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In the concordance model of modern cosmology, dark matter is five times as abundant as

ordinary matter. While its nature remains one of the most challenging questions in today’s physics,

dark matter has been established as a defining factor in the large-scale structure. Visible galaxies

form in the potential wells of dark matter density peaks, known as halos. Empirical galaxy–halo

connection models, which reconstruct the observable components of the Universe from theory of

the dark sector, are broadly used for their simplicity and effectiveness. The fundamental premise

of empirical models is the statistical dependence of galaxy properties on halo properties, the latter

of which are easily accessible through simulations.

With tremendous amounts of data being produced by new surveys, theoretical tools need also

be further developed to exploit the full potential of data. In particular, small-scale observables,

which require detailed knowledge of halos and the connection between galaxies and halos, are a

promising source of information for constraining cosmology and galaxy physics. It is urgent and

important in the new era of precision cosmology to improve models of these factors.

This thesis aims to improve our understanding of dark matter halo evolution and the dependence

of galaxies on the halos inwhich they reside. In the first part, we investigate how the present-day halo

structure emerges from the halo mass assembly history, and characterize respective contributions

from pseudo-evolution and physical merger events. We uncover the significant impact of mergers on

the evolution of halo structure, and recognize universal patterns in mergers. These findings will also

shed light on the galaxy evolution in halos. In the second part, we test the validity of the simplifying

assumptions adopted in galaxy–halo connection models. We identify the optimal combination of

observable statistics that contain the most information on the galaxy–halo connection, and obtain

observational constraints on the model using these statistics. We observationally confirm that the

inclusion of galaxy count statistics significantly improves the constraining power, and find definitive

evidence that the galaxy–halo connection depend on secondary halo properties besides mass. These

results inform the physics of galaxy formation and evolution and cosmological inferences.
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I. Introduction

A. Background

1. Lambda-Cold Dark Matter Cosmology

The past century has witnessed dramatic development in our understanding of the Universe1.

In 1925, Edwin Hubble first showed that the Universe extends far beyond our Milky Way. In

1929, he found that galaxies recede from us with velocities linearly related to their distances, which

served as the definitive evidence that the Universe is not static, but expanding [78]. The subsequent

observation of the cosmic microwave background radiation and cosmic element abundances in the

1960s established the Hot Big Bang model as the standard model of cosmology. In 1981, Alan

Guth further proposed the inflation scenario [69], which solved the horizon problem and the flatness

problem in the model.

In the framework of the Big Bangmodel, the fate of the Universe is determined by its matter and

energy content. Following Fritz Zwicky’s study of the velocities of galaxies in the Coma Cluster

in 1933 [233], observations of satellite galaxy kinematics and galaxy rotation curves convinced the

community of the existence of dark matter in the 1970s. In the 1980s and 1990s, the cold dark

matter (CDM) paradigm, where dark matter consists of massive exotic particles, together with the

introduction of dark energy, which drives the expansion of space, became the most widely accepted

description of the Universe by successfully predicting numerous observational phenomena. While

the fundamental nature of either dark matter or dark energy remains unknown, observation shows

that they are the major components of the Universe. Ref. [142] inferred that dark energy makes

up approximately 68.7% of the total energy density, dark matter approximately 26.4%, whereas

ordinary baryonic matter only contributes approximately 4.9%.

This concordance model is known as the “ΛCDM” model, where Λ represents dark energy,

which acts as a cosmological constant. The analyses in this thesis are based on the ΛCDM model.

1For a more complete account of the history of cosmology, see, for example, Ref. [124]
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2. Large Scale Structure and Dark Matter Halos

While the Universe is isotropic and homogeneous in general, inflation leaves the density field

with small perturbations. These initial perturbations evolve linearly, until overdensities break away

from the expansion of the Universe and collapse under gravity, and underdensities become voids.

The power spectrum of matter is a decreasing function of scale, and nonlinear collapse happens

on smaller scales first. Matter collapses triaxially to form sheets, filaments, and clusters; smaller

objects then merge to form larger ones hierarchically.

Dark matter halos are dense clusters of dark matter that are approximately virialized [39]. The

region that is approximately virialized typically has a density that is several hundred times the mean

matter density of the Universe, by which halo boundaries are often defined. One most commonly

adopted definition is the virial boundary [27], which depends on the cosmology and evolves with

time. In the hierarchical model, most of the mass in the Universe today is contained in halos,

rendering them the basic units for understanding the large-scale matter distribution. Halos trace the

underlying density field, and their clustering is a probe of cosmology and the large-scale structure.

However, halos only trace the field in a biased manner, in the sense that they cluster differently from

dark matter, and the bias needs to be understood in order to interpret the clustering statistics.

The clustering strength of halos has a strong dependence on halo mass [83, 123], with more

massive halos clustered more strongly together, i.e, having more bias. On the other hand, halo

clustering is also dependent on other properties of halos [205, 60, 104], though the effect is

much weaker than the mass dependence. The most commonly studied halo properties include

concentration, spin, age, etc. Halos found in simulations can be described by an approximately

universal mass profile –– the Navarro, Frenk and White (NFW) [130, 131, 132] profile, where the

density d(A) ∝ A−1 in the inner halo and d(A) ∝ A−3 in the outer halo. The concentration parameter

characterizes the scale of the dense core relative to the entire halo. Halo spin quantifies the rotation

of halos. Halo age is a measure of when halos form, and has multiple definitions due to the fact

that halo formation is an extend process rather than an instantaneous event. Ref. [61] used the

term halo assembly bias to refer to the age dependence of halo clustering, but because many other

halo properties are also correlated with the assembly history of halos, this term is historically used

to refer to all secondary dependences of clustering strength on these halo properties. Ref. [118]

2



advocated referring to these dependences as the secondary halo biases instead.

3. Halos as Hosts to Galaxies

In the potential wells of dark matter halos, gas cools and condenses to form galaxies [208].

Galaxies reside in the halos where they form and evolve with them. In addition to the central

galaxy at the center of its potential well, a massive halo can host multiple satellite galaxies. These

satellite galaxies are associated with subhalos that orbit within the host, which are accreted through

mergers. We interpret observations by associating galaxies with halos, which trace the large-scale

structure.

As halos dominate the immediate environments of galaxies that they host, their properties also

dominate the number and properties of these galaxies. The connection between galaxies and halos

is of great interest to us, as it is at the intersection of cosmological theory and direct observables

from data. Galaxies trace halos, and hence the underlying matter field. While dark matter halos

cannot be directly observed, light signals from galaxies come in great abundance, and galaxies are

the major source of information on the large-scale structure of the Universe. However, the manner

in which galaxies populate and trace halos is nontrivial, and we only have imperfect knowledge of

it. To make cosmological inference from galaxies, the galaxy–halo connection must be properly

modeled and marginalized over. Also, knowledge of the statistical connection between galaxies

and their host halos informs how galaxies form and evolve in their environments.

The galaxy–halo connection is understood in terms of the dependence of galaxy number

and properties on halo properties. Traditionally the primary halo property that is considered

to determine galaxy occupation is halo mass, where more massive halos host more galaxies.

Other properties that quantify the sizes of halos, such as the maximum circular velocity, which

characterizes the depth of the potential well, can also serve as the primary property. However, as

galaxies co-evolve with halos, it is natural to speculate that their properties depend on the evolution

process of halos, and other halo properties that reflect this evolution. The secondary dependence of

galaxy properties on halo properties other than mass is termed the galaxy assembly bias, which has

not yet been definitively detected in data. Galaxy assembly bias is a major subject of this thesis, and

we will look further into it in later chapters. In particular, we will attempt to answer the question
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of whether or not the properties of galaxies depend upon properties of halos other than mass.

B. General Methodology

Due to the complexity of cosmology and astrophysics, the wide range of scales that are

involved, and the stochasticity in physical processes, a large part of modern cosmology research

is of numerical, empirical, and statistical nature. Mock universes are created through numerical

simulation, empirical models are built to reconstruct more detailed aspects, and predictions are

compared against observational data in a statisticalmanner. In this section, I give a brief introduction

of each part of this process, focusing on the methods related to the galaxy–halo connection.

1. Numerical Simulations

In studying dark matter halos and galaxies, numerical simulations of different levels of com-

plexity are used (see Ref. [197] for a recent review). There are two main categories of cosmological

simulations: #-body simulations that simulate the gravitational evolution of structure, and hydro-

dynamical simulations that further simulate the baryonic physics of galaxy formation and evolution.

Simulations start from initial conditions at a high redshift, and are evolved to the present day, with

the expansion of space dictated by dark energy.

#-body simulations (e.g., Ref. [171, 169, 87]) are often referred to as dark matter-only simula-

tions, because they treat all mass like dark matter and consider gravitational interactions only. As

dark matter constitutes the majority of the mass in the Universe, #-body simulations capture the

main features of the large-scale structure. #-body simulations have the obvious merit of relatively

low computational costs. However, with computational resources that are currently available, there

is still a balance between the simulation volume and resolution2, and different choices suit different

needs. High-resolution simulations can be used to study the detailed substructure and evolution of

halos, whereas large-volume simulations provide better datasets for studying large-scale statistics.

2A recent series of papers [103, 135] explores the possibility of using machine learning approaches to rapidly
construct high-resolution simulations from large-volume, low resolution ones.
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Hydrodynamical simulations (e.g., Ref. [196, 160]), on the other hand, take into account various

aspects of baryonic physics, besides gravity. The baryonic physics considered include gas cooling,

star formation, supernovae feedback, active galactic nuclei feedback, magnetic fields, dust, etc.

Hydrodynamical simulations are computationally more expensive, and inevitably depend on many

simplifying assumptions, but provide a more realistic reconstruction of the Universe, and richer

mocks of galaxies. Comparison between hydrodynamical simulations and their dark matter-only

counterparts inform the connection between galaxies and halos.

2. Empirical Models

Because of the great complexity and uncertainty of the full physics of galaxy formation and

evolution, it is often difficult and costly to directly generate galaxies in mock universes. Instead,

the easy acquisition of halo catalogs from #-body simulations gives advantage to the empirical

approach that assign galaxies to halos based on halo properties3. The empirical approach is based

on the fact that galaxy properties have a statistical dependence on halo properties. The choice of

different statistical dependences leads to different flavors of empirical galaxy–halo connections (see

[203] for a recent review). The commonly used models include:

(1) Subhalo abundance matching (SHAM) [184, 36], where the rank order of one primary

galaxy property (such as luminosity) is matched to that of one primary halo property (such as

maximum circular velocity), with a possible scatter.

(2) Halo occupation distribution (HOD) [92, 230], where the number of central and satellite

galaxies in a halo are drawn from distributions with means determined by the halo’s mass. Ref. [74]

developed an extension to the model (the decorated HOD) that quantifies the effect of secondary

halo properties on the occupation. The work on galaxy–halo connection in this thesis is based on

the HOD and decorated HOD models, and a more detailed description is available in Chapter III.

(3) Conditional luminosity function (CLF) [215, 188], where not only the number of galaxies,

but also their luminosity distribution, is modeled from halo mass.

Despite their simplicity, empirical models have been able to explain observations to a large

extent, and provide physical insight into galaxy formation and evolution in halos, enabling straight-

3Besides hydrodynamical simulations and empirical models, there are also semi-analytical models, which analyti-
cally model physical processes along the merging history of dark matter halos.
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forward tests of the outcome of hydrodynamical simulations. In cosmological interpretation of

data, galaxy physics can be marginalized over through empirical models, which circumvents the

need to understand the numerous astrophysical details.

3. Observational Tests

Galaxy surveys cover sections of the sky, and observe galaxies in great quantities (e.g.,

Refs. [134, 108, 101, 2]). Spectroscopic surveys measure photon fluxes at different wavelengths,

and infer the redshifts of galaxies from the spectra; the redshifts are then used for estimating their

distances from us. Photometric surveys measure light in broader bands, and are thus able to detect

fainter objects, though the finer spectral features are not observed, and redshift estimates are much

less accurate.

Statistics of galaxy spatial distribution can be extracted from the survey catalogs, and used to

inform the galaxy–halo connection. Theoretical predictions and real data are compared through

these summary statistics. Different statistics aremeasured for galaxy populations selected by certain

criteria, and reflect different aspects of the galaxy distribution. Some of the statistics often used to

constrain galaxy–halo connection models are:

(1) Number densities of galaxies. The number density of a galaxy population reflects that of

the halo population in which they reside, which also constrains cosmological structure formation.

(2) Two-point correlation functions. A Gaussian field can be fully specified by its two-point

function, which is the Fourier transform of the power spectrum. Even in the present-day field that

deviates from Gaussianity, the two-point function still incorporates most of the field’s information.

The two-point function is the standard statistic used in most works for analyzing galaxy clustering.

(3) Weak lensing (galaxy–galaxy lensing). The extent to which light from background galaxies

is bent by the matter around lens galaxies reflects the mass profiles of the halos of the lens galax-

ies, and directly probes the galaxy–matter correlation. However, lensing suffers from numerous

systematics, which results in low signal-to-noise ratios.

(4) Count statistics or group statistics. Counts-in-cells statistics are in effect cheaper alternatives

of galaxy counts in individual halos (i.e., groups). These statistics probe higher-order information

of the field. Unlike the two-point function or weak lensing, which are measured in the average

6



sense, the full probability distribution of counts are analyzed. Coupled with the distribution of halo

properties, they can provide much insight into the galaxy occupation of halos.

(5) Void statistics. Instead of the other statistics that focus on overdensities, void statistics put

more weight on underdense regions of the Universe, and also embodies higher-order information

of the field.

(6) Satellite kinematics. The kinematics of satellite galaxies in halos directly measure the

potential wells of halos, but this approach is very much limited by our ability to categorize galaxies

as satellites and to associate them with centrals.

There are other summary statistics that can be measured from the galaxy distribution and used

to constrain the galaxy–halo connection, each with its own merits and limits.

C. Structure of Thesis

This thesis has three major components, below I outline the motivation and findings of each.

• Chapter II –– The galaxy–halo connection model is based on the intertwined evolution of halo

and galaxy properties. Halo concentration is a key halo property that characterizes the structure

of a halo; it is used in various theoretical and observational analyses, and is often treated as

a proxy for the halo assembly history. In this study, we examine the connection between halo

concentrations and their mass assembly histories with the Dark Sky Simulations. Upon finding

that traditional definitions of the formation time inevitably leave a considerable amount of the

scatter in concentration unexplained, we further investigate the details of halo mass assembly.

We stack and compare merging events between halos of similar masses (major mergers),

and find that they induce violent responses in the concentration. We observe remarkably

universal shapes and dynamical timescales in these responses, which can be associated with

the orbital dynamics of mergers. These effects are significant in scale compared to the scatter

in concentrations, and last for large fractions of the age of the Universe. We also examine

mergers between halos of significantly different masses (minor mergers) and showed that they

are similar but less dramatic. We demonstrate that the cumulative effect of major mergers and

frequent minor mergers leads to an irreducible scatter in concentration at fixed halo mass and
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fixed formation time, which is present even in halos with assembly histories that are typically

considered quiescent. These findings have profound consequences for semi-analytical and

analytical models of halo structure and galaxy formation, which depend on the mechanism of

halo profile evolution. These results also impact the interpretation of observations that rely

on the concentration–mass or concentration–formation time relations, such as strong lensing,

weak lensing, and satellite kinematics.

• Chapter III –– The empirical galaxy–halo connection is widely used to interpret observed

data in cosmological analyses and inform the physics of galaxy formation. It is therefore

crucial to make the correct assumptions in these models. While halo mass is the main factor in

determining how galaxies populate halos, evidence suggests that the galaxy–halo connection

depends on other halo properties. This effect, termed galaxy assembly bias, is a source of

significant systematic error in cosmological analyses. To conclusively detect or reject its

presence in the Universe, tighter constraints on galaxy assembly bias are required. In this study,

we develop techniques to better constrain the parameterized strength of galaxy assembly bias

in an empirical model which populates halos in N-body simulations with galaxies. We find that

the conventional combination of observables –– the projected two-point correlation function

Fp(Ap) and the galaxy-galaxy lensing signal ΔΣ(Ap) –– have largely common information

contents and do not complement each other. Therefore, we augment the set of observables with

higher-order statistics including the void probability function VPF(A), the counts-in-cylinders

statistic %(#CIC), and two novel count statistics that probe the immediate environments of halos.

As an improvement upon the previous state of the art, we conduct a comprehensive study of

the auto- and cross-covariance of all of the candidate statistics, accounting for various sources

of uncertainty. With this full covariance matrix and a careful treatment of the stochasticity

in the dependence of statistics on model parameters, we make a forecast of the constraining

power on assembly bias parameters from different combinations of statistics. We find that

each count statistic significantly outperforms ΔΣ(Ap) in complementing Fp(Ap), as they encode

the higher-order information of the field and cut through the constraints from the two-point

function Fp(Ap) in the parameter space. We therefore advocate the combined use of the two-

point function and count statistics as a probe for galaxy assembly bias. This observable set has

the potential to lead to the definitive detection of galaxy assembly bias.
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• Chapter IV ––We apply our findings from the previous study to data from the SloanDigital Sky

Survey (SDSS). To validate the use of a cubic simulation for fitting data measurement, we build

light cone mocks and cubic mocks with the same underlying galaxy–halo connection. In the

light cone mocks we implement the observational effects present in the SDSS catalog, including

geometry and fiber collision. We validate our measuring algorithms by testing that the cubic

box yields unbiased estimates of the light cone statistics that mimic SDSS observation. We

then make our own measurements of the complementary pair of observables –– the projected

two-point function and the counts-in-cylinders statistic –– in the SDSS catalog, and estimate

both the theoretical and observational covariances. We fit an empirical model that incorporates

galaxy assembly bias to our measurements using Bayesian inference methods. We get tighter

constraints on the galaxy–halo connection, in particular the galaxy assembly bias effect, than

preceding studies. We find definitive evidence for galaxy assembly bias in some samples.

These findings will in turn improve both the cosmological constraints from galaxy data and the

physical models of galaxy formation and evolution in halos.

Conclusions and implications are described in Chapter V.
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II. Halo Assembly and Halo Structure

This chapter is originally published as: Wang, K., Mao, Y.-Y., Zentner, A. R., Lange, J. U., van

den Bosch, F. C., Wechsler, R. H. (2020), Monthly Notices of the Royal Astronomical Society, 498,

4450.

Minor modifications have been made to the text. The inclusion of this article in this dissertation

is in compliance with the copyright policies of the journal.

The concentration parameter is a key characteristic of a dark matter halo that conveniently

connects the halo’s present-day structure with its assembly history. Using “Dark Sky”, a suite of

cosmological #-body simulations, we investigate how halo concentration evolves with time and

emerges from the mass assembly history. We also explore the origin of the scatter in the relation

between concentration and assembly history. We show that the evolution of halo concentration has

two primary modes: (1) smooth increase due to pseudo-evolution; and (2) intense responses to

physical merger events. Merger events induce lasting and substantial changes in halo structures, and

we observe a universal response in the concentration parameter. We argue that merger events are a

major contributor to the uncertainty in halo concentration at fixed halo mass and formation time.

In fact, even haloes that are typically classified as having quiescent formation histories experience

multiple minor mergers. These minor mergers drive small deviations from pseudo-evolution, which

cause fluctuations in the concentration parameters and result in effectively irreducible scatter in the

relation between concentration and assembly history. Hence, caution should be taken when using

present-day halo concentration parameter as a proxy for the halo assembly history, especially if the

recent merger history is unknown.

A. Introduction

In the concordance, ΛCDM cosmological model [91, 141, 143, 2], the formation of galaxies

and clusters proceeds hierarchically: smaller dark matter haloes are the first to collapse and these

haloes grow larger through mergers. Dark matter haloes form around peaks in the initial density
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field, and gas cools and condenses to form galaxies within the potential wells provided by these

haloes [208, 23]. The formation and evolution of haloes and galaxies are thus inextricably linked.

A key goal of developing a modern theory of structure formation has thus been to understand the

detailed connection between galaxy properties and the structure and assembly histories of the dark

matter haloes in which they form.

Contemporary computational hardware and algorithms enable large-volume, high-resolution,

gravity-only, #-body simulations of structure formation, as well as the rapid analysis of these

simulations [171, 88, 154, 87, 145, 76, 46]. Consequently, simulations have largely replaced

analytic models [147, 24, 162, 16, 39] as the primary framework for the interpretation of large-

scale structure measurements. In these analyses, dark matter haloes are considered the basic units

of nonlinear structure and observable statistics are computed by associating galaxies with haloes

using some physically-motivated, empirical model (see Ref. [203] for a recent review). Therefore,

an understanding of halo structure is necessary in order to interpret observations and to test models

of galaxy formation, cosmology, and/or the nature of the dark matter.

The most commonly accepted model for the density profiles of haloes is the two-parameter

profile defined by Navarro, Frenk, and White [130, 131, 132] (NFW hereafter),

dNFW(A) =
ds

(A/As) (1 + A/As)2
, (1)

where ds is the inner scale density, and As is the scale radius, which characterizes the transition

from d(A) ∝ A−1 in the inner halo to d(A) ∝ A−3 in the outer halo. Though refinements to the NFW

profile have been suggested [125, 55, 59, 129], the NFW profile successfully describes the general

structure of haloes found in simulations and has become the de facto standard halo profile.

It is now customary to quantify the relative concentration of a halo’s mass toward its center

using the concentration parameter:

2vir = 'vir/As, (2)

where 'vir is the halo’s virial radius. NFW discovered that the concentration parameter is a

decreasing function of halo mass. This is known as the concentration–mass relation, which has

since been extensively studied [28, 204, 113, 146, 111, 42, 51, 87, 33].

In addition to establishing the de facto standard density profile, NFW suggested a relationship

between halo concentrations and halo mass assembly histories, and this was quickly seized upon in
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subsequent studies. For example, Ref. [159] argued that violent relaxation, induced by the rapidly-

fluctuating gravitational potentials present during halo mergers, rearranges halo structure leading

to a nearly universal mass profile. Based on the framework first proposed by Ref. [132], Ref. [28]

quantitatively modeled halo concentration by relating it with an epoch of initial halo collapse that

sets the initial inner halo density. Ref. [204] (W02 hereafter) found a general functional form of the

mass assembly history (see also [189, 175, 119, 211, 191, 40]), and established a tight correlation

between halo concentration and the characteristic formation epoch, 02, at which d log"/d log 0

falls below a specified value of ( (W02 took ( = 4.1 for their primary results). Later works found

that, on average, the halo mass assembly history can be roughly divided into an early phase of fast

accretion that builds up the potential well, and a late phase of slow accretion that adds mass without

significantly changing the potential well [228, 105, 227]. In this scenario, the fast accretion phase

sets an approximately universal initial concentration, while the concentration only grows slowly

during the slow accretion phase. Moving beyond the one-parameter description characterized by

the concentration parameter, Ref. [109] studied the entire halo mass profile, and interpreted it in

terms of the entire halo assembly history, demonstrating a link between the two.

The physical nature of halo mass growth was further studied by Ref. [49], who distinguished

“physical evolution” from “pseudo-evolution," which refers to the increase in halo mass resulting

from the dilution of the background density rather than the coherent infall of matter associated

with mergers. The virial radius of a halo, 'vir, is typically defined as the radius of the spherical

region within which the average density is some multiple (the exact value depends upon the specific

analysis) of the mean density or critical density of the universe. As the universe expands and the

reference density dilutes, halo radii and halo masses grow even in the absence of any physical

mass accretion onto the halo. Pseudo-evolution increases halo radii, so it also proportionally

increases halo concentrations. In the majority of models proposed to explain the relation between

concentration and mass, and/or the relation between concentration and formation time, the scale

radii of haloes were assumed to be set during an initial stage of rapid mass acquisition. After this

initial phase, scale radii were typically assumed to be fixed or to evolve only slowly. In these models,

concentrations subsequently increase as haloes slowly acquire mass via mergers, smooth accretion1,

1In the present work we consider smooth physical accretion as the limit of minor mergers and do not treat it
separately.
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or pseudo-evolution, all of which increase 'vir while As is assumed to remain approximately fixed.

Differentiating between mass growth modes has had an important role in interpreting the evolution

of the concentration. Ref. [199], for instance, separated mergers that affect inner regions of haloes

from “diffuse” accretion during which the inner regions remain stable; this later effect in fact

includes pseudo-evolution. However, the assumption of a stable inner region and constant scale

radius would only hold if the halo has a perfectly quiescent assembly history. Ref. [105], for

example, found that the slow accretion phase is still dominated by minor mergers, which, as we

will show, can impact the scale radius.

The scatter around the mean relation between concentrations and mass assembly histories, and

the origin of such scatter, have also been of considerable interest. W02 demonstrated that a large

part of the scatter in the concentration–mass relation can be attributed to different formation times at

a fixed mass, but the remaining scatter in the relation of concentration and formation time prompts

further investigation. W02 and Ref. [113] found that the scatter in the concentration is reduced

when the haloes with recent mergers are excluded from the sample, which suggests that mergers

contribute to this scatter. Ref. [112] found that haloes identified when they are substantially out

of equilibrium, primarily due to mergers, experience oscillations in their concentrations. Ref. [99]

observed similar behavior in their phase-space analyses of haloes during post-merger relaxation.

This could result in a scatter in the concentration, depending on the time of measurement. It is also

natural to expect that, beyond the identification of a single proxy for the formation time of a halo,

the various details of mass assembly histories play a part in shaping halo structure. Ref. [133],

for instance, found evidence suggesting that halo concentration depends not only on the mass

assembly history of the halo, but also on the mass assembly histories of the haloes that merged to

form the final halo. A more recent study by Ref. [153] demonstrated that halo concentrations are

sensitive to both the smoothness of the merger history and the order in which mergers happen, by

generating versions of the same halo with different assembly histories (see also [156]). Ref. [81]

developed a model for predicting scale radii and hence concentrations, which takes into account the

entire structure of the merger tree, and were able to better capture the scatter than previous models

[110, 15].

In this study, we seek a detailed understanding of the relationship between the mass assembly

histories of haloes and their concentrations. We perform a systematic search to identify character-
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istics of the mass assembly history that can effectively predict present-day concentration. Various

summary statistics of the mass assembly history are highly correlated with the present-day con-

centration. In this work, we explore different ways to represent the mass assembly history to

further optimize such correlations. We then study the evolution of the concentration parameter, and

investigate how pseudo-evolution and merger events impact the evolution of concentration, both

for individual haloes and statistical samples. We study how mergers contribute to the scatter in the

relation between concentration and mass assembly history.

