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Abstract

Linear models are widely used in the field of epidemiology to model the relationship

between two continuous variables, such as circulating levels of the placental hormone hCG

and infant genital size. When researchers suspect curvilinear relationship exists, some non-

parametric techniques can be used to model the relationship. By applying nonparametric

techniques, researchers can relax the linearity assumption and capture scientifically mean-

ingful or appropriate shapes.

In the first part of the dissertation, a shape detection method based on regression splines

is developed. The proposed method can help researchers select the most suitable shape to

describe their data among increasing, decreasing, convex and concave shapes. Specifically,

we develop a technique based on mixed effects regression spline to analyze hormonal data,

but the method is general enough to be applied to other similar problems.

Analyzing the association between two variables is usually the first step of some research

project. Researchers also want to explore the causal relationship between an exposure and a

potential outcome caused by the exposure. In many cases, the exposure may not directly lead

to the outcome, but instead, it induces the outcome through a process. Mediation analysis

is designed to explain the causal relationship between the exposure and the outcome by

examining the intermediate stage, which helps researchers understand the pathway whereby

the exposure affects the outcome.

In the second part of the dissertation, we develop a method to analytically estimate the

direct and indirect effects when we have some prior knowledge on the relationship between

the mediator and the outcome (increasing, decreasing, convex or concave). In order to make

suitable inferences, the asymptotic confidence intervals of those effects are obtained via delta
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method.

Public health significance: The shape detection technique can help researchers make

judgements on the potential relationship between the exposure and the outcome while con-

trolling for confounders. With such judgements, researchers can avoid the bias caused

by model misspecification when building models. The regression-based mediation analy-

sis within the shape-restricted framework offers researchers a flexible and efficient approach

to perform the causal inference. The method helps researchers estimate causal effects using

reasonable models.
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1.0 Introduction

1.1 Motivation

The developmental origins of health and disease is an important research area in epi-

demiology. In the past, researchers used to examine the direct effect of maternal exposures

and infant short-term or long-term outcomes. For example, a study showed that the infants

whose mothers suffered from famine in the first two trimesters tended to have lower birth

weight (Lumey, 1992); some studies showed that maternal nutrition associated with off-

spring’s metabolic and cardiovascular functions (Dörner, 1973). The analysis of direct effect

is usually intuitive and easy to interpret, but in some cases, it is not enough to exhibit the

underlying molecular biology. The placenta, as an interface between the mother and the fe-

tus, plays an important role in fetal growth. Its functions, including providing the fetus with

necessary nutrients, removing various waste products and preventing the fetus from many

environmental toxins, are always of interest and can be reflected by placental biomarkers,

such as circulating placental-fetal hormones. Because of the special role of the placenta, the

placental function is regarded as a mediator between maternal environment and fetal growth.

Some studies attempted to address the effect of placenta on fetal growth during pregnancy

- for example, a study modeled the associations between circulating levels of the placental

hormone human chorionic gonadotropin (hCG) and infant genital size, a marker of future

fertility, using linear regression (Adibi et al., 2015), and another study modeled the associa-

tions between free thyroxine concentrations and children’s IQ using cubic splines (Korevaar

et al., 2016), while some other studies attempted to address the effect of environmental toxins

on the placental functions - for example, a study analyzed the association between maternal

levels of plasticizers called phthalates and placental hormone hCG (Adibi et al., 2015), and

another study analyzed the association between maternal phthalates and thyroid hormones

(Huang et al., 2007). In order to systematically understand the associations among the ma-

ternal exposures, the placental mediators and the infant outcomes, we should introduce the

mediation analysis to analyze the direct and indirect effects simultaneously.
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Before modeling the association of maternal exposure and infant outcome by way of the

hormonal mediator, it is crucial to first establish the hormonal mediator-outcome association

in a reasonable manner. Researchers often find it challenging to model complex biologic

relationships using observational data. Standard models, such as the linear or polynomial

regression models, are often used to model the relationship between two variables while

controlling for potential confounders for simplicity of implementation and interpretation,

and such models might be reasonable in some cases. However, this could possibly result in

model misspecification and incorrect inferences. Since a priori one does not know shape

of the model except that it might be monotonic or convex/concave, there is a need for

a nonparametric shape-restricted methodology to simultaneously evaluate multiple shapes

that might capture and best represent the underlying biology.

Once researchers have prior knowledge on the association between the mediator and the

outcome, they can choose a more appropriate approach to perform mediation analysis. Me-

diation analysis is designed to explain the causal relationship between the exposure and the

outcome by examining the intermediate stage. It helps researchers understand the pathway

whereby the exposure affects the outcome, investigate the specific process and refine the

intervention strategies. The regression-based mediation analysis has been formulated and

developed in the last decade (VanderWeele, 2015). In the circumstance where the mediator

and the outcome are continuous, the classical linear regression is introduced to build the

models and perform the analysis. However, the relationship between the mediator and the

outcome may not be linear in many cases. For example, the relationship between free thy-

roxine concentrations and children’s IQ is shown to be curvilinear in one study (Korevaar

et al., 2016). In such cases, using linear models will result in model misspecification and

introduce bias. Therefore, the approach of applying generalized additive model is discussed

by Imai et al. as a remedial measure, where the direct and indirect effects along with their

confidence intervals are estimated using simulations (Imai et al., 2010). Estimating effects

using simulations may not be accurate, and if researchers have prior knowledge on the asso-

ciation between the mediator and the outcome (increasing, decreasing, convex and concave),

applying shape-restricted regression spline technique may be a better choice.
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1.2 M-Spline, I-Spline and C-Spline

The spline is a drawing instrument in real life, which can be used to draw irregular curves

in road, architectural or other designs. When drawing the curve, draftsmen fix several stakes

and let the spline pass through those stakes to obtain the desirable shape. The spline in

statistics, a linear combination of piecewise-defined polynomials, serves the similar purpose.

Passing through the designated points smoothly, the spline can well approximate the complex

shape underlying the data. The piecewise-defined polynomials, usually called the spline basis

functions, are building blocks of splines. There are many choices of spline basis functions,

including truncated power series basis, B-spline basis, etc. The shape-restricted regression

spline technique discussed in the entire dissertation is based on two types of spline basis

functions, I-spline basis and C-spline basis, which are derived from M-spline basis.

