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Abstract 

THE ROLE OF CENTRAL NERVOUS SYSTEM IN COMPLEX WALKING AMONG 

OLDER ADULTS 

 

Nemin Chen, PhD 

 

University of Pittsburgh, 2021 

 

 

 

ABSTRACT 

Gait is a complex process which requires dynamic interactions between musculoskeletal, 

cardiopulmonary, and nervous systems. Previous studies identified brain regions correlated with 

simple walking, suggesting importance of central nervous system (CNS) in maintaining walking 

performance.  Most of the previous evidence focused on speed and length of gait, and finding of 

brain regions with gait characteristics from other important domains was limited. Compared to 

simple walking, community walking is accompanied with greater environment challenges, and 

likely involves additional neural inputs of the brain. Thus, studying usual walking speed may not 

reveal the whole picture of neural correlates of community walking in daily life.  

This dissertation aims to identify brain regions related to performance of different 

walking tasks to provide evidence of the role of brain in community walking in older adults. 

In the first and second paper, I included over 200 participants from the Health, Aging, 

and Body Composition study in which gray matter volume and gray matter density were 

measured using magnetic resonance imaging. In the third paper, I included 117 participants from 

three independent samples with prefrontal cortex (PFC) activation measured using functional 

near infrared spectroscopy. Frontal, anterior cingulate, superior parietal, cerebellar, and 

subregions from basal ganglia related to executive and motor function are associated with 

aspects of walking performance, including spacing and timing control. Middle and superior 

frontal gyrus, postcentral gyrus, and superior temporal gyrus, related to executive function, 
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somatosensory, and vestibular function, respectively, are involved during fast paced walking but 

not simple walking. I observed increased PFC activation during dual-task walking compared to 

simple walking, and heterogeneous PFC activation patterns that differ in walking performance. 

Brain is important for spacing and timing control during walking, and is increasingly engaged as 

the challenges of community walking increase, shown by the results of structural and functional 

correlates of complex walking compared with simple walking.  

The public health significance of this work includes evidence for 1) identifying early 

subclinical brain impairment using walking performance; 2) interventions to improve the 

performance of community walking; and 3) goal-oriented exercise and training that restores 

efficiency in PFC control to improve community walking.  
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1.0 Introduction 

About two-thirds of people over 70 suffer from gait impairment. This prevalence 

increases with age.1 Gait impairment impacts independent living in older adults. This greatly 

reduces the quality of late life, and shortens life expectancy.1 Gait performance is also related to 

risk of falling, which is a major cause of mobility decline in older adults.2  

Gait is a complex process which involves speed and direction control, spatial orientation, 

attention, information processing, executive function, and memory.3,4 To achieve successful gait 

performance, dynamic interactions are required between musculoskeletal, cardiopulmonary, and 

nervous systems.5 The central nervous system (CNS) is important for maintenance of stable 

walking among older adults. Automatic control of movement is responsible for controlling 

postural muscle tone and locomotor movements, which involves cerebral motor cortex, limbic 

system, basal ganglia, and brainstem tegmentum.6 Purposeful locomotion requires integration of 

sensory information, planning and execution, which involves frontal cortex, parietal cortex, basal 

ganglia, and cerebellum.4,7 In previous reviews, gray matter volumes in the cerebellum, basal 

ganglia, frontal, and hippocampal regions were associated with gait.4,7  

To capture the multidimensional feature of gait, a framework of gait domains has been 

developed and validated.8-10 Independent gait domains comprised of quantitative gait measures 

include pace, rhythm, and variability.8 Gait domains reflect the subtle and selective gait 

alterations, predict adverse health conditions and outcomes, and reflect different underlying 

cognitive pathologies.10,11 Previous studies observed associations of multiple quantitative gait 

measures with fall risk and life-space assessment score, indicating that gait domains are also 

closely related to community walking ability.12,13 From a previous review, changes in brain 
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structures during aging, including gray matter atrophy and loss of gray matter integrity, were 

related to poor performance in gait pace, rhythm, and variability.7 A large number of studies 

have established the associations of brain structural measures with gait characteristics in older 

ages, with the focus on gait speed or step length only.7 Regional findings of gait characteristics 

from domains other than pace was limited.7 

Compared to simple walking studied in the lab, community walking is often accompanied 

with greater environmental challenges, and likely involves more networks of the brain.14,15 

Complex walking tasks, such as fast walking and dual-task walking, are often used to mimic 

community walking in the lab, as they challenge walking capacity and require additional neural 

inputs compared to simple walking.3,16 Compared to simple walking, complex walking likely 

reflects more subtle changes of brain and better reveal the neural correlates of community 

walking in older adults.  

Prefrontal cortex is a key area of information processing and executive functions needed 

during community walking, such as the integration of sensory-motor cycle of interactions that 

links individual with environment, and planning of locomotion and goal attainment. 16-20 

Prefrontal cortex is also one of the regions most susceptible to age-related atrophy.21 Previous 

evidence suggests older adults experience changes in prefrontal cortex activation during complex 

walking compared with younger adults. 22,23 When studying older adults alone, mixed results of 

prefrontal cortex activation with walking performance and functional status have been observed, 

and may indicate heterogeneity in underlying PFC activation patterns.18 

In order to further our understanding of neural control of community walking, this 

dissertation project aims to 1) identify regional brain structures represented by gray matter 

volume that are related to each independent gait domain; 2) assess structural and functional 
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neural correlates of complex walking, such as fast-paced walking and dual task walking; and 3) 

assess the association between prefrontal cortex activation and complex walking performance 

with and without accounting for heterogeneity in PFC activation patterns in an older population. 

Our results address the gaps in understanding the mechanisms of CNS control during community 

walking in older adults, and could provide evidence to improve mobility in older adults by 

targeting cognitive function and PFC control to improve higher-order coordination. 
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2.0 Neural correlates of gait characteristics represented by pace, rhythm, and variability 

domains in older adults 

This paper evaluated regional gray matter volumes related to independent gait domains of 

simple walking, including pace, rhythm, spatial variability and temporal variability, derived from 

quantitative gait measures. A dimension reduction method identified regions that were important 

for each gait domain by selecting important regional gray matter volumes.  

2.1 Introduction 

The central nervous system (CNS) is critical for maintenance of stable walking among 

older adults.3 Global and regional gray matter atrophy has been shown to be related to slower 

gait speed.7  

A framework of the central control of gait has been developed and validated in previous 

literature.8-10 Based on this previous work, three major independent gait domains comprised of 

quantitative gait measures including pace, rhythm, and variability were identified, and accounted 

for the majority of variance in gait.8 Previous evidence suggests that the three gait domains are 

discrete and are associated with selected cognitive and motor characteristics.10 Pace, representing 

velocity and length of gait, were related to attention and executive function.5 Pace was also 

related to risk of non-amnestic mild cognitive impairment and vascular dementia.8,10,11,24 Poor 

rhythm, representing time control of gait, was associated with memory decline.8 Conclusions of 
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cognitive function with gait variability, representing fluctuations of steps, are relatively scarce 

and inconsistent from current literature. 

While a large number of studies have established the associations of brain structural 

measures with gait characteristics in older ages, much of the research has focused on gait speed 

or step length only. Compared to the evidence on pace domain, the understanding of brain 

regions that regulate gait rhythm and variability, is limited. Because selected gait domains may 

reflect underlying cognitive characteristics, the assessment of neural correlates helps to explain 

underlying mechanisms of gait with cognitive characteristics. If the model of gait with cognition 

is proven robust through the underlying neural correlates assessment, it could provide evidence 

for future studies to identify gait characteristics in cognitive aging, and to assess the effect of 

cognitive interventions.10  

In this study, we used composite scores combined of multiple gait metrics from each gait 

domain to have a comprehensive representation of gait. Previous evidence suggests that gait 

metrics from spatial and temporal variability are associated with different brain areas, so we 

evaluated the associations of regional grey matter volume (GMV) with pace, rhythm, spatial 

variability, and temporal variability domains.25 In addition, we evaluated the association of GMV 

with gait change with age to identify their temporal relationship. We hypothesize that pace 

domain, which was associated with attention and executive function, would be related to GMV 

prefronto-parietal and subcortical networks (in particular the basal ganglia) and cerebellar (in 

particular the lateral part).4,7 We hypothesize similar associations for spatial variability, because 

it represents fluctuations of spacing of steps. We hypothesize that rhythm domain, which was 

associated with memory decline from previous work would both be  associated with GMV of the 
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hippocampus;8  we hypothesize similar patterns for temporal variability representing fluctuations 

of timing of steps.    

2.2 Methods 

2.2.1 Study population 

The Health, Aging, and Body Composition (Health ABC) is a prospective cohort study of 

community-dwelling older adults aged 70 years and over that began in 1997.26 We used the data 

from Healthy Brain Project, an ancillary study of Health ABC. Community-dwelling black and 

white older adults were enrolled in the study began in 1997 in Memphis, TN, and Pittsburgh, PA. 

A total of 314 participants at the Pittsburgh study site who were eligible and had MRI of brain 

and the 20-meter walking task at year 10 participated in the ancillary study. Eligibility included 

absence of neurologic or psychologic diagnoses. Participants were seen annually for up to five 

years and quantitative gait measures at year 10, year 14, and year 15 were available. One 

participant who was missing date of gait measures was excluded. A total of 73 (23%) 

participants were missing for MRI measures, baseline walking measures, or covariates. After 

implementing a non-parametric missing data imputation on baseline values, we obtained an 

imputed dataset with 313 subjects.27 (Appendix A-1) Last, we excluded 22 (7%) outliers defined 

as 3.4 times of standard deviation below or above the average of any gait domain measures 

before the analyses.28 The baseline characteristics of covariates were similar before and after 

excluding the outliers (data not shown). Out of the 291 participants in our final study sample, 

105 (36%) had only baseline gait measures; 64 (22%) had 2 repeated gait measures; 122 (42%) 
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had three repeated gait measures. Participants who were younger, without APOE allele 4, 

without stroke or hypertension, with knee pain, and had higher baseline pace scores and lower 

variability scores were more likely to have repeated gait measures (Appendix A-3).  

2.2.2 MRI measures 

GMV, white matter, and cerebrospinal fluid were calculated by segmenting the skull-

stripped T1-weighted image in native anatomical space.29 The details for MRI acquisition and 

image processing are provided in Rosano et al. 2012.29 Gray matter regions selected were 

frequently identified in previous studies on neural correlates of walking characteristics, including 

regions related to: 1) sensorimotor (precentral gyrus, putamen, caudate, thalamus, supplementary 

motor, precuneus, postcentral gyrus, inferior parietal, globus pallidum, cerebellar); 2) executive 

function (anterior cingulate, prefrontal cortex, superior parietal, insula); and 3) memory 

(hippocampus, entorhinal cortex, parahippocampus, amygdala, posterior cingulate).7 GMVs were 

computed in AAL2 atlas regions for regions of interest to represent gray matter atrophy. 

Participants’ regional GMVs were adjusted for total intracranial volume (ICV).  

2.2.3 Gait measures 

Participants walked on an 8-m long computerized GaitMat II walkway at usual pace. The 

first 2 and last 2 meters were not instrumented to allow for acceleration and deceleration, so that 

gait measurements were conducted for 4 meters of steady-state walking. Quantitative gait 

measures were processed and computed by GaitMat II computer system. Measures were 

obtained at baseline of our study (Health ABC year 10 or year 11) as well as at follow-up visits 
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(Health ABC years 14 and 15), including: step velocity and step length from the pace domain; 

swing time, stance time, and step time from the rhythm domain; step length variability, stride 

length variability from the spatial variability domain; and step time variability, swing time 

variability, and stance time variability from the temporal variability domain (Appendix A-2). 

Step length is the distance between the first switch closure of one foot to the first switch closure 

of the other foot, and step time is the time corresponding to completing one step length. Stride 

length is the distance between the first switch closure of one foot to the first switch closure of the 

previous foot on the ipsilateral side. Swing time is the time when the foot is off the ground. 

Stance time is the time when the foot is in contact with the ground. The gait measures were 

described in previous literature.30 Variabilities of gait measures were calculated as the coefficient 

of variation using the formula (standard deviation/mean)*100.31 We required a minimum of 4 

steps for each pass and minimum of 4 passes for calculating variability to exclude any unstable 

values.  

We combined the quantitative gait measures into a composite z-score for each domain. 

These include gait velocity and step length combined into pace domain; swing time, stance time, 

and step time combined into rhythm domain; step length variability, and stride length variability 

combined into spatial variability domain; step time variability, swing time variability, and stance 

time variability combined into temporal variability domain.9 Gait measures were centered by 

baseline mean and scaled by baseline standard deviation. The sum of the standardized measures 

in each domain were calculated as the composite z score. The baseline quantitative gait measures 

within the same domain were positively correlated with each other (range : 0.42-0.96). After 

computing the composite z-scores of quantitative gait measures, there were no strong 

correlations across gait domains. (Appendix B-1) 
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2.2.4 Covariates 

Covariates were selected if they were considered as important risk factor of gait decline 

or GMV change. Age, sex, race, and the presence of at least one APOE e4 allele were assessed at 

the beginning of the Health ABC study (1997-1998). Other clinical or health-related variables 

were assessed at year 10 or year 11 baseline, including body mass index (BMI) calculated from 

weight/(height)2, hypertension if participants self-reported a hypertension diagnosis or 

antihypertension medication use, stroke if self-reported ever having a stroke, knee pain, and 

quadriceps strength measured using an isokinetic Kin-Com dynamometer.32,33  

2.2.5 Statistical analysis 

We used missForest {R package version 1.4} to impute the missing data at baseline.27 

We set the number of trees in each model as 100. The estimated out of bag normalized root mean 

squared error was 0.08 for the set of continuous variables and proportion of falsely classified was 

0.13 for the set of categorical variables.  

