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Cells must accurately sense various aspects of their environment for survival. In 1977,

Berg and Purcell initiated a line of work placing physical limits on cell sensing [6]. The

work herein is a continuation of this tradition. In our first project, we studied the effect

of critical biochemical feedback on cell sensing. Using a concrete model, we weighed the

trade-offs between high susceptibility, long-range correlations and critical slowing down. We

found that the critical system could have high steady state mutual information between a

ligand and an internal readout molecule if the ligand dynamics are sufficiently slower than

the intracellular dynamics. However, the information rate is always minimized at the critical

point due to critical slowing down. Our second and third projects involved deriving lower

bounds on signal-to-noise ratios for environmental variables, much like the initial work of

Berg and Purcell. The novelty is that the sensed quantities are fluid flow direction and

temperature. These extend the range of their work, as these are non-chemical cues, however,

they are sensed using molecules. Our work on flow sensing was motivated by studies on

metastatic cancer cells that showed they could detect the direction of fluid flow. They do so

by secreting molecules that are pushed by the flow and return to the surface anisotropically.

We compared two different strategies for signal transduction: endocytosis and reversible

binding. We found that reversible binding admits a lower relative error than endocytosis. The

endocytosis model has an optimal absorption rate. We use experimental data to argue that

the endocytosis rate is far from the optimum, supporting the possibility that receptor binding

transduces the information. In our third project, we started by computing the relative error

in temperature sensing arising from its own fluctuations. We found that it was too low to

be limiting. Temperature sensing is indirect, it is transduced from molecular conformations,

changing reaction rates, or various mechanical properties. Turning to a biochemical model

based on the canonical protein thermometer TlpA, we found that the error arising from

the biochemical reactions dominated the system. We discuss the connection to existing
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experimental data.
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I. Introduction

One of the hallmarks of life is the ability to sense and respond to various aspects of one’s

surroundings. Cells are able to do so remarkably, despite only having access to limited kinds

of stimuli. There is a long tradition initiated by the work of Berg and Purcell of studying the

limits that physics imposes on cellular sensing [6]. To give a flavor for this kind of work, we

begin this dissertation by presenting their argument to deduce the scaling of a cell’s error in

concentration sensing. We consider the cell as a perfectly absorbing sphere with radius a, so

that any molecule that reaches its surface is absorbed. The cell is sensing some ligand with

diffusion coefficient D and is immersed in a background concentration c0. By dimensional

analysis, we can deduce that the mean flux to the surface is ∼ Dac0. We assume that

cell absorbs the molecules for some time T , and uses the information about the number of

molecules to infer the concentration. It is possible to show that the number of molecules

that reach the surface in a given time is a Poisson random variable, so its variance is the

mean. Using linear error propagation, we find that the error in concentration sensing is

σ(c)

c0

=
σ(n)

c0

1

dn/dc0

=
σ(n)

n
∼ 1√

Dac0T
. (1)

Berg and Purcell showed that a similar scaling holds for a more realistic picture with receptor

binding and unbinding, this work was subsequently extended for the case where binding is

not diffusion limited [9, 58]. This example shows how the limited information that the cell

has can be used to infer something about its surroundings.

In this dissertation, we will build on this tradition by exploring three main extensions of

it. In the first topic, we look at the effect of intracellular feedback on concentration sensing.

Signals are often transduced from receptors and result in gene expression, which is subject to

feedback. Positive feedback can induce bifurcations, or changes in stability of the long-term

behavior, in the gene’s output. These bifurcations behave very similarly to thermodynamic

critical points, where phase transitions, such as spontaneous thermal magnetization, occur.

Critical points exhibit a number of interesting features: they are highly sensitive, have strong
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spatial correlations, and exhibit critical slowing down. Some have speculated that it is bene-

ficial for biological systems to operate near criticality [77, 85]. However, each of the benefits

has apparent drawbacks. High sensitivity is beneficial when the input is controlled, but ran-

dom noise can lead to large excursions from the expected response. Long-range correlations

allow changes to propagate across the system, but this reduces the number of independent

units in the system and the ability to respond to changes with a fine spatial resolution. Crit-

ical slowing down allows the system to respond to the time-averaged inputs or stimuli, which

should reduce the effects of noise, but this requires the system to have very long response

times. These trade-offs don’t have a straightforward resolution and therefore require sys-

tematic, quantitative investigation. We explore the implications of criticality for biochemical

sensing in a simple model with intracellular feedback and intercellular communication.

To this end, we will appeal to some basic ideas in information theory. This framework

grew out of Claude Shannon’s work to place limits on reliably sending messages in the

presence of noise [103]. The key notion that we will use is that of mutual information, which

is the average reduction in uncertainty, specifically entropy, of the input after measuring

the output [103, 20]. Mutual information may also be viewed as a non-linear measure of

correlations. For example, let x and y be the coordinates of points uniformly distributed on

the boundary of the unit circle. It is straightforward to show that x and y do not covary.

However, measuring x reduces the possible values of y to at most two values. Though

the linear correlation 〈xy〉 − 〈x〉〈y〉 vanishes, the mutual information does not, so mutual

information captures more subtle dependencies. In fact, the mutual information is zero if

and only if the input and the output are independent.

In the second topic, we investigate flow sensing in metastasis. Metastasis, the process

in which cancer cells leave the primary tumor to inhabit a new site, is the deadliest stage

in cancer progression. Cancer cells use a variety of mechanisms to navigate, including the

alignment of collagen fibers in the extracellular matrix, pressure or shear forces, and various

chemical gradients, such as oxygen or growth factors. Experiments have shown that cancer

cells can detect the direction of fluid flow by secreting diffusible molecules that they detect

with receptors on their surface [105]. This is particularly relevant for cancer cells navigating

towards lymphatic vessels and using the network to access distant parts of the body. The

2



flow in the experiments was slow, and the cells secreted molecules at a low rate. This raises

the question of limits to sensing flow through this mechanism. In this project, we used

a combination of stochastic processes and fluid dynamics to derive limits for this kind of

sensing and compare with the experiments.

In the third project, we study the limits to cellular temperature sensing. Cells must

mount a rapid response to address heat or cold shock [71]. Temperature can be a cue for

some cells to initiate virulence [33]. Other cells can thermotax, or move toward a preferred

temperature range [69]. Early work on the subject argued that the temperature fluctuations

within a cell were too negligible to be limiting [24]. If extrinsic temperature fluctuations do

not limit cell behavior, what does? We address this question for protein thermometers. In

response to temperature changes, proteins change conformation, and these proteins need to

initiate some change in activity, usually via gene expression. The conformation change and

gene expression are stochastic processes, and we hypothesize that this noise could dwarf the

noise in the temperature itself. Using a model based on the protein thermometer TlpA [56],

we find that this is the case: the error is dominated by fluctuations in the measurement ap-

paratus instead of the quantity of interest. Again we compare our findings with experimental

data.
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II. Multicellular Sensing at a Feedback-Induced Critical Point

This work builds off of previously published work done by our group:

• Amir Erez, Tommy A. Byrd, Robert M. Vogel, Gregoire Altan-Bonnet, and Andrew Mu-

gler. Universality of biochemical feedback and its application to immune cells. Physical

Review E, 99(2):022422, 2019

• Tommy A. Byrd, Amir Erez, Robert M. Vogel, Curtis Peterson, Michael Vennettilli,

Gregoire Altan-Bonnet, and Andrew Mugler. Critical slowing down in biochemical net-

works with feedback. Physical Review E, 100(2):022415, 2019

• Amir Erez, Tommy A. Byrd, Michael Vennettilli, and Andrew Mugler. Cell-to-

Cell Information at a Feedback-Induced Bifurcation Point. Physical Review Letters,

125(4):048103, 2020.

It has been published in Physical Review E:

• Michael Vennettilli, Amir Erez, and Andrew Mugler. Multicellular sensing at a

feedback-induced critical point. Physical Review E, 102(5):052411, 2020.

Feedback in sensory biochemical networks can give rise to bifurcations in cells’ behavioral

response. These bifurcations share many properties with thermodynamic critical points.

Evidence suggests that biological systems may operate near these critical points, but the

functional benefit of doing so remains poorly understood. Here we investigate a simple

biochemical model with nonlinear feedback and multicellular communication to determine

if criticality provides a functional benefit in terms of the ability to gain information about

a stochastic chemical signal. We find that when signal fluctuations are slow, the mutual

information between the signal and the intracellular readout is maximized at criticality,

because the benefit of high signal susceptibility outweighs the detriment of high readout

noise. When cells communicate, criticality gives rise to long-range correlations in readout

4



molecule number among cells. Consequently, we find that communication increases the

mutual information between a given cell’s readout and the spatial average of the signal

across the population. Finally, we find that both with and without communication, the

sensory benefits of criticality compete with critical slowing down, such that the information

rate, as opposed to the information itself, is minimized at the critical point. Our results

reveal the costs and benefits of feedback-induced criticality for multicellular sensing.

A. Introduction

Cells need to reliably sense their environment to survive and coordinate behavior. Many

studies have investigated the precision of sensory tasks, such as detecting concentrations of a

single molecular species [6, 58, 87], concentrations of multiple molecular species [16, 76], and

concentration gradients [26, 53]. Much of those works focused on linear networks in single

cells. Yet, it is well known that biological systems use nonlinear feedback to process signals,

and there is evidence that communication among multiple cells improves sensory precision

[48, 25, 34]. For example, in the developing embryo of the Drosophila melanogaster fruit

fly, cell nuclei sense their position along a Bicoid (Bcd) protein gradient using Hunchback

(Hb) as a genetic readout. Hb has binding sites on its own promoter region leading to

positive feedback [113], and it is also thought to be diffusively communicated from nucleus

to nucleus in the embryo [48, 29]. In Vibrio fischeri bacteria, cells sense the concentration

of an autoinducer (AI). The uptake of AI is thought to cooperatively produce more AI

via the lux operon, creating a nonlinear positive feedback loop, and AI is communicated

diffusively among cells for the purpose of quorum sensing [119]. Here we probe theoretically

this interplay between cellular sensing, feedback, and communication.

Positive feedback generically leads to bifurcations in dynamical behavior [111]. This

raises the question of what the implications of being near a bifurcation are for biological

sensing. In the presence of noise, which is ubiquitous in biochemical networks, these sys-

tems behave like thermodynamic critical systems in the large system size limit, exhibiting

characteristic features like power law scalings and critical slowing down [31, 15]. In realistic

5



systems with a finite number of cells and molecules, there are finite-size effects where the

divergent quantities, such as susceptibility and correlation length, round off to a finite value

within some distance of the critical point and exhibit the expected scaling outside of this dis-

tance. Though these quantities don’t diverge, they can still have sharp peaks near criticality.

Indeed, there is experimental evidence suggesting that some biological systems operate near

criticality [77, 63, 85]. On the one hand, critical systems have divergent susceptibilities and

correlation lengths, which may be beneficial for sensing. On the other hand, critical systems

have large fluctuations and slow dynamics, which may be detrimental for sensing. These

expected tradeoffs suggest that the costs and benefits of sensing at criticality need to be

explored in a systematic way.

Here we probe the implications of criticality for the sensing of a noisy, spatially uniform

chemical concentration by a population of communicating cells. Specifically, we use the rate

constants that create a critical point in the infinite system to study finite systems. We focus

on a variant of Schlögl’s second model [99] that incorporates linear sensing, nonlinear feed-

back, and communication between neighboring cells. We consider cells on a one-dimensional

lattice, but we show that the model is in the mean-field Ising static universality class, and

therefore we expect our steady-state results to qualitatively hold for more general geometries.

In the case of a single cell, we find that critical feedback maximizes the mutual information

when the ligand dynamics are slow due to the high susceptibility of the response to the input.

Similarly, with multiple cells, we find that critical feedback couples with cell-cell communi-

cation to produce long-range correlations, which maximizes information about the average

ligand concentration across the population. However, we find that in both cases, critical

feedback results in critical slowing down, such that the information rate is minimized. We

discuss the implications of these tradeoffs for several well-studied biological systems.
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B. Results

1. The Model and Its Universality Class

We consider a one-dimensional chain of sites with periodic boundary conditions, where

each site corresponds to a cell and its immediate environment (Fig. 1). We assume the

chemical components within each site are well mixed. Our model generalizes Schlögl’s second

model for nonlinear biochemical feedback [99] to multiple coupled cells and introduces an

extracellular diffusing ligand to be sensed. The number of ligand molecules at site i is

denoted by `i, while the number of readout molecules in cell i is denoted xi. Specifically, we

have the reactions

Li
k−`−−⇀↽−−
k+
`

∅, Li
γ
′

−−⇀↽−−
γ
′

Li±1, Li
k+
1−−→ Xi + Li,

Xi

k−1−−→ ∅, 2 Xi

k+
2−−⇀↽−−

k−2

3 Xi, Xi

γ−−⇀↽−−
γ

Xi±1.

(2)

The first two reversible reactions describe the ligand diffusively entering or leaving the vicin-

ity of the ith cell or diffusing to that of the neighboring cell. The second pair of reversible

reactions describes some process that is maintaining a background concentration of the lig-

and. These reactions should be viewed as other things going on in the surroundings that

produce and consume these molecules. Alternatively, they can be viewed as molecules dif-

fusing into and out of a region where they can interact with each cell. The third reaction

describes the production of a readout molecule in response to the ligand. The fourth reaction

describes linear degradation of the readout. The fifth reaction subjects the readout to pos-

itive and negative nonlinear feedback. The sixth reaction describes exchanging the readout

between neighboring cells. The fourth and fifth reactions are often written with additional,

mediating bath species, but these are usually assumed to have a fixed concentration, and

therefore here we have absorbed them into the rate constants. As long as the initial condi-

tions are positive, these reactions ensure that the molecule numbers are non-negative and

finite. When the ligand or readout is low at a site, degradation at the site or diffusion from

the site cannot occur, so there must be a production event at the site or diffusion into the

site. When the molecule numbers are large, degradation, specifically the Li −−→ ∅ and

3 Xi −−→ 2 Xi reactions, dominate and reduce the molecule numbers.
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∅

L

X

Sensing      Feedback      Communication

Figure 1: Illustration of the model. Each site on a 1D lattice is a well-mixed cell and its

immediate environment. A ligand binds to a receptor and produces a readout molecule that

is subject to nonlinear feedback and may be exchanged between cells. The ligand is spatially

uniform and has its own fluctuating dynamics.

The nonlinear feedback in Eq. 2 has its own mechanistic interpretation [99], but it also

emerges as the Taylor series for a wide range of nonlinear reactions near a pitchfork bifurca-

tion [31, 15]. This was one of the reasons that we chose this model. We are not considering

all possible reactions below a given order. For example, this is the case if the feedback reac-

tions were replaced with production via a Hill function in x with Hill coefficient H > 1. Eq.

2 is also convenient mathematically, as it can be mapped onto the mean-field Ising model

with a translation and multiplicative scaling, as we now show.

In previous work, we mapped the single cell onto the mean-field Ising model by solving

for the steady state probability distribution of readout molecule number [31]. This approach

breaks down with multiple coupled cells because the steady state distribution is not known

analytically. Instead, we extract the mapping from the deterministic dynamics [11]. The

rate equations take the form

dxi
dt

= k+
1 `i − k−1 xi + k+

2 x
2
i − k−2 x3

i + γ∇2xi,

d`i
dt

= k+
` − k

−
` `i + γ′∇2`i

(3)

8



where∇2 is the discrete Laplace operator. The key is to perform a change of variables so that

this equation of motion is in the normal form of a supercritical pitchfork bifurcation, as the

relaxation dynamics to the minima of the Landau free energy of the Ising model are in this

form [111, 45]. This is accomplished by finding where the second derivative of the right-hand

side with respect to xi vanishes, and this occurs at xc = k+
2 /3k

−
2 . Moreover, xc controls the

typical molecule number in the system, with scaling properties similar to finite-size scaling

with the length of the lattice in Ising models. Interpreting xc as the system size is further

justified by the fact that the deterministic approximation is only valid in the large xc limit

and, as a consequence of this, the bifurcation and expected critical scalings, with rounding

off, only appear in this same limit. Making the substitution xi = xc(mi + 1), where mi is

an order parameter analogous to the magnetization per unit volume of the Ising model, and

rescaling time so that the cubic term has a coefficient of −1/3 gives

dmi

dτ
= −1

3
m3
i −

[
3
k−1 k

−
2

(k+
2 )2
− 1

]
mi +

[
2

3
− 3

k−1 k
−
2

(k+
2 )2

+ 9
k+

1 `i(k
−
2 )2

(k+
2 )3

]
+ 3

k−2 γ

(k+
2 )2
∇2mi. (4)

Eq. 4 describes relaxation dynamics to the minima of the Landau free energy for the Ising

model, provided that we identify

τ =
(k+

2 )3t

9(k−2 )2
, (5)

θ = 3
k−1 k

−
2

(k+
2 )2
− 1, (6)

hi =
2

3
− 3

k−1 k
−
2

(k+
2 )2

+ 9
k+

1 `i(k
−
2 )2

(k+
2 )3

(7)

as the reduced temperature and dimensionless field respectively. The bifurcation occurs

when both of these parameters are set to zero [111]. The field hi biases the distribution to

either high or low molecule numbers. This can be understood by the quantitative analogy

between the magnetization mi and the molecule number xi. For a positive magnetic field, the

magnetization will be biased towards positive values, so the molecule number will be biased

towards values larger than xc, and a similar analogy holds for negative fields. Because we are

interested in properties of the system near the critical point, we set hi = 0 (using the mean

value of the ligand ` = k+
` /k

−
` for `i). When the reduced temperature θ is decreased, the

feedback becomes increasingly strong, and the distribution goes from unimodal to bimodal

9



when it goes from positive to negative 1. Eq. 4 differs from the standard form of ϕ4 theory

[45], where the coefficient of the Laplacian term would be 1. Instead this coefficient depends

on the exchange rate γ of molecules from cell to cell, which is an independently tunable pa-

rameter in the biochemical model. These parameters come from the deterministic dynamics,

so they only capture the large xc limit of the stochastic dynamics. We ignore corrections

from small molecule numbers [30] and purely stochastic effects [121].

The fact that this system is in the static universality class of the mean field Ising model

may appear at odds with previous work done on Schlögl’s second model extended to a spatial

context [12, 46, 47]. The reason is that in these previous works, there is a finite occupancy

per site and each molecule can only react with neighboring molecules. In our case, each

molecule can interact with an arbitrary number of molecules within a single well-mixed site.

This makes the mean field nature of the model apparent, and one should think of our model

as a system of linearly coupled mean field systems.

2. Defining the Sensory Measure

A typical measure of sensory precision is the signal-to-noise (SNR) ratio in the cell’s

estimate of the ligand concentration. In Fig. 2A we show the SNR x2/σ2
x for a single cell

as a function of θ, computed using Gillespie simulations [44] of Eq. 2. The parameter θ

inversely sets the feedback strength, with θ → ∞ corresponding to no feedback and θ = 0

corresponding to critical feedback. We avoid the θ < 0 case (feedback-induced bifurcation)

since the mean and variance of a bimodal distribution are ill-suited measures in this context.

We see that the SNR increases with θ, meaning that criticality is worse for the SNR than

having no feedback. The reason is that, for θ ≥ 0, the mean x is independent of θ while the

variance σ2
x increases as θ decreases and the critical point is approached. Evidently criticality

is not beneficial for sensing a mean concentration with low error.

In contrast, we hypothesize that criticality might be beneficial for sensing fluctuations

around a mean concentration. This is because critical systems have large susceptibility to

1We are considering varying the parameters mathematically to understand the performance of a certain
region in the parameter space for a biological system. This is not some dynamical process being applied to
the cells. However, it is possible that cells could adjust θ or h through mutation and selection, so they can
approach the optima in parameter space.
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a biasing field. Indeed, the fluctuating ligand number `i appears in the effective field hi

(Eq. 7). Therefore, we hypothesize that the critical system may have maximal correlations

between the ligand and readout, and therefore serve as an optimal fluctuation detector. To

investigate this hypothsis, we consider the mutual information and information rate [103]

between the ligand and readout molecule numbers as our sensory measures from here on.

The mutual information and information rate inherently capture correlations between two

fluctuating variables (see Appendix A.A for a summary of results for Gaussian variables,

which we will draw upon below).

3. Single Cell

We start by analyzing the Langevin equations obtained from the Kramers-Moyal expan-

sion for our system in the limit of a single cell. Even for the single cell, the nonlinearity

is an obstruction to exact analytic solutions, and therefore we linearize the equation about

a deterministic steady state. When θ is negative, the distribution is bimodal; this feature

cannot be captured by the linearized equation, so this approximation is only valid for θ > 0.

We will use this approach to gain insight and then use simulations for more accurate results.

When θ > 0 and h = 0, there is only one deterministic fixed point; it occurs at x = xc and

is stable. This is another reason for treating xc as a tuning parameter that sets the system

size.

a. Mutual Information

Letting b(x, `) = k+
1 ` + k+

2 x
2 and d(x) = k−1 x + k−2 x

3 denote the total birth and death

terms for x (Eq. 2), we obtain the linearized system

δ̇` = −k−` δ`+
√

2k+
` ε,

˙δx = −cδx+ k+
1 δ`+

√
2d(xc)η,

(8)

where ε and η are independent, delta-correlated Gaussian white noise processes that describe

the noise in production and degradation (Appendix A.B). The c = ∂x[d(x)−b(x, `)]xc,` term

arises from linearizing the birth and death propensities with respect to x. This system is
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a two-dimensional Ornstein-Uhlenbeck process and may be solved analytically using matrix

exponentials and Itô’s lemma. This is done in Appendix B and we find that the steady-state

mutual information between x and ` is

I =
1

2
log

(
1 +

(k+
1 )2`c

d(xc)(k
−
` + c)2 + (k+

1 )2k−` `

)
. (9)

We expect the system to track ligand fluctuations best when the ligand dynamics are slow

(k−` /k
−
1 � 1). Writing Eq. 9 in this limit and in terms of the reduced temperature (Eq. 6),

we find

I =
1

2
log

(
1 +

xc

`

(3θ + 1)2

3θ(3θ + 4)

)
. (10)

This result has a finite limit when θ → ∞ (no feedback) and diverges as θ → 0 (critical

feedback) 2. This suggests that indeed, the mutual information between ligand and readout

is maximized at criticality under these assumptions. Moreover, the role of xc as the system

size is apparent, with the mutual information increasing approximately as log(xc/l).

To understand intuitively why the information is maximized at criticality, we can write

Eq. 10 in terms of new variables: the susceptibility χ = (∂m/∂h)h=0 and the variance σ2
x

with ` fixed to its mean value. The susceptibility is obtained directly from Eq. 4, which for

the single cell in terms of θ and h reads 0 = −m3/3− θm+h at steady state. Differentiating

with respect to h and evaluating at h = 0 yields 0 = −(m2)h=0χ − θχ + 1, or χ = 1/θ,

where we have recognized that m = 0 for h = 0 and θ > 0. The variance is σ2
x = d(xc)/c

(Appendix A.B), or in terms of the reduced temperature, σ2
x = xc(θ + 4/3)/θ. In terms of

these variables, Eq. 10 reads

I =
1

2
log

(
1 +

(χ/3 + 1)2

`σ2
x/x

2
c

)
. (11)

We see from the expressions for χ and θ that both the susceptibility and noise diverge

at the critical point like 1/θ. However, we see from Eq. 11 that the information scales

monotonically with the square of the susceptibility in the numerator, but only the first

2For finite probability spaces, mutual information and entropy are finite. On countably infinite spaces,
they diverge if the tails of the distribution are sufficiently heavy. This explains why the mutual information
diverges under the linear noise approximation as θ → 0. This approximation always predicts a Gaussian
distribution. As θ decreases through zero, the distribution goes from unimodal to bimodal. At θ = 0, the
distribution has a vanishing second derivative at the peak. This only holds for a Gaussian as the variance
tends to infinity, this makes the tails of the distribution very heavy.
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power of the variance in the denominator. This implies that the benefit of high susceptibility

outweighs the detriment of high noise, making criticality optimal for this type of information

transmission.

The linear noise approximation breaks down at the critical point, and therefore we use

Gillespie simulations [44] to check our results. The simulations also allow us to probe the

bimodal regime (θ < 0). The results are shown in Fig. 2B. In the slow ligand limit,

k−` /k
−
1 � 1, shown in the red curve, we see that the divergence at the critical point is

rounded off to a global maximum just above the critical point due to the finite size of the

system.

The location of the global maximum changes discontinuously as the timescale ratio k−` /k
−
1

is increased. As soon as k−` /k
−
1 becomes nonzero, the mutual information vanishes at the

critical point in the linear noise approximation (Appendix A.B, Eq. 58), as seen for the

yellow curve in Fig. 2B. In the simulations, as k−` /k
−
1 is increased, the “blip” on the red

curve for θ < 0 separates and forms another peak, with a minimum appearing between the

two local maxima 3. The height of the peak decreases until it dips below the asymptotic

value at large θ and later disappears entirely, as seen for the purple curve in Fig. 2B. Thus,

when the ligand timescales are sufficiently fast, the mutual information is maximized in

the absence of feedback. It is possible to estimate where criticality ceases to be highly

informative using the linear noise approximation (Appendix A.B, Eq. 58). Under this

approximation, the system with feedback cannot outperform the system without feedback

if k−` /k
−
1 ≥ (3

√
3 − 5)/8 ≈ 0.025. This suggests that a timescale separation of nearly two

orders of magnitude is necessary to benefit from feedback.