M-spline basis functions, Mi(x|k, t), were defined by Curry and Schoenberg, who also

derived their properties (Curry and Schoenberg, 1966). The M-splines were expressed us-

ing the divided difference of truncated power functions in the original literature, but for

computational convenience, they can be specified using the recursive form as follows:

Order k = 1:

Mi(x|1, t) =


1

ti+1−ti , if ti ≤ x < ti+1

0, otherwise

,

Order k > 1:

Mi(x|k, t) =


k[(x−ti)Mi(x|k−1,t)+(ti+k−x)Mi+1(x|k−1,t)]

(k−1)(ti+k−ti)
, if ti ≤ x < ti+k

0, otherwise

,

where t = {t1, t2, ..., tn+k} is the knot sequence, n is the number of free parameters that

specify the spline function having the specified continuity characteristics, and k is the order

3



of the basis functions. For example, if k = 2, the M-splines Mi(x|2, t) will be

Mi(x|2, t) =



0, if x < ti

2(x−ti)
(ti+2−ti)(ti+1−ti) , if ti ≤ x < ti+1

2(ti+2−x)
(ti+2−ti)(ti+2−ti+1)

, if ti+1 ≤ x < ti+2

0, if x ≥ ti+2

.

The M-splines of order k = 1 with knot sequence t = {0, 0.3, 0.5, 0.6, 1}, order k = 2

with knot sequence t = {0, 0, 0.3, 0.5, 0.6, 1, 1}, and order k = 3 with the knot sequence

t = {0, 0, 0, 0.3, 0.5, 0.6, 1, 1, 1} are shown in Figure 1.2.1. The M-splines are of interest in

deriving the I-splines and C-splines because of the property that Mi(x|k, t) > 0 only when

ti ≤ x < ti+k and Mi(x|k, t) = 0 otherwise.

Ramsay defined the I-spline basis functions as Ii(x|k, t) =
∫ x
L
Mi(u|k, t)du (Ramsay,

1988). Because each M-spline basis function Mi(x|k, t) is a piecewise polynomial of degree

k − 1, each I-spline basis function Ii(x|k, t) will be a piecewise polynomial of degree k. We

shall use the term “order k” to refer to M-splines with degree k−1 or the associated I-splines

with degree k. The I-splines of order k = 1 with knot sequence t = {0, 0.3, 0.5, 0.6, 1}, order

k = 2 with knot sequence t = {0, 0, 0.3, 0.5, 0.6, 1, 1}, and order k = 3 with the knot sequence

t = {0, 0, 0, 0.3, 0.5, 0.6, 1, 1, 1} are shown in Figure 1.2.2. The quadratic I-splines Ii(x|2, t)

are obtained by integrating the M-splines of order 2 and can be expressed as follows:

Ii(x|2, t) =



0, if x < ti

(x−ti)2
(ti+2−ti)(ti+1−ti) , if ti ≤ x < ti+1

1− (ti+2−x)2

(ti+2−ti)(ti+2−ti+1)
, if ti+1 ≤ x < ti+2

1, if x ≥ ti+2

.

The quadratic I-splines are of interest in shape-restricted regression spline because of the

following fact:

Fact 1.2.1. A linear combination of quadratic I-spline basis functions is increasing if and

only if the coefficients are positive.

4



(a) M-splines of order k = 1 (b) M-splines of order k = 2

(c) M-splines of order k = 3

Figure 1.2.1: Plots of M-splines with inner knots placed at 0.3, 0.5 and 0.6 and

orders 1, 2, and 3

Proof. ⇒ Suppose that a linear combination of quadratic I-spline basis functions is increas-

ing and suppose that some coefficient of quadratic I-spline basis function is non-positive.

There is a fact that at each knot, only one quadratic I-spline basis function has positive

slope while other quadratic I-spline basis functions have zero slopes. Since we suppose that

some coefficient of quadratic I-spline basis function is non-positive, at the knot where the

quadratic I-spline basis function has the non-positive coefficient, the curve will be non-

increasing, which contradicts the condition that a linear combination of quadratic I-spline

basis functions is increasing.
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⇐ Suppose that the coefficients are positive. Because I-splines are derived by integrating

M-splines, which are non-negative, the derivative of the linear combination of quadratic I-

spline basis functions with positive coefficients is positive. Therefore, the linear combination

of quadratic I-spline basis functions with positive coefficients is increasing.

Therefore, for the curve to be non-decreasing, all coefficients of the quadratic I-spline

basis functions must be non-negative, and for the curve to be non-increasing, all coefficients

of the quadratic I-spline basis functions must be non-positive.

(a) I-splines of order k = 1 (b) I-splines of order k = 2

(c) I-splines of order k = 3

Figure 1.2.2: Plots of I-splines with inner knots placed at 0.3, 0.5 and 0.6 and

orders 1, 2, and 3

Meyer defined the C-spline basis functions as Ci(x|k, t) =
∫ x
L
Ii(u|k, t)du (Meyer, 2008).

Because each I-spline basis function Ii(x|k, t) is a piecewise polynomial of degree k, each
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C-spline basis function Ci(x|k, t) will be a piecewise polynomial of degree k + 1. We shall

use the term “order k” to refer to I-splines with degree k or the associated C-splines with

degree k + 1. The C-splines of order k = 1 with knot sequence t = {0, 0.3, 0.5, 0.6, 1}, order

k = 2 with knot sequence t = {0, 0, 0.3, 0.5, 0.6, 1, 1}, and order k = 3 with the knot sequence

t = {0, 0, 0, 0.3, 0.5, 0.6, 1, 1, 1} are shown in Figure 1.2.3. The cubic C-splines Ci(x|2, t) are

obtained by integrating the quadratic I-splines and can be expressed as follows:

Ci(x|2, t) =



0, if x < ti

(x−ti)3
3(ti+2−ti)(ti+1−ti) , if ti ≤ x < ti+1

x− ti+ti+1+ti+2

3
+ (ti+2−x)3

3(ti+2−ti)(ti+2−ti+1)
, if ti+1 ≤ x < ti+2

x− ti+ti+1+ti+2

3
, if x ≥ ti+2

.

The cubic C-splines are of interest in shape-restricted regression spline because of the fol-

lowing fact:

Fact 1.2.2. A linear combination of cubic C-spline basis functions is convex if and only if

the coefficients are positive.

Proof. ⇒ Suppose that a linear combination of cubic C-spline basis functions is convex and

suppose that some coefficient of cubic C-spline basis function is non-positive. There is a

fact that at each knot, only one cubic C-spline basis function is quadratic while other cubic

C-spline basis functions are either linear or zero. Since we suppose that some coefficient

of cubic C-spline basis function is non-positive, at the knot where the cubic C-spline basis

function has the non-positive coefficient, the curve will be non-convex, which contradicts the

condition that a linear combination of cubic C-spline basis functions is convex.

⇐ Suppose that the coefficients are positive. Because C-splines are derived by double inte-

grating M-splines, which are non-negative, the second derivative of the linear combination

of cubic C-spline basis functions with positive coefficients is positive.

Therefore, for the curve to be convex, all coefficients of the cubic C-spline bases must

be non-negative, and for the curve to be concave, all coefficients of the cubic C-spline bases

must be non-positive.

