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Electronic Properties in Nanowire-based Complex Oxide Devices

Yuhe Tang, PhD

University of Pittsburgh, 2021

A wide range of novel electronic properties have been observed in nanodevices with a

reduced dimension at the LaAlO3/SrTiO3 interface thanks to c-AFM lithography. In this

dissertation, electronic properties at the LaAlO3/SrTiO3 interface are studied with nanowire-

based devices. Frictional drag between coupled nanowires is studied at the high magnetic

field and superconducting regimes. In both high magnetic field and superconducting regimes,

the drag resistance is insensitive to the separation between nanowires, which suggests the

dominant electron-electron interaction is non-Coulombic in nature. The frictional drag in

the superconducting regime suggests a reduced dimension in the superconducting nanowire

due to the 1D nature of the superconductivity at the LaAlO3/SrTiO3 interface. Frictional

drag involving one electron waveguide is studied and shows a correlation with the subband

structure of the electron waveguide when the electron waveguide is used as the drag wire.

We discuss possible directions for the frictional drag with electron waveguides. Thermal

transport experiments can provide additional insights into electronic properties at the in-

terface. We measure the thermopower in the electron waveguide which exhibits quantized

ballistic transport and the Pascal liquid phase. The thermopower can be described by the

Mott relation and exhibits a different temperature dependence when the electron waveguide

is at a conductance plateau. Our thermopower experiment paves the way for quantized

thermal transport studies of emergent electron liquid phases in which transport is governed

by quasiparticles with charges that are integer multiples or fractions of an electron.
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1.0 Introduction

The invention of silicon-based semiconductor technology has lead to one of the most

exciting revolutions in human history. As technology develops, the requirement for mate-

rials with novel physical properties shows up, where silicon-based technology reaches the

fundamental limit. This calls for the new generation of material platforms. One of the most

promising material systems is the complex oxide due to its wide variety of physical proper-

ties. Engineering the composition and atom arrangement of the complex oxide can give rise

to diverse emerging phases such as high-temperature superconductivity, ferroelectricity, and

ferromagnetism.

Additional dimensional confinement can bring more exotic phases to the complex oxide

system. Since the discovery of 2D electron gas at the interface between LaAlO3 and SrTiO3,

a lot of interesting properties have been discovered in the system such as metal-insulator

transition [149], superconductivity [124, 21], magnetism [17, 113], and spin–orbit coupling

[135, 20]. This makes the complex oxide, in particular the LaAlO3/SrTiO3 heterostructure,

an emerging research field. Not restricted to 2D physics, 1D physics can also be studied

thanks to the advancement of the technology to control metal-insulator transition with a

nanometer-scale resolution at the LaAlO3/SrTiO3 interface. Novel electronic properties have

been observed in devices with a reduced dimension and experimental results suggest a lot of

physical phenomena in the system may have a 1D nature. Therefore, it is important to study

1D electronic properties in LaAlO3/SrTiO3 heterostructures, which can help to understand

the emergent physical properties in the system and lead to better control of the interface

with more advanced functionalities.

In this dissertation, electronic properties at the LaAlO3/SrTiO3 interface are studied

with nanowire-based devices. The dissertation is organized as follows: Chapter 1 reviews

the material system and knowledge essential to the research. Chapter 2 introduces major

experimental techniques used in experiments. Chapters 3 to 5 present frictional drag ex-

periments performed with various nanowire-based devices in the high-magnetic field regime

(Chapter 3), superconducting regime (Chapter 4), and with electron waveguides (Chapter 5).
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Chapter 6 presents the thermopower experiment in the electron waveguide at LaAlO3/SrTiO3

systems.

1.1 LaAlO3/SrTiO3 Heterostructures

1.1.1 Properties of SrTiO3

Properties of LaAlO3/SrTiO3 heterostructures inherit largely from the substrate SrTiO3.

SrTiO3 has a perovskite crystal structure [41]. It is cubic at room temperature with a lattice

parameter of a = 3.905 Å. As shown in Figure 1 (a), eight Sr atoms are located at the

vertices of the cube and six O atoms sit at the center of each face of the cube. Sr and O

atoms form an octahedral cage. At the center of the cage, there is a Ti atom. This cubic

structure is most energetically favorable at high temperatures.

As the temperature decreases, SrTiO3 undergoes symmetry-breaking structural transi-

tions. At T = 105 K, the cubic structure undergoes an anti-ferrodistortive transition, where

the oxygen octahedra rotate in opposite directions (Figure 1 (b)). As a result, the cubic

structure changes to a tetragonal lattice structure [41], where two of the lattice vectors con-

tract and the third one is elongated along the axis of the rotation. Domains with different

tetragonal orientations (x -, y- or z -axis) of the tetragonal unit cells can form [19] in the bulk

SrTiO3 and between these domains ferroelastic domain walls are created (Figure 1 (b)).

Domain structures vary between different samples. And even in the same sample, these do-

mains form a different pattern after temperature cycling [72, 19]. Previously the significance

of these ferroelastic domain structures has been neglected. However, recent researches have

found that these domains and domain walls could be associated with spatially inhomogeneous

transport properties [72, 61, 112, 108] and shift the critical temperature for superconduc-

tivity [108] of SrTiO3 and SrTiO3 based heterostructures. Domains can be controlled and

moved by gating [7, 96]. This may be due to dielectric and elastic moduli differences between

domains of different orientations [129], leading to anisotropic electrostriction [34]. Domain

walls are found to be more conducting than domains [47]. They may be charged, polarized

2



[61, 164, 134], and coupled to the ferroelectric [155] or magnetic degree of freedom [107].

One natural coupling mechanism between electrons at the interface and domain structures is

that the interfacial lattice distortion is correlated with the carrier density [64, 159, 130]. For

a conducting interface, while the in-plane lattice constant is constrained by the substrate,

the out-of-plane lattice constant is not, which results in a distortion along the z -axis.

(a) (b)

(c) (d) (e)

Figure 1: SrTiO3 properties. (a) Perovskite crystal structure of SrTiO3 at room

temperature. Adapted from [41]. (b) Below 105 K, SrTiO3 goes through

cubic-to-tetragonal phase transition where nearby oxygen octahedra rotate in opposite

directions. Different rotation axes lead to different domains, between which structural

domain walls show up. Adapted from [72]. (c) SrTiO3 starts a paraelectric to ferroelectric

transition below 38 K. It never reaches a ferroelectric state due to quantum fluctuations

unless the in-plane strain is applied. Adapted from [56]. (d) Density function theory

calculation of cubic SrTiO3’s band structure. Adapted from [137]. (e) The superconducting

critical temperature Tc as a function of carrier density shows a dome-shape similar to

high-Tc superconductors. Adapted from [79].

At T < 38 K, a second transition to the ferroelectric state shows up in SrTiO3 [100]

(Figure 1 (c)). However, it never reaches the ferroelectric state and remains paraelectric at

3



low temperatures because of quantum fluctuations. The static dielectric constant for SrTiO3

is ε ≈ 300 at room temperature. But because of the incipient ferroelectric behavior of SrTiO3

at low temperatures, ε increases to around 20000 and stabilizes at T < 4 K in the quantum

paraelectric regime [100, 128, 129]. Due to the large dielectric constant, SrTiO3 is a good

substrate candidate for samples requiring backgating. The ferroelectric state in SrTiO3 can

be reached by controlling experimental conditions such as electric field [59] and strain [56].

Understanding the electronic structure of SrTiO3 is important for understanding the

physical phenomena observed in SrTiO3 and related complex oxide heterostructures. SrTiO3

is a band insulator with an indirect bandgap of 3.25 eV and a direct bandgap of 3.75 eV

[156] according to valence electron-energy loss spectroscopy (VEELS) [156]. Figure 1 (d)

shows density function theory calculation of the band structure of cubic SrTiO3. The main

contribution of the valence band comes from O 2p orbitals and that of the conduction band

comes mainly from Ti 3d orbitals [137, 156]. The five-fold degeneracy of 3d orbitals of Ti

atoms is lifted by surrounding O atoms, resulting in a high-energy doublet (eg states) and a

low-energy triplet (t2g states) [94]. t2g band further splits into dxy, dyz and dxz orbitals. Three

orbitals are degenerate at the conduction band minimum Γ [137]. The indirect bandgap

corresponds to excitation from R to Γ and the direct bandgap corresponds to excitation

from Γ to Γ [156]. Other factors such as stress, strain, or dimensional confinement can

further modify the band structure [77, 1, 24]. For example, t2g bands are expected to further

split due to the anti-ferrodistortive transition and spin-orbit coupling [58, 99].

In 1964, superconductivity was discovered in SrTiO3 by Schooley at Tc ∼ 300 mK [133],

which makes it the first complex oxide to be superconducting. The superconductivity shows

up at a carrier density as low as 1017 cm−3 [90]. This suggests it has a small Fermi surface.

The critical magnetic field Bc is around 0.2 T [133] and the critical temperature Tc is around

300 mK [90]. According to the previous electrical transport experiment, Tc as a function

of carrier density has a dome-shape phase diagram peaked at Tc ∼ 450 mK [79], which is

similar to other unconventional superconductors (Figure 1 (e)). The unconventional super-

conductivity in SrTiO3 is hard to be explained by the conventional Bardeen-Cooper-Schrieffer

(BCS) theory [6, 49]. In 1969, Eagles proposed that superconductivity in low-density Zr-

doped SrTiO3 may be explained by Bose-Einstein Condensation (BEC) of strongly paired
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electrons [39], in contrast to BCS theory where electrons are weakly coupled to each other

and the electron pair size is much larger than the inter-electron separation. This theory

predicts a novel electronic phase where at temperatures above Tc, even though electrons are

not condensed into a superconducting state, they remain bonded due to strong electron-

electron attraction. The existence of a robust electronic phase where electrons pair without

forming superconductivity is demonstrated by transport experiments with nanowire-based

single-electron transistors at the LaAlO3/SrTiO3 interface [28]. However, after more than 50

years, the mechanism of SrTiO3’s superconductivity is still an open question that requires

more investigation to understand its nature and pairing mechanism.

1.1.2 Emergent properties at the LaAlO3/SrTiO3 interface

The most well-known SrTiO3-based complex oxide heterostructure is the LaAlO3/SrTiO3

system [111] (Figure 2 (a)). LaAlO3 also has a perovskite crystal structure with a lattice

constant of 3.789 Å. Since it is closely lattice-matched to SrTiO3, it allows a clean epitaxial

heterostructure growth. Both LaAlO3 and SrTiO3 are band insulators. But when LaAlO3 is

deposited on top of (001) TiO2 terminated SrTiO3 with a thickness larger than 4 unit cells

(Figure 3 (a)), the interface between LaAlO3 and SrTiO3 can become conducting [149]. The

typical carrier density for this conducting interface is ∼ 5 × 1013 cm−2 and the mobility is

at the order of 10 cm2/(Vs) at room temperature [111, 135]. Enhanced mobility larger than

104 cm2/(Vs) has been reported in systems with reduced dimensions at low temperatures

[67].

The origin of the conducting 2D interface is still not fully understood. The most widely

cited explanation is the polar catastrophe [101]. LaAlO3 consists of alternating layers of

LaO+ and AlO−2 with alternating charges of +1 and −1. Thus it is polar. SrTiO3 consists of

alternating layers of SrO and TiO2 layers with both layers neutral. Thus it is nonpolar. This

polar discontinuity leads to a built-in electric field and the electric field results in a diverging

potential as the thickness of LaAlO3 increases (Figure 2 (b) top panel). To avoid the diverging

potential, so-called “polar catastrophe”, the system undergoes electronic reconstruction,

transferring 1/2 electrons from the surface to the interface per 2D unit cell so that the electric

5



(a) (b)

Figure 2: LaAlO3/SrTiO3 lattice structure and polar catastrophe mechanism. (a)

Schematic of the LaAlO3/SrTiO3 heterostructure showing the composition and the ionic

charge state of each layer. Adapted from [111]. (b) The polar catastrophe model for

conducting LaAlO3/SrTiO3 interfaces. Top panel: LaAlO3 has alternating net charges in

LaO and AlO2 layers, which leads to a non-negative electric field and an electric potential

that diverges with thickness. Bottom panel: The divergence of the electric potential can be

avoided if half an electron is transferred from the surface to the interface, which causes the

electric field to oscillate around zero and the potential remains finite. This produces a

conducting 2D interface. Adapted from [101].

field oscillates around zero and the potential remains finite (Figure 2 (b) bottom panel).

This electronic reconstruction creates a 2D electron system (2DES) at the interface between

LaAlO3 and SrTiO3. While polar catastrophe theory successfully explains the formation of

2DES at the interface and LaAlO3’s critical thickness, the carrier density (3× 1014 cm−2) at

the interface according to the theory fails to match the experimentally measured value. The

experimentally measured result is an order of magnitude smaller [135, 20]. Other mechanisms

such as oxygen vacancies [71] and cation intermixing [161] have also been proposed to explain
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the formation of a 2D electron gas. But until now, the mechanism of the 2D conducting

interface remains an open question.

As discussed above, the conductivity of the interface can be tuned with LaAlO3 thickness.

It is found that when the thickness of LaAlO3 is just below the critical value, the interface

becomes electrically tunable [149]. By applying a +100 V back gate voltage to SrTiO3 sub-

strate, the interface undergoes a metal-insulator transition and becomes conducting (Figure

3 (b)). The interface stays conducting after the voltage is removed. Later by applying a −100

V back gate voltage, the interface restores an insulating state. This cycle can be performed

multiple times without degradation of the system. Inspired by this phenomenon, instead

of using a back gate to globally tune the conducting interface, a conductive atomic force

microscope (c-AFM) lithography technique [22, 25] is developed where a conductive AFM

tip acts as a top gate to change the conductivity state at the interface with a nanometer

precision. This technique will be discussed in Chapter 2.

(a) (b)

Figure 3: Metal-insulator transition at the LaAlO3/SrTiO3 interface. (a) Sheet

conductance as a function of the number of LaAlO3 unit cells. Adapted from [149]. (b)

Sheet resistance (top panel) and the corresponding applied back gate voltage (bottom

panel) as a function of time show the metal-insulator transition can be reversibly tuned by

an electric field. Adapted from [149].

Apart from the metal-insulator transition, other interesting properties have also been

observed at the LaAlO3/SrTiO3 interface such as ferromagnetism [17, 10, 9, 131], Rashba
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spin-orbit coupling [20, 135] and superconductivity [124, 21, 125]. The superconductiv-

ity at the LaAlO3/SrTiO3 interface largely inherits from SrTiO3. It shows a Tc around

200 mK and a dome-shaped phase diagram similar to high-Tc superconductors. Trans-

port at the LaAlO3/SrTiO3 interface is found to be highly inhomogeneous. According to

low-temperature scanning-probe measurements, the inhomogeneous transport is affected by

ferroelastic domain structures [72, 61]. Domain walls between ferroelastic domains with

different orientations are highly conductive [72], and the superconductivity at the interface

is 1D in nature situated at domain walls [112]. The thermoelectric effect is studied at the

LaAlO3/SrTiO3 interface to understand the electronic properties. Due to the confinement

of 2DES at the interface, an enhanced thermopower is observed, which is attributed to

the electron-phonon coupling. These properties make the LaAlO3/SrTiO3 interface rich in

physics.

1.1.3 LaAlO3/SrTiO3 nanostructures

Electron properties at the interface can be studied with the transport experiment. Trans-

port experiments are performed with various nanostructures fabricated at LaAlO3/SrTiO3

interfaces. There are different methods to fabricate devices and these methods bring addi-

tional dimension confinement to electrons at the LaAlO3/SrTiO3 interface. Taking advan-

tage of LaAlO3 thickness dependence of the interface metal-insulator transition, conventional

photo- or electron-beam lithography can be used to define structures (Figure 4 (a)) [132, 145].

Conducting channels with a typical dimension of 1 µm can be created by UV lithography.

Electron-beam lithography can make conducting channels a few hundred nanometers wide

[132, 145]. Ion beam irradiation technique (Figure 4 (b)) can further narrow down conducting

structures to 50 nm [114]. These techniques are usually used with a resist such as PMMA or

amorphous LaAlO3 as an additive or subtractive lithography step and can cause irreversible

damage to the material. One way to overcome these is to use c-AFM lithography (Figure 4

(c)). Using the reversible metal-insulator transition when LaAlO3 is at the critical thickness,

c-AFM lithography can create nanowires with a width as small as 2 nm [22, 23]. It is fast and

straightforward in terms of device fabrication parameters exploration. Experimenting with
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Figure 4: Nanostructure fabrication at the LaAlO3/SrTiO3 interface. (a) Conventional UV

or e-beam lithography technique. The 2 unit cells thick crystalline LaAlO3 region covered

by amorphous LaAlO3 is insulating. The uncovered region with a thickness greater than 3

unit cells are conducting. Adapted from [146] (b) Argon ion beam irradiation. Argon ions

can transform the conducting LaAlO3/SrTiO3 interface to an insulating state. Adapted

from [146] (c) C-AFM lithography which creates devices with a biased conductive AFM

tip. Adapted from [146] (d) ULV-EBL technique which works without resists and provides

a ∼ 10 nm resolution on a large scale. Adapted from [163]

a new set of parameters typically only takes ∼ 5 minutes and involves removing the former

device and creating a new one by applying negative and positive voltages. Since the sample
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does not degrade during this process, the parameter exploration cycle can be repeated mul-

tiple times. Varying device design, tip moving speed, and tip voltages, even more complex

nanostructures such as single-electron transistors [28, 29], electron waveguides [1, 16] and

artificial 1D or 2D superlattices can be created. Another method is the ultra-low-voltage

electron-beam lithography (ULV-EBL) technique (Figure 4 (d)) [163]. This technique works

without resists and can rapidly create devices on a large scale with a spatial resolution of

∼ 10 nm. It is non-destructive to the sample and the conducting state at the interface is

reversible through the prolonged exposure to air.

