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Katabatic winds are down-slope, drainage flows that are characterized by strong jets of

cold air capped by a reverse flow. Katabatic winds typically form when air right above a

sloping surface cools rapidly due to radiative heat transfer to clear skies and, subsequently,

gets transported down the slope by the action of gravity. Idealized katabatic flows form

the theoretical foundation for exploring turbulent winds over complex terrains under sta-

bly stratified atmospheric conditions. Recent numerical investigations of idealized katabatic

flows have established the presence of organized vortical structures in the laminar flow regime

along with an instability map as a function of relevant slope flow dimensionless parameters,

including a recently introduced stratification perturbation parameter. The current thesis

investigates the oscillatory dynamics of these vortical rolls through direct numerical simula-

tions of idealized katabatic flows for numerous points in the instability map. The simulation

results further confirm the presence of both temporal and spatial oscillations in the flow

fields that are associated with the emergence and propagation of flow instabilities. Damped

en masse oscillations, which were previously identified in the context of turbulent slope

flows, are observed to dominate the initial oscillatory stage of laminar katabatic slope flows

as well. Unlike in the turbulent regime, these en masse oscillations become insignificant at

most heights in the dynamically unstable laminar regime with the emergence of well-defined

flow instabilities. Stationary longitudinal rolls, which are dominant at shallow slopes, are

observed to meander with increasing stratification perturbation parameter. Traveling slope

waves, which emerge on very steep slopes, are observed to be transported by the mean jet

velocity of the flow. Both types of instability rolls coexist for certain combinations of the

dimensionless parameter space, forming intricate structures that break into turbulence as

the flow becomes more dynamically unstable.
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1.0 Introduction

Katabatic flows constitute an atmospheric flow phenomenon characterized by strong jets

of cold air flowing downslope along inclined terrains as a product of net radiative cooling

of the ground surface (Fig. 1.1). Such slope flows, also known as drainage winds, typically

take place during calm nights with clear skies over continental mountainous regions, starting

before midnight and with an average duration in the order of a few hours. In high latitudes,

however, where slope distances can extend for hundreds of kilometers, katabatic flows can also

be observed during day time and can last multiple days. Along such vast surfaces, Coriolis

effects deviate the jet’s direction from the along-slope direction, yet these effects are negligible

over less extensive surfaces, on which the along-slope velocity component dominates over the

cross-slope and slope-normal components [1, 2, 3].

From a fluid dynamics perspective, katabatic flows are gravity-driven (or equivalently

buoyancy-driven) boundary-layer flows happening as a consequence of stably stratified at-

mospheres forming above sloping surfaces which are subject to net radiative cooling. When

the surface cools down against a background stable environment, a slope-normal temperature

gradient is formed between the colder surface and the warmer atmosphere, a phenomenon

known as surface inversion. This kind of slope-normal temperature profile features a layer of

colder, and hence denser, air lying above the surface resulting in the formation of horizontal

temperature, density, and pressure gradients for a given vertical height. Gravity then accel-

erates the heavier air down the slope against the stably stratified atmosphere and viscous

friction forces at the surface, thus leading to the formation of a velocity jet pointing downs-

lope that displays a maximum velocity just above the surface. When the net radiative cooling

is replaced in the physical setting described above by a net radiative heating—typically hap-

pening after sunrise—the air in contact with the surface gets warmer, and hence less dense,

causing it to rise because of buoyancy. For such flows, known as anabatic flows, the hori-

zontal pressure gradient reverses and pushes the air against the surface, causing the warmer

air to move up in the direction of the slope rather than rising vertically, thus resulting in a

jet-like velocity profile pointing upslope [1, 2, 3, 4].
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Figure 1.1: Slope flow under katabatic conditions. The along-slope velocity profile u is

depicted in red and the buoyancy profile b is depicted in blue. The surface buoyancy flux is

denoted by Bs and ~g represents the gravity vector.

Katabatic flows, as a local wind phenomenon, are particularly strong over large-scale

ice sheets and snow-covered inclined terrains, despite being part of diurnal-cycle effects on

continental mountainous regions at a smaller scale. In both scenarios, however, such slope

flows have implications in multiple regional-scale circulations [1]. In polar latitudes, they

can reach hurricane forces and control local climate, affecting atmospheric circulation and

contributing to ablation of ice sheets, i.e. near-surface removal of ice, given the turbulence

fluxes of sensible heat appearing in the energy budget [5, 6, 7, 8, 9, 10, 11]. In continental

terrains, they impact the local weather in mountainous regions. Air quality on such regions

is closely coupled to the dynamics of slope flows, and stable atmospheres are known to be

an aggravating factor regarding air pollutant dispersion issues [12, 13, 14]. Their impact

also spans to other human activities happening within the troposphere, such as aviation,
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agriculture, wind energy generation, and military and fire fighting operations. Particularly,

katabatic flows affect fog formation, hence having a significant impact on the visibility and

energy usage conditions on such human activities [15, 16, 17, 18, 19].

Despite recent advances in the understanding of the heat and fluid dynamics principles

underlying katabatic flows, they remain an open area of research within the atmospheric

science community. Primarily, the stable atmospheric boundary layer (ABL), as described

by Mahrt [20], is indeed a challenging phenomenon given the turbulent and nonturbulent

motions that coexist in the flow at a wide range of scales. When stable conditions are

present on ABLs, a qualitative classification scheme would yield in two regimes, namely

the weakly stable ABL and the very stable ABL. The former can be modeled through the

Monin-Obukhov similarity theory [21] and exhibits well-defined boundary layer velocity and

potential temperature profiles, on which the turbulent kinetic energy (TKE) continuously

decreases with height. As stability increases in the flow, however, the classical definition of

turbulence becomes harder to identify, to the point that the very stable regime cannot be

modeled as a traditional boundary layer flow. In such a regime, which is the one leading to the

occurrence of katabatic flows, the TKE might increase with height and then start decreasing

after reaching a maximum. This behavior limits the applicability of similarity theory to

describe the very stable regime, and a complete understanding of the underlying physics

remains to be formulated. Particularly, there are organized vortical structures emerging in

such stable ABLs that are not yet fully understood and direct numerical simulations (DNS)

are a promising tool to shed light into their dynamics, overcoming current challenges in

high-resolution temporal and spatial data collection from field observations.

Such organized vortical structures manifest themselves as instability modes emerging as

the slope flow becomes more dynamically unstable, constituting a nonlinear and unstable

phenomenon that is still not fully turbulent. Hypotheses about these instability modes

have been formulated based on field measurements, where strong wave-like motions have

been observed on signals collected in the temporal domain, and observations in the spatial

domain based on fog patterns have revealed the presence of such organized vortical structures

[20]. However, a full characterization of the unstable motions have not been possible based

on experimental data alone. A milestone in the study of such instabilities came from the
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contributions of Xiao and Senocak [22], who, based on the exact solution for an prototype

katabatic flow scenario, established an instability map through linear stability analysis that

predicts the organized vortical structures emerging in the flow, known as instability modes,

as a function of the dimensionless slope flow parameters. Entire flow field visualizations

obtained through DNS confirmed the existence of such structures, and the current challenge

then becomes leveraging such high-resolution spatial and temporal flow field data to explore

the underlying relationship between the slope flow parameters and the instability modes’

dynamics, with a particular interest on understanding how these organized vortical structures

evolve as the flow becomes turbulent and how the wave-like motions can be characterized.

1.1 Prior Work

Katabatic flows have received a large amount of attention from the atmospheric science

community over the course of the last century given the challenging physical phenomenon

they represent by combining atmospheric stratification, heat transfer, buoyant forcing, insta-

bilities, turbulence, and flows over complex terrains all together. The first hypotheses about

the nature of such flows came from field observations, which were followed by quantitative

descriptions of the physical phenomenon under certain prototype scenarios through analyti-

cal models, and later, with advances in computing power, a more structured understanding

of the flows became possible through computer simulations.

One of the earliest experimental campaigns reported about katabatic flows dates back to

1933 [23], and since then a plethora of experimental data has been collected all over the world

and reported in the literature up to current times. Heywood [23] reported an experimental

campaign that took place between 1929 and 1931 over a slope of about 2◦. The velocity

and temperature measurements revealed that katabatic flows are always accompanied by a

surface inversion, and they observed how clear skies were the most favorable condition for

katabatic flows while the formation of cold air ponds at the bottom of the valleys could cause

the slope flows to stop. Such experimental measurements, however, were not continuous and

could only be started for a limited time when there was a likelihood of a clear night. These
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limitations were overcome in later experimental campaigns, where continuous measurements

were taken over extended periods of time by using higher resolution instruments that could

cover a greater slope-normal distance for collecting data in the temporal domain. Still the

sampling frequency remained a limiting factor for observing high-frequency, or equivalently

small-period, phenomena.

Among such improved experimental campaigns are the one reported by Horst and Do-

ran in 1986 [24] over slopes ranging from 6.5◦ to 22◦, and the one reported both by Helmis

and Papadopoulos in 1996 [25] and by Papadopoulus et al. in 1997 [26] over slopes rang-

ing from 9◦ to 34◦. These measurements provided more details about the physics leading

to the emergence of the katabatic flows and confirmed earlier conclusions about their na-

ture. The authors reported good agreement between the experimental measurements and

available analytical formulations for the averaged bulk flow quantities integrated along the

slope-normal direction. These experimental results featured large-period oscillations, whose

frequency changed in time for both the velocity and temperature temporal signals, thus

defining multiple oscillatory regimes in the flow with a possible phase lag in the signals for

each flow field.

More recent experimental campaigns include the ones reported by Geiss and Mahrt in

2015 [27] over a 2◦ slope and by Stipersky et al. in 2020 [28] over a 1◦ slope featuring data in

the temporal domain only. Geiss and Mahrt [27] computed a reduced-order representation of

their entire experimental data set through the Singular Value Decomposition (SVD), finding

that only a few SVD modes have the power to represent the entire data set and hence

providing insight about the presence of organized vortical structures in the flow. Stipersky

et al. [28], on the other hand, analyzed the structure of turbulence on katabatic flows

featuring a high-frequency sampling rate of 20 Hz and compared it against the expected

structure above flat terrain. Large differences were found between these two flow scenarios

despite the shallow slope analyzed, namely a smaller boundary layer height and constant

eddy size observed for the katabatic flows. They argued that the jet’s maximum velocity

is a source of turbulence and stressed the importance of appropriately including the slope’s

effect on numerical models. Regarding experimental measurements in the spatial domain,

several field observations based on natural and machine-generated fog, as reported by Mahrt
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[20], have revealed the presence of submeso motions, i.e. nonturbulent motions on scales

smaller than 2 km, in katabatic flows. These motions have been observed to include both

wave-like and non-wave-like motions, and the experimental data available has shown how

the waves’ amplitude can evolve in time and how the non-wave motions are mainly two

dimensional. Yet, no complete parameterization of these motions is available and their

relationship with turbulent motions requires further investigation, for which Mahrt stresses

the need of both developing new observational approaches and formulating models that

respond to the observed physics.

The first quantitative approach to describe katabatic flows under an idealized scenario

was proposed by Prandtl in 1942 [29] and has been revised by multiple authors since then

[30, 3, 31, 32]. The base prototype katabatic flow scenario is represented by an infinitely long

surface in all directions inclined with a constant slope. The surface is subject to uniform and

constant cooling and the atmosphere above features a linear and stable stratification with

constant viscosity. Prandtl also assumed the flow to be parallel to the slope, laminar, and

steady, resulting in an idealized solution defined by one-dimensional velocity and buoyancy

profiles that exhibit a jet pointing downslope with a maximum right above the surface

followed by a weaker reverse jet, as shown in Fig. 1.1. The original model was formulated

with a prescribed temperature at the surface, and was later modified by Fedorovich and

Shapiro [3] to include the scenario where a heat flux, or equivalently buoyancy flux, is

prescribed instead. Despite its simplicity, this analytical model for slope flows qualitatively

resembles the structure of the katabatic flows observed in nature, and can be extended to

more intricate atmospheric conditions, as shown by Lykosov and Gutman [32], who included

the presence of an ambient wind aloft the surface, in contrast to the original model that

assumed the flow far away from the surface to be quiescent [3].