7



(a) C-splines of order k = 1 (b) C-splines of order k = 2

(c) C-splines of order k = 3

Figure 1.2.3: Plots of C-splines with inner knots placed at 0.3, 0.5 and 0.6 and

orders 1, 2, and 3

1.3 Constrained Statistical Inference

Constrained statistical inference refers to the procedure of parameter estimation and

hypothesis testing in a subset of Euclidean space. One simple example is to test the hy-

potheses: H0 : µ = 0 vs. Ha : µ > 0. When µ is known to be non-negative, one-sided

test will be more powerful than two-sided test. Another example is to test the hypotheses:

H0 : µ1 = µ2 = µ3 vs. Ha : µ1 ≤ µ2 ≤ µ3 and µ1, µ2, µ3 are not all equal. The fact

incorporated into the above test is that the parameter space is a simple order space, i.e..
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µ ∈ M = {µ ∈ R3 : µ1 ≤ µ2 ≤ µ3}. Constrained statistical inference plays an important

role in the entire dissertation because of Fact 1.2.1 and Fact 1.2.2 described in Section 1.2.

For example, to test the null hypothesis that the curve is flat against the alternative hy-

pothesis that the curve is increasing, we should formulate the hypotheses testing problem

as: H0 : β = 0 vs. Ha : β ≥ 0, where the parameter space is a non-negative orthant, i.e.,

β ∈ B = {β ∈ Rp : β ≥ 0}.

In linear model, an important procedure is to project the vector of observations y onto

a linear space C(X) through a projection matrix X(XTX)−1X. The idea of projection is

also crucial in constrained statistical inference, where the unconstrained estimator is usually

projected onto a convex cone. The definitions of convex set and cone are given below in

Definition 1.3.1 and Definition 1.3.2.

Definition 1.3.1 (Convex set). A set A ⊂ Rp is said to be convex if {λx + (1 − λ)y} ∈ A

whenever x, y ∈ A and 0 < λ < 1.

Definition 1.3.2 (Cone). A set A is said to be a cone with vertex x0 if x0 + k(x− x0) ∈ A

for every x ∈ A and k ≥ 0. If the vertex is the origin, then we shall simply refer to it as a

cone.

In simple words, a set A is a convex set if the line segment joining x and y is in A whenever

the points x and y are in A, and a cone is a set that consists of infinite straight lines starting

from the origin. The concept of convex set is important because if the space that a point

is projected onto is a closed convex set, then the projection will exist uniquely and can be

characterized by the angle between the projection line and the convex set. Specifically, when

the projection of unconstrained estimator onto the convex set is treated as origin, the angle

between the unconstrained estimator and the true value in the convex set must be obtuse.

The non-negative orthant mentioned above is a special convex cone, called polyhedral cone,

which is defined below in Definition 1.3.3.

Definition 1.3.3 (Polyhedral cone). Let a1, ..., aq be q points in Rp and P = {x ∈ Rp :

aTi x ≥ 0∀i}. Then P is a closed convex cone and it is called a polyhedral cone. With the

p× q matrix A defined as [a1, ..., aq], we may express P as {x ∈ Rp : ATx ≥ 0}

A polyhedral cone P is a convex set because suppose x1, x2 ∈ P , then given θ ∈ [0, 1],
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θx1 + (1 − θ)x2 ∈ P . The non-negative orthant is a polyhedral cone because it can be

expressed as {x ∈ Rp : ATx ≥ 0}, where A is an identity matrix.

1.4 Regression-Based Mediation Analysis

The regression-based mediation analysis is a parametric approach to calculate the direct

and indirect effects, which is formulated within the potential outcome framework for causal

inference. Applying the regression-based approach, the estimates of the effects can be ob-

tained through combining the estimated regression coefficients and the associated confidence

intervals can be calculated using delta method.

Within the potential outcome framework, in order to obtain an estimable quantity,

we have to make two assumptions: the consistency assumption and the no-unmeasured-

confounding assumption. We denote A as the exposure for an individual, C as the confound-

ing variables, Y as the outcome, and Ya as the outcome of an individual whose exposure A

were set to a. The consistency assumption states that for an individual with actual exposure

A = a, the actual outcome Y is Ya. Thus, with a binary exposure A, the causal effect

for an individual can be defined as Y1 − Y0. The no-unmeasured-confounding assumption

states that given all confounding variables C, the potential outcome Ya is independent of

the exposure A, which is denoted by Ya ⊥ A|C. This assumption makes potential outcomes

comparable across the exposure groups. With these two assumptions, the average causal

effect for a population given all confounding variables E[Y1 − Y0|C] can be expressed as

E[Y |A = 1, C]− E[Y |A = 0, C], which is possible to be estimated using the observed data.

Before proceeding to build linear models, we need to define three quantities, the controlled

direct effect, the natural direct effect and the natural indirect effect. In addition to the

notations given above, we denote M as the mediator, Ma as the mediator of an individual

whose exposure A were set to a, and Yam as the outcome of an individual whose exposure A

were set to a and mediator M were set to m. The controlled direct effect (CDE) is defined by

Yam−Ya∗m, which measures the direct effect of A on Y when the mediator M is controlled at

m. The natural direct effect (NDE) is defined by YaMa∗ − Ya∗Ma∗ , which measures the direct
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effect of A on Y after keeping the mediator M for each individual at the level it naturally

would have taken in the circumstance of A = a∗. The natural indirect effect (NIE) is defined

by YaMa − YaMa∗ , which compares what would have happened if the mediator M were set to

what it would have been in the circumstance of A = a vs. what would have happened if the

mediator M were set to what it would have been in the circumstance of A = a∗ after setting

the exposure A to some level a. In order to identify the CDE, we need the assumptions

that there is no unmeasured exposure-outcome confounding, i.e., Yam ⊥ A|C, and there is

no unmeasured mediator-outcome confounding, i.e., Yam ⊥M |A,C. In order to identify the

NDE and the NIE, besides the two assumptions above, we need two additional assumptions:

there is no unmeasured exposure-mediator confounding, i.e., Ma ⊥ A|C, and there is no

mediator-outcome confounding affected by exposure, i.e., Yam ⊥Ma∗|C.

