWT with the addition of presence of comorbidities. 

4.4.4 Discussion 

By including novel LA features in combination with clinical/demographic measures, 

random forest models exhibited higher classification accuracies, as compared to models that 

included only clinical/demographic features. Adding PPEF also enhanced the model, and may 

further increase model accuracy in a larger, more diverse sample with greater variability of 

responses. These findings indicate a likely benefit to using LA and potentially PPEF to improve 

prognosis for individuals with acute, incomplete SCI, a group whose mobility outcomes are 

currently not well predicted. Further, there is a demonstrated relationship between these features 

and functional measures of mobility. The added level of granularity from classifying multiple 

categories of each functional ambulation measure may increase clinical utility compared to CPRs 

that target only a binary walking/wheeling outcome.  
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Random forest models for the 10mWT exhibited higher accuracies when classifying non-

ambulators, while the 6MWT models were slightly better at classifying community ambulators. 

This demonstrates that the current features selected to classify each outcome are sufficient for 

some groups, but may need further refinement to better differentiate others. Since household 

ambulators are likely to use a wheelchair for community mobility, require additional assistance, 

and/or have worse long-term outcomes than community ambulators, these groups are important to 

distinguish.18 Previous work among individuals with SCI demonstrated differences in walking 

capacity can be detected using the 10mWT versus 6MWT and our results may further support the 

importance of using both outcome measures.103 

For both the 10mWT and 6MWT, the feature set that produced the highest classification 

accuracy included LA and clinical/demographic features. LA features were more prominently 

selected for the 6MWT versus the 10mWT. Measures of movement smoothness (Num Med 

Crossings- IQR/Med) were the most commonly selected LA features for both outcomes. When an 

individual has decreased motor control over a limb or increased spasticity, movements may more 

frequently change speed as opposed to a smoother movement performed by someone who has 

better strength, motor control, and likely better ambulatory ability. A similar measure was found 

to be negatively correlated to 6MWT distances among children with muscular dystrophy, 

indicating that more frequent and less smooth movements were related to poorer walking 

endurance.89 Greater smoothness has also been associated with improved gait quality when 

comparing health controls to those with Parkinson’s disease and peripheral neuropathy.146 

A benefit of using LA over common clinical predictors is the continuous nature of most 

LA features allows for a large amount of variability between participants, which provides greater 

responsiveness and ability to differentiate between ambulatory abilities. However, given the small 
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sample, some LA features may have been too variable to provide enough information about the 

ambulatory outcome to be useful in the models. Since unobtrusively wearing the accelerometers 

overnight allows for many LA features to be calculated with minimal data collection burden or 

computational cost, future analyses should not just be limited to the LA features selected in this 

analysis. LA features may be even better predictors in a larger sample or an acutely injured 

population.  

PPEF features related to exercise, sleep medication use, and sleep quality were most 

frequently selected. Previous studies among those with SCI have shown the benefit that exercise 

can have in improving walking outcomes,215, 216 even when walking was not included in the 

exercise program.217 However, ambulatory individuals with SCI have been shown to participate in 

less and have more negative attitudes towards physical activity than manual wheelchair users.218 

Additionally, both exercise and sleep have been related to gait and physical functioning in other 

populations.219-222 Thus, it can be inferred that individuals who have poorer sleep quality, and 

potentially rely on sleep medications, may have poorer ambulatory outcomes. 

Frequently selected clinical features for both ambulatory outcomes included variables used 

in previous CPRs like sensation and strength at L3, and also variables that were not selected in 

previous models such as sensation at L2 and L4.4, 5 Interestingly, knee flexors strength was 

consistently one of the most frequently selected features, but has not been included in previous 

prediction models since it isn’t measured in the standard ISNCSCI. Sufficient quadriceps (L3) and 

plantarflexors (S1) strength are important for ambulation; although, weaknesses can be overcome 

through bracing. However, knee flexors strength needed during the swing phase of gait is difficult 

to compensate for weaknesses and should be considered as a predictor in future models.  
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4.4.4.1 Limitations 

The present study utilized a cross-sectional cohort of individuals with chronic SCI. 

Although a study following individuals longitudinally after acute SCI is needed for future CPR 

development, collecting novel features and measuring mobility long-term is time and resource 

intensive. The current analysis was used as a preliminary step to determine which features are 

likely to be meaningful in a future CPR and the results are not intended to be used directly for 

longitudinal prediction. Since PPEF collected were stable over time and LA is likely to change in 

relation to neurological recovery, we expect that the results of this study are likely to be applicable 

when used with an acute SCI sample measured longitudinally.  

Since many participants completed the study while at sporting events, several steps were 

taken to control for any abnormal activity or sleep. Participants recorded exercise, alcohol and 

caffeine use on a daily log and these covariates were included in the analysis. Additionally, only 

nights reported as “typical” to how the participant would sleep in their normal environment were 

used. It is possible that the demographics of our sample aren’t representative of the population of 

people with SCI which may limit generalizability of the findings. 

Although likely important in the description of functional ambulation, the WISCI-II that 

assesses an individual’s need for assistance through the use of physical assistance, bracing, and 

assistive devices was not included as an outcome in the current analysis due to an insufficient 

distribution based upon our original categorization of the WISCI-II (using bracing as the 

determinant for individuals being classified into the middle category instead of assistive devices). 

The categorization used for the WISCI-II was changed after the completion of this. Given the 

improved classification of the 10mWT and 6MWT when utilizing LA features, we would expect 

that the WISCI-II would have improved results as well, but this should be further assessed.  
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Usually, small sample sizes could lead to model overfitting and inaccurately favorable 

results. Random forest algorithms have consistently demonstrated adequate classification 

accuracies in high-dimensional feature spaces with small samples containing complex, non-linear 

data.223 Additionally, the nested, leave-one-out cross-validation technique was utilized to eliminate 

this risk and produce an unbiased estimate of the true performance, regardless of the small sample 

size.185-187 Despite selecting ranges for feature selection and hyperparameter tuning to minimize 

the likelihood of overfitting, it’s possible that the training set models overfit during the inner-loop 

cross-validation, but this would result in the current findings being a conservative estimate of the 

possible improved performance given a larger sample. Future studies could include the use of 

multiple machine learning algorithms, potentially combined using ensemble methods, to improve 

accuracy and further reduce bias and overfitting. Similarly, there may be additionally predictors 

that are beneficial to include in future prediction models, but were not captured here.98, 203 

4.4.5 Conclusions 

Models including diverse feature sets (LA/PPEF) better classified participants into 

categories of functional ambulation than clinical/demographic features alone. Targeting functional 

categories of ambulatory ability, based on gait speed and endurance, may guide clinicians, patients, 

and families towards more optimal rehabilitation goals and manage expectations for recovery 

better than a binary outcome of walking/wheeling. Using novel predictors and machine learning 

may lead to a better CPR to guide clinicians towards the right mobility training for the right patients 

at the right time to maximize long-term outcomes and independence after SCI. 
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4.5 Cross-sectional Study Conclusions 

Aims 1 and 2 established that LA is related to clinical measures of neuromuscular 

impairment (strength, sensation, spasticity) and beneficial in the classification of ambulatory 

abilities (speed, endurance) among those with chronic, motor incomplete SCI. A variety of features 

such as those related to energy and power of movements, movement timing, and consistency were 

most strongly related to measures of impairment. Measures of movement smoothness, timing, and 

stability were most commonly selected in relation to measures of ambulatory ability. Compared to 

impairment, fewer LA features were selected as related to each classification for ambulatory 

ability; however, similar features were selected in both the analysis of neuromuscular impairment 

and ambulatory ability (Table 6.1 and Table 6.2). Limitations in the analysis of LA and impairment 

that were reported in Aim 1, including less responsive outcomes and stringent model validation, 

did not affect Aim 2 in the classification of functional ambulation using a strict leave-one-out 

nested cross-validation random forest model. This strengthens the findings from both Aims that 

LA is related to impairment and ambulation. 

Lyapunov Exp is a measure of local dynamic stability or chaos which may be a measure 

of the motor system’s ability to diminish perturbations and continue along a trajectory.224, 225 This 

feature was found to be related to both measures of ambulatory ability assessed (10mWT, 6MWT) 

and 2 of the 3 measures of impairment (strength, sensation). This feature has been shown to be 

related to improvements in lower limb rehabilitation,173 gait stability and changes in gait speed,146, 

225 and fall risk from measurements during gait.224, 226 Thus, finding the Lyapunov Exp to be related 

to strength, sensation, and gait indicates that this features is strongly related to clinical measures 

and is likely useful in a CPR for ambulatory ability. 
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The Num Med Crossings which measures movement smoothness was also found to be 

related to both the 10mWT, 6MWT, and strength after being normalized by the movement 

duration. If an individual is frequently changing increasing or decreasing their rate of changes in 

speed throughout a movement, then they would have an increased number of times that the 

acceleration-time signal crosses the median acceleration for that movement (higher Num Med 

Crossings). A similar measure of acceleration crossings was found to be related to 6MWT and 

weakly correlated to knee extensor strength among a sample of children with Duchenne Muscular 

Dystrophy.89 Additionally, other measures of movement smoothness have been associated with 

improved gait.146 This also demonstrates that this feature has excellent potential to be useful in a 

future CPR among individuals with acute SCI. While they had weaker relationships, LA features 

describing movement timing (Move/hour, Time Asleep, Start Move %) and changes in positioning 

(Grav Change Z) were also shown to be related to both ambulatory and impairment measures.  

Across nearly all models built using LA features, the majority of features selected were 

representing the IQR of the metric and a minority represented the median value. The only 

exception was the model for moderate spasticity, which had an equal proportion of LA features 

representing the IQR of the metric and median values. This indicates that the actual value of the 

feature is valuable, but the ability to have variability in movement characteristics may be more 

important. 

These similarities in the findings between the measures of impairment and ambulatory 

ability among participants with chronic SCI lay the foundation for LA to be utilized in other 

contexts as a more descriptive measure of impairment. It also further emphasizes that LA would 

likely be a useful predictor of long-term ambulatory ability among those with acute SCI.  

 



 91 

5.0 Longitudinal Study with Acute SCI Over the First Year Post-Injury 

5.1 Study Population 

Participants were approached during the first week of IPR at the UPMC Rehabilitation 

Institute Spinal Cord Injury Unit. We recruited adults (≥18 years) with a new, incomplete (AIS B, 

C, or D) SCI, based upon the neurological exam upon admission to IPR, or individuals for whom 

a mobility prognosis was unclear. At admission to IPR, individuals with AIS A injuries are unlikely 

to achieve ambulation; therefore, they were not included unless their primary physical therapist 

specifically noted that they had an unclear ambulatory prognosis (e.g. with a lower level of 

injury).35 Although individuals with an AIS B SCI are unlikely to begin gait training at admission 

to rehab, approximately 50% convert to AIS C or D injuries within the first year, 20-65% achieve 

some degree of ambulation, and 18-33% achieve functional ambulation, thus, this population is 

important to consider.4, 35, 36, 99, 109 Although we are not excluding individuals who have 

experienced a traumatic brain injury, we are excluding those with significant cognitive 

impairments as indicated by a score < 20/25 on the Modified Mini-Mental Status Exam (cutoff 

score was < 23/25 at the beginning of the study and was lowered mid-way through).227 Participants 

were excluded if they do not live a reasonable driving distance from one of our centers to allow 

for follow-up. However, to gather pilot data in preparation for the planned multi-site expansion of 

this longitudinal study, research at the University of Washington Harborview Medical Center and 

Shepherd Center were also trained to complete the same data collection as is performed in 

Pittsburgh. One participant was included in the analyses the University of Washington site and has 
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completed all follow-ups remotely. All participants completed informed consent as approved by 

the University of Pittsburgh institutional review board and the appropriate other site as needed. 

Follow-up data collections took place for approximately 1 week immediately prior to 

discharge from IPR and at 3-months, 6- months, and 1-year post-discharge from IPR. The 3-month 

follow-up was added mid-way through the study to increase the detail regarding changes over time 

and as such, limited data was collected at that time and it was not included in the analysis. 

Although, at admission to IPR, only participants with incomplete SCI or an unclear ambulatory 

prognosis were enrolled, participants with any severity of SCI could also be enrolled just prior to 

discharge from IPR as part of a separate analysis for a larger study; these participants are not be 

included in this dissertation. Data collection occurred during a 3-week window surrounding each 

follow-up time point (3-months, 6-months, and 1-year post-discharge). 

5.1.1 Sample Size Considerations 

This analysis was a pilot analysis as part of a larger study that aimed to enroll enough 

participants to build and evaluate a new clinical prediction model using LA and PPEF features 

collected at admission to IPR to predict 1-year ambulatory ability among a sample with acute, 

incomplete SCI. As such, these Aims were only intended to be exploratory and were not designed 

to be powered to detect statistical significance. We planned to recruit 25 participants for these 

analyses, assuming a 25% drop out rate and a final sample size of 20 participants that complete all 

time points through 1-year post-discharge from IPR.  

To date, we have enrolled 39 participants with incomplete SCI, of which, 33 completed the 

admission time point (Figure 5.1). Due to difficulties with data collection due to COVID-19 and 

the subsequent IRB restrictions such as the inability to follow-up with participants in skilled 
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nursing facilities and other difficulties (e.g., participants medical complications or passing away) 

the follow-up rates for the study were lower than anticipated. Additionally, 100% of the 3-month, 

68.8% of the 6-month, and 55.6% of the 1-year follow-ups were completed remotely due to 

COVID-19 restrictions, which resulted in collection of clinical and ambulatory measures being 

more sparse in those participants. To date, 23 participants have reached the 1-year time point, 

aligning with our original recruitment goals. The same overall sample is used in Aims 3 and 4, 

although for some analyses only a portion of the sample is utilized.  
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Figure 5.1: Flowchart of participant enrollment and follow-up from admission to IPR through 1-year post-

discharge 
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5.2 Longitudinal Study Analysis Overview 

Although still in the pilot phase, we were able to utilize the data from individuals with 

acute, incomplete SCI for multiple purposes with the goals to provide information about the 

psychometric properties of LA when measured acutely and determine which features of LA are 

most likely to be useful in a future CPR for ambulation. These goals were addressed over 4 

analyses that were grouped in to 2 Aims that assess the psychometric properties of LA (Aims 3a 

and 3b) and related LA to clinical measures (Aims 4a and 4b). For clarity, the reasoning behind 

each analysis and how it will benefit a future CPR will be briefly described here, with additional 

details and specific methodologies provided in later sections. 

For the purposes of a CPR, the most useful time point for prediction would be upon 

admission to IPR. Aim 3a assesses the reliability of LA features when measured within the first 

week after admission to IPR to determine the minimum number of typical nights needed to obtain 

a reliable, robust feature set. Only features that were determined to be reliable when measured at 

admission to IPR were used in the remainder of the analyses (Aims 3b, 4a and 4b). Additional 

information regarding validity, reliability, and responsiveness of predictors for use in a CPR was 

explained in Section 2.4.1.1). 

Aim 3b assesses the change in LA from admission to IPR through the first 6-months post-

discharge. Although LA features that are used in a CPR would be measured at admission to IPR, 

it is important to determine which features of LA are stable (Figure 5.2 a-c) or changing (“variable 

LA”) over time (Figure 5.2 d-f). Stable LA features provide the benefit of being time invariant; 

thus, there would be more flexibility in when LA was measured and utilized in a CPR if the CPR 

consisted of all stable LA features. Variable LA features that change over time in relation to 

measures of ambulatory ability or impairment may also be important to include in a CPR. These 
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features may capture changes in strength, sensation, and spasticity that affect the ability to walk 

and perform many other functional tasks (Figure 5.2e). The score of these variable LA features at 

admission to IPR might be predictive of the individual’s abilities and recovery potential. 

Additionally, variable LA may capture similar, but potentially more detailed and responsive, 

information to the clinical measures that CPRs frequently include currently.4, 5, 53, 58-63 LA features 

that change over time, but not in relation to clinical measures (Figure 5.2f), are not likely to be 

useful in a CPR. The association between changes in variable LA features and changes in 

ambulatory ability and impairment is evaluated in Aim 4a. However, this analysis found that the 

changes in LA compared to ambulatory ability and impairment may be better determined in a large 

sample, so these findings provide a preliminary assessment of the change LA compared to clinical 

measures over time, but further evaluation is needed. 

Aim 4b evaluates the relationship between LA measured at admission and ambulatory 

ability at 6-months to perform a preliminary assessment of which LA features are most likely to 

be beneficial in a future. Stable LA features may be useful as predictors in a CPR if they are able 

to differentiate between ambulatory abilities (Figure 5.2 b-c); thus, all stable LA features were 

evaluated. Variable LA may be useful if it changes over time in a clinically meaningful pattern, so 

variable LA features that were found to be related to ambulatory ability or impairment in Aim 4a 

were included. Because of the sample size limitations on the analysis for Aim 4a, variable LA 

features that were not significantly related to changes in ambulatory ability and impairment in Aim 

4a were still included in the analysis for Aim 4b. These 3 features were specifically noted and 

additional information for them is provided in Appendix H.1, as their usefulness in a future CPR 

is less clear. The features from admission to IPR that were identified as being related to 6-month 

ambulatory ability in Aim 4b are most likely to be beneficial to improve CPR accuracy when 
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predicting long-term ambulatory ability among those with acute, incomplete SCI. All LA features 

identified as meaningful in each analysis are summarized in Table 6.1 and Table 6.2. 

 

Figure 5.2: Examples of a-c) stable and d-f) variable LA features.a) Trajactoreies of a stable LA feature over 

time per participant; b) example of a stable LA feature that is visually different and c) not different between 

ambulatory ability groups. d) trajectories of each participant’s variable LA feature over time; e) example of a 

variable feature (red) that is related to and f) not related to an ambulatory outcome (6MWT, blue) over time 

for 3 participants (corresponding LA and 6MWT scores for the each participant have the same marker shape 

and line pattern). Stable features that are related to measures of ambulatory ability (b, green outline) or 

variable features that change in relation to ambulaotry ability or impairment (e) are most likely to be useful 

in a CPR for ambulation, while features with little variance between ambulatory groups (c, red outline) or 

inconsistient changes (f) are unlikely to be useful in a CPR. 
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One major limitation of these analyses should be noted in advance as it affects Aims 3b, 

4a, and 4b. In Aim 3a, it was found that measuring LA from the combination of 2 typical nights 

provided the best balance between obtaining numerous reliable LA features, minimizing collection 

burden to participants and clinicians, and maximizing clinical utility. However, due to sample size 

limitations in certain ambulatory ability groups, we decided to utilize any participants with at least 

1 typical night measured for the remaining exploratory analyses. Two participants (16.7%) that 

were included in Aims 3b, 4a, and 4b only had one typical night collected at admission to IPR. 

However, 10 of 12 participants at admission and all participants at discharge and 6-months post-

discharge had at least 2 typical nights included.  

5.2.1 Long-term outcome 

Although the longitudinal study outcome was intended to be 1-year post-discharge from 

IPR, only 23 participants reached the 1-year time point to date, of which only 8 participants 

completed the full collection. However, the rate of motor recovery has been shown to substantially 

decline by 6-months.59, 228, 229 When assessing the Spearman’s rank correlations between the 

ambulatory and impairment outcomes (strength, sensation) at 6-months and 1-year post-discharge 

(Table 5.1), we found that the outcomes were all highly correlated, except the sensation 

measurements. Due to restrictions from COVID-19, many of the follow-up collections occurred 

remotely and utilized the participant’s own physical therapist (if still attending and willing to 

assist), which limited the small sample size for that measure. The low likelihood for the ambulatory 

and impairment outcomes to substantially change from 6-months to 1-year post-injury and the high 

correlation between 6-months and 1-year in our data, compounded with the larger sample collected 

at 6 months, led to the use of the 6-month assessments as the final outcome in these analyses. 
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Additional comparisons between the ambulatory categorization for each outcome (WISCI-II, 

10mWT, 6MWT) at each time are shown in Appendix Table F.1 for all participants in the study, 

and Appendix Table H.2 for all participants included in the sample for Aims 3b and 4a. 

Table 5.1: Spearman correlations between outcomes at 6 months and 1-year post -discharge 

Outcome n r p 

WISCI-II 8 1.000 0.001 

10mWT 8 0.952 0.001 

6MWT 8 0.833 0.015 

Strength (LEMS) 4 0.800 0.333 

Sensation (Lower Limb LT) 4 0.211 0.833 

 

5.3 Aim 3: Reliability and Stability of LA Measured Acutely 

5.3.1 Introduction 

In Aims 1 and 2, evidence was provided to support the validity of LA being related to 

neuromuscular impairment and ambulatory ability in a sample with chronic SCI. However, the 

primary proposed use for LA is in a CPR for a sample with acute SCI to predict ambulatory ability 

1-year later. In the initial days after a SCI, the spinal cord is in shock and the individual may 

experience substantial impairments including flaccidity, loss of all sensation, and loss of reflexes 

caudal to their level of injury.230 In the days to months that follow, an individual may experience 

substantial changes to their neurological system including the development of hyperreflexia and 

spasticity as well as possible motor and sensory recovery.230 Additionally, sleep-disordered 

breathing, such as obstructive sleep apnea, can be highly prevalent after SCI and develops in up to 

60% of individuals with a cervical SCI within 2 weeks after injury.231 All of these changes, 
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compounded with data collection challenges innate to the inpatient setting, could potentially affect 

the measurement of LA among those with an acute SCI. Therefore, the psychometric properties of 

LA when measured acutely must be assessed, as individuals with acute SCI often present with 

very different characteristics than those in the chronic phase. 

For a feature to be useful as a predictor in a CPR, one of the most important characteristics 

it must possess is being reliable.232 Reliability refers to the extent to which a measure yields the 

same results each time it is administered, all other things being equal.55, 233 As long as sleep 

characteristic are within the normal range for that participant and considered typical of how they 

have slept since their injury, we expect that features of LA across multiple days of data collection 

upon admission to IPR can be measured reliably. Understanding the intra-subject reliability of LA 

features between nights will also allow us to identify a minimum number of nights necessary for 

a reliable set of LA features to be collected. 

Although patients begin physical and occupational therapy while in the acute care setting, 

intensive rehabilitation generally does not begin until the individual is admitted in to IPR. Patients 

typically spend a median of 11 days on acute care after SCI before being admitted to IPR, however 

this may vary substantially based upon an individual’s injury level and other medical needs.3 For 

LA to be a successful predictor in a CPR, it must be able to produce consistent and accurate 

predictions regardless of if the participant is a few days or a few weeks post-injury.232, 234 Further, 

learning which LA features remain stable over time will provide a deeper understanding of how 

well the findings from Aims 1 and 2 in the sample with chronic SCI generalize to participants with 

acute injuries. 

Therefore, this analysis had the following goals: Aim 3a) to establish which features of LA 

can be reliably measured across nights when collected at admission to IPR and Aim 3b) to evaluate 
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which features of LA remain stable from admission to IPR through 6-months post-discharge. We 

hypothesized that a set of LA features could be identified that produced at least moderate reliability 

when examining intra-subject reliability at admission to IPR and stability between time points 

through 6-months post-discharge. 

5.3.2 Methods 

For Aim 3a, participants were included if they had at least 2 nights of accelerometer data 

recorded from admission to IPR that they self-reported on the sleep log as being “typical” to how 

they have slept since their injury. For Aim 3b, participants were included if they had at least 1 

typical night collected at admission to IPR, just prior to discharge, and 6-months post-discharge 

from IPR. Clinical and ambulatory assessments were collected and LA was pre-processed as 

described in Section 3.0 to extract 133 features (Table 3.4).  

5.3.2.1 Analysis 

5.3.2.1.1 LA Intra-subject Reliability at Admission to IPR (Aim 3a) 

Intraclass correlation coefficients (ICCs) were calculated to assess the level of agreement 

between the first two typical nights recorded from each participant. Pearson correlations that only 

assess the trend of the data and may be misleading if data shows the same pattern but not the same 

values. In contrast, ICCs are able to assess both the trend and absolute agreement between sets of 

data. ICCs are calculated from the mean squares from the repeated measures analysis of variance. 

To assess intra-subject reliability between nights, we utilized a 2-way mixed effects ICC for 

absolute agreement of single and average nights.234, 235 If the reliability is sufficient for single night 
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ICCs, then it would indicate that those LA features could be measured from any individual night 

collected during the first week of admission to IPR and be considered reliable when used in future 

applications. The average nights ICC was also included to compare the reliability if the first two 

typical nights when they were are combined. Although we utilized a median nights approach 

previously to combine the LA features from individual nights into one set of features per 

participant and collection (Section 3.3.2), our approach to using LA more closely resembles the 

average nights analysis. Both the single and average nights calculations are performed within the 

ICC model based upon the input data from individual nights collected per participant. We 

considered a feature to be “reliable” if had an intra-subject reliability defined as an ICC greater 

than 0.5.235 Additionally, ICC values from 0.75 - 0.9 indicate good reliability and greater than 0.9 

indicate excellent reliability.235 

Since ICC calculations require a consistent number of nights to be included for each 

participant, only the first 2 typical nights were used to maximize our sample size. However, most 

participants wore the accelerometers for 2 - 7 days and many recorded more than 2 typical nights. 

Additional analyses were performed using all participants that had at least 3 and 5 typical nights 

to compare between the ICCs when using the first 2 nights and these increased numbers of nights. 

This was done to ensure that even though only the first 2 nights were utilized in the primary 

analysis, there were not substantial differences between the first 2 nights and additional nights 

collected. This also improves our ability to identify a minimum number of nights necessary to 

collect to result in a reliable set of LA features. 

5.3.2.1.2 LA Stability Over Time (Aim 3b) 

LA from multiple typical nights were combined as one set of features per collection by 

taking the median and IQR across all typical nights per participant as described in Section 3.3.2. 
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ICCs were again used to quantify the agreement between time points for all LA features that were 

found to be reliably measured at admission to IPR in Aim 3a. Since each time point is a separate 

sample and there is limited clinical value to combining time points, ICCs were only assessed for a 

single collection using a 2-way mixed, absolute agreement ICC analysis.235 Additionally, boxplots 

of each LA feature across the collection times and line graphs of each participant’s LA feature 

values for each time point were visually assessed to confirm the ICC findings since the ICCs may 

be affected by the smaller sample size. The general trends of the line plots as well as the variation 

in the range, IQR, and median for discharge and 6-months as compared to admission for the 

boxplots were used to classify a feature’s stability over time (Figure 5.2). A LA feature was 

considered “stable” over time if it had a single collection ICC > 0.5 indicating moderate reliability 

and was visually confirmed to be stable when plotted. 

5.3.3 Results 

5.3.3.1 Participants 

Thirty-one of 33 (93.9%) participants who had data collected at admission to IPR had at 

least 2 typical nights recorded and were used for the intra-subject reliability analysis (Aim 3a). 

Additionally, 24 (72.7%) and 11 (33.3%) participants had at least 3 or 5 typical nights recorded at 

admission, respectively, and were included in the supplemental analysis. Thirteen participants 

completed the admission, discharge, and 6-month collections; of these one had no ankle 

movements recorded across any night during the collection and was excluded as his ankle 

accelerometers were likely removed each night. Therefore, 12 participants were included in the 

stability analysis (Aim 3b). Categorical and continuous demographic information for the 

participants included in each analysis are shown in Table 5.2 and Table 5.3, respectively.  
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For both analyses, participants were primarily male, Non-Hispanic White, non-Veterans, 

with a variety of annual incomes, educational levels, and insurance providers. There was one 

participant with AIS A (complete) paraplegia who was included due to his low level of injury (L2) 

and unclear ambulatory prognosis. That participant had improved to a L4 AIS B injury by 

discharge from IPR. All other participants had an incomplete SCI (AIS B, C or D) and the majority 

had cervical injuries. By discharge from IPR one participant used in Aim 3b improved from AIS 

B to AIS C paraplegia, while all others stayed in the same category.  

Demographics for participants who were included in the analysis and those who had 

reached the 6-month time point, but did not complete all necessary parts of the data collection to 

be included in the analysis for Aim 3b are described in Appendix Table G.1 and Appendix Table 

G.2. Compared to those who were included in the analysis, those who were excluded had a 

significantly longer length of stay in IPR (47 vs 34 days), and at discharge start the data collection 

later, have fewer individuals who could ambulate (7.7% could walk without physical assistance vs 

58.3%, 25% were at least household ambulators vs 54.5% who were included), and have a slower 

gait speed (0.1 m/s vs 0.4 m/s). 

For Aim 3b, by discharge, 3 (25%) participants were primarily ambulating for mobility and 

by 6-months post-discharge, 8 (66.7%) were primarily walking (1 additional participant was a 

limited ambulator and primarily used a manual wheelchair). 
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Table 5.2: Categorical participant demographics at admission to IPR for Aim 3 

Categorical Demographics 

Aim 3a Aim 3b 

N (% of total n=31) N (% of total n=12) 

Sex   

Female 10 (32.3%) 5 (41.7%) 

Male 21 (67.7%) 7 (58.3%) 

Race/Ethnicity 
  

Non-Hispanic White 23 (74.2%) 9 (75.0%) 

Non-Hispanic Black 4 (12.9%) 1 (8.3%) 

Non-Hispanic Other Race 1 (3.2%) 0 (0.0%) 

Hispanic (Any Race) 3 (9.7%) 2 (16.7%) 

Veteran 
  

Not A Veteran 27 (87.1%) 11 (91.7%) 

Veteran 4 (12.9%) 1 (8.3%) 

Annual Household Income 
  

< $25,000 7 (22.6%) 1 (8.3%) 

$25,000 - $49,999 7 (22.6%) 3 (25.0%) 

$50,000 -$74,999 4 (12.9%) 3 (25.0%) 

≥ $75,000 5 (16.1%) 1 (8.3%) 

Decline to Answer or Unknown 8 (25.8%) 4 (33.3%) 

Education 
  

Less Than High School 4 (12.9%) 2 (16.7%) 

High School Diploma/GED 13 (41.9%) 6 (50.0%) 

Associate's Degree 6 (19.4%) 2 (16.7%) 

Bachelor's Degree 3 (9.7%) 1 (8.3%) 

Graduate Degree 1 (3.2%) 0 (0.0%) 

Other 4 (12.9%) 1 (8.3%) 

Medical Insurance 
  

Private 14 (45.2%) 3 (25.0%) 

Medicaid 7 (22.6%) 3 (25.0%) 

Medicare 1 (3.2%) 1 (8.3%) 

VA 2 (6.5%) 0 (0.0%) 

No Insurance 1 (3.2%) 1 (8.3%) 

Other/Multiple 6 (19.4%) 4 (33.3%) 

SCI Neurological Category at Admission to IPR 
  

Motor Complete (AIS A or B) Tetraplegia 2 (6.5%) 1 (8.3%) 

Motor Complete (AIS A or B) Paraplegia 4 (12.9%) 3 (25.0%) 

AIS C Tetraplegia 10 (32.3%) 1 (8.3%) 

AIS C Paraplegia 2 (6.5%) 1 (8.3%) 

AIS D Tetraplegia 11 (35.5%) 5 (41.7%) 

AIS D Paraplegia 2 (6.5%) 1 (8.3%) 

Primary Mode of Mobility at Admission to IPR 
  

Power Wheelchair 27 (87.1%) 9 (75.0%) 

Manual Wheelchair 4 (12.9%) 3 (25.0%) 
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Table 5.3: Continuous participant demographics for Aim 3 

Continuous Demographics 

Aim 3a Aim 3b 

Mean ± SD (Range) 

(Total n=12) 

Mean ± SD (Range) 

(Total n=12) 

Age 51.0 ± 17.5 (18 - 82) 45.8 ± 17.8 (18 - 71) 

BMI 28.8 ± 6.9 (15 - 47) 27.8 ± 3.4 (23 - 35) 

LEMS (Strength) 22.5 ± 15.4 (0 - 47) 23.8 ± 16.0 (0 - 47) 

Lower Limb LT (Sensation) 10.1 ± 6.6 (0 - 20) 10.5 ± 7.1 (0 - 20) 

Number of Nights Collected 5.1 ± 2.1 (2 - 7) 4.6 ± 1.9 (2 - 7) 

Number of Typical Nights Collected 4.6 ± 2.0 (2 - 7) 3.5 ± 2.0 (1 - 7) 

Length of Stay in IPR (Days) 38.8 ± 11.2 (12 - 64) 32.6 ± 10.2 (12 - 43) 

Days from Injury to Start of IPR 14.6 ± 7.7 (5 - 30) 14.8 ± 16.0 (5 - 62) 

Days from Injury to Start of Data Collection 18.4 ± 8.5 (7 - 36) 17.5 ± 15.9 (9 - 65) 

5.3.3.2 LA Intra-subject Reliability at Admission (Aim 3a) 

An example of the consistency of LA between nights per participant is shown in Figure 5.3 

and additional examples are provided in Appendix Figure G.1 and Appendix Figure G.2. Of the 

133 LA features assessed, 72 (54.1%) features had at least moderate reliability and 6 (4.5%) had 

good reliability when averaged over the first 2 typical nights collected at admission to IPR (brief 

results in Table 5.5; full results shown in Appendix Table G.3). Using the single night ICCs, 25 

(18.8%) features had moderate reliability and none had good reliability.  