The simple laminar and steady Prandtl’s solution has enabled the formulation of more

refined models that provide greater insight into the nature of katabatic flows. Fedorovich

and Shapiro [31] formulated the analytical solution for a transient slope flow scenario that

started from rest and reached Prandtl’s solution as the steady state response. The proposed

analytical solution consists of an oscillator whose amplitude, damping rate, frequency, and

phase are controlled by the dynamics of the surface shear stress. Particularly, the surface
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shear stress was found to converge to a constant value much faster than the rest of the

flow fields, thus weakening the damping of the oscillators of those fields and causing a

longer persistence of this oscillatory behavior in the flow, although eventually converging

to the steady state solution. These oscillations, denoted as en masse oscillations, confirm

the oscillatory behavior observed in previous numerical simulations of stratified anabatic

and katabatic flows, which had initially been associated with internal gravity waves [3, 2].

The characteristic frequency of the en masse oscillations was found to match the natural

buoyancy frequency of the flow N sinα, being a function of both the slope angle α and the

Brunt–Väisälä frequency N , where N2 is a measure of the background stratification.

An additional model based on Prandtl’s slope flow solution has been obtained through

Linear Stability Analysis applied to the simple laminar solution to assess the growth of in-

stabilities in the flow from infinitesimal disturbances. Xiao and Senocak have applied this

technique to slope flows under katabatic conditions with both quiescent flow aloft [33] and

ambient winds [34], and anabatic conditions [22]. Their contributions have shown the exis-

tence of organized vortical structures in the unstable laminar regime and provide instability

maps that predict the emergence of three types of instability, namely stationary longitudinal

rolls aligned along the slope direction, called transverse mode; traveling wave rolls aligned

along the cross-slope direction that move along the slope direction, called longitudinal mode;

and a higher-order mixed mode regime, where both the longitudinal and traveling wave rolls

are interwoven and coexist in the flow. These instability maps are presented as a function

of the dimensionless slope flow parameters identified through the Buckingham π theorem,

namely the Prandtl number Pr, the slope angle α, and a newly introduced stratification

perturbation parameter Πs.

With the advent of increased computing power in the late 1980s, carrying out computer

simulations of atmospheric-scale flow phenomena became possible. As reported by Mason

and Derbyshire [35], Large-Eddy Simulation (LES) is a feasible tool for numerically assess-

ing the stably stratified atmospheric boundary layer over flat terrains despite limitations

regarding computational power, the scales that can be resolved for, and the challenges of

simulating the very stable regime. Schumann [2] carried out wall-modeled LES of slope flow

under turbulent anabatic conditions. The simulations considered the Prandtl’s slope flow
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scenario with an infinitely long surface subject to a constant and uniform heat flux with

the additional inclusion of surface roughness. The uniformly stratified atmosphere above

is initially at rest and no rotation is considered in the setup. The obtained results further

confirmed the benefits of the reliable and detailed picture LES provides of the nature of slope

flows, highlighting a weak dependence on the surface roughness and an oscillatory behavior

governed by the en masse oscillations. Indeed, this work represents the first evidence of the

presence of such oscillations in the flow, which were initially regarded as gravity oscillations

and required the implementation of a relaxation algorithm in the simulations such that the

numerical solution would reach a steady state sooner. The focus of these simulations was to

assess the structure of the turbulent boundary layer, and hypotheses about the presence of

slope-dependent organized vortical structures generated both by shear and buoyancy were

confirmed as a mechanism for turbulence generation. Signatures of the longitudinal and

traveling wave rolls were observed, attributing the latter to Kelvin-Helmholtz waves.

Numerical investigations of turbulent slope flows under both katabatic and anabatic con-

ditions were also carried out by Fedorovich and Shapiro [3] through DNS, leveraging more

advanced computing resources that allow to resolve for all scales in the flow and to ana-

lyze the long-term response of the flow with longer simulated times, which were the main

limitations of previous works using LES. The used physical simulation setup corresponds

to the prototype katabatic flow scenario, and their results for instantaneous and mean flow

field quantities exhibit both turbulent fine-scale fluctuations that vanished with increasing

height and en masse oscillations in all locations above the surface. They did not observe any

damping on the en masse oscillations and concluded that their persistence in the flow was

a natural and expected condition. This conclusion was reaffirmed in their later work with

an analytical formulation of the transient Prandtl’s model [31], whose oscillatory dynamics

were found to be in good agreement with the en masse oscillations observed in the simu-

lations. Not explicitly reported, though, is the domain size used for their turbulent slope

flow simulations, which is a potential constraining factor for the development of a different

set of motions that could overtake the en masse oscillations. The simulation results also re-

vealed how the turbulent katabatic flows resemble Prandtl’s laminar profile more than their

anabatic counterparts, and confirmed the absence of constant turbulent fluxes, thus limiting
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the applicability of similarity theory to these kinds of slope flows. They also did not observe

any scale separation that would allow for any of the slope flow parameters to be dropped

from the analysis.

Additional numerical slope flow simulations include the contributions of Umphrey et al.

[36], who carried out DNS simulations of katabatic flows implementing several immersed-

boundary reconstruction schemes to model the buoyancy flux boundary condition on the

surface, establishing a benchmark against a body-fitted approach where the gravity vector

was rotated instead to account for the surface inclination. The simulations were carried

out for both laminar and turbulent regimes, and while all the immersed-boundary schemes

agreed with Prandtl’s solution for the laminar case, differences increased for some of these

schemes when compared against the body-fitted approach for turbulent simulations. Due

to these differences the authors identified one of the assessed reconstruction schemes as the

most optimal one, for which the first- and second-order turbulence statistics had the best

agreement with respect to the body-fitted solution despite not showing any improvement

over this direct approach. These contributions resulted in a validated DNS code that was

then used by Xiao and Senocak to verify the organized vortical structures predicted by

the Linear Stability Analysis [33, 22, 34] through slope flow simulations in the unstable

laminar regime, as dictated by the recently introduced instability maps. The presence of the

instabilities was confirmed for the stationary longitudinal, traveling wave, and mixed types of

rolls, while also highlighting large structural differences between anabatic and katabatic flow

scenarios for the same set of slope flow parameters only differing in the sign of the buoyancy

flux at the surface. Therefore, this validated DNS code provides a powerful tool to survey

the proposed instability maps and further explore the underlying relationship between the

instability modes and the slope flow parameters.
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1.2 Thesis Statement

This thesis explores the dynamics of the longitudinal and traveling wave instability rolls

emerging in the unstable laminar regime of katabatic flows, which have been proven ana-

lytically and whose signature has been traced in experimental and numerical studies. To

advance the current understanding of these organized vortical structures, the presented re-

search leverages direct numerical simulations and establishes predictive relationships for the

behavior of the temporal and spatial oscillations observed in such slope flows as functions of

relevant dimensionless flow parameters.
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2.0 Technical Background

This chapter presents the governing equations for slope flows, along with their analytical

solution under an idealized laminar and stationary scenario, known as Prandtl’s model for

slope flows. An instability map [33] for predicting the type of instabilities emerging in kata-

batic flows is also presented along with relevant dimensionless parameters and appropriate

flow scales. Finally, the key numerical methods and postprocessing tools are discussed.

2.1 Governing Equations

The governing equations for the katabatic slope flow phenomenon come from conservation

laws subject to a series of modeling simplifications. The problem is studied using a Cartesian

coordinate system xi = [x1, x2, x3] = [x, y, z] rotated by the slope’s inclination angle α, such

that the x-direction is aligned with the along-slope direction, the y-direction is aligned with

the cross-slope direction, and the z-direction is aligned with the slope-normal direction,

as shown in Fig. 1.1. The along-slope and cross-slope directions are alternatively called

longitudinal and transverse directions, respectively. The normalized vertical gravity vector

expressed in this coordinate system becomes gi = [sinα, 0, cosα]. The flow fields to be

studied are the velocity vector field ui = [u, v, w], the pressure scalar field p, and the buoyancy

scalar field b = g(Θ − Θe)/Θr, where g is the acceleration of gravity, Θ is the potential

temperature, i.e. the temperature a parcel of air will reach if brought adiabatically to a

reference pressure, and Θe and Θr denote the environmental and constant reference potential

temperature, respectively. The Boussinesq approximation is employed to model density as

a constant except for buoyancy effects, allowing the use of the incompressible version of the

continuity equation. The effects of buoyancy are included through buoyancy forcing terms

in the Navier-Stokes equations, and Coriolis forces are neglected. The resulting governing

equations for conservation of mass, linear momentum, and energy are presented in Eqs. 2.1-

2.3, respectively, following the presentation proposed by Fedorovich and Shapiro [3].
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∂ui
∂xi

= 0, (2.1)

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

(
ν
∂ui
∂xj

)
+ bgi, (2.2)

∂b

∂t
+
∂buj
∂xj

=
∂

∂xj

(
β
∂b

∂xj

)
−N2gjuj, (2.3)

where ν and β denote the momentum and thermal diffusivities of the fluid, respectively, and

ρ denotes density. N corresponds to the Brunt-Väisälä frequency, with N2 being a measure

of the stable background stratification in the flow. In the presented katabatic flow model,

the vertical gradient of the environmental potential temperature is assumed to be constant,

which also implies N to be constant and corresponds to the linear background stratification

simplification.

In the prototype slope flow scenario characterized by an infinitely long surface in all

directions inclined with a constant slope under a linear and stable background stratification,

katabatic conditions are generated by a constant and uniform surface cooling denoted by

Bs < 0. When considering this prototype flow, the boundary conditions can be represented

as follows: At the bottom boundary with height z = 0, the no-slip and impermeability

conditions are applied to the velocity field, while the buoyancy field is subject to a Neumann

boundary condition such that ∂b/∂z|z=0 = Bs/β; the top boundary is modeled through free-

slip and zero normal gradient boundary conditions for velocity and buoyancy, respectively;

and the lateral boundaries are modeled through periodic boundary conditions for all fields.
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2.2 Prandtl’s Laminar Solution

Considering the steady state, laminar, one-dimensional, and slope-parallel idealized slope

flow scenario would reduce Eqs. 2.1-2.3 into Eqs. 2.4 and 2.5, corresponding to Prandtl’s

model for slope flows [3, 29].

b sinα + ν
∂2u

∂z2
= 0, (2.4)

−N2u sinα + β
∂2b

∂z2
, (2.5)

which was originally formulated with a Dirichlet boundary condition applied at the surface

for the buoyancy field, prescribing the buoyancy value at z = 0. This model was later

extended by Fedorovich and Shapiro [3] to consider a Neumann boundary condition instead,

thus prescribing the surface buoyancy gradient ∂b/∂z|z=0 based on the surface heat flux Bs

that drives the flow. Introducing appropriate flow scales, Eqs. 2.4-2.5 can be normalized

and then solved analytically as shown Fedorovich and Shapiro [3], yielding the solutions

presented in Eqs. 2.6 and 2.7.

un =
√

2 sin (zn/
√

2) exp (−zn/
√

2), (2.6)

bn =
√

2 cos (zn/
√

2) exp (−zn/
√

2), (2.7)

where zn = z/l0, un = u/u0, and bn = b/b0 correspond to the height above the surface,

along-slope velocity and buoyancy, respectively, normalized using the flow scales shown in

Eqs. 2.8-2.10.

l0 = (νβ)1/4N−1/2 sin−1/2 α, (2.8)

u0 = (νβ)−1/4N−3/2Bs sin−1/2 α, (2.9)

b0 = ν1/4β−3/4N−1/2Bs sin−1/2 α.. (2.10)

The maximum jet velocity in Prandtl’s laminar solution has a normalized magnitude of

un,jet = e−π/4 and occurs at a height zn,jet = π
√

2/4 ≈ 1.11. Note that while the proposed

lenght scale in Eq. 2.8 was proposed as a generic scale with no direct association in the flow

field [3], the analytical solution revealed that the jet’s height is observed at a dimensional
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height zjet ≈ l0. The normalized velocity and buoyancy profiles are depicted in Figs. 2.1(a)

and (b), respectively, which are valid for both katabatic and anabatic scenarios when the

appropriate sign of the surface buoyancy flux is used in the flow scales. Slope flows in nature

have been observed to resemble the structure predicted by these analytical profiles with a

better agreement for the katabatic scenario, and tuning parameters have been proposed to

be included into Prandtl’s model to improve such predictions [26, 30].

(a) Normalized along-slope velocity profile (b) Normalized buoyancy profile

Figure 2.1: Prandtl’s laminar solution

2.3 Relevant Dimensionless Parameters and Flow Scales

Applying the Buckingham π theorem to Prandtl’s idealized slope flows scenario, Xiao and

Senocak [33] have showed that there are three dimensionless groups governing the physics

of such flows. These parameters are the slope angle α, the Prandtl number Pr = ν/β,

which compares the momentum and thermal diffusivities of the fluid, and the stratification

perturbation parameter Πs (Eq. 2.11), which is the ratio between the surface buoyancy

gradient and a measure of the background stratification. This last parameter represents

a new contribution and is interpreted by the authors as a measure of the disturbance to

the background stratification by heat conduction at the surface. Slope flows are found
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to become dynamically more unstable with increasing Πs, hence the flow will be closer to

turbulence for large Πs values when the other two parameters are fixed, transitioning through

several instability modes along its way. Note that no length or velocity scales appear in such

dimensionless parameters as neither is applied externally in the prototype slope flow scenario.