Then, we build two linear models with continuous M and Y , where the exposure-outcome

model is Y = θ0+θ1A+θ2M+θ3AM+θ4C+ε1 and the exposure-mediator model is M = β0+

β1A+ β2C + ε2. If all assumptions hold and the models are correctly specified, the expected

controlled direct effect, the expected natural direct effect and the expected natural indirect

effect, conditioning on C = c, are given by (θ1 +θ3m)(a−a∗), [θ1 +θ3(β0 +β1a
∗+β2c)](a−a∗)

and (θ2β1 + θ3β1a)(a− a∗), respectively, and their standard errors can be obtained via delta

method. The details on derivations of these effects can be found in book by VanderWeele

(2015).
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2.0 Shape Detection using Semi-parametric Shape-Restricted Mixed Effects

Regression Spline

2.1 Introduction

The linear regression is a standard approach to model the relationship between two

continuous variables and being widely used in many research fields, such as medicine and

epidemiology. However, there is a strong assumption associated with linear regression, that

is, the relationship between the dependent variable and the independent variable must be

linear in expectation. This assumption may be true in some cases but not always. For exam-

ple, one study showed that the association between maternal free thyroxine concentrations

and child IQ is inverted U-shaped (Korevaar et al., 2016). Therefore, there is a need to

introduce other techniques to model the curvilinear relationship, which include local polyno-

mial regression, kernel regression, splines, etc. By applying these nonparametric techniques,

researchers can relax the linearity assumption and build more flexible models.

In this chapter, we develop a shape detection method based on the regression splines

technique to help researchers select the most suitable shape to describe their data among

increasing, decreasing, convex and concave shapes. The development of this method is moti-

vated by the interest of examining the associations between several placental-fetal hormones

and birth weight using population-level prenatal serum screening data for the State of Cali-

fornia, where the associations are suspected to fall into the shape categories described above.

This method is not suitable in some other cases, such as the case of cyclical or rhythmic

shape (Larriba et al., 2016). The splines that we adopt to build the models are I-splines

and C-splines, and the proposed method is based on the properties of these two types of

splines. Ramsay (1988) defined the I-splines as Ii(x|k, t) =
∫ x
L
Mi(u|k, t)du, where Mi(x|k, t)

is the M-splines. If we linearly combine quadratic I-splines with non-negative/non-positive

coefficients, then we should obtain a non-decreasing/non-increasing curve. Meyer (2008)

defined the C-splines as Ci(x|k, t) =
∫ x
L
Ii(u|k, t)du. If we apply the linear combination of

cubic C-splines with non-negative/non-positive coefficients, then we should obtain a con-
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vex/concave curve. Meyer (2018) also described the parameter estimation procedure for

constrained partial regression splines Y = f(T ) +XTβ + ε. This chapter aims to extend the

constrained partial regression splines to constrained partial mixed effects regression splines,

derive a test statistic to test the null hypothesis of constant function against the alterna-

tive that there is an underlying shape and apply Holm-Bonferroni method (Holm, 1979) to

classify the underlying shape into a reasonable category.

2.2 Methodology

2.2.1 Model setup

2.2.1.1 Linear mixed model

A linear mixed model is of the form

y = Xβ + Zb+ ε, (2.2.1)

where b ∼ N(0, D̃) and ε ∼ N(0, R). In model (2.2.1), y = (yT1 , ..., y
T
c )T is the response

vector, X = (XT
1 , ..., X

T
c )T is the fixed effects covariate matrix, β is the fixed effects vector,

Z = diag(Z1, ..., Zc) is the random effects covariate matrix, b = (bT1 , ..., b
T
c )T is the random

effects vector, ε = (εT1 , ..., ε
T
c )T is the measurement error vector, and D̃ = diag(D1, ..., Dc)

and R = diag(R1, ..., Rc) are variance component matrices. The random effects vector b is

assumed to be independently distributed of the measurement error vector ε. There are c

clusters in total and within the ith cluster, there are ni subjects.

2.2.1.2 Semi-parametric shape-restricted mixed effects regression spline model

The proposed semi-parametric shape-restricted mixed effects model is of the form

y = f(xmain) +Xβ + Zb+ ε, (2.2.2)

where b ∼ N(0, D̃) ⊥ ε ∼ N(0, R). In model (2.2.2), y is the response vector, xmain is the

main effect, X contains other covariates, β is the fixed effects vector, Z is the random effects
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covariate matrix, b is the random effects vector, ε is the measurement error vector, and D̃

and R are variance component matrices. However, model (2.2.2) can be rewritten as a linear

mixed model using spline basis functions.

Thus, the semi-parametric shape-restricted mixed effects regression spline model for

monotonicity can be written as

y = XISβIS +XIFβIF + ZbI + εI , (2.2.3)

where bI ∼ N(0, D̃) ⊥ εI ∼ N(0, R), and the semi-parametric shape-restricted mixed effects

regression spline model for convexity can be written as

y = XCSβCS +XCFβCF + ZbC + εC , (2.2.4)

where bC ∼ N(0, D̃) ⊥ εC ∼ N(0, R). In models (2.2.3) and (2.2.4), y = (yT1 , ..., y
T
c )T is the

response vector, XIS = (XT
IS1
, ..., XT

ISc
)T , XIF = (XT

IF1
, ..., XT

IFc
)T , XCS = (XT

CS1
, ..., XT

CSc
)T

and XCF = (XT
CF1

, ..., XT
CFc

)T are the fixed effects covariate matrices, where XIS contains

quadratic I-spline basis functions of the main effect and XIF contains other potential con-

founders, while XCS contains cubic C-spline basis functions of the main effect and XCF

contains main effect and other potential confounders, βIS, βIF , βCS and βCF are the fixed

effects vectors, Z = diag(Z1, ..., Zc) is the random effects covariate matrix, bI = (bTI1 , ..., b
T
Ic

)

and bC = (bTC1
, ..., bTCc) are the random effects vectors, εI = (εTI1 , ..., ε

T
Ic

) and εC = (εTC1
, ..., εTCc)

are the measurement error vectors, and D̃ = diag(D1, ..., Dc) and R = diag(R1, ..., Rc) are

variance component matrices. There are c clusters in total and within the ith cluster, there

are ni subjects.
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2.2.2 Estimation

2.2.2.1 Linear mixed model

There are several approaches to estimate the unknown parameters and make predictions

on random effects in linear mixed model, where one approach is based on Henderson’s Mixed

Model Equations. According to Henderson’s formulation, for known D̃ and R, the joint

density function of y and b is f(y, b) = f(y|b)f(b), where y|b ∼ NN(Xβ + Zb,R) and

b ∼ Nqc(0, D̃), N =
∑c

i=1 ni and qc is the dimension of b (if we only assume a random

intercept model, then q = 1). From the joint density, Henderson developed a set of equations,

which is known as Henderson’s Mixed Model Equations (MME), to solve the Best Linear

Unbiased Estimates (BLUE) and Best Linear Unbiased Predictions (BLUP) simultaneously

(Searle et al., 2006). By taking the first partial derivatives of the twice negative logarithm of

the joint density function with respect to β and b and equating them to zero, we will obtainXTR−1X XTR−1Z

ZTR−1X ZTR−1Z + D̃−1

β
b

 =

XTR−1y

ZTR−1y

 . (2.2.5)

By solving the MME (2.2.5), we obtain β̂ = (XTV −1X)−1XTV −1y and b̂ = D̃ZTV −1(y −

Xβ̂), where V = ZD̃ZT + R. The corresponding covariance matrices of β̂ and b̂ are

COV (β̂) = (XTV −1X)−1 and COV (b̂) = D̃ZTV −1ZD̃T−D̃ZTV −1X(XTV −1X)−1XTV −1ZD̃T .