This chapter is organized as follows. In Section II.B, we describe the simulations we use and

specify the selection criteria for our samples. In Section II.C, we report the correlation between

halo concentration and mass assembly history that we find in our samples. The separate roles of

pseudo-evolution and physical growth in the evolution of halo concentration and halo scale radius

are examined in Section II.D. We discuss our findings and draw conclusions in Section II.E.

B. Simulation and Sample Selection

1. Simulation

In this work, we use the Dark Sky Simulations, a suite of cosmological, gravity-only simulations

[169]. The Dark Sky Simulations are run with the 2HOT code [201], adopting a flat cosmology

with ℎ = 0.688, Ωm = 0.295, =B = 0.968, and f8 = 0.834. We use two of the Dark Sky

Simulations: ds14_b and ds14_i. The ds14_b box has a volume of (1 ℎ−1 Gpc)3, with 102403

particles; however, the halo catalogs andmerger trees that we use are generated with a downsampled

version2 of ds14_b that has only 102403/32 ' 32253 particles, with an effective mass resolution

of 2.44× 109 ℎ−1 M�. The ds14_i box has a volume of (400 ℎ−1 Mpc)3, with 40963 particles, and

hence a mass resolution of 7.63 × 107 ℎ−1 M�.

Both simulations have outputs at 99 epochs:

0 = {0.06, 0.065, ..., 0.09, 0.095, 0.1, 0.11, 0.12, ..., 0.99, 1}.

The halo catalogs are generated by the Rockstar halo finder [13], using the virial definition

2Unfortunately, halo catalogs and merger trees of the full ds14_b simulation are not available due to computational
infeasibility.
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as the halo boundary, corresponding to a spherical overdensity of Δcrit, which takes the value of

100.46 at 0 = 1 in this cosmology, with respect to the critical density [27]. Throughout this study,

we use "vir as the halo mass and 2vir as the halo concentration, and we will omit the subscript “vir”

in places for brevity.

Rockstar identifies haloes in the six-dimensional phase-space, utilizing both position and

velocity information. This algorithm greatly improves performance in distinguishing subhaloes

and tracking merger events, compared with friends-of-friends algorithms that are based solely on

dark matter particle positions. Subhaloes are haloes with centers that fall within the the virial radius

of a larger halo, while haloes with centers that do not lie within the virial radius of any larger halo

are referred to as host haloes. In Rockstar, the scale radius, As, is directly fitted using a j2 fit of

the NFW profile. The particles associated with a halo are divided into up to 50 radial equal-mass

bins, with a minimum of 15 particles per bin, and radial bins that are smaller than 3 times the force

resolution scale are assigned a low weight in the estimation of j2, to suppress resolution effects at

small scales. The concentration is calculated from 2 = '/As, where ' is the halo radius. As most

halo finders do, Rockstar fits the radially averaged profile, and includes substructures in the fit.

It is reasonable to expect that the results of our analyses would be different if substructures were

removed from the profile. A lower bound is enforced on the fitted concentration, 2 ≥ 1. We have

tested that our conclusions do not rely on the fitting scheme, and are not affected qualitatively when

+max/+vir is used as a proxy for concentration [89].

The merger history is analyzed using the Consistent Trees merger tree builder [14]. At each

merger event, we refer to the merging halo that shares the most particles with the resulting halo,

as the main progenitor halo. Merger trees are constructed by tracing the evolution of a halo from

today backward in time. The main branch of the halo merger tree follows the main progenitor halo

at each merger event. We refer the interested reader to Ref. [13] and Ref. [14] for details.

2. Sample Selection

a. Present-day Mass Samples

We first study three host halo samples defined by present-day virial mass, around 1012ℎ−1 M�,

1013ℎ−1 M�, and 1014ℎ−1 M� respectively. The details of the selection are listed in Table II.1. We
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Present-day Mass Samples

Box "min "max Sample size

400 ℎ−1 Mpc 1012ℎ−1 M� 1.1 × 1012ℎ−1 M� 21099

400 ℎ−1 Mpc 1013ℎ−1 M� 2.0 × 1013ℎ−1 M� 14543

1 ℎ−1 Gpc 1014ℎ−1 M� 3.8 × 1015ℎ−1 M� 25438

Table II.1: Three present-day mass halo samples. We list the simulation box from which each

sample is selected, the lower and upper bounds of virial mass, and the resulting sample sizes.

choose to select the halo samples from different simulation boxes because the mass resolution of the

1ℎ−1 Gpc simulation does not suffice to resolve the internal structures of lower-mass haloes at early

times, while the number of cluster-size haloes in the 400ℎ−1 Mpc simulation is relatively limited.

Hereafter we will refer to these three samples as the 1012ℎ−1 M�, 1013ℎ−1 M�, and 1014ℎ−1 M�
samples.

b. Major Merger Samples

To examine major merger events and the impacts of these mergers on halo structure, we

identify the haloes that undergo major mergers in their main branches at the time step preceding

0 = 0.33, 0.50, 0.67 and 0.80, corresponding to redshifts of I = 2, 1, 0.5 and 0.25 respectively3.

Our sample selection is based on the major mergers identified by Consistent Trees, which defines

major mergers as mergers in which the ratio of the masses of the progenitors exceeds 1/3. We

compare our major merger samples with a control group of haloes selected randomly from the

simulation. For all these samples, we require the haloes to be host haloes today and at the time of

the major merger. We further require each halo in our samples to have mass above 4 × 1010ℎ−1M�
since I = 2 to circumvent the effect of mass resolution4. All the samples are selected from the

400 ℎ−1 Mpc box. Each halo can belong to multiple samples; a halo that undergoes major mergers

3The time of merger is defined as the first snapshot in which the center of the smaller progenitor has entered the
virial boundary of the main progenitor and the smaller progenitor has become a subhalo.

4We have tested that this resolution requirement does not affect our results.
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Major Merger Samples

Sample Sample size

0MM = 0.33 58241

0MM = 0.50 17784

0MM = 0.67 10426

0MM = 0.80 7091

Random 95087

Table II.2: Sample size of each major merger sample and the random sample. The parameter 0MM

denotes the scale factor of the universe when the major merger occurred. The samples are not

mutually exclusive.

at more than one snapshot of interest will be included in multiple major merger samples, and the

random sample can include haloes that are in the major merger samples. The size of each sample

is listed in Table II.2.

C. Relation between Concentration and Mass Assembly History

In this section, we revisit the connection between halo concentration and halo mass assembly

history using the Dark Sky Simulations, exploring several aspects of halo mass assembly histories.

In all cases, we study samples of haloes within a narrow range of contemporary mass and further

control for any mass-dependent effects within each sample. This implies that these results also

characterize the correlations between present-day scale radii and halo mass assembly histories

because haloes of fixed mass have identical virial radii.
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1. Correlation with Mass at a Specific Time

There have been several attempts to summarize the mass assembly history with a single param-

eter that correlates strongly with the present-day concentration [28, 204, 228, 41]. Two common

choices are the halo half-mass scale, 01/2, which is the epoch at which the halo first assembled half

of its present-day mass, and the W02 formation time, 02, which serves as an estimate of the end

of the early phase of rapid mass accretion by the halo. These attempts were relatively successful,

suggesting that much of what determines contemporary halo concentration can be summarized with

one quantity and that there may exist a “key stage” in a halo’s assembly history that substantially

impacts the halo’s internal structure.

This motivates us to conduct a systematic, empirical search for the stage of mass assembly

that is most correlated with the present-day concentration 2. We quantify mass assembly histories

in two ways: (1) by the epoch 0(<) at which a fraction < of the present-day halo mass is first

assembled (for example, the half-mass scale 01/2 = 0(< = 0.5)); and (2) by the relative mass

fraction <(0) = "vir(0)/"vir(0 = 1), which is the mass of the halo at time 0 in units of its

contemporary mass.

For the purposes of this study we choose to represent the mass assembly histories using

the mass of main progenitors as a function of scale factors. However, there are multiple other

characterizations of the formation history that we have not explored, for example, the collapsed

mass history [132, 59, 112], and the transition between rapid and slow accretion phases [228].

Both concentration and mass assembly history are known to correlate with present-day mass.

While we work with mass-selected halo samples, we further mitigate any correlations induced by

the mass dependence of the relative mass fraction and concentration as follows [118]. We divide

each mass-selected halo sample shown in Table II.1 into narrow bins. Within each of these bins, we

assign each halo a mark,M(G), where G is the property of interest. Either G = 2 or G = <(0) in our

present discussion. M(G) is the percentile rank among all of G within the bin. For example,M(G)

ranges betweenM(G) = 0, for the halo with the lowest value of G in the bin, andM(G) = 1, for the

halo with the highest value of G in the bin. Each of our three mass-selected samples corresponds to a

range of halo masses given in Table II.1. We divide the 1012 ℎ−1 M� and 1013 ℎ−1 M� samples into

20 logarithmically-spaced mass bins and the 1014 ℎ−1 M� sample into 30 logarithmically-spaced
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bins.

We study correlations with the concentration markM(2), for the two forms of mass assembly

history,M(0(<)) andM(<(0)), as defined in the preceding paragraph. Specifically, we compute

M(<(0)) for the 99 values of 0 that correspond to the 99 available snapshots of the simulations,

andM(0(<)) for < = {0.01, 0.02, 0.03, ..., 0.99, 1}. We then calculate the Spearman rank-order

correlation, d, between these marks of the assembly history andM(2).

The Spearman rank-order correlations between M(0(<)) and M(2) as a function of the

fraction < are shown in the top panel of Fig. II.1. The lines of different colors represent the

different mass samples, as labeled in the same panel. The correlation coefficients are negative for

all the values of <, and we show them in absolute values. This is in accordance with previous

understanding that haloes are likely to be more concentrated if they assembled their masses at

smaller scale factors. For all three samples, the correlations at large mass fractions are smaller than

those at both medium and small fractions. The 0(<)’s defined at a range of medium mass fractions

(0.3 . < . 0.7) contain similar and relatively high levels of information about the present-day

concentration. This also explains the comparable effectiveness of various definitions of formation

time in previous literature. On the other hand, it is obvious from the figure that the time at which

the main progenitor of a halo gains a low fraction of its final mass (e.g., 4% as in Ref. [227]) is not

as informative as medium mass fractions, such as the commonly used half-mass scale, 01/2.

The Spearman correlations between M(<(0)) and M(2) as a function of 0 are shown as

solid lines in the middle panel of Fig. II.1. The positive correlation at all times before 0 = 1

is also consistent with earlier-forming haloes being more concentrated. The correlations for all

three samples are relatively low at early and late epochs, and peak between 0 ≈ 0.3 and 0 ≈ 0.7,

depending upon halo mass. By construction, <(0 = 1) = 1 in all cases, so all correlations converge

to 0 at 0 = 1. The peak of the correlation curve, which indicates the epoch at which the relative

mass fraction <(0) is best correlated with concentration, occurs later for more massive haloes.

This is consistent with the tendency of more massive haloes to form later, so that if there is an

important epoch in the evolution of a halo that influences its internal structure, it too occurs later

for more massive haloes.

The significant correlation between the concentration and the two characterizations of mass

assembly history is in broad accordance with previous studies that identify formation epochs of
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haloes that influence halo concentration. However, notice that the correlation curves in both the

top and the middle panels peak at d . 0.7, suggesting that factors in addition to the mass of a halo

at a particular time contribute to contemporary halo concentration. We will investigate this further

below.

2. Correlation with Mass Change at a Specific Time

The values of mass fraction, <(0), at successive time steps are strongly correlated with each

other, and the resulting correlation coefficients in the top panel of Fig. II.1 are not independent.

To resolve the relative importance of instantaneous mass growth at different epochs, we repeat the

analysis in Section II.C.1 for the increment in mass fraction between adjacent snapshots, Δ<(0),

instead of <(0), with Δ<(08) = <(08+1) − <(08).

The correlations between instantaneous mass acquisition, M(Δ<(0)), and concentration,

M(2), are shown in the bottom panel of Fig. II.1. It is evident that earlier growth is positively

correlated with concentration (with the exception of the very earliest snapshots at which time the

haloes are poorly resolved), while later growth exhibits anti-correlation. Similar to Section II.C.1,

earlier growth is less informative for more massive haloes. Moreover, d peaks at lower values for

more massive haloes indicating that their early assembly histories generally have less information

on concentration compared to haloes of lower mass.

The peaks of the correlation curves in all panels of Fig. II.1 are broad. This indicates that a

wide variety of times during the formation of a halo provide similar amounts of information on

contemporary halo concentration. This is likely why a variety of halo formation time measures,

such as 01/2 and 02, show similar levels of correlation with present-day halo concentration. The

breadth of the peaks in Fig. II.1 further suggests that one cannot choose a single definition of

the formation time that will dramatically outperform a variety of other reasonable choices. The

distillation of the mass assembly history into a single parameter inevitably leads to a significant

loss of information.

At late times, the correlation between concentration and mass increase becomes negative and

reaches a minimum at 0 ≈ 0.83 for all three mass samples. This is suggestive that the same dynam-

ical process has caused this behavior. In Section II.D below, we identify this dynamical process to

20



be mergers. Mergers account for the anticorrelation in general, the stronger anticorrelation between

M(2) andM(Δ<(0)) for more massive haloes, and the uneven feature at 0 ≈ 0.9.

3. Linear Regression of Mass Assembly History to Predict Concentration

Efforts to explain concentration with mass assembly history are often focused on singling out

a formation time that best represents the mass assembly history. However, we have shown in the

previous subsections that multiple epochs in the mass assembly history contain similar amounts of

information on concentration, which disfavors a single definition of formation time for this purpose.

In order to integrate information on concentration from the full mass assembly histories, we perform

an ordinary least squares linear regression with a = {0(< = 0.01), . . . , 0(< = 0.99), 0(< = 1)}

as the predictor variables and M(2) as the outcome variable, by fitting for a set of linear co-

efficients that minimizes
∑
=

(
�0 +

∑
8

�808 −M(2)
)2
, where

∑
=
is the sum over all haloes,

∑
8

is

the sum over all values of mass fraction < at which 0(<)’s are defined, and �0 and �8 are

the linear coefficients. Similarly, we fit a set of linear coefficients, �0 and �8, with m =

{<(0 = 0.06), <(0 = 0.065), ..., <(0 = 0.99), <(0 = 1)} as the predictor variables, thatminimizes∑
=

(
�0 +

∑
8

�8<8 −M(2)
)2
, but here

∑
8

is the sum over all snapshots (i.e. over all values of 0). For

the present study, we elect to perform a simple linear regression, and refrain from more sophisti-

cated forms of regression, because mass assembly histories of individual haloes are both volatile

and noisy and these properties introduce the possibility of unphysical overfitting. For this reason,

more complex regression methods warrant further, dedicated study.

We compare the results of the linear regression to the results of the previous section as follows.

We determine the set of coefficients, �0 and �8, that gives the linear combination of the elements

of a that is the most strongly correlated withM(2). We repeat the process for the elements of m to

obtain the optimal coefficients �0 and �8. We then calculate the Spearman’s correlations between

M(2) and the marks corresponding to the resulting linear combinations.

The correlation coefficients for the optimal linear combinations of the two characterizations

of mass assembly histories are shown in the top and middle panel of Fig. II.1 respectively, as

horizontal dashed lines. For both the set of 0(<)’s and <(0)’s, and at all three masses, even the

optimal linear combinations leave much of the dependence of concentration on mass assembly
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history unexplained, though they exhibit moderate improvements upon the best performing single

parameters. Performing the linear regression with log m instead of m yields similar, but slightly

weaker correlations.

For comparison, we measure the mark correlation between the concentration and the formation

time defined as the epoch at which the mass of the main progenitor first reaches the characteristic

mass enclosed within the scale radius at the present-day, "B = " (A < AB). We find that the level of

correlation for this formation time is similar to the optimal linear combination of<(0)’s for all three

of our mass samples. We further note that this definition of the formation time is not independent

of the concentration measured at the present-day, as it requires knowledge of AB, and therefore is

different from the proxies of the assembly history that we have employed so far. This comparison

suggests that our optimal linear combination captures most of the information in different forms of

the formation history on the main branch.

In Section II.D, we explore the combined effect of merger events happening at different times

on halo structure. We show that this combined effect cannot be described linearly.

D. Concentration from Pseudo-evolution and Mergers

In the previous section, we attempted to explain contemporary halo concentrations using halo

mass assembly histories. The incomplete success of this endeavor prompts further inquiry into

additional factors in the evolution of haloes that may influence halo density profiles. We expect

the density profile of a halo to be largely determined by the halo’s prior mass assembly history,

independent of the redshift at which the halo is observed. We therefore extend our investigation

to the study of the full evolution of halo concentrations, and search for connections between the

behavior of halo concentrations and events in halo mass assembly histories.

In this section, we study the evolution of halo concentration 2, and halo scale radius As, both

during quiescent periods of halo pseudo-evolution and during merger events. We find that halo

structure undergoes significant changes in response to major, and even minor, mergers in a manner

that is qualitatively universal. We propose a physical explanation for the response features that

we observe. We further propose that the scale radii and concentrations of haloes result from
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pseudo-evolution punctuated by marked fluctuations associated with merger activity.

1. The Pseudo-evolution of Halo Mass and Concentration

Pseudo-evolution refers to the fact that halo masses, virial radii, and concentrations all evolve

even in the absence of merger activity or changes to scale radii [49]. This is because haloes are

traditionally defined to be regions with amean density larger than∼50–100 times the critical density

(or ∼200–350 times the background density). As cosmological expansion dilutes the universe, the

size of the region above the density threshold increases even in the absence of any coherent, inward

flow of mass. Consequently, 2 = 'vir/As grows because As remains approximately constant in the

absence of significant merger activity.

In the left column of Fig. II.2, we show the pseudo-evolution of halo mass, concentration, virial

radius, and scale radius between 0 = 0.2 and 0 = 1, calculated using the Colossus software package

[50], and assuming NFW profiles. Each panel depicts halo properties evolved both forward and

backward from an initial point of 0 = 0.4 assuming pure pseudo-evolution. The pseudo-evolution

is, itself, a function of halo concentration and we show halo pseudo-evolution for three different

initial concentration values, 20.4 ≡ 2(0 = 0.4) = 5, 10, 20, in each panel. The top panel shows the

pseudo-evolved mass normalized by the mass at 0 = 0.4, " (0)/"0.4, which is only a function of

the concentration, independent of halo mass. In themiddle panel, we show the pseudo-evolution of

concentration for the three values of 20.4 separately. The evolution of 2(0) under pseudo-evolution

is also independent of mass. The bottom panel shows the evolution of the scale radius As(0)/As,0.4

and virial radius 'vir(0)/'vir,0.4 in physical units where As,0.4 is the scale radius evaluated at 0 = 0.4

and likewise for 'vir,0.4. These ratios are also independent of mass, and since the physical As
remains constant under pseudo-evolution, the ratio As(0)/As,0.4 = 1 independent of 0. In all of the

panels, the lines are labeled by the corresponding 20.4 values. The left panels of Fig. II.2 show that

pseudo-evolution contributes substantially to the evolution of halo size and concentration in the

absence of any physical mass inflow or accretion. In the following subsections, we study the effect

of physical accretion, which includes all the merger activities beyond pseudo-evolution.
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2. Case Study: The Co-evolution of Halo Mass, Concentration, and Scale Radius During

Mergers

In the case of pure pseudo-evolution, the evolution of halomass, virial radius, and concentration

from some initial state can be predicted. Significant deviations from the predictions of pseudo-

evolution can likely be attributed to the physical inflow of mass across the virial boundary of the

halo. To investigate how deviations from pseudo-evolution affect halo structure, we begin with a

case study.

In the right column of Fig. II.2, we show the evolution of mass, concentration, virial radius,

and scale radius for an individual halo. We neglect the evolution before 0 = 0.2, which is relatively

poorly resolved. For consistency, we use the same quantities as in the left column, i.e., the

concentration, as well as the mass and radii normalized by the values at 0 = 0.4, but note that the

ranges of the H-axes are different. In the middle panel, 2 = 1, the lower boundary of fitted halo

concentration, is marked by the horizontal dashed line. Major mergers in the mass assembly history

of this halo are marked by gray, vertical, dashed lines.

Notice in the top panel that this particular halo undergoes no major mergers between 0 ≈ 0.25

and 0 ≈ 0.7. During this relatively quiescent period in the halo’s mass accretion history, the

halo’s mass evolution is quite close to that predicted by pseudo-evolution, which we show with a

dashed line for comparison. As in the left column of Fig. II.2, the pseudo-evolution is computed

from 0 = 0.4. In the middle and bottom panels, the pseudo-evolution of the concentration and

the scale radius during this period are also shown as dashed lines. The evolution of both the

concentration and the scale radius during the period between major mergers is relatively mild.

Comparing the actual evolution of these properties to the predictions of pseudo-evolution reveals

non-negligible differences. Furthermore, decreases in the actual evolution of halo concentration

seem to be visually associated with small deviations in the mass assembly history that are not

identified as major mergers. This suggests that even small amounts of physical mass accretion can

lead to significant deviations from the pseudo-evolution of concentration and scale radius. This,

in turn, suggests that the scatter in the profiles of a population of haloes may be caused by small

differences in mass assembly histories.

Focus now on the major merger events in Fig. II.2. Prominent features can be observed
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in the temporal neighborhood of each major merger event. Concentration decreases rapidly and

significantly to aminimum at approximately the time of themajormerger. Subsequent to themerger,

concentration immediately increases, decreases again, and then stabilizes. After stabilizing, there

is a long period of secular increase of halo concentration. The change in concentrations due to

major mergers is large compared with the scale of the overall concentration evolution throughout

the entire history of the halo. Meanwhile, the scale radius follows the same trend but in the opposite

sense, as is expected.

In the bottom panel, it is obvious that the change in 'vir is much less dramatic and much

simpler than that in As in response to major mergers. 'vir increases due to both pseudo-evolution

and the physical increase in mass, while As remains constant unless the inner profile is impacted.

Concentration is the ratio 2 = 'vir/As. As is now apparent, discussing this ratio complicates our

discussion unnecessarily, because the two radii have very different mechanisms of evolution. 'vir
evolves rathermodestly and in approximate correspondencewith predictions from pseudo-evolution

along with mass increases due to mergers. Large changes in concentration are induced by the large

deviations in As brought about by mergers. We will therefore focus on the scale radius As instead of

the concentration for the rest of this subsection.

We take the major merger at 0 = 0.71 as an example to discuss the common features, and

interpret the response in As with the dynamical processes that occur during the major merger event.

The two progenitors of this major merger are examined in Fig. II.3, which illustrates the orbit of the

incoming progenitor around the main progenitor, as well as the mass evolution of the incoming and

main progenitor haloes. During the major merger, the incoming progenitor loses mass to the main

progenitor before being completely disrupted. Without significant physical mass growth, the scale

radius only varies slowly, which can be seen in the period prior to the major merger at 0 = 0.71 in

Fig. II.2, where the mass growth of the halo is mainly due to pseudo-evolution.

Notable deviations from the pseudo-evolution of the halo scale radius can be seen as the

incoming halo traverses the main progenitor halo. As the merger begins, the halo’s scale radius

departs from its original evolution, and quickly increases, approaching the physical boundary

As = 'vir, which suggests essential deviation from an NFW profile. This is due to the incoming

progenitor entering the virial boundary of the main progenitor, shown in the upper part of the upper

right panel in Fig. II.3, placing a relatively large amount of mass in the periphery of the main halo
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and rendering the outer profile shallower. The shallower spherically-averaged density profile yields

a larger scale radius. Later, as the incoming halo approaches the center of the main halo, the scale

radius falls because mass is then inordinately concentrated near the halo center. The scale radius

increases again as the merging halo moves outward from the center of the main halo on its orbit.

Compared to the secular evolution in scale radius seen during quiescent periods, this evolution of

halo scale radius is rapid, occurring over approximately one halo crossing time.

The merger concludes with the incoming halo spiraling inward toward the center of the main

halo due to dynamical friction. As this happens, the scale radius once again increases. The

incoming object is gradually disrupted, and As resumes secular evolution. The recovery after the

major merger at 0 = 0.71 is interrupted by a later major merger that follows at 0 = 0.94; however,

the recovery process can be observed in Fig. II.2 after the major merger at 0 = 0.26.

With this example, we have shown that during a major merger event, As experiences consequen-

tial changes, that can be attributed to the dynamical processes of the progenitors. Our interpretation

is in agreement with Ref. [112], who also observed the oscillations in a halo and related them with

the crossings of the merging object before virialization. These changes are extended in time,

motivating an investigation of the time scales that are involved in the next section.

3. Universality of Response

In the previous subsection, we followed the co-evolution of mass, concentration, and scale

radius of one halo, focusing on the dynamical processes associated with major mergers that drive

the evolution of halo scale radius. Based on this case study, we argued that halo scale radii respond to

mergers in an oscillatory manner and that the oscillations are due to orbital evolution. Accordingly,

it is natural to study the evolution of haloes due to mergers with time measured in units of the local

dynamical time, the time required to orbit across an equilibrium dynamical system, in our case a

halo. We adopt the definition of the dynamical time

gdyn =

√
3c

16�d̄
, (3)

where � is the gravitational constant and d̄ is the mean density of the system, which we choose to

be the virial density of haloes. With a given cosmology, the dynamical time gdyn is dependent on
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the scale factor 0 through d̄. In the cosmology adopted by the Dark Sky Simulations, the dynamical

time scales as

gdyn ≈ 3.15(1 + I)−3/2 Gyr. (4)

Following Ref. [80], we then define a new quantity ) , which measures the time between two

epochs in units of the dynamical time, as

) (0; 0ref) =
∫ C (0)

C (0ref)

3C

gdyn(C)
, (5)

where C (0) is the age of the Universe corresponding to the scale factor 0, and 0ref is the reference

epoch.

To study the general behavior of major mergers, we select haloes from the simulation that

undergo major mergers along the main branch, independently of their masses. The major merger

times we select are 0MM = 0.33, 0.50, 0.67, 0.80, corresponding to I = 2, 1, 0.5, and 0.25 (see

Table II.2).