Πs =
|Bs|
βN2

=

∣∣ ∂b
∂z

∣∣
z=0

N2
. (2.11)

Based on the dimensionless parameters presented above, the flow scales from Eqs. 2.8-

2.10 can be rewritten as:

l0 = β1/2N−1/2Pr1/4 sin−1/2 α, (2.12)

u0 = β1/2N1/2Pr−1/4Πs sin−1/2 α, (2.13)

b0 = β1/2N3/2Pr1/4Πs sin−1/2 α, (2.14)

where l0 is independent of Πs when β and N are set constant, in contrast to u0 and b0,

which show a linear dependency on Πs. Additional flow scales can be introduced, such as

a convective time scale t0,c (Eq. 2.15), a buoyancy frequency scale f0,en (Eq. 2.16) based on

the en masse oscillations’ frequency [31], and a pressure scale p0 (Eq. 2.17) corresponding

to the dynamic pressure.

t0,c = l0/|u0| = N−1Pr1/2Π−1s , (2.15)

f0,en =
N sinα

2π
, (2.16)

p0 =
1

2
ρu20. (2.17)

Hence, a complete set of normalized quantities can be defined to describe the dynamics of

slope flows, which will be used to present the results in Chapter 3. Namely, un = u/u0, vn =

v/u0, and wn = w/u0 correspond to the normalized velocity components, while bn = b/b0

and pn = p/p0 are the normalized buoyancy and pressure fields, respectively. The normalized

time tn = t/t0,c and normalized frequency fn = f/f0,en help describe oscillating dynamics in

time, while the normalized along-slope λx/l0 and cross-slope λy/l0 wavelengths help describe

oscillations in the spatial domain.
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Note that the frequency scale f0,en presented in Eq. 2.16 does not correspond to the

reciprocal of the convective time scale t0,c presented in Eq. 2.15. Such a frequency scale was

chosen to directly compare the observed frequencies with respect to the en masse oscillations’

frequency. When the convective time scale t0,c is used to normalize the proposed frequency

scale, the relationship presented in Eq. 2.18 is obtained, which becomes the dimensionless

en masse oscillations’ frequency.

f0t0 =
N sinα

2π
t0 =

Pr1/2Π−1s sinα

2π
(2.18)

Additionally, for the katabatic flow scenario with ambient wind aloft U∞, the wind forcing

number Πw is introduced by Xiao and Senocak [34] as the ratio between the kinetic energy

in the ambient wind and the damping of kinetic energy due to both viscous forces and the

stabilizing effect of the stratified atmosphere.

Πw =
U2
∞

νN
. (2.19)

2.4 Instability Map

Linear Stability Analysis has enabled the study of the propagation of infinitesimal distur-

bances on Prandtl’s laminar solution for slope flows, revealing the emergence of three types

of instabilities as shown by Xiao and Senocak for multiple slope flow scenarios considering

katabatic flows with and without ambient winds aloft and anabatic flows [4, 33, 22, 34].

Such instabilities are defined by the propagation of wave-like unstable modes along either

the longitudinal or transverse directions, which results in the longitudinal and transverse

modes of instability, respectively. Additionally, these instabilities can coexist in the flow in

a regime denoted as mixed/higher order instabilities. Their contributions for the katabatic

flow scenario are summarized through the instability map presented in Fig. 2.2, which pa-

rameterizes the emergence of the instability modes as a function of the three dimensionless

parameters governing the slope flows dynamics as presented in section 2.3. The absence of
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instabilities is known as a linearly stable regime, for which the Prandtl’s laminar solution

holds, being stable with respect to small perturbations.

Figure 2.2: Πs − α Instability map for katabatic flows at Pr = 0.71. The region above the

horizontal line denotes Ri < 0.25. Reproduced from [33]

Validating the presence of these instabilities though computer simulations, Xiao and

Senocak [33] observed how each type of instability manifests as organized vortical struc-

tures that are aligned with a corresponding flow direction and that either travel or remain

stationary. Such vortical structures are also known as instability or vortex rolls. The trans-

verse mode exhibits longitudinal instability rolls that are aligned with the along-slope di-

rection—equivalently the base-flow direction—and that remain stationary. The longitudinal

modes, on the other hand, exhibit vortex rolls that are aligned with the cross-slope direction

and that travel along slope direction, thus defining a traveling wave instability. These travel-

ing wave rolls have been regarded as a generalized Kelvin-Helmholtz type of instability while

the longitudinal rolls characterizing the transverse mode of instability resemble Görtler or

Taylor-Couette vortices. [22]. In the mixed mode regime, both the longitudinal and travel-

ing wave rolls are present, forming complex interwoven structures that can fall either on a

weakly-mixed condition with one of them being stronger and trying to overcome the other

one, or a well-mixed condition, where both of them have comparable strength.
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A milestone in the study of the propagation of instabilities in inviscid unbounded strat-

ified flows is the Miles-Howard theorem [37], which proposes a criterion for the presence

of instabilities in such flows. This criterion establishes a threshold based on the gradient

Richardson number Ri = Pr/Π2
s, such that the flow will remain stable as long as Ri > 0.25.

From this formulation, having Ri < 0.25 would be a necessary but not sufficient condition

for instability [38]. However, extending such a criterion to katabatic flows reveals different

instability thresholds, as seen in Fig. 2.2. Firstly, katabatic flows exhibit the transverse mode

of instability for shallow slopes α < 5◦ and Πs values such that Ri > 0.25, thus contradicting

the first part of the criterion. Secondly, stability is observed for steep slopes and Πs values

such that Ri is as low as 2 × 10−3. Therefore, Xiao and Senocak [33] concluded that a

criterion based on the gradient Richardson number alone is not enough for describing the

instability regions of katabatic slope flows. Note that this conclusion does not question the

validity of the Miles-Howard theorem for the idealization it is originally based upon. Issues

arise when this criterion is extended to different flow configurations that were not considered

at the time the theorem was formulated, being the katabatic flow sceneario one particular

example of those.
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2.5 Direct Numerical Simulations

Direct numerical simulations (DNS), on which the governing equations presented Eqs. 2.1-

2.3 are integrated numerically resolving all scales of motion, were carried out adopting the

GIN3D flow solver [39]. This code leverages efficient computations on graphical processing

units (GPUs) and features a Cartesian mesh three-dimensional solver that has been validated

for katabatic slope flow simulations through a body-fitted representation of the inclined sur-

face, on which the coordinate system is rotated to account for the slope angle [36]. This is

the same solver used by Xiao and Senocak [4, 33, 22, 34] to validate the presence of the in-

stability rolls on multiple slope flow configurations. The code exhibits a global second order

of accuracy through second-order accurate central difference discretization scheme in space

and second-order accurate Adams-Bashfort discretization scheme in time. The pressure field

is solved through the Poisson equation using a geometric multigrid technique [39].

The simulation domain, representing the prototype slope flow scenario, consisted of a

rectangular box with size Lx×Ly×Lz. The choice of the domain size was such that the top

boundary was placed at Lz = 50l0, with l0 being the length scale introduced in Eq. 2.12. The

longitudinal and transverse directions were chosen as a function of the separation observed

among the instability rolls, with a base case of Lx = Ly = 200l0 that was modified along each

direction separately as needed in order to capture several of the dominant instability rolls.

The mesh resolution was chosen such that there were at least two points per length scale,

maintaining an equal resolution along the x and y directions and making the resolution

along the z direction twice as fine. The temporal discretization was chosen through the

Courant-Fiedrichs-Lewis stability condition CFL = umax∆t/∆x such that CFL ≤ 0.4 for all

the assessed mesh resolutions.

The boundary conditions for representing the prototype slope flow scenario were imple-

mented matching the boundary conditions listed in section 2.1, and the initial condition was

defined as Prandtl’s laminar solution for the base case, with an alternate scenario considered

for the flow starting from rest through a zero-field initial condition. The fluid properties cor-

responded to a reference density ρ = 1 kg m−3, a fixed Prandtl number of Pr = ν/β = 0.71,

with ν = 5 × 10−4 m2 s−1 and β = 7.04 × 10−4 m2 s−1. The stratification of the atmo-
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sphere above the surface was defined through a Brunt-Väisälä frequency value of N = 1 s−1.

Keeping all the fluid properties constant, the Πs number for each simulation was modified

changing the surface buoyancy gradient ∂b/∂z|z=0 only. No external disturbances were re-

quired for triggering the instabilities in the flow, which are predicted by linear stability based

on infinitesimal perturbations. Roundoff errors from the iterative numerical computations

and discretization errors were sufficient for those instabilities to emerge after the simulated

time covered numerous time scales [4].

2.6 Data Analysis in the Frequency and Wavelength Domains

Let an = a(t)/a0 be a normalized signal which is a function of time t = t/tn and is

sampled at a set of Ns discrete points with a frequency Fs. The Discrete Fourier Transform

(DFT) of this signal, presented in Eq. 2.20, approximates the continuous Fourier Transform

and reveals its frequency components, thus shifting the analysis domain from the temporal

domain to the frequency domain. An equivalent domain translation is achieved from signals

in the spatial domain to the wavenumber domain, or equivalently the wavelength domain

[40, 41].

âk =
Ns−1∑
j=0

aje
i2πjk/Ns , k = 0, 1, . . . , Ns − 1, (2.20)

where i represents the imaginary unit and ân = âk/a0 is the normalized amplitude corre-

sponding to the frequency fk = kFs/Ns, which can be normalized with any relevant frequency

scale.

The Fast Fourier Transform (FFT) is an efficient algorithm for computing the DFT of a

given signal, with improved computational performance when Ns is a power of two [40, 41].

The FFT package available in Matlab is used in this thesis to compute the frequency and

wavelength components of the multiple temporal and spatial signals to be analyzed. A

sample script showing the use of FFT for the present flow problem is presented in Appendix

A, which reflects the considerations listed below [40, 41]:
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• The mean value is subtracted from the signals and a Hann window is applied before

computing the FFT, which reduces spectral leakage errors when identifying the dominant

frequencies among a set of discrete frequencies [41]. Applying such a window requires

scaling the FFT output using a factor of 2.02 as presented by Harris [42].

• The signals are padded with trailing zeros at the end to bring the signal’s length to the

closest power of two such that the performance of the FFT is improved. No error is

induced from such a change.

• The FFT amplitude âk for real signals exhibits both real and imaginary components and

is symmetrical with respect to the Nyquist (folding) frequency Fs/2, and the sampling

frequency Fs itself needs to be at least twice the largest frequency to be captured in the

signal to satisfy the sampling theorem, also known as the Nyquist criterion [41]. Hence,

only one half of the FFT spectrum is shown being multiplied by a factor of 2, which

results in resolving for any frequency component fi such that fi < Fs/2.

• The FFT results are normalized using the original signal’s length and the FFT amplitude

is presented through the Power Spectral Density (PSD) estimate shown in Eq. 2.21.

S(ak) =
1

FsNs

|âk|2, k = 0, 1, . . . , Ns − 1, (2.21)

where |âk| denotes the complex magnitude. The units of S(ak) are square units of ak per

unit frequency, thus requiring appropriate normalization for both temporal and spatial

signals.

• The wavelength domain λ is defined as the reciprocal of the wavenumber domain k, such

that λ = 2π/k. Wavelenght domains are defined for each direction, with λx and λy

corresponding to the x and y directions, respectively.

• The resolvability of the FFT in the frequency domain is defined by integer multiples

of Fs/Ns = 1/(∆tsNs) = 1/T where ∆ts is the sampling period and T is the total

sampled time when considering temporal signals. Equivalently, for spatial signals, the

resolvability of the FFT in the wavelength domain is defined by integer fractions of

1/(Fs/Ns) = ∆xNs = Lx where ∆x is the distance between two consecutive samples and

Lx is the total sampled length.
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• Averaging is performed among multiple FFT results for spatial signals collected at mul-

tiple domain locations and several time snapshots to identify the mean most dominant

wavelengths.

• The Short-time Fourier Transform (STFT) was implemented as a windowed approach

to determine the change in both amplitude and frequency of signals over time. This

technique slides a window through the signal and makes every value outside the window

to become zero. The discrete formulation of this technique is shown in Eq. 2.22, where

w denotes the window with fixed length and m is the index of the window, for a total

of Nm windows that are centered at different samples. Note that this technique required

to discretize both the temporal and frequency domains, and it is equivalent to splitting

up the signal into multiple overlapping segments (windows) whose initial time differs by

a fixed offset. Then the Fourier transform (Eq. 2.20) is applied to each one of windows

and the resulting frequency spectra are now a function of time [40].