The technical details can be found in Appendix A.1.

If the variance components D̃ and R are unknown, we should numerically solve for the

BLUE (β̂), BLUP (b̂) and variance components ( ˆ̃D and R̂) via some iterative procedures, in-

cluding iterative procedures based on MME, Expectation-Maximum (EM) algorithms, Fisher

scoring algorithms, etc. The details on how to apply these algorithms can be found in rele-

vant literature (Searle et al., 2006; Wu and Zhang, 2006; Bates et al., 2015). If the estimated

variance components are indefinite, the Minimum Norm Quadratic Estimation (MINQE)

can be invoked (Rao and Kleffe, 1988). The iterative procedures based on MME are also

summarized in Appendix A.2. Once we obtain the point estimates of D̃ and R, ˆ̃D and R̂

as denoted above, then we estimate V using V̂ = Z ˆ̃DZT + R̂.
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2.2.2.2 Semi-parametric shape-restricted mixed effects regression spline model

In semi-parametric shape-restricted mixed effects regression spline model, we use a two-

step approach to estimate parameters. In the first step, we obtain unconstrained estimates

for all parameters of the linear mixed model using the algorithms described in Section 2.2.2.1.

We then project the unconstrained estimates of βIS or βCS, denoted as β̂IS or β̂CS respec-

tively, onto the suitable cone of constraints of our interest in the second step, i.e. for

monotonicity,

β̃IS = arg minβIS∈Oi(βIS − β̂IS)TCOV (β̂IS)−1(βIS − β̂IS), i = 1, 2, (2.2.6)

and for convexity,

β̃CS = arg minβCS∈Oi(βCS − β̂CS)TCOV (β̂CS)−1(βCS − β̂CS), i = 3, 4, (2.2.7)

where O1 and O3 are the non-negative orthants and O2 and O4 are the non-positive orthants,

and if COV (β̂IS) or COV (β̂CS) is unknown, which typically is the case in applications,

we shall use the corresponding estimators, namely, ̂COV (β̂IS) or ̂COV (β̂CS) respectively.

Lastly, we combine the original estimates of βIF or βCF and the updated estimates of βIS or

βCS to get the final estimates of the fixed effect parameters. The projection step is developed

based on Fact 1.2.1 and Fact 1.2.2 in Section 1.2 and used for deriving the asymptotic

distribution of test statistics described in the following section (Section 2.2.3).

2.2.3 Testing for shape

The ultimate goal of the method is to test the null hypothesis of constant function against

the alternative that there is an underlying shape and classify the underlying shape into a

reasonable category. Since the shape of the functional relationship is unknown a priori

except that it might be monotonic or convex/concave, we formulate four tests with the same

form of test statistic to perform the hypothesis testing and apply Holm-Bonferroni method

to implement a multiple testing procedure in order to select the most reasonable underlying

pattern.
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The hypotheses are

H0i : βi = 0 vs Hai : βi ∈ Oi, i = 1, 2, 3, 4, (2.2.8)

where β1 and β2 are the fixed effects vectors corresponding to the quadratic I-spline basis

functions βIS. Similarly, β3 and β4 are the fixed effects vectors corresponding to the cubic

C-spline basis functions βCS. Lastly, O1 and O3 are the non-negative orthants, i.e. {β ∈

Rp : β ≥ 0}, and O2 and O4 are the non-positive orthants, i.e. {β ∈ Rp : β ≤ 0}.

The test statistics associated with the hypotheses are

Ti =
β̂Ti Σ−1

i β̂i −minβi∈Oi(βi − β̂i)TΣ−1
i (βi − β̂i)

β̂Ti Σ−1
i β̂i

, i = 1, 2, 3, 4, (2.2.9)

where Σi = COV (β̂i), and if COV (β̂i) is unknown, we will use its estimate ̂COV (β̂i) and

accordingly denote the above test statistic by T̂i. We assume that ̂COV (β̂i) is a consistent

estimator of COV (β̂i).

Theorem 2.2.1. Suppose βi is a p-dimensional vector. If Σi is known, then P (Ti ≤ c|H0i) =∑p
j=0 wj(p,Σi,R+p)P (Beta( j

2
, p−j

2
) ≤ c) and if Σi is unknown, then P (T̂i ≤ c|H0i)

asymp.
=∑p

j=0 wj(p,Σi,R+p)P (Beta( j
2
, p−j

2
) ≤ c), where wj(p,Σi,R+p) are non-negative weights and∑p

j=0 wj(p,Σi,R+p) = 1.

Proof. In the proof, the semi-parametric shape-restricted mixed effects regression spline

model will be expressed as y = XSβS +XFβF +Zb+ ε for both monotonicity and convexity.

In linear mixed model, we have β̂ ∼ N(β, (XTV −1X)−1), so
(
β̂S
β̂F

)
∼ N(

(
βS
βF

)
,
(

ΣS ΣSF
ΣSF ΣF

)
),

where
(

ΣS ΣSF
ΣSF ΣF

)
= (XTV −1X)−1. Therefore, β̂S ∼ N(βS,ΣS).

Let β̃1
S = ΠΣS(β̂S|R+p) = arg minβS∈R+p(βS − β̂S)TΣ−1

S (βS − β̂S) and β̃0
S = ΠΣS(β̂S|0) =

arg minβS=0(βS − β̂S)TΣ−1
S (βS − β̂S). Then,

T =
β̂TSΣ−1

S β̂S −minβS∈R+p(βS − β̂S)TΣ−1
S (βS − β̂S)

β̂TSΣ−1
S β̂S

=
||β̂S − ΠΣS(β̂S|0)||2ΣS − ||β̂S − ΠΣS(β̂S|R+p)||2ΣS

||β̂S − ΠΣS(β̂S|0)||2ΣS
.
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Since β̂S−ΠΣS(β̂S|R+p) ⊥ ΠΣS(β̂S|R+p)−ΠΣS(β̂S|0) (Silvapulle and Sen, 2005, Proposi-

tion 3.6.1), ||β̂S −ΠΣS(β̂S|0)||2ΣS − ||β̂S −ΠΣS(β̂S|R+p)||2ΣS = ||ΠΣS(β̂S|R+p)−ΠΣS(β̂S|0)||2ΣS .