We stack each 0MM group and examine the median evolution to reduce noise. In Fig. II.4, we

show the median response of the concentration and scale radius in logarithmic scale, normalized

by their respective values at 0MM. Time is measured both in terms of the scale factor and in terms

of the number of dynamical times with respect to the time of merger.

In both columns, we observe the orbital features discussed in Section II.D.2, demonstrating

that the dynamical processes shown in Fig. II.3 are universal, and that the incoming progenitor

goes through one orbit on average before being disrupted (see also[190]). However, only in

the right column, where time is measured in units of dynamical times, are the responses from

the different 0MM groups aligned, going through the oscillations with a remarkably universal

dynamical timescale. This further confirms the connection between the concentration and scale

radius evolution and the dynamical processes during major mergers, as well as the universality of

this mechanism when scaled with dynamical time.
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4. All Merger Activity

We have shown that the evolution of halo structure in response to major mergers have common

features, with universal timescales measured in units of dynamical times. The amplitude of the

change in As due to major mergers is large compared with the average scale of change over the

entire history, and also much larger than that of the halo radius evolution, causing large fluctuations

in halo concentration as well. However, major mergers are relatively rare events. The average

numbers of major mergers between 0 = 0.25 and 0 = 1 for a halo are 1.14, 1.51 and 2.00 for

the 1012ℎ−1 M�, 1013ℎ−1 M� and 1014ℎ−1 M� samples respectively. Minor mergers with smaller

ratios between progenitor masses happen much more frequently, and dominate the physical mass

growth beyond pseudo-evolution. As major mergers are the extreme cases of merger events, it is

reasonable to expect that minor mergers have similar but less dramatic effects.

To examine the response to all merger activity, we search for instances of minor merger events

in the random catalog described in Section II.B.2.b. As the Consistent Trees code identifies

major mergers only, we define minor mergers based on the rate of fractional mass increase between

adjacent snapshots. We calculate the rate of fractional mass increase as

Γ(08) =
Δ" (08)/" (08)
) (08+1; 08)

, (6)

where Δ" (08) = " (08+1) − " (08) is the mass increase between the adjacent snapshots, and

) (08+1; 08) is the corresponding time interval in units of dynamical times. The rate of fractional

mass increase, Γ(08), is a dimensionless quantity. The time interval ) (08+1; 08) for a fixed scale

factor interval 08+1 − 08 decreases as the Universe evolves, and drops below 0.2 by 0 = 0.33, the

first merger epoch we consider. When selecting minor mergers, we consider the same epochs as for

the major merger samples, 0 = 0.33, 0.50, 0.67, 0.80. The mean values of Γ(0MM) for the major

merger samples are 2.77, 2.77, 2.96 and 3.43 for the four major merger times respectively. At each

of these time steps, we select our minor merger sample to have values of Γ between 1.0 and 1.5.

We also require that there are no major mergers within ±0.25gdyn around the minor mergers5, to

exclude mass increase associated with major mergers.

In Fig. II.5, we compare the haloes that undergo these minor mergers against the major merger

samples and the randomly-selected halo sample. The median evolution of each sample is plotted

5The mass increase associated with a major merger occurs over approximately ±0.25gdyn around the time of merger.
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in terms of both concentration and scale radius, as functions of time. In the bottom G-axes,

time is represented as the number of dynamical times since the first available snapshot, while the

corresponding scale factor is labeled on the top G-axes. The major merger samples are shown in

the left column, and the lines are color coded according to the time of merger, marked by vertical

dashed lines of the same colors. The solid black curve shows the evolution of the random sample

for comparison. Similarly, the right column shows the minor mergers that happen at the same time

steps.

It is obvious from Fig. II.5 that minor mergers indeed cause qualitatively similar responses in

the halo structure. The magnitudes of these features, though smaller than those of the major merger

response, are still significant compared with the scale of overall evolution throughout cosmic time.

This shows that all mergers, major or minor, involve similar dynamical processes, with the effect

of expanding the inner profile and suppressing concentration during an extended period. We also

note that the haloes that undergo mergers have lower concentrations than the random sample of

haloes even after several dynamical times, and we have tested that this difference in concentration

cannot be accounted for by the difference in their mass distributions. This could be due to the

fact that mergers are correlated, perhaps due to environmental dependences, or that mergers have

a persistent effect on the internal structures of haloes, or a combination thereof. Determining the

nature of this effect is worthy of a distinct study in its own right. The fluctuations in the scale radii

and concentrations following minor mergers, which happen frequently for most haloes, are also a

likely source of spread in the present-day values of halo internal properties, which we investigate

in Section II.D.5.

5. Irreducible Scatter Due to Stochastic Mergers

With our improved understanding of mergers, we examine the role that these events play in

producing the present-day concentrations and scale radii of halo samples with fixed masses. We

have shown in Fig. II.5 that the impact on As from major mergers and even minor mergers is

significant compared with the scale of the overall As evolution in the entire history, and persists

over a considerable amount of time (several dynamical times, meaning several Gyr). Therefore, we

expect that the cumulative response of a halo to the merger events in its mass assembly history is
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crucial to the determination of the scale radius and concentration of the halo. Moreover, both the

relative sizes of mergers and the temporal distribution of these mergers are important in determining

present-day concentration and scale radius.

In the top panel of Fig. II.6, we show the scatter in log 2 for each present-day mass sample, and

the remaining scatter after further dividing the samples into quintiles by 01/2. There is a scatter

of approximately 0.1–0.2 dex in concentration with populations of haloes with both mass and 01/2

fixed. The scatter increases with later half-mass scales, as there are more recent merger events for

these haloes. This scatter originates from the variety of possible paths of mass assembly. In the

middle panel, we examine the same samples, but exclude haloes that undergo major mergers since

their half-mass scales. The resulting scatter in log 2 decreases in every sample, which is consistent

with our conclusion that major mergers contribute to the uncertainty in today’s concentration. The

decrease is not as significant as onemight naively expect from the large fluctuations in concentration

caused by major mergers, because major mergers are rare events and impact a small fraction of the

population. In the bottompanel, we further exclude all haloes that have stepwisemass increaseswith

Γ ≥ 1.0 since 01/2, and the scatter is indeed further reduced. That a more stringent restriction on

mergers further reduces scatter in concentrations strongly suggests that it is the mergers themselves

that drive a significant portion of the scatter. The dependence of the scatter on the half-mass scale is

largely removed by excluding these mass increase events, which confirms that different frequencies

of mergers are the cause of this dependence. It is reasonable to expect that when evenmore stringent

limits are put on the mass increase rate, the scatter will be further reduced; however, we are unable

to test this explicitly due to limited sample sizes. As a supplement to Fig. II.6, in Appendix A we

show the dependence of the concentration–mass relation on the half-mass scale.

It is tempting to synthesize the present-day concentration from the full mass assembly history,

by superposing the effect of each merger event upon pseudo-evolution. However, we show in

Fig. II.7 that even small deviations from pseudo-evolution in mass can cause large fluctuations in

concentration. This sensitivity of the concentration to small mergers and the stochastic nature of

mergers make it virtually impossible to predict the concentration of an individual halo from its

formation history without some uncertainty. In Fig. II.7, we select the five haloes from the random

catalog that have the most quiescent mass assembly histories in the last five dynamical times. We

do this by minimizing the deviation of the mass assembly history from pure pseudo-evolution. We
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calculate the forward pseudo-evolution of mass from the halo properties at ) (0; 0ref = 1) = −5,

which is marked by the vertical dotted dark blue lines in Fig. II.7, and quantify the deviation in

mass evolution by
∑ |"hist/"pseudo − 1|, where "hist is the actual evolution, "pseudo is the forward

pseudo-evolution for each halo, and the sum is taken over the available snapshots in the last five

dynamical times. The dark blue lines in the figure show the logarithmic deviation in mass. For

these haloes with quiescent mass assembly histories, we then compare between the actual and

pseudo-evolution of concentration during the last two dynamical times, since ) (0; 0ref = 1) = −2

(vertical dashed pink lines), to exclude the effect of mass evolution before the controlled period.

The comparison of concentrations is shown as pink lines in Fig. II.7. In the first panel, we also

show the 68% range of the absolute deviation from both mass and concentration pseudo-evolutions

for the entire random sample.

From the figure it is apparent that even selecting the most quiescent haloes in our sample, which

are usually considered relaxed, does not greatly reduce fluctuations in concentration. This shows

that even very minor mass accretion can affect halo structures. The fluctuations in concentration

seen in Fig. II.7 could also be partly due to the finite number of snapshots available from the

simulation, which leaves events that happen between the discrete snapshots undetected. We also

notice that for some haloes (e.g., Halos 2 and 3), the concentration evolution has a general trend that

deviates from the pseudo-evolution prediction. This is likely due to the oversimplified assumptions

in the pseudo-evolution model, such as an NFW profile and an isolated halo, which may not hold

true in simulations [48]. The environments of individual haloes and further details of mergers,

such as the relative velocities of the progenitors, the exact orbit of the incoming object, the detailed

density profiles of each progenitor, are beyond the scope of this work, and might also have caused

part of the uncertainty that we observe.

At this point we reflect on the limited ability to predict halo concentration with a linear

regression of the mass assembly history in Section II.C.3, and conclude that this is unsurprising,

because a fixed set of linear coefficients is naturally incapable of describing a convolution of merger

responses at different times. Also, in the top panel of Fig. II.1, the concentration of the cluster-size

halo sample is less correlated with the step-wise mass assembly history than for the less massive

samples, probably ascribable to its higher frequency of merger events. On the other hand, the

higher frequency of mergers in the cluster-size sample causes its stronger anticorrelation between
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the concentration and the mass increment at late times in the bottom panel of Fig. II.1. The

oscillatory behavior in the bottom panel of Fig. II.1 has approximately the same timescales as the

oscillation of the concentration and scale radius in Fig. II.4, and it is now apparent that it arises

from merger responses.

We have demonstrated that mergers play a vital role in shaping the internal structures of haloes,

andmerger events that happen at different epochs trigger responseswith nontrivial forms, preventing

a simple description of the combined end result, and contribute to the scatter in the scale radius

and hence concentration.

E. Discussion and Summary

In this study, we investigate the connection between halo concentration and halo mass assembly

history using the halo catalogs and merger trees from the Dark Sky Simulations. In particular, we

scrutinize the effect of mergers on the subsequent evolution of halo concentration. We summarize

our primary results as follows:

• Conventionally defined halo formation times, such as the scale factor at which a halo reaches

50%of its contemporarymass, exhibit significant correlationswith the present-day halo concen-

tration. In fact, the same holds true for the broad range of mass fractions between approximately

30% and 70%. A linear combination of 0(<8), where <8’s are different choices of mass frac-

tions, correlates with present-day concentration better than any individual 0(<8), but still does

not fully account for the scatter in concentration at a fixed halo mass. The same conclusions

apply when we use the mass fractions at different times, <(0), instead of 0(<). For more

details, see Fig. II.1.

• Major mergers induce dramatic changes to halo concentrations. These responses linger over a

period of several dynamical times, corresponding to many Gyr. The evolution of concentration

due to amerger can be associatedwith the orbital dynamics of themerger and is largely universal.

Minor mergers have similar, but less dramatic effects on concentration compared with major

mergers. In the absence of merger events, pseudo-evolution causes a gradual increase in halo

32



concentration and halo mass (Fig. II.2), in agreement with Ref. [49]. See Fig. II.3, Fig. II.4,

and Fig. II.5.

• The cumulative effect of major mergers and frequent minor mergers leads to a scatter in

concentration at fixed halo mass and fixed formation time (any conventional definition). At

fixed halo mass, the scatter can be reduced from 0.2 dex to below 0.1 dex when we control for

both formation time and merger events. Even minor mergers impart non-negligible alterations

to concentrations. Haloes with quiescent mass assembly histories experience fewer fluctuations

in concentration, but still with an irreducible scatter, due to unresolved small mergers. See

Fig. II.6 and Fig. II.7.

In this work, we have developed a further understanding of the relation between halo concentra-

tions andmass assembly histories. Our results show that the correlation strengthswith concentration

at multiple intermediate epochs of the assembly history are similar and relatively high, in accord

with previously found concentration–formation time relations [204, 227]. Our findings support the

use of the half-mass scale, 01/2, as an effective definition of formation time, whereas a variety of

similar formation time definitions would yield similar insight into concentrations. However, we also

argue that such simple characterizations of the mass assembly history inevitably omit information

on halo structure and leave a non-negligible residual scatter.

We find that merger events during the assembly of haloes contribute to the scatter in the

concentration–formation time relation (at fixed halo mass), as was suggested by the results of, e.g.,

Refs. [204, 113], and [153]. We broaden the discussion of the impact of recent mergers on the

measurement of concentration in Ref. [112], confirming their explanation of the features in the

merger response with a case study of the orbital processes during a merger, and these fluctuations

in concentration induced by mergers also lead to the non-monotonic relation between concentration

and formation time observed by Ref. [112]. We recognize the significant effect of mergers on halo

concentrations, which greatly exceeds the secular evolution during quiescent periods. The effect of

mergers lasts for several Gyr (a few dynamical times). Our results also establish the universality of

halo responses to merger events.

These results can have important implications for the interpretation of observations, as the

observed density profiles of the dark component of clusters are systematically dependent on the

merger history. The concentration–mass relation is broadly adopted for inferring concentrations
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from mass measurements, comparing measured concentrations against theoretical predictions, or

modeling other halo properties with concentrations [35, 54, 116, 19, 122, 102]. Based on our

findings regarding the scatter around the mean relation due to mergers, we advise caution in the

application of the concentration–mass or concentration–formation time relation without taking

these effects into account.

Our study provides insight into secondary halo biases, commonly known as halo assembly bias

[61, 104, 118], the dependence of halo clustering on halo properties other than mass. Ref. [205]

first found that with fixed masses above the typical collapse mass, haloes with lower concentrations

cluster more strongly than haloes with higher concentrations. Ref. [98], for example, found that

the scale radii of haloes evolve very differently in regions of different environmental densities.

Our findings suggest that these are primarily due to the suppression of concentration by merger

events, which happen more frequently in denser environments. We expect similar coupling of the

environmental preference of mergers and the impact of mergers on other secondary halo properties

to be present.

Our analyses are performed at the halo level, which introduces a dependence on the halo finding

algorithm. We limit our characterization of the mass assembly history to linear descriptions, and

do not propose a mathematical model of the concentration. We are also unable to resolve all merger

events, and further details, including the initial profiles, initial velocities, and trajectories of merging

objects, are beyond the scope of this work. Each of these important issues merits further study.

More sophisticated statistics or machine learning techniques might be more effective in extracting

information on concentrations from assembly histories. Using explicit mathematical descriptions

of concentration responses to mergers, together with a comprehensive demographic study of merger

events with even higher mass and temporal resolutions is a possible way of improving predictions of

concentrations. We are hopeful that such follow-up studies could greatly enhance our understanding

of halo formation and structure.

34



0.01 0.02 0.05 0.1 0.2 0.5 1
m

0.0

0.2

0.4

0.6

0.8

c,
a(

m
)

(A
bs

ol
ut

e)

1012M M < 1.1 × 1012M
1013M M < 2.0 × 1013M
1014M M < 3.8 × 1015M

0.2 0.4 0.6 0.8 1.0
a

0.0

0.2

0.4

0.6

0.8

c,
m

(a
)

00.20.512346
z

0.2 0.4 0.6 0.8 1.0
a

0.4

0.2

0.0

0.2

0.4

c,
m

(a
)

13.7710.777.534.311.56
Age of universe[Gyr]

Sp
ea

rm
an

's
 c

or
re

la
tio

n 
be

tw
ee

n 
m

ar
k 

va
lu

es

Figure II.1: Spearman’s correlation between the mark values of haloes’ present-day concentrations

and mass assembly histories. In the top panel, mass assembly history is characterized by the

epoch 0(<) at which a fraction < of the present-day mass has been first assembled. The absolute

values of the otherwise negative correlation coefficients are shown in this panel, and < is shown

in logarithmic scale. In the middle panel the mass assembly history is alternatively characterized

by the fraction of the present-day mass, <(0) = " (0)/" (0 = 1), that has been assembled by the

time of each 0, and in the bottom panel by Δ<(0), the step-wise increment in < at each 0.
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Figure II.1: (cont.) The top G-axes of the middle and bottom panels show the corresponding

redshift and age of the universe respectively. In all three panels, the different colors represent

results for the different mass samples, as is labeled in the top panel. The solid lines show the

Spearman’s rank-order correlation coefficients between M(2) and M(0(<)) (top panel), M(2)

andM(<(0)) (middle panel), orM(Δ<(0)) (bottom panel). Each horizontal dashed line in the

top panel shows the Spearman’s correlation betweenM(2) and the mark value of the optimal linear

combination of 0(<)’s for the corresponding mass sample, while the horizontal dashed lines in

the middle panel indicate the Spearman’s correlations betweenM(2) and the mark values of the

optimal linear combinations of <(0)’s. These optimal linear combinations contain most but not all

of the information about the present-day concentration.
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Figure II.2: (a) In the left column, we show the change in mass (top panel), concentration (middle

panel), and virial radius and scale radius (bottom panel) due to pseudo-evolution, choosing 0 = 0.4

as the reference state, denoted with the subscript “0.4”, and marked by vertical black dotted lines

in the panels. In the bottom panel, the H-axis indicates A (0)/A0.4, where A is either the virial radius

'vir or the scale radius As. The change in mass and radii are plotted in terms of the ratio between

the pseudo-evolved values and the values at 0 = 0.4. Each line of pseudo-evolution is labeled with

the corresponding concentration at the reference point 0 = 0.4, as the ratios and concentration are

only functions of the concentration, independent of halo mass. It can be observed that significant

growth in both halo mass and halo concentration can be associated with pseudo-evolution.
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Figure II.2: (cont.) (b) The right column is similar to the left column, but shows the actual evolution

of an individual halo’s mass, concentration, and virial radius and scale radius, as functions of the

scale factor 0. The vertical gray dashed lines mark the major mergers identified by Consistent

Trees, and the horizontal dotted line in the middle panel indicates 2 = 1 to guide the eye. Besides

the actual evolution, we also show the pseudo-evolution for comparison. In each panel, the dashed

curve of the same color as the solid curve shows the corresponding quantity pseudo-evolved from

the state at 0 = 0.4 (vertical black dotted line), between 0 = 0.3 and 0 = 0.7. In the bottom

panel, only the pseudo-evolution of As, which is a constant function of time, is shown, while the

pseudo-evolution of 'vir is omitted for clarity.
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Figure II.3: In this figure, we show the process of the major merger that the halo in Fig. II.2

undergoes at 0 = 0.71. The top left and bottom panels show the orbit of the incoming progenitor

around themain progenitor in the three projected planes respectively, displaying the comoving space

from −1ℎ−1 Mpc to 1ℎ−1 Mpc in each direction, and the comoving length scale of 0.5ℎ−1 Mpc is

shown in the upper left panel for visual clarity. Each point in an orbit represents the state in a

different snapshot, color coded from dark to bright with the increase of time; the scale factor 0 is

labeled at several points. The upper right panel shows the time span between 0 = 0.2 and 0 = 1,

with the time of the major merger marked by a gray vertical dashed line.
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Figure II.3: (cont.) The lower part of this panel tracks the mass changes of the main and incoming

progenitors in units of 1014ℎ−1 M�. The incoming halo’s evolution ends when it is completely

disrupted and is no longer identified as an object, and the transition is shown as a dashed line.

The increase in mass in the main branch afterwards is due to another major merger that follows.

The upper part of the same panel shows the evolution of 3/'main, where 3 is the distance between

the centers of the two progenitors, and 'main is the virial radius of the main progenitor. The ratio

3/'main decreases below 1 at around 0MM, marked by the horizontal dotted line, and reaches 0 as

the incoming object disappears.
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Figure II.4: Median response to major mergers that happen at different times. The top row displays

the concentration, and the bottom row displays the scale radius, both in logarithmic scale and

normalized by the value at the time of merger. In the left column, time is measured in terms of the

scale factor 0, shifted with respect to 0MM, while in the right column, time is measured in units

of dynamical times, with the merger time as the reference point. The groups are color coded by

their respective 0MM. The time of merger is marked by a vertical dashed line in each panel. In the

right column, some of the lines are truncated due to the limited time range of the simulation. The

response of haloes of different masses and major merger times are remarkably similar when scaled

by dynamical time.
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Figure II.5: This figure compares major mergers with minor mergers that happen at the same

epochs, which are marked by vertical dashed lines, each with the same color as the corresponding

evolution curve. Similar to Fig. II.4, the halo evolution is tracked in terms of concentration in the

top row and scale radius in the bottom row. Time is measured in units of dynamical times, adopting

0ref = 0.06, and the corresponding scale factor 0 is labeled at the top. The minor merger events are

selected from the random catalog by their rates of fractional mass increase Γ, defined in Equation 6,

1.0 ≤ Γ ≤ 1.5, and no major mergers within ±0.25gdyn of the time step of interest. The left column

shows the median evolution of each major merger sample, and the right column shows those of the

minor merger samples. In every panel, the solid black curve depicts the median evolution of the

random sample for comparison.
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Figure II.6: In this figure, we show the logarithmic scatter in concentration for the present-day

mass samples. The present-day mass is color coded and labeled in the bottom panel. In the top

panel, the first group of bars shows the scatter for the entire samples, while the other groups are

subsamples selected by their half-mass scale percentiles within each mass sample. The error bars

are calculated using bootstrap resampling. The same bars are also shown in the two lower panels

for visual guidance. The filled bars in the middle panel shows the scatter for the same samples,

but excluding haloes that undergo major mergers after the half-mass scale. The filled bars in the

bottom panel adopt a more stringent selection criterion, excluding haloes that have mass increase

events with Γ ≥ 1.0.
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Figure II.7: Comparison of the actual evolution against pseudo-evolution for five individual haloes

in the simulation. These haloes are selected to have the least deviation from pseudo-evolution in

mass in the last five dynamical times, which is marked by the vertical dotted dark blue line in each

panel, and the dark blue arrow in the first panel. The concentration is compared against the forward

pseudo-evolution from two dynamical times before 0 = 1 (vertical dashed pink lines). We show

the difference in logarithmic space between the pseudo-evolution of the mass and concentration. In

the first panel, the shaded regions show the 68th percentile of the absolute deviation from pseudo-

evolution as a function of time, for the entire random sample, in the time ranges of interest for the

mass and concentration respectively.
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III. Probes for Secondary Effects in Galaxy–Halo Connection

This chapter is originally published as: Wang, K., Mao, Y.-Y., Zentner, A. R., van den Bosch,

F. C., Lange, J. U., Schafer, C. M., Villarreal, A. S., Hearin, A. P., Campbell, D. (2019), Monthly

Notices of the Royal Astronomical Society, 488, 3541.

Minor modifications have been made to the text. The inclusion of this article in this dissertation

is in compliance with the copyright policies of the journal.

In cosmological studies, we often exploit the statistical connection between galaxies and their

haloes. Most models for this connection ignore the possibility that galaxy properties may be

correlated with halo properties other than halo mass, a phenomenon known as galaxy assembly

bias. And yet, it is known that such correlations can lead to systematic errors in the interpretation

of survey data that are analyzed using traditional halo occupation models. At present, the degree

to which galaxy assembly bias may be present in the real Universe, and the best strategies for

constraining it remain uncertain. We study the ability of several observables to constrain galaxy

assembly bias from redshift survey data using the decorated halo occupation distribution (dHOD),

an empirical model of the galaxy–halo connection that incorporates assembly bias. We cover

an expansive set of observables, including the projected two-point correlation function Fp(Ap),

the galaxy–galaxy lensing signal ΔΣ(Ap), the void probability function VPF(A), the distributions

of counts-in-cylinders %(#CIC), and counts-in-annuli %(#CIA), and the distribution of the ratio

of counts in cylinders of different sizes %(#2/#5). We find that despite the frequent use of

the combination Fp(Ap) + ΔΣ(Ap) in interpreting galaxy data, the count statistics, %(#CIC) and

%(#CIA), are generally more efficient in constraining galaxy assembly bias when combined with

Fp(Ap). Constraints based upon Fp(Ap) and ΔΣ(Ap) share common degeneracy directions in the

parameter space, while combinations of Fp(Ap) with the count statistics are more complementary.

Therefore, we strongly suggest that count statistics should be used to complement the canonical

observables in future studies of the galaxy–halo connection.
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A. Introduction

In the concordance ΛCDM model of the Universe [91, 18, 141, 143, 2], galaxies reside in

dark matter haloes [208, 23], which form around peaks in the primordial dark matter density

field [8, 24, 166, 165, 222]. In practice, the abundance, clustering, and structure of dark matter

haloes have been precisely documented by high-resolution, gravity-only #-body simulations of

cosmological structure growth [132, 123, 177, 180]. Halo occupation models use empirical data to

link galaxies to haloes in a statistical sense. They are useful because they provide a convenientmeans

to compare observed galaxy clustering statistics with theoretical predictions without a complete

theory of galaxy formation and evolution. This, in turn, is useful because one can use such models

to test cosmological models using data on non-linear scales, and because empirical models distill

the formidable amount of information available in survey data into a relatively simpler galaxy–halo

relationship that can be used to inform models of galaxy formation and evolution. Ref. [203]

provide a contemporary review of these models.

The term assembly bias has, unfortunately, taken on several related but distinct meanings in the

literature. The clustering of dark matter haloes is a strong function of halo mass [83, 123], but it has

become clear over the last decade that haloes cluster as a function of a number of other properties

[61, 205, 60, 104, 118, 213]. Ref. [61] first studied the age-dependence of halo clustering, which led

to the term assembly bias, but because many halo properties are correlated with formation history,

the dependence of halo clustering on many other properties (e.g., concentration, spin, and so on)

is often loosely referred to as assembly bias or halo assembly bias as well. Ref. [118] advocate

referring to these dependences as secondary biases1. This nomenclature is clearer because the

secondary biases do not necessarily have a clear origin in the correlations of halo properties, such

as concentration, with conventional measures of halo formation history.

Assembly bias of observed galaxies as well as simulated halo populations has received sig-

nificant attention in the recent literature regarding the analysis and interpretation of galaxy survey

data. Assembly bias may challenge survey analyses because it may induce (1) systematic errors in

the inferred galaxy–halo relationship inferred from survey data [224] and/or (2) biases in inferred

cosmological parameters[45, 210, 120]. On the other hand, an unambiguous detection of assembly

1The primary bias is the strong dependence of halo clustering on halo mass.
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bias in survey data may pave the way to a richer and more complete understanding of the connection

between galaxies and their host dark matter haloes.