âk,m =
Ns−1∑
j=0

wm
(
aje

i2πjk/Ns
)
, k = 0, 1, . . . , Ns − 1, m = 0, 1, . . . , Nm − 1. (2.22)

Examples of such an FFT implementation are presented below for sample signals both

in the temporal and spatial domains. Figure 2.3(a) shows a noisy signal that is known to be

the superposition of two sinusoidal waves, with one of them having twice the frequency and

twice the amplitude of the other one, as seen in Eq 2.23. Such frequency components which

becomes clear from analyzing the normalized FFT amplitudes and normalized dominant

frequencies observed in Fig. 2.3(b). Note that the random noise added to the signal did

not affect the FFT results. Figure 2.4(a), on the other hand, shows the spatial signal with

normalized wavelength equal to 1 presented in Eq. 2.24. This wavelength can be measured

directly as the distance between two peaks in the spatial domain and also observed from the

most dominant wavelength identified in Figure 2.4(b), which corresponds to a single peak

happening at λx/l0 = 1.

an,time =
a(t)

a0
= sin (2πf0t) + 2 sin (4πf0t) + random noise (2.23)

an,space =
a(x)

a0
= cos

(
2πx

l0

)
(2.24)
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(a) Temporal signal (b) Fast Fourier Transform

Figure 2.3: Analyzing a temporal signal in the frequency domain. Vertical axes normalized

with a0, while tn = tf0 and fn = f/f0, where a0 and f0 are the characteristic amplitude and

frequency of the signal in Eq. 2.23, respectively. Red and blue dashed lines correspond to

the frequencies f0 and 2f0, respectively.

(a) Spatial signal (b) Fast Fourier Transform

Figure 2.4: Analyzing a spatial signal in the wavelength domain. Vertical axes normalized

with a0, while xn = x/l0, where a0 and l0 are the characteristic amplitude and wavelength

of the signal in Eq. 2.24, respectively. λx denotes the wavelength along the x-direction. Red

dashed line corresponds to the characteristic wavelength l0.
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2.7 Reduced-Order Model Formulation

Reduced-order models (ROMs) are a powerful tool for exploiting the low dimensionality

of complex systems, reducing them into more tractable forms while still capturing most of

the relevant physics involved [43]. ROMs can be built based on either a set of governing

equations describing the dynamics of the system or measurements from the system alone,

which can come from experiments or computer simulations. These data-driven ROMs are

especially powerful for analyzing scenarios where the governing equations are beyond their

range of validity and even when such equations are unknown for a given system [43]. The

Dynamic Mode Decomposition (DMD) is one example of these equation-free techniques that

seeks to identify the spatio-temporal structures present in high-dimensional data captured

from a complex system [40] that carry most of the information contained in the data set. This

method was proposed by Schmid [44] as a tool for studying fluid flows, yet its applications

have extended to a wider spectrum of fields including, among others, biological systems,

video processing, and robotics [40, 45].

One of the main advantages of DMD is that, while no equations are needed, the method

provides a simple and efficient algorithm to decompose the collected snapshot from a given

system into a set of dynamic modes that evolve linearly in time with a given frequency and

growth or decay rate [40, 46, 47]. Hence, while DMD relies on a linear formulation, it is still

capable of representing nonlinear dynamical systems through an algorithm that identifies

the best-fit linear dynamical system that advances the system’s snapshots forward in time

[40]. Such a linear dynamical system is represented by the linear operator A that relates

two states of the system ~xk = ~x(tk) and ~xk+1 = ~x(tk+1) through:

~xk+1 = A~xk, (2.25)

where tk+1 = tk + ∆t, with ∆t being the temporal spacing between snapshots, and ~x being

a one-dimensional column vector containing all the information of the system for a given

snapshot in time with size N . Then, A is defined such that the error between the actual
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system state and the linear approximation is minimized for all collected snapshots M , as

seen in Eq. 2.26 [40].

A = argmin ‖~xk+1 −A~xk‖, k = 1, 2, . . . ,M − 1. (2.26)

Although an exact formulation of the optimization problem presented in Eq. 2.26 is available

in terms of the Moore–Penrose pseudoinverse [46], solving for A directly is not computation-

ally efficient since it has size N ×N and N >> M , such that the dimension of the system is

much larger than the number of snapshots collected. However, the DMD algorithm provides

an efficient approach to approximate the eigenvectors of A, known as DMD modes ~φ, and

their corresponding eigenvalues λ without computing the full matrix A. Such an approach is

based on computing a reduced matrix Ã that is based on the singular value decomposition

(SVD) of the collected snapshots from the system [40]. This reduced matrix is of size r× r,

where r < M corresponds to the reduction size and defines the number of DMD modes to

be constructed. Each DMD eigenvalue is defined as λ = a + ib, where a defines the growth

or decay rate of its corresponding DMD mode and b defines its frequency. Lastly, the time

evolution of system state based on the DMD modes is defined by [40, 46]:

~x(t) =
r∑
j=1

~φj exp (ωjt)bj, (2.27)

where ωj = log (λj)/∆t and bj corresponds to the coefficients for writing the system’s initial

condition as a linear combination of the DMD modes, such that ~x1 = Φ~b, with Φ being the

matrix formed by the DMD modes as columns. Note that Eq. 2.27 is, in theory, valid for any

time t, even if it is beyond the time period on which the snapshots were collected. Hence,

the DMD model in Eq. 2.27 can also be used to both interpolate the state of the system

between snapshots and to predict its future state. Yet, since a linear dynamical model is

being used to predict the evolution in time of a nonlinear dynamical system, the accuracy

of such a prediction is expected to decrease rapidly for future times.

The algorithm for implementing the DMD based on a given data set is introduced in

[40, 43, 46], and a custom implementation of it is presented in Appendix B. Some important

remarks about implementing DMD are outlined below:
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• The high-dimensional snapshots collected from the system, which in the current imple-

mentation correspond to two-dimensional flow fields, are reshaped into one-dimensional

vectors (~xk) and then stacked as columns in a matrix X. This way the rows of X contain

spatial measurements and its columns define separate time snapshots.

• X1 contains the time snapshots 1 ≤ k ≤ M − 1 and X2 contains the time snapshots

2 ≤ k ≤M . Therefore, each separate data set contains M − 1 snapshots.

• Identifying the appropriate reduction size is one of the most important steps of DMD, yet

it is highly subjective and there are not definite rules [40]. The implemented approach

is based on the concept of the energy contained in the SVD modes, which refers to the

amount of information that they carry about the data set. The energy of a SVD mode can

be measured through the square of its corresponding eigenvalue, and the total energy is

measured through the summation of the energy contributions across all eigenvalues [46].

Hence, for a given reduction size r, the amount of energy to be captured in percentage

points is:

e(r) =

∑r
i=1 σ

2
i∑M−1

i=1 σ2
i

× 100%, (2.28)

Therefore, the reduction size can be specified either with a target energy content in mind

or through the desired number of SVD modes. Note that the choice of r conditions the

results of the DMD since the beginning of the algorithms, since r corresponds to the

number of SVD modes to preserve from the decomposition of the data set X1, which

ultimately defines the number of DMD modes to construct.

• Once all DMD modes have been computed, their relevance in the model can be measured

through the real part of their eigenvalues. Then, the DMD modes can be sorted from

the most energetic to the least energetic one.

• All DMD eigenvalues need to be at the boundary or within the unit circle in the complex

plane, otherwise, the corresponding modes would be unstable and the dynamical system

in Eq. 2.27 will eventually blow up.
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3.0 Results

This chapter presents the simulation results, starting with a thorough presentation of the

instability modes and corresponding vorticity rolls before further exploring their oscillation

dynamics. Considerations about the way results are presented include the full simulation

domain being shown in all the figures and flow quantities being always normalized using

the appropriate scales presented in section 2.3. Unless specified, all results were extracted

at the location of the jet’s maximum velocity as predicted by Prandtl’s laminar solution

zn,jet = π
√

2/4. Averaging of the results was performed at later stages of the simulation

only.

3.1 Instability Modes

The first step into the analysis of the organized vortical structures observed in katabatic

slope flows is to present each one of them separately. Based on the computer simulations

carried out according to the parameters outlined in section 2.5 and using the instability map

presented in Fig. 2.2 as a guide to navigate the parameter space of katabatic flows, three

base cases were chosen to illustrate the presence of the instabilities and discuss their main

characteristics, namely a transverse-mode case defined by α = 20◦,Πs = 4, a longitudinal-

mode case defined by α = 80◦,Πs = 20, and a mixed-mode case defined by α = 60◦,Πs = 30.

The Prandtl number was set constant to Pr = 0.71 for all the simulations to be presented.

The first insight about the presence of these instabilities is observed through temporal

signals captured at any point in the domain for any of the flow fields. The chosen point P for

the current study corresponds to the center point of the domain slice parallel to the xy plane

such that P = (0.5Lx, 0.5Ly, zn,jet). The signals collected for the three analysis base cases

are presented in Figs. 3.1-3.3. The signals are presented in three different temporal windows,

where each window represents a different regime that are common for all the analyzed slope

flow scenarios.
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Firstly, with an starting flow field defined by Prandtl’s laminar solution everywhere,

the signals exhibit an initial oscillatory regime with constant frequency and damped ampli-

tude. Comparison of subfigure (a) in Figs. 3.1-3.3 reveal how the period of these oscillations

changes in the normalized time domain among the base cases with smaller changes in their

initial amplitude and mean value. The frequency of such oscillations matches the en masse

oscillations frequency presented in Eq. 2.16, and their dynamics are discussed in section 3.2.

Note that the flow remains stable during this regime despite the oscillations.

After sufficiently long simulated times, a transition regime toward instability happens

for each of the base cases. This regime precedes the emergence of well-defined instabilities

that are known to be different for each case as predicted by the instability map, and as such

each transition regime exhibits different characteristics, as observed from subfigure (b) in

Figs. 3.1-3.3. Although the transition happens at different times for each of the base cases,

this time doesn’t carry any physical significance, since it only represents the saturation point

triggering the instabilities, which happens as a consequence of the infinitesimal disturbances

present in the numerical solution, as discussed in section 2.5.

Lastly, the signals reach a quasi-stationary regime where the predicted instability modes

develop and persist in the flow. Fig. 3.1(c) reveals how the transverse mode case exhibits

irregular and intermittent fluctuations, which are in agreement with the intermittence phe-

nomenon in stratified atmospheric boundary layers described by Mahrt [20]. This signal

represents aperiodic motions that can not be characterized in the frequency domain, corre-

sponding to the slow dynamics that characterize the transverse mode of instability and that

might require longer simulated times. On the other hand, the longitudinal and mixed modes

cases shown in Figs. 3.2(c) and 3.3(c), respectively, exhibit a continuous oscillatory behavior

with well-defined frequency components and whose amplitude is not damped in time, thus

confirming the presence of the predicted traveling wave rolls.
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(a) Initial oscillatiory regime

(b) Transition regime

(c) Quasi-stationary regime

Figure 3.1: Temporal signal breakdown - Longitudinal instability rolls (α = 20◦,Πs = 4).

Red dashed line denotes the mean velocity in the quasi-stationary regime ūn = −0.444.

Horizontal axis normalized using the convective time scale shown in Eq. 2.15
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(a) Initial oscillatiory regime

(b) Transition regime

(c) Quasi-stationary regime

Figure 3.2: Temporal signal breakdown - Traveling wave instability rolls (α = 80◦,Πs = 20).

Red dashed line denotes the mean velocity in the quasi-stationary regime ūn = −0.421.

Horizontal axis normalized using the convective time scale shown in Eq. 2.15
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(a) Initial oscillatiory regime

(b) Transition regime

(c) Quasi-stationary regime

Figure 3.3: Temporal signal breakdown - Mixed instability rolls (α = 60◦,Πs = 30). Red

dashed line denotes the mean velocity in the quasi-stationary regime ūn = −0.423. Horizon-

tal axis normalized using the convective time scale shown in Eq. 2.15
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After confirming the existence of the instabilities in the flow from temporal signals, the

shape of the vortical rolls can be examined through detailed flow field visualizations enabled

by DNS. Such organized structures are presented in two different ways based on single snap-

shots of the flow field. Firstly, instantaneous visualizations of isosurfaces of the Q-criterion

at 4% of its maximum positive value, as proposed by Hunt et al. [48] for vortex identi-

fication, reveal the structure of the instability rolls in a three-dimensional representation.