 

Figure 5.3: Example of LA across each accelerometer for 3 typical nights at admissionfor one participant 

with an L1 AIS D SCI 
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Table 5.4: ICCs of reliable LA features to assess intra-subject reliability (Aim 3a) and stability over time 

from admission to IPR through 6 months post-discharge (Aim 3b) 

    
LA Admission Intra-subject 

Reliability (Aim 3a) * 

LA Stability Over 

Time (Aim 3b) † 

Feature Category Feature Name 

Average 

Nights ICC 

Single Night 

ICC 

Single Collection 

ICC 

Change in angle of 

inclination 

Angle Net Change-Med 0.662 0.495 0.495 

Angle Rate Change-IQR 0.595 0.424 0.482 

Angle Rate Change-Med 0.738 0.585 0.427 

Angle Total Change-IQR 0.576 0.404 0.502 

Angle Total Change-Med 0.816 0.689 0.559 

Change in gravitational 

acceleration 

Grav Change X-IQR 0.571 0.400 0.538 

Grav Change Y-IQR 0.604 0.433 0.087 

Grav Change Z-IQR 0.815 0.688 0.424 

Grav Change Z-Med 0.618 0.447 0.158 

Correlation coefficients 

between axes 

Corr YZ-IQR 0.687 0.523 0.043 

Frequency domain Bandwidth-Med 0.572 0.401 0.803 

Centroid Freq-Med 0.501 0.334 0.727 

Dom Freq 1-Med 0.597 0.426 0.653 

Med Freq-IQR 0.721 0.563 0.575 

Med Freq-Med 0.634 0.464 0.746 

Power Dom Freq 1/Total-Med 0.609 0.438 0.783 

Power Dom Freq 1-Med 0.585 0.414 0.615 

Power Dom Freq 2-IQR 0.614 0.443 0.436 

Power Dom Freq 2-Med 0.704 0.543 0.647 

Power Dom Low Freq-IQR 0.566 0.395 0.527 

Power Dom Low Freq-Med 0.669 0.503 0.662 

Power High Freq/Total-Med 0.588 0.416 0.663 

Power Total-IQR 0.554 0.384 0.523 

Limb movement 

percentages 

Bilat Ankle % 0.600 0.429 0.299 

Unilat Ankle % 0.600 0.429 0.299 

Median crossings Num Med Crossings Norm-Med 0.644 0.474 0.545 

Num Med Crossings-IQR 0.629 0.459 0.264 

Num Med Crossings-Med 0.619 0.448 0.260 

PLM Num PLM Norm 0.827 0.706 0.302 

PLM % 0.716 0.557 0.579 

PLM Index 0.740 0.587 0.101 

Relationship to recent 

movements 

Close Cross Corr Peak-IQR 0.652 0.483 0.756 

Dom Freq Last 90s-Med 0.673 0.508 0.762 

Max Cross Cov-Med 0.511 0.343 0.612 

Move Last 90s-Med 0.581 0.409 0.181 

Move Next 90s-Med 0.581 0.409 0.181 
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Table 5.4 Continued 

    
LA Admission Intra-subject 

Reliability (Aim 3a) * 

LA Stability Over 

Time (Aim 3b) † 

Feature Category Feature Name 

Average 

Nights ICC 

Single Night 

ICC 

Single Collection 

ICC 

Signal characteristics Entropy Rate-IQR 0.640 0.471 0.748 

Entropy Rate-Med 0.600 0.429 0.410 

Lempel-Ziv Comp-Med 0.534 0.364 0.553 

Lyapunov Exp-IQR 0.618 0.448 0.676 

Wave Approx-Med 0.688 0.525 0.297 

Wave Energy 2-IQR 0.637 0.467 0.417 

Wave Energy 2-Med 0.716 0.558 0.392 

Wave Energy 3-IQR 0.804 0.672 0.269 

Wave Energy 3-Med 0.720 0.563 0.165 

Wave Entropy-Med 0.668 0.502 0.343 

Statistical AUC Acc Norm-IQR 0.568 0.396 0.649 

AUC Acc Norm-Med 0.694 0.531 0.674 

AUC Acc-IQR 0.669 0.503 0.586 

AUC Acc-Med 0.654 0.486 0.701 

Duration-IQR 0.55 0.379 0.413 

Duration-Max 0.576 0.404 0.143 

Duration-Med 0.631 0.46 0.726 

Kurtosis-Med 0.58 0.409 0.577 

Max Acc-IQR 0.638 0.468 0.723 

Max-RMS Acc-Med 0.613 0.441 0.596 

Med Acc-IQR 0.553 0.382 0.543 

Med Acc-Med 0.782 0.642 0.646 

Range Acc-IQR 0.641 0.472 0.725 

RMS Acc-Med 0.577 0.406 0.643 

SD Acc-IQR 0.513 0.345 0.701 

Skewness-Med 0.593 0.421 0.612 

SMA Acc-IQR 0.617 0.447 0.66 

SMA Acc-Med 0.704 0.544 0.661 

Timing Move/hour 0.693 0.530 0.129 

Move/night 0.608 0.437 0.147 

Time Asleep 0.721 0.564 0.302 

Velocity and distance Med Vel-IQR 0.588 0.417 0.535 

Med Vel-Med 0.775 0.633 0.350 

RMS Vel-Med 0.590 0.418 0.475 

Total Dist-IQR 0.706 0.546 0.552 

Total Dist-Med 0.673 0.507 0.702 

* ICC values > 0.5 (moderate reliability) are highlighted grey and those > 0.75 (good reliability) are also bolded. 

† If also visually confirmed, ICC values > 0.5 are highlighted grey and those > 0.75 are also bolded. 
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Table 5.5: Number of LA features that are reliable at admission using 1-5 typical nights 

Number (%) 

of LA 

Features 

with… 

Participants with 

≥ 2 Typical 

Nights (n=31) 

Participants with ≥ 3 Typical 

Nights (n=24) 

Participants with ≥ 5 Typical Nights 

(n=11) 

Nights 1-2 Nights 1-2 Nights 1-3 Nights 1-2 Nights 1-5 

Ave 

Nights 

Single 

Night 

Ave 

Nights 

Single 

Night 

Ave 

Nights 

Single 

Night 

Ave 

Nights 

Single 

Night 

Ave 

Nights 

Single 

Night 

Moderate 

Reliability 

(ICC > 0.5) 

72 

(54.1%) 

25 

(18.8%) 

77 

(57.9%) 

33 

(24.8%) 

97 

(72.9%) 

13 

(9.8%) 

86 

(64.7%) 

61 

(45.9%) 

98 

(73.7%) 

18 

(13.5%) 

Good 

Reliability 

(ICC > 0.75) 

6 

(4.5%) 

0 

(0.0%) 

11 

(8.3%) 

1 

(0.8%) 

13 

(9.8%) 

0 

(0.0%) 

51 

(38.3%) 

16 

(12.0%) 

48 

(36.1%) 

0 

(0.0%) 

 

Appendix Table G.4 shows the ICC for average and single nights for participants with 2 

(n=31), 3 (n=24), and 5 (n=11) typical nights. When using 3 or 5 typical nights, the number of LA 

features that have at least moderate reliability increased compared to only using the first 2 nights 

with the same participants. Additionally, when examining the ICCs for each feature, 97 of 133 

(72.9%) LA features increased the average nights’ ICC when using 3 nights compared to 2. 

Similarly, 74 (55.6%) features increased their average nights reliability when using 5 nights 

compared to 2. The average of 5 nights also produced the most features with good reliability 

(48/133, 36.1%). Using the average of 3 nights and 5 nights produced nearly the same number of 

reliable LA features (97 and 98, respectively). However, the smaller sample of participants with 

at least 5 typical nights collected at admission is likely biased towards having more consistent 

nights, as seen by the increased reliability when just using the first 2 nights in that sample. The 

proportion of features that were reliable when used as a single night decreased with each additional 

night included in the analysis. 
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5.3.3.3 LA Stability Over Time (Aim 3b) 

The 72 LA features that had at least moderate reliability when measured using the average 

of the first 2 typical nights were assessed for stability from admission to IPR through 6-months 

post-discharge (Table 5.4 and full results in Appendix Table G.5). Forty-two (58.3%) LA features 

were initially classified as being stable due to having an ICC > 0.5. However, eight features were 

found to not be stable when assessed visually. Therefore, 34 (47.2%) LA features were determined 

by ICC and visual confirmation to be stable over time. Of the 38 features that were not stable over 

time (called “variable” features), 6 (15.8%) were consistently increasing, 4 (10.5%), were 

consistently decreasing, and 28 (73.7%) were changing inconsistently. 

Mean ± SD plots were initially used to show the trajectory of LA features for all 

participants averaged per time point, but these were found to be misleading at times compared to 

the per participant line graphs. It was noted that for variable, inconsistently changing LA features, 

participants may change over time in opposite directions which may lead to the mean ± SD 

appearing stable. For example, in Figure 5.4, a slight increase of 0.21 can be appreciated in the 

mean ± SD plot (a), but this feature still appears relatively stable over time. However, in Figure 

5.4b, it can be clearly seen that there are participants changing in various directions and in non-

negligible amounts.  
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Figure 5.4: Examples of a) mean±SD plots versus b) individual line graphs per participant to assess LA 

stability over time. For reference, the feature shown had an ICC= 0.427. 

 

After noting the misleading findings associated with the mean ± SD plots, the per 

participant line graphs and boxplots were used to guide visual analyses. An example of a visually 

classified stable and unstable feature are shown in Figure 5.5. Although some intra-subject 

variation is still noted in Figure 5.5a and the median of the boxplot for 6-months in Figure 5.5b is 

at the top of the 95% confidence interval for the median at admission, this feature was still noted 

to be stable since most participants showed little change over time. This is further confirmed by 

the very similar ranges and IQRs for each time point noted in the boxplots. Alternatively, for Power 

Dom Freq 1- Med the ICC values would have classified this feature as stable (ICC= 0.615), but 

the per participant line graphs (Figure 5.5c) demonstrate very large changes at each time for 4 

participants and moderate changes between discharge and 6-months for an additional 2 

participants. This inconsistency is also noted in the Figure 5.5d boxplot where the range of values 

substantially increases from admission to discharge and the median is just below of the 95% 

confidence interval at discharge and approaching the upper bound at 6-months. Although it is 

possible that this feature remains stable for a minority of participants, it was classified as being 

unstable overall. 
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Figure 5.5: Examples of a visually stable feature (top) and a visually unstable feature (bottom) per 

participant line graphs (left) and per time point boxplots (right). The red dashed line on the boxplots shows 

the median and the black dotted lines are the 95% confidence interval of the median at admission. For 

reference the stable (Bandwidth- Med) and unstable (Power Dom Freq 1- Med) ICC values were 0.803 and 

0.615, respectively. 

 

Figure 5.5c also demonstrated another trend that was frequently seen during the analysis: 

the appearance of sub-grouped trajectories. As already mentioned, the Power Dom Freq 1- Med 

feature seems to consist of 3 groups that change in similar patterns to others in the group, but 

change differently than others not in the group. In Aim 4a, we will further explore these trajectories 

and how they relate to clinical measures of impairment and ambulation to see if participants with 

similar functional characteristics follow similar LA trajectories over time.  
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5.3.4 Discussion 

Of 133 initial LA features, a subset of 72 features were found to be reliable when measured 

at admission over the first 2 typical nights and 34 of those were stable from admission to IPR 

through 6-months post-discharge. The knowledge that LA can be reliably measured in the inpatient 

setting among individuals with acute, incomplete SCI provides evidence that LA would be useful 

in a CPR for ambulation. Additionally, trends were noticed in the variable LA features that may 

be related to changes in impairment and ambulation and will be further explored in Aim 4. 

When evaluating the intra-subject reliability of LA features measured at admission, it was 

found that the reliability increased when averaged across an increased number of nights, but the 

single night reliability decreased. This may indicate the LA can still be used reliably when 

measured over a single night, but the features available may be limited. Nearly the same number 

of features were reliably measured when using 3 or 5 nights; as such, using the combination of 3 

typical nights may optimize the number of reliable LA features while minimizing data collection 

burden. However, measuring 2 nights still found over half of the assessed features to be reliable. 

In the context of CPRs, patients and clinicians would most benefit from a prediction provided as 

early in the IPR stay as possible and the CPR has a higher likelihood of being utilized if it is 

minimal burden to collect the necessary data.236 Therefore, the 72 LA features collected over the 

first 2 typical nights with an at least moderately reliable average night ICC were utilized as the 

“reliable” features in further analyses in this dissertation. 

A wide variety of LA features from every feature category were found to be reliable. This 

ensures that diverse characteristics of participant’s movements would still be captured if only using 

reliable features in future analyses and this assortment of features should be more informative in a 

CPR than clinical measures primarily used in previous CPRs which represent single domains of 
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function.4, 5, 53, 58-63 This is reinforced by 17 of the 35 (48.6%) LA features associated with 

impairment among a sample with chronic SCI in Aim 1 were found to be reliable when measured 

in a sample with acute, incomplete SCI (Table 6.2). Likewise, 4 of the 6 (66.7%) LA features 

found to be associated with ambulation in the sample with chronic, motor incomplete SCI in Aim 

2 were also found to be reliable when measured acutely. The numerous features related to measures 

of impairment and ambulation in a sample with chronic SCI and able to be reliably measured in 

an acute population demonstrates versatility and the high potential for these features to be related 

to clinical measures and predictive of ambulation in an acute sample. These relationships will be 

further explored in Aim 4. 

Alternatively, our findings indicate that 51.4% of the features associated with impairment 

(Aim 1) and 33.3% associated with ambulation (Aim 2) in the sample with chronic, primarily 

motor incomplete SCI were not found to be reliable in the acute, incomplete population. Although 

preliminary analyses to evaluate the intra- and inter-subject variability were assessed in the sample 

with chronic SCI using visual analyses of boxplots for each feature (described in 3.3.2), we did 

not perform a structured reliability analysis as performed here for the acute SCI sample. Therefore, 

the reliability should be formally assessed among those with chronic SCI, especially for the 

features that were found to be related to impairment or ambulatory ability in Aims 1 and 2, but 

were not reliable in the sample with acute SCI.  

Another possible explanation for the discrepancy in reliability compared to the chronic SCI 

sample, is that some changes inherent to an acute SCI and the differences in data collection setting 

(IPR vs community setting) may have affected the ability to measure some LA features reliably at 

admission to IPR. For example, 5 of the 6 features representing the correlations between axes for 

each movement that describe the consistency of movement directions were associated with 
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impairment, but only 1 of those features was found to be reliable in the acute setting (Corr YZ- 

IQR). Since participants in an acute setting are more likely to be limited in their sleeping positions 

and may have less motor ability to voluntarily change positions within each night, these features 

may be too dependent on how the participant is initially positioned at night in the acute setting 

whereas participants with chronic SCI may have improved ability to vary their sleep positions 

throughout the night. Additionally, individuals with acute SCI are likely to be still developing 

spasticity at admission to IPR and may be in various stages of effectively managing the spasticity. 

Theses participants may present with more significant night-to-night fluctuations in the quantity 

and characteristics of spastic movements (Figure 4.2 and Section 4.3.4) and, thus, the consistency 

of movement directions, than we would expect in a chronic SCI population that is more likely to 

have consistent levels and treatments for spasticity.74, 237 Therefore, some degree of difference in 

the reliable features between the chronic and acute settings is expected but should be further 

evaluated.  

We have demonstrated that LA features can be reliably measured at admission to IPR 

which was anywhere from 7 to 36 days after injury in our sample. Nearly half of those reliable 

features from admission to IPR were found to be stable over the stay in IPR and through 6-months 

post discharge. The van Middendorp CPR was validated for when the predictor clinical measures 

were measured in the first 15 days post-injury.4 However, due to various medical and logistical 

complications, providing a prediction that early may not always be possible or clinically 

appropriate especially for patients with tetraplegia who often have longer acute stays before being 

admitted to IPR compared to those with paraplegia.3 Alternatively, some patients may be admitted 

to IPR within a few days after injury and it is important to have an accurate prediction available 

as soon as possible to maximize the clinical utility to inform decision-making and patient 



 116 

expectations. If a new CPR exclusively utilized features that are stable over time, then this CPR 

will likely be useful when applied at any time after the initial injury has stabilized, generally 48-

72 hours after SCI.19, 238, 239 A CPR utilizing reliable and stable LA features may also be 

particularly useful because, since these LA features are not expected to change over time, it would 

likely be valid to re-predict a patient’s ambulatory ability after an unexpected change in status later 

in the sub-acute phase after SCI. 

5.3.4.1 Limitations 

The ICC analysis was limited by the need for the number of typical nights included to be 

consistent across participants. For the first few participants, we had only collected 2 nights of 

accelerometer data before increasing the length of data collection briefly to 4 and then to 7 nights. 

Thus, 2 nights was the primary time period analyzed to maximize our available sample size. As 

we would want to use the shortest data collection window possible for prediction to maximize the 

clinical utility while still ensuring accurate results, we believe 2 nights has been shown to be 

reliable enough for this purpose. Additionally, the “moderate reliability” cutoff of 0.5 is lower than 

what is used in some other studies.234, 235 Since this is a preliminary analysis as part of a larger 

study and we are still exploring the properties and uses of LA, it was thought that it would be more 

beneficial to include LA with potentially lower reliability for the present analyses and these 

features can be re-assessed with more stringent criteria in a future sample. Therefore, this study 

may also benefit from further assessment with a larger sample population with more typical nights 

recorded. 

The ICC analysis is beneficial in the ability to assess the reliability of the nights used 

individually and when they are averaged. However, during our preliminary analysis we found that 

taking the median and IQR across nights provided an informative, yet more stable description of 
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an individual’s LA across all of the nights collected that was less prone to outliers. It is then likely 

that the “average nights” ICC that was primarily utilized for the reliability analysis (Aim 3a) 

underestimated the reliability of LA features that may be more stable when the median analysis is 

implemented to combine nights. Other methods to assess reliability such as repeated measures 

analysis of variance or ICCs with a larger number of included nights and participants would 

improve the evaluation of reliability. 

The small sample size was a major limitation of this study, especially when examining the 

stability of LA features over time. Due to challenges from COVID-19 and increased medical and 

related barriers, our long-term follow-up was limited. Additionally, it was likely biased since 

participants who participated in the follow-ups tended to be more ambulatory with likely less 

impairments and medical complications than those who did not participate (Appendix Table G.1 

and Appendix Table G.2). Visual analyses were added to verify the ICC analyses and ensure that 

trends over time were captured appropriately.  

Only 1 typical night was required for participants to be included in the analysis for Aim 

3b, despite the knowledge that including more than one night improves reliability. All participants 

had 2 or more typical nights for the discharge and 6-month collections, but 2 participants only had 

1 typical night recorded at admission (out of 4 or 7 nights collected). Due to the already limited 

sample size, these participants were still included in the analysis, but it should be acknowledged 

that it is possible their inclusion could have affected the stability analysis. Additionally, further 

analysis should be performed to evaluate the quantitative differences or lack thereof between 

participant reported “typical” and “non-typical” nights. Follow-up in a larger, more heterogeneous 

sample could be beneficial to address many of these of these questions.  
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5.3.5 Conclusions 

LA features were identified that could be reliably measured in as little as 2 typical nights 

in an IPR setting among a population with acute, incomplete SCI and variable days since injury. 

Additionally, many of these features remained stable over time, allowing for them to be utilized 

nearly any time after injury with consistent results. Many of the features that were shown to be 

related to impairment or ambulatory ability in Aims 1 and 2 were also identified as being reliable 

when measured at admission, providing further support for the usefulness and clinical applicability 

of LA when measured acutely. 

5.4 Aim 4: Exploring Longitudinal LA in Relation to Ambulation and Impairment 

5.4.1 Introduction 

As described previously, characteristics of a good predictor for use in a CPR include being 

reliable, valid, and responsive. This allows the predictor to be utilized consistently to measure a 

clinically valuable metric and recognize subtleties between different participant presentations and 

characteristics.234, 235 LA features were found to be reliable in Aim 3a between nights when 

measured at admission to IPR and in Aim 3b, a subset of those features were identified as being 

stable over the first 6-months post-injury. Not yet investigated are “variable LA features” that 

change in relation to clinical measures of impairment and ambulation. These features may be more 

sensitive to neurorecovery and provide additional evidence of face, construct, and concurrent 

validity.  
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The primary purpose of our investigation of LA has been intended for use as a novel 

biomarker in a CPR to predict long-term ambulatory ability following incomplete SCI. As this 

study is only a pilot analysis as part of a larger, ongoing study we do not have a sufficient sample 

size to build and assess the machine learning model for prediction at this time. However, we do 

have sufficient pilot data to explore the predictive validity of LA as related to ambulatory ability 

at 6-months post-discharge from IPR. Findings from this analysis will support the continued 

longitudinal data collection and future plans to build and validate a CPR utilizing LA. 

Aim 4a explores how variable LA features change in relation to measures of ambulatory 

ability and impairment over the IPR stay and first 6-months post-discharge. We hypothesized the 

change in variable LA features will be significantly correlated with the change in measures of 

impairment (strength, sensation) and ambulation (need for assistance, speed, endurance) between 

admission to IPR and 6-months post-discharge. Aim 4b explores the relationship between reliable 

LA features measured acutely at admission to IPR and ambulatory ability at 6-months post-

discharge. We hypothesize that features of LA measured at admission to IPR will be significantly 

correlated or show clear visual relationships with ambulatory ability measured at 6-months post-

discharge. 

5.4.2 Methods 

LA features were included that were identified as reliable but not stable (n=38) in Aims 3a 

and 3b. These 38 features were described in Table 5.4 with the full results in Appendix Table G.5. 

Clinical and ambulatory assessments were also collected (Section 3.2). The WISCI-II, 10mWT, 

and 6MWT were used as measures of ambulatory ability at 6-months post-discharge from IPR to 
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assess the need for assistance, speed, and endurance during ambulation (Section 3.2.2). Impairment 

at 6-month was assessed by the LEMS and lower limb LT for strength and sensation, respectively.  

Participants were enrolled as described in Section 5.1. Participants were included in the 

analysis for Aim 4a if they had LA from at least 1 typical night and at least 1 outcome measure 

(WISCI-II, 10mWT, 6MWT, LEMS, lower limb LT) collected at admission to IPR, just prior to 

discharge from IPR, and 6-month post-discharge. Participants were included in Aim 4b if they had 

at least 1 typical night of LA collected from admission to IPR and at least 1 ambulatory ability 

outcome (WISCI-II, 10mWT, 6MWT) measured at 6-months post-discharge, but were not 

required to have LA or ambulatory outcomes from the remaining time points. As described 

previously (Sections 5.2 and 5.3.4.1), only including participants with at least 2 typical nights at 

admission would have been preferred given the results from Aim 3a, but due to sample size 

limitations, 2 participants were included that only had 1 typical night measured at admission. 

5.4.2.1 Analysis 

5.4.2.1.1 Change in Variable LA Related to Change in Outcomes (Aim 4a) 

Spearman’s rank correlations were used to quantify the relationship between the change in 

each variable LA feature and each ambulatory and impairment outcome between time points. 

Unlike Pearson correlations, Spearman correlations are more robust to outliers and do not require 

a normal distribution and were more appropriate for this exploratory analysis. The change in LA 

and the outcomes were calculated by subtracting the earlier time point from the later. Correlations 

were assessed separately for the change from admission to discharge from IPR and from discharge 

to 6-months post-discharge from IPR. Correlations were also assessed when combining both sets 

of changes to assess trends over the entire time period from admission to 6-months post discharge. 
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Correlations using the difference between admission and 6-months post-discharge were not used 

since this difference may mask the changes occurring at the discharge time point. Since this 

analysis is exploratory, correlations were considered to be significant if p< 0.1. Correlation 

coefficients were interpreted as: ρ from 0 - 0.3= negligible, 0.3 - 0.5= low, 0.5 - 0.7= moderate, 

0.7 - 0.9= high, 0.9 - 1.0= very high.240 Scatter plots were utilized to further evaluate the trends in 

the LA features with significant correlations.  

As a supplemental analysis, the same per participant line plots used in Aim 3b to evaluate 

LA stability over time were examined after color-coding participants by their ambulatory ability 

category at the 6-month time point (ambulatory ability categories shown in Table 3.3). For the 

impairment outcomes, participants were categorized based on if they improved their LEMS or 

lower limb LT sensation score from admission to 6-months post-discharge by 6.9 or 4.16 points, 

respectively. The score of 6.9 points is the repeatability threshold for the LEMS when used for 

participants with motor incomplete SCI.56 Similarly, a score of 23.3 (out of 112) was the 

repeatability threshold for the LT total score among those with motor incomplete SCI which was 

then scaled to 4.16 (out of 20) estimate the threshold for only the lower limb portion of the LT 

exam.56  

5.4.2.1.2 Relationship between Admission LA and 6-month Ambulation (Aim 4b) 

As in Aim 4a, a combination of correlations and visual analyses were used to explore the 

relationship between reliable LA features measured at admission to IPR and clinical assessments 

of ambulatory ability at 6-months post-discharge. Although stability over time affects the way the 

feature may be used in a CPR, it is possible for both stable and variable LA features to be 

beneficial. Since the results from Aim 4a would benefit from further assessment, variable LA 

features that were not related to changes in ambulatory ability or impairment were still included, 
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but it was noted that they may be less useful in a future CPR if the results of Aim 4a are confirmed 

in a larger, more diverse sample. Thus, all 72 LA features that were reliably measured at admission 

to IPR (Aim 3a) were included in this analysis, regardless of their stability over time.  

The Pearson correlation coefficient was calculated to assess the linear relationship between 

each LA feature and ambulatory outcome. Again, p< 0.1 was used to indicate significance since 

this is an exploratory analysis.  

A benefit of using machine learning algorithms to build a new CPR, is that relationships 

do not necessarily need to be linear to be useful. For example, the random forest classification 

model used in Aim 2 uses many decision trees to split the sample at nodes until all remaining 

samples at the bottom of each branch belong to the same class. The nodes that branch the samples 

are based on cutoff values from the features. Thus, if groups could be separated from each other 

by a threshold or hyperplane or samples within a group are otherwise distinctly identifiable from 

other groups, then they might be useful in a non-linear machine learning analysis (Figure 5.6). 

To estimate which LA features demonstrate a visual relationship, scatter plots showing the 

ambulatory outcome vs LA feature were assessed. Participants were categorized by each 

ambulatory outcome at 6-months and the mean and SD of each ambulatory category were also 

plotted for reference. For a feature to be potentially useful in non-linear analyses, at least 2 of the 

3 groups for each outcome had to be clearly separated from each other on the scatter plots. Features 

that either had a correlation p< 0.1, were visually confirmed to show a trend, or visually classified 

as being separable from other groups were recorded as being related to the ambulatory outcome. 
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Figure 5.6: Example of visual separation in the LA feature between the non-ambulatory and community 

ambulator groups of the 6MWT at 6-months post-discharge from IPR. The stars represent the mean and the 

shading represents 1 SD from the mean per ambulatory group. The black dashed line was added to 

demonstrate the separability between the groups. 

 

5.4.3 Results 

5.4.3.1 Participants 

The same 12 participants that were included in Aim 3b were also utilized for Aim 4a. An 

additional 2 participants are included in Aim 4b who had admission LA and 6-month ambulatory 

outcomes, but were missing 6-month LA thus excluding them from prior analyses. One of those 

participants did have accelerometer data collected at 6-months, but likely removed the devices for 

sleep each night which prevented the calculation of LA during sleep. Categorical demographics 

and ambulation assessments are shown in Table 5.6 for each time point and sample of participants. 

SCI Neurological category was only reported from admission and discharge because it was not 

formally assessed at 6-months. Continuous demographics, impairment, and data collection 
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measures from admission to IPR are shown in Table 5.7 and the measures from all times (including 

1-year for reference) are shown in Appendix Table H.1. By 6-months post-discharge, 

approximately 2/3 of participants were primarily ambulating, 35.7 (Aim 4a) - 41.7% (Aim 4b) did 

not require an AD or physical assistance to walk, and about half were community ambulators are 

defined by the 10mWT or 6MWT. Confusion matrices that show the group assignment for each 

participant between ambulatory outcome are shown in Appendix Table H.2. At 6-months, only 

one participant was assigned at community ambulator by the 10mWT, but a household ambulator 

from the 6MWT. 

The admission data collection began on average 18 days after injury, but ranged from 9 to 

65 days post-injury. Demographics for participants who were included in the analysis and those 

who had reached the 6-month time point, but did not complete all necessary parts of the data 

collection to be included in the analysis for Aim 4a are the same as 3b described previously 

(Appendix Table G.1 and Appendix Table G.2) and are described in Appendix Table H.3 and 

Appendix Table H.4 for the sample from Aim 4b. The participants who were excluded from the 

analysis for Aim 4b had a longer length of stay in IPR, were mostly power wheelchair users at 

discharge, and walked with slower gait speeds than those who were included. 
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Table 5.6: Categorical participant demographics and ambulation assessments for Aim 4 

  

Categorical Demographics 

Aim 4a N (%) 

(Total n=12)* 

Aim 4b N (%) 

(Total n=14)† 

Admission Discharge 6-months Admission Discharge 6-months 

Sex 
  

  
  

Female 5 (41.7%) 6 (42.9%) 

Male 7 (58.3%) 8 (57.1%) 

Race/Ethnicity 
  

Non-Hispanic White 9 (75.0%) 11 (78.6%) 

Non-Hispanic Black 1 (8.3%) 1 (7.1%) 

Non-Hispanic Other Race 0 (0.0%) 0 (0.0%) 

Hispanic (Any Race) 2 (16.7%) 2 (14.3%) 

Veteran 
  

Not A Veteran 11 (91.7%) 12 (85.7%) 

Veteran 1 (8.3%) 2 (14.3%) 

Annual Household Income 
  

< $25,000 1 (8.3%) 2 (14.3%) 

$25,000 - $49,999 3 (25.0%) 3 (21.4%) 

$50,000 -$74,999 3 (25.0%) 3 (21.4%) 

≥ $75,000 1 (8.3%) 2 (14.3%) 

Decline to Answer or Unknown 4 (33.3%) 4 (28.6%) 

Education 
  

Less Than High School 2 (16.7%) 2 (14.3%) 

High School Diploma/GED 6 (50.0%) 7 (50.0%) 

Associate's Degree 2 (16.7%) 2 (14.3%) 

Bachelor's Degree 1 (8.3%) 1 (7.1%) 

Graduate Degree 0 (0.0%) 1 (7.1%) 

Other 1 (8.3%) 1 (7.1%) 

Medical Insurance 
  

Private 3 (25.0%) 5 (35.7%) 

Medicaid 3 (25.0%) 3 (21.4%) 

Medicare 1 (8.3%) 1 (7.1%) 

VA 0 (0.0%) 0 (0.0%) 

No Insurance 1 (8.3%) 1 (7.1%) 

Other/Multiple 4 (33.3%) 4 (28.6%) 

SCI Neurological Category 
      

Motor Complete (AIS A or B) 

Tetraplegia 

1 (8.3%) 1 (8.3%) 1 (7.1%) 1 (7.1%) 

Motor Complete (AIS A or B) 

Paraplegia 

3 (25.0%) 2 (16.7%) 4 (28.6%) 3 (21.4%) 

AIS C Tetraplegia 1 (8.3%) 1 (8.3%) 2 (14.3%) 1 (7.1%) 

AIS C Paraplegia 1 (8.3%) 2 (16.7%) 1 (7.1%) 2 (14.3%) 

AIS D Tetraplegia 5 (41.7%) 5 (41.7%) 5 (35.7%) 6 (42.9%) 

AIS D Paraplegia 1 (8.3%) 1 (8.3%) 1 (7.1%) 1 (7.1%) 

Primary Mode of Mobility 
      

Power Wheelchair 9 (75.0%) 4 (33.3%) 2 (16.7%) 11 (78.6%) 4 (28.6%) 2 (14.3%) 

Manual Wheelchair 3 (25.0%) 5 (41.7%) 2 (16.7%) 3 (21.4%) 7 (50.0%) 3 (21.4%) 

Ambulation 0 (0.0%) 3 (25.0%) 8 (66.7%) 0 (0.0%) 3 (21.4%) 9 (64.3%) 
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Table 5.6 Continued 

  

Categorical Demographics 

Aim 4a N (%) 

(Total n=12)* 

Aim 4b N (%) 

(Total n=14)† 

Admission Discharge 6-months Admission Discharge 6-months 

WISCI-II 
      

Requires Physical Assistance (or 

Non-Ambulatory) 

12 (100%) 5 (41.7%) 3 (25.0%) 14 (100%) 7 (50.0%) 4 (28.6%) 

Requires AD, but no Physical 

Assistance 

0 (0.0%) 5 (41.7%) 4 (33.3%) 0 (0.0%) 5 (35.7%) 5 (35.7%) 

Requires No AD or Physical 

Assistance 

0 (0.0%) 2 (16.7%) 5 (41.7%) 0 (0.0%) 2 (14.3%) 5 (35.7%) 

10mWT*† 
      

Non-ambulatory (0 m/s) 10 (83.3%) 5 (45.5%) 3 (25.0%) 12 (85.7%) 6 (46.2%) 4 (30.8%) 

Household Ambulator (0.01- 0.44 

m/s) 

2 (16.7%) 1 (9.1%) 2 (16.7%) 2 (14.3%) 2 (15.4%) 2 (15.4%) 

Community Ambulator (>0.44 m/s) 0 (0.0%) 5 (45.5%) 7 (58.3%) 0 (0.0%) 5 (38.5%) 7 (53.9%) 

6MWT† 
      

Non-ambulatory (0 m) 10 (83.3%) 5 (41.7%) 3 (25.0%) 12 (85.7%) 6 (42.9%) 4 (30.8%) 

Household Ambulator (1-204 m) 2 (16.7%) 4 (33.3%) 3 (25.0%) 2 (14.3%) 5 (35.7%) 3 (23.1%) 

Community Ambulator (> 204 m) 0 (0.0%) 3 (25.0%) 6 (50.0%) 0 (0.0%) 3 (21.4%) 6 (46.2%) 

* n=11 for the 10mWT at admission and discharge for Aim 4a 

† n=13 for the 10mWT at discharge and for the 10mWT and 6MWT at 6-months 

 

Table 5.7: Continuous participant demographics for Aim 4 from admission to IPR 

Continuous Demographics Aim 4a Mean ± SD (Range) Aim 4b Mean ± SD (Range) 

Age 45.8 ± 17.8 (18 - 71) 43.8 ± 17.5 (18 - 71) 

BMI 27.8 ± 3.4 (23 - 35) 27.9 ± 3.5 (23 - 35) 

LEMS (Strength) 23.8 ± 16.0 (0 - 47) 22.5 ± 16.1 (0 - 47) 

Lower Limb LT (Sensation) 10.5 ± 7.1 (0 - 20) 10.3 ± 7.5 (0 - 20) 

Number of Nights Collected 4.6 ± 1.9 (2 - 7) 4.4 ± 1.9 (2 - 7) 

Number of Typical Nights Collected 3.5 ± 2.0 (1 - 7) 3.4 ± 1.9 (1 - 7) 

Length of Stay in IPR (Days) 32.6 ± 10.2 (12 - 43) 35.0 ± 11.3 (12 - 51) 

Days from Injury to Start of IPR 14.8 ± 16.0 (5 - 62) 15.9 ± 15.1 (5 - 62) 

Days from Injury to Start of Data Collection 17.5 ± 15.9 (9 - 65) 19.0 ± 15.2 (9 - 65) 

 

5.4.3.2 Change in Variable LA Related to Change in Outcomes (Aim 4a) 

LA features with significant correlations between the change in the feature and the change 

in the ambulatory or impairment outcomes are shown in Table 5.8 and Table 5.9, respectively. 