In the context of the interpretation of galaxy surveys, assembly bias can lead to the following

possibility. Galaxies in a certain luminosity sample may form in haloes with a probability that

depends upon not only the mass of the halo, but on any number of halo properties. If this happens,

then the resultant clustering of any galaxy sample must be interpreted within the context of a model

that incorporates not only the mass dependence of halo clustering, but also the secondary biases, as

is done in e.g., Refs. [31, 223, 100, 155, 47]. This case is sometimes loosely referred to as galaxy

assembly bias. Signals of galaxy assembly bias are also present in hydrodynamical simulations

[214, 6, 26]. The issue facing survey data analysis is that the vast majority of studies treat survey

data using models that assume that galaxies of a particular luminosity (or other galaxy properties

that determine the sample selection) form within haloes with a probability that depends upon only

the mass of the halo (and no other halo property). Thus, these analyses account only for the mass

dependence of halo clustering [203].

The most widely used empirical models for interpreting survey data include the halo occupation

distribution (HOD) [16] and the conditional luminosity function (CLF) [216]. Both of these models

in the original (and standard) forms assume that galaxies of a particular type reside in haloes with

a probability that depends only on the masses of the haloes. Both the HOD [230, 221, 68, 64, 97,

65, 223] and the CLF [187, 215, 38, 188, 30, 95] have been used successfully to interpret a variety

of observational samples. On the other hand, subhalo abundance matching (AM or SHAM, e.g.,

[92, 175, 184, 181, 75]) has the power to naturally incorporate assembly bias, by matching galaxy

properties to halo properties (e.g., +peak) that can assume varying values at a fixed halo mass. The

success of SHAM in interpreting galaxy survey data [11, 12, 150, 100] is striking considering the

simplicity of its assumptions.

In this paper, we will use an expanded form of the HOD, known as the decorated HOD (dHOD,

[74]). The dHOD builds upon the traditional HOD by adding parameters that enable tunable

levels of galaxy assembly bias. We limit our treatment to the HOD and dHOD for specificity and

simplicity.

We explore the utility of several galaxy survey observables to constrain assembly bias within the

context of simple dHOD [74] models. Aside from the overall galaxy number density =gal, which we

47



use as a basic constraining observable throughout our analyses, the observables that we explore are

the projected galaxy correlation function Fp(Ap), the excess surface density inferred from galaxy–

galaxy lensing ΔΣ(Ap), the void probability function VPF(A), galaxy counts-in-cylinders %(#CIC),

galaxy counts-in-annuli %(#CIA), and the probability distribution of the ratio between #CIC of

different cylinder sizes %(#2/#5). In this first study of the subject, we intentionally avoid utilizing

satellite kinematics (SK), redshift space distortions (RSD), or other observables that require a

detailed model of galaxy velocities relative to haloes. Treating such statistics requires additional

modeling and additional assumptions that can greatly complicate such a study. For the observables

we study, we examine and compare their effectiveness at constraining not only assembly bias within

the context of a dHOD model, but nearly all HOD parameters.

The remainder of this chapter gives the details necessary to support the summary of our

findings stated in the previous paragraph. In Section III.B, we describe the simulation that we

use, the dHOD models within which we work, the observables we consider, and our approach to

estimating parameter constraints. In Section III.C, we present our results in detail. We discuss our

results in the context of the contemporary literature, draw broad conclusions, and propose future

steps in Section III.D.

B. Methods

In this section, we give the details of our analysis procedures. This includes a discussion of the

simulation that we use, the dHOD models that we explore, the observables that we consider, our

methods for estimating parameter constraints, and our estimates of the covariance matrices used in

our analyses.

1. Simulation

In order to mitigate the limitations of analytic estimates of clustering and lensing statistics

[186], the calculations that we perform in this paper are based upon #-body simulations of the

formation of structure in a concordance cosmological model. These simulations evolve dark matter
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particles under the influence of gravity from initial over-densities in the early universe to the present

day. In particular, the analysis in this work utilizes the Bolshoi Planck simulation2 [87, 13, 14, 154].

Bolshoi Planck is a dark matter only simulation within a cubic box of length 250 ℎ−1 Mpc, which

adopts values of cosmological parameters from Ref. [141], namely ΩΛ = 0.693, Ωm = 1 − ΩΛ =

0.307, Ωb = 0.048, h = 0.7, =s = 0.96, and f8 = 0.82. The simulation contains 20483 particles,

implying a particle mass of <p = 1.55 × 108 ℎ−1 M�.

We use the bolplanck halo catalog included with the Halotools software package3 [71],

which also provides an implementation of customizable dHOD models.

The bolplanck halo catalog was produced from the Bolshoi Planck simulation using the

ROCKSTAR halo-finder [13]. To compute lensing observables, we use the particle catalog included

with Halotools which contains 106 randomly-selected particles from the Bolshoi Planck volume,

and make a downsampled catalog containing ∼ 105 particles with an acceptance rate of 0.1

for runtime considerations. We have tested that the measured ΔΣ(Ap) is not sensitive to the

downsampling, and the noise introduced in this process is accounted for in our covariance matrix

(see Section III.B.5). The catalogs are included in Halotools version halotools_v0p4, which

adopts the virial definition of haloes, and we work at I = 0, corresponding to an overdensity

parameter Δvir = 333 with respect to the mean matter density of the Universe.

2. Halo Occupation Model

We describe the galaxy–halo connection using the HOD and the dHOD. Both of these models

specify the probability for a halo of mass"vir to host #cen central galaxies and #sat satellite galaxies

above a certain threshold stellar mass, %(#cen |"vir) and %(#sat |"vir) respectively. Central and

satellite galaxies are considered separately because central galaxies reside in the potential wells of

host haloes while satellite galaxies are associated with subhaloes and experience different physics

of formation and evolution. It is well known that subhaloes experience very distinct evolution

from host haloes and thus have demographics that are distinct from host haloes [92, 229, 225].

Moreover, numerous observations, using many different approaches, have established that central

galaxies and satellites have different properties and can be described as two distinct populations

2Available at www.cosmosim.org/cms/simulations/bolshoip
3halotools.readthedocs.io
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[136, 53, 144, 220, 206, 185].

The central galaxy occupation is modeled as a Bernoulli random variable, which takes the value

1 with probability ? and the value 0 with probability 1− ?, with ? = 〈#cen |"vir〉. Satellite galaxies

follow a Poisson distribution with first moment 〈#sat |"vir〉.

In principle, the formalism we use in this work is the same as in Ref. [223] which, in turn,

was chosen to mimic the analysis of Ref. [221]. However, we adopt the implementation of the

model in Halotools, and introduce some subtle modifications which will be elaborated on in

Section III.B.2.b.

a. Standard HOD

In the standard HOD, which does not account for any potential galaxy assembly bias, the

mass of a halo solely determines the galaxy occupation. The mean central and satellite galaxy

occupations vary with halo mass according to

〈#cen |"vir〉 =
1
2

(
1 + erf

[
log("vir) − log("min)

flog"

] )
, (7)

〈#sat |"vir〉 =

(
"vir − "0

"1

)U
× 〈#cen |"vir〉, (8)

[230], where "min is the mass at which a halo has a 50% probability of hosting a central galaxy;

flog" is a measure for the scatter in the stellar mass–halo mass relation that determines the

steepness of the 〈#cen |"vir〉 transition from zero to unity; "0 is the truncating mass, below which

〈#sat |"vir〉 = 0; the mass"1 indicates the halo mass at which there is, on average, one satellite4 if a

central is present; and, finally, U is the index of the satellite occupation power law. Note that Eq. (8)

expresses the probability of having a satellite galaxy for a halo with mass "vir, after marginalizing

over the central occupation. The first term on the right hand side indicates the mean satellite

occupation in haloes with a central galaxy, while the second term modulates this occupation by

the probability for a halo to contain such a central. Hence, the presence of a central boosts the

probability for a halo to host satellite galaxies. Note, though, that for individual haloes a central

galaxy is not strictly required for satellites to be present. Although this modulation with 〈#cen |"vir〉

is fairly common [230, 221, 223], we emphasize that it is not used by all authors.

4More accurately, this mass is "1+"0, but "0 is typically much smaller than "1.

50



These specifications, along with the assumptions that the central galaxy HOD is a Bernoulli

distribution and the satellite galaxy HOD is a Poisson distribution, suffice to specify fully the halo

occupation statistics of dark matter haloes in a standard HOD model without assembly bias.

b. Decorated HOD

Galaxy assembly bias can be incorporated into the HOD formalism in any number of ways.

For a secondary halo property G, (e.g., concentration, spin, etc.), one can specify a functional form

for the probability distributions %(#cen |"vir, G) and %(#sat |"vir, G). In such a generalized HOD,

the clustering of galaxies can be altered if halo clustering depends upon secondary property G. The

decorated HOD (dHOD, [74]) is one way of incorporating assembly bias into the HOD formalism

such that integrating the dHOD probability distributions over the secondary properties of interest

yields the standard HOD.

In the present paper, we use a simple variation of the dHOD as an illustrative model. In

particular, we divide haloes into two categories based upon secondary halo property G. Haloes

with higher values of G are assigned distinct HODs compared to haloes with lower values of G, with

a pivot value of Gpiv. This is the “discrete halo subpopulations” example discussed in Section 4.2

of Ref. [74] and used to analyze SDSS data [1] in Ref. [223]. To specify completely the dHOD,

we assume that %(#cen |"vir, G) is a Bernoulli distribution and that %(#sat |"vir, G) is a Poisson

distribution, but that these distributions have first moments of

〈#gal |"vir, G > Gpiv〉 = 〈#gal |"vir〉 + X#gal, (9)

〈#gal |"vir, G ≤ Gpiv〉 = 〈#gal |"vir〉 − X#gal, (10)

where we use the notation #gal because this modification applies equally well to both the central

and satellite occupations. We choose Gpiv to be the median value of G at a given halo mass, so that

each population contains 50% of all the haloes. In this toy model, assembly bias manifests itself

as a step function in the secondary property G, though we expect that any assembly bias realized in

nature would be represented by a smooth function of G. This simple model is practical in the sense

that current data are not sufficient to constrain more complex models [223]; however, richer models

51



of assembly bias can naturally be accommodated within the dHOD framework [74] and future data

sets are likely to enable constraints on richer models.

The differences X#gal above are characterized by two assembly bias parameters, �cen and

�sat, both constructed so that they range between 1 and -1, in addition to the five standard HOD

parameters. A list of the 7 dHOD parameters can be found in Table III.1. Positive values of �gal

indicate a positive correlation between galaxy number and halo property G (i.e., haloes with G > Gpiv

contain more galaxies, on average, than those with G < Gpiv), while negative values represent anti-

correlation. When �gal = 0, the model reduces to the traditional standard HOD. Note that �cen and

�sat vary independently of one another and do not necessarily have the same sign. The stipulations

that the occupation of a halo never be negative, and the requirement that

〈#gal |"vir〉 =
∫
〈#gal |"vir, G〉 %(G |"vir) dG , (11)

with %(G |"vir) the probability distribution for G given "vir, implies that

X#cen = �cen min [〈#cen |"vir〉, 1 − 〈#cen |"vir〉] , (12)

X#sat = �sat 〈#sat |"vir〉. (13)

It should be noted that, when populating a mock galaxy catalog using HOD or dHOD, the actual

number of galaxies in each halo is a random variable: the number of central galaxies follows the

Bernoulli distribution, and the number of satellite galaxies follows the Poisson distribution. Since

we will be conducting a Fisher analysis, the random fluctuation in realizations can masquerade

as a dependence of galaxy number density on (d)HOD parameters, and yield artificially tight

constraints. Hence, we need to reduce the random fluctuation in realizations as much as possible so

that a small change in one or more (d)HOD parameters results in a small change in the total number

of galaxies. We achieve this by assigning to each halo two random variates, ?cen and ?sat, both

drawn from the uniform distribution * (0, 1), independently from the (d)HOD parameter values.

We then find the number that corresponds to these ?-values in the cumulative distribution of a

Bernoulli distribution (for ?cen) or a Poisson distribution (for ?sat). This minimizes the random

fluctuations among realizations that only differ slightly in their corresponding (d)HOD parameters.

In the case of the dHOD, the mean number density of galaxies is strictly independent of the

dHOD parameters �cen and �sat, and so the problem of preserving the total number density from
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one mock realization to another is particularly acute. In the dHOD, changes to �cen or �sat result

in changes to the mean occupations of individual haloes, but should result in no change to the total

number density. If the galaxy occupation for each halo is realized independently, then the total

number of galaxies can vary from mock realization to another as �cen and/or �sat are varied. The

result of such a variation would be to infer additional constraining power on �cen and �sat where

there should be none. To mitigate this possibility, we slightly modified the dHOD implementation

in Halotools5 to ensure the total number density of galaxies is preserved among mock catalogs

that differ only in their values of �cen and �sat. We achieved this by conditioning the dHOD on the

total number of galaxies before realizing the occupation of each individual halo. It should be noted

that once the total number of central galaxies is fixed, the number of central galaxies in each halo

would no longer be strictly a Bernoulli distribution. However, for satellite galaxies, both the total

number of galaxies and the number of galaxies in an individual halo follow Poisson distributions.

In this work, we choose the NFW concentration parameter [132] as our secondary property

[so G = 2NFW in Eqs. (9) and (10)] when studying constraints on the parameters �cen and �sat.

As has been shown in Refs. [45, 195], concentration only partially accounts for galaxy assembly

bias, and other halo properties (e.g., halo age, spin, environment density) may also contribute to

assembly bias. Nevertheless, we choose concentration for several physically motivated reasons.

First, concentration is known to correlate with assembly history [204]6, and has the advantage

that it can be measured in a single snapshot of a simulation. Second, the success of abundance

matching suggests that the HODs realized by nature may, indeed, have some dependence upon halo

structure [36, 150, 72, 224, 117]. Indeed, Ref. [100] showed that abundance matching in a manner

that does not include any concentration dependence is excluded by galaxy clustering. Third, haloes

are known to exhibit large concentration-dependent clustering in the mass range of interest to us

(∼ a few ×1012 ℎ−1 M�). Consequently, concentration-dependent clustering is an excellent test

case with which to study methods to constrain assembly bias. Fourth, concentration-dependent

clustering has already been studied in Ref. [74] for the dHOD and for observational samples by,

e.g., Ref. [223], providing a baseline for comparison. Given the above reasons, we believe the

concentration parameter is the most reasonable choice for this study, yet we note that our findings

5Our implementation is called PreservingNgalHeavisideAssembias in Halotools.
6Though this does not guarantee that concentration and assembly history metrics will lead to similar secondary

biases [118].
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may not be trivially generalized to the assembly bias induced by other secondary halo properties,

as other properties may induce different assembly bias behaviors.

c. Spatial and Velocity Distribution

The detailed predictions of an empirical model depend not only on the model for halo occu-

pation, but also upon the positions and velocities, relative to the host halo, that are assigned to the

galaxies. We place the central galaxy at the halo center and the central galaxy inherits the host

halo’s peculiar velocity. Satellite galaxies are distributed within the virial radius of the host halo

according to a spherically symmetric NFW profile characterized by the same concentration as the

dark matter distribution. This assumption is supported by various works [193, 106, 192], though

other authors find that the distribution of satellite galaxies are described by a concentration different

from that of dark matter particles, depending on the satellite population [32, 127, 202, 174, 96].

The radial velocity distribution of satellite galaxies is modeled as a Gaussian distribution with the

host halo velocity as the first moment and the solution of the isotropic Jeans equation for an NFW

profile [86] as the second moment. We assume velocities to be isotropic, and draw the peculiar

velocities in each Cartesian direction independently from this distribution. In practice, the statistics

that we examine are quite insensitive to moderate alterations to the treatment of galaxy peculiar

velocities (this is by design), though it would be interesting to explore statistics that are sensitive

to peculiar velocities as a follow-up study. To examine the effect of alternative velocity models,

we have tested the velocity bias model in Ref. [66] with U2 = 0.3 and UB = 1, and find that the

systematic change in our observables is negligible (within 1.5% in all cases).

3. Observables

In search of effective ways of utilizing existing and future galaxy surveys to constrain the

dHOD, we consider a number of observables that are sensitive to halo occupation. In particular,

while including the overall galaxy number density of the simulation volume, =gal, as a constraining

observable in all of our analyses, we examine

I. the projected two-point correlation function, Fp(Ap);

II. the galaxy–galaxy lensing signal, ΔΣ(Ap);
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III. the void probability function VPF(A);

IV. the distribution of counts-in-cylinders, %(#CIC);

V. the distribution of counts-in-annuli, %(#CIA) (analogous to counts-in-cylinders, but with an

excised inner region);

VI. the distribution of the ratio of counts in cylinders of different sizes %(#2/#5).

We discuss these observables in more detail in the remainder of this subsection.

We compute all observables numerically, by generating mock galaxy catalogs and subsequently

measuring each observable from the mock catalog. This forward-modeling approach enables us

to mitigate modeling uncertainty associated with analytic approaches to galaxy clustering and

to incorporate possible systematic errors into our calculations. All observables are computed

in redshift space, as they would be from observational data, namely, the coordinates of galaxies

(G, H, I) are mapped onto (G, H, I + EI/0� (0)). We show examples of the measured values of the

observables and their uncertainties from jackknife subsampling (see Section III.B.5) in Fig. III.1 for

our fiducial HOD models. Our fiducial models are taken from the fits of Ref. [223], the parameters

of which are listed in Table III.1.

Each of the observables is binned in a particular manner. We have selected the binning scheme

to ensure that our binning does not significantly degrade the constraining power of any individual

observable. We do this by performing a series of analyses in which the bin sizes are reduced in

each analysis. We choose bin sizes for each observable such that further refinement of the bins

would not yield significant improvement in parameter constraints. We specify the range of the

independent variable for each observable observable (for example, in the case of Fp(Ap), we take

0.1 ≤ Ap/ℎ−1 Mpc ≤ 31.6) and increase the number of bins until parameter constraints saturate.

This process has been described in detail in ref. [73]. We find that the constraining power of all

observables saturates at fewer than 30 bins, so we take 30 bins for all observables for simplicity.

The binning scheme for which our main results are obtained is shown in Table III.2. 7

7Our results are insensitive to the largest length scales included in our analysis because statistics on these scales
are measured with relatively low signal-to-noise. We have verified that excluding the few largest bins of Fp (Ap) and
ΔΣ(Ap) from our analyses results in negligible quantitative change in our constraints (typically below 1%, and as large
as ∼ 2% in the most extreme cases), and no qualitative change to our conclusions.
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Fiducial HOD Parameters

log"min flog" U log"0 log"1 �cen �sat

"r < -19.0 11.64 0.5119 1.040 10.25 12.80 0 0

"r < -19.5 11.75 0.4458 1.116 11.29 13.06 0 0

"r < -20.0 11.97 0.3485 1.144 11.31 13.29 0 0

"r < -20.5 12.25 0.1854 1.197 11.20 13.59 0 0

"r < -21.0 12.82 0.5595 1.337 11.96 13.99 0 0

Table III.1: In this table, we list the fiducial HOD parameters adopted for each luminosity threshold

of galaxies, taken from the fits of Ref. [223]. Of the 5 standard HOD parameters, "min is the

mass at which a halo has a 50% probability of hosting a central galaxy; flog" determines the rate

that 〈#cen |"vir〉 transitions from zero to unity; "0 is the truncating mass, below which no satellite

galaxies are allowed; "1 is the halo mass at which the mean satellite number is unity; and U is the

index of the satellite occupation power law. Besides the standard HOD parameters, we also allow

�cen and �sat to vary, which control the amount of galaxy assembly bias for central and satellite

galaxies respectively. In doing this we treat galaxy assembly bias as a deviation from the standard

HOD model to be constrained.
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Observable Bin Definition

Fp(Ap) ΔΣ(Ap) VPF(A) %(#CIC) %(#CIA) %(#2/#5)

Bin Ap [ℎ−1 Mpc] Ap [ℎ−1 Mpc] A [ℎ−1 Mpc] #CIC #CIA #2/#5

1 * 0.11 1.00 {0} {0} [0.000,0.033)
2 0.11 0.13 1.08 {1} {1} [0.033,0.067)
3 0.14 0.16 1.17 {2} {2} [0.067,0.100)
4 0.17 0.20 1.27 {3} {3} [0.100,0.133)
5 0.20 0.24 1.37 {4} {4} [0.133,0.167)
6 0.25 0.29 1.49 {5} {5} [0.167,0.200)
7 0.30 0.35 1.61 {6} {6} [0.200,0.233)
8 0.37 0.43 1.74 {7} {7} [0.233,0.267)
9 0.45 0.52 1.89 {8} {8} [0.267,0.300)
10 0.54 0.62 2.04 {9} {9} [0.300,0.333)
11 0.66 0.76 2.21 [10,12) [10,12) [0.333,0.367)
12 0.81 0.92 2.40 [12,13) [12,14) [0.367,0.400)
13 0.99 1.11 2.59 [13,15) [14,16) [0.400,0.433)
14 1.20 1.35 2.81 [15,18) [16,19) [0.433,0.467)
15 1.47 1.63 3.04 [18,20) [19,22) [0.467,0.500)
16 1.79 1.98 3.29 [20,24) [22,26) [0.500,0.533)
17 2.18 2.39 3.56 [24,27) [26,30) [0.533,0.567)
18 2.66 2.90 3.86 [27,31) [30,35) [0.567,0.600)
19 3.24 3.51 4.18 [31,36) [35,41) [0.600,0.633)
20 3.95 4.26 4.52 [36,42) [41,48) [0.633,0.667)
21 4.82 5.16 4.89 [42,48) [48,57) [0.667,0.700)
22 5.88 6.25 5.30 [48,55) [57,66) [0.700,0.733)
23 7.17 7.57 5.74 [55,64) [66,78) [0.733,0.767)
24 8.75 9.17 6.21 [64,74) [78,91) [0.767,0.800)
25 10.6 11.11 6.72 [74,85) [91,106) [0.800,0.833)
26 13.0 13.46 7.28 [85,98) [106,125) [0.833,0.867)
27 15.8 16.30 7.89 [98,113) [125,146) [0.867,0.900)
28 19.3 19.75 8.53 [113,130) [146,171) [0.900,0.933)
29 23.6 23.93 9.24 [130,150) [171,200) [0.933,0.967)
30 28.7 28.99 10.00 [150, + ∞) [200, + ∞) [0.967,1.000]

Table III.2: Definition of bins for each observable are listed in this table, each measured in 30 bins.
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Table III.2: (cont.)We show the values of bin centers for the bins in which Fp(Ap) and ΔΣ(Ap) are

measured, the set of radii of spheres used for evaluating VPF(A), the intervals defining each bin in

the histograms of counts-in-cylinders and annuli, and the ratio #2/#5. We use the same number

of bins for each observable, such that our comparison of constraining power is not sensitive to bin

number. * Note that the number density =gal is listed as the first bin of Fp(Ap) in this table, but it is

included in the analysis for all possible combinations of observables.

a. Projected Two-Point Correlation Function

The projected two-point correlation function, Fp(Ap), is a canonical observable that has been

considered in numerous previous analyses to inform halo occupation [188, 231, 221]. It is defined

by

Fp(Ap) = 2
∫ cmax

0
3c b (Ap, c) (14)

where b (Ap, c) is the excess probability of finding galaxy pairs with projected and line-of-sight

separations Ap and c, respectively. We estimate Fp(Ap) from our mock catalogs by counting galaxy

pairs that have a projected separation in a bin of Ap within a perpendicular distance of cmax in redshift

space. We choose cmax = 60ℎ−1 Mpc, as is done by [221], according to whom this integration

limit is large enough to include most correlated pairs and minimize the impact of the details of

peculiar velocity models, yet sufficiently small to give a stable result by suppressing noise from

very distant, uncorrelated pairs. We compute Fp(Ap) in 29 logarithmically spaced radial bins from

Ap = 0.1 ℎ−1 Mpc to Ap = 31.6 ℎ−1 Mpc.

The projected two-point clustering of our fiducialmodels are shown for two luminosity threshold

samples in the upper, left panel of Fig. III.1. The figure exhibits several well-known characteristics

of galaxy clustering. First, brighter galaxies cluster more strongly. Second, the galaxy two-point

correlation function can roughly be described as a power law, Fp = (Ap/A0)U, with index U ≈ −0.8.

Third, in more detail, the correlation function exhibits a small deviation from a power law near

Ap ∼ 2 ℎ−1 Mpc which is due to the transition from galaxy pairs that reside in distinct haloes (the

“two-halo” term) on large scales (Ap & 2ℎ−1 Mpc) and pairs of galaxies that reside in a common

halo (the “one-halo term”) on scales Ap . 1ℎ−1 Mpc.
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Figure III.1: Examples of the observables that we consider to constrain assembly bias. In each

panel, we show examples of the observables. We show examples for our fiducial HOD parameters

corresponding to two luminosity thresholds, as illustrated by the legend in the upper left panel. The

observable values are shown as connected data points, while the colored bands show the uncertainty

from jackknife subsampling, which we describe in detail in Section III.B.5.
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Figure III.1: (cont.) The upper left panel shows the projected correlation function, Fp(Ap). For

illustration, this panel also contains a dashed line illustrating the slope of a power law with

Fp(Ap) ∝ A−0.8
p for comparison. The upper right panel shows the excess surface density about

galaxies, ΔΣ(Ap), in the samples. The left panel in the middle row depicts the void probability

function, VPF(A). The right panel in the middle row depicts the distribution of counts-in-cylinders

(CIC). Notice that the lower luminosity sample has a much more significant tail to high companion

counts than the higher luminosity sample. Similarly, the left panel of the bottom row depicts counts-

in-annuli (CIA). Finally, the right panel of the bottom row shows the probability distribution of

the ratio of cylinder counts on distinct scales, %(#2/#5). Each panel is labeled by the observable

shown.

b. Galaxy–Galaxy Weak Lensing

In addition to the projected two-point clustering, galaxy–galaxy weak lensing is another ob-

servable statistic that has been used by many previous authors to constrain halo occupation from

observational data [115, 29, 194]. The canonical observable, ΔΣ(Ap), is the excess surface density

of mass around galaxies projected along the line-of-sight, and averaged over all potential lens

galaxies in the sample,

ΔΣ(Ap) = Σ̄(< Ap) − Σ(Ap) (15)

where Σ(rp) is the projected surface density evaluated at position Ap relative to the center of the lens

galaxy, and Σ̄(< Ap) is themean projected, two-dimensional, surfacemass densitywithin a projected

distance or Ap from the lens galaxy. We compute ΔΣ(Ap) in 30 logarithmically-spaced radial bins

from Ap = 0.1 ℎ−1 Mpc to Ap = 31.6 ℎ−1 Mpc. The simulations that we use are gravity-only N-body

simulations, so our estimates ofΔΣ(Ap) include neither baryonic mass nor any influences of baryons

on the dark matter distribution [157].