Experiments in nanostructures at LaAlO3/SrTiO3 interfaces have been fruitful and pro-

vide lots of important insights into the system’s electronic properties. A single-electron

transistor (SET) (Figure 5 (a)) is a powerful probe of mesoscopic physics. By performing

experiments on SET, a new electronic phase has been discovered where electrons remain

paired outside of the superconducting regime (Figure 5 (b)) [28]. Later on, the transition

from diamonds to loops in differential conductance of SET is observed. This is explained

by a gate-tunable transition from a pair tunneling regime to a single-electron tunneling

regime where the electron-electron interaction in the system changes from being attractive

to repulsive (Figure 5 (c)) [29].

One-dimensional wire is the most fundamental nanostructure. It has evolved from reg-

ular nanowires dominated by scattering [157, 145] to electron waveguides where quantized

conductance in steps of e2/h can be observed [1, 16]. The nanowire is found to be supercon-

ducting with a slightly lower critical temperature. It has a broader transition and non-zero

residual resistance [157]. The non-zero residual resistance may come from local hot spots

and thermally activated phase slips. Another study of the critical current value as a func-

tion of the nanowire’s width (Figure 5 (g)) suggests the 1D nature of superconductivity at

LaAlO3/SrTiO3 interfaces. The critical current value is independent of the nanowire’s width,

which indicates the superconductivity is situated at the boundary between the conducting

nanowire and nearby insulating area [112].

Dimensional confinement in the transverse direction of a nanowire can increase the en-

ergy spacing between subbands. When the elastic mean-free path is much larger than the

nanowire’s length and width, the transport through the nanowire is considered ballistic.
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Figure 5: Nanostructures at the LaAlO3/SrTiO3 interface. (a) Single-electron transistor.

(b) Electrons pair without forming superconductivity. Adapted from [28]. (c) Tunable

electron-electron interactions. Adapted from [29] (d) Electron waveguide. (e) Pascal liquid

phase exhibits quantized conductance plateaus at (1, 3, 6, 10 ...)· e2/h. Adapted from [16]

(f) The transconductance of an electron waveguide. Adapted from [16] (g) IV properties of

superconducting LaAlO3/SrTiO3 nanowires with different widths. Adapted from [112] (h)

The transconductance of an electron waveguide with spatial modulation. Adapted from

[15] (i) Universal conductance fluctuation measured from a LaAlO3/SrTiO3 Hall bar

structure. Adapted from [144]
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Figure 6: Spatial modes of the electron waveguide. The electron waveguide is along the

x -direction with y and z being the transverse directions. Adapted from [1]

This is realized in the electron waveguide, which can be fabricated by bracketing a regular

nanowire with two highly transparent tunnel barriers (Figure 5 (d)). The conductance in the

electron waveguide shows quantized plateaus at the integer values of e2/h as expected from

the ballistic transport (Figure 5 (e)). The band structure is revealed by taking the derivative

of the conductance with the chemical potential (Figure 5 (f)) and can be described by the

lateral and vertical spatial quantum numbers analogous to the electromagnetic wave in a

regular electromagnetic waveguide (Figure 6). The electron waveguide as long as 1 µm has
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been successfully fabricated and the band structure suggests an attractive electron-electron

interaction [1] within the electron waveguide. A novel Pascal liquid phase has been dis-

covered in electron waveguides where conductance follows a characteristic sequence within

Pascal’s triangle: (1, 3, 6, 10, 15 ...) e2/h (Figure 5 (e)). This suggests the existence of

bound states with more than 2 electrons [16].

Other more complex nanostructures have also been fabricated at LaAlO3/SrTiO3 inter-

faces. Through voltage or spatial modulation in electron waveguide fabrication, more exotic

features appear in the original band structure, which may be attributed to the engineer-

ing of spin-orbit coupling at LaAlO3/SrTiO3 interfaces (Figure 5 (h)) [14, 15]. Nanocross,

the cross-shaped electron waveguide, exhibits inhomogeneities in the electronic band struc-

ture of the four arms [106]. This inhomogeneity suggests the ferroelastic domain structure of

SrTiO3 can reproducibly affect the transport property of LaAlO3/SrTiO3 interfaces. Hall bar

is a powerful platform for transport experiments. Universal conductance fluctuation (UCF)

phenomenon is observed in the Hall bar structure (Figure 5 (i)) which suggests the phase-

coherent transport at LaAlO3/SrTiO3 interface [123, 144]. Non-local transport is reported

in the Hall bar structure [158, 30]. Although the origin of non-local transport is not well

understood, it may arise from spin-dependent excitations. Graphene can be placed on top of

LaAlO3/SrTiO3 interfaces. The charge neutrality point of graphene can be reversibly con-

trolled with proximal LaAlO3/SrTiO3 nanostructures created by c-AFM lithography. This

effect can be used to create reconfigurable edge states in graphene. [89].

1.2 Frictional Drag

Coulomb drag, or more generally frictional drag, is first proposed by Pogrebinskii [116]

which involves two closely spaced but electrically isolated conductors. Driving current

through one conductor (drive conductor), a voltage or current can be induced in the other

conductor (drag conductor) depending on whether it forms an open or closed circuit (Figure

7). It is a more direct way to study electronic interactions since without interactions, charge

carriers in different conductors are insensitive to each other and frictional drag does not
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exist. Frictional drag can typically be understood as scattering between charge carriers in

different conductors. The scattering, accompanied by momentum or energy transfer between

charge carriers in different conductors, depends on the nature of charge carriers, interlayer

electronic interactions, and the microscopic structure of the electronic system. Therefore,

frictional drag is a powerful technique to study electronic properties of interacting many-body

systems.

Drive

Drag

Figure 7: The schematic of frictional drag. Current is driven in the top drive conductor

and the induced voltage is measured from the bottom drag conductor. Adapted from [119]

14



1.2.1 2D frictional drag

A lot of earlier works on frictional drag were done on semiconductor 2D electronic sys-

tems. The transport in each layer can be captured by generic Boltzmann equation:

∂fi
∂t

+ vi∇fi + (eEi +
e

c
[vi ×B])

∂fi
∂p

= −δfi
τ

+ Iij (1)

where fi is the distribution function in each layer, τ stands for the transport impurity

scattering time [80, 68], Iij is the collision integral due to interlayer Coulomb interaction

and δfi is the non-equilibrium correction to the distribution in each layer. Consider the

degenerate electron systems [50] and use the standard perturbative calculation [68, 80, 13].

Suppose E1 is the electric field in the drive layer and j2 is the induced current in the drag

layer. j2 is defined by:

j2 = e
∑

vδf2 (2)

The coefficient between j2x and E1x defines the drag conductivity σD. Therefore the drag

coefficient ρD is given by

ρD =
σD

σ1σ2 − σ2
D

≈ σD
σ1σ2

(3)

where σi is the longitudinal conductivity in layer i. The latter approximation comes from

the smallness of the effect:

σD � σi (4)

The phenomenological drag rate [104, 68] is given by:

τ−1
D =

m1

16πe2τ 2n2T

∫ ∞
−∞

dω

sinh2[ω/2T ]
×
∫

d2q

(2π)2
|D12(ω, q)|2Γ1(ω, q)Γ2(ω, q) (5)

Γ1(ω, q) is the non-linear susceptibility that relates an AC voltage to a DC current it induces.

It is also known as the rectification function. The rectification function demonstrates the

importance of the electron-hole asymmetry in the drag effect. In a typical electron gas

system, there are electron-like and hole-like excitations depending on whether the energy of

electrons is larger or smaller than the Fermi energy. Without electron-hole asymmetry, the

drive layer displays a zero total momentum. Therefore no momentum can be transferred

to the drag layer. Similarly, momentum is transferred equally to electrons and holes in the

drag layer and the drag layer requires the electron-hole asymmetry to display a non-zero net
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current. The electron-hole asymmetry is characterized by the band curvature in conventional

semiconductors [73] and ∂σ/∂µ in the Fermi liquid theory [103, 102] where σ and µ are the

conductivity and chemical potential in each layer. The above physics picture can also be

applied to the frictional drag between charge carriers with opposite signs. One instance is

the frictional drag between coupled graphene layers where the electric current is carried by

electrons in one layer and holes in the other layer. The frictional drag due to the electron-

hole asymmetry is described by the leading-order perturbation theory where the scattering

process involves the momentum transfer from the drive layer to the drag layer. However, it

is not universal. Other higher-order processes can also contribute which are less sensitive to

the electron-hole asymmetry.

Earlier 2D frictional drag focus on measuring the strength of interactions between sepa-

rate layers in semiconductor devices such as p-doped GaAs quantum wells [63, 62], coupled

2D-3D or 2D-2D electron systems in AlGaAs/GaAs quantum wells [140, 139, 50, 51, 53, 40]

and electron-hole bilayers [138]. The temperature or separation dependences have been stud-

ied and results suggest the frictional drag can be attributed to the momentum transfer due

to Coulomb coupling between two layers (Figure 8 (a)). Other mechanisms also contribute.

For example, the frictional drag at large separations between two layers is attributed to

phonon-mediated interactions [52, 110, 127]. The enhancement or the sign change of fric-

tional drag at lower temperatures is attributed to the plasmon [60, 109] or thermoelectric

effects [139].

On graphene-based systems, more exotic frictional drag phenomena have been observed

which depends both on the interaction between graphene layers and electronic states in

each layer [75, 48, 76, 151, 54]. The electrical tunability and the advent of graphene-boron-

nitride heterostructures [151, 117] make graphene more flexible and powerful for frictional

drag researches compared to semiconductor systems. When B = 0 T and the chemical

potential is away from the charge neutrality point, the frictional drag is consistent with the

behavior expected for Fermi liquid regime [48, 87, 76]. The carrier density in each layer can

be independently tuned which allows studying electron-electron, electron-hole, and hole-hole

interactions (Figure 8 (b)). Drag signals of electron-electron or hole-hole and electron-hole

have opposite signs as expected. Surprisingly, when both layers are near the charge neutrality
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(a) (b)

(c) (d)

Figure 8: 2D frictional drag. (a) Frictional drag as a function of temperature in

GaAs/AlGaAs double quantum well systems. Adapted from [50] (b) Graphene frictional

drag in Fermi liquid regime as a function of carrier densities in two graphene layers. (c)

Graphene frictional drag shows a non-zero value at the charge neutrality point. Adapted

from [48] (d) Quantum Hall frictional drag. Adapted from [93]
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point [48, 151, 87, 84], an enhanced non-zero frictional drag is observed which is sensitive to

the magnetic field (Figure 8 (c)). This phenomenon is proposed to have an energy transfer

or thermoelectric origin [142, 84, 141, 143]. Analogous to the Hall measurement, Hall drag

[92, 93, 143, 91] where drag voltage is perpendicular to the drive current is also studied

(Figure 8 (d)). Quantum Hall drag has been observed in coupled graphene layers. The

result suggests a new correlated state where coupled graphene layers form an interlayer

exciton condensate [93, 91].

Frictional drag has also been performed between normal metals and superconducting

films [46, 65]. A drag signal is observed only in the vicinity of the superconducting-normal

transition of the superconducting film. The phenomenon is explained by the local electric

field fluctuation induced by mobile vortices [136] or the supercurrent drag effect due to

Coulomb coupling [73, 37].

1.2.2 1D frictional drag

1D frictional drag attracts a lot of interest since electrons confined in 1D are expected to

show strong electronic correlations. A purely 1D electronic system is known as a Luttinger

liquid [152, 95, 57] and shows different behaviors compared to a Fermi liquid. Confined

in 1D, the elementary excitations of Luttinger liquids are charge and spin density waves.

Charge and spin density waves propagate independently from each other, which is known

as spin-charge separation [4, 69]. Most theories of 1D frictional drag study the interaction

between Luttinger liquids under circumstances of different temperatures [78, 118, 121, 42, 36],

quantum wire lengths [78], electron densities [44], separations [78, 122, 36], and scattering

mechanisms between quantum wires [43, 105, 42, 55]. It is predicted that below a crossover

temperature T ∗, electrons in two infinitely long quantum wires of equal carrier densities form

a zigzag-ordered interlocked charge density wave. This results in an exponentially increasing

drag resistivity with decreasing temperatures [78, 44]. The drag resistance is predicted to be

exponentially suppressed when the separation increases [78] or there is an electron density

mismatch between nanowires [44]. For shorter nanowires, the charge density wave in one

nanowire may slip relative to the charge density wave in the other nanowire, resulting in a

18



finite but exponentially large value as the temperature decreases [78].

Experimentally, 1D frictional drag has mostly been conducted on semiconductor systems

with either horizontal [148, 147, 162, 33] or vertical geometry [82, 81], as shown in Figure 9

(a) and (b), respectively. The negative drag phenomenon where electrons flow in opposite

directions in the drive and drag nanowire is observed and explained by Wigner crystallization

(Figure 9 (c)) [162]. Experiments performed with coupled ballistic quantum wires show drag

resistance peaks concomitant with the opening of 1D subbands [81, 32]. The phenomenon can

be understood as the effect of an enhanced electron-hole asymmetry as the Fermi level in the

nanowire approaches the subband bottom (Figure 9 (d)). The geometry where two nanowires

are vertically integrated can reduce the interwire separation. When both nanowires are

occupied by less than one subbands, the temperature dependence of frictional drag shows

an upturn below a crossover temperature. The phenomenon is interpreted as the Luttinger

liquid effect although it is hard to compare experimental results and theory quantitatively

(Figure 9 (e)) [82].

Frictional drag has also been studied between LaAlO3/SrTiO3 nanowires. The result

suggests the dominating coupling mechanism is non-Coulombic in nature since the drag

resistance is independent of the interwire separation [148]. Besides, frictional drag between

superconducting LaAlO3/SrTiO3 nanowires also implies the 1D nature of superconductivity

at the LaAlO3/SrTiO3 interface [147]. These will be discussed in detail in Chapters 3 and 4.
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(c) (d) (e)

Figure 9: 1D frictional drag in semiconductor systems. (a) Typical horizontal frictional

drag device geometry. Adapted from [162] (b) Typical vertical geometry. Adapted from

[82] (c) Negative drag resistance suggests the Wigner crystallization in the nanowire.

Adapted from [162] (d) Peaks in drag resistance are concomitant with the opening of 1D

subbands. Adapted from [32] (e) The upturn in the temperature dependence of frictional

drag is consistent with the Luttinger liquid model. Adapted from [82]

20



2.0 Experimental Techniques

2.1 LaAlO3/SrTiO3 Sample Preparation

2.1.1 Sample growth

The LaAlO3/SrTiO3 samples used in the experiment are grown with pulsed laser de-

position (PLD) [160] onto (001) SrTiO3 substrates by our collaborators Jung-Woo Lee and

Hyungwoo Lee in Prof. Chang-Beom Eom’s research group at the University of Wisconsin-

Madison. Single-crystal SrTiO3 (001) substrates with a low miscut (< 0.1◦) angle are etched

by buffered hydrofluoric acid for 60 s to get a TiO2-terminated surface. To make an atom-

ically smooth surface with single unit cell height steps, substrates are annealed at 1000 ◦C

for 6 hours. A thin (3.4 unit cell) LaAlO3 film is grown epitaxially on top of SrTiO3 by PLD

at a growth temperature of 550 ◦C and background oxygen pressure of 10−3 mbar. Then

the sample is slowly cooled down to room temperature after the growth finishes. As shown

in Figure 10 (a), the thickness of the LaAlO3 film is monitored using reflection high-energy

electron diffraction (RHEED) [126]. The RHEED signal intensity oscillates as the material

is grown on top of the substrate and each cycle of the oscillation indicates the completion of

one unit cell. AFM image of the LaAlO3 surface after growth shows atomically flat terraces

(Figure 10 (b)).

2.1.2 Sample processing

After samples are grown by our collaborators and delivered to our lab in Pittsburgh,

they are processed by lab member Mengchen Huang to pattern electrical contacts to the

LaAlO3/SrTiO3 interface [86]. As shown in Figure 11 (a), the configuration of electrical

contacts is designed so that each 5 mm × 5 mm sample consists of 16 canvases where devices

for experiments are created. Each canvas is a 30 µm × 30 µm area surrounded by 16

interface contacts (Figure 11 (c)). Standard photolithography techniques are used to create

the canvas. First, the photoresist is spun onto samples (Figure 12 (a)). The thickness of
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(a) (b)

Figure 10: LaAlO3/SrTiO3 heterostructures growth. (a) RHEED intensity oscillation

during the LaAlO3 film growth on top of the SrTiO3 substrate. Each oscillation cycle

indicates the completion of one unit cell. Adapted from [115] (b) AFM image of the

LaAlO3 surface showing atomically flat terraces.

the photoresist is approximately 2 µm. After the sample is baked at 95 ◦C for 1 minute, the

photoresist is first exposed using a mask aligner (Figure 12 (b)) and then developed for 1

minute (Figure 12 (c)). An Ar+ ion mill is used to etch the sample area not covered by the

photoresist down to the interface (Figure 12 (d)). Next, DC sputtering is performed to make

interface electrical contacts. 4 nm Ti serving as an adhesion layer is deposited and then 25

nm Au is deposited on top of the Ti layer so that Au electrically contacts the LaAlO3/SrTiO3

interface (Figure 12 (e)). The photoresist is removed by the lift-off process afterward (Figure

12 (f)). After the deposition of interface electrodes, the photolithography and sputtering are
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Figure 11: Processed LaAlO3/SrTiO3 samples. (a) Processed LaAlO3/SrTiO3 samples with

16 canvases on a chip carrier. Bonding pads leading to interface electrodes are wire bonded

to the chip carrier to allow for transport experiments. (b) Zoom-in picture of a canvas

surrounded by gold traces from interface electrodes to bonding pads. Adapted from [86] (c)

AFM image of a canvas surrounded by 16 interface electrodes.

repeated a second time (Figure 12 (g)) to deposit gold electrical contacts on the LaAlO3

surface, which is used to trace interface contacts to larger bonding pads (Figure 11 (b)).