Twenty-six of 38 (68.4%) variable LA features were found to have a significant correlation with 

at least one ambulatory or impairment outcome at least 1 set of collection times (e.g., admission 

to discharge from IPR). 
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Table 5.8: Significant correlations (ρ) between the change in variable LA features and the change in 

ambulation outcomes from admission to IPR to 6-months post-discharge* 

  

Feature 

Category 

  WISCI-II 10mWT 6MWT 

 

Adm - 

Dc 

Dc- 

6m Both 

Adm - 

Dc 

Dc- 

6m Both 

Adm - 

Dc 

Dc- 

6m Both 

LA Feature (n=12) (n=12) (n=24) (n=11) (n=11) (n=22) (n=12) (n=12) (n=24) 

Change in 

grav acc 

Grav Change Z-IQR 0.182 0.523 0.264 0.225 -0.193 -0.063 0.236 0.011 0.052 

Freq 

domain 

Power Dom Freq 1-

Med 

0.349 0.343 0.365 0.124 -0.183 -0.068 0.189 -0.155 0.012 

Power Dom Freq 2-

IQR 

0.388 0.285 0.348 0.048 -0.312 -0.179 0.029 -0.099 -0.023 

Power Dom Freq 2-

Med 

0.356 0.519 0.424 0.076 -0.092 -0.072 0.094 0.070 0.088 

Power Dom Low 

Freq-Med 

0.434 0.482 0.475 0.133 -0.092 -0.051 0.145 0.106 0.131 

Limb 

move % 

Bilat Ankle % 0.537 -0.102 0.192 0.434 -0.395 -0.037 0.424 -0.338 0.002 

Unilat Ankle % -0.537 0.102 -0.192 -0.434 0.395 0.037 -0.424 0.338 -0.002 

PLM PLM % -0.232 0.292 0.007 -0.029 0.459 0.184 -0.007 0.500 0.215 

Signal 

char 

Wave Approx-Med 0.623 0.117 0.315 0.715 -0.165 0.209 0.725 0.042 0.272 

Wave Energy 2-Med -0.481 -0.073 -0.195 -0.677 0.239 -0.126 -0.761 -0.007 -0.222 

Wave Energy 3-IQR -0.541 -0.073 -0.338 -0.543 0.266 -0.170 -0.544 0.081 -0.230 

Wave Energy 3-Med -0.651 0.110 -0.249 -0.763 0.385 -0.127 -0.725 0.169 -0.161 

Wave Entropy-Med -0.519 -0.139 -0.281 -0.597 0.138 -0.205 -0.628 -0.053 -0.270 

Statistical AUC Acc Norm-

Med 

0.502 0.431 0.476 0.305 -0.073 0.084 0.319 -0.056 0.120 

Duration-Max 0.306 0.380 0.251 0.019 0.275 0.151 0.036 0.500 0.283 

SMA Acc-Med 0.517 0.400 0.461 0.272 -0.078 0.042 0.287 -0.074 0.089 

Velocity, 

distance 

RMS Vel-Med 0.730 -0.068 0.367 0.474 -0.505 0.109 0.425 -0.391 0.117 

* Correlations with p< 0.1 are highlighted grey 

 

The WISCI-II had the most correlated features of any of the outcomes, particularly from 

admission to discharge from IPR. Most features for the WISCI-II had low to moderate correlation 

coefficients, while most features for the 10mWT and 6MWT had moderate to high correlations. 

Visually, there were a few features for the WISCI-II, primarily in the frequency domain and signal 

characteristics categories, that showed weak to moderate trends (Figure 5.7a). However, most 

other features for the WISCI-II and all features for the 10mWT and 6MWT showed weak visual 

correlations (Figure 5.7b) and at times conflicting trends (Figure 5.7c and Figure 5.7d).  
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Some interesting trends were noted when examining the per participant line graphs by 

ambulation or impairment outcome (Appendix Figure H.1), such as the participants with more 

prominent variability tended to have better ambulatory ability while those who had more stable 

measurements over time tended to be non-ambulatory or more limited ambulators. However, most 

of these trends were inconsistent and would be better assessed in a larger, more variable sample. 

a) b)  

c) d)  

Figure 5.7: Examples of significant, but relatively weak changes in LA features and ambulatory outcomes. a) 

Power Dom Freq 1- Med has a moderate visual trend with the WISCI-II particularly from admission to 

discharge. b) SMA Acc- Med has a weak-moderate visual trend with the WISCI-II that is stronger between 

discharge and 6-months. c) Wave Entropy- Med has a weak trend with the 10mWT that is negative form 

admission to discharge and positive from discharge to 6-months. d) Wave Approx- Med Change has a weak 

trend with the 6MWT that is positive from admission to discharge but negative from discharge to 6-months. 
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Table 5.9: Significant correlations (ρ) between the change in variable LA features and the change in 

impairment outcomes from admission to IPR to 6-months post-discharge* 

    LEMS Lower Limb LT 

  

Adm - 

Dc 

Dc- 

6m Both 

Adm - 

Dc 

Dc- 

6m Both 

Feature Category LA Feature (n=12) (n=9) (n=21) (n=11) (n=7) (n=18) 

Change in angle of inclination Angle Net Change-Med -0.141 -0.333 -0.228 -0.055 0.883 0.213 

Angle Rate Change-Med -0.058 -0.067 -0.050 -0.097 0.829 0.249 

Angle Total Change-IQR 0.134 -0.167 -0.048 -0.220 0.685 0.189 

Angle Total Change-Med -0.042 -0.050 -0.014 -0.110 0.829 0.301 

Change in gravitational acceleration Grav Change Y-IQR -0.179 -0.267 -0.294 -0.046 0.883 0.232 

Grav Change Z-Med 0.095 -0.559 -0.193 0.468 0.645 0.493 

Correlation coefficients between axes Corr YZ-IQR -0.341 0.217 -0.076 -0.248 0.793 0.175 

Frequency domain Power Dom Freq 2-IQR 0.046 -0.250 -0.158 -0.105 0.739 0.166 

Power Dom Freq 2-Med 0.127 -0.267 -0.112 0.087 0.901 0.373 

Power Dom Low Freq-Med 0.105 -0.250 -0.109 0.027 0.901 0.363 

Median crossings Num Med Crossings-IQR 0.606 0.051 0.297 0.173 -0.075 0.063 

Statistical Duration-Max 0.545 0.183 0.353 0.430 0.018 0.235 

Velocity and distance Med Vel-Med 0.588 0.548 0.504 0.195 0.206 0.291 

* Correlations with p< 0.1 are highlighted grey 

 

Three LA features had significant correlations to LEMS, but only one of them (Num Med 

Crossings- IQR) had a moderate positive trend to the change in LEMS from admission to discharge 

(Figure 5.8a, Appendix Figure H.2). Only weak visual trends were found related to lower limb LT; 

however, one feature (Corr YZ- IQR, variability in movement directions) had an unusual 

difference in the direction of change with nearly all participants decreasing the variability of their 

movement directions from admission to discharge and then increasing from discharge to 6-months. 
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a) b)  

Figure 5.8: Examples of the change in LA features and impairment outcomes a) Moderate positive trend 

noted from admission to discharge between the Num Med Crossings- IQR and LEMS. b) Unusual finding 

with Corr YZ- IQR where from admission to discharge nearly all participants decreased their variability in 

movement directions, but from discharge to 6-months nearly all participants increased their variability in 

movement directions with a positive trend to lower limb LT sensation noted. 

5.4.3.3 Relationship between Admission LA and 6-month Ambulation (Aim 4b) 

Of the 72 features that were reliably measured at admission to IPR, 41 (56.9%) were related 

to one of the measures of ambulatory ability at 6-months post-discharge. Ten of the 25 (40%, 24% 

of the 41 related features) features that were reliable when measured using a single night at 

admission were also found to be related to ambulatory ability at 6-months.  

Table 5.10 summarizes the number of features found to be related to each ambulatory 

outcome, Table 5.11 summarizes the findings from the correlation, and visual analyses for each 

ambulatory outcome and the full results for all reliable features are shown in Appendix Table H.5. 

Most features that were related to each outcome had both significant correlations and a supporting 

visual relationship. Overall, 11 (15.3%) reliable LA features were related to only one ambulatory 

outcome, while 15 (20.8%) features each were associated with 2 and all 3 ambulatory outcomes. 

LA features from all categories were reliable and associated with 6-month ambulatory ability 

except change in gravitational acceleration, correlation coefficients between axes, and timing. 
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Twenty-five out of 34 (73.5%) features found to be stable over time in Aim 3b were also 

related to an ambulatory outcome at 6-months (Table 6.1). Of the 38 features that were variable 

over time in Aim 3b, 16 (42.1%) were associated with 6-month ambulation, with 13 (81.3%, 34.2% 

of 38 variable features) of those features also significantly changing with measures of ambulation 

or impairment over time in Aim 4a. The 3 variable LA features that were related to ambulatory 

ability at 6-months but not to changes in ambulatory ability or impairment over time from Aim 4a 

(Angle Rate Change-IQR, Wave Energy 2-IQR, Duration-IQR) were further visually examined in 

Appendix H.1. It is possible these features would have a significant association between change 

in the feature and change in ambulatory ability or impairment in a larger sample, but none had 

clear associations when visually examined. Angle Rate Change- IQR had one of the most distinct 

separation of groups for the 10mWT and 6MWT in the visual analyses of any admission feature. 

Wave Energy 2- IQR had a smaller separation between the non-ambulatory and household 

ambulator groups for the 6MWT and Duration- IQR showed a weak-moderate correlation between 

the admission LA feature and the 6-month WISCI-II and 10mWT outcomes. 

Table 5.10: Number of reliable admission LA features related to each measure of ambulatory ability at 6-

months post-discharge from IPR 

Association to 6-month Ambulatory Ability WISCI-II 10mWT 6MWT Total 

Significant Correlation Only 9 (12.5%) 1 (1.4%) 2 (2.8%) 12 (16.7%) 

Visual Association Only 0 (0.0%) 5 (6.9%) 9 (12.5%) 14 (19.4%) 

Both Correlation and Visual Association 25 (34.7%) 17 (23.6%) 17 (23.6%) 59 (81.9%) 

Total 34 (47.2%) 23 (31.9%) 28 (38.9%) 41 (56.9%) 
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Table 5.11: Reliable LA features measured at admission to IPR that are related to ambulation outcomes at 6-

months*†‡ 

Feature Category LA Feature WISCI-II 10mWT 6MWT 

Change in angle of inclination 

Angle Rate Change-IQR § 0.324 0.452 0.399 

Angle Rate Change-Med 0.513 0.421 0.460 

Angle Total Change-IQR 0.468 0.651 0.580 

Angle Total Change-Med 0.471 0.382 0.432 

Frequency domain 

Bandwidth-Med -0.662 -0.421 -0.424 

Centroid Freq-Med -0.657 -0.445 -0.491 

Power Dom Freq 1/Total-Med 0.499 0.305 0.386 

Dom Freq 1-Med -0.641 -0.506 -0.520 

Power Dom Freq 1-Med 0.489 0.277 0.292 

Power Dom Freq 2-IQR 0.652 0.755 0.651 

Power Dom Freq 2-Med 0.596 0.369 0.376 

Power Dom Low Freq-IQR 0.698 0.776 0.664 

Power Dom Low Freq-Med 0.547 0.332 0.334 

Power High Freq/Total-Med -0.511 -0.338 -0.359 

Power Total-IQR 0.712 0.768 0.614 

Limb movement percentages 
Bilat Ankle % -0.247 -0.300 -0.487 

Unilat Ankle % 0.247 0.300 0.487 

Median crossings Num Med Crossings Norm-Med -0.708 -0.570 -0.546 

Relationship to recent movements Close Cross Corr Peak-IQR 0.691 0.562 0.482 

Signal characteristics 

Lempel-Ziv Comp-Med -0.089 -0.090 0.041 

Lyapunov Exp-IQR 0.620 0.407 0.417 

Wave Energy 2-IQR § 0.378 0.092 0.079 

Statistical 

AUC Acc Norm-IQR 0.747 0.733 0.681 

AUC Acc-IQR 0.699 0.735 0.679 

AUC Acc-Med 0.537 0.424 0.426 

Duration-IQR § 0.517 0.569 0.465 

Duration-Max 0.622 0.425 0.503 

Duration-Med 0.521 0.546 0.529 

Max Acc-IQR 0.611 0.668 0.443 

Med Acc-IQR 0.703 0.673 0.701 

Med Acc-Med 0.391 0.282 0.344 

Range Acc-IQR 0.612 0.669 0.444 

RMS Acc-Med 0.472 0.256 0.230 

SD Acc-IQR 0.741 0.694 0.556 

SMA Acc-IQR 0.710 0.720 0.655 

SMA Acc-Med 0.504 0.340 0.327 

Velocity and distance 

Med Vel-IQR 0.699 0.672 0.701 

Med Vel-Med 0.358 0.256 0.302 

RMS Vel-Med 0.476 0.257 0.231 

Total Dist-IQR 0.687 0.776 0.701 

Total Dist-Med 0.574 0.448 0.468 

* Outcomes that had a correlation p< 0.1 are bolded 

† Outcomes found to have visual trends or at least 2 groups were visually separable are highlighted grey 

‡ LA features that were found to be stable over time in Aim 3b are italicized 

§ Indicates a feature that was variable over time in Aim 3b, but not related to changes in ambulatory ability or 

impairment in Aim 4a 
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Figure 5.9: Examples of the relationship between 2 LA features from admission and each ambulatory 

outcome at 6-months post-discharge from IPR. The stars represent the mean values and the shading 

represents 1 SD from the mean per group. The LA features Med Acc- IQR (left) and Lyapunov Exp- IQR 

(right) demonstrate positive correlations that are most prominent for the 6MWT. Additionally, there is no 

overlap in the LA feature values between participants in the lowest and highest ambulatory groups for each 

outcome, demonstrating the visual separation of the groups. 
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5.4.4 Discussion 

Although exploratory in nature, these findings provide further evidence that LA is valid as 

a clinically meaningful metric when assessed in acute, incomplete SCI and would be likely to be 

successful if utilized in a CPR for functional, long-term ambulatory ability. 

More than 2/3 of the variable LA features were found to significantly change in relation to 

changes in impairment or ambulatory ability. However, when visually examined, many of these 

correlations were relatively weak. The small sample size, especially for the impairment measures, 

may have led to the LA features appearing more variable when in a larger sample the correlation 

may be stronger. Because of the many variable LA features with significant correlations but 

minimal visual trends, a larger sample is likely needed to confirm the results found in this 

exploratory analysis. Because of this, all variable features were included in the analysis for Aim 

4b with the understanding that features that are confirmed in a larger, more diverse sample are not 

likely to be useful in a CPR. Although the correlations may be weak in the current sample, these 

findings still provide evidence of face and construct validity of LA when measured acutely as well 

as demonstrating the responsiveness and robustness of this measure to still be able to detect trends 

in a small sample.  

The findings noted when examining the per participant changes in relation to ambulation 

and impairment groups indicate that there may be additional associations between LA and the 

outcomes that were not fully captured by the correlation analysis. For example, participants who 

are better ambulators may be extremely variable in a measure over time, while those who are non-

ambulatory may remain relatively stable. This finding would not be noticed by correlational 

analyses, but may still be helpful because the direction and amount of change between repeated 

measurements of that feature may provide information about future changes in ambulatory ability. 
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Understanding how these features change over time and the nuances in their associations to clinical 

measures of ambulation and impairment will assist in informing a future CPR and clinical 

outcomes. 

Care should be taken when utilizing the 3 LA features (Angle Rate Change-IQR, Wave 

Energy 2-IQR, Duration-IQR) that were found to be related to ambulatory ability at 6-months, but 

were variable and not related to changes in ambulatory ability or impairment over time. These 

features may be inconsistently measured in which case they may add noise to future models and 

increase the variability in LA in an unpredictable manor which would decrease prediction accuracy 

of the CPR. Additional analyses to further evaluate how these features change over time and ensure 

that they change in a predictable and meaningful way before including them in a CPR or other 

applications. 

Over 20% of the LA features measured at admission to IPR were related to all 3 ambulatory 

outcomes at 6-months post-discharge. An additional 15% were related to only outcome; these 

features may provide unique information about specific aspects of ambulatory ability that 

influence an individual’s performance in one assessment, but not another. As demonstrated by the 

participant classifications in Appendix Table F.1 (for all participants) and Appendix Table H.2 

(for only participants in Aim 4a), the WISCI-II provides unique that may inform clinical care 

differently than the 10mWT and 6MWT. Even though the majority of participants did fall in to the 

same categories for the 10mWT and 6MWT, the differences between these outcomes can still be 

recognized by not all participants be classified identically into these groups. This reinforces the 

importance of utilizing multiple non-dichotomous ambulatory outcomes to produce a 

comprehensive prediction of an individual’s functional abilities.102-104, 109 
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Visually it was seen that the middle ambulatory ability category (uses AD but no physical 

assistance for WISCI-II, household ambulator for 10mWT and 6MWT) was less separable from 

the other two. This trend was also detected when classifying individuals with chronic SCI into 

those ambulatory categories in Aim 2. Since this group may possess characteristics of both the 

lowest and highest ambulatory groups, it makes sense that this group may have the most overlap 

and may be most differentiate in a population with acute, incomplete SCI. However, some LA 

features were able to show significant correlations or clear visual separation of this group (Figure 

5.6). Thus, it is possible that this group may have the lowest accuracy for the 3 groups for each 

outcome when predicted in a future CPR utilizing LA, but we believe that LA consists of enough 

unique features to cumulatively still differentiate this group well. This was supported by the 

findings from Aim 2 in the sample with chronic, motor incomplete where the household ambulator 

group was the most commonly misclassified of the 3 ambulatory groups, but still was correctly 

classified with an F1-score of 0.632 and 0.783 and is likely to improve in a larger, longitudinal 

sample.241 Further, the middle ambulatory ability groups generally had the smallest sample size of 

the 3 groups for each outcome, so the increased variability may be influenced by the smaller 

number of participants.  

Many traditional statistical models used in previous CPRs assess a predictor’s relationship 

to the outcome linearly or using log-odds,4-6 but machine learning models have the ability to 

identify non-linear associations between the predictor and outcome, as well as associations 

between predictors.210, 211, 223 Additionally, machine learning models can generally utilize many 

more features or autonomously identify sets of important features that traditional statistical models 

with the same sample size cannot.107 Phan et al. has suggested that including a greater number of 

predictors and using less traditional statistical analyses like logistic regression could improve the 
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accuracy of future prediction models.109 Our findings demonstrate that a wide variety of different 

movement characteristics captured by LA are related to ambulatory ability and a CPR would likely 

perform best by utilizing predictors that embody this diversity. 

Although the current sample was too small to use machine learning techniques, the use of 

both correlational and visual analyses to identify trends that are not easily captured by statistical 

techniques allowed for a deeper understanding of the relationship and potential predictive ability 

of LA for long-term ambulatory ability. This also provides increased confidence that these features 

would be useful in a CPR for ambulatory ability. Machine learning models may pick up additional 

or different non-linear relationships between LA features or the features and outcomes that could 

not be visually assessed. 

5.4.4.1 Limitations 

Nearly all of the challenges regarding the sample size and other limitations that were 

discussed in Aim 3 (Section 5.3.4.1) are applicable to Aim 4 as well. The decision to use 1 typical 

night despite the finding that 2 typical nights provide the best reliability was a substantial limitation 

of these analyses. Due to the exploratory nature of these analyses and the limited sample size and 

distribution of ambulatory abilities, participants were not excluded if they did not have at least 2 

typical nights collected at admission to IPR (all participants did have ≥2 typical nights for the 

follow-ups). Since 24% of the features that were related to 6-month outcomes in Aim 4b were 

reliable when using a single night of LA (Aim 3a), we believe these findings are accurate despite 

the inclusion of those 2 participants with less reliable LA. Future analyses should assess the 

differences between “typical” and “non-typical” nights, as well as ensure that only participants 

with reliable LA are included.  
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Limitations unique to is aim, include the clinical and ambulatory assessments not being 

consistently performed by clinicians trained by the research team which may decrease the 

reliability of these assessments. However, one of the reasons that these ambulatory and clinical 

outcomes were utilized, is that they are frequently performed, common assessments that most 

clinicians would previously have been trained to complete and utilize regularly.102, 104 

Additionally, the ambulatory assessments have demonstrated excellent test-retest and inter-rater 

reliability which indicates that these measures would likely still be consistently measured in these 

circumstances.102, 242   

For both impairment outcomes, but especially lower limb LT, the sample size decreased at 

6-months secondary to limitations from remote follow-up collections (assessments could not be 

completed for impairment outcomes if participants weren’t attending physical therapy and were 

not consistently collected from those attending therapy). This sample size limits the interpretation 

of the findings and likely led to the larger number of features with correlations to the change in 

lower limb LT from discharge to 6-months post-discharge. For these reasons and the large number 

of missing data, the MAS had limited follow-up measurements and could not be included in this 

analysis.  

Although the 3 ambulatory outcomes assessed provide a comprehensive understanding of 

an individual’s ability to walk (capacity), they do not provide a measure of how much the 

participants actually do walk (performance). A person may be more likely to functionally ambulate 

if they walk with a better quality and speed, but other factors may also affect their primary mode 

of mobility and daily activity. The current findings make it likely that LA would also be related to 

measures of walking performance such as daily steps.214, 243 Additionally, the relationship between 

person, psychosocial, and environmental factors (PPEF) such as an individual’s coping strategies, 
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pain, environmental barriers, and social support may all influence an individual’s ambulation 

capacity and performance.11, 12, 90, 91, 244 Measures of daily steps, time and use of a wheelchair 

versus ambulation, and PPEF were all collected in this longitudinal sample and should be assessed 

in future analyses. 

Lastly, the visual analyses performed for this aim were subjective to some extent, although 

efforts were made to minimize the effects of subjectivity. These efforts include, one researcher 

performed all of the analyses with predetermined guidelines and checked the findings a second 

time to ensure that all visual classifications were consistent. Because of the aforementioned efforts 

taken to decrease subjectivity, compounded with the fact that these analyses are exploratory with 

a small sample size, the findings are still meaningful and will be further evaluated in future 

analyses.  

5.4.5 Conclusions 

Changes over time in variable features of LA were significantly correlated with and may 

be related to changes over time in each measure of ambulatory ability and impairment, though 

further analysis is needed. Additionally, 41 features that were reliable when measured at admission 

to IPR among a sample with acute, incomplete SCI were found to be related to the need for 

assistance, speed, and endurance during ambulation at 6-months post discharge. These features 

capture a variety of different aspects of movements representing a diverse understanding of a 

participant’s movement characteristics and abilities. These findings provide evidence that LA 

measured at admission to IPR would likely be beneficial in a CPR to predict a comprehensive 

description of ambulatory ability among a sample with acute, incomplete SCI who would benefit 

from this prediction the most. 
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5.5 Longitudinal Study Conclusions 

In Aim 3a, LA were established as reliable when measured over the first two typical nights 

soon after admission to IPR (number of selected features=72). Further, we identified LA features 

that are stable over the first 6-months post-discharge (Aim 3b) as well as features that were not 

stable (variable) over time and were related to changes in ambulatory ability and impairment (Aim 

4a). LA features stable over time (n=25) may be able to differentiate between different levels of 

impairment and ambulatory ability using measurements from a few days to a several months after 

injury. LA features that are variable over time and related to ambulation or impairment (n=26) 

represent baseline measures of characteristics that would only substantially change if the 

individual’s level of impairment or functional abilities improve. These measures are similar to 

clinical predictors such as MMT and LT scores that are commonly used in current CPRs and are 

likely to change with neurorecovery.4, 5, 53, 58-63 But unlike those clinical measures, the LA features 

capture much more information about an individual’s movement and should be more useful in a 

CPR. 

This work culminates in Aim 4b which shows LA features (both stable and variable) are 

related to ambulatory ability at 6-months. Each of these features demonstrated either a significant 

correlation with or visual separation of long-term ambulatory groups based on LA measurements 

from admission to IPR. They indicate diverse movement characteristics are important including 

movement magnitude, power, energy distribution, frequency, smoothness, stability, duration, 

similarity to recent movements, directions, velocity, and distance traveled. Further, they show that 

it is important to consider both the actual values of the movement characteristics (median values) 

and the ability to produce a variety of movement characteristics (IQR).  
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While a machine learning model may identify features most useful for prediction 

differently than the current analyses, our results provide strong pilot data evidence that LA, 

measured acutely after injury, is related to ambulatory ability following SCI and important to 

consider in future CPRs. Collectively, these analyses provide evidence of reliability and face, 

construct, concurrent, and predictive validity of LA when measured in a sample with acute, 

incomplete SCI. This makes a strong case for the future use of LA as a measure of impairment and 

predictor of functional, long-term ambulatory ability. 
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6.0 Overall Conclusions and Future Directions 

This dissertation established LA as a meaningful clinical metric that is related to measures 

of impairment (strength, sensation, spasticity; Aim 1) and ambulation (speed, endurance; Aim 2) 

in a cross-sectional analysis of individuals with chronic, primarily motor incomplete SCI. These 

findings established the face, construct, and concurrent validity of LA in a diverse sample. Then 

using a longitudinal analysis of individuals with acute, incomplete SCI from admission to IPR 

through 6-months post-discharge, we were able to evaluate the reliability, validity, and relationship 

to clinical outcomes. These results determined that LA can be reliably measured in an acute setting, 

includes features that can be identified as stable over time or changing in relation to measures of 

impairment and ambulation, and are likely predictive of 6-month ambulatory ability when 

measured at admission to IPR.  

Summary findings of which LA features were determined to be supportive of the goals for 

each aim (e.g., related to ambulatory ability, reliable, etc.) are shown in Table 6.1. Additionally, a 

summary table describing the number of features selected for each aim is shown in Table 6.2. 

While many LA features were selected for each aim that represent a diverse set of movement 

characteristics, the only feature that was selected in every applicable analysis was Lyapunov Exp- 

IQR. The Lyapunov exponent is a measure of local dynamic stability or chaos which may be a 

measure of the motor system’s ability to diminish perturbations and continue along a trajectory 

with higher values representing increased divergence/chaos and less stability.224, 225 It has been 

shown to prevuously be related to measues of sleep apnea, brain activity during sleep,245 gait,146, 

225 fall risk,224, 226 and improvements in lower limb rehabilitation.173 The variability in this measure 

may represent an individual’s ability to produce consistent, stable movements and unpredictable 
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movements. Individuals with limited strength or severe spasticity may have limited ability to move 

in a variety of directions and speeds, thus their movements are more likely to be predictable with 

less variability. Therefore, the finding that individuals with better strength and ambulatory ability 

would exhibit more variability in movement stability. 

Seven other features were selected in 4 of the analyses: speed of positional changes (Angle 

Rate Change-Med), variability of position changes (Grav Change Z-IQR), movement frequency 

(Dom Freq 1-Med), power (Power Dom Freq 2-Med), movement smoothness (Num Med 

Crossings Norm-Med), and variability in similarity of recent movements (Close Cross Corr Peak-

IQR). All of those features were found to be related to a measure of impairment among those with 

chronic SCI, were reliable to measure at admission to IPR in acute, incomplete SCI, and were 

related to 6-month ambulatory ability when measured at admission in acute, incomplete SCI 

(except Grav Change Z- IQR which was related to ambulatory ability in chronic SCI).  

Both Angle Rate Change-Med and Grav Change Z-IQR describe different aspects related 

to the changes in position throughout the night. Angle Rate Change-Med describes the total change 

in the angle of inclination (resultant angle between 3 gravitational axes) divided by the time to 

complete the movement as a measure of angular velocity.154, 159, 162 Having a faster rotational 

movements was associated with greater strength in Aim 1 and was positively correlated with both 

the WISCI-II and 6MWT at 6-months post-discharge in Aim 4b. The Z axis of the accelerometer 

runs medial-lateral (Figure 3.2) and would experience the greatest changes when the participant 

rotates side to side, such as when rolling from the right to the left side. Grav Change Z- IQR was 

associated with mild spasticity in Aim 1 and the 6MWT in Aim 2 among those with chronic SCI 

and was correlated with changes in the WISCI-II over time in participants with acute SCI in Aim 

4a. Participants who are able to rotate positions more quickly and complete a variety of rotational 
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position changes throughout the night likely have improved strength to perform such movements, 

which may be related to improved walking endurance and less assistance for ambulation. Thus, 

these features may capture reliable and useful measures of how an individual moves throughout 

the night and are related to measures of strength and ambulatory ability which could be useful in 

a CPR. 

