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Priyadip Mondal, PhD

University of Pittsburgh, 2021

An isometry h between two finite degree covers of a hyperbolic 3-manifold M is called a

hidden symmetry of M if h is not a lift of any self-isometry of M . In 1992, Neumann and

Reid [23] asked whether there exists a hyperbolic knot other than the figure eight knot and

the two dodecahedral knots of Aitchison and Rubinstein [1] whose complement has hidden

symmetries. This thesis aims to study hidden symmetries through the lens of this question.

We study geometrically converging families of hyperbolic knots obtained by Dehn filling

all but one cusp of a link complement and investigate the existence of hidden symmetries of

the complements of such knots. We first concentrate on Dehn fillings of three 2-component

hyperbolic links and use geometric isolation property for cusps of the links for our study.

This portion is mostly based on joint work in [8].

We next discuss an effectivization result related to hidden symmetries for one such link

and show some relations between the various number fields for these orbifolds. This portion

is based on joint work in [7].

Finally, the thesis investigates hidden symmetries through analysis of certain horoball

packings of hyperbolic three space H3 and related circle packings of C. We show that

the existence of hidden symmetries in infinitely geometrically converging knots obtained by

Dehn filling all but one cusp of a hyperbolic link will necessitate the existence of certain

order 3 symmetries of such circle packings. We implement this result into SnapPy/Python

code which can rule out cases not having these kind of symmetries. We use this code to

study some links (and in the process some potential non-links) in the tetrahedral census of

Fominykh, Garoufalidis, Goerner, Tarkaev and Vesnin and show that except for a few cases,

these symmetries do not exist, hence proving that for most of the cases we test, geometrically

converging families of knots obtained from Dehn fillings all but one cusp can only contain

finitely many elements with hidden symmetries.
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1.0 Introduction

The study of geometric structures have a powerful impact on the study of 3-manifolds.

Indeed, Thurston’s geometrization conjecture ([40]), proven by Gregory Perelman in 2002-

2003 ([26], [27], [28]), lays out this intricate relation of geometry and three dimensional

topology:

Geometrization Conjecture (Conjecture 1.1, [40]). Given a compact 3-manifold M , the

interior of M can be decomposed into pieces which admit one of the eight geometric structures.

Each of these eight geometries is rich with its own flavor. This thesis is concerned with

the hyperbolic structure. Hyperbolic structures on 3-manifolds are built upon the geometry

of H3, the hyperbolic three space. H3 is the complete, simply connected Riemannian 3-

manifold with constant sectional curvature −1 unique up to isometry. 3-manifolds with

hyperbolic structures have local copies of H3 which have them inherit a Riemannian metric

with constant sectional curvature −1 as well. We call a 3-manifold a hyperbolic manifold

if it has a “complete” hyperbolic structure. Hyperbolic 3-manifolds can be realized as the

quotient of H3 by the discrete torsion free subgroups of its isometry group.

The contemporary discipline of hyperbolic 3-manifolds has its roots in Thurston’s dis-

covery of the (hyperbolic) tetrahedral decomposition of the figure eight knot complement.

This led to the study of hyperbolic knot and link complements (i.e. the knot and link

complements which are finite volume (oriented) hyperbolic 3-manifolds). These are often

loaded with powerful geometric data obtained from their (geometric) triangulation. These

triangulations also allows one to conclude strong results on the hyperbolic knot and link

complements based on the behavior of their cusps. A cusp of a hyperbolic link complement

can be thought of as a neighborhood surrounding a component of the link itself.

This thesis centers around hidden symmetries in hyperbolic 3-manifolds. Hidden sym-

metries of a hyperbolic 3-manifold M are the symmetries between its finite degree covers

which are not lifts of a self-symmetry of M . We are interested in the hidden symmetries

of hyperbolic knot complements. It follows from the work of Boileau, Boyer, Cebanu and
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Walsh (see [3, Theorem 1.4]) that the study of of hidden symmetries has a very important

role to play in the study of the commensurability classes of hyperbolic knot complements.

Margulis’s arithmeticity theorem (see [19, Theorem 10.3.5], refer to [41] for a proof) implies

that a hyperbolic 3-manifold can have infinitely many hidden symmetries if and only if it

is an arithmetic manifold. On the other hand, Reid [32, Theorem 2] showed that the figure

eight knot is the only hyperbolic knot whose complement is arithmetic. An example of how

one can construct a hidden symmetry of the figure eight knot complement can be found in

Example 3.2 in this thesis. Among the rest of the (non-arithmetic) knots, Neumann and

Reid [23] argued that the two dodecahedral knots constructed by Aitchison and Rubinstein

[1] have hidden symmetries. No other example of a hyperbolic knot with hidden symmetries

have been reported as of yet. The following question of Neumann and Reid (Question 1 in §9

of [23]) from 1992, which conveys this amazing phenomenon, steers the prevailing research

on hidden symmetries of hyperbolic knot complements:

Question 3.8 [Question 1, [23]]. Is there any hyperbolic knot except the figure eight knot

and the two dodecahedral knots of Aitchison and Rubinstein [1] whose complement has hidden

symmetries?

In [23], Neumann and Reid also gave a characterization of hyperbolic knot complements

with hidden symmetries (Theorem 3.3): A hyperbolic knot complement has hidden sym-

metries if and only if it non-regularly covers a rigid cusped hyperbolic orbifold. Hyperbolic

orbifolds are generalizations of hyperbolic manifolds to spaces with cone points. These cone

points come from the fixed points of symmetries that are acting on the hyperbolic three space.

The rigidity part in the characterization implies that a hyperbolic knot complement having

hidden symmetries must have Q(i) or Q(i
√

3) as cusp fields. Cusp field along with (invari-

ant) trace field are number fields associated with a hyperbolic link complement that encodes

geometric information about the link complement. Most of the work on hidden symmetries

in the literature uses this fact about cusp fields and applying various algebraic methods one

shows how different hyperbolic knot complements can not have hidden symmetries.

In this thesis, we investigate a weaker version of Question 3.8. We aim to understand

the following question:

2



Question 4.1 [Conjecture 0.1, [8]]. Can there exist infinitely many hyperbolic knot com-

plements admitting hidden symmetries all of whose volumes are bounded above by a constant?

Thanks to Thurston’s Dehn surgery theorem, one way of producing infinitely many hy-

perbolic knots is by Dehn filling all but one component of a given hyperbolic link L. It also

follows from Thurston’s work that the volumes of these knot complements obtained from

Dehn filling are less than the volume of the complement of L. We leverage this fact and study

families of knots that geometrically converge to a given link L. Such convergence allows us

to pass various properties of the knots in the family to the link itself.

In Chapter 2 and 3, we discuss background material and we define the terminology above

and illustrate them with examples.

In Chapter 4, most of our discussion is based on the joint work [8] with Eric Chesebro and

Jason DeBlois. We study geometrically convergent families of hyperbolic knots obtained from

Dehn filling through the lens of deformation variety. In case of a 2-component hyperbolic

link L, an infinite family of hyperbolic knots obtained from Dehn filling a fixed component of

L always geometrically converge to the complement of L. Corollary 1.8 of [8], which is stated

without proof in Theorem 4.6 of this thesis, addresses how existence of hidden symmetries

in the elements of such families can be connected to a geometric isolation condition on the

components of L. Geometric isolation, a concept defined by Neumann and Reid [24], means

that the geometric shape of the non-filled cusp is invariant under Dehn fillings on the other

cusp.

Given a hyperbolic link complement and an associated geometric triangulation, one can

define an algebraic set (i.e. the zero set of some complex polynomials) called deformation

variety such the link itself and the hyperbolic knots obtained from Dehn fillings of the

components of the link can be thought of as points of this variety. We refer to the point

representing the link as the complete structure.

Proposition 1.6 from [8] which we state without proof in Proposition 4.5 of this thesis,

says that one can define a rational function on the deformation variety whose values record

these geometric shapes of cusps of a geometrically triangulated hyperbolic 3-manifold. These

rational functions are referred as cusp parameter functions. It follows that geometric isolation

is equivalent to the cusp parameter functions being locally constant on specific sub-varieties of

3



the deformation variety near the complete structure. Based on this observation, we show non-

geometric isolation for the cusps of 62
2 by studying derivatives of cusp parameter functions

via implicit function theorem. Theorem 4.6 then gives us to the following theorem:

Theorem 4.11 [Corollary 3.4, [8]]. A family of hyperbolic knots obtained by Dehn filling

a fixed cusp of 62
2 can have at most finitely many elements with hidden symmetries.

The proof of the above result that we present in the thesis is original and different from

the one given in the joint work [8].

In section 4.5 (which is taken (almost) verbatim from Example 5.3 of [8]), we focus on the

Berge manifold. The Berge manifold is a hyperbolic 3-manifold isometric to the complement

of a 2-component hyperbolic link. We show the following using a similar calculus based

method as in the case of 62
2:

Theorem 4.13 [Example 5.3, [8]]. Cusps of the Berge manifold are not isolated from each

other.

Section 4.6, the last section of Chapter 4, is new and not part of [8]. In this section,

we discuss non-geometric isolation of one of the cusps c from the other cusp c′ for the 2-

component link L10n46. This particular example shows that computing cusp parameter

function for this link using Proposition 4.5 is not always as straightforward as in the cases

of 62
2 and the Berge manifold. We prove the following:

Theorem 4.14. In the 2-component link L10n46, cusp c is not geometrically isolated from

cusp c′.

Our discussion in Chapter 5 is based on contents from joint work [7] with Eric Chesebro,

Jason DeBlois, Neil R Hoffman, Christian Millichap and William Worden. We begin by

stating Theorem 2.6 from [7] (in Theorem 5.1) which loosely extends Theorem 4.6 for a link

with three or more components. The geometric isolation part of Theorem 4.6 can not be

extended for hyperbolic links with more than two components. But, it can be shown that

the orbifold covering that the Neumann and Reid characterization (see Theorem 3.3) entails

to can be passed to an orbifold covering of the link. To be more precise, Theorem 5.1 shows

that if we have a family F of hyperbolic knots obtained from Dehn filling all component

but K of a hyperbolic link L which geometrically converge to L such that each element of
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F covers a rigid cusped orbifold, then the complement of L covers an orbifold O which has

exactly one rigid cusp which is covered by (only) the cusp corresponding to component K

of L.

One might wonder exactly how many of the hyperbolic knots that are obtained from

Dehn filling a single cusp of a 2-component hyperbolic link can have hidden symmetries.

In Section 5.2 of Chapter 5, we also give some insight to this question on effetivization. In

particular, one cay say the following:

Theorem 5.6 [Theorem 1.6, [7]]. If an orbifold O obtained by Dehn filling a single cusp

of 62
2 is covered by a hyperbolic knot complement with hidden symmetries, then the Dehn

filling coefficient for O is (2, 0).

We don’t present a complete proof of the above result in the thesis. We rather lay out

an argument using results that we state from [7] without proof.

In section 5.3, we further study the fillings of one cusp of 62
2. We explain how the cusp

parameter function helps us understand the relation between the associated number fields

of the orbifolds obtained from Dehn filling a cusp of 62
2. We prove the following:

Theorem 5.8 [Proposition 6.16, [7]]. For an orbifold O obtained by Dehn filling a single

cusp of 62
2, the invariant trace field and trace field are equal.

The contents of Chapter 6, 7 and 8 are new and original.

In Chapter 6, we show that the orbifold covering criteria from Theorem 5.1 has some

strong implications about the horoball packings associated with the link. One can think

of the horoballs as portions of the hyperbolic three space that correspond to the cusp ends

of a hyperbolic manifold. Given a hyperbolic link, we can talk about different packings of

the hyperbolic three space by these horoballs. A hyperbolic link L covering an orbifold in

the fashion mentioned in the paragraph above would imply that the horoball packing of

hyperbolic three space associated with cusp corresponding to component K of L has order

3 or 6 rotational symmetries. In fact, we have an wallpaper group of symmetries acting

on these horoballs. We restrict our attention to the full sized horoballs, the ones which

have the biggest Euclidean volume. We describe our results in terms of the circle packing

of C obtained from the boundaries of these full sized horoballs corresponding to the cusp
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associated with component K. Our next result is the following.

Theorem 6.5. Given a hyperbolic link L with more than one component and a cusp c of L,

if infinitely many elements of a family of geometrically converging hyperbolic knots obtained

from Dehn filling all cusps of L but c have hidden symmetries, then the symmetry group of

the c-circle packing of C contains a (3, 3, 3) wallpaper group W such that the co-area of the

translational subgroup of W is
cusp area of cusp c

4n

for some natural number n. Moreover, no element of W fixes the center of a horoball corre-

sponding to a cusp of L other than c.

Using this area condition and the structure of the (3, 3, 3) wallpaper group for a given

horoball corresponding to component K, we can guarantee the existence of an order 3 sym-

metry whose center is within a distance of the horoball that is less than a constant solely

determined by the associated cusp of the link. This can be turned into an algorithm to find

(fixed points of) such order 3 symmetries, if any. We implement this algorithm in SnapPy

[9].

In Chapter 7, we apply this SnapPy code for the tetrahedral links. A tetrahedral manifold

is a finite volume hyperbolic 3-manifold whose complement can be triangulated into regular

ideal hyperbolic tetrahedra. Such triangulations of the tetrahedral links determines that

their cusp fields are Q(i
√

3) via two results of Neumann and Reid. A result that we state

in Chapter 4 then makes the tetrahedral links natural candidates for investigation regard-

ing the existence of hidden symmetries in geometrically convergent families of hyperbolic

knots coming from their Dehn fillings. Fominykh et al. in [11] gave a census of tetrahedral

manifolds. Their census consists of the orientable tetrahedral manifolds made up of 25 or

fewer tetrahedra and non-orientable tetrahedral manifolds made up of 21 or fewer tetrahedra.

Since we are interested in oriented hyperbolic manifolds, we will consider their orientable

census.

Identifying which of these (orientable) tetrahedral manifolds are actually links is diffi-

cult and so we will work with a larger collection of tetrahedral manifolds which are link

complements in integral homology spheres. Using Proposition 7.1 we write a short SnapPy
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code which can find out when a tetrahedral manifold is a link complement in an integral

homology sphere and denote the list of such link complements with 24 or fewer (regular

ideal) tetrahedra as “K”. We test for the existence of order 3 rotational symmetries using

the SnapPy code for the first 162 elements of “K” (which in Python notation is “K[0:162]”).

If two cusps of a manifold can be exchanged by an isometry of the manifold, we only test

the code for one of those cusps. We get a list Excep0,161 consisting of pairs (M, i) where M

is one of such 162 manifolds and i a cusp of M for which our SnapPy code crashes or the

i-circle packing has an order 3 rotational symmetry that our code searches for. Members of

Excep0,161 are listed in the appendix A. This gives us the following theorem:

Theorem 7.3. Let L be tetrahedral link in “K[0:162]” and K0 a component of L. If (S3−L, c)
does not belong to Excep0,161 for any cusp c of L which is symmetric to the cusp corresponding

to K0, then a family of geometrically convergent hyperbolic knots obtained from Dehn filling

all components of L but K0 can have at most finitely many elements with hidden symmetries.

Fominykh et al [11] also gives a list of 25 tetrahedral links with more than one com-

ponent. Using Theorem 7.3 and applying Theorem 6.5 to some additional circle packings

corresponding to some of these 25 links we get the following theorem:

Theorem 7.4. If L is one of 25 tetrahedral links with more than one component that are

listed in Fominykh et. al [11], then for any cusp c of L, a family of geometrically convergent

hyperbolic knots obtained by Dehn filling all cusps of L but c cannot have infinitely many

members with hidden symmetries.

In Chapter 8, we show that some of the elements of this Excep0,161 are actually tetrahedral

links. For example, the tetrahedral link L14n63694 (which decomposes into 20 regular ideal

tetrahedra) belongs to Excep0,161. We need different machineries to deal with the tetrahedral

links that belongs to Excep0,161.

We now summarize the organization of the thesis. We discuss background materials on

hyperbolic geometry in Chapter 2 and hidden symmetries in Chapter 3. Chapter 4 contains

results regarding geometric isolation and hidden symmetries (mostly) based on joint work

with Eric Chesebro and Jason DeBlois [8] and Chapter 5 contains results from joint work with

Eric Chesebro, Jason DeBlois, Neil R Hoffman, Christian Millichap and William Worden [7]
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discussing the results on the effectivization for 62
2, the relation between the trace and cusp

fields of the Dehn fillings on a cusp of 62
2, and the orbifold covering criteria. We discuss results

on horoball packings and hidden symmetries (and the SnapPy code) in Chapter 6. Chapter

7 describes the implementation of the SnapPy code for the elements of the tetrahedral census

which are link complements in the integral homology spheres and its output. In Chapter 8,

we discuss some examples from the list of exceptional links that we get from our computation

and describe the symmetries of associated horoball packings. Contents of Chapter 6, 7 and

8 are from an article in preparation.
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2.0 Hyperbolic geometry: the basics

In this chapter, we discuss basics of hyperbolic geometry. Most of the material in this

section can be found in introductory textbooks on hyperbolic geometry. For a general reading

on introductory topics in hyperbolic geometry, we refer the readers to [39, 30, 2]. In each

section, we refer to the sources where detailed discussion on the corresponding topics can be

found.

2.1 Geometric structure

We define the notion of a geometric structure following the discussion in Section I.1.1 of

[6], which itself goes back to Thurston [39, Chapter 3].

Let X be a real analytic manifold. Let G be a Lie group which acts analytically and

faithfully on X. Let M be a topological manifold which has the same dimension as X. We

say that M has a (X,G) structure if

• M has an (X,G) atlas {(Uα, φα)}α∈I , i.e., for each α ∈ I, Uα is an open set of M and φα

is a homeomorphism from Uα onto φα(Uα), an open subset of X such that M =
⋃
α∈I

Uα,

and

• for each pair (α, β) ∈ I × I, there exists g ∈ G such that φαφ
−1
β = g on φβ(Uα ∩ Uβ).

2.1.1 Euclidean structure

An (Rn, Isom(Rn)) structure on a smooth manifold of dimension n is called a Euclidean

structure where Isom(Rn) is the group of Euclidean isometries of Rn.

2.1.2 Similarity structure

An (Rn, Sim(Rn)) structure on a smooth manifold of dimension n is called a similarity

structure where Sim(Rn) is the group of similarities of Rn. (A homeomorphism g of Rn is
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said to be a similarity of Rn if ‖g(x)−g(y)‖ = s‖x−y‖ for all x, y ∈ Rn where s is a positive

constant).

If we identify R2 with C, then for each g ∈ Sim(R2) there exists s ∈ C− {0} and t ∈ C

such that g(z) = sz + t for all z ∈ C.

2.1.3 Hyperbolic structure

An (Hn, Isom(Hn)) structure on an n-dimensional manifold is referred to as a hyperbolic

struture where Hn is a Riemannian manifold with hyperbolic metric and Isom(Hn) is the

group of hyperbolic isometries of Hn. In fact, Hn is the complete simply connected Rieman-

nian manifold of dimension n with constant sectional curvature −1 unique up to isometry.

We will focus on hyperbolic structures on 3-manifolds.

Remark 2.1. A hyperbolic structure on an n-dimensional manifold M induces a Riemannian

metric on M which is locally isometric to Hn but not necessarily complete.

2.1.4 Isomorphism of geometric structures

Let M1 and M2 are two manifolds with (X,G) structures. Let us denote the (X,G) atlas

of M1 by {(Uα, φα)}α∈I and of M2 by {(Vβ, ψβ)}β∈J . A homeomorphism f : M1 → M2 is

called an (X,G)-isomorphism if ψβ ◦ f ◦ φ−1
α and φα ◦ f ◦ ψ−1

β are restrictions of elements of

G whenever the maps are defined where α ∈ I, β ∈ J .

2.2 Hyperbolic three space H3

Hyperbolic three space, denoted as H3, is the complete, simply connected Riemannian

3-manifold with constant sectional curvature −1. We represent H3 by four different models:

upper half-space model, Poincare Disk model, Klein model and hyperboloid model. We will

be using the upper-half space model throughout this thesis. Hence, we discuss this model

below.
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2.2.1 Upper-half space model

In this model,

H3 = {(x, y, z) : (x, y) ∈ C, z ∈ R>0} and ds2 =
dx2 + dy2 + dz2

z2
. (1)

The geodesics of H3 in the upper half-space model are the vertical lines and semicircular arcs

intersecting the complex plane orthogonally. The complex plane along with∞ is referred as

the sphere at infinity and is denoted as ∂∞H3.

2.2.2 Isom+(H3)

The group of orientation preserving isometries of H3 can be identified with PSL(2,C) =

SL(2,C)/{±I}. The elements of PSL(2,C) act as Möbius transformation on ∂∞H3. A

formula for the action of the elements of PSL(2,C) on H3 can be found in Peter Scott’s

paper [38, Section 4, p. 448]. We describe this formula here: First one needs to identify

an element (x, y, z) of H3 as the quaternion x + yi + zj and the complex numbers with

quaternions of the form u + vi. Then for A =


a b

c d


 ∈ PSL(2,C), the action of A on H3

can be described as:

A(x+ yi+ zj) = (a(x+ yi+ zj) + b) (c(x+ yi+ zj) + d)−1 . (2)

SL(2,C) inherits a subspace topology as the subspace of the set of 2×2 complex matrices

M(2,C) which can be identified with C4. The topology on PSL(2,C) is the quotient topology

induced from the topology of SL(2,C).

Given a non-identity element A of PSL(2,C), either

1. A is elliptic, i.e., A is conjugate to


e

iθ 0

0 e−iθ


 for θ ∈ (0, π), and fixed points of A in

H3 lie in a geodesic γA and so A also fixes the end points of γA in ∂∞H3, or,

2. A is parabolic, i.e., A is conjugate to


±1 c

0 ±1


 where c 6= 0, and has no fixed point in

H3 and exactly one fixed point in ∂∞H3, or,
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3. A is hyperbolic, i.e., A is conjugate to


e

r+iθ 0

0 e−r−iθ


 where r 6= 0, and has exactly

two fixed points on ∂∞H3 and A acts as a translation on H3 along the geodesic joining

these two fixed points.

2.3 Hyperbolic manifold and orbifolds

A discrete subgroup of PSL(2,C) is called a Kleinian group. A smooth 3-manifold M is

called a hyperbolic 3-manifold if M is diffeomorphic to H3/Γ for a torsion free Kleinian group

Γ. (This is actually the definition of an orientable hyperbolic 3-manifold. For the general

definition, one would take Γ to be a discrete torsion free subgroup of Isom(H3). Unless

otherwise specified, by a hyperbolic 3-manifold we would mean an orientable hyperbolic 3-

manifold.) Since PSL(2,C) acts on H3 isometrically with respect to the hyperbolic metric,

M inherits a Riemannian metric which makes it locally isometric to H3. Note that, one can

identify the fundamental group π1(M) of M with Γ.

Example 2.2. Let Γ̃ =

〈
1 1

0 1


 ,


 1 0

1+
√

3i
2

1



〉
≤ SL(2,C).

If we take Γ to be the image of Γ̃ in PSL(2,C), then Γ is an example of a torsion free

Kleinain group. It was proved by Riley in 1975 in [34]. So, the quotient H3/Γ is hyperbolic

3-manifold.

For two hyperbolic 3-manifolds M1 = H3/Γ1 and M2 = H3/Γ2, a map g from M1 to

M2 is called an isometry between M1 and M2 if it is a Riemannian isometry between the

hyperbolic metrics induced on M1 and M2 from H3.

Remark 2.3. It is easy to see that an isometry between M1 and M2 lifts to an element g

of Isom+(H3) = PSL(2,C) such that for each γ1 ∈ Γ1 and x ∈ H3, there exists γ2 ∈ Γ2 such

that g(γ1(x)) = γ2(g(x)). Conversely, any such g induces an isometry between M1 and M2.