These isosurfaces are colored using the w-velocity component and are shown in Figs. 3.4,

3.6, and 3.8. Secondly, direct visualizations of two-dimensional contour plots of the flow field

reveal how these instability rolls manifest differently for each flow field, as shown in Figs. 3.5,

3.7, and 3.9. The height at which the contour plots were plotted corresponded to the jet’s

height as predicted by Prandtl’s laminar solution, which was chosen as a reference location

for comparison among all analyzed cases. The observed fluctuations in the v-velocity com-

ponent were much smaller than for its u and w counterparts, and hence contour plots of the

cross-slope velocity component field are not shown.

Longitudinal rolls visualizations, corresponding to the transverse mode of instability,

reveal continuous and smooth vortical structures, with a clear separation among them both

in the two- and three-dimensional representations. Note that the distance between the

rolls and their width is consistent only between the u- and w-velocity component fields and

changes for the buoyancy and pressure scalar fields. Additionally, from the linear stability

analysis performed by Xiao and Senocak [33], these rolls are predicted to remain stationary,

however, in the general case analyzed through DNS, these modes slowly meander along the

cross-slope direction.

The traveling wave rolls, corresponding to the longitudinal mode of instability, exhibit a

constant separation between the rolls and differences in the phase of the wave-like vortical

structures observed among the flow fields. The rolls are completely parallel to the y direction

and are observed to move along the base flow direction x as time evolves. Note how the

w-velocity component had equal magnitude and opposed sign in the front and trailing edge

of three-dimensional vorticity rolls.

The mixed modes regime, characterized by intricate vortical structures from interwoven

longitudinal and traveling wave rolls, also exhibits a mostly constant separation among
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cross-slope rolls, while an inconsistent behavior is observed for the along-slope rolls, whose

presence is not equally strong in all flow fields. Note from Fig. 3.9 how the presense of

the longitudinal rolls is almost negligible, but they are significantly more stronger in the

u-velocity component field.

Figure 3.4: Longitudinal vorticity rolls (α = 20◦,Πs = 4)

33



(a) Along-slope velocity field (b) Slope-normal velocity field

(c) Buoyancy field (d) Pressure field

Figure 3.5: Longitudinal rolls in contour plots (α = 20◦,Πs = 4)
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Figure 3.6: Traveling wave vorticity rolls (α = 80◦,Πs = 20)

35



(a) Along-slope velocity field (b) Slope-normal velocity field

(c) Buoyancy field (d) Pressure field

Figure 3.7: Traveling wave rolls in contour plots (α = 80◦,Πs = 20)
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Figure 3.8: Mixed vorticity rolls (α = 60◦,Πs = 30)
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(a) Along-slope velocity field (b) Slope-normal velocity field

(c) Buoyancy field (d) Pressure field

Figure 3.9: Mixed instability rolls in contour plots (α = 60◦,Πs = 30)
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3.2 En Masse Oscillations’ Dynamics

The frequency component of the signals corresponding to the initial oscillatory adjust-

ment regime for all the three base cases shown in Figs. 3.1-3.3 reveals that the only dominant

frequency in each of those signals is equal to the en masse frequency presented in Eq. 2.16.

Figure 3.10(a), (b), and (c) show the normalized PSD computed from signals sampled in a

base temporal window featuring 10 complete periods of such oscillations starting at the nor-

malized time tstart/t0 = 0 for the three katabatic base cases presented in section 3.1. Those

results in the frequency domain highlight that both the normalized frequency and normalized

amplitude of these oscillations remains the same among different slope flow configurations

for the analyzed temporal window. However, the amplitude decay en masse oscillations

changes among the analyzed cases, as revealed by the amplitude decay analysis shown in

Fig. 3.10(d).

The amplitude decay was obtained following the STFT technique described in section

2.6, on which the starting time of the base temporal window described above was moved

forward with and offset of 1 unit of time while keeping the signal length constant, and then

the PSD was computed again for the signal sampled at this new window. The amplitude

obtained for the en masse frequency was recorded and plotted against the normalized starting

time of each window, revealing that for all cases, such oscillations are damped exponentially,

with faster amplitude decay observed for lower Πs values, which feature larger time scales

according to Eq. 2.15. Note that the corresponding instabilities were always triggered for

each one of the base cases regardless of the amplitude the en masse frequency exhibited at

the onset of the transition regime.

Such oscillations have also been observed for simulated katabatic flows in turbulent

regimes [3, 2], as well as in an idealized transient katabatic flow scenario for which an

analytical solution was found [31]. In these studies, however, these oscillations were re-

ported to persist indefinitely in the flow, contrary to the damping behavior that is observed

in Figs. 3.1-3.3 and which is confirmed by the analysis presented in Fig. 3.10(d). Note, how-

ever, that these analyses have been computed based on temporal signals extracted at the

jet’s height predicted by Prandtl’s laminar solution, and different behaviors have been ob-
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served at greater heights away from the surface, as reported in section 3.6, with the en masse

oscillations persisting at certain heights. Therefore, questions remain about whether these

oscillations represent an actual physical phenomenon. To partially address this question,

additional simulations were carried out modifying either of the two parameters governing

the en masse frequency as shown in Eq. 2.16 while keeping the other one constant. The

results of this analysis are presented in Fig. 3.11(a) for changing N and in Fig. 3.11(b) for

changing α. In all cases the obtained oscillation’s frequency coincided with the corresponding

en masse frequency.

Additionally, to verify whether or not these oscillations corresponded to a numerical

artifact, simulations were carried out changing relevant parameters, such as the flow initial

condition, the mesh resolution, and the domain size (Fig. 3.12). For all the assessed cases,

not only the obtained oscillation’s frequency remained constant and equal to the en masse

frequency, but also the amplitude decay remained unmodified.
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(a) α = 20◦,Πs = 4 (b) α = 60◦,Πs = 30

(c) α = 80◦,Πs = 20 (d) Amplitude decay

Figure 3.10: En masse oscillations dynamics for multiple slope flow parameters computed

from the temporal spectra of the u velocity component. Vertical red dashed line denotes the

en masse frequency in subfigures (a), (b), and (c). Horizontal temporal axis in subfigure (d)

normalized using the convective time scale shown in Eq. 2.15
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(a) α = 20◦,Πs = 4 (b) N = 1,Πs = 10

Figure 3.11: Most dominant frequency in the initial oscillatory regime for changing

Brunt–Väisälä frequency N and slope α

(a) Initial condition (b) Mesh resolution

(c) Domain size

Figure 3.12: Amplitude decay of en masse oscillations for multiple simulation parameters

(α = 20◦,Πs = 4). Horizontal temporal axis normalized using the convective time scale

shown in Eq. 2.15
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3.3 Instability of the Longitudinal Rolls

Longitudinal rolls, while being aligned with the along-slope direction, are not always

straight and parallel, as can be observed, for instance, from the slightly curved rolls presented

in Fig. 3.5. These disturbed rolls suggest that the instability being observed is also exhibiting

an unstable behavior.

Let’s consider a different base case defined by α = 50◦,Πs = 12, which corresponds to the

transverse mode regime. The contour plot from the normalized u-velocity component field

for this case is shown in Fig. 3.13(a), which exhibits continuous and straight longitudinal rolls

that are parallel to the along-slope direction. These smooth rolls, however, can be disturbed

with increasing Πs values and without the need of any external perturbation. With a slight

increase of the stratification perturbation parameter to Πs = 13, Fig. 3.13(b) shows how the

instability rolls, while remaining aligned with the along-slope direction, are now curved and

have branches, which happens as a result of the rolls colliding with themselves and triggering

additional nonlinearities in the flow. These instabilities have now become meandering rolls

that exhibit a snaking behavior but remain stationary. These additional dynamics in the

longitudinal rolls could be attributed to secondary vortex waves [49].

As Πs increases, the snaking and meandering dynamics are maintained in the longitudinal

rolls, as can be observed in Fig. 3.13(c) and (d) for two additional stratification perturbation

parameters. Note, however, that the effect of such nonlinearirites was not as drastically

intensified by the higher Πs values as it was when transitioning from the stable condition

in Fig. 3.13(a) to the unstable condition in Fig. 3.13(b), thus suggesting the presence of a

clear boundary between these two states. Simulations were carried out for multiple slopes

to assess the transition toward unstable longitudinal rolls and the results are summarized

as a complement to the instability boundaries proposed by Xiao and Senocak [33], and the

refined instability map is presented in Fig. 3.14.

For all the cases analyzed above, Lx = 200l0 was set constant, while modifying Ly as

needed to include several longitudinal rolls in each of the analyzed flow configurations. How-

ever, larger domain sizes along the x direction were also found to destabilize the longitudinal

rolls, thus triggering an instability of the primary mode, as seen in Fig. 3.15
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(a) Πs = 12 (b) Πs = 13

(c) Πs = 15 (d) Πs = 16

Figure 3.13: Longitudinal rolls disturbance with increasing ΠS for a fixed slope α = 50◦
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Figure 3.14: Refined instability map. Adapted from [33]. Simulation results are denoted

with markers, for which an exponential curve is fitted and shown with a dashed line.

Figure 3.15: Unstable longitudinal rolls for large domain sizes (α = 20◦,Πs = 4)
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3.4 Progression Toward Turbulence

All the katabatic flow scenarios presented until now fall within an intermediate regime

between fully laminar and turbulent conditions, which can be further defined as the un-

stable laminar regime given the presence of the instability rolls as has been demonstrated.

Let’s now consider katabatic flow scenarios with increased values of the stratification per-

turbation parameter that, as predicted by the formulation of such a parameter, become

more dynamically unstable and break into turbulence. The base case for this analysis cor-

responds to α = 30◦,Πs = 10,Re = 2.8 × 101, which falls within the transverse mode

regime. Keeping the slope constant, Πs is then increased to consider two additional scenar-

ios: Πs = 100,Re = 2.8 × 102 and Πs = 1000,Re = 2.8 × 103. The Reynolds number (Re)

was computed using the length and velocity scales in Eqs. 2.12 and 2.13, respectively.

Regarding the simulation parameters corresponding to these three cases, the spatial mesh

resolution was kept constant and the temporal discretization was adjusted, maintaining a

stability criterion of CFL ≤ 0.4. The Πs = 10 and 100 cases used a based domain of size

200l0× 200l0× 50l0, which was made larger for the highest Πs = 1000 case only, which used

a domain size of size 800l0 × 800l0 × 50l0. This choice of domain size and mesh resolution

relationship intended to analyze the presence of large-scale energy-containing motions in the

flow, but does not perform well to resolve the dissipative scales. Based on the resolvability

condition for DNS [50], the grid spacing ∆xi for any direction i = 1, 2, 3 should satisfy

∆xi ≤ 2Lm, where Lm corresponds to the Kolmogorov scale. This scale is defined in terms

of the kinematic viscosity ν and the rate of dissipation of turbulent kinetic energy ε through

Lm = (ν3/ε)1/4, as proposed by Pope [50]. For katabatic flow scenarios, the surface buoyancy

flux Bs and ε are dimensionally equivalent, and the Kolmogorov scale for these kinds of

flows is defined by Umphrey et al. as Lm = (ν3/|Bs|)1/4, whose turbulent katabatic flow

simulations satisfied ∆ ≤ 2(ν3/|Bs|)1/4, with ∆ being the uniform grid spacing along all

directions, and their choice of domain size along both the x and y directions was 60l0. In

the simulations presented in this thesis, however, the grid spacing is uniform along the x

and y directions only (∆x = ∆y), and is twice as fine along the z direction (∆z = 0.5∆x).

For the most dynamically unstable analyzed case of Πs = 1000, the largest grid spacing
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satisfies ∆x < 4(ν3/|Bs|)1/4 and the domain size along that same direction is Lx = 800l0.

Such large domain size for turbulent scenarios constitute the main difference with respect to

previously reported turbulent katabatic flow simulations. However, the combined effect of

fine grid spacing and large domain sizes remains to be assessed.