The galaxy–galaxy lensing signal in our fiducial catalogs is depicted in the upper, right panel

of Fig. III.1. It is evident from this panel that galaxies in the higher-luminosity samples are more

strongly correlated with mass, indicating the well-known fact that more luminous galaxies tend to

reside in more massive dark matter haloes. The feature due to the transition between the one-halo
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and two-halo terms in the galaxy matter correlation function is evident near Ap ∼ 2 ℎ−1 Mpc as well.

c. Void Probability Function

We examine a number of options for observables in addition to the canonical Fp(Ap) and

ΔΣ(Ap), among them the VPF. The VPF has been examined in previous studies on assembly bias

with mixed conclusions [179, 224] and, in principle, depends upon all of the n-point functions

[139]. To estimate VPF(A), we randomly place spheres of radius A throughout our simulation

volume and enumerate the probability of the spheres containing zero galaxies (and thus being

classified as voids) as

VPF(A) = #void(A)
#sphere(A)

, (16)

where #sphere is the total number of spheres that we use for the estimate (#sphere = 105 in this work)

and #void is the number of spheres that are found to enclose zero galaxies. We compute VPF(A)

at 30 logarithmically-spaced radii from A = 1 ℎ−1 Mpc to A = 10 ℎ−1 Mpc. We remind the reader

that these calculations are performed in redshift space, by mapping the coordinates of galaxies

according to their line-of-sight velocities.

The VPF(A) of our fiducial models are depicted in the left, middle panel of Fig. III.1. As with

Fp(Ap) and ΔΣ(Ap), several expected features of the VPF(A) are evident. The VPF drops from

nearly unity on small scales to well below unity beyond a scale of A ∼ 10 ℎ−1 Mpc and voids are

more likely for higher luminosity galaxy samples, due largely to their overall lower number density.

d. Counts-in-cylinders (CIC) Statistic

Galaxy counts, particularly counts of galaxies within cylindrical volumes in redshift space, have

been studied for decades [58, 7, 4, 10, 34, 173, 85, 77, 84, 22, 9, 152, 17, 137, 63]. The average

number of companions that a galaxy will have within a particular cylinder can be computed from

the two-point correlation function; however, the distribution of counts-in-cylinders depends, at

least in principle, upon all of the higher n-point functions [139] and can complement the two-point

function as a study of the galaxy halo relationship.

We compute counts in cylinders (CIC) from our galaxy catalogs as follows. We center a

cylinder of transverse radius ACIC and depth ±ΔE (in redshift space) on each galaxy in the sample
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and count the number of companion galaxies that fall within the cylinder. This procedure enables

us to estimate a probability distribution of companion number, %(#CIC), which is the probability

that any galaxy has #CIC companions within the cylinder. For the primary results that we present

in this paper, we use ACIC = 2ℎ−1 Mpc and a maximum relative velocity of ΔE = 1000 km s−1,

corresponding to a half-length of ! = 10ℎ−1 Mpc, assuming velocities are only due to the Hubble

flow. We choose cylinders of a transverse radius ACIC on the order of a few ℎ−1 Mpc in order to

include galaxy companions separated by a scale on which assembly bias is known to introduce a

distinct feature in halo clustering [74, 223, 172]. We have experimented with a variety of alternative

cylinder radii and depths, finding that our results remain qualitatively similar. When characterizing

the PDF %(#CIC), we count the first few values of #CIC individually and group larger #CIC values

into logarithmically spaced bins, as indicated in Table III.2.

Examples of our counts-in-cylinders distributions, %(#CIC), for two of our luminosity threshold

samples, can be seen in the middle, right-hand panel of Fig. III.1. As is expected, the probability of

having a large number of companions in a cylindrical cell increases dramatically with decreasing

galaxy luminosity due to the higher number density of galaxies with lower luminosities.

e. Counts-in-annuli (CIA) Statistic

To complement counts-in-cylinders, we also examine counts of neighbor galaxies in annuli.

The counts-in-annuli (CIA) enable one to get a sense of clustering as a function of scale and to

compare smaller-scale, intra-halo clustering to larger-scale clustering. The statistic %(#CIA) is

the probability that the number of companions within the annulus is equal to #CIA, analogous

to %(#CIC). Unlike the counts-in-cylinders statistic, which roughly probes the halo-occupation

statistics on the “one-halo” scale, %(#CIA) is a novel statistic, introduced here, and specifically

designed to probe the immediate, supra-halo environments of galaxies.

As with CIC, we choose fixed dimensions for the annuli that we use and explore the constraining

power of the distribution of counts around galaxies in our catalogs. Our annuli have inner radii of

Ainner = 2 ℎ−1 Mpc and outer radii of Aouter = 5 ℎ−1 Mpc. As with CIC, the annuli have a depth in

the redshift dimension of 10 ℎ−1 Mpc, corresponding to a velocity difference of ΔE = 1000 km s−1.

As with CIC, this geometry is chosen in order to probe the immediate environments of haloes,
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particularly on scales where assembly bias has already been shown to induce a feature in galaxy

clustering [74, 172]. We have experimented with moderately different annular dimensions and

obtained qualitatively similar results in all cases. We group values of #CIA in a similar way to

#CIC, as detailed in Table III.2.

Examples of %(#CIA) for our fiducial catalogs are given in the lower, left-hand panel of Fig. III.1.

The CIA distribution shares most of the qualitative features of the CIC distribution, though the

counts are generally higher because the volumes of our annuli exceed the volumes of our cylinders

by a factor of ∼ 5.

f. Distribution of Cylinder Count Ratios

As a distinct way of characterising the clustering environments of galaxies, we also consider

the distribution of the ratio of two cylinder counts. The first count is within a cylinder with a

radius of ACIC = 2 ℎ−1 Mpc and the second, larger cylinder has a radius ACIC = 5 ℎ−1 Mpc for each

galaxy. For both cylinders we adopt the same depth, ΔE = 1000 km s−1 as for the CIC and CIA

statistics discussed above. For each galaxy in our catalogs, we compute the companion counts #2

and #5 within each of these cylinders, and take the probability distribution of the ratio of these two

numbers as the statistic of interest (notice that the inner cylinder is the same cylinder used in our

CIC calculations, so that #5 = #2 + #CIA. Similar to #CIA, this is a novel statistic to probe the

large scale distribution of galaxies that, to the best of our knowledge, has not been utilized before.

The intention of this statistic is to probe the relative clustering within a halo (the “one-halo term”)

to that in its immediate vicinity. We measure the probability distribution of this ratio, %(#2/#5)

in 30 linearly-spaced bins from 0 to 1.

Probability distributions of the cylinder count ratio are shown in the lower, right-hand panel of

Fig. III.1. It is evident that the higher luminosity sample has a distribution with more discreteness

noise, as a result of the low number density. The more luminous sample has a significantly higher

probability of having low values of #2/#5 than the lower luminosity sample. This is due to

the fact that satellite galaxies are increasingly rare in the higher-luminosity samples, so that #2 is

increasingly likely to be either small or zero in such samples compared to lower-luminosity samples

(see the right, middle panel of Fig. III.1).
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4. Fisher Analysis

We use a Fisher matrix analysis [25, 52] to forecast the constraining power of each of the

observables described above and combinations thereof. Despite its approximate nature, we elect

to use a Fisher matrix due to the computational expense of utilizing other techniques. Employing

a technique that directly quantifies uncertainty by averaging the posteriors found from each mock

catalog, either via Markov Chain Monte Carlo [62, 56] or Approximate Bayesian Computation

[207], to perform the very large number of analyses that we undertake using mock catalogs is

substantially more computationally intensive.

The Fisher matrix is a measure of the ideal amount of information that can be obtained from

an experiment. The Fisher matrix is defined as

I =
mfT

mp
C−1 mf

mp
, (17)

where f is the set of observables, C is the covariance of the observables, and p is the parameter

set to be constrained. The set of observables f includes all bins of each observable quantity (e.g.,

29 bins of Fp(Ap), 30 bins of ΔΣ(Ap), etc.), while p represents the set of all model parameters.

The notation mf/mp represents the matrix of values constructed by differentiating each observable

with respect to each of the individual parameters, so that the matrix element m 5i/m?j represents the

derivative of the 8th observable with respect to the 9 th model parameter. Both the derivatives and

the covariance are evaluated at a single, fiducial point in the parameter space, which is assumed to

be the true underlying model.

The expected 1f error on any inferred parameter, marginalized over all other parameters, can

be obtained by taking the square root of the corresponding diagonal term of the posterior covariance

matrixΣ, which is the inverse of the Fisher matrix. Hence, the forecastedmarginalized uncertainties

in the parameters are

f =
√
Diag(Σ) =

√
Diag(I−1). (18)

In our study of the constraining power of various observables, we explore the 6 dimensional

parameter space, spanned by U, log"1, flog" , log"min, �cen, and �sat. The parameter log"0 is

part of both the standard HOD and the dHOD models. However, we set log"0 to its fiducial value
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in our analyses and do not allow it to vary. We do this because log"0 is poorly constrained by

these data [223].

The fiducial points about which we evaluate our Fisher matrices are given by the parameters

listed in Table III.1, and differ for each luminosity threshold sample. In the next two subsections,

we discuss the computation of the covariance matrix, C, and the derivatives of the observables,

mf/mp, respectively.

5. Covariance

In order to implement the Fisher approximation for the marginalized constraints on model pa-

rameters, we must compute a covariance matrix about the fiducial point in the parameter space. The

covariance matrix that we calculate has three contributions. The first, and dominant, contribution is

from sample variance (sometimes called “cosmic” variance in this context). We estimate the sam-

ple variance contribution using jackknife resampling of the simulation volume, while recognizing

the caveat that jackknife resampling is known to underestimate covariances. We will refer to this

component of the covariance as Cjackknife. The second contribution to the covariance matrix is due

to the stochasticity of populating a simulation with galaxies drawn from the probability distribution

functions of the (d)HOD. Multiple realizations of the same underlying model in identical, finite

volumes will lead to mildly different predictions due to this stochasticity. We refer to this contri-

bution to the covariance as Crealization. Third, we use a fixed set of randomly distributed centers

of spheres in the calculation of VPF(A) as well as a fixed subsample of dark matter particles in

the calculation of ΔΣ(Ap). These choices introduce a small contribution to the covariance that we

denote Crandom. The total covariance matrix that we use is the sum of each of these contributions

Ctotal = Cjackknife + Crealization + Crandom. (19)

As an example, Fig. III.2 depicts the covariance matrices Cjackknife, Crandom, Crealization and their

linear combinationCtotal, for the"A < −19.0 threshold sample, as normalized correlation matrices.

The contributions from Crealization and Crandom are straightforward to compute. To estimate

Crealization, we populate the halo catalog with the fiducial HOD multiple times, each time using a

new random seed, and compute the covariance across the measurements from the resultant mock
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galaxy catalogs. Crealization is displayed in the upper right panel of Fig. III.2. For Crandom, we repeat

measurements of ΔΣ(Ap) and VPF(A) on the same mock galaxy catalog, but with different sets of

particle subsamples and sphere centers, respectively, and calculate the covariance. Note that this

matrix only consists of the two corresponding blocks, as shown in the lower left panel of Fig. III.2.

Finally, to estimate Cjackknife, which is shown in the upper left panel of Fig. III.2, we divide

the simulation box into 10×10 cuboid cells, each of size 25 ℎ−1 Mpc × 25 ℎ−1 Mpc × 250 ℎ−1 Mpc.

The long axes of each cuboid are the same as the length of the simulation volume and are assumed

to lie along the line of sight. For each mock catalog, we construct three such sets of jackknife

samples by choosing, in turn, the G, H, and I dimensions of the simulation cube as the line-of-

sight direction. Our final covariances are the averages of the three covariances computed for

each of the three projections. We construct this average to minimize the contributions from any

significant variations that may, by chance, fall along any individual projection. For each set of

jackknife samples coming from each of the three projections of the mock catalogs, we exclude

individual jackknife cells in turn, and compute the jackknife contribution in the usual manner

[82, 148, 182, 198].

For the purposes of computing jackknife covariances only, the mock catalogs that we use are not

based on our fiducial HODs. Our jackknife covariance mock catalogs are based upon abundance

matching with zero scatter [92]. We construct these catalogs by populating haloes that have

the highest values of +peak, with galaxy number densities consistent with HOD realizations. This

modification is necessary for the following reason. EachmockHOD-based catalog is a realization of

the underlying HODs. Therefore, there is inherent stochasticity in the covariance matrix estimates.

Moreover, in the HOD formalism, each luminosity threshold must be treated independently, which,

in turn, means that the covariances in different threshold samples can fluctuate independently. This

makes comparing covariances across luminosity thresholds challenging because to do this using the

HOD approach requires marginalizing the stochasticity over a very large number of mock catalogs.

The abundance matching approach that we have adopted allows us to circumvent this difficulty

because there is no stochasticity in the mock catalogs. Therefore, the stochasticity associated

with building mock catalogs does not contribute to our Cjackknife estimates. This ensures that our

Cjackknife estimates vary smoothly with the luminosity threshold of the sample. We have found that

this procedure reduces the noisiness of our forecasts, yet does not alter our qualitative results.
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All six of our candidate observables are based on pair or neighbor counting, which reduces

the choice of algorithm to determining which counts to exclude for each jackknife subsample. For

Fp(Ap), we discard a pair if either or both of the galaxies reside in the excluded cell. For ΔΣ(Ap),

we only calculate the dark matter density profile around galaxies that live outside the excluded

cell. Note, though, that in doing so we include dark matter particles that lie in that cell. Excluding

such particles would lead to anomalous density profiles that are not easily corrected because the

subsampling procedure violates the periodicity of the simulation volume. Similarly, for VPF(A),

we place random spheres about points outside of the excluded cell; however, for the purposes of

determining whether or not a particular sphere is a void region, galaxies within the excluded cell

are taken into account. And for the count statistics, %(#CIC), %(#CIA), and %(#2/#5), we only

center cylinders on galaxies outside the excluded cell, but include companion galaxies within the

excluded cell in our counts.

Of the three contributions,Cjackknife is the dominant component, andCrandom is negligibly small,

suggesting that we have used sufficiently large samples of VPF centers and dark matter particle

positions to render the noisiness induced by finite sampling of these distributions negligibly small.

Direct inversion of the covariance matrix C is problematic numerically. Briefly stated, the

uncertainty in the covariance will lead to the smallest eigenvalues of C being dominated by

noise. When a matrix is inverted, its eigenvalues are inverted, which implies that the small, noisy

eigenvalues of C become the large and noisy eigenvalues of its inverse. The inverse hence becomes

dominated by this noise. This problem is further compounded by the large differences among

the matrix elements inherited from the differences between the natural scales of the different

observables, leading to extremely large differences in the sizes of the matrix eigenvalues. For

example, the natural scale of the two-point function, Fp(Ap), is ∼ 102, whereas the natural scale

of %(#CIC) is on the order of ∼ 10−2 (see Fig. III.1) and this difference leads to very different

covariance matrix elements.

A common approach when faced with this problem is to truncate the smallest eigenvalues of C,

and calculate the Moore-Penrose pseudo-inversion [140]. We therefore normalize C, and perform

pseudo-inversion, excluding the eigenvalues of the correlation matrix smaller than 10−5 times the

largest eigenvalue. Choosing other reasonable values of this cutoff does not substantially impact

our results. In the future, when larger data sets are available, and the noise level of the covariance
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is sufficiently low, pseudo-inversion may no longer be necessary.

Our covariance matrices have several noteworthy features. Firstly, from an inspection of

Fig. III.2, we see strong self correlation between the bins of Fp(Ap), ΔΣ(Ap), and VPF(A) over

a wide range of scales. On the contrary, %(#2/#5) shows weak correlation among its bins and

with other observables, as it measures the distribution of the dimensionless ratio #2/#5, and is

insensitive to the cosmic variance of galaxy number density. Secondly, for %(#CIC) and %(#CIA),

the probability of smaller counts and larger counts sum up to unity, and are anti-correlated by

construction, producing the sign reversal in the corresponding matrix blocks. Additionally, when

comparing Cjackknife and Crealization, it is obvious that the observable values are more correlated

among jackknife subsamples than stochastic realizations. The sign of correlation coefficients

approximately coincide between the two contributions, with the exception of blocks involving

VPF(A). In Crealization, VPF(A) has a weak positive correlation with Fp(Ap) and ΔΣ(Ap) in most

of the bins, while in Cjackknife, VPF(A) is anti-correlated with Fp(Ap) at larger Ap and ΔΣ(Ap).

These are non-trivial effects, as VPF(A) is dependent on multiple moments of the galaxy number

density field. The jackknife subsamples probe different regions of the box, with denser regions

corresponding to stronger galaxy–galaxy and galaxy–matter correlation as well as fewer voids,

leading to the anti-correlation in Cjackknife. On the other hand, among different realizations, higher

values ofFp(Ap) andΔΣ(Ap) result not from higher galaxy number densities but whenmore galaxies

are concentrated in clusters, allowing more voids to exist in the rest of the space, giving rise to

a positive correlation with VPF(A). Covariances for other luminosity samples have qualitatively

similar features.

When applying the same analyses to galaxy survey data, observational uncertainties need to be

taken into account, here we discuss how our covariances compare to observational covariances from

SDSS data. For statistics that depend only on galaxy distribution, e.g., all of our observables except

ΔΣ(Ap), the observational uncertainties depend on the survey volume and target number density to

first order, both of which wemimic in our analyses. In comparison with the covariances from SDSS,

which has a similar volume for the "A < −20.0 sample to the Bolshoi Planck simulation, indeed

our jackknife covariance matrix for Fp(Ap) is comparable to the measurement in Ref. [221]. For the

fainter samples, SDSS has smaller volumes and hence larger covariances than ours, and vice versa

for the brighter samples. Similarly, we expect the other observables to have covariances comparable
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Figure III.2: In this figure, we show the total covariance matrix along with the three matrices that

we sum in order to compute the total covariance matrix, each normalized to correlation matrices,

for the "A < −19.0 threshold sample.
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Figure III.2: (cont.) Crealization and Crandom are computed using our fiducial HOD parameters. The

sample variance contribution, Cjackknife, is computed using a mock catalog based on abundance

matching in order to eliminate the stochasticity associated with any individual mock HOD catalog.

Cjackknife is the major contribution, while Crealization and Crandom are subdominant. Covariances for

other thresholds are qualitatively similar. Blocks of these matrices corresponding to the bins of a

specific type of observable (e.g., Fp(Ap) or %(#CIC)) are labeled as such. Each such block contains

30 rows and columns corresponding to the 30 bins used for each observable.

to SDSS observation, with the exception of ΔΣ(Ap). Aside from the first-order comparability, there

are other factors that need to be accounted for in observation. Fiber collision [138] affects pairs with

small separations, i.e., the smallest bins of Fp(Ap) and ΔΣ(Ap), as well as %(#CIC) and therefore

%(#2/#5). This effect needs to be forward modeled in survey data analyses. However, %(#CIA)

does not depend on the closest galaxy companions, and is robust to fiber collision. As we will show

in Section III.C, %(#CIA) typically provides tight constraints comparable to %(#CIC). Some of

the other second-order observational uncertainties are blending and saturation in target selection,

redshift measurement errors, and geometric features, all of which we expect to be subdominant in

this context.

On the other hand, the covariances for ΔΣ(Ap) measured for SDSS data [114] are significantly

larger than our covariances. This is expected because the survey data is dominated by shape noise,

while we neglect shape noise in our study, assuming infinite source densities. Taking non-zero

shape noise into account will result in weaker constraints from lensing than those that we find here,

and our forecasts therefore must be regarded as the upper limit of constraining power that can be

achieved with ΔΣ(Ap).

6. Derivative Fitting

In order to compute the elements of the Fisher matrix, it is necessary to estimate the partial

derivatives of the observableswith respect to the parameters in the neighborhood of the fiducial point

in the parameter space. We designated these derivatives as mf/mp in Eq. (17) above. Assessing these

70



derivatives from realizations of the perturbed models is non-trivial due to the inherent stochasticity

of using mock catalogs based upon the direct population of N-body simulations. Therefore, we

give a detailed description of our approach to estimating derivatives in Appendix B.

C. Results

We perform Fisher matrix analyses in order to forecast the constraints on the dHOD model

that can be extracted from combinations of the galaxy observables described in Section III.B.3.

In Table III.1, we list the fiducial HOD parameters corresponding to 5 galaxy samples selected

by luminosity. In this section, we present our primary results in terms of estimated posterior 1f

constraints for the four lower luminosity samples that we have studied. We exclude the brightest,

"A < −21.0 sample from our primary results because the results from this sample are subject to

excessive statistical fluctuations due to the relatively small number of galaxies above this luminosity

threshold within the volume of the Bolshoi Planck simulation. For completeness, the results from

the "A < −21.0 sample are included in our comprehensive list of results in Appendix C.

Before proceeding to our results, we note that the dominant contribution to our errors are from

sample variance due to the finite volume of the Bolshoi Planck simulation (see Section III.B.5

above). The absolute constraints on parameters will decrease with increasing volume. As such,

we focus on relative constraints on parameters from different combinations of observables, rather

than on the absolute values. Our study requires that haloes be resolved with a very large number of

particles which, in turn, stipulates the use of a high-resolution, relatively smaller volume simulation

such as Bolshoi Planck.

1. Assessing the Complementarity of Observables

We begin with a discussion of our forecast constraints from individual observables and com-

binations of any two observables. We use the "A < −20.0 sample as an example in Fig. III.3,

to compare the constraints on �cen and �sat from the individual observables and all the possible

combinations of two observables. We caution that each of the four panels has a different H-axis
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range, which the reader must account for when comparing results among different panels.

We display constraints from the individual observables on �cen in the upper left panel of

Fig. III.3 and �sat in the lower left panel of Fig. III.3. The columns are ordered according

to increasing constraining power, and the filled circles indicate the observables from which the

constraints were derived. For example, the leftmost column in the upper left panel of Fig. III.3

shows the constraint on �cen derived from %(#CIC).

The constraints from individual observables, displayed in the left panels of Fig. III.3 convey

several points. The observable %(#CIC) more strongly constrains the assembly bias of satellite

galaxies than that of central galaxies. This is expected because %(#CIC) primarily probes the “one-

halo term”, and is sensitive to the satellite population that accompany centrals. For the brighter

samples with higher satellite fractions, %(#CIA) is more dependent on the satellite population, and

constrains �sat more strongly, while its constraining power decreases for �cen. The constraints from

Fp(Ap) are dominated by the smaller radial bins, which have higher signal to noise ratios than the

measurements at larger scales. This causes the absolute constraints on �cen to be weaker than those

on �sat. However, with larger volumes, e.g., DESI [101], large-scale clustering will be measured

with higher precision, enabling better constraints on �cen. We also find that VPF(A) gives strong

constraints on �cen, but is extremely inefficient in constraining �sat. This can be explained by the

fact that a single galaxy suffices to eliminate the possibility that a region could be a void. The

vast majority of satellite galaxies reside in haloes where there are central galaxies, which already

eliminate the void, therefore the void probability function is largely insensitive to the abundances of

satellite galaxies. For this reason, VPF(A) is a poor probe of not only �sat, but all of the parameters

that determine satellite populations (see Tables C- C in Appendix C).

The constraints from the combinations of two observables are shown in the right-hand panels

of Fig. III.3. The columns are again ordered from least constraining to most constraining, and the

observables used in each analysis are marked by filled circles. For example, the leftmost column

in the upper right panel of Fig. III.3 shows constraints derived from the combination of Fp(Ap)

and ΔΣ(Ap). The combination of Fp(Ap) and ΔΣ(Ap) has been used in a number of previous

studies; however, we find that this is one of the least constraining of the combinations that we have

considered for both �cen and �sat. As we discuss further below, this is chiefly because Fp(Ap) and

ΔΣ(Ap) share largely common degeneracies among the (d)HOD parameters, so that combining the
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two does not result in significant decreases in marginalized constraints that can be expected when

combining highly complementary data.

The primary result to be gleaned from Fig. III.3 is the overall efficacy of the count-based

observables, i.e., %(#CIC) and %(#CIA), to complement either Fp(Ap) or ΔΣ(Ap) to constrain

the galaxy assembly bias parameters. We find that when used in combination with count-based

statistics, Fp(Ap) typically outperforms ΔΣ(Ap). Moreover, it is worth noting that our lensing

covariance assumes an infinite density of lensing sources, so lensing constraints realized from a

real survey analysis will be further diluted by shape noise contributions to the covariance, as we

have discussed in Section III.B.5. Therefore, we suspect that this general result will be robust to

actual survey analyses. While Fig. III.3 displays only constraints on �cen and �sat from a single

luminosity threshold sample, we find that these qualitative results hold for all thresholds samples

considered here (see Fig. III.4 and Appendix C).

2. Complementarity with Clustering

We now turn to a more detailed exploration of the complementarity of various observables with

galaxy clustering, as quantified by Fp(Ap). Figure III.4 displays the constraining power of different

combinations of observables on the two galaxy assembly bias parameters of our dHOD model:

�cen, the central galaxy dHOD assembly bias parameter (top panel), and �sat, the satellite galaxy

dHOD assembly bias parameter (bottom panel). We include in Fig III.4 constraints from Fp(Ap)

individually along with constraints from combining Fp(Ap) with each of the other observables that

we study. For completeness, we also show the constraints from all the observables combined as

an illustration of the maximal constraining power that can be achieved using the complete set of

observables considered in our study. The constraints in Fig. III.4 are depicted as bar plots, with the

bars grouped by combination of observables. Bars of different colors within each group correspond

to different luminosity threshold samples, as indicated. Finally, the heights of the bars represent the

fully marginalized 1f constraints, with smaller values corresponding to tighter, more restrictive

constraints. Similar plots for the other dHOD parameters can be found in Appendix C.