We can also probe the effect of changing the system sizes ` and xc. Although we could

use simulations, the results depend on a choice of k−` /k
−
1 , and the peak may not exist if

this ratio is too large. We study the k−` /k
−
1 → 0 limit numerically by writing the joint

distribution as P (x|`)P (`), where P (`) is a Poisson distribution with mean ` and P (x|`) is

computed from the master equation assuming that ` is constant. We find that, even when

the timescale separation is infinitely large, the peak at the critical point can vanish if either

of the molecule numbers are sufficiently small. In this case, the mutual information increases

3At the present, we do not understand why the blip appears at all. This would require future work.
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Figure 2: Sensory information for a single cell. (A) Signal-to-noise ratio for the readout in

the slow ligand regime with k−` /k
−
1 = 5 × 10−3. (B) Mutual information between ligand

and readout. Blue (yellow): Linear noise approximation Eq. 10 (Eq. 58) with k−` /k
−
1 = 0

(0.1). Red (purple): Gillespie simulations with k−` /k
−
1 = 5 × 10−3 (0.1). (C) Information

rate between ligand and readout using linear noise approximation with k−` /k
−
1 = 5 × 10−3.

All curves have h = 0, xc = 103, and ` = 500.
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monotonically with θ.

b. Information Rate

Cells respond to their environment and make life-or-death decisions in real time, and do

not have the luxury to wait until all possible information has been collected, leading some

to argue that the information rate is more relevant than the information itself [112, 72]. The

information rate, R, is the asymptotic rate of change of the mutual information between

trajectories of the input and output [83]. Concretely, we sample the input and output

at discrete times, usually multiples of some δt > 0, and construct vectors of the samples

~iN = {i(0), i(δt), ..., i((N − 1)δt)} and ~oN = {o(0), o(δt), ..., o((N − 1)δt)}. We regard~iN and

~oN as random variables and compute the mutual information between them. Finally, the

information rate is computed as

R(i, o) = lim
δt→0+

(
lim
N→∞

I(~iN , ~oN)

Nδt

)
. (12)

It is possible to compute the information rate between the ligand and readout fluctuations

under the linear noise approximation for our system. In Appendix A.C, we show that the

result is

R =
πk−`

2

(√
1 +

xc

3`

k−1
k−`

[
(1 + 3θ)2

4 + 7θ + 3θ2

]
− 1

)
. (13)

Eq. 13 vanishes when the ligand degradation rate vanishes. This makes sense as the ligand

degradation rate sets the timescale for the ligand dynamics, and the ligand is the signal

that the readout is trying to track. Eq. 13 is a monotonically increasing function of the

temperature for θ ≥ 0 (Fig. 2C). This suggests that the information rate has a global

minimum at criticality and is maximized without feedback, at least for θ ≥ 0. This reveals

an interesting tradeoff: the steady-state mutual information decreases as ligand rates increase

and is maximized at criticality when the ligand rates are slow, while the information rate is

maximized when the ligand rates are fast and is minimized at criticality. Discretely sampled

trajectories are high-dimensional in this problem, which is an obstruction to efficient and

accurate simulation via the Gillespie algorithm [72]. Although the instantaneous distribution

for the ligand and readout is two-dimensional, the joint distribution for sampling dynamic
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trajectories at N points is 2N -dimensional. However, we still expect the information rate

to decrease as θ decreases towards zero, as positive feedback is known to increase response

time [2] and critical slowing down will make this more extreme.

4. Multiple Cells with Communication

a. Long-range Correlations

In previous work [31], we established that the single cell had the same static critical

exponents as the mean field Ising model. In this section, we will show that the multicellular

system inherits the mean field exponent for the the correlation length, ν = 1/2, at least

for θ > 0, and therefore exhibits long-range correlations among cells. To find the critical

exponent, we compute the spatial correlation function between different cells’ readouts using

Gillespie simulations [44]. Here, we use the trapezoidal rule to integrate the correlations

along both sides of the multicellular ring, clockwise and counterclockwise to the furthest cell

on the opposite side of the ring, and then average the two results. The resulting correlation

length ξ is plotted as a function of θ in Fig. 3A. When θ is very close to the critical point,

finite size xc effects become important and lead to rounding off. However, we can see the

true scaling by moving away from the critical point so that the finite size effects become less

limiting. Here we see that ξ ∼ θ−1/2, or ν = 1/2, as in the mean field Ising model [45].

Next, we looked at the effect of communication strength γ on the correlation length. We

expect that the correlation length, measured in units of the lattice spacing, at θ = 0 should

roughly approach the system size N/2 in the strong communication limit γ →∞, where N

is the number of cells, and the factor of 2 is due to the periodic boundary condition. The

result is shown in Fig. 3B for N = 20 cells, and we see that the correlation length indeed

approaches N/2 as γ becomes large.

b. Sensory Information

To compute the sensory information for the multicellular system, we proceed with the

Langevin equations as we did with the single cell. The key difference here is that there
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B

Figure 3: Long-range correlations in the multicellular system. (A) Correlation length ξ,

measured in units of the lattice spacing, numerically integrated from simulations using the

trapezoidal rule, scales with reduced temperature θ with mean-field exponent ν = 1/2.

Rolloff at θ = 0 is due to finite size effects. Here k−` /k
−
1 = γ′/k−1 = 5 × 10−3, γ/k−1 = 1,

hi = 0, ` = 150, xc = 300, and N = 20 cells. (B) Critical correlation length increases with

communication strength γ, approaching system size N/2. Parameters as in A with θ = 0.
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are discrete Laplacian terms and noise terms for diffusion left or right for each site. The

linearized Langevin equations become

δ̇`i =− k−` δ`i + γ′∇2δ`i +
√

2k+
` εi,C

+

√
γ′`(εi−1,R + εi+1,L − εi,L − εi,R),

˙δxi =− cδxi + k+
1 δ`i + γ∇2δxi +

√
2d(xc)ηi,C

+
√
γxc(ηi−1,R + ηi+1,L − ηi,L − ηi,R),

(14)

where the η’s and ε’s are independent Gaussian white noise processes (Appendix A.D). The

terms with subscript L and R describe the noise in hopping to the left and right respectively,

while the C terms describe the changes due to the chemical processes. The linearized system

is still a multi-dimensional Ornstein-Uhlenbeck process. One can obtain closed form results

for the matrix exponentials and covariance matrix by using translational invariance. These

calculations are done in Appendix A.D.

With multiple cells, there are several possible measures of sensory information to consider.

Because we aim to focus on the actions that an individual cell can take, we take the output to

be the readout in a single cell, δxi. However, there are multiple possibilities for the sensory

input: the local ligand fluctuations δ`i, the ligand fluctuations at all cell locations ~δ`, or the

spatial average of the ligand fluctuations

δL =
1

N

N∑
i=1

δ`i. (15)

We compute the mutual information between each of these inputs and the output in Ap-

pendix A.E. In the slow ligand limit, we find that all of them diverge at criticality as in the

single-cell case, and therefore we focus on the effect of tuning the communication rate γ.

We find that the first mutual information I(δxi, δ`i) decreases as the communication

between cells is increased (Appendix A.E.1). This makes intuitive sense because I(δxi, δ`i)

is the information between local ligand fluctuations and local readout. Communication

among cells only mixes one cell’s readout with the other cells’ readouts. The other cells’

readouts report on distant ligand fluctuations, which are uncorrelated with the local ligand

fluctuations because the ligand molecules at different sites are independent Poisson random

variables. Therefore I(δxi, δ`i) is maximized in the absence of cell-cell communication.
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We also find that the second mutual information I(δxi, ~δ`) decreases as communication

between cells is increased (Appendix A.E.2). For this sensory task, the cell must be able

to reliably encode the entire spatial profile ~δ` into a single, fluctuating variable δxi. On the

one hand, we expect cell-cell communication to help in this task because communication

transmits information about distant ligand fluctuations sensed by the other cells. On the

other hand, as in the previous case, communication obscures the information that the cell

directly obtains about its local environment δ`i, which is one of the components of ~δ`.

Evidently the latter effect dominates. The mutual information is maximized in the absence

of communication, where it can sense its immediate environment reliably.

We find that the third mutual information I(δxi, δL) increases as the communication

between cells is increased (Appendix A.E.3). Like the spatial profile ~δ`, the spatial average

of the ligand fluctuations δL also contains global information. However, unlike in the previous

case, for this sensory measure it is not detrimental that the single cell’s readout combines

local and global environmental information. This is because here the cell only senses average

environmental changes. An increase in its readout is correlated with an increase in the ligand

somewhere, and for this task it does not matter where. It is worth pointing out that a cell is

most strongly correlated with its immediate neighborhood. As N increases, its neighborhood

contributes less strongly to the average, and the mutual information monotonically decreases.

To verify the linear noise approximation, we again use Gillespie simulations to probe the

exact behavior of I(δxi, δL). The mutual information in the slow ligand regime is shown in

Fig. 4. Like in the single cell case, it is largest near the critical point when the communication

strength is fixed. For θ ≥ 0, the mutual information increases with the communication rate,

as expected from the linear noise approximation.

Finally, we again consider the information rate. Because the mutual information involv-

ing the spatial average was the only one to benefit from communication, we focus on this

case. We compute the cross-spectrum under the linear noise approximation analytically (see

Appendix A.F) and integrate over frequency numerically to find the information rate. The

result is shown in Fig. 5. We see that the information rate is maximized when communi-

cation is strong and feedback is weak. Thus, as with the steady-state information, cell-cell

communication improves the rate of information acquisition for this type of measure. How-
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Figure 4: Mutual information between a single cell’s readout and the spatial average of the

ligand fluctuations. This was obtained from Gillespie simulations with N = 10, hi = 0,

xc = 300, ` = 150, and k−` /k
−
1 = γ′/k−` = 5× 10−3. This is maximized near criticality as the

communication strength increases.
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ever, like in the single-cell case, critical slowing down makes the rate suboptimal at criticality,

such that the case without feedback has the highest rate. We also find that the rate increases

with the ratio of sizes xc/`, decreases with the number of sites N and the ratio of timescales

k−` /k
−
1 , and increases weakly with the ligand hopping rate γ′. Additionally, there can be a

local maximum as γ/k−1 → 0 if k−` /k
−
1 is large, but this isn’t a global maximum, as the large

γ/k−1 behavior can exceed this value.

C. Discussion

We have investigated a minimal biochemical model with communication and intracellular

feedback, in order to elucidate the tradeoffs of criticality for multicellular sensing. Criticality

arises due to a bifurcation in the biochemical dynamics that places the model in the static

universality class of the mean-field Ising model. We have found that the susceptibility and

noise both peak at the critical point. If the ligand fluctuations are sufficiently slow, the former

effect dominates, and the mutual information is maximized. Otherwise, the information is

maximized far from the critical point, where there is no feedback. The introduction of cell-

cell communication leads to long-range correlations. We have found that this feature leads to

an increase in the information that a single cell gains about the average environment across

the population, but not about the local or spatially resolved environment. Finally, we have

found that although critical feedback can maximize steady-state information, it minimizes

the information rate due to critical slowing down.

How do our results compare to related theoretical work? Previous work has investigated

the effect of receptor cooperativity on sensing an average ligand concentration using an Ising-

like model [107]. There it was assumed that the ligand binding and unbinding dynamics

are fast, and it was found that the signal-to-noise ratio is maximized when the receptors

were independent. This result is consistent with our finding that the mutual information is

maximized without feedback when the ligand is fast (k−` & k−1 ). Other work has investigated

the propagation of information in a two-dimensional spin system where one spin evolves via

the telegraph process and the others have Glauber dynamics [72]. There it was also found
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Figure 5: Information rate between a single cell’s readout and the spatial average of the

ligand fluctuations. This was obtained from the cross-spectrum under the linear noise ap-

proximation and numerically integrating. This plot has N = 10, hi = 0, xc = 300, ` = 150,

and k−` /k
−
1 = γ′/k−1 = 1. The rate is maximized if we increase the effective temperature and

communication strength.
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that the mutual information is maximized only when the driving is slow, consistent with

our results. It was further found that the information rate is maximized at a finite driving

timescale and a finite, supercritical temperature, whereas here we find that the information

rate is maximized for an infinitely fast ligand timescale and infinite effective temperature

(no feedback). It will be interesting to investigate if this apparent difference stems from the

different structure or dimensionality of the two systems.

What are the implications of our results for particular biological systems? Our findings

suggest that in systems with communication and feedback, such as the Bicoid-Hunchback

system in fruit flies or quorum sensing in bacteria, sensory information is maximized at the

critical point so long as input fluctuations are slow and sufficient time is available to combat

critical slowing down. In the case of the Bicoid-Hunchback system in particular, previous

experimental work has indeed suggested that criticality helps cells respond to small changes

in the morphogen profile [63], whereas other work has argued that cells are instead in the

bistable regime [67]. The auditory system is also a well-known sensory system that appears

to benefit from being near criticality [54]. There is also a form of cell-cell communication,

as cells with different characteristic frequencies are coupled to enhance their response to

general auditory signals [110]. These features are consistent with our findings, although it

is important to note that frequency detection is a different task than the task of detecting

fluctuations in a noisy, uniform ligand signal as we consider here.

Is criticality via intracellular feedback beneficial to cellular sensing overall? In light

of our findings, it may be that this type of criticality is more detrimental for sensing a

uniform concentration than it is beneficial, for several reasons. The type of information

that criticality benefits concerns fluctuations about the mean, not the mean concentration

itself, and the biological relevance of this task is unclear. Furthermore, we have found that

high mutual information is only observed at sufficiently large molecule numbers and when

there is a timescale separation of at least two orders of magnitude between the cell and its

environment. Finally, the information rate, which better accounts for the fact that we are

looking at a dynamical process, is minimized at criticality.

The approach that we have used is very general and can be applied to other systems that

admit a Langevin description. There are many other biochemical models whose expansions
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near the bifurcation reduce to our model, and different normal forms can describe other

classes of models. This fact can be exploited to probe more specific biochemical mechanisms

and more general sensory measures. Nonetheless, our model is minimal and neglects features

such as extrinsic noise, bursting, and cell-to-cell variability that are known to play an im-

portant role in biochemical signaling [41, 82, 102, 52, 19]. In the future it will be important

to expand our model to include these more general features.
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III. Precision of Flow Sensing by Self-Communicating Cells

This was a collaborative project. I participated in the calculation for the model with

endocytosis/ absorption with other group members. I took more of a leadership role examining

the effect of non-spherical geometry on our limits to cell sensing. I have omitted or reduced

parts of the project where I did not contribute. This work has been published in Physical

Review Letters:

• Sean Fancher, Michael Vennettilli, Nicholas Hilgert, and Andrew Mugler. Precision

of Flow Sensing by Self-Communicating Cells. Physical Review Letters, 124(16):168101,

2020.

Metastatic cancer cells detect the direction of lymphatic flow by self-communication: they

secrete and detect a chemical which, due to the flow, returns to the cell surface anisotropically.

The secretion rate is low, meaning detection noise may play an important role, but the

sensory precision of this mechanism has not been explored. Here we derive the precision

of flow sensing for two ubiquitous detection methods: absorption vs. reversible binding to

surface receptors. We find that binding is more precise due to the fact that absorption distorts

the signal that the cell aims to detect. Comparing to experiments, our results suggest that

the cancer cells operate remarkably close to the physical detection limit. Our prediction that

cells should bind the chemical reversibly, not absorb it, is supported by endocytosis data for

this ligand-receptor pair.

A. Introduction

Metastasis is the process of cancer cells spreading from the primary tumor to other

parts of the body. A major route for spreading is the lymphatic system, a network of

vessels that carry fluid to the heart. Particular cancer cells detect the drainage of lymphatic

fluid toward the vessels and move in that direction [86]. Experiments have shown that the
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detection occurs by self-communication: the cells secrete diffusible molecules (CCL19 and

CCL21) that they detect with receptors (CCR7) on their surface [105]. The flow affects

the distribution of detected molecules thereby provides information about the flow direction.

This flow detection mechanism, termed ‘autologous chemotaxis,’ has been observed for breast

cancer [105], melanoma [105], and glioma cell lines [84], as well as endothelial cells [49], and

has been studied using fluid dynamics models [105, 37, 117].

The flow is slow. Lymphatic drainage speeds near tumors are typically v0 = 0.1−1

µm/s [18, 21], and the speed decreases further with proximity to the cell surface due to the

laminar nature of low-Reynolds-number flow. In contrast, a secreted molecule diffuses with

coefficient D = 130−160 µm2/s [37], covering a distance equivalent to the cell radius (a ≈ 10

µm [105]) in a typical time of a2/D and giving a “velocity” of D/a = 13−16 µm/s. The ratio

of these velocities ε ≡ v0a/D = 0.006−0.08, called the Péclet number, is small, indicating

that diffusion dominates over flow in this process.

Also, the secretion rate is low. Cells secrete 0.7−2.3× 10−15 g of CCL19/21 ligand in a

24-hour period (Fig. 3F in [105]), which given the molecular weights of these ligands (11 and

14.6 kDa, respectively [51]), corresponds to a secretion rate of ν = 1200−5200 molecules per

hour. Yet, cells begin migrating in a matter of hours [105].

The slow flow and low secretion rate raise the question of whether autologous chemotaxis

is a physically plausible mechanism for these cells. Is a couple thousand molecules, biased by

such a weak flow field, enough for the cells to determine the flow direction? If so, with what

precision? Although this mechanism has been modeled at the continuum level, the question

of sensory precision has remained unexplored.

At the same time, the question of sensory precision has been heavily explored for other

cellular processes, beginning with the early work of Berg and Purcell [6], and extending to

more modern works on concentration sensing [9, 118, 28, 5, 58, 64, 10, 34], gradient sensing

[26, 27, 53, 81, 114], and related sensory tasks [79, 106, 76, 78]. Yet, the mechanism of

autologous chemotaxis has thus far evaded this list, despite its importance to cancer biology

and its potential for interesting physics.

Here we combine stochastic techniques from sensory biophysics with perturbation tech-

niques from fluid dynamics to derive the fundamental limit to the precision of flow sensing by
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Figure 6: Flow sensing by self-communication. (a) A cell isotropically secretes molecules

(red) that diffuse and drift along laminar flow lines (blue). The cell detects the molecules

by (b) absorption or (c) reversible binding to receptors.

self-communication. We consider two ubiquitous methods of molecule detection: absorption

vs. reversible binding to receptors (Fig. 6). For both, we find a Berg-Purcell-like expres-

sion that is ultimately limited by the Péclet number, the secretion rate, and the integration

time. Comparing to the experiments, this expression places a stringent limit on the level of

precision that is possible for these cells, suggesting that they detect the flow direction near-

optimally given the physical constraints. Finally, we predict that reversible binding is more

precise than absorption due to the fact that absorption necessarily reduces the anisotropy in

the detected signal, a prediction that we test with endocytosis data on the CCL19/21-CCR7

ligand-receptor pair.
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B. Results

Consider a spherical cell with radius a that secretes molecules isotropically with rate

β ≡ ν/4πa2 per unit area, in the presence of a fluid flowing with velocity v0 (Fig. 6). At low

Reynolds number and high environmental permeability, laminar flow lines obeying Stokes’

equation [6] form around the cell [Fig. 6(a), blue]. However, in the tumor environment and

in experiments, the permeability K is low (κ ≡
√
K/a ∼ 10−3 [105]), and the flow lines obey

the more general Brinkman’s equation [13]. For a sphere at steady state they are given by

[3]

~v(r, θ, φ) = v0 cos θ

[
1− ζ

ρ3
+

3κ

ρ2

(
1 +

κ

ρ

)
e−(ρ−1)/κ

]
r̂

− v0 sin θ

[
1 +

ζ

2ρ3
− 3

2ρ

(
1 +

κ

ρ
+
κ2

ρ2

)
e−(ρ−1)/κ

]
θ̂. (16)

Here, ρ ≡ r/a and ζ ≡ 1 + 3κ + 3κ2, the flow is in the ẑ direction (θ = 0), r̂ and θ̂ are the

radial and polar unit vectors, and ~v is independent of φ by symmetry. In the limit κ→∞,

Eq. 16 reduces to Stokes flow; we are interested in the opposite limit. Note that ~v = 0 at

the cell surface r = a.

1. Endocytosis/ Absorption Model

The molecules diffuse with coefficient D and drift along the flow lines [Fig. 6(a), red].

This process creates a stochastically evolving concentration field c(r, θ, φ, t) with a mean dis-

tribution c(r, θ, φ, t), where the bar represents the ensemble average over many independent

realizations of the system. The mean follows the diffusion-drift equation, which at steady

state reads

0 =
∂c

∂t
= D∇2c− ~v · ~∇c. (17)

We consider two cases for molecule detection at the cell surface: absorption [Fig. 6(b)] or

reversible receptor binding [Fig. 6(c)]. In the former, there exists a flux boundary condition

at the cell surface,

−D ∂c(r, θ)

∂r

∣∣∣∣
a

= β − αc(a, θ), (18)
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where α is the absorption rate per unit area, and c(r, θ) is independent of φ and t by symmetry

and the system being in steady state, respectively. We also require that the concentration

vanish at infinity.

We define the dimensionless concentration χ ≡ ca3 and velocity ~u ≡ ~v/v0. In terms of

the dimensionless radial distance ρ and the Péclet number ε, Eq. 17 at steady state becomes

0 = ∇2
ρχ − ε~u · ~∇ρχ. Because ε is small, we use a perturbative solution χ = χ0 + εχ1.

However, in problems with diffusion and background flow, a single perturbative expansion

cannot simultaneously satisfy the boundary conditions at r = a (Eq. 18) and r →∞ (c→ 0)

due to the particular spatial nonuniformity of ~u [1]. In particular, we found that using a

single perturbative expansion and enforcing the boundary condition at r = a gave a non-zero

concentration as r → ∞, and this can be negative, depending on θ. The resolution is to

split the solution into an inner part χ(ρ, θ) that satisfies the boundary condition at the cell

surface and holds when ρ is order one, and an outer part X(s, θ) that satisfies the boundary

condition at infinity and holds when s = ερ is order one. We match χ and X by requiring

them to be equal at each order in ε as ρ→∞ and s→ 0, respectively.

To zeroth order, the inner solution satisfies Laplace’s equation, 0 = ∇2
ρχ0, the general

solution to which consists of spherical harmonics and powers of ρ (Appendix B.A.1). For

the outer solution, we write Eq. 17 in terms of s and X, which reads 0 = ∇2
sX − ~u · ~∇sX.

One can define a perturbative expansion for X, but we show (Appendices B.A and B.A.2)

that only the leading terms of X and ~u matter. The latter is ~u = ẑ, corresponding to the

uniform flow far from the cell where X applies. The solution to this equation satisfying

X → 0 as s→∞ consists of modified Bessel functions and spherical harmonics.

We find that the matching condition requires all but one term in χ0 and X to vanish

(Appendix B.A.3), yielding

χ0 =
γ

ρ
, X =

εγ

s
e−s(1−cos θ)/2, (19)

where γ ≡ β̃/(1 + α̃), and β̃ ≡ βa4/D and α̃ ≡ αa/D are dimensionless secretion and

absorption rates, respectively. We see that to leading order, the concentration falls off with

distance, and far from the cell it is largest in the flow direction (θ = 0).
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To obtain the anisotropy near the cell, which is essential for the flow sensing problem, we

must go to the next order. χ1 satisfies 0 = ∇2
ρχ1 − ~u · ~∇ρχ0, which is the Poisson equation

with ~u (Eq. 16) and χ0 (Eq. 19) providing the source term. This equation can be solved

using a Green’s function, with coefficients determined by Eq. 18 and matching to X in Eq.

19 (Appendix B.B). The result is

χ1 =
γ

2

{
α̃

(1 + α̃)ρ
− 1 +

cos θ

4

[
(1− α̃)w

(2 + α̃)ρ2
+ f(ρ, κ)

]}
, (20)

where w ≡ 1 + κ−1− κ−2e1/κE1(κ−1) is a monotonic function that limits to 2 (κ� 1) and 1

(κ� 1), f(ρ, κ) is an α-independent function (Appendix B.B.2), and E1(x) ≡
∫∞

1
dt e−tx/t.

We see that χ1 acquires a cos θ anisotropy largest in the flow direction (θ = 0). We have

checked by numerical solution of Eq. 17 that for ε ≤ 0.1, Eq. 20 is accurate to within 0.4%

at the cell surface (see the supplement for the publication [35]).

Information about the anisotropy, and thus the flow direction, comes from the front-back

asymmetry in the absorptive flux of molecules αc at the cell surface over a time T , which is

captured by weighing each absorption event by its location represented as cos θ. Normalizing

this by the mean number of absorbed molecules, we define the anisotropy measure [26, 114]

A ≡
∫ T

0
dt
∫
a2dΩ αc(a, θ, φ, t) cos θ

T
∫
a2dΩ′ αc(a, θ′)

, (21)

where dΩ = dφ dθ sin θ, and the cosine extracts the asymmetry between the front (θ = 0)

and back (θ = π). Using the solution for χ in Eqs. 19 and 20 and the fact that f(1, κ) = w,

the mean evaluates to

A =
wε

8(2 + α̃)
(22)

to leading order in ε (Appendix B.C).