These bonding pads can be wire bonded to the chip carrier holding the sample to make

electrical connections between the sample and instruments. Finally, any photoresist residue

left on the sample surface is removed by plasma cleaning (Figure 12 (h)).

2.2 C-AFM Lithography

C-AFM lithography [22, 23] is developed in our lab to create nanostructures at interfaces

and devices in all of the experiments described here are fabricated by this technique. In

contrast to globally tuning the conductivity state at the interface by back gate voltages, c-

AFM lithography is able to locally change the conductivity state at the nanometer scale with

the help of a conductive AFM tip as a top gate. A positively biased AFM tip in contact with

23



(a) (b) (c)

(h)

(f) (e) (d)

(g)

Figure 12: LaAlO3/SrTiO3 sample processing steps. (a) Spin photoresist on the LaAlO3

surface. (b) The photoresist is exposed using a mask aligner. (c) Develop photoresist. (d)

Ion milling to etch the sample down to the interface. (e) DC sputtering to deposit Ti and

Au. (f) Lift-off (g) Second layer of Ti and Au is deposited to create gold traces from

interface electrodes to bonding pads (h) Plasma cleaning. Adapted from [86]

the LaAlO3 surface locally induces the metal-insulator transition and switches the interface

from the insulating to conducting state (“write”). Reversibly, a negatively biased AFM tip

switches the interface back to the insulating state (“erase”). In this way, as shown in Figure

13 (a), when a positively biased AFM tip moves between two interface electrodes, it writes a

conducting nanowire and the monitored conductance will show a jump once two electrodes

are connected through the nanowire (Figure 13 (b)). The nanowire can be erased by moving a

negatively biased AFM tip across it (Figure 13 (c)) and the conductance monitored between

electrodes will drop. The width of the nanowire at room temperature can be estimated by
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fitting to the conductance drop profile during the cutting (Figure 13 (d)). The mechanism

for the writing/erasing process can be explained by surface protonation/deprotonation [18, 8]

which will be discussed in detail later. The width of the nanowire depends on the writing

voltage and a thinner nanowire can be created with a smaller tip voltage. The typical width of

the nanowire is around 10 nm created by commonly used +10−15 V tip voltages. The width

can be further reduced to 2− 3 nm by using a +3 V tip voltage. Combining capabilities to

write and erase, c-AFM lithography can create more complicated nanostructures with various

functionalities such as field-effect transistors [23], electrical rectifiers [12], single-electron

transistors [27], electron waveguides [1, 16], 1D or 2D superlattices [14], and photodetectors

[66]. The capability to create various nanostructures is important for studying electronic

properties at LaAlO3/SrTiO3 systems and future applications.

2.2.1 AFM operation

C-AFM lithography relies on the usage of an atomic force microscope (AFM). AFM [11]

is a type of scanning probe microscope with a sub-nanometer resolution. It was invented in

the early 1980s as a by-product of the scanning tunneling microscope (STM). Different from

the optical or electron microscope, AFM uses a mechanical probe to “touch” or “feel” the

surface to obtain the topography information. Therefore it does not suffer from the limited

spatial resolution because of the diffraction or aberration. AFM can be used for imaging,

characterization and manipulation at the nanoscale.

As shown in Figure 14, AFM consists of a cantilever with a sharp tip at its end to

scan the sample surface. The tip’s radius of curvature is on the order of 10 nm which is

necessary to obtain high-resolution topography. The sample is placed on top of a piezo stage.

Piezoelectric materials change shapes in response to an applied electric field. The sample is

moved by the piezo stage. During the process, the sample surface is raster scanned by the tip

and the topography of the sample can be constructed. When the tip gets close to the sample

surface, the cantilever bends because of the atomic force between atoms at the end of the tip

and atoms on the surface. The deflection of the cantilever can be detected and converted to

the height information of the surface topography. The deflection of the cantilever is detected
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Figure 13: C-AFM lithography. (a) Writing process. As a positively biased AFM tip in

contact with the LaAlO3 surface moves between two interface electrodes, it leaves a trace

of protons on the path. 2DEG is formed underneath protons and a nanowire is created

between two electrodes (b) Conductance is monitored and increases when a nanowire is

written between two interface electrodes. Adapted from [22] (c) Erasing process. As a

negatively biased AFM tip in contact with the LaAlO3 surface moves across the nanowire,

it removes protons and the nanowire is “cut” or “erased” (d) A conductance drop is

observed once the wire is cut and the nanowire width can be estimated by fitting to the

conductance drop profile. Adapted from [22]
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Figure 14: AFM schematic. A sample is placed on top of a piezo stage, which moves the

sample so that the tip at the end of the cantilever can scan the sample surface. The laser

reflected from the top surface of the cantilever is collected by the quadrant detector, which

gives information about the tip’s deformation.

by shining a laser onto the cantilever which has a highly-reflective coating. The reflected

laser spot is detected by a quadrant photodetector. Intensities of the reflected laser spot on

four quadrants of the detector are VA, VB, VC and VD. Sum value measures how well the

light source is aligned on the cantilever:

Sum = VA + VB + VC + VD (6)

The vertical bending or deflection of the cantilever is given by:

Deflection = (VA + VB)− (VC + VD) (7)
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The lateral twisting of the cantilever is given by:

Lateral = (VA + VC)− (VB + VD) (8)

Depending on the applications, AFM can operate in three different modes: contact, AC,

and non-contact mode.

Fo
rc
e

Distance

Repulsive

Attractive

Contact

Tapping

Non-contact

(b)(a) Contact

AC

Non-Contact

Figure 15: AFM operation modes. (a) The interaction as a function of the distance

between the tip and the sample. Corresponding AFM operation modes are shown with

different colors along the force curve. As the distance between the tip and the sample

becomes smaller, the force changes from the attractive to the repulsive force. (b) Schematic

of different AFM operation modes. Top panel: Contact mode. The tip is in contact with

the sample surface. Middle panel: AC mode. The tip touches the sample surface

intermittently. Bottom panel: Non-contact mode. The tip never touches the surface.

Adapted from [3]
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2.2.1.1 Contact mode

In contact mode, the tip is in close contact with the sample surface (Figure 15 (b) Top

panel) and the atomic force is repulsive (Figure 15 (a)). The interaction between the sample

and tip obeys Hooke’s Law:

F = −k ×D (9)

where k is the spring constant of the cantilever and D is the deflection of the tip. As the tip

scans over the sample surface with a feedback loop on, D is kept constant by adjusting the

height of the cantilever which is controlled by the Z piezo. The sample surface topography

image can be constructed as the Z piezo height over the scanned surface area. Since the tip

is “dragged” across the sample surface in contact mode, both the tip and the sample can

degrade during the contact mode scanning.

2.2.1.2 AC mode

In AC mode, a small piezo in the cantilever holder controls the cantilever to oscillate near

or below the resonant frequency. This oscillation results in the oscillation of the deflection

signal, which can be demodulated to get the corresponding amplitude and phase. The

amplitude of the deflection signal changes when the tip moves over surface features of different

heights. Similar to the mechanism described in contact mode, through a feedback loop, Z

piezo adjusts the height of the cantilever to keep the amplitude constant at the setpoint value

and Z piezo height over the scanned surface area is mapped to obtain the sample surface

topography.

Unlike the contact mode where the tip constantly touches the sample surface, it strikes

against the sample surface intermittently (Figure 15 (b) middle panel) in AC mode, which

helps to reduce frictional forces and causes less damage to both the sample and the tip. In

addition to the amplitude of the cantilever’s oscillation, the phase signal can be detected as

well. This signal channel provides additional information about the sample such as stiffness

and adhesion properties which are not visible in surface topography.
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2.2.1.3 Non-contact mode

In non-contact mode the tip of the cantilever does not touch the sample surface at all

(Figure 15 (b) bottom panel) and the interaction is long-range and attractive (Figure 15

(a)). Therefore neither the tip nor the sample is damaged. The cantilever oscillates at or

just above the resonant frequency with a few nanometers amplitude. Either amplitude or

frequency modulation can be used to provide the feedback signal for imaging.

2.2.2 Water-cycle mechanism

C-AFM lithography process can be attributed to the “water-cycle” mechanism [18, 8].

LaAlO3 surface absorbs H2O molecules in the atmosphere, which dissociates into H+ and

OH− (Figure 16 (a)). During the writing process, the positively biased AFM tip removes

some of the OH− ions, making the surface locally charged with an excess of H+ ions (Figure

16 (b)). H+ ions attract electrons to the interface underneath the protonated surface and

the LaAlO3/SrTiO3 interface locally switches from the insulating to conducting state, which

is similar to modulation doping [35]. During the erasing process, the negatively biased AFM

tip removes extra H+ ions and the interface switches back to the insulating state (Figure

16 (c)). The “water-cycle” mechanism is supported by the fact that c-AFM lithography is

unsuccessful in dry air or vacuum environments. Another evidence is that the conductance

of the written structure decays in an ambient environment since H2O molecules are absorbed

onto the LaAlO3 surface continuously and higher humidity can lead to a faster decay rate of

the written device. But when placed under a vacuum or in a dry environment, the lifetime

of the written device can significantly increase [8]. Typically the humidity level for c-AFM

lithography is kept between 30% and 40%.

2.2.3 C-AFM lithography details

The AFM used for device fabrication in experiments described here is an Asylum MFP-

3D AFM. The tip in use is a conductive doped silicon tip with a force constant of 3 N/m and

tip radius curvature of 8 nm. The AFM contact mode is used for c-AFM lithography with
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Figure 16: Water-cycle mechanism. (a) H2O absorbed on LaAlO3 surfaces dissociates into

H+ and OH−. (b) Writing with a positive tip voltage removes OH−, leaving an excess of

H+ ions. (c) Erasing with a negative tip voltage removes H+ and restores ionic balance on

the surface.

a 0.1 V deflection setpoint corresponding to a force of 80 nN. To limit the current flowing

through the sample, especially when writing over gold electrodes, a 1 GΩ resistor is used for

protection purposes. Otherwise, a current that is too large can melt electrodes and damage

the canvas. The LaAlO3/SrTiO3 sample is photosensitive and the interface can become

conducting when exposed to light. To avoid random conducting regions at the interface, the

writing process should be performed in darkness.

The design of a device is created in Inkscape which is a vector graphics software. The
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Inkscape device design file and the scanned AFM image of the canvas are loaded into a home-

made LabVIEW lithography program which allows users to set writing parameters such as

writing speeds, directions, and writing voltages. The LabVIEW lithography program then

communicates with the AFM controller which moves and applies voltages to the conductive

AFM tip according to the device design and writing parameters.

During the writing process, the two-terminal and four-terminal conductances of the de-

vice can be monitored simultaneously. Electrical contact between interface electrodes and a

chip carrier is established through wire bonding and all interface electrodes are either used

to measure the voltage, source current through the device, or grounded. Conductance is

measured by a standard low frequency (< 15 Hz) lockin-in technique. A 100 mV excitation

voltage is applied at the source electrode. Once a nanowire is written between two interface

electrodes, a jump of conductance can be observed. The typical two-terminal conductance

for a nanowire of ∼ 10 µm is between 500 nS and 1 µS and four-terminal resistance is ∼ 100

kΩ/µm.

2.2.3.1 Cleaning the canvas

A clean canvas is crucial for device fabrication, especially for the electron waveguide [1, 16]

which will be discussed in the later section. The definition of “clean” is not about the surface

of the canvas. Instead, since the device exists at the interface between LaAlO3/SrTiO3, any

conducting residues at the interface need to be thoroughly removed. In order to achieve

an effective canvas cleaning, it is important to make sure a well-defined electric potential

difference is applied between the tip and the interface and the cleaning spacing is smaller than

the width of a nanowire which is typically 10 nm. The well-defined potential difference is

achieved by making the structure to be erased electrically connected to the interface electrode

which is grounded during the c-AFM lithography. This can be done either by writing a

conducting area connected to interface electrodes before erasing or using the previously

written device which is already connected to interface electrodes.

The canvas cleaning first focuses on a small rectangular area where the device for exper-

iments is going to be written. Since this area is the location for the main device, a fine clean
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with a slower speed and small spacing is necessary. A −12 V is applied to the AFM tip and

the negatively biased AFM tip raster scans the small rectangular area with a line spacing

of 2 nm in both horizontal and vertical directions with a speed of 10 µm/s. Next, the AFM

tip with the same negative bias raster scans a larger rectangular area extended to interface

electrodes in both directions with a larger line spacing of 20 nm and a speed of 40 µm/s.

After the cleaning, the conductance between interface electrodes should drop to zero and the

old AFM tip will be replaced with a new tip for device writing since the old tip wears out

during the canvas cleaning.

2.2.3.2 Frictional drag device writing

Typical canvas and device design are shown in Figure 17 (a). A device consists of virtual

electrodes, leads, and the main device. Virtual electrodes are funnel-shaped conducting

areas which connect leads and the front of interface electrodes to maintain good electrical

connections between them. They are written with around 20 V at a speed of 3 µm/s. Better

electrical contact can be achieved by making larger and longer funnels which cover a larger

area of the interface electrode or a longer section of leads. Writing funnels multiple times

can also make funnels more conducting and electrical contact better. If the above methods

do not help, it is likely that the interface electrode makes poor contact with the interface

and should be replaced by another one. Leads are essentially nanowires to make electrical

contact between the main device and interface electrodes. They are written with around 15

V at a speed of 300 nm/s. Writing leads multiple times can make them more robust and

conducting, thus good for electrical contact.

The main device is written after finishing virtual electrodes and leads. The main device

for the frictional drag experiment is composed of two parallel nanowires (zoom-in figure in

Figure 17 (a)). They are closely spaced but electrically isolated from each other. Each

nanowire is contacted with four leads to allow for four-terminal measurements. However,

due to the limitation of wiring in the instrument, only one nanowire is connected with four

leads while the other one with three leads. Two nanowires are first written with around 15 V

at a speed of around 100 nm/s. After this, unwanted conducting channels can form between
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Figure 17: Writing of the frictional drag device. (a) Top: The design of a frictional drag

device in Inkscape. The design consists of virtual electrodes, leads and the main device

with two parallel nanowires. Bottom: Zoom-in figure of the frictional drag main device.

The red line is used to erase between two nanowires to eliminate possible leakage. (b)

Conductance monitoring setup during the device writing. For simplicity, only two

terminals are shown for each nanowire. Voltages with 100 mV amplitude and frequency f1

and f2 are applied on wire 1 and wire 2 to source current, respectively. I1 and I2 from wire

1 and wire 2 are measured containing both f1 and f2 components (c) Conductance matrix

after writing is successful. Diagonal terms are two-terminal conductance for each nanowire

and off-diagonal terms are the leakage between nanowires.
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two nanowires which cause the leakage. Therefore, it is important to erase between two

nanowires to avoid leakage. As shown by the red line in the zoom-in figure of Figure 17 (a),

erasing is done along a line in the middle of two nanowires with around −10 V and a speed of

around 100 nm/s. The exact parameters for writing nanowires and erasing in between should

be adjusted during device fabrication so that after the erasing both nanowires are sufficiently

conducting without leakage in between. Generally speaking, a larger magnitude of the tip

voltage and lower tip moving speed can make both writing and erasing more effective. But

a more effective writing can lead to a higher chance of leakage which is hard to erase and

a more effective erasing between nanowires can damage nanowires during erasing. Two

methods of increasing success rate are (1) repeating the sequence of writing nanowires and

erasing twice or three times (2) making two nanowires further apart so that both writing and

erasing processes affect less to nanowires not right underneath the AFM tip. The electron

waveguide-regular nanowire frictional drag devices are fabricated in the same way, except

one regular nanowire is replaced with an electron waveguide whose fabrication method will

be introduced in the next section.

During frictional drag device writing, two-terminal conductance of both nanowires can

be monitored at the same time. As shown in Figure 17 (b), two AC voltages with the same

amplitude and different frequencies are applied on each nanowire. Voltages applied on wire

1 and wire 2 have a frequency f1 and f2 and are defined as V1,f1 and V2,f2 , respectively. The

typical amplitude for sourcing voltages is 100 mV. Current I1 and I2 are measured from wire

1 and wire 2 containing both f1 and f2 components and the current component measured

from wire i at frequency j is defined as Ii,fj . Correspondingly, the two-terminal conductance

measured from wire i at frequency j can be defined as Gi,fj = Ii,fj/(100 mV) with 100 mV

being the typical sourcing voltage amplitude. If we think of 4 two-terminal conductance

terms from two wires at two frequencies as a matrix, a successful frictional drag device with

two good nanowires and without leakage should show large diagonal terms Gi,fi representing

the two-terminal conductance of each nanowire and zero off-diagonal terms Gi,fj representing

leakage (Figure 17 (c)).
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2.2.3.3 Electron waveguide writing
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Figure 18: Writing of the electron waveguide. (a) Top: The design of an electron

waveguide device in Inkscape. Bottom: Zoom-in figure of the electron waveguide main

device. The red line is used to erase and avoid leakage between the waveguide and side

gate and yellow lines are used for creating tunnel barriers. (b) Conductance monitoring

setup during the device writing. (c) The voltage pulse for creating tunnel barriers. (d)

Two-terminal conductance during the writing of an electron waveguide.