Examining the bars in Fig. III.4, several general trends are apparent. Most prominently, similar

to what we find for the "A < −20.0 sample in Fig. III.3, for all the luminosity samples we study,
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Figure III.3: In this figure, we compare the constraints on �cen and �sat from the individual

observables (left-hand panels) and all the possible combinations of two observables (right-hand

panels), using the "A < −20.0 sample as an example. The top row shows the constraints on

�cen and the bottom row shows the constraints on �sat. Note that each of the four panels has a

different H-axis range. In each panel, we arrange the columns from least constraining (at left) to

most constraining (at right). The filled circles in different colors indicate the observables used to

compute the constraints of the corresponding column, as labeled on the right. The relative heights

of the circles are ordered by the constraining power from each individual observable on the relevant

parameter, shown in the left panels. The absolute heights of each colored circle do not correspond

to the absolute constraints from that individual observable. In the bottom left panel, the black arrow

indicates that the individual constraint from VPF(A) on �sat, the value of which is shown below the

arrow, greatly exceeds the range of the H-axis.
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Figure III.4: This figure shows the marginalized 1f constraint on �cen (top panel), and �sat

(bottom panel), as grouped histograms. Each group of bars corresponds to a different combination

of observables, and within each group, results for different luminosity thresholds are plotted in

different colors, as detailed in the legend. We show Fp(Ap) individually, its combination with every

other observable, and the combination of all 6 of our observables. In the upper panel, the constraint

from Fp(Ap) for the "A < −20.5 sample exceeds the range of the H-axis, and since �cen is restricted

to the range between -1 and 1, �cen is unconstrained in this case.
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when combined with Fp(Ap), %(#CIC) is generally more effective at constraining �cen and �sat than

the commonly-used ΔΣ(Ap), despite our assumption of infinite lensing source density. In fact, in

most cases the count statistics are the most effective observables to combine with clustering in an

effort to constrain dHOD models of assembly bias. Furthermore, as is shown in Appendix C, this

statement is typical of the constraints on most of the HOD parameters, especially for the fainter

samples.

When comparing results for galaxy samples defined by different luminosity thresholds, the

constraints are typically tighter for the fainter samples. This mainly reflects the fact that brighter

samples have lower number densities, resulting in higher levels of noise. However, there are

some exceptions. For example, the constraints on �cen from Fp(Ap) alone are tighter for the

"A < −19.5 sample than for the "A < −19.0 sample. In these cases, the degeneracies among

different parameters depend on luminosity, such that after marginalization over all other parameters

the noisier, high luminosity sample yields tighter constraints. The unmarginalized constraints are

all monotonically increasing functions of luminosity threshold, as they must be.

3. Marginalized Two-Dimensional Constraints

In addition to fully marginalized constraints, it is interesting to examine parameter constraints

in two-dimensional subspaces of the full parameter space. In Figure III.5, we plot the marginalized

1f contours in each of the 2D projections of our 6-dimensional parameter space. As we utilize a

Fisher matrix to estimate parameter constraints, all contours are elliptical and are centered around

the fiducial point in the parameter space. Fig. III.5 corresponds to the "A < −20.0 threshold

sample, but the other samples have qualitatively similar features. Different contours correspond to

different observables, or combinations thereof, as indicated, and we have highlighted the results for

Fp(Ap) +ΔΣ(Ap) and Fp(Ap) +%(#CIC) using thicker contours. To avoid crowding, we use %(#CIC)

as the representative case for the various count statistics. For comparison, the gray shaded ellipse

shows the constraints derived from exploiting all of our observables simultaneously.

From Fig. III.5, it is apparent that in all projections, Fp(Ap) + %(#CIC) (thick red lines) is

superior to the other combinations of observables, particularly the commonly-used combination

of Fp(Ap) + ΔΣ(Ap). This result remains strictly true for the "A < −19.0 and "A < −19.5
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Figure III.5: The marginalized 1f constraint contours on the dHOD parameters in each of the

two-dimensional projections of the dHOD parameter space for the "A < −20.0 sample, from

the combinations of Fp(Ap) with ΔΣ(Ap), VPF(A) and %(#CIC) respectively, as well as Fp(Ap)

individually. Each such combination is shown in a solid line, color coded consistently with

Fig. III.3, as labeled in the legend. We highlight Fp(Ap) +ΔΣ(Ap) and Fp(Ap) +%(#CIC) using thick

solid lines. The combination of all 6 observables is shown as shaded regions in gray, to indicate the

maximal constraining power in our analyses, and for cross comparison with Fig. III.5. The Fp(Ap)

contours are not shown in some panels, because they exceed the range of the axes.
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Figure III.6: Same as Fig. III.5, but for the individual observables. We only show Fp(Ap), ΔΣ(Ap)

and %(#CIC) for clarity. The combination of all 6 observables is shown as shaded regions in gray,

for cross comparison with Fig. III.5.
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samples, while for the brighter, "A < −20.5 sample, a few parameter combinations are more

tightly constrained using parameter combinations other than Fp(Ap) + %(#CIC).

Figure III.6 displays confidence contours for our model parameters constrained by Fp(Ap),

ΔΣ(Ap) and %(#CIC) individually (rather than combinations of observables). This visualization can

aid in the qualitative understanding of our results. Combining Fp(Ap) with ΔΣ(Ap) yields limited

improvement because both of these observables share similar degeneracy directions in multiple

dimensions of the parameter space. The combination of Fp(Ap) with %(#CIC) is superior because

these observables have largely complementary degeneracy directions in the parameter space and

combining these observables leads to the simultaneous breaking of multiple degeneracies. Notice

that constraints from %(#CIC) on any single parameter are not particularly restrictive; however,

the constraints from %(#CIC) restrict parameter values to exceedingly narrow degeneracy regions,

which, in turn, leads to significant improvements in constraining power when combined with

Fp(Ap).

4. Constraints on Parameters of the Standard HOD

In the previous subsections, we focused on constraints on assembly bias parameters in the dHOD

model and showed that counts-in-cylinders is an effective complement to the galaxy projected two-

point function for diagnosing and constraining assembly bias. However, it is also interesting to

study constraints on the standard HOD parameters in a standard HOD model that does not include

assembly bias.

Figure III.7 depicts 2D marginalized, projected constraint contours on the standard HOD

parameters from an analysis to constrain a standard HOD model using the various observables

that we consider. It is clear that the complementarity of %(#CIC) extends to the parameters of the

standard HOD, as the combination of Fp(Ap) with %(#CIC) outperforms the combination of Fp(Ap)

with ΔΣ(Ap) in all projections. This strongly suggests that %(#CIC) is a favorable observable even

in studies using standard HOD.
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5. Limitations and Caveats

Our results are subject to several limitations and caveats that we describe in this subsection.

First, all Fisher matrix analyses are based on a linear expansion of the likelihood: The observable–

parameter relation is treated as a linear function of the observable on the parameter. This linearity is

not an accurate model of the observable–parameter relation over the entirety of the relevant domain

of parameters for all of the observable–parameter combinations that we explore. As a result, the

derivative values mf/mp, and therefore the constraints, depend on the choice of the fiducial point

in the parameter space. For the results presented above, the fiducial point is motivated by previous

data analyses using a standard HOD, specifically, the study of Ref. [223]. The fiducial values of

the assembly bias parameters, �cen and �sat are set to zero. We address this particular caveat in the

following subsection, pointing out the dependence of our conclusions upon the fiducial location in

the parameter space.

Second, the decorated HOD parameters �cen and �sat can only vary over the interval [−1, 1]

because the degree of galaxy assembly bias that is possible is limited (see Ref. [74] for details). The

Fisher formalism assumes a multivariate Gaussian posterior distribution, so such hard boundaries

on the parameter space can lead to gross violations of this assumption. In particular, any time

that f�cen or f�sat approach unity (or even exceed it, see Appendix C), our estimates will not

be a reliable, quantitative estimate of the constraining power of the observables. However, the

qualitative comparisons among observables should not be impacted by this shortcoming and the

Fisher matrix will still give a reliable ranking of the relative utility of different combinations of

observables.

An additional caveat to our results is associatedwith the particularmodel that we explore. While

we phrase our results qualitatively in terms of constraints on galaxy assembly bias, it is important to

realize that our calculations pertain only to a specific model, namely the dHOD with a binary split

on galaxy populations. It is possible that our conclusions would change significantly if a different

halo occupation model is used. Examples of different models might include a standard HOD with

an augmented set of parameters or a wholly different model for the galaxy–halo relationship, such

as the conditional luminosity function [216] or a parameterized form of abundance matching [100].

There are a limited number of models that include tunable galaxy assembly bias based on halo
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properties. Aside from the dHOD, Ref. [100] parametrizes the dependence of galaxy luminosity

on halo concentration at a fixed halo mass in the abundance matching model with an interpolation

scheme, and Refs. [178, 209, 121] allow for local density-dependent variations of the HOD. We

limit our results to the dHOD model and assembly bias due to concentration, and relegate more

comprehensive studies of galaxy assembly bias to future work.

Our constraints from the galaxy–galaxy weak lensing signal ΔΣ represent the upper limit of

information that can be gained in a real data analysis, because we use a weak lensing covariance

that includes only sample variance. This is equivalent to assuming an infinite background source

galaxy density and thus a shape-noise-free measurement of the galaxy–galaxy lensing signal. Since

the galaxy–galaxy lensing signal presented is optimistic, our primary qualitative result, namely that

the combination of Fp(Ap)+%(#CIC) is superior to combinations that include the galaxy–galaxy

lensing signal, will not be affected when complete galaxy–galaxy lensing covariances are used.

As a final caveat, we emphasize that our work uses only a single simulation and thus, we

work in the context of a single set of cosmological parameters. In particular, we consider the

best-fit Planck cosmology used as the modeling framework in the Bolshoi Planck simulation. This

limitation is difficult to circumvent at this time due to the need for simulations that are both large

volume (to model clustering) and high resolution (to measure the internal properties of haloes). The

computational costs of such simulations prohibit simultaneous explorations of assembly bias and

cosmology within the scope of this paper. However, important steps are being taken in precisely

this direction [226]. Nonetheless, the Planck constraints on cosmological parameters are quite

restrictive [143, 142] and we do not expect modifications to the cosmological model to have a

significant impact on our qualitative results.

6. Dependence on Fiducial Parameters

One of the caveats mentioned in the previous section is that Fisher analyses yield results that

may depend upon the fiducial point in the parameter space about which the likelihood is expanded.

Another way to say this is that the constraints depend upon the point in parameter space that

corresponds to the true underlying model. In the results we presented above, we assumed that the

true fiducial model corresponded to zero galaxy assembly bias (�cen = �sat = 0).

82



To examine how our results depend on this choice of the fiducial model, we now repeat

our analysis for two alternative assumptions for the fiducial values of the galaxy assembly bias

parameters.

In the first, we adopt a fiducial central galaxy assembly bias of �cen = 0.5, which is motivated by

the recent analysis of galaxy clustering by Ref. [223], while keeping �sat = 0. In this case, we find

results that are both qualitatively and quantitatively similar to our main model with �cen = �sat = 0.

We have also explored the dependence of our forecast constraints on the underlying amount of

satellite assembly bias. To do so, we repeated our analyses with the fiducial satellite assembly bias

parameter set to �sat = −0.6. This value of �sat has several motivations. First, Ref. [223] showed

that clustering of galaxies in the SDSS"A < −19.5 threshold sample is consistent with significantly

negative values of �sat. Furthermore, it is known that the abundance of dark matter subhaloes is

anti-correlated with host halo concentration [225, 117, 79]. Since subhaloes are believed to host

satellite galaxies, this anti-correlation implies a negative value for �sat.

The results of this experiment are shown in Fig. III.8. While the results for �cen (upper panel)

are similar to the case of our main model with �cen = �sat = 0 (i.e., �cen is always best constrained

by the combination of Fp(Ap) plus %(#CIC)), the results for �sat (lower panel) are notably different.

In particular, the combination of Fp(Ap) and ΔΣ(Ap) now yields the tightest constraints on �sat,

rather than the weakest. This very tight constraint stems from two things. First, Fp(Ap) on small

scales (. 1 ℎ−1 Mpc) has a much stronger dependence on �sat near �sat = −0.6. This improves

constraints from Fp(Ap) alone, reducing parameter degeneracy. Second, the observables Fp(Ap)

and ΔΣ(Ap) are more complementary to one another near �sat = −0.6 because the degeneracy

directions selected by the Fp(Ap) constraints change their orientation slightly in the parameter

space. These improvements jointly boost the constraining power of the combination of Fp(Ap)

and ΔΣ(Ap). However, we must note that several observational and theoretical factors that will

likely impact the constraining power of very-small-scale clustering statistics are not accounted

for in our analysis. Chief among these omissions is our neglect of shape noise in galaxy–galaxy

lensing covariances. Including shape noise is likely to reduce significantly the complementarity

of ΔΣ(Ap) with other probes, including Fp(Ap). Modeling uncertainties, such as the choice of the

radial distributions of satellite galaxies will also reduce the constraining power of observables on

small-scales with similar result. Hence, the tight constraints on �sat we observed here are likely to
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be quite optimistic.

To summarize, the results that we have shown so far point toward a clear conclusion: Count-

based galaxy clustering statistics, such as counts-in-cells distributions (%(#CIC)), can be instrumen-

tal in constraining galaxy assembly bias, and are particularly powerful in constraining the galaxy

assembly bias of central galaxies. For reference, we tabulate the forecast constraints on all dHOD

parameters from all of the observable combinations we study, and for all five luminosity threshold

samples in Appendix C.

D. Discussion and Conclusions

Constraining galaxy assembly bias is important to the study of the connection between galaxies

and haloes and for extracting the maximum possible information on both galaxy evolution and

cosmology from survey data. Numerous studies use galaxy clustering to constrain either the

galaxy–halo connection or cosmology or both [70, 187, 215, 163, 164, 38, 188, 230, 128, 221,

5, 68, 64, 97, 30, 150, 65, 151, 43, 126, 158, 95, 44, 168, 212]. Several of these works combine

clustering with either weak galaxy–galaxy lensing measurements or with measurements of redshift

space distortions in order to constrain the galaxy–halo connection and/or cosmology, and this use

of complementary variables is becoming increasingly common. However, these results may suffer

from systematic bias when galaxy assembly bias is not properly included in the model [224]. To

date, there are only a small number of studies constraining assembly bias with galaxy clustering

data [100, 223, 183].

We have studied the ability of various galaxy clustering statistics to constrain assembly bias

in an effort to determine which combination(s) of observables are most informative. In particular,

we have estimated the relative constraining power of several spatial galaxy clustering statistics to

constrain the assembly bias parameters of the decorated halo occupation distribution (dHOD). In

this first study of its kind, we have restricted our attention to statistics that are not particularly

sensitive to galaxy peculiar velocities (however, we do work in redshift space so our results are not

completely immune to peculiar velocities). We have chosen to do this because including peculiar

velocities (such as redshift space distortions) opens upmany distinct modeling questions. Exploring
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Figure III.8: Marginalized 1 sigma constraint on the assembly bias parameters for alternative

fiducial points. Same as Fig. III.4, but with fiducial �sat = −0.6.
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redshift space distortions will be the subject of future work.

In general, we have found that the combination of Fp(Ap) with the counts-in-cylinders distri-

bution (%(#CIC)) is the most effective combination of two observables for constraining assembly

bias within the dHOD modeling framework. This combination outperforms the commonly-used

combination of Fp(Ap) and ΔΣ(Ap) in constraining central galaxy assembly bias by a factor of

∼ 2 for lower luminosity samples, and to a slightly lesser extent in constraining satellite galaxy

assembly bias. The primary reason for this is that Fp(Ap) and ΔΣ(Ap) share roughly common

degeneracy directions in the dHOD parameter space, while the combination Fp(Ap) and %(#CIC)

is much more complementary. This implies that the combination of ΔΣ(Ap)+%(#CIC) is nearly as

good as Fp(Ap)+%(#CIC), which we have confirmed. The complementarity between ΔΣ(Ap) and

%(#CIC) is not unexpected. The lensing signal traces the matter density contrast around galaxies

while the counts-in-cylinders statistics probe the galaxy distribution profiles in approximately the

same regions, and are therefore expected to complement each other in constraining cosmology as

well as the connection between galaxies and the matter field [63, 57].

We have shown that the count statistics are also effective in constraining the standard HOD

parameters, independent of whether the actual halo occupation statistic are affected by galaxy

assembly bias or not. In addition, we have tested different fiducial models and find that when

strong satellite assembly bias is present, the combination of Fp(Ap) + ΔΣ(Ap) actually provides the

tightest constraints on �sat among all sets of observables studied here. Therefore we caution that

the preferred statistics may depend on the true, underlying relationship between galaxies and dark

matter haloes, and the degree to which galaxy assembly bias is realized in nature.

Our results complement recent work studying the information that can be gained from higher-

order statistics beyond the two-point function. In particular, in Ref. [217, 218] it was shown that

the three-point function in the squeezed limit contains significant additional constraining power

on HOD parameters that is complementary to Fp(Ap). This is consistent with our findings in the

sense that the complementarity of counts statistics to Fp(Ap) derives precisely from the extraction

of information in higher-order =-point moments of the density field. Considering the results in

Ref. [218] together with our findings, statistics beyond two-point clustering and lensing should

be seriously considered in future analyses of large-scale structure data that utilize models of the

galaxy–halo connection.
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In conclusion, our results strongly suggest that galaxy assembly bias may be significantly

better constrained and/or better understood by employing simple counts statistics as measured from

forthcoming and present-day data sets. There are numerous forthcoming data sets with which can

be used to inform assembly bias and/or whose interpretation may be challenged by small levels of

assembly bias. These include large redshift surveys, such as may be carried out by DESI [101] or

WFIRST [170]. As we have already mentioned, interesting follow up work includes an exploration

of velocity statistics, such as redshift space distortions, in redshift surveys. While our work relates

specifically to redshift surveys, it would be interesting to explore possible avenues for studying

assembly bias within photometric surveys, such as the DES [176, 2] and LSST [108]. It is our aim

to study and deploy these statistics to constrain the galaxy–halo connection and to encourage others

to do the same.
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IV. Observational Constraints on Galaxy–Halo Connection

Following the work in Chapter III, we apply the findings to real data in this chapter. Namely,

we measure the optimal set of statistics identified previously from observational data, and use them

to constrain the halo occupation distribution (HOD) model of galaxy–halo connection, especially

the galaxy assembly bias parameters.

This chapter is organized as follows. The observational data and cosmological simulation are

described in Section IV.A. In Section IV.C, we detail the construction of light cone galaxy mocks,

that are used for validating the algorithms with which we measure our observable statistics. We

describe the statistics, our measuring algorithms, and the validation process in Section IV.D. In

Section IV.B, we present measurements of the statistics from data. We conduct a Markov Chain

Monte Carlo fit and obtain constraints on the galaxy–halo connection, in particular galaxy assembly

bias, in Section IV.E. We discuss implications and draw conclusions in Section IV.F.

A. Data and Simulation

In this section, we describe the observational data and cosmological simulation that are used

in this work.

1. Data and Sample Selection

In this work, we use galaxy data from the Sloan Digital Sky Survey Data Release 7 (SDSS

DR7, [1]). In particular, we select our samples from the bright0 catalog1, with A-band apparent

magnitudes 10.0 < <A < 17.6, in the NYU Value-Added Galaxy Catalog (NYU VAGC, [21]). The

sample contains galaxies that fall within the survey window, with the bright star-contaminated areas

masked out. We additionally discard sector areas (intersections of tile regions) with low fractions

of galaxies that have spectroscopic redshift measurements, i.e., we require that the sector fraction

1http://sdss.physics.nyu.edu/lss/dr72/bright/0/
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5sector ≥ 0.8. We measure the resulting angular area of the data footprint to be approximately 7461

deg2, and the total number of galaxies in the sample is 562620.

Due to the finite size of fibers used in the survey, no two targets on the same plate can be closer

than 55", which results in a fraction of targeted galaxies not having a measured redshift (known as

the fiber collision effect). These galaxies are assigned the redshifts of their nearest neighbors.

We select volume-limited, luminosity-threshold samples, based on A-band absolute magnitudes

that are K-corrected [20] and passively evolved to the median redshift of the DR7 main galaxy

sample, I = 0.1. The absolute magnitude values we list as "A throughout this paper are in fact

values of "A − 5 log ℎ for ℎ = 1, which are measured independently of ℎ. We apply a universal

lower limit of Imin = 0.02 to all of our samples, and adopt the upper bounds of redshift for each

luminosity threshold in Ref. [221]. Our sample selection is illustrated in Fig. IV.1, and the details

are listed in Table IV.1.

2. Simulation

Our forwardmodeling analyses are based on the SmallMultiDark Planck Simulation (SMDPL),

which is a gravitational N-body simulation that belongs to the series of MultiDark simulations with

Planck cosmology [87]. The Small MultiDark Planck Simulation has a cubic volume of side

length 400 ℎ−1 Mpc, which is comparable to the volume of our "A < −21.0 data sample. The

cosmological parameters adopted are ΩΛ = 0.6929, Ωm = 1 − ΩΛ = 0.3071, Ωb = 0.0482,

ℎ = 0.6777, =s = 0.96, and f8 = 0.8228. We assume this cosmology in our analyses throughout

this paper. The simulation is evolved from Iinitial = 120, with 38403 particles, implying a particle

mass resolution of <p = 9.63 × 107ℎ−1 M�. We use halo catalogs extracted from the I = 0.1

snapshot using the Rockstar halo-finder [13], downloaded from https://www.cosmosim.org.

We truncate the halo peak mass "peak at 300 × <p = 2.889 × 1010ℎ−1 M�, below which halos are

extremely unlikely to host galaxies above our luminosity thresholds.
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"A,max 2Imax [km s−1] #gal

-21.0 47650 82263

-20.5 39700 130707

-20.0 31900 140149

-19.5 25450 131322

-19.0 19250 76442

−20.0∗ 19250 29951

−19.5∗ 19250 51007

Table IV.1: Volume-limited samples with luminosity threshold. All of the samples have minimum

redshift Imin = 0.02. Redshift upper bounds are listed in terms of their products with the speed of

light, 2. The galaxies in each sample satisfy the conditions Imin ≤ Iobs < Imax and "A < "A,max.

The second part of the table lists alternatively selected samples for the"A < −20.0 and"A < −19.5

thresholds (marked with asterisks), excluding the cosmic structure known as the Sloan Great Wall.
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Figure IV.1: Illustration of our volume-limited, luminosity-threshold galaxy samples from the NYU

VAGC bright0 catalog. Iobs is the observed redshift, where fiber collided galaxies are assigned

the redshifts of their nearest neighbors. "A is the r-band absolute magnitude. The scatter points

represent the galaxies from the catalog, and the colored boxes mark the selection criteria of the

different samples, as are labeled in the figure. The arrows indicate the alternative "A < −20.0 and

"A < −19.5 samples with lower redshift limits that exclude the Sloan Great Wall.
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B. Data Measurement

In this section, we present statistic measurements from our SDSS galaxy samples.

1. Observable Statistics

We employ summary statistics to extract information from the spatial distribution of galaxies.

In W19, we showed that the combination of the projected two-point correlation function Fp(Ap)

and the counts-in-cylinders statistic %(#CIC) yields tight constraints on the galaxy–halo connection

by breaking degeneracies in the model parameter space. In this work, we elect to measure these

statistics along with the galaxy number density.

The projected two-point correlation function is defined by

Fp(Ap) = 2
∫ cmax

0
3c b (Ap, c), (20)

where b (Ap, c) is the excess probability of finding galaxy pairs with projected and line-of-sight

separations Ap and c, respectively. It is commonly used in previous works [188, 231, 221], to inform

halo occupation. Considering the depth of the data samples and the size of the simulation, we choose

cmax = 40ℎ−1 Mpc, to include most correlated pairs and reduce the impact of peculiar velocities,

while excluding very distant, uncorrelated pairs. We compute Fp(Ap) in 12 logarithmically spaced

radial bins between Ap = 0.158ℎ−1 Mpc and Ap = 39.81ℎ−1 Mpc.

The counts-in-cylinders statistic is the probability distribution of the number of companions

found in cylinders around galaxies. As was done in W19, we center a cylinder of transverse radius

ACIC = 2ℎ−1 Mpc and line-of-sight half-length ! = 10ℎ−1 Mpc on each galaxy in the sample, and

count the number of companion galaxies that fall within the cylinder. We then estimate a probability

distribution of companion number, %(#CIC), which is the probability that any galaxy has #CIC

companions within the cylinder. When characterizing %(#CIC), we bin #CIC values linearly on the

lower end and logarithmically on the higher end, as listed in Table IV.4 and Table IV.5.
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2. Measurement Algorithm

For fiber collided galaxies, we adopt the nearest-neighbor corrected redshifts for both sample

selection and statistic measurements. The angular and redshift separations between points are

converted to transverse and line-of-sight separations according to the cosmological model that we

adopt.

The number density =gal is calculated by dividing the number of galaxies by the volume within

the survey footprint and redshift range of each sample.

For Fp(Ap), we use the Landy-Szalay estimator [93],

b̂LS =
�� − 2�' + ''

''
, (21)

where �� is the normalized galaxy–galaxy pair count, '' is the normalized random–random pair

count, and �' is the normalized cross pair count between galaxies and randoms. Randoms are

drawn from a uniform distribution in the survey volume, to account for the complicated geometry

of the light cone. b is integrated along the line of sight to cmax. The calculation is done using the

Corrfunc package [167].

For %(#CIC), we do not use every galaxy in the sample as a cylinder center, but impose limits

such that the sampling of companions is sufficient in the neighborhood of each cylinder center. We

define the angular completeness 5AC of a galaxy to be the fraction of the circular area with radius

ACIC = 2ℎ−1 Mpc around it that falls inside the survey footprint. For cylinder centers we require

that the angular completeness around them to be above 0.9, and cylinders centered on them to be

completely within the redshift ranges of the volume-limited samples. We then count companions

in these cylinders, and upscale the count numbers by 1/ 5AC, which results in non-integer counts.