Eq. 22 gives the mean anisotropy but ignores the counting noise due to diffusive molecule

arrival. The equivalent expression to Eq. 21 that accounts for discrete molecule arrival

is [26] A = N
−1∑N

i=1 cos θi, where θi is the arrival angle of the ith molecule, and N =∫ T
0
dt
∫
a2dΩ αc(a, θ, φ, t) is the total number of molecules absorbed in time T . The mean

of this expression is given by Eq. 22 (Supplement B.C). The variance is calculated by

recognizing that molecule arrivals are statistically independent and that N is Poissonian [26]
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(which we have checked even with flow using particle-based simulations, see the supplement

of the paper [35]). The result is

σ2
A =

1

N
=

1

νT

(
1 + α̃

α̃

)
(23)

to leading order in ε (Supplement B.D). This expression includes (as does Eq. 27 below) a

factor of 3 that arises from each directionally independent component of the variance. We

see that the variance in the anisotropy scales inversely with the mean number of absorbed

molecules.

Combining Eqs. 22 and 23, we obtain a relative error of

σ2
A

A
2 =

64(1 + α̃)(2 + α̃)2

w2ε2νT α̃
&

282

ε2νT
. (24)

In the second step, we have set w to its maximal value of 2 for κ� 1 (as in the experiments

[105]) and recognized that the expression has a minimum at α̃∗ = (
√

17 − 1)/4 ≈ 0.78.

The minimum arises from the following tradeoff: strong absorption maximizes the number

of detected molecules and therefore reduces noise (Eq. 23); but it also causes molecules to

be absorbed immediately after release, preventing them from interacting with the nonzero

flow away from the cell surface and therefore reducing the mean (Eq. 22). Eq. 24 sets the

fundamental limit to the precision of flow sensing by molecule absorption, dependent only

on the Péclet number ε and the total number of secreted molecules νT .

2. Summary of Findings for the Reversible Binding Model

We summarize our findings for the case of reversible receptor binding [Fig. 6(c)]. In this

model, we track the concentration and the surface density of bound receptors b(θ, φ) on the

cell’s surface. This creates a source and a sink term in the diffusion equation at the surface.

For the steady state mean, the inward and outward fluxes due to binding and unbinding

cancel, and the steady state diffusion equation and boundary conditions are exactly that of

the endocytosis/ binding model with α = 0, see Eqs. 17 and 18. In the reversible binding
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case, the anisotropy is defined as the average of the cosine over the angular distribution of

bound receptors and the integration time T ,

A ≡
∫ T

0
dt
∫
a2dΩ b(θ, φ, t) cos θ

T
∫
a2dΩ′ b(θ′)

. (25)

Because b(θ) is proportional to c(θ), the means of Eqs. 21 and 25 take equivalent forms.

Therefore, to leading order in ε, the mean of Eq. 25 is simply Eq. 22 with α = 0,

A =
wε

16
. (26)

For details on the dynamics of b, see the paper [35].

Because binding is reversible, there are correlations between the bound receptor con-

centrations at different regions of the cell surface. Therefore, we cannot use the Poisson

counting technique to calculate the noise as in Appendix B.D. Instead, we include Langevin

noise terms in the dynamics to account for these correlations. These terms have zero mean,

are uncorrelated with each other, for details, see [43, 35]. To find the variance, we Fourier

transform the dynamics in space and time, calculate the power spectrum of A, and recognize

that σ2
A is given by its low-frequency limit [9, 81, 34, 114]. The result is

σ2
A =

1

νT

(
7

9
+

2

λ̃

)
(27)

to leading order in ε. The rate λ describes the formation of bound receptors and λ̃ ≡ λa/D

is its non-dimensionalized form [35]. In the absence of any bound receptors in a region, the

mean rate of forming bound receptors is λc(a, θ). Combining Eqs. 26 and 27, we obtain the

relative error
σ2
A

A
2 =

1792

9w2ε2νT

(
1 +

18

7λ̃

)
&

50

ε2νT
. (28)

In the second step, we take w = 2 and λ̃ � 1, which is expected in the case where binding

is diffusion-limited. Comparing Eqs. 24 and 28, we see that reversible binding achieves√
282/50 ≈ 2.4 times lower error than absorption. The reason is that absorption (Eq. 22),

but not binding (Eq. 26), reduces the anisotropy. Absorption is an active modifier of the

signal created by secretion and flow, whereas reversible binding is a passive monitor.
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3. Effect of Non-Spherical Geometry

It is known that cells elongate in the direction of flow while moving. This should change

the difference in absorption or binding events between the front and the back. We explored

the effect that this had in the simplified case of Stokes’ flow, so that we may neglect the

effect of porosity (K → ∞) and use existing algorithms to numerically compute the flow

[88]. We solve the laminar limit of the incompressible Navier-Stokes equation

η∇2~v = ∇p, (29)

where η is the dynamic viscosity of the medium and p is the pressure. The velocity ~v vanishes

on the surface of the cell and tends toward v0k̂ = v0 cos θr̂ − v0 sin θθ̂ as r → ∞. We will

assume that the cell is an ellipsoid with azimuthal symmetry. This allows a stream function

solution

~v = ∇×

(
ψ(r, θ)φ̂

r sin θ

)
, (30)

and separation of variables can be used to obtain a series solution for ψ(r, θ) [88]. It is

straightforward to impose the boundary condition at infinity, but the boundary condition

at the surface of the cell is more subtle. We truncated the series solution and uniformly

sampled the velocity components at the surface of the cell. This gives a system of equations

that may be solved for the coefficients in the series expansion, see [88] or Appendix B.E.2.

We solved the convection-diffusion equation for the endocytosis/ absorbing model nu-

merically using the flow lines determined from the procedure above. We used Mathematica’s

“NeumannValue” function to do this, and we found that we needed the surface of the cell

to occur when some coordinate was constant. This meant that we needed to express the

convection-diffusion equation in a new coordinate system. The ellipsoidal coordinates that

we used are related to the usual cartesian ones via

x = req
−1/3 sin θe cosφe,

y = req
−1/3 sin θe sinφe,

z = req
2/3 cos θe,

(31)
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where q > 0 is a fixed number, surfaces of constant re > 0 are ellipsoids, and θe ∈ [0, π] and

φe ∈ [0, 2π] are similar, but not the same as, the angles in spherical coordinates. For q > 1,

the ellipsoid is elongated in the flow direction, while it is compressed for q < 1, shown in Fig.

7A. For a given re, the volume of the ellipsoid is independent of q, but the surface area of the

ellipsoid changes. We account for this by changing the reaction rates by a factor 4πa2/Sq,

where Sa is the area of the ellipsoid at re = a. This is a non-orthogonal coordinate system

for q 6= 1, so casting the convection-diffusion equation into these coordinates is subtle. We

used methods from differential geometry to compute the Laplace operator and convective

term in these coordinates, see [40] and Appendices B.E.3.a and B.E.3.b. We numerically

solved the convection diffusion equation with the boundary conditions

c(re,max) = 0, −D∂rec(re, θe)|re=a = (β − αc(a, θe))
4πa2

Sa
. (32)

Figure 7: Elongating in the flow direction can reduce sensory error. (A) We consider an

ellipsoidal cell, where q determines the elongation or compression while volume is conserved.

(B) Sensory error relative to the spherical case (Eq. 233). Here α̃ = 0.74, β̃ = 0.04, and

ε = 0.01.

The natural generalization of the anisotropy measure to this case is

Ae =
1

N

∫ T

0

dt

∫
dSaαec(a, θe, φe, t) cos θ, N = T

∫
dSaαec(a, θe) (33)
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With the solution, we computed the mean anisotropy. The Poisson counting argument can

be generalized to this case to show that σ2
Ae

= N , see Appendix B.E.4. In Fig. 7B, we show

a plot of the noise-to-signal ratio for Ae divided by the noise-to-signal we found numerically

for q = 1. We see that elongating in the direction of the flow increases the precision of flow

sensing. We expect similar results to hold in the cases where the porosity of the medium is

reduced and the ligand reversibly binds to the cell surface.

C. Discussion

How do our results compare to the experiments on metastatic cancer cells? The inequality

in Eq. 28 provides the fundamental detection limit. We plot this expression as a function

of T in Fig. 8 using the maximal experimental values of ε = 0.08 and ν = 5200/hr [105] to

obtain the minimum possible error. We see that low errors are not possible in a few hours;

even 10% error would take over 150 hours to achieve. Yet, the cells are observed to migrate

over a 15 hour period [105]. In this time frame, it is not possible to achieve less than 30%

error (Fig. 8). The situation is likely worse, given that the cells presumably begin migrating

well before the 15-hour mark, and given that we have neglected any internal signaling noise.

Thus, we see that the sensory performance is severely limited by the experimental parameters

and the physics of the detection process. We conclude that these cells operate remarkably

close to the fundamental detection limit.

We find that absorption is less precise than reversible binding (Eqs. 24 and 28). A ubiq-

uitous mechanism of ligand absorption is endocytosis, wherein bound receptors are internal-

ized into the cell. Therefore, we predict that the degree of CCR7 endocytosis in response

to CCL19/21 binding is low. This prediction can be tested with endocytosis data on this

ligand-receptor pair. Specifically, to achieve optimal absorption in Eq. 24 (α̃∗ ≈ 0.78), ab-

sorption would need to occur at a rate of 4πa2α∗c(a) = να̃∗/(1 + α̃∗) ∼ 25 min−1, where

we have used the isotropic approximation for c(a) (Eq. 19). However, the rate of CCR7

endocytosis in response to CCL19/21 binding is many times slower at about 1 min−1 [14].

Thus, the degree of endocytosis is much lower than required for the absorption mechanism,
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as predicted.

Figure 8: Fundamental limit to the precision of flow sensing. Maximum experimental values

ε = 0.08 and ν = 5200/hr are used for minimum error (solid line). Cells migrate within 15

hours (dashed line). Lowest possible error is 30%.

We also find that reversible binding is most precise when the parameter λ̃ = Rka/4πaD

is large (Eq. 28). Here, R is the number of receptors on the cell surface and ka is the

intrinsic association rate. Writing this parameter as λ̃ = (ka/4π`D)(R`/a), where ` is the

receptor lengthscale, we see that the first factor is the ratio that determines whether ligand-

receptor binding is diffusion-limited (ka � 4π`D) or reaction-limited (ka � 4π`D). With the

known values of R and a and a typical receptor lengthscale of ` ∼ 10 nm, the second factor

evaluates to 10−100. Therefore, the requirement that λ̃� 1 is equivalent to the statement

that binding is either diffusion-limited or weakly reaction-limited. Given the high sensory

performance implied by Fig. 8 and the low degree of endocytosis found above, we thus predict

that CCL19/21 binding to CCR7 is either diffusion-limited or weakly reaction-limited. We

are not aware of kinetics data that would test this prediction.

Our finding that reversible binding is more precise than absorption is the opposite of

what was found for the detection of an externally established concentration gradient [26].

The reason is that in our problem absorption removes molecules at the source, whereas
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in that problem molecules are replenished by a source at infinity. Depletion at the source

prevents interactions with the flow and therefore weakens the anisotropy. Additionally, our

models do not include any additional noise sources from processes internal to the cell such

as protein signaling or gene expression. Because any such process would simply add a fixed

amount of noise, our finding is unaffected by the inclusion of internal dynamics, and Eq. 28

remains a theoretical minimum to the error in flow sensing.

The severity of the limit in Fig. 8 raises the question of whether metastatic cancer cells

benefit from additional sensory mechanisms not accounted for in our modeling. The precision

of flow sensing may be affected by geometric properties of the cell such as a nonuniform

distribution of receptors or aspherical morphology. We find that receptor clustering has a

negligible effect on the anisotropy but that an ellipsoidal cell [88, 40] can decrease its sensory

error by elongating in the direction of the flow. Further investigation of the effects of cell

geometry would be an interesting topic for future work. Some chemoattractants including

CCL21 are known to bind to extracellular matrix fibers and be subsequently released by

proteases [89, 98, 97, 66]. This effect has been shown in continuum models of autologous

chemotaxis to substantially increase the anisotropy [49, 37], although the impact on the noise

is unknown. It is also important to recognize that these cells do not perform flow sensing in

isolation. Indeed, studies have shown that their migration is (i) increased in the presence of

another cell type (fibroblasts) [104], (ii) decreased at high cell densities [94], and (iii) reversed

at even higher cell densities (although reversal is attributed to a separate pressure-sensing

mechanism) [94]. The extension of our work to multiple cells remains to be explored. Finally,

recent work has highlighted the benefit of on-the-fly sensing [106, 22], where an agent makes

(and continually updates) its decision during the integration time, instead of afterward as

assumed here. On-the-fly sensing may play an important role for these cells.

We have derived the fundamental limit to flow sensing by self-communication and shown

that it strongly constrains the performance of metastatic cancer cells. Our work elucidates

the physics behind a fascinating detection process and provides quantitative insights into a

critical step in cancer progression.
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IV. Precision of Protein Thermometry

This work has been submitted and is currently under review, but a pre-print is available:

• Michael Vennettilli, Soutick Saha, Ushasi Roy, and Andrew Mugler. Precision of

protein thermometry. arXiv:2012.02918v2 [physics], 2020.

Temperature sensing is a ubiquitous cell behavior, but the fundamental limits to the

precision of temperature sensing are poorly understood. Unlike in chemical concentration

sensing, the precision of temperature sensing is not limited by extrinsic fluctuations in the

temperature field itself. Instead, we find that precision is limited by the intrinsic copy

number, turnover, and binding kinetics of temperature-sensitive proteins. Developing a

model based on the canonical TlpA protein, we find that a cell can estimate temperature to

within 2%. We compare this prediction with in vivo data on temperature sensing in bacteria.

A. Introduction

Cells routinely make decisions based on the temperature of their surroundings. For

example, most cells undergo systemic changes in response to a heat or cold shock [71].

Some cells initiate a phenotypic response such as virulence when the temperature crosses

a particular threshold [33]. Some cells thermotax, or move toward a preferred temperature

range [69]. These behaviors are possible because molecular conformations, chemical reaction

rates, and various mechanical properties of cells can change dramatically as a function of

temperature, and cells have developed many different ways to detect such changes [100, 61,

70]. Molecules that participate in the response to temperature changes are called molecular

thermometers or thermosensors, and this class includes DNA and various RNA and protein

molecules.

Despite detailed knowledge of the molecular mechanisms of temperature sensing in cells,

the basic question of what sets the precision of temperature sensing remains largely unex-
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plored. Is the precision limited extrinsically by temperature fluctuations in the surrounding

fluid, or intrinsically by properties of the cell’s molecular components? Similar questions

have been heavily investigated for other types of cell sensing, beginning with Berg and Pur-

cell’s analysis of chemical concentration sensing [6], and extending to sensing of concentration

gradients [26], concentration ramps [79], multiple ligands [76], material stiffness [8], and fluid

flow [35], among others. In most of these cases, extrinsic fluctuations have been found to

limit sensory precision, suggesting that cells have evolved sensors that are as precise as phys-

ically possible. However, the precision of temperature sensing, and the associated question

of extrinsic versus intrinsic limits, has been understudied by comparison.

Early work by Dusenbery shed important light on this problem [24]. Using the two-

point correlation function for temperature fluctuations in a homogeneous fluid, Dusenbery

estimated that extrinsic fluctuations are several orders of magnitude smaller than cells’

actual sensitivity thresholds. This finding suggests that cells’ temperature sensors are not

as precise as physically possible. However, it leaves an important question unanswered: if

extrinsic fluctuations do not set the limit on the precision of cellular temperature sensing,

then what does?

Here we revisit this problem from a perspective that combines the physics of temperature

fluctuations with the molecular mechanisms of thermoreception. Following Dusenbery’s lead,

we start by using the two-point correlation function to investigate a thermal analog of Berg

and Purcell’s “perfect instrument” for concentration sensing [6]. This investigation confirms

that extrinsic temperature fluctuations are far too small to be limiting in a biological context.

We therefore investigate the intrinsic fluctuations imposed by cells’ molecular machinery for

temperature sensing. We are guided by a prototypical and well studied protein thermometer,

namely the TlpA protein in the bacterium Salmonella typhimurium [62, 55, 56]. Develop-

ing a stochastic model based on the experimentally characterized details of TlpA, we find

that intrinsic fluctuations are much larger than extrinsic fluctuations and can in fact be bi-

ologically limiting. Specifically, we find that intrinsic fluctuations impose a sensing error of

roughly 2%, and we discuss how this limit compares with the observed temperature sensing

threshold in bacteria.

39



B. Results

1. The Perfect Instrument

In their perfect instrument for concentration sensing, Berg and Purcell considered a

completely permeable sphere of radius a that could count the number of molecules within

its volume at each instant, perform a time average, and use this information to estimate the

surrounding concentration [6]. In the case of temperature sensing, the analogous instrument

is a permeable sphere of radius a that records the temperature T (~x, t) at each point within

its volume at each instant t ∈ [0, τ ], performs a volume and time average, and then uses the

result as the temperature estimate T̂ (Fig. 9A). We assume the medium to be homogeneous

and in thermal equilibrium, with average temperature T . The key ingredient is the two-

point correlation function for the temperature fluctuations obtained in the regime of linear

irreversible thermodynamics [39]

〈(T (~x, t)− T )(T (~x ′, t′)− T )〉

=
kBT

2

ρcs

(
ρcs

4πK|t− t′|

)3/2

exp

[
−ρcs||~x− ~x

′||2

4K|t− t′|

]
,

(34)

where kB is Boltzmann’s constant and the material properties ρ, cs, and K are the mass

density, specific heat, and thermal conductivity of the medium respectively. The variance

in the estimator is computed by integrating the two-point correlation function in Eq. 34 in

both space and time. The result has the following short- and long-time limits (see Appendix

C.A),

σ(T̂ )

T
=

√
kB
C
×

 1 τ → 0√
4τD/(5τ) τ � τD,

(35)

where we have introduced the heat capacity of the medium contained within the instrument

C = 4πa3ρcs/3 and the timescale for temperature fluctuations to diffuse across the instru-

ment τD = ρcsa
2/K [39]. Equation 35 has an intuitive interpretation: the variance falls

off with the heat capacity of the instrument (in units of kB) because if the heat capacity

is large, a large fluctuation in thermal energy corresponds to a small fluctuation in tem-

perature. The variance is further decreased in the long-time limit by the number τ/τD of
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Figure 9: Temperature sensing (A) via an analog of Berg and Purcell’s [6] perfect instrument

for concentration sensing, and (B) via a protein thermometer. Based on the TlpA protein,

monomers reversibly dimerize, monomers are expressed, monomer and dimers are diluted by

cell division, and dimers inhibit monomer expression.

independent measurements the instrument can make, where independence is defined by the

diffusion time.

For water at room temperature, ρ ≈ 1 g/cm3, cs ≈ 4 J/(g·K), and K ≈ 0.6 J/(s·m·K).

For a cell radius of a ≈ 1 µm, the error in an instantaneous measurement, defined as τ → 0,

according to Eq. 35 is σ(T̂ )/T ≈ 10−6. The diffusion time is τD ≈ 6 µs, after which the error

drops further due to time averaging (Fig. 10, blue). Clearly the extrinsic fluctuations in the

medium itself are not limiting, as it is unlikely that a cell needs to estimate temperature to

less than one part in a million. This finding agrees with the conclusions of Dusenbery, whose

approach was more heuristic [24].

2. Biochemical Models

Of course, cells are not perfect thermometers. They detect temperature indirectly

through molecular or mechanical properties [100, 61, 70]. Therefore, to investigate the

intrinsic limits imposed by the detection mechanism itself, we must develop a model that
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Figure 10: Relative temperature estimation error σ(T̂ )/∆T as a function of monomer-number

integration time τ . We predict that the error is bounded from below by 2% (gray box).

Parameters are estimated from data as described in the text.
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accounts for the information actually available to the cell. Here we focus on the molecular

mechanism of protein thermometry, in which proteins’ conformational states are tempera-

ture dependent. Protein thermometers are ubiquitous: for example, temperature-dependent

oligomerization, unfolding or misfolding, and methylation of proteins drive, in various combi-

nations, the heat shock response [71], high-temperature response [56, 101], and thermotaxis

response [69, 57, 90] in bacteria. In these cases, a temperature-induced conformational

change is generally followed by negative feedback. In the high temperature response, the

negative feedback is due to transcriptional repression, for example via dimers repressing

monomer production as discussed herein; in the heat shock response, it is due to proteases

degrading or chaperones conformationally changing the oligomers that form [71]; in E. coli

thermotaxis, it is due to the methylation of the receptors [57, 90].

For concreteness, we consider the protein TlpA in S. typhimurium, which includes these

common features but is otherwise relatively simple and experimentally well characterized.

A step-increase in temperature results in a sustained increase in TlpA level, suggesting

that TlpA responds to absolute temperature [56]. TlpA forms homodimers, with the dimer

favored at low temperatures and the monomer favored at high temperatures [62, 56]. The

dimer binds to the promoter region of the tlpA gene and inhibits its expression [55], resulting

in negative feedback. TlpA is a canonical protein thermometer, and its mechanism has been

used to engineer other thermal switches [92, 93].

a. The “Fixed Pool” Model

Suppose that two TlpA molecules associate with rate kd and dissociate with rate km [62]

(Fig. 9B, yellow). Subject to these reactions alone, the total number of TlpA units n = m+2d

is conserved, where m and d are the numbers of monomers and dimers respectively. Therefore

we refer to this as the “fixed pool” (FP) model. The mean fraction f = m/n of TlpA units

in the monomeric state has been measured as a function of temperature at physiological

concentrations using circular dichroism spectroscopy [56, 50]. We find that the data are well

described by a sigmoid f(T ) = {1+exp[−4(T−TM)/∆T ]}−1 with half-maximal temperature

TM = 39 ◦C and width ∆T = 6.3 ◦C [the factor of 4 ensures that f ′(TM) = 1/∆T ]. This is a
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fit to experimental measurements that is used as an input to our model, not a prediction of

it. For details, see Appendix C.B. We assume that the cell infers the temperature from the

mean monomer number, which it estimates from the time average m̂τ = τ−1
∫ τ

0
m(t)dt [6] (we

find similar results if temperature is instead inferred from the dimer number, see Appendix

C.D). In the appendix we also consider maximum likelihood estimation [20], which in this

case has the least squared error of all possible estimators, and find that it performs similarly

to the naive time average considered here, see Appendix C.E.

To convert the error in monomer number estimation to that in temperature estimation,

we use linear error propagation [6], σ(T̂ ) = σ(m̂τ )/|dm/dT | = σ(m̂τ )/(nf
′), where the

second step follows from m = nf . To find σ(m̂τ ), we perform the second-order Kramers-

Moyal expansion and linearize to obtain the fluctuations [59, 43, 60]. The result is

σ(T̂ )

∆T
=
σFP(m)

nf ′∆T
×

 1 τ → 0√
2τd/τ τ � τd,

(36)

where σ2
FP(m) = 2nf(1− f)/(2− f) is the instantaneous variance in the monomer number

and τd = c(kdm)−1 is the autocorrelation time, with c = (1−f)/[2(2−f)] a numerical factor,

see Appendix C.C.3. Equation 36 has an intuitive interpretation: the factor nf(1 − f) in

σ2
FP(m) is the variance of the binomial distribution, which arises because the molecules switch

between the monomer and dimer states. The additional factor 2/(2−f) is an increase in the

noise due to the fact that dimerization further discretizes the monomer number beyond that

of a pure binomial process, as the monomer number can only change by two [96]. Finally,

(kdm)−1, which sets τd, is the timescale for a monomer to form a dimer with any other

monomer. As in Eq. 35, the variance in the long-time limit of Eq. 36 is reduced by the

number τ/τd of independent measurements made.

A cell must be able to determine temperature changes to a better precision than the

width of its temperature sensitive region ∆T . For this reason, we define relative error with

respect to ∆T , not the mean temperature T , in Eq. 36 and thereafter. This is in contrast to

the case of the perfect instrument (Eq. 35), for which there is no cell-defined temperature-

sensitive region. It is worth noting that even if T were replaced with ∆T in Eq. 35, the
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relative error would increase by roughly two orders of magnitude, which is still far less than

that of the biochemical models considered in this work.

When T = TM , we have f = 1/2 and f ′ = 1/∆T , and the instantaneous error in Eq. 36

reduces to σ(T̂ )/∆T = 1/
√

3n. We see that the error decreases with the square root of the

number of TlpA molecules n, as expected for counting noise.