Remark 2.4. Note that a hyperbolic 3-manifold admits an (H3, Isom+(H3)) structure which

is complete, i.e., the Riemannian metric that it inherits from H3 is complete. Later in Section
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Figure 1: Hyperbolic links - Left: Figure eight knot, Right: Whitehead link

2.7, we will discuss about incomplete structures as well.

An n-component link in S3 is called a hyperbolic link if S3−L is diffeomorphic to a finite

volume hyperbolic manifold. When n = 1, we say that it is a hyperbolic knot. Figure 1

shows examples of links which are hyperbolic whereas Figure 2 shows some links which are

not hyperbolic. The hyperbolic 3-manifold from Example 2.2 is isometric to the figure eight

knot complement (see [34, Corollary on p. 284]) .

We can extend the notion of hyperbolic 3-manifolds to hyperbolic 3-orbifolds : A topo-

logical space O is called a hyperbolic 3-orbifold if it is homeomorphic to H3/Γ where Γ

is a Kleinian group (may contain torsion elements). This Γ is referred to as the orbifold

fundamental group of O and we denote Γ as πOrb1 (O).

Remark 2.5. There is a general definition of orbifolds, morphisms between orbifolds, and

(G,X)-orbifolds. We refer the reader to [39, Chapter 13] for the definitions.

We say a hyperbolic orbifold O = H3/Γ has finite volume (or Γ has finite co-volume) if

the fundamental domains of Γ in H3 have finite volume in the hyperbolic metric.

Example 2.6. We give an example based on [31, Example on p. 349]. We will discuss this
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Figure 2: Non-hyperbolic links - Left: Trefoil knot, Right: Hopf link

example again in Example 2.27 in connection with trace fields. Let

Γ̃′ =

〈
1 1

0 1


 ,


 1 0

1+
√

3i
2

1


 ,


i 0

0 −i



〉

and Γ′ be the image of Γ̃′ in PSL(2,C). Note


i 0

0 −i


 has order 2 as an element of

PSL(2,C) and normalizes Γ from Example 2.2. So, Γ′ has torsion elements, and [Γ′ : Γ] = 2.

So, H3/Γ′ is an orbifold whose two fold cover is the figure eight knot complement.

2.3.1 Mostow-Prasad rigidity

We now state Mostow-Prasad rigidity theorem which is one of the very important results

in the study of hyperbolic manifolds. Here we state a version of the theorem from [19] (the

general result is true for all dimension greater than or equal to 3).

Mostow-Prasad rigidity theorem [Theorem 1.6.3, [19]]. If Γ1 and Γ2 are two iso-

morphic finite co-volume Kleinian groups, then there is some g in PSL(2,C) such that

Γ2 = gΓ2g
−1 and so, two isomorphic finite volume hyperbolic 3-orbifolds (see Remark 2.5)

are also isometric.
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2.4 Horoballs

A horoball centered at ∞ is the region above a horizontal plane in H3 (the plane is also

included in the horoball). For a point z ∈ C, if B is a Euclidean ball in H3 ∪ (C × {0})
tangent to the complex plane at z, then we say B − {z} is a horoball centered at z. The

boundary of a horoball B is called the horosphere of B and is denoted as ∂B.

Facts 2.7. i) Let B∞ and B′∞ be two horoballs centered at ∞, then there is a hyperbolic

element g of the form


λ 0

0 λ−1


 in PSL(2,C) fixing ∞ such that g(B′∞) = B∞.

Proof. If ∂B∞ is at height 1 and ∂B′∞ is at height t, then, λ =
√
t gives such a g. We

can use this to construct g for all other cases.

ii) For horoballs B∞ and Bz centered at ∞ and z respectively, there is g ∈ PSL(2,C) such

that g(Bz) = g(B∞).

Proof. If z = 0, then g =


1 1

1 0


 sends 0 to ∞ and so a horoball centered at 0 to a

horoball centered at ∞. If z 6= 0, then, g =


z
−1 0

−1 z


 sends z to ∞ and a horoball

centered at z to a horoball centered at ∞. Now, the fact above concludes this fact.

iii) If z ∈ ∂∞H3, then, the geodesics through z intersects the horospheres of all the horoballs

centered at z orthogonally.

Proof. When z is ∞, it is quite straightforward since the geodesics through ∞ are the

vertical lines and the horospheres of the horoballs centered at∞ are the horizontal planes.

Now, an isometry of H3 sends geodesics to geodesics, the general case follows from the

fact above.

iv) Given a horoball Bz centered at z for some z in ∂∞H3, the restriction of the hyperbolic

metric on ∂Bz is actually a Euclidean metric and if for a Kleinian group Γ, StabΓ(z)

contains a parabolic element, then StabΓ(z) acts as Euclidean isometries on ∂Bz.
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Proof. We first prove the fact for horoball B∞ centered at ∞. We note that StabΓ(∞)

does not contain any hyperbolic element (see [2, Lemma D.3.6]) and so using the Formula

2 and the description of matrices in 1 and 2, one can check that StabΓ(∞) sends ∂B∞

to itself. Now, ∂B∞ is a horizontal plane at some height t > 0. From the formula

of hyperbolic metric in Equation 1, we see that when the height is constant, the metric

becomes a scalar multiple of the standard Euclidean metric, hence, making its restriction

on ∂B∞ a Euclidean metric, which also shows that StabΓ(∞) acts as Euclidean isometries

on ∂B∞ since the elements of StabΓ(∞) are isometries of H3.

If z is not infinity, we note that there exists g ∈ PSL(2,C) sending z to∞. Now, gΓg−1 is

also a Kleinian group, StabgΓg−1(∞) = g StabΓ(∞)g−1 and the conjugate of a parabolic

element is a parabolic element as well. It then follows from the z =∞ case.

2.5 Cusp neighborhood, peripheral subgroup and cusp types

In this section, we will define the cusp ends of a hyperbolic 3-orbifold. Before we begin

the definition, we recall from Section 2.1.3 that Hn is (up to isometry) the unique complete,

simply connected Riemannian manifold which has constant sectional curvature equal to −1.

The following groundbreaking result of Margulis, which first appeared publicly in Gromov’s

paper [12], has had a very strong impact on the study of hyperbolic manifolds.

Margulis Lemma (Theorem D.1.1, [2]). There exist ε > 0 such that for every discrete

subgroup Γ of Isom(Hn) and x ∈ Hn, the group Γx,ε = {γ ∈ Γ : dHn(x, γ(x)) < ε} has a finite

index subgroup which is nilpotent.

The supremum of all such ε is referred as the Margulis constant. In the rest of the section,

ε is taken to be smaller than the Margulis constant.

Now, let, O = H3/Γ be a finite volume hyperbolic 3-orbifold. For a given ε, the ε-thin

part of O, denoted as thinε(O), is defined as

{x ∈ O : x has distinct pre-images x̃1, x̃2 ∈ H3 with dH3(x̃1, x̃2) ≤ ε}.
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Cusp neighborhoods of O are one particular type of components of these ε-thin parts of O.

To proceed further, we need to know the following definition: for r > 0 and a geodesic g

in H3, we define Br(g) as the set {x : dH3(x, g) ≤ r}. Using Margulis’s lemma, Thurston

proved [39, Corollary 5.10.2] that each component of the ε-thin part of hyperbolic manifolds

are quotients of horoballs and these Br(g)’s. Dunbar and Meyerhoff [10] gave a proof of a

more general orbifold version of Thurston’s result. We state the Dunbar and Meyerhoff’s

orbifold version of the result below:

Theorem 2.8 (Dunbar-Meyerhoff, Corollary 2.2, [10]). For any ε less than the Margulis

constant, each component of thinε(O) is either a solid tube, i.e., quotient of Br(g) by orien-

tation preserving co-compact subgroup of isometries of Γ for some r > 0 and geodesic g, or

a cusp neighborhood.

We define a cusp neighborhood of O to be the quotient of the horoball Bz centered some

z in ∂∞H3 by a (wallpaper) subgroup W of Γ, the stabilizer of z in Γ, such that the projection

of Bz to O factors through an embedding of Bz/W .

Recall from the fourth point in Fact 2.7 that W acts on ∂Bz by Euclidean isometries.

We will now review the definition of wallpaper groups (see [37] for details). The set of

translational isometries of R2, V , is two dimensional vector space over R. Let t(a,b) denote

the translation on R2 which maps


x
y


 to


x+ a

y + b


 for


x
y


 ∈ R2.

A group G of Euclidean isometries of R2 is said to be a wallpaper group if the set of

translational isometries in G is generated by a basis for V and



r ∈ O2(R) : t(a,b) ◦ r ∈ G for some


a
b


 ∈ R2





is finite. The set of translations of R2 in a wallpaper G form a subgroup of G. We refer this

subgroup as the translational subgroup of G. We say two wallpaper groups G1 and G2 are

equivalent if there exists a group isomorphism from G1 onto G2 which maps the translational

subgroup of G1 onto the translational subgroup of G2.

A wallpaper group is oriented if all its members are orientation preserving as maps of

R2. Note that if a wallpaper group is oriented, so are the groups equivalent to it. There are

17



A group G of Euclidean isometries of R2 is said to be a wallpaper group if the set of

translational isometries in G is generated by a basis for V and
8
<
:r 2 O2(R) : t(a,b) � r 2 G for some

0
@a

b

1
A 2 R2

9
=
;

is finite. The set of translations of R2 in a wallpaper G form a subgroup of G. We refer this

subgroup as the translational subgroup of G. We say two wallpaper groups G1 and G2 are

equivalent if there exists a group isomorphism from G1 onto G2 which maps the translational

subgroup of G1 onto the translational subgroup of G2.

A wallpaper group is oriented if all its members are orientation preserving as maps of

R2. Note that if a wallpaper group is oriented, so are the groups equivalent to it. There are

five equivalence classes of oriented wallpaper groups (see the theorem on p. 127 in [35]). We

describe these oriented classes of wallpaper groups below. We write the generating sets of

the groups in the line of Ho↵man’s description of (2, 3, 6) and (2, 4, 4) wallpaper groups in §2
of [15]. But, our of choice of rotations in the generating set are counterclockwise as opposed

to his clockwise rotations. We will be using rn,(a,b) denote a counterclockwise rotation of

angle 2⇡
n

around the point (a, b).

Equivalent classes of wallpaper groups:

• Z2

A representative of this equivalence class is �Z2 = ht(a,b), t(c,d)i where a, b, c, d 2 R such
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Figure 3: Fundamental domain of a wallpaper group of class Z2

five equivalence classes of oriented wallpaper groups (see the theorem on p. 127 in [37]). We

describe these oriented classes of wallpaper groups below. We write the generating sets of

the groups in the line of Hoffman’s description of (2, 3, 6) and (2, 4, 4) wallpaper groups in §2

of [16]. But, our of choice of rotations in the generating set are counterclockwise as opposed

to his clockwise rotations. We will be using rn,(a,b) to denote a counterclockwise rotation of

angle 2π
n

around the point (a, b).

Equivalent classes of wallpaper groups:

• Z2

A representative of this equivalence class is WZ2 =
〈
t(a,b), t(c,d)

〉
where a, b, c, d ∈ R such

that ad 6= bc.

So, WZ2 is generated by two linearly independent translations. In this case, the transla-

tional subgroup of WZ2 , denoted as ΛZ2 , is WZ2 itself.

Figure 3 shows a fundamental domain of WZ2 , denoted as DWZ2
, which is also a funda-

mental domain of ΛZ2 DΛZ2
.

• (2,2,2,2)

A representative of this equivalence class is W2,2,2,2 =
〈
r2,(0,0), r2,(a

2
, b
2

), r2,( c
2
, d
2

)

〉
where
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that ad 6= bc.

In this case, ⇤Z2 , the translational subgroup of �Z2 , is �Z2 itself.

• (2,2,2,2)

A representative of this equivalence class is �2,2,2,2 = hr2,(0,0), r2,(a
2
, b
2
), r2,( c

2
, d
2
)i where

a, b, c, d 2 R such that ad 6= bc and

r2,(0,0) =

0
@�1 0

0 �1

1
A , r2,(a

2
, b
2
) = t(a,b) � r2,(0,0), r2,( c

2
, d
2
) = t(c,d) � r2,(0,0)

Translation subgroup ⇤2,2,2,2 of �2,2,2,2 is hr2,(a
2
, b
2
)r

�1
2,(0,0), r2,( c

2
, d
2
)r

�1
2,(0,0)i.

Note that, r2,(a
2
, b
2
)r

�1
2,(0,0) = t(a,b) and r2,( c

2
, d
2
)r

�1
2,(0,0) = t(c,d).

One can see that [�2,2,2,2 : ⇤2,2,2,2] = 2.

• (2,3,6)

A representative of this equivalence class is �2,3,6 = hr6,(0,0), r3,(a
2
, a
2
p

3
)i where

r6,(0,0) =

0
@�1

2
�

p
3

2
p

3
2

�1
2

1
A , r3,(a

2
, a
2
p

3
) = t(a,0) � r2

6,(0,0)
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Figure 4: Fundamental domain of a wallpaper group of class (2, 2, 2, 2)

a, b, c, d ∈ R such that ad 6= bc and

r2,(0,0) =


−1 0

0 −1


 , r2,(a

2
, b
2

) = t(a,b) ◦ r2,(0,0), r2,( c
2
, d
2

) = t(c,d) ◦ r2,(0,0).

So, W2,2,2,2 is generated by three order 2 rotations. Translation subgroup Λ2,2,2,2 of W2,2,2,2

is generated by the translations r2,(a
2
, b
2

) ◦ r−1
2,(0,0) and r2,( c

2
, d
2

) ◦ r−1
2,(0,0). Note that,

r2,(a
2
, b
2

) ◦ r−1
2,(0,0) = t(a,b) and r2,( c

2
, d
2

) ◦ r−1
2,(0,0) = t(c,d).

One can see that [W2,2,2,2 : Λ2,2,2,2] = 2. Figure 4 shows a fundamental domain of Λ2,2,2,2,

denoted as DΛ2,2,2,2 , containing a fundamental domain of W2,2,2,2, denoted as DW2,2,2,2 .

• (2,3,6)

A representative of this equivalence class is W2,3,6 =
〈
r6,(0,0), r3,(a

2
, a
2
√
3

)

〉
where

r6,(0,0) =


−

1
2
−
√

3
2

√
3

2
−1

2


 , r3,(a

2
, a
2
√
3

) = t(a,0) ◦ r2
6,(0,0).
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that ad 6= bc.

In this case, ⇤Z2 , the translational subgroup of �Z2 , is �Z2 itself.

• (2,2,2,2)

A representative of this equivalence class is �2,2,2,2 = hr2,(0,0), r2,(a
2
, b
2
), r2,( c

2
, d
2
)i where

a, b, c, d 2 R such that ad 6= bc and

r2,(0,0) =

0
@�1 0

0 �1

1
A , r2,(a

2
, b
2
) = t(a,b) � r2,(0,0), r2,( c

2
, d
2
) = t(c,d) � r2,(0,0)

Translation subgroup ⇤2,2,2,2 of �2,2,2,2 is hr2,(a
2
, b
2
)r

�1
2,(0,0), r2,( c

2
, d
2
)r

�1
2,(0,0)i.

Note that, r2,(a
2
, b
2
)r

�1
2,(0,0) = t(a,b) and r2,( c

2
, d
2
)r

�1
2,(0,0) = t(c,d).

One can see that [�2,2,2,2 : ⇤2,2,2,2] = 2.

• (2,3,6)

A representative of this equivalence class is �2,3,6 = hr6,(0,0), r3,(a
2
, a
2
p

3
)i where

r6,(0,0) =

0
@�1

2
�

p
3

2
p

3
2

�1
2

1
A , r3,(a

2
, a
2
p

3
) = t(a,0) � r2

6,(0,0)
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Figure 5: Fundamental domain of a wallpaper group of class (2, 3, 6)

So, W2,3,6 is generated by an order 6 rotation and an order 3 rotation. Translation

subgroup Λ2,3,6 of W2,3,6 is generated by r3,(a
2
, a
2
√
3

) ◦ r−2
6,(0,0) and r−1

3,(a
2
, a
2
√
3

) ◦ r2
6,(0,0). Note,

r3,(a
2
, a
2
√
3

) ◦ r−2
6,(0,0) = t(a,0) and r−1

3,(a
2
, a
2
√
3

) ◦ r2
6,(0,0) = t

(a
2
,
√
3a
2

)
.

We have, [W2,3,6 : Λ2,3,6] = 6. Figure 5 shows a fundamental domain of Λ2,3,6, denoted as

DΛ2,3,6 , containing a fundamental domain of W2,3,6, denoted as DW2,3,6 .

• (3,3,3)

A representative of this equivalence class is W3,3,3 =
〈
r3,(0,0), r3,(a

2
, a
2
√
3

)

〉
where

r3,(0,0) =




1
2

−
√

3
2

√
3

2
1
2


 , r3,(a

2
, a
2
√
3

) = t(a,0) ◦ r3,(0,0).

So, W3,3,3 is generated by two order 3 rotations. Translation subgroup Λ3,3,3 of W3,3,3 is

generated by r3,(a
2
, a
2
√
3

) ◦ r−1
3,(0,0) and r−1

3,(a
2
, a
2
√
3

) ◦ r3,(0,0). We note,

r3,(a
2
, a
2
√
3

) ◦ r−1
3,(0,0) = t(a,0) and r−1

3,(a
2
, a
2
√
3

) ◦ r3,(0,0) = t
(a
2
,
√
3a
2

)
.

We see that [W3,3,3 : Λ3,3,3] = 3. Figure 6 shows a fundamental domain of Λ3,3,3, denoted

as DΛ3,3,3 containing a fundamental domain of W3,3,3, denoted as DW3,3,3 .
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Translation subgroup ⇤2,3,6 of �2,3,6 is hr3,(a
2
, a
2
p

3
) � r�2

6,(0,0), r
�1
3,(a

2
, a
2
p

3
) � r2

6,(0,0)i.
Note, r3,(a

2
, a
2
p

3
) � r�2

6,(0,0) = t(a,0) and r�1
3,(a

2
, a
2
p

3
) � r2

6,(0,0) = t
(a
2
,
p

3a
2

)
.

We have, [�2,3,6 : ⇤2,3,6] = 6.

• (3,3,3)

A representative of this equivalence class is �3,3,3 = hr3,(0,0), r3,(a
2
, a
2
p

3
)i where

r3,(0,0) =

0
@

1
2

�
p

3
2

p
3

2
1
2

1
A , r3,(a

2
, a
2
p

3
) = t(a,0) � r3,(0,0)

Translation subgroup ⇤3,3,3of �3,3,3 is hr3,(a
2
, a
2
p

3
) � r�1

3,(0,0), r
�1
3,(a

2
, a
2
p

3
) � r3,(0,0)i.

We note, r3,(a
2
, a
2
p

3
) � r�1

3,(0,0) = t(a,0) and r�1
3,(a

2
, a
2
p

3
) � r3,(0,0) = t

(a
2
,
p

3a
2

)
.

We see that [�3,3,3 : ⇤3,3,3] = 3.

• (2,4,4)

A representative of this equivalence class is �2,4,4 = hr4,(0,0), r4,(a
2
, a
2
)i where

r4,(0,0) =

0
@0 �1

1 0

1
A , r4,(a

2
, a
2
) = t(a,0) � r4,(0,0)

Translation subgroup ⇤2,4,4 of �2,4,4 is hr4,(a
2
, a
2
) � r�1

4,(0,0), r
�1
4,(a

2
, a
2
) � r4,(0,0)i.

Note that r4,(a
2
, a
2
) � r�1

4,(0,0) = t(a,0) and r�1
4,(a

2
, a
2
) � r4,(0,0) = t(0,a).

One can see that [�2,4,4 : ⇤2,4,4] = 4.
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Figure 6: Fundamental domain of a wallpaper group of class (3, 3, 3)

• (2,4,4)

A representative of this equivalence class is W2,4,4 =
〈
r4,(0,0), r4,(a

2
,a
2

)

〉
where

r4,(0,0) =


0 −1

1 0


 , r4,(a

2
,a
2

) = t(a,0) ◦ r4,(0,0).

So, W2,4,4 is generated by two order 4 rotations. Translation subgroup Λ2,4,4 of W2,4,4 is

generated by r4,(a
2
,a
2

) ◦ r−1
4,(0,0) and r−1

4,(a
2
,a
2

) ◦ r4,(0,0). Note that

r4,(a
2
,a
2

) ◦ r−1
4,(0,0) = t(a,0) and r−1

4,(a
2
,a
2

) ◦ r4,(0,0) = t(0,a).

One can see that [W2,4,4 : Λ2,4,4] = 4. Figure 7 shows a fundamental domain of Λ2,4,4,

denoted as DΛ2,4,4 , containing a fundamental domain of W2,4,4, denoted as DW2,4,4 .

Remark 2.9. For a hyperbolic link L = K1t· · ·tKn, each of the components Ki correspond

to a cusp end of S3 − L for i = 1, . . . , n. Let h : S3 − L → H3/Γ be the diffeomorphism

which makes L a hyperbolic link. Then, there exists a closed tubular neighborhood N(Ki)

of Ki such that the image of N(Ki) −Ki under h is a cusp neighborhood corresponding to

Ki-component. We will refer to a cusp or cusp neighborhood corresponding to Ki-component

as a Ki-cusp or Ki-cusp neighborhood.
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Translation subgroup ⇤2,3,6 of �2,3,6 is hr3,(a
2
, a
2
p

3
) � r�2

6,(0,0), r
�1
3,(a

2
, a
2
p

3
) � r2

6,(0,0)i.
Note, r3,(a

2
, a
2
p

3
) � r�2

6,(0,0) = t(a,0) and r�1
3,(a

2
, a
2
p

3
) � r2

6,(0,0) = t
(a
2
,
p

3a
2

)
.

We have, [�2,3,6 : ⇤2,3,6] = 6.

• (3,3,3)

A representative of this equivalence class is �3,3,3 = hr3,(0,0), r3,(a
2
, a
2
p

3
)i where

r3,(0,0) =

0
@

1
2

�
p

3
2

p
3

2
1
2

1
A , r3,(a

2
, a
2
p

3
) = t(a,0) � r3,(0,0)

Translation subgroup ⇤3,3,3of �3,3,3 is hr3,(a
2
, a
2
p

3
) � r�1

3,(0,0), r
�1
3,(a

2
, a
2
p

3
) � r3,(0,0)i.

We note, r3,(a
2
, a
2
p

3
) � r�1

3,(0,0) = t(a,0) and r�1
3,(a

2
, a
2
p

3
) � r3,(0,0) = t

(a
2
,
p

3a
2

)
.

We see that [�3,3,3 : ⇤3,3,3] = 3.

• (2,4,4)

A representative of this equivalence class is �2,4,4 = hr4,(0,0), r4,(a
2
, a
2
)i where

r4,(0,0) =

0
@0 �1

1 0

1
A , r4,(a

2
, a
2
) = t(a,0) � r4,(0,0)

Translation subgroup ⇤2,4,4 of �2,4,4 is hr4,(a
2
, a
2
) � r�1

4,(0,0), r
�1
4,(a

2
, a
2
) � r4,(0,0)i.

Note that r4,(a
2
, a
2
) � r�1

4,(0,0) = t(a,0) and r�1
4,(a

2
, a
2
) � r4,(0,0) = t(0,a).

One can see that [�2,4,4 : ⇤2,4,4] = 4.

20

t(a,0)

t(0,a)
DW

DΛ

r4,(0,0)

r4,( a
2 , a

2 )

2,4,4

2,4,4

Figure 7: Fundamental domain of a wallpaper group of the class (2, 4, 4)

2.5.1 Cusp cross-sections

Let c = B/W be a cusp of an orbifold O where B is a horoball and W is one of the

five oriented wallpaper groups. Then ∂B/W , the quotient of the horosphere of B by the

wallpaper is called the cusp cross-section of c.