The counts are binned to yield the %(#CIC) statistic.

3. Covariance Estimation

We calculate the jackknife covariance, which provides an estimate of the uncertainty due to

the finite volume of the survey. We use the method described in Ref. [232]2, to divide the survey

2The code is available at https://github.com/rongpu/pixel_partition
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Figure IV.2: SDSS footprint divided into jackknife cells. Objects in different cell are plotted in

different colors. All the cells are similar in size, except some in the three stripes away from the

main footprint, which are smaller than average.

footprint into subareas of similar sizes. We show a map of the cells in Fig. IV.2, where galaxies in

different cell are plotted in different colors.

For each sample, we exclude one cell at a time in our measurement and record the resulting

covariancematrices as our jackknife covariance. Note that forFp(Ap), we exclude a pair of objects if

either or both are in the excluded cell, whereas for %(#CIC), we keep all the galaxies as companions,

and only exclude cylinder centers that fall in the excluded cell from the probability distribution.

4. Measurement Results

The Fp(Ap) values we measure from data are shown in Section IV.B.4, where each luminosity

threshold is plotted individually in the first five panels, and compared alongside each other in the

last panel. The error bars show the jackknife error of each Ap bin. For the "A < −20.0 and

"A < 19.5 thresholds, the samples with the alternative shallower redshift ranges are plotted in gray.

Number densities are also shown in text in the corresponding panels, with jackknife errors included

in parentheses. =gal values for the alternative samples are marked with asterisks. The %(#CIC)

statistics are similarly shown in Fig. IV.B.4. The values of the statistics are listed in Table IV.2,

Table IV.3, Table IV.4, and Table IV.5.
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Brighter samples have lower number densities, but higher Fp values in most Ap bins. Excluding

the Sloan Great Wall results in lower number densities and weaker large-scale clustering, as

is expected. The %(#CIC) values in all the bins sum up to unity, as %(#CIC) is a probability

distribution. Brighter galaxies are rarer, and tend to have fewer companions, resulting in higher

probabilities of smaller #CIC, and lower probabilities of larger #CIC. The comparison between

the different redshift limit samples for the "A < −20.0 and "A < −19.5 thresholds reflects the

non-trivial impact of the Sloan Great Wall on the counts-in-cylinders statistic. For both thresholds,

excluding the Great Wall increases the probability of galaxies having only a few companions, and

reduces that of having more companions in general. However, the shallower "A < −20.0 sample

has higher %(#CIC) values at high #CIC, though the effect is not statistically significant. The

samples that have smaller volumes have larger jackknife errors for all of the observables.

C. Mock Building for Algorithm Validation

In order to fit SDSS data using a simulation, we need measurements of the observable statistics

from the simulation to reflect the behavior of real data. However, light cone mocks that mimic

observed data are computationally expensive, and therefore infeasible for sampling from the high

dimensional model parameter space, whereas measurements from the original cubic volume of the

simulation can be obtained much more rapidly. Consistency between statistic measurements from

the cube and the light cone mocks that have the same underlying physics would validate the use of

the cube for fitting data. Before describing the consistency check in Section IV.D, here we detail

the construction of our light cone mocks that incorporate the relevant geometrical and observational

effects present in SDSS data.

1. Halo Populating in Simulation Cube

We populate the halo catalog at I = 0.1 from SMDPL using the stellar mass–(sub)halo mass

relation model described in Ref. [11] to get a galaxy catalog in the cubic simulation volume

(hereafter the “cube mock”). This model is implemented in the halotools software package
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Figure IV.3: Measurement of the galaxy number density =gal and the projected two-point function

Fp from SDSS data. Each of the first five panels shows the measurement for one luminosity sample

with jackknife error bars that represent the cosmic variance. For the -20.0 and -19.5 thresholds,

results for the alternative samples without the Sloan GreatWall are shown in the respective panels as

values with asterisks and gray lines. The bottom right panel shows the Fp(Ap) of the five thresholds

together, with vertical offsets of 0.25 dex each, starting from the -20.0 sample, for visual clarity.
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Figure IV.4: Measurement of the counts-in-cylinders statistic %(#CIC) from SDSS data. Similar

to Section IV.B.4, each of the first five panels shows the measurement for one luminosity sample

with jackknife error bars that represent the cosmic variance. The statistic is represented as the

probability distribution of #CIC, normalized by the bin widths. For the -20.0 and -19.5 thresholds,

results for the alternative samples without the Sloan Great Wall are shown in the respective panels

as gray lines. The bottom right panel shows the %(#CIC) of the five thresholds together.
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"A < −21.0 "A < −20.5 "A < −20.0 "A < −19.5

=gal 1.128(0.021) 3.044(0.063) 6.192(0.155) 11.32(0.279)

0.200 508.36(13.00) 365.33(7.38) 311.92(8.25) 268.89(8.67)

0.316 332.75(8.30) 251.26(4.73) 224.05(6.71) 195.09(7.68)

0.501 201.96(4.74) 163.95(4.17) 154.16(5.82) 134.95(6.13)

0.794 134.25(3.51) 111.89(3.23) 106.07(4.84) 92.18(4.97)

1.259 85.17(2.32) 75.32(2.58) 70.86(3.78) 60.96(3.72)

1.995 59.77(1.76) 53.23(2.04) 50.78(3.06) 42.72(3.13)

3.162 43.54(1.51) 38.23(1.62) 36.87(2.46) 30.64(2.47)

5.012 30.86(1.13) 26.89(1.35) 26.36(2.04) 21.87(2.07)

7.943 20.96(1.00) 18.39(1.21) 18.47(1.66) 14.80(1.79)

12.59 12.35(0.81) 11.21(1.03) 11.84(1.32) 9.27(1.42)

19.95 6.75(0.70) 6.26(0.91) 6.92(1.11) 5.07(1.26)

31.62 3.37(0.63) 3.50(0.86) 4.35(1.09) 2.97(1.15)

Table IV.2: Measured values of the observable statistics from SDSS data. =gal and Fp(Ap) mea-

surements are listed. The leftmost column shows the Ap bin center in units of ℎ−1 Mpc for Fp. The

number density values =gal are listed in units of 10−3ℎ3Mpc−3, and the values listed for Fp(Ap)

are in units of ℎ−1 Mpc. Jackknife errors are shown in brackets. This table shows results for four

samples, and is continued in Table IV.3.
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"A < −19.0 "A < −20.0∗ "A < −19.5∗

=gal 15.28(0.506) 5.985(0.214) 10.19(0.349)

0.200 276.92(16.64) 308.88(17.98) 288.03(17.14)

0.316 198.23(14.26) 216.09(14.45) 207.49(14.93)

0.501 139.73(12.11) 148.19(12.91) 144.09(12.32)

0.794 95.93(9.47) 103.46(9.92) 99.67(9.62)

1.259 63.29(6.79) 68.98(6.96) 65.68(6.67)

1.995 43.15(5.57) 47.56(5.88) 45.20(5.55)

3.162 30.89(4.32) 34.55(4.74) 32.29(4.31)

5.012 21.65(3.29) 23.78(3.38) 22.65(3.34)

7.943 13.86(2.50) 15.16(2.61) 14.27(2.54)

12.59 8.03(1.65) 8.77(1.91) 8.48(1.74)

19.95 3.72(1.38) 3.67(1.51) 3.75(1.41)

31.62 2.63(1.45) 2.53(1.58) 2.73(1.52)

Table IV.3: Measured values of the observable statistics from SDSS data (Part 2). Table IV.2

continued, for the other three samples.
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"A < −21.0 "A < −20.5 "A < −20.0 "A < −19.5

-0.5, 0.5 0.379(4.82e-3) 0.189(3.87e-3) 0.096(2.82e-3) 0.049(1.82e-3)
0.5, 1.5 0.249(2.49e-3) 0.187(2.80e-3) 0.117(2.91e-3) 0.071(2.48e-3)
1.5, 2.5 0.149(2.07e-3) 0.148(1.87e-3) 0.113(2.43e-3) 0.078(2.47e-3)
2.5, 3.5 0.085(1.76e-3) 0.111(1.49e-3) 0.099(1.96e-3) 0.077(2.22e-3)
3.5, 4.5 0.052(1.62e-3) 0.083(1.27e-3) 0.084(1.59e-3) 0.072(2.04e-3)
4.5, 5.5 0.029(1.21e-3) 0.063(1.19e-3) 0.069(1.14e-3) 0.068(1.75e-3)
5.5, 6.5 0.021(1.08e-3) 0.046(1.05e-3) 0.058(1.05e-3) 0.058(1.31e-3)
6.5, 7.5 0.014(8.48e-4) 0.036(1.09e-3) 0.049(1.06e-3) 0.050(1.03e-3)
7.5, 8.5 0.008(5.99e-4) 0.027(8.79e-4) 0.040(9.48e-4) 0.043(1.05e-3)
8.5, 9.5 0.005(4.64e-4) 0.021(8.50e-4) 0.036(9.49e-4) 0.039(8.89e-4)
9.5, 11.5 0.005(5.55e-4) 0.030(1.38e-3) 0.055(1.60e-3) 0.067(1.70e-3)
11.5, 12.5 0.002(2.56e-4) 0.010(6.21e-4) 0.021(7.80e-4) 0.028(8.75e-4)
12.5, 14.5 0.001(3.72e-4) 0.016(1.10e-3) 0.035(1.36e-3) 0.048(1.53e-3)
14.5, 17.5 0.001(2.71e-4) 0.013(1.05e-3) 0.037(1.69e-3) 0.055(2.01e-3)
17.5, 19.5 0.000(1.35e-4) 0.006(5.12e-4) 0.018(1.07e-3) 0.028(1.28e-3)
19.5, 23.5 0.000(6.37e-5) 0.008(8.23e-4) 0.024(1.83e-3) 0.040(1.74e-3)
23.5, 26.5 0 0.003(4.13e-4) 0.012(1.13e-3) 0.022(1.25e-3)
26.5, 30.5 0 0.002(3.80e-4) 0.011(1.13e-3) 0.025(1.69e-3)
30.5, 35.5 0 0.001(2.83e-4) 0.009(1.09e-3) 0.021(1.63e-3)
35.5, 41.5 0 0.000(1.19e-4) 0.007(9.51e-4) 0.018(1.66e-3)
41.5, 47.5 0 0.000(1.21e-4) 0.004(7.29e-4) 0.012(1.38e-3)
47.5, 54.5 0 0.000(1.87e-5) 0.003(6.83e-4) 0.010(1.30e-3)
54.5, 63.5 0 0 0.001(4.34e-4) 0.008(1.21e-3)
63.5, 73.5 0 0 0.000(2.22e-4) 0.005(9.92e-4)
73.5, 84.5 0 0 0.000(2.32e-4) 0.003(8.14e-4)
84.5, 97.5 0 0 0.000(1.43e-4) 0.002(7.83e-4)
97.5, 112.5 0 0 0 0.001(4.39e-4)
112.5, 129.5 0 0 0 0.000(7.32e-5)
129.5, 149.5 0 0 0 0

Table IV.4: Measured values of the observable statistics from SDSS data. %(#CIC) measurements

are listed. The leftmost column shows the edges of each bin in #CIC for %(#CIC). The values listed

for %(#CIC) are the probability in each bin, which would sum up to unity. Jackknife errors are

shown in brackets. This table shows results for four samples, and is continued in Table IV.5.
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"A < −19.0 "A < −20.0∗ "A < −19.5∗

-0.5, 0.5 0.032(1.79e-3) 0.106(4.95e-3) 0.054(2.97e-3)
0.5, 1.5 0.049(2.53e-3) 0.123(5.43e-3) 0.077(3.82e-3)
1.5, 2.5 0.061(2.98e-3) 0.117(4.86e-3) 0.086(3.51e-3)
2.5, 3.5 0.060(2.87e-3) 0.106(3.92e-3) 0.081(3.22e-3)
3.5, 4.5 0.061(2.50e-3) 0.084(2.93e-3) 0.077(3.25e-3)
4.5, 5.5 0.055(2.24e-3) 0.068(2.50e-3) 0.068(2.47e-3)
5.5, 6.5 0.052(2.30e-3) 0.055(2.87e-3) 0.056(2.01e-3)
6.5, 7.5 0.047(1.76e-3) 0.048(2.42e-3) 0.050(1.88e-3)
7.5, 8.5 0.045(1.60e-3) 0.039(2.25e-3) 0.041(1.61e-3)
8.5, 9.5 0.038(1.54e-3) 0.036(2.36e-3) 0.037(1.59e-3)
9.5, 11.5 0.066(1.98e-3) 0.050(2.98e-3) 0.065(2.93e-3)
11.5, 12.5 0.030(1.29e-3) 0.023(2.38e-3) 0.027(1.41e-3)
12.5, 14.5 0.053(2.28e-3) 0.033(2.71e-3) 0.047(2.61e-3)
14.5, 17.5 0.063(3.12e-3) 0.028(2.97e-3) 0.052(3.21e-3)
17.5, 19.5 0.034(1.93e-3) 0.014(1.75e-3) 0.027(2.26e-3)
19.5, 23.5 0.052(3.00e-3) 0.022(2.99e-3) 0.036(2.44e-3)
23.5, 26.5 0.030(2.39e-3) 0.012(2.00e-3) 0.022(1.90e-3)
26.5, 30.5 0.033(2.35e-3) 0.009(1.72e-3) 0.023(2.80e-3)
30.5, 35.5 0.028(2.19e-3) 0.010(2.49e-3) 0.017(2.24e-3)
35.5, 41.5 0.027(2.45e-3) 0.010(2.49e-3) 0.015(2.55e-3)
41.5, 47.5 0.019(2.42e-3) 0.004(1.66e-3) 0.010(1.92e-3)
47.5, 54.5 0.013(2.24e-3) 0.003(1.55e-3) 0.009(2.09e-3)
54.5, 63.5 0.014(2.20e-3) 0.002(1.26e-3) 0.008(2.33e-3)
63.5, 73.5 0.012(2.46e-3) 0.001(4.72e-4) 0.005(1.77e-3)
73.5, 84.5 0.009(2.32e-3) 0 0.003(1.36e-3)
84.5, 97.5 0.006(1.91e-3) 0 0.003(1.57e-3)
97.5, 112.5 0.003(1.24e-3) 0 0.001(8.22e-4)
112.5, 129.5 0.003(1.41e-3) 0 0.000(1.98e-4)
129.5, 149.5 0.003(1.59e-3) 0 0

Table IV.5: Measured values of the observable statistics from SDSS data (Part 4). Table IV.4

continued, for the other three samples.
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[71]. The model provides the position, velocity, and stellar mass information of the galaxies. To

avoid adopting a specific conversion between stellar mass and magnitude, we assume a constant

mass-to-light ratio for all galaxies, such that the ranking of galaxy stellar masses from large to small

is equivalent to the ranking of absolute magnitudes from bright to faint.

Since we are only interested in studying the consistency of galaxy statistics between differently

constructed mocks, the specific choice of any reasonable galaxy–halo connection model in this step

should not affect our results.

2. Light Cone Building

We build light cone mocks (hereafter “cone mocks”) from the cube mock described in Sec-

tion IV.C.1, with a routine that is similar to Ref. [94]. Note that we do not populate the halo catalog

again, but directly use the cubic galaxy catalog, such that the cube mock and cone mocks have

identical underlying cosmologies and galaxy–halo connections. The steps are as follows:

• Choose a random position in the cubic volume to place our virtual observer;

• Periodically repeat the cube mock out to the desired depth;

• Calculate and record the true redshifts Itrue of the galaxies, accounting for both distance and

velocity information;

• Apply redshift measurement uncertainty according to the model described in Appendix A of

Ref. [67], and record the resulting redshifts with error, Itrue,err;

• Choose a random direction of observation, convert the galaxy positions into angular coordinates

(ra, dec), and apply the 7461 deg2-SDSS footprint;

• Again assuming a constant mass-to-light ratio for all galaxies, rank the A-band fluxes of galaxies,

which are anti-proportional to the distance squared;

• Keep galaxies with 0.01 < Itrue,err < 0.18 and make a flux limit selection based on the flux

ranking and the total number of galaxies in the same redshift range in SDSS;

• Assign fiber collision status to galaxies, using the method described in Ref. [64];

• Perform the nearest-neighbor correction for the fiber collision effect, as was done in real data,

and record the resulting Iobs.

We repeat this process with different random seeds to generate 100 cone mocks.
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3. Sample Selection

For validation purposes, we define samples in the mock catalogs by galaxy number density,

that correspond to the five data samples in the first part of Table IV.1.

For the cube mock, we multiply the number densities listed in Table IV.2 and Table IV.3 by

the simulation volume to get the total number of galaxies #cube in each sample. We then select

the #cube brightest galaxies from the cube mock, according to the magnitude ranking, to get the

luminosity-threshold samples.

For the cone mocks, we apply the same redshift range limits on Iobs as those used for selecting

data samples3, and apply the same magnitude ranking thresholds as in the cube. In other words,

only galaxies bright enough to be included in the cube samples can be included in the corresponding

cone samples.

D. Algorithm Validation

In this section, we compare measurements of galaxy spatial statistics from cube and cone

mocks. We obtain measurements on the light cone mocks with the exact same algorithm used for

SDSS data, which we described in Section IV.B.2 and Section IV.B.3. We demonstrate that our

treatment of observational effects present in light cones ensures that cube mocks yield unbiased

estimates of the statistics measured in cone mocks, and hence observational data.

1. Cube Mock Algorithm

a. Statistics

In cube mocks, we apply periodic conditions and adopt the plane-parallel approximation. We

place the line of sight along the three axes in turn and average themeasurements for each observable.

By construction, the number density =gal of each mock sample is simply that of the corre-

sponding data sample. For cube measurements of Fp(Ap), we use the natural estimator for b (Ap, c),

3To avoid exceeding the flux limit, we adopt a conservative redshift cut for the"A < −19.5 at 2Imax = 23450 km s−1

in the mocks instead of the 25450 km s−1 limit for data, which does not affect our results qualitatively.
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b̂N =
��

''
− 1, (22)

where �� is the normalized galaxy–galaxy pair count, and '' is the normalized random–random

pair count. Given the simplicity of the geometry, we use analytic randoms instead of actually

drawing random points to reduce the computational cost. Galaxy pairs are counted in Ap bins and

b (Ap, c) is integrated along the chosen axis out to cmax.

To measure %(#CIC), we center a cylinder on every galaxy in the sample, and count the number

of companion galaxies that fall in the cylinder, excluding the cylinder center itself. The histogram

of the counts is calculated with our specified bins.

b. Jackknife Covariance

To test the consistency between cube and cone measurements, we need to understand the

uncertainty of both. Because the cube and cone mocks have the same galaxy population, the

only component of the covariance is the jackknife covariance, which provides an estimate of

the uncertainty due to finite volume. We randomly select 10 cone mocks for which to measure

jackknife covariances, using the exact same procedure with which we measure the data covariance

in Section IV.B.3, and take the average of their covariance matrices. The division of the cube

into jackknife cells is trivial. We divide the simulation volume into 100 cuboids of 40 × 40 ×

400(ℎ−1 Mpc)3, where the long axis is the same length as the simulation, and lies along the line

of sight. We repeat the process for each of the three projections and take the average jackknife

covariance. The total covariance matrix that we use for the consistency test is the sum of the cube

jackknife covariance and the cone jackknife covariance.

2. Comparison Between Cube and Cone Mocks

We compare the measurements of =gal (Section IV.D.2), Fp(Ap) (Fig. IV.D.2), and %(#CIC)

(Fig. IV.D.2) between the cube mock and the mean of the cone mocks generated from it. We

consider the measurements consistent between the cube and the cones if the deviation is within the

total jackknife error. In the figures, we show the cube measurements with error bars, individual

conemeasurements, and their mean. We find that for all the luminosity samples we consider, and for
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all three of our statistics, the measurements are consistent within error. This confirms that with our

algorithm, measurements from the simulation cube can be used as unbiased estimates of statistics

measured from SDSS-like datasets. In particular, we note that the nearest neighbor correction is

sufficient to account for fiber collision, for the statistics that we consider. We will therefore proceed

to make measurements on the SDSS data using the light cone algorithm in Section IV.B, and fit

the data using the simulation cube in Section IV.E.

E. MCMC Fit

In this section, we fit our measurements of the SDSS data using the halo occupation distribu-

tion (HOD) and decorated halo occupation distribution (dHOD) models, which we described in

Section III.B.2.

1. Covariance Matrix

In fitting data measurement with mock measurements in the simulation, we need to account

for both the uncertainty in the observation and the uncertainty in the mock estimation. Therefore,

the covariance matrix that we use for the fitting is the sum of the data component and the theory

component. In Fig. IV.8, we show the normalized covariance matrix for the "A < −20.0 sample

as an example. The two panels on the left are the jackknife covariances from the SDSS data

and the SMDPL mock separately, and the rightmost panel is the sum of both. In plotting the

matrices, they are normalized by the diagonal elements, such that all the diagonal elements are 1

by construction, and the off-diagonal elements range between -1 and 1, which are color coded in

the figure. The data covariance is noisier due to its smaller volume than the simulation covariance.

In both components, =gal is positively correlated with Fp at all scales except the smallest, and also

positively correlated with higher counts of companions in cylinders. The is consistent with our

expectation that the clustering in denser regions are stronger. The correlations between Fp(Ap)

values across different scales are positive within the range we investigate, and their correlations

with %(#CIC) approximately follow those of =gal. On the other hand, %(#CIC) values at the higher
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Figure IV.5: Comparison between the cube mock and the cone mocks of the galaxy number density

=gal. Each panel compares a different luminosity sample. The underlying cube value is shown as a

vertical black line. The horizontal black error bars are the total jackknife error from the cube and

the cones. The values measured from the different light cone mocks are plotted as a histogram, and

the mean is marked by the vertical red line. This figure shows that the measurement of the galaxy

number density is consistent between our cube and cone mocks for all five samples.

106



100 101

rp

100

101

102

w
p(

r p
)

Mr < 21.0
cube
mean of cones

cube

100 101

rp

100

101

102

w
p(

r p
)

Mr < 20.5

100 101

rp

100

101

102

w
p(

r p
)

Mr < 20.0

100 101

rp

100

101

102

w
p(

r p
)

Mr < 19.5

100 101

rp

100

101

102

w
p(

r p
)

Mr < 19.0

100 101

rp

-0.5

-0.3

-0.1
0

0.1

0.3

0.5

w
p/

w
p

Mr < 21.0
cube
mean of cones

tot

100 101

rp

-0.5

-0.3

-0.1
0

0.1

0.3

0.5

w
p/

w
p

Mr < 20.5

100 101

rp

-0.5

-0.3

-0.1
0

0.1

0.3

0.5

w
p/

w
p

Mr < 20.0

100 101

rp

-0.5

-0.3

-0.1
0

0.1

0.3

0.5

w
p/

w
p

Mr < 19.5

100 101

rp

-0.5

-0.3

-0.1
0

0.1

0.3

0.5

w
p/

w
p

Mr < 19.0

Figure IV.6: Comparison between the cube mock and the cone mocks of the projected two-point

function Fp. The top five panels show a comparison of the measurements of Fp(Ap), and the bottom

five panels show the fractional deviation between the cube and the cones. The luminosity sample

corresponding to each panel is labeled at the top.
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Figure IV.6: (cont.) In the top panels, the cube Fp is plotted as solid black lines, and error bars

show the jackknife error of the cube. Individual cones are plotted as thin lines in the background,

and the mean of the cones is shown by the solid red line. In the bottom panels, the H-axis is the

fractional deviation of the cones from the cube measurements. The horizontal black line marks

zero deviation, and the error bars show the total jackknife error from the cube and the cones.

Measurements for all the samples are consistent within error.

and lower ends are anti-correlated by construction, as the probabilities sum up to unity.

2. Constraints on Model

Weuse theMarkov ChainMonte Carlo (MCMC)method to infer the parameter constraints from

the measurements. For each SDSS galaxy sample, we consider four fitting cases: (1) the standard

HOD inferred from =gal + Fp(Ap); (2) the standard HOD inferred from =gal + Fp(Ap) + %(#CIC);

(3) the decorated HOD inferred from =gal + Fp(Ap); and (4) the decorated HOD inferred from

=gal + Fp(Ap) + %(#CIC).

For each case, we use the full covariance matrix of the corresponding observables, including

the cross covariances between different statistics, described in the previous subsection. We assume

likelihood L ∝ 4−j2/2, with

j2 =
∑
8, 9

Δ 58 [C−1]8 9Δ 5 9 , (23)

where 58 and 5 9 are the 8th and 9 th element of the joint statistic vector f, and C is the full covariance.

Because the three types of statistics, =gal, Fp(Ap), and %(#CIC), have a wide range of values, we

perform pseudo-inversion of the covariance, which we described in Section III.B.5. We assume

uniform priors within certain intervals on the parameters, listed in Table IV.6.

With the above likelihood and prior, we use the emcee [56] package, which is an implementation

of MCMC to sample from the posterior distribution in the parameter space. Due to the long

computational time required for MCMC chains to converge, we only present results for the "A <

−20.0 sample in this dissertation.

In Fig. IV.9 and Fig. IV.10, we show the corner plots for the four fitting cases of the "A < −20.0
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Figure IV.7: Comparison between the cube mock and the cone mocks of the counts-in-cylinders

statistic %(#CIC). Same as Fig. IV.D.2, but for counts-in-cylinders instead of Fp. In the top panels

the probability of counts in each bin is normalized by the bin width. Note that the range of the

G-axis is different for each sample, though H-axis ranges are the same for all. Measurements are

again consistent for all the samples.
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Figure IV.8: Normalized covariance matrices (i.e., correlation matrices) for the "A < −20.0

sample. The left panel is the jackknife covariance of the SDSS data sample, the middle panel that

of the SMDPL simulation, and the right panel shows the sum of the two. The diagonal elements of

the correlation matrices are 1 by construction.