The TlpA dimer number was experimentally estimated to be d = 684 at T = 37 ◦C

[56], where f = 0.2. Because f = m/(m + 2d), we have m = 2df/(1 − f) = 342. In the

fixed pool model, this implies n = m/f = 1710, and therefore an instantaneous error of

σ(T̂ )/∆T = 1.4% (Fig. 10, yellow). To see how sensing improves with time integration,

we need to estimate the dimerization rate kd. We are unaware of an experimental estimate

for the dimerization rate of TlpA. However, TlpA is a coiled-coil, and the dimerization rate

of engineered coiled-coils has been measured at kdV = 4 × 105 (M·s)−1 [17]. Given the

bacterial volume of V = 1 µm3 [108], this results in an autocorrelation time of τd = 0.3 s at

f = 1/2, beyond which the error falls off. The intrinsic noise from molecular detection (Fig.

10, yellow) clearly dominates over the extrinsic noise from temperature fluctuations in the

medium (Fig. 10, blue).

b. The “Production-Dilution” Model

The fixed pool model is unrealistic because in cells the protein number is not actually

fixed. Instead, proteins are produced via gene expression and lost by active degradation or

dilution from cell division. As we are not aware of evidence that TlpA is actively degraded, we

consider dilution here. Specifically, we introduce a production rate k+ for the monomer and

a dilution rate k− for both the monomer and dimer. We call this the “production-dilution”

model (Fig. 9B, red). Experiments [56, 36] suggest that neither k+ nor k− is strongly

temperature dependent (see Appendix C.F), and therefore we assume that the dominant

temperature dependence is via f . Because cell division is much slower than monomer binding

[75], we consider the limit k− � kdm.

Using the same stochastic techniques as above, we find that the mean and variance of
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the monomer number become m = fk+/k− and

σ2(m) = σ2
FP(m) +

f 2σ2(n)

(2− f)2
, (37)

where σ2(n) = (7−3f)k+/(4k−) is the variance of the (now fluctuating) pool size n = m+2d,

and σ2
FP(m) as given beneath Eq. 36 is here written in terms of the mean pool size n = m/f

(see Appendix C.C.4). The second term in Eq. 37 is always positive, showing that pool

fluctuations due to protein turnover increase the noise, as expected. The experimentally

estimated monomer m = 342 at T = 37 ◦C where f = 0.2 [56] implies k+/k− = m/f = 1710.

Using f = 1/2 and this vale for k+/k−, we see that the instantaneous error (Fig. 10, red)

is increased from that of the FP model (Fig. 10, yellow). The full τ -dependent expression

for σ(T̂ )/∆T is calculated using k− = ln(2)/τ1/2 ≈ 2 hr−1 from cell division [68], and we see

that the relative error has two clear bends at the dimerization and dilution timescales τd and

τ1/2 respectively (Fig. 10, red).

c. The “Production-Dilution with Feedback” Model

Thus far we have not yet accounted for the fact that TlpA exhibits negative feedback:

the TlpA dimer binds to the promoter region of the tlpA gene and inhibits its expression

[55]. To incorporate this autorepression, we replace the monomer production rate k+ with

the function k+/(1+αd). We call this the “production-dilution with feedback” (PDF) model

(Fig. 9B, purple). The parameter α describes the autorepression strength, and its inverse

sets where half-maximal expression occurs. Experiments [56] suggest that α is not strongly

temperature dependent (see Appendix C.F), and therefore we continue to assume that the

dominant temperature dependence is via f . With autorepression, we find (see Appendix

C.C.4.a) that the mean monomer number becomes

m =
f

α(1− f)

[√
1 +

2αk+(1− f)

k−
− 1

]
, (38)

and the variance obeys Eq. 37 with σ2(n) acquiring an α dependence (see Appendix C.C.4.b).

We have checked that Eqs. 37 and 38 agree with stochastic simulations [44] (see Appendix

C.G). Both Eq. 37 and Eq. 38 decrease monotonically with α, showing that autorepression
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reduces both the monomer number variance and its mean. The latter effect dominates, such

that relative fluctuations σ(m)/m increase with autorepression strength. In particular, we

find that the relative fluctuations σ(m)/m scale as α1/4 and as c+ sα for large and small α

respectively, where c and s are independent of α. For 0 < f < 0.77, the slope s is positive.

Because we are generally concerned with values of f near 1/2, we conclude that σ(m)/m

increases monotonically for all α.

The increase in relative fluctuations with autorepression is offset by an increase in tem-

perature sensitivity. To see this, we recognize that the instantaneous relative error can be

written σ(T̂ )/∆T = [σ(m)/m]/[|dm/dT |(∆T/m)], again by error propagation. The first

term in brackets is the relative fluctuations while the second term is the sensitivity: the

derivative dm/dT scaled by the characteristic quantities m and ∆T . Differentiating Eq. 38,

the sensitivity evaluates to

dm

dT

∆T

m
=

f ′∆T

(1− f)

[
1

f
− 1

2
− 1

2
√

1 + 2αk+(1− f)/k−

]
. (39)

Equation 39 is an increasing function of α, showing that autorepression increases the sensi-

tivity. This result in consistent with the fact that mutations that target the autorepression

result in a weakened dependence of monomer number on temperature [56].

The tradeoff between increasing relative fluctuations and increasing sensitivity leads to an

optimal autorepression strength α∗ = 1.75k−/k+ that minimizes the error in instantaneous

temperature sensing σ(T̂ )/∆T at T = TM (see Appendix C.C.5). We insert the experimental

values m = 342 and f = 0.2 [56] with our optimum α = α∗ = 1.75k−/k+ into Eq. 38 to

obtain k+/k− = 2521. Using these values for k+/k− and α, f = 1/2, and k− = 2 hr−1, we

see that the error (Fig. 10, purple solid) is reduced from the case without feedback (Fig. 10,

red).

Finally, we account for a ubiquitous source of additional noise in bacterial gene expres-

sion, namely bursts. Bursts of protein production can occur at the transcriptional level, due

to binding and unbinding at the promoter region [95], and at the translational level, due

to multiple proteins being produced from a single transcript [120]. There isn’t any detailed

information about the kinetics of the promoter binding, so we attempt to include this by
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assuming that it is diffusion-limited, though this could be incorrect. In our case the pro-

moter binding timescale is sufficiently fast compared to the protein production timescale that

transcriptional bursting can be neglected (see Appendix C.H and [32, 109]) and therefore

we focus on translational bursts. Specifically, we perform stochastic simulations [44] of the

PDF model in which each production event generates b TlpA proteins instead of one, where

b is geometrically distributed with mean b [120], and we take k+ → k+/b to leave the mean

monomer number m unchanged. We see in Fig. 10 that the temperature estimation error

increases with mean burst size b, as expected (purple dashed).

Our results provide a quantitative prediction for the precision with which a cell can esti-

mate temperature using a protein thermometer. A temperature-sensitive behavioral response

is likely to occur on a timescale slower than monomer binding τd but faster than cell division

τ1/2. Fig. 10 shows that the estimation error is relatively insensitive to the integration time

in this range. In particular, for a typical bacterial protein burst size of b = 5−10 molecules

[120], we predict that the cell can estimate temperature to within 2% (Fig. 10, gray box).

d. Comparison with LacZ Reporter Data

How does the predicted bound of 2% precision compare to observed thermosensing thresh-

olds in experimental systems? The transcriptional activity of TlpA has been measured in

vivo [56] using a Miller assay with a LacZ reporter [74, 42]. Miller units are proportional

to the number of TlpA production events and therefore include time integration while ex-

cluding noise downstream of TlpA. Measurements at temperatures T1 and T2 below and

above the transition temperature, respectively, provide an estimate of the thermosensing er-

ror σ(T̂ )/∆T , where ∆T = T2 − T1, and σ(T̂ ) is evaluated from the measured uncertainties

using linear error propagation (see Appendix C.I for details). Using this procedure, we find

σ(T̂ )/∆T = 24%. This value is larger than 2%, indicating that this protein thermometer

obeys the predicted bound. Modeling the LacZ reporter explicitly in the simplified model

without bursts, we find a relative error of 6.7%. If we incorporate bursts, the predicted

bound becomes 20−30%, which is consistent with the experimental observation of 24% (see

Appendix C.J). The intuitive reason for the increase in the bound is as follows. Denoting
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the amount of LacZ, also called β-galactosidase, at the end of one cell cycle by β, we find that

the sensitivity |dβ/dT |/(∆T/β) is independent of the burst size, but the relative fluctuations

in the reporter σ(β)/β increases as the burst size of TlpA increases. We tune the reaction

rates such that the mean amount of TlpA dimers, which were measured in experiments [56],

is independent of the TlpA burst size. However, a larger burst size means that LacZ is

produced less frequently, so it has larger relative fluctuations.

The excellent agreement between the predicted bound and the experimental observa-

tion may be partly fortuitous. First, the data may include purely experimental sources of

error associated with the Miller assay, which would increase the observed error. Second,

the Miller assay is a population measurement, which would decrease the observed error: it

reports [σ(T̂ )/∆T ]/
√
N , where N is the number of independently responding units within

the population of Ncells, and the degree to which cells respond in a correlated (N → 1) or

uncorrelated (N → Ncells) manner is unclear. Third, the population likely includes natural

cell-to-cell variability [38], which would increase the observed error. These unknowns under-

score the need for measurements of temperature sensitivity at the single-cell level. We are

not aware of any such measurement for a protein thermometer.

C. Discussion

Molecular thermometers drive a variety of cell behaviors, and it is natural to ask how

our work could be extended. Many thermosensors, including TlpA, are speculated to cause

threshold-like responses, where the cell cares only if the temperature is above a particular

threshold, not the value of the temperature itself. For this task, decision theory or optimal

stopping [106, 7, 91] may be more appropriate than the time-integrated statistics we inves-

tigate here. Furthermore, many thermosensors are used for thermotaxis, the motion of a

cell toward an optimal temperature. Here the sensory network is more complicated [57, 90]

and the task is also different: the cell cares about the value of both the temperature and its

spatial gradient. It would be interesting to integrate our findings into a model of thermotaxis

to investigate the physical limits to the precision of that behavior.
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Guided by a canonical protein thermometer, we have derived the physical limits to the

precision of cellular temperature sensing. Unlike for many other types of cell sensing, the

precision of temperature sensing is evidently not limited by the extrinsic noise inherent to

the environmental signal itself. Instead, the precision is limited by the biochemical details

of the molecular thermometer inside the cell. Specifically, the relative error falls off with the

square root of the number of molecules and the number of correlation times, as expected

for systems dominated by biochemical noise. Developing a model based on the experimental

features and measured parameters of the TlpA protein, we predict a sensitivity threshold

of 2%, which we find is consistent with the observed thermosensing threshold in bacteria.

Our work advances the understanding of cell sensing and lays the groundwork for further

exploration of temperature-sensitive cell behavior.
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V. Conclusions and Future Work

In this dissertation, we have used techniques from stochastic processes and information

theory to study how well cells can sense aspects of their environment. In the first project, we

probed the implications of criticality for biochemical sensing. We found a trade-off between

high steady state mutual information and low information rate at criticality. High mutual

information requires a large separation of timescales that may be unrealistic. This supports

previous findings that criticality can be detrimental for biochemical sensing [107], in contrast

to other biological systems, such as propagating signals in biofilms [65], the auditory system

[54], or neural avalanches [73], though recent results cast doubt on this last example [80].

In the other two projects, we derived bounds on the amount of information available to

the cell about its environment along the tradition initiated by Berg and Purcell [6]. The

first of these combined methods from fluid dynamics and stochastic processes to understand

limits to cancer cells detecting a flow direction while metastasizing via autologous chemo-

taxis. We compared two strategies, pure endocytosis and pure reversible binding, for signal

transduction and found that reversible binding was superior to endocytosis. This seems

counterintuitive, given past work on gradient sensing [26]. However, there is not an exter-

nally imposed gradient here. The cells are producing the signal that they are trying to detect,

and removing the molecules from the environment reduces the time that they interact with

the flow, thus favoring reversible replenishment.

The project regarding temperature sensing built off of a previous attempt at this prob-

lem before the chemical pathways for sensing temperature were understood [24]. We used

techniques from linear irreversible thermodynamics to conclude that the physical tempera-

ture fluctuations were not limiting [39]. Temperature sensing is indirect and is limited by

the tools used to sense the temperature, in contrast to most other types of cell sensing.

Despite this, we found that the cell has a reasonable amount of information from a protein

thermometer like TlpA, consistent with experimental observations.

There are two clear directions for future work. We can build upon the projects regarding

criticality and flow sensing, as detailed below.
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A. Extension for Criticality and Sensing

Morphogenesis is a highly complex and coordinated process. In the developing Drosophila

melanogaster, the embryo must grow rapidly and then undergo segmentation. The first step

in segmentation involves differentiating the anterior and posterior of the embryo. The key

players here are a maternally provided Bicoid concentration gradient that is transduced

into a sharp step-like Hunchback profile. After this primary boundary is formed, additional

boundaries are formed. There is disagreement on whether criticality or bimodality is helpful

for this kind of boundary formation [67, 63].

We can address this question by formulating a model of the Bicoid-Hunchback sys-

tem, identifying bifurcations in the deterministic dynamics to find the critical point and

temperature- and field-like variables, and study the precision of boundary formation as these

parameters are varied. There is evidence that only three Bicoid binding sites [23] and two

Hunchback binding sites [67] on the hunchback promoter are sufficient for proper embryo

development. Fluctuations in the Bicoid profile are washed away due to the slow binding

to the promoter [29]. This leads us to propose a simple model for the Hunchback dynamics

alone
dxi
dt

= kb
b3
i

B3 + b3
3

+ kx
x2
i

H2 + x2
i

− νxi + γ∇2xi, (40)

where ∇2 is the discrete Laplacian. This model exhibits a pitchfork bifurcation, like our

work on the Schlögl model. The bifurcation occurs where the second derivative with respect

to xi vanishes: xc = H/
√

3. We find the effective temperature and field variables

θ =
4
(
8Hν/

√
3− 3kx

)
9kx

, hi =
8
(
−4νH/

√
3 + 4f(bi) + kx

)
9kx

, (41)

where we have introduced f(b) as shorthand for the Bicoid-induced production f(bi) =

kbb
3
i /(B

3 + b3
i ). We see that the Bicoid gradient acts as a non-uniform magnetic field that

biases the cells towards high or low Hunchback number, depending on their position along

the embryo.
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With the mapping established, the next step is to study the effect of tuning θ on the

sharpness of the boundary. Based on past work [29], a suitable measure for the sharpness is

∆ =
xI − xI+1

1
2
(σ(xI) + σ(xI+1))

, I = argmaxi(xi − xi+1). (42)

In words, we would run many trials with the same parameter values, compute the average

Hunchback profile, and determine the position where the Hunchback number changes its

position the most. We say that the boundary occurs there, and the measure of sharpness

is the difference divided by the average of the standard deviation of Hunchback numbers of

the cells involved. We can also study the effect of tuning the communication strength γ.

Past work [29] found an optimal, low diffusion coefficient. The formalism presented here has

imagined the embryo as one-dimensional, and it may be important to extend this to two or

three dimensions.

B. Extension for Flow Sensing

Further experiments on autologous chemotaxis revealed that cells can migrate in the

opposite direction if the cell density is high enough [94]. This is something that we can study

using our methods. We can focus on a single cell nearby other cells. A simple first pass at

the problem would be to assume the presence of other cells creates a non-zero background

so that lim
r→∞

c = c0 instead of zero. It is possible to compute the mean anisotropy measure

using the same techniques as in our published work, and we find

A =
εw

8(2 + α̃)

β̃ − α̃c0a
3

β̃ + c0a3
. (43)

For the pure endocytosis/ absorbing model, we see that this does switch sign if c0 exceeds

some critical concentration. The results for the reversible binding model are obtained by

taking α̃ = 0, and we see that increasing the background concentration decreases the mag-

nitude of the mean but does not change its sign. One remaining problem with this approach

is connecting c0 to experimental cell densities to see if we can postdict the transition seen in

experiments.
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We can also connect this work to the broader line of work done on collective sensing

[114, 34]. We can imagine two schemes for collective flow sensing. In the first, each cell tries

to estimate the flow direction through the anisotropy over its own surface. When the cells

are far apart, we expect this strategy to reduce to the case of an isolated cell. When they

are close together, we expect this strategy to perform poorly, as cells will detect molecules

from other cells, and this will behave qualitatively like a background concentration.

Another scheme is one where each cell measures the flux of molecules through its own

surface. Each cell tries to move away from the others, via something like contact inhibition

of locomotion, and the degree to which they do so is proportional to the flux. This allows a

collective anisotropy between different cells’ fluxes. We expect a crossover here. When the

cells are close together, the population should sense like a cell with larger radius. However,

when the separation between cells is large enough, the cells will be effectively non-interacting.

This means they will have nearly identical fluxes through their surfaces, and the population

will be unable to sense the flow direction.

It is not possible to determine the flow lines analytically for multiple cells, so a numerical

approach must be taken. This will require specifying a mesh, which complicates performing

particle based simulations in continuous space. There are multiphysics programs, namely

COMSOL, that can generate meshes for solving partial differential equations, solve for the

flow lines, and find the mean concentration by solving the convection-diffusion equation.

This approach will be directly applicable to the endocytosis/ absorbing model and seems to

be the most sensible way forward on this end.
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Appendix A Supplement for “Multicellular Sensing at a Feedback-Induced

Critical Point”

A. Mutual Information for a Multivariate Gaussian

Our goal is to calculate the mutual information between the various combinations of the

components of ~δ` and ~δx. In general, note that we have

I(X, Y ) = H(X) +H(Y )−H(X, Y ), (44)

where X and Y are different variables (possibly sets of them) and H is the Shannon entropy

(in nats). The linearized stochastic differential equations describe an Ornstein-Uhlenbeck

process, and the solution is a Gaussian random variable. If X comes from a D-dimensional

Gaussian distribution with covariance matrix C, one may show that the entropy is

H(X) =
D

2
log(2πe) +

1

2
log(det(C)). (45)

A key property that is useful in this analysis is the fact that taking a marginal of a multi-

dimensional Gaussian yields another Gaussian and does not alter the covariances between

the remaining variables.

Suppose that we have some combination of Gaussian variables Z that are partitioned

into two sets X and Y , where Z has N components, X has Nx components, and Y has Ny =

N − Nx components (any additional variables have been integrated out). Our covariance

matrix may be decomposed in the following way

C =

CXX CXY
CY X CY Y

 , (46)

where CY X = CTXY . The entropies of the two subsets are

H(X) =
Nx

2
log(2πe) +

1

2
log(det(CXX)),

H(Y ) =
N −Nx

2
log(2πe) +

1

2
log(det(CY Y )).

(47)

55



The joint entropy will cancel off the constants, so the mutual information between X and Y

is

I(X, Y ) = −1

2
log

(
det(C)

det(CXX) det(CY Y )

)
. (48)

B. Mutual Information for a Single Site

Our linearized equations may be written in the form

d~Yt = A~Ytdt+ Bd ~Wt, (49)

where ~Yt = [δx(t), δ`(t)]T describes the molecule numbers, ~Wt = [Wx(t),W`(t)]
T describes

the noise in production and degradation, and the matrices are

A =

−c k+
1

0 −k−`

 , B =

√2d(xc) 0

0
√

2k+
`

 . (50)

If the initial condition is ~Y0, the general solution (for general matrices and dimensionalities)

is

~Yt = eAt~Y0 +

∫ t

0

eA(t−s)Bd ~Ws. (51)

This may be proven using the substitution ~Zt = e−At~Yt and using Itô’s lemma. We are

interested when the fluctuations about the steady state mean, so we take ~Y0 = 0.

We need to evaluate the steady state covariances. Since the means are zero, it suffices

to compute
〈
Y

(i)
t Y

(j)
t

〉
as t → ∞. This can be done directly with our solution. Using the

Itô isometry, changing the integration variable to t′ = t − s and taking the aforementioned

limit, we find 〈
Y (i)Y (j)

〉
=

∫ ∞
0

[eAtBBT (eAt)T ]i,jdt. (52)

for general matrices and dimensionalities. The matrix exponential in our case is

eAt =

e−ct −k+
1

e−ct − e−k−` t

c− k−`
0 e−k

−
` t

 . (53)
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The result when c = k−` may be obtained by using L’ Hôpital’s rule. The full covariance

matrix is

C =
〈
~Y ~Y T

〉
=


d(xc)

c
+

(k+
1 )2`

c(c+ k−` )

k+
1 `

c+ k−`
k+

1 `

c+ k−`
`

 . (54)

The diagonal terms are the variances, while the off-diagonal terms are the covariance between

δx and δ`.

Before moving forward, it will be helpful to express things in terms of the “Landau”

parameters xc, h, and θ. Using the definitions in the main text, one can solve for the

reaction rates

k+
1 = k−1

xc

3`

1 + 3θ + 3h

1 + θ
,

k+
2 =

k−1
xc(1 + θ)

, k−2 =
k−1

3x2
c(1 + θ)

.

(55)

Using these, we may also solve for d(xc) and c

d(xc) =
k−1 xc(4 + 3θ)

3(1 + θ)
, c =

k−1 θ

1 + θ
. (56)

Note that as θ → ∞, these quantities become what you would expect in the absence of

feedback, provided that we replace xc by the appropriate mean x = k+
1 `/k

−
1 .

Now we compute the mutual information between the ligand and readout using Eqs. 48,

54 with the result

I(δx, δ`) =
1

2
log

(
1 +

c(k+
1 )2`

d(c+ k−` )2 + k−` (k+
1 )2`

)
. (57)

Casting the rates into expressions of the Landau parameters and setting h = 0 gives

I(δx, δ`) =
1

2
log

(
1 +

θ(3θ + 1)2

3(`/xc)(3θ + 4)[(k−` /k
−
1 )(θ + 1) + θ]2 + (k−` /k

−
1 )(θ + 1)(3θ + 1)2

)
.

(58)

This is a complicated expression that vanishes as θ → 0 unless k−` /k
−
1 → 0. If the ligand

timescales are slow, then this simplifies to the expression given in the text.
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C. Information Rate for a Single Site

The information rate for Gaussian process where a scalar signal s linearly drives a scalar

response x is

R = −1

4

∫ ∞
−∞

log

(
1− |Ss,x(ω)|2

Ss,s(ω)Sx,x(ω)

)
dω. (59)

where S’s are elements of the cross-spectrum S, which satisfies

〈
~̂y(ω)~̂y†(ω′)

〉
= 4π2S(ω)δ(ω − ω′), (60)

where we have combined the signal and response variables into a single vector as before

[112, 83]. We are using the convention that the Fourier transform is defined as

~̂y(ω) =

∫ ∞
−∞

~y(t)e−iωtdt. (61)

A vector of independent delta-correlated white noises ~η has a constant cross-spectrum

〈
~̂η(ω)~̂η†(ω′)

〉
= 2πIδ(ω − ω′). (62)

We can solve for the cross-spectrum by taking the Fourier transform of Eq. 8. The ligand

doesn’t depend on the readout, so we can solve for this first. The equation becomes

δ̂`(ω) =

√
2k+

` ε̂(ω)

k−` + iω
. (63)

Using this to find the power spectrum of the ligand fluctuations yields

S`,`(ω) =
k+
`

π((k−` )2 + ω2)
. (64)

Taking the Fourier transform of the second equation and using the result from the first gives

δ̂x(ω) =

√
2dη̂(ω)

c+ iω
+

k+
1

c+ iω

√
2k+

` ε̂(ω)

k−` + iω
(65)

When finding the cross-spectrum between δx and δ`, the calculation is the same as the

previous case, as the η̂ term cancels, except we have an additional factor

Sx,`(ω) =
k+

1

c+ iω

k+
`

π((k−` )2 + ω2)
. (66)
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For the power spectrum of δx, the two terms are independent and the result is

Sx,x(ω) =
d

π(c2 + ω2)
+

(k+
1 )2

c2 + ω2

k+
`

π((k−` )2 + ω2)
. (67)

Plugging everything in, the information rate integral evaluates to

R =
π

2

(√
(k−` )2 +

(k+
1 )2k+

`

d
− k−`

)
. (68)

Expressing this in terms of the Landau parameters gives the result in the main text.

D. Covariance Matrix for Multiple Cells

Our system of stochastic differential equations may be expressed in terms of circulant

matrices. These matrices have a number of nice properties that will be used in the analysis,

so it will be worthwhile to discuss them. A circulant matrix M is a square matrix such that

the next column can be obtained by shifting the entries of the current column down by one

and imposing periodicity. Concretely, they take the form

M =



m0 mN−1 . . . m2 m1

m1 m0 mN−1 m2

... m1 m0
. . .

...

mN−2
. . . . . . mN−1

mN−1 mN−2 . . . m1 m0


. (69)

The discrete Laplacian on a ring with N sites is a special case of this with m0 = −2,

m1 = mN−1 = 1, and zeroes in all other entries. All circulant matrices are simultaneously

diagonalizable via a discrete Fourier transform. Since they are simultaneously diagonalizable,

they all commute with each other. The set of circulant matrices is closed under matrix

addition and multiplication. If a circulant matrix is invertible, its inverse is another circulant

matrix. For each j ∈ {0, 1, ..., N − 1}, there is an eigenvector

~vj =
1√
N

[
1 e−2πij/N ... e−2πij(N−1)/N

]T
, (70)
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with eigenvalue

λM(j) =
N−1∑
k=0

mke
2πijk/N . (71)

It is easy to check that this eigenbasis is orthonormal. For the discrete Laplacian, the

eigenvalues are

λ∇2(j) = −2[1− cos(2πj/N)]. (72)

We will use U to denote the unitary discrete Fourier transform, i.e. the matrix whose columns

are the eigenvectors ordered from j = 0, 1, ..., N − 1.