We summarized characteristics at baseline as number (percentage) in each category for 

categorical variables and mean (standard deviation) for continuous variables. We assessed 

unadjusted bivariate associations between baseline characteristics and z-scores of gait domains 

using two-sample t-tests for categorical variables and Spearman correlation coefficient for 

continuous variables. For two-sample t-tests, we reported group mean difference of composite z-

scores of each domain and test p values. For Spearman correlation coefficient tests, we reported 

the Spearman correlation coefficient and p values using asymptotic t distribution. (Table 2-1) 
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We used sparse partial least squares (SPLS) {R package version 2.2-3} to select from 

regional GMVs that are important for gait domains prediction.34 Instead of modeling the 

association of gait measures with regions of interest (ROIs) using ordinary least squares 

regression, we applied the SPLS to select variables based on both covariance between response 

and predictors and variation of predictors by solving latent decomposition of the response and 

predictor matrix.35 SPLS model addresses the problem of large numbers of predictors and 

multicollinearity, and has consistent performance when modeling a large number of irrelevant 

variables.35 To adjust for common risk factors between brain structure and repeated gait 

measures, we first used linear mixed models to model gait domains, including centered age as 

repeated measures, and sex, race, BMI, APOE alleles, hypertension, stroke, knee pain, and 

quadriceps strength as single measures. We tested the random effect of age on gait measures 

using likelihood ratio test. If the test result is significant, we kept the complex model including 

random effect of both intercept and age, and output their values for each subject as gait domain 

measures for SPLS modeling. If test result was insignificant, we reduced model with random 

effect of intercept only, and output intercept values of each subject for SPLS modeling. We 

applied a 10-fold cross validation (CV) for parameter tuning of hidden components 𝜅 and 

thresholding parameter 𝜆1. Because the CV curve was flat, we selected the smallest hidden 

components 𝜅 and the largest thresholding parameter when mean squared error was less than 1.1 

times the minimum mean squared error to avoid local solution issues.35 Brain measures were 

standardized with mean and standard deviation in all the statistical analyses. All the analyses 

were conducted in R. 
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2.3 Results 

2.3.1 Baseline characteristics and gait measures 

The average age of the participants at baseline was 83 (standard deviation=2.8). Among 

the 291 participants, 172 (59%) were female; 127 (41%) were Black. The average BMI was 27 

(standard deviation=4.5). A total of 71 (24%) participants had at least one APOE e4. The number 

of participants with hypertension was 205 (70%), 23 (8%) had stroke, and 129 (44%) reported 

having knee pain. The average quadriceps strength at baseline was 81 N*m (standard 

deviation=29). (Table 2-1) There was an overall trend of decreasing pace with age (annual 

change rate=-0.37), and increasing rhythm (annual change rate=0.25), spatial variability (annual 

change rate=0.43), and temporal variability (annual change rate=0.48) with age. (Table 2-1, 

Appendix B-2) 

Table 2-1. Baseline demographic and health characteristics and differences or correlations with gait domains in 

older adults (n=291). 

Characteristics Overall 

(n=291) 

Mean Differences or Correlations with Walking a 

Pace Spatial 

Variability 

Rhythm Temporal 

Variability 

Demographics      

  Age, mean 

(SD) 

83 (2.8) -0.18 

(0.002) 

0.17 (0.004) 0.02 (0.68) 0.18 (0.002) 

  Female, n (%) 172 

(59%) 

-1.07 

(<0.0001) 

0.22 (0.26) -0.95 (0.0006) 0.46 (0.20) 

  Black, n (%) 120 

(41%) 

-0.92 

(<0.0001) 

0.19 (0.26) 0.78 (0.004) -0.12 (0.62) 

  BMI, mean 

(SD) 

27 (4.5) -0.18 

(0.002) 

0.03 (0.59) 0.01 (0.91) 0.01 (0.82) 

  APOE allele 4 71 

(24%) 

-0.34 (0.18) -0.10 (0.86) 0.40 (0.19) 0.10 (0.30) 

Morbidities      

  Hypertension 205 

(70%) 

-0.84 

(0.0006) 

0.15 (0.58) 0.49 (0.09) 0.31 (0.29) 

  Stroke, n (%) 23 (8%) -1.01 (0.03) 0.56 (0.25) -0.13 (0.82) 0.56 (0.17) 
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Motor function      

  Knee Pain, n 

(%)  

129 

(44%) 

-0.79 

(0.0004) 

0.26 (0.24) 0.63 (0.02) 0.11 (0.41) 

  Quadriceps 

Strength, mean 

(SD) 

81 (29) 0.36 

(<0.0001) 

-0.16 (0.01) 0.01 (0.88) -0.15 (0.01) 

Annual change 

in gait, mean 

(SD) (m*s-

1*year-1)b 

     

  Pace -0.37 

(0.38) 

-0.11 (0.14) -0.01 (0.94) 0.18 (0.01) 0.08 (0.30) 

  Spatial 

variability 

0.43 

(0.51) 

-0.10 (0.15) -0.41 

(<0.0001) 

0.04 (0.60) -0.09 (0.22) 

  Rhythm 0.25 

(0.65) 

0.08 (0.27) -0.01 (0.91) -0.20 (0.01) -0.02 (0.78) 

  Temporal 

variability 

0.48 

(0.78) 

-0.05 (0.52) -0.07 (0.37) -0.09 (0.18) -0.41 

(<0.0001) 

a. T test for categorical variables and spearman correlation for continuous variables. P 

values are presented in parentheses; 

b. Annual changes in gait were calculated in the subgroup of participants (186, 64%) with 

quantitative gait measures at more than one time point. 

Of the gait measures, pace was correlated with the most number of baseline 

characteristics. Pace was negatively correlated with age (rho=-0.18) and positively correlated 

with quadriceps strength (rho=0.34). Participants who were female, black, had higher BMI, had 

hypertension or stroke, and having knee pain were more likely to have a lower pace score at 

baseline. Females were more likely to have a lower rhythm score (female: -0.47 vs male: 0.48, 

diff=-0.95), while black participants (black: 0.37 vs white: -0.40, diff=0.78) and participants 

having knee pain (with knee pain: 0.27 vs without: -0.36, diff=0.63) were more likely to have a 

higher rhythm score at baseline. Both spatial variability and temporal variability were positively 

correlated with age (rho=0.15 and 0.18), and negatively correlated with quadriceps strength 

(rho=-0.16 and =-0.15). For rhythm, spatial variability, and temporal variability, baseline scores 
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were negatively correlated with annual change (rho is -0.20, -0.41, and -0.41, respectively), such 

that those with lower values at baseline experienced greater changes over time (Table 2-1). 

2.3.2 Pace, spatial variability, rhythm, and temporal variability at average age (83 years) 

with GMV 

After adjusting for sex, race, BMI, APOE alleles, hypertension, stroke, knee pain, and 

quadriceps strength, SPLS model selected right cerebellar 4-5 (𝛽 = 0.12, 95%𝐶𝐼: 0.04, 0.21) 

and left inferior orbitofrontal (𝛽 = 0.12, 95%𝐶𝐼: 0.03, 0.22) positively related to pace score at 

83 years of age; left anterior cingulate cortex (𝛽 = −0.12, 95%𝐶𝐼: − 0.22, −0.03) and left 

superior parietal (𝛽 = −0.13, 95%𝐶𝐼: − 0.24, −0.03) negatively related to spatial variability; 

right putamen negatively related to rhythm (𝛽 = −0.10, 95%𝐶𝐼: − 0.21, 0.01) and right 

posterior cingulate cortex positively related to rhythm (𝛽 = 0.09, 95%𝐶𝐼: − 0.03, 0.20); and 

right cerebellar 4-5 negatively related to temporal variability (𝛽 = −0.12, 95%𝐶𝐼: −

0.24, −0.03) while left cerebellar 9 positively related to temporal variability (𝛽 =

0.12, 95%𝐶𝐼: − 0.003, 0.24) (Figure 2-1, Appendix A-4) 
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Figure 2-1. Gray matter volumes (GMVs) associated with gait domains of pace (A), spatial variability (B), rhythm 

(C), and temporal variability (D). Regions of interest (ROIs) are presented from sagittal, coronal, and axial view. 

Selected regions are shown together, with different colors for each gait domain, and solid outline indicating left 

regions and dashed outline indicating right regions (E). 

2.3.3 Annual changes in rhythm with GMV 

After adjusting for sex, race, BMI, APOE alleles, hypertension, stroke, knee pain, and 

quadriceps strength, SPLS model selected right putamen and right pallidum, where greater GMV 

is associated with smaller rhythm annual increasing (𝛽 = −0.07, 95%𝐶𝐼: −0.13, 0.02;  𝑎𝑛𝑑 𝛽 =

−0.07, 95%𝐶𝐼: − 0.14, 0.02, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦), and left superior orbitofrontal, where greater 

GMV is related to faster annual rhythm increasing (𝛽 = 0.07, 95%𝐶𝐼: 0.001, 0.18). (Figure 2-2, 

Appendix A-5) We did not assess the association of GMV with change in pace, spatial 
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variability, and temporal variability, as the likelihood ratio test results did not show significant 

inter-subject variation in the effect of age on these gait domains. 

 

Figure 2-2. Gray matter volumes (GMVs) associated with annual rhythm change (A). Regions of interest (ROIs) are 

presented from sagittal, coronal, and axial view. Selected regions for annual rhythm change are shown with solid 

outline indicating left regions and dashed outline indicating right regions (E). 

2.4 Discussion 

In this study, we represented gait with domains of pace, rhythm, spatial variability and 

temporal variability and selected ROIs where regional GMVs were related to the gait domains. 

Several important regions for gait were identified. These include right cerebellar 4-5 and left 

inferior orbitofrontal cortex related to pace score; left anterior cingulate cortex and left superior 

parietal cortex related to spatial variability score; right putamen and right posterior cingulate 
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cortex related to rhythm score; and cerebellar 4-5 and cerebellar 9 related to temporal variability 

score. In addition, we observed right putamen, right pallidum, and left superior orbitofrontal 

cortex related to rhythm annual change.  

Different motor-related regions were identified for gait domains. Pace score, which 

represents velocity and length of gait (Appendix A-2), was positively associated with GMV in 

orbitofrontal region. We also observed that spatial variability score, which represents 

fluctuations of spacing of steps (Appendix A-2), is negatively related to GMV in left anterior 

cingulate and left superior parietal.10 In a previous study, GM integrity in left anterior cingulate 

has also been related to step length variability.25 Anterior cingulate projects to prefrontal cortex 

that serves executive function in motor-related function, and our results are consistent with 

previous work where both pace and spatial variability domains are related to the fronto-parietal 

networks involved in executive function, attention, decision making, performance monitoring, 

and proprioception in motor control.10,25  

We observed that right putamen was related to both cross-sectional rhythm and annual 

rhythm change, which reflects time control of gait. Putamen receives information from motor 

and premotor cortex, and has been thought to play a central role in motor control.36 In previous 

studies, damage to putamen was related to gait asymmetry in stroke patients and functional 

impairment of movement in Parkinson’s disease.37,38 We also observed GMV in right posterior 

cingulate related to cross-sectional rhythm, and GMV in right pallidum, and left superior 

orbitofrontal cortex related to annual rhythm change. Posterior cingulate is a key node in the 

default mode network, and is commonly affected in neurodegenerative disease such as 

Alzheimer’s disease.39 Pallidum was related to step width, but the association was not robust 

after covariates adjustment.40 Loss of white matter integrity in orbitofrontal cortex was related to 
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freezing of gait, which is a common symptom of parkinsonism.41 Our results are in line with the 

conclusion from previous research that impairment in gait rhythm is associated with freezing of 

gait in parkinsonism.42  

We observed cerebellar regions for motor and balance control associated with temporal 

variability, which represents fluctuations of timing of steps.25 Similar association has been 

identified in a previous study led by Manor, et al., where higher temporal variability was 

associated with a smaller cerebellum.43 Our results are consistent with previous evidence that 

temporal variability was associated with brain regions important for motor and balance control.25  

Mixed directions were observed for GMVs with rhythm and temporal variability. The 

reason for this could be negative correlations between the identified regions with regions that 

were not identified from the model. Regional GMVs were measured cross-sectionally in our 

study, so may not be the most accurate way of capturing the GMV profile. Our results may also 

suggest that rhythm and temporal variability are not related to gait performance in a linear 

association, and both increased and reduced rhythm score reflects compromised gait. For 

example, increased step time was associated with higher score of physical fatigue, while reduced 

swing time was observed in older adults with Parkinson’s disease.44 Increased temporal 

variability could result from decreased motor skill during aging, while reduced variability could 

be related to a greater fall risk.45,46 Consistent with this hypothesis, in a previous study, reduced 

temporal variability was associated with smaller hippocampal volumes.25  Future studies should 

assess nonlinear associations of neural correlates with quantitative gait measures of rhythm and 

temporal variability.  

Our results support our hypothesis that pace is positively associated with GMV in 

selected subregions in frontal and cerebellar lobes. We also found that spatial variability relates 



 18 

to left anterior cingulate cortex and superior parietal, which are part of the fronto-parietal 

network that is involved in executive function in motor control.25 We did not observe any 

association of basal ganglia with pace nor spatial variability domains. We observed annual 

rhythm change and temporal variability related to motor control regions, including subregions 

from basal ganglia and cerebellum. In addition, spatial and temporal variability likely relates to 

neural correlates of different function of gait control, which is consistent with our hypothesis. 

Last, we did not observe any association of memory-related regions with rhythm and temporal 

variability. This is inconsistent with previous findings where worse performance on rhythm was 

related to risk of amnestic MCI and memory decline.8,9 Instead, rhythm and temporal variability 

may be rudimentary features of gait.10  

There are several limitations in this study. Only 64% of the participants had repeated 

assessment of gait, and only 42% of the participants had more than two measures. Our results of 

gait annual changes need to be interpreted with caution, as the within-subject covariance 

matrices were derived from data of the 42% of participants with more than two repeated 

measures.47 The composite scores derived from z-scores of individual gait metrics may not fully 

capture the complex performance of each domain. However, the results are expected to be robust 

as the gait measurements we included in each domain were correlated with each other. The SPLS 

model tends to randomly select one of the multiple highly correlated GMVs. This could cause 

problem if GMV in important regions were highly correlated with GMV in other regions. Last, 

other age-related neural pathologies, such as amyloid and tau aggregation, could potentially 

affect the gait performance.48 However, they were not available in our study.  

By using composite scores derived from comprehensive quantitative gait assessments, we 

are able to capture gait performance in multiple domains and obtain more robust associations 
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with greater inter-reliability,8 minimize the number of gait outcomes, and reduce correlations of 

gait outcomes. This could mitigate the problems of multicollinearity and multiple comparisons. 

Our study sample was representative of community-dwelling older adults. We used non-

parametric missing data imputation to reduce selection bias. Further, we excluded the 

participants who were considered as outliers in terms of gait measures to reduce the impact of 

outliers on our results. Participants were followed up to 5 years and had repeated quantitative 

gait measures. Use of the study sample allowed us to take account of repeated measures and 

evaluate longitudinal associations of brain structure with gait measures in a community-based 

setting. Last, SPLS models were used to select GMVs of important regions from the large 

number of gray matter ROIs.49  

We selected GMVs in frontal and cerebellar regions from modeling of pace at baseline; 

superior parietal and anterior cingulate cortex from modeling of spatial variability at baseline; 

putamen and posterior cingulate cortex from modeling of rhythm at baseline; and cerebellar 

regions from modeling of temporal variability at baseline. Our results also suggest that 

subregions in basal ganglia and frontal regions were important for rhythm change with age. Our 

results suggest that independent gait domains were related to GMVs of different brain regions, 

and could provide evidence for studies on gait measures with cognitive characteristics. 
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3.0 Regional Gray Matter Density Associated with Fast-paced Walking in older adults: a 

voxel-Based Morphometry Study 

This paper evaluated gray matter density related to both fast-paced walking and usual-

paced walking using voxel-wise analyses to identify additional neural resources correlated with 

community walking due to greater locomotor adaptation challenges and faster processing and 

integration requirement than simple walking.  