Dom Freq 1-Med represents the dominant frequency of the signal (frequency at the 

maximum spectral power) and provides of measure of periodicity. Someone with a higher 

dominant frequency would likely have many fluctuations in their movements and a noisier signal 

compared to someone with a lower dominant frequency. Power Dom Freq 2-Med represents the 

power at the second local maxima and will be higher for movements with higher intensities. It also 

could be higher if a larger amount of the total power is at the second dominant frequency as 

compared to other movements where the power might be highly concentrated at the dominant 

frequency. A higher Dom Freq 1-Med was associated with worse sensation, worse spasticity, and 

worse ambulatory ability in all 3 outcomes. Higher Power Dom Freq 2- Med values were 

associated with having worse sensation, more spasticity and better ambulatory outcomes for the 

WISCI-II and 10mWT. It makes intuitive sense that having noisier, higher frequency movements 

may be associated with more spasticity and worse outcomes and more intense movements being 

associated with better walking outcomes. However, the association between power and worse 

sensation and spasticity warrant further investigation. 

Num Med Crossings Norm-Med is a measure of movement smoothness that is calculated 

by counting the number of times that the acceleration magnitude crosses the median of the 

acceleration over the whole movement normalized by the duration of the movement. A participant 

with many changes in acceleration per second of movement would have a higher Num Med 



 145 

Crossings Norm-Med and less smooth movement and was associated with worse walking 

outcomes for the WISCI-II, 10mWT, and 6MWT at 6-months post-injury. It would be expected 

that someone with poorer motor control and strength would have more difficulty performing a 

movement smoothly, thus it makes sense that Num Med Crossings Norm-Med was also associated 

with lower strength among those with chronic SCI. A similar measure was also found to be 

negatively correlated to 6MWT distances among children with muscular dystrophy, and greater 

smoothness has also been associated with improved gait quality when comparing health controls 

to those with Parkinson’s disease and peripheral neuropathy.89, 146 

Having movements in series with similar characteristics was common of movements that 

were more likely spastic or PLM (Figure 4.2). This was demonstrated by the finding that lower 

Close Cross Corr Peak-IQR which is a measure of similarity to recent movements was associated 

with a lower probability of having no spasticity. Additionally, having more variable recent 

movements was associated with all 3 ambulatory outcomes at 6-months post-injury. 

These features are a likely to be useful in a CPR for ambulation and other potential purposes 

such as improved measures of impairment. With the exception of the 2 features from the frequency 

domain, these features all represent different categories of movement information, which 

emphasizes the benefits of a diverse feature set.  

Both Aims 1 and 2 utilize machine learning models to assess the relationship between LA 

and measures of impairment and ambulatory ability. A benefit from those analyses is that feature 

selection steps were embedded in the analysis to minimize bias and overfitting in the results. The 

feature selection is designed to choose features that are likely to improve model performance and 

decrease collinearity, which would likely result in only one feature out of a group of highly 

correlated feature to be included in the model. Thus, it is likely that other highly correlated features 
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to those described above that were reliable when measured acutely (Aim 3a) and related to a 6-

month measure of ambulatory ability (Aim 4b), are also likely to be particularly useful in future 

applications.  

Future work in this area should include evaluating the reliability of LA features in the 

chronic SCI population and further validation of the findings in Aims 3 and 4 should in a larger, 

more diverse sample. Additionally, the differences between participant reported “typical” and 

“non-typical” nights should be evaluated. It would be beneficial to have a better understanding of 

what makes a participant identify a night as “non-typical” and if non-typical nights can be utilized 

in analyses if similar LA can be extracted to self-reported “typical” nights. It would also be 

beneficial to assess LA in relation to an ambulatory outcome that evaluates performance, such as 

daily steps, as well as the use of personal, psychosocial, and environmental factors (PPEF) as a 

predictor of all outcomes. Further, LA may be applicable as a movement biomarker that could be 

used to predict the response to rehabilitation interventions in other populations and for other 

activities. 

Given the many diverse, informative, and reliable features that can be extracted from limb 

movements during sleep with low collection burden in both acute and chronic populations with 

incomplete SCI, LA has the potential to be a widely utilized clinical metric. LA that is reliably 

measured at admission to IPR and used in a machine learning model to accurately predict long-

term functional ambulation among those with acute, incomplete SCI may lead to optimized use of 

therapy time, more realistic patient expectations, and improved long-term outcomes for patients. 
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Table 6.1: Summary of LA features selected from each analysis*† 

Feature 
Category LA Feature 

Related to 
Impairment 
(Aim 1) 

Related to 
Ambulation 
(Aim 2) 

Reliable at 
Admission 
(Aim 3a) 

Stable from 
Admission to 
6m (Aim 3b) 

LA Change Related 
to Outcome Change 
(Aim 4a) 

Admission Related 
to 6m Ambulation 
(Aim 4b) 

Number of 
Related 
Aims 

Change in 
angle of 
inclination 

Angle Net Change-IQR    

   
0 

Angle Net Change-Med   ✓  ✓  2 

Angle Rate Change-IQR   ✓   ✓ 2 

Angle Rate Change-Med ✓  ✓  ✓ ✓ 4 

Angle Total Change-IQR   ✓  ✓ ✓ 3 

Angle Total Change-Med   ✓  ✓ ✓ 3 

Change in 
gravitational 
acceleration 

Grav Change X-IQR   ✓ ✓    2 

Grav Change X-Med    

   
0 

Grav Change Y-IQR ✓  ✓  ✓  3 

Grav Change Y-Med    

   
0 

Grav Change Z-IQR ✓ ✓ ✓  ✓  4 

Grav Change Z-Med   ✓  ✓  2 

Correlation 
coefficients 
between axes 

Corr XY-IQR ✓         1 

Corr XY-Med ✓   

   
1 

Corr XZ-IQR ✓   

   
1 

Corr XZ-Med    

   
0 

Corr YZ-IQR   ✓  ✓  2 

Corr YZ-Med ✓         1 

Frequency 
domain 

Bandwidth-IQR          0 

Bandwidth-Med   ✓ ✓ 

 

✓ 3 

Centroid Freq-IQR    

   
0 

Centroid Freq-Med   ✓ ✓ 

 

✓ 3 

Dom Freq 1-IQR ✓   

   
1 

Dom Freq 1-Med ✓  ✓ ✓ 

 

✓ 4 

Dom Freq 2-IQR ✓   

   
1 

Dom Freq 2-Med    

   
0 

Dom Low Freq-IQR    

   
0 

Dom Low Freq-Med    

   
0 

Mean Freq-IQR ✓   

   
1 

Mean Freq-Med    

   
0 
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Table 6.1 Continued 

Feature 
Category LA Feature 

Related to 
Impairment 

(Aim 1) 

Related to 
Ambulation 

(Aim 2) 

Reliable at 
Admission 
(Aim 3a) 

Stable from 
Admission to 
6m (Aim 3b) 

LA Change Related 
to Outcome Change 

(Aim 4a) 

Admission Related 
to 6m Ambulation 

(Aim 4b) 

Number of 
Related 
Aims 

Frequency 
domain 

Med Freq-IQR ✓  ✓ ✓ 

 

 3 

Med Freq-Med ✓  ✓ ✓ 

 

 3 

Power Dom Freq 1/Total-IQR ✓   

   
1 

Power Dom Freq 1/Total-Med   ✓ ✓ 

 

✓ 3 

Power Dom Freq 1-IQR ✓   

   
1 

Power Dom Freq 1-Med   ✓  ✓ ✓ 3 

Power Dom Freq 2-IQR   ✓  ✓ ✓ 3 

Power Dom Freq 2-Med ✓  ✓  ✓ ✓ 4 

Power Dom Low Freq-IQR   ✓ ✓ 

 

✓ 3 

Power Dom Low Freq-Med   ✓  ✓ ✓ 3 

Power High Freq/Total-IQR    

   
0 

Power High Freq/Total-Med   ✓ ✓ 

 

✓ 3 

Power Total-IQR   ✓ ✓ 

 

✓ 3 

Power Total-Med          0 

Limb 
movement 
percentages 

Bilat Ankle %   ✓  ✓ ✓ 3 

Unilat Ankle %   ✓  ✓ ✓ 3 

Whole Body %    

   
0 

Wrist Ankle %          0 

Median 
crossings 

Num Med Crossings Norm-IQR          0 

Num Med Crossings Norm-Med ✓  ✓ ✓ 

 

✓ 4 

Num Med Crossings-IQR  ✓ ✓  ✓  3 

Num Med Crossings-Med  ✓ ✓    2 

PLM Num PLM Norm   ✓    1 

PLM % ✓  ✓  ✓  3 

PLM Index ✓  ✓    2 
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Table 6.1 Continued 

Feature 
Category LA Feature 

Related to 
Impairment 

(Aim 1) 

Related to 
Ambulation 

(Aim 2) 

Reliable at 
Admission 
(Aim 3a) 

Stable from 
Admission to 
6m (Aim 3b) 

LA Change Related 
to Outcome Change 

(Aim 4a) 

Admission Related 
to 6m Ambulation 

(Aim 4b) 

Number of 
Related 
Aims 

Relationship 
to recent 
movements 

Close Cross Corr Peak-IQR ✓  ✓ ✓   ✓ 4 

Close Cross Corr Peak-Med    

   
0 

Close Cross Cov Peak-IQR ✓   

   
1 

Close Cross Cov Peak-Med    

   
0 

Dom Freq Last 90s-IQR ✓   

   
1 

Dom Freq Last 90s-Med   ✓ ✓ 

 

 2 

Max Cross Corr-IQR    

   
0 

Max Cross Corr-Med    

   
0 

Max Cross Cov-IQR ✓   

   
1 

Max Cross Cov-Med   ✓ ✓ 

 

 2 

Mean Cross Corr Peaks-IQR    

   
0 

Mean Cross Corr Peaks-Med    

   
0 

Mean Cross Cov Peaks-IQR    

   
0 

Mean Cross Cov Peaks-Med    

   
0 

Move Last 90s-IQR    

   
0 

Move Last 90s-Med ✓  ✓    2 

Move Next 90s-IQR    

   
0 

Move Next 90s-Med   ✓    1 

Num Cross Corr Peaks-IQR ✓   

   
1 

Num Cross Corr Peaks-Med    

   
0 

Num Cross Cov Peaks-IQR ✓   

   
1 

Num Cross Cov Peaks-Med    

   
0 

Time Since Prev-IQR ✓   

   
1 

Time Since Prev-Med          0 

Signal 
character-
istics 

Entropy Rate-IQR   ✓ ✓    2 

Entropy Rate-Med   ✓    1 

Lempel-Ziv Comp-IQR    

   
0 

Lempel-Ziv Comp-Med   ✓ ✓ 

 

✓ 3 

Lyapunov Exp-IQR ✓ ✓ ✓ ✓ 

 

✓ 5 

Lyapunov Exp-Med ✓   

   
1 

Wave Approx-IQR ✓   

   
1 

Wave Approx-Med   ✓  ✓  2 
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Table 6.1 Continued 

Feature 
Category LA Feature 

Related to 
Impairment 

(Aim 1) 

Related to 
Ambulation 

(Aim 2) 

Reliable at 
Admission 
(Aim 3a) 

Stable from 
Admission to 
6m (Aim 3b) 

LA Change Related 
to Outcome Change 

(Aim 4a) 

Admission Related 
to 6m Ambulation 

(Aim 4b) 

Number of 
Related 
Aims 

Signal 
character-
istics 

Wave Energy 1-IQR    

   
0 

Wave Energy 1-Med    

   
0 

Wave Energy 2-IQR   ✓   ✓ 2 

Wave Energy 2-Med ✓  ✓  ✓  3 

Wave Energy 3-IQR   ✓  ✓  2 

Wave Energy 3-Med   ✓  ✓  2 

Wave Entropy-IQR ✓   

   
1 

Wave Entropy-Med   ✓  ✓  2 

Statistical AUC Acc Norm-IQR   ✓ ✓   ✓ 3 

AUC Acc Norm-Med   ✓  ✓  2 

AUC Acc-IQR   ✓ ✓ 

 

✓ 3 

AUC Acc-Med   ✓ ✓ 

 

✓ 3 

Duration-IQR    

   
0 

Duration-Max   ✓ ✓ 

 

 2 

Duration-Med   ✓ ✓ 

 

✓ 3 

Kurtosis-IQR    

   
0 

Kurtosis-Med    

   
0 

Max Acc-IQR   ✓ ✓ 

 

 2 

Max Acc-Med   ✓ ✓ 

 

✓ 3 

Max-RMS Acc-IQR   ✓ ✓ 

 

✓ 3 

Max-RMS Acc-Med   ✓   ✓ 2 

Med Acc-IQR   ✓  ✓ ✓ 3 

Med Acc-Med   ✓ ✓ 

 

✓ 3 

Range Acc-IQR   ✓ ✓ 

 

✓ 3 

Range Acc-Med    

   
0 

RMS Acc-IQR    

   
0 

RMS Acc-Med   ✓ ✓ 

 

✓ 3 

SD Acc-IQR   ✓ ✓ 

 

✓ 3 

SD Acc-Med    

   
0 

Skewness-IQR    

   
0 

Skewness-Med ✓  ✓ ✓ 

 

 3 
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Table 6.1 Continued 

Feature 
Category LA Feature 

Related to 
Impairment 

(Aim 1) 

Related to 
Ambulation 

(Aim 2) 

Reliable at 
Admission 
(Aim 3a) 

Stable from 
Admission to 
6m (Aim 3b) 

LA Change Related 
to Outcome Change 

(Aim 4a) 

Admission Related 
to 6m Ambulation 

(Aim 4b) 

Number of 
Related 
Aims 

Statistical SMA Acc-IQR   ✓ ✓ 

 

✓ 3 

SMA Acc-Med   ✓  ✓ ✓ 3 

Timing End Move %-IQR          0 

End Move %-Med    

   
0 

Move/hour ✓  ✓    2 

Move/night   ✓    1 

Start Move %-IQR  ✓  

   
1 

Start Move %-Med  ✓  

   
1 

Time Asleep ✓  ✓    2 

Velocity and 
distance 

Med Vel-IQR   ✓ ✓   ✓ 3 

Med Vel-Med   ✓  ✓ ✓ 3 

RMS Vel-IQR    

   
0 

RMS Vel-Med   ✓  ✓ ✓ 3 

Total Dist-IQR   ✓ ✓ 

 

✓ 3 

Total Dist-Med   ✓ ✓   ✓ 3 

Total Number of LA Features Selected 35 (26.3%) 6 (4.5%) 72 (54.1%) 34 (47.2%) 26 (68.4%) 41 (56.9%) 92 (69.2%) 

* ✓ = Feature was chosen/related,  = Feature was not chosen/related, Blank= Feature was not applicable for analysis. † Feature names are highlighted grey if 

that feature is reliably measured at admission to IPR (Aim 3a) and bolded if also related to ambulatory ability at 6 months post-discharge (Aim 4b). 
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Table 6.2: Summary of the number of LA features selected from each analysis (% of maximum number of features included in anlaysis, % of maximum 

number of features that could be selected) 

 Aim 

Related to 

Impairment 

(Aim 1) 

Related to 

Ambulation 

(Aim 2) 

Reliable at 

Admission 

(Aim 3a) 

Stable from 

Admission to 6m 

(Aim 3b) 

LA Change Related 

to Outcome Change 

(Aim 4a) 

Admission Related 

to 6m Ambulation 

(Aim 4b) 

Related to Impairment 

(Aim 1) 
35 (26.3% of 133) 

2 (1.5% of 133, 

33.3% of 6) 

17 (12.8% of 133, 

48.6% of 35) 

7 (9.7% of 72, 

20.6% of 34) 

6 (15.8% of 38, 

23.1% of 26) 

6 (8.3% of 72, 

17.1% of 35) 

Related to Ambulation 

(Aim 2) 

2 (1.5% of 133, 

33.3% of 6) 
6 (4.5% of 133) 

4 (3.0% of 133, 

66.7% of 6) 

1 (1.4% of 72, 

16.7% of 6) 

2 (5.3% of 38, 

33.3% of 6) 

1 (1.4% of 72, 

16.7% of 6) 

Reliable at Admission 

(Aim 3a) 

17 (12.8% of 133, 

48.6% of 35) 

4 (3.0% of 133, 

66.7% of 6) 
72 (54.1% of 133) 

34 (47.2% of 72, 

100.0% of 34) 

26 (68.4% of 38, 

100.0% of 26) 

41 (56.9% of 72, 

100.0% of 41) 

Stable from Admission to 

6m (Aim 3b) 

7 (9.7% of 72, 

20.6% of 34) 

1 (1.4% of 72, 

16.7% of 6) 

34 (47.2% of 72, 

100.0% of 34) 
34 (47.2% of 72) N/A 

25 (34.7% of 72, 

73.5% of 34) 

LA Change related to 

Outcome Change (Aim 4a) 

6 (15.8% of 38, 

23.1% of 26) 

2 (5.3% of 38, 

33.3% of 6) 

26 (68.4% of 38, 

100.0% of 26) 
N/A 26 (68.4% of 38) 

13 (34.2% of 38, 

50.0% of 26) 

Admission Related to 6m 

Ambulation (Aim 4b) 

6 (8.3% of 72, 

17.1% of 35) 

1 (1.4% of 72, 

16.7% of 6) 

41 (56.9% of 72, 

100.0% of 41) 

25 (34.7% of 72, 

73.5% of 34) 

13 (34.2% of 38, 

50.0% of 26) 
41 (56.9% of 72) 
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Appendix A List of Abbreviations 

AD= Assistive device 

AIS= American Spinal Injury Association impairment scale 

AUC= Area under the curve 

BMI= Body mass index 

CPR= Clinical prediction rule 

FIM= Functional Independence Measure 

ICC= Intraclass correlation coefficient 

ISNCSCI= International Standards for Neurological Classification of Spinal Cord Injury  

IPR= Inpatient rehabilitation 

IQR= Interquartile range 

LA= Limb accelerations 

LARS= Least angle regression 

LASSO=Least absolute shrinkage and selection operator  

LEMS= Lower extremity motor score 

LT= Light touch 

MAS= Modified Ashworth Scale 

MMT= Manual muscle test 

OCA= Overall classification accuracy 

PLM= Periodic limb movement 
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PSQI= Pittsburgh Sleep Quality Index 

RMS= Root mean square 

SCI= Spinal cord injury 

SD= Standard deviation 

SF-36= Medical Outcomes Study 36-Item Short-Form Health Survey 

WISCI-II= Walking Index for Spinal Cord Injury II 

6MWT= 6 minute walk test 

10mWT= 10 meter walk test 
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Appendix B Additional CPRs for Ambulation 

Although the van Middendorp CPR is the most widely cited CPR, there are many others 

that have sought to improve upon this CPR or approach prediction from a different angle. The 

Hicks CPR was created as a simpler version of the van Middendorp CPR and uses only age (≥65 

years), the MMT motor score at L3, and LT sensation score at S1 to predict the probability of 

independent ambulation at 1-year post-injury as measured by the FIM.5 Like the van Middendorp 

CPR, it has demonstrated high accuracy (AUC= 0.866, overall classification accuracy= 84%), but 

also suffers from a biased sample population that may have led to overly-favorable results.52 

Belliveau at al. predicted the self-reported ability to walk 150 feet in their home, 1 street 

block outside, and 1 flight of stairs (with or without mobility aids) using artificial neural networks. 

Predictors included age ≥65 years, maximal motor scores for each myotome that were 

dichotomized into having against gravity strength or not (MMT ≥ 3), and lower and upper 

extremity motor scores.36 The artificial neural network prediction models using age and 

dichotomized motor scores from L2, L3, and S1 had AUC= .880 - .902 from OCA= 85 - 88% in 

the validation test set which were comparable to prediction accuracies from similar models made 

using logistic regression using the entire dataset (no validation).36 These models demonstrated that 

machine learning methods can be used for ambulatory prediction at least as well as traditional 

statistics. Additionally, this study was one of the first to use more functional ambulatory outcomes, 

but still limited those outcomes to dichotomized groups of those who could or could not complete 

the ambulation task. 

The prediction models by Zörner et al. were some of the only prediction models that 

focused only on individuals with motor incomplete SCI (AIS C and D) and used a variety of 
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predictors (gender, age, lower and upper extremity motor, LT, and pinprick sensation scores, AIS 

grade, tibial somatosensory evoked potentials) to predict more descriptive and functional outcome 

measures at 6-months after injury (dichotomized Walking Index for SCI II [WISCI-II] and 6 

Minute Walk Test [6MWT] scores into categories of independent or dependent and functional and 

non-functional ambulators, respectively).53 They found that the models performed best when 

calculated separately for individuals with tetraplegia and paraplegia. Lower extremity motor score 

(LEMS) was consistently included in all models. Although these models produced high 

classification accuracies among individuals with motor incomplete SCI (OCA= 82.1 - 92.2% for 

the WISCI-II and OCA= 84.2 - 100% for the 6MWT), the models were not validated, which, given 

the small sample size (n= 51 with tetraplegia, n= 39 with paraplegia) and feature selection steps 

prior to fitting the model, may lead to models that are not generalizable and perform poorly on 

unseen test sets. These models had much smaller proportions of individuals with paraplegia in the 

lower ambulatory groups that may have affected model performance. This is demonstrated by the 

lower prediction accuracies for individuals with paraplegia who were dependent walkers (n= 14, 

accuracy= 64.3% vs independent walkers n= 25, accuracy= 92.0%) and non-functional walkers 

(n=8, accuracy= 37.5% vs functional walkers n= 30, accuracy= 96.7%).53 These results also 

demonstrate the problematic use of only metrics such as OCA and AUC for model evaluation as 

skewed sample populations could cover up prediction inaccuracies among certain sub-populations 

that could be clinically useful to detect.109 This study addresses the importance of focusing CPRs 

for ambulation on individuals with motor incomplete injuries and using a combination of more 

descriptive and functional measures of ambulation as model outcomes, but is likely not as 

clinically useful due to flaws in the sample population and model building and validation. 
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Appendix C Model Evaluation Metrics 

The overall classification accuracy (OCA), precision, recall, and F1-score were used to 

describe classification model performance. For the present analyses, those performance metrics 

are defined as follows: 

 
𝑂𝐶𝐴 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠
 

 

Appendix Equation C.1: 

Overall Classification Accuracy 

(OCA) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑝𝑒𝑟 𝑐𝑙𝑎𝑠𝑠 𝑖) =  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑐𝑙𝑎𝑠𝑠 𝑖

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑐𝑙𝑎𝑠𝑠 𝑖 
 

Appendix Equation C.2: 

Precision 

 
𝑅𝑒𝑐𝑎𝑙𝑙 (𝑝𝑒𝑟 𝑐𝑙𝑎𝑠𝑠 𝑖) =  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑐𝑙𝑎𝑠𝑠 𝑖

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑐𝑙𝑎𝑠𝑠 𝑖 
 

Appendix Equation C.3: Recall 

 
𝐹1 − 𝑆𝑐𝑜𝑟𝑒 (𝑝𝑒𝑟 𝑐𝑙𝑎𝑠𝑠 𝑖) = 2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑖
 

Appendix Equation C.4: F1-

Score 

 

Precision represents the proportion of an outcome class that was labeled as a given class 

and actually in that class (i.e., ability not to label a negative sample as positive, positive predictive 

value). Recall is defined as the proportion of classifications that were correct out of the total 

number of classifications for a given class (i.e., ability of the classifier to find all positive samples, 

true positive rate). Precision is focused on minimizing false positives, while recall is focused on 

minimizing false negatives. Recall can also be referred to as sensitivity when used in binary 

classification. Measures such as specificity (true negative rate) are not applicable for multiclass 
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classification. F1-score is able to provide a more comprehensive view of model performance by 

calculating the weighted harmonic mean of precision and recall and is particularly useful for 

imbalanced classification problems where accuracy may be misleading.177, 178 For all metrics, a 

higher score (range=0-1) is indicative of higher accuracy and better model performance. 

The macro and weighted averages of the precision, recall, and F1-scores across classes 

were calculated to best evaluate the model performance when all classes are treated equally or 

when each class contribution is adjusted for the relative number of samples in that class, 

respectively.177 Each averaging method is calculated as:  

 

 
𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =

∑  𝑚𝑒𝑡𝑟𝑖𝑐𝑖𝑖

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
 

Appendix Equation 

C.5: Macro Average 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
∑  𝑚𝑒𝑡𝑟𝑖𝑐𝑖𝑖 ∗  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑖

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠
 

Appendix Equation 

C.6: Weighted 

Average 
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Appendix D Aim 1 Supplemental Material 

Appendix Table D.1: Description of covariates included in feature sets for Aim 1 

Covariate Type Covariates Included in Analysis 

Demographics54, 97 • Age 

• Sex 

• BMI 

• Years since injury 

Pain120, 121, 123 • If pain present 

• Average pain intensity  

• Number of pain locations 

• Pain Domain Score 

Sleep Quality138 • Global score (sum of 7 components) 

• Poor sleep quality (global score >5 [poor sleep quality] or ≤5) 

• Components: 

o Daytime dysfunction 

o Disturbances 

o Duration 

o Efficiency 

o Latency 

o Sleep quality  

• Averaged over nights collected (score 0-10) 

o Fatigue rating 

o Sleep rating 

Factors Affecting Sleep120, 121, 132-

134, 136, 137 
• Pain interference with sleep 

• Dichotomized to if it occurred over the collection period (yes/no): 

o Alcohol use (in 6 hours prior to sleep) 

o Caffeine use (in 6 hours prior to sleep) 

o Exercise 

o Sleep medication use 

Appendix D.1 Assessment of Limb Independence 

To increase the sample size, it was proposed to treat the right and left lower limbs as 

independent samples since LA and each impairment outcome are measured separately for each 

limb. Although SCI can often lead to asymmetric impairments, it was still assumed that there will 

be some level of relation between the sides. Therefore, Pearson correlations were calculated for 

each outcome and LA feature between the stronger and weaker lower limbs for each participant.  
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The impairment outcome correlations are shown in Appendix Table D.2 and the LA 

correlations are shown in Appendix Table D.3. For the participants with motor complete SCI, all 

strength scores were 0, so the correlation between sides was not applicable. For both the 

impairment outcomes and the LA features, participants with motor complete SCI generally had 

higher correlations than those with motor incomplete SCI. Due to these high correlations between 

both the input and output variables assessed in the analysis, the limbs were determined to be not 

independent and only one sample per participant was used that combined both limbs. 

Appendix Table D.2: Correlations coefficients (r) for each impairment outcome between the stronger and 

weaker lower limbs* 

Impairment Outcome 

Motor Incomplete 

(n=30, 28 for 

Spasticity) 

Motor 

Complete 

(n=10) 

All 

(n=40, 38 for 

Spasticity) 

Strength (LEMS) 0.770 N/A 0.857 

Sensation (Lower Extremity LT) 0.810 1.00 0.884 

Spasticity (MAS from knee flexors and plantarflexors)† 0.530 0.832 0.625 

* Correlation coefficients ≥ 0.7 are bolded; Coefficients ≥ 0.9 are in grey 

† MAS was treated as continuous with a score of 1+ as 1.5 

 

Appendix Table D.3: Correlations coefficients (r) for each LA feature between the stronger and weaker lower 

limbs* 

Feature 

Category LA Feature 

Motor Incomplete 

(n=30) 

Motor Complete 

(n=10) 

All 

(n=40) 

Change in angle 

of inclination 

Angle Net Change-IQR 0.497 0.980 0.543 

Angle Net Change-Med 0.343 0.629 0.377 

Angle Rate Change-IQR 0.353 0.938 0.438 

Angle Rate Change-Med 0.386 0.867 0.483 

Angle Total Change-IQR 0.603 0.976 0.662 

Angle Total Change-Med 0.642 0.779 0.652 

Change in 

gravitational 

acceleration 

Grav Change X-IQR 0.599 0.873 0.640 

Grav Change X-Med 0.110 -0.067 0.025 

Grav Change Y-IQR 0.220 0.913 0.263 

Grav Change Y-Med 0.076 0.774 0.035 

Grav Change Z-IQR 0.352 0.349 0.356 

Grav Change Z-Med -0.091 -0.699 -0.104 

Correlation 

coefficients 

between axes 

Corr XY-IQR 0.320 0.502 0.374 

Corr XY-Med -0.106 0.587 0.074 

Corr XZ-IQR 0.417 -0.006 0.414 

Corr XZ-Med 0.052 -0.149 0.007 

Corr YZ-IQR 0.555 0.462 0.526 

Corr YZ-Med -0.189 0.021 -0.206 
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Appendix Table D.3 Continued 

Feature 

Category LA Feature 

Motor Incomplete 

(n=30) 

Motor Complete 

(n=10) 

All 

(n=40) 

Frequency 

domain 

Bandwidth-IQR 0.542 0.272 0.484 

Bandwidth-Med 0.593 0.867 0.687 

Centroid Freq-IQR 0.754 -0.242 0.673 

Centroid Freq-Med 0.641 0.840 0.695 

Dom Freq 1-IQR 0.510 0.874 0.607 

Dom Freq 1-Med 0.757 0.953 0.851 

Dom Freq 2-IQR 0.180 0.559 0.186 

Dom Freq 2-Med 0.582 0.947 0.483 

Dom Low Freq-IQR 0.080 0.804 0.307 

Dom Low Freq-Med 0.658 0.813 0.740 

Mean Freq-IQR 0.706 0.235 0.625 

Mean Freq-Med 0.693 0.778 0.734 

Med Freq-IQR 0.578 0.872 0.718 

Med Freq-Med 0.693 0.915 0.794 

Power Dom Freq 1/Total-IQR 0.708 0.828 0.716 

Power Dom Freq 1/Total-Med 0.700 0.663 0.698 

Power Dom Freq 1-IQR 0.327 0.968 0.373 

Power Dom Freq 1-Med 0.431 0.677 0.433 

Power Dom Freq 2-IQR 0.558 0.994 0.664 

Power Dom Freq 2-Med 0.353 0.891 0.366 

Power Dom Low Freq-IQR 0.610 0.952 0.663 

Power Dom Low Freq-Med 0.326 0.932 0.351 

Power High Freq/Total-IQR 0.679 0.837 0.700 

Power High Freq/Total-Med 0.576 0.708 0.621 

Power Total-IQR 0.419 0.976 0.467 

Power Total-Med 0.355 0.779 0.366 

Limb movement 

percentages 

Bilat Ankle % 0.590 -0.038 0.512 

Unilat Ankle % 0.590 -0.038 0.512 

Whole Body % 0.795 0.708 0.781 

Wrist Ankle % 0.734 0.757 0.749 

Median crossings Num Med Crossings Norm-IQR 0.641 0.743 0.652 

Num Med Crossings Norm-Med 0.697 0.956 0.759 

Num Med Crossings-IQR 0.516 0.931 0.605 

Num Med Crossings-Med 0.636 0.580 0.618 

Periodic limb 

movements 

(PLM) 

Num PLM Norm 0.571 0.921 0.745 

PLM % 0.780 0.927 0.811 

PLM Index 0.953 0.988 0.958 

Relationship to 

recent 

movements 

Close Cross Corr Peak-IQR 0.617 0.272 0.586 

Close Cross Corr Peak-Med 0.537 0.495 0.534 

Close Cross Cov Peak-IQR 0.616 0.175 0.549 

Close Cross Cov Peak-Med 0.739 0.919 0.725 

Dom Freq Last 90s-IQR 0.284 0.862 0.241 

Dom Freq Last 90s-Med 0.796 0.930 0.839 

Max Cross Corr-IQR 0.639 0.296 0.550 

Max Cross Corr-Med 0.728 0.786 0.732 

Max Cross Cov-IQR 0.696 0.463 0.643 

Max Cross Cov-Med 0.845 0.862 0.827 

Mean Cross Corr Peaks-IQR 0.468 0.629 0.496 

Mean Cross Corr Peaks-Med 0.644 0.714 0.650 

Mean Cross Cov Peaks-IQR 0.451 0.227 0.411 

Mean Cross Cov Peaks-Med 0.840 0.749 0.810 
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Appendix Table D.3 Continued 

Feature 

Category LA Feature 

Motor Incomplete 

(n=30) 

Motor Complete 

(n=10) 

All 

(n=40) 

Relationship to 

recent 

movements 

Move Last 90s-IQR 0.425 0.372 0.394 

Move Last 90s-Med 0.924 0.821 0.903 

Move Next 90s-IQR 0.425 0.372 0.394 

Move Next 90s-Med 0.924 0.821 0.903 

Num Cross Corr Peaks-IQR 0.416 0.308 0.434 

Num Cross Corr Peaks-Med 0.848 0.893 0.853 

Num Cross Cov Peaks-IQR 0.501 0.456 0.465 

Num Cross Cov Peaks-Med 0.787 0.869 0.809 

Time Since Prev-IQR 0.632 0.910 0.684 

Time Since Prev-Med 0.394 0.976 0.579 

Signal 

characteristics 

Entropy Rate-IQR 0.515 0.429 0.501 

Entropy Rate-Med 0.665 0.645 0.655 

Lempel-Ziv Comp-IQR 0.549 0.831 0.617 

Lempel-Ziv Comp-Med 0.618 0.757 0.631 

Lyapunov Exp-IQR 0.493 0.252 0.450 

Lyapunov Exp-Med 0.652 0.882 0.726 

Wave Approx-IQR 0.545 0.303 0.541 

Wave Approx-Med 0.673 0.606 0.661 

Wave Energy 1-IQR 0.633 0.546 0.606 

Wave Energy 1-Med 0.748 0.862 0.789 

Wave Energy 2-IQR 0.250 0.274 0.267 

Wave Energy 2-Med 0.507 0.765 0.554 

Wave Energy 3-IQR 0.465 0.808 0.569 

Wave Energy 3-Med 0.525 0.722 0.593 

Wave Entropy-IQR 0.490 0.018 0.488 

Wave Entropy-Med 0.664 0.636 0.657 

Statistical AUC Acc Norm-IQR 0.532 0.855 0.554 

AUC Acc Norm-Med 0.592 0.778 0.611 

AUC Acc-IQR 0.876 0.982 0.853 

AUC Acc-Med 0.535 0.851 0.574 

Duration-IQR 0.817 0.985 0.847 

Duration-Max 0.880 0.991 0.891 

Duration-Med 0.837 0.951 0.854 

Kurtosis-IQR 0.604 0.493 0.558 

Kurtosis-Med 0.431 0.568 0.447 

Max Acc-IQR 0.801 0.937 0.812 

Max Acc-Med 0.628 0.913 0.632 

Max-RMS Acc-IQR 0.706 0.775 0.684 

Max-RMS Acc-Med 0.683 0.760 0.686 

Med Acc-IQR 0.713 0.877 0.749 

Med Acc-Med 0.757 0.848 0.779 

Range Acc-IQR 0.801 0.937 0.812 

Range Acc-Med 0.630 0.911 0.633 

RMS Acc-IQR 0.517 0.847 0.537 

RMS Acc-Med 0.602 0.803 0.615 

SD Acc-IQR 0.529 0.866 0.551 

SD Acc-Med 0.540 0.794 0.558 

Skewness-IQR 0.349 0.675 0.439 

Skewness-Med 0.437 0.707 0.489 

SMA Acc-IQR 0.537 0.829 0.554 

SMA Acc-Med 0.583 0.792 0.605 
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Appendix Table D.3 Continued 

Feature 

Category LA Feature 

Motor Incomplete 

(n=30) 

Motor Complete 

(n=10) 

All 

(n=40) 

Timing End Move %-IQR 0.571 0.482 0.553 

End Move %-Med 0.905 0.927 0.909 

Move/hour 0.940 0.991 0.949 

Move/night 0.945 0.961 0.946 

Start Move %-IQR 0.571 0.480 0.552 

Start Move %-Med 0.907 0.927 0.910 

Time Asleep 1.000 1.000 1.000 

Velocity and 

distance 

Med Vel-IQR 0.720 0.833 0.751 

Med Vel-Med 0.753 0.826 0.764 

RMS Vel-IQR 0.507 0.846 0.529 

RMS Vel-Med 0.611 0.807 0.624 

Total Dist-IQR 0.859 0.985 0.851 

Total Dist-Med 0.518 0.827 0.563 

* Correlation coefficients ≥ 0.7 are bolded; Coefficients ≥ 0.9 are in grey 

 

Appendix D.1.1 Machine Learning Algorithm Descriptions 

The LASSO algorithm is a linear regression model with embedded feature selection that 

favors more sparse solutions (fewer non-zero coefficients) using ℓ1 regularization. The ℓ1 

regularization uses coordinate descent which minimizes the objective function of the residual sum 

of squares plus the sum of the absolute value of the coefficients which creates a trade-off between 

accuracy and simplicity. The regularization parameter, λ, can be used to influence the simplicity 

of the solution, with larger values of λ decreasing the number of features included in the model.176, 

246, 247 

The LASSO model can be implemented using the LARS algorithm which determines the 

features to be included in the model for all values of λ along the regularization path. It does this 

by finding the feature with the highest correlation to the residual and then continuing along that 

regression line until another variable is found that has the same or a higher correlation. It then 

continues equiangular to those features until no more features are added. In this way it produces 
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an exact value for the optimal λ in as few steps as forwards stepwise regression. Thus, the LASSO 

LARS algorithm is particularly useful when there are many more features than samples and 

provides an efficient and more automated method for feature selection and model fitting.176, 246, 247 

To provide consistency between the models for the continuous and categorical outcomes, 

the ℓ1 regularization was also used in the multinomial logistic regression model. A range of 

regularization parameters were used to ensure an appropriate value was used. The saga solver in 

sklearn in Python248 is a variation of the stochastic average gradient descent and was used as it 

supports both ℓ1 regularization and multinomial logistic regression.249 The output in multinomial 

logistic regression is separate equations that evaluate the probability that the sample belongs to a 

given class. The class with the highest probability is chosen as the predicted class. 