Now we will solve the system by casting it into the canonical form for an Ornstein-

Uhlenbeck process and then using Eq. 51. As before, we introduce a vector ~Yt =[ ~δx(t), ~δ`(t)]T

that describes both molecular profiles. We introduce a 6N -dimensional vector of noises that

are ordered as follows

d ~Wt =



X chemical noises

X diffuse left noises

X diffuse right noises

L chemical noises

L diffuse left noises

L diffuse right noises


. (73)

The matrices A and B are best expressed in block form. If IN is the N -dimensional identity

matrix, we have

A =

−cIN + γ∇2 k+
1 IN

0 −k−` IN + γ′∇2

 . (74)

The B matrix takes the form

B =

√2d(xc)IN
√
γxcDL

√
γxcDR 0 0 0

0 0 0
√

2k+
` IN

√
γ′`DL

√
γ′`DR

 , (75)

where DL (DR) is a circulant matrix with m0 = −1, mN−1 = 1 (m1 = 1), and zero for all

of the other entries. These matrices describe the anti-correlations associated with diffusing

left and right respectively and they satisfy

DT
L = DR, DLDR = DRDL = −∇2. (76)
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With these definitions, our system of stochastic differential equations is in the standard form

and the usual solution applies.

Next, we need to evaluate the matrices and integration that appear in Eq. 52. The

product of B matrices is easy

BBT =

2d(xc)IN − 2γxc∇2 0

0 2k+
` IN − 2γ′`∇2

 (77)

Computing the matrix exponential is more involved. It is instructive to work with a 2 × 2

matrix. Consider the family of matrices

MN =

aIN bIN
0 cIN

 . (78)

For N = 1, the matrix exponential is

eM1t =

eat b
eat − ect

a− c
0 ect

 . (79)

Working with the number 1 is similar to working with the identity matrix, both have multi-

plicative inverses and have commutative multiplication. In fact, a similar solution holds for

arbitrary N

eMN t =

eaIN t b(aIN − cIN)−1(eaIN t − ecIN t)

0 ecIN t

 , (80)

here we have written it in a suggestive form. For our problem, it will be convenient to

introduce the shorthand

α = −cIN + γ∇2,

β = −k−` IN + γ′∇2,

α′ = 2d(xc)IN − 2γxc∇2,

β′ = 2k+
` IN − 2γ′`∇2 = −2`β.

(81)

All of these matrices are circulant, so they commute and are diagonalizable. The first two

have strictly negative eigenvalues, while the last two have positive eigenvalues, so they are all
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invertible. In light of the single cell result in Eq. 53, a natural candidate for the exponential

of A is

eAt =

eαt −k+
1 (α− β)−1(eαt − eβt)

0 eβt

 . (82)

The matrix exponential E(t) = eAt is the unique solution to the initial value problem

dE(t)

dt
= AE(t), E(0) = I2N . (83)

Using the fact that all of the matrices involved commute, one may show that our guess

satisfies these equations. All that remains is evaluating the product in the integrand and

computing the integral. This is greatly facilitated by the fact that all matrices involved

commute and are invertible. The final result for the steady state covariance matrix is

C =

−1

2
α−1[α′ − 2(k+

1 )2`(α + β)−1] −k+
1 `(α + β)−1

−k+
1 `(α + β)−1 `IN

 . (84)

Note that C ~δx,~δ` = C~δ`, ~δx = CT~δx,~δ`, this is a manifestation of translational invariance. With

the full covariance matrix, we may compute the steady state mutual information between

any pair of combinations of the variables.

E. Mutual Information for Multiple Sites

Now that we are interested in a single cell’s readout, we can start reducing the covariance

matrix. We only want to track a single cell, say the cell at site 0, so we only need one diagonal

entry from C ~δx, ~δx. If M is a matrix with a constant diagonal, then

M0,0 =
1

N

N−1∑
j=0

λM(j). (85)

If we assume that the ligand timescales are slow, we have

σ2
x = − 1

2N

N−1∑
j=0

[
λα′(j)

λα(j)
− 2(k+

1 )2`

λα(j)2

]
, (86)
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where the eigenvalues are

λα(j) = −c− 2γ [1− cos(2πj/N)] ,

λα′(j) = 2d(xc) + 4γxc [1− cos(2πj/N)] .
(87)

The first term describes the intrinsic noise, while the second describes the extrinsic noise.

We can evaluate the sum approximately in the large N limit by adding and subtracting

a j = N term and using the Euler-Maclaurin formula [4]. The formula states that, for a

smooth f , we have

n∑
j=0

f(j) =

∫ n

0

f(t)dt+
f(n) + f(0)

2

+
k∑
j=1

(−1)j+1Bj+1

(j + 1)!
[f (j)(n)− f (j)(0)] +Rk,

(88)

where the remainder term is

Rk =
(−1)k

(k + 1)!

∫ n

0

f (k+1)(t)Pk+1(t)dt, (89)

the Bernoulli numbers are denoted by the Bk, and Pk(t) = Bk(t− btc) denotes the periodic

Bernoulli functions. With the sum extended to N , there is tremendous simplification, as

f (k)(N) = f (k)(0). We had to add and subtract the j = N term; the added term gets taken

into the integral, while the subtracted term is canceled by the average of the two endpoints.

To evaluate the integrals, it is best to work with the angular variables φ = 2πt/N , which

ranges over [0, 2π]. The remainder term becomes smaller as N increases; the terms in the

Fourier series for the periodic Bernoulli functions have arguments of the form mNφ, where

m is a non-zero integer. Neglecting the remainder term, we find

σ2
x =

(
xc +

d(xc)− cxc√
c(c+ 4γ)

)
+

(k+
1 )2`(c+ 2γ)

(c(c+ 4γ))3/2
, (90)

where the first pair describes intrinsic noise and the last term describes extrinsic noise.

Generally speaking, this continuum approximation will break down on some neighborhood

of the critical point. For example, the sum for the variance diverges like θ−2 as we approach

the critical point, but the result of the integral diverges like θ−3/2. Nonetheless, the two

results agree well numerically on all but a small neighborhood of the critical point, and the

results still diverge, so we expect it to give reasonably accurate results.
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1. Mutual Information with the On-site Ligand

We will start with the on-site mutual information. The variance of each ligand molecules

is `, so it suffices to compute the covariance between the ligand and readout. In the slow

ligand and continuum limits, this is

〈
(δx0)(δ`0)

〉
=

k+
1 `√

c(c+ 4γ)
. (91)

For a pair of Gaussian variables, the mutual information increases monotonically with the

ratio 〈(δx)(δy)〉2/σ2
xσ

2
y. When expressed in terms of the Landau parameters and using θ >

0, the derivative with respect to γ is negative. This means that the mutual information

decreases with increasing communication strength.

2. Mutual Information with the Spatially Resolved Profile

We will compute the result for the spatially resolved profile. We need to reduce the

covariance matrix. We do this by integrating out all but one of the readout molecules. This

amounts to working with the reduced covariance matrix

Cred =

 σ2
x êT0 C ~δx,~δ`

C ~δx,~δ`ê0 `IN

 . (92)

The unit vector ê0 = [1, 0, ..., 0]T is used to extract the first row and column from the matrix

describing the correlations between x and `. In order to move forward, we use a result about

the determinants of block matrices. Suppose that M takes the form

M =

A B

C D

 , (93)

where A and D are square matrices of potentially different sizes and D is invertible. Then

we have

det(M) = det(A−BD−1C) det(D). (94)

It follows that the determinant in the numerator of the mutual information is

det(Cred) = (σ2
x − êT0 C2

~δx,~δ`
ê0/`)`

N
(95)
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and the mutual information is

I(δx0, ~δ`) = −1

2
log

(
1−

êT0 C2
~δx,~δ`

ê0

`σ2
x

)
. (96)

The C ~δx,~δ` appearing in the numerator is circulant, as it is the inverse of a circulant matrix,

so its square is also circulant. We may apply the formula derived at the beginning of the

section in the slow ligand limit to get

êT0 C2
~δx,~δ`

ê0 =
1

N

N−1∑
j=0

(
k+

1 `

λα(j)

)2

. (97)

This is the sum that we encountered when computing the extrinsic noise multiplied by `. It

follows that the mutual information may be written in the form

I(δx0, ~δ`) =
1

2
log

(
1 +

σ2
ext

σ2
int

)
. (98)

The mutual information increases monotonically with the ratio of contributions to the noise.

Expressing it in terms of θ and differentiating with respect to γ, the result is negative, so

communication also impairs this information.

3. Mutual Information with the Spatially Averaged Ligand

We finally turn to calculating the mutual information between a single readout and

the spatial average of the ligand fluctuations. Since the ligand molecules at each site are

identically and independently distributed Poisson variables with mean `, the variance in the

spatial average of the ligand is

σ2
L =

`

N
. (99)

We need to compute the covariance between a single cell and this average. This can be found

by averaging the first row or column of the readout-ligand covariance matrix

〈
(δx0)(δL)

〉
=

1

N
êT0 C ~δx,~δ`~1N , (100)

where ~1N is a N -dimensional vector whose components are all 1. This is an eigenvector of

circulant matrices, so we have

U †~1 =
√
Nê0. (101)
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Using the unitary discrete Fourier transform to diagonalize the covariance matrix, we find

that this picks off the eigenvalue with j = 0 that does not depend on diffusion

〈
(δx0)(δL)

〉
=
k+

1 `

Nc
. (102)

Squaring and dividing by the variance in δL, we see that this is the j = 0 term in the

extrinsic noise. If we work with the variance as a sum of eigenvalues, the ratio of the

squared covariance to the products of the noises tends to one as we approach the critical

point, so the mutual information diverges there. If we use the integral approximation to

the variance, this ratio can exceed one, leading to a negative argument. This approximation

breaks down for small θ, but we can trust it away from a small neighborhood of the critical

point. Differentiating the ratio that appears in the mutual information with respect to γ

gives a positive answer, so communication helps this mutual information.

F. Information Rate for Multiple Sites

Since the mutual information between a single cell and the spatial average of the ligand

fluctuations was the only case that benefited from communication, we will restrict our focus

to this case. We will take a different approach than we did for a single site, as the Langevin

equations are now a 2N -dimensional coupled linear system. Using the same convention with

Fourier transforms as before, the Wiener-Khinchin theorem states that

S(ω) =
1

2π

∫ ∞
−∞
C(τ)e−iωτdτ, (103)

where C(τ) is the steady state correlation matrix. To capture the steady state correlations,

we initialize the system at t0 = −∞. Since our variables have zero mean, this takes the form

C(τ) =
〈
~Yt+τ ~Y

T
t

〉
. (104)
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Since we initialized this at t0 = −∞, this doesn’t depend on the choice of t. When τ = 0,

this reduces to the covariance matrix C that we worked with before. Using the Itô isometry

and performing a change of variables to t′ = t− s, one may show that

C(τ) =

∫ ∞
−min(0,τ)

eA(t+τ)BBT (eAt)Tdt. (105)

When τ ≥ 0, we may factor off eAτ to the left, and the remaining integral becomes C. For

τ < 0, we perform a change of variables to t′ = t + τ , then factoring off e−A
T τ to the right

gives the integral that yields C. In summary, we have

C(τ) =

e
AτC, τ ≥ 0,

C(e−Aτ )T , τ < 0.

(106)

Using this, we find that the cross-spectrum is

S(ω) = −
[
(A− iωI2N)−1C + C(AT + iωI2N)−1

]
2π

. (107)

To evaluate this, we need to find the inverse matrix and then plug it in. Since the α, β, and

IN all commute and are invertible, treating them as if they were scalars leads to the guess

(A− iωI2N)−1 =

(α− iωIN)−1 −k+
1 (α− iωIN)−1(β − iωIN)−1

0 (β − iωIN)−1

 , (108)

and a direct computation shows that this is the inverse. Using this, we can compute the

cross-spectrum

S(ω) =

S~x,~x(ω) S~x,~̀(ω)

S†
~x,~̀

(ω) S~̀,~̀(ω)

 ,
S~x,~x(ω) = − 1

2π
(α2 + ω2IN)−1[−α′ + 2(k+

1 )2`β(β2 + ω2IN)−1],

S~x,~̀(ω) =
1

π
k+

1 `β(β2 + ω2IN)−1(α− iωIN)−1, S~̀,~̀(ω) = − 1

π
`β(β2 + ω2IN)−1

(109)

Now we need to compute the relevant terms from these matrices.
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First, we compute the power spectrum for the fluctuations in δx0. Since all of the matrices

involved here are circulant, any diagonal element is the average of the eigenvalues

Sδx0,δx0(ω) = − 1

2πN

N−1∑
j=0

[
−λα′(j)

λα(j)2 + ω2
+

2(k+
1 )2`λβ(j)

(λα(j)2 + ω2)(λβ(j)2 + ω2)

]
, (110)

where the eigenvalues of β are

λβ(j) = −k−` − 2γ′(1− cos(2πj/N)). (111)

It is possible to approximate this as an integral and evaluate the integral analytically. How-

ever, the result is complicated and appears in an integral as part of a logarithm’s argument.

We cannot make progress with the final integral, so we will evaluate this numerically.

One may show that the power spectrum in δL is the average of all of the matrix elements

in the cross-spectrum S~δ`,~δ` by using the definition of δL and Eq. 60. We can write this

compactly using the vector of ones

SδL,δL(ω) =
1

N2
~1TNS~δ`,~δ`~1N . (112)

Since S~δ`,~δ` is circulant, the vector of ones is an eigenvector of the matrix with j = 0, so we

have

SδL,δL(ω) =
`k−`

πN [(k−` )2 + ω2]
. (113)

Finally, we compute the cross-spectrum between δx0 and δL. This should be the average

of the elements in the first row in S ~δx,~δ`, which may be obtained via

Sδx0,δL(ω) =
1

N
êT0 S ~δx,~δ`~1N . (114)

The vector of ones is also an eigenvector of this matrix with j = 0, so

Sδx0,δL(ω) =
k+

1 k
−
` `

πN [(k−` )2 + ω2][c+ iω]
. (115)

With the power spectra and cross-spectrum, we can numerically integrate Eq. 59. A detailed

description of how this depends on all of the parameters is provided in the main text.
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Appendix B Supplement for “Precision of Flow Sensing by Self-Communicating

Cells”

A. Derivation of the Zeroth-Order Solution

In this section, we derive the lowest order terms in the expansion for the inner and outer

solution (Eq. 19). We recall the non-dimensionalized variables and parameters

χ = ca3, ρ =
r

a
, β̃ =

βa4

D
,

α̃ =
αa

D
, ε =

v0a

D
, κ =

√
K
a
.

(116)

It will be convenient to describe the flow profile with the functions

ur(ρ) = 1− 1 + 3κ+ 3κ2

ρ3
+

3κ

ρ2

(
1 +

κ

ρ

)
e

1−ρ
κ ,

uθ(ρ) = 1 +
1 + 3κ+ 3κ2

2ρ3
− 3

2ρ

(
1 +

κ

ρ
+
κ2

ρ2

)
e

1−ρ
κ

(117)

With these, the dimensionless flow profile (Eq. 16) is

~u(ρ, θ) =
~v(ρ, θ)

v0

= ur(ρ) cos θρ̂− uθ(ρ) sin θθ̂. (118)

We solve the drift-diffusion equation (Eq. 17) with these flow lines through the method of

matched asymptotic expansions. To do this, we introduce two expansions: an inner and an

outer one. The inner one satisfies the boundary condition at the cell surface, while the outer

one satisfies the condition at infinity. We obtain the full solution and remaining coefficients

by matching the functional forms on a common overlap region: s = ερ → 0 for the outer

expansion and ρ→∞ for the inner expansion.

We assume that the inner expansion has the standard form

χ(ρ, θ, ε) =
∞∑
n=0

εnχn(ρ, θ). (119)

This is a solution to the problem

0 = ∇2
ρχ(ρ, θ)− ε~u(ρ, θ) · ∇ρχ(ρ, θ), −∂χ(ρ, θ)

∂ρ

∣∣∣
ρ=1

= β̃ − α̃χ(1, θ), (120)
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where χ’s ε dependence has been suppressed. Collecting powers of ε, the equations for χn

become

0 = ∇2
ρχn − ~u · ∇ρχn−1, −∂χn

∂ρ

∣∣∣
ρ=1

= β̃δn,0 − α̃χn(1). (121)

This assumes that the flow is small, which is valid close to the surface of the cell.

For the outer expansion, we introduce the re-scaled distance

s = ερ. (122)

We make the standard choice

X(s, θ, ε) =
∞∑
n=0

Fn(ε)Xn(s, θ), (123)

where

lim
ε→0

Fn+1(ε)

Fn(ε)
= 0. (124)

In the derivation of Eq. 20 (next section), we will show that using only the lowest order

term F0(ε)X0(s, θ) gives a consistent solution sufficient for our purposes. The full expansion

solves the problem

0 = ∇2
sX(s, θ)− ~u

(s
ε
, θ
)
· ∇sX(s, θ), lim

s→∞
Xn(s, θ) = 0. (125)

For the outer expansion, we neglect the exponential terms in ~u, as these have −s/ε in the

exponent, which is smaller than any power of ε and cannot be captured by a Taylor series.

This means that we work with

ur

(s
ε

)
∼ 1− ζε3

s3
, uθ

(s
ε

)
∼ 1 +

2ζε3

s3
, (126)

where ζ = 1 + 3κ+ 3κ2. For the lowest order terms (order 0−2), only the constant terms in

the ~u affect the PDE, and the flow is just the flow at infinity, ẑ.
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1. Inner Expansion

For the zero-order term, we have

∇2
ρχ0 = 0, − ∂χ0

∂ρ

∣∣∣∣
ρ=1

= β̃ − α̃χ0(1). (127)

Using azimuthal symmetry, the general solution to the PDE is

χ0 =
∞∑
`=0

(
A0,`ρ

` +
B0,`

ρ`+1

)
Y 0
` (θ), (128)

where A0,` and B0,` are undetermined coefficients, and Y m
` are spherical harmonics. We

plug this into the boundary condition in Eq. 127. Since the spherical harmonics are linearly

independent, we have the system

−(`A0,` − (`+ 1)B0,`) =
√

4πβ̃δ0,` − α̃(A0,` +B0,`), (129)

where the factor of
√

4π arises from Y 0
0 = (4π)−1/2 and factoring off a spherical harmonic from

both sides of the equation. We will use this result shortly, as it will simplify substantially

after using the matching condition.

2. Outer Expansion

The equation for X0 follows from Eq. 125,

0 = ∇2
sX0 − cos θ

∂X0

∂s
+

sin θ

s

∂X0

∂θ
, (130)

where as discussed we use ~u = ẑ and we have written the gradient in spherical coordinates.

We can eliminate the θ-dependence and replace it with a cos θ-dependence using

sin θ
∂

∂θ
= −(1− cos2 θ)

∂

∂(cos θ)
, (131)

with which Eq. 130 becomes

0 = ∇2
sX0 − cos θ

∂X0

∂s
− (1− cos2 θ)

s

∂X0

∂(cos θ)
. (132)
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If we make the subsitution X0(s, θ) = G(s, θ) exp(s cos(θ)/2), the equation simplifies because

the operator becomes

∇2
sX0 − cos θ

∂X0

∂s
− (1− cos2 θ)

s

∂X0

∂(cos θ)
= e

s
2

cos θ

[
∇2
s −

1

4

]
G(s, θ). (133)

Since the exponential factor never vanishes, the PDE becomes

∇2
sG(s, θ)− 1

4
G(s, θ) = 0. (134)

To move forward, we write G as a linear combination of spherical harmonics and use az-

imuthal symmetry

G(s, θ) =
∞∑
`=0

H`(s/2)√
s

Y 0
` (θ), (135)

where the H` are to be determined. Substitution and isolating the independent spherical

harmonics give the ODEs

0 = s−5/2

[(s
2

)2 d2H`(
s
2
)

d( s
2
)2

+
s

2

dH`(
s
2
)

d( s
2
)
−

((s
2

)2

+

(
`+

1

2

)2
)
H`

(s
2

)]
. (136)

The term in square brackets must vanish, and this is just the modified Bessel differential

equation in s/2 of order `+ 1/2. This means that the general solution for H` is

H`(s/2) = C0,`K`+1/2(s/2) +D0,`I`+1/2(s/2), (137)

where the Is and Ks are modified Bessel functions of the first and second kind, respectively,

and C0,` and D0,` are undetermined coefficients. Substituting this back into X gives

X0(s, θ) =
e
s
2

cos θ

√
s

∞∑
`=0

[
C0,`K`+1/2(s/2) +D0,`I`+1/2(s/2)

]
Y 0
` (θ). (138)

Since X0 must vanish at infinity, we must have D0,` = 0 for all ` so

X0(s, θ) =
e
s
2

cos θ

√
s

∞∑
`=0

C0,`K`+1/2(s/2)Y 0
` (θ). (139)

For positive half-integer orders, the Bessel Ks are exponentially decaying functions with

decaying power laws. The exponentially decaying factor is exp(−s/2), so the combination of

the two exponentials is decreasing for all θ values except θ = 0, where the factor is constant.
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3. Asymptotic Matching

Now we match the functional forms of the two solutions. We look at the inner expansion

first (Eq. 128). Each term in the outer expansion decreases as s increases, so we cannot have

the positive powers of ρ in the inner expansion. This implies that A0,` = 0 for ` ≥ 1. Since

α̃ ≥ 0, applying the surface boundary condition in Eq. 129 also gives B0,` = 0 for ` ≥ 1.

This means that, to lowest order in ε

χ0 = Y 0
0

(
A0,0 +

B0,0

ρ

)
. (140)

Now we turn to the outer expansion. Note that the modified Bessel functions of the

second kind K have the following asymptotics

K`+1/2(s/2) = O(s−(`+1/2)), s→ 0. (141)

Including the overall factor of s−1/2, we see that the ` term diverges like s−`−1. This means

that all terms with ` > 0 diverge faster than the inner solution, so the coefficients for these

terms must be zero, because they cannot be matched. This means

X0(s, θ) =
e
s
2

cos θ

√
s
C0,0K1/2(s/2)Y 0

0 =
√
πC0,0

e
s
2

(cos θ−1)

s
Y 0

0 . (142)

and therefore to lowest order in ε we have

X = F0(ε)
√
πC0,0

e
s
2

(cos θ−1)

s
Y 0

0 . (143)

So far, we have used matching to argue which terms should vanish. Now we will find the

values for the non-zero coefficients. To do this, we recognize that because s = ερ in Eq. 143,

in order to match this with Eq. 140 in powers of ε, we must take

F0(ε) = ε, A0,0 = 0. (144)

Using the boundary condition at the surface from Eq. 129 gives

B0,0 =
√

4π
β̃

1 + α̃
=
√

4πγ, (145)
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where we define γ = β̃/(1 + α̃). Matching Eq. 143 to the ρ−1 term in Eq. 140 then gives

C0,0 = 2γ. (146)

Using the values determined in this section, Eqs. 140 and 143 become

χ0 =
γ

ρ
, X =

εγ

s
e−s(1−cos θ)/2, (147)

as in Eq. 19.

B. Derivation of the First-Order Solution

In this section, we will calculate the first-order term in the inner expansion and show

that we just need the lowest order term in the outer expansion.

1. Inner Expansion

The first-order term in the inner expansion solves the PDE

0 = ∇2
ρχ1 − ~u · ∇ρχ0, − ∂χ1

∂ρ

∣∣∣∣
ρ=1

= −α̃χ1(1). (148)

Using the zero-order solution χ0 gives

∇2
ρχ1 = ~u · ∇ρχ0 = ur(ρ) cos(θ)

(
− γ

ρ2

)
= −

√
4π

3

γ

ρ2
ur(ρ)Y 0

1 (θ). (149)

The general solution to this is the solution to the homogeneous equation (Laplace’s equation)

plus an inhomogeneous term arising from the presence of a source (the particular solution).