One of the major breakthroughs in c-AFM lithography is the capability to write electron

waveguides [1, 16] with fully quantized conductance plateaus in steps of e2/h. Besides virtual

electrodes, leads, and the main device, an electron waveguide device also consists of a side
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gate to tune the chemical potential of the waveguide (Figure 18 (a)). The side gate usually

has a loop shape to prevent the electric field between the gate and electron waveguide from

being too strong due to sharp structures. The side gate is written with similar parameters

as leads. To avoid possible leakage between the gate and the electron waveguide, an erasing

around the side gate is performed using a negative tip voltage of ∼ −12 V at a speed of

300 nm/s (the red line in Figure 18 (a)). The main device of an electron waveguide is a

nanowire bracketed by two highly transparent tunnel barriers. The nanowire is first written

with the same parameters as leads which are typically around 18 V for tip voltage and 300

nm/s for tip moving speed. As represented by two short yellow lines in Figure 18 (a), highly

transparent barriers are created by retracing the previously written nanowire with ∼ 10 V

at a speed of 10 nm/s over a distance of ∼ 200 nm, during which a negative tip voltage pulse

around −11 V is applied over a distance of ∼ 60 nm (Figure 18 (c)). The strength of the

tunnel barriers can be tuned by changing the speed and magnitudes of positive and negative

voltages during the retracing. A larger positive tip voltage magnitude can make tunnel

barriers weaker and more transparent. In comparison, a larger negative pulse magnitude,

longer negative pulse distance, and slower retracing speed can make tunnel barriers stronger.

If tunnel barriers are too weak, the electron waveguide will be highly conducting and similar

to a regular nanowire which is hard to pinch off and does not have a quantized conductance

(Figure 19 (a)). If tunnel barriers are too strong, the electron waveguide can not survive

at low temperatures. If only one single tunnel barriers work with the other one too weak,

even though the electron waveguide appears tunable by the side gate, the conductance is not

well quantized at all values of magnetic fields (Figure 19 (b)). One candidate explanation

is that the observation of quantized conductance requires the side gate to tune the chemical

potential of the nanowire region between tunnel barriers. However, when only one tunnel

barrier works, the side gate tunes the chemical potential of the nanowire and the connected

lead together, which is highly conducting and the conductance is outside of the quantized

regime.

Two-terminal conductance is monitored during the writing to determine the quality of

highly transparent tunnel barriers and whether the electron waveguide is ready (Figure 18

(c)). Figure 18 (d) shows the change of two-terminal conductance when tunnel barriers are
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Figure 19: Electron waveguide device with zero, one, and two barriers. Quantized

conductance is only observed in devices with two transparent tunnel barriers. When no

tunnel barrier is present, the device is highly conducting and hard to be tuned to an

insulating state. When one tunnel barrier is present, although the device can be tuned by

the side gate, the conductance is not well quantized. Adapted from Supporting Information

in [1]

being created. Typically for a good electron waveguide, when creating the barrier with a

negative voltage pulse, the conductance will drop to zero. Within ∼ 1 s after the negative

voltage pulse is withdrawn, the conductance increases back to a value comparable but smaller
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than the value before the negative voltage pulse is applied. After both barriers are created,

the final two-terminal conductance usually is still larger than half of the original value.

2.3 Low Temperature Transport Measurement

2.3.1 Physical property measurement system

After the device fabrication is completed with c-AFM lithography, the sample is trans-

ferred to a cryostat, placed under vacuum, and cooled down to perform low-temperature

transport experiments. A Quantum Design dilution refrigerator integrated into Quantum

Design Physical Property Measurement System (PPMS) is used to achieve a base temper-

ature of 50 mK. The PPMS provides a flexible and automated workstation which controls

the temperature and magnetic field during the experiment. The field can be applied up to

±9 T and PPMS alone can reach a temperature as cold as 1.8 K, which is necessary for

the dilution refrigerator to reach 50 mK. Figure 20 (a) and (b) are schematics of the sample

probe and dewar of PPMS. The sample probe surrounded by a superconducting magnet is

at the innermost part of the PPMS dewar. Both the sample probe and magnet are sub-

merged in the liquid helium bath in PPMS dewar. The vacuum, liquid nitrogen jacket, and

superinsulation layers are used to reduce the helium boil-off rate and preserve the helium.

The base temperature of 1.8 K is achieved by pumping on the liquid helium bath through

the sample probe.

2.3.2 Dilution refrigerator

In the atmosphere, the boiling temperature of helium is 4 K. By pumping on it, the

temperature can be reduced to 1.8 K, which is the base temperature for PPMS. A Quantum

Design dilution refrigerator (DR) insert is used (Figure 22 (b)) to achieve millikelvin base

temperature. A DR uses a mixture of 33% 3He and 66% 4He to cool to 50 mK. As shown in

Figure 21, when the temperature is cooled down to below ∼ 870 mK, the mixture is separated

into two phases. The heavier dilute phase consists mostly of 4He with around 6% 3He and
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Figure 20: Schematic of PPMS. (a) Sample probe and magnet (b) PPMS dewar. Sample

probe in (a) is inserted into the PPMS dewar with the magnet submerged in the liquid

helium bath (adapted from PPMS manual)

the lighter concentrated phase is almost pure 3He. Since the dilute phase is heavier than the

concentrated phase, the concentrated phase is on top of the dilute phase. The enthalpy of

3He in the dilute phase is larger than the enthalpy of 3He in the concentrated phase. Using

this property, it is possible to achieve cooling by migrating 3He from the concentrated phase

into the dilute phase. The working principle of a dilution refrigerator is shown in Figure 22

(a). The DR uses a turbopump backed up by a diaphragm pump to circulate the 3He-4He

mixture in the mixing chamber (Figure 22 (a)). The dilute phase extends from the bottom
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Figure 21: 3He-4He mixture phase diagram. Adapted from [5]

of the mixing chamber through the counter-flow heat exchanger and partially fills the still.

Pumping on the still with the turbopump decreases the temperature of the still down to

around 600 mK and reduces the 3He concentration in the still. The reduced 3He in the

dilute phase is compensated by the 3He from the concentrated phase. 3He atoms absorb

heat as they cross the phase boundary from the concentrated phase into the dilute phase in

the mixing chamber, which provides cooling power for the sample stage. Pumped 3He gas
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exiting the diaphragm pump is circulated back into the condenser of the DR and condenses

into the liquid. The condenser’s cooling power comes from the PPMS sample chamber wall.

Then the liquid 3He flows through the heat exchanger, gets further cooled, and enters the

concentrated side of the mixing chamber, completing the circulation path.
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Figure 22: Dilution refrigerator. (a) Schematic of the working principle of a dilution

refrigerator. (b) Quantum Design dilution refrigerator.
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2.3.3 Electrical transport measurement

A Multichannel Lockin program is developed with LabVIEW in our lab, which commu-

nicates with hardware to apply voltages and measure signals from the device. Typically,

there are two types of measurements, “I-V” using direct current (DC) and “lock-in” us-

ing an alternating current (AC). Transport experiments are performed by taking these two

types of measurements on the device under different physical conditions such as temperature,

magnetic fields, and side gate voltages.

I-V is performed by applying a sawtooth or triangular wave excitation voltage with

a low frequency (0.2 − 1 Hz) and large amplitude (1 − 3 mV). The full waveform of the

excitation voltage, measured current, and measured voltage signals are collected to construct

two-terminal (measured current versus the excitation voltage) and four-terminal (measured

current versus the measured differential voltage) I-V curves. I-V curves reveal transport

behaviors of the device at both zero and finite biases. Typically I-V measurement is used

to determine the lever arm ratio of an electron waveguide, which relates the applied side

gate voltage to the chemical potential of the waveguide by calculating the ratio between the

side gate voltage and voltage bias across the nanowire needed to make the same transition

between adjacent bands.

Unlike I-V which gets a whole curve containing information at different biases from ev-

ery measurement, lock-in only gets a single value at a single bias through the demodulation

of measured signals. Lock-in uses a sine wave excitation voltage with a relatively high fre-

quency (1−13 Hz) and small amplitude (around 100 µV). The Multichannel Lockin program

demodulates the measured current and voltage signals at requested reference frequencies to

obtain a single value at each reference frequency. Most of the time, only a single reference

frequency is in use which is the same as the excitation voltage. For example, the frictional

drag resistance is obtained by measuring the current in the drive nanowire and induced dif-

ferential voltage across the drag nanowire at the frequency of the excitation voltage applied

on the drive nanowire. Sometimes multiple reference frequencies are used. One example is

monitoring the leakage and two-terminal conductance of nanowires simultaneously during

the frictional drag device writing.
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2.3.4 Thermopower measurement

Thermopower or thermoelectric measurement measures the induced thermoelectric volt-

age in response to a temperature difference across a material. In our lab, thermopower mea-

surement uses the same software and hardware as electrical transport measurement. Take

the thermopower measurement across an electron waveguide as an example. Thermopower

measurement requires a temperature difference across the electron waveguide. As shown in

Figure 23, a current is sourced on the left side of the electron waveguide between electrodes

1 and 2 with a frequency of fh by applying V1,fh and V2,fh on electrodes 1 and 2, respectively.

V1,fh and V2,fh are adjusted so that the potential at the intersection between the electron

waveguide and left leads is zero to minimize the possible influence on thermopower voltage

V2fh measurement. The current on the left side of the electron waveguide generates heat

as it flows through the nanowire between electrodes 1 and 2, thus creating a temperature

difference between the left and right sides of the electron waveguide. The heat is given by

I2R with I being the current and R being the resistance of the nanowire. Since the current

has a frequency of fh, the corresponding generated heat oscillates at a frequency of 2fh. The

Multichannel Lockin program demodulates the voltage signal across the electron waveguide

measured between electrodes 3 and 4 at 2fh to obtain the induced thermopower voltage

across the electron waveguide.

2.3.5 Data acquisition setup

Figure 24 (f) shows the schematic of the electronics setup for experiments. Bonding

pads on the sample are connected to the chip carrier through wire bonding (Figure 11). The

chip carrier is connected to the wiring in the DR insert. To avoid heat leaks, the wiring

in the DR insert has low thermal conductance and is thermally anchored to the condenser,

the still, and the mixing chamber before connected to the sample stage (Figure 22). The

wiring in DR is connected to the breakout box through the Fischer connector provided

by Quantum Design (the red box in Figure 24 (a)). The breakout box and measurement

hardware are connected through a Pickering Matrix Module (the green box in Figure 24

(a); Figure 24 (d)). X channels of the Pickering Matrix are connected to electrodes of the
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Figure 23: Thermopower measurement setup. Excitation voltage V1,fh and V2,fh with

frequency fh is applied on electrodes 1 and 2. V1,fh and V2,fh are adjusted so that the

potential at the intersection between the electron waveguide and left leads is zero to

minimize the influence on thermopower V2fh measurement. The induced thermopower

voltage across the nanowire is measured between electrodes 3 and 4 at frequency 2fh.

breakout box (the white box in Figure 24 (a)), while Y channels of the Pickering Matrix

are connected to analog inputs (AI) and analog outputs (AO) of data acquisition cards (the

blue box in Figure 24 (a); Figure 24 (c)). As shown in Figure 24 (f), the Pickering Matrix

allows switching the measurement configuration without physically touching cables. Any

pair of X and Y channels of the Pickering Matrix can be connected through switches inside

the Pickering Matrix, which is controlled by a LabVIEW program. AO channels are voltage

sources controlled by the Multichannel Lockin program. The amplitude of the output voltage

is at the order of 1 mV when AO channels are used to source current through the device.

However, when AO channels are used for gate voltages, the amplitude is at the order of

100 mV. Directly applying such large voltages can irreversibly and drastically change the

transport property of the device and make the device completely insulating. Therefore it
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Figure 24: Electronics setup for experiments. (a) Breakout box is connected to DR by

Quantum Design Fischer connector (red box). X channels of the Pickering Matrix Module

(green box) is connected to the breakout box (white box). Y channels of the Pickering

Matrix Module is connected to analog inputs or outputs (blue box) through amplifiers

(yellow box) or resistors. (b) and (e) Current amplifier Femto model DDPCA and voltage

amplifier Femoto model DLPVA. (c) Data acquisition cards (d) Pickering Matrix Module

(f) The schematic of the electronics setup for experiments.
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is important to connect the AO channel for the side gate with a large series resistor (100

MΩ − 1 GΩ) to limit the current flow. AI channels receive signals from the sample after

passing through the current (Femto model DDPCA-300) or differential voltage (Femto model

DLPVA) amplifiers (the yellow box in Figure 24 (a); Figure 24 (b, e)). The signals collected

by AI channels are then either directly outputted in an I-V measurement or demodulated

by the Multichannel Lockin program to give the current or voltage reading in a lock-in

measurement. The data acquisition process is controlled by the LabVIEW program, and the

data is stored as text files (∗.itx).
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3.0 Long-Range Non-Coulombic Electron Interactions between

LaAlO3/SrTiO3 Nanowires

3.1 Introduction

This chapter represents a collaborative work published in Yuhe Tang, Anthony Tylan-

Tyler, Hyungwoo Lee, Jung-Woo Lee, Michelle Tomczyk, Mengchen Huang, Chang-Beom

Eom, Patrick Irvin, Jeremy Levy, Advanced Materials Interfaces, 6 (15), 1900301 (2019)

[148].

The LaAlO3/SrTiO3 system exhibits unusual magnetic and superconducting behavior

arising from electron–electron interactions whose physical origin is not well understood.

Quantum transport techniques, especially those involving mesoscopic geometries, can offer

insights into these interactions. Here evidence for long-range electron–electron interactions in

LaAlO3/SrTiO3 nanowires, measured through the phenomenon of frictional drag, is reported,

in which current passing through one nanowire induces a voltage across a nearby electrically

isolated nanowire. Frictional drag mediated by the Coulomb interaction is predicted to decay

exponentially with interwire separation, but with the LaAlO3/SrTiO3 nanowire system it is

found to be nearly independent of separation. Frictional drag experiments performed with

three parallel wires demonstrate long-range frictional coupling even in the presence of an

electrically grounded central wire. Collectively, these results provide evidence for a new

long-range non-Coulombic electron–electron interaction unlike anything previously reported

for semiconducting systems.

The heterointerface between the complex oxides LaAlO3 and SrTiO3 (LAO/STO) [111]

exhibits a rich variety of electrically tunable properties such as superconductivity [124, 21],

magnetism [17, 113], and spin–orbit coupling [135, 20]. Many of these properties have been

associated with strong gate-tunable electron–electron interactions which can be challenging

to dissect using conventional transport methods [28, 29]. The LAO/STO interface also

exhibits a hysteretic metal–insulator transition [149], which can be controlled locally using

conductive atomic force microscopy (c-AFM) lithography [22, 23] and used to create a range
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of mesoscopic devices [146].

The transport technique of Coulomb drag (or more generally “frictional drag”) can pro-

vide unique insights into electron– electron interactions in the LAO/STO system [104]. When

two electrical conductors are situated in close proximity, a current driven through one (the

“drive”) conductor may induce a voltage (or current) in the second (“drag”) conductor. This

effect was first proposed by Pogrebinskii [116] as a method to probe correlations among the

charge carriers of the system. Frictional drag measurements have been carried out in coupled

2D–3D semiconductor systems [140, 139], coupled semiconductor two-dimensional electron

gases (2DEGs) [50, 51, 53, 139, 40] and graphene systems [88, 84], 1D–1D nanowires de-

fined from semiconductor 2DEGs [33, 162, 82], and in coupled semiconductor quantum dots

[74]. In these systems, the physical mechanism underlying frictional drag is dominated by

Coulomb interactions. At large separations, non-Coulombic corrections can become apparent

in some semiconductor devices [52, 153, 154].