Thus,

T =
||ΠΣS(β̂S|R+p)− ΠΣS(β̂S|0)||2ΣS

||ΠΣS(β̂S|R+p)− ΠΣS(β̂S|0)||2ΣS + ||β̂S − ΠΣS(β̂S|R+p)||2ΣS

=
||β̃1

S − β̃0
S||2ΣS

||β̃1
S − β̃0

S||2ΣS + ||β̂S − β̃1
S||2ΣS

=
||β̃1

S||2ΣS
||β̃1

S||2ΣS + ||β̂S − β̃1
S||2ΣS

.

Suppose ΠΣS(β̂S|R+p ∩ 0⊥) ∈ ri(F ) for some F ∈ {F1, ..., Fk}, where ri(F ) represents

the relative interior of F and dim(ri(F )) = j. Then ||β̃1
S||2ΣS = ||ΠΣS(β̂S|R+p)||2ΣS =

||ΠΣS(β̂S|R+p) − ΠΣS(β̂S|0)||2ΣS
H0∼ χ2

j . Since ||ΠΣS(β̂S|R+p) − ΠΣS(β̂S|0)||2ΣS
H0∼ χ2

j , ||β̂S −

ΠΣS(β̂S|0)||2ΣS = ||β̂S||2ΣS
H0∼ χ2

p, and β̂S − ΠΣS(β̂S|R+p) ⊥ ΠΣS(β̂S|R+p) − ΠΣS(β̂S|0), then

||β̂S − β̃1
S||2ΣS = ||β̂S − ΠΣS(β̂S|R+p)||2ΣS

H0∼ χ2
p−j. Therefore,

T
H0∼ Beta(

j

2
,
p− j

2
).

Finally,

P (T ≤ c|H0) =
∑
i

P (T ≤ c|ΠΣS(β̂S|R+p ∩ 0⊥) ∈ ri(Fi))×

P (ΠΣS(β̂S|R+p ∩ 0⊥) ∈ ri(Fi))

=

p∑
j=0

wj(p,ΣS,R+p)P (Beta(
j

2
,
p− j

2
) ≤ c).

For the test statistic for non-positive orthant, since R−p = {β ∈ Rp : Rβ ≥ 0}, where R

is a p × p diagonal matrix with Rii = −1 if βi ≤ 0 and Rii = 1 if βi > 0, wj(p,ΣS,R−p) =

wj(p,RΣSR
T ,R+p) = wj(p,ΣS,R+p) (Silvapulle and Sen, 2005, Proposition 3.6.1). Thus,

the null distribution of the test statistic for non-positive orthant will be the same as that of

the test statistic for non-negative orthant.

If V is unknown, then we will use the maximum likelihood estimator of V , V̂ . Because

V̂ is the maximum likelihood estimator of V , under suitable regularity conditions, by the
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consistency property of the maximum likelihood estimator, V̂
p→ V . Therefore, accord-

ing to continuous mapping theorem, (XT V̂ −1X)−1 p→ (XTV −1X)−1 and Σ̂S
p→ ΣS. Since

β̂S
d→ N(βS,ΣS) and Σ̂S

p→ ΣS, by continuous mapping theorem and Slutsky’s theorem,

||ΠΣS(β̂S|R+p) − ΠΣS(β̂S|0)||2ΣS
d→ χ2

j under H0 and ||β̂S − ΠΣS(β̂S|R+p)||2ΣS
d→ χ2

p−j under

H0. Therefore,

T̂
d→ Beta(

j

2
,
p− j

2
) under H0,

and

P (T̂ ≤ c|H0)
asymp.

=

p∑
j=0

wj(p,ΣS,R+p)P (Beta(
j

2
,
p− j

2
) ≤ c).

If Σi is known, then the test statistic Ti under null hypothesis H0i follows a beta-bar

distribution. An example of beta-bar density is shown in Figure 2.2.1, where the beta-bar is

0.2462×Beta(0, 2.5)+0.4415×Beta(0.5, 2)+0.2524×Beta(1, 1.5)+0.0559×Beta(1.5, 1)+

0.0040×Beta(2, 0.5)+0.0000×Beta(2.5, 0). In order to obtain the p-value from null distribu-

tion, we need to calculate the beta-bar weights. According to Silvapulle and Sen (2005), the

exact computation of beta-bar weights is quite difficult. However, because of the fact that

the beta-bar weight wj(p,Σi,R+p) equals the probability of ΠΣi(β̂i|R+p) has exactly j posi-

tive components, where β̂i ∼ N(0,Σi) and ΠΣi(β̂i|R+p) = arg minβi∈R+p(βi−β̂i)TΣ−1
i (βi−β̂i)

(Silvapulle and Sen, 2005, Proposition 3.6.1), the weights can be approximated by simula-

tion. The simulation steps of beta-bar weights are summarized in Appendix A.3. If Σi is

unknown, then the test statistic T̂i under null hypothesis H0i follows a beta-bar distribution

asymptotically. When we simulate the beta-bar weights, we can use Σ̂i, the estimate of Σi,

instead of Σi. If Σi is unknown, we can also adopt residual bootstrap method to simulate the

null distribution of the test statistic T̂i and obtain the p-value (Farnan et al., 2014). As in

Farnan et al. (2014), we shall bootstrap the BLUP and residuals. The details of family-wise

error rate and power simulations using residual bootstrap method are described in Appendix

A.4 and A.5.
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Figure 2.2.1: Probability density functions of beta and beta-bar distributions

2.2.4 Shape detection

After obtaining the p-values from those four tests, we shall apply Holm-Bonferroni

method (Holm, 1979) to perform multiple testing of the four hypotheses. To begin with, we

sort the p-values in ascending order, i.e. p(1) ≤ p(2) ≤ p(3) ≤ p(4), and then compare the

p-values with the corresponding significance levels, i.e. α(1) = α
4
≤ α(2) = α

3
≤ α(3) = α

2
≤

α(4) = α. The decisions of rejections are made sequentially. If p(1) ≤ α(1), then we reject the

corresponding null hypothesis H0(1) and go to next step; otherwise, we stop and reject none

of the null hypotheses. If H0(1) is rejected and p(2) ≤ α(2), then we reject the corresponding

null hypothesis H0(2) and go to next step; otherwise, we stop and only reject H0(1). If H0(1)

and H0(2) are rejected and p(3) ≤ α(3), then we reject the corresponding null hypothesis H0(3)
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and go to next step; otherwise, we stop and only reject H0(1) and H0(2). If H0(1), H0(2) and

H0(3) are rejected and p(4) ≤ α(4), then we reject the corresponding null hypothesis H0(4) and

stop; otherwise, we only reject H0(1), H0(2) and H0(3).

Depending upon the rejections by using the above decision rules, we make decisions

regarding the shape as described in Table 2.2.1. Different shapes are shown in Figure 2.2.2.