The first structural difference among these increasingly unstable flow scenarios comes

from the absence of the organized vortical structures initially observed in the unstable lam-

inar regime. Figure 3.16 reveals the presence of the longitudinal rolls through vorticity

isosurfaces for the base case in the transverse mode regime. These unstable rolls are also

present in the contour plots of the multiple flow fields presented in Fig. 3.17 and exhibit

snaking and meandering behaviors. As Πs increases, these vortical structures become less

organized and the isosurfaces become smaller, thus revealing that finer vortex scales corre-

sponding to smaller eddies emerge as the flow breaks into turbulence. Such smaller scales are

observed in Fig. 3.18 and Fig. 3.20 for the Π = 100 and Πs = 1000 cases, respectively. When

analyzing the flow field contour plots for each of these highly dynamically unstable cases, the

w-velocity component is the most susceptible for the organized vortical structures to disap-

pear. Figure 3.19(b) reveals that, for Πs = 100, the high and low magnitude regions are much

smaller in this one than in the rest of the fields. Such a difference among the fields intensifies

for Π = 1000, for which the w-velocity component field reached a mean and constant value

close to zero, as shown in Fig. 3.21(b). Additionally, the u-velocity component contour for

the turbulent case at Πs = 1000 exhibits a stripe-like structure, as seen in Fig. 3.21(a), that

is not observed for the rest of the fields. This structure was also present when this same case

was simulated in smaller domain, and remained in the flow even after making the domain 4

times larger in both x and y directions One possible explanation for such a behavior could

be that it corresponds to the signature of the longitudinal rolls. However, Flores and Riley

[51] attributed the presence of these kinds of structures in simulated turbulent flows through

DNS to constraints coming from the choice of domain size. Therefore, the nature of this

structure in the turbulent katabatic flow simulations remains an open question and should

be investigated further.

The second major difference among the analyzed cases corresponds to the frequency

component of their temporal signals sampled in the quasi-stationary regime. Figure 3.22
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shows the PSD computed from temporal signals of pressure with a length corresponding to

10 complete periods of the en masse frequency, which is constant for all three dynamically

unstable cases. Zooming into the first two normalized frequencies reveals how the en masse

oscillations become more relevant as Πs increases. When comparing the amplitude attained

by frequencies in proximity to fn = 1 against the amplitude of other identified dominant

frequencies in the same flow configuration, Fig. 3.22(a) reveals that these oscillations are

insignificant in the unstable laminar regime, but are of comparable, and even higher, ampli-

tude for higher Πs values, as shown in Figure 3.22(b) and (c) for Πs = 100 and Πs = 1000,

respectively. Figure 3.23, on the other hand, shows the complete PSD spectra in logarithmic

scale computed from buoyancy signals, confirming that, as the flows breaks into turbulence,

the signals exhibit higher frequency components with increasing Πs values, and with cor-

responding amplitudes that are multiple orders of magnitude larger than in the unstable

laminar regime, therefore, higher Πs values reveal higher energy PSD spectra.
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Figure 3.16: Vorticity structures at low Πs numbers (α = 30◦,Πs = 10) computed from

Q-criterion at 4% of its maximum positive value. The emerging structures correspond to

the longitudinal instability rolls.
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(a) Along-slope velocity field (b) Slope-normal velocity field

(c) Buoyancy field (d) Pressure field

Figure 3.17: Contour plot visualizations at low Πs numbers (α = 30◦,Πs = 10). The

emerging structures correspond to the longitudinal instability rolls.
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Figure 3.18: Vorticity structures at moderate Πs numbers (α = 30◦,Πs = 100) computed

from Q-criterion at 4% of its maximum positive value.
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(a) Along-slope velocity field (b) Slope-normal velocity field

(c) Buoyancy field (d) Pressure field

Figure 3.19: Contour plot visualizations at moderate Πs numbers (α = 30◦,Πs = 100)
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Figure 3.20: Vorticity structures at high Πs numbers (α = 30◦,Πs = 1000) computed from

Q-criterion at 4% of its maximum positive value.

53



(a) Along-slope velocity field (b) Slope-normal velocity field

(c) Buoyancy field (d) Pressure field

Figure 3.21: Contour plot visualizations at high Πs numbers (α = 30◦,Πs = 1000)
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(a) (α = 30◦,Πs = 10)

(b) (α = 30◦,Πs = 100)

(a) (α = 30◦,Πs = 1000)

Figure 3.22: Zoomed frequency spectra for low, moderate, and high Πs values computed

from temporal pressure signals. Vertical red dashed line denotes the en masse frequency

55



(a) α = 30◦,Πs = 10

(b) α = 30◦,Πs = 100

(c) α = 30◦,Πs = 1000

Figure 3.23: Complete frequency spectra for low, moderate, and high Πs values computed

from temporal buoyancy signals. Red dashed lines represent the cutoff frequency Fs = 1/∆t,

with ∆t = 1× 10−2 s, 1× 10−3 s, 1× 10−4 s for subfigures (a), (b), and (c) respectively. The

cutoff frequency is normalized with f0 and divided by 2 to account for the symmetry of the

PSD spectra around the folding frequency.
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3.5 Longitudinal Rolls Dynamics

Based on the flow field visualizations presented for the longitudinal rolls shown in Figs. 3.5,

3.13, and 3.17, potential patterns in the separation between the rolls could be observed. This

section, as a complement to the instability dynamics of the longitudinal rolls discussed in sec-

tion 3.3, explores the spatial wavelength characteristics of these instability rolls and presents

predictive relationships based on simulation results.

Consider the discrete signals in the spatial domain obtained from sampling the u-velocity

component at each one of the mesh points along the y direction. For a given domain slice,

there will be as many of these signals as points in the x direction, and each of the signals

is also a function of time. When those signals are translated into the wavelength domain,

as presented in Fig. 2.4, the largest amplitude wavelengths reveal the most dominant wave-

lengths present in the signals and provide a systematic approach to assessing the separation

between the longitudinal rolls. Yet, given the meandering and snaking dynamics of the longi-

tudinal rolls, multiple competing wavelengths with about the same amplitude are identified

depending on the chosen location and time snapshot. However, if the results of these analy-

ses in the wavelength domain are averaged among all the signals collected for each location

along the x direction and multiple snapshots in time, then the average wavelength is ob-

tained. Results of this analysis implemented for multiple katabatic slope flow configurations

are presented in Fig. 3.24, where λy/l0 corresponds to the normalized wavelength along the

y directions.

Given the differences in the dynamics of each slope flow configuration, the amplitudes of

the wavelengths identified don’t exhibit a constant value among the analyzed cases, although

the presence of a single most dominant wavelength is clear in each case. These peaks in the

wavelength domain show that the average transverse wavelength of longitudinal rolls is indeed

a function both of α and Πs. Extending the analysis to more katabatic flow configurations

reveals the underlying relationships between the slope flow parameters and the separation

between the longitudinal rolls, which are shown in Fig. 3.25. Note how shallow slopes feature

large wavelengths that increase drastically with Πs, while approaching a constant value of

λy/l0 ≈ 20 for steeper slopes such that α > 30◦, for which the dependence on Πs is weaker.
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(a) α = 20◦,Πs = 4 (b) α = 20◦,Πs = 14

(c) α = 30◦,Πs = 10 (a) α = 50◦,Πs = 16

Figure 3.24: Longitudinal rolls wavelength along the cross-slope direction

Figure 3.25: Longitudinal rolls wavelength along the cross-slope direction as a function of α

and Πs
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3.6 Traveling Wave Rolls

The traveling wave dynamics shown in prior sections have revealed that this type of

instability exhibits dominant characteristics both in the temporal and spatial domain, as

seen, for instance, in Figs. 3.2(c) and 3.7(a), respectively, for the u-velocity field from the

α = 80◦,Πs = 20 case. This section explores the relationship between the wave speed of

these rolls and the slope flow parameters.

The dimensional wave speed, also known a phase velocity, of the traveling wave rolls (vp)

is defined by:

vp = fλx, (3.1)

where f corresponds to the dimensional frequency observed in the time domain and λx

corresponds to the wavelength along the direction through which the wave propagates, which

is the along-slope direction for these type of rolls. The traveling wave dynamics were observed

to be stronger in the buoyancy field, therefore, the results to be presented are based on this

field. The most dominant wavelength characterizing the separation between the rolls along

the x direction was computed using the approach detailed in section 3.5, while the temporal

frequency was identified using the PSD estimate outlined in section 2.6. An appropriate

scale to normalize the wave speed computations was found to be the average jet velocity Ūjet

obtained from the simulations. Such a velocity scale was computed averaging the u-velocity

field over time at a slice parallel to the xy plane extracted at the jet’s height predicted by

Prandtl’s laminar solution zn,jet.

Consider the temporal and spatial PSD shown in Figs. 3.26 and 3.27 for two different

slope flows scenarios with a fixed slope of α = 80◦ and Πs = 20, 40. These cases correspond

to the longitudinal mode of instability and exhibit the traveling wave rolls with different

normalized traveling wave frequency and normalized wavelength. Note, however, that these

two cases have the same length and frequency scales as defined by Eqs. 2.12 and 2.16,

respectively, since only the surface buoyancy flux is modified between them. Consequently,

the dimensional values of f and λx are different for these two cases and increase with Πs,

which results in a different dimensional wave speed as described by Eq. 3.1. The dependence
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of the wavelength and frequency of the traveling wave rolls on the slope angle, on the other

hand, has been observed to be weak for the narrow range of slopes where the traveling wave

rolls are observed as a single mode and hence it’s not addressed here.

(a) Temporal PSD (b) Spatial PSD

Figure 3.26: Temporal and spatial PSD for α = 80◦,Πs = 20. Data sampled at height

z = zn,jet = 0.022Lz. Domain size with dimensions Lx = 1000l0, Ly = Lz = 50l0

(a) Temporal PSD (b) Spatial PSD

Figure 3.27: Temporal and spatial PSD for α = 80◦,Πs = 40. Data sampled at height

z = zn,jet = 0.022Lz. Domain size with dimensions Lx = 1000l0, Ly = Lz = 50l0

Analyzing the presence of the traveling wave at multiple heights above the surface, high-

lights that different temporal frequencies are found for some locations in the flow field.

Figures 3.28(a) and (b) shows two particular locations at greater heights that exhibit the

same temporal frequency observed at the jet’s height zn,jet. However, this behavior doesn’t
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hold true at the locations shown in Figs. 3.28(c) and (d), for which much smaller amplitude

oscillations are observed for distinct frequencies. At the height z = 0.5Lz, both the traveling

wave frequency and the en masse oscillations frequency are dominant, while at z = 0.7Lz,

only the en masse oscillations frequency is dominant but with a smaller amplitude in this

case. Therefore, simulation results in the unstable laminar regime, have revealed that the

strength of the emerging traveling wave rolls is not constant throughout the domain, as

seen in Fig. 3.28, which is a behavior that requires further investigation. However, for the

purpose of the current analysis, only the results extracted at jet’s height will be considered.

Additionally, for temporal signals extracted at several heights for a case exhibiting the longi-

tudinal rolls, Fig. 3.29 shows how the frequency components remain constant while changes

only happen in the amplitude of these most dominant frequencies, still the amplitudes re-

main in the same order of magnitude. Note that for all the heights away from the surface

presented in Figs. 3.28 and 3.29, Prandtl’s laminar solution predicts buoyancy values that

have technically converged to zero, yet it is important to note that the nature of that lami-

nar solution corresponds to exponentially damped sine waves that exhibit infinite inflection

points. These inflection points could also be also present in the unstable laminar regime

and exhibit different dynamics related to the emergence of the instability rolls, which is a

possible explanation for the observed behavior.
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(a) z = 0.4Lz (b) z = 0.8Lz

(c) z = 0.5Lz (d) z = 0.7Lz

Figure 3.28: Most dominant frequencies at multiple heights above the surface for α =

80◦,Πs = 20. Domain size with dimensions Lx = 1000l0, Ly = Lz = 50l0
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(a) z = 0.4Lz (b) z = 0.8Lz

(c) z = 0.5Lz (d) z = 0.7Lz

Figure 3.29: Most dominant frequencies at multiple heights above the surface for α =

20◦,Πs = 4. Domain size with dimensions Lx = Ly = 200l0, Lz = 50l0
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Computing the wave speed of the longitudinal mode rolls for multiple katabatic flow

scenarios reveals that the traveling wave is advected by the mean jet’s velocity Ūjet at the

height z = zn,jet, as shown in Fig. 3.30. Yet, data collected at other heights away from the

surface needs to be evaluated as well to assess if the traveling wave is transported by the

mean jet velocity at all locations. Such a wave speed is observed with improved agreement

for Πs < 38, after which the traveling wave rolls seem to start moving with a slightly faster

speed than Ūjet, hence suggesting a regime change. Additionally, the track of the traveling

wave was lost for Πs > 50. Such a relationship between the traveling wave speed and the

mean jet velocity of the flow reveals that predicting Ūjet would be enough to estimate the

longitudinal modes wave speed. The normalized mean jet velocity as a function of Πs for

α = 80◦ is presented in Fig. 3.31 and compared with the jet velocity predicted by Prandtl’s

laminar solution. Note how the normalized jet velocity from the simulation results decreases

as Πs increases, contrary the velocity scale u0, which is an increasing function of Πs when

the remaining variables are kept constant in Eq. 2.13. Therefore, the dimensional mean jet

velocity is also an increasing function of Πs.