3.1 Introduction 

Slower walking speed is associated with risk of adverse outcomes, including mobility 

disability, cognitive decline, mortality, falls, and institutionalization, as well as worse brain 

integrity in older adults.50-53 To date, most studies on walking in older adults have focused on 

walking speed under usual conditions.  

It has recently been shown that walking speed during tasks asking participants to walk as 

fast as possible may also be important for detecting clinical outcomes in older adults. Evidence 

suggests that fast-paced walking speed is associated with aging-related adverse events.54 Fast-

paced walking challenges locomotor adaption and requires faster processing and integration of 

multiple inputs and motor response. Fast-paced walking speed also requires more active neural 

control than usual-paced walking.55 Previous studies suggest that fast-paced walking speed was 

associated with cognitive function and can predict changes in cognitive function during follow-

up in older adults.56-59  
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Previous evidence suggests that usual walking speed was associated with brain structure 

and integrity in older adults. Slower usual walking speed in older adults without any diagnosed 

neurological diseases was associated with lower gray matter (GM) and white matter (WM) 

volume, increased white matter hyperintensity (WMH) burden, lower fractional anisotropy (FA) 

and increased mean diffusivity (MD) of both sensory or motor related regions and higher-order 

regions (see review7).  Fewer studies have assessed the neural correlates of fast-paced walking 

speed. A previous study suggests that fast-paced walking speed was associated with total 

cerebral volume and not associated with hippocampal volume in healthy older adults.50 Fast-

paced walking speed was also correlated with GM volume in right caudate nucleus, bilateral 

thalamus, and left putamen among older adults with memory problems.60  

In this study, we investigated the association of gray matter density, – a measure related 

to both volume and cortical thickness, with fast-paced walking speed and usual-paced walking 

speed. We conducted voxel-wise regression to identify regions of the brain where gray matter 

density was associated with fast-paced walking speed among older adults using the Health, 

Aging, and Body composition (Health ABC) study.61 We hypothesized that gray matter density 

of regions associated with executive function and memory would be associated with fast-paced 

walking speed but not to usual-paced walking speed.  
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3.2 Methods 

3.2.1 Study population 

The Health ABC study is a longitudinal cohort study that investigated physical and 

cognitive functional change among the elderly who were physically and cognitively healthy at 

baseline. Participants aged 70-79 were recruited in community-based settings from Pittsburgh, 

PA (n=1,501) and Memphis, TN (n=1,574) from 1997-1998.62 Demographic information was 

obtained at baseline. Participants were followed annually and completed questionnaires and 

performance tests for the evaluation of body composition, health status, and adverse health 

outcomes.63  

A subset (n=325) of the Pittsburgh site who participated in the clinical visit at Year 10 or 

Year 11 (2006-2008) completed MRI scanning if they met the inclusion criteria: 1) no assistive 

devices for walking; 2) eligible for a 3T magnetic resonance imaging (MRI) scan; 3) had a 

mobility measure at the previous visit; 4) no medical history of neurological or psychological 

illnesses.31,64 Participants with valid MR measures were included in our analysis (n=312). 

Participants who did not complete the fast-paced walking speed task were excluded (n=20, 6%). 

Participants with missing covariates including education, body mass index (BMI), depression 

severity score (Center for Epidemiologic Studies Depression Scale, CESD), or digit symbol 

substitution task (DSST) score were excluded from the analyses (n=8, 2%). Our final dataset 

included 284 (87%) participants from the Health ABC MRI subset. Distribution of the 

demographics and clinical variables were similar between the original subset and our final 

dataset (not shown).  



 23 

3.2.2 MRI measures 

MRI scans were obtained at the MR Research Center of the University of Pittsburgh 

using a 3 T Siemens Tim Trio MR Scanner and a Siemens 12-channel head coil. An axial, 

whole-brain T1-weighted magnetization prepared rapid gradient echo (MPRAGE) was collected 

with repetition time (TR)=2300ms, echo time (TE)=3.43ms, flip angle (FA)=9deg, field of view 

(FOV)=224x256, 1mm3 isotropic resolution, no gap, and no acceleration. An axial, whole-brain 

fluid attenuated inversion recovery (FLAIR) sequence to appropriately identify white/gray matter 

were also collected. This sequence had TR=9160ms, TE=90ms, FA=150deg, FOV=212x156, 

1x1x3mm resolution, 3mm gap, and no acceleration.  

All processing steps were conducted in SPM12.65 All image space interpolation was 

performed using 4th degree B-spline method and similarity metric for registrations was mutual 

information (for motion correction) or normalized mutual information (coregistration between 

different image types). FLAIR images were coregistered to the MPRAGE (12 degree of freedom 

transformations) then a multi-spectral segmentation was conducted of both the MPRAGE and 

coregistered FLAIR into 6 tissues: gray matter, white matter, cerebrospinal fluid (CSF), skull, 

soft-tissue, and air. Default values were used for the segmentations in SPM. Native space 

segmentations of the gray matter were input into the Diffeomorphic Anatomical Registration 

using Exponentiated Lie algebra (DARTEL) algorithm using the standard pipeline for generating 

a study-specific template and normalizing each segmentation to that template.66 This generates a 

study-specific gray matter template through iterative co-registrations and averages, then co-

registers each map to the final template. This outputs a gray matter density map, which is highly 

associated with volume and cortical thickness, and is considered to reflect the amount of gray 

matter locally.67 This is because when a single participant’s gray matter is coregistered to a 
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standard space (like MNI), the gray matter has to be compressed or expanded depending on 

whether the MNI space gray matter is smaller or larger, respectively. When it is compressed the 

density goes up and when it is expanded the density goes down – thus a greater volume and 

cortical thickness results in a greater density. 

3.2.3 Walking speed measures 

Walking tests were performed within 6 months of the MRI scan. Participants were asked 

to walk along a 20m corridor from a standing start during both the usual-paced walking task and 

the fast-paced walking task. Participants were instructed to walk “as you normally would” and 

“as fast as you can,” respectively.62 Time to finish the tasks was recorded by stop watch and 

converted to speed in m/s. Walking speed of fast-paced walking and usual-paced walking was 

treated as the outcome.  

3.2.4 Covariates 

Demographics, clinical information, and cognitive function were obtained at baseline of 

the Health ABC Study or the time of MRI. Demographic characteristics included age at the time 

of MRI measurement, as well as sex, race, education, and body mass index (BMI) obtained at 

baseline. BMI (kg/m2) was calculated from self-reported height and weight values at the time of 

MRI. Clinical information included cardiovascular disease (CVD), stroke or TIA (transient 

ischemic attack), hypertension, diabetes, and depression. History of CVD and stroke or TIA was 

identified from the questionnaire as ever having the event at baseline and was updated by self-

report annually. Participants were defined as having hypertension if they had a systolic blood 
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pressure >140 mm Hg or diastolic blood pressure >90 mm Hg or self-reported a hypertension 

diagnosis or antihypertension medication use at the time of MRI measurement. Participants were 

defined as having diabetes if their fasting plasma glucose was >126 mg/dL or 2-hour post-

challenge >200 Hg/dL, or self-reported a diabetes diagnosis or diabetes medication use.68 

Depressive symptoms were described at the time of MRI based on the 20-item Center for 

Epidemiologic Studies-Depression (CES-D) scale.69 The Modified Mini—Mental State 

Examination (3MSE) was used to assess general cognitive function at the time of MRI.70 The 

Digit Symbol Substitution Test (DSST) was also administered at the same time to assess 

processing speed.71  

3.2.5 Statistical analysis 

The characteristics of the study population are presented as mean (standard deviation) for 

continuous variables and count (percentage) for categorical variables. Unadjusted associations   

between the sample’s characteristics and fast-paced walking speed are reported as Spearman 

correlation coefficients for continuous variables and mean difference from independent t-test for 

categorical variables.  

Voxel-wise analyses tested the associations between fast-paced walking speed and gray 

matter density from the entire brain using SnPM.72 SnPM computed non-parametric p-values 

corrected using a cluster-wise inference method (cluster forming threshold of p<0.001) that 

controlled the family wise error rate (FWE) at α=0.05. This analysis was done in the whole brain 

and did not exclude any regions. Next, we extracted the average gray matter density of clusters 

significantly associated with fast-paced walking speed by utilizing the automated anatomical 

labeling atlas.73   
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For each region, the association between gray matter density and fast-paced walking 

speed was modeled using nested linear models with adjustment for 1) demographics (age, sex, 

race, education, and BMI), 2) plus clinical variables (cardiovascular disease, stroke or TIA, 

hypertension, diabetes, and depression), and 3) plus cognitive function (3MSE and DSST 

scores). Demographics and clinical variables were adjusted in the models as potential 

confounders. 3MSE and DSST scores were included in the fully adjusted model in order to test 

whether this association was independent of cognitive function. Lastly, a cut-off point of 0.3 m/s 

was chosen for the point estimate of fast-paced walking speed change per SD change of gray 

matter density to suggest a meaningful association between the regional gray matter density and 

fast-paced walking speed after the full adjustment. This cut-off was selected to represent a 

medium effect, which approximates the average effect of 14-year change of age on the change of 

fast-paced walking speed in our study sample. Regression analyses were conducted in SAS 9.4. 

The same analyses were repeated for usual-paced walking speed and gray matter density. 

3.3 Results 

Participants were on average 83 years old (SD=2.8), 58% women and 41% black. 

Average walking speed was 1.0 m/s (SD=0.21) for usual-paced walking and 1.4 m/s (SD=0.34) 

for fast-paced walking. Greater usual-paced walking speed was correlated with greater fast-paced 

walking speeds (r=0.58, p<0.0001). Participants who were female, black, had a lower level of 

education, or had a history of knee pain were more likely to have a slower fast-paced walking 

speed. In addition, those who were older, had greater BMI, greater depressive symptoms 
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(CESD), worse cognitive function (3MSE or DSST score), had hypertension, or had diabetes 

also were more likely to have a slower fast-paced walking speed (Table 3-1).  

Table 3-1. Characteristics of the study population and association with fast-paced walking speed (n=284): Health, 

Aging, and Body Composition Study, 2010-2011. 

 Mean (SD) or 

n (%) 

Association with fast 

pace walking speed 

(m/s) a 

p-value 

Age (year) 83 (2.8) -0.15 0.01 

Female 164 (58%) -0.23 (0.04) <0.0001 

Black 116 (41%) -0.16 (0.04) <0.0001 

Education >high school 146 (51%) 0.16 (0.04) <0.0001 

BMI 27 (4.4) -0.27 <0.0001 

CVD 80 (28%) -0.02 (0.05) 0.59 

Stroke or TIA  21 (7.4%) -0.09 (0.08) 0.24 

Hypertension  256 (90%) -0.16 (0.05) <0.0001 

Diabetes 73 (26%) -0.09 (0.05) 0.05 

CES-D  6.6 (5.9) -0.17 0.004 

Knee pain b 122 (43%) -0.19 (0.11) <0.0001 

3MSE score 93 (6.7) 0.23 <0.0001 

DSST 37 (13) 0.25 <0.0001 

Usual-paced walking speed c 

(m/s)  

1.0 (0.21) 0.58 <0.0001 
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Note: BMI - body mass index; CVD - cardiovascular disease; TIA - transient ischemic 

attack; CESD - Center for Epidemiologic Studies-Depression; 3MSE - Modified Mini-Mental 

State Examination; DSST - Digit Symbol Substitution Test 

a. Spearman correlation coefficient for continuous variable and group mean difference 

(SD) from t-test for categorical variable; 

b. Knee pain (in the past month) was evaluated during the visit at Year 10; 

c. For usual-paced walking speed, n=269 participants. 

In the unadjusted voxel-wise analyses, greater fast-paced walking speed was positively 

correlated with greater gray matter density in clusters from: the frontal and temporal lobe, pre- 

and post-central gyrus, inferior parietal lobule, precuneus gyrus, lingual, parahippocampal and 

fusiform gyrus, calcarine cortex, middle occipital gyrus, supramarginal and angular gyrus, 

Rolandic operculum, insular cortex, cingulum, hippocampus, amygdala, and cerebellum (figure 

3-1 Appendix A-6, and Appendix B-3). Regions correlated with usual-paced walking speed are 

shown in figure 3-1, Appendix A-7, and Appendix B-5. Clusters from insula, cerebellum, 

parahippocampus, calcarine, middle and inferior frontal, temporal, middle occipital, amygdala, 

fusiform gyrus, lingual gyrus, and precuneus, were correlated with both fast-paced and usual-

paced walking speed. Fast-paced walking speed but not usual-paced walking was correlated with 

gray matter density in clusters from pre-central gyrus and inferior parietal lobule. In addition, 

usual-paced walking speed but not fast-paced walking speed was associated with gray matter 

Fast-paced walking speed 

(m/s) 

 

1.4 (0.34)   
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density in clusters from cuneus, caudate, putamen, gyrus rectus, and superior occipital gyrus. 

(Appendix B-7)  

Regions that were significantly associated with fast-paced walking speed after adjustment 

for demographic variables, clinical morbidities, and cognitive function, are shown in Table 3-2, 

figure 3-1, and Appendix B-4. After further adjusting for covariates, fast-paced walking speed 

was positively correlated at coefficient  0.3 m/s with gray matter density of clusters in: right 

middle and superior frontal gyrus, right postcentral gyrus, and left superior temporal gyrus. 

Adjustment for cognitive function had little impact on the findings. We found no association 

between fast-paced walking speed with gray matter density of hippocampal regions or with basal 

ganglia. (Figure 3-1 and Table 3-2) Regions that are significantly associated with usual-paced 

walking after covariates adjustment are shown in Appendix A-8, figure 3-1, and Appendix B-6. 

Usual paced walking speed was positively correlated with gray matter density of left caudate 

region at coefficient  0.3 m/s after adjustment of demographics and morbidities, but not after 

further adjusting for cognition. In addition, no regions were associated with both usual and fast-

paced walking speed after adjustment (Appendix B-8). In general, the effect size of gray matter 

density of each region on usual-paced walking was smaller than fast-paced walking speed. 

Table 3-2. Association between fast-paced walking speed and gray matter density. Corresponding coefficients (β) 

and p-values are shown across three nested models. 