Appendix D.2 Impairment Models Full Results 

  



 165 

Appendix Table D.4: Features included in the strength LASSO LARS models per feature set, sorted by the 

absolute value of the coefficient. 

LA Features (16 features) Covariates Features (19 features) 

Feature Name Coeff Feature Name Coeff 

Wave Approx- IQR 20.99 SF-36: Pain -29.98 

Num Cross Corr Peaks- IQR -19.81 BMI 23.66 

Lyapunov Exp- IQR 13.90 Number if Pain Locations -21.56 

Angle Rate Change- Med 13.22 PSQI: Poor Sleep Quality 17.00 

Power Dom Freq 1/Total- IQR 11.64 PSQI: Sleep Duration -15.20 

Corr XY- IQR 8.83 Pain Interference: Sleep -13.67 

Move Next 90s- Med 8.67 PSQI: Sleep Meds -11.26 

Med Freq- Med -6.08 Exercised During Collection 10.18 

Max Cross Cov- IQR -5.74 Sex 6.84 

Corr XY- Med -5.73 PSQI: Sleep Efficiency -6.36 

PLM % 5.42 Pain Present 2.40 

Time Since Prev- IQR -4.61 PSQI: Sleep Latency -1.65 

Time Asleep 2.09 Sleep Meds During Collection -1.05 

Mean Freq- IQR 0.70 Age 0.99 

Num Med Crossings Norm- Med -0.64 Ave Sleep Rating 0.83 

Skewness- Med -0.51 Alcohol During Collection -0.79   
Years Since Injury 0.56   
PSQI: Sleep Disturbance 0.40   
Caffeine During Collection 0.09 

Abbreviations: Coeff= Model Coefficient 

Covariates are in grey; LA features are in white. 
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Appendix Table D.5: Features included in the strength linear regression models per feature set, sorted by the 

absolute value of the coefficient. 

LA Features 

(16 features) 

Covariates Features 

(19 features) 

LA + Covariates Features 

(35 features) 

Feature Name Coeff Feature Name Coeff Feature Name Coeff 

Max Cross Cov- IQR -37.57 SF-36: Pain -35.30 Corr XY- IQR 77.84 

Wave Approx- IQR 30.98 BMI 31.97 Angle Rate Change- Med 71.32 

Num Med Crossings 

Norm- Med 

-30.33 Number if Pain Locations -30.44 Max Cross Cov- IQR -69.68 

Lyapunov Exp- IQR 26.42 PSQI: Poor Sleep Quality 21.94 Years Since Injury 59.43 

Num Cross Corr Peaks- 

IQR 

-23.93 PSQI: Sleep Duration -20.75 PSQI: Sleep Disturbance -54.71 

Angle Rate Change- Med 17.75 Pain Interference: Sleep -20.32 Ave Sleep Rating 51.83 

Corr XY- IQR 13.35 PSQI: Sleep Meds -16.48 Num Med Crossings Norm- 

Med 

49.94 

Time Asleep 11.20 Sex 11.74 Number if Pain Locations -44.14 

Mean Freq- IQR 11.16 Exercised During 

Collection 

11.54 Skewness- Med 32.20 

Time Since Prev- IQR -10.39 Pain Present 9.06 PSQI: Poor Sleep Quality 29.64 

PLM % 8.74 PSQI: Sleep Efficiency -5.43 Med Freq- Med -28.90 

Corr XY- Med -6.54 Age 5.19 PLM % 28.51 

Skewness- Med 4.82 Sleep Meds During 

Collection 

-4.48 Age -27.69 

Move Next 90s- Med 4.47 Years Since Injury 4.21 Lyapunov Exp- IQR 26.38 

Med Freq- Med -3.30 Ave Sleep Rating 4.18 Mean Freq- IQR -24.91 

Power Dom Freq 1/Total- 

IQR 

0.84 PSQI: Sleep Latency -2.14 Move Next 90s- Med -24.42 

  
Caffeine During 

Collection 

0.91 PSQI: Sleep Meds -23.91 

  
PSQI: Sleep Disturbance -0.15 Num Cross Corr Peaks- IQR 18.21 

  

Alcohol During 

Collection 

0.04 Wave Approx- IQR 15.51 

    

  Sleep Meds During 

Collection 

-12.67 

      Time Since Prev- IQR -12.50 

      BMI 11.57 

      PSQI: Sleep Duration -10.74 

      Time Asleep -9.58 

      PSQI: Sleep Latency -8.62 

      Pain Interference: Sleep -7.61 

      Alcohol During Collection 6.62 

      Sex 4.33 

      Caffeine During Collection 3.96 

      SF-36: Pain -3.38 

      Corr XY- Med 2.21 

      Exercised During Collection 1.96 

      Pain Present 0.93 

    

  Power Dom Freq 1/Total- 

IQR 

-0.82 

        PSQI: Sleep Efficiency 0.77 

Abbreviations: Coeff= Model Coefficient 

Covariates are in grey; LA features are in white. 
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Appendix Table D.6: Features included in the sensation LASSO LARS models per feature set, sorted by the 

absolute value of the coefficient. 

LA Features (15 features) Covariates Features (2 features) 

Feature Name Coeff Feature Name Coeff 

Time Since Prev- IQR -9.62 Number if Pain Locations -2.76 

Corr YZ- Med 8.34 PSQI: Sleep Efficiency -2.38 

Dom Freq 1- Med -8.10     

Num Cross Cov Peaks- IQR -7.15     

Time Asleep 6.92     

Wave Entropy- IQR 5.67     

Num Cross Corr Peaks- IQR -4.85     

Power Dom Freq 2- Med -3.72     

Dom Freq 1- IQR 3.48     

Grav Change Y- IQR 3.17     

Power Dom Freq 1/Total- IQR 2.08     

Mean Freq- IQR 1.18     

Lyapunov Exp- Med 1.12     

Corr XZ- IQR -0.59     

PLM Index 0.11     

Abbreviations: Coeff= Model Coefficient   

Covariates are in grey; LA features are in white. 

 

Appendix Table D.7: Features included in the sensation linear regression models per feature set, sorted by the 

absolute value of the coefficient. 

LA Features 

(15 features) 

Covariates Features 

(2 features) 

LA + Covariates Features 

(17 features) 

Feature Name Coeff Feature Name Coeff Feature Name Coeff 

Time Since Prev- IQR -11.23 Number if Pain Locations -9.08 Dom Freq 1- Med -12.34 

Dom Freq 1- Med -10.89 PSQI: Sleep Efficiency -5.08 Power Dom Freq 2- Med -10.42 

Corr YZ- Med 10.39   
 

Time Since Prev- IQR -10.34 

Power Dom Freq 2- Med -10.19   
 

Corr YZ- Med 10.33 

Grav Change Y- IQR 9.90   
 

Grav Change Y- IQR 9.64 

Num Cross Cov Peaks- IQR -8.97   
 

Time Asleep 8.95 

Time Asleep 8.79   
 

Wave Entropy- IQR 8.06 

Wave Entropy- IQR 8.40   
 

Dom Freq 1- IQR 7.94 

Dom Freq 1- IQR 8.26   
 

Num Cross Cov Peaks- IQR -6.29 

Lyapunov Exp- Med 4.63   
 

PLM Index 4.72 

PLM Index 4.55   
 

Num Cross Corr Peaks- IQR -4.07 

Num Cross Corr Peaks- IQR -3.73   
 

Number if Pain Locations -3.43 

Corr XZ- IQR -3.21   
 

Power Dom Freq 1/Total- IQR 2.72 

Power Dom Freq 1/Total- IQR 3.06   
 

Corr XZ- IQR -2.42 

Mean Freq- IQR 1.62   
 

Mean Freq- IQR 2.13     
Lyapunov Exp- Med 1.52     
PSQI: Sleep Efficiency -0.56 

Abbreviations: Coeff= Model Coefficient       

Covariates are in grey; LA features are in white.     
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Appendix Table D.8: Spasticity logistic regression with ℓ1 regularization model overall and per-class statistics 

per feature set.*  

Spasticity: LA, Number of Initial Features= 133 

Actual/Predicted 

Class 

No 

Spasticity 

Mild 

Spasticity 

Moderate 

Spasticity 

Number of 

Features Selected F1- Score Precision Recall 

No Spasticity 14 1 0 10 0.848 0.778 0.933 

Mild Spasticity 3 11 0 7 0.786 0.786 0.786 

Moderate Spasticity 1 2 6 10 0.800 1.000 0.667 

Macro Average 
Overall Classification Accuracy= 0.816 

0.854 0.795 0.811 

Weighted Average 0.833 0.816 0.814 

Spasticity: Covariates, Number of Initial Features= 24 

Actual/Predicted 

Class 

No 

Spasticity 

Mild 

Spasticity 

Moderate 

Spasticity 

Number of 

Features Selected F1- Score Precision Recall 

No Spasticity 13 2 0 5 0.765 0.684 0.867 

Mild Spasticity 4 10 0 5 0.741 0.769 0.714 

Moderate Spasticity 2 1 6 6 0.800 1.000 0.667 

Macro Average 
Overall Classification Accuracy= 0.763 

0.818 0.749 0.768 

Weighted Average 0.790 0.763 0.764 

* The number of participants correctly classified per ambulation category are bolded. 

 

Appendix Table D.9: Spasticity logistic regression without regularization model overall and per-class 

statistics per feature set.* 

Spasticity: LA 

Actual/Predicted 

Class 

No 

Spasticity 

Mild 

Spasticity 

Moderate 

Spasticity 

Number of 

Features Selected F1- Score Precision Recall 

No Spasticity 9 6 0 10 0.765 0.684 0.867 

Mild Spasticity 1 13 0 7 0.741 0.769 0.714 

Moderate Spasticity 0 2 7 10 0.800 1.000 0.667 

Macro Average 
Overall Classification Accuracy= 0.763 

0.769 0.779 0.840 

Weighted Average 0.763 0.765 0.820 

Spasticity: Covariates 

Actual/Predicted 

Class 

No 

Spasticity 

Mild 

Spasticity 

Moderate 

Spasticity 

Number of 

Features in Model F1- Score Precision Recall 

No Spasticity 12 3 0 5 0.750 0.706 0.800 

Mild Spasticity 3 11 0 5 0.688 0.611 0.786 

Moderate Spasticity 2 4 3 6 0.500 1.000 0.333 

Macro Average 
Overall Classification Accuracy= 0.684 

0.640 0.646 0.772 

Weighted Average 0.684 0.668 0.741 

Spasticity: LA + Covariates 

Actual/Predicted 

Class 

No 

Spasticity 

Mild 

Spasticity 

Moderate 

Spasticity 

Number of 

Features in Model F1- Score Precision Recall 

No Spasticity 12 3 0 15 0.889 1.000 0.800 

Mild Spasticity 0 14 0 12 0.875 0.778 1.000 

Moderate Spasticity 0 1 8 16 0.941 1.000 0.889 

Macro Average 
Overall Classification Accuracy= 0.895 

0.926 0.896 0.902 

Weighted Average 0.918 0.895 0.896 

* The number of participants correctly classified per ambulation category are bolded. 
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Appendix Table D.10: Features included in the spasticity logistic regression with ℓ1 regularization models per 

category and feature set, sorted by the absolute value of the coefficient. 

LA Features 

No Spasticity Mild Spasticity Moderate Spasticity 

Corr YZ- Med -0.95 Time Asleep 1.38 Wave Entropy- IQR -2.26 

Skewness- IQR 0.93 Num Cross Cov Peaks- IQR -0.74 Move/hour 1.70 

Power Dom Freq 2- Med -0.62 Power Dom Freq 1- IQR 0.48 Skewness- IQR -1.03 

Close Cross Cov Peak- 

IQR 
0.59 Grav Change Z- IQR -0.37 Wave Energy 2- Med -0.91 

Close Cross Corr Peak- 

IQR 
0.58 Corr XY- Med -0.27 Med Freq- Med 0.60 

Wave Energy 2- Med 0.54 Dom Freq Last 90s- IQR -0.06 Corr YZ- Med 0.38 

Dom Freq 2- IQR 0.39 Dom Freq 1- Med -0.04 Wave Approx- IQR -0.27 

PLM % -0.34   
 

Med Freq- IQR 0.17 

Wave Approx- IQR 0.15   
 

PLM Index 0.17 

Num Cross Cov Peaks- 

IQR 
0.06   

 

Dom Freq 1- Med 0.04 

Corr YZ- Med -0.95 Time Asleep 1.38 Wave Entropy- IQR -2.26 

Covariates Features 

No Spasticity Mild Spasticity Moderate Spasticity 

Feature Name Coeff Feature Name Coeff Feature Name Coeff 

PSQI: Sleep Quality 1.86 Ave Fatigue Rating 0.82 Ave Sleep Rating -1.40 

Years Since Injury 1.10 PSQI: Sleep Meds -0.63 PSQI: Sleep Duration 0.87 

PSQI: Poor Sleep Quality -0.87 Age -0.52 PSQI: Sleep Disturbance -0.72 

Pain Interfere: Sleep 0.81 Caffeine During Collection 0.38 Pain Present 0.70 

Sleep Meds During 

Collection 
-0.35 

Exercised During 

Collection 
-0.21 

Sleep Meds During 

Collection 
0.30 

   

 

  
Caffeine During 

Collection 
-0.26 

Abbreviations: Coeff= Model Coefficient  

Covariates are in grey; LA features are in white. 
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Appendix Table D.11: Features included in the spasticity logistic regression without regularization models 

per category and feature set, sorted by the absolute value of the coefficient. 

LA Features 

No Spasticity Mild Spasticity Moderate Spasticity 

Feature Name Coeff Feature Name Coeff Feature Name Coeff 

Power Dom Freq 2- Med -2.50 Time Asleep 2.51 Wave Approx- IQR -2.26 

PLM % -2.38 Grav Change Z- IQR -1.95 Wave Entropy- IQR -2.07 

Corr YZ- Med -2.28 Power Dom Freq 1- IQR 1.87 Corr YZ- Med 2.07 

Wave Approx- IQR 2.18 Num Cross Cov Peaks- IQR -1.41 Skewness- IQR -1.55 

Num Cross Cov Peaks- IQR 1.60 Dom Freq Last 90s- IQR -1.13 Move/hour 1.40 

Skewness- IQR 1.49 Corr XY- Med -1.03 Wave Energy 2- Med -1.31 

Close Cross Cov Peak- IQR 1.35 Dom Freq 1- Med -0.67 PLM Index 1.07 

Dom Freq 2- IQR 1.27   
 

Med Freq- IQR 0.66 

Wave Energy 2- Med 1.18   
 

Dom Freq 1- Med 0.63 

Close Cross Corr Peak- IQR 0.98   
 

Med Freq- Med 0.59 

Covariates Features 

No Spasticity Mild Spasticity Moderate Spasticity 

Feature Name Coeff Feature Name Coeff Feature Name Coeff 

Years Since Injury 2.69 Ave Fatigue Rating 1.93 PSQI: Sleep Disturbance -2.22 

PSQI: Sleep Quality 1.64 Age -1.85 Ave Sleep Rating -2.11 

Sleep Meds During 

Collection 

-0.90 Exercised During 

Collection 

-1.02 Sleep Meds During 

Collection 

1.54 

PSQI: Poor Sleep Quality -0.79 Caffeine During Collection 0.96 Pain Present 1.02 

Pain Interfere: Sleep 0.48 PSQI: Sleep Meds -0.39 Caffeine During 

Collection 

-0.98 

 
  

 
  PSQI: Sleep Duration 0.77 

LA + Covariates Features 

No Spasticity Mild Spasticity Moderate Spasticity 

Feature Name Coeff Feature Name Coeff Feature Name Coeff 

PLM % -2.08 Time Asleep 2.20 Wave Approx- IQR -1.57 

Years Since Injury 1.59 Ave Fatigue Rating 1.99 Wave Entropy- IQR -1.56 

Wave Approx- IQR 1.37 Age -1.83 Corr YZ- Med 1.48 

Corr YZ- Med -1.25 Grav Change Z- IQR -1.83 Sleep Meds During 

Collection 

1.30 

Skewness- IQR 1.24 Corr XY- Med -1.28 Skewness- IQR -1.29 

PSQI: Poor Sleep Quality -1.03 Power Dom Freq 1- IQR 1.18 Move/hour 1.28 

Power Dom Freq 2- Med -1.02 Num Cross Cov Peaks- IQR -0.89 Wave Energy 2- Med -1.25 

PSQI: Sleep Quality 0.97 Dom Freq Last 90s- IQR -0.85 Ave Sleep Rating -1.04 

Num Cross Cov Peaks- IQR -0.91 Dom Freq 1- Med -0.71 PSQI: Sleep Duration 1.01 

Sleep Meds During 

Collection 

0.79 Exercised During 

Collection 

-0.66 PLM Index 1.00 

Dom Freq 2- IQR 0.67 Caffeine During Collection 0.52 PSQI: Sleep Disturbance -0.98 

Close Cross Cov Peak- IQR 0.62 PSQI: Sleep Meds 0.14 Dom Freq 1- Med 0.57 

Close Cross Corr Peak- IQR 0.61     Caffeine During 

Collection 

-0.50 

Wave Energy 2- Med 0.58     Med Freq- IQR 0.44 

Pain Interfere: Sleep 0.47     Med Freq- Med 0.41 

        Pain Present 0.40 

Abbreviations: Coeff= Model Coefficient  

Covariates are in grey; LA features are in white. 
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Appendix D.3 Supplemental Analysis for Sensation Models 

When evaluating the relationship between the covariates feature set and lower limb LT 

sensation, it was found that higher sensation scores were associated with 2 covariates: fewer pain 

locations and better sleep efficiency (lower PSQI: Sleep efficiency). This model resulted in much 

lower R2 values than would have been expected (i.e., a slightly lower R2 than when using only LA 

as seen in the other models). Thus, further analysis was completed to assess if an irregularity in 

the data was leading to the overly reduced feature selection and model instability or whether the 

covariates truly had a poorer relationship than expected. 

The LASSO LARS model is effective in reducing multicollinearity by only including 1 of 

the highly correlated features in the model, which is in a beneficial characteristic. However, the 

model effectively chooses between highly correlated features at random which can introduce 

problems in the model.176, 246 Although some covariate features were expected to have high 

correlations to other covariates, only 2 features had a correlation coefficient greater than 0.7: PSQI: 

Poor Sleep Quality and PSQI: Sleep Duration (r= .729) and PSQI: Poor Sleep Quality and PSQI: 

Sleep Quality (r= 0.718; Poor Sleep Quality is the dichotomized version of the PSQI Sleep Quality 

measure of the PSQI). 

Although there was not evidence of substantial correlation between covariate features, 

models were assessed that manually removed features that either conceptually measured similar 

information or were highly correlated. When determining which features to remove, features were 

kept that were more clinically meaningful, decreased the number of other features that were highly 

correlated, and were easier to calculate. A set of 19 covariate features after the repetitive/correlated 

features were removed was assessed in the LASSO LARS models and compared to the original 

model with all covariate features (24 initial features). The model with the non-repetitive features 
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produced essentially the same results as when no prior feature selection was performed, with the 

R2= 0.157 and the 2 same covariate features (number of pain problems, PSQI: Sleep Efficiency) 

selected.  

Feature selection was also performed algorithmically so that features with the highest 

mutual information scores with respect to the outcome were included in the model while other 

highly correlated features were removed. Mutual information measures the dependency between 

the LA feature and the outcome using nonparametric methods based on entropy estimations from 

k-nearest neighbors distances. Higher mutual information values indicate higher dependency 

between the variables.250 In addition to using mutual information to remove repetitive features, it 

was also used for further feature selection. The model containing all original covariate features 

(All) was compared to models using the following feature sets: only non-repetitive features after 

repetitive features with lower mutual information scores removed, only features with mutual 

information scores greater than zero, the top 50% of features based off mutual information score, 

top 25% and top 10%. Model performance is the same or worse than when all features were used 

until the features were restricted to the top 25% or less. Since it was determined that this method 

introduces too much bias to select features based off their relationship to the outcome and restricts 

features too much prior to when feature selection should occur in the LASSO LARS model, these 

methods were not further used. 

These results indicate that highly correlated features were not affecting the results. Since 

any feature selection prior to the machine learning model introduces bias, all future models did not 

have any feature selection performed prior. 

It was still thought that there was an interaction between covariates that was interfering 

with proper model building. The LASSO LARS model was run with all LA features and 1 
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covariate at a time to attempt to isolate the problematic covariate. All models performed essentially 

as expected with R2= 0.706 – 0.839 and 15-22 features selected for each model. Of the 24 models, 

10 included the covariate in the model, 13 did not select the covariate and produced the same 

model as when LA features only were included, and 1 covariate (Caffeine During Collection) was 

not selected in the model but produced a different model than when only LA features were 

included. Thinking that this covariate could be the source of the model instability, another model 

was assessed that included all LA and covariate features except for caffeine during the collection, 

but this again resulted in only the same 2 covariate features being selected and a poor model 

performance. 

A similar analysis was performed by including all LA features and all covariates except 1 

at a time. Each of these models selected only the same 2 covariate features when they were both 

available. When PSQI: Sleep Efficiency was excluded then only number of pain problems 

remained (R2= 0.067). However, when number of pain problems or both the PSQI: Sleep 

Efficiency and number of pain problems were excluded, then no variables were selected for the 

model). 

Since this finding with the covariate features resulting in an over-reduction in the number 

of features included in the model was only occurring with respect to the sensation outcome and 

not strength, the distributions of the outcomes were more closely assessed. Although neither 

outcome exhibited a normal distribution, this is not required for machine learning models and 

neither was vastly skewed (Appendix Figure D.1). 



 174 

 

Appendix Figure D.1: Histograms and scatter plots for the Aim 1 participant distribution for the strength 

(top) and sensation (bottom) outcomes. 

 

Therefore, after evaluating correlations between features, manual feature reduction, 

algorithmic feature reduction, and individual covariate models there was not strong support for a 

data irregularity to be the primary cause of the poor sensation model performance. While it is still 

possible that a data issue may be present, this potential issue is unlikely to affect the study results 

or interpretation and it was determined that it was more likely that the covariates are just not 

strongly associated with sensation.  
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Appendix E Aim 2 Supplemental Material 

Appendix Table E.1: 10mWT confusion matrices and per-class and overall evaluation metrics for each 

feature set.* 

10mWT: Clinical & Demographics 

Actual/Predicted Class 

Non-

Ambulatory 

Household 

Ambulator 

Community 

Ambulator Precision Recall 

F1-

Score 

Non-Ambulatory (0 m/s) 9 1 1 0.750 0.818 0.783 

Household Ambulator (0.01-.44 m/s) 2 5 2 0.500 0.556 0.526 

Community Ambulator (>.44 m/s) 1 4 2 0.400 0.286 0.333 

Macro Average Overall Classification Accuracy= 0.593 0.550 0.553 0.547 

Weighted Average 0.576 0.593 0.581 

10mWT: LA, Clinical & Demographics 

Actual/Predicted Class 

Non-

Ambulatory 

Household 

Ambulator 

Community 

Ambulator Precision Recall 

F1-

Score 

Non-Ambulatory (0 m/s) 9 1 1 1.000 0.818 0.900 

Household Ambulator (0.01-.44 m/s) 0 6 3 0.600 0.667 0.632 

Community Ambulator (>.44 m/s) 0 3 4 0.500 0.571 0.533 

Macro Average Overall Classification Accuracy= 0.704 0.700 0.685 0.688 

Weighted Average 0.737 0.704 0.715 

10mWT: PPEF, Clinical & Demographics 

Actual/Predicted Class 

Non-

Ambulatory 

Household 

Ambulator 

Community 

Ambulator Precision Recall 

F1-

Score 

Non-Ambulatory (0 m/s) 9 2 0 0.900 0.818 0.857 

Household Ambulator (0.01-.44 m/s) 1 6 2 0.500 0.667 0.571 

Community Ambulator (>.44 m/s) 0 4 3 0.600 0.429 0.500 

Macro Average Overall Classification Accuracy= 0.667 0.667 0.638 0.643 

Weighted Average 0.689 0.667 0.669 

10mWT: All (LA, PPEF, Clinical & Demographics) 

Actual/Predicted Class 

Non-

Ambulatory 

Household 

Ambulator 

Community 

Ambulator Precision Recall 

F1-

Score 

Non-Ambulatory (0 m/s) 9 1 1 0.900 0.818 0.857 

Household Ambulator (0.01-.44 m/s) 1 6 2 0.500 0.667 0.571 

Community Ambulator (>.44 m/s) 0 5 2 0.400 0.286 0.333 

Macro Average Overall Classification Accuracy= 0.630 0.600 0.590 0.587 

Weighted Average 0.637 0.630 0.626 

* The feature set with the highest classification accuracy per outcome is highlighted grey. The number of 

participants correctly classified per ambulation category are bolded. 
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Appendix Table E.2: 6MWT confusion matrices and per-class and overall evaluation metrics for each feature 

set. * 

6MWT: Clinical & Demographics 

Actual/Predicted Class 

Non-

Ambulatory 

Household 

Ambulator 

Community 

Ambulator Precision Recall 

F1-

Score 

Non-Ambulatory (0 m) 9 2 0 0.818 0.818 0.818 

Household Ambulator (1-204 m) 2 6 3 0.600 0.545 0.571 

Community Ambulator (> 204 m) 0 2 3 0.500 0.600 0.545 

Macro Average Overall Classification Accuracy= 0.667 0.639 0.655 0.645 

Weighted Average 0.670 0.667 0.667 

6MWT: LA, Clinical & Demographics 

Actual/Predicted Class 

Non-

Ambulatory 

Household 

Ambulator 

Community 

Ambulator Precision Recall 

F1-

Score 

Non-Ambulatory (0 m) 9 2 0 0.818 0.818 0.818 

Household Ambulator (1-204 m) 2 9 0 0.750 0.818 0.783 

Community Ambulator (> 204 m) 0 1 4 1.000 0.800 0.889 

Macro Average Overall Classification Accuracy= 0.815 0.856 0.812 0.830 

Weighted Average 0.824 0.815 0.817 

6MWT: PPEF, Clinical & Demographics 

Actual/Predicted Class 

Non-

Ambulatory 

Household 

Ambulator 

Community 

Ambulator Precision Recall 

F1-

Score 

Non-Ambulatory (0 m) 9 2 0 0.818 0.818 0.818 

Household Ambulator (1-204 m) 2 8 1 0.667 0.727 0.696 

Community Ambulator (> 204 m) 0 2 3 0.750 0.600 0.667 

Macro Average Overall Classification Accuracy= 0.741 0.745 0.715 0.727 

Weighted Average 0.744 0.741 0.740 

6MWT: All (LA, PPEF, Clinical & Demographics) 

Actual/Predicted Class 

Non-

Ambulatory 

Household 

Ambulator 

Community 

Ambulator Precision Recall 

F1-

Score 

Non-Ambulatory (0 m) 9 2 0 0.750 0.818 0.783 

Household Ambulator (1-204 m) 3 7 1 0.700 0.636 0.667 

Community Ambulator (> 204 m) 0 1 4 0.800 0.800 0.800 

Macro Average Overall Classification Accuracy= 0.741 0.750 0.752 0.750 

Weighted Average 0.739 0.741 0.739 

* The feature set with the highest classification accuracy per outcome is highlighted grey. The number of 

participants correctly classified per ambulation category are bolded. 
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Appendix Table E.3: Features selected per 10mWT model and feature set (features selected 27 times maximum per model). 