Note that if for a cusp c, if we denote its cusp cross-section by ∂c, then topologically, c

is homeomorphic to ∂c× [0,∞).

When W belongs to the Z2 class, ∂B/W is a torus and so the cusp is called a torus cusp.

Similarly, when W belong to (2, 2, 2, 2), (2, 3, 6), (3, 3, 3) and (2, 4, 4) equivalence classes, cusp

c is referred to as pillowcase cusp, (2, 3, 6) cusp, (3, 3, 3) cusp and (2, 4, 4) cusp respectively.

We will use the term smooth cusp to mean either a torus cusp or a pillowcase cusp, and the

term rigid cusp to mean either (2, 3, 6) cusp or (3, 3, 3) or (2, 4, 4) cusp (see Figure 8 and 9).

When Γ is torsion free, the cusp cross-sections are all Euclidean torus, i.e. a torus with a

Euclidean structure inherited from B. The similarity structure of a torus cusp cross-section

is referred as the cusp shape of the cusp.
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Figure 8: Cross-section of smooth cusps - Left: (2, 2, 2, 2) cusp, Right: torus cusp

 

Figure 9: Cross-section of rigid cusps - Left: (2, 3, 6) cusp, Middle: (3, 3, 3) cusp, Right:

(2, 4, 4) cusp
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2.5.2 Cusp moduli of a torus cusp

Let c be a torus cusp of an orbifold O. Then, c = B/WZ2 for some horoball B and wallpa-

per group of WZ2 =< t(m1,m2), t(l1,l2) > as discussed above. We say that l1+l2i
m1+m2i

sign(m1l2−m2l1)

is a cusp moduli of c. Note that a cusp moduli always belongs to the upper-half plane.

2.6 Dehn filling and geometric convergence

One way of producing new orbifolds out of a given orbifold is the technique of Dehn

filling. We first recall from §2.E of [35] that a simple closed curve in S1 × S1 is called a

meridian if it bounds a disk in the solid torus D2 × S1 and it is called a longitude if it

generates the first homology of D2 × S1.

For a hyperbolic link L and a component K of L, a K-cusp (which is a torus cusp) is

a regular neighborhood of K. A meridian-longitude pair (m, l) in the cusp torus of K-cusp

such that l vanishes in the homology of M − int(c), where M = S3 − L and int(c) is the

interior of c, is referred to as the preferred meridian-longitude pair.

Let c be a torus cusp neighborhood of an orbifold O. We choose a meridian-longitude

pair (mc, lc) in ∂c, which in this context just means a generating pair for H1(∂c).

For co-prime integers p and q, the topological space (O− int(c))∪h D2× S1 where h is a

homeomorphism of S1 × S1 to ∂c sending the meridian m of D2 × S1 to the curve pmc + qlc

is said to be obtained by (p, q) Dehn filling on c.

To discuss the more general gcd(p, q) = d ≥ 1 case, we note that, the quotient of the

solid torus D2 × S1 by a 2π/d rotation around the core curve {0} × S1 is an orbifold with

singular locus {0} × S1 of order d (when d = 1, the singular locus is not singular anymore).

Let us denote this orbifold as (D2 × S1)d. Topologically, (D2 × S1)d is still a solid torus. We

denote the image of the meridian m in (D2 × S1)d as md. We now fix a homeomorphism h

from the boundary of (D2 × S1)d (which is topologically still a torus) to ∂c sending md to

the curve p
d
mc + q

d
lc. Then, (O − int(c)) ∪h (D2 × S1)d which has an orbifold structure with

its points in (the image of) {0} × S1 having order d torsion is said to be obtained by (p, q)
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Figure 10: Dehn fillings on a cusp of 62
2: First and Second pictures: the link 62

2, Third,

fourth and fifth pictures: (1, 1)-filling, (1, 2)-filling and (1, 3)-filling respectively

Dehn filling on c.

If the cusps of an orbifold O are c1, . . . , cn then the orbifold obtained by (pi, qi) Dehn

filling on ci for each i ∈ {1, . . . , n} is denoted as O(p1,q1),...,(pn,qn). If we don’t fill a ci, then we

write (pi, qi) =∞.

By a (1, n) Dehn filling on the K cusp, we mean a (1, n) Dehn filling using the preferred

meridian-longitude pair for K cusp.

Remark 2.10. Given an n-component link L with an unknotted component K, the manifold

M obtained by (1, n) filling on K is homeomorphic to a link with (n− 1) components. (See

Proposition 2 in §9.H in [35]). Figure 10 shows the (1, 1) and (1, 2) Dehn filling on one cusp

of the link 62
2.

The following theorem of Thurston (which was later extended for orbifold fillings of

smooth cusps of orbifolds by Dunbar and Meyerhoff in Theorem 5.3 of [10]) makes Dehn

filling an intrinsic part of 3-dimensional hyperbolic geometry:
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Theorem 2.11 (Thurston, Theorem 5.8.2, [39]). Let M be a hyperbolic 3-manifold with cusps

c1, . . . , cn. There exists a compact set K in R2 such that if integer pairs (p1, q1), . . . (pn.qn)

lie outside K then the 3-manifold M(p1,q1),...,(pn.qn) is hyperbolic.

In fact, one can further say that

Theorem 2.12 (Theorem 6.4, [10]). Let O be a finite volume hyperbolic 3-orbifold with at-

least one smooth cusp and ODehn be a hyperbolic 3-orbifold obtained by Dehn filling some of

the smooth cusps of O. Then ODehn also has finite volume and the volume of ODehn is less

than the volume of O.

We now define the notion of a convergence for hyperbolic knots obtained from Dehn

filling the components of a hyperbolic link.

Definition 2.13. Let L be a hyperbolic link with components K1, . . . , Kn where n ≥ 2. Let

F = {O∞,(pi2,qi2),...,(pin,q
i
n)}i be a family of hyperbolic 3- orbifolds such that each O∞,(pi2,qi2),...,(pin,q

i
n)

is obtained by Dehn filling Kj cusp of L with filling coefficient (pij, q
i
j) for j ∈ {2, . . . , n}. If

(pij, q
i
j) converges to ∞ (in S2) as i→∞ for each j ∈ {2, . . . , n} for this family F , then we

say that the elements of F geometrically converge to L as i→∞.

Remark 2.14. Note that when L has only two components, for any infinitely family F of

hyperbolic orbifolds obtained from Dehn filling a fixed component of L, the elements of F
geometrically converge to L.

We make a note of the following important fact:

Fact 2.15. Let c and c′ be two cusps of the complement of a hyperbolic link L which are

symmetric, i.e. there is an self-isometry of S3 − L exchanging the cusps. Let F be a geo-

metrically converging family of hyperbolic knots obtained by Dehn filling all cusps of S3 − L
but c, then there exists a family F ′ of geometrically converging family of hyperbolic knots

obtained by Dehn filling all cusps of S3 − L but c′ such that each member of F is isometric

to a member of F ′ and vice versa.

Remark 2.16. The definition of geometric convergence is more broad. See [20, Section 4.2]

for the general definition.
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Figure 11: An ideal tetrahedron with an ideal vertex at ∞

2.7 Ideal triangulation and deformation variety

The contents of this section go back to Thurston [39] and Neumann and Zagier [25]. For

pinpoint citations of the results and the discussions, we sometimes refer to [2] and [30].

2.7.1 Ideal tetrahedron and shape parameters

Let ∆ be a tetrahedron in H3∪ ∂∞H3 whose vertices are in ∂∞H3 and all other simplices

are geodesic simplices in H3. If ∆
0

is the set of vertices of ∆, then, ∆−∆
0

is called an ideal

hyperbolic tetrahedron.

Figure 11 shows the picture of an ideal tetrahedron one of whose ideal vertices is at ∞.

Proposition 2.17. Let ∆ be an ideal tetrahedron with ideal vertices v0, v1, v2 and v3. Let z

be the cross-ratio of the tuple (v0, v1, v2, v3) defined as v3−v0
v2−v0

v2−v1
v3−v1 . We denote this cross ratio

as [v0, v1, v2, v3]. Then there exists an isometry φ ∈ PSL(2,C) such that φ maps v0, v1, v2

and v3 to 0, ∞, 1, and z respectively and so, φ maps ∆ isometrically to the ideal tetrahedron
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Figure 12: Shape parameters of the ideal tetrahedron

with ideal vertices at 0, ∞, 1, and z.

Proof. Let φ ∈ PSL(2,C) be given by the Möbius transformation sending u to u−v0
u−v1 .

v2−v1
v2−v0 .

One can see that φ maps v0, v1, v2 and v3 respectively to 0, ∞, 1, and z.

This z is called the shape parameter of [v0, v1], the edge connecting v0 to v1. One can

check the following two facts about shape parameters:

Facts 2.18. 1. The shape parameters for two opposite edges of an ideal tetrahedron are

same.

2. For an ideal vertex v of a tetrahedron, if the three edges concurrent at v are written in

a counter clockwise order when viewed from v towards to the tetrahedron, then the shape

parameters of the three edges read as z, 1
1−z and z−1

z
where z is the shape parameter

of the first edge in the order. From now on, we will use the notation ζ1(z) = 1
1−z and

ζ2(z) = z−1
z

following [8].

Figure 12 demonstrates these last two facts.
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2.7.2 Geometric triangulation, edge equations and holonomy equations

Let M be a 3-manifold with a hyperbolic structure. Let T = {∆i}ni=1 be a collection of

ideal hyperbolic tetrahedra and F = {f, f−1}2n
j=1 be a collection of isometries such that for

each f ∈ F , there exists i, j ∈ {1, . . . , n} such that f maps a face A of ∆i onto a face A′ of

∆j and A′ = f(∆i) ∩ ∆j. If M is (H3, Isom+(H3)) isomorphic to the quotient of
n⊔
i=1

∆i by

F , then (T ,F) is called a geometric triangulation of M .

Each edge of M is an equivalence class of edges of the elements of T . Let’s denote the

the set of edges of M by E . Now, for M to have hyperbolic structure, the total dihedral

angle around each e in E should be 2π. This fact implies (see Equation 16 of [25]) that

∏

e∈e
ze = 1 for each e ∈ E where ze is the shape parameter of the edge e. (3)

The equations in Formula 3 are called edge equations.

We now assume that M is a hyperbolic 3-manifold and consider a geometric triangulation

(T ,F) of the associated hyperbolic structure. Let c be a cusp of M and Tc be a cusp cross-

section of c. Recall that Tc is a Euclidean torus. For [γ] ∈ π1(Tc), let γ′ be a simplicial curve

in the homotopy class of [γ]. Let ls denote the number of 1-simplices of γ′. Let Eγ′ denotes

the set of edges that γ′ meets from the right. Let ze be the shape parameter of e for each

e ∈ E. If one defines the derivative of the holonomy of [γ],

µ([γ]) = (−1)ls
∏

e∈E
ze

then, Neumann and Zagier shows the following:

Proposition 2.19 (Lemma 2.1, [25]). The map µ : π1(Tc) → C− {0} where µ([γ]) defined

as above is well defined and is a group homomorphism.

For i ∈ {1, . . . , k} let {mi, li} denote a generating set for the fundamental group of Tci ,

a torus cusp cross-section at the ci cusp of M where k is the number of cusps of M . Since

the hyperbolic structure on M is complete, Equations 18 and 19 in [25] establishes

µ(mi) = µ(li) = 1 for each i ∈ {1, . . . , k}. (4)

We refer to the equations in Formula 4 as holonomy equations.
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2.7.3 Deformation variety, incomplete structures and Dehn filling

For each edge e of M , Formula 3 gives a polynomial equation pe(z1, . . . , zn) = 0 where

z1, . . . , zn are the shape parameters of (T ,F). The algebraic set D(M) = {(z1, . . . , zn) ∈
Cn : pe = 0 for edge e of M} is called the deformation variety of M . We note that each z in

D(M) represents a hyperbolic structure on M .

Let Mz denote the hyperbolic structure of (a homeomorphic copy of) M obtained from

the geometric triangulation (Tz,Fz) for z = (z1, . . . , zn) ∈ D(M). The Riemannian metric

that Mz inherits from the structure may not be complete. We say Mz is an incomplete

structure of M if the corresponding Riemannian metric is not complete. For z ∈ D(M),

if µ(mi) = µ(li) = 1 at z, then, Mz is said to be complete at the i-th cusp. Note, if

for some z ∈ D(M), Mz is complete at all the cusps, i.e, z satisfies Equations 3 and 4,

then the hyperbolic structure of Mz is that of M . This z (or Mz) is referred as a complete

structure. Mostow-Prasad rigidity (see Theorem 2.3.1) implies that the number of z in D(M)

corresponding to the complete hyperbolic manifold M is finite (see [2, Proposition E.6.16]).

Note, D(M) is in general not irreducible and so not an algebraic variety. Let D0 be

an irreducible component of D(M) containing a complete structure in D(M). Let E =

{e1, . . . , en}. By Fact 2, we see that for each i ∈ {1, . . . , n} the edge equation for edge ei in

E can be written as:

n∏

j=1

zmi,j(1− z)ni,j = 1, where mi,j, ni,j ∈ {−1, 0, 1}.

We define an n× n matrix M whose (i, j)th entry is mi,j for i, j ∈ {1, . . . , n} and matrix N

whose (i, j)th entry is ni,j for i, j ∈ {1, . . . , n}. If we define the n× 2n edge equation matrix

P =
(
M N

)
, then the following is true:

Theorem 2.20 (Proposition E.6.19, [2]). The matrix P has rank n− k and the dimension

of D0 is equal to k, where k is the number of cusps of M .

We define ui = log(µ(mi)) and vi = log(µ(li)). Thurston showed that there exists

pi, qi ∈ R such that piui + qivi = 2πi. This (pi, qi) is called the generalized Dehn surgery

coefficient at the i-th cusp of M .
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Figure 13: Tetrahedral decomposition of the figure eight knot complement

Theorem 2.21 (Proposition E.6.27, [2]). Let z ∈ D0(M) such that Mz is complete at cusps

c1, . . . , cm. Suppose the generalized Dehn surgery coefficients (pi, qi) of Mz are co-prime

integers at the ci cusp for i ∈ {m + 1, . . . , n}. The metric completion of Mz is a hyperbolic

3-manifold with m cusps that is isometric to the hyperbolic manifold obtained by (pi, qi) Dehn

filling on the ci cusp of M for i ∈ {m+ 1, . . . , n}.

2.7.4 Example: figure eight knot

We follow [30] (pp. 485-488) for the discussion below.

The hyperbolic structures of the figure eight knot complement S3 − K has geometric

triangulations into 2 ideal tetrahedra with face pairing as shown in Figure 13 (cf. Figure

10.5.5 in [30]). One can check that the edge equations in this case are:

z1 − 1

z1

z2z1
z2 − 1

z2

z1z2 = 1 (5)

1

1− z1

z2 − 1

z2

z1 − 1

z1

1

1− z2

1

1− z2

1

1− z1

= 1. (6)
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Figure 14: Cusp triangulation the figure eight knot complement

Simplifying the expressions above, one finds that Equations 5 and 6 are equivalent to the

polynomial equation z1(z1− 1)z2(z2− 1)− 1 = 0. So, D(S3−K), the deformation variety of

S3 −K, is {(z1, z2) : z1(z1 − 1)z2(z2 − 1)− 1 = 0}.
To understand the map µ, we look at Figure 14 (cf. Figure 10.5.7 in [30]), which rep-

resents the cusp cross section S3 − K. Triangles in Figure 14 are the horospherical cross

sections of the tetrahedra around the ideal vertices.

The two generators for the fundamental group of this cross section are denoted by m

and l here. One can see that

µ(m) = (−1)4 1

1− z1

z2z1
z1 − 1

z1

1

1− z1

z1 − 1

z1

1

1− z1

z2z1
z2 − 1

z2

1

1− z1

z2 − 1

z2

=
(z2 − 1)2

(z1 − 1)2
(7)

µ(l) = (−1)
1

1− z1

1

1− z2

z2 − 1

z2

=
1

z2(1− z1)
. (8)

Solving for z = (z1, z2) in Equations 5 and 6 and µ(m) = µ(l) = 1 gives us z1 = z2 = 1+
√

3i
2

.

So, the complete structure corresponds to z = (1+
√

3i
2

, 1+
√

3i
2

). This z = (1+
√

3i
2

, 1+
√

3i
2

) corre-

sponds to the hyperbolic structure of S3 −K which makes K a hyperbolic knot.
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2.8 Trace fields vs. cusp fields

For this section, we assume that Γ is a Kleinian group with finite co-volume, i.e. funda-

mental domains of Γ in H3 have finite volume.

Definition 2.22. Q({trace(γ) : γ ∈ Γ}), the field generated by the traces of the elements of

Γ over Q is said to be the trace field of Γ. We denote this field as Tr(Γ).

We define another closely related field called the invariant trace field as follows:

Definition 2.23. Q({trace(γ2) : γ ∈ Γ}), the field generated by the traces of the squares of

the elements of Γ over Q is called the invariant trace field. We denote this field as kΓ.

The following theorem shows that trace fields and invariant trace fields are in fact number

fields.

Theorem 2.24 (Theorem 3.1.2, [19]). The trace field of a finite co-volume Kleinian group

is a finite degree extension of Q.

Example 2.25. Let’s take Γ from Example 2.2. Then since Γ is generated by A =


1 1

0 1




and B =


1 0

ω 1


 (where ω = 1+

√
3i

2
), Tr(Γ) is generated by trace(A), trace(B) and

trace(AB) (see Equation 3.25 in [19]). Now, AB =


ω + 1 1

ω 1


. trace(A) = trace(B) = 2

and trace(AB) = ω+2. So, Tr(Γ) = Q(
√

3i). On the other hand, (AB)2 =


 2ω ω + 2

ω − 1 ω + 1




and so, trace((AB)2) = 3ω + 1. So, ω ∈ kΓ meaning kΓ = Q(
√

3i) as well.

Reid established the following interesting fact:

Theorem 2.26 (Theorem 2, [31]). If Γ1 and Γ2 are commensurable (i.e., Γ1 ∩ Γ2 has finite

index in both Γ1 and Γ2), then, kΓ1 = kΓ2.

In general, kΓ could be smaller than Tr(Γ). An example of such a scenario is given by

Reid in [31]:
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Example 2.27 (Example, §1, [31]). Let Γ and Γ′ be from Example 2.2 and Example 2.6

respectively. By Theorem 2.26, kΓ = kΓ′. From Equation 3.26 of [19], it follows that Tr(Γ′)

is generated by the set

{trace(A), trace(B), trace(C), trace(AB), trace(AC), trace(BC), trace(ABC)}

where

A =


1 1

0 1


 , B =


1 0

ω 1


 , C =


i 0

0 −i


 .

If we compute these traces, we see, trace(A) = trace(B) = 2, trace(C) = trace(AC) =

trace(BC) = 0, trace(AB) = ω+2, trace(ABC) = iω. So, Tr(Γ′) = Q(i,
√

3), which strictly

contains kΓ′ = Q(
√

3i).

But, Neumann and Reid proved the following:

Theorem 2.28 (Neumann-Reid, Corollary 2.3, [23]). kΓ = Tr(Γ) when Γ is the fundamental

group of a hyperbolic link complement.

When M is a hyperbolic 3-manifold, then the trace field and the invariant trace field of

the fundamental group of M are referred as the trace field and the invariant trace field of M

respectively.

Definition 2.29. Let M be a hyperbolic three manifold with geometric triangulation (T ,F).

If {z1, . . . , zn} denote the shape parameters of this triangulation (T ,F), then Q({z1, . . . , zn})
is called the shape field of M .

Neumann and Reid proved,

Theorem 2.30 (Neumann-Reid, Theorem 2.4, [23]). For a hyperbolic 3-manifold M , the

shape field of M is equal to the invariant trace field of M .

The field generated by the cusp moduli of the cusps of M over Q is called the cusp field

of M . Neumann and Reid also proved that

Theorem 2.31 (Neumann-Reid, Proposition 2.7, [23]). Cusp field of M is a subfield of kΓ.
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3.0 Hidden symmetry of hyperbolic knot complements

In this chapter, we describe the background material in hidden symmetries. Margulis’s

arithmeticity theorem (see [19, Theorem 10.3.5], refer to [41] for a proof) implies that a

hyperbolic 3-manifold has infinitely many hidden symmetries if and only if it is arithmetic.

This makes the study of hidden symmetries in hyperbolic knot complements quite interesting

since by a result of Reid, figure eight knot is the only arithmetic knot. Our exposition of the

introductory topics on hidden symmetries here closely follow Neumann and Reid’s seminal

paper [23] from 1992. We also discuss some recent results on research on hidden symmetries.

3.1 Hidden symmetry

For a hyperbolic 3-manifold M , if there exists an isometry g between two finite index

coverings of M such that g is not a lift of any self-isometry of M , then g is said to be a

hidden symmetry of M .

Facts 3.1. • The group of self-isometries of M = H3/Γ can be identified with N(Γ)/Γ

where Γ is the fundamental group of M and N(Γ) is the normalizer of Γ in PSL(2,C)

(see Remark 2.3).

• On the other hand, the isometries between finite index covers of M can be identified with

Comm(Γ) = {g ∈ PSL(2,C) : [Γ : Γ ∩ gΓg−1] < ∞, [gΓg−1 : Γ ∩ gΓg−1] < ∞}. So,

the hidden symmetries of M are in one-to-one correspondence with the cosets of N(Γ)

in Comm(Γ) (see p. 274 of [23]).

Example 3.2. Let M the figure eight knot complement. Then, we know from Example 2.2

that M is isometric to H3/Γ where Γ =

〈
1 1

0 1


 ,


1 0

ω 1



〉

. Let g =


0

√
−3

1 0


. Let

Γ1 = (gΓg−1) ∩ Γ. Let T =






a b

√
−3

c d


 : a, b, c, d ∈ O3



 where O3 is the ring of inte-

gers of the number field Q(
√
−3). We note that g normalizes T . We will write PGL(2, O3)

35



to mean GL(2, O3)/Z(GL(2, O3)) where GL(2, O3) is the set of 2 × 2 matrices whose ele-

ments and whose matrix inverses’ elements belong to O3 and Z(GL(2, O3)) is the center of

GL(2, O3). We note that T is index 4 and Γ is index 24 subgroup of PGL(2, O3) (see Remark

2 in Section 2 of [13]). So, Γ ∩ T has finite index in Γ and in turn, in PGL(2, O3). This

means g(Γ∩T )g−1 is also finite index in PGL(2, O3). So, Γ∩g(Γ∩T )g−1 has finite index in

Γ. This implies Γ1 is also finite index in Γ. So, H3/Γ1 is finite index cover of H3/Γ. Now,

g−1


1 1

0 1


 g =


 1 0

1√−3
1


, which does not belong to PGL2(O3). So, g /∈ N(Γ). So, g

cannot induce a self-isometry of H3/Γ. On the other hand, gΓ1g
−1 = Γ1 since g2 is identity

matrix. So, g induces a self-isometry of H3/Γ1 implying g induces a hidden symmetry of

H3/Γ, the figure eight knot complement.

g in the above example is in Comm(Γ). Since the fundamental group Γ of the figure eight

knot complement is arithmetic, Comm(Γ) is dense in PSL(2,C) by Margulis’s arithmeticity

theorem (see [19, Theorem 10.3.5]). So, we can produce infinitely many such g’s and so

hidden symmetries of the figure eight knot complement. Note that this way of construct-

ing hidden symmetries would also hold for more general arithmetic hyperbolic manifolds.

Neumann and Reid gave the following characterization of knots with hidden symmetries:

Theorem 3.3 (Neumann-Reid, Proposition 9.1, [23]). A hyperbolic knot complement has

hidden symmetries if and only if it non-regularly covers an orbifold with a rigid cusp.