Region 

MNI coordinates 

(x, y, z) 

Model 1 a Model 2 b Model 3 c 

  β (p-value) d 

Right Angular Gyrus 62, -50, 36 0.23 (0.01) 0.22 (0.01) 0.21 (0.02) 

Right Cerebellum 4-5 24, -50, -20 0.14 (0.04) 0.13 (0.06) 0.12 (0.08) 
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Right Cerebellum 6 26, -56, -18 0.13 (0.03) 0.12 (0.05) 0.11 (0.08) 

Left Cerebellum Crus 2 -38, -66, -38 0.11 (0.04) 0.10 (0.06) 0.09 (0.10) 

Right Cerebellum Crus 2 44, -68, -40 0.13 (0.04) 0.11 (0.07) 0.10 (0.09) 

Left Middle Orbital Frontal 

Gyrus 

-8, 38, -12 0.13 (0.03) 0.11 (0.07) 0.09 (0.14) 

Right Middle Orbital Frontal 

Gyrus 

10, 42, -6 0.14 (0.03) 0.13 (0.06) 0.10 (0.12) 

Right Middle Frontal Gyrus 28, 54, 2 0.35 (0.001) 0.35 (0.001) 0.31 (0.01) 

Right Superior Frontal Gyrus 14, 68, 24 0.37 (0.01) 0.36 (0.01) 0.31 (0.04) 

Right Fusiform Gyrus 26, -52, -16 0.17 (0.04) 0.15 (0.07) 0.13 (0.14) 

Left Lingual Gyrus -16, -66, 2 0.11 (0.05) 0.11 (0.06) 0.10 (0.08) 

Right Lingual Gyrus 16, -48, 4 0.20 (0.03) 0.19 (0.03) 0.18 (0.04) 

Right Insula 38, 10, 10 0.24 (0.05) 0.20 (0.11) 0.14 (0.30) 

Right Paracentral Lobule 8, -36, 60 0.24 (0.05) 0.22 (0.08) 0.21 (0.09) 

Right Inferior Parietal Gyrus 60, -40, 46 0.25 (0.01) 0.23 (0.01) 0.23 (0.01) 

Right Postcentral Gyrus 64, 0, 18 0.38 (0.04) 0.36 (0.05) 0.35 (0.05) 

Right Precuneus 14, -40, 58 0.21 (0.03) 0.20 (0.05) 0.19 (0.05) 

Right Rolandic Operculum 44, -14, 16 0.15 (0.04) 0.13 (0.09) 0.11 (0.14) 

Left Supramarginal Gyrus -44, -34, 26 0.23 (0.005) 0.22 (0.01) 0.19 (0.02) 

Right Supramarginal Gyrus 66, -36, 38 0.17 (0.03) 0.14 (0.07) 0.11 (0.16) 

Left Middle Temporal Gyrus -58, -38, 12 0.21 (0.03) 0.19 (0.06) 0.16 (0.10) 

Right Middle Temporal Gyrus 70, -18, -6 0.22 (0.04) 0.20 (0.06) 0.15 (0.19) 

Right Superior Temporal Pole 34, 10, -24 0.31 (0.01) 0.30 (0.02) 0.26 (0.04) 
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Left Superior Temporal Gyrus -54, -38, 14 0.37 (0.001) 0.34 (0.004) 0.31 (0.01) 

Right Superior Temporal Gyrus 68, -18, -4 0.31 (0.02) 0.27 (0.04) 0.24 (0.06) 

Note: BMI - body mass index; TIA - transient ischemic attack; CESD - Center for 

Epidemiologic Studies-Depression; 3MSE - Modified Mini-Mental State Examination; DSST - 

Digit Symbol Substitution Test 

a. Model 1: general linear model adjusting for demographics (age, sex, race, education, 

and BMI); 

b. Model 2: based on model 1, further adjusting for morbidities (cardiovascular disease, 

stroke or TIA, hypertension, diabetes, and CESD score); 

c. Model 3: based on model 2, further adjusting for cognition (3MSE and DSST scores). 

d. The coefficient of 1 SD change of regional gray matter density on fast-paced walking 

speed and the corresponding p value 
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Figure 3-1. (A) Association between gray matter density and fast-paced walking speed unadjusted and (B) regions 

that remained significant after adjusting for demographic variables, clinical morbidities, and cognitive function – 

including those with smaller effect sizes, i.e. <0.3 m/s. (C) Association between gray matter density and usual-paced 

walking speed unadjusted and (D) regions that remained significant after adjusting for demographic variables, 

clinical morbidities, and cognitive function – including those with smaller effect sizes, i.e. <0.3 m/s. Color bar 

indicates value of the t-statistic testing the association between gray matter density and fast- (A and B) or usual-

paced (C and D) walking speed. 

 



 33 

3.4 Discussion 

We found that fast-paced walking speed was positively associated with gray matter 

density in cortical regions including right middle and superior frontal gyrus, right postcentral 

gyrus, and left superior temporal gyrus. Associations were robust to adjustment for demographic 

factors, clinical factors, and cognitive function. Our hypothesis was accurate, as fast-paced 

walking speed but not usual-paced walking speed, was associated with clusters related to 

executive function.74 However, no memory-related clusters were associated with fast-paced or 

usual-paced walking speed. 

In this study, we examined the whole brain to capture a wide network or regions related 

to fast-paced walking speed in older adults without neurological and psychological diseases. The 

brain regions from cortical, subcortical, and cerebellum identified from the unadjusted analyses 

where gray matter density was correlated with either fast-paced or usual-paced walking speed 

may reflect the functions of brain related to mobility.4 Clusters from cortical, subcortical, and 

cerebellar regions were correlated with both fast-paced and usual-paced walking speed. This 

could reflect the correlation between two walking measures, which was measured as 0.58 in our 

sample. On the other hand, these two measures were not perfectly correlated, and each was 

correlated with specific regions. Fast-paced walking speed was correlated with parietal regions, 

and usual-paced walking speed was correlated with regions of basal ganglia and occipital. This 

may indicate that different mechanisms of neuronal control were involved in fast-paced walking 

than usual-paced walking. It was suggested that fast-paced walking involves a higher conscious 

control than usual-paced walking.59  

Previous studies have been limited. One study focused on associations of fast-paced 

walking speed with total brain volume and hippocampal volume50 and only adjusted for age. 
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Another study assessed regional gray matter volume associated with faster fast-paced walking 

speed60, but only participants having memory complaints were recruited – limiting its 

generalizability to older populations without impairment of cognitive function.  

After adjustment for demographic variables, clinical factors, and cognitive function, we 

observed that faster fast-paced walking speed was associated with gray matter density in right 

middle and superior frontal gyrus, right postcentral gyrus, and left superior temporal gyrus. 

These regions are specifically related to executive, somatosensory, and vestibular function.74-76 

In a previous study of resting-state functional connectivity and walking, greater resting-state 

functional connectivity between the midbrain locomotor region and right superior frontal gyrus 

was associated with greater walking capacity, indicating that superior frontal gyrus was a 

relevant locomotor area.77 This is consistent with our finding, where fast-paced walking was a 

measure of walking capacity and was related to the structure of superior frontal gyrus. Right 

postcentral gyrus is a somatosensory region that facilitates the automatic process of walking,78 

and has been identified to be related to walking in studies investigating brain activation.19,79 

Previous studies using functional near-infrared spectroscopy observed increased activation in 

superior temporal gyrus during postural control and balance, indicating that this area is involved 

in dynamic balance.80,81 Our study suggests that superior temporal gyrus could play a role in fast-

paced walking through balance control. However, future studies are needed to verify the results 

by analyzing functional associations with the brain.  

Associations tended to be lateralized to the right hemisphere for fast-paced walking. 

Right hemisphere dominance for vestibular and ocular motor structures in right-handed 

volunteers has been previously reported in a positron emission tomography study.82 Another 

study using electroencephalography also observed increased right hemispheric engagement 
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related to ventral attention.83 A previous review suggested a lateralized model for motor control: 

the left cortex is specialized for predictive control while the right cortex is specialized for 

impedance control specifying velocity and position based impedance.84 Our results are consistent 

with previous evidence suggesting the increased engagement of the right hemisphere during the 

fast walking process that may be associated with increased engagement of vestibular function 

and impedance control.  

Adjustment for covariates including demographics, morbidities, and cognitive function 

did not attenuate the associations of gray matter density of middle and superior frontal gyrus, 

right postcentral gyrus, and left superior temporal gyrus, with fast-paced walking speed. The 

association of usual-paced walking speed with regional gray matter density was not as robust to 

the adjustment of covariates. In addition, no regions were associated with both usual and fast-

paced walking speed after adjustment. This may indicate: 1) the association of fast-paced 

walking but not usual-paced walking was independent of age, sex, race, education, BMI, and 

morbidities, CVD, stroke or TIA, hypertension, diabetes, and depression. 2) Cognitive function 

represented by 3MSE and DSST scores is not likely to be a mediator between gray matter 

density and fast-paced walking speed. This may not hold true for usual-paced walking speed. 3) 

Although there’s overlap of brain regions related to usual- and fast-paced walking speed in 

consistent with the correlation between the two walking measures, this overlap could be largely 

explained by covariates that may be common causes of the brain aging and mobility loss. 

Fast-paced walking speed but not usual-paced walking speed was correlated with gray 

matter density of superior frontal gyrus. Compared with usual-paced walking, fast-paced walking 

was more strongly correlated with gray matter density of clusters in general. Our results are 

consistent with previous hypotheses that: 1) Fast-paced walking, but not usual-paced walking, 
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was associated with cognitive function in older adults56-59 and may be related to cognitive 

execution;74 2) complex walking like fast-paced walking provides greater levels of variability 

and allows difference in fitness to be identified, which would not be identified in usual-paced 

walking;58 and 3) fast-paced walking necessitates a higher level of conscious control and thus is 

more closely correlated with cortical structure than usual-paced walking.59 

Negative findings also merit attention. We did not find a significant association of fast-

paced walking speed with memory-related areas (e.g., hippocampus) after adjustment with 

cognitive function. This is surprising given the association of fast-paced walking with 

dementia.4,85 Associations were also not significant with basal ganglia, which is involved in the 

automatic control of voluntary movements.6 Basal ganglia was observed to be associated with 

usual walking speed among older adults in previous studies, where a combined effect of the 

neurodegenerative process may be involved.60,86 Only the caudate was associated with usual-

paced walking, while many studies have found the association of walking speed with gray matter 

volume in motor-related regions such as precentral gyrus, frontal, hippocampal, and cerebellar 

regions. The negative findings could be explained by several reasons. As a more demanding task, 

it is possible that a different mechanism is involved in fast-paced walking that is different from 

usual-paced walking or complex walking tasks.59 We only studied gray matter density, which 

may not sufficiently describe the age-related changes in brain correlated with fast-paced walking. 

For example, there could be changes in other brain imaging parameters, including white matter 

volume and integrity, brain activity, subclinical manifestations (e.g., micro bleeding, -

Amyloid), and functional connectivity, before the changes of gray matter density could be 

detected. A previous study identified associations of slower walking speed with lower white 

matter microstructure in thalamic radiations.87 The associations of slower walking speed with 
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greater white matter hyperintensities were observed in basal ganglia and thalamic radiation.88-91 

A previous study using florbetapir PET observed significant association between -Amyloid in 

putamen and slow gait speed.92 It is also important to put the results of gray matter density in the 

context of other modalities because of compensatory mechanisms and functional reserve of the 

brain. Our voxel-wise multiple comparisons correction reflects the latest in the field,93 which 

may also influence the results we have observed. We used a cut-off of 0.3 m/s to select the 

regions in multivariate-adjusted linear regressions, thus we focused on the effect size instead of 

hypothesis testing results (p values). Inconsistencies may also result from different sample of 

participants. Specifically, if those who were unable to complete fast-paced walking had different 

gray matter density profiles than our study sample.  

There is the need to find simple markers to detect early dementia risk in older adults. 

Traditional methods like MRI and cognitive assessments are either invasive or require lots of 

time and specialist input. Gait measures are relatively simple yet important measures in the older 

population. Usual walking speed is a simple measure, but its association with brain integrity 

might not be strong enough at the individual level. More complex motor tasks, such as dual task 

walking, are promising because of their potential to reflect changes in the central nervous system 

to a greater extent compared to usual walking speed.57 However, dual task walking is 

complicated to administer and difficult to standardize. Fast gait may be a good compromise, as 

previous evidence suggest that it reveals cognitive characteristics, and it requires relatively 

simple and consistent protocol compared to other complex walking tasks.57-59 Our study indicates 

that fast gait does reflect integrity in certain brain regions, but not those that are memory-related. 

This may suggest that fast-paced gait speed alone is not helpful for detecting risk of memory-
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related dementia. However, it could be helpful to detect other general signs of advanced brain 

aging or problems with executive function.  

There are several limitations in our study. We used a selective population: only 

participants who survived and completed MRI scanning in Year 10 or Year 11 and had complete 

data profile were included from the Health ABC study. In addition, the age range of our study 

sample is narrow with the average age of 83 (SD=2.8), preventing generalization to the younger 

elderly. Our study is cross-sectional and so any associations are non-temporal and non-causal. 

Longitudinal studies may help explain the causal relationships amongst these variables. Last, we 

only investigated the association with gray matter density. Other brain imaging parameters 

should be assessed to further understand the neural correlates associated with fast-paced walking 

speed. As a result, it’s important to interpret our results with caution, as they need to be put in the 

context of other neural modalities. 

In this study, we conducted voxel-wise analyses between fast-paced walking speed and gray 

matter density, which allows for the comparisons across the entire brain with a high regional 

specificity and without prior region-specific assumptions. Our study sample is relatively large in 

size with sufficient sampling of male and black participants. Our study adds to the current 

evidence of the neural correlates of fast-paced walking speed. We identified several clusters in 

the brain including right middle and superior frontal gyrus, right postcentral gyrus, and left 

superior temporal gyrus independent of demographic variables, clinical factors, and cognitive 

function among older adults. The association of frontal and temporal gyri with fast-paced but not 

usual-paced walking speed may explain previously observed associations between fast-paced 

walking speed and cognitive function.57-59  
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4.0 Assessment of Prefrontal Cortex Activation and Performance during Walking with 

Different Dual Tasks in Older Adults: A Functional Near Infra-red Spectroscopy Study 

This paper evaluated the real-time activation of prefrontal cortex, a key region of 

cognitive control and higher order processing, during dual task walking, to test the importance of 

prefrontal cortex in community walking in older adults.  

4.1 Introduction 

Poor mobility in older adults is related to physical and cognitive impairment, 

institutionalization, and risk of falls, which is a major cause of injury and morbidity in older 

adults.2,18,32 Community walking is often accompanied by environmental challenges which require 

additional cognitive networks of the brain that are not involved during unchallenged walking as 

typically studied in the lab.14,15 Dual-task walking involves a simultaneous physical or cognitive 

task. It is used to mimic community walking in mobility studies.94 

The prefrontal cortex subserves higher order information processing and executive 

functions.95 PFC likely plays an important role in dual-task walking. Previous evidence suggests 

that dual-task walking is associated with increasing activation in prefrontal regions in older 

adults.96 However, dual-tasks of different types and difficulty levels have been used in the current 

literature, making the results less comparable across studies. Few studies have evaluated PFC 

activation across walking with different types of dual-task in older adults to provide evidence of 

task-specific effect on PFC activation.16 Increased PFC activation level was observed in walking 
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while talking compared with simple walking, and obstacle walking compared with simple 

walking.97,98 No studies has assessed the effect of physical and cognitive dual task interaction on 

PFC activation.  