Approximate values of the expected wave speed are especially relevant for anticipating

the wavelength of the traveling wave rolls, which would help defining the required along-

slope domain length accordingly such that several rolls are captured. Figure 3.32 presents

the evolution of the traveling wave frequency with Πs, which has an increasing behavior for

Πs < 38 and then starts decreasing. Note, however, that the wave speed is a continuously

increasing function of Πs, which means that, once the frequency starts decreasing, the wave-

length would need to increase abruptly to match the wave speed. Such a drastic change in

the wavelength is observed in Fig. 3.33, where an slightly increasing trend is observed for

Πs = 50, and then the wavelength is more than doubled for Πs = 50.
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Figure 3.30: Normalized traveling wave speed as a function of Πs for α = 80◦

Figure 3.31: Normalized mean jet velocity as a function of Πs for α = 80◦. un,jet = e−pi/4 is

the normalized jet velocity predicted by Prandtl’s laminar solution, as presented in section

2.2.
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Figure 3.32: Normalized traveling wave frequency as a function of Πs for α = 80◦

Figure 3.33: Normalized traveling wave wavelength as a function of Πs for α = 80◦
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Although the presented visualizations of the traveling wave rolls show them as continuous

and straight rolls aligned with the cross-slope direction, this is not the case as larger domain

sizes along y are analyzed. Figures 3.34 shows how the rolls start curving when the increasing

the cross-slope domain size to Ly = 800l0, which could be the result of a secondary instability

emerging in the flow. Note that despite being curved, these rolls are not colliding with

themselves and continue to be transported by the mean jet velocity of the flow, exhibiting an

uniform separation and fixed temporal frequency. Additionally, no a clear trend is identified

in the shape of the such a curvature with increasing cross-slope domain sizes, as shown

in Figs. 3.35(a) and 3.35(b) for Ly = 2400l0 with two different along-slope domain sizes,

corresponding to Lx = 100l0 and Lx = 200l0, respectively. These results show how the

domain size along both directions is conditioning the emergence of additional motions that

correspond to the instability of the primary traveling wave rolls.

Figure 3.34: Curved traveling wave rolls for large domain sizes - Ly = 800l0 (α = 80◦,Πs =

20)
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(a) Lx = 100l0

(c) Lx = 200l0

Figure 3.35: Curved traveling wave rolls for large domain sizes - Ly = 2400l0 (α = 80◦,Πs = 20)



3.7 Reduced-Order Representation of Instabilities

ROMs of the dynamical systems governing the evolution of the instability rolls in unsta-

ble laminar katabatic flows were built through DMD. Such a technique, presented in detail

in section 2.7, was applied to the three katabatic slope flow scenarios introduced in sec-

tion 3.1, which feature the three types of instability rolls predicted by the instability map

(Fig. 2.2) proposed by Xiao and Senocak [33], namely longitudinal rolls, traveling wave rolls,

and mixed/higher-order rolls. Each DMD model is presented separately for each type of in-

stability, discussing the minimum number of DMD modes required to capture the dynamics

of the instabilities and the accuracy of the flow field reconstructions based on the reduced

DMD model.

All DMD models were built using a total of 300 snapshots of the flow field, which were

sampled in the quasi-stationary regime with a fixed spacing of 100∆t between two con-

secutive snapshots, with ∆t being constant for each katabatic flow case. These snapshots

correspond to two-dimensional contour plots of the u-velocity component extracted at the

jet’s height predicted by Prandtl’s laminar solution zn,jet. The snapshots were reshaped into

one-dimensional column vectors and arranged in the data set matrix discussed in section 2.7.

The choice of the reduction size was based on the energy content of each SVD mode, and

the overarching goal was to choose as few modes as possible such that most of the dynamics

were accurately represented. Note that, while DMD modes φ have both real and imaginary

parts, only the real part is presented, which is normalized using the velocity scale presented

in Eq. 2.13 such that φn = φ/u0.

Overall, it was observed that a single DMD mode is capable of representing the dynamics

of the longitudinal rolls, and two additional modes, which happen to be complex conjugate,

are required to represent the traveling wave dynamics. DMD was also found to be a powerful

tool for decomposing the mixed/higher-order rolls into their longitudinal and traveling wave

components, and, while some information from the data set is lost in the dimensionality

reduction, the reconstructed flow fields from the obtained DMD models feature the same

temporal and spatial overall characteristics observed in the simulation results. An important

result is that the single mode representing the longitudinal rolls dynamics does not exhibit
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an imaginary component in its corresponding eigenvalue λ and the mode remains stationary,

hence subtracting the meandering dynamics of the rolls in the DMD model. As discussed

in section 2.7, the imaginary component of λ corresponds to the oscillatory frequency of the

DMD mode, which is observed in the DMD modes that represent the traveling wave only.

Yet, this oscillation frequency in the DMD eigenvalue doesn’t match directly the temporal

oscillation frequency of the flow field observed in the simulation results for the quasi-steady

regime, as seen in Fig. 3.26(a), for example. However, extracting the temporal signal from

the DMD reconstructed model and computing its frequency component reveals the same

oscillation frequency observed in the simulation results. Additionally, the wavelength in the

traveling wave rolls from the in the DMD modes also match the simulation results, thus

revealing that an accurate representation of the traveling wave dynamics both in space and

time is achieved.

Longitudinal Rolls

Figure 3.36(a) presents the magnitude of the SVD eigenvalues of the data set corre-

sponding to the longitudinal rolls snapshots. These eigenvalues experience a sharp change

in magnitude from the first to the second mode, thus revealing that the first mode cap-

tures most of the information from the data set. This is confirmed by the energy content

(Eq. 2.28) for each reduction size r shown in Fig. 3.36(b). If only the first SVD mode is used,

corresponding to a reduction size of r = 1, then more than 99% of the information would

be captured, with small changes for increasing r and ultimately reaching a convergence to

100% for a sufficiently large r. This analysis highlights that r = 1 is the optimal reduction

size for the longitudinal rolls dynamics, which would result in a single DMD mode, whose

real part is shown in Fig. 3.37(a), with corresponding eigenvalue shown in Fig. 3.37(b). Note

that this eigenvalue is approximately equal to 1 and only exhibits a real component.

Once the flow field is reconstructed for any time using Eq. 2.27, only the amplitude of the

mode changes, but the longitudinal rolls observed in Fig. 3.37(a) remain still, thus defining

the corresponding DMD mode as stationary. Such a behavior is observed in Fig. 3.38(b),

which corresponds to the flow field reconstructed for the last sampled snapshot. Comparing

the DMD reconstruction against the simulation data in Fig. 3.37(a) reveals that the location
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of the rolls does not match exactly, and that the DMD reconstructed rolls are not as curved

as the ones obtained from the simulations, hence confirming that the DMD mode filtered

the meandering behavior from the longitudinal rolls. Additionally, Fig. 3.39 reveals the most

dominant wavelength in the cross-slope direction computed directly from the DMD mode

shown in Fig. 3.37, which is about 5l0 larger than the to the most dominant wavelength

identified in the simulation data for this same case, as shown in Fig. 3.24(a).

(a) SVD eigenvalues magnitude (b) Energy content

Figure 3.36: SVD eigenvalues for α = 20◦,Πs = 4
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(a) DMD Mode 1 (b) DMD eigenvalues

Figure 3.37: DMD modes and eigenvalues for α = 20◦,Πs = 4

(a) Simulation data (b) DMD reconstruction

Figure 3.38: DMD reconstruction for α = 20◦,Πs = 4. Contour plot plotted at final snapshot

of training data set
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Figure 3.39: Spatial PSD of most dominant DMD mode for α = 20◦,Πs = 4. The wavelength

along the cross-slope direction is shown.

Traveling Wave Rolls

The change in the magnitude of the SVD eigenvalues for the data set containing the

traveling wave rolls (Fig. 3.40(a)) is not as drastic as the reduction observed for the longitu-

dinal rolls (Fig. 3.36(a)). Additionally, Fig. 3.40(b) reveals how only the first three modes

can capture about 100% of the data set information, thus highlighting r = 3 as the optimal

reduction size for the traveling wave dynamics. Choosing r = 1 resulted in a stationary DMD

mode, while r = 2 resulted in a moving DMD mode that did not represent the traveling wave

dynamics correctly. The real part of the three DMD modes obtained with r = 3 are shown

in Fig. 3.41(a)-(c), and their corresponding eigenvalues are shown in Fig. 3.41(d). The first

DMD mode is a stationary mode with eigenvalue λ1 ≈ 1. The other two modes are complex

conjugate, and their corresponding eigenvalues feature both real and imaginary components,

thus defining them as traveling modes. Additionally, note that the real part of the DMD

mode 1 is almost constant, while modes 2 and 3 exhibit larger changes within the domain.

This combination of modes captures the traveling wave dynamics pretty well both in

space and time. Firstly, Fig. 3.42(a) show how much the DMD reconstruction resembles the

simulation data for the last snapshot in the data set, shown in Fig. 3.42(b). Additionally,

the most dominant wavelength in the second and third DMD modes, presented in Fig. 3.43

matches exactly the most dominant wavelength along the x-direction obtained from simu-

73



lation data, which is shown in Fig. 3.26(b). Secondly, analyzing the temporal component

of the traveling wave oscillations in the DMD model reveals that the exact traveling wave

frequency is captured. Note that while the snapshots for the training data set were collected

every 100∆t, once the DMD model is built, the solution can be interpolated for any time.

Hence, a series of snapshots with spacing 1∆t can be obtained from the DMD model, from

which a temporal signal sampled every time step can be extracted. Analyzing such a signal

in the frequency domain reveals the most dominant temporal frequency shown in Fig. 3.44,

which matches exactly the most dominant temporal frequency obtained from simulation

data that is shown in Fig. 3.26(a). Normalizing the imaginary part of the corresponding

eigenvalue λ2 with the en masse frequency (Eq. 2.16) results in fn,λ2 = 3.4, but the actual

normalized traveling wave frequency is fn,tw = 2.61. Hence, while the eigenvalue of the DMD

mode alone does not reveal the traveling wave frequency directly, the temporal dynamics

defined by the DMD model (Eq. 2.27) capture such a frequency correctly from the linear

combination of the DMD modes.

(a) SVD eigenvalues magnitude (b) Energy content

Figure 3.40: SVD eigenvalues for α = 80◦,Πs = 20
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(a) DMD Mode 1 (b) DMD Mode 2

(c) DMD Mode 3 (d) DMD eigenvalues

Figure 3.41: DMD modes and eigenvalues for α = 80◦,Πs = 20
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(a) Simulation data (b) DMD reconstruction

Figure 3.42: DMD reconstruction for α = 80◦,Πs = 20. Contour plot plotted at final

snapshot of training data set

Figure 3.43: Spatial PSD of the second most dominant DMD mode for α = 80◦,Πs = 20.

The wavelength in the along-slope direction is shown.
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Figure 3.44: Temporal PSD from the DMD reconstruction for α = 80◦,Πs = 20

Mixed/Higher-Order Rolls

Extending the DMD analysis to the mixed modes regime reveals that the reduced model

filters the contributions from the longitudinal and traveling wave rolls, and that the char-

acteristics of the DMD models observed for the solitary instability rolls also apply when

analyzed in such a filtered approach. Firstly, note how the magnitude of the eigenvalue

drops after the first three SVD modes (Fig. 3.45(a)), which combined capture about 97.7%

of the information contained in the data set (Fig. 3.45(b)). In this scenario, capturing at

least 99% of the data set information would require more than 20 SVD modes, as opposed

to the solitary modes cases, where at most 3 SVD modes were required to capture such a

percentage. Note, however, that in the mixed modes regime, there is not much increase for

3 < r < 20, hence r = 3 is chosen as the optimal reduction size. The obtained DMD modes

for such a reduction size are shown in Fig. 3.46(a)-(c), and their corresponding eigenvalues

are shown in Fig. 3.46(d). Note that the first DMD mode carries most of the information

about the longitudinal rolls, while the other two modes carry the information about the

traveling wave mostly. The eigenvalue of the first mode is λ1 ≈ 1, confirming that the first

mode is stationary as observed for the solitary longitudinal rolls. The remaining modes,

featuring complex eigenvalues, are traveling modes in the same way that was observed in

the DMD model for the solitary traveling wave rolls.
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Although in this case more information from the original data set is lost after the initial

dimensionality reduction through SVD, the obtained DMD model still captures the major

characteristics of the interwoven instability rolls, as seen in Fig. 3.47(b) in comparison with

the simulation results shown in Fig. 3.47(a). Note that both instability types are present in

the DMD reconstruction since Eq. 2.27 defines the linear combination of the DMD modes

presented in Fig. 3.46(a)-(c). However, the DMD model underestimates the magnitude of

the u-velocity field. Also, in the DMD reconstructed field, the traveling wave contributions

are much stronger than the longitudinal rolls contributions, thus revealing that most of the

discarded data set information corresponded to the longitudinal rolls, including their mean-

dering and snaking dynamics. Figures. 3.48(a) and (b) show the most dominant wavelengths

in the DMD modes 1 and 2, respectively, revealing that there are competing wavelengths

for the longitudinal rolls component and a well-defined most dominant wavelength for the

traveling wave component. Additionally, Fig. 3.49 presents the temporal frequency compo-

nent which, as in the DMD model built for the solitary traveling wave rolls, also matches

the exact frequency governing the oscillations observed in the simulation data (Fig. 3.3).