In their proof of the above theorem, Neumann and Reid constructed this orbifold by

taking a quotient of H3 by Comm(Γ) where Γ is the fundamental group of the hyperbolic

knot complement with hidden symmetries. Recall from Subsection 2.5.1 that a rigid cusp

refers to (2, 3, 6), (3, 3, 3) or (2, 4, 4) cusp. So, as a consequence of the above theorem, one

can say the following:

Fact 3.4 (Corollary 2.2, [33]). If a hyperbolic knot complement has hidden symmetries, then

its cusp field is either Q(i) or Q(i
√

3).

In fact a relatively recent result of Hoffman [16] implies a stronger fact. Hoffman [16]

showed:

Theorem 3.5 (Hoffman, Theorem 1.1, [16]). A hyperbolic knot complement cannot cover
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an orbifold with a (2, 4, 4) cusp.

This above theorem together with Theorem 3.3 yields the following:

Fact 3.6. The cusp field of a hyperbolic knot complement with hidden symmetries is Q(i
√

3).

Going forward, we will often say hyperbolic knot with hidden symmetry to mean that

the complement of the hyperbolic knot has hidden symmetries.

3.2 The Neumann-Reid question

Airthmetic knots admit infinitely many hidden symmetries by Margulis’s result, but, the

following seminal theorem of Reid shows figure eight knot is the only such knot:

Theorem 3.7 (Theorem 2, [32]). The figure eight knot knot complement is the only hyper-

bolic knot complement which is arithmetic.

Aitchison and Rubinstein [1, Example 5 and 6] constructed two hyperbolic knot comple-

ments by identifying faces of a regular ideal dodecahedron both of which cover an orbifold

with (2, 3, 6) cusp (for details see the explanation before Question 1 on p. 307 of [23]) thus

implying via Theorem 3.3 that they have hidden symmetries. We don’t know any other

example of a hyperbolic knot with hidden symmetries. The following open question of Neu-

mann and Reid is a testimony of this dearth of examples:

Question 3.8 (Neumann-Reid, Question 1, [23]). Is there any hyperbolic knot except the

figure eight knot and the two dodecahedral knots of Aitchison and Rubinstein [1] whose com-

plement has hidden symmetries?

3.2.1 Literature survey

1. Picture of a general 2-bridge link is shown in Figure 15. For a detailed discussion on

2-bridge links, we refer the readers to [29, Chapter 10]. The term 2-bridge refers to the

fact that the link can be put in a position such that the y-coordinate of the projec-

tion has exactly two local maxima. One can associate a rational number corresponding
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Figure 15: The general form of a 2-bridge link

to the 2-bridge link that is shown in Figure 15 by the continued fraction expression:

[n1, n2 . . . , nk−1, nk] where [n1, n2] = 1
n1+ 1

n2

and [n1, n2, . . . , nk] = [n1, [n2, . . . , nk]] defined

inductively. When the denominator is odd, the 2-bridge link has only one component,

i.e. it is a “2-bridge knot”. Note that figure eight knot drawn in Figure 1 is a 2-bridge

knot corresponding to the rational number 2
5
. Reid and Walsh proved the following:

Theorem 3.9 (Reid-Walsh, Theorem 3.1, [33]). No hyperbolic 2-bridge knot except the

figure eight knot can admit hideden symmetries.

2. Macasieb and Mattman [18] discussed the family of hyperbolic (−2, 3, 2m + 1) pretzel

knots where m ∈ Z−{0, 1, 2} and m negative means |m| number of right handed crossings

(see Figure 1 in their paper for a picture). They showed the following:

Theorem 3.10 (Macasieb-Mattman, Theorem 1.4, [18]). Hyperbolic (−2, 3, 2m + 1)

pretzel knots do not have hidden symmetries.

3. Berge manifold is the complement of a 2-component hyperbolic link (see Figure 1 in [14]).

Hoffman [14] showed the following:
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Theorem 3.11 (Hoffman, Proof of Theorem 1.1, [14]). No hyperbolic knots except at-

most finitely many of the ones obtained by (1, n) Dehn fillings of the unknot of Berge

Manifold has hidden symmetries.

4. Millichap [21] investigated the hidden symmetries of hyperbolic (q1, q2, . . . , q2n+1) pretzel

knots (see Figure 5 in [21] for a picture). He proved the following:

Theorem 3.12 (Millichap, Proposition 7.5, [21]). If for all i in {1, . . . , 2n + 1} qi is

sufficiently large, then the hyperbolic (q1, q2, . . . , q2n+1) pretzel knots do not have hidden

symmetries where qi is even only for i = 1 and qi 6= qj when 1 ≤ i 6= j ≤ 2n+ 1.

In the rest of the thesis, Question 3.8 will be our center of attention. We will discuss

different approaches, techniques and corresponding results that shed some light in our un-

derstanding of the study of hidden symmetries of hyperbolic knot complements that stem

from Question 3.8.
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4.0 Dehn filling, geometric isolation and hidden symmetry

Most of the contents in this chapter are based on joint work [8] with Eric Chesebro and

Jason DeBlois. We here state three results from [8] without proof: Proposition 4.5, Theorem

4.6 and Theorem 4.7. The results in Section 4.4 are already in [8], but, the proof that we

present in this section is different from that in [8]. The discussion in Section 4.5 is (almost)

verbatim from Example 5.3 of [8]. The content and the result in Section 4.6 is new and not

part of [8]. All proofs presented in Section 4.6 are original. Figure 17 is taken directly and

Figure 20 almost directly from [8].

4.1 A weaker question

It is hard to decipher what approach and machineries one should apply to directly attack

Question 3.8. Thus, we restrict our attention to the following weaker question:

Question 4.1 (Conjecture 0.1, [8]). Can there exist infinitely many hyperbolic knot comple-

ments admitting hidden symmetries all of whose volumes are bounded above by a constant?

We know from Theorem 2.11 and Theorem 2.12 that one could produce a family of

infinitely many hyperbolic 3-manifolds of bounded volume by Dehn filling all but one cusp

of a given cusped hyperbolic 3-manifold. So, we focus on understanding Question 4.1 in

regards to the families of hyperbolic knots obtained by Dehn filling all but one component

of hyperbolic links.

4.2 Geometric isolation

Let O be an orbifold with torus cusps c1, . . . , cn. As defined in [24], the set of cusps

{c1, . . . , cm} is said to be geometrically isolated from the set of remaining cusps {cm+1, . . . , cn}
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if the shapes of the cusps c1, . . . , cm do not change under all but finitely many Dehn fillings

on ci cusp for each i ∈ {m+ 1, . . . , n}.

Remark 4.2. Neumann and Reid’s actual definition does not allow the finitely many excep-

tions part that we do.

Neumann and Reid showed the existence of hyperbolic manifold with geometrically iso-

lated cusps:

Theorem 4.3 (Neumann-Reid, Theorem 2, [24]). There exists a 2-cusped arithmetic mani-

fold whose cusps are geometrically isolated.

Its worth stating that geometric isolation is not a symmetric property, i.e, the fact that

the set {c1, . . . , cm} is geometrically isolated from {cm+1, . . . , cn} does not imply that the

set {cm+1, . . . , cn} is geometrically isolated from {c1, . . . , cm} (see Section 5 of [24]). But the

following fact is true (the manifold version of the fact is mentioned as Fact 2.2 in [8]):

Fact 4.4. Given a 2-cusped hyperbolic orbifold O if the cusps of O are symmetric, i.e, there

is a self-isometry of O which exchanges the cusps, then geometrically isolation is a symmetric

property.

The fact above follows from Fact 2.15.

4.3 Dehn fillings, hidden symmetry and cusp fields

In this section, given a 2-cusped hyperbolic 3-manifold M , we relate the existence of

hidden symmetries in infinitely many hyperbolic knots obtained from Dehn filling a fixed

cusp of M to a geometric isolation of the cusps of M . We first describe Proposition 4.5 which

helps us in our study of geometric isolation. We recall from Subsection 2.7.3 that D0(M)

is the irreducible component containing the complete structure of M in the deformation

variety D(M) of M . We first define rational functions τ on D0(M) whose values will give us

the cusp moduli, as we will see in Proposition 4.5, which we need to understand geometric

isolation.
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Figure 16: Construction of the cusp parameter function τ

Let M be a cusped hyperbolic 3-manifold with geometric triangulation (T ,F). Let ∂c

be a cusp cross section of the cusp c of M . We have seen in Subsection 2.7.2 that (T ,F)

introduces a triangulation Tc of ∂c (into triangles). We fix a vertex v and an edge e of Tc

incident to v. Let γ be an oriented simplicial closed curve in ∂c passing through v. Let

γ = e1 ∗ e2 ∗ · · · ∗ en, the concatenation of edges e1, . . . , en ∈ Tc where ei joins vertices vi−1

to vi for each i ∈ {1, . . . , n}. We may further assume that v0 = vn = v.

Let z ∈ D0(M). We have triangulation (Tz,Fz) associated with the hyperbolic structure

Mz (which is in general, incomplete). If e is e1, we define w0(z) to be 1, otherwise, w0(z) is

defined to be the product of the shape parameters of all the edges of T that passes through

v0 between e and e1 on the right of γ. For j ∈ {1, . . . , n− 1}, we define wj(z) as the product

of the shape parameters of all the edges of T that passes through vi on the right of γ. We

define

τ(γ)(z) =
n−1∑

i=0

(−1)i
i∏

j=0

wj(z). (9)

Figure 16 (cf. Figure 2 of [8]) explains the construction of τ pictorially. Note that τ(γ)

is a rational function on D0(M) as are wj’s being the product of shape parameters. The

following proposition describes the important properties of τ(γ).
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Proposition 4.5 (Chesebro-DeBlois-Mondal, Proposition 1.6, [8]). Given a closed oriented

simplicial curve γ in ∂c containing v, the rational function τ(γ) defined on D0 as above

satisfies the following properties:

1. τ(γ) is analytic near z0, the point representing the complete structure.

2. If γ is not null homotopic, then, τ(γ)(z0) 6= 0.

3. If m and l, both containing v, represent a generating pair for π1(∂c), then on a neighbor-

hood U of z0, for all z ∈ U such that µ(m)(z) = 1, the value of τ(l)
τ(m)

at z is a cusp moduli

of the complete geometrized cusp.

Given a cusp c of a hyperbolic 3-manifold with an associated geometric triangulation and

a choice of generators m and l in π1(∂c), we will refer to τ(l)
τ(m)

as the cusp parameter function

of cusp c. We will use τc to denote this cusp parameter function of c.

We now state the theorem that connects hidden symmetries with geometric isolation.

Theorem 4.6 (Chesebro-DeBlois-Mondal, Corollary 1.8, [8]). Let M be a complete, oriented

hyperbolic 3-manifold with two cusps c and c′, and an ideal triangulation decorated by the

choice of an edge of each simplex. Fix a cross section ∂c of the cusp c and simplicial curves m

and l representing a generating pair for H1(∂c), and let τc = τ(l)/τ(m) be a cusp parameter

function for c. If infinitely many 1-cusped orbifolds produced by hyperbolic Dehn filling on

c′ cover orbifolds with rigid cusps then for z0 ∈ D0 corresponding to the complete hyperbolic

structure on M :

1. τc(z
0) ∈ Q(i) or τc(z

0) ∈ Q(
√
−3) and

2. τc is constant on the irreducible component of {z ∈ D0(M) |µ(m)(z) = 1} containing z0,

i.e., c is geometrically isolated from c′.

In particular, this holds if infinitely many hyperbolic knot complements in S3 with hidden

symmetries can be produced from M by Dehn filling c′.

When M has more than one cusps and we study the existence of hidden symmetries

in infinitely many hyperbolic knots obtained from Dehn filling all but one cusp of M , we

no longer have any geometric isolation implications. Nevertheless, we can conclude the

following:
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Figure 17: The 2-bridge link 62
2

Theorem 4.7 (Chesebro-DeBlois-Mondal, Corollary 1.4, [8]). Let L = KtL′ be a hyperbolic

link where L′ is a link and K is a knot. Let F be a family of hyperbolic knots obtained by

Dehn filling the components of L′ such that elements of F geometrically converge to L. If

infinitely many elements of F have hidden symmetries, then, the cusp field of K cusp in L

is Q(i) or Q(i
√

3).

4.4 The link 62
2

In this section, our goal is to study the complement of the link 62
2 in S3 in Figure 17.

We prove in Proposition 4.10 that the cusps of 62
2 are not geometrically isolated. It then

implies Theorem 4.11 which says that a family of geometrically converging hyperbolic knots

obtained from Dehn filling a cusp of 62
2 can not have infinitely many elements with hidden

symmetries. We first note from Figure 17 that 62
2 is a 2-component two bridge link associated

with the rational number 1
3+ 1

3

= 3
10

(see part 1 of Subsection 3.2.1). Sakuma and Weeks in

[36] laid out a process of finding a canonical triangulation for the hyperbolic two bridge link

complements.

We will use this Sakuma-Weeks triangulation for 62
2 for our investigation of whether the

cusps of 62
2 are geometrically isolated. We first briefly review this triangulation for 62

2.
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We begin by noting the following fact:

Fact 4.8 (Section II.1, [36]). For a 3-tuple u of distinct rational numbers (r1, r2, r3) such

that ri = pi
qi

for each i = 1, 2, 3 and up to reordering, p3 = p1 + p2 and q3 = q1 + q2, the lines

passing through points in Z2 with slopes r1, r2 and r3 determine a triangulation of (R2,Z2).

Let us denote this triangulation as Tu. Now, consider the following 3-tuples of rational

numbers t1 = (0, 1, 1
2
), t2 = (0, 1

2
, 1

3
), t3 = (0, 1

3
, 1

4
) and t4 = (1

3
, 1

4
, 2

7
). Note that Tti and

Tti+1
share the edges of exactly two slopes - 0 and 1

i+1
for i = 1, 2; 1

3
and 1

4
for i = 3. If we

put a copy of R2 with triangulation Tti+1
above a copy of R2 with triangulation Tti so that

the edges shared by Tti and Tti+1
are identified, it will produce a sheet of tetrahedra with

2-simplices of Tti+1
as top faces and 2-simplices of Tti as bottom faces. For each i, the edges

shared by Tti and Tti+1
divide the plane up into a tiling by quadrilaterals, and the remaining

edges of Tti and Tti+1
are opposite diagonals of these quadrilaterals. Therefore if we identify

two copies of R2 along the edges shared by Ttiand Tti+1
, each quadrilateral doubles to a copy

of S2 that is triangulated by edges of Tti and Tti+1
as the boundary of a tetrahedron. We

fill each such S2 with a tetrahedron. Note that the vertices of the tetrahedra come from

the points of Z2. We consider these tetrahedra with their vertices removed. Let us call this

sheet of (vertices removed) tetrahedra Si. The top faces of Si and the bottom faces of Si+1

can be identified with 2-simplices of triangulation Tti+1
of R2. This will give face pairing

identifications between the top faces of Si and the bottom faces of Si+1.

Let W be the group of Euclidean isometries of R2 generated by the rotations of angle

π around points in Z2. W preserves the points of Z2 as well as the slopes of the lines.

Consequently, W preserves each Tti . For each Si, the action of W on R2 can be extended to

an action on Si by identifying W with the group generated by rotations of angle π around

the vertical axes through the points of Z2. The fundamental domains of each of these actions

consist of two tetrahedra. From each Si, if we choose two such tetrahedra ∆i and ∆i+1, we

get a total of 6 tetrahedra. Now, note that each face F of either of these 6 tetrahedra except

the bottom faces of S1 and the top faces of S3 can be identified with another face F ′ of one of

these 6 tetrahedra (which is not a bottom face of S1 and top face of S3) via the face pairing

identifications from last paragraph and action of W . Let’s call the set of face pairings given
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by these identifications Fstack.
Now note that the bottom faces of S1 correspond to 2-simplices in Tt1 and top faces of

S3 correspond to 2-simplices in Tt3 . For any 2 simplex tri of Tt1 (respectively, Tt3) there is

a unique 2 simplex tri′ of Tt1(respectively, Tt3) sharing the edge of slope 1
2

(respectively, 1
4
).

We identify tri with tri′ via a linear map which fixes the vertices on the common edge and

exchanges the third vertices. These identifications are equivariant under the action of W

and so gives a face pairing amongst the bottom faces of S1 and amongst the top faces of S3.

Let’s call the set of these face pairings Flinear. Let T be the set of tetrahedra {∆i}i=1,2,3 and

F = Fstack ∪ Flinear. Sakuma and Weeks prove that

Theorem 4.9 (Theorem II.2.4, [36]). (T ,F) is a geometric triangulation of S3 − 62
2.

We show the tetrahedra of the Sakuma-Weeks triangulation of 62
2 complement in Figure

18. Pairs of consecutive triangulations of R2 are shown in the left of Figure 18 (cf. Figure

II.2.5 in [36], Figure 3 in [22]). We straighten up these pairs in the right of Figure 18 to see

three pairs of ideal tetrahedra (∆i,∆i+1) for i in {1, 2, 3}. We denote the faces of tetrahedra

by Fi and F ′i for i ∈ {1, . . . , 8} and by Fb1 , F
′
b1
, Fb2 , F

′
b2
, Ft1 , F

′
t1
, Ft2 and F ′t2 . We use [36]’s

face pairings to see that Fi is identified with F ′i for i in {1, . . . , 8}, Fbi with F ′bi for i = 1, 2

and Fti with F ′ti for i = 1, 2 via the linear maps as follows:
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F1 : ((0, 0), (2, 1), (3, 1))↔ ((2, 0), (4, 1), (5, 1)) : F ′1

F2 : ((0, 0), (3, 1), (1, 0))↔ ((0, 0), (3, 1), (1, 0)) : F ′2

F3 : ((1, 0), (3, 1), (4, 1))↔ ((1, 0), (3, 1), (4, 1)) : F ′3

F4 : ((1, 0), (4, 1), (2, 0))↔ ((1, 0), (4, 1), (2, 0)) : F ′4

F5 : ((0, 0), (3, 1), (4, 1))↔ ((0, 0), (3, 1), (4, 1)) : F ′5

F6 : ((0, 0), (4, 1), (1, 0))↔ ((6, 2), (10, 3), (7, 2)) : F ′6

F7 : ((1, 0), (4, 1), (5, 1))↔ ((7, 2), (4, 1), (3, 1)) : F ′7

F8 : ((1, 0), (5, 1), (2, 0))↔ ((7, 2), (3, 1), (6, 2)) : F ′8

Fb1 : ((0, 0), (2, 1), (1, 0))↔ ((2, 0), (4, 1), (3, 1)) : F ′b1

Fb2 : ((1, 0), (2, 1), (3, 1))↔ ((1, 0), (2, 0), (3, 1)) : F ′b2

Ft1 : ((0, 0), (7, 2), (4, 1))↔ ((6, 2), (3, 1), (10, 3)) : F ′t1

Ft2 : ((0, 0), (3, 1), (7, 2))↔ ((10, 3), (3, 1), (7, 2)) : F ′t2

We note that the identifications above partition the vertices into two equivalence classes:

one consisting of (0, 0), (2, 0), (6, 0), (2, 1), (4, 1) and (10, 3), and the second consisting of

(1, 0), (3, 1), (5, 1) and (7, 2). Each of this equivalence class corresponds to a cusp of S3−62
2.

We will denote the first class by [(0, 0)] and the second by [(1, 0)].

We now choose one edge from each ∆i and denote its shape parameters by zi. The shape

parameters of other edges of ∆i will then be determined as described in Fact 2. We recall

from Subsection 2.7.2 that since (T ,F) is a geometric triangulation, these shape parameters

satisfy the edge equations and the holonomy equations. For each edge of S3 − 62
2 as shown
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Figure 15: Tetrahedral Decomposition of S3 \ 62
2
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Figure 18: Sakuma-Weeks triangulation of S3 \ 62
2
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in Figure 18 the corresponding edge equation is determined as follows:

edge e1 : ζ1(z1)z4ζ1(z2) = 1 (10)

edge e2 : z1z2z5z6(ζ2(z1)ζ2(z3)ζ2(z4)ζ2(z2))2 = 1 (11)

edge e3 : ζ1(z1)z3ζ1(z2) = 1 (12)

edge e4 : z3ζ2(z5)ζ2(z6) = 1 (13)

edge e5 : z1z2z5z6(ζ1(z3)ζ1(z4)ζ1(z5)ζ1(z6))2 = 1 (14)

edge e6 : z4ζ2(z5)ζ2(z6) = 1. (15)

Equations 10 and 12 imply that

z3 = z4 =
1

ζ1(z1)ζ1(z2)
. (16)

Similarly from Equations 13 and 15, we get

z3 = z4 =
1

ζ2(z5)ζ2(z6)
. (17)

Using Equations 16 and 17, we get

ζ1(z1)ζ1(z2) = ζ2(z5)ζ2(z6). (18)

Note that Equation 14 can be derived from Equation 11, Equation 16 and Equation 17.

So, the deformation variety D(S3 − 62
2) is the set of tuples (z1, z2, z5, z6) of complex

numbers satisfying Equation 11 and 18.

In Section II.4, [36] also shows how one can find the cusp triangulation for a two bridge

link complement from its canonical decomposition. We follow their procedure to obtain the

cusp triangulation picture of a cusp of 62
2. Figure 19 (cf. figure II.4.1 of [36]) shows the cusp

triangulation of the cusp corresponding to (0, 0). In Figure 19, we choose two generators

m(0,0) (the blue edge) and l(0,0) (the red edge) for the homology of the cusp torus of the cusp

at (0, 0).

We assume that the cusp at [(0,0)] is complete. Following Equation 4, we find the

holonomy equation at the cusp at [(0, 0)] as below:

µ(m(0,0)) = −ζ2(z4)ζ2(z2)z2ζ2(z1)ζ2(z3)z6 = 1. (19)
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Figure 19: Sakuma-Weeks cusp triangulation of 62
2 at [(0, 0)]

We use the help of [17] for the calculations below.

We see that Equation 19 gives us,

z6 =
ζ1(z2)

ζ2(z1)ζ2(z3)2
= −(−1 + z1)z1(−1 + z2)

(z1 + z2 − z1z2)2
. (20)

Using the above equation with Equation 11 and Equation 16 we get,

z5 =
ζ1(z1)

ζ2(z2)ζ2(z3)2
= −(−1 + z1)(−1 + z2)z2

(z1 + z2 − z1z2)2
. (21)

If we denote the algebraic subset of D(S3 − 62
2) where the cusp at [(0, 0)] is complete as V0,

then, V0 = {(z1, z2) : p(z1, z2) = 0} where

p(z1, z2) =z3
1 + 2z2

1z2 − z3
1z2 − z4

1z2 + 2z1z
2
2 − z2

1z
2
2−

4z3
1z

2
2 + 3z4

1z
2
2 + z3

2 − z1z
3
2 − 4z2

1z
3
2+

7z3
1z

3
2 − 3z4

1z
3
2 − z1z

4
2 + 3z2

1z
4
2 − 3z3

1z
4
2+

z4
1z

4
2 . (22)
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We get this polynomial from Equation 18 by replacing z5 and z6 in terms of z1 and z2

with the help of Equations 20 and 21.