The PFC may provide functional compensation when direct locomotor networks of primary 

motor cortex, basal ganglia, and cerebellar locomotor regions are insufficient to support dual-task 

walking.99  PFC is also one of the regions that are most susceptible to age-related atrophy.23 Older 

adults with cognitive impairment, high stress or fatigue, high risk of falling, and ataxic gait showed 

greater PFC activation than healthy older adults during dual-task walking.22 The results suggest 

that greater prefrontal activation during dual-task walking is related to decreased functional status 

of older adults. Dual-task performance capabilities may also be an indicator of functional status in 

older adults.100  

Mixed directions of the association between PFC activation and performance of dual-task 

walking were observed from previous studies. This may suggest that PFC is activated at different 

walking tasks in older adults, and older adults with different PFC activation patterns have different 

walking performance. The PFC activation pattern reflects older adults’ ability to respond to 

environmental challenges, and may be related to neurocognitive changes with aging.21 No study 

has tested the association of PFC activation pattern with task performance and functional status in 

older adults.  

With real-time functional near infrared spectroscopy (fNIRS) measures of both simple 

walking and walking with different dual-tasks, we aim to address the evidence gaps of task-specific 

and function-related effect on PFC activation in older adults. First, we aim to evaluate changes in 

PFC activation after adding physical and cognitive dual-tasks in walking. We hypothesize that 

PFC activation is increased in dual-task walking compared with even walking. We also 
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hypothesize that PFC activation during the task with combined physical and cognitive dual-tasks 

is lower than expected from the sum of the individual dual-tasks. Second, we aim to assess the 

association of walking and cognitive performance during walking tasks with PFC activation. We 

hypothesize that walking performance is negatively associated with PFC activation. Third, we 

applied clustering on PFC activation across walking tasks in an exploratory analysis and described 

the cognitive and physical functions of older adults with different PFC activation patterns across 

walking tasks.  

4.2 Methods 

4.2.1 Study Population 

We used three independent studies, including Neural Mechanisms of Community 

Mobility (NMCM), Program to Improve Mobility in Aging, Near-Infrared Spectroscopy sub 

study (PRIMA-NIRS), and Move Monongahela-Youghiogheny Healthy Aging Team (Move 

MYHAT).  

The NMCM study aims to study brain function with relation to navigating challenges 

experienced while walking in the community. Twenty-nine participants were recruited from a 

previous study through a convenience sample from both newspaper advertisements and from 

other studies.101  

The PRIMA-NIRS study is an ancillary (n=43) to a randomized clinical trial (parent 

study NCT02663778) which aimed to assess the effects of motor skill training on central motor 

control in older adults with walking difficulties. Participants were contacted from the Pittsburgh 
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Pepper Center Community Research Registry.102 One participant was excluded because the 

participant was unable to complete the walking tasks, generating a final sample size of 42. We 

included the baseline data for the 42 participants.  

The Move MYHAT study aims to study nigrostriatal dopamine on mobility resilience in 

older adults. Participants were recruited from a parent study, where samples were drawn 

randomly from the voter registration lists of continuous small-town communities in 

Southwestern Pennsylvania.103 We included the baseline data from 46 participants who have 

completed baseline assessment by the time we started the analyses. 

Participants included from the three studies were 1) older than 65; 2) without presence of 

major neurological or psychiatric diseases, including dementia; 3) able to walk without 

assistance. Participants were additionally required to have a gait speed between 0.6 and 1.2 m/s 

in PRIMA-NIRS. In addition, participants from PRIMA-NIRS were excluded if they had 

medical conditions that cause safety concern for participating in an exercise program. Details of 

medical conditions were reported in a previous paper. 25 

4.2.2 Walking task assessment 

Participants walked on a track with 15 meter straight-ways on either side. One side is a 

standard, level-surface track and the other is an uneven surface track. Participants made full 

circles of the track while doing either simple walking or walking with a simultaneous cognitive 

task, reciting every other letter of the alphabet. Details of walking task assessment has been 

reported in a previous paper.104 In total, there are four task conditions: 1) walking on the even 

surface (even walking), 2) walking on the uneven surface (uneven walking), 3) walking on the 

even surface with the alphabet task (even ABC), 4) walking on the uneven surface with the 
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alphabet task (uneven ABC). Each task was completed 4 times by each participant. Task order 

was pseudo-randomized for each participant, such that even and uneven walking always 

alternated. Participants stood quietly for 20 seconds before each task to serve as a baseline 

condition. Walking speed was calculated as 15/ (time from the beginning of walking until both 

feet are off track) in m/s. The rate of correct letters was calculated in number/s, where number of 

correctly specified letters during task was divided by time to complete tasks. 

4.2.3 Functional Near Infrared Spectroscopy (fNIRS) 

For fNIRS measurement and analyses we followed the recommendations from consensus 

guidelines for fNIRS.105 Participants were asked to wear an eight-channel continuous wave 

fNIRS headband (Octa-Mon; Artinis Medical Systems, Elst, Netherlands) during walking. The 

fNIRS instrument used near infrared light transmitted at two wavelength of 850 and 760 nm. The 

device has two detectors and eight light emitting diodes sources. Optical data was sampled at a 

frequency of 50 Hz.  

Figure 4-1 shows the placement of fNIRS optodes on subject’s forehead. Four sources 

and one detector cover the PFC of each hemisphere. Each channel consists of one detector and 

one source on the same side.  
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Figure 4-1. Placement of the functional near-infrared spectroscopy (fNIRS) optodes on brain. The fNIRS cap 

consisted of 8 sources and 2 detectors. 

4.2.4 Signal Processing 

Raw signals detected by the fNIRS device were exported to Matlab (MATLAB and 

Statistics Toolbox Release 2017b, The MathWorks, Inc., Natick, MA) using the NIRS Brain 

AnalyzIR Toolbox. Out of the total 468 measurements for the 117 participants, 9 measures had 

unusable fNIRS data (1.9%), and 6 measures were missing for time records of walking tasks 

(1.1%). Further, we excluded about 1% of our data where participants were not following the 

protocol during walking tasks. Modified Beer-Lambert law was applied to calculate changes of 

HbO2 and HHb concentrations across time, assuming the partial pathlength factor (DPF) as 

0.1.106 We applied a bandpass filter before modeling to reduce non-evoked noises. In first-level 

modeling, we applied a canonical model with autoregressive pre-whitening approach using 

iteratively reweighted least-squares (AR-IRLS) to model O2Hb for each task.107 Using standing 
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period before each task as the baseline reference, we conducted channel-wise student’s t tests for 

changes of O2Hb of each test by comparing the level of O2Hb of walking tasks with baseline. 

Mixed-effects model with fixed effect of tasks using robust weighted least-square was applied to 

combine the results of the 4 tests for each individual. We exported single t-statistics for each 

channel and task per subject.  

4.2.5 Covariates 

We included covariates that were identified to be associated with PFC activation during 

mobility tasks, including age, sex, obesity, cardiovascular disease, diabetes, and physical and 

mental fatigability.22,96 We additionally adjusted for height, weight, and joint pain when 

modeling walking speed, and adjusted for education when modeling alphabet rate. In addition, 

we assessed participants’ cognitive functions with a neuropsychological assessment. We 

calculated participants’ life space assessment (LSA) score, which documents their usual patterns 

of mobility during the 4 weeks prior to the assessment.108  

Height and weight were self-reported by participants. Obesity was defined as BMI >30. 

Participants were defined as having cardiovascular disease if they self-reported any of angina, 

congestive heart failure, or heart attack. Diabetes was also self-reported. Fatigability was 

measured using the Pittsburgh Fatigability Scale.109 Participants were asked about the level of 

physical and mental fatigue they experienced during different proposed tasks, with 0 being no 

fatigue and 5 being extreme fatigue. One participant from PRIMA-NIRS was missing for fatigue 

measures, and we replaced missing value with fatigue measures from the following visit of 

PRIMA-NIRS study. Four observations from Move MYHAT with missing value were replaced 

with the sample mean. Joint pain was assessed by asking participants if they had joint pain in 
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their knees, hips, and ankles in the past lasting at least one month. One participant from PRIMA-

NIRS and four participants from Move MYHAT were missing for joint pain, and were replaced 

with no joint pain, which is the majority among our participants. Education was categorized as 

four levels: high school/ equivalent (9-12 years), college (13-16 years), post graduate (≥17), and 

other (<9 years). The neuropsychological assessment included Mini Mental State Exam 

(MMSE), Trails Making Part A, and Trails Making Part B.110,111 MMSE scores were created 

from the Modified Mini Mental State Exam in PRIMA using the appropriate item scores. 

Because of the ceiling effect of MMSE assessment, the MMSE scores were left skewed, and we 

categorized the scores with a cut-off point of the sample mean. Trails Making Part A and Trails 

Making Part B test scores are recorded as time to finish the tests in second. The maximum times 

allowed for conducting the Trails Making Part A and Trails Making Part B test are 90 s and 240 

s, respectively. No observation from the three studies exceeded the maximum times allowed. 

Two participants from the PRIMA-NIRS study are missing for the Trails Making test scores thus 

were excluded when comparing the scores. Total LSA score was calculated as the sum of scores 

of each of the 5 life-space levels, which was obtained by multiplying the level number by value 

of independence times value of frequency of movement.108  

4.2.6 Statistical analysis 

We applied linear mixed models to compare the channel-wise PFC activation t statistics 

across tasks in each study. We assessed whether there are effects of 1) physical dual-task 

(uneven walking) by including an indicator of uneven walking, 2) cognitive dual-task (alphabet 

task) by including an indicator of alphabet task, and 3) the interaction of having both physical 

and cognitive dual-tasks by including the interaction term of uneven walking and alphabet task in 
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the model. Random effects of subject and tasks within subjects were included in the model. Age, 

sex, cardiovascular diseases, diabetes, obesity, and physical and mental fatigability scores were 

adjusted in the models. We meta-analyzed the results of three studies using the fixed-effect 

model.112  

We applied linear mixed models to assess the effect of PFC activation at each channel on 

walking speed and alphabet rate. Models include fixed effects of PFC activation t statistics, 

walking task, and the interaction term of activation and task, and random effect of subject. When 

modeling walking speed, we adjusted for age, sex, height, weight, cardiovascular diseases, 

diabetes, physical and mental fatigability scores, and joint pain. When modeling alphabet rate, 

we adjusted for age, sex, education, obesity, cardiovascular diseases, diabetes, and physical and 

mental fatigability scores. We meta-analyzed the results of three studies using the fixed-effect 

model. 

We applied k means clustering on channel-wise PFC activation t statistics across all the 

tasks.113 Because a different fNIRS device was used in Move MYHAT and to reduce the 

systematic errors of fNIRS measurement across studies, we standardized PFC activation t 

statistics for move MYHAT as well as the t statistics for NMCM and PRIMA-NIRS together, by 

subtracting the mean from data and dividing by standard deviation. Number of clusters was 

determined by gap statistics. The maximized value of gap statistics was selected using the global 

maximum criterion.114 Participants were clustered into 5 classes of different PFC activation 

patterns across channels and walking tasks. Walking task performance including walking speed 

and rate of correct letters, cognitive functions including MMSE, trails making A, and trails 

making B scores, and physical functions including LSA score, and physical and mental 

fatigability scores, were summarized for each class, and compared across classes using chi-
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square test for categorical variables and one-way analysis of variance (ANOVA) for continuous 

variables. 

4.3 Results 

Demographics, clinical features, cognitive and physical functions, and walking task 

performance are displayed in table 1. The average age of each study is 76 (standard deviation: 

5.8, NMCM), 76 (standard deviation: 6.6, PRIMA-NIRS), and 73 (standard deviation: 5.6, Move 

MYHAT). Around 60% of participants are female. Participants from NMCM have a lower 

prevalence of obesity and joint pain, and better performance in Trails Making A test and Trails 

Making B test. Participants from PRIMA-NIRS have higher prevalence of diabetes, higher 

average physical and mental fatigability scores, and lower LSA scores. Participants from Move 

MYHAT are more likely to be female and have lower education levels. (Table 4-1) 

Average walking speed was lower for dual-task conditions compared to even walking. 

Average rate of correct letters was lower during uneven ABC walking compared to even ABC 

walking. The average walking speed was comparable in NMCM (0.79-0.97 m/s) and PRIMA-

NIRS (0.78-0.94 m/s), and higher in Move MYHAT (0.88-1.05 m/s). The average rate of correct 

letters for even and uneven walking was lower in Move MYHAT. (Table 4-1) 

Table 4-1. Baseline characteristics of three studies: Neural Mechanisms of Community Mobility (NMCM); Program 

to Improve Mobility in Aging, Near-Infrared Spectroscopy sub study (PRIMA-NIRS); and Move Monongahela-

Youghiogheny Healthy Aging Team (Move MYHAT). 

Study NMCM PRIMA-NIRS Move MYHAT 

n 29 42 46 

Demographics    

  Age, mean (SD) 76 (5.8) 76 (6.6) 73 (5.6) 
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  Female, n (%) 15 (51.7) 25 (59.5) 30 (65.2) 

  Education level, n 

(%) 

   

    High School/ 

Equivalent (9-12 

years) 

4 (13.8) 9 (21.4) 14 (30.4) 

    College (13-16 

years) 

15 (51.7) 16 (38.1) 22 (47.8) 

    Post Graduate 

(≥17) 

10 (34.5) 17 (40.5) 10 (21.7) 

  Height, mean (SD), 

m 

1.7 (0.11) 1.7 (0.09) 1.6 (0.11) 

  Weight, mean 

(SD), kg 

75 (14.7) 83 (15.3) 79 (18.4) 

Clinical Features    

  Obesity, n (%) 3 (10.3) 13 (31.0) 19 (41.3) 

  Cardiovascular       

Disease, n (%) 

3 (10.3) 4 (9.5) 2 (4.3) 

  Diabetes, n (%) 6 (20.7) 13 (31) 11 (23.9) 

  Joint Pain, n (%) 5 (17.2) 16 (38.1) 16 (34.8) 

Cognitive function    

  MMSE 29 (1.5) 29 (0.9) 28 (2.1) 

  Trails making Part 

A 

27 (7.6) 32 (10) 33 (12) 

  Trails making Part 

B 

74 (27) 78 (40) 84 (33) 

Physical function    

  Physical 

Fatiguability Score, 

mean (SD) 

15 (7.5) 19 (8.1) 17 (7.6) 

  Mental 

Fatiguability Score, 

mean (SD) 

9 (8.2) 10 (9.1) 11 (7.8) 

  Life Space 

Assessment 

87 (19) 74 (17) 92 (20) 

Walking task 

Performance, mean 

(SD), m/s 

   

  Even 0.97 (0.14) 0.94 (0.16) 1.05 (0.20) 

  Uneven 0.90 (0.15) 0.86 (0.15) 1.00 (0.23) 

  Even ABC 0.83 (0.17) 0.83 (0.15) 0.93 (0.22) 

  Uneven ABC 0.79 (0.16) 0.78 (0.13) 0.88 (0.22) 

Rate of correctly 

specifying alphabet, 

mean (SD), s-1 

   

  Even ABC 0.66 (0.23) 0.62 (0.18) 0.57 (0.14) 
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  Uneven ABC 0.64 (0.21) 0.59 (0.17) 0.56 (0.15) 

 

Walking on the uneven surface was associated with increased PFC activation averaged 

across all channels compared with even walking (beta coefficient: 0.50, 95%CI: 0.21, 0.80). 