3.2 Experimental Methods

The device fabrication process is illustrated in Figure 25 (a). C-AFM lithography is used

to define nanowires at the interface between 3.4 unit cells (uc) of LAO deposited on an STO

substrate by pulsed laser deposition (PLD). Details of the sample growth and fabrication

of electrical contacts are described elsewhere [18, 22]. Positive tip voltages applied on the

LAO surface produce locally conductive regions at the LAO/STO interface. The mechanism

for the writing process is attributed to surface protonation [18, 8]. A typical frictional drag

system (illustrated in Figure 25 (b)) is composed of two parallel nanowires with a width

w ∼ 10 nm, length L ranging between 400 nm and 1.5 µm, and separation d ranging between

40 nm and 1.5 µm. Devices consisting of three parallel nanowires (shown in Figure 25 (c))

are also investigated. Except where noted otherwise, all measurements are performed below

T = 100 mK. In both double-wire (Figure 25 (b)) and triple-wire (Figure 25 (c)) device

geometries, frictional drag measurements are performed by sourcing a current Ij in nanowire

j and measuring an induced voltage Vi in nanowire i. All nanowires are connected to the
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Figure 25: Non-Coulombic frictional drag experimental setup. (a) Side-view of the

nanowire fabrication process. A nanowire is created at the LAO/STO interface between

two Ti/Au electrical contacts with c-AFM lithography. Protons (+) patterned on the

surface by the AFM tip attract electrons (−) to the interface forming a nanowire (green

area). (b) Top-view schematic of the double nanowire device with length L, width w, and

wire separation d. The setup measures the induced drag voltage Vdrag = V2 across wire 2

created by current I1, which is induced by application of a voltage VS1 across wire 1. (c)

Schematic of a triple nanowire device where drag voltage V3 induced by I1 is measured. All

three wires are grounded during the measurement.
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same ground during the measurement. The current Ij is produced by applying a voltage

VSj = VDC + VAC cosωt to one end of nanowire j; the resulting current Ij(ω) and induced

voltage Vj(ω) at frequency ω are measured using a lock-in amplifier. The resistance may

then be expressed as a matrix Rij = dVi/dIj = Vi(ω)/Ij(ω), which is generally a function

of the DC drive current Ij (as well as other parameters such as temperature T and applied

magnetic field ~B). The off-diagonal terms then define the drag resistance Rij, characterizing

the mutual friction between electrons in the drive and drag nanowires. In order to ensure that

the drag resistances Rij are not influenced by electron tunneling between the two nanowires,

we characterized IV properties across two nanowires from all devices before experiments

(see Figure 26 for typical data). All measurements are performed well below the measured

interwire breakdown voltage of each device.

Figure 26: IV properties across two nanowires. Data is from Device 2B (d = 40 nm) and

2D (d = 550 nm).
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3.3 Results and Discussion

Two tables are provided that list device parameters for double-wire and triple-wire de-

vices. Parameters for double-wire devices include lengths and separations between nanowires,

two-terminal resistance, four-terminal resistance, and drag resistance measured from each

nanowire. In the table for triple-wire devices, each row corresponds to a different measure-

ment configuration depending on which two nanowires are used for drive and drag wires. For

example, 3A12 corresponds to the configuration where wire 1 and 2 are utilized and wire 3

is the grounded wire. R12 is the drag resistance measured from wire 1 with wire 2 being the

drive wire and vice-versa for R21. Due to the limitation of the number of electrodes, there

is no four-terminal resistance in the triple-wire device table.

Table 1: Double-wire device parameters

Device L (nm) d (nm) R2T, 1 (kΩ) R2T, 2 (kΩ) R11 (kΩ) R22 (kΩ) R12 (Ω) R21 (Ω)

2A 400 40 58− 72 42− 48 31.3− 43.5 8.4− 9.2 20 60

2B 400 40 22− 31 26− 34 8.6− 12.5 14.0− 18.3 14 4

2C 1000 300 37− 47 25− 46 NA 8.7− 18.4 51 23

2D 1500 550 27− 35 29− 63 NA 7.8− 11.8 15 52

2E 1500 550 22− 29 33− 77 NA NA 27 26

2F 1500 550 23− 36 22− 51 11.5− 16.0 3.7− 5.5 19 41

2G 1500 1500 17− 27 22− 37 10.2− 14.8 2.7− 4.1 10 9

3.3.1 Double-wire device results

Typical results of a frictional drag measurement are shown in Figure 27 (a). The

nanowires are rendered non-superconducting by a magnetic field ~B = Bẑ (where |B| >

0.2 T) applied perpendicular to the heterointerface. The magnitude of R21 varies with B

and is antisymmetric in the drive current I1. In frictional drag measurements, Rij is expected

to be symmetric about Ij = 0 as the interaction transfers momentum from the drive system
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Table 2: Triple-wire device parameters. Subscripts i and j represent nanowires used in a

configuration. Rij and Rji represent drag resistances measured from wire i and j,

respectively.

Config (3Aij) L (nm) d (nm) R2T,i (kΩ) R2T,j (kΩ) Rij (Ω) Rji (Ω)

3A12 1500 750 26− 41 26− 34 14 5

3A13 1500 1500 26− 41 29− 47 10 18

3A23 1500 750 26− 34 29− 47 8 30

to the drag system [33, 162, 82, 85]. Thus, when Ij changes sign, so should Vi. One possible

origin of antisymmetric Rij is an induced thermopower effect in the drag wire from Joule

heating in the drive wire. But this possibility can be ruled out because the drag voltage

is expected to scale as I2, causing the drag resistance to scale linearly with I, which is not

what we observe. The fact that Rij is antisymmetric with respect to Ij indicates that the

inversion symmetry of the nanowires is broken somewhere and that quantum shot noise in

the drive wire is primarily responsible for the drag voltage V2 [85].

3.3.2 Separation dependence

In order to help identify the electron–electron interactions responsible for frictional drag

in this system, we have created several devices with differing L and d, as delineated in

Tables 1 and 2. The maximum values for |Rij| for the magnetic field range explored (0.2 T

≤ B ≤ 9 T) are plotted as a function of nanowire separation d (Figure 27 (b)). Circle and

square markers represent double-wire and triple-wire devices, respectively. Square markers

are composed of red, blue, and black segments that represent the arrangement of drive, drag,

and grounded wires, respectively. For example, a circle marker with blue on top corresponds

to a measurement of R12 in a double-wire device and a square one with the color blue,

black, and red from top to bottom corresponds to a measurement R13 for a triple-wire

device. As shown in Figure 27 (b), the electron–electron interactions between the drive and
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Figure 27: Magnetic-field and separation dependence of drag resistance in non-Coulombic

frictional drag. (a) Top panel, drag resistance R21 as a function of bias current I1 and

magnetic field B (Device 2F in Table 1). Bottom panel, line profiles of R21 at B = −7 T

(black), −4.6 T (green), and −2 T (red). (b) Drag resistance Rij as a function of d in the

normal-state regime in double- and triple-wire devices. Circle and square markers represent

double- and triple-wire devices. Red, blue, and black represent drive, drag, and grounded

wire, respectively. The relative position of the three colors corresponds to the measurement

configuration in the device

drag nanowires exhibit large variations with little if any explicit dependence on the nanowire

separation d. Since the experiments are performed in a nonequilibrium regime where there is

a bias across the drive wire and a magnetic field is applied, the well-known Onsager relations
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do not necessarily apply. Thus, Rij can be quite different from Rji. The unusual scaling

with distance would be a significant departure from the expected behavior if the Coulomb

interaction were responsible for the drag resistance. In the case when a Coulomb interaction

gives rise to a drag voltage in coupled nanowires, Raichev and Vailopoulos predict that

Rij ∝ e−4kF d/κ2, where kF ∼(10nm)−1 is the Fermi wave vector, and κ = 4πε with ε > 10000

being the dielectric constant of STO [100, 122]. Such an exponential decay with distance is

absent in our measurements. Moreover, the exceptionally large dielectric constant of STO

(and proximity to an incipient ferroelectric instability) should lead to a suppression of Rij by

several orders of magnitude smaller compared with those measured in similar devices formed

from other material systems [33, 162, 82]; however, no such reduction is found. The weak

scaling with separation and the insensitivity to the large dielectric constant of STO indicate

that the electron–electron interactions responsible for frictional drag are non-Coulombic in

nature.

3.3.3 Triple-wire device results

In order to further explore the nature of the long-range interactions leading to frictional

drag, experiments with three parallel nanowires are investigated in detail. Schematics for two

configurations (Figure 28 (a,b)) yield measurements of R12 and R13, respectively (Figure 28

(c,d)), as a function of drive current and magnetic field. A comparison of R12 and R13 allows

for the nanowire separation to be varied within a single device, and simultaneously probes

the impact of introducing a central, grounded screening wire (for the case of R13). Both the

pattern and the magnitude of R12 and R13 are nearly identical, despite d doubling (Figure

28 (e)). This result is consistent with the statistical findings summarized in Figure 27 (b).

The frictional drag for the R13 geometry is naively expected to be impacted by screening

from the central wire. Instead, there is no discernible screening effect. The triple-wire device

geometry also enables one to ascribe the origin of the unique magnetic signature of the drag

signal (i.e., Figures 27 (a) and 28 (c)) to the properties of the drag wire and not the source

wire.
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3.3.4 Temperature dependence

In 2D semiconductor drag systems, virtual phonon exchange was shown to be indepen-

dent of distance [52, 153, 154]. The phonon-mediated coupling of the drag and drive systems,

however, had a characteristic temperature scaling; the phonon-mediated drag is expected to

increase with increasing temperature [52, 104]. Figure 29 shows the typical temperature

dependence of frictional drag. The drag resistance decreases monotonically with increas-

ing temperature, becoming negligible for T > 500 mK. This temperature dependence is

inconsistent with phonon-mediated frictional drag reported for 2D systems.

3.4 Conclusion

Frictional drag measurements between nanowires created on the LAO/STO heteroint-

erface exhibit a strong, distance-insensitive coupling, which indicates a non-Coulombic in-

teraction. The temperature dependence of this effect is incompatible with other known

non-Coulombic interactions, such as virtual phonon exchange [52, 153, 154, 104]. While

these measurements do not specifically point to a particular coupling mechanism, there are

candidates worth considering. STO possesses a bulk cubic structure at room temperature

that is unstable to an anti-ferrodistortive transition to a tetragonal phase below T = 105

K [129]. The ferroelastic domain structure gives rise to domain walls, which are correlated

with anisotropic electronic phenomena observed at LAO/STO heterointerface [72]. Ferroe-

lastic domain walls are nominally insulating in bulk, but they are also reported to be polar

and mobile under applied electric fields. The coupling of ferroelastic strain states and local

surface potentials could potentially mediate long-range interactions through the insulating

near-surface bulk STO layer [61]. Long-range couplings, whether mediated through ferroe-

lastic domains or some other as-yet-unidentified mechanism, introduce a fascinating new

element to the celebrated electronic properties of this oxide interface.
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Figure 28: Triple-wire experimental data. (a), (b) Schematics of triple-wire frictional drag.

Drag voltage V1 is measured from wire 1 with current sourced in wire 2 and 3, respectively.

(c), (d) Drag resistance R12 and R13 corresponding to configurations in (a) and (b) plotted

as a function of B. (e) Line profiles at I2 and I3 = 40 nA in (c) and (d)
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Figure 29: Temperature dependence of drag resistance. R21 between T = 80 mK and

T = 740 mK at sourcing current I2 = −100 nA and B = −9 T (Device 2G). The drag

resistance becomes negligible above T = 500 mK for all of the devices investigated.
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4.0 Frictional Drag between Superconducting LaAlO3/SrTiO3 Nanowires

4.1 Introduction

The contents of this chapter represent a collaborative work published in Yuhe Tang,

Jung-Woo Lee, Anthony Tylan-Tyler, Hyungwoo Lee, Michelle Tomczyk, Mengchen Huang,

Chang-Beom Eom, Patrick Irvin, Jeremy Levy, Semiconductor Science and Technology, 35

(9), 09LT01 (2020) [147].

We report frictional drag measurements between two superconducting LaAlO3/SrTiO3

nanowires. In these experiments, a current passing through one nanowire induces a volt-

age across a nearby electrically isolated nanowire. The frictional drag signal contains both

symmetric and anti-symmetric components. The anti-symmetric component arises from the

rectification of quantum shot noise in the drive nanowire by the broken symmetry in the drag

nanowire. The symmetric component in the drag resistance is ascribed to the rectification

of thermal noise in the drive nanowire during the superconducting-normal transition. The

suppression of the symmetric component is observed when a normal nanowire is used as

either a drag or drive nanowire with the other nanowire superconducting. The absence of

the symmetric drag resistance between a normal drag nanowire and a superconducting drive

nanowire suggests a higher electron-hole asymmetry in the superconducting LaAlO3/SrTiO3

nanowire arising from the 1D nature of superconductivity at the LaAlO3/SrTiO3 interface.

SrTiO3 (STO) has long attracted interest as a superconducting semiconductor [133, 90,

112]. Recently, interest in the superconducting properties of STO was revived by the de-

velopment of STO-based heterostructures and nanostructures and with the LaAlO3/SrTiO3

(LAO/STO) system [111] in particular. The LAO/STO two-dimensional interface supports

superconductivity, which is electrostatically gateable, and various transport techniques have

been used to study the superconductivity at the interface [125]. The superconducting transi-

tion temperature (Tc) has a dome shape as a function of carrier density, which is controllable

via a back gate [21]. With the use of conductive atomic force microscope (c-AFM) lithogra-

phy, nanoscale control over the conductance of the LAO/STO interface is possible. This tech-
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nique relies on AFM tip-controlled protonation or deprotonation of the LAO surface, which

enables the creation of a wide variety of quantum-confined structures, including supercon-

ducting nanowires [157], ballistic 1D electron waveguides [1], and single-electron transistors

[27, 28]. These mesoscopic devices, drawn from a well-established toolset of quantum trans-

port, often exhibit surprising new properties due to the unique physics of the STO interface

such as electron pairing without forming superconductivity [28]. Recently by studying the

superconductivity in LAO/STO nanowires of different widths and numbers, it is discovered

that superconductivity exists at the boundary of nanowires and is absent within the interior

region of nanowires, which indicates the 1D nature of superconductivity at the LAO/STO

interface [112].

Coulomb drag [104], or more generally frictional drag, first proposed by Pogrebinskii

[116], has proven to be a powerful technique to study electron transport and electronic

correlations. When two electrical conductors are placed in close proximity, a current driven

through one (“drive”) conductor may induce a voltage (or current) in the second (“drag”)

conductor. Frictional drag measurements have mostly been carried out between normal-state

conductors in coupled 2D semiconductor systems [50, 51, 53, 139, 40], graphene systems

[88, 84], 1D semiconductor systems [33, 162, 82], 1D complex oxide systems [148], and

quantum dot systems [74]. Frictional drag in the superconducting regime has been carried

out in normal-metal-superconductor systems [46, 65] and the phenomenon is explained by

the local fluctuating electric field induced by mobile vortices in the superconducting layer

[136] or Coulomb coupling between two conductors [73, 37]. There are, to our knowledge,

no prior reports of frictional drag between two quasi-1D superconductors.

Previously-reported frictional drag experiments at the LAO/STO-based nanowires have

shown surprising results, particularly in the high magnetic field regime [148]. The drag

resistance is anti-symmetric, indicating that the drag resistance arises via rectification of

quantum shot noise in the drive nanowire due to the broken inversion symmetry of the

drag nanowire [85]. Remarkably, the drag resistance shows little to no dependence on the

separation between nanowires (up to ∼ µm scales). This unusual scaling strongly indicates

that non-Coulombic interactions dominate the coupling between these nanowires.

Here we report frictional drag experiments between two LAO/STO superconducting
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nanowires. The drag resistance contains a mixture of symmetric and anti-symmetric com-

ponents and the symmetric component disappears whenever one nanowire is normal and

the other is superconducting. The anti-symmetric component arises for the same reasons as

in the high B regime. The symmetric component is ascribed to the rectification of thermal

noise in the drive nanowire during the superconducting-normal transition. Suppression of the

symmetric drag component, when a normal nanowire is used as the drag nanowire, suggests

the existence of a higher electron-hole asymmetry [102] in the superconducting LAO/STO

nanowires arising from the 1D nature of superconductivity at the LAO/STO interface.

4.2 Experimental Methods

- - - - -
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Figure 30: Superconducting frictional drag experimental setup. (a) Side-view of the

nanowire fabrication process. A nanowire is created at the LAO/STO interface between two

Ti/Au electrical contacts with c-AFM lithography. Protons (+) patterned on the surface

by the AFM tip attract electrons (−) to the interface forming a nanowire (green area). (b)

Top-view schematic of the double nanowire device with length L, width w, and nanowire

separation d. The setup measures the induced drag voltage V1 across nanowire 1 created by

the current I2, which is induced by the application of a voltage VS2 across nanowire 2.
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Nanowire devices are ‘sketched’ on LAO/STO heterostructures using c-AFM lithography

[22] (Figure 30 (a)). LAO/STO heterostructures with an LAO thickness of 3.4 unit cells are

grown by pulsed laser deposition (PLD). Further details of the sample growth and the device

fabrication process are described elsewhere [18]. The width of the nanowires used for these

experiments is approximately w = 10 nm, as quantified by erasure experiments [22]. Other

device parameters include the separation between nanowires d and the nanowire length L.

Here we focus on two sets of parameters: d = 40 nm and L = 400 nm (Device 2B, Figure 31)

and d = 40 nm and L = 300 nm (Device 2J, Figure 34). To investigate frictional drag at the

LAO/STO interface in the superconducting regime, the magnitude of B is kept below 0.3

T and the temperature less than 100 mK (except for temperature-dependent measurements

that explicitly go above T = 100 mK).