We proceed by using the Green’s function for Laplace’s equation

∇ρG(~ρ, ~ρ ′) = δ3(~ρ− ~ρ ′) =⇒ G(~ρ, ~ρ ′) = − 1

4π|~ρ− ~ρ ′|
. (150)

The particular solution is the convolution of this with the source term,

χ1 (~ρ) =

∫
ρ′≥1

d3ρ′G (~ρ, ~ρ′)

(
−
√

4π

3

γ

ρ′2
ur (ρ′)Y 0

1 (θ′)

)
. (151)
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We expand the Green’s function in terms of Legendre polynomials P`

1

|~ρ− ~ρ ′|
=

1

ρ>

∞∑
`=0

(
ρ<
ρ>

)`
P`(ρ̂ · ρ̂′), (152)

where ρ< = min(ρ, ρ′) and ρ> = max(ρ, ρ′). The Legendre polynomials are related to the

spherical harmonics via

P`(ρ̂ · ρ̂′) =
4π

2`+ 1

∑̀
m=−`

Y m
` (ρ̂)Y m

` (ρ̂′)∗. (153)

By orthogonality, only the term with ` = 1 and m = 0 will make a non-vanishing contribu-

tion to the convolution. To evaluate the convolution, we use the orthogonality of spherical

harmonics to simplify the angular integrals and break the integral over ρ′ into regions where

ρ′ < ρ and ρ′ > ρ. Specifically, combining Eqs. 150-153 allows the angular portion of the

integral to be easily performed,

χ1 (~ρ) =

∫
ρ′≥1

d3ρ′

(∑
`,m

ρ`<
ρ`+1
> (2`+ 1)

Y m
` (ρ̂)Y m∗

` (ρ̂′)

)(√
4π

3

γ

ρ′2
ur (ρ′)Y 0

1 (θ′)

)

=
γ

3

√
4π

3
Y 0

1 (θ)

[∫ ρ

1

dρ′
ρ′

ρ2
ur (ρ′) +

∫ ∞
ρ

dρ′
ρ

ρ′2
ur (ρ′)

]
. (154)

Inserting the expression for ur (Eq. 117) with ζ = 1 + 3κ+ 3κ2 into Eq. 154 then yields

χ1 (~ρ) =
γ

3

√
4π

3
Y 0

1 (θ)

[∫ ρ

1

dρ′
ρ′

ρ2

(
1− ζ

ρ′3
+

3κ

ρ′2

(
1 +

κ

ρ′

)
e

1−ρ′
κ

)
+

∫ ∞
ρ

dρ′
ρ

ρ′2

(
1− ζ

ρ′3
+

3κ

ρ′2

(
1 +

κ

ρ′

)
e

1−ρ′
κ

)]
=
γ

3

√
4π

3
Y 0

1 (θ)

[
3

2
− 2ζ + 1

2ρ2
+

3ζ

4ρ3
+

∫ ∞
1

dρ′
3κ

ρ2ρ′

(
1 +

κ

ρ′

)
e

1−ρ′
κ

+

∫ ∞
ρ

dρ′
3κ

ρ′2

(
ρ

ρ′2
− ρ′

ρ2

)(
1 +

κ

ρ′

)
e

1−ρ′
κ

]
=
γ

2

√
4π

3
Y 0

1 (θ)

[
1− 2ζ + 1

3ρ2
+

ζ

2ρ3
+

2κ

ρ2
e

1
κ

(
E1

(
1

κ

)
+ κE2

(
1

κ

))
+

2κ

ρ2
e

1
κ

(
E4

(ρ
κ

)
− E1

(ρ
κ

)
+
κ

ρ
E5

(ρ
κ

)
− κ

ρ
E2

(ρ
κ

))]
,

(155)

where

En (x) =

∫ ∞
1

dt
e−tx

tn
. (156)
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Eq. 155 can be simplified slightly using the recursion relation

En (x) =
1

n− 1

(
e−x − xEn−1 (x)

)
, (157)

which is valid for x > 0. For integer values of n > 1, this relation can be repeated to produce

En (x) =
1

(n− 1)!

[
(−x)n−1E1 (x) + e−x

n−2∑
i=0

((n− 2− i)!) (−x)i
]
. (158)

Applying these relations to the En functions seen in Eq. 155 allows for the simplifications

E1

(
1

κ

)
+ κE2

(
1

κ

)
= E1

(
1

κ

)
+ κ

(
e−

1
κ − 1

κ
E1

(
1

κ

))
= κe−

1
κ , (159)

and

E4

(ρ
κ

)
− E1

(ρ
κ

)
+
κ

ρ
E5

(ρ
κ

)
− κ

ρ
E2

(ρ
κ

)
=

1

6

((
2− ρ

κ
+
ρ2

κ2

)
e−

ρ
κ − ρ3

κ3
E1

(ρ
κ

))
− E1

(ρ
κ

)
− κ

ρ

(
e−

ρ
κ − ρ

κ
E1

(ρ
κ

))
+

κ

24ρ

((
6− 2ρ

κ
+
ρ2

κ2
− ρ3

κ3

)
e−

ρ
κ +

ρ4

κ4
E1

(ρ
κ

))
=

κ

8ρ

(
ρ3

κ3
− ρ2

κ2
+

2ρ

κ
− 6

)
e−

ρ
κ − ρ3

8κ3
E1

(ρ
κ

)
.

(160)

Inserting Eqs. 159 and 160 into Eq. 155 and adding in the general solution to Laplace’s

equation then yields

χ1 =
γ

2

√
4π

3
Y 0

1

[
κ2

4ρ3
e1/κ

((
ρ3

κ3
− ρ2

κ2
+

2ρ

κ
− 6

)
e−ρ/κ − ρ4

κ4
E1

(ρ
κ

))
+1− 2κ+ 1

ρ2
+

1 + 3κ+ 3κ2

2ρ3

]
+ γ

∑
`≥0

(
A1,`ρ

` +
B1,`

ρ`+1

)
Y 0
` .

(161)

It will be convenient to introduce a constant

w = 1 + κ−1 + κ−2e1/κE1(κ−1). (162)

The boundary condition from Eq. 148 translates to√
4π

3

w

8
δ`,1 + `A1,` − (`+ 1)B1,` = α̃

[√
4π

3

w

8
δ`,1 + A1,` +B1,`

]
. (163)
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2. Asymptotic Matching

We attempt to match the first-order solution for χ to the lowest order solution for X.

We will see that this leads to a consistent matching condition, confirming that we may only

work with the lowest order term in X.

As before, none of the terms in X diverges at large s, so we need A1,` = 0 for ` ≥ 1. The

boundary condition for the surface for χ1 in Eq. 163 implies that B1,` = 0 for ` ≥ 2. Because

A1,1 = 0, we set ` = 1 in Eq. 163 to find

B1,1 =
w

8

√
4π

3

1− α̃
2 + α̃

. (164)

We expand X (Eq. 19 with s = ερ) to first order in ε, giving

X =
√

4π
γ

ρ
Y 0

0 +
εγ

2

(√
4π

3
Y 0

1 −
√

4πY 0
0

)
, (165)

where again we have used Y 0
1 =

√
4π/3 cos θ. Our form for B1,1 is fine, since there is no term

in X proportional to ρ−2 to this order and we are matching the large ρ behavior of χ to X.

Since the O(ε0) term in X was matched by χ0, we must match εχ1 to the O(ε) term in X.

The Y 0
1 term in X must be matched by the inhomogeneous term in χ1, as the terms in the

homogeneous solution do not have a constant times Y 0
1 . Specifically, we need the bracketed

term in Eq. 161 to tend to 1 as ρ→∞. We have no parameters to tune, so if this fails, we

will have to go to higher order. However, the limit is one, so this is consistent. We find A1,0

from matching to the last term in X,

A1,0 = −
√
π. (166)

Solving for B1,0 using the boundary condition at the surface gives

B1,0 =
α̃
√
π

1 + α̃
. (167)

These matching conditions are consistently satisfied, confirming that we may only work with

the lowest order term in X. Using the values of the coefficients and the spherical harmonics

to simplify Eq. 161 gives

χ1 =
γ

2

{
α̃

(1 + α̃)ρ
− 1 +

cos θ

4

[
(1− α̃)w

(2 + α̃)ρ2
+ f(ρ, κ)

]}
, (168)
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as in Eq. 20, where the auxiliary function is

f(ρ, κ) = 4− 4(2κ+ 1)

ρ2
+

2(1 + 3κ+ 3κ2)

ρ3

+
κ2e1/κ

ρ3

[(
ρ3

κ3
− ρ2

κ2
+

2ρ

κ
− 6

)
e−ρ/κ − ρ4E1(ρ/κ)

κ4

]
.

(169)

Note that f(1, κ) = w.

C. Derivation of Anisotropy Mean

The anisotropy in the absorption case (Eq. 21) is

A ≡
∫ T

0
dt
∫
a2dΩ αc(a, θ, φ, t) cos θ

T
∫
a2dΩ′ αc(a, θ′)

. (170)

The mean of this expression is

A =

∫
dΩ c(a, θ) cos θ∫
dΩ′ c(a, θ′)

, (171)

where we have canceled the T , α, and a2. We evaluate these integrals using c(a, θ) =

[χ0(1, θ) + εχ1(1, θ)]/a3, where χ0 and χ1 are given by Eqs. 19 and 20, respectively. In the

numerator of Eq. 171, the χ0 term vanishes because cos θ integrates to zero. For the same

reason, the only non-vanishing part of the χ1 term is the cos θ term in Eq. 20, as the integral

of cos2 θ is nonzero. Here we also recall that f(1, κ) = w. In the denominator of Eq. 171, the

χ0 term is nonzero, and therefore we do not need the χ1 term to leading order. Altogether,

Eq. 171 evaluates to

A =
wε

8(2 + α̃)
, (172)

as in Eq. 22.

The equivalent expression to Eq. 21 that accounts for discrete molecule arrival, as stated

in the main text, is

A =
1

N

N∑
i=1

cos θi, (173)
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where θi is the arrival angle of the ith molecule, and

N =

∫ T

0

dt

∫
a2dΩ αc(a, θ, φ, t) (174)

is the total number of molecules absorbed in time T . Here we will show that the mean of

Eq. 173 also evaluates to Eq. 22. The mean of Eq. 173 is

A =
1

N

〈
N∑
i=1

cos θi

〉
, (175)

where the overbar and angle brackets are used interchangeably. Because the N absorption

events are statistically independent, the angle-bracketed term in Eq. 175 simply amounts to

N copies of 〈cos θ〉. Thus,

A = 〈cos θ〉 . (176)

The averaging is performed over the distribution defined by the mean surface concentration

c(a, θ). Explicitly,

A =

∫
dΩ c(a, θ) cos θ∫
dΩ′ c(a, θ′)

. (177)

This expression is equivalent to Eq. 171 and therefore evaluates to Eq. 22.

Note that the definition of A implicitly assumes that the cell “knows” the true direction

of the flow to be θ = 0. In reality this is untrue. Instead, the migration direction of the cell

is a three-dimensional vector that can be decomposed into three components along the x̂, ŷ,

and ẑ (θ = 0) directions. However, the means of the components in the x̂ and ŷ directions

involve averages of sin θ cosφ and sin θ sinφ, which are zero due to the azimuthal symmetry.

Therefore, the result in Eq. 22 holds even when accounting for all three components.
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D. Derivation of the Anisotropy Variance

To compute the variance of Eq. 173, we use the fact that the number of molecules

absorbed in a patch on the cell surface is a Poisson variable (confirmed with simulations

detailed in the supplement of the publication [35]). Letting θi denote the value of θ at which

particle i is absorbed, the second moment of the sum of cosines is〈(
N∑
i=1

cos θi

)2〉
=

〈
N∑
i=1

cos2 θi

〉
+

〈∑
i 6=j

cos θi cos θj

〉
= 〈N〉 〈cos2 θ〉+〈N(N − 1)〉 〈cos θ〉2 ,

(178)

where again the second step follows from the fact that the absorption events are statistically

independent. For a Poisson random variable

〈N〉 = σ2
N = 〈N2〉 − 〈N〉2 =⇒ 〈N(N − 1)〉 = 〈N〉2 . (179)

Inserting this result into Eq. 178, we see that the last term becomes the square of the mean

and will thus cancel when using Eq. 178 to calculate the variance. Additionally, we will need

to multiply the variance by a factor of three. The reason is that cos2 θ is an even function,

and therefore the angular average, to lowest order in ε, will be over only the uniform part of

the solution (χ0). It will therefore have the same contributions from the x̂ and ŷ directions.

Altogether, this allows us to write the variance as

σ2
A =

3

N
2 Var

(
N∑
i=1

cos θi

)
=

3

N
2N 〈cos2 θ〉 =

3

N
〈cos2 θ〉 . (180)

The leading order terms in the averages of both N (Eq. 174) and cos2 θ come only from the

uniform χ0 (Eq. 19). Specifically,

N =

∫ T

0

dt

∫
a2dΩ αc(a, θ) = a2αT

∫
dΩ

γ

a3
=

4παγT

a
=

νT α̃

1 + α̃
, (181)

and the average of cos2 θ over the sphere is

〈cos2 θ〉 =
1

4π

∫
dΩ cos2 θ =

1

3
. (182)

Together these results produce Eq. 23 in the main text.
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E. Effect of Non-Spherical Cell Geometry

Cells polarize and stretch in the direction of motion as they move. In this section, we

investigate the effect that stretching has on the ability of the cell to sense the direction of

the fluid flow. For simplicity, we incorporate stretching (or compressing) by investigating an

ellipsoidal cell. We also ignore the effect of impermeability of the medium and simply use

Stokes’ flow. For a spherical cell, we find in the main text that the impermeability halves

the error (taking w from 1 to 2) but does not change the overall scaling, and we expect the

effect to be similar here. We also focus only on the absorbing case, where the deterministic

convection-diffusion equation suffices to determine the statistics of the anisotropy measure.

1. Ellipsoidal Coordinate System

We will find it useful to adapt our coordinates to the shape of the cell surface in order

to state the boundary condition for the convection-diffusion equation. Therefore, we first

introduce a new coordinate system that we will call “ellipsoidal” for simplicity. Our new

coordinates are not the same as the standard confocal ellipsoidal coordinates or the prolate

or oblate spheroidal coordinates. They are also non-orthogonal, and therefore they give rise

to off-diagonal terms in definitions such as the Laplacian, as we derive using differential ge-

ometry in a later section below. Nonetheless, they are a continuous deformation of spherical

coordinates and are useful for specifying the boundary and visualizing the system.

The ellipsoidal coordinates are related to the cartesian ones via

x = req
−1/3 sin θe cosφe,

y = req
−1/3 sin θe sinφe,

z = req
2/3 cos θe,

(183)

where the angular variables (θe, φe) have the same ranges as the spherical angles (θ, φ):

θe ∈ (0, π) and φe ∈ (0, 2π). Ellipsoids are surfaces of constant re. q > 0 is a parameter

characterizing the deformation: the z-axis is compressed for q < 1, and the z-axis is stretched

for q > 1, as illustrated in 7A. The ellipsoidal coordinates reduce to spherical coordinates

when q = 1.
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More generally, the relationship between the ellipsoidal and spherical coordinates is ob-

tained by comparing Eq. 183 with the standard spherical-cartesian relations,

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ,

(184)

as follows. First, Eq. 183 implies that re = q1/3
√
x2 + y2 + q−2z2. Inserting Eq. 184

for x, y, and z then yields re = rq1/3
√

1 + (q−2 − 1) cos2 θ. Second, Eq. 183 implies

cos θe = z/req
2/3. Inserting Eq. 184 for z and the previous result for re gives cos θe =

q−1 cos θ/
√

1 + (q−2 − 1) cos2 θ. Third, by considering the ratio y/x in both Eq. 183 and Eq.

184, one sees that tanφe = tanφ, or φe = φ. In summary,

re = rq1/3
√

1 + (q−2 − 1) cos2 θ,

cos θe =
q−1 cos θ√

1 + (q−2 − 1) cos2 θ
,

φe = φ.

(185)

Eq. 185 gives the ellipsoidal coordinates in terms of spherical coordinates. The inverse is

r = req
−1/3

√
1 + (q2 − 1) cos2 θe,

cos θ =
q cos θe√

1 + (q2 − 1) cos2 θe
,

φ = φe.

(186)

The parametrization in Eq. 183 explicitly conserves the volume of the ellipsoid. To see

this fact, we recall that if the x, y, and z semi-axis lengths are A, B, and C respectively,

then the volume of the ellipsoid is

V =
4π

3
ABC. (187)

Taking A = B = req
−1/3 and C = req

2/3, we see that the ellipsoid has the same volume

as a sphere of radius re > 0, independent of q. Note that q is the ratio of axis lengths, as

q = C/A.
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Although the volume is conserved, the surface area is not. This means that α and β

should change with q in order to keep the total number of receptors on the surface and the

rate of secretion constant, respectively. To account for this, we need the area element. A

point on the surface of an ellipse in cartesian components is

~r = req
−1/3 〈sin θe cosφe, sin θe sinφe, q cos θe〉 . (188)

The area element may be computed as the cross-product

dSre = ||∂θe~r × ∂φe~r||dθedφe = r2
eq

1/3 sin θe
√

1 + (q−2 − 1) cos2 θe dθedφe. (189)

Letting Sre denote the integral of dSre over the full ranges of the angular variables, we take

αe =
4πa2α

Sa
, βe =

4πa2β

Sa
. (190)

We perform the integral Sa numerically.

2. Flow Lines

Next we find the laminar flow lines around the ellipsoid, where the flow points along the

stretched/compressed axis (Fig. 7A). We do so following Ref. [88], which specifies a numerical

method for calculating flow lines in the laminar limit of the incompressible Navier-Stokes

equations around an object with azimuthal symmetry. We report the solution of Ref. [88]

here in spherical coordinates, and then exploit our ellipsoidal coordinates when imposing the

boundary conditions.

The flow velocity can be written

~v = ∇×

(
ψ(r, θ)φ̂

r sin θ

)
, (191)

or in terms of its components,

~v · r̂ =
∂θψ

r2 sin θ
, ~v · θ̂ = − ∂rψ

r sin θ
, ~v · φ̂ = 0, (192)
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where ψ is the so-called stream function, and the last expression reflects the azimuthal

symmetry. The general solution for ψ given in Ref. [88] is

ψ(r, θ) =
∞∑
n=2

(
anr

−n+1 + bnr
−n+3 + cnr

n + dnr
n+2
)
C(−1/2)
n (cos θ), (193)

where the C
(µ)
n are Gegenbauer polynomials.

We solve for the coefficients by imposing the boundary conditions. The flow at spatial

infinity should point in the ẑ direction

lim
r→∞

~v = v0ẑ = v0(cos θr̂ − sin θθ̂). (194)

Considering Eq. 192, we see that this holds if we have the asymptotic relation for large r

ψ ∼ v0r
2

2
sin2 θ =

v0r
2

2
(1− cos2 θ). (195)

Aside from the factor v0r
2, the final expression is exactly C

(−1/2)
2 (cos θ). This can be used

to solve for the cn and dn coefficients:

cn = v0δn,2, dn = 0. (196)

The general solution now takes the form

ψ(r, θ) =
v0r

2

2
(1− cos2 θ) +

∞∑
n=2

(
anr

−n+1 + bnr
−n+3

)
C(−1/2)
n (cos θ). (197)

The remaining coefficients are determined by requiring the fluid velocity to vanish at the

surface of the cell, which implies

∂ψ

∂r
= 0,

∂ψ

∂(cos θ)
= 0 (198)

there. The relationship between r and θ on the surface of the cell is given by the first line

of Eq. 185 with re = a,

r =
a

q1/3
√

1 + (q−2 − 1) cos2 θ
. (199)

We use Eq. 199 to solve for the coefficients an and bn in Eq. 197 using the following sampling

procedure from Ref. [88]. We sample m points uniform randomly in cos θ on the surface

of the ellipsoid. For each point, we have two equations that result from inserting Eq. 197
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into the two boundary conditions (Eq. 198) with r written in terms of cos θ according to

Eq. 199. This gives 2m equations. We truncate the sum in Eq. 197 at nmax = m + 1. This

gives 2m unknowns (the coefficients {an}m+1
2 and {bn}m+1

2 ). The resulting linear system in

the coefficients is solved by matrix inversion. Numerically, the matrix may be singular, and

therefore we use the singular value decomposition. Once we solve for an and bn, the flow

lines follow from Eq. 192.

3. Convection-Diffusion Equation

Given the flow lines ~v, we numerically solve the convection-diffusion equation (Eq. 17),

0 = D∇2c− ~v · ~∇c. (200)

This equation is subject to the secretion/absorption boundary condition at the ellipsoidal

cell surface (analogous to Eq. 18),

−Dn̂ · ~∇c|re=a = βe − αec|re=a, (201)

where n̂ is the outward-pointing unit vector orthogonal to ellipsoid, and αe and βe are given

in Eq. 190. To solve Eq. 200 subject to the ellipsoidal boundary condition, we derive the

forms of the Laplacian ∇2c and convective term ~v · ~∇c in ellipsoidal coordinates. Because

the coordinates are non-orthogonal, it is most convenient to use the language of differential

geometry (see Ref. [40]) to derive these forms.

a. Laplacian in Ellipsoidal Coordinates

Suppose that we change from one set of coordinates {xµ} to another {yµ′}. A vector

that transforms covariantly transforms like the chain rule for derivatives

V ′µ′ =
∂xµ

∂yµ′
Vµ. (202)

In the usual cartesian coordinates, we may write the derivative of a scalar in the direction

of ~v as ∇v = V µ∂µ, where the V µ transform contravariantly

V ′µ
′
=
∂yµ

′

∂xµ
V µ (203)
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under a change of coordinates. A tensor is an object with multiple indices, where each index

transforms covariantly or contravariantly independently. The basis vectors on a manifold can

change from point to point, so one must specify a curve to transport vectors and covectors

along to define derivatives. This method of using transport to differentiate is called the

covariant derivative, and its components for a general tensor take the form

∇µT
{α}
{β} = ∂µT

{α}
{β} +

∑
αi∈{α}

ΓαiρµT
{α|αi→ρ}
{β} −

∑
βi∈{β}

ΓρβiµT
{α}
{β|βi→ρ}, (204)

where {α|αi → ρ} means that the i-th index has been changed to ρ and summed over, ∂µ

is ordinary differentiation with respect to the coordinates, and the Γρµν are the Christoffel

symbols. The Christoffel symbols are not tensorial and are defined in terms of derivatives of

the metric tensor gµν

Γρµν =
gρα

2
(∂νgµα + ∂µgνα − ∂αgµν) . (205)

The metric tensor gµν is defined in terms of the differential arc length d` of curves

(d`)2 = gµνdx
µdxν . (206)

The metric tensor gµν may be used to lower indices, converting a contravariant vector to a

covariant one. The inverse metric gµν may raise indices and perform the inverse conversion.

When thought of as matrices, the inverse metric may be computed as the inverse of the

metric.

We know that the metric in cartesian coordinates gcart,µν is the identity matrix. It is often

easier to compute the matrix of partial derivatives ∂xµ/∂yν , where xµ = (x, y, z) denotes

cartesian coordinates and yµ denotes any new coordinates. We can use this to compute the

metric

gnew,µν =
∂xµ

′

∂yµ
∂xν

′

∂yν
gcart,µ′ν′ . (207)

Letting yµ = (re, θe, φe) be the ellipsoidal coordinates, the metric tensor in ellipsoidal coor-

dinates is

ge,µν =


q

4
3 cos2 θe + q−

2
3 sin2 θe re sin θe cos θe

(
q−

2
3 − q 4

3

)
0

re sin θe cos θe

(
q−

2
3 − q 4

3

)
r2
e

(
q

4
3 sin2 θe + q−

2
3 cos2 θe

)
0

0 0 q−
2
3 r2
e sin2 θe

 . (208)
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Inverting this gives the inverse metric

gµνe =


q

2
3 sin2 θe + q−

4
3 cos2 θe

1
re

sin θe cos θe

(
q

2
3 − q− 4

3

)
0

1
re

sin θe cos θe

(
q

2
3 − q− 4

3

)
1
r2e

(
q

2
3 cos2 θe + q−

4
3 sin2 θe

)
0

0 0 q
2
3

r2e sin2 θe

 . (209)

With the metric and inverse metric, we may compute the Christoffel symbols

Γ1
e,µν =


0 0 0

0 −re 0

0 0 −re sin2 θe

 , Γ2
e,µν =


0 1

re
0

1
re

0 0

0 0 − sin θe cos θe

 ,

Γ3
e,µν =


0 0 1

re

0 0 cos θe
sin θe

1
re

cos θe
sin θe

0

 .
(210)

We can use this to find the gradient and Laplacian of a scalar in the new coordinates. The

gradient describes the components of the covariant derivative, which is just the ordinary

derivative, as scalars are invariant under changes of coordinates

∇µf = ∂µf. (211)

The scalar Laplacian is the divergence of the gradient, which is

∇2f = gµνe ∇µ∇νf = gµνe
(
∂µ∂νf − Γρe,µν∂ρf

)
. (212)

Using the expressions derived above, we find

∇2f = q
2
3

[(
sin2 θe + q−2 cos2 θe

) ∂2f

∂r2
e

+
1

re

(
1 + cos2 θe + q−2 sin2 θe

) ∂f
∂re

+
1

r2
e

(
cos2 θe + q−2 sin2 θe

) ∂2f

∂θ2
e

+
1

r2
e

(
cos θe
sin θe

− 2
(
1− q−2

)
sin θe cos θe

)
∂f

∂θe

+
1

r2
e sin2 θe

∂2f

∂φ2
e

+
2

re

(
1− q−2

)
sin θe cos θe

∂2f

∂re∂θe

]
. (213)

This is the Laplacian in ellipsoidal coordinates.
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b. Convective Term in Ellipsoidal Coordinates

The convective term can be written in contravariant form as

~v · ~∇c = V µ∂µc. (214)

The gradient vector ∂µ = (∂re , ∂θe , ∂φe) is straightforward to write in ellipsoidal coordinates,

but for the velocity vector it is easiest to transform to spherical coordinates,

~v · ~∇c =
∂yµ

∂xν
V ν

sph∂µc, (215)

and then write ∂yµ/∂xν and V ν
sph in terms of re, θe, and φe. The former is obtained by

differentiating Eq. 185, and then inserting Eq. 186 into the results,

∂yµ

∂xν
=
∂(re, θe, φe)

∂(r, θ, φ)
=


q1/3√

1+(q2−1) cos2 θe
req
−1(q2 − 1) sin θe cos θe 0

0 1
2
q−1 [1 + q2 + (q2 − 1) cos(2θe)] 0

0 0 1

 . (216)

The latter is obtained by writing the curl (Eq. 191) in tensor notation,

V α = εαβγ∂βΨγ, (217)

where ~Ψ = ψφ̂/r sin θ and εαβγ is the Levi-Civita tensor. For orthogonal coordinate systems,

like spherical coordinates, the Levi-Civita tensor may be written in terms of the Levi-Civita

symbol ε̃

εαβγ =
√

det(gµν)ε̃αβγ, (218)

where ε̃ is +1 for even permutations of (1, 2, 3), −1 for odd permutations, and 0 for repeated

indices. The metric in spherical coordinates is well-known (and may be obtained from our

ellipsoidal metric by taking q → 1),

gµνsph =


1 0 0

0
1

r2
0

0 0
1

r2 sin2 θ

 , (219)
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which implies that √
det(gµνsph) =

1

r2 sin θ
. (220)

However, the basis vectors that are commonly used in differential geometry are not

normalized like φ̂. To find the basis vectors, we will start from the usual cartesian basis

vectors, which are normalized and take the familiar form, and transform them. We expect

φ̂ to be proportional to ~e 3
sph. We need the inverse Jacobian

∂xµ

∂yν
=
∂(x, y, z)

∂(r, θ, φ)
=


sin θ cosφ r cos θ cosφ −r sin θ sinφ

sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0

 . (221)

We compute ~e 3
sph

~e 3
sph = g3µ

sph

∂xν

∂yµ
~ecar,ν = g33

sph

∂xν

∂y3
~ecar,ν =

r sin θ(− sinφ~ecar,1 + cosφ~ecar,2)

r2 sin2 θ
,

=
− sinφ~ecar,1 + cosφ~ecar,2

r sin θ
=

φ̂

r sin θ
.