Adding the alphabet dual-task is associated with a similar increase in PFC activation (beta 

coefficient: 0.59, 95%CI: 0.29, 0.87). The PFC activation t statistics of walking on the uneven 

surface with the alphabet task is 0.47 less than the sum of PFC activation in each individual dual-

task condition (95%CI: -0.89, -0.05). (Table 4-2) 

 Table 4-2. Meta-analyzed beta coefficients and confidence intervals of the effects of dual tasks and interaction 

between dual tasks on the t statistics of prefrontal cortex activation. Models adjusted for age, sex, cardiovascular 

diseases, diabetes, obesity, and physical and mental fatigability scores. 

 

Walking speed was negatively associated with PFC activation t statistics across tasks 

(point estimate of coefficient range: -0.011, -0.003) (figure 4-2, Appendix A-9). We observed 

significant interactions of walking tasks and PFC activation on walking speed (all p 

values<0.0001), suggesting the associations of walking speed with PFC activation differ by 

walking task. However, the directions of interaction of task and PFC activation t statistics were 

not consistent across studies. (Appendix B-9) 

Effect  Beta (95% confidence interval) 

Uneven surface walking  0.50 (0.21, 0.80) 

Alphabet task 0.59 (0.29, 0.87) 

Interaction of uneven surface walking and 

alphabet task 

-0.47 (-0.89, -0.05) 
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Figure 4-2. The meta-analyzed associations of walking speed (m/s) with t statistics of prefrontal cortex activation. 

Models conducted separately for each channel, and adjusted for age, sex, height, weight, cardiovascular diseases, 

diabetes, physical and mental fatiguability scores, and joint pain. 

We observed a negative association of rate of correct alphabet with activation at left PFC 

(point estimate of coefficient range: -0.012, -0.002), but not with right PFC (figure 4-3, 

Appendix A-10). P values of interactions of walking tasks and PFC activation on alphabet rate 

range between 0.002 and 0.04, suggesting the associations of correct letter rate with PFC 

activation differ by walking tasks. The directions of interaction of task and PFC activation t 

statistics were not consistent across studies. (Appendix B-10) 
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Figure 4-3. The meta-analyzed associations of correct alphabet rate (number/s) with t statistics of prefrontal cortex 

activation. Models conducted separately for each channel, and adjusted for age, sex, education, obesity, 

cardiovascular diseases, diabetes, and physical and mental fatiguability scores. 

Five classes were identified after clustering based on t statistics of PFC activation: class 1 

(n=15) if participants have negative PFC activation t statistics across tasks and channels; class 2 

(n=46) if participants have low level of negative PFC activation t statistics at most but not all 

tasks and channels; class 3 (n=18) if participants have negative PFC activation t statistics during 

walking without alphabet task and positive PFC activation t statistics during walking with 

alphabet task; class 4 (n=27) if participants have positive PFC activation t statistics at certain 

tasks (more often at even and uneven) and channels; and class 5 (n=11) if participants have 

positive PFC activation t statistics across all tasks and channels. (Figure 4-4) According to the 

box plots of task performance stratified by classes, class 3 has slightly slower rate of correct 

letters than the other classes. Class 4 has slightly slower walking speed than the other four 

classes. Class 5 performs the best in both cognitive and physical tasks. (Figure 4-4) We did not 
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observe any difference in neuropsychological test scores, LSA scores, or physical and mental 

fatiguability scores by PFC activation class. (Appendix A-11) 

 

Figure 4-4. Group average (A) and individual-level (B) t statistics of prefrontal cortex activation across tasks and 

channels. Average walking speed (m/s) (C) and average correct alphabet rate (number/s) (D) by classes of each 

walking tasks. 

4.4 Discussion 

We observed increased PFC activation during both uneven walking and walking with an 

alphabet task compared with even walking in older adults. There is a negative interaction effect of 

walking with the combined uneven and alphabet task on PFC activation, such that activation during 

the combined task is lower than expected from the sum of the two individual dual-tasks. Task 

performance, including both walking speed and alphabet rate, were negatively related to PFC 
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activation. Five classes of PFC activation patterns during walking were identified. No differences 

in cognitive and physical functions are observed across classes, though some of the classes have 

small numbers of individuals. 

PFC, which subserves executive function and attention, is engaged during gait in older 

adults, and is increasingly engaged as the walking tasks become more challenging.115 In our results, 

physical and cognitive dual-tasks increased PFC activation to a similar extent. The finding is 

consistent with the results published in a previous review, where researchers found that obstacle 

walking and letter generation tasks while walking result in significant increases in PFC activation 

relative to unchallenged walking.94 Our study found a smaller brain activation for the combined 

physical and cognitive challenges compared to the expected from the sum of individual conditions. 

Only one previous study assessed the interaction of physical and cognitive dual-tasks with fNIRS, 

and observed a similar dual-task interference.80 Our results, along with previous findings, 

consistently suggest capacity limitation in neural resources among older adults. This theory was 

previously explained in the dual-task context by Boisgontier et al., where the information 

processing and throughput capacity in a brain circuit is reduced because of neuropathology on 

brain function in older adults.100 This results in a plateau of brain activation and worse walking 

performance when the task difficulty level reached neural resource limit among older adults.100  

Over-activation in PFC in older adults has been observed.21 However, whether over-

activation is related to declined or maintained performance is under debate. In a systematic review 

of fNIRS on cortical activity in posture and walking tasks, PFC activation during dual-task walking 

was associated with performance on motor tasks and cognitive tasks.96 However, the direction of 

the associations were not consistent across those studies and the underlying mechanism is not 

clear.97,116,117  Our results of negative associations of walking task performance with greater PFC 
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activation suggest that neural inefficiency theory may play a role underlying PFC over-activation 

among older adults. According to the neural inefficiency theory, over-activation in PFC among 

older adults results from not being able to efficiently allocate resources to support tasks, and is 

related to declined task performance.21 

Current literature hypothesized that overactivation is likely to stem from multiple causes.21 

Our clustering analyses identified three classes of overactivation: class 3 with higher PFC 

activation during walking with greater cognitive demand; class 4 with higher PFC activation 

during even and uneven walking than walking with greater cognitive demand; and class 5 with 

higher PFC activation than the other classes across all walking tasks. In addition, we observed 

slightly slower alphabet rate in class 3, slightly slower walking speed in class 4, and greater 

alphabet rate and walking speed in class 5. Over-activation in PFC is likely related to inefficiency 

in cognitive-related and motor-related neural resources for class 3 and class 4, respectively, while 

over-activation is likely related to compensatory theory for class 5. Evidence supporting the 

compensatory theory has been observed in previous studies.118 According to the compensatory 

theory, additional neural resources are recruited in older adults for maintaining successful walking 

and cognitive performance. Unlike younger adults who activate PFC only at higher demand, older 

adults increasingly activated PFC at all tasks, including tasks of lower demand.21 Our results also 

indicate that not all of older adults exhibited overactivation, consistent with previous findings.18 

We observed two classes of older adults with low PFC activations (class 1 and class 2). Although 

they perform slightly better than the inefficiency groups, they do not perform as well as the 

compensatory group.  

Although the interactions of PFC activation with task on performance are significant, they 

are not consistent across included study samples. We did not observe increases in strength of 
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associations between PFC activation and task performance as the task demand increased. These 

may be due to heterogeneity in PFC activation across tasks within the population, as shown by the 

clustering results and explained above. Alphabet performance is only associated with activation in 

left PFC, which signifies the semantic working memory process.119 Unlike what we observed for 

alphabet rate, for walking speed, we did not observe any lateralized effect of left and right PFC 

activation. Activation in both left and right PFC regions were related to walking performance. This 

may be explained by hemispheric asymmetry reduction in older adults (HAROLD), where a more 

bilateral PFC activation pattern was reported in older adults than younger adults due to aging-

related reorganization of neural circuits.120 We did not identify any class with different PFC 

activations during walking on the uneven surface than during walking on the even surface. This 

may suggest that reciting the alternate alphabet as the dual-task is better for challenging PFC 

resources and identifying heterogeneities within populations than walking on an uneven surface. 

Last, there were no significant differences in cognitive and physical functions across classes. Our 

interpretations of clustering results are subjective without proof of cognitive and physical status 

differences. However, this might suggest that PFC activation along with walking performance 

could reflect subtle changes that would not be reflected by these clinical measures. Our results of 

clustering analyses need to be interpreted with caution, as some classes have small numbers of 

participants and the study is underpowered to detect the differences across classes.  

Our study is subject to several limitations. First, the study power is limited by small sample 

sizes of each study. This could limit our study power to assess the associations between task 

performance and PFC activation, and to detect differences in cognitive and physical functions 

across classes identified from clustering analyses. Participants were recruited using different 

sampling methods across studies, so the differences in the underlying populations is a concern. 



 57 

However, the Cochran’s Q statistics of meta-analysis suggest no evidence of heterogeneity in 

results across studies. The signal-to-noise ratio of fNIRS measurement for some observations is 

low, which reduces the data quality. We applied conservative statistical modeling to filter the noise 

and mitigate its impact on our results. Correlations across channels may have an impact on the 

results of associations between walking task performance and PFC activation, but we were not 

able to address that in our analyses. The approach of identifying heterogeneous classes of PFC is 

exploratory, and the interpretations of clustering results are subjective. Also, by standardizing the 

t statistics of PFC activation, we could eliminate the true differences in activation patterns among 

participants between different studies. However, these results do support the hypothesis that there 

are different activation patterns within a population. More evidence is needed to test the 

heterogeneous groups of PFC activation patterns during walking tasks. Assessment of aging-

related brain structural and neurochemical changes, such as gray matter volume in PFC, decline in 

white matter volume, cholinergic reduction, and dopaminergic denervation, could help to interpret 

neural models of age-related changes in the context of dual-task condition.18,23 Finally, we only 

assessed activation in the PFC region, with limited understanding of activations in other important 

regions such as pre-motor cortex, supplementary motor area, and sensorimotor cortex. Future 

functional imaging studies on multiple regions including both PFC and other locomotor and 

cognition related regions are desired to create a complete profile of brain activation for the 

interpretation of aging-related brain activity changes.  

Our study has some notable strengths. We applied the fNIRS processing pipeline with a 

high sensitivity and specificity in assessing brain activity, and used the t statistics comparing 

between tasks with baselines to obtain robust measures of task activation.107 The comprehensive 

assessment of PFC activation and performance during walking with both physical and cognitive 
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dual-tasks allow us to compare across PFC activation during simple walking and walking with 

different concurrent task difficulty. We used reciting the alternate letters of the alphabet as the 

cognitive dual-task, as the associations of alphabet dual-task performance with cognitive functions 

were stronger than other cognitive dual-tasks.121 Community walking as a daily activity involves 

motor and cognitive challenges. Successfully navigating the challenges requires attentional 

resources from PFC in older adults. Thus, we included both cognitive and physical challenges to 

walking. We applied the clustering analysis and identified heterogeneous groups of PFC activation 

patterns during walking tasks. Our results suggest that both neural inefficiency and compensatory 

theories may exist in older adults, and it is important to consider the heterogeneity in PFC 

activation when studying the association. This might also partially explain the inconsistencies of 

association between PFC and walking performance from current literature. Last, both theories 

demonstrate the wide agreement on age-related shift from automatic movement control to 

attentional movement control.18 Interventions that could help to improve efficiency and capacity 

of brain activation in older adults, and shift back to automatic movement control during walking 

are desired. 
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5.0 Summary and Conclusions 

Gait is a complex process which requires dynamic interactions between musculoskeletal, 

cardiopulmonary, and nervous systems.5 Previous studies and scientific reviews have identified 

gray matter volumes in frontal, basal ganglia, hippocampal, and cerebellar regions correlated 

with simple walking, suggesting the important role of CNS in maintaining walking 

performance.4,7 Based on a framework of gait domains that has been developed and validated 

previously, quantitative gait measures from pace, rhythm, and variability domains were used to 

capture the complexities of movement.8-10 The quantitative measures are related to gray matter 

atrophy and loss of gray matter integrity, and reflect different underlying cognitive 

pathologies.10,11 Prefrontal cortex, identified from previous literature of neural correlates of 

walking, is a key area of information processing and executive functions during community 

walking. 16-20 It is also one of the regions that are most susceptible to age-related atrophy.21  

My dissertation work aims to address the evidence gaps of current literature, including 1) 

most of the previous evidence focused on speed and length of gait, and relations of specific brain 

regions with gait characteristics from other important domains was limited;7 2) compared to 

simple walking, community walking is often accompanied by greater environment challenges, 

and likely involves additional neural inputs of the brain.14,15 Thus, studying usual walking speed 

alone may not reflect the subtle changes of brain and reveal the whole picture of neural correlates 

that are important for maintaining community walking in daily life; 3) mixed results of prefrontal 

cortex activation with walking performance and functional status have been observed, which 

makes it difficult to interpret age-related differences in PFC activation during walking.18 
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The overarching goal of my dissertation work is to identify brain regions related to the 

performance of walking tasks to provide evidence of the role of brain in community walking in 

older adults.  

Because walking performance not only includes velocity and length of gait, but also 

timing and fluctuations across steps, we assessed these independent domains of usual walking 

and their neural correlates in older adults in the first paper. We used data from the Health, Aging, 

and Body Composition study. After missing data imputation and outlier exclusion, 291 

participants had baseline gait measures at year 10, with 186 of them having repeated gait. GMVs 

were computed in AAL2 atlas regions for selected regions of interest (ROIs). We calculated 

domain scores of pace, spatial variability, rhythm, and temporal variability, representing velocity 

and length, fluctuations of spacing, time control of gait, and fluctuations of timing, respectively. 

We used sparse partial least squares to select important ROIs.34 Our results suggest that pace is 

positively associated with GMV in selected subregions in frontal and cerebellar lobes. We also 

found that spatial variability relates to left anterior cingulate cortex and superior parietal lobe. 

The frontal, anterior cingulate, and superior parietal regions are part of the fronto-parietal 

network that is involved in executive function.10,25 We observed annual rhythm change and 

temporal variability related to motor control regions, including subregions from basal ganglia 

and cerebellum, suggesting timing control of gait may be more rudimentary feature of gait. In 

addition, only rhythm showed significant inter-subject variation in age related effect.  