In a frictional drag experiment, a voltage Vi in nanowire i is induced by a current Ij

in nanowire j (Figure 30 (b)). All nanowires are connected to the same ground during the

measurement. The current Ij is produced by applying a voltage VSj = VDC + VAC cosωt

to one end of nanowire j; the resulting AC components current Ij(ω) and induced voltage

Vj(ω) at frequency ω are measured using a lock-in amplifier. The resistance may then be

expressed as a matrix Rij = dVi/dIj = Vi(ω)/Ij(ω), which is generally a function of the DC

drive current Ij (as well as other parameters such as temperature T and applied magnetic

field ~B). The off-diagonal terms that define the drag resistance Rij characterize the mutual

friction between electrons in the drive and drag nanowires. A standard low ω technique

is used with the typical ω around 7 Hz. We varied ω from 2 to 14 Hz and did not find

the ω scaling of Rij. In order to ensure that the drag resistances Rij are not influenced by

current leakage between the two nanowires, all measurements are performed well below the

inter-wire breakdown voltage (∼ 10 mV) measured for each device.
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Figure 31: Temperature and magnetic-field dependence of the drag resistance and

two-terminal resistance in superconducting frictional drag. (a) T dependence and line

profiles of two-terminal resistance R2T, 2 from nanowire 2. Top panel, T dependence of

R2T, 2. Bottom panel, line profiles of R2T, 2 at 50 mK and 400 mK. (b) B dependence and

line profiles of R2T, 2. (c) T dependence and line profiles of drag resistance R12 from

nanowire 1. (d) B dependence and line profiles of R12. T dependence experiments in (a)

and (c) are performed at 0 T. B dependence experiments in (b) and (d) are performed at

80 mK.
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4.3 Results and Discussion

4.3.1 Frictional drag between two superconducting nanowires

Typical frictional drag resistance measurements in the superconducting regime are shown

in Figure 31. T dependence experiments in Figure 31 (a) and (c) are performed at 0 T. B

dependence experiments in (b) and (d) are performed at 80 mK. Both nanowires in De-

vice 2B show signatures of superconductivity [157, 112]. As shown in the bottom panels of

Figure 31 (a) and (b), nanowire 2 displays three superconducting-normal transitions with

critical current Ic defined as the location of the peaks in R2T,2 [157]. The first is at ±20

nA, the second at ±110 nA, and the third at ±140 nA. Non-vanishing resistances in super-

conducting nanowires are common and are attributed to normal hot spots below Ic [150] or

quantum phase slips [45]. Besides, the smallness of nanowire width (w ∼ 10 nm) can make

the difference between superconducting and normal resistances even smaller due to phase-

slip mechanisms [83]. The superconducting-normal transition at ±20 nA arises from the

nanowire since it shows up both in R2T, 2 and four-terminal resistance R22 and the transition

at ±110 nA and ±140 nA arises from wires connecting the nanowire and electrodes since

it only shows up in R2T,2 (Figure 32). The drag resistance R12 is greatly enhanced in the

superconducting regime, as shown by examining both the temperature-dependence (Figure

31 (c)) and the magnetic-field dependence (Figure 31 (d)). The nature of R12 in the super-

conducting regime is qualitatively different from the high magnetic field regime (where the

nanowires are not superconducting). In the high magnetic field regime, the drag resistance

Rij is anti-symmetric [148] with respect to the sourcing current, while the superconducting

response is asymmetric with drive current. The superconducting Rij is mostly symmetric

between I2 = ±40 with two tiny dips at ±10 nA. As the magnitude of I2 increases, an

anti-symmetric component starts showing up in Rij and Rij becomes asymmetric.

4.3.2 Symmetric and anti-symmetric components analysis

The appearance of asymmetric R12 (Figures 32 (c) and (d)) in the superconducting

regime is correlated with the superconductivity in the drive nanowire 2 (Figure 32 (a) and
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Figure 32: Two-terminal and four-terminal resistances of a superconducting nanowire. Top

panel: Four-terminal resistance R22 and superconducting-normal transition from the

nanowire only shows up at small bias from ±20 nA. Bottom panel: Two-terminal

resistance R2T, 2. Besides the superconducting-normal transition at small bias, extra

superconducting-normal transitions show up at larger bias ±110 nA and ±150 nA.

Superconducting-normal transitions at larger bias come from wires connecting the

nanowire and electrodes.
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Figure 33: Symmetric and anti-symmetric components of drag resistance in

superconducting frictional drag. (a) Typical symmetric and anti-symmetric components of

drag resistance from Device 2B. Top panel: Two-terminal resistance R2T,2 of drive

nanowire. Middle panel: Symmetric component of drag resistance RS
12. Bottom panel:

Anti-symmetric component of drag resistance RA
12. Dashed lines pinpoint locally strongest

drag resistance in RS
12 (b) d dependence of maximum symmetric and anti-symmetric

components of drag resistance from different samples. d ranges from 40 nm to 1.5 µm. Top

panel: Symmetric component RS
ij as a function of d. Bottom panel: Anti-symmetric

component RA
ij as a function of d.
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(b)). To further understand the frictional drag in the superconducting regime, we extract

symmetric and anti-symmetric components by RS
ij(I) = (Rij(I) + Rij(−I))/2 and RA

ij(I) =

(Rij(I)−Rij(−I))/2. R2T, 2, RS
ij, and RA

ij are shown in the top, middle, and bottom panels

of Figure 33 (a). Dashed lines pinpoint the locally strongest drag resistance in RS
12. As

shown in Figure 33 (a), the locally strongest RS
12 shows up around the superconducting-

normal transition represented by peaks in R2T, 2 in the drive nanowire 2 accompanied by

the locally strongest RA
12. The nature of the coupling between nanowires for RS

ij and RA
ij is

still unknown. But according to devices with d ranging from 40 nm to 1.5 µm, both RS
ij and

RA
ij persist over large separations and are nearly independent of d (Figure 33 (b)). Since the

e−4kF d behavior is not observed in both RS
ij and RA

ij, where kF ∼(10nm)−1 is the Fermi wave

vector, the Coulomb coupling can be ruled out as the dominating effect [122].

4.3.3 Frictional drag between a superconducting and a normal-state nanowire

We examine the drag resistance from devices with one superconducting nanowire and

one normal nanowire to corroborate that the symmetric component of drag resistance is

related to the superconducting-normal transition in the drive nanowire. The superconducting

properties of LAO/STO are known to be gate-tunable both in 2D geometries [124] and in 1D

[157, 112]. There are known inhomogeneities in electron density which most likely arise from

the underlying ferroelastic domain structure [106]. While we cannot independently control

the carrier density of one nanowire while keeping the second fixed, we can select devices in

which one nanowire shows superconducting behavior and the other does not. Figure 34 shows

the typical data from Device 2J. As illustrated in Figure 34 (a), green-colored nanowires are

superconducting, while black nanowires are in the normal-state. The information about

the state of the nanowires is inferred from two-terminal resistance measurements (Figure

34 (b)). We then can compare the frictional drag as sensed by nanowire 1 due to two

configurations–one in which one device contains a superconducting section and one in which

the other does not.
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Figure 34: Schematic of frictional drag between one superconducting and one normal-

state nanowire. (a) Schematic of the device with normal-state nanowire. Black sections in 

nanowire 2 are normal; green sections in nanowire 2 and 1 are superconducting. (b) Left: 

Two-terminal resistance of nanowire 2 measured between B and C. Superconductivity 

arises from the green portions as shown in panel (a). Right: Two-terminal resistance of 

nanowire 2 between A and D where the whole nanowire is in the normal-state.

4.3.3.1 Normal-state nanowire as the drive nanowire

First, we consider the configuration where superconducting nanowire 1 is the drag 

nanowire and examine the influence of drive nanowire’s state on drag resistance, as shown in 

Figure 35 (a). When both the drive and drag nanowires are superconducting, the drag 

resistance R12 is asymmetric with a large symmetric component (Figure 35 (b) left). 

However, when the drive nanowire is normal, the drag resistance is mostly anti-symmetric 

with a negligible symmetric component (Figure 35 (b) right).

The symmetric component of drag resistance showing up around the superconducting-
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Figure 35: Frictional drag with a superconducting drag nanowire and a normal-state drive

nanowire. (a) Measurement configurations when nanowire 2 is used as the drive nanowire.

(b) From top to bottom panels: Drag resistance R12, its symmetric and anti-symmetric

components RS
12 and RA

12. Left and right panels correspond to the measurement

configurations in (a).

normal transition in the drive nanowire can be explained by the rectification of the ther-

mal noise in the drive nanowire [85]. When a superconducting nanowire undergoes a

superconducting-normal transition, the nanowire’s resistance increases. This process gener-

ates thermal energy, which in turn gives rise to a large thermal noise and a greatly enhanced

symmetric component of drag resistance. For the normal nanowire, therefore there is no sig-
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nificant enhancement of the thermal noise, and the symmetric component of drag resistance

remains small at all biases across the drive nanowire.

The rectification of thermal noise in the drive nanowire also explains the strong corre-

lation between RA
12 and RS

12. RA
12 comes from the rectification of the shot noise in the drive

nanowire [148]. Shot noise is a non-equilibrium phenomenon depending on the voltage bias

across the drive nanowire [85]. During the superconducting-normal transition in the drive

nanowire, the change of drive nanowire’s resistance changes the bias across different portions

of the nanowire, thus inducing quantum shot noise and the anti-symmetric drag resistance

is observed simultaneously with the symmetric drag resistance.

4.3.3.2 Normal-state nanowire as the drag nanowire

The symmetric component in drag resistance is also strongly suppressed when the drag

nanowire is in the normal-state. As shown in the left panel of Figure 36 (a), when the drag

resistance is measured between B and C of nanowire 2, the drag resistance R21 is asymmetric

with a large symmetric component (Figure 36 (b) left). However, when the drag resistance is

measured between A and D, the drag resistance is anti-symmetric with a negligible symmetric

component (Figure 36 (b) right). Since the drive nanowire 1 is superconducting in both

configurations, the absence of the symmetric drag resistance component with a normal drag

nanowire cannot be ascribed to the absence of thermal noise in the drive nanowire. The fact

that the symmetric drag resistance measured from a superconducting drag nanowire is larger

may be explained by the symmetric drag resistance depends on the electron-hole asymmetry

in the drag nanowire [104], and the electron-hole asymmetry is stronger in superconducting

nanowire than normal nanowire. Electron-hole symmetry is more easily broken in low-

dimensional devices [102, 85]. It is reported that the superconductivity at the LAO/STO

interface is 1D in nature, situated at the boundary of the nanowire, and is absent within the

interior region of the nanowire [112]. Thus the overall dimension of the nanowire is reduced as

it becomes superconducting compared to a normal nanowire due to the formation of the 1D

superconducting boundary. This reduced dimension of the nanowire gives rise to a stronger

electron-hole asymmetry. Therefore the symmetric component of drag resistance is stronger
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Figure 36: Frictional drag with a superconducting drive nanowire and a normal-state drag

nanowire. (a) Measurement configurations when nanowire 2 is used as the drag nanowire.

(b) From top to bottom panels: Drag resistance R21, its symmetric and anti-symmetric

components RS
21 and RA

21. Left and right panels correspond to the measurement

configurations in (a).

when it is measured in a superconducting drag nanowire.

4.4 Conclusion

In summary, frictional drag between superconducting LAO/STO nanowires exhibits a

strong and highly symmetric component in drag resistance, which is distinct from the anti-
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symmetric drag resistance between LAO/STO nanowires in the normal-state. The sym-

metric component arises from the rectification of thermal noise in the drive superconducting

nanowire based on the fact that it shows up at the vicinity of superconducting-normal transi-

tion in the drive nanowire and disappears when the drive nanowire is normal. The symmetric

component in drag resistance also disappears when the drag nanowire is normal, which can

be attributed to the 1D nature of superconductivity in LAO/STO systems.
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5.0 Frictional Drag between LaAlO3/SrTiO3 Nanowires and Electron

Waveguides

5.1 Introduction

Frictional drag experiments described in Chapters 3 and 4 are performed with regular

nanowires with multiple conducting channels in the high magnetic field or superconducting

regimes. A better understanding and control of nanowires in the frictional drag experiment

can be beneficial. One of the most important advancements in the lab is the capability of

fabricating electron waveguides which exhibit quantized ballistic transport and the subband

structure is well understood by lateral and vertical spatial quantum numbers as well as the

spin degree of freedom. The conductance of the electron waveguide can be tuned by side gate

voltages to populate different subbands, which may allow to gain access to the real 1D regime

and achieve a Luttinger liquid. Previously in semiconductor systems, frictional drag exper-

iments between ballistic quantum nanowires with quantized conductance have shown drag

signals correlated with the subband structure and are attributed to the enhanced electron-

hole asymmetry when a new subband is populated [81, 32]. By tuning the conductance of

a quantum nanowire below the first conductance plateau, the drag resistance is found to

increase as the temperature decreases, which suggests the formation of a Luttinger liquid in

the quantum wire [82].

Frictional drag with electron waveguides at the LaAlO3/SrTiO3 interface can be more

interesting because of the attractive electron-electron interaction and exotic Pascal electron

liquid phase showing up in the electron waveguide. In this chapter, we present frictional

drag experiments between a regular nanowire and an electron waveguide. Frictional drag

with a short electron waveguide is qualitatively similar to the frictional drag between two

regular nanowires in both high magnetic field and superconducting regimes. The correlation

between the frictional drag and long electron waveguide is observed when the long electron

waveguide is used as the drag nanowire. However, when the long electron waveguide is used

as the drive nanowire, no correlation is observed between the frictional drag and the subband
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structure.

5.2 Experimental Methods

Figure 37 shows the schematic of a frictional drag device involving one electron waveguide

and one regular nanowire. The device also consists of a round shape side gate which applies

voltage Vsg to tune the chemical potential µ of the electron waveguide. The main reason

why devices with two parallel electron waveguides are not written is that the side gate tunes

both electron waveguides simultaneously therefore we can not control the chemical potential

of each electron waveguide independently. As a result, the device with coupled electron

waveguides usually operates at a state where one electron waveguide is in the quantized

conductance regime (G ∼ 1e2/h) while the other one is highly conducting (G � 2e2/h)

functioning like a regular nanowire. Therefore we focus on the device with one electron

waveguide and one regular nanowire instead. The electron waveguide is defined to be wire 1

and the regular nanowire is defined to be wire 2 with corresponding lengths L1 and L2. Data

presented in this chapter comes from two devices. Device 1 has a short electron waveguide

L1 = 400 nm and a regular nanowire L2 = 800 nm with a separation of d = 600 nm. The

regular nanowire of Device 2 has the same length as Device 1 namely L2 = 800 nm but with

longer electron waveguides. Parameters for Device 2 are L1 = 4.5 µm and d = 1 µm.

The measurement is performed by sourcing current in one nanowire and measuring the

induced voltage in the other nanowire. Use the measurement configuration in Figure 37 as

an example. Since the electron waveguide is defined to be wire 1 and the regular nanowire is

defined to be wire 2, when applying a voltage VS1 = VDC +VAC cos(ωt) on the electron waveg-

uide, the resulting AC components current I1(ω) and induced voltage V2(ω) at frequency ω

are measured using a lock-in amplifier. Thus R21 = V2(ω)/I1(ω) is the drag resistance mea-

sured from the regular nanowire and R11 = V1(ω)/I1(ω) is the four-terminal resistance of

the electron waveguide. By varying VDC, R21 and R11 can be expressed as a function of

the DC component in drive currents I1. In order to ensure that the drag resistances Rij

are not influenced by current leakage between the electron waveguide and regular nanowire,
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Figure 37: Schematic of frictional drag between one electron waveguide and one regular

nanowire. The electron waveguide is defined to be wire 1 and the regular nanowire is

defined to be wire 2. Correspondingly, the length of the electron waveguide is L1 and the

regular nanowire L2. The separation between them is d. The chemical potential of the

electron waveguide is tuned by the side gate voltage Vsg. In the figure, the current I1 is

sourced in the electron waveguide by voltage VS1. The four-terminal voltage across the

electron waveguide is V1 and the induced drag voltage measured from the regular nanowire

is V2.
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all measurements are performed well below the inter-wire breakdown voltage (∼ 10 mV)

measured for each device. All experiments are performed at a temperature T < 100 mK.

ΔVsg

ΔV1
1

0.5

1.5

2

Figure 38: Finite bias transconductance analysis. The data shown here comes from Device

2. Dark areas mark the conductance plateau. Quantized conductance numbers are labeled

accordingly. Bright areas mark where a subband opens. The lever-arm ratio α =

e∆Vsd/∆V1. Here ∆Vsd = 300 µV and ∆V1 = 52.5 mV.

The gate voltage Vsg can be converted to the chemical potential µ by the lever-arm α,

which can be obtained through the finite-bias transconductance data. I-V curves are taken

under different Vsg across the electron waveguide. At each Vsg, the four-terminal conductance

G11 = dI1/dV1 of the electron waveguide can be obtained as a function of the four-terminal

voltage V1 across the electron waveguide. As shown in Figure 38, the transconductance at

different biases V1 can be obtained from dG11/dVsg. Lever-arm α = e∆Vsg/∆V1, where the

four-terminal voltage difference ∆V1 and the side gate voltage ∆Vsg difference mark the same

transition between adjacent bands. α of Device 1 is around 4.17 µeV/mV and α of Device
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2 is around 5.71 µeV/mV.

5.3 Results and Discussion

5.3.1 Frictional drag with the short electron waveguide

(a) (b)

B = 9 T

B = 0 T

Figure 39: Four-terminal conductance and transconductance of the short electron

waveguide from Device 1. (a) Zero-bias four-terminal conductance G11 of Device 1 as a

function of chemical potential µ. B ranges from 0 to 9 T. (b) Transconductance dG11/dµ

as a function of B and µ. The bright band marks the crossing of a subband and the dark

area marks the conductance plateau

Device 1 has a short electron waveguide with L1 = 400 nm. The four-terminal conduc-

tance G11 and transconductance dG11/dµ are shown in Figure 39. Figure 39 (a) displays G11

from B = 0 T to 9 T with an interval of B = 0.18 T. The conductance is larger at B = 0 T

due to the superconductivity. At −9 T, the first spin-polarized conductance plateau shows

up at ∼ 0.5 e2/h instead of 1 e2/h. This suggests the existence of backscattering processes.