We will now write the cusp parameter function for the cusp at [(0, 0)] using Equation

9. We choose m(0,0) as the reference edge. This gives us τ(m(0,0)) = 1. From Figure 19,

we see that τ(l(0,0)) = ζ2(z2)ζ2(z4) − ζ2(z2)ζ2(z4)ζ1(z4)z1ζ1(z3)ζ1(z5)z6ζ1(z5). On V0, using

Equations 16, 21 and 20, one can write all of z3, z4, z5 and z6 in terms of z1 and z2. Then,

on V0, the cusp parameter function τ have the formula:

τ =((z1(−1 + z2)− z2)(z4
1(−1 + z2)4 + z2

2 − 2z1(−1 + z2)z2
2+

z2
1(1 + z2 − 3z2

2 + z4
2)+

z3
1(−1 + z2(3− 2z2(3 + (−3 + z2)z2)))))/

((−1 + z1)z2(z1(z1(−1 + z2)− z2)(−1 + z2) + z2)2). (23)

In Theorem II.3.2 of their paper [36], Sakuma and Weeks described the (orientation

preserving) combinatorial symmetries of the canonical triangulation of the (hyperbolic) two

bridge links. They [36, p. 415 ] provide elements of this symmetry group, which for our

discussion on 62
2, exchanges ∆i and ∆i+1 for i = 1, 3, 5. Using Mostow-Prasad rigidity (see

Theorem 2.3.1) one can see these combinatorial symmetries are hyperbolic isometries as well,

implying zi = zi+1 for i = 1, 3, 5.

So, solving for z1 = z2 in p(z1, z2) = 0 we see that, z1 = z2 = 3+
√

3i
2

is the only solution

with positive imaginary part. So, z1 = z2 = 3+
√

3i
2

corresponds to the complete structure.

Now at the complete structure, i.e. at z1 = z2 = 3+
√

3i
2

, we have ∂p
∂z1

= ∂p
∂z2

= 9+9
√

3i
2

.

So, by implicit function theorem, both z1 and z2 can be taken as a parameter for V0 and

dz2
dz1

= dz1
dz2

= −1 around the complete structure. We use z1 as the parameter for V0 near

the complete structure. Using this information, we can now apply chain rule repeatedly to

write the derivatives of z2 (with respect to z1) in terms of z1 and z2. We compute, dτ
dz1

= 0

and d2τ
dz21

= −3−
√

3i
9

. Since d2τ
dz21

is non-zero at the complete structure, we conclude that τ is

not constant near the complete structure in V0. This together with Fact 4.4 (re)prove the

following:

51



Proposition 4.10 (Corollary 3.3, [8]). The cusps of 62
2 are not geometrically isolated from

each other.

We can now use Theorem 4.6 to conclude the following:

Theorem 4.11 (Corollary 3.4, [8]). A family of hyperbolic knots obtained by Dehn filling a

fixed cusp of 62
2 can have at most finitely many elements with hidden symmetries.

Remark 4.12. Even though the proof of Proposition 4.10 in [8] uses deformation variety,

it is somewhat different. Instead using the calculus based approach, the proof there uses

algebraic geometric nature of V0 and the cusp parameter function. Also, the Sakuma-Weeks

triangulation there is obtained by stacking down the R2 triangulations Tti one after another

in contrast with what we do here, which is stacking up the Tti’s.

4.5 Berge manifold

Here we will apply Theorem 4.6 to (re-)prove that Dehn filling one cusp of the Berge

manifold M = S3−L, where L is a certain 2-component link in S3 (see [14, Fig. 1]), produces

at most finitely many hyperbolic knot complements with hidden symmetries. This was first

established in the proof of [14, Theorem 1.1] by Hoffman, whose later result [15, Theorem

6.1] implies that in fact no hyperbolic knot complement with hidden symmetries is produced

by Dehn filling a cusp of M . This stronger assertion is out of reach of Theorem 4.6.

M is triangulated by four regular ideal tetrahedra (see eg. [11]). It therefore covers the

Bianchi orbifold PSL(2, O3) and thus satisfies condition (1) of Theorem 4.6, so we will use

condition (2). SnapPy finds an involution of M exchanging the two cusps. As only one

component of L is unknotted, this involution does not extend to S3; nor does it preserve the

triangulation by regular ideal tetrahedra, since this induces different triangulations of the

cusps’ cross sections. Nonetheless, by appealing to Fact 4.4 we may conclude that neither

cusp is geometrically isolated from the other after checking this for only one of them.

We check the cusp c corresponding to the unknotted component of L. A cross section

inherits the triangulation pictured in Figure 20, with parallel sides identified by translations.
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z1

z3

ab

cd

Figure 20: The induced triangulation of a cusp cross section of the Berge manifold

(The triangulation may be extracted from Regina [5] after entering its isomorphism signature

“jLLzzQQccdffihhiiqffofafoaa”. The isomorphism signature is a combinatorial invariant of a

triangulation introduced by Burton [4]; this particular one is the isometry signature of M

as defined in [11], an isometry invariant which can be computed by SnapPy.) Taking m to

be the projection of the horizontal sides of the parallelogram, equation (9) yields:

µ(m) = −ζ1(z1)ζ1(z3)z3 =
−z3

(1− z1)(1− z3)
.

The triangulation’s edge equations are:

f1 = 0, where f1(z1, z2, z3, z4) = z4(1− z3)− z3z2(1− z4)(1− z1) (24)

f2 = 0, where f2(z1, z2, z3, z4) = z4(1− z3)− z1(1− z2). (25)

Equations (24) and (25) cut out D0(M) in C4. To show that c is not geometrically isolated

from the other cusp of M , we need to show that the cusp parameter function τc is non-

constant on the irreducible component V0 that contains the discrete, faithful representation,

of the algebraic subset of D0(M) where µ(m) = 1. By the above, this subset is cut out by

f3 = 0, where f3(z1, z2, z3, z4) = z3 + (1− z1)(1− z3) = 1− z1(1− z3).

To compute τc we take l to be the projection of the diagonal sides of the parallelogram in

Figure 20, oriented from b to d, and appeal to Proposition 4.5. Letting the reference edge f

of the Proposition equal m, we obtain τc = ζ2(z1), which is constant on V0 if and only if z1

is.
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As in Section 4.4, we will use a calculus-based approach to show that z1 is non-constant

on V0. Specifically, we will use the implicit function theorem to show that z2 is a parameter

for V0 near the point ~η
.
= (η, η, η, η), for η = 1+

√−3
2

, corresponding to the complete hyperbolic

structure, and that d2z1
dz22
6= 0 at ~η. (As the given triangulation of the complete hyperbolic

manifold M is by regular ideal tetrahedra, ~η, which we note is a fixed point of ζ1 and ζ2,

corresponds to the complete structure. And since τc is an even function of log z2 [25, Lemma

4.1(b)], we have dz1
dz2

= 0.)

By the implicit function theorem, z2 is a parameter for V0 (and hence non-constant on

it) in a neighborhood of ~η if and only if the partial derivative matrix

M2 =

(
∂fi
∂zj

(~η)

)i=1,2,3

j=1,3,4

is non-singular. A straightforward computation shows that it is. Implicit function theorem

also implies that (dz1
dz2
, dz3
dz2
, dz4
dz2

)T = −M−1
2 ~v around ~η, where ~v = (∂f1

∂z2
, ∂f2
∂z2
, ∂f3
∂z2

)T . Using this

formula and chain rule repeatedly, one can write all higher power derivatives of zi with

respect to z2 in terms of all the zi’s. From [17] we see that, d2z1
dz22

= i√
3
6= 0 at ~η so z1 is

non-constant around ~η inside V0. This together with Fact 4.4 proves,

Theorem 4.13 (Example 5.3, [8]). Cusps of the Berge manifold are not isolated from each

other.

Now using Theorem 4.6, we see that a given family of hyperbolic knots obtained from

Dehn filling a cusp of the Berge manifold has at-most finite elements admitting hidden

symmetries.

4.6 The link L10n46

L10n46, also known as otet0800002 from [11], (see Figure 3 in [11]), is a 2-component

tetrahedral link, i.e. it decomposes into regular ideal tetrahedra. Similarly as in the last

two sections, we will investigate a geometric isolation property for this link and comment on

its relation with hidden symmetries. We denote S3 − L10n46 by M . M decomposes into 8

54



regular ideal tetrahedra. As in the case of Berge manifold, we find the isometry signature

of this link in SnapPy [9], which turns out to be “mvLLwMAQQdfeihgjlkkjlloafaofoqfofaq”.

We use this as the isomorphism signature in Regina [5] to get a SnapPy triangulation for

this link which consists of regular ideal tetrahedra. We use this triangulation to find the

following edge equations:

z0z1z7z6ζ2(z4)ζ1(z5) =1 (26)

ζ1(z0)z5z2z1z4ζ2(z6) =1 (27)

ζ2(z0)ζ1(z6)ζ2(z7)ζ1(z3)ζ2(z2)ζ1(z1) =1 (28)

ζ2(z0)ζ1(z3)ζ2(z4)ζ1(z1)ζ2(z7)ζ2(z5) =1 (29)

ζ1(z0)ζ2(z1)ζ1(z4)ζ2(z5)ζ1(z2)ζ2(z3) =1 (30)

z0z3z7ζ1(z5)ζ2(z2)z6 =1 (31)

ζ2(z1)ζ1(z2)ζ1(z6)ζ1(z4)ζ2(z3)ζ1(z7) =1 (32)

z2z3z4z5ζ1(z7)ζ2(z6) =1. (33)

Since L10n46 is a 2-component link, D0(S3 − L10n46) has dimension 2 and one can

write down the deformation variety by finding out which rows of the edge equation matrix P

form the basis for the row space (see Theorem 2.20 and the related discussion in Subsection

2.7.3). Using Mathematica [17], we see that the first six rows of R is the basis for the row

space of R. So, D(M) is the set of tuples (z0, z1, . . . , z7) satisfying equations 26 through

31. Figure 21 represents the cusp triangulation from [5] of the cusp with 8 2-simplices in its

triangulation (the other cusp has 24 2-simplices in its triangulation). Let’s denote the cusp

with 8 2-simplices as c and the cusp with 24 2-simplices as c′. The red and blue edges in

Figure 21, denoted by m and l respectively, are two chosen generators of the cusp torus for

c. So, the derivative of the holonomy of the longitude is

µ(l) =
ζ1(z5)ζ1(z1)

z2ζ2(z7)
. (34)
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z7 z5

z0 z6

z2 z1 z4

z3

z7 z5

z0 z6

Figure 21: Cusp triangulation of S3 − L10n46

So, V0 is the algebraic subset of D(M) cut out by setting µ(l) = 1. (In the rest of the section,

we use the help of [17] for the calculations.) Note that from Equations 26, 34 and 31, we

get,

z7 =
z4z5 − z4

z0z1z6 − z0z1z4z6

(35)

z2 =
z4 − z1z4

z1(z4(z5 − 1) + z0z1(z4 − 1)z6)
(36)

z3 =
(z1 − 1)z1(z4 − 1)

z4(z1z5 − 1) + z0z2
1(z4 − 1)z6

. (37)

We write z for the tuple (z0, z1, z4, z5, z6). Substituting z7, z2 and z3 from above formulae

we get polynomial equations p1(z) = 0, p2(z) = 0, p3(z) = 0 and p4(z) = 0 from Equations
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27, 28, 29 and 30 respectively, where,

p1(z) =(−1 + z1)z2
4z5(−1 + z6)−

(−1 + z0)z6(z4(−1 + z5) + z0z1(−1 + z4)z6)

p2(z) =(−1 + z0)(z4(−1 + z5) + z0z1(−1 + z4)z6)(z4(−1 + z1z5)+

z0z
2
1(−1 + z4)z6)2−

z0(−1 + z1)2z2
4(−1 + z5)(−1 + z6)(−z4+

z1(−1 + z4 + z4z5 + z1(−1 + z4)(−1 + z0z6)))

p3(z) =(−1 + z0)(−1 + z4)(z4(−1 + z5)+

z0z1(−1 + z4)z6)(z4(−1 + z1z5) + z0z
2
1(−1 + z4)z6)+

z0(−1 + z1)z2
4z5(−z4+

z1(−1 + z4 + z4z5 + z1(−1 + z4)(−1 + z0z6)))

p4(z) =(−1 + z5)(z4(−1 + z5) + z0z1(−1 + z4)z6)(−z4+

z1(−1 + z4 + z4z5 + z1(−1 + z4)(−1 + z0z6))) + (−1+

z0)z1(−1 + z4)2z5(z4(−1 + z1z5) + z0z
2
1(−1 + z4)z6). (38)

Let p : C5 → C4 be the function defined as p = (p1, p2, p3, p4). So, V0 = {z = (z0, z1, z4, z5, z6) :

p(z) = 0}.
Now, in Figure 21, in order to apply Proposition 4.5, we choose the green edge as the

reference edge e. So, by Equation 9 and Proposition 4.5, we get, τ(z) = τ(m)(z)
τ(l)(z)

where

τ(m)(z) = − z0+z5−1
(z0−1)(z5−1)

and τ(l)(z) = z4+z0z1z6−z1z4(z5+z0z6)
(z1−1)z4(z5−1)

.

At the complete structure (and so in a neighborhood around the complete structure),

rank of the derivative matrix of p, Dp, is Rank(M) where M is the minor of Dp which

excludes the last column (i.e. the column consisting the partials of components of p with

respect to z6). But, Rank(M) is 4. So, by implicit function theorem, in a neighborhood

around the complete structure, z6 is a parameter for V0 and



dz0
dz6

dz1
dz6

dz4
dz6

dz5
dz6




= −M−1




∂p1
∂z6

∂p2
∂z6

∂p3
∂z6

∂p4
∂z6



. (39)
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Using the above equation, we write the derivatives of z0, z1, z4 and z5 with respect to z6 in

terms of z0, z1, z4, z5 and z6. We finally find dτ
dz6

= 0 and d2τ
dz26

= 4i
3
√

3
6= 0. This proves the

following:

Proposition 4.14. In the 2-component link L10n46, cusp c is not geometrically isolated

from cusp c′.

Using Theorem 4.6, we can now conclude that a family of hyperbolic knots obtained

from Dehn filling c′ can not contain infinitely many elements with hidden symmetries.
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5.0 Hidden symmetry and orbifold covering

The contents of this chapter are from joint work [7] with Eric Chesebro, Jason DeBlois,

Neil R Hoffman, Christian Millichap and William Worden. The following results from [7] are

stated here without proof: Theorem 5.1, Theorem 5.3, Proposition 5.4 and Lemma 5.5. We

include proofs (using some of these stated results) of the following results from [7]: Theorem

5.6, Proposition 5.7, Theorem 5.8 and Corollary 5.9. One argument in the proof of Theorem

5.6 slightly differs from that in [7]. The language in the proofs of Proposition 5.7, Theorem

5.8 and Corollary 5.9 are (almost) verbatim from respectively the proofs of Corollary 6.15,

Proposition 6.16 and Corollary 6.17 of [7]. Figure 24 is taken directly from [7].

5.1 The orbifold covering result

The geometric isolation criteria (see Theorem 4.6 in the last chapter) that came in

handy in our study of hidden symmetries for hyperbolic knots coming from Dehn fillings

of 2-component hyperbolic links do not extend for our study of (Dehn fillings on cusps of)

hyperbolic links with more than two components. In the same theorem in the last chapter

we have also seen that for a family F of hyperbolic knots originating from Dehn filling a

cusp of 2-component link, how the cusp fields being Q(i) (or Q(i
√

3)) for infinitely many

members of F would imply that the cusp field of the non-filled cusp to also be Q(i) (or

Q(i
√

3)). In this chapter, we state a result that says that this kind of passing of properties

to the geometric limit also holds for the property of covering rigid cusped orbifolds. But,

before doing that, we will need to define what Dehn filling on pillowcase cusp means.

Let (p, q) be a pair of integers with gcd(p, q) = d. Recall from Section 2.6 that the

orbifold (D2 × S1)d is the quotient of D2 × S1 by order d rotation around {0} × S1 and the

image of meridian m in (D2×S1)d is denoted as md. There is order 2 rotational symmetry r

of (D2 × S1)d with its rotational axis intersecting the boundary of (D2 × S1)d in four points.

The quotient of (D2×S1)d by this order 2 rotation is an orbifold which we refer as orbi-pillow
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and denote as Pd. The singular loci of the orbi-pillow Pd has cone points of order d and order

2. The boundary of Pd is the pillowcase orbifold, i.e. S2(2, 2, 2, 2) and it is the quotient of

the boundary of (D2×S1)d (which is a torus) by r. We will denote the image of the meridian

md in ∂Pd as mpillow
d .

Note that since ∂c is pillowcase, it could be thought of as a quotient of S1 × S1 (by

r described above) via a map φ : S1 × S1 → ∂c. Let’s choose two generators m and l of

H1(S1 × S1) and denote the image of p
d
m+ q

d
l via φ in ∂c as γ.

The orbifold (O − int(c)) ∪h Pd where h is a homeomorphism from ∂Pd to ∂c sending

mpillow
d to γ is said to be obtained by (p, q) Dehn filling on c.

Now we can state the orbifold covering result:

Theorem 5.1 (Theorem 2.6, [7]). Let L = K1 t K2 t · · · t Kn be a hyperbolic link where

n ≥ 2. If for the family of hyperbolic knots F = {L(∞,(pi2,qi2)...,(pin,q
i
n))} geometrically converging

to L as i→∞ , S3 complement of each L(∞,(pi2,qi2)...,(pin,q
i
n)) in F covers a rigid cusped orbifold

Oi, then after passing to a subsequence, we can say, S3−L covers an orbifold O with exactly

one rigid cusp crigid and one or more smooth cusps, such that

1. Only the cusp corresponding to component K1 of L covers crigid,

2. Each Oi is obtained by some Dehn fillings on the smooth cusps of O,

3. If φ denotes the covering from S3−L to O and φi the covering from S3−L(∞,(pi2,qi2)...,(pin,q
i
n))

to Oi, then degree of φi does not depend on i, and degree(φ) = degree(φi).

Remark 5.2. The last part of Theorem 2.6 in [7] is technical. So, here we stated the

consequence of that last part that we will use in future.

In the last chapter, we have seen that the cusps of 62
2 are not geometrically isolated

(see Proposition 4.10) which by Theorem 4.6 implies Theorem 4.11 stating that only finitely

many of the hyperbolic knots obtained from Dehn filling a single cusp of 62
2 can have hidden

symmetries. One can ask whether similar results follow for other hyperbolic two bridge links.

One very interesting application of Theorem 5.1 is that we used it in [7] to give a positive

answer to this question:

Theorem 5.3 (Theorem 1.5, [7]). Let L be a hyperbolic 2-bridge link and F be a sequence

of hyperbolic knots obtained by Dehn filling a fixed cusp of L. Then at-most finitely many
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Figure 22: Cusp triangulations for the regular ideal triangulation of 62
2 - Left: Cusp c1,

Right: Cusp c2

elements in F can have hidden symmetries.

5.2 Exploring fillings on a single cusp of 62
2 further

We recall from Section 4.4 that the complement of 62
2 decomposes into 6 ideal tetrahedra

given by the Sakuma-Weeks traingulation. The discussion in this section will be based on a

different triangulation of S3 − 62
2 consisting of 4 regular ideal tetrahedra. It is explained in

Section 5.1 of [7] how one can obtain this regular ideal triangulation from the Sakuma-Weeks

triangulation. The discussion below follows from Section 6 of [7].

The cusp triangulation induced by this regular ideal triangulation has 4 triangles for

one cusp, which we will refer as c1, and 12 triangles for the other cusp, which we will

refer as c2. In Figure 22, we show the pictures of these cusp triangulations from [7, Figure

8]. The deformation variety, D, associated with the regular ideal triangulation is given by

{(x, y, z, w) ∈ C4 : (1− x)(1− y)(1− z)(1− w) = xw = yz}.
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It turns out that on the subvariety V0 of D where cusp c1 is complete,

y = xw(1− w) and z =
1

1− w. (40)

Using this one can write V0 as the set {(x,w) : 1 − x(1 − x)w(1 − w) = 0}. We write

σ1 and σ2 to denote x + w and xw respectively. Then we can check that the equation

1− x(1− x)w(1− w) = 0 implies

1 + σ1σ2 − σ2 − σ2
2 = 0. (41)

So, on V0, σ1 and σ2 satisfy the equation above. One can also find that after choosing

generators m1 and l1 of the fundamental group of the cusp torus for cusp c1 (see Figure

22) and m1 as the reference edge, the cusp parameter function for cusp c1 is given by

τ(x,w) = x+ w = σ1. We now state two results from [7] (without proof):

Proposition 5.4 (Proposition 6.10, [7]). If (x,w) in V0 corresponds to a (p, q) Dehn filling

(on cusp c2) for non-negative integers p, q such that (p, q) 6= (1, 1) and q 6= 0, then, Q(σ1) =

Q(σ2).

Lemma 5.5 (Corollary 6.14, [7]). If the cusp field of an orbifold O obtained by Dehn filling

a single cusp of 62
2 is quadratic imaginary, then the filling coefficient for O is either (2, 0)

(with the corresponding cusp field Q(i
√

3)) or (3, 0) (with the corresponding cusp field Q(i)).

These imply the following strengthening of Theorem 4.11.

Theorem 5.6 (Theorem 1.6, [7]). If an orbifold O obtained by Dehn filling a single cusp of

62
2 is covered by a hyperbolic knot complement with hidden symmetries, then the Dehn filling

coefficient for O is (2, 0).

Proof. Let M be a hyperbolic knot complement with hidden symmetries which covers a

filling of a cusp of S3− 62
2. S3− 62

2 has an involution which exchanges its cusps. So, without

loss of generality, we may assume that M overs a filling of the cusp c2. We know from Fact

3.6 that the cusp field of M is Q(i
√

3). This would mean that the filling on c2 that M covers

should also have cusp field Q(i
√

3). Lemma 5.5 then implies that the filling is the (2, 0)

filling and one can see from Figure 25 that the figure eight knot complement is a 2-fold cover

of the (2, 0)-filling of c2. This proves the theorem.
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Figure 23: Borromean rings complement is a 3-fold cover of the (3, 0) filling on a cusp of 62
2

5.3 Trace field and cusp field

Proposition 5.7 (Corollary 6.15, [7]). If O is an arithmetic orbifold obtained by Dehn filling

a single cusp of 62
2, then, the filling coefficient for O is either (2, 0) or (3, 0).

Proof. If (p, q) filling of c2 produces an arithmetic orbifold then by Proposition 4.4(a) of

[23], the invariant trace field of the orbifold is quadratic imaginary. Since the cusp field can’t

be Q, Theorem 2.31 implies Q(σ1) is quadratic imaginary as well. So, Lemma 5.5 implies

that (2, 0) and (3, 0) are the only possible candidates for arithmeticity. The figure eight

knot complement is a 2-fold cyclic cover of the (2, 0)-filling of c2, and as shown in Figure

23 (cf. Figure 11 of [7]), the Borromean rings complement is a three-fold cyclic cover of

the (3, 0)-filling. It follows that these fillings are arithmetic, as the covering knot and link

complements are.

We will now see a result which will relate the invariant trace field and trace field of

an orbifold obtained by Dehn filling a fixed cusp of 62
2. Our approach here follows that of
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Figure 24: 62
2 complement as a quotient of an ideal decahedron

Theorem 6.2 of [23].

Theorem 5.8 (Proposition 6.16, [7]). For an orbifold O obtained by Dehn filling a single

cusp of 62
2, its invariant trace field and trace field are equal.

Proof. We may recover the face pairings of the triangulation T4 of S3 − 62
2 from the cusp

triangulation pictures in Figure 22. Assembling its four ideal tetrahedra so that they share

an ideal vertex corresponding to the cusp c1, with a horospherical cross-section around this

ideal vertex as on the left side of Figure 22, produces the ideal decahedron of Figure 24. We

produce S3 − 62
2 by identifying faces in pairs: A with A′ and so on, so that pairings of faces

containing the ideal vertex v4 take it to itself, the pairing of D with D′ takes v0 to v3, and

that of E with E ′ takes v1 to v6. Then v4 corresponds to c1 and all other vertices to c2.