In the second paper, we used fast paced walking to mimic the challenges of quickly 

processing and integrating multiple inputs and motor response and adapting locomotion during 

community walking, and assessed its neural correlates in older adults. We collected data from 

284 older adults from the Health, Aging, and Body composition study. We examined the whole 
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brain using voxel-wise analyses on magnetic resonance imaging data to capture a wide network 

or regions related to fast-paced walking speed.72 We then extracted gray matter density for all 

identified regions and modeled the association with fast-paced walking speed after adjusting for 

demographic factors, clinical factors, and cognitive function. We repeated the analyses for usual-

paced walking. In general, the effect size of gray matter density of each region on usual-paced 

walking was smaller than fast-paced walking speed. We found that fast-paced walking speed, but 

not usual paced walking speed, was positively associated with gray matter density in cortical 

regions including right middle and superior frontal gyrus, right postcentral gyrus, and left 

superior temporal gyrus, related to executive function, somatosensory, and vestibular function, 

respectively.74-76 Associations were lateralized to the right hemisphere, and robust to adjustment 

for demographic factors, clinical factors, and cognitive function. The results suggest that right 

cortex is specialized for vestibular control and impedance control, which are increasingly 

engaged in fast walking, and fast paced walking involved a higher conscious control than usual-

paced walking.84  

The third paper aims to evaluate PFC activation during community walking. We used the 

cross-sectional design with data from three independent samples (n=29, 42, and 46). We assessed 

PFC activation using functional near infrared spectroscopy during simple walking and dual task 

walking with cognitive and/or physical challenges. We compared PFC activation across tasks 

and its relation with walking performance after adjusting for multiple covariates. Finally, we 

clustered on PFC activation and summarized dual-task performance and physical functions by 

classes of PFC activation. Challenged walking is associated with greater PFC activation than 

even walking in older adults. We also found a smaller brain activation for the combined physical 

and cognitive challenges compared to the expected from the sum of individual conditions. 
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Walking task performance is negatively associated with greater PFC activation. The clustering 

analyses identified five classes of PFC activation. Our results suggest that PFC is increasingly 

engaged as the walking tasks with more physical and cognitive challenges. Capacity limitation in 

neural resources is likely to occur among older adults, impairing walking performance when 

environmental challenges increase. Older adults who are not able to efficiently allocate resources 

to support tasks have declined walking task performance.21 PFC activation across tasks is 

heterogeneous within the population: low PFC activation for class 1 and class 2; cognitive-

related and motor-related over-activation for class 3 and class 4, respectively; and over-

activation at all tasks, including tasks of lower demand for class 5. In class 5, additional neural 

resources are likely to be recruited in older adults for maintaining successful walking and 

cognitive performance.118  

Our analyses identified several brain regions related to executive and motor function that 

are important for maintaining walking performance from the aspects of velocity and length, 

timing control, and fluctuations of spacing and timing. These regions include frontal, anterior 

cingulate, superior parietal, cerebellar, and subregions from basal ganglia. In addition, we found 

that right middle and superior frontal gyrus, right postcentral gyrus, and left superior temporal 

gyrus, related to executive function, somatosensory, and vestibular function, respectively, are 

additionally involved during challenged walking compared with simple walking.74-76 Last, we 

observed the importance of PFC in motor control during dual-task walking through assessment 

of its increased activation. We observed an overall negative association of PFC activation with 

walking performance, and heterogeneous PFC activation patterns that define groups which differ 

in walking performance. Our results suggest the important role of CNS in achieving successful 

walking performance among older adults. Early subclinical brain pathology could be identified 
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based on performance of walking, such as reduced gait velocity and length, increased variability 

of spacing, and reduced fast paced walking speed. Community walking is an important part of 

daily life that is accompanied by greater environmental challenges, requires additional neural 

resources related to executive function and other functions specific to the environmental 

challenges compared to simple walking. Our results also provide evidence that interventions on 

executive function, as well as on somatosensory and vestibular function, may help to improve the 

performance of community walking. Last, our results suggest that age-related PFC over-

activation that indicates inefficiency in allocating resources and compensatory mechanisms for 

maintaining successful performance of community walking may both exist in the same 

population. This provides evidence to support future interventions of goal-oriented exercise and 

training to restore efficiency in PFC control during walking so that the performance of 

community walking can be improved.5  
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6.0 Appendix Tables 

Table 6-1. Missing data to impute for the 313 participants.* 

APPENDIX AVariables N missing N total sample size 

Gray matter volumes 2  

Intracranial volume 8  

Hypertension 1  

Quadriceps strength 18  

APOE e4 allele 15  

Gait measures 21  

Total 54 259 

*One participant from the original study sample was excluded because of missing date of 

gait measures. 
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Table 6-2. Quantitative gait measures at baseline (year 10) from each domain. 

Gait measures Mean (SD) 

Pace domain 0.08 (1.92) 

  Gait speed (m/s) 0.91 (0.19) 

  Step length (m) 0.53 (0.09) 

Rhythm domain (s) -0.08 (2.30) 

  Swing time  0.39 (0.04) 

  Stance time  0.78 (0.10) 

  Step time  0.59 (0.06) 

Spatial variability 

domain (m) 

-0.09 (1.79) 

  Step length variability 2.07 (0.39) 

  Stride length 

variability 

1.64 (0.36) 

Temporal variability 

domain (s) 

-0.23 (1.92) 

  Step time variability  1.85 (0.31) 

  Swing time variability 2.00 (0.34) 

  Stance time variability 1.93 (0.29) 

 

  



 66 

Table 6-3. Baseline characteristics by number of repeated gait measures. 

 

  

Characteristics Number of repeated 

gait measures=0 (n=105) 

Number of repeated 

measures ≥ 1 (n=186) 

Age, mean (SD) 84 (3.0) 83 (2.6) 

Female, n (%) 61 (58%) 111 (60%) 

Black, n (%) 45 (43%) 75 (40%) 

BMI, mean (SD) 27 (4.4) 27 (4.5) 

APOE allele 4 28 (27%) 43 (23%) 

Hypertension 79 (75%) 126 (68%) 

Stroke, n (%) 10 (10%) 13 (7%) 

Knee Pain, n (%) 42 (40%) 87 (47%) 

Quadriceps Strength, 

mean (SD) 

80 (31) 81 (28) 

Pace, mean (SD) -0.43 (2.1) 0.37 (1.7) 

Rhythm, mean (SD) -0.01 (2.2) -0.12 (2.3) 

Spatial variability, 

mean (SD) 

0.45 (1.9) -0.39 (1.6) 

Temporal variability, 

mean (SD) 

0.14 (2.0) -0.43 (1.9) 
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Table 6-4. Gray matter volumes (GMVs) associated with gait at average age. Regions of interest (ROIs) selected 

from sparse partial least square model. Results were adjusted for age, sex, race, BMI, APOE alleles, hypertension, 

stroke, knee pain, and quadriceps strength. 

Gait domains Gray matter regions 𝜷 coefficients (95% 

confidence interval) 

Pace  right cerebellum 4-5 0.12 (0.04, 0.21) 

   left inferior orbitofrontal 0.12 (0.03, 0.22) 

Rhythm right putamen −0.10 (−0.21, 0.01) 

 right posterior cingulum 0.09 (−0.03, 0.20) 

Spatial variability left anterior cingulum −0.12 (−0.22, −0.03) 

   left superior parietal −0.13 (−0.24, −0.03) 

Temporal 

variability 

right cerebellum 4-5 −0.12 (−0.24, −0.03) 

   left cerebellum 9 0.12 (−0.003, 0.24) 

 

  



 68 

Table 6-5. Gray matter volumes (GMVs) associated with gait annual change. Regions of interest (ROIs) selected 

from sparse partial least square model. Results were adjusted for age, sex, race, BMI, APOE alleles, hypertension, 

stroke, knee pain, and quadriceps strength. 

Gait domains Gray matter regions 𝜷 coefficients (95% 

confidence interval) 

Rhythm right putamen −0.07 (−0.13, 0.02) 

 right pallidum −0.07 (−0.14, 0.02) 

 left superior 

orbitofrontal 

0.07 (0.001, 0.18) 
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Table 6-6. Gray matter density of regions associated with fast-paced walking speed without adjustment. 

Hemisphere ROI 
Cluster Size 

(Voxels) 

t-

statistic 

(max) 

X Y Z 

Right 

Middle Temporal Gyrus 1091 5.4 70 -18 -6 

Cerebellum 6 792 5 26 -56 -18 

Superior Temporal Gyrus 737 5.6 68 -18 -4 

Cerebellum Crus 1 595 4.9 36 -74 -32 

Insula 398 5.3 38 10 10 

Middle Frontal Gyrus 335 4.8 28 54 2 

Superior Medial Frontal Gyrus 298 5 14 68 22 

Cerebellum 4-5 296 5 24 -50 -20 

Superior Temporal Pole 292 4.9 34 10 -24 

Middle Orbital Frontal Gyrus 273 5.4 10 42 -6 

Anterior Cingulate 269 5.2 8 38 -8 

Fusiform Gyrus 256 4.5 26 -52 -16 

Cerebellum Crus 2 255 5.1 44 -68 -40 

Inferior Temporal Gyrus 242 4.6 60 -62 -4 

Supramarginal Gyrus 228 4.5 66 -36 38 

Rolandic Operculum 225 4.6 44 -14 16 

Lingual Gyrus 216 4.4 16 -48 4 

Middle Temporal Pole 209 5 54 4 -16 

Middle Occipital Gyrus 192 4.2 46 -82 6 

Parahippocampus 190 4.6 30 8 -26 

Superior Frontal Gyrus 159 5.1 14 68 24 

Paracentral Lobule 144 4.3 8 -36 60 

Cerebellum 8: Vermis 136 4.7 0 -72 -40 

Middle Cingulate 129 4.5 4 -36 40 

Amygdala 121 4.8 32 4 -26 

Lateral Orbital Frontal Gyrus 113 4.1 36 58 -2 

Hippocampus 95 4.1 32 -4 -20 

Inferior Orbital Frontal Gyrus 94 4.1 38 32 -2 

Gyrus Rectus 89 4.1 4 38 -16 

Inferior Parietal Gyrus 87 4.2 60 -40 46 

Calcarine Sulcus 79 4.1 18 -50 4 

Superior Orbital Frontal Gyrus 77 4.4 22 46 -14 

Angular Gyrus 70 4.2 62 -50 36 

Precuneus 59 4.3 14 -40 58 
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Postcentral Gyrus 50 4.5 64 0 18 

Inferior Frontal Operculum 36 4.9 42 10 8 

Cerebellum 3 32 3.8 10 -44 -22 

Inferior Triangular Frontal Gyrus 26 4.3 36 22 10 

Cerebellum 8 15 3.8 6 -64 -32 

Left 

Cerebellum Crus 1 780 5 -30 -72 -30 

Cerebellum 6 703 4.4 -22 -50 -22 

Middle Temporal Gyrus 655 5.3 -58 -38 12 

Cerebellum Crus 2 648 5.1 -38 -66 -38 

Superior Temporal Gyrus 495 5.6 -54 -38 14 

Cerebellum 8 392 4.4 -30 -64 -46 

Insula 339 4.6 -26 26 0 

Middle Orbital Frontal Gyrus 321 5.3 -8 38 -12 

Cerebellum 4-5 320 4.3 -22 -50 -20 

Anterior Cingulate 262 5 -8 42 -4 

Inferior Temporal Gyrus 249 4.3 -40 -28 -24 

Postcentral Gyrus 233 5.1 -54 -10 26 

Superior Medial Frontal Gyrus 218 4.7 -12 52 4 

Middle Cingulate 203 4.9 -2 -28 44 

Fusiform Gyrus 153 4.3 -34 -40 -24 

Cerebellum 7b 144 4.8 -32 -64 -46 

Posterior Cingulate 120 4.7 -6 -46 18 

Gyrus Rectus 107 4.4 -10 34 -14 

Supramarginal Gyrus 96 4.3 -44 -34 26 

Superior Temporal Pole 91 3.9 -50 18 -12 

Calcarine Sulcus 88 3.9 -16 -64 8 

Precentral Gyrus 77 4.7 -56 -8 32 

Cerebellum 9 76 4.2 -18 -52 -52 

Precuneus 59 5.3 -8 -48 16 

Rolandic Operculum 51 4 -36 -8 16 

Superior Orbital Frontal Gyrus 47 3.9 -10 14 -22 

Inferior Orbital Frontal Gyrus 37 4.1 -16 10 -18 

Olfactory Gyrus 36 3.9 -16 12 -18 

Middle Temporal Pole 26 3.9 -56 4 -34 

Lingual Gyrus 18 3.8 -16 -66 2 
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Table 6-7. Gray matter density of regions associated with usual-paced walking speed without adjustment. 

Hemisphere ROI 

Cluster 

Size 

(Voxels) 

t-

statistic 

(max) 

X Y Z 

Right 

Cerebellum Crus 1 594 4.5 38 -62 -32 

Cerebellum 6 491 4.3 24 -50 -22 

Cerebellum Crus 2 346 4.3 44 -66 -40 

Insula 328 5.5 34 14 8 

Cerebellum 4-5 290 4.4 22 -48 -22 

Parahippocampus 221 4.2 32 -20 -20 

Calcarine Sulcus 200 4.6 12 -72 8 

Inferior Frontal Operculum 188 4.7 38 18 32 

Cerebellum 8: Vermis 183 4.5 6 -68 -36 

Middle Temporal Pole 177 4.4 36 10 -30 

Middle Orbital Frontal Gyrus 147 5.0 8 40 -8 

Cuneus 141 4.9 8 -80 36 

Rolandic Operculum 136 4.7 38 -18 18 

Middle Occipital Gyrus 123 4.3 38 -84 6 

Hippocampus 113 3.9 32 -18 -18 

Caudate 112 4.3 20 -4 24 

Cerebellum 8 103 4.4 8 -68 -34 

Amygdala 98 4.2 28 2 -20 

Fusiform Gyrus 89 4.0 26 -32 -20 

Superior Temporal Pole 71 4.6 34 10 -30 

Inferior Triangular Frontal Gyrus 63 4.3 38 18 30 

Anterior Cingulate 49 4.7 8 38 -8 

Cerebellum 7b 46 3.5 26 -80 -50 

Lingual Gyrus 29 4.2 14 -62 8 

Cerebellum 7: Vermis 27 4.0 2 -70 -32 

Cerebellum 9: Vermis 27 3.7 0 -62 -40 

Putamen 25 4.7 32 14 8 

Postcentral Gyrus 24 3.7 64 -2 16 

Middle Temporal Gyrus 22 3.9 50 -74 0 

Gyrus Rectus 7 3.4 2 22 -16 

Left 

Cerebellum Crus 2 668 5.7 -40 -64 -44 

Cerebellum Crus 1 651 5.1 -32 -68 -30 

Cerebellum 8 632 5.4 -32 -62 -46 

Cerebellum 6 625 4.7 -26 -54 -20 

Insula 259 4.5 -34 10 10 
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Cerebellum 4-5 246 4.3 -24 -46 -22 

Fusiform Gyrus 246 4.4 -32 -20 -22 

Calcarine Sulcus 201 4.2 -4 -86 -8 

Hippocampus 185 4.4 -30 -20 -20 

Caudate 181 4.3 -18 -12 22 

Cerebellum 7b 160 5.0 -34 -62 -46 

Superior Temporal Gyrus 140 5.9 -56 -40 22 

Middle Orbital Frontal Gyrus 118 4.4 -8 38 -14 

Superior Occipital Gyrus 118 4.8 -10 -98 20 

Middle Temporal Gyrus 105 5.3 -46 -58 20 

Parahippocampus 97 4.5 -30 -20 -22 

Precuneus 84 4.5 -8 -46 14 

Angular Gyrus 67 4.0 -46 -74 28 

Cuneus 62 4.2 -6 -100 14 

Lingual Gyrus 50 3.8 -16 -52 -10 

Cerebellum 9 36 3.7 -18 -50 -56 

Gyrus Rectus 36 4.0 -6 36 -16 

Amygdala 29 3.5 -28 2 -20 

Rolandic Operculum 25 4.0 -38 -20 16 

Inferior Temporal Gyrus 25 3.7 -44 -50 -16 

Supramarginal Gyrus 20 4.1 -52 -40 26 
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Table 6-8. Association between usual-paced walking speed and gray matter density. Corresponding coefficients (β) 

and p-values are shown across three nested models. 