The subband structure of the electron waveguide is captured by examining dG11/dµ. Bright
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band marks the Fermi energy crossing a subband and the dark area marks the conduc-

tance plateau. We can see subbands get populated as the chemical potential of the electron

waveguide increases and electrons remain pair until B = 5 T.

To explore the effect of the subband structure, we first study the frictional drag as a

function of µ. Figure 40 shows the frictional drag as a function of µ at B = 9 and 0 T.

At B = 9 T, the negatively saturated R12 below ∼ 0.4 meV shows up when the electron

waveguide is not conducting and still in a pinch-off state therefore frictional drag does not

exist. As µ increases, R12 is anti-symmetric (Figure 40 (a) bottom panel) through the whole µ

range during the experiment without much variation as a function of µ. The anti-symmetric

drag resistance is qualitatively the same as what is observed between two regular nanowires

in the high magnetic field regime (B > −0.2 T) and is attributed to the rectification of

quantum shot noise in the drive nanowire by the broken symmetry in the drag nanowire

[148]. Two representative R12 line profiles at I2 = 0 and 32 nA are picked to compare with

the transconductance dG11/dµ of the electron waveguide. However, it is hard to find the

correlation between R12 and the subband structure represented by dG11/dµ partly due to

the smallness of R12. The frictional drag with the electron waveguide as the drive nanowire

is also explored, as shown in Figure 40 (b). Similar to R12 shown in Figure 40 (a), R21 is

also anti-symmetric through the whole µ range without much variation as a function of µ

except R21 is larger at low µ. The larger R21 at low µ is expected since drag resistance tends

to be larger when either the drive or drag nanowire is more resistive according to Eq. 3.

According to R21 at DC current I1 = 0 and 68 nA, R21 does not show much correlation with

the subband structure of the electron waveguide as well. Therefore, the phenomenon that

the drag resistance peaks when the chemical potential crosses a subband bottom in the drive

quantum wire is not observed as reported in earlier experiments [33, 81].

Frictional drag as a function of µ is also studied at B = 0 T from Device 1 (Figure 40

(c, d)). The negatively saturated R12 below 0.2 meV shows up when the electron waveguide

is not conducting. Both R12 and R21 are asymmetric with respect to the sourcing current,

similar to the frictional drag between regular superconducting nanowires. Asymmetric drag

resistance consists of symmetric and anti-symmetric components. The symmetric drag re-

sistance component, which is not observed in the high magnetic field regime, is ascribed to
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9 T

0 T

(a) (b)
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Figure 40: Frictional drag as a function of µ from Device 1 with a short electron waveguide

device. (a) and (b) are measured at 9 T. (c) and (d) are measured at 0 T. (a), (c) R12

measured from the electron waveguide at 9 and 0 T, respectively. Bottom panel:

Representative line profiles of R12 as a function of I2 at values of µ pointed by horizontal

arrows of the corresponding color. Left panel: Zero-bias dG11/dµ (blue) at the

corresponding B and line profiles of R12 as a function of µ at I2 pointed by vertical arrows

of the same color. The red arrow points to the zero sourcing current. (b), (d) R21 measured

from the regular nanowire.
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the rectification of thermal noise around the superconducting-normal transition in the drive

nanowire [147]. R12 as a function of µ is different when µ < 0.75 meV. This is manifested

when comparing line profiles of R12 at I2 = 0 and 50 nA with dG11/dµ. Below 0.75 meV,

R12 shows some correlation with the subband structure. However, from the intensity graphs

in Figure 40 (c), the rest of R12 when µ > 0.75 meV and R21 shows the same drag resistance

features through the whole range of µ without much correlation with the subband structure

of the electron waveguide.

Besides sweeping µ at different B, sweeping B at different µ is also performed to study

the subband structure effect on the frictional drag (Figure 41). µ = 0.50 and 1.74 meV are

picked corresponding to G11 = 0.5 and 2 e2/h at B = 9 T. Both R12 and R21 are magnetically

tunable and anti-symmetric with respect to the sourcing current (bottom panels in Figure

41). R12 and R21 at different µ show little variation despite the change of drag resistance’s

magnitude. The drag resistance is smaller at µ = 1.74 meV compared to µ = 0.50 meV

because both the electron waveguide and the regular nanowire are more conducting. By

comparing R12 and R21 at different biases with dG11/dµ (left panels in Figure 41), no clear

correlation is observed between the drag resistance and the subband structure of the electron

waveguide, whether it is used as the drive or drag nanowire.

Overall, the frictional drag observed between a short electron waveguide and a regular

nanowire is qualitatively the same as what is observed between two regular nanowires and is

independent of the subband effect of the electron waveguide. However, this is not surprising

because the frictional drag at the LaAlO3/SrTiO3 interface is not sensitive to the separation

between two nanowires [148, 147]. The insensitivity to the interwire separation suggests the

frictional drag depends on the whole nanowire ∼ 30 µm including leads, instead of only the

nanowire or the electron waveguide ∼ 1 µm in the main device section.

5.3.2 Frictional drag with the long electron waveguide

Due to the shortness of the electron waveguide, it is hard to tell the contribution of the

electron waveguide from the influence of the leads. Therefore, the frictional drag with a long

electron waveguide is also performed whose electrical transport property is more determined
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1.74 meV

(a) (b)
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Figure 41: Frictional drag as a function of B at µ = 0.50 meV and 1.74 meV from Device 1

with a short electron waveguide device. (a), (c) R12 measured from the electron waveguide

at µ = 0.50 meV (a) and 1.74 meV (c). Left panel: Line profiles of R12 at I2 = 0 (red) and

40 nA (green) compared with dG11/dµ at the corresponding µ (blue). Bottom panel: Line

profiles of R12 at B = 6 (green) and 2 T (black). (b), (d) R21 measured from the regular

nanowire at µ = 0.50 meV (b) and 1.74 meV (d). Left panel: Line profiles of R12 at I2 = 0

(red) and 40 nA (green) compared with dG11/dµ (blue). Bottom panel: Line profiles of R12

at B = 6 (green) and 2 T (black).
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by the electron waveguide due to the larger length. In the long electron waveguide frictional

drag experiment, the length L2 of the regular nanowire is kept unchanged and the same

as the frictional drag with a short electron waveguide. First, since the frictional drag is

separation independent, it is not necessary to make the parallel part of the regular nanowire

the same length as the electron waveguide. Second, the longer regular nanowire makes the

parallel part longer and it is more likely to cause leakage between the electron waveguide

and the regular nanowire.

(a) (b)

B = 0T

B = 9T

Figure 42: Four-terminal conductance and transconductance of the long electron waveguide

from Device 2. (a) Zero-bias four-terminal conductance G11 of Device 2 as a function of

chemical potential µ. B ranges from 0 to 9 T. (b) Transconductance dG11/dµ as a function

of B and µ.

Due to the advancement of the electron waveguide fabrication technique, the electron

waveguide as long as ∼ 10 µm can be written which presents well-observed quantized con-

ductance plateaus. The electron waveguide in Device 2 is 4.5 µm. Figure 42 (a) shows G11

from B = 0 T to 9 T as a function of µ. At 9 T, the first plateau shows up at G11 = 0.8

e2/h and the second one at 1.5 e2/h. Despite the imperfect quantized conductance value, the

subband structure in the transconductance dG11/dµ as a function of B and µ is well resolved

with high contrast between bright bands and dark areas throughout the whole measurement

range (Figure 42).
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Figure 43: Gating voltage ratio of the long electron waveguide frictional drag. (a)

Experimental configuration for the gating voltage ratio β characterization. (b)

Four-terminal conductance G11 of the electron waveguide as a function of Vsg and VS2. β is

the slope of the white line with equal G11 given by β = ∆Vsg/∆VS2. (c) Drag resistance R12

as a function of Vsg and VS2 before correction. (d) R12 after the correction.

As shown in Figure 43 (c), the drag resistance in the long electron waveguide frictional

drag is anti-symmetric but in a tilted direction. This is because both the regular nanowire 2

and the side gate are tunning the chemical potential of the long electron waveguide as they

apply voltages during the experiment. A positive bias applied across the regular nanowire

increases the chemical potential of the electron waveguide and can be offset by a smaller side
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gate voltage to decrease the chemical potential. Therefore the drag resistance is tilted so

that the feature at a positive bias shows up at a smaller side gate voltage compared to the

corresponding anti-symmetric feature at a negative bias.

The gating ratio between the side gate and bias across the regular nanowire can be

characterized by the experimental configuration shown in Figure 43 (a) which simulates the

frictional drag configuration where the regular nanowire 2 is used as the drive nanowire.

To characterize the zero-bias conductance of the electron waveguide, VS1 = VAC cos(ωt) is

applied with typical VAC = 100 µV . DC voltages are applied and varied on Vsg and VS2. The

typical four-terminal conductance of the electron waveguide G11 as a function of Vsg and VS2

is shown in Figure 43 (b). The gating ratio can be obtained from the slope of a line with

equal G11 (white line). The ratio β is calculated as β = ∆Vsg/∆VS2, which is around 3.5 for

Device 2. The tilted drag resistance (Figure 43 (c)) can be corrected by keeping the Vsg of

drag resistance at VS2 = 0 mV unchanged and shifting the Vsg at bias VS2 by ∆Vsg = βVS2.

As shown in Figure 43 (d), after the correction, the drag resistance becomes anti-symmetric

as observed before [148]. All data shown in this section is after the correction.

Figure 44 shows the drag resistance as a function of µ and sourcing current at B = 9,

3, and 0 T. First, we focus on the configuration where the electron waveguide is used as

the drag nanowire and the regular nanowire is used as the drive nanowire. At B = 9 T

and 3 T, where there is no superconductivity, R12 is antisymmetric with sourcing current

I2 (bottom panels of Figure 44 (a) and (c)). Besides the anti-symmetry with respect to I2,

the magnitude of R12 also varies with the chemical potential µ, which is not observed in

Device 1 with a short electron waveguide. To further study the µ dependence, a linecut

at a chosen non-zero bias (red arrow) is taken to compare with dG11/dµ at the same B

(left panels of Figure 44 (a), (c)). The overall magnitude of R12 decreases with increasing

µ due to the electron waveguide becoming more conducting. Different from the frictional

drag with a short electron waveguide, R12 measured from the long electron waveguide is well

correlated with dG11/dµ. R12 shows a peak when a subband opens and dG11/dµ reaches a

peak; R12 becomes zero at the quantized conductance plateau where dG11/dµ is close to zero

and reaches a local minimum. This correlation is not surprising since compared to a short

electron waveguide, the transport property of the nanowire between two interface electrodes
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is more determined by the long electron waveguide. At B = 0 T, R12 is asymmetric with

I2 and the symmetric component in R12 can be observed at I2 ∼ 110 nA. The correlation

between R12 and dG11/dµ is also observed at B = 0 T. The R12 is larger at µ < 0.2 meV

therefore it is easier to observe the correlation between R12 and dG11/dµ. As µ increases,

R12 decreases and gets close to zero, which makes the correlation with dG11/dµ difficult to

observe.

When the electron waveguide is used as the drive nanowire and the regular nanowire is

used as the drag nanowire, the drag resistance R21 shows qualitatively the same behavior as

observed in the frictional drag with a short electron waveguide. From the horizontal linecuts

at selected µ, R21 is anti-symmetric with respect to the sourcing current I1 at B = 9 T

and 3 T and asymmetric at B = 0 T (bottom panels in Figure 44 (b), (d) and (e)). As

µ increases, the pattern of R21 remains approximately the same despite it expands as the

electron waveguide becomes more conducting, resulting in features showing up at larger I1.

R21 as a function of µ can be captured from vertical linecuts at zero or non-zero I1. R21

at I1 = 0 nA is around zero throughout the whole µ range while R21 at non-zero I1 shows

small and non-zero values which decreases with the increasing µ. As shown in left panels of

Figure 44 (b), (d), and (e), no correlation between R21 and dG11/dµ is observed whether at

zero or non-zero I1. Therefore, R21 measured with the long electron waveguide being used

as the drive wire shows no subband effects.

It is reported that the frictional drag between two quantum wires peaks when a subband

opens in either the drive or drag quantum wire [81, 32]. Although R12 is observed to peak

when a subband opens, R21 shows no correlation. This is because while the electron waveg-

uide exhibits quantized ballistic transport, the transport property of a regular nanowire is

not ballistic or quantized. Therefore the frictional drag with one electron waveguide and one

regular nanowire is not in the regime of the frictional drag between two quantum wires. In

fact, despite the correlation between R12 and subbands when the long electron waveguide is

used as the drag nanowire, overall phenomena observed in the frictional drag between a long

electron waveguide and a regular nanowire suggests it is in the same regime as the frictional

drag between coupled regular nanowires. The anti-symmetric drag resistance is explained by

the rectification of quantum shot noise in the drive nanowire by the broken symmetry in the
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drag nanowire. Thus the asymmetry of the electron waveguide and the subband structure

may be correlated, and the asymmetry reaches a maximum when a new subband opens,

resulting in the correlation between R12 and the subband structure.

5.4 Conclusion

In summary, frictional drag experiments are performed between an electron waveguide

and a regular nanowire. In the frictional drag with a short electron waveguide, no subband

effects are observed, no matter when the short electron waveguide is used as the drive or

the drag nanowire. In the frictional drag with a long electron waveguide, when the electron

waveguide is used as the drag nanowire, the drag resistance shows a correlation with the

subband structure; when the electron waveguide is used as the drive nanowire, the drag

resistance shows no correlation with the subband structure. Frictional drag experiments can

benefit a lot from the capability of tunning two nanowires independently, thus allowing us

to explore the regime between two electron waveguides with quantized ballistic transport

and even access the real 1D-1D frictional drag regime. One possible route is to increase the

separation between two electron waveguides further so that the side gate can tune the closer

electron waveguide more effectively without affecting the further electron waveguide.
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Figure 44: Frictional drag as a function of µ from Device 2 with a long electron waveguide

device. The first, second, and third rows are measured at 9, 3, and 0 T, respectively. (a),

(c) and (e) R12 measured from the electron waveguide. Bottom panel: Representative Line

profiles of R12 as a function of I2 at µ pointed by horizontal arrows of the corresponding

color. Left panel: Zero-bias dG11/dµ (blue) at the corresponding B and line profiles of R12

as a function of µ at I2 pointed by vertical arrows of the corresponding color. The green

arrow points to the zero sourcing current. (b), (d) and (f) R21 measured from the regular

nanowire.
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6.0 Mott-Limited Thermopower of Pascal Electron Liquid Phases at the

LaAlO3/SrTiO3 Interface

6.1 Introduction

LaAlO3/SrTiO3 heterostructures exhibit a wide range of physical properties and associ-

ated quantum transport phenomena. We investigate the electrical and thermoelectric trans-

port properties of quasi-one-dimensional (1D) electron waveguides at the LaAlO3/SrTiO3 in-

terface at milli-Kelvin temperatures. We find a highly enhanced and oscillating thermopower

for these electron waveguides, with values exceeding 100 µV/K in the electron-depletion

regime. The Mott relation, which governs the band term thermopower of non-interacting

electrons, agrees well with the experimental findings in and around regimes where strongly

attractive electron-electron interactions lead to a previously reported Pascal series of con-

ductance explained by bound states of n = 2, 3, 4,.. electrons. These results pave the way for

quantized thermal transport studies of emergent electron liquid phases in which transport is

governed by quasiparticles with charges that are integer multiples or fractions of an electron.

The heterointerface between the complex oxides LaAlO3 and SrTiO3 provides a highly

versatile platform to study electronic correlations in low dimensions. A rich variety of elec-

trically tunable properties have been observed in experiments that probe the behavior in two

spatial dimensions, including superconductivity [124, 21], magnetism [17], and tunable spin-

orbit interactions [20, 135]. Many unusual aspects of the transport in 2D appear to originate

from naturally forming quasi-one-dimensional (1D) ferroelastic domain boundaries [108, 72].

These behaviors include highly anisotropic magnetoresistance, enhanced conductance along

ferroelastic domain boundaries, and quantum oscillations whose Luttinger count disagrees

sharply with Hall effect estimates of electron density [29]. The importance of quasi-1D trans-

port at the LaAlO3/SrTiO3 interface has been increasingly realized due to the deployment of

various spatially resolved probes, including scanning squid microscopy [72], scanning single-

electron transistor microscopy [61], and scanning force microscopy coupled with transport

[112].
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Artificially created 1D electronic nanostructures have proven useful in teasing out the

physics that is due to 1D versus 2D behaviors. Using conductive atomic force microscope (c-

AFM) lithography, LaAlO3/SrTiO3 heterostructures that are on the verge of an insulator-to-

metal transition [149] can be made locally conductive by charging the surface (with protons)

at room temperature [18]. This form of modulation doping tetragonally distorts the conduc-

tive regions, “seeding” the formation of z -oriented ferroelastic domains at low temperatures.

This results in conductive nanostructures that exhibit signatures of superconductivity [157],

electron pairing outside the superconducting phase [28], ballistic quantized electron trans-

port [1], and other exotic phases in 1D such as a Pascal series of conductance [16] associated

with transport governed by bound states of n = 2, 3, 4,. . . electrons. Further nanoscale engi-

neering of these electron waveguides leads to experimentally observed fractional conductance

plateaus, which may be signatures of electron fractionalization.

Thermal transport techniques offer opportunities for obtaining further insights into the

full phase diagram of these rich 1D systems. Here we describe thermopower measurements

of electron waveguides which show ballistic transport and also exhibit signatures of a Pascal

series of conductance steps associated with strong, attractive electron-electron interactions.