Table 2.2.1: Decision making on shape category

Null Hypothesis/Hypotheses Rejected Shape Category Shape Number

H01 Increasing 1○

H02 Decreasing 2○

H03 Convex 3○

H04 Concave 4○

H01 and H03 Convex with Increasing Trend 5○

H01 and H04 Concave with Increasing Trend 6○

H02 and H03 Convex with Decreasing Trend 7○

H02 and H04 Concave with Decreasing Trend 8○

2.2.5 Remarks

As noted in Hwang and Peddada (1994), since the cones of interest are polyhedral cones,

the projected vector performs better than the unrestricted vector. In our method, the test

statistics are based on the entire vector. Therefore, the proposed tests are expected to

have higher power than tests using the unrestricted vector. However, if one is interested in

any individual component, then the projected estimator may potentially have zero cover-

age probability as the dimension increases. In such cases, some other strategies should be

introduced.

21



1○ Increasing 2○ Decreasing 3○ Convex 4○ Concave

5○ Convex with

Increasing Trend

6○ Concave with

Increasing Trend

7○ Convex with

Decreasing Trend

8○ Concave with

Decreasing Trend

Figure 2.2.2: Figures of different shapes

2.3 Simulation

We create a data set similar to a prenatal screening program data set. The data set con-

tained 245 observations and consisted of 8 fixed effects (X): hormone, age, inverse maternal

weight, race, season of blood draw, smoking status, ovum donor status and pre-existing

diabetes status, and 1 random effect, namely, geographic location as measured by zip code

(Z). We created 5 geographic locations with sizes 45, 55, 50, 45 and 50 respectively. The co-

variates for each location were created as follows: (1) hormone (Gestational Age-Multiple of

Median): randomly sampled from a normal distribution with mean 0 and variance 4, (2) age

(years): randomly sampled from 18 to 40 with an increment 0.5, (3) inverse maternal weight:

randomly sampled from 2 to 14.3 with an increment 0.1, (4) race: randomly sampled from
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1 to 5 with probabilities 0.46, 0.28, 0.13, 0.1 and 0.03, (5) season of blood draw: randomly

sampled from 1 to 4 with the same probability, (6) smoking status: randomly sampled from

a binomial distribution with success probability 0.25, (7) ovum donor status: randomly sam-

pled from a binomial distribution with success probability 0.15 and (8) pre-existing diabetes

status: randomly sampled from a binomial distribution with success probability 0.2.

For monotonicity assumption, XIF contains age, inverse maternal weight, race, season of

blood draw, smoking status, ovum donor status and pre-existing diabetes status, and XIS

contains the quadratic I-spline bases generated from hormone. For convexity assumption,

XCF contains hormone, age, inverse maternal weight, race, season of blood draw, smoking

status, ovum donor status and pre-existing diabetes status, and XCS contains the cubic

C-spline bases generated from hormone.

2.3.1 Family-wise error rate

For both monotonicity and convexity assumptions, bI and bC are drawn from N(0, 102),

N(0, 152) and N(0, 202), εI and εC are drawn from N(0, 102), N(0, 152) and N(0, 202), and

the number of internal knots is set to 4. In total, we performed three types of simulations

to describe family-wise error rate under the global null. We considered (1) Ti, whose null

distribution is the simulated beta-bar distribution (1000 iterations for data and 10000 iter-

ations for the beta-bar weight), (2) T̂i, whose null distribution is the asymptotic beta-bar

distribution (500 iterations for data and 5000 iterations for the beta-bar weight), and (3)

T̂i, whose null distribution is simulated using residual bootstrap method (400 iterations for

data and 500 iterations for the bootstrap samples). The simulated family-wise error rates

are shown in Table 2.3.1.

According to the results in Table 2.3.1, under each type of simulation, our methodology

controls the family-wise error rate reasonably. In reality, the variances are unknown, so

we need to simulate the null distributions using either the estimated variances or residual

bootstrap method.
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Table 2.3.1: Family-wise error rate simulation results

Variance Family-Wise Error Rate

Variance of b Variance of ε

Family-Wise

Error Rate

under Simulation

Type (1)

Family-Wise

Error Rate

under Simulation

Type (2)

Family-Wise

Error Rate

under Simulation

Type (3) with

Asymptotic 95% C.I.

102 102 0.053 0.060 0.065 (0.041, 0.089)

102 152 0.043 0.056 0.063 (0.039, 0.086)

102 202 0.048 0.052 0.048 (0.027, 0.068)

152 102 0.045 0.054 0.065 (0.041, 0.089)

152 152 0.048 0.048 0.035 (0.017, 0.053)

152 202 0.050 0.056 0.068 (0.043, 0.092)

202 102 0.050 0.050 0.058 (0.035, 0.080)

202 152 0.054 0.052 0.048 (0.027, 0.068)

202 202 0.037 0.044 0.060 (0.037, 0.083)
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2.3.2 Power

For power simulation, we consider 8 cases out of 16 (see Figure 2.2.2) because other 8 cases

can be treated as “complementary” cases. The functions of the main effect of the 8 cases that

we consider were f(x) = 5.5x+ 70 (shape 1), f(x) = 50 e1.2x

2+e1.2x
+ 50 (shape 2), f(x) = (2x

3
)3 +

x
2
+50 (shape 3), f(x) = −ex−100x2

50
+100 (shape 10), f(x) = 300 ln(−ex/2+x+40)−1000 (shape

11), f(x) = 70 ln(−e−x/2−x+10)−60 (shape 12), f(x) = −1.2(x−2)2 +100 (shape 14), and

f(x) = −1.2(x+ 1.5)2 + 100 (shape 16). For both monotonicity and convexity, bI and bC are

drawn from N(0, 102), N(0, 152) and N(0, 202), εI and εC are drawn from N(0, 102), N(0, 152)

and N(0, 202), and the number of internal knots is set to 4. We performed simulations using a

variety of shapes for the response function. The null distribution of test statistic was derived

using (a) simulations, and (b) residual bootstrap. The simulated powers are summarized in

Table 2.3.2 to Table 2.3.9 (the power curves can be found in Appendix A.6).

According to the results in Table 2.3.2 to Table 2.3.9, the powers are relatively large

in all 8 cases when the variance of ε is relatively small. As expected, as the variance of ε

increases, the powers decrease, especially for shapes 3, 14 and 16. As the error variance,

i.e. variance of ε, increases, for shape 3 the methodology is prone to detect the shape to be

flat. For shape 14, the method is more likely to declare it to be either increasing or concave

shape. For shape 16, the method is more likely to declare the shape as either decreasing or

concave shape.