Parameter Prior interval

U [0, 1.5]

log"1 [11.5, 15.0]

flog" [0.02, 1.5]

log"0 [9.0, 14.0]

log"min [11.0, 14.0]

�cen [-1, 1]

�sat [-1, 1]

Table IV.6: Prior intervals adopted for MCMC fits. The �cen and �sat priors only apply to the

decorated HOD fits.
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sample listed above. The corner plots show contours of parameter constraints in two-dimensional

projections, as well as one-dimensional distributions of each parameter. Comparing between the

constraints from =gal + Fp(Ap) and =gal + Fp(Ap) + %(#CIC), we see that the latter is indeed much

more constraining. For example, our preference of positive �cen values is much stronger with

%(#CIC) included, improving from a marginal 2f detection of non-zero central galaxy assembly

bias to over 5f.

We quantify the consistency between the two sets of parameters using the method described

in Section 2.2 of Ref. [90]. We find a marginal (0.88f) tension between =gal + Fp(Ap) and

=gal + Fp(Ap) + %(#CIC) in the standard HOD case, and no tension (0.07f) in the decorated HOD

case. We also compare the goodness of fit between the two models, through the Akaike Information

Criterion (AIC) [3]

AIC = 2: − 2 lnLmax, (24)

and the Bayesian Information Criterion (BIC) [161]

BIC = : ln = − 2 lnLmax, (25)

where : is the number of parameters in the model, = is the number of data points involved in the fit,

and Lmax the maximum likelihood, in our case −2 lnLmax = j
2
min. The model with smaller AIC or

BIC values is considered superior. The information criteria, along with the posterior 1f intervals

and minimum j2 values normalized by the number of degrees of freedom, are listed in Table IV.7.

We find that =gal+Fp(Ap) does not prefer one model over the other, whereas =gal+Fp(Ap) +%(#CIC)

shows a strong preference of the decorated HOD model, with ΔAIC = 14.8 and ΔBIC = 10.5.

F. Discussion and Conclusions

In this chapter, we have confirmed that the counts-in-cylinders statistic complements the canon-

ical observational measurement of the galaxy two-point correlation function, in constraining the

galaxy–halo connection. Using the observable set that includes counts-in-cylinders, we have found

that for the "A < −20.0 galaxy sample that we study, the standard halo occupation distribution
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Figure IV.9: Constraints on the HOD parameters from data. The contours show the 1f and 2f

constraints on the parameter space in two-dimensional planes, and the one-dimensional histograms

are marginalized for each individual parameter. The blue contours show the constraints from =gal

and Fp(Ap), and the cyan contours show the constraints from =gal, Fp(Ap), and %(#CIC) combined.
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Figure IV.10: Constraints on the decorated HOD parameters from data. Same as Fig. IV.9, but for

the decorated HOD model.
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Standard HOD, =gal + Fp(Ap) Decorated HOD, =gal + Fp(Ap)

U 1.018+0.063
−0.064 0.955+0.070

−0.080

log"1 13.180+0.073
−0.081 13.144+0.082

−0.110

flog" 0.238+0.243
−0.151 0.690+0.450

−0.397

log"0 12.393+0.234
−0.398 12.382+0.288

−0.681

log"min 11.953+0.091
0.032 12.167+0.402

−0.204

�cen / 0.826+0.130
−0.301

�sat / −0.211+0.340
−0.320

j2 11.91 7.08

j2/dof 1.49 1.18

AIC 21.91 21.08

BIC 24.74 25.04

Standard HOD, =gal + Fp(Ap) + %(#CIC) Decorated HOD, =gal + Fp(Ap) + %(#CIC)

U 0.902+0.030
−0.032 0.927+0.033

−0.038

log"1 13.071+0.041
−0.046 13.118+0.043

−0.049

flog" 0.109+0.093
−0.066 0.298+0.061

−0.062

log"0 12.552+0.085
−0.088 12.420+0.112

−0.123

log"min 11.937+0.018
−0.014 11.974+0.027

−0.020

�cen / 0.917+0.064
−0.145

�sat / −0.167+0.140
−0.185

j2 52.49 33.69

j2/dof 1.54 1.05

AIC 62.49 47.69

BIC 70.81 59.34

Table IV.7: Derived model parameters and goodness of fit measures for the "A < −20.0 galaxy

sample.
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(HOD) is not as good a description of the data as the decorated HOD, which the original combi-

nation of galaxy number density and two-point correlation function fails to distinguish. We make

statistically significant detection of galaxy assembly bias in this sample.

The implication of our results is twofold. Firstly, we have demonstrated the constraining power

of galaxy count statistics. Count statistics incorporate the higher-order information of the field, and

are easy to measure from observational data. We advocate the use of these statistics in combination

with the commonly used two-point measurements, which has the potential not only to improve

constraints on the galaxy–halo connection, but also on cosmological models and other aspects of

galaxy physics. Secondly, we have detected galaxy assembly bias, which shows that the first-order

assumption that galaxy occupation only depends on halo mass is inaccurate. This effect needs to

be properly understood and modeled. Traditional models that adopt the mass-only ansatz will not

suffice in the new era of precision cosmology, and developing new models that account for galaxy

assembly bias is a timely task, which is attracting increasing attention (see, for example, [219, 37]).

We aim to explore other applications of galaxy count statistics, and further look into the physical

origin of galaxy assembly bias in future work.
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V. Conclusions and Outlook

Knowledge of the connection between observable galaxies and the underlying large-scale struc-

ture facilitates the comparison between predictions from cosmological models and observations

of the real Universe. This comparison is pivotal in the collective effort to answer some of the

most prominent questions in astronomy today –– What is dark energy? How does it impact the

evolution of the Universe? How did galaxies form and evolve to shape today’s visible Universe?

Is our Galaxy unique in any way? While these all depend upon the reliability of our theoretical

framework, the uncertainty in the galaxy–halo connection has become a pressing concern in the

era of precision cosmology.

In this thesis, we have addressed the galaxy–halo connection, from theoretical, computational,

and observational perspectives. In Chapter II, we investigate how the halo concentration parameter

emerges from the halo mass assembly history, and distinguish between contributions from different

modes of halo growth. Central to the methodology of this work is the examination of dynamical

processes in dynamical timescales. This methodology can be adapted to any other halo property

of interest, and a study of the co-evolution of multiple halo properties can provide deep insight

into how halos are shaped by physical events. Our conclusion that merger events are of crucial

importance in halo structure evolution, together with the fact that mergers strongly depend on the

environment density, suggests that they may be a major factor that causes halos to have secondary

biases –– dependences of halo clustering on internal properties other than mass: halos with

different clustering strengths have different internal properties because they have different merger

rates. Galaxy mergers often accompany halo mergers, and similar mechanisms may well lead

to a dependence of galaxy abundance and properties on the environment. If we include galaxy

properties, which are available in hydrodynamical simulations, in addition to halo properties in the

study of co-evolution, we may be able to uncover the origin of any possible galaxy assembly bias.

This is also one of the subjects I plan to pursue in the near future.

Chapters III and IV approach the topic from a different perspective. While a number of

theoretical and numerical works suggest it is likely that both halo clustering and galaxy clustering

are correlated with secondary halo properties, the effect has thus far eluded detection in observation.
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There are two possible avenues for obtaining more conclusive observational evidence: either to use

larger datasets and reduce error, or to exploit existing data using more efficient statistical probes.

The former is very promising, especially given the great effort that is going into new generations of

surveys, which will provide enormous amounts of data, and boost signal-to-noise ratios. However,

this does not solve the problem of degeneracies in the model parameter space, for they are intrinsic

to the statistics, and determined by the manner of their dependence on the model. The alternative

approach, which is to develop new statistics, can be more helpful in this respect. Because of their

different dependences on the model, complementary statistic sets break degeneracies and yield

tighter constraints on the parameters. Our work in these two chapters makes use of this idea, and

reintroduces the use of count statistics to complement the canonical probes. Using these statistics,

wemake definitive detection of galaxy assembly bias, which necessitates explorations of its physical

origin and better models that incorporate the effect.

These projects lead to advanced understanding of the physical processes that drive the formation

and evolution of galaxies and halos on nonlinear scales, and more accurate models of galaxy

clustering in the Universe that ensure correct interpretation of data for cosmological analyses.
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Appendix A Concentration–Mass Relation

In Fig. A.1, we show the concentration–mass relation of the random sample described in

Section II.B.2.b, and the dependence of the relation on half-mass scales. The random sample is

divided into 5 quintiles based on the mass normalized marks of the half-mass scales. In the figure,

we show the mean concentration relation along with the standard deviation in the relation for each

subsample. The standard error of the mean is naturally much smaller.

From the figure we observe that, in general, the concentration–mass relation depends mono-

tonically on the half-mass scale, again in consistence with previous findings that earlier forming

haloes tend to be more concentrated. The scatter in the relation is larger for later forming haloes

except in a few cases, which can be explained by the fact that they are more likely to have had recent

mergers. This figure complements our findings in Fig. II.6.
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Figure A.1: Concentration–mass relation for halo samples. The solid lines show themean relations,

while the error bars show the standard deviation of the relation within each sample. The thicker

gray line shows the concentration–mass relation for all the haloes in the random sample described

in Section II.B.2.b, while the other lines show subsamples with different mark values of 01/2, as

are labeled in the legend.
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Appendix B Derivative Fitting

In this appendix, we describe our approach to obtain the derivative matrix mf/mp.

We begin from the fiducial parameter set specified in Table III.1, and add perturbations to each

dHOD parameter (except "0, which we do not vary in our analysis) in turn, keeping all other

parameters fixed, to examine the dependence of observables on each individual parameter (i.e., the

set of f–p relations). The process is non-trivial because we construct our observables from mock

catalogs based on the population of a simulation of finite size with galaxies drawn from the (d)HOD.

The fact that we construct our observables using mock catalogs has the advantage of accuracy

compared to analytic approximation methods, but it also has the unfortunate consequence that

individual observables can exhibit non-negligible stochasticity from one mock catalog realization

to another. In order to mitigate the impact of this variability, rather than taking Δf/Δp at a single

perturbed point, we consider a series of perturbed models in the neighborhood of the fiducial value,

along each dimension of the parameter space. We then fit our set of f–p relations for a slope, as

an estimate of the partial derivative in the neighborhood of the fiducial point. We will elaborate on

these procedures in the remainder of this appendix.

As we have discussed in Section III.B.2.b, in the Halotools implementation of the (d)HOD

model, the galaxy occupation of each halo is randomly drawn from the probability distribution

function determined by the properties of the halo. The mean occupation varies with the (d)HOD

parameters, whereas any particular realization of the mock galaxy catalog is also dependent on the

sequence of random numbers used in this process. To generate the mock catalogs that are suitable

for Fisher analysis, we use a fixed random seed for each random variable in the (d)HOD model.

The values of random seeds are set independently of the (d)HOD parameter values. In this fashion,

the number of galaxies in each halo will always have the same random deviate each time the halo

is populated from the underlying (d)HOD model, regardless of the parameter values. Had we not

implemented this, the f–p relations we measure would be severely impacted by the significantly

greater stochasticity introduced by the random process. It would then be required to construct a

very large number of mock catalogs to marginalize over this stochasticity. By employing a common

seed, the differences between these catalogs become primarily attributable to parameter differences
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and not statistical fluctuations from catalog to catalog that could be induced by finite sampling

of the (d)HOD models. This exercise minimizes the variation of the observables attributable to

stochasticity; however, f is generally not a smooth function of p, due to the intricate nature of the

dependence of the observables on the galaxy distribution.

Determining the f–p relations from a single random number seed is not sufficient because the

f–p relation has a small dependence upon the random number seed. Consequently, the values of the

resulting derivatives will vary slightly with different random seeds. For this reason, we repeat this

entire process for a large number (or order ∼ 100) of different random number seeds and take the

trimmedmean of f, averaging only the central 68% values. In this manner, we construct smooth f–p

relations that do not dependent on the choice of the random seed. In the example shown in Fig. B.1,

we assess the relation between the projected two-point correlation function Fp at Ap = 1.74ℎ−1 Mpc

and the central galaxy assembly bias parameter �cen. Thin colored lines correspond to different

random number seeds, and for clarity we only plot results for a subset of all random seeds used.

The thicker black line shows the trimmed mean from the central 68% of the fixed-seed f–p data

points, which serves as our estimate of the observable–parameter relation. This procedure provides

us with a set of f–p relations, one for each observable–parameter pair, that we fit as described

below.

We use the R [149] package locfit [107] to fit local linear derivatives to the f–p relation

that we have obtained. We choose the degree of local polynomials to be two, which captures the

shape of the curve without excessive overfitting. The locfit package provides 5 commonly used

weighting kernels. We have confirmed that different kernels yield similar results. We present

results obtained with the default tricube kernel. Because some of the f–p relations are strongly

non-linear, the smoothing scale for the local fit needs to be chosen with care. We choose the

smoothing scale of fitting following the principle that the range of the parameter considered for

the local derivative fit should be comparable with the posterior 1f constraint for each observable

combination respectively. Qualitatively, this is motivated by the fact that the 1f constraints defines

what it means to be in the “neighborhood” of the fiducial point. To this criterion, we add two

additional restrictions:

I. For each f-p relation, we obtain the optimal smoothing parameter from generalized cross

validation (GCV), using the loess.as function in the R package fANCOVA [200]. We use this
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smoothing scale as a lower limit, in order to avoid fitting numerical noise.

II. We apply another lower limit of smoothing scale for each parameter in each threshold, based

on the physical interpretation of f-p relations, as some of the unphysical effects from the mock

are not recognized by GCV. We have tested that our conclusions are not sensitive to this choice

within a reasonable range.

In the example of Fig. B.1, we fit a local linear derivative to the relation at the fiducial parameter

set, marked by the vertical gray dashed line, i.e., [mFp(Ap = 1.74ℎ−1 Mpc)/m�cen] |�cen=0. The

smoothing scale is shown as a gray band that is symmetric around the fiducial parameter. The local

linear fit is shown by the solid red line. The fitted slopes are the derivatives we use in our forecasts.
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Figure B.1: An example of our function–parameter relations and its fitted derivative. In this figure,

we show an example of our f–p relations and its fitted derivative. In this example, we study the

observable Fp(Ap = 1.74ℎ−1 Mpc) against the perturbation in �cen. Each thin colored line is the

dependence of the observable on the parameter, obtained with a different random number seed.

The solid black line shows the trimmed mean of these fixed-seed f-p data points. The fiducial

parameter is marked by the vertical gray dashed line (in this case at �cen = 0, so that d�cen = �cen).

The smoothing scale adopted is shown as a vertical gray band, and the solid red line is the local

linear fit.)
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Appendix C Forecast Constraints on HOD Parameters

In this appendix, we present a comprehensive list of our Fisher forecast results for constraints

on dHOD parameters.

In Fig. C.1 and Fig. C.2, we show bar plots of constraints on the decorated HOD parameters

besides �cen and �sat (shown in Figure III.4), excluding log"0 which is poorly constrained. These

include U, log"1, log"min, and flog" , which are also the original parameters of the standard

HOD.

We also list the posterior constraint values in Tables C, C, C, C, and C, for the 6 parameters

that we allow to vary and for all 5 of the luminosity samples we study. The constraints we include

are from all the individual observables, all the possible combinations of two observables, and the

combination of all 6 observables.
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Figure C.1: The same as Figure III.4, but showing the constraints for the parameters U and log"1.
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Figure C.2: The same as Figure III.4, but showing the constraints for the parameters log"min and

flog" .
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Observable combination f(log"min) f(flog") f(U) f(log"1) f(�cen) f(�sat)

Fp(Ap) 0.30 0.645 0.038 0.05 0.71 0.34

ΔΣ(Ap) 0.10 0.157 0.066 0.09 0.79 0.32

VPF(A) 0.22 0.129 0.689 0.37 0.63 3.99

%(#CIC) 0.18 0.179 0.091 0.18 1.34 0.20

%(#CIA) 0.06 0.151 0.049 0.07 0.46 0.36

%(#2/#5) 0.05 0.073 0.040 0.06 0.57 0.21

Fp(Ap) + ΔΣ(Ap) 0.06 0.121 0.016 0.02 0.41 0.20

Fp(Ap) + VPF(A) 0.05 0.086 0.019 0.03 0.31 0.25

Fp(Ap) + %(#CIC) 0.03 0.048 0.013 0.02 0.15 0.15

Fp(Ap) + %(#CIA) 0.05 0.111 0.014 0.02 0.16 0.19

Fp(Ap) + %(#2/#5) 0.03 0.062 0.013 0.02 0.27 0.15

ΔΣ(Ap) + VPF(A) 0.06 0.084 0.036 0.04 0.31 0.19

ΔΣ(Ap) + %(#CIC) 0.04 0.054 0.022 0.03 0.19 0.12

ΔΣ(Ap) + %(#CIA) 0.05 0.082 0.030 0.03 0.17 0.19

ΔΣ(Ap) + %(#2/#5) 0.04 0.064 0.022 0.03 0.29 0.14

VPF(A) + %(#CIC) 0.05 0.057 0.030 0.06 0.43 0.19

VPF(A) + %(#CIA) 0.05 0.061 0.046 0.04 0.23 0.35

VPF(A) + %(#2/#5) 0.03 0.050 0.030 0.04 0.38 0.20

%(#CIC) + %(#CIA) 0.04 0.055 0.017 0.03 0.24 0.14

%(#CIC) + %(#2/#5) 0.04 0.054 0.019 0.03 0.23 0.13

%(#CIA) + %(#2/#5) 0.03 0.056 0.023 0.03 0.23 0.17

All six 0.02 0.031 0.009 0.01 0.10 0.07

Table C.1: Halo occupation distribution (HOD) parameter constraints for the "A < −19.0 sample.
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Observable combination f(log"min) f(flog") f(U) f(log"1) f(�cen) f(�sat)

Fp(Ap) 0.24 0.558 0.029 0.03 0.63 0.35

ΔΣ(Ap) 0.07 0.138 0.080 0.08 0.76 0.33

VPF(A) 0.13 0.179 0.657 0.30 0.62 3.10

%(#CIC) 0.09 0.119 0.088 0.14 1.06 0.16

%(#CIA) 0.05 0.141 0.075 0.11 0.72 0.37

%(#2/#5) 0.04 0.076 0.052 0.05 0.58 0.28

Fp(Ap) + ΔΣ(Ap) 0.05 0.104 0.022 0.02 0.40 0.23

Fp(Ap) + VPF(A) 0.04 0.077 0.021 0.02 0.32 0.27

Fp(Ap) + %(#CIC) 0.02 0.046 0.016 0.02 0.17 0.12

Fp(Ap) + %(#CIA) 0.04 0.091 0.018 0.02 0.18 0.22

Fp(Ap) + %(#2/#5) 0.03 0.057 0.017 0.02 0.31 0.17

ΔΣ(Ap) + VPF(A) 0.05 0.079 0.047 0.04 0.30 0.21

ΔΣ(Ap) + %(#CIC) 0.03 0.050 0.026 0.03 0.20 0.12

ΔΣ(Ap) + %(#CIA) 0.04 0.071 0.038 0.03 0.21 0.21

ΔΣ(Ap) + %(#2/#5) 0.03 0.060 0.028 0.03 0.31 0.16

VPF(A) + %(#CIC) 0.04 0.052 0.039 0.06 0.44 0.14

VPF(A) + %(#CIA) 0.04 0.058 0.062 0.04 0.26 0.35

VPF(A) + %(#2/#5) 0.03 0.052 0.038 0.04 0.34 0.27

%(#CIC) + %(#CIA) 0.03 0.052 0.023 0.03 0.27 0.12

%(#CIC) + %(#2/#5) 0.03 0.052 0.025 0.03 0.26 0.13

%(#CIA) + %(#2/#5) 0.03 0.054 0.032 0.03 0.26 0.22

All six 0.01 0.030 0.012 0.01 0.11 0.07

Table C.2: Halo occupation distribution (HOD) parameter constraints for the "A < −19.5 sample.
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Observable combination f(log"min) f(flog") f(U) f(log"1) f(�cen) f(�sat)

Fp(Ap) 0.17 0.475 0.031 0.03 0.78 0.45

ΔΣ(Ap) 0.06 0.149 0.081 0.07 0.86 0.43

VPF(A) 0.10 0.155 0.783 0.21 0.56 2.73

%(#CIC) 0.09 0.157 0.081 0.11 1.32 0.16

%(#CIA) 0.04 0.137 0.088 0.11 0.91 0.33

%(#2/#5) 0.05 0.112 0.064 0.05 0.80 0.32

Fp(Ap) + ΔΣ(Ap) 0.05 0.123 0.024 0.02 0.53 0.29

Fp(Ap) + VPF(A) 0.03 0.082 0.024 0.02 0.39 0.32

Fp(Ap) + %(#CIC) 0.03 0.062 0.020 0.01 0.25 0.12

Fp(Ap) + %(#CIA) 0.04 0.100 0.021 0.02 0.26 0.22

Fp(Ap) + %(#2/#5) 0.03 0.069 0.021 0.02 0.41 0.19

ΔΣ(Ap) + VPF(A) 0.04 0.083 0.054 0.04 0.39 0.25

ΔΣ(Ap) + %(#CIC) 0.03 0.065 0.031 0.02 0.30 0.12

ΔΣ(Ap) + %(#CIA) 0.03 0.076 0.042 0.03 0.30 0.22

ΔΣ(Ap) + %(#2/#5) 0.03 0.070 0.033 0.02 0.43 0.19

VPF(A) + %(#CIC) 0.03 0.059 0.033 0.04 0.44 0.13

VPF(A) + %(#CIA) 0.03 0.069 0.071 0.04 0.32 0.32

VPF(A) + %(#2/#5) 0.03 0.069 0.040 0.03 0.38 0.30

%(#CIC) + %(#CIA) 0.03 0.067 0.027 0.03 0.38 0.11

%(#CIC) + %(#2/#5) 0.03 0.074 0.030 0.03 0.36 0.12

%(#CIA) + %(#2/#5) 0.03 0.073 0.036 0.03 0.34 0.24

All six 0.01 0.037 0.014 0.01 0.15 0.08

Table C.3: Halo occupation distribution (HOD) parameter constraints for the "A < −20.0 sample.
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Observable combination f(log"min) f(flog") f(U) f(log"1) f(�cen) f(�sat)

Fp(Ap) 0.05 0.244 0.038 0.03 1.07 0.60

ΔΣ(Ap) 0.05 0.197 0.098 0.06 1.05 0.52

VPF(A) 0.07 0.117 1.023 0.11 0.71 2.57

%(#CIC) 0.07 0.282 0.070 0.06 1.53 0.25

%(#CIA) 0.04 0.209 0.126 0.12 1.88 0.40

%(#2/#5) 0.04 0.186 0.060 0.03 1.42 0.41

Fp(Ap) + ΔΣ(Ap) 0.03 0.132 0.036 0.02 0.70 0.34

Fp(Ap) + VPF(A) 0.02 0.084 0.034 0.02 0.53 0.45

Fp(Ap) + %(#CIC) 0.03 0.148 0.031 0.02 0.60 0.19

Fp(Ap) + %(#CIA) 0.03 0.136 0.030 0.02 0.60 0.30

Fp(Ap) + %(#2/#5) 0.03 0.134 0.029 0.02 0.79 0.25

ΔΣ(Ap) + VPF(A) 0.03 0.083 0.065 0.03 0.51 0.32

ΔΣ(Ap) + %(#CIC) 0.04 0.140 0.039 0.02 0.57 0.20

ΔΣ(Ap) + %(#CIA) 0.02 0.106 0.054 0.03 0.53 0.27

ΔΣ(Ap) + %(#2/#5) 0.03 0.118 0.039 0.02 0.67 0.24

VPF(A) + %(#CIC) 0.02 0.084 0.036 0.03 0.60 0.22

VPF(A) + %(#CIA) 0.02 0.083 0.073 0.03 0.53 0.37

VPF(A) + %(#2/#5) 0.02 0.088 0.042 0.03 0.58 0.38

%(#CIC) + %(#CIA) 0.03 0.130 0.034 0.03 0.78 0.18

%(#CIC) + %(#2/#5) 0.03 0.142 0.037 0.02 0.87 0.20

%(#CIA) + %(#2/#5) 0.03 0.125 0.042 0.03 0.77 0.27

All six 0.01 0.052 0.020 0.01 0.29 0.11

Table C.4: Halo occupation distribution (HOD) parameter constraints for the "A < −20.5 sample.
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Observable combination f(log"min) f(flog") f(U) f(log"1) f(�cen) f(�sat)

Fp(Ap) 0.19 0.308 0.097 0.03 0.84 0.90

ΔΣ(Ap) 0.08 0.101 0.228 0.07 0.67 0.81

VPF(A) 0.12 0.149 1.558 0.10 0.53 4.10

%(#CIC) 0.19 0.273 0.148 0.11 2.46 0.36

%(#CIA) 0.06 0.070 0.277 0.15 1.48 0.88

%(#2/#5) 0.05 0.081 0.091 0.03 0.80 0.62

Fp(Ap) + ΔΣ(Ap) 0.05 0.074 0.081 0.02 0.38 0.57

Fp(Ap) + VPF(A) 0.05 0.073 0.084 0.03 0.41 0.70

Fp(Ap) + %(#CIC) 0.06 0.083 0.065 0.02 0.56 0.26

Fp(Ap) + %(#CIA) 0.04 0.061 0.076 0.02 0.40 0.50

Fp(Ap) + %(#2/#5) 0.04 0.068 0.063 0.02 0.49 0.37

ΔΣ(Ap) + VPF(A) 0.05 0.062 0.159 0.04 0.36 0.56

ΔΣ(Ap) + %(#CIC) 0.05 0.064 0.073 0.02 0.41 0.30

ΔΣ(Ap) + %(#CIA) 0.03 0.044 0.119 0.03 0.30 0.47

ΔΣ(Ap) + %(#2/#5) 0.04 0.055 0.077 0.02 0.37 0.41

VPF(A) + %(#CIC) 0.06 0.082 0.073 0.03 0.51 0.30

VPF(A) + %(#CIA) 0.04 0.059 0.205 0.04 0.38 0.78

VPF(A) + %(#2/#5) 0.05 0.067 0.083 0.03 0.40 0.57

%(#CIC) + %(#CIA) 0.04 0.064 0.062 0.03 0.61 0.25

%(#CIC) + %(#2/#5) 0.05 0.072 0.065 0.03 0.68 0.27

%(#CIA) + %(#2/#5) 0.04 0.060 0.077 0.03 0.52 0.42

All six 0.02 0.030 0.042 0.01 0.21 0.18

Table C.5: Halo occupation distribution (HOD) parameter constraints for the "A < −21.0 sample.
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