(a) SVD eigenvalues magnitude (b) Energy content

Figure 3.45: SVD eigenvalues for α = 60◦,Πs = 30
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(a) DMD Mode 1 (b) DMD Mode 2

(c) DMD Mode 3 (d) DMD eigenvalues

Figure 3.46: DMD modes and eigenvalues for α = 60◦,Πs = 30
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(a) Simulation data (b) DMD reconstruction

Figure 3.47: DMD reconstruction for α = 60◦,Πs = 30. Contour plot plotted at final

snapshot of training data set

(a) PSD along y-direction from DMD mode 1 (b) PSD along x-direction from DMD mode 2

Figure 3.48: Spatial PSD of most dominant DMD modes for α = 60◦,Πs = 30
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Figure 3.49: Temporal PSD from the DMD reconstruction for α = 60◦,Πs = 30
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4.0 Summary

This chapter presents a summary of the main findings obtained from computer simu-

lations carried out of idealized katabatic flows under multiple dynamically unstable con-

figurations. Firstly, the overall characteristics observed across all the types of instability

are presented, including the presence of the en masse oscillations and the observed vortical

structures. Descriptions of the specific characteristics concerning the longitudinal and trav-

eling wave rolls are then presented separately. Finally, recommendations for future works

are outlined.

4.1 Overall Dynamics of Instabilities

Three distinct regimes were observed in the temporal signals for any of the flow fields.

The flow experiences an initial oscillatory regime governed by the en masse oscillations,

whose amplitude gets damped exponentially with a rate that is a function of the slope flow

parameters. At later simulated times, a transition regime takes place once nonlinear infinites-

imal disturbances in the flow have reached a saturation point, which triggers the emergence

of the three types of instabilities predicted by instability maps reported in the literature.

These instability modes, characterized by distinct types of organized vortical structures that

have been visualized both through vorticity isosurfaces and flow field contour plots, persist

in the flow field and define a quasi-stationary regime. In such a regime, the longitudinal

rolls, corresponding to the transverse mode of instability, and the traveling wave rolls, corre-

sponding to the longitudinal mode of instability, are large-scale structures that dominate the

dynamics of the flow. For certain slope flow parameters, both types of instabilities coexist

defining weakly-mixed and well-mixed regimes characterized by intricately interwoven insta-

bility rolls. At more dynamically unstable scenarios, the presence of these organized vortical

structures weakens, and finer vortex scales were observed that correspond to the smaller

eddies emerging as the flow breaks into turbulence. For temporal signals from the pressure
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field, the amplitude of the en masse oscillations was observed to be in the same order of

magnitude as the amplitude of the oscillatory dynamics of the flow in the turbulent regime,

contrary to observations in the unstable laminar regime. Additionally, reduced-order models

based in the dynamic mode decomposition were shown to capture well the dynamics of all

observed instability types based on a limited number of low-dimensional structures. These

reduced structures exhibit the most dominant characteristics of the solitary modes both in

space an time and the reduced models provide a framework to filter the instability types in

the mixed mode regime.

4.2 Longitudinal Rolls Dynamics

Longitudinal rolls, which appear at shallow slopes, are rolls observed to be aligned with

the along-slope direction for all analyzed cases, although featuring curved and branched

shapes for some slope flow conditions. These rolls exhibit either stable or unstable dynamics

governed by the stratification perturbation parameter for a given slope angle and domain

size. The rolls experience a sharp transition between these two states, being smooth and

straight in the stable conditions and then exhibiting snaking and meandering behaviors in

the unstable conditions. The longitudinal rolls, which remain stationary for all conditions,

are destabilized when they start colliding with themselves without requiring any external

perturbation. The average separation between these rolls was observed to be a strong func-

tion of the slope angle, with shallow slopes featuring large separations that decrease at

steeper slopes, for which a weaker dependence on the stratification perturbation parameter

is observed. The temporal dynamics of these rolls in the unstable laminar regime exhibit

irregular and intermittent fluctuations which are not characterized by well-defined frequency

components when analyzed through the frequency domain.
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4.3 Traveling Wave Dynamics

The traveling wave rolls, which appear at steep slopes, correspond to vortical structures

aligned with the cross-slope direction that have been observed to be transported by the

mean katabatic flow jet velocity in the along-slope direction. The separation between the

rolls is constant and they exhibit a well-defined frequency in the flow field signals collected

in time. For a fixed slope of 80◦, an apparent regime transition is observed for stratification

perturbation parameter values higher than 38, for which the obtained wave speed is slightly

higher than the mean jet velocity, and when this same parameter is greater than 50, then

the track of the traveling wave is lost. For all flow conditions before such a regime transition,

the wave speed, frequency, and separation between the rolls are all increasing functions of

the stratification perturbation parameter values, with a weaker dependence on the slope

angle. The traveling wave rolls were observed to be equally as strong for all flow fields and

can dominate over the longitudinal rolls for some fields in the mixed modes regime. All

presented results are valid at the jet’s height predicted by Prandtl’s laminar solution, and

data collected at different heights away from the surface needs to be analyzed to assess if

the observed characteristics of the traveling wave rolls can be generalized for all locations in

the flow field.

4.4 Future Work

The ultimate goal of the presented numerical investigations of idealized katabatic flows

is to enable the simulation of turbulent winds over complex terrains under stably stratified

atmospheric conditions. To advance the field in this direction, some of the challenges that

remain to be addressed are outlined below.

• The destabilizing effect that the along-slope domain size has over the emerging longitudi-

nal rolls, with meandering and snaking behaviors observed for long domain sizes, which

trigger the instability of the primary mode.

84



• The existence of intermittent and irregular fluctuations associated to the longitudinal

rolls that have no well-defined frequency components.

• The presence of the en masse oscillations at certain heights away from the surface even

when the traveling wave dominates in most regions of the flow.

• The presences of curved traveling wave rolls for long domain sizes along the cross-slope

direction, which contradicts the straight and parallel rolls observed for smaller domains,

but that remain to be continuous with a fixed separation between them.

• The regime transitions where abrupt changes in the traveling wave dynamics are observed

leading to lose the track of such wave-like motions. Reduced-order models based on the

dynamic mode decomposition can help understand the way the instability modes interact

in such scenarios.

• The mixing interactions between the longitudinal and traveling wave rolls for certain

slope flow conditions.

• The presence of stripe-like structures in u-velocity contours of turbulent katabatic flows,

which could be attributed to either the signature of the longitudinal rolls or to numerical

artifacts consequence of using small simulation domains.

• To carry out turbulent katabatic simulations with appropriate mesh resolution and suf-

ficiently large domain sizes, such that the resolvability condition for DNS based on the

Kolmogorov microscale is satisfied while providing a computational domain large enough

for all relevant scales of motion to emerge.
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Appendix A MATLAB Implementation of the PSD Estimate

1 %***** Defining the frequency domain for temporal signals *****

2 dt = t(2) - t(1);

3 Fs = 1/dt; %samples/sec = [Hz]

4 L = length(t); %Dataset size

5 NFFT = 2^( nextpow2(L)); %Nyquist frequency

6 f = (Fs/NFFT)*(0:( NFFT /2)); %Frequency vector

7

8 %***** Defining the wavelength domain for spatial signals *****

9 Fs = 1/dx; %samples/unit length = [1/m]

10 L = length(x); %Dataset size

11 NFFT = 2^( nextpow2(L)); %Nyquist frequency

12 k = 2*pi*(Fs/NFFT)*(0:( NFFT /2)); %Wavenumber vector

13 lambda = 2*pi./k; %Wavelength vector

14

15 %***** Computes FFT *****

16 %S represents the original signal

17 s = S-mean(S); %Fluctuating component of the signal

18 window = hann(L) ’; %Hann window

19 s = s.* window;

20 factor = 2.02; %Windowed FFT = 2.02; no window = 1

21 Y = factor*fft(s, NFFT); %Two -sided FFT spectrum

22

23 %**FFT amplitude **

24 P2_FFT = abs(Y)/L;

25 P1_FFT = P2_FFT (1:( floor(NFFT /2+1)));

26 P1_FFT (2:end -1) = 2* P1_FFT (2:end -1);

27

28 %**PSD estimate **

29 P2_PSD = (1/(Fs*L))*abs(Y).^2;

30 P1_PSD = P2_PSD (1:( floor(NFFT /2+1)));

31 P1_PSD (2:end -1) = 2* P1_PSD (2:end -1);
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Appendix B MATLAB Implementation of the DMD algorithm

1 function [Phi , omega , lambda , b, X_dmd] = DMD_fn(X1, X2, r, t, dt)

2 %Computes the Dynamic Mode Decomposition from a provided data set

3 %and returns all relevant data structures

4

5 %*** Parameters ***

6 % N: Number of measurements per snapshot

7 % M: Number of snapshots

8 % r: Number of DMD modes to use

9 %*** Inputs ***

10 % X1: Data matrix (N,M-1)

11 % X2: Shifted data matrix (N,M-1)

12 % r: Reduction size if r > 0.

13 % Energy percentage to capture after the reduction if r < 0

14 % t: Dimensional time vector (1,M)

15 % dt: Dimensional time step between measurements in data matrix

16 %*** Outputs ***

17 % Phi: Unsorted DMD modes (N,r)

18 % omega: log(lambda)/dt (r,1)

19 % lambda: Unsorted DMD eigenvalues (r,1)

20 % b: Projection of the initial condition x1 = X1(:,1)

21 % onto the DMD modes (r,1)

22 % X_dmd: Whole data set reconstructed using DMD for the times

23 % specified in vector t (N,M)

24

25 %% ***** Singular Value Decomposition *****

26 %SVD of X1

27 [U, S, V] = svd(X1, ’econ’);

28

29 %Plotting the magnitude of the singular values

30 sigma = diag(S);

31 semilogy(sigma , ’-o’, ’MarkerSize ’, 5, ’LineWidth ’, 1);

32 xlabel(’Index ’); ylabel(’Eigenvalue magnitude ’);

33

34 %Plotting the energy content of each mode

35 e = []; %Energy vector

36 e_total = sigma ’* sigma;

37 for i = 1: length(sigma)

38 e_r = sigma (1:i)’*sigma (1:i);

39 e(i) = e_r/e_total *100;

40 end

41 plot(e, ’-o’, ’MarkerSize ’, 5, ’LineWidth ’, 1);

42 xlabel(’Reduction size’); ylabel(’Energy percentage ’);

43

44 %Specifying the energy percentage instead of the reduction size: r<0

45 if r<0

46 r = find(e >= abs(r) ,1);

47 end

48
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49 %Reduction

50 Ur = U(:, 1:r);

51 Sr = S(1:r, 1:r);

52 Vr = V(:, 1:r);

53

54 %% ***** Computing DMD for the reduction size r *****

55 %Build Atilde and DMD Modes

56 inv_Sr = inv(Sr);

57 Atilde = Ur ’*X2*Vr*inv_Sr;

58 [W, D] = eig(Atilde);

59 Phi = X2*Vr*inv_Sr*W; % Exact DMD Modes

60 %Phi = Ur*W; % Projected DMD Modes

61

62 %DMD eigenvalues

63 lambda = diag(D);

64 omega = log(lambda)/dt;

65

66 %Compute DMD Solution

67 M = size(X1 ,2)+1;

68 x1 = X1(:,1);

69 b = Phi\x1;

70 time_dynamics = zeros(r, M);

71 for i = 1:M

72 time_dynamics (:,i) = (b.*exp(omega*t(i)));

73 end

74 X_dmd = Phi*time_dynamics;

75 end
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