Region 

MNI 

coordinates 

(x, y, z) 

Model 1 a Model 2 b Model 3 c 

  β (p-value) d 

Left Angular Gyrus (-46, -74, 28) 0.08 (0.003) 0.06 (0.01) 0.04 (0.12) 

Left Calcarine Sulcus (-4, -86, -8) 0.12 (0.002) 0.10 (0.005) 0.08 (0.03) 

Right Calcarine Sulcus (12, -72, 8) 0.06 (0.008) 0.05 (0.03) 0.03 (0.11) 

Left Caudate (-18, -12, 22) 0.41 (<0.001) 0.34 (0.002) 0.28 (0.01) 

Right Caudate (20, -4, 24) 0.20 (<0.001) 0.16 (0.004) 0.13 (0.02) 

Right Cerebellum 4-5 (22, -48, -22) 0.06 (0.03) 0.05 (0.08) 0.04 (0.11) 

Left Cerebellum 6 (-26, -54, -20) 0.05 (0.04) 0.03 (0.22) 0.01 (0.56) 

Right Cerebellum 6 (24, -50, -22) 0.06 (0.02) 0.04 (0.09) 0.03 (0.17) 

Left Cerebellum Crus 1 (-32, -68, -30) 0.06 (0.01) 0.05 (0.04) 0.03 (0.13) 

Right Cerebellum Crus 1 (38, -62, -32) 0.06 (0.03) 0.05 (0.06) 0.04 (0.08) 

Left Cerebelum Crus 2 (-40, -64, -44) 0.05 (0.03) 0.04 (0.08) 0.03 (0.19) 

Right Anterior Cingulate (8, 38, -8) 0.10 (0.001) 0.08 (0.006) 0.06 (0.05) 

Left Cuneus (-6, -100, 14) 0.21 (<0.001) 0.18 (0.004) 0.15 (0.01) 

Right Cuneus (8, -80, 36) 0.12 (0.001) 0.11 (0.003) 0.09 (0.01) 

Right Inferior Frontal Operculum (38, 18, 32) 0.16 (<0.001) 0.13 (0.003) 0.10 (0.04) 

Right Inferior Triangular Frontal Gyrus (38, 18, 30) 0.06 (0.01) 0.05 (0.06) 0.03 (0.17) 

Left Middle Orbital Frontal Gyrus (-8, 38, -14) 0.05 (0.02) 0.03 (0.15) 0.01 (0.53) 



 74 

Right Middle Orbital Frontal Gyrus (8, 40, -8) 0.08 (0.002) 0.07 (0.01) 0.05 (0.08) 

Right Fusiform Gyrus (26, -32, -20) 0.08 (0.03) 0.06 (0.10) 0.04 (0.26) 

Left Insula (-34, 10, 10) 0.13 (0.02) 0.09 (0.10) 0.04 (0.51) 

Right Insula (34, 14, 8) 0.15 (0.004) 0.10 (0.06) 0.05 (0.38) 

Left Lingual Gyrus (-16, -52, -10) 0.07 (0.02) 0.06 (0.04) 0.04 (0.18) 

Right Lingual Gyrus (14, -62, 8) 0.06 (0.02) 0.05 (0.05) 0.03 (0.25) 

Right Middle Occipital Gyrus (38, -84, 6) 0.05 (0.01) 0.04 (0.05) 0.03 (0.11) 

Left Superior Occipital Gyrus (-10, -98, 20) 0.12 (0.002) 0.11 (0.007) 0.09 (0.02) 

Left Precuneus (-8, -46, 14) 0.07 (0.05) 0.05 (0.13) 0.03 (0.43) 

Right Putamen (32, 14, 8) 0.22 (0.03) 0.15 (0.14) 0.04 (0.70) 

Left Rolandic Operculum (-38, -20, 16) 0.14 (0.008) 0.10 (0.05) 0.06 (0.27) 

Right Rolandic Operculum (38, -18, 18) 0.07 (0.04) 0.05 (0.21) 0.03 (0.36) 

Left Supramarginal Gyrus (-52, -40, 26) 0.04 (0.02) 0.04 (0.03) 0.02 (0.16) 

Left Middle Temporal Gyrus (-46, -58, 20) 0.07 (0.01) 0.05 (0.05) 0.03 (0.25) 

Right Superior Temporal Pole (34, 10, -30) 0.15 (0.04) 0.11 (0.12) 0.04 (0.57) 

Left Superior Temporal Gyrus (-56, -40, 22) 0.10 (0.005) 0.08 (0.02) 0.05 (0.11) 

Notes: BMI - body mass index; TIA - transient ischemic attack; CESD - Center for 

Epidemiologic Studies-Depression; 3MSE - Modified Mini-Mental State Examination; DSST - 

Digit Symbol Substitution Test 

a. Model 1: general linear model adjusting for demographics (age, sex, race, education, 

and BMI); 

b. Model 2: based on model 1, further adjusting for morbidities (cardiovascular disease, 

stroke or TIA, hypertension, diabetes, and CESD score); 
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c. Model 3: based on model 2, further adjusting for cognition (3MSE and DSST scores). 

d. The coefficient of 1 SD change of regional gray matter density on usual-paced walking 

speed and the corresponding p value 
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Table 6-9. Association of walking speed (m/s) with t statistics of prefrontal cortex activation, adjusted for age, sex, 

height, weight, cardiovascular diseases, diabetes, physical and mental fatiguability scores, and joint pain. 

Task Channel  Point Estimate 95% Confidence 

Interval 

Even D1S1 -0.005 (-0.011, 0.000) 

 D1S2 -0.003 (-0.010, 0.003) 

 D1S3 -0.003 (-0.008, 0.001) 

 D1S4 -0.005 (-0.012, 0.001) 

 D2S5 -0.004 (-0.009, 0.001) 

 D2S6 -0.005 (-0.011, 0.001) 

 D2S7 -0.005 (-0.010, 0.000) 

 D2S8 -0.004 (-0.010, 0.000) 

Uneven D1S1 -0.004 (-0.009, 0.002) 

 D1S2 -0.008 (-0.015, -0.002) 

 D1S3 -0.004 (-0.009, 0.001) 

 D1S4 -0.007 (-0.013, -0.001) 

 D2S5 -0.001 (-0.006, 0.004) 

 D2S6 -0.007 (-0.013, -0.002) 

 D2S7 -0.002 (-0.007, 0.003) 

 D2S8 -0.009 (-0.015, -0.002) 

Even ABC D1S1 -0.004 (-0.009, 0.001) 

 D1S2 -0.006 (-0.012, 0.000) 

 D1S3 -0.007 (-0.011, -0.002) 

 D1S4 -0.007 (-0.013, -0.001) 

 D2S5 -0.009 (-0.014, -0.004) 

 D2S6 -0.009 (-0.014, -0.003) 

 D2S7 -0.007 (-0.012, -0.002) 

 D2S8 -0.012 (-0.019, -0.006) 

Uneven ABC D1S1 -0.004 (-0.008, 0.000) 

 D1S2 -0.005 (-0.010, 0.001) 

 D1S3 -0.002 (-0.007, 0.002) 

 D1S4 -0.006 (-0.012, 0.000) 

 D2S5 -0.004 (-0.009, 0.001) 

 D2S6 -0.006 (-0.011, 0.000) 

 D2S7 -0.002 (-0.007, 0.003) 

 D2S8 -0.006 (-0.013, 0.000) 
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Table 6-10. Association of rate of correctly specifying alphabet (number/s) with t statistics of prefrontal cortex 

activation, adjusting for age, sex, education, obesity, cardiovascular diseases, diabetes, obesity, and physical and 

mental fatiguability scores. 

Task Channel  Point Estimate 95% Confidence 

Interval 

Even ABC D1S1 0.004 (-0.002, 0.011) 

 D1S2 0.000 (-0.009, 0.008) 

 D1S3 0.002 (-0.004, 0.007) 

 D1S4 -0.003 (-0.010, 0.005) 

 D2S5 -0.002 (-0.009, 0.005) 

 D2S6 -0.010 (-0.017, -0.002) 

 D2S7 -0.002 (-0.009, 0.005) 

 D2S8 -0.007 (-0.015, 0.002) 

Uneven ABC D1S1 -0.002 (-0.007, 0.003) 

 D1S2 -0.001 (-0.009, 0.007) 

 D1S3 -0.003 (-0.009, 0.002) 

 D1S4 -0.006 (-0.013, 0.002) 

 D2S5 -0.002 (-0.009, 0.005) 

 D2S6 -0.010 (-0.018, -0.003) 

 D2S7 -0.004 (-0.010, 0.003) 

 D2S8 -0.008 (-0.017, 0.000) 
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Table 6-11. Average cognitive and physical functions by classes. Continuous variables compared across classes 

using analysis of variance and categorical variables compared across classes using chi-square test. 

Cognitive functions Average by classes Test statistics (p values) 

Mini Mental State Exam, 

≥mean, n (%) 

11 (73) (Class 1) 5.5 (0.24) 

35 (76) (Class 2)  

10 (56) (Class 3)  

17 (63) (Class 4)  

5 (45) (Class 5)  

Trails Making Part A, mean 

(standard deviation) 

32 (14) (Class 1) 0.89 (0.47) 

29 (7.9) (Class 2)  

33 (13) (Class 3)  

32 (9.9) (Class 4)  

 34 (15) (Class 5)  

Trails Making Part B, mean 

(standard deviation) 

73 (29) (Class 1) 0.31 (0.87) 

80 (36) (Class 2)  

84 (32) (Class 3)  

83 (39) (Class 4)  

76 (26) (Class 5)  

Physical functions  Average by classes Test statistics (p values) 

Life Space Assessment, 

mean (standard deviation) 

81 (23) (Class 1) 1.13 (0.35) 

85 (20) (Class 2)  

86 (20) (Class 3)  

80 (21) (Class 4)  

93 (16) (Class 5)  

Physical Fatiguability, 

mean (standard deviation) 

18 (7.5) (Class 1) 0.81 (0.52) 

18 (7.0) (Class 2)  

14 (9.8) (Class 3)  

17 (7.3) (Class 4)  

16 (9.7) (Class 5)  

Mental Fatiguability, mean 

(standard deviation) 

12 (9.1) (Class 1) 1.44 (0.23) 

11 (8.7) (Class 2)  

5.9 (5.7) (Class 3)  

11 (8.6) (Class 4)  

9.7 (7.9) (Class 5)  
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7.0 Appendix Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-1. Distributions and correlations of gait measures. 
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Figure 7-2. Average changes in characteristics of each walking domain (pace, rhythm, spatial variability, and 

temporal variability) with age. 

  



 81 

 

Figure 7-3. Association between gray matter density and fast-paced walking speed without adjusting for any 

covariates. Color bar indicates value of the t-statistic testing the association between gray matter density and fast-

paced walking speed. 
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Figure 7-4. Association between gray matter density and fast-paced walking speed that remained significant after 

adjusting for demographic variables, clinical morbidities, and cognitive function – including those with smaller 

effect sizes, i.e. <0.3 m/s.. Color bar indicates value of the t-statistic testing the association between gray matter 

density and fast-paced walking speed. 
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Figure 7-5. Association between gray matter density and usual-paced walking speed without adjusting for any 

covariates. Color bar indicates value of the t-statistic testing the association between gray matter density and fast-

paced walking speed. 
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Figure 7-6. Association between gray matter density and usual-paced walking speed that remained significant after 

adjusting for demographic variables, clinical morbidities, and cognitive function – including those with smaller 

effect sizes, i.e. <0.3 m/s.. Color bar indicates value of the t-statistic testing the association between gray matter 

density and fast-paced walking speed. 
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Figure 7-7. Association between gray matter density and walking speed without adjusting for covariates. Colors 

indicate whether association was with usual-paced walking speed only (blue), fast-paced walking speed only (red), 

or both usual- and fast-paced walking speed (yellow). 

  

Association with usual only
Association with fast only
Association with both usual and fast



 86 

 

Figure 7-8. Association between gray matter density and walking speed after adjusting for covariates. Colors 

indicate whether association was with usual-paced walking speed only (blue), fast-paced walking speed only (red), 

or both usual- and fast-paced walking speed (yellow). No regions showed association with both usual- and fast-

paced walking speed after adjustment. 

 

  

Association with usual only
Association with fast only
Association with both usual and fast



 87 

 

Figure 7-9. The associations of walking speed (m/s) with t statistics of prefrontal cortex activation for each channel 

(Channel 1-Channel 8) in Neural Mechanisms of Community Mobility (NMCM), Program to Improve Mobility in 

Aging, Near-Infrared Spectroscopy sub study (PRIMA-NIRS), and Move Monongahela-Youghiogheny Healthy 

Aging Team (Move MYHAT). Modeling adjusted for age, sex, height, weight, cardiovascular diseases, diabetes, 

physical and mental fatiguability scores, and joint pain. 
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Figure 7-10. The associations of correct alphabet rate (number/s) with t statistics of prefrontal cortex activation for 

each channel (Channel 1-Channel 8) in Neural Mechanisms of Community Mobility (NMCM), Program to Improve 

Mobility in Aging, Near-Infrared Spectroscopy sub study (PRIMA-NIRS), and Move Monongahela-Youghiogheny 

Healthy Aging Team (Move MYHAT). Modeling adjusted for age, sex, education, obesity, cardiovascular diseases, 

diabetes, and physical and mental fatiguability scores. 
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