 
Clinical & Demographic Features LA, Clinical & Demographic Features PPEF, Clinical & Demographic Features 

All Features (LA, PPEF, Clinical & 

Demographic) 

 
Name 

Times 

Select Name 

Times 

Select Name 

Times 

Select Name 

Times 

Select 

C
li

n
ic

al
 

LT: L4 (Best) 25 LT: L4 (Best) 24 MMT: Knee Flexion (Bilateral) 26 LT: L4 (Best) 27 

MMT: Knee Flexion (Best) 21 MMT: Knee Flexion (Best) 24 LT: L4 (Bilateral) 23 MMT: Knee Flexion (Best) 23 

LT: L2 (Best) 17 LT: L2 (Best) 18 LT: L2 (Best) 22 LT: L2 (Best) 18 

LT: L3 (Best) 15 MMT: L3 (Best) 16 MMT: L3 (Best) 19 AIS Classification 16 

AIS Classification 15 MMT: L5 (Best) 15 LT: L5 (Best) 19 LT: L5 (Best) 12 

MMT: L5 (Best) 12 LT: L3 (Best) 12 MMT: S1 (Best) 18 MMT: L3 (Best) 11 

LT: S1 (Best) 12 AIS Classification 11 AIS Classification 17 MMT: S1 (Best) 9 

LT: L5 (Best) 12 LT: L5 (Best) 11 MMT: L5 (Best) 16 MMT: L5 (Best) 8 

MMT: S1 (Best) 10 LT: S1 (Best) 9 LT: S1 (Bilateral) 15 MMT: L4 (Best) 7 

MMT: L3 (Bilateral) 10 MMT: L4 (Best) 7 LT: L3 (Best) 15 LT: S1 (Best) 7 

MMT: L4 (Best) 9 LT: Lower Extremity Score (Best) 6 MMT: L4 (Best) 13 LT: L3 (Bilateral) 4 

LT: Lower Extremity Score (Best) 4 MMT: Upper Extremity Score 

(Best) 

4 LT: Lower Extremity Score (Best) 6 MMT: L2 (Best) 2 

MMT: Lower Extremity Score 

(Best) 

3 MMT: L2 (Best) 4 MMT: Lower Extremity Score (Best) 5 LT: Lower Extremity Score (Best) 1 

MMT: Upper Extremity Score 

(Bilateral) 

3 SCI Level of Injury 3 SCI Level of Injury 4 SCI Level of Injury 1 

MMT: L2 (Best) 3 MMT: Lower Extremity Score 

(Best) 

3 MMT: Upper Extremity Score 

(Bilateral) 

3 LT: Upper Extremity Score (Best) 1 

SCI Level of Injury 2 LT: Upper Extremity Score 

(Bilateral) 

1 LT: Upper Extremity Score 

(Bilateral) 

1 MMT: Upper Extremity Score 

(Bilateral) 

1 

LT: Upper Extremity Score (Best) 2   
 

MMT: L2 (Bilateral) 1   
 

D
em

o
g

ra
p

h
ic

s 

Veteran 20 Pain Present 19 Pain Present 25 Veteran 16 

Pain Present 17 Veteran 14 Veteran 22 Pain Present 11 

Medical Insurance 12 Medical Insurance 8 Comorbidities Present 14 Medical Insurance 7 

Number of Pain Locations 6 Number of Pain Locations 6 Number of Pain Locations 12 Comorbidities Present 4 

Marital Status 4 Marital Status 4 Medical Insurance 12 Number of Pain Locations 3 

Comorbidities Present 3 Comorbidities Present 4 Marital Status 6   
 

Years Since Injury 1 Race/Ethnicity 1 Race/Ethnicity 3   
 

Race/Ethnicity 1   
 

  
 

  
 

L
A

 N/A 
 

Num Med Crossings- Med 2 N/A 
 

Num Med Crossings- Med 4   
Num Med Crossings- IQR 1 

  
Num Med Crossings- IQR 1 

  
 

Lyapunov Exp- IQR 1   
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Appendix Table E.3 Continued 

 
Clinical & Demographic Features LA, Clinical & Demographic Features PPEF, Clinical & Demographic Features 

All Features (LA, PPEF, Clinical & 

Demographic) 

 
Name 

Times 

Select Name 

Times 

Select Name 

Times 

Select Name 

Times 

Select 

P
P

E
F

 

N/A 
 

N/A 
 

Took Sleep Medication During 

Collection 

26 Exercised During Collection 22 

  
  

 
Exercised During Collection 26 Took Sleep Medication During 

Collection 

17 

  
  

 
PSQI: Sleep Quality 19 PSQI: Poor Sleep Quality 7   

  
 

PSQI: Poor Sleep Quality 18 Consumed Alcohol During 

Collection 

6 

  
  

 
Consumed Alcohol During Collection 18 PSQI: Sleep Quality 5   

  
 

Pain Interference: Social Activity 11 SF-36: Emotional Role Limitations 2   
  

 
PSQI: Sleep Duration 5 Pain Interference: Social Activity 2   

  
 

SF-36: Emotional Role Limitations 5 
  

  
  

 
Consumed Caffeine During 

Collection 

3 
  

  
 

  
 

Resilience 2   
 

Abbreviations: N/A= Not applicable 
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Appendix Table E.4: Features selected per 6MWT model and feature set (features selected 27 times maximum per model). 

  Clinical & Demographic Features 

LA, Clinical & Demographic 

Features PPEF, Clinical & Demographic Features 

All Features (LA, PPEF, Clinical & 

Demographic) 

  Name 

Times 

Selected Name 

Times 

Selected Name 

Times 

Selected Name 

Times 

Selected 

C
li

n
ic

al
 

MMT: Knee Flexion (Bilateral) 27 MMT: Knee Flexion 

(Bilateral) 

27 MMT: Knee Flexion (Best) 27 LT: L4 (Best) 26 

LT: L4 (Best) 25 LT: L4 (Best) 26 LT: L4 (Best) 24 MMT: Knee Flexion (Best) 24 

MMT: L3 (Bilateral) 22 MMT: L3 (Bilateral) 19 MMT: L3 (Best) 23 MMT: L3 (Best) 21 

LT: L3 (Bilateral) 16 LT: L3 (Bilateral) 18 LT: L3 (Bilateral) 13 LT: L3 (Bilateral) 11 

MMT: Lower Extremity Score 

(Best) 

14 MMT: Lower Extremity 

Score (Best) 

12 MMT: Lower Extremity Score 

(Best) 

13 MMT: Lower Extremity Score 

(Best) 

9 

LT: Lower Extremity Score 

(Bilateral) 

11 LT: Lower Extremity Score 

(Best) 

10 MMT: L5 (Best) 12 MMT: L5 (Best) 9 

MMT: L2 (Bilateral) 10 MMT: S1 (Best) 10 LT: Lower Extremity Score 

(Best) 

11 MMT: S1 (Best) 7 

MMT: L5 (Best) 7 MMT: L5 (Best) 9 MMT: L4 (Best) 10 LT: Lower Extremity Score (Best) 7 

LT: S1 (Best) 6 MMT: L2 (Bilateral) 5 MMT: L2 (Bilateral) 8 MMT: L2 (Best) 6 

MMT: S1 (Best) 6 MMT: L4 (Best) 5 MMT: S1 (Best) 5 MMT: L4 (Best) 4 

LT: L2 (Best) 4 LT: Upper Extremity Score 

(Best) 

5 LT: Upper Extremity Score 

(Bilateral) 

4 LT: L5 (Best) 4 

MMT: L4 (Bilateral) 3 LT: S1 (Best) 2 LT: S1 (Best) 4 LT: Upper Extremity Score (Best) 3 

LT: L5 (Best) 2 AIS Classification 2 LT: L2 (Best) 3 LT: L2 (Best) 2 

LT: Upper Extremity Score 

(Best) 

1 LT: L2 (Best) 1 LT: L5 (Bilateral) 2   
 

MMT: Upper Extremity Score 

(Bilateral) 

1 LT: L5 (Bilateral) 1   
 

  
 

D
em

o
g

ra
p

h
ic

s 

Comorbidities Present 25 Comorbidities Present 20 Pain Present 21 Comorbidities Present 17 

Pain Present 19 Pain Present 17 Comorbidities Present 20 Pain Present 16 

Veteran 10 Race/Ethnicity 10 Veteran 12 Veteran 11 

Race/Ethnicity 9 Veteran 9 Race/Ethnicity 5 Race/Ethnicity 6 

Annual Income 1   
 

  
 

  
 

L
A

 

N/A 
 

Num Med Crossings- Med 18 N/A 
 

Num Med Crossings- Med 24   
Lyapunov Exp- IQR 7 

  
Lyapunov Exp- IQR 6   

Start Move %- Med 2 
  

End Move %- Med 2   
Start Move %- IQR 1 

  
End Move %- IQR 2 

  
 

Grav Change Z- IQR 1   
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Appendix Table E.4 Continued 

  Clinical & Demographic Features 

LA, Clinical & Demographic 

Features PPEF, Clinical & Demographic Features 

All Features (LA, PPEF, Clinical & 

Demographic) 

  Name 

Times 

Selected Name 

Times 

Selected Name 

Times 

Selected Name 

Times 

Selected 

P
P

E
F

 

N/A 
 

N/A 
 

Exercised During Collection 20 Took Sleep Medication During 

Collection 

18 

  
 

  
 

Took Sleep Medication During 

Collection 

18 Exercised During Collection 14 

  
 

  
 

PSQI: Poor Sleep Quality 9 PSQI: Sleep Quality 9 

  
 

  
 

Consumed Caffeine During 

Collection 

9 PSQI: Poor Sleep Quality 9 

  
 

  
 

PSQI: Sleep Quality 6 Consumed Caffeine During 

Collection 

3 

  
 

  
 

SF-36: Physical Functioning 5 SF-36: Emotional Role 

Limitations 

1 

  
 

  
 

SF-36: Emotional Role 

Limitations 

3 SF-36: Energy/Fatigue 1 

  
 

  
 

SF-36: Energy/Fatigue 1 SF-36: Physical Functioning 1 

  
 

  
 

Self-Efficacy 1   
 

Abbreviations: N/A= Not applicable 
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Appendix F Longitudinal Ambulatory and Clinical Assessments 

Appendix Table F.1: Confusion matrices of ambulatory categoizations for all participants and time points  

Admission to IPR 

Ambulatory Ability Category 

WISCI-II Category 6MWT Category 

Physical Assist 

or Non-Amb 

AD, No 

Physical Assist 

No AD or 

Assist 

Total (% of 

column) Non-Amb 

Household 

Amb 

Community 

Amb 

Total (% of 

column) 

1
0

m
W

T
 

C
at

eg
o

ry
 Non-Amb (0m/s) 31 0 0 31 (93.9%) 31 0 0 31 (93.9%) 

Household Amb (0.01-.44m/s) 2 0 0 2 (6.1%) 0 2 0 2 (6.1%) 

Community Amb (>0.44m/s) 0 0 0 0 (0.0%) 0 0 0 0 (0.0%) 

Total (% of row) 33 (100%) 0 (0.0%) 0 (0.0%) 33 (100%) 31 (93.9%) 2 (6.1%) 0 (0.0%) 33 (100%) 

6
M

W
T

 

C
at

eg
o

ry
 Non-Amb (0m) 31 0 0 31 (93.9%)         

Household Amb (1-204m) 2 0 0 2 (6.1%) 
    

Community Amb (>204m) 0 0 0 0 (0.0%) 
    

Total (% of row) 33 (100%) 0 (0.0%) 0 (0.0%) 33 (100%)         

Discharge from IPR 

Ambulatory Ability Category 

WISCI-II Category 6MWT Category 

Physical Assist 

or Non-Amb 

AD, No 

Physical Assist 

No AD or 

Assist 

Total (% of 

column) Non-Amb 

Household 

Amb 

Community 

Amb 

Total (% of 

column) 

1
0

m
W

T
 

C
at

eg
o

ry
 Non-Amb (0m/s) 19 0 0 19 (63.3%) 19 0 0 19 (63.3%) 

Household Amb (0.01-.44m/s) 3 1 0 4 (13.3%) 0 4 0 4 (13.3%) 

Community Amb (>0.44m/s) 0 5 2 7 (23.3%) 0 4 3 7 (23.3%) 

Total (% of row) 22 (73.3%) 6 (20.0%) 2 (6.7%) 30 (100%) 19 (63.3%) 8 (26.7%) 3 (10.0%) 30 (100%) 

6
M

W
T

 

C
at

eg
o

ry
 Non-Amb (0m) 19 0 0 19 (57.6%)         

Household Amb (1-204m) 4 7 0 11 (33.3%) 
    

Community Amb (>204m) 0 1 2 3 (9.1%) 
    

Total (% of row) 23 (69.7%) 8 (24.2%) 2 (6.1%) 33 (100%)         
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Appendix Table F.1 Continued 

6-months Post-Discharge from IPR 

Ambulatory Ability Category 

WISCI-II Category 6MWT Category 

Physical Assist 

or Non-Amb 

AD, No 

Physical Assist 

No AD or 

Assist 

Total (% of 

column) Non-Amb 

Household 

Amb 

Community 

Amb 

Total (% of 

column) 

1
0

m
W

T
 

C
at

eg
o

ry
 Non-Amb (0m/s) 4 0 0 4 (30.8%) 4 0 0 4 (30.8%) 

Household Amb (0.01-.44m/s) 0 2 0 2 (15.4%) 0 2 0 2 (15.4%) 

Community Amb (>0.44m/s) 0 2 5 7 (53.8%) 0 1 6 7 (53.8%) 

Total (% of row) 4 (30.8%) 4 (30.8%) 5 (38.5%) 13 (100%) 4 (30.8%) 3 (23.1%) 6 (46.2%) 13 (100%) 

6
M

W
T

 

C
at

eg
o

ry
 Non-Amb (0m) 4 0 0 4 (30.8%)         

Household Amb (1-204m) 0 2 1 3 (23.1%) 
    

Community Amb (>204m) 0 2 4 6 (46.2%) 
    

Total (% of row) 4 (30.8%) 4 (30.8%) 5 (38.5%) 13 (100%)         

1-year Post-Discharge from IPR 

Ambulatory Ability Category 

WISCI-II Category 6MWT Category 

Physical Assist 

or Non-Amb 

AD, No 

Physical Assist 

No AD or 

Assist 

Total (% of 

column) Non-Amb 

Household 

Amb 

Community 

Amb 

Total (% of 

column) 

1
0

m
W

T
 

C
at

eg
o

ry
 Non-Amb (0m/s) 2 0 0 2 (22.2%) 2 0 0 2 (22.2%) 

Household Amb (0.01-.44m/s) 0 0 0 0 (0.0%) 0 0 0 0 (0.0%) 

Community Amb (>0.44m/s) 0 3 4 7 (77.8%) 0 2 5 7 (77.8%) 

Total (% of row) 2 (22.2%) 3 (33.3%) 4 (44.4%) 9 (100%) 2 (22.2%) 2 (22.2%) 5 (55.6%) 9 (100%) 

6
M

W
T

 

C
at

eg
o

ry
 Non-Amb (0m) 2 0 0 2 (22.2%)         

Household Amb (1-204m) 0 2 0 2 (22.2%) 
    

Community Amb (>204m) 0 1 4 5 (55.6%) 
    

Total (% of row) 2 (22.2%) 3 (33.3%) 4 (44.4%) 9 (100%)         

Abbreviations: AD= Assistive Device, Amb= Ambulatory/Ambulation 
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Appendix G Aim 3 Supplemental Material 

Appendix Table G.1: Categorical demographics from participants included and excluded from Aims 3b/4a* 

 Aims 3b and 4a N (%) 

Categorical Demographics 

Included in Analysis Excluded From Analysis t test 

Collected and Usable 

(n=12) 

Partially Collected/Not 

Usable (n=2) Missed (n=9) Not Eligible (n=2) 

Total Not Included 

(n=13) Sig 

Adm Dc Adm Dc Adm Dc Adm Dc Adm Dc Adm Dc 

Sex           0.319  

Female 7 (58.3%)  1 (50.0%)  8 (88.9%)  1 (50.0%)  10 (76.9%)    

Male 5 (41.7%)  1 (50.0%)  1 (11.1%)  1 (50.0%)  3 (23.1%)    

Race/Ethnicity           0.716  

Non-Hispanic White 9 (75.0%)  2 (100%)  5 (55.6%)  1 (50.0%)  8 (61.5%)    

Non-Hispanic Black 1 (8.3%)  0 (0.0%)  1 (11.1%)  1 (50.0%)  2 (15.4%)    

Non-Hispanic Other Race 0 (0.0%)  0 (0.0%)  1 (11.1%)  0 (0.0%)  1 (7.7%)    

Hispanic (Any Race) 2 (16.7%)  0 (0.0%)  2 (22.2%)  0 (0.0%)  2 (15.4%)    

Veteran           0.953  

Not A Veteran 11 (91.7%)  1 (50.0%)  9 (100%)  2 (100%)  12 (92.3%)    

Veteran 1 (8.3%)  1 (50.0%)  0 (0.0%)  0 (0.0%)  1 (7.7%)    

Annual Household Income           0.240  

< $25,000 1 (8.3%)  1 (50.0%)  4 (44.4%)  0 (0.0%)  5 (38.5%)    

$25,000 - $49,999 3 (25.0%)  0 (0.0%)  2 (22.2%)  0 (0.0%)  2 (15.4%)    

$50,000 -$74,999 3 (25.0%)  0 (0.0%)  1 (11.1%)  0 (0.0%)  1 (7.7%)    

≥ $75,000 1 (8.3%)  1 (50.0%)  2 (22.2%)  0 (0.0%)  3 (23.1%)    

Declined/ Unknown 4 (33.3%)  0 (0.0%)  0 (0.0%)  2 (100%)  2 (15.4%)    

Education           0.541  

Less Than High School 2 (16.7%)  0 (0.0%)  0 (0.0%)  0 (0.0%)  0 (0.0%)    

High School 

Diploma/GED 

6 (50.0%)  1 (50.0%)  3 (33.3%)  1 (50.0%)  5 (38.5%)    

Associate's Degree 2 (16.7%)  0 (0.0%)  3 (33.3%)  1 (50.0%)  4 (30.8%)    

Bachelor's Degree 1 (8.3%)  0 (0.0%)  1 (11.1%)  0 (0.0%)  1 (7.7%)    

Graduate Degree 0 (0.0%)  1 (50.0%)  0 (0.0%)  0 (0.0%)  1 (7.7%)    

Other 1 (8.3%)  0 (0.0%)  2 (22.2%)  0 (0.0%)  2 (15.4%)    
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Appendix Table G.1 Continued 

 Aims 3b and 4a N (%) 

Categorical Demographics 

Included in Analysis Excluded From Analysis t test 

Collected and Usable 

(n=12) 

Partially Collected/ 

Not Usable (n=2) Missed (n=9) Not Eligible (n=2) 

Total Not Included 

(n=13) Sig 

Adm Dc Adm Dc Adm Dc Adm Dc Adm Dc Adm Dc 

Medical Insurance           0.447  

Private 3 (25.0%)  2 (100%)  5 (55.6%)  0 (0.0%)  7 (53.8%)    

Medicaid 3 (25.0%)  0 (0.0%)  3 (33.3%)  0 (0.0%)  3 (23.1%)    

Medicare 1 (8.3%)  0 (0.0%)  0 (0.0%)  0 (0.0%)  0 (0.0%)    

No Insurance 1 (8.3%)  0 (0.0%)  0 (0.0%)  0 (0.0%)  0 (0.0%)    

Other/Multiple 4 (33.3%)  0 (0.0%)  1 (11.1%)  2 (100%)  3 (23.1%)    

SCI Neurological Category           0.387 0.620 

Motor Complete (AIS A/B) 

Tetraplegia 

1 (8.3%) 1 (8.3%) 0 (0.0%) 0 (0.0%) 1 (11.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (7.7%) 0 (0.0%)   

Motor Complete (AIS A/B) 

Paraplegia 

3 (25.0%) 2 (16.7%) 1 (50.0%) 1 (50%) 1 (11.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (15.4%) 1 (7.7%)   

AIS C Tetraplegia 1 (8.3%) 1 (8.3%) 1 (50.0%) 0 (0.0%) 4 (44.4%) 3 (33.3%) 1 (50.0%) 1 (50.0%) 6 (46.2%) 4 (30.8%)   

AIS C Paraplegia 1 (8.3%) 2 (16.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (11.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (7.7%)   

AIS D Tetraplegia 5 (41.7%) 5 (41.7%) 0 (0.0%) 1 (50%) 2 (22.2%) 4 (44.4%) 1 (50.0%) 1 (50.0%) 3 (23.1%) 6 (46.2%)   

AIS D Paraplegia 1 (8.3%) 1 (8.3%) 0 (0.0%) 0 (0.0%) 1 (11.1%) 1 (11.1%) 0 (0.0%) 0 (0.0%) 1 (7.7%) 1 (7.7%)   

Primary Mode of Mobility           0.055 0.090 

Power Wheelchair 9 (75.0%) 4 (33.3%) 2 (100%) 0 (0.0%) 9 (100%) 8 (88.9%) 2 (100%) 2 (100%) 13 (100%) 10 

(76.9%) 

  

Manual Wheelchair 3 (25.0%) 5 (41.7%) 0 (0.0%) 2 (100%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (15.4%)   

Ambulation 0 (0.0%) 3 (25.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (11.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (7.7%)   

WISCI-II           N/A 0.023 

Physical Assistance (or Non-

Ambulatory) 

12 (100%) 5 (41.7%) 2 (100%) 2 (100%) 9 (100%) 8 (88.9%) 2 (100%) 2 (100%) 13 (100%) 12 

(92.3%) 

  

Requires AD, but no Physical 

Assistance 

0 (0.0%) 5 (41.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (11.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (7.7%)   

Requires No AD or Physical 

Assistance 

0 (0.0%) 2 (16.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)   

10mWT           0.125 0.029 

Non-ambulatory (0m/s) 10 (83.3%) 5 (45.5%) 2 (100%) 1 (50%) 9 (100%) 6 (75.0%) 2 (100%) 2 (100%) 13 (100%) 9 (75.0%)   

Household Ambulator (0.01-.44m/s) 2 (16.7%) 1 (9.1%) 0 (0.0%) 1 (50%) 0 (0.0%) 2 (25.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 3 (25.0%)   

Community Ambulator (>.44m/s) 0 (0.0%) 5 (45.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)   

6MWT           0.125 0.128 

Non-ambulatory (0m) 10 (83.3%) 5 (41.7%) 2 (100%) 1 (50%) 9 (100%) 6 (66.7%) 2 (100%) 2 (100%) 13 (100%) 9 (69.2%)   

Household Ambulator (1-204m) 2 (16.7%) 4 (33.3%) 0 (0.0%) 1 (50%) 0 (0.0%) 3 (33.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 4 (30.8%)   

Community Ambulator (>204m) 0 (0.0%) 3 (25.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)   

Abbreviations: Adm= Admission, Dc= Discharge 

* Significant differences between those included and excluded from the analysis (p< 0.05) are highlighted grey 
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Appendix Table G.2: Continuous demographics from participants included and excluded from Aims 3b/4a* 

  Aims 3b and 4a Mean±SD (Range)  
Included in Analysis Excluded From Analysis t test 

Continuous 

Demographics 

Collected and Usable 

(n=12) 

Partially Collected/Not 

Usable (n=2) Missed (n=9) Not Eligible (n=2) Total Not Included (n=13) Sig 

Adm Dc Adm Dc Adm Dc Adm Dc Adm Dc Adm Dc 

Age 45.8±17.8 (18-71) 32.0±12.8 (23-41) 52.6±15.2 (36-82) 63.7±4.0 (61-67) 51.1±16.0 (23-82) 0.442 
 

BMI 27.8±3.4 (23-35) 28.8±5.4 (25-33) 29.2±9.9 (15-47) 30.4±4.3 (27-33) 29.3±8.3 (15-47)  0.549 
 

Length of Stay in 

IPR (Days) 

33.8±10.7 (17-53) 49.5±2.1 (48-51) 47.3±10.9 (30-64) 44.0±12.7 (35-53) 47.2±9.8 (30-64)  0.002 
 

Days from Injury 

to Start of IPR 

14.8±16.0 (5-62) 23.0±7.1 (18-28) 18.1±8.7 (8-30) 12.5±0.7 (12-13) 18.0±8.0 (8-30) 0.521 
 

Days from Injury 

to Start of Data 

Collection 

17.5 ± 15.9 

(9 - 65) 

39.7 ± 16.5 

(18 - 76) 

28.0 ± 5.7 

(24 - 32) 

63.0 ± 4.2 

(60 - 66) 

22.8 ± 9.8 

(10 - 36) 

57.2 ± 11.0 

(41 - 72) 

17.5 ± 2.1 

(16 - 19) 

53.0 ± 9.9 

(46 - 60) 

22.8 ± 8.8 

(10 - 36) 

57.5 ± 9.5 

(41 - 72) 

0.311 0.007 

LEMS 23.8±16.0 

(0-47) 

28.7±16.0 

(0-45) 

15.0±21.2 

(0-30) 

22.5±31.8 

(0-45) 

20.0±14.6 

(0-36) 

29.1±20.0 

(0-48) 

21.0±12.7 

(12-30) 

25.5±0.7 

(25-26) 

19.4±14.0 

(0-36) 

27.5±18.9 

(0-48) 

0.474 0.874 

LELTS 10.5±7.1 

(0-20) 

10.7±6.5 

(0-18) 

9.0±12.7 

(0-18) 

9.0±12.7 

(0-18) 

11.0±6.7 

(0-18) 

9.1±5.8 (0-

17) 

10.0±0.0 

(10-10) 

16.0±5.7 

(12-20) 

10.5±6.6 

(0-18) 

10.2±6.8 

(0-20) 

0.998 0.835 

WISCI-II 2.4±4.9 (0-

17) 

8.2±7.7 (0-

20) 

0±0 (0-0) 4.0±5.7 (0-

8) 

0.2±0.4 (0-

1) 

4.2±6.7 (0-

17) 

0±0 (0-0) 0±0 (0-0) 0.2±0.4 (0-

1) 

3.5±5.9 (0-

17) 

0.139 0.104 

10mWT (m/s) 0.0±0.1 (0-

0) 

0.4±0.4 (0-

1) 

0±0 (0-0) 0.1±0.1 (0-

0) 

0±0 (0-0) 0.1±0.2 (0-

0) 

0±0 (0-0) 0±0 (0-0) 0±0 (0-0) 0.1±0.1 (0-

0) 

0.211 0.043 

6WMT (m) 15.3±46.1 

(0-160) 

112.3±144.

5 (0-457) 

0±0 (0-0) 32.3±45.7 

(0-65) 

0±0 (0-0) 37.2±60.6 

(0-161) 

0±0 (0-0) 0±0 (0-0) 0±0 (0-0) 30.7±53.0 

(0-161) 

0.273 0.087 

Abbreviations: Adm= Admission, Dc= Discharge 

* Significant differences between those included and excluded from the analysis (p< 0.05) are highlighted grey 
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Appendix Figure G.1: Examples of LA collected from the right ankle, left ankle, and wrist across 7 typical nights at admission to IPR. This participant 

had an C5 AIS B SCI and non-ambulatory at admission to IPR. 
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Appendix Figure G.2: Examples of LA collected from the right ankle, left ankle, and wrist across 7 typical nights at admission to IPR. This participant 

had an L2 AIS A and primarily power wheelchia user but also uses a manual wheelchair and walks up to 45.7m with moderate assistance, a wheeled 

walker, and bilateral bracing (1 AFO, 1 KAFO) ambulatory with at admission to IPR. 
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Appendix Table G.3: ICC between nights of collection from admission to IPR* 

Feature 

Category 

  Average Nights Single Night     

Feature Name ICC 

95% Confidence Interval 

ICC 

95% Confidence Interval F Test with True Value 0 

Lower 

Bound 

Upper 

Bound Lower Bound 

Upper 

Bound F Value Sig 

Change in angle 

of inclination 

Angle Net Change-IQR 0.481 -0.083 0.751 0.317 -0.040 0.601 1.91 0.040 

Angle Net Change-Med 0.662 0.291 0.838 0.495 0.170 0.721 2.90 0.002 

Angle Rate Change-IQR 0.595 0.161 0.805 0.424 0.088 0.674 2.46 0.008 

Angle Rate Change-Med 0.738 0.453 0.874 0.585 0.293 0.776 3.74 <0.001 

Angle Total Change-IQR 0.576 0.124 0.795 0.404 0.066 0.660 2.35 0.011 

Angle Total Change-Med 0.816 0.617 0.911 0.689 0.446 0.837 5.31 <0.001 

Change in 

gravitational 

acceleration 

Grav Change X-IQR 0.571 0.107 0.794 0.400 0.056 0.658 2.31 0.013 

Grav Change X-Med 0.467 -0.104 0.743 0.305 -0.049 0.591 1.87 0.046 

Grav Change Y-IQR 0.604 0.180 0.809 0.433 0.099 0.679 2.51 0.007 

Grav Change Y-Med 0.439 -0.098 0.722 0.282 -0.047 0.565 1.86 0.047 

Grav Change Z-IQR 0.815 0.616 0.911 0.688 0.445 0.837 5.29 <0.001 

Grav Change Z-Med 0.618 0.211 0.815 0.447 0.118 0.688 2.61 0.005 

Correlation 

coefficients 

between axes 

Corr XY-IQR 0.232 -0.494 0.618 0.131 -0.198 0.447 1.33 0.223 

Corr XY-Med 0.195 -0.646 0.609 0.108 -0.244 0.438 1.24 0.276 

Corr XZ-IQR 0.221 -0.628 0.626 0.124 -0.239 0.456 1.28 0.251 

Corr XZ-Med 0.223 -0.640 0.628 0.125 -0.242 0.458 1.28 0.251 

Corr YZ-IQR 0.687 0.346 0.849 0.523 0.209 0.738 3.13 0.001 

Corr YZ-Med 0.162 -0.777 0.600 0.088 -0.280 0.429 1.19 0.319 

Frequency 

domain 

Bandwidth-IQR -0.136 -1.436 0.461 -0.063 -0.418 0.300 0.88 0.631 

Bandwidth-Med 0.572 0.101 0.795 0.401 0.053 0.660 2.30 0.013 

Centroid Freq-IQR 0.135 -0.767 0.579 0.072 -0.277 0.408 1.16 0.345 

Centroid Freq-Med 0.501 -0.044 0.760 0.334 -0.021 0.614 1.98 0.033 

Dom Freq 1-IQR 0.272 -0.546 0.653 0.157 -0.214 0.485 1.36 0.201 

Dom Freq 1-Med 0.597 0.153 0.807 0.426 0.083 0.677 2.44 0.009 

Dom Freq 2-IQR 0.015 -0.962 0.515 0.007 -0.325 0.347 1.02 0.483 

Dom Freq 2-Med 0.469 -0.122 0.746 0.306 -0.057 0.595 1.86 0.048 

Dom Low Freq-IQR 0.340 -0.392 0.685 0.205 -0.164 0.520 1.50 0.135 

Dom Low Freq-Med -0.095 -1.278 0.472 -0.046 -0.390 0.309 0.91 0.598 

Mean Freq-IQR 0.286 -0.431 0.650 0.167 -0.177 0.481 1.42 0.173 

Mean Freq-Med 0.469 -0.111 0.745 0.306 -0.052 0.594 1.87 0.046 
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Appendix Table G.3 Continued 