For any (x,w) ∈ V0, the shape parameters x, y, z and w labeled in Figure 22 determine

the tetrahedra comprising the decagon up to isometry, where z = 1/(1 − w) and y =

xw(1− w) = 1/(1− x) (see Equation 40). Embedding the resulting decahedron in H3 with

v0 = 0, v1 = 1 and v4 =∞ thus yields v3 = 1 + x+w, v5 = x+w, and v6 = x. This in turn

determines isometries a, b, c, d, and e realizing the face pairings sending A to A′, B to B′, C

to C ′, D to D′, and E to E ′, respectively. In particular, we have the matrix representatives
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below in SL(2,C). (We have used Mathematica [17] to assist with some computations here.)

a =


1 1

0 1


 , e =


w + wx+ x2 − wx2 −w − wx− x3 + wx3

w + x− wx −w − x2 + wx2


 . (42)

For each such (x,w) ∈ V0, the face-pairing isometries generate the image of Γ
.
= π1(S3−

62
2) under the holonomy representation determined by the hyperbolic structure on S3 − 62

2

corresponding to (x,w). At the complete structure x = w = 1
2
(1 +

√
−3), the Poincaré

polyhedron theorem yields a presentation for Γ:

Γ ∼= 〈a, e | ae2a−1e−1a−1e2 = e2a−1e−1a−1e2a〉.

(Specifically, it gives b = a, [a, c] = 1, d = e2, and c = db−1e−1a−1d.)

Now fix (x,w) ∈ V0 corresponding to a (p, q)-hyperbolic Dehn filling of c2, and let Γp,q be

the orbifold fundamental group of the resulting hyperbolic orbifold M . The corresponding

holonomy representation factors through a surjection Γ → Γp,q, so as a Kleinian group in

PSL(2,C), Γp,q is generated by the cosets of the matrices a and e described above. The

traces of a, e, and ae thus generate the trace field of Γp,q as an extension of Q (see equation

3.25 in [19]). These are respectively 2, wx = σ2, and w + x = σ1, so since σ1 ∈ Q(σ2) this is

the trace field of Γp,q.

The invariant trace field of Γp,q contains the trace of e2 by definition. As this is σ2
2 − 2,

the invariant trace field contains σ2
2. By Theorem 2.31 the cusp field of M , which here is

Q(σ1), is a subfield of the invariant trace field of M . So, σ2 =
σ2
2−1

σ1−1
is contained in the

invariant trace field. Since the invariant trace field is contained in the trace field, it is also

Q(σ2).

Corollary 5.9 (Corollary 6.17, [7]). Let O be an orbifold obtained by (p, q)-Dehn filling on

a single cusp of S3 − 62
2 such that q 6= 0, then, the invariant trace field of O equals its cusp

field.

Proof. If O is the hyperbolic orbifold obtained by (p, q) Dehn filling on one cusp of 62
2, where

q 6= 0, then by Proposition 5.4, Q(σ1) = Q(σ2). Now, since the cusp field of M is Q(σ1), and

by Theorem 5.8 above the invariant trace field of M is Q(σ2), we conclude that the invariant

trace field is equal to the cusp field for M .
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Figure 25: Figure eight knot complement is a 2-fold cover of the (2, 0) filling on a cusp of 62
2
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6.0 Hidden symmetry and horoball packing

The contents of this chapter and the next two chapters are from a solo project which has

not been put in a preprint yet. The theme of this project is to study hidden symmetries in

terms of certain symmetries of the horoball packings.

6.1 Horoball packings and circle packings associated with an orbifold

Let O = H3/Γ be a hyperbolic 3-orbifold with cusps. Let c be a cusp of O (see Section

2.5 for the definition). A horoball packing of H3 is a union of horoballs such that no two such

horoballs intersect each other in the interior. We note the following fact:

Fact 6.1. The pre-image of a disjoint union of cusp neighborhoods of O in H3 is a Γ invariant

horoball packing of H3.

Proof. We have seen that c is of the form B/W where B is a horoball and W the stabilizer

of the horocenter of B. Then, all the horoballs obtained by translating B by the elements of

Γ project down to c as well and their union is the pre-image of c. The fact that the projection

of B to O factors through an embedding of B/W implies that distinct Γ translations of B

are disjoint from B, and hence that no two translates intersect unless they are equal. So,

the pre-image of c becomes a horoball packing of H3 and this collection of horoballs is Γ

invariant since they are all Γ translates of B. Now, if we take other cusp neighborhoods of O

disjoint from c in similar manner, then, the pre-image of this disjoint union is also a horoball

packing of H3, which is Γ invariant. This proves the fact.

The c-maximal horoball packing of H3 is a horoball packing of H3 which map to a maximal

cusp neighborhood for cusp c. An O-horoball packing of H3 is a horoball packing of H3 which

map to a union of cusp neighborhoods of all the cusps of O. We will refer a horoball in an

O-horoball packing as a c-horoball if it maps to a cusp neighborhood of c. An O-maximal

horoball packing of H3 is an O-horoball packing of H3 which is not contained in a bigger
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O-horoball packing of H3. A (c, O)-maximal horoball packing of H3 is a O-maximal horoball

packing of H3 which contains the c-maximal horoball packing of H3.

Given an O-horoball packing H for an orbifold O = H3/Γ, there is a hyperbolic element

g in PSL(2,C) such that g(H∞) is the horoball centered at∞ at height 1 (see the first point

in Fact 2.7). Now, g(H) is an Og-horoball packing of H3 where Og = H3/gΓg−1 and O and

Og are isometric. So, in light of this fact we will always assume that for an orbifold O,

the horoball centered at ∞ of an O-horoball packing is at height 1. We will use the term

full sized horoballs to refer to the horoballs centered at points in C that have diameter 1.

So, the full sized horoballs are tangent to the horoball at height 1.

Let H be a horoball packing of H3 contained an O-maximal horoball packing of H3. The

circle packing of C obtained by projecting down the boundaries of the full-sized horoballs

of H, an O-horoball packing of H3, onto C is called the H-circle packing of C. For a given

cusp c of O, a circle C in the H-circle packing is called a c-circle if the horoball in H which

projects down to the disk bounded by C maps to a cusp neighborhood of c in O. If Hc is

the c-maximal horoball packing of H3 such that horoball centered at ∞ projects down to a

cusp neighborhood of cusp c, then, we will refer the Hc-circle packing as c-circle packing of

C.

Remark 6.2. We recall from Remark 2.9 that for a hyperbolic link L with components

K1, . . . , Kn, Ki-cusp of S3 − L is the cusp corresponding to the Ki-component. We will use

the term Ki-circle packing to mean the Ki-cusp circle packing.

Let us consider the c-maximal horoball packing of O such that the horoball centered

at ∞ projects to a cusp neighborhood of cusp c. The volume of this cusp neighborhood is

called the (maximal) cusp volume of c. Stab(∞) in π1(M) acts on the c-circle packing as a

wallpaper group W . The area of the fundamental domains of W is called the cusp area of c.

Recall from Subsection 2.5.1 that when O is a hyperbolic manifold, W is lattice wallpaper

group. A fundamental domain of such a W is called a cusp parallelogram of c. We will use

the following fact later:

Fact 6.3. For a cusp c of an orbifold O, the cusp area of c = 2 (maximal cusp volume of c).

Proof. Using the first point in Facts 2.7, we can assume c = B∞/W where B∞ is horizontal
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centered ∞ at height 1. Let D be a fundamental domain of W . Note since D lies on the

plane at height 1, the hyperbolic metric on B∞ is the standard Euclidean metric on B∞. So,

cusp area of c is the area of D in the standard Euclidean metric. Then the cusp volume of

c is ∫∫

D

∞∫

1

√
1

z6
dz dA =

∫∫

D

∞∫

1

1

z3
dz dA =

∫∫

D

1

2
dA =

cusp area of c

2
.

6.1.1 SnapPy

SnapPy [9] is a 3-manifold software written by Marc Culler, Nathan Dunfield and

Matthias Goerner built upon the SnapPea kernel written by Jeffrey Weeks. SnapPy can

compute several geometric information about a hyperbolic 3-manifold. SnapPy treats a hy-

perbolic 3-manifold as a geometric triangulation and it computes geometric data based on

that triangulation. For example, one can find edge equations or tetrahedral shapes for a

hyperbolic 3-manifold from SnapPy. SnapPy also provides information about cusp neigh-

borhood, which we briefly describe below.

SnapPy denotes the cusps of hyperbolic 3-manifold by indices staring from 0. On SnapPy,

one can view the horoball packing of H3 that come from the cusp neighborhoods of a hy-

perbolic 3-manifold. This view of horoball packing is from ∞ above and one has the option

to select which cusp of the hyperbolic 3-manifold is to be arranged at ∞. The SnapPy

horoballs are labelled different colors. Each color corresponds to a cusp. For example, if a

hyperbolic 3-manifold has four cusps, then the horoballs projecting down to cusp 0 is labelled

red, cusp 1 blue, cusp 2 green and cusp 3 light blue. One can also (equivariantly) maximize

the horoballs of a single cusp until they touch one of their own tangentially. Maximizing

(horoballs of) different cusps gives us different pictures of horoball packing. Now, we will

discuss some examples of horoball packings using pictures from SnapPy.
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Figure 26: Left: (Red cusp, S3 − L14n24613)-maximal horoball packing of H3, Right:

(Blue cusp,S3 − L14n24613)-maximal horoball packing of H3 (pictures are obtained from

SnapPy [9])

6.1.2 Examples

Figure 26 shows two (S3 − L14n24613)-maximal horoball packings of H3. L14n24613

is a 2-component hyperbolic link (refer to Figure 3 in [11] for a picture of the link). The

cusp of L14n24613 are labelled in red and blue in Figure 26. Left of Figure 26 shows how

the (red cusp,S3 − L14n24613)-maximal horoball packing of H3 looks like from ∞, where

∞ corresponds to the red cusp, i.e. the horoball centered at ∞ maps down to a cusp

neighborhood of the red cusp. Here the horoball centered at ∞ (the horizontal plane) is at

Euclidean height 1. We obtained this maximal horoball packing of H3 by first maximizing the

horoballs corresponding to the red cusp, and then, maximizing the horoballs corresponding to

the blue cusp. Similarly, the picture in the right of Figure 26 shows how the (blue cusp,S3−
L14n24613)-maximal horoball packing of H3 looks like from ∞, where ∞ corresponds to

the blue cusp. This is obtained by first maximizing the blue horoballs and then the red

horoballs. The parallelograms drawn in pink in both pictures are cusp parallelograms.

Note that if we only consider the full sized red (respectively, blue) horoballs in the

picture in the left (respectively, right) of Figure 26, it will give us the red cusp (respectively,

blue cusp)-circle packing of C.
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6.2 Hidden symmetry and symmetries of c-circle packing

6.2.1 Hoffman’s observation

The following result was communicated by Neil Hoffman in an AIM SQuaRE program

in 2019. It builds on an approach taken by Millichap [21]. We include a proof below.

Theorem 6.4. Let L be a 2-component hyperbolic link with components K1 and K2. Let

F = {K∞,(pi,qi)}i be a family of hyperbolic knots geometrically converging to L as i→∞. If

infinitely many elements of F have hidden symmetries then for any (S3−L)-maximal horoball

packing H of H3, the H-circle packing of C has a rotational symmetry of order 3 or 6 whose

fixed point cannot be the center of a K2 horoball.

Proof. By Theorem 3.3, each K∞,(pi,qi) having hidden symmetry will cover an orbifold Oi

with a rigid cusp. Now, Theorem 5.1 implies that S3 − L covers a 2-cusped orbifold O with

a single rigid cusp c such that c is covered only by cusp K1 of S3 − L and after taking a

subsequence, we may assume that Oi are obtained by Dehn filling the smooth cusp of O.

Since K1 covers c and K2 covers the smooth cusp of O, H is also an O-maximal horoball

packing of H3. The elements of πOrb1 (O) act as symmetries of anyO-maximal horoball packing

of H3 and so of H. We assume that the cusp at ∞ is c, then the elements of Stab(∞) in

πOrb1 (O) act as Euclidean isometries of C. So, since Stab(∞), a subgroup of πOrb1 (O), acts as

symmetries of H, Stab(∞) acts as symmetries of H-circle packing of C. Now, Oi is covered

by K∞,(pi,qi); by Theorem 3.5, we see that c is (3, 3, 3) or (2, 3, 6). So, Stab(∞) in πOrb1 is

a (3, 3, 3) or (2, 3, 6) wallpaper group. So, there is an order 3 or 6 rotational symmetry r

of the H-circle packing. Now, r is an elliptic element in πOrb1 (O) of order 3 or 6. So, if the

fixed point of r is the center of a K2-horoball, then that would imply that K2 cusp cross-

section has a cone point of order 3 or 6 which contradicts that the K2-cusp is smooth. This

completes the proof.

71



6.2.2 Hyperbolic link with three or more components

In general, when a hyperbolic 3-manifold M covers a hyperbolic three orbiold O and two

or more cusps of M map to the same cusp of O, the M -maximal horoball packing of H3

might not be an O-maximal packing of H3. This obstructs us in extending Theorem 6.4 for

links with three components as in the current form. We therefore use the one-to-one nature

between the un-filled cusps in the orbifold covering provided by Theorem 5.1 and prove the

following:

Theorem 6.5. Let L be a hyperbolic link with n components K1, K2, . . . , Kn, where n ≥
2. If there is an infinite family of hyperbolic knots F = {K∞,(pi2,qi2),...,(pin,q

i
n)}i with hidden

symmetries which geometrically converge to L as i→∞, then the following results hold:

1. Symmetry group of the K1-circle packing contains a (2, 3, 6) or a (3, 3, 3) wallpaper group

W . Consequently, K1-circle packing has an order 3 or 6 rotational symmetry whose fixed

point can not be the center of a Kj-horoball for j ∈ {2, . . . , n}.
2. Co-area of the translation subgroup of W =

maximal cusp area of K1

4n

for some n ∈ N.

Proof. Proof of Part 1 is similar to the proof of Theorem 6.4. The only difference is that

unlike n = 2 case, for general n ≥ 2 case an (S3 − L)-maximal horoball packing might not

be an O-maximal horoball packing since more than one cusps of L might map to a single

smooth cusp of O. But, since only the K1-cusp of L covers the rigid cusp, say crigid, of O,

the K1-maximal horoball packing is also a crigid-maximal horoball packing. So, arranging

the cusp at∞ to be crigid, similarly as in proof of Theorem 6.4, one can see that, Stab(∞) in

πOrb1 (O) which is either the (3, 3, 3) wallpaper group or the (2, 3, 6) wallpaper group acts as

symmetries of K1-circle packing of C and the order 3 or 6 rotational symmetries in Stab(∞)

can’t fix the center of a Kj-horoball for j = 2, . . . , n. This proves Part 1.

Before we prove Part 2, we recall the following two degree formulae of Hoffman which

we will use in the proof:
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Theorem 6.6 (Hoffman, Part 1 of Lemma 5.5, [15]). If φ is an orbifold covering from a

manifold M to a (3, 3, 3)-cusped orbifold O such that M is covered by a hyperbolic knot

complement , then the index of φ is 12n for some n ∈ N.

Theorem 6.7 (Hoffman, Theorem 1.2, [16]). For an orbifold covering φ from a manifold

M to a (2, 3, 6)-cusped orbifold O where M is covered by a hyperbolic knot complement, the

index of φ is 24n for some n ∈ N.

Denote the wallpaper group from part 1 as W . Let ΛW denote the translation subgroup of

W . If crigid is (3, 3, 3), then using the degree formula in Theorem 5.1 and applying Theorem

6.6 we get, degree(S3 − L→ O) = 12n for n ∈ N. So, the maximal area of crigid is

maximal cusp area of K1

12n
.

But, this is same as co-area of L
3

. This implies

co-area of L =
maximal cusp area of K1

4n
.

If the rigid cusp of O is (2, 3, 6), then the degree formula in Theorem 5.1 and Theorem 6.7

implies degree(S3 − L→ O) = 24n for n ∈ N. So,

maximal cusp area of K1

24n
= maximal area of crigid =

co-area of L

6
.

Thus, co-area of L = maximal cusp area of K1

4n
in this case as well. This ends the proof.

We emphasize the following crucial fact,

Fact 6.8. We note from the proof of Theorem 6.5 that the elements of the (2, 3, 6) or (3, 3, 3)

wallpaper group of symmetries of the K1-circle packing are also symmetries of any K1-

horoball packing of H3. So, they must send a non-full sized K1-horoball to another K1-

horoball of the same size.

We describe Theorem 6.5 in terms of the K1-circle packing since it will be easier for us

to code the theorem into an algorithm and use the code for a large collection of links. We

develop the coding mechanism in the next section (Section 6.3).

73



Figure 27: (Red cusp,S3 − L11n354)-horoball packing has no order 3 or 6 rotational

symmetry (picture obtained from SnapPy [9])

6.2.3 Examples

Figure 27 shows a (red cusp,S3−L11n354)-horoball packing of H3 where∞ corresponds

to the red cusp. We can see that red cusp circle packing of C in Figure 27 has no order 3 or

6 rotational symmetry.

A (green cusp,S3 − L10a157)-horoball packing of H3 is shown in Figure 28 where ∞ is

at the green cusp. The green cusp circle packing in Figure 28 has order 6 (and so order 3

as well) rotational symmetry. But, note that these symmetries fix the centers of red or blue

horoballs.

If we analyze Figure 29, which depicts the view of a (red cusp,S3 − L8a20)-horoball

packing of H3 from the red cusp at ∞, we see red cusp circle packing of C has order 3 as

well as order 6 rotational symmetry which does not fix centers of horoballs corresponding to

the blue cusp. One can see that the cusp area of the red cusp in L8a20 is 16a where a =
√

3
4

.

But, the red cusp circle packing does a have hexagonal lattice symmetry of co-area less than

or equal to 4a and cannot have a hexagonal lattice symmetry of co-area of the form 16a
4n

for

some n ∈ N.

If we consider the horoball packings that we have seen in Figure 26, we see that neither
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Figure 28: Order 3 or 6 rotational symmetries of (green cusp,S3 − L10a157)-horoball

packing fixes centers of red or blue horoballs (picture obtained from SnapPy [9])

Figure 29: (Red cusp,S3 − L8a20)-horoball packing has order 3 or 6 rotational symmetries

(picture obtained from SnapPy [9])
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Figure 30: Order 3 rotational symmetry with fixed point near C

the red cusp circle packing of C in left of Figure 26 nor the blue cusp circle packing of C has

any order 3 rotational symmetry.

6.2.4 A corollary

Corollary 6.9. Let L = K1 tK2 . . . tKn be an n-component hyperbolic link where n ≥ 2.

Let F = {K∞,(pi2,qi2),...,(pin,q
i
n)}i be an infinite family of hyperbolic knots with hidden symmetries

geometrically converging to L as i → ∞. Then for each C in the K1-circle packing, there

is an order 3 or 6 rotational symmetry r which does not fix the center of a Kj-horoball for

j ∈ {2, . . . , n} such that the distance between the center of C and the fixed point of r is less

than or equal to
√
maximal cusp area of K1√

23
5
4

.

Proof. Since (2, 3, 6) wallpaper group also contains a (3, 3, 3) wallpaper group, by Theorem

6.5, K1-circle packing has a (3, 3, 3) wallpaper group of symmetries, say W . Let Λ be the

translation subgroup of W . Then C ∈ DW ⊂ DΛ where DΛ and DW are fundamental

domains of L and W respectively. DΛ is the region bounded by a hexagonal rhombus. If the

length of the sides of DΛ is a, then by Part 2 of Theorem 6.5,

√
3a2

2
= 2

(√
3a2

4

)
≤ maximal cusp area of K1

4
. (43)
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This means a ≤
√

maximal cusp area of K1√
23

1
4

. Now, the region DW is also bounded by a hexagonal

rhombus such that the length of the sides of DW is 2
3

√
3a
2

= a√
3

(see Figure 30). So, given any

point in DW , there is at-least one vertex of DW whose distance from that point is less than

or equal to 2
3

√
3

2
a√
3

= a
3

since this given point would belong to one of the equilateral triangles

divided by one of DW ’s diagonal as shown in Figure 30. But, a
3
≤
√

maximal cusp area of K1√
23

5
4

and

each vertex of DW is the center of an order 3 rotation r which does not fix the center of a

Kj-horoball for j ∈ {2, . . . , n} . That completes the proof.

6.3 An algorithm for testing symmetries

We are interested in understanding whether there exist a hyperbolic link (with two or

more components) such that Dehn fillings on all but one component of the link produces

infinitely many hyperbolic knots with hidden symmetries geometrically converging to the

link. Our approach in this pursuit is to use Theorem 6.5 to exclude as many hyperbolic

links as possible until we find a probable candidate for such phenomenon. In this section, we

describe an algorithm which can be implemented in SnapPy [9] to determine the cusps whose

corresponding circle packings of C do not have the required symmetry for such existence as

prescribed by Theorem 6.5.

Let L be a hyperbolic link with components K1, . . . , Kn where n ≥ 2. Now, note that

a rotational symmetry of C is a symmetry of the K1-circle packing if and only if it is a

symmetry of the centers of the circles in the K1-circle packing. Let C denote the centers of

the circles in the K1-circle packing and P denote a cusp parallelogram of the K1-cusp. We

recall from Section 2.5 that rO,3 denotes the order 3 counter clockwise rotation of R2 around

O. Now, for an order 3 rotational symmetry rO,3 of C, there exists g ∈ Stab(∞) such that

g(O) ∈ P . Now, since g is also symmetry of C, so is grO,3g
−1 = rg(O),3, which has order 3.

This proves the following fact:

Fact 6.10. If the K1-circle packing has some order 3 or 6 rotational symmetry, it has one

such whose fixed point lies inside each cusp parallelogram of K1.

77



We assume that two parallel sides of P are horizontal. Our assumption comes from the

fact that the cusp parallelograms that SnapPy [9] determines always have horizontal sides

and we will implement our following results in a SnapPy/Python code. Let l be the complex

number (with imaginary part 0) representing the vector these horizontal sides determine from

left to right and let m be the complex number representing the vector the other two parallel

sides determine from bottom left to top left. Note that l is the length of the horizontal side.

Let CP be the set of points in C which lies in P . We fix C0 ∈ CP . We denote the angle

between m and l by θ. Let d = max {‖m‖, ‖l‖, ‖m + l‖, ‖m− l‖}. We define the following

quantities:

• k′h =
⌈

4d
3

+1

‖m‖| sin θ|

⌉
,

• k′ =
⌈
k′h‖m‖| cos θ|

‖l‖

⌉
,

• k′l =
⌈

4d
3

+1

‖l‖

⌉
,

• k′′h =
⌈
d( 12

5
+k′h+k′+k′l)+1

‖m‖| sin θ|

⌉
,

• k′′ =
⌈
k′′h‖m‖| cos θ|

‖l‖

⌉
,

• k′′l =
⌈
d( 12

5
+k′h+k′+k′l)+1

‖l‖

⌉
.

We define

C ′P = {C + pm + q l : C ∈ CP , p, q ∈ Z and |p| ≤ k′h, |q| ≤ k′ + k′l}

C ′′P = {C + pm + q l : C ∈ CP , p, q ∈ Z, |p| ≤ k′′h, |q| ≤ k′′ + k′′l } .

Elements of C ′P and C ′P are certain translations of the elements of CP . The following

lemma will be crucial in the succeeding results:

Lemma 6.11. C ′P contains all elements of C which are within distance d
3

from C0 and C ′′P
contains all elements of C within distance d

(
7
5

+ k′h + k′ + k′l
)

from C0.

Proof. Let v0 denote the left bottom vertex of P . Let us denote the disk of radius s centered

v0 by Ds. First note that the distance between any two points in P is less than or equal to

d. So, ‖C0 − v0‖ ≤ d.
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We first prove the case regarding C ′P . Let C ∈ C such that ‖C − C0‖ ≤ d
3
. We have,

‖C − v0‖ ≤ ‖C − C0‖+ ‖C0 − v0‖ ≤
d

3
+ d =

4d

3
.