We find a highly enhanced and oscillating thermopower with values exceeding 100 µV/K

in the electron-depletion regime. The thermopower is directly correlated with the subband

structure of the electron waveguide and well described quantitatively by the Mott relation

with no adjustable parameters. Our findings set the stage for thermal conductance measure-

ments which may be able to quantitatively measure the charge of emergent Pascal phases.

6.2 Experimental Methods

The electron waveguides are fabricated at the LaAlO3/SrTiO3 interface using c-AFM

lithography. With 3.4 unit cells of LaAlO3 grown on the TiO2-terminated SrTiO3 substrate,

the LaAlO3/SrTiO3 interface is initially insulating. The interface is contacted electrically

by depositing titanium and gold in lithographically defined areas that are etched below the

LaAlO3/SrTiO3 interface, as illustrated in Figure 45 (b). Positive voltages applied between
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the c-AFM tip and the LaAlO3/SrTiO3 interface locally protonate the top LaAlO3 surface

and accumulate conducting electrons in SrTiO3 near the LaAlO3/SrTiO3 interface, thus

defining the nanowire for electron conduction, while negative voltages locally restore the

insulating phase, as illustrated in Figure 45 (a, b). The sketched quantum wire system

consists of a main channel. The nominal width of the main channel is w = 10 nm quantified

by erasure experiments [22] and the total length is Lc = 1.2 µm, contacted by five terminal

leads and one side gate. The main channel contains two narrow barriers (with nominal width

LB = 10 nm) that are separated by a distance of Ls = 0.6 µm, as illustrated in Figure 45

(c). The side gate supplies a controlled voltage Vsg that tunes the chemical potential µ of the

quantum wire and the number of accessible quantum channels. Note that the two barriers

with appropriate widths are essential to make the chemical potential of the quantum wire

tunable by the side gate voltage, which would otherwise be impossible if there is only one

or none of the barriers, or the barriers are either too wide or too narrow. The relationship

between Vsg and µ, governed by the so-called lever-arm ratio α ≡ dµ/dVsg, is determined as

α = 8± 0.2 µeV/mV for our Device A and 6.4± 0.2 µeV/mV for our Device B through the

analysis of non-equilibrium conductance. Novel properties such as electron pairing without

superconductivity [28], tunable electron-electron interactions [29], and Shubnikov-de Haas-

like quantum oscillations [26] have previously been revealed by studying quantum transport

in similarly designed nanostructures.

The four-terminal electrical conductance G of the quantum wire is first measured at a

temperature of T = 80 mK as a function of the side gate voltage Vsg and corresponding

chemical potential µ, in magnetic fields ranging from −9 T to 9 T. Specifically, as illustrated

in Figure 45 (c), a sinusoidal source voltage of VS sin(ωt) with VS = 100 µV and ω/2π =

3.156 Hz is supplied on terminal 1 while terminal 2 acting as the drain is grounded; the

amplitudes of both the alternating current on terminal 2 (I2) and the voltage difference

between terminals 3 and 4 (V4T) at the same frequency ω are measured using a lock-in

amplifier. The conductance of the quantum wire is determined as G = dI/dV = I2/V4T.

The thermopower (the absolute value of Seebeck coefficient S) of the same quantum wire

is through a different experimental configuration, see Figure 45 (d). The thermopower is

defined as the electric field generated by a temperature gradient in the absence of any charge
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Figure 45: Schematics of the experimental device and measurement configurations. (a)

Schematic diagram of the four-terminal quantum nanowire at the interface of

LaAlO3/SrTiO3 heterostructure created using conductive atomic force microscope (c-AFM)

lithography. (b) A side view of the sample showing the c-AFM-sketched quantum nanowire

located at the interface of the LaAlO3/SrTiO3 heterostructure. (c, d) Experimental designs

for the four-terminal conductance and thermopower measurements, respectively.

current. To measure the thermopower, a temperature difference ∆T is generated between

two ends of the quantum wire by applying a sinusoidal source voltage of VS sin(ωt) to terminal

1 and another voltage of aVS sin(ωt) to terminal 5, with VS = 100µV , ω/2π = 3.156 Hz, and

a being finely tuned so that no current can flow through the quantum wire even when the

quantum wire is conductive and terminal 2 is grounded, as shown in Figure 45 (d). We thus

have supplied a heating current at frequency ω flowing from terminal 1 to terminal 5 without

superimposing any potential difference between the two ends of the quantum wire. This

current at frequency ω generates an alternating heat source at frequency 2ω on the left side
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of the quantum wire due to Joule heating (P = I2R), which in turn induces a temperature

modulation at the same frequency 2ω on the left side of the quantum wire. Terminal 2 is

kept floating so that no closed-circuit current can flow through the quantum wire. Since

electrons with higher temperatures have lower chemical potentials, the temperature gradient

in the quantum wire drives the cold electrons to the hot side until this thermal imbalance is

counteracted by an induced thermovoltage Vth, thus defining the thermopower S = dVth/dT .

Since the temperature difference fluctuates at frequency 2ω, the thermovoltage Vth generated

by the Seebeck effect should also have the same frequency of 2ω, which is measured using

a lock-in amplifier between terminal 3 and 4. In Figure 45 (c) and (d), V4T and Vth are

represented by V1ω and V2ω according to reference frequencies.

Generally, the thermopower S is the sum of two terms, the electronic term Se and the

phonon-drag term Sph that is generated by the coupling of electrons with diffused phonons.

In linear response, the electronic term Se is given by the Mott relation [31, 70] as:

Se = lim
∆T→0

Vth
∆T

= −π
2

3e
k2
BT

d

dµ
lnG (10)

where ∆T = Te − Tl is the temperature difference that generates the thermovoltage Vth.

6.3 Results and Discussion

6.3.1 Characterization of the electron waveguide

Quantized conductance steps are observed with the conductance increasing with chemi-

cal potential by steps of roughly an integer multiple of the unit conductance G0 = e2/h. The

observed conduction plateaus can be explained by Landauer quantization for which the total

conductance G depends on the number of available quantum channels, G = (e2/h)
∑

i Ti(µ),

where each energy subband available at the chemical potential µ contributes one quantum

of the conductance e2/h with transmission probability Ti(µ). The subband dispersion of the

LaAlO3/SrTiO3 quantum wire can be revealed by examining the transconductance dG/dµ

as a function of µ and external magnetic field B, which is shown in Figure 46 (b, d). The
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transconductance peaks (bright areas) mark the boundaries where new subbands become

available, and the subbands are separated by dark areas (dG/dµ → 0) where the conduc-

tance is highly quantized. Some more interesting features of the band structures of the

LaAlO3/SrTiO3 quantum wire are also manifested from the transconductance. For exam-

ple, several branches are sometimes locked together and then spread apart again, as shown

in Figure 46 (b, d). The locking behavior can be accounted for by introducing attractive

electron-electron interactions within the waveguide [1]. At some magnetic fields (such as

B = ±4 T for Device A and ±6 T for Device B), multiple locked subbands contribute to the

total conductance together, resulting in a sequence of conductance plateaus which follows a

characteristic sequence within Pascal’s triangle: (1, 3, 6, 10 . . . )·e2/h. This demonstrates

the existence of the Pascal phase [16] in the electron waveguide formed from bound states

of 2, 3, 4, . . . electrons with attractive electronic interactions.

Transport of electrons through the quantum wire is also highly ballistic, which is de-

termined by the relationship between two length scales, the device length scale L and the

elastic scattering length L0. These two length scales can be related to the conductance as

G = G0 exp(−L/L0), with the assumption of exponential decay of the conductance with

device length. Since the conductance G of our quantum wire has been measured to be very

close to G0 (G > 0.9G0 for both devices) when the first subband is occupied (which cor-

responds to the location of the first minimum in the transconductance), there should be

L0 > 10L = 6µm, indicating that the system enters a quantized ballistic regime.

6.3.2 Thermopower measurement

The Mott relation states that the thermovoltage Vth should be linearly proportional to

the energy derivative of the logarithmic conductance d(lnG)/dµ. To check whether the Mott

relation holds for LaAlO3/SrTiO3 electron waveguides, we compare the measured Vth and

d(lnG)/dµ at different T and B and in different devices. At T = 100 mK, thermopower

measurement is taken from Device A at B = 0.5 T (Figure 47 (a)) and 3.5 T (Figure 47

(b)); At B = 6 T, thermopower measurement is taken from Device B at T = 100 mK

(Figure 47 (c)) and 400 mK (Figure 47 (c)). The measured Vth is found to compare very well

93



Figure 46: Characterization of quantum wires in thermopower experiments. (a, c)

Zero-bias conductance of the quantum nanowires (Devices A and B) as a function of

chemical potential µ and magnetic field B in the range 0− 9 T at T = 80 mK. (b, d)

Transconductance map dG/dµ as a function of chemical potential µ and magnetic field B

at T = 80 mK showing the band structure of electrons in the c-AFM-sketched

LaAlO3/SrTiO3 quantum nanowires.

with d(lnG)/dµ, irrespective of the device, B or T . As T increases, features attributable to

the subband structure governing the electrical conductance G, dG/dµ, and d(lnG)/dµ are

94



th
th

Figure 47: Thermovoltage measurement of Device A. Top panels: Four-terminal

conductance G and transconductance dG/dµ as a function of chemical potential µ. Bottom

panels: Vth and d(lnG)/dµ. (a) and (b) are taken from Device A at T = 100 mK and

B = 0.5 and 3.5 T, respectively. (c) and (d) are taken from Device B at B = 6 T and

T = 100 and 400 mK, respectively

thermally broadened. The measured thermovoltage Vth also shows muted oscillatory features

but still compares well with d(lnG)/dµ. The thermovoltage as a function of the side gate
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voltage reaches a local maximum every time the conductance changes from one plateau to

the next, and has a dip corresponding to each plateau of the conductance. Similar features

have also been observed on quantum point contacts [120, 38, 2], where the thermopower

as a function of the gate voltage also shows a peak every time the conductance plateau

changes from one subband to the next. The excellent agreement between Vth and d(lnG)/dµ

confirms the validity of the Mott relation (Eq. 10), and furthermore allows us to deduce the

(gate-dependent) temperature difference between the two sides of the quantum wire as:

Te − Tl =

√
T 2
l

4
+

1

−π2

3e
k2
B

Vth
d
dµ

lnG
− Tl

2
(11)

Figure 48 (a) shows the corresponding electron temperatures, calculated using Eq. 11.

We notice that the calculated temperature difference Te−Tl reduces to zero as the quantum

wire is tuned to the insulating state, which, however, is not realistic, as the temperature

difference should still exist even when the quantum wire is insulating. This apparent dis-

agreement can be explained by a space-charge effect proposed by Mahan [97, 98], who stated

that the thermovoltage should instead read as Vth = −S∆Tf , where f is the dielectric screen-

ing function and approaches zero as the electron density approaches zero (being insulating).

Therefore, the measured thermovoltage being zero does not necessarily require the Seebeck

coefficient S or the temperature difference ∆T to vanish. The temperature difference derived

in the insulating regime is ignored and we only focus on the conducting regime.

The temperature difference of the quantum wire in the conducting regime exhibits os-

cillations. The Seebeck coefficient of the quantum wire can be determined from Eq. 10,

with the results plotted in Figure 48 (b). The negative sign of S confirms the electrons as

energy carriers. The magnitude of the Seebeck coefficient S (the thermopower) increases

dramatically as the quantum wire being tuned to the electron-depletion regime, reaching

as high as 400 µV/K for Device A at only T = 0.1 K. The magnetic fields do not have a

significant effect on the thermopower S.

The Mott relation also predicts that the thermopower S should be linearly proportional

to the temperature. To test if this is true for our electron waveguide, we measure the ther-

mopower of Device B in a magnetic field of B = 6 T at different temperatures ranging from

100 to 400 mK. Results are plotted as a function of the normalized electrical conductance
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Figure 48: Derived electron temperature and Seebeck coefficient. Electron temperature Te

(a) and Seebeck coefficient (b) S of the quantum wire (Device A) as a function of chemical

potential µ at different magnetic fields B = 0.5 and 3.5 T.

G/G0, as shown in Figure 49 (a). We find that overall, the thermopower increases with

temperature. At a low temperature of 100 mK, the thermopower has sharp local minimums

(dips in the plot) when the conductance reaches plateaus (G/G0 = 1,3,..). As the temper-

ature increases, these dips are smeared out, analogous to dG/dµ being smeared out at a

higher temperature (Figure 48 (d)). S shown in Figure 49 (a) suggests different tempera-

ture dependencies depending on whether G of the electron waveguide is at a conductance

plateau. To further explore this point, S at representative G values are plotted as a function

of T with both S and T axes in log scale (Figure 49 (c)). It can be observed that S at

conductance plateaus G = 1 and 3 e2/h are parallel to each other with a T 2 dependence

while S at conductance values between plateaus is also parallel to each other but with a T 0.5

dependence. This is also shown in Figure 49 (b), where the exponent m of the thermopower’s

T dependence is plotted as a function of G/G0.
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Figure 49: Thermopower as a function of T and G for Device B. (a) The measured

thermopower of Device B in a magnetic field of B = 6 T at T ranging from 100 to 400 mK

as a function of normalized electrical conductance G/G0. (b) Exponent m of the

thermopower’s T dependence as a function of G/G0. (c) Thermopower plotted as a

function of T at fixed G values and fittings showing their T dependences.

6.4 Conclusion

In conclusion, we have measured the field-effect electrical transport and thermoelectric

properties of quasi-1D electron waveguides at the LaAlO3/SrTiO3 interface at low temper-
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atures of 100 − 400 mK. We find an oscillating thermopower for the electron waveguide as

a function of the side gate voltage. The thermopower is well described by the Mott relation

and exhibits different T dependencies with the exponent varying from 0.5 to 2 depending on

whether the G of the electron waveguide is at a quantized conductance plateau. Our results

demonstrate the capability to study electronic structures of nanowires at the LaAlO3/SrTiO3

interface with the thermal transport technique. And due to the fascinating electronic phases

LaAlO3/SrTiO3 nanowires exhibit, it can further lead to the understanding of quantization

of thermal conductance and other exotic electronic phases in LaAlO3/SrTiO3 systems.
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7.0 Conclusions and Outlook

Electronic correlations in LaAlO3/SrTiO3 heterostructures give rise to a lot of uncon-

ventional physical phenomena and make this system rich in physics. The development of

c-AFM lithography enables the fabrication of nanodevices at the interface with reduced di-

mensionalities. Combining the rich physics and device fabrication capability of the interface,

transport experiments performed with nanowire-based nanodevices at the interface help to

reveal emergent electronic properties and the nature of electron-electron interactions in the

system. This makes STO-based complex oxide heterostructures continue to be a promising

candidate for next-generation nanoelectronic devices.

Not restricted to one single nanowire, in this dissertation, the frictional drag experiment

is performed which involves two closely spaced but electrically isolated nanowires. We ex-

plored frictional drag in high magnetic field regime, superconducting regime, and frictional

drag which involves an electron waveguide. In the high magnetic field regime and supercon-

ducting regime, the frictional drag reveals a non-Coulombic coupling between nanowires. In

the superconducting regime, the enhanced frictional drag suggests a reduced dimension in

superconducting nanowires because superconductivity is situated at the boundary between

the nanowire and insulating regime.

Results from the frictional drag suggest the potentially important role the ferroelastic

domain plays in the transport properties at LaAlO3/SrTiO3 interface. To further understand

the ferroelastic domain, one direction is using a low-temperature scanning probe microscope

to directly image the evolution of ferroelastic domains in a frictional drag experiment. An-

other direction is the frictional drag between coupled electron waveguides which allows to

further explore 1D electronic properties. Since the coupling is not sensitive to the separation

between nanowires, we can try further increasing the separation and scale up the device di-

mension with ultra-low-voltage electron-beam lithography (ULV-EBL) so that each electron

waveguide can be more independently tuned by the local side gate voltage.

Electronic properties at the LaAlO3/SrTiO3 interface are mostly explored by electrical

transport experiments in our group. However, thermal transport experiments can also pro-
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vide insights into electronic properties. In this dissertation, the Seebeck effect of an electron

waveguide is studied which paves the way for the study of electronic properties in electron

waveguides with the thermal transport technique. The Seebeck coefficient can be explained

by the Mott relation, which indicates the heat is carried by electrons. It would be inter-

esting to measure the thermal conductance of the electron waveguide which can provide

quantitative information on charges of emergent Pascal phases.

More broadly speaking, researches on LaAlO3/SrTiO3 interfaces can greatly benefit from

the rich physics at the interface and the capability to fabricate nanodevices at the interface

due to c-AFM lithography and newly developed ULV-EBL. A lot of explorations can be done

in both 1D and 2D physics. 1D physics can greatly benefit from the electron waveguide. The

advancement of the electron waveguide fabrication technique has lead to better control and

a deeper understanding of electronic properties in the electron waveguide. By modulating

the tip voltage or shape of the electron waveguide, more electron transport properties can

be achieved, which has great potential for controlling the spin of electrons and can lead to

the realization of spintronics and Majorana physics. Placing LaAlO3/SrTiO3 with other 2D

materials, more novel nanodevices can be produced. These complex heterostructures can

give rise to novel physical properties or allow us to study electronic interactions between

charge carriers with distinct natures. In terms of the fabrication techniques, ULV-EBL can

open new avenues for the exploration of physics at LaAlO3/SrTiO3 interfaces, which is able

to rapidly create complex nanostructures and study electronic properties at a large scale.
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