Feature 

Category 

  Average Nights Single Night     

Feature Name ICC 

95% Confidence Interval 

ICC 

95% Confidence Interval F Test with True Value 0 

Lower 

Bound 

Upper 

Bound Lower Bound 

Upper 

Bound F Value Sig 

Frequency 

Domain 

Med Freq-IQR 0.721 0.422 0.865 0.563 0.267 0.763 3.55 <0.001 

Med Freq-Med 0.634 0.231 0.824 0.464 0.131 0.701 2.68 0.004 

Power Dom Freq 1/Total-IQR 0.349 -0.297 0.680 0.211 -0.129 0.515 1.56 0.114 

Power Dom Freq 1/Total-Med 0.609 0.179 0.813 0.438 0.098 0.685 2.51 0.007 

Power Dom Freq 1-IQR 0.448 -0.112 0.730 0.289 -0.053 0.575 1.84 0.050 

Power Dom Freq 1-Med 0.585 0.132 0.801 0.414 0.071 0.668 2.38 0.010 

Power Dom Freq 2-IQR 0.614 0.208 0.813 0.443 0.116 0.684 2.60 0.005 

Power Dom Freq 2-Med 0.704 0.380 0.858 0.543 0.235 0.751 3.30 <0.001 

Power Dom Low Freq-IQR 0.566 0.132 0.787 0.395 0.071 0.649 2.41 0.009 

Power Dom Low Freq-Med 0.669 0.312 0.841 0.503 0.185 0.725 2.99 0.002 

Power High Freq/Total-IQR 0.079 -0.952 0.560 0.041 -0.322 0.389 1.08 0.414 

Power High Freq/Total-Med 0.588 0.143 0.802 0.416 0.077 0.669 2.40 0.010 

Power Total-IQR 0.554 0.088 0.784 0.384 0.046 0.645 2.26 0.014 

Power Total-Med 0.492 -0.071 0.757 0.327 -0.034 0.609 1.94 0.037 

Limb movement 

percentages 

Bilat Ankle % 0.600 0.196 0.804 0.429 0.108 0.673 2.72 0.004 

Unilat Ankle % 0.600 0.196 0.804 0.429 0.108 0.673 2.72 0.004 

Whole Body % 0.393 -0.166 0.696 0.245 -0.077 0.534 1.74 0.068 

Wrist Ankle % 0.122 -0.706 0.562 0.065 -0.261 0.391 1.15 0.354 

Median 

crossings 

Num Med Crossings Norm-IQR 0.441 -0.148 0.729 0.283 -0.069 0.574 1.79 0.058 

Num Med Crossings Norm-Med 0.644 0.265 0.828 0.474 0.153 0.706 2.80 0.003 

Num Med Crossings-IQR 0.629 0.250 0.819 0.459 0.143 0.693 2.79 0.003 

Num Med Crossings-Med 0.619 0.206 0.817 0.448 0.115 0.690 2.59 0.006 

PLM Num PLM Norm 0.827 0.643 0.917 0.706 0.474 0.846 5.72 <0.001 

PLM % 0.716 0.406 0.863 0.557 0.255 0.759 3.45 <0.001 

PLM Index 0.740 0.455 0.875 0.587 0.295 0.778 3.75 <0.001 

Relationship to 

recent 

movements 

Close Cross Corr Peak-IQR 0.652 0.295 0.830 0.483 0.173 0.710 2.99 0.002 

Close Cross Corr Peak-Med 0.086 -0.777 0.545 0.045 -0.280 0.374 1.10 0.397 

Close Cross Cov Peak-IQR 0.450 -0.133 0.734 0.290 -0.062 0.580 1.82 0.053 

Close Cross Cov Peak-Med 0.247 -0.519 0.632 0.141 -0.206 0.462 1.34 0.216 

Dom Freq Last 90s-IQR -0.002 -1.074 0.516 -0.001 -0.349 0.348 1.00 0.502 

Dom Freq Last 90s-Med 0.673 0.332 0.841 0.508 0.199 0.726 3.10 0.001 
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Appendix Table G.3 Continued 

Feature 

Category 

  Average Nights Single Night     

Feature Name ICC 

95% Confidence Interval 

ICC 

95% Confidence Interval F Test with True Value 0 

Lower 

Bound 

Upper 

Bound Lower Bound 

Upper 

Bound F Value Sig 

Relationship to 

recent 

movements 

Max Cross Corr-IQR 0.254 -0.587 0.645 0.145 -0.227 0.476 1.33 0.220 

Max Cross Corr-Med -0.019 -1.179 0.516 -0.009 -0.371 0.348 0.98 0.520 

Max Cross Cov-IQR 0.460 -0.140 0.742 0.299 -0.066 0.590 1.83 0.052 

Max Cross Cov-Med 0.511 -0.021 0.765 0.343 -0.010 0.619 2.03 0.029 

Mean Cross Corr Peaks-IQR 0.409 -0.205 0.713 0.257 -0.093 0.554 1.70 0.075 

Mean Cross Corr Peaks-Med -0.559 -2.142 0.238 -0.219 -0.517 0.135 0.63 0.896 

Mean Cross Cov Peaks-IQR 0.179 -0.689 0.602 0.098 -0.256 0.431 1.22 0.295 

Mean Cross Cov Peaks-Med 0.434 -0.136 0.722 0.277 -0.064 0.566 1.80 0.057 

Move Last 90s-IQR 0.225 -0.598 0.625 0.127 -0.230 0.455 1.29 0.244 

Move Last 90s-Med 0.581 0.146 0.796 0.409 0.079 0.661 2.42 0.009 

Move Next 90s-IQR 0.225 -0.598 0.625 0.127 -0.230 0.455 1.29 0.244 

Move Next 90s-Med 0.581 0.146 0.796 0.409 0.079 0.661 2.42 0.009 

Num Cross Corr Peaks-IQR 0.294 -0.490 0.663 0.173 -0.197 0.495 1.41 0.177 

Num Cross Corr Peaks-Med 0.398 -0.220 0.707 0.249 -0.099 0.546 1.68 0.081 

Num Cross Cov Peaks-IQR -0.042 -1.240 0.506 -0.021 -0.383 0.339 0.96 0.543 

Num Cross Cov Peaks-Med 0.471 -0.077 0.743 0.308 -0.037 0.591 1.91 0.041 

Time Since Prev-IQR -0.021 -1.137 0.510 -0.010 -0.363 0.342 0.98 0.522 

Time Since Prev-Med 0.029 -1.086 0.540 0.015 -0.352 0.369 1.03 0.469 

Signal 

characteristics 

Entropy Rate-IQR 0.640 0.272 0.824 0.471 0.158 0.701 2.97 0.002 

Entropy Rate-Med 0.600 0.167 0.808 0.429 0.091 0.677 2.47 0.008 

Lempel-Ziv Comp-IQR 0.171 -0.548 0.578 0.093 -0.215 0.406 1.23 0.285 

Lempel-Ziv Comp-Med 0.534 0.050 0.773 0.364 0.026 0.630 2.17 0.019 

Lyapunov Exp-IQR 0.618 0.201 0.817 0.448 0.112 0.690 2.58 0.006 

Lyapunov Exp-Med 0.319 -0.326 0.661 0.190 -0.140 0.494 1.51 0.133 

Wave Approx-IQR -0.010 -1.007 0.502 -0.005 -0.335 0.336 0.99 0.511 

Wave Approx-Med 0.688 0.352 0.850 0.525 0.214 0.739 3.57 <0.001 

Wave Energy 1-IQR 0.309 -0.406 0.663 0.182 -0.169 0.496 1.45 0.155 

Wave Energy 1-Med 0.209 -0.684 0.623 0.117 -0.255 0.453 1.26 0.268 

Wave Energy 2-IQR 0.637 0.240 0.826 0.467 0.136 0.703 2.71 0.004 

Wave Energy 2-Med 0.716 0.421 0.862 0.558 0.267 0.758 3.73 <0.001 
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Appendix Table G.3 Continued 

Feature 

Category 

  Average Nights Single Night     

Feature Name ICC 

95% Confidence Interval 

ICC 

95% Confidence Interval F Test with True Value 0 

Lower 

Bound 

Upper 

Bound Lower Bound 

Upper 

Bound F Value Sig 

Signal 

Characteristics 

Wave Energy 3-IQR 0.804 0.598 0.905 0.672 0.426 0.826 5.22 <0.001 

Wave Energy 3-Med 0.720 0.402 0.867 0.563 0.252 0.765 4.06 <0.001 

Wave Entropy-IQR -1.117 -3.608 0.002 -0.358 -0.643 0.001 0.48 0.976 

Wave Entropy-Med 0.668 0.317 0.840 0.502 0.188 0.724 3.33 <0.001 

Statistical AUC Acc Norm-IQR 0.568 0.099 0.792 0.396 0.052 0.656 2.29 0.013 

AUC Acc Norm-Med 0.694 0.359 0.853 0.531 0.218 0.744 3.20 0.001 

AUC Acc-IQR 0.669 0.323 0.839 0.503 0.192 0.723 3.05 0.002 

AUC Acc-Med 0.654 0.282 0.833 0.486 0.164 0.714 2.86 0.003 

Duration-IQR 0.550 0.055 0.784 0.379 0.028 0.645 2.19 0.018 

Duration-Max 0.576 0.108 0.797 0.404 0.057 0.662 2.32 0.012 

Duration-Med 0.631 0.228 0.823 0.460 0.129 0.699 2.67 0.004 

Kurtosis-IQR 0.221 -0.321 0.579 0.124 -0.138 0.408 1.39 0.184 

Kurtosis-Med 0.580 0.160 0.794 0.409 0.087 0.658 2.55 0.006 

Max Acc-IQR 0.638 0.248 0.825 0.468 0.141 0.703 2.73 0.004 

Max Acc-Med 0.408 -0.239 0.715 0.256 -0.107 0.557 1.68 0.081 

Max-RMS Acc-IQR 0.161 -0.468 0.556 0.088 -0.190 0.385 1.24 0.280 

Max-RMS Acc-Med 0.613 0.220 0.810 0.441 0.124 0.681 2.75 0.004 

Med Acc-IQR 0.553 0.059 0.786 0.382 0.030 0.647 2.20 0.017 

Med Acc-Med 0.782 0.544 0.895 0.642 0.374 0.810 4.47 <0.001 

Range Acc-IQR 0.641 0.255 0.827 0.472 0.146 0.705 2.76 0.003 

Range Acc-Med 0.403 -0.249 0.714 0.253 -0.111 0.555 1.66 0.085 

RMS Acc-IQR 0.499 -0.048 0.759 0.332 -0.023 0.612 1.98 0.033 

RMS Acc-Med 0.577 0.110 0.798 0.406 0.058 0.663 2.32 0.012 

SD Acc-IQR 0.513 -0.016 0.766 0.345 -0.008 0.620 2.03 0.028 

SD Acc-Med 0.459 -0.137 0.741 0.298 -0.064 0.589 1.83 0.052 

Skewness-IQR 0.000 -0.757 0.472 0.000 -0.275 0.309 1.00 0.500 

Skewness-Med 0.593 0.184 0.800 0.421 0.101 0.667 2.61 0.005 

SMA Acc-IQR 0.617 0.203 0.816 0.447 0.113 0.689 2.58 0.006 

SMA Acc-Med 0.704 0.380 0.858 0.544 0.235 0.751 3.31 <0.001 
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Appendix Table G.3 Continued 

Feature 

Category 

  Average Nights Single Night     

Feature Name ICC 

95% Confidence Interval 

ICC 

95% Confidence Interval F Test with True Value 0 

Lower 

Bound 

Upper 

Bound Lower Bound 

Upper 

Bound F Value Sig 

Timing End Move %-IQR 0.329 -0.390 0.676 0.197 -0.163 0.511 1.49 0.141 

End Move %-Med -0.623 -2.466 0.228 -0.237 -0.552 0.129 0.62 0.901 

Move/hour 0.693 0.358 0.853 0.530 0.218 0.743 3.19 0.001 

Move/night 0.608 0.175 0.812 0.437 0.096 0.684 2.50 0.007 

Start Move %-IQR 0.329 -0.391 0.676 0.197 -0.163 0.511 1.49 0.141 

Start Move %-Med -0.625 -2.470 0.227 -0.238 -0.553 0.128 0.62 0.902 

Time Asleep 0.721 0.419 0.866 0.564 0.265 0.764 3.52 <0.001 

Velocity and 

distance 

Med Vel-IQR 0.588 0.134 0.803 0.417 0.072 0.671 2.38 0.010 

Med Vel-Med 0.775 0.531 0.892 0.633 0.362 0.805 4.35 <0.001 

RMS Vel-IQR 0.488 -0.071 0.754 0.322 -0.034 0.605 1.93 0.038 

RMS Vel-Med 0.590 0.137 0.804 0.418 0.074 0.672 2.39 0.010 

Total Dist-IQR 0.706 0.396 0.858 0.546 0.247 0.751 3.41 <0.001 

Total Dist-Med 0.673 0.321 0.842 0.507 0.191 0.728 3.02 0.002 

* ICC values > 0.5 (moderate reliability) are highlighted grey and those > 0.75 (good reliability) are also bolded. 
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Appendix Table G.4: ICCs for intra-subject reliability with 1-5 typical nights collected at admission to IPR 

    

Participants with ≥ 

2 Typical Nights 

(n=31) 

Participants with ≥ 3 Typical Nights 

(n=24) 

Participants with ≥ 5 Typical Nights 

(n=11) 

  Typical Nights 1-2 Typical Nights 1-2 Typical Nights 1-3 Typical Nights 1-2 Typical Nights 1-5 

Feature 

Category Feature Name 

Average 

Nights 

Single 

Night 

Average 

Nights 

Single 

Night 

Average 

Nights 

Single 

Night 

Average 

Nights 

Single 

Night 

Average 

Nights 

Single 

Night 

Change in 

angle of 

inclination 

Angle Net Change-IQR 0.481 0.317 0.417 0.263 0.552 0.292 0.747 0.597 0.609 0.237 

Angle Net Change-Med 0.662 0.495 0.698 0.536 0.759 0.512 0.336 0.202 0.238 0.059 

Angle Rate Change-IQR 0.595 0.424 0.675 0.509 0.560 0.298 0.818 0.692 0.609 0.237 

Angle Rate Change-Med 0.738 0.585 0.782 0.642 0.812 0.591 0.679 0.514 0.620 0.246 

Angle Total Change-IQR 0.576 0.404 0.562 0.391 0.535 0.277 0.822 0.697 0.632 0.256 

Angle Total Change-Med 0.816 0.689 0.826 0.704 0.820 0.603 0.708 0.548 0.680 0.298 

Change in 

gravitational 

acceleration 

Grav Change X-IQR 0.571 0.400 0.623 0.452 0.636 0.368 0.498 0.331 0.201 0.048 

Grav Change X-Med 0.467 0.305 0.417 0.263 0.608 0.340 0.649 0.481 -1.170 -0.121 

Grav Change Y-IQR 0.604 0.433 0.588 0.417 0.726 0.469 0.795 0.660 0.489 0.161 

Grav Change Y-Med 0.439 0.282 0.443 0.284 0.469 0.227 -0.017 -0.009 0.599 0.230 

Grav Change Z-IQR 0.815 0.688 0.831 0.711 0.767 0.523 -0.404 -0.168 0.326 0.088 

Grav Change Z-Med 0.618 0.447 0.622 0.452 -1.791 -0.272 -0.009 -0.004 -0.191 -0.033 

Correlation 

coefficients 

between axes 

Corr XY-IQR 0.232 0.131 0.174 0.095 -0.161 -0.049 0.360 0.220 -0.230 -0.039 

Corr XY-Med 0.195 0.108 0.501 0.334 0.442 0.209 0.265 0.153 -1.228 -0.124 

Corr XZ-IQR 0.221 0.124 0.359 0.219 0.433 0.203 0.312 0.185 0.441 0.136 

Corr XZ-Med 0.223 0.125 0.482 0.318 0.251 0.101 0.278 0.161 0.405 0.120 

Corr YZ-IQR 0.687 0.523 0.682 0.518 0.265 0.107 0.613 0.442 0.409 0.122 

Corr YZ-Med 0.162 0.088 -0.212 -0.096 0.312 0.131 -1.209 -0.377 0.702 0.320 

Frequency 

domain 

Bandwidth-IQR -0.136 -0.063 -0.276 -0.121 0.019 0.006 -2.650 -0.570 0.319 0.086 

Bandwidth-Med 0.572 0.401 0.644 0.475 0.649 0.381 0.587 0.415 0.595 0.227 

Centroid Freq-IQR 0.135 0.072 0.009 0.004 0.400 0.182 -2.073 -0.509 0.361 0.102 

Centroid Freq-Med 0.501 0.334 0.590 0.419 0.655 0.387 0.327 0.195 0.610 0.239 

Dom Freq 1-IQR 0.272 0.157 0.155 0.084 0.561 0.299 0.206 0.115 0.595 0.227 

Dom Freq 1-Med 0.597 0.426 0.604 0.433 0.629 0.361 0.614 0.443 0.763 0.391 

Dom Freq 2-IQR 0.015 0.007 0.049 0.025 0.189 0.072 0.052 0.026 0.706 0.325 

Dom Freq 2-Med 0.469 0.306 0.504 0.337 0.381 0.170 0.379 0.234 0.622 0.247 

Dom Low Freq-IQR 0.340 0.205 0.275 0.160 0.538 0.279 0.557 0.386 0.637 0.260 

Dom Low Freq-Med -0.095 -0.046 -0.283 -0.124 0.397 0.180 -0.419 -0.173 0.449 0.140 

Mean Freq-IQR 0.286 0.167 0.198 0.110 0.527 0.271 -0.979 -0.329 0.675 0.293 

Mean Freq-Med 0.469 0.306 0.496 0.330 0.557 0.295 0.287 0.167 0.553 0.199 
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Appendix Table G.4 Continued 

    

Participants with ≥ 

2 Typical Nights  Participants with ≥ 3 Typical Nights  Participants with ≥ 5 Typical Nights  

  Typical Nights 1-2 Typical Nights 1-2 Typical Nights 1-3 Typical Nights 1-2 Typical Nights 1-5 

Feature 

Category Feature Name 

Average 

Nights 

Single 

Night 

Average 

Nights 

Single 

Night 

Average 

Nights 

Single 

Night 

Average 

Nights 

Single 

Night 

Average 

Nights 

Single 

Night 

Frequency 

Domain 

Med Freq-IQR 0.721 0.563 0.740 0.587 0.645 0.377 0.857 0.751 0.820 0.478 

Med Freq-Med 0.634 0.464 0.641 0.472 0.530 0.273 0.615 0.444 0.641 0.263 

Power Dom Freq 1/Total-

IQR 

0.349 0.211 0.359 0.219 0.570 0.306 0.756 0.608 0.718 0.337 

Power Dom Freq 1/Total-

Med 

0.609 0.438 0.404 0.253 0.663 0.396 0.065 0.034 0.636 0.259 

Power Dom Freq 1-IQR 0.448 0.289 0.402 0.251 0.619 0.352 0.879 0.785 0.791 0.432 

Power Dom Freq 1-Med 0.585 0.414 0.551 0.380 0.616 0.349 0.702 0.541 0.614 0.241 

Power Dom Freq 2-IQR 0.614 0.443 0.567 0.395 0.642 0.374 0.829 0.708 0.756 0.382 

Power Dom Freq 2-Med 0.704 0.543 0.727 0.571 0.648 0.380 0.590 0.418 0.619 0.245 

Power Dom Low Freq-IQR 0.566 0.395 0.544 0.373 0.695 0.431 0.883 0.790 0.778 0.413 

Power Dom Low Freq-Med 0.669 0.503 0.633 0.463 0.749 0.498 0.678 0.512 0.695 0.313 

Power High Freq/Total-IQR 0.079 0.041 -0.173 -0.079 0.491 0.243 -1.469 -0.423 0.162 0.037 

Power High Freq/Total-Med 0.588 0.416 0.700 0.538 0.739 0.486 0.356 0.217 0.423 0.128 

Power Total-IQR 0.554 0.384 0.556 0.385 0.708 0.448 0.910 0.835 0.835 0.504 

Power Total-Med 0.492 0.327 0.530 0.361 0.652 0.385 0.731 0.576 0.703 0.322 

Limb 

movement 

percentages 

Bilat Ankle % 0.600 0.429 0.635 0.465 0.723 0.465 0.774 0.631 0.859 0.549 

Unilat Ankle % 0.600 0.429 0.635 0.465 0.723 0.465 0.774 0.631 0.859 0.549 

Whole Body % 0.393 0.245 0.362 0.221 0.636 0.368 0.512 0.344 0.736 0.357 

Wrist Ankle % 0.122 0.065 0.131 0.070 0.354 0.155 0.551 0.381 0.583 0.218 

Median 

crossings 

Num Med Crossings Norm-

IQR 

0.441 0.283 0.458 0.297 0.281 0.115 0.614 0.444 0.633 0.257 

Num Med Crossings Norm-

Med 

0.644 0.474 0.664 0.497 0.753 0.504 0.667 0.501 0.792 0.433 

Num Med Crossings-IQR 0.629 0.459 0.667 0.500 0.674 0.408 0.770 0.626 0.883 0.603 

Num Med Crossings-Med 0.619 0.448 0.726 0.569 0.584 0.318 0.828 0.706 0.897 0.636 

PLM Num PLM Norm 0.827 0.706 0.831 0.712 0.640 0.373 0.832 0.712 0.778 0.412 

PLM % 0.716 0.557 0.757 0.609 0.747 0.497 0.520 0.352 0.742 0.365 

PLM Index 0.740 0.587 0.771 0.628 0.786 0.550 0.804 0.672 0.766 0.396 

 

 



 195 

Appendix Table G.4 Continued 

    

Participants with ≥ 

2 Typical Nights  Participants with ≥ 3 Typical Nights  Participants with ≥ 5 Typical Nights  

  Typical Nights 1-2 Typical Nights 1-2 Typical Nights 1-3 Typical Nights 1-2 Typical Nights 1-5 

Feature 

Category Feature Name 

Average 

Nights 

Single 

Night 

Average 

Nights 

Single 

Night 

Average 

Nights 

Single 

Night 

Average 

Nights 

Single 

Night 

Average 

Nights 

Single 

Night 

Relationship 

to recent 

movements 

Close Cross Corr Peak-IQR 0.652 0.483 0.613 0.442 0.396 0.179 0.347 0.210 0.657 0.277 

Close Cross Corr Peak-Med 0.086 0.045 0.491 0.326 0.512 0.259 0.552 0.381 0.624 0.249 

Close Cross Cov Peak-IQR 0.450 0.290 0.427 0.271 0.622 0.355 0.763 0.617 0.856 0.544 

Close Cross Cov Peak-Med 0.247 0.141 0.337 0.203 0.702 0.440 0.598 0.426 0.760 0.388 

Dom Freq Last 90s-IQR -0.002 -0.001 -0.004 -0.002 -0.035 -0.012 -0.456 -0.186 0.071 0.015 

Dom Freq Last 90s-Med 0.673 0.508 0.640 0.471 0.626 0.358 0.603 0.432 0.054 0.011 

Max Cross Corr-IQR 0.254 0.145 0.216 0.121 0.408 0.187 0.193 0.107 0.642 0.264 

Max Cross Corr-Med -0.019 -0.009 0.302 0.178 0.525 0.269 0.345 0.209 0.701 0.319 

Max Cross Cov-IQR 0.460 0.299 0.413 0.260 0.562 0.300 0.739 0.586 0.849 0.529 

Max Cross Cov-Med 0.511 0.343 0.685 0.521 0.765 0.520 0.821 0.697 0.830 0.495 

Mean Cross Corr Peaks-IQR 0.409 0.257 0.160 0.087 0.269 0.109 -0.096 -0.046 0.472 0.152 

Mean Cross Corr Peaks-Med -0.559 -0.219 -0.103 -0.049 0.382 0.171 0.246 0.140 0.703 0.321 

Mean Cross Cov Peaks-IQR 0.179 0.098 -0.115 -0.054 0.436 0.205 0.318 0.189 0.741 0.364 

Mean Cross Cov Peaks-Med 0.434 0.277 0.591 0.420 0.741 0.488 0.792 0.655 0.840 0.512 

Move Last 90s-IQR 0.225 0.127 0.334 0.200 0.388 0.175 0.309 0.183 0.413 0.123 

Move Last 90s-Med 0.581 0.409 0.629 0.459 0.746 0.495 0.473 0.310 0.617 0.244 

Move Next 90s-IQR 0.225 0.127 0.334 0.200 0.388 0.175 0.309 0.183 0.413 0.123 

Move Next 90s-Med 0.581 0.409 0.629 0.459 0.746 0.495 0.473 0.310 0.617 0.244 

Num Cross Corr Peaks-IQR 0.294 0.173 0.411 0.258 0.436 0.205 0.364 0.222 -0.091 -0.017 

Num Cross Corr Peaks-Med 0.398 0.249 0.276 0.160 0.516 0.262 -0.333 -0.143 0.333 0.091 

Num Cross Cov Peaks-IQR -0.042 -0.021 -0.214 -0.097 0.415 0.191 0.816 0.689 0.294 0.077 

Num Cross Cov Peaks-Med 0.471 0.308 0.401 0.251 0.549 0.289 -0.421 -0.174 0.293 0.077 

Time Since Prev-IQR -0.021 -0.010 -0.004 -0.002 0.597 0.331 0.391 0.243 0.694 0.312 

Time Since Prev-Med 0.029 0.015 0.245 0.139 0.488 0.241 -0.064 -0.031 0.616 0.243 

Signal 

characteristics 

Entropy Rate-IQR 0.516 0.348 0.495 0.329 0.650 0.383 0.568 0.397 0.789 0.428 

Entropy Rate-Med 0.517 0.349 0.587 0.416 0.585 0.319 0.795 0.659 0.839 0.510 

Lempel-Ziv Comp-IQR 0.171 0.093 0.192 0.106 0.536 0.278 0.549 0.379 0.861 0.554 

Lempel-Ziv Comp-Med 0.534 0.364 0.603 0.432 0.659 0.392 0.865 0.762 0.851 0.532 

Lyapunov Exp-IQR 0.618 0.448 0.685 0.521 0.620 0.352 0.612 0.441 0.515 0.175 

Lyapunov Exp-Med 0.319 0.190 0.294 0.172 0.536 0.278 0.546 0.375 0.803 0.449 
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Appendix Table G.4 Continued 

    

Participants with ≥ 

2 Typical Nights  Participants with ≥ 3 Typical Nights  Participants with ≥ 5 Typical Nights  

  Typical Nights 1-2 Typical Nights 1-2 Typical Nights 1-3 Typical Nights 1-2 Typical Nights 1-5 

Feature 

Category Feature Name 

Average 

Nights 

Single 

Night 

Average 

Nights 

Single 

Night 

Average 

Nights 

Single 

Night 

Average 

Nights 

Single 

Night 

Average 

Nights 

Single 

Night 

Signal 

characteristics 

Wave Approx-IQR -0.010 -0.005 0.105 0.055 0.315 0.133 0.108 0.057 0.735 0.357 

Wave Approx-Med 0.688 0.525 0.697 0.535 0.737 0.483 0.752 0.602 0.690 0.308 

Wave Energy 1-IQR 0.309 0.182 0.435 0.278 0.595 0.328 -0.177 -0.081 0.323 0.087 

Wave Energy 1-Med 0.209 0.117 0.385 0.239 0.584 0.318 0.313 0.186 0.348 0.097 

Wave Energy 2-IQR 0.637 0.467 0.661 0.493 0.650 0.382 0.857 0.750 0.763 0.392 

Wave Energy 2-Med 0.716 0.558 0.738 0.585 0.718 0.459 0.811 0.682 0.600 0.231 

Wave Energy 3-IQR 0.804 0.672 0.817 0.690 0.624 0.356 0.959 0.921 0.910 0.668 

Wave Energy 3-Med 0.720 0.563 0.749 0.599 0.736 0.481 0.755 0.606 0.762 0.391 

Wave Entropy-IQR -1.117 -0.358 -0.792 -0.284 0.043 0.015 -1.832 -0.478 0.500 0.167 

Wave Entropy-Med 0.668 0.502 0.679 0.514 0.727 0.471 0.790 0.653 0.658 0.278 

Statistical AUC Acc Norm-IQR 0.568 0.396 0.616 0.445 0.670 0.404 0.861 0.756 0.760 0.388 

AUC Acc Norm-Med 0.694 0.531 0.696 0.533 0.725 0.467 0.843 0.728 0.791 0.430 

AUC Acc-IQR 0.669 0.503 0.659 0.492 0.679 0.413 0.818 0.693 0.750 0.375 

AUC Acc-Med 0.654 0.486 0.659 0.492 0.726 0.469 0.833 0.714 0.802 0.448 

Kurtosis-IQR 0.221 0.124 0.248 0.142 0.363 0.160 0.199 0.111 0.371 0.106 

Kurtosis-Med 0.580 0.409 0.523 0.354 0.624 0.356 0.581 0.410 0.691 0.309 

Max Acc-IQR 0.638 0.468 0.700 0.539 0.782 0.545 0.924 0.859 0.865 0.562 

Max Acc-Med 0.408 0.256 0.503 0.336 0.683 0.418 0.865 0.762 0.851 0.534 

Max-RMS Acc-IQR 0.161 0.088 0.091 0.047 0.473 0.230 -0.365 -0.154 0.447 0.139 

Max-RMS Acc-Med 0.613 0.441 0.656 0.488 0.630 0.363 0.590 0.419 0.728 0.349 

Med Acc-IQR 0.553 0.382 0.567 0.395 0.560 0.298 0.655 0.487 0.506 0.170 

Med Acc-Med 0.782 0.642 0.767 0.622 0.692 0.428 0.771 0.628 0.790 0.430 

Duration-IQR 0.550 0.379 0.474 0.310 0.535 0.277 0.529 0.360 0.641 0.263 

Duration-Max 0.576 0.404 0.776 0.634 0.826 0.613 0.678 0.513 0.835 0.504 

Duration-Med 0.631 0.460 0.604 0.432 0.685 0.420 0.618 0.448 0.792 0.433 

Range Acc-IQR 0.641 0.472 0.704 0.543 0.784 0.548 0.926 0.862 0.867 0.565 

Range Acc-Med 0.403 0.253 0.499 0.333 0.683 0.417 0.868 0.767 0.852 0.536 

RMS Acc-IQR 0.499 0.332 0.547 0.376 0.701 0.439 0.872 0.773 0.817 0.471 

RMS Acc-Med 0.577 0.406 0.591 0.420 0.726 0.468 0.815 0.688 0.809 0.458 

SD Acc-IQR 0.513 0.345 0.562 0.391 0.729 0.472 0.929 0.867 0.849 0.529 

SD Acc-Med 0.459 0.298 0.486 0.321 0.676 0.410 0.856 0.748 0.821 0.479 
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Appendix Table G.4 Continued 

    

Participants with ≥ 

2 Typical Nights  Participants with ≥ 3 Typical Nights  Participants with ≥ 5 Typical Nights  

  Typical Nights 1-2 Typical Nights 1-2 Typical Nights 1-3 Typical Nights 1-2 Typical Nights 1-5 

Feature 

Category Feature Name 

Average 

Nights 

Single 

Night 

Average 

Nights 

Single 

Night 

Average 

Nights 

Single 

Night 

Average 

Nights 

Single 

Night 

Average 

Nights 

Single 

Night 

Statistical Skewness-IQR 0.000 0.000 -0.006 -0.003 0.240 0.095 -0.211 -0.095 0.310 0.082 

Skewness-Med 0.593 0.421 0.569 0.398 0.663 0.397 0.708 0.548 0.749 0.374 

SMA Acc-IQR 0.617 0.447 0.669 0.502 0.692 0.429 0.876 0.779 0.776 0.409 

SMA Acc-Med 0.704 0.544 0.736 0.583 0.731 0.475 0.853 0.744 0.778 0.412 

Timing End Move %-IQR 0.329 0.197 0.501 0.334 -0.444 -0.114 0.825 0.701 -0.031 -0.006 

End Move %-Med -0.623 -0.237 -0.820 -0.291 -0.301 -0.083 0.231 0.131 -0.233 -0.039 

Move/hour 0.693 0.530 0.896 0.812 0.814 0.594 0.945 0.896 0.751 0.376 

Move/night 0.608 0.437 0.796 0.662 0.811 0.588 0.771 0.627 0.672 0.291 

Start Move %-IQR 0.329 0.197 0.500 0.334 -0.445 -0.114 0.824 0.701 -0.033 -0.006 

Start Move %-Med -0.625 -0.238 -0.823 -0.291 -0.302 -0.084 0.230 0.130 -0.235 -0.040 

Time Asleep 0.721 0.564 0.710 0.551 0.775 0.535 0.618 0.447 0.681 0.299 

Velocity and 

distance 

Med Vel-IQR 0.588 0.417 0.618 0.447 0.589 0.323 0.647 0.478 0.507 0.170 

Med Vel-Med 0.775 0.633 0.748 0.597 0.677 0.412 0.805 0.673 0.792 0.432 

RMS Vel-IQR 0.488 0.322 0.531 0.362 0.695 0.431 0.862 0.757 0.815 0.468 

RMS Vel-Med 0.590 0.418 0.599 0.428 0.726 0.469 0.796 0.661 0.802 0.448 

Total Dist-IQR 0.706 0.546 0.728 0.572 0.725 0.468 0.811 0.682 0.751 0.377 

Total Dist-Med 0.673 0.507 0.674 0.508 0.722 0.464 0.807 0.676 0.788 0.426 

* ICC values > 0.5 (moderate reliability) are highlighted grey and those > 0.75 (good reliability) are also bolded. 
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Appendix Table G.5: ICC for stability and direction of change for reliable LA features measured at admission, discharge, and 6-months 

      95% Confidence Interval F Test with True Value 0   

Feature Category Feature Name ICC Lower Bound Upper Bound F Value Sig Direction of Change 