So, if we prove C ′P contains C ∩D 4d
3

, it will imply C ′P contains all elements of C which are

within distance d
3

from C0.

We define h to be the vector equal to ‖m‖| sin θ| i with initial point vo. Note that h is the

vector starting from vo determined by the height of P . Let R be the rectangle determined

by h and l with the bottom left vertex as v0. We define,

R+
4d
3

=

k′h−1⋃

j=0

R + j h and R−4d
3

=
−1⋃

j=−k′h

R + j h.

Note that R+
4d
3

and R−4d
3

respectively are the vertical strips (and so in the direction of h) over

and below R.

We similarly define,

P+
4d
3

=

k′h−1⋃

j=0

P + jm and P−4d
3

=
−1⋃

j=−k′h

P + jm.

Note that P+
4d
3

(respectively, P−4d
3

) is the slanted strip (in the direction of m) based over

(respectively below) P .

Now,

R+
4d
3

⊂
k′⋃

j=−k′
P+

4d
3

+ j l and R−4d
3

⊂
k′⋃

j=−k′
P−4d

3

+ j l.

(See Figures 31 and 32 for a pictorial explanation.)

If we define, P 4d
3

= P+
4d
3

∪ P−4d
3

, then, P 4d
3

=
k′h−1⋃
j=−k′h

P + jm. This would mean that both

R+
4d
3

and R−4d
3

are contained in
k′⋃

j=−k′
P 4d

3
+ j l. So, R 4d

3
= R+

4d
3

∪ R−4d
3

is also contained in

k′⋃
j=−k′

P 4d
3

+ j l.
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Now, we note that D 4d
3
⊂

k′l⋃
n=−k′l

R 4d
3

+ n l (See Figures 31 and 32). This means

D 4d
3
⊂

k′l⋃

n=−k′l

(
k′⋃

j=−k′
P 4d

3
+ j l) + n l =

k′+k′l⋃

n=−(k′+k′l)

P 4d
3

+ n l =

k+′k′l⋃

n=−(k+′k′l)

(

k′h−1⋃

j=−k′h

P + jm) + n l

⊂
k′+k′l⋃

n=−(k′+k′l)

k′h⋃

j=−k′h

P + jm + n l.

The intersection of the right most union above with C is C ′P . Therefore, C ∩ D 4d
3

is

contained in C ′P .

For second case which concerns C ′′P , we note that if C ∈ C such that ‖C − C0‖ ≤
d
(

7
5

+ k′h + k′ + k′l
)
, then

‖C − v0‖ ≤ ‖C − C0‖+ ‖C0 − v0‖ ≤ d

(
7

5
+ k′h + k′ + k′l

)
+ d = d

(
12

5
+ k′h + k′ + k′l

)
.

Now, proceeding similarly as the first case, we can show that C ′′P contains C∩D( 12
5

+k′h+k′+k′l)

which would then prove C ′′P contains all elements of C within distance d
(

7
5

+ k′h + k′ + k′l
)

from C0.

We note the following fact:

Fact 6.12. Let r be an order 3 symmetry of C. Then the orbits of the action of the group

{1, r, r2} on C have either 1 element or 3 elements. If this action has an orbit with one

element, then it is unique and the element in the orbit is the fixed point of r. On the other

hand, the elements in an orbit with 3 elements form an equilateral triangle.

Now, if x, y and z are the vertices of an equilateral triangle tri, then the barycenter of

tri is fixed by any symmetry of the tri. With this in mind, we define the set

E = {C0}
⋃{

X + Y + C0

3
: X, Y ∈ C ′P , 0 < ‖X − C0‖ = ‖Y − C0‖ ≤

√
area of P√

23
3
4

,

‖(X − C0).(Y − C0)‖
‖X − C0‖‖Y − C0‖

=
1

2

}
.

E consists of the point C0 and the centers of the equilateral triangles with a fixed vertex

at C0 and two other vertices from C ′P such that length of its sides is less than or equal to
√

area of P√
23

3
4

.
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Figure 24: C 0
P contains C \ D2d : ✓ acute case
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P+
4d
3

P−4d
3 R−4d

3

R+
4d
3

θ

⃗h

⃗l⃗l

⃗m

k′ ⃗h
∥ ⃗m ∥|cos(θ) |

Figure 31: C ′P contains C ∩D 4d
3

: θ acute case

Figure 25: C 0
P contains C \ D2d : ✓ obtuse case
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⃗l ⃗l

⃗h⃗m

P+
4d
3

P −4d
3

k′ ⃗h
∥ ⃗m∥|cos(θ) | R+

4d
3

R −4d
3

θ

 P+
4d
3

Figure 32: C ′P contains C ∩D 4d
3

: θ obtuse case
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If rX,n denotes the 2π
n

counterclockwise rotation around X as in Section 2.5, we can say

the following:

Proposition 6.13. If there exists an infinite family of hyperbolic knots with hidden sym-

metries F = {K∞,(pi2,qi2),...,(pin,q
i
n)}i which geometrically converge to L as i → ∞, then, there

exists E ∈ E such that ‖E − C0‖ < d
5

and C ′′P contains rE,3(C ′P ) and r2
E,3(C ′P ).

Proof. By Corollary 6.9, there exists rE,3 such that ‖E − C0‖ ≤
√

area of P√
23

5
4

for some E in

C. Now, C0, rE,3(C0) and r2
E,3(C0) are the vertices of an equilateral triangle with E as the

center. So,

‖rE,3(C0)− C0‖ = ‖r2
E,3(C0)− C0‖ =

√
3‖E − C0.‖ ≤

√
area of P√

23
3
4

≤
√
‖m‖‖l‖√

23
3
4

<
d

3
.

Now by Lemma 6.11, we have, rE,3(C0) and r2
E,3(C0) lie in C ′P . So, E ∈ E .

For any C ′ ∈ C ′P , C ′ = C + pm + q l for some C ∈ CP and p and q such that |p| ≤ k′h

and |q| ≤ k′ + k′l. So, we have,

‖C ′ − E‖ ≤ ‖C ′ − C0‖+ ‖C0 − E‖ ≤ ‖C − C0‖+ |p|‖m‖+ |q|‖l‖+ ‖C0 − E‖

≤ d+ k′hd+ (k′ + k′l) d+
d

5
= d

(
6

5
+ k′h + k′ + k′l

)
.

Here, note that ‖E − C0‖ ≤
√

area of P√
23

5
4
≤
√
‖m‖‖l‖
√

23
5
4

< d
5
.

Since, rE,3 is a rotation, we have ‖rE,3(C ′)−E‖ = ‖r2
E,3(C ′) = E‖ = ‖C ′ −E‖, which is

less than d
(

6
5

+ k′h + k′ + k′l
)
. So,

‖rE,3(C ′)− C0‖ ≤ ‖rE,3(C ′)− E‖+ ‖E − C0‖ ≤ d

(
6

5
+ k′h + k′ + k′l

)
+
d

5

= d

(
7

5
+ k′h + k′ + k′l

)
.

Similarly, ‖r2
E,3(C ′)−C0‖ ≤ d

(
7
5

+ k′h + k′ + k′l
)
. So, by Lemma 6.11, rE,3(C ′), r2

E,3(C ′) ∈ C ′′P .

This completes the proof.
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6.3.1 Implementation of the algorithm in SnapPy

We now use Proposition 6.13 to set up a code in SnapPy [9] which will help us find

centers of order 3 rotational symmetries of the K1-circle packing in E for a SnapPy cusp

parallelogram P of the K1-cusp of a hyperbolic 3-manifold M . We also define a function

which detects whether these centers fixes centers of horoballs of the other cusps. We describe

the code below. We comment out the explanations of each command.

import math
k0=1/math . s q r t (math . s q r t (27) )

def i n t l i s t ( k ) :
' ' ' f o r na tura l number k , r e turns the s e t o f i n t e g e r s
{−k ,−k +1 , . . . , k−1,k} ' ' '
return range(−k , k+1 ,1)

def co sang l e (u , v ) :
' ' ' re turns a b s o l u t e va lue o f cos ine o f the ang l e between the v e c t o r s
g iven by complex numbers u and v ' ' '
return abs (u . r e a l ∗v . r e a l+u . imag∗v . imag ) /(abs (u) ∗abs ( v ) )

def r1 (x , y ) :
' ' ' re turns r {x , 3} ( y ) ' ' '
re=x . r ea l −(y−x ) . r e a l /2−(y−x ) . imag∗math . s q r t (3 ) /2
im=(x . imag−(y−x ) . imag/2+(y−x ) . r e a l ∗math . s q r t (3 ) /2) ∗(0+1J )
return re+im

def r2 (x , y ) :
' ' ' re turns r {x ,3}ˆ2 ( y ) ' ' '
re=x . r ea l −(y−x ) . r e a l /2+(y−x ) . imag∗math . s q r t (3 ) /2
im=(x . imag−(y−x ) . imag/2−(y−x ) . r e a l ∗math . s q r t (3 ) /2) ∗(0+1J )
return re+im

def Tri (h ,H, v ) :
' ' ' re turns the pa i r ( x , y ) o f e lements from H such t ha t
v e c t o r s j o i n i n g h to x and h to y have ang l e \ p i /3 or \ p i /6 and
l en g t h o f t h e s e v e c t o r s i s l e s s than or equa l to k 0 ∗ \ s q r t ( v ) ' ' '
G=[]
for x in H:

i f 0.005<abs (x−h)<k0∗math . s q r t ( v ) +0.005:
for y in H:

i f abs (abs (y−h)−abs (x−h) ) <0.005:
i f abs ( co sang l e (x−h , y−h) −0.5) <0.005:

G. append ( ( x , y ) )
return l i s t ( set (G) )

def Epi (h ,G, d) :
' ' ' re turns the cen t e r s o f t r i a n g l e s wi th v e r t i c e s h and the pa i r s
from G which l i e in the d/5 d i s k around h ' ' '
E=[h ]
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for t in G:
i f abs(−2∗h+t [0 ]+ t [ 1 ] ) /3<(d/5) +0.005:

E. append ( ( h+t [0 ]+ t [ 1 ] ) /3)
return l i s t ( set (E) )

def i n c lude (x ,H) :
' ' ' checks whether x be long to H ' ' '
r=False
for y in H:

i f abs (x−y ) <0.005:
r=True
break

return r

def Cen(x ,D,R) :
' ' ' checks i f images o f the e lements o f D under r {x ,3} and r {x ,3}ˆ2
l i e in R ' ' '
r=True
for y in D:

i f i n c lude ( r1 (x , y ) ,R)==False or i n c lude ( r2 (x , y ) ,R)==False :
r=False
break

return r

def mer (M, i ) :
' ' ' re turns m, the complex number r ep r e s en t i n g the non−ho r i z on t a l s i d e s
o f SnapPy cusp para l l e l o g ram fo r cusp i o f mani fo ld M ' ' '
c=M. cusp neighborhood ( )
c . s e t d i sp l a c ement ( c . reach ( i ) , i )
return c . t r a n s l a t i o n s ( i ) [ 0 ]

def l on (M, i ) :
' ' ' re turns l , the complex number r ep r e s en t i n g the h o r i z on t a l s i d e s o f
SnapPy cusp para l l e l o g ram fo r cusp i o f mani fo ld M ' ' '
c=M. cusp neighborhood ( )
c . s e t d i sp l a c ement ( c . reach ( i ) , i )
return c . t r a n s l a t i o n s ( i ) [ 1 ]

def he i (M, i ) :
' ' ' re turns the he igh o f the cusp para l l e l o g ram determined by m and l
f o r cusp i o f mani fo ld M ' ' '
return abs (mer (M, i ) ) ∗math . s q r t (1−pow( co sang l e (mer (M, i ) , lon (M, i ) ) , 2 ) )

def d(M, i ) :
' ' ' re turns the maximum amongst abs (m) , abs ( l ) , abs (m+l ) and abs (m− l )
f o r cusp i o f mani fo ld M ' ' '
m=mer (M, i )
l=lon (M, i )
return max(abs (m) , abs ( l ) , abs (m+l ) , abs (m−l ) )

def k h sm (M, i ) :
' ' ' re turns k h ' f o r cusp i o f mani fo ld M ' ' '
return math . c e i l ( ( ( 4 /3 ) ∗d(M, i )+1)/ he i (M, i ) )
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def k sm (M, i ) :
' ' ' re turn k ' f o r cusp i o f maniofo ld M ' ' '
m=mer (M, i )
l=lon (M, i )
return math . c e i l ( k h sm (M, i ) ∗abs (m) ∗abs ( co sang l e (m, l ) ) /abs ( l ) )

def k l sm (M, i ) :
' ' ' re turns k l ' f o r cusp i o f mani fo ld M ' ' '
l=lon (M, i )
return math . c e i l ( ( ( 4 /3 ) ∗d(M, i )+1)/abs ( l ) )

def k h l a (M, i ) :
' ' ' re turns k {h } ' ' f o r cusp i o f mani fo ld M ' ' '
return math . c e i l ( ( d (M, i ) ∗ ( (12/5)+ k h sm (M, i )+k sm (M, i )+k l sm (M, i ) )+1)/

he i (M, i ) )

def k l a (M, i ) :
' ' ' re turn k ' ' f o r cusp i o f mani fo ld M ' ' '
m=mer (M, i )
l=lon (M, i )
return math . c e i l ( k h l a (M, i ) ∗abs (m) ∗abs ( co sang l e (m, l ) ) /abs ( l ) )

def k l l a (M, i ) :
' ' ' re turns k l ' ' f o r cusp i o f mani fo ld M ' ' '
l=lon (M, i )
return math . c e i l ( ( d (M, i ) ∗ ( (12/5)+k h sm (M, i )+k sm (M, i )+k l sm (M, i ) )+1)/abs

( l ) )

def f u l l h o r o (M, i ) :
' ' ' re turns the f u l l s i z e d h o r o b a l l s whose cen t e r s l i e in the
cusp para l l e l o g ram fo r cusp i o f mani fo ld M ' ' '
c=M. cusp neighborhood ( )
c . s e t d i sp l a c ement ( c . reach ( i ) , i )
return c . h o r oba l l s ( c u t o f f =0.9 , which cusp=i , f u l l l i s t=True ,

h i g h p r e c i s i o n=False )

def Circ cen (M, i ) :
' ' ' re turns the l i s t \mathcal {C} P conta in ing the cen t e r s o f the c i r c l e s
in the i−c i r c l e pack ing l y i n g in cusp para l l e l o g ram P
fo r cusp i o f mani fo ld M ' ' '
H=[]
for x in f u l l h o r o (M, i ) :

i f x [ ' index ' ]== i :
H. append (x [ ' cente r ' ] )

return H

def C i r c c e n t r n s l t d l a r g e (M, i ) :
' ' ' re turns the t r a n s l a t i o n s \mathcal {C} P ' ' o f the l i s t \mathcal {C} P
from Circ cen func t i on ' ' '
H=[]
for x in Circ cen (M, i ) :

for p in i n t l i s t ( k h l a (M, i ) ) :
for q in i n t l i s t ( k l a (M, i )+k l l a (M, i ) ) :

H. append (x+p∗mer (M, i )+q∗ l on (M, i ) )
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return H

def C i r c c e n t r n s l t d sma l l (M, i ) :
' ' ' re turns the t r a n s l a t i o n s \mathcal {C} P ' o f the l i s t \mathcal {C} P
from Circ cen func t i on ' ' '
H=[]
for x in Circ cen (M, i ) :

for p in i n t l i s t ( k h sm (M, i ) ) :
for q in i n t l i s t ( k sm (M, i )+k l sm (M, i ) ) :

H. append (x+p∗mer (M, i )+q∗ l on (M, i ) )
return H

def max vol (M, i ) :
' ' ' re turns (maximal ) cusp volume o f cusp i o f mani fo ld M ' ' '
c=M. cusp neighborhood ( )
c . s e t d i sp l a c ement ( c . reach ( i ) , i )
return c . volume ( i )

def ro t (M, i ) :
' ' ' re turns cen t e r s o f v a l i d order 3 r o t a t i o n s o f i−c i r c l e pack ing
o f mani fo ld M which l i e s in \mathcal {E} ' ' '
cen =[ ]
d i s=d(M, i )
h=Circ cen (M, i ) [ 0 ]
CS=C i r c c e n t r n s l t d sma l l (M, i )
CL=C i r c c e n t r n s l t d l a r g e (M, i )
E=Epi (h , Tri (h ,CS, max vol (M, i ) ) , d i s )
for x in E:

i f Cen(x ,CS,CL)==True :
cen . append (x )

return cen

def Horo c en d i f f (M, i ) :
' ' ' re turns enough t r a n s l a t i o n s o f the cen t e r s o f h o r o b a l l s o f cusps
o ther than i in mani fo ld M ' ' '
c=M. cusp neighborhood ( )
c . s e t d i sp l a c ement ( c . reach ( i ) , i )
h=Circ cen (M, i ) [ 0 ]
H=[ ]
for x in c . h o r oba l l s ( c u t o f f =0.1 , which cusp=i , f u l l l i s t=True ,

h i g h p r e c i s i o n=False ) :
i f x [ ' index ' ] != i :

H. append (x [ ' cente r ' ] )
G=[ ]
for x in H:

for p in i n t l i s t ( k h sm (M, i ) ) :
for q in i n t l i s t ( k sm (M, i )+k l sm (M, i ) ) :

i f abs ( x+p∗mer (M, i )+q∗ l on (M, i )−h)<(d(M, i ) /5) +0.005:
G. append (x+p∗mer (M, i )+q∗ l on (M, i ) )

return G

def f r e e r o t (M, i ) :
' ' ' re turns e lements o f the output o f the ro t funct ion ,
i . e . , the c en t e r s o f v a l i d order 3 r o t a t i o n s
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o f i−c i r c l e pack ing o f mani fo ld M, which do not f i x
c en t e r s o f h o r o b a l l s o f o ther cusps ' ' '
H rot=rot (M, i )
H f r e e r o t=False
i f len ( H rot )>0:

H d i f f=Ho ro c en d i f f (M, i )
for x in H rot :

i f i n c lude (x , H d i f f ) !=True :
H f r e e r o t=True
break

return H f r e e r o t

Remark 6.14. Note that we use this code to rule out cases, i.e. when for cusp i of manifold

M , if “free rot(M , i)” returns “False”, we conclude that there is no order 3 required sym-

metry of the i-circle packing. Since Python floating point numbers are not exact, in order to

reduce approximation error, we have added “0.005” to the bounds of some of the conditionals

in the code.

Similarly, while getting the full sized horoballs in the cusp parallelogram, we are setting

the “cutoff” as 0.9 instead of 1 (“cutoff” in SnapPy means lower cutoff of the diameter of

the horoballs) to reduce the error of missing out a full sized horoball.

We also note that in the code above, we set 0.1 as the cutoff in the definition of the

function “Horo cen diff()” which returns the centers of a list of horoballs corresponding to

cusps other than i. Since we are trying to rule out the cases where the fixed points of

the order 3 rotational symmetries happen to be centers of horoballs corresponding to cusps

different than i, if we take a smaller cutoff in the definition of the function “Horo cen diff()”,

we could (potentially) rule out more cases, but it will increase computation time.

6.4 Examples

First we enter last section’s Python code in SnapPy. Then we define the manifolds from

Subsection 6.2.3 in SnapPy [9]:

M1=Manifold ( ' L11n354 ' )

M2=Manifold ( ' L10a157 ' )
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M3=Manifold ( ' L8a20 ' )

Now we run “rot” and “free rot” functions in snappy with the manifolds and the correspond-

ing cusps from Subsection 6.2.3 as its arguments (SnapPy [9] labels cusp 0 by red, cusp 1 by

blue, cusp 2 by green and so on):

ro t (M1, 0 )

ro t (M2, 2 )

ro t (M3, 0 )

f r e e r o t (M1, 0 )

f r e e r o t (M2, 2 )

f r e e r o t (M3, 0 )

The first two commands return empty lists, where as the fourth and the fifth return “False”,

which we would expect from our observation from Subsection 6.2.3. On the other hand, the

third command returns the list “[(1.000000000000003+1.7320508075688856j)]” and the last

command returns ”True”. Both of these commands correspond to the red cusp of L8a20,

whose complement can be identified with tetrahedral manifold otet1000006. Later in Section

7.5 (in Case 3 of proof of Theorem 7.4), we argue that the corresponding circle packing of C

even for this case cannot have (3, 3, 3) wallpaper group of symmetries.
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7.0 Tetrahedral links

In this chapter, we will apply our results and the SnapPy code from the previous chapter

to certain elements of a family of links called tetrahedral links. This family of links are

natural candidates to study in connection with hidden symmetries, which we will explain

why.

7.1 Definitions and census paper

A hyperbolic manifold L is called a tetrahedral manifold if it can be triangulated into

regular ideal hyperbolic tetrahedra. A hyperbolic link whose complement is a tetrahedral

manifold is referred as a tetrahedral link. For example, figure eight knot is a tetrahedral

knot since its complement decomposes into two regular ideal tetrahedra. Fominykh et al.

[11] found a census consisting of the orientable tetrahedral manifolds with decomposition

into 25 or fewer (regular ideal) tetrahedra and the non-orientable tetrahedral manifolds with

decomposition into 21 or fewer (regular ideal) tetrahedra.

7.2 Why study tetrahedral links

All the shape parameters of a regular ideal tetrahedron is 1+i
√

3
2

. So, the shape field (see

Definition 2.29) of a tetrahedral manifold is Q(i
√

3) which via Theorem 2.30 implies that the

invariant trace field is also Q(i
√

3). Now arguing similarly as in the proof of Theorem 5.7 in

Section 5.3, we see the cusp field of a cusp of a tetrahedral manifold is also Q(i
√

3) as the

cusp field contains non-real complex numbers and by virtue of Theorem 2.31 it is contained

in the invariant trace field. Now, we know from Theorem 4.7 if Dehn filling on all but one

component of a link L produces an infinitely family of geometrically converging hyperbolic

knots with hidden symmetries, then the cusp field of the non-filled cusp of L must be Q(i) or
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Q(i
√

3). Since the cusp field of all the cusps of a tetrahedral link is Q(i
√

3), tetrahedral links

are natural candidates for testing whether we can obtain an infinitely family of geometrically

converging hyperbolic knots with hidden symmetries from Dehn filling all but one cusp.

7.3 Tetrahedral link complements and their first homology

Fominykh et al. [11] in their paper gives a list of tetrahedral links. Their list consists of

the figure eight knot and 25 tetrahedral links with two or more components. One of these

links has 20 and the rest has 12 or fewer (regular ideal) tetrahedra in their triangulation.

The number of total links in their orientable tetrahedral census is far bigger and it is not an

easy task to find out whether an orientable tetrahedral manifold is a link or not. But, we

should note that tetrahedral links can also been seen as links in the integral homology spheres

and from the following result from [11] one can easily find out when a cusped hyperbolic

3-manifold is a link complement in an integral homology sphere:

Proposition 7.1 (Lemma 6.1, [11]). A cusped hyperbolic 3-manifold M is a link complement

in an integral homology sphere if and only if the first homology group of M , H1(M,Z), is

torsion free and rank(H1(M,Z)) is equal to the number of cusps of M .

We use this above proposition to write the following code on SnapPy [9] which can tell

us when a cusped hyperbolic 3-manifold in SnapPy is a link complement in an integral

homology sphere:

def htor (M) :

r=False

G=M. homology ( )

L=G. e l e m e n t a r y d i v i s o r s ( )

i f L [ 0 ] ! = 0 :

r=True

return r
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def l inkHS (M) :

r=False

G=M. homology ( )

i f htor (M)==False :

i f G. rank()==M. num cusps ( ) :

r=True

return r

The function “htor” finds out if the homology group of the argument has torsion elements

and if the answer is no, it returns “False”. Now, “linkHS” function first tests using “htor”

function whether the manifold M in the argument has torsion or not. If it does not, then,

“linkHS” checks whether the rank of the first homology group of M is equal to the number

of the cusps of M . If this answer is yes, then the function “linkHS” returns “True”, i.e. M

is a link complement in an integral homology sphere by Proposition 7.1.