(222)

We find the covariant components of ~Ψ in spherical coordinates by writing ~Ψ = Ψµ~e
µ

sph,

which implies

Ψ1 = 0, Ψ2 = 0, Ψ3 = ψ. (223)

Using this to evaluate Eq. 217 gives

V 1
sph =

∂θψ

r2 sin θ
, V 2

sph = − ∂rψ

r2 sin θ
, V 3

sph = 0. (224)

Note that these are not the same as the components of ~v along the unit vectors in spherical

coordinates (Eq. 192). They are slightly different because they are the components along

the covariant basis vectors in spherical coordinates.

Thus, the convective term in ellipsoidal coordinates is given by Eq. 215, with ∂yµ/∂xν

given by Eq. 216 and V ν
sph given by Eq. 224. In Eq. 224, ψ is given by Eq. 197, and r and θ

are converted to ellipsoidal coordinates via Eq. 186.
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4. Relative Error

Finally, after obtaining the concentration c from Eq. 200, we calculate the mean and

variance of the anisotropy measure. The anisotropy measure is defined analogously to Eq.

21, as

Ae =
1

N

∫ T

0

dt

∫
dSaαec(a, θe, φe, t) cos θ, (225)

where

N = T

∫
dSaαec(a, θe) (226)

is the mean number of absorbed molecules in time T . The mean of Eq. 225 is

Ae =
T

N

∫
dSaαec(a, θe) cos θ. (227)

Eqs. 226 and 227 are evaluated numerically using c, where we write cos θ in terms of cos θe

according to Eq. 186.

The variance of Eq. 225 is 1/N , just as in Eq. 23. To prove this fact, we use a general-

ization of the argument in Section V above. Specifically, Eq. 178 still holds for the statistics

in the ẑ direction, and Eq. 179 still holds for the Poissonian N in general. However, the

variance of Ae is no longer the variance in the ẑ direction multiplied by a factor of three

(Eq. 180) because the ellipsoid breaks the spherical symmetry. Instead, we must write the

components from the x̂, ŷ, and ẑ directions explicitly,

σ2
Ae =

1

N
2

[
Var

(
N∑
i=1

sin θi cosφi

)
+ Var

(
N∑
i=1

sin θi cosφi

)
+ Var

(
N∑
i=1

cos θi

)]
. (228)
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Nonetheless, we can still write the analogs of Eq. 178 explicitly for the x̂, ŷ, and ẑ directions,〈(
N∑
i=1

sin θi cosφi

)2〉
=

〈
N∑
i=1

sin2 θi cos2 φi

〉
+

〈∑
i 6=j

sin θi cosφi sin θj cosφj

〉

= 〈N〉 〈sin2 θ cos2 φ〉+ 〈N(N − 1)〉 〈sin θ cosφ〉2 , (229)〈(
N∑
i=1

sin θi sinφi

)2〉
=

〈
N∑
i=1

sin2 θi sin
2 φi

〉
+

〈∑
i 6=j

sin θi sinφi sin θj sinφj

〉

= 〈N〉 〈sin2 θ sin2 φ〉+ 〈N(N − 1)〉 〈sin θ sinφ〉2 , (230)〈(
N∑
i=1

cos θi

)2〉
=

〈
N∑
i=1

cos2 θi

〉
+

〈∑
i 6=j

cos θi cos θj

〉

= 〈N〉 〈cos2 θ〉+ 〈N(N − 1)〉 〈cos θ〉2 . (231)

Due to Eq. 179, the final terms in Eqs. 229-231 are still the squares of the means. Therefore,

Eq. 228 becomes

σ2
Ae =

1

N
2

[
N 〈sin2 θ cos2 φ〉+N 〈sin2 θ sin2 φ〉+N 〈cos2 θ〉

]
=

1

N
, (232)

as we sought to prove.

5. Results

For a given value of the ellipsoidal scale factor q, we compute the flow lines according to

section B using m = 50 points, and we solve the convection-diffusion equation for c according

to section C. The ellipsoidal boundary condition in Eq. 201 is implemented in Mathematica

using the “NeumannValue” function. We also use an ellipsoid at re = re,max for the outer

boundary, where we impose c|re=re,max = 0. We compute the error σAe/Ae, relative to the

spherical case σA/A, as

Rq =
σAe/Ae

σA/A
, (233)

where σA/A is also computed numerically.

Fig. 7B shows the ratio Rq over the range where q deviates from 1 by as much as 20%.

We see that elongating in the flow direction (q > 1) decreases the sensory error, whereas

compressing in the flow direction (q < 1) increases the sensory error. Going beyond this
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range in q requires prohibitively large computational runtime, as more than m = 50 terms

are required in the flow lines for numerical accuracy, which significantly increases the runtime

of the numerical routine for solving the convection-diffusion equation. Nonetheless, we can

extrapolate out to q = 2, which corresponds to a cell that is twice as long as it is wide, for a

rough idea of the effect. Treating the result in Fig. 7B as a line (although it is slightly concave

up) indicates that elongation to this extent would reduce the sensory error by about 30%.

Thus, we conclude that elongation in the flow direction can lead to a moderate improvement

in the precision of flow sensing.
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Appendix C Supplement for “Precision of Protein Thermometry”

A. Derivation of Error for the Perfect Instrument

Fox [39] considered local fluctuations in the temperature T (x, t) of a homogeneous

medium near equilibrium with a uniform, time-independent mean

〈T (~x, t)〉 = T . (234)

This was done in the context of linear, irreversible thermodynamics, and the correlation

function for fluctuations in this regime is (Eq. 34)

〈∆T (~x, t)∆T (~y, t′)〉 =
kBT

2

ρcs

(
ρcs

4πK|t− t′|

)3/2

exp

[
−ρcs||~x− ~y||

2

4K|t− t′|

]
, (235)

where kB is Boltzmann constant, ρ is the mass density of the medium, cs is the specific heat,

and K is the thermal conductivity. We generalize the perfect instrument of Berg and Purcell

to sense temperature as follows. We assume that the detector is a completely permeable

sphere of radius a that can record the fluctuating temperature at each point within its

volume at each instant. It then performs an average over its volume and some time interval

of length τ , yielding the estimate

T̂ = V −1τ−1

∫
V

d3~x

∫ τ

0

T (~x, t)dt. (236)

Since it is linear in the temperature, we note that

〈T̂ 〉 = T . (237)

The fluctuations are given by the double integral of the correlation function in space and

time

σ2(T̂ ) = V −2τ−2

∫
V

d3~xd3~y

∫ τ

0

〈∆T (~x, t)∆T (~y, t′)〉dtdt′. (238)

93



1. Short-Time Limit

In the short-time limit, τ → 0, the average is purely spatial

T̂ ∼ V −1

∫
V

T (~x, t)d3~x (239)

and the correlation function is a delta function

〈∆T (~x, t)∆T (~y, t)〉 =
kBT

2

ρcs
δ(~x− ~y). (240)

With this, the variance in our estimator is

σ2(T̂ ) ∼ kBT
2

ρcsV 2

∫
V

δ(~x− ~y)d3~xd3~y =
3kBT

2

4πρcsa3
. (241)

The noise-to-signal ratio is

σ(T̂ )

T
∼

√
3kB

4πρcsa3
, (242)

as in Eq. 35 (top case).

2. Long-Time Limit

We will start by performing the time integrals first. We perform a change of variables

from (t, t′) to (∆, t′), with ∆ = t− t′, and switch the order of integration so that we integrate

over t′ first. We can do the time integrals analytically, which yields

σ2(T̂ ) =
kBT

2

V 2

∫
V

[
−
e−csρ||~x−~y||

2/4Kτ√ρcs
2(πKτ)3/2

+
(csρ||~x− ~y||2 + 2Kτ)

4πK2||~x− ~y||τ 2
erfc

(
||~x− ~y||

√
ρcs

4Kτ

)]
d3~xd3~y.

(243)

In the long-time limit, the term that goes as τ−1 decays the slowest and dominates the

expression. We may also set the complementary error function to one, as the argument is

small. This simplifies the expression to

σ2(T̂ ) ∼ kBT
2

2πKτV 2

∫
V

d3~xd3~y

||~x− ~y||
. (244)
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One can evaluate this integral by expanding it in terms of spherical harmonics or recognizing

that it is related to the volume averaged potential inside of a uniformly charged sphere. Either

way, the integral comes out to

V −2

∫
V

d3~xd3~y

||~x− ~y||
=

6

5a
. (245)

Putting everything together, we find

σ(T̂ )

T
∼
√

3kB
5πKaτ

, (246)

as in Eq. 35 (bottom case).

B. Fit to the Circular Dichroism Data

In their experiment, Hurme et al. used circular dichroism to infer the fraction of TlpA

units in the monomeric state as a function of temperature in vitro [56]. The resulting

curves are dependent on the supplied concentration of subunits, and they considered two

concentrations: 0.12 µM and 3.61 µM. From a blotting analysis, they estimated the in vivo

concentration as 0.36 µM at 28 ◦C and 0.6 µM at 37 ◦C. Both of these are closer to the

0.12 µM value used in vitro, so we use this case. We fit the fraction of TlpA units in the

monomeric state as a function of temperature with a sigmoid

f(T ) =
1

1 + exp(−4(T − TM)/∆T )
(247)

using the method of least squares to determine the parameters. We find TM = 39 ◦C and

∆T = 6.3 ◦C. The fit is shown in Fig. 11.
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Figure 11: Fraction of TlpA units in the monomer state as a function of temperature. The

black dots are the experimental data (open circles in Fig. 5C of Ref. [56], while the blue

line is the sigmoidal fit (Eq. 247) with half-maximal temperature TM = 39 ◦C and width

∆T = 6.3 ◦C.

C. Derivation of Results for Biochemical Models

1. Properties of the Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process is important because it appears as the linearization of

any Markovian chemical master equation. The stochastic differential equation takes the form

d ~Xt = J ( ~Xt − ~µ)dt+ d ~Nt, (248)

where ~Xt is n dimensional, the Jacobian matrix J and the mean ~µ are constant in time, and

~Nt is a vector of n correlated and scaled Wiener processes where the mean is zero and the

covariances are given by

〈 ~Nt
~NT
s 〉 = min(s, t)Σ, (249)

for Σ symmetric and positive-definite. The general solution is

~Xt = ~µ+ eJ t( ~X0 − ~µ) +

∫ t

0

eJ (t−s)d ~Ns. (250)
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The steady state mean is ~µ, and the steady state covariance matrix is computed through

C = lim
t→∞

〈
( ~Xt − ~µ)( ~Xt − ~µ)T

〉
. (251)

In order for this limit to exist, J must have eigenvalues with negative real parts, and we

assume this to be the case, as this also implies that the deterministic system is stable. The

Itô isometry [60] can be used to simplify this to an integral

C =

∫ ∞
0

eJ tΣeJ
T tdt. (252)

By using integration by parts, we find the Lyapunov equation

J C + CJ T + Σ = 0. (253)

This is easier to solve in practice, since it is linear in the components of C.

Now we compute the cross-correlation matrix. We start in steady state, so we assume

that ~X0 is gaussian distributed with mean ~µ and covariances given by the steady state

covariance matrix C. The cross-correlation matrix is defined through

C(τ) =
〈

( ~Xt+τ − ~µ)( ~Xt − ~µ)T
〉
, (254)

where stationarity removes the t-dependence. Progress can be made by using the Itô isometry

again and proceeding by cases depending on the sign of τ . This yields the result

C(τ) =

e
J τC, τ > 0,

Ce−J T τ , τ < 0.

(255)

Now let’s put this all together. If ~X is a stationary stochastic process, the covariances

of the time average CTA over the window [0, τ ] are related to the cross-correlations C(t) via

CTA(τ) = τ−2

∫ τ

0

∫ τ

0

C(t− t′)dtdt′. (256)

As before, we change to the pair of variables (∆, t′), with ∆ = t − t′, and switch the order

of integration so that t′ is integrated first. This leads to

CTA(τ) = τ−2

[∫ τ

0

(τ −∆)C(∆)d∆ +

∫ 0

−τ
(τ + ∆)C(∆)d∆

]
. (257)
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Using the specific form of our cross-correlation matrix and integrating by parts gives

CTA(τ) = τ−2
[
−τJ −1C + J −2

[
eJ τ − I

]
C − τC(J T )−1 + C(J T )−2

[
eJ

T τ − I
]]
, (258)

the inverse of J exists since the eigenvalues have negative real parts and we have used the

shorthand J −2 = (J −1)2. We can simplify things a bit further by using Eq. 253 to yield

CTA(τ) = τ−2
[
τJ −1Σ(J T )−1 + J −2

[
eJ τ − I

]
C + C(J T )−2

[
eJ

T τ − I
]]
. (259)

The first term is what we would find in the zero-frequency limit of the power spectrum.

2. Reactions and General Setting

In our model, we have a monomer that can reversibly form a dimer. The monomer is

actively produced, but the dimer represses the production of the monomer, and both are

lost via dilution, leading to the reactions

2 M
kd−−⇀↽−−
km

D, M
k−−−−⇀↽−−−
g(dt)

∅, D
k−−−→ ∅, with g(dt) =

k+

1 + αdt
. (260)

One can write the Kramers-Moyal expansion for the stochastic reactions. Doing so out to

second-order derivatives yields a Fokker-Planck equation, which corresponds to the following

stochastic differential equations test

ddt = [kdm
2
t − (km + k−)dt]dt+

√
kdm2

t + kmdtdW
(1)
t +

√
k−dtdW

(2)
t ,

dmt =

[
k+

1 + αdt
+ 2kmdt − k−mt − 2kdm

2
t

]
dt

− 2
√
kdm2

t + kmdtdW
(1)
t +

√
k+

1 + αdt
+ k−mtdW

(3)
t ,

(261)

where W
(1)
t , W

(2)
t , W

(3)
t are standard, independent Wiener processes with variance t.

From the deterministic equations, it is easy to see that there is a unique positive steady

state. The fraction of TlpA molecules in the monomer state

f =
m

m+ 2d
, (262)
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has been well characterized experimentally, where the bars denote the deterministic steady

state or mean values. We can use this to solve for the dimer number in terms of the monomer

number and fraction

d =
m

2

(
1− f
f

)
. (263)

Using the steady state condition from the dimer’s equation of motion gives

km + k−

kd
=
m2

d
. (264)

We can use Eq. 263 to eliminate the dimer, which gives

km =
2mfkd
1− f

− k−. (265)

We will make this substitution when solving the rate equations for m.

3. Derivation for the “Fixed Pool” Model

For the fixed pool, we take k+ and k− to zero. This makes mt + 2dt = n a conserved

quantity that we call the pool size. We can eliminate the dimer from the dynamics

dmt = [km(n−mt)− 2kdm
2
t ]dt− 2

√
kdm2

t + km

(
n−mt

2

)
dW

(1)
t . (266)

We start by finding the steady state mean. We do so by identifying the m value that causes

the deterministic term to vanish. Using Eq. 265, this gives m = nf , as expected. To convert

noise in molecules to noise in a temperature estimate, we also need a linearization factor

dm/dT , which is just nf ′.

Now we will linearize the system to find the fluctuations. In doing so, we will also confirm

that the fixed point is linearly stable. Letting δmt = mt−m and expanding the equation to

first-order in δm in the deterministic term and zeroth-order in the noise term, we find

d(δmt) = −2kdn
f(2− f)

1− f
δmtdt− 2

√
2kdf 2n2dW

(1)
t (267)

The coefficient of the linearized deterministic term is negative, so the fixed point is deter-

ministically stable. We see that the Jacobian and noise covariance matrix are

J = −2kdn
f(2− f)

1− f
, Σ = 8kdf

2n2. (268)
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With these, we can find the variance in the time average or the maximum likelihood estimate

of the mean, as the Lyapunov equation is trivial to solve for scalars. The steady state variance

may be computed from Eq. 253

σ2(m) =
2(1− f)fn

2− f
. (269)

The variance in the time averaged monomer number may be computed from Eq. 259 by

using C = σ2(m) and the expressions for J and Σ in Eq. 268. From Eq. 255, we see that the

correlation timescale is τd = −1/J . This completes the derivation of Eq. 36.

4. Derivation for “Production-Dilution” Model, without and with Feedback

a. Deterministic Analysis

The deterministic equations for the system are

ḋ = kdm
2 − (km + k−)d,

ṁ =
k+

1 + αd
+ 2kmd− k−m− 2kdm

2.
(270)

The mean dimer number can be found from its equation of motion: d = kdm
2/(km + k−).

Using the dimer steady state equation and Eq. 263, we find that the monomer steady state

value satisfies

0 =
k+

1 + αm(1− f)/(2f)
− k−m

f
. (271)

The production term decreases from k+ to 0 monotonically for m > 0, while the loss term

increases monotonically from 0 to infinity, so there is exactly one stable, positive fixed point.

We find that the positive root is

m =
f

α(1− f)

[√
1 +

2(1− f)αk+

k−
− 1

]
, (272)

as in Eq. 38. It will be helpful to compute the mean monomer number in the absence of

autorepression. This is done by taking α→ 0, where we find

m0 := lim
α→0

m =
fk+

k−
. (273)
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as given above Eq. 37. We can treat m0 as a free parameter and solve for f in terms of α,

m0, and m

f =
m2

m2 + 2α−1(m0 −m)
. (274)

This will be useful in simplifying expressions later on.

We show that the fixed point is stable. The Jacobian at the fixed point is

J =

 −km − k− 2kdm

2km −
αk+

(1 + αd)2
−k− − 4kdm

 . (275)

The eigenvalues of this matrix both have negative real parts if the trace is negative and the

determinant is positive. Since m > 0, it is trivial to see that this has a negative trace. Using

Eqs. 263 and 265, it follows that the determinant is positive, so we conclude that this fixed

point is stable.

b. Stochastic Analysis

Linearizing the noise term, we can read off the form of ~NtN (1)
t

N
(2)
t

 =


√
kdm

2 + kmdW
(1)
t +

√
k−dW

(2)
t

−2
√
kdm

2 + kmdW
(1)
t +

√
k+

1 + αd
+ k−mW

(3)
t

 . (276)

We just need to identify the matrix Σ, which may be readily computed from the previous

expression and simplified using the steady state equations and the expression for dimer from

Eq. 263

Σ =

kdm2 + kmd+ k−d −2
(
kdm

2 + kmd
)

−2
(
kdm

2 + kmd
)

4
(
kdm

2 + kmd
)

+
k+

1 + αd
+ k−m



=

 2kdm
2 −2

(
2kdm

2 − k−m(1− f)

2f

)
−2

(
2kdm

2 − k−m(1− f)

2f

)
8kdm

2 + k−
m(5f − 1)

2f

 .
(277)
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With this, our system of SDEs is in the canonical form for an OU process. The covariance

matrix may be determined from Eq. 253. Using Eq. 274 to eliminate the fraction, we find

that,

C1,1 =
(m−m0) kd (−2αm4 (αm− 2) +m0m

2 (αm (3αm− 16) + 14))

αD

+
(m−m0) kd (4m2

0m (3αm− 7) + 14m3
0)

αD

− k−m0 (m−m0) 2 (m (αm− 4) + 4m0)

αmD
,

C1,2 = C2,1 =
m (m−m0) 2 (mkd (4m (αm− 2) + 9m0) + k− (m (αm− 2) + 2m0))

D
,

C2,2 = −m
2kd (16m3 (αm− 2) +m0m

2 (αm (2αm− 47) + 128))

2D

− m2kd (m2
0m (31αm− 160) + 64m3

0)

2D

− k−m2 (m−m0) (αm− 2) (αm (m (αm− 2) +m0 (10− αm)) +m0)

αm0D

+
k−m0 (m−m0) (m2 (αm (18αm− 59)− 16) +m0m (29αm+ 20)− 8m2

0)

2αmD
,

D =
(
2m2 (αm− 2)− 3m0m (αm− 4)− 8m2

0

)
×
(
mkd (m (αm− 4) + 4m0) + k− (m0 −m)

)

(278)

As before, the variance in the time averaged monomer number may be computed from Eq.

259 by using this covariance matrix with the expressions for J and Σ in Eqs. 275 and 277

respectively. The variance in the pool size may be computed from these results according to

σ2(n) = cov(2d+m, 2d+m) = 4C1,1 + 4C1,2 + C2,2, (279)

where “cov” denotes the covariance.

We now describe how to arrive at Eq. 37. In the limit that protein loss is much slower

than dimerization k− � kdm, we find that the variance σ2(m) = C2,2 and σ2(n) simplify to

σ2
PDF(m) = −2α2m0m

5 + α (16m− 31m0) (m−m0)m3 − 32 (m− 2m0) (m−m0) 2m

2 (αm2 (2m− 3m0)− 4 (m− 2m0) (m−m0)) (m (αm− 4) + 4m0)
,

σ2
PDF(n) = − m0 (m (αm− 4) + 4m0) (m (2αm− 7) + 7m0)

2αm (αm2 (2m− 3m0)− 4 (m− 2m0) (m−m0))
.

(280)
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In the limit of no feedback, α→ 0, the expressions simplify further to

σ2
PD(m) =

f (5f 2 − 17f + 16) k+

4(f − 2)2k−
, σ2

PD(n) =
(7− 3f)k+

4k−
. (281)

We compute σ2
FP(m) according to Eq. 269 but take n = m/f , where the expression for m is

taken from Eq. 272. Eq. 37 in the main text may be verified by computing (σ2
PDF/PD(m)−

σ2
FP(m))/σ2

PDF/PD(n), which simplifies to f 2/(2− f)2 for both nonzero α (PDF) and zero α

(PD).

5. Optimal Autorepression

The autorepression strength α has competing effects such that there is an optimal

strength that minimizes the relative error. When the timescale separation is large, k− �

kdm, we find that the relative error σ(m)/|dm/dT | = C1/2
2,2 /|dm/dT | only depends on α, f ,

and the ratio k+/k−. To find the optimal α, we set f = 1/2, find where the derivative of the

relative error with respect to α vanishes, and check that the second derivative with respect

to α at that point is positive. There is exactly one positive α value where the derivative

vanishes, and it occurs at

α = α∗ =
1.75

k+/k−
, (282)

as stated in the main text. The second derivative at this point is 0.0105 × (k+/k−)3/2, so

this is a local minimum. We find that the relative error is O(α1/4) as α→∞ in both cases,

so this is the global minimum. Using the ratio k+/k− = 2521 estimated from experiments,

this leads to α∗ = 6.9× 10−4.

D. Monomer Readout vs. Dimer Readout

Here we compare the temperature estimation error inferred from the monomer number

(as in the main text) and from the dimer number. We see in Fig. 12 that qualitatively the

error has a similar dependence on the integration time in the two cases, and quantitatively

the two only differ by a factor of order unity (ranging from approximately two to three

depending on the integration time).
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Figure 12: Comparing the relative error in temperature sensing inferred from the monomer

number vs. from the dimer number. Parameters are as in the main text: f = 1/2, α =

6.94× 10−4, kd = 7.1× 10−4 s−1, k− = 5.5× 10−4 s−1, and k+/k− = 2521.