Change in angle of 

inclination 

Angle Net Change-Med 0.495 0.127 0.797 3.704 0.004 Inconsistent 

Angle Rate Change-IQR 0.482 0.133 0.786 3.783 0.004 Inconsistent 

Angle Rate Change-Med 0.427 0.064 0.759 3.125 0.011 Inconsistent 

Angle Total Change-IQR 0.502 0.146 0.798 3.893 0.003 Inconsistent 

Angle Total Change-Med 0.559 0.216 0.827 4.681 0.001 Inconsistent 

Change in gravitational 

acceleration 

Grav Change X-IQR 0.538 0.180 0.818 4.244 0.002 Stable 

Grav Change Y-IQR 0.087 -0.224 0.518 1.269 0.304 Inconsistent 

Grav Change Z-IQR 0.424 0.051 0.759 3.033 0.013 Decreasing 

Grav Change Z-Med 0.158 -0.153 0.570 1.565 0.178 Decreasing 

Correlation coefficients 

between axes 

Corr YZ-IQR 0.043 -0.174 0.421 1.167 0.363 Inconsistent 

Frequency domain Bandwidth-Med 0.803 0.570 0.932 12.351 < 0.001 Stable 

Centroid Freq-Med 0.727 0.445 0.902 8.559 < 0.001 Stable 

Dom Freq 1-Med 0.653 0.335 0.871 6.364 < 0.001 Stable 

Med Freq-IQR 0.575 0.229 0.836 4.815 < 0.001 Stable 

Med Freq-Med 0.746 0.481 0.909 9.722 < 0.001 Stable 

Power Dom Freq 1/Total-Med 0.783 0.532 0.925 10.925 < 0.001 Stable 

Power Dom Freq 1-Med 0.615 0.296 0.852 6.024 < 0.001 Inconsistent 

Power Dom Freq 2-IQR 0.436 0.072 0.764 3.197 0.010 Inconsistent 

Power Dom Freq 2-Med 0.647 0.337 0.867 6.660 < 0.001 Inconsistent 

Power Dom Low Freq-IQR 0.527 0.185 0.809 4.363 0.002 Stable 

Power Dom Low Freq-Med 0.662 0.357 0.874 7.021 < 0.001 Inconsistent 

Power High Freq/Total-Med 0.663 0.351 0.875 6.657 < 0.001 Stable 

Power Total-IQR 0.523 0.169 0.810 4.131 0.002 Stable 

Limb movement 

percentages 

Bilat Ankle % 0.299 -0.032 0.672 2.339 0.043 Decreasing 

Unilat Ankle % 0.299 -0.032 0.672 2.339 0.043 Increasing 

Median crossings Num Med Crossings Norm-Med 0.545 0.206 0.819 4.609 0.001 Stable 

Num Med Crossings-IQR 0.264 -0.080 0.654 2.048 0.073 Inconsistent 

Num Med Crossings-Med 0.260 -0.065 0.644 2.097 0.067 Inconsistent 

PLM Num PLM Norm 0.302 -0.052 0.682 2.246 0.051 Inconsistent 

PLM % 0.579 0.248 0.836 5.171 < 0.001 Inconsistent 

PLM Index 0.101 -0.194 0.520 1.338 0.269 Increasing 
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Appendix Table G.5 Continued 

      95% Confidence Interval F Test with True Value 0   

Feature Category Feature Name ICC Lower Bound Upper Bound F Value Sig Direction of Change 

Relationship to recent 

movements 

Close Cross Corr Peak-IQR 0.756 0.498 0.914 10.199 < 0.001 Stable 

Dom Freq Last 90s-Med 0.762 0.508 0.916 10.607 < 0.001 Stable 

Max Cross Cov-Med 0.612 0.284 0.852 5.622 < 0.001 Stable 

Move Last 90s-Med 0.181 -0.162 0.599 1.614 0.163 Inconsistent 

Move Next 90s-Med 0.181 -0.162 0.599 1.614 0.163 Inconsistent 

Signal characteristics Entropy Rate-IQR 0.748 0.479 0.911 9.459 < 0.001 Stable 

Entropy Rate-Med 0.410 0.073 0.742 3.251 0.009 Increasing 

Lempel-Ziv Comp-Med 0.553 0.219 0.822 4.834 < 0.001 Stable 

Lyapunov Exp-IQR 0.676 0.369 0.881 6.960 < 0.001 Stable 

Wave Approx-Med 0.297 -0.037 0.672 2.306 0.046 Inconsistent 

Wave Energy 2-IQR 0.417 0.075 0.748 3.246 0.009 Inconsistent 

Wave Energy 2-Med 0.392 0.047 0.733 2.979 0.014 Inconsistent 

Wave Energy 3-IQR 0.269 -0.050 0.648 2.187 0.057 Increasing 

Wave Energy 3-Med 0.165 -0.113 0.557 1.683 0.144 Inconsistent 

Wave Entropy-Med 0.343 0.000 0.703 2.590 0.028 Increasing 

Statistical AUC Acc Norm-IQR 0.649 0.331 0.869 6.300 < 0.001 Stable 

AUC Acc Norm-Med 0.674 0.371 0.880 7.088 < 0.001 Inconsistent 

AUC Acc-IQR 0.586 0.246 0.840 5.052 < 0.001 Stable 

AUC Acc-Med 0.701 0.408 0.891 7.797 < 0.001 Stable 

Kurtosis-Med 0.577 0.228 0.837 4.799 < 0.001 Stable 

Max Acc-IQR 0.723 0.447 0.900 9.050 < 0.001 Stable 

Max-RMS Acc-Med 0.596 0.256 0.845 5.159 < 0.001 Stable 

Med Acc-IQR 0.543 0.201 0.818 4.536 0.001 Stable 

Med Acc-Med 0.646 0.328 0.867 6.285 < 0.001 Stable 

Duration-IQR 0.413 0.041 0.752 2.949 0.015 Decreasing 

Duration-Max 0.143 -0.128 0.537 1.575 0.176 Increasing 

Duration-Med 0.726 0.437 0.902 8.313 < 0.001 Stable 

Range Acc-IQR 0.725 0.451 0.901 9.142 < 0.001 Stable 

RMS Acc-Med 0.643 0.325 0.866 6.257 < 0.001 Stable 

SD Acc-IQR 0.701 0.413 0.891 8.054 < 0.001 Stable 

Skewness-Med 0.612 0.270 0.854 5.340 < 0.001 Stable 

SMA Acc-IQR 0.660 0.349 0.874 6.657 < 0.001 Stable 

SMA Acc-Med 0.661 0.352 0.874 6.745 < 0.001 Inconsistent 
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Appendix Table G.5 Continued 

      95% Confidence Interval F Test with True Value 0   

Feature Category Feature Name ICC Lower Bound Upper Bound F Value Sig Direction of Change 

Timing Move/hour 0.129 -0.171 0.543 1.449 0.221 Inconsistent 

Move/night 0.147 -0.158 0.558 1.525 0.192 Inconsistent 

Time Asleep 0.302 -0.031 0.675 2.346 0.043 Inconsistent 

Velocity and distance Med Vel-IQR 0.535 0.180 0.816 4.244 0.002 Stable 

Med Vel-Med 0.350 0.015 0.705 2.711 0.022 Inconsistent 

RMS Vel-Med 0.475 0.142 0.779 4.254 0.002 Inconsistent 

Total Dist-IQR 0.552 0.203 0.824 4.510 0.001 Stable 

Total Dist-Med 0.702 0.412 0.892 7.923 < 0.001 Stable 

* If also visually confirmed, ICC values > 0.5 (moderate reliability) are highlighted grey and those > 0.75 (good reliability) are also bolded. 
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Appendix H Aim 4 Supplemental Material 

Appendix Table H.1: Continous impairment, ambulation, and data collection measures for Aim 4 from admission to IPR through 6-months post-

discharge with 1-year outcomes added for reference. 

Continuous 

Demographics 

Aim 4a 

Admission Discharge 6-months 1-year 

n Mean ± SD (Range) n Mean ± SD (Range) n Mean ± SD (Range) n Mean ± SD (Range) 

LEMS (Strength) 12 23.8 ± 16.0 (0 - 47) 12 28.7 ± 16.0 (0 - 45) 9 38.9 ± 11.5 (15 - 50) 6 35.0 ± 18.1 (0 - 49) 

Lower Limb LT 

(Sensation) 

11 10.5 ± 7.1 (0 - 20) 11 10.7 ± 6.5 (0 - 18) 8 16.0 ± 5.6 (3 - 20) 6 17.8 ± 3.1 (13 - 20) 

WISCI-II 12 2.4 ± 4.9 (0 - 17) 12 8.2 ± 7.7 (0 - 20) 12 13.7 ± 8.8 (0 - 20) 8 15.6 ± 7.3 (0 - 20) 

10mWT (m/s) 12 0.03 ± 0.07 (0.00 - 0.22) 11 0.37 ± 0.43 (0.00 - 1.16) 12 0.63 ± 0.54 (0.00 - 1.80) 8 0.70 ± 0.36 (0.00 - 1.08) 

6MWT (m) 12 15.3 ± 46.1 (0.0 - 160.0) 12 112.3 ± 144.5 (0.0 - 457.2) 12 184.3 ± 145.3 (0.0 - 404.8) 8 262.1 ± 175.4 (0.0 - 614.5) 

Number of Nights 

Collected 

12 4.6 ± 1.9 (2 - 7) 12 5.3 ± 2.2 (2 - 7) 12 6.2 ± 1.3 (4 - 7) 8 6.6 ± 1.1 (4 - 7) 

Number of Typical 

Nights Collected 

12 3.5 ± 2.0 (1 - 7) 12 4.4 ± 2.1 (2 - 7) 12 4.8 ± 1.7 (2 - 7) 8 4.5 ± 1.8 (2 - 7) 

Days from Injury to Start 

of Data Collection 

12 17.5 ± 15.9 (9 - 65) 12 39.7 ± 16.5 (18 - 76) 12 229.3 ± 24.2 (184 - 274) 8 414.5 ± 21.9 (390 - 448) 

Continuous 

Demographics 

Aim 4b 

Admission Discharge 6-months 1-year 

n Mean ± SD (Range) n Mean ± SD (Range) n Mean ± SD (Range) n Mean ± SD (Range) 

LEMS 14 22.5 ± 16.1 (0 - 47) 14 27.8 ± 17.3 (0 - 45) 10 39.0 ± 10.9 (15 - 50) 6 35.0 ± 18.1 (0 - 49) 

Lower Limb LT 13 10.3 ± 7.5 (0 - 20) 13 10.5 ± 7.0 (0 - 18) 8 16.0 ± 5.6 (3 - 20) 6 17.8 ± 3.1 (13 - 20) 

WISCI-II 14 2.1 ± 4.6 (0 - 17) 14 7.6 ± 7.4 (0 - 20) 14 12.9 ± 8.9 (0 - 20) 8 15.6 ± 7.3 (0 - 20) 

10mWT (m/s) 14 0.02 ± 0.06 (0.00 - 0.22) 13 0.33 ± 0.41 (0.00 - 1.16) 13 0.59 ± 0.54 (0.00 - 1.80) 8 0.70 ± 0.36 (0.00 - 1.08) 

6MWT (m) 14 13.1 ± 42.8 (0.0 - 160.0) 14 100.9 ± 136.6 (0.0 - 457.2) 13 170.1 ± 148.2 (0.0 - 404.8) 8 262.1 ± 175.4 (0.0 - 614.5) 

Number of Nights 

Collected 

14 4.4 ± 1.9 (2 - 7) 14 5.1 ± 2.3 (2 - 7) 13 6.2 ± 1.3 (4 - 7) 8 6.6 ± 1.1 (4 - 7) 

Number of Typical 

Nights Collected 

14 3.4 ± 1.9 (1 - 7) 14 4.4 ± 2.1 (2 - 7) 13 4.9 ± 1.7 (2 - 7) 8 4.5 ± 1.8 (2 - 7) 

Days from Injury to Start 

of Data Collection 

14 19.0 ± 15.2 (9 - 65) 14 43.0 ± 17.4 (18 - 76) 13 230.8 ± 23.9 (184 - 274) 8 414.5 ± 21.9 (390 - 448) 
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Appendix Table H.2: Confusion matrices of ambulatory categoizations for participants included in Aims 3b and 4a across each time point  

Admission to IPR 

Ambulatory Ability Category 

WISCI-II Category 6MWT Category 

Physical Assist 

or Non-Amb 

AD, No 

Physical Assist 

No AD or 

Assist 

Total (% of 

column) Non-Amb 

Household 

Amb 

Community 

Amb 

Total (% of 

column) 

1
0

m
W

T
 

C
at

eg
o

ry
 Non-Amb (0m/s) 10 0 0 10 (83.3%) 10 0 0 10 (83.3%) 

Household Amb (0.01-.44m/s) 2 0 0 2 (16.7%) 0 2 0 2 (16.7%) 

Community Amb (>0.44m/s) 0 0 0 0 (0.0%) 0 0 0 0 (0.0%) 

Total (% of row) 12 (100%) 0 (0.0%) 0 (0.0%) 12 (100%) 10 (83.3%) 2 (16.7%) 0 (0.0%) 12 (100%) 

6
M

W
T

 

C
at

eg
o

ry
 Non-Amb (0m) 10 0 0 10 (83.3%)         

Household Amb (1-204m) 2 0 0 2 (16.7%) 
    

Community Amb (>204m) 0 0 0 0 (0.0%) 
    

Total (% of row) 12 (100%) 0 (0.0%) 0 (0.0%) 12 (100%)         

Discharge from IPR 

Ambulatory Ability Category 

WISCI-II Category 6MWT Category 

Physical Assist 

or Non-Amb 

AD, No 

Physical Assist 

No AD or 

Assist 

Total (% of 

column) Non-Amb 

Household 

Amb 

Community 

Amb 

Total (% of 

column) 

1
0

m
W

T
 

C
at

eg
o

ry
 Non-Amb (0m/s) 5 0 0 5 (45.5%) 5 0 0 5 (45.5%) 

Household Amb (0.01-.44m/s) 0 1 0 1 (9.1%) 0 1 0 1 (9.1%) 

Community Amb (>0.44m/s) 0 3 2 5 (45.5%) 0 2 3 5 (45.5%) 

Total (% of row) 5 (45.5%) 4 (36.4%) 2 (18.2%) 11 (100%) 5 (45.5%) 3 (27.3%) 3 (27.3%) 11 (100%) 

6
M

W
T

 

C
at

eg
o

ry
 Non-Amb (0m) 5 0 0 5 (41.7%)         

Household Amb (1-204m) 0 4 0 4 (33.3%) 
    

Community Amb (>204m) 0 1 2 3 (25.0%) 
    

Total (% of row) 5 (41.7%) 5 (41.7%) 2 (16.7%) 12 (100%)         

6-months Post-Discharge from IPR 

Ambulatory Ability Category 

WISCI-II Category 6MWT Category 

Physical Assist 

or Non-Amb 

AD, No 

Physical Assist 

No AD or 

Assist 

Total (% of 

column) Non-Amb 

Household 

Amb 

Community 

Amb 

Total (% of 

column) 

1
0

m
W

T
 

C
at

eg
o

ry
 Non-Amb (0m/s) 3 0 0 3 (25.0%) 3 0 0 3 (25.0%) 

Household Amb (0.01-.44m/s) 0 2 0 2 (16.7%) 0 2 0 2 (16.7%) 

Community Amb (>0.44m/s) 0 2 5 7 (58.3%) 0 1 6 7 (58.3%) 

Total (% of row) 3 (25.0%) 4 (33.3%) 5 (41.7%) 12 (100%) 3 (25.0%) 3 (25.0%) 6 (50.0%) 12 (100%) 

6
M

W
T

 

C
at

eg
o

ry
 Non-Amb (0m) 3 0 0 3 (25.0%)         

Household Amb (1-204m) 0 2 1 3 (25.0%)     
Community Amb (>204m) 0 2 4 6 (50.0%)     
Total (% of row) 3 (25.0%) 4 (33.3%) 5 (41.7%) 12 (100%)         

Abbreviations: AD= Assistive Device, Amb= Ambulatory/Ambulation 
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Appendix Table H.3: Categorical demographics from participants included and excluded from Aim 4b*† 

 Aim 4b N (%) 

 Included in Analysis (n=14) Excluded From Analysis (n=11) t test Sig 

Categorical Demographics Admission Discharge Admission Discharge Admission Discharge 

Sex     0.189  

Female 8 (57.1%)  9 (81.8%)    

Male 6 (42.9%)  2 (18.2%)    

Race/Ethnicity     0.479  

Non-Hispanic White 11 (78.6%)  6 (54.5%)    

Non-Hispanic Black 1 (7.1%)  2 (18.2%)    

Non-Hispanic Other Race 0 (0.0%)  1 (9.1%)    

Hispanic (Any Race) 2 (14.3%)  2 (18.2%)    

Veteran     0.191  

Not A Veteran 12 (85.7%)  11 (100%)    

Veteran 2 (14.3%)  0 (0.0%)    

Annual Household Income     0.698  

< $25,000 2 (14.3%)  4 (36.4%)    

$25,000 - $49,999 3 (21.4%)  2 (18.2%)    

$50,000 -$74,999 3 (21.4%)  1 (9.1%)    

≥ $75,000 2 (14.3%)  2 (18.2%)    

Decline to Answer or Unknown 4 (28.6%)  2 (18.2%)    

Education     0.477  

Less Than High School 2 (14.3%)  0 (0.0%)    

High School Diploma/GED 7 (50.0%)  4 (36.4%)    

Associate's Degree 2 (14.3%)  4 (36.4%)    

Bachelor's Degree 1 (7.1%)  1 (9.1%)    

Graduate Degree 1 (7.1%)  0 (0.0%)    

Other 1 (7.1%)  2 (18.2%)    

Medical Insurance     0.771  

Private 5 (35.7%)  5 (45.5%)    

Medicaid 3 (21.4%)  3 (27.3%)    

Medicare 1 (7.1%)  0 (0.0%)    

No Insurance 1 (7.1%)  0 (0.0%)    

Other/Multiple 4 (28.6%)  3 (27.3%)    
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Appendix Table H.3 Continued 

 Aim 4b N (%) 

 Included in Analysis (n=14) Excluded From Analysis (n=11) t test Sig 

Categorical Demographics Admission Discharge Admission Discharge Admission Discharge 

SCI Neurological Category     0.509 0.311 

Motor Complete (AIS A or B) Tetraplegia 1 (7.1%) 1 (7.1%) 1 (9.1%) 0 (0.0%)   

Motor Complete (AIS A or B) Paraplegia 4 (28.6%) 3 (21.4%) 1 (9.1%) 0 (0.0%)   

AIS C Tetraplegia 2 (14.3%) 1 (7.1%) 5 (45.5%) 4 (36.4%)   

AIS C Paraplegia 1 (7.1%) 2 (14.3%) 0 (0.0%) 1 (9.1%)   

AIS D Tetraplegia 5 (35.7%) 6 (42.9%) 3 (27.3%) 5 (45.5%)   

AIS D Paraplegia 1 (7.1%) 1 (7.1%) 1 (9.1%) 1 (9.1%)   

Primary Mode of Mobility     0.102 0.006 

Power Wheelchair 11 (78.6%) 4 (28.6%) 11 (100%) 10 (90.9%)   

Manual Wheelchair 3 (21.4%) 7 (50.0%) 0 (0.0%) 0 (0.0%)   

Ambulation 0 (0.0%) 3 (21.4%) 0 (0.0%) 1 (9.1%)   

WISCI-II     N/A 0.086 

Requires Physical Assistance (or Non-Ambulatory) 14 (100%) 7 (50.0%) 11 (100%) 10 (90.9%)   

Requires AD, but no Physical Assistance 0 (0.0%) 5 (35.7%) 0 (0.0%) 1 (9.1%)   

Requires No AD or Physical Assistance 0 (0.0%) 2 (14.3%) 0 (0.0%) 0 (0.0%)   

10mWT     0.191 0.083 

Non-ambulatory (0 m/s) 12 (85.7%) 6 (46.2%) 11 (100%) 8 (80.0%)   

Household Ambulator (0.01-.44 m/s) 2 (14.3%) 2 (15.4%) 0 (0.0%) 2 (20.0%)   

Community Ambulator (>.44 m/s) 0 (0.0%) 5 (38.5%) 0 (0.0%) 0 (0.0%)   

6MWT     0.191 0.176 

Non-ambulatory (0 m) 12 (85.7%) 6 (42.9%) 11 (100%) 8 (72.7%)   

Household Ambulator (1-204 m) 2 (14.3%) 5 (35.7%) 0 (0.0%) 3 (27.3%)   

Community Ambulator (> 204 m) 0 (0.0%) 3 (21.4%) 0 (0.0%) 0 (0.0%)   

* Significant differences between those included and excluded from the analysis (p< 0.05) are highlighted grey 

† Missing and not eligible participants are the same as in Appendix Table G.1 and Appendix Table G.2, and not repeated here 
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Appendix Table H.4: Continuous demographics from participants included and excluded from Aim 4b*† 

  Aim 4b Mean ± SD (Range)  
Included in Analysis (n=14) Excluded From Analysis (n=11) t test Sig 

Continuous Demographics Admission Discharge Admission Discharge Admission Discharge 

Age 43.8 ± 17.5 (18 - 71) 43.8 ± 17.5 (18 - 71) 0.113 
 

BMI 27.9 ± 3.5 (23 - 35) 27.9 ± 3.5 (23 - 35) 0.610 
 

Length of Stay in IPR (Days) 36.1 ± 11.4 (17 - 53) 46.7 ± 10.6 (30 - 64) 0.021 
 

Days from Injury to Start of IPR 15.9 ± 15.1 (5 - 62) 17.1 ± 8.1 (8 - 30) 0.820 
 

Days from Injury to Data Collection 19.0 ± 15.2 (9 - 65) 43.0 ± 17.4 (18 - 76) 21.8 ± 9.1 (10 - 36) 56.1 ± 10.2 (41 - 72) 0.593 0.067 

LEMS 22.5 ± 16.1 (0 - 47) 27.8 ± 17.3 (0 - 45) 20.2 ± 13.7 (0 - 36) 28.5 ± 17.9 (0 - 48) 0.707 0.926 

LELTS 10.3 ± 7.5 (0 - 20) 10.5 ± 7.0 (0 - 18) 10.8 ± 6.0 (0 - 18) 10.4 ± 6.2 (0 - 20) 0.857 0.972 

WISCI-II 2.1 ± 4.6 (0 - 17) 7.6 ± 7.4 (0 - 20) 0.2 ± 0.4 (0 - 1) 3.5 ± 6.3 (0 - 17) 0.150 0.153 

10mWT (m/s) 0.0 ± 0.1 (0 - 0) 0.3 ± 0.4 (0 - 1) 0.0 ± 0.0 (0 - 0) 0.1 ± 0.1 (0 - 0) 0.209 0.044 

6MWT (m) 13.1 ± 42.8 (0 - 160) 100.9 ± 136.6 (0 - 457) 0.0 ± 0.0 (0 - 0) 30.4 ± 56.2 (0 - 161) 0.271 0.123 

* Significant differences between those included and excluded from the analysis (p< 0.05) are highlighted grey 

† Missing and not eligible participants are the same as in Appendix Table G.2, and not repeated here 
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a)  b)  

Appendix Figure H.1: Per participant line graphs of LA over time for Power Dom Freq 1-Med colored by a) WISCI-II  and b) 10mWT category by 6-

months post-discharge from IPR.  In a) it can be seen that participants who require physical assistance or are non-ambulatory do not change much over 

time, compared to those who can ambulate with or without an AD. In b) it can be seen that only community ambulators are widely variable over time, 

while those who are non-ambulatory or household ambulators stay relatively stable. 
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Appendix Figure H.2: Changes in Num Med Crossings- IQR over time categorized by if the participant increased their LEMS greater than the 

repeatability threshold of 6.9 points. This feature which was found to be significnatly correlated with the change in LEMS from admission to discharge 

(ρ= .606) but not from discharge to 6-months (likely influenced by outlier). From admission to discharge it can be seen that all participants who increase 

their LEMS score past the threshold (organge) also increased their variability in movement smoothness, however the participants that did not increase 

their LEMS past the repeatability threshold (blue) were the only participants to decrease their varaibility in movement smoothness. 
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Appendix Table H.5: Correlations between all reliable LA features measured at admission and ambulation 

outcomes at 6-months*†‡§ 

    WISCI-II 10mWT 6MWT 

Feature Category LA Feature r p r p r p 

Change in angle 

of inclination 

Angle Net Change-Med 0.318 0.268 0.369 0.214 0.324 0.281 

Angle Rate Change-IQR § 0.324 0.258 0.452 0.121 0.399 0.176 

Angle Rate Change-Med 0.513 0.061 0.421 0.152 0.460 0.114 

Angle Total Change-IQR 0.468 0.092 0.651 0.016 0.580 0.038 

Angle Total Change-Med 0.471 0.089 0.382 0.197 0.432 0.141 

Change in 

gravitational 

acceleration 

Grav Change X-IQR -0.004 0.990 0.150 0.624 0.120 0.696 

Grav Change Y-IQR 0.103 0.727 0.326 0.278 0.184 0.548 

Grav Change Z-IQR 0.341 0.233 0.316 0.294 0.292 0.333 

Grav Change Z-Med -0.212 0.467 -0.167 0.586 -0.141 0.647 

Correlation 

coefficients 

between axes 

Corr YZ-IQR 

0.204 0.485 -0.001 0.999 -0.128 0.677 

Frequency domain Bandwidth-Med -0.662 0.010 -0.421 0.152 -0.424 0.149 

Centroid Freq-Med -0.657 0.011 -0.445 0.128 -0.491 0.088 

Power Dom Freq 1/Total-Med 0.499 0.069 0.305 0.310 0.386 0.192 

Dom Freq 1-Med -0.641 0.013 -0.506 0.078 -0.520 0.069 

Med Freq-IQR 0.094 0.749 0.032 0.916 0.102 0.740 

Med Freq-Med -0.445 0.111 -0.387 0.192 -0.451 0.122 

Power Dom Freq 1-Med 0.489 0.076 0.277 0.359 0.292 0.333 

Power Dom Freq 2-IQR 0.652 0.011 0.755 0.003 0.651 0.016 

Power Dom Freq 2-Med 0.596 0.024 0.369 0.215 0.376 0.206 

Power Dom Low Freq-IQR 0.698 0.006 0.776 0.002 0.664 0.013 

Power Dom Low Freq-Med 0.547 0.043 0.332 0.267 0.334 0.264 

Power High Freq/Total-Med -0.511 0.062 -0.338 0.259 -0.359 0.228 

Power Total-IQR 0.712 0.004 0.768 0.002 0.614 0.025 

Limb movement 

percentages 

Bilat Ankle % -0.247 0.395 -0.300 0.320 -0.487 0.092 

Unilat Ankle % 0.247 0.395 0.300 0.320 0.487 0.092 

Median crossings Num Med Crossings Norm-Med -0.708 0.005 -0.570 0.042 -0.546 0.054 

Num Med Crossings-IQR 0.048 0.869 -0.160 0.602 -0.156 0.611 

Num Med Crossings-Med § 0.065 0.826 -0.096 0.755 -0.006 0.984 

PLM Num PLM Norm § 0.230 0.429 -0.047 0.879 0.067 0.829 

PLM % -0.066 0.824 -0.164 0.592 -0.109 0.722 

PLM Index § -0.208 0.476 -0.265 0.381 -0.220 0.470 

Relationship to 

recent movements 

Close Cross Corr Peak-IQR 0.691 0.006 0.562 0.046 0.482 0.095 

Dom Freq Last 90s-Med -0.151 0.607 -0.237 0.435 -0.072 0.816 

Max Cross Cov-Med 0.087 0.766 -0.018 0.952 0.039 0.899 

Move Last 90s-Med § -0.059 0.841 -0.164 0.591 -0.057 0.853 

Move Next 90s-Med § -0.059 0.841 -0.164 0.591 -0.057 0.853 
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Appendix Table H.5 Continued 

    WISCI-II 10mWT 6MWT 

Feature Category LA Feature r p r p r p 

Signal 

characteristics 

Entropy Rate-IQR 0.329 0.251 0.416 0.157 0.186 0.543 

Entropy Rate-Med § 0.382 0.178 0.184 0.548 0.134 0.663 

Lempel-Ziv Comp-Med -0.089 0.762 -0.090 0.771 0.041 0.895 

Lyapunov Exp-IQR 0.620 0.018 0.407 0.167 0.417 0.157 

Wave Approx-Med -0.185 0.526 -0.115 0.709 -0.021 0.946 

Wave Energy 2-IQR § 0.378 0.182 0.092 0.765 0.079 0.798 

Wave Energy 2-Med 0.270 0.350 0.184 0.548 0.089 0.772 

Wave Energy 3-IQR 0.025 0.932 -0.090 0.771 -0.192 0.530 

Wave Energy 3-Med 0.201 0.492 0.115 0.708 -0.010 0.973 

Wave Entropy-Med 0.103 0.726 0.072 0.815 -0.011 0.972 

Statistical AUC Acc Norm-IQR 0.747 0.002 0.733 0.004 0.681 0.010 

AUC Acc Norm-Med 0.455 0.102 0.268 0.376 0.245 0.420 

AUC Acc-IQR 0.699 0.005 0.735 0.004 0.679 0.011 

AUC Acc-Med 0.537 0.048 0.424 0.149 0.426 0.147 

Duration-IQR § 0.517 0.058 0.569 0.042 0.465 0.110 

Duration-Max 0.622 0.018 0.425 0.148 0.503 0.080 

Duration-Med 0.521 0.056 0.546 0.053 0.529 0.063 

Kurtosis-Med -0.008 0.978 0.172 0.575 0.039 0.899 

Max Acc-IQR 0.611 0.020 0.668 0.013 0.443 0.130 

Max-RMS Acc-Med 0.145 0.620 0.220 0.470 0.085 0.783 

Med Acc-IQR 0.703 0.005 0.673 0.012 0.701 0.008 

Med Acc-Med 0.391 0.167 0.282 0.351 0.344 0.250 

Range Acc-IQR 0.612 0.020 0.669 0.012 0.444 0.128 

RMS Acc-Med 0.472 0.089 0.256 0.399 0.230 0.450 

SD Acc-IQR 0.741 0.002 0.694 0.009 0.556 0.049 

Skewness-Med 0.003 0.992 0.155 0.614 0.014 0.963 

SMA Acc-IQR 0.710 0.004 0.720 0.006 0.655 0.015 

SMA Acc-Med 0.504 0.066 0.340 0.256 0.327 0.275 

Timing Move/hour § 0.163 0.578 -0.053 0.863 0.031 0.920 

Move/night § 0.141 0.631 -0.074 0.811 0.020 0.948 

Time Asleep § 0.268 0.354 0.099 0.748 0.132 0.668 

Med Vel-IQR 0.699 0.005 0.672 0.012 0.701 0.008 

Velocity and 

distance 

Med Vel-Med 0.358 0.209 0.256 0.398 0.302 0.316 

RMS Vel-Med 0.476 0.085 0.257 0.397 0.231 0.447 

Total Dist-IQR 0.687 0.007 0.776 0.002 0.701 0.008 

Total Dist-Med 0.574 0.032 0.448 0.125 0.468 0.107 

* Outcomes that had a correlation p< 0.1 are bolded 

† Outcomes where at least 2 groups could be visually well isolated when plotted are highlighted grey 

‡ LA features that were found to be stable over time in Aim 3b are italicized 

§ Indicates a feature that was variable over time in Aim 3b, but not related to changes in ambulatory ability or 

impairment in Aim 4a 

 



 210 

Appendix H.1 Supplemental Visual Analyses for Features Significant in Aim 4b, but Not 

Aim 4a 

 

Appendix Figure H.3: Duration-IQR supplemental visual analysis (variable LA feature that was related to 6-

month WISCI-II and 10mWT when measured at admission [Aim 4b], but not change in any outcomes over 

time [Aim 4a]). a) Shows no trend to change in WISCI-II over time, b) admission feature has significant 

correlation to WISCI-II at 6-months, c) no trend to change in 10mWT over time, b) admission feature has 

significant correlation to 10mWT at 6-months. 
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Appendix Figure H.4: Angle Rate Change-IQR supplemental visual analysis (variable LA feature that was 

related to 6-month 10mWT and 6MWT when measured at admission [Aim 4b], but not change in any 

outcomes over time [Aim 4a]). a) Shows no trend to change in 10mWT over time, b) admission feature is 

visually separable between the household and community ambulator groups for the 10mWT at 6-months, c) 

no trend to change in 6MWT over time, b) admission feature is visually separable between the household and 

community ambulator groups for the 6MWT at 6-months. 
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Appendix Figure H.5: Wave Energy 2-IQR supplemental visual analysis (variable LA feature that was 

related to 6-month 6MWT when measured at admission [Aim 4b], but not change in any outcomes over time 

[Aim 4a]). a) Shows no trend to change in 6MWT over time, b) admission feature is visually separable 

between the household ambulator and non-ambulatory groups for the 6MWT at 6-months. 
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