The orientable tetrahedral census of [11] is embedded in SnapPy [9]. Using the “linkHS”

function defined above, the code below forms a list “K” containing all the two or more cusped

orientable tetrahedral manifolds with 25 or fewer (regular ideal) tetrahedra in their decom-

position which are link complements in integral homology spheres (we imported SnapPy as

a Python module for the code below).

K=[ ]

for i in range ( 1 , 2 6 ) :

for M in snappy . TetrahedralOrientableCuspedCensus ( s o l i d s=i ) :

i f l inkHS (M)==True :

i f M. num cusps ()>1:

K. append (M)

So, this “K” contains all the tetrahedral links (with two or more components) in the

orientable tetrahedral census of [11] (i.e. with 25 or fewer (regular ideal) tetrahedra in

their triangulations). One can see (for example by typing “len(K)”) that “K” contains 882

elements. Our goal would be to understand whether for each element L of “K”, an infinite
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family of geometrically converging hyperbolic knots obtained from Dehn filling all but one

component of L can have hidden symmetries. We will use Theorem 6.5 to find out whether

given L in “K” and a cusp c of L, the c-circle packing of C can have order 3 rotational

symmetries. We will apply our SnapPy code from Subsection 6.3.1 on the elements of “K”

for this objective.

7.4 Cusp exchanging symmetries

We first recall from Fact 2.15 that if there is an isometry of a hyperbolic 3-manifold M

exchanging two of its cusps c1 and c2, then, the members of a geometrically converging family

of hyperbolic knots obtained from all cusps of M but c1 are each isometric to a member of

a geometrically converging family of hyperbolic knots obtained from Dehn filling all cusps

of M but c2. Keeping this in mind, we first write a function “cusplist” which determines a

maximal list of cusps of its argument “M” with no two elements in the list exchanged by

any isometry of “M”.

def c u s p l i s t (M) :

G=M. symmetry group ( )

IG=G. i s o m e t r i e s ( )

L=range (M. num cusps ( ) )

K=[ ]

for g in IG :

for i in L :

i f g . cusp images ( ) [ i ]> i and g . cusp images ( ) [ g .

cusp images ( ) [ i ]]== i :

K. append ( g . cusp images ( ) [ i ] )

return l i s t ( set (L)−set (K) )

We are now ready to run the SnapPy code from Subsection 6.3.1 on the elements of our list

of tetrahedral manifolds “K”.
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7.5 Running the SnapPy code

We recall from the code in Subsection 6.3.1 that the “free rot” function takes two argu-

ments. For a pair of argument “(M,i)” where “M” is a SnapPy manifold and “i” an integer

in [0, . . . , n − 1] where n is the number of cusps of “M”, if “free rot(M,i)” returns “False”,

then, the symmetry group of the i-circle packing of C contains no (3, 3, 3) wallpaper group.

Now, for any 0 ≤ m ≤ n ≤ 881, if we run the function “compute(m,n)” as below on

SnapPy, it should give two lists: “excep link” and “nice link”.

e x c e p l i n k =[ ]

n i c e l i n k =[ ]

def compute (m, n ) :

for M in K[m: n+1] :

for i in c u s p l i s t (M) :

print ( ' ' )

print (K. index (M) ,M, i )

i f f r e e r o t (M, i )==True :

e x c e p l i n k . append ( (K. index (M) ,M, i ) )

print ( ' e x c e p l i n k l i s t : ' , e x c e p l i n k )

else :

n i c e l i n k . append ( (K. index (M) ,M, i ) )

print ( ' n i c e l i n k l i s t : ' , n i c e l i n k )

print ( (K. index (M) ,M, i ) , ' i s not c ra sh ing ' )

print ( ' ' )

print ( ' Fina l e x c e p l i n k = ' , e x c e p l i n k )

print ( ' ' )

print ( ' Fina l n i c e l i n k = ' , n i c e l i n k )

Elements of both “excep link” and “nice link” are pairs “(M,i)” where “M” is a member

of “K” and “i” is a member of “cusplist(M)”. For an “(M,i)” in “nice link”, the symmetry

group of i-circle packing of C does not contain a (2, 3, 6) or (3, 3, 3) wallpaper group satisfying
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the conditions of Theorem 6.5 whereas for an “(M,i)” in “excep link” we cannot conclude

anything as such for the i-circle packing of C.

Definition 7.2. If we try to run the above code, SnapPy also crashes for some cases. Keeping

this in mind, we define Excepm,n to denote the list “Excep link’ that we get for m and n,

where 0 ≤ m ≤ n ≤ 881, plus the “(M,i)” cases for which our SnapPy code crashes for M

in “K[m:n+1]”.

We run “free rot” function as described above for first 162 members of “K”, i.e. for

“K[0:162]” in Python notation (Python list “K[0:162]” does not have any “K[162]” element)

and for each cusp the “cusplist” function returns for such a member of “K[0:162]”. We list

the elements of Excep0,161 in the Appendix A. So, the discussion above leads to the following

theorem:

Theorem 7.3. Let L be tetrahedral link in “K[0:162]” and K0 a component of L. If (S3−L, c)
does not belong to Excep0,161 for any cusp c of L which is symmetric to the cusp corresponding

to K0, then a family of geometrically convergent hyperbolic knots obtained from Dehn filling

all components of L but K0 can have at most finitely many elements with hidden symmetries.

Using this theorem above, we will now show the following:

Corollary 7.4. If L is one of 25 tetrahedral links with more than one component that are

listed in Fominykh et. al [11], then for any cusp c of L, a family of geometrically convergent

hyperbolic knots obtained by Dehn filling all cusps of L but c cannot have infinitely many

members with hidden symmetries.

Proof. The 25 tetrahedral links listed in [11] paper are written down in Appendix B. The

index of otet2000570 in “K” is 253 and it does not belong to “K[0:162]”. If we run “cusplist”

function for this manifold on SnapPy, we get “[0,2]”. After defining the list “K” and code

given in Subsection 6.3.1 on SnapPy, if we run “free rot(K[253],0)” and “free rot(K[253],2)”,

they return “False”.

We now check the elements from Fominykh et al. [11] list (see Appendix B) which

appear in Appendix A.

Case 1 - cusp 0 of otet0400001, which is “K[1]”:
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Figure 33: Red cusp maximal packing of H3 for otet0800002 (picture obtained from SnapPy

[9])

SnapPy identifies otet0400001 with 62
2 complement. So, this case is already proven in Theorem

4.11.

Before we proceed with the next cases, we recall that the 0 cusp in SnapPy is labelled

red and cusp 1 blue and cusp 2 green.

Case 2 - cusp 0 and 1 of otet0800002, which is “K[3]”:

Figure 33 and 34 show respectively the red cusp and blue cusp maximal packings of H3 for

this manifold. Note that the cusp area of each of these cusps is 24a where a =
√

3
4

and the

smallest co-area hexagonal lattice for each of the red cusp and blue cusp circle packings that

we see has co-area of 6a, which is exactly 1
4

of the cusp area of the red cusp or the blue cusp.

But, one can see from the picture that if these hexagonal lattices of co-area 6a are subgroups

of a (3, 3, 3) wallpaper group W , then W contains an order 3 rotation which fixes the center

of a horoball of the other color (see Figure 6), which is not allowed. So, using Theorem 6.5,

we can now conclude the result for this case.

Case 3 - cusp 0 of otet1000006, which is “K[8]”:

Red cusp maximal packing of H3 for otet1000006 is shown in Figure 35. Cusp area of the red

cusp is 12a. But, the smallest co-area hexagonal lattice for the red cusp circle packing has
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Figure 34: Blue cusp maximal packing of H3 for otet0800002 (picture obtained from SnapPy

[9])

co-area 6a, which is greater than 12a
4

. So, Theorem 6.5 concludes the result for this as well.

Case 4 - cusp 2 of otet1000008, which is “K[10]”:

Figure 36 depicts the green cusp maximal packing of H3 for otet1000008. Note that the co-area

of the smallest co-area hexagonal lattice is 1
2

of the cusp area of the green cusp. Theorem

6.5 then completes the proof for this case.

Case 5 - cusp 0 of otet1000011, which is “K[11]”:

We have shown the red cusp maximal packing of H3 for otet1000011 in Figure 37. We can see

from this figure that the argument given in Case 3 would apply here as well.

Case 6 - cusp 1 and 2 of otet1000014, which is “K[12]”:

Figure 38 shows the blue cusp maximal packing and Figure 39 the green cusp maximal

packing of H3 for otet1000014. The argument for the blue cusp is similar to that in Case

3 and Case 4. On the other hand, the cusp area of the green cusp is the co-area of the

smallest co-area hexagonal lattice in the green cusp circle packing of C. Therefore, Theorem

6.5 implies the result for the green cusp.

Case 7 - cusp 0 of otet1000043, which is “K[17]”:

One can see from Figure 40, which shows the red cusp maximal packing of H3 for otet1000043,
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Figure 35: Red cusp maximal packing of H3 for otet1000006 (picture obtained from SnapPy

[9])

Figure 36: Green cusp maximal packing of H3 for otet1000008 (picture obtained from

SnapPy [9])
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Figure 37: Red cusp maximal packing of H3 for otet1000011(picture obtained from SnapPy

[9])

Figure 38: Blue cusp maximal packing of H3 for otet1000014 (picture obtained from SnapPy

[9])
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Figure 39: Green cusp maximal packing of H3 for otet1000014 (picture obtained from

SnapPy [9])

that we can argue Case 7 similarly as in Case 3.

Case 8 - cusp 0 of otet1200009, which is “K[22]”:

Red cusp maximal packing of H3 for otet1200009 is shown in Figure 41. We can see from this

figure that the cusp area of red cusp is 36a. On the other hand, if a hexagonal lattice with

co-area less than or equal to 9a = 36a
4

is contained in a (3, 3, 3) wallpaper group W , then W

has an element fixing a blue or green or light blue horoball. So, by Theorem 6.5 the result

also follows for this final case.

Now, since by Theorem 7.3 the result follows for the cases which do not appear in

Appendix A, the corollary can be concluded.

Remark 7.5. We note that in addition to 62
2, the link corresponding to the Berge manifold

also belongs to list of 25 links from [11] and from [15, Proof of Theorem 6.1](or, [14, Proof

of Theorem 1.1]) we already know that the above result is true for the Berge manifold.
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Figure 40: Red cusp maximal packing of H3 for otet1000043 (picture obtained from SnapPy

[9])

Figure 41: Red cusp maximal packing of H3 for otet1200009 (picture obtained from SnapPy

[9])

100



8.0 Some members of Excep0,161

In this chapter, we will discuss some elements of Excep0,161. We will use the notation

KExcep0,161 to denote the elements of “K” which appears as the first component of an element

of Excep0,161.

In section 8.1, we will discuss some tetrahedral links whose complements belong to

KExcep0,161 and the horoball packings associated with the corresponding cusps have a (3, 3, 3)

wallpaper group of symmetries. Section 8.2 contains example of a member of Excep0,161 for

which we don’t know whether if the corresponding (tetrahedral) link in the homology sphere

is actually a tetrahedral link or not. In section 8.3, we will show an example of a manifold in

KExcep0,161 for which there is a (3, 3, 3) wallpaper group of symmetries of the circle packing

of C for the corresponding cusp, but, there is no order 3 symmetry of the corresponding

horoball packing of H3.

8.1 Some exceptional tetrahedral links

8.1.1 Tetrahedral link L14n63694

The complement of the link L14n63694 can also be identified as otet2000063 in the notation

of [11]. otet2000063 appears as a manifold in KExcep0,161 . All of (otet2000063, 0), (otet2000063, 1)

and (otet2000063, 2) belong to Excep0,161. Recall that cusp 0 in SnapPy is labelled red, cusp

1 blue and cusp 2 green. Figure 42 shows the red cusp, the blue cusp and the green cusp

maximal packings of H3. Note that the symmetry groups of both the red cusp and the

green cusp circle packings contain (3, 3, 3) wallpaper groups whose lattice subgroups have

co-area exactly 1
4

of the corresponding cusp area such that no rotations of the wallpaper

groups fix the center of a horoball corresponding to a different cusp. On the other hand,

in the blue cusp circle packing, co-area of the smallest co-area hexagonal lattice is half of

the area of the blue cusp. So, the blue cusp circle packing is not really “exceptional” even
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though our code detects it to be.

We should note here that otet2000063 has 5 components. Using SnapPy one can check

that cusps 1 and 3 are symmetric, so are 2 and 4. Therefore, the “cusplist()” function (see

Section 7.4) returns the list “[0,1,2]” for otet2000063.

8.1.2 Tetrahedral link L12a2018

otet2000061 is 5-cusped tetrahedral manifold which can be identified with the complement

of the link L12a2018. (otet2000061, 0) and (otet2000061, 1) both belong to Excep0,161. We

picture the red cusp and blue cusp maximal packings of H3 in Figure 43. Figure 43 shows

that the symmetry group of the red cusp circle packing has a (3, 3, 3) wallpaper subgroup,

say W , such that the lattice subgroup of W has co-area exactly 1
4

of the cusp area of the

red cusp and no member of W fix the center of a horoball of a different color. On the other

hand, in the blue cusp circle packing, smallest co-area that a hexagonal lattice has is half

of the area of the blue cusp. So, similarly as in the case above, the blue cusp circle packing

is not really “exceptional”. We also note from SnapPy [9] that the cusp 1 is symmetric to

cusp 3, cusp 2 is symmetric to cusp 4 and (otet2000061, 2) does not belong to Excep0,161.

8.1.3 Tetrahedral link L14n62448

The tetrahedral manifold otet2000060 is isometric to the complement of the 4-component

link L14n62448. We see that (otet2000060, 0) and (otet2000060, 1) are contained in Excep0,161.

The red cusp and blue cusp maximal packings of H3 for this manifold are shown in Figure 44.

We can see from this figure that the symmetry group of red cusp maximal packing contains

a (3, 3, 3) wallpaper group, the co-area of whose lattice subgroup is 1
4

of the cusp area of

the red cusp. Also, this wallpaper group has no rotational symmetry which fixes center of

a different colored horoball. Blue cusp circle packing on the other hand as in the two cases

above is not truly “exceptional” since the co-area of the smallest co-area hexagonal lattice

is half of the area of the blue cusp. We note, “cusplist()” function returns “[0,1,2]” for this

manifold and Excep0,161 does not contain (otet2000060, 2). One can check from SnapPy that

cusps 1 and 3 are symmetric.
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Figure 42: Top left: Red cusp maximal packing of H3 for otet2000063, Top right: Blue cusp

maximal packing of H3 for otet2000063, Bottom: Green cusp maximal packing of H3 for

otet2000063 (pictures obtained from SnapPy [9])

Figure 43: Left: Red cusp maximal packing of H3 for otet2000061, Right: Blue cusp

maximal packing of H3 for otet2000061 (pictures obtained from SnapPy [9])
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Figure 44: Left: Red cusp maximal packing of H3 for otet2000060, Right:Blue cusp maximal

packing of H3 for otet2000060 (pictures obtained from SnapPy [9])

8.2 Tetrahedral manifold otet2000049

We now discuss the tetrahedral manifold otet2000049 which belongs to KExcep0,161 such that

for all of its cusps, the “free rot()” function from Subsection 6.3.1 would return “True”. But,

we don’t know whether this manifold is isometric to a link complement or not. otet2000049 is

a 4-cusped manifold. SnapPy tells that cusps 1 and 2 are symmetric as are cusps 0 and 3. So,

“cusplist()” returns “[0,1]” for this manifold. We picture red cusp and blue cusp maximal

packings of H3 in Figure 45. We see that the symmetry groups of each of these packings

have (3, 3, 3) wallpaper subgroups none of whose elements fix the center of a horoball of a

different color and their lattice subgroups have co-area 1
4

of the corresponding cusp area.

8.3 Tetrahedral manifold otet2000062

In Figure 46, we show the green cusp maximal packing of H3 for the tetrahedral manifold

otet2000062. Note that the green cusp circle packing of C has a (3, 3, 3) wallpaper group of

symmetries none of which fix a center of a different colored horoball such that the lattice

subgroup has co-area 1
4

of the cusp area of the green cusp. But, none of the order 3 elements

of this wallpaper group is actually a symmetry of the green cusp maximal packing of H3,
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Figure 45: Left: Red cusp maximal packing of H3 for otet2000049, Right: Blue cusp

maximal packing of H3 for otet2000049 (pictures obtained from SnapPy [9])

since for each of them there is some smaller (Euclidean) sized green horoball which they do

not send to a green horoball of the same (Euclidean) size. So, even though (otet2000062, 2)

belongs to Excep0,161, we can conclude by Fact 6.8 that a geometrically convergent family

of hyperbolic knots obtained by Dehn filling all but green cusp of otet2000062 can only have

finitely many elements with hidden symmetries. We also remark that a similar conclusion

can be made for the other cusps of otet2000062 as for any i 6= 2 in the “cusplist(otet20 00062)”,

(otet2000062, i) does not belong to Excep0,161.
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Figure 46: Green cusp maximal packing of H3 for otet2000062 (picture obtained from

SnapPy [9])
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Appendix A Excep0,161

We will write the elements in the following format: (i,M, j) where i is the index of

manifold M in “K” and j is the cusp of M . Description of M from SnapPy also shows how

many cusps it has by the number of (0, 0) that appear at the end of M . (0, 0) in SnapPy

means that the corresponding cusp is unfilled.

A.1 Cases where SnapPy code crashes

1. (28, otet1400004(0, 0)(0, 0)(0, 0), 1)

2. (97, otet1800026(0, 0)(0, 0)(0, 0), 2)

3. (116, otet1800074(0, 0)(0, 0)(0, 0), 0)

4. (117, otet1800076(0, 0)(0, 0)(0, 0), 1)

5. (138, otet1800127(0, 0)(0, 0)(0, 0)(0, 0), 3)

A.2 Cases for which “free rot()” function returns “True”

1. (1, otet0400001(0, 0)(0, 0), 0)

2. (3, otet0800002(0, 0)(0, 0), 0)

3. (3, otet0800002(0, 0)(0, 0), 1)

4. (4, otet0800003(0, 0)(0, 0), 0)

5. (8, otet1000006(0, 0)(0, 0)(0, 0), 0)

6. (10, otet1000008(0, 0)(0, 0)(0, 0), 2)

7. (11, otet1000011(0, 0)(0, 0)(0, 0)(0, 0), 0)

8. (12, otet1000014(0, 0)(0, 0)(0, 0)(0, 0), 1)

9. (12, otet1000014(0, 0)(0, 0)(0, 0)(0, 0), 2)

10. (17, otet1000043(0, 0)(0, 0)(0, 0), 0)
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11. (22, otet1200009(0, 0)(0, 0)(0, 0)(0, 0), 0)

12. (39, otet1400027(0, 0)(0, 0)(0, 0)(0, 0), 2)

13. (40, otet1400029(0, 0)(0, 0)(0, 0)(0, 0), 2)

14. (58, otet1600013(0, 0)(0, 0), 0)

15. (58, otet1600013(0, 0)(0, 0), 1)

16. (69, otet1600053(0, 0)(0, 0)(0, 0)(0, 0), 3)

17. (74, otet1600058(0, 0)(0, 0), 0)

18. (74, otet1600058(0, 0)(0, 0), 1)

19. (79, otet1600090(0, 0)(0, 0), 0)

20. (83, otet1800003(0, 0)(0, 0)(0, 0)(0, 0), 3)

21. (89, otet1800012(0, 0)(0, 0)(0, 0)(0, 0), 3)

22. (98, otet1800028(0, 0)(0, 0)(0, 0)(0, 0), 0)

23. (98, otet1800028(0, 0)(0, 0)(0, 0)(0, 0), 1)

24. (104, otet1800044(0, 0)(0, 0)(0, 0)(0, 0), 3)

25. (127, otet1800104(0, 0)(0, 0)(0, 0)(0, 0), 0)

26. (137, otet1800126(0, 0)(0, 0)(0, 0)(0, 0), 3)

27. (139, otet1800130(0, 0)(0, 0)(0, 0)(0, 0), 3)

28. (140, otet1800131(0, 0)(0, 0)(0, 0)(0, 0), 3)

29. (143, otet1800151(0, 0)(0, 0)(0, 0)(0, 0), 3)

30. (145, otet1800171(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0), 0)

31. (148, otet2000037(0, 0)(0, 0)(0, 0)(0, 0), 3)

32. (149, otet2000038(0, 0)(0, 0)(0, 0)(0, 0)(0, 0), 1)

33. (149, otet2000038(0, 0)(0, 0)(0, 0)(0, 0)(0, 0), 4)

34. (150, otet2000039(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0), 1)

35. (156, otet2000049(0, 0)(0, 0)(0, 0)(0, 0), 0)

36. (156, otet2000049(0, 0)(0, 0)(0, 0)(0, 0), 1)

37. (157, otet2000059(0, 0)(0, 0)(0, 0)(0, 0), 0)

38. (157, otet2000059(0, 0)(0, 0)(0, 0)(0, 0), 1)

39. (158, otet2000060(0, 0)(0, 0)(0, 0)(0, 0), 0)

40. (158, otet2000060(0, 0)(0, 0)(0, 0)(0, 0), 1)
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41. (159, otet2000061(0, 0)(0, 0)(0, 0)(0, 0)(0, 0), 0)

42. (159, otet2000061(0, 0)(0, 0)(0, 0)(0, 0)(0, 0), 1)

43. (160, otet2000062(0, 0)(0, 0)(0, 0)(0, 0), 2)

44. (161, otet2000063(0, 0)(0, 0)(0, 0)(0, 0)(0, 0), 0)

45. (161, otet2000063(0, 0)(0, 0)(0, 0)(0, 0)(0, 0), 1)

46. (161, otet2000063(0, 0)(0, 0)(0, 0)(0, 0)(0, 0), 2)
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Appendix B List of tetrahedral links with more than one cusp from Fominykh

et al. paper [11] and their indices in “K”

Elements below are written in (i,M) form, where i is the index of M in “K”.

1. (0, otet0400000(0, 0)(0, 0))

2. (1, otet0400001(0, 0)(0, 0))

3. (2, otet0800001(0, 0)(0, 0))

4. (3, otet0800002(0, 0)(0, 0))

5. (5, otet0800005(0, 0)(0, 0))

6. (6, otet0800009(0, 0)(0, 0))

7. (7, otet1000003(0, 0)(0, 0))

8. (8, otet1000006(0, 0)(0, 0)(0, 0))

9. (9, otet1000007(0, 0)(0, 0))

10. (10, otet1000008(0, 0)(0, 0)(0, 0))

11. (11, otet1000011(0, 0)(0, 0)(0, 0)(0, 0))

12. (12, otet1000014(0, 0)(0, 0)(0, 0)(0, 0))

13. (13, otet1000025(0, 0)(0, 0)(0, 0))

14. (14, otet1000027(0, 0)(0, 0)(0, 0)(0, 0)(0, 0))

15. (15, otet1000028(0, 0)(0, 0)(0, 0)(0, 0))

16. (16, otet1000042(0, 0)(0, 0)(0, 0)

17. (17, otet1000043(0, 0)(0, 0)(0, 0))

18. (18, otet1200001(0, 0)(0, 0)(0, 0))

19. (19, otet1200005(0, 0)(0, 0))

20. (20, otet1200006(0, 0)(0, 0)(0, 0))

21. (21, otet1200007(0, 0)(0, 0)(0, 0))

22. (22, otet1200009(0, 0)(0, 0)(0, 0)(0, 0))

23. (23, otet1200010(0, 0)(0, 0)(0, 0))

24. (24, otet1200018(0, 0)(0, 0)(0, 0))

25. (253, otet2000570(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0))
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