E. Maximum Likelihood Estimation

1. Trajectory Probability

We want to incorporate all of the available information to derive the limits to cellular

performance. This requires the probability of observing a specified trajectory. Suppose that

we have a stochastic differential equation with additive noise

d ~Xt = ~F ( ~Xt, t)dt+ d ~Nt, (283)

where ~Xt is n-dimensional, and ~N is an n-dimensional scaled Wiener process where the mean

is zero and the covariances are given by

〈 ~Nt
~NT
s 〉 = min(s, t)Σ, (284)
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for Σ symmetric and positive definite. We define the current at time t to be

~J( ~Xt, t) = ~F ( ~Xt, t)dt+ d ~Nt. (285)

We can formally write the probability density of observing a trajectory by discretely sampling

it at M points in time separated by time ∆t and computing

P ({ ~Xt}t>0| ~X0) = lim
M→∞

〈
M∏
j=1

δ( ~Xj − ~Xj−1 − ~Jj−1)

〉
J

, (286)

where we used the Itô discretization, take ∆t→ 0 such that M∆t = τ is constant, and use

a subscript j to indicate evaluation at j∆t and ~Xj∆t. Since we specify the trajectory we are

interested in, ~Jj is a gaussian random variable that is linearly related to the scaled Wiener

processes via

∆ ~Nj = ~Jj − ~Fj∆t. (287)

The increments of the Wiener process at different times are independent, while at the same

time their covariance is 〈
∆ ~Nj∆ ~NT

j

〉
= (∆t)Σ. (288)

It follows that the jump distribution at one instant is

P ( ~Jj) = P (∆ ~Nj)

∣∣∣∣∣det

(
∂(∆ ~Nj)

∂ ~Jj

)∣∣∣∣∣ =
exp

(
− 1

2∆t
〈 ~Jj − ~Fj∆t,Σ

−1( ~Jj − ~Fj∆t)〉
)

√
(2π)n det(Σ)

. (289)

Since the process is Markovian, we may evaluate the average of the product of deltas term-

by-term

P ({ ~Xt}t>0| ~X0) = lim
M→∞

M∏
j=1

〈
δ( ~Xj − ~Xj−1 − ~Jj−1)

〉
J
. (290)

Using the delta functions leads to the result

P ({ ~Xt}t>0| ~X0) = lim
M→∞

M∏
j=1

exp
(
− 1

2∆t
〈 ~Xj − ~Xj−1 − ~Fj∆t,Σ

−1( ~Xj − ~Xj−1 − ~Fj∆t)〉
)

√
(2π)n det(Σ)

.

(291)

This is the well-known Onsager-Machlup functional. To get the probability of the full tra-

jectory, we need to weight this by the probability of a given initial condition

P ({ ~Xt}t≥0) = P ( ~X0) lim
M→∞

M∏
j=1

exp
(
− 1

2∆t
〈 ~Xj − ~Xj−1 − ~Fj∆t,Σ

−1( ~Xj − ~Xj−1 − ~Fj∆t)〉
)

√
(2π)n det(Σ)

.

(292)
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2. The Maximum Likelihood Estimate

For the case of an Ornstein-Uhlenbeck process, we have

~Fj = J ( ~Xj − ~µ). (293)

and the steady state distribution

P ( ~X0) =
exp

(
−1

2

〈
~X0 − ~µ, C−1( ~X0 − ~µ)

〉)
√

(2π)n det(C)
. (294)

We can re-write our functional as

P ( ~Xt≥0) ∼
exp

(
−1

2

〈
~X0 − ~µ, C−1( ~X0 − ~µ)

〉)
√

(2π)n det(C)

×
M∏
j=1

exp
(
− 1

2∆t
〈 ~Xj − ~Xj−1 − ~Fj∆t,Σ

−1( ~Xj − ~Xj−1 − ~Fj∆t)〉
)

√
(2π)n det(Σ)

,

(295)

where we are working with the expression at finite M and then taking the M → ∞ limit.

Generally, the maximum likelihood estimate is computed via

~̂θ = argmax~θP (~x|~θ), (296)

where ~x is the data and ~θ are the parameters influencing the distribution [20]. Since the

logarithm is monotone, this maximization is often computed by taking the logarithm and

differentiating. This gives

∇~µ logP ∼ −C−1(~µ− ~X0)− J TΣ−1

M∑
j=1

( ~Xj − ~Xj−1 + J (~µ− ~Xj−1)∆t). (297)

Let’s simplify this expression. The difference of X terms form a telescoping sum that

simplifies to
M∑
j=1

( ~Xj − ~Xj−1) = ~Xτ − ~X0, (298)

using the fact that M∆t = τ . The µ term from the dynamics simplifies

M∑
j=1

J ~µ∆t = J ~µτ. (299)
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The last term from the dynamics is the definition of an Itô integral

−
M∑
j=1

J ~Xj−1∆t = −J
∫ τ

0

~Xtdt. (300)

This leads to the simplified expression

∇~µ logP = −C−1(~µ− ~X0)− J TΣ−1

[
~Xτ − ~X0 + J ~µτ − J

∫ τ

0

~Xtdt

]
. (301)

Our maximum likelihood estimate is determined by finding the ~µ that causes the gradient

to vanish, and this is

~̂µ =
(
C−1 + J TΣ−1J τ

)−1
[(
C−1 + J TΣ−1

)
~X0 − J TΣ−1 ~Xτ + J TΣ−1J

∫ τ

0

~Xtdt

]
. (302)

Note that this is an unbiased estimator, as the mean of ~Xt is ~µ for all t for our given initial

condition. Furthermore, since it is a linear combination of gaussian random variables, it is

also a gaussian random variable. In the long time limit, the time average term dominates.

This can be written as the uniform time average plus corrections that vanish at long times.

It is straightforward, albeit tediuous, to compute the covariance matrix. After a lot of

cancellation, we find

C~µ,~µ =
〈

(~̂µ− ~µ)(~̂µ− ~µ)T
〉

=
(
C−1 + J TΣ−1J τ

)−1
, (303)

This also has the same short- and long-time asymptotics as the naive time average.
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3. Cramer-Rao Bound

The Cramer-Rao bound specifies the best that an estimate can possibly do [20]. The

multivariate Cramer-Rao bound states that, for an unbiased estimator,

C~θ,~θ ≥ I(~θ)−1, (304)

where I(~θ) is the Fisher information

Ii,j(~θ) :=

〈(
∂ logP (~x|~θ)

∂θi

)(
∂ logP (~x|~θ)

∂θj

)〉
= −

〈
∂2 logP (~x|~θ)

∂θi∂θj

〉
, (305)

where the last step assumes differentiability and uses integration by parts. Here A ≥ B

means that A − B is a positive semi-definite matrix. Note that any positive semi-definite

matrix M has ~vTM~v ≥ 0 for any real vector ~v. Taking ~v to be any standard unit vector

gives the inequality [
C~θ,~θ
]
i,i
≥
[
I(~θ)−1

]
i,i
. (306)

The variances of the estimates are bounded below by the diagonal elements of the inverse

Fisher matrix. When the matrix “inequality” is saturated, the variances of the estimates are

minimized.

Focusing on a particular component of the mean, we have

∂ logP

∂µi
= −

∑
k

C−1
i,k µk −

∑
k

(J TΣ−1J )i,kµkτ + fi( ~X), (307)

where fi( ~X) contains the ~µ-independent terms. Taking another derivative with respect to

µj gives
∂2 logP

∂µi∂µj
= −C−1

i,j − (J TΣ−1J )i,jτ. (308)

This is a constant, so it is minus the Fisher information, see Eq. 305. We see that the inverse

Fisher information matrix is equal to the covariance matrix C~µ,~µ, so maximum likelihood

estimation attains the minimum possible error.
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4. Comparison of Time Averaging and Maximum Likelihood

Using the expressions derived above, we can compute the relative error using the max-

imum likelihood approach and compare it to the time average. This is shown in Fig. S3,

where the parameter values are those used in the main text, and we see that the two curves

are almost identical. Although maximum likelihood is optimal, it assumes that the cell

“knows” the matrices J and Σ, but this result shows that the cell can come very close to

the fundamental limit using naive time averaging.

Figure 13: Comparison of the relative error in temperature sensing through maximum likeli-

hood (red) and time averaging (blue). Parameter values match those used in the main text:

f = 1/2, α = 6.94× 10−4, kd = 7.1× 10−4 s−1, k− = 5.5× 10−4 s−1, and k+/k− = 2521.

F. Temperature Dependence of the Production and Dilution Rates and the

Feedback Strength

In the main text, we account for the temperature dependence of the binding rates kd and

km via the experimentally characterized monomer fraction f(T ). We assume that the re-
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maining parameters k+, k−, and α are temperature independent, but in principle they could

depend on temperature. Therefore, we investigate the temperature dependence of these

parameters here. We will argue that dk+/dT and dα/dT may neglected based on experi-

mental evidence and that dk−/dT as estimated from experiments is negligible quantitatively

compared to df/dT .

We will begin by considering the experimental results regarding k+ and α. Hurme et al.

performed a Miller assay on mutants where the region of gene coding for TlpA was removed

and replaced with a reporter, while the promoter was unchanged [56]. This assay reports the

number of times that a gene has been expressed within a period of time, and it was not found

to vary significantly with temperature in the mutants. Since k+ is the production rate in the

absence of autorepression (achieved here since the cells don’t contain TlpA), we take this to

mean that we may safely neglect its temperature dependence. This same evidence raises the

possibility that the structure of the promoter does not radically change with temperature,

which suggests that we may regard α as relatively insensitive to temperature. However,

making a statement about α requires the dimer to be present. Hurme et al. also did further

experiments without excising the coding region of the gene. The approach was to induce

modifications to the TlpA binding site on the promoter similar to what would be seen upon

induction to high temperature while leaving the temperature and the fraction f constant.

They tested the effects of DNA supercoiling via H-NS mutants and topoisomerase I and

found that supercoiling did not contribute to derepression. They also applied ethanol stress,

which is known to activate heat shock genes, and found that this did not lead to derepression

of tlpA. We take this evidence to suggest that the interaction of the promoter with a given

TlpA dimer is relatively insensitive to temperature and ignore the temperature sensitivity

of α.

We now consider the temperature dependence of k−, which is set by the cell division

time. Fehlhaber and Krüger measured the temperature dependence of the division time

in Salmonella enteritidis [36]. We fit their data over the range 22-42 ◦C to a quadratic

function using the least squares method, shown in Fig. 14. Using the fit at T = 39◦C with

k− = log(2)/τ1/2, we find (k−)−1dk−/dT = −τ−1
1/2dτ1/2/dT = −0.044 (◦C)−1. To see how this

sensitivity compares to that of the fraction f in determining the temperature dependence of
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the monomer number m, we recall the expression for m in Eq. 272. Its scaled derivative is

1

m

dm

dT
=

[
1− f(1 + χ)

2

]
1

f(1− f)

df

dT
+

[
−1− χ

2

]
1

k−
dk−

dT
. (309)

where the response-like variable χ =
√
k−/[2(1− f)αk+ + k−] is positive and less than one.

Now we can compare the magnitudes of the terms containing the temperature sensitivity

due to k− and that due to f . In the PD model (α→ 0) at f = 1/2, the term for f in Eq. 309

is 0.31 (◦C)−1, while the term for k− is 0.044 (◦C)−1. In the PDF model, for the parameters

used in the main text (f = 1/2, α = 6.94× 10−4, s−1, and k+/k− = 2521), the term for f is

0.37 (◦C)−1, while the term for k− is 0.035 (◦C)−1. In both cases, the term for f is an order

of magnitude larger than that for k−. Therefore we neglect the temperature dependence of

k−.

Figure 14: Plot of division time τ1/2 against temperature using data from Ref. [36]. The

blue points are the measured average values and the red line is the quadratic fit with least

square error.
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G. Checking the Linear Noise Approximation Using Simulations

Employing the Gillespie algorithm [44], we check whether the linear noise approximation

assumed above holds for the “Production-Dilution with Feedback” model. For the simula-

tion, we use the parameters in the main text: f = 1/2, α = 6.94× 10−4, kd = 7.1× 10−4 s−1,

k− = 5.5× 10−4 s−1, and k+/k− = 2521. Fig. 15 (blue) shows the distribution of monomer

numbers (left) and time-averaged monomer numbers over one generation, 20 minutes (right),

obtained for 106 simulated trajectories. Both fit well with the linear noise approximation

(dashed black) which peaks around the mean m as given in Eq. 38. We have used the nu-

merical values for this mean m and the variance as calculated using Eq. 278 and Eq. 259

respectively to generate the plots shown in the left and right panels of Fig. 15. The theo-

retically predicted distribution for the time-average has a larger discrepancy with the data

than in the case with the instantaneous monomer number. Our theory predicts that the

variances for panels A and B are 850.3 and 166.2 respectively, while the data have respective

variances of 829.5 and 151.3. We see that the theory predicts a variance that is biased high

in both cases. The difference between the predicted variances and the simulated variances

are comparable in the two cases, but the discrepancy is relatively larger in the time-averaged

case, where the variances are much smaller.

H. Timescale of Transcriptional Bursts

When the TlpA dimer is bound to the promoter region for tlpA, the gene is not tran-

scribed. If the dimer is unbound, the gene is transcribed and TlpA monomers are produced

at rate k+. We introduce kon and koff, which are the rate constants for a single dimer

molecule to bind and unbind from the promoter region respectively. It is straightforward

to show that, for a given dimer number d, the steady state probability that the gene is off

is (1 + kond/koff)−1. For consistency with our deterministic results, we take kon/koff = α.

Therefore, it suffices to estimate either the binding or the unbinding rate. We will estimate

the binding rate under the assumption that it is diffusion-limited. In this case, the binding
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Figure 15: Illustration of the validity of the Gaussian approximation via numerical simu-

lation. The distributions for monomer number (left) and time averaged monomer number

(right) over 20 minutes were computed via Gillespie simulations (blue histograms) and the

linear noise approximation (black dashed curves).

rate takes the form

kon =
4πDR

V
, (310)

where D is the relative diffusion coefficient between the promoter and a TlpA dimer, R is

the contact radius at which the binding reaction occurs, and V = 1 µm3 is the cell volume

[108].

First, we discuss estimating R. We treat the dimer as a sphere whose radius is estimated

from its mass and typical values of partial specific volume for proteins [32]. The promoter

can be enclosed by a sphere whose diameter is the length of the promoter. We assume that

the dimer binds to the promoter when it reaches this sphere. This leads to the estimate

R = Rd +
L

2
, (311)

where Rd is the estimated radius of a TlpA dimer and L is the length of the promoter.

Now we turn to estimating the relative diffusion coefficient. Since the promoter region

is tethered to the rest of the DNA, we assume that its fluctuations in position are small
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compared to the excursions of a given dimer molecule. This means that we may approximate

the relative diffusion coefficient by the diffusion coefficient of a dimer molecule. We then use

the Einstein fluctuation relation to connect the diffusion coefficient to the drag coefficient of

the dimer and Stokes’ law to connect the drag coefficient to its size. This leads to

D =
kBT

6πηRd

, (312)

where η is the dynamic viscosity of cytosol.

Putting everything together, we find

kon =
2

3

kBT

ηV

[
1 +

L

2Rd

]
. (313)

Koski et al. [62] state that the mass of a TlpA monomer is 43 kDa, so the dimer has a mass of

86 kDa. This leads to an estimate of Rd ≈ 2.9 nm [32]. Typical transcription factor binding

sites are typically ∼ 10 base pairs long [109], and each base pair is around 0.34 nm, so this

leads to L ≈ 3.4 nm. The dynamic viscosity of cytosol may be approximated by that of

water, which is 6.6× 10−4 kg/(m · s) at 39 ◦C. This leads to the estimates kon = 6.9 s−1 and

koff = kon/α = 9.9×103 s−1. Using the parameters in the main text (f = 1/2, α = 6.94×10−4,

kd = 7.1×10−4 s−1, k− = 5.5×10−4 s−1, and k+/k− = 2521), the typical rate of the receptor

switching on is kond = 3.3×103 s−1. In contrast, the dilution rate is k− = 5.5×10−4 s−1, and

the dimerization rate is 2kdm = 1.3 s−1. There is a very clear separation of timescales here.

The monomer and dimer will effectively respond to the average promoter state. Therefore,

we expect the effect of promoter fluctuations on the variance of the monomer and dimer to

be negligible, and this is consistent with what we have observed in simulations (data not

shown).
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I. Estimate of Thermosensing Precision from Miller Assay Experiments

We look at the error in temperature sensing inferred from Hurme’s measurements of the

Miller units at different temperatures [56]. In the Miller assay, a promoter is added after the

gene of interest. Whenever the target gene is transcribed, the reporter is as well. After some

time, optical measurements are taken to quantify gene activity. The result is proportional to

the number of times the reporter mRNA has been translated normalized by the cell density

[74, 42].

The data were taken at two different temperatures T1 and T2. We are interested in the

activity at intermediate temperatures T1 < T < T2. Let us say that the measured values

of the activity A at T1 and T2 are A1 ± σA,1 and A2 ± σA,2 respectively. We use linear

interpolation to estimate the mean and standard deviation

A(T ) =

(
A2 − A1

T2 − T1

)
(T − T1) + A1, (314)

σA(T ) =

(
σA,2 − σA,1
T2 − T1

)
(T − T1) + σA,1. (315)

We assume that the error is given by linear error propagation. Specifically, the units

are measured and Eq. 314 is inverted to solve for temperature T̂ = f(A). Linear error

propagation at the transition temperature gives the fluctuations in the temperature estimate

σ(T̂ ) =
σA(TM)

|dA/dT |
= σA(TM)

|T2 − T1|
|A2 − A1|

, (316)

which leads to a relative error

σ(T̂ )

|T2 − T1|
=
σ(T̂ )

∆T
=

σA(TM)

|A2 − A1|
. (317)

For S. typhimurium molecule A is TlpA, and the experiments were done at T1 = 37◦C and

T2 = 43◦C and found A1 = 68, σA,1 = 16, A2 = 294, σA,2 = 116, TM = 39◦C [56]. This leads

to a relative error of 24%, as stated in the main text.

115



J. Including the Miller Assay Reporter in the Theory

1. Theoretical Calculation

As mentioned above, the Miller units are proportional to the number of reporter molecules

produced per cell. Therefore, we add the production of a reporter molecule β to our model.

This is produced whenever the monomer would be produced. Since we care about the

number produced per cell per generation (around τ = 20 minutes), we neglect the effect

of degradation or dilution on β and start with β0 = 0. We now compute the error in

temperature sensing due to the reporter copy number.

We perform the second-order Kramers-Moyal expansion and then apply the linear noise

approximation to the monomer production rate to find

dβt =
k+

1 + αdt
dt+

√
k+

1 + αdt
dW+

t ≈
[

k+

1 + αd
− αk+δdt

(1 + αd)2

]
dt+

√
k+

1 + αd
dW+

t , (318)

where W+
t is a Wiener process with variance t. This can be solved by integrating

βτ −
k+τ

1 + αd
= − αk+

(1 + αd)2

∫ τ

0

δdt′dt
′ +

√
k+

1 + αd

∫ τ

0

dW+
t′ . (319)

Since both of the terms on the right have zero mean, we see that

βτ =
k+τ

1 + αd
. (320)

Differentiating with respect to temperature gives∣∣∣∣dβτdT

∣∣∣∣ =
αk+τ

(1 + αd)2

∣∣∣∣ dddT
∣∣∣∣ . (321)

We evaluate this by using Eqs. 247, 263, 272, and 309.

Now we need to solve for the fluctuations. Some care is required here, since the noise in

β is coupled to the noise in the monomer. This follows from decomposing the production-

degradation noise in Eq. 261 as√
k+

1 + αdt
+ k−mtdW

(3)
t =

√
k+

1 + αdt
dW+

t −
√
k−mtdW

−
t , (322)
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where W+
t and W−

t are independent Wiener processes with variance t. Squaring Eq. 319

and taking the expectation value gives

σ2(βτ ) =
(αk+)2

(1 + αd)4

∫ τ

0

C1,1(t1 − t2)dt1dt2 +
k+

1 + αd

∫ τ

0

〈
dW+

t1
dW+

t2

〉
− 2α(k+)3/2

(1 + αd)5/2

∫ τ

0

〈
dW+

t1
δdt2

〉
dt2.

(323)

By multiplying and dividing the first term by τ 2, it can be written in terms of time averaged

covariances from Eq. 259. The second term is straightforward to evaluate from the Itô

isometry [60]. Carrying both of these steps out gives

σ2(βτ ) =
(αk+τ)2

(1 + αd)4
[CTA(τ)]1,1 +

k+τ

1 + αd
− 2α(k+)3/2

(1 + αd)5/2

∫ τ

0

〈
dW+

t1
δdt2

〉
dt2. (324)

We can evaluate the remaining term using the analytic solution for the Ornstein-Uhlenbeck

process from Eq. 250. After linearizing Eq. 261 around the steady state mean, we have ~µ = 0,

so there are two terms in δdt. The first is the exponential decay of the initial conditions.

Since the initial conditions are uncorrelated with the stochastic driving term, this vanishes.

The second term, arising from the stochasticity and damping, will make a non-vanishing

contribution. It will be convenient to express the noise terms for each reaction as a vector

~Wt = (W
(1)
t ,W

(2)
t ,W+

t ,W
−
t ). This can be related to ~N in Eq. 276 by introducing a matrix

B =


√
kdm

2 + kmd
√
k−d 0 0

−2
√
kdm

2 + kmd 0

√
k+

1 + αd
−
√
k−m

 (325)

so that ~Nt = B ~Wt. We have∫ τ

0

〈
dW+

t1
δdt2

〉
dt2 =

∫ τ

0

〈
dW+

t1
dt2

∫ t2

0

[eJ (t2−t3)Bd ~Wt3 ]1

〉
. (326)

Carrying out the matrix multiplication and using the Itô isometry again gives∫ τ

0

〈
dW+

t1
δdt2

〉
dt2 =

√
k+

1 + αd

∫ τ

0

dt′
∫ t′

0

[eJ (t′−t′′)]1,2dt
′′, (327)
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where J is the Jacobian from Eq. 275. Again, we perform the change of variables (t′, t′′) 7→

(∆, t′′), with ∆ = t′ − t′′. Switching the order of integration, integrating over t′′ first, and

then performing integration by parts for ∆ gives∫ τ

0

〈
dW+

t1
δdt2

〉
dt2 =

√
k+

1 + αd

[
−τJ −1 + J −2

[
eJ τ − I

]]
1,2
. (328)

Combining this with the previous two parts from Eq. 324 to find

σ2(βτ ) =
(αk+τ)2

(1 + αd)4
[CTA(τ)]1,1 +

k+τ

1 + αd
− 2α(k+)2

(1 + αd)3

[
−τJ −1 + J −2

[
eJ τ − I

]]
1,2
. (329)

The relative error for temperature sensing in this strategy is σ(βτ )/(∆T |dβτ/dT |). For

the other parameters, we use the values in the main text: f = 1/2, α = 6.94 × 10−4,

kd = 7.1× 10−4 s−1, k− = 5.5× 10−4 s−1, and k+/k− = 2521. This leads to a relative error

of 6.7%.

2. Including Translational Bursts

The transcripts for TlpA and the reporter could have different burst sizes, whose re-

spective means we denote by bT and bβ. The terms in the deterministic rate equations take

the form (propensity)×(mean change). When adding bursts to TlpA, the mean change in

molecule number per reaction changes 1 7→ bT . To preserve the mean amount of TlpA, and

our consistency with experimental measurements, we map k+ 7→ k+/bT . Note that this does

not generally preserve the amount of β in each cell, as the mean production of β transforms

as
k+

1 + αd
7→ k+bβ/bT

1 + αd
. (330)

Intuitively, the mean burst size of β has been measured and is held fixed, but varying bT

tunes the frequency of bursts. We take bβ = 7.8, which is the measured value for the reporter

beta-galactosidase [120], and consider multiple values for the mean burst size of TlpA that

are typical for bacteria: bT = 1, 5, 7.8 and 10. To find the variance in the amount of β,

we use Gillespie simulations [44] where each production event produces bT monomers and

bβ reporter molecules, where bT and bβ are independent geometric random variables with

respective means bT and bβ. The derivative is computed using the deterministic result of the
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previous section, but caution must be exercised when modifying k+, since d does not change

with the bT , but βτ does. Modifying Eq. 321, the result is∣∣∣∣dβτdT

∣∣∣∣ =
αk+τ(bβ/bT )

(1 + αd)2

∣∣∣∣ dddT
∣∣∣∣ , (331)

where d is computed according to Eqs. 263 and 272 without changing or mapping k+, as the

mapping leaves the production term in ṁ unchanged. We use the values in the main text:

f = 1/2, α = 6.94 × 10−4, kd = 7.1 × 10−4 s−1, k− = 5.5 × 10−4 s−1, and k+/k− = 2521.

We found that the relative error increased with bT , as the mean βτ decreased. Over the

physiologically relevant range of 5 ≤ bT ≤ 10, we found that the relative error increased

from 23% to 32%. Because the range 5 ≤ bT ≤ 10 is approximate, we round this error range

to one significant digit, 20% to 30%, as stated in the main text.
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