2.4 Discussion

We adopted ideas from Ramsay that the linear combination of quadratic I-spline basis

functions yields monotonicity, and from Meyer that linear combination of cubic C-spline

basis functions yields convexity. We applied these ideas to linear mixed models to account

for random effects. Using this framework, we developed a methodology to identify different

shapes of relationships between a response variable and a predictor of interest. The shapes

considered were increasing, decreasing, convex and concave shapes. Our simulation study
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Table 2.3.2: Power simulation results for shape 1 (f(x) = 5.5x+ 70)

Variance Power under Simulation Type (a)

Variance of b Variance of ε Shape Number

1○ 2○ 3○ 4○ 5○ 6○ 7○ 8○

102 102 0.976 0 0 0 0.012 0.012 0 0

102 152 0.957 0 0 0 0.013 0.02 0 0

102 202 0.87 0 0 0 0.017 0.017 0 0

152 102 0.975 0 0 0 0.015 0.01 0 0

152 152 0.949 0 0 0 0.019 0.021 0 0

152 202 0.893 0 0 0 0.018 0.023 0 0

202 102 0.961 0 0 0 0.019 0.02 0 0

202 152 0.956 0 0 0.001 0.024 0.011 0 0

202 202 0.884 0 0 0.001 0.017 0.017 0 0

Variance Power under Simulation Type (b)

Variance of b Variance of ε Shape Number

1○ 2○ 3○ 4○ 5○ 6○ 7○ 8○

102 102 0.965 0 0 0 0.015 0.02 0 0

102 152 0.933 0 0 0 0.028 0.023 0 0

102 202 0.87 0 0 0 0.023 0.018 0 0

152 102 0.97 0 0 0 0.023 0.008 0 0

152 152 0.963 0 0 0 0.015 0.008 0 0

152 202 0.888 0 0 0.003 0.025 0.015 0 0

202 102 0.97 0 0 0 0.015 0.015 0 0

202 152 0.94 0 0 0 0.028 0.015 0 0

202 202 0.905 0 0 0 0.018 0.008 0 0
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Table 2.3.3: Power simulation results for shape 2 (f(x) = 50 e1.2x

2+e1.2x
+ 50)

Variance Power under Simulation Type (a)

Variance of b Variance of ε Shape Number

1○ 2○ 3○ 4○ 5○ 6○ 7○ 8○

102 102 1 0 0 0 0 0 0 0

102 152 0.991 0 0 0 0.004 0 0 0

102 202 0.947 0 0 0 0.011 0 0 0

152 102 1 0 0 0 0 0 0 0

152 152 0.991 0 0 0 0.005 0 0 0

152 202 0.965 0 0 0 0.011 0 0 0

202 102 0.998 0 0 0 0.002 0 0 0

202 152 0.988 0 0 0 0.008 0 0 0

202 202 0.95 0 0 0 0.01 0 0 0

Variance Power under Simulation Type (b)

Variance of b Variance of ε Shape Number

1○ 2○ 3○ 4○ 5○ 6○ 7○ 8○

102 102 1 0 0 0 0 0 0 0

102 152 0.98 0 0 0 0.008 0 0 0

102 202 0.955 0 0 0 0.018 0 0 0

152 102 1 0 0 0 0 0 0 0

152 152 0.98 0 0 0 0.008 0 0 0

152 202 0.953 0 0 0 0.013 0 0 0

202 102 0.998 0 0 0 0 0 0 0

202 152 0.995 0 0 0 0 0 0 0

202 202 0.96 0 0 0 0.008 0 0 0
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Table 2.3.4: Power simulation results for shape 3 (f(x) = (2x
3

)3 + x
2

+ 50)

Variance Power under Simulation Type (a)

Variance of b Variance of ε Shape Number

1○ 2○ 3○ 4○ 5○ 6○ 7○ 8○

102 102 0.767 0 0 0 0.009 0 0 0

102 152 0.562 0 0 0 0.014 0 0 0

102 202 0.407 0 0.003 0 0.021 0 0 0

152 102 0.774 0 0 0 0.005 0 0 0

152 152 0.619 0 0 0 0.016 0 0 0

152 202 0.44 0 0.001 0 0.031 0.002 0 0

202 102 0.748 0 0 0 0.007 0 0 0

202 152 0.553 0 0 0 0.018 0 0 0

202 202 0.443 0 0.001 0 0.02 0 0 0

Variance Power under Simulation Type (b)

Variance of b Variance of ε Shape Number

1○ 2○ 3○ 4○ 5○ 6○ 7○ 8○

102 102 0.76 0 0 0 0.003 0 0 0

102 152 0.62 0 0 0 0.02 0 0 0

102 202 0.46 0 0 0 0.023 0 0 0

152 102 0.823 0 0 0 0.005 0 0 0

152 152 0.618 0 0.003 0 0.023 0 0 0

152 202 0.46 0 0.003 0 0.018 0.005 0 0

202 102 0.748 0 0 0 0.008 0 0 0

202 152 0.575 0 0.005 0 0.018 0 0 0

202 202 0.505 0 0.003 0 0.028 0 0 0
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Table 2.3.5: Power simulation results for shape 10 (f(x) = −ex−100x2

50
+ 100)

Variance Power under Simulation Type (a)

Variance of b Variance of ε Shape Number

1○ 2○ 3○ 4○ 5○ 6○ 7○ 8○

102 102 0 0 0 1 0 0 0 0

102 152 0 0 0 0.985 0 0 0 0.001

102 202 0 0 0 0.895 0 0 0 0

152 102 0 0 0 1 0 0 0 0

152 152 0 0 0 0.982 0 0 0 0

152 202 0 0 0 0.92 0 0 0 0

202 102 0 0 0 1 0 0 0 0

202 152 0 0 0 0.982 0 0 0 0

202 202 0 0 0 0.904 0 0 0 0.001

Variance Power under Simulation Type (b)

Variance of b Variance of ε Shape Number

1○ 2○ 3○ 4○ 5○ 6○ 7○ 8○

102 102 0 0 0 0.998 0 0 0 0

102 152 0 0 0 0.97 0 0 0 0

102 202 0 0 0 0.873 0 0 0 0.003

152 102 0 0 0 0.995 0 0 0 0

152 152 0 0 0 0.963 0 0 0 0

152 202 0 0 0 0.85 0 0 0 0

202 102 0 0 0 0.993 0 0 0 0

202 152 0 0 0 0.938 0 0 0 0

202 202 0 0 0 0.82 0 0 0 0
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Table 2.3.6: Power simulation results for shape 11 (f(x) = 300 ln(−ex/2 + x+ 40)− 1000)

Variance Power under Simulation Type (a)

Variance of b Variance of ε Shape Number

1○ 2○ 3○ 4○ 5○ 6○ 7○ 8○

102 102 0 0 0 1 0 0 0 0

102 152 0 0 0 0.978 0 0 0 0

102 202 0 0 0 0.883 0 0 0 0

152 102 0 0 0 1 0 0 0 0

152 152 0 0 0 0.971 0 0 0 0

152 202 0 0 0 0.899 0 0 0 0

202 102 0 0 0 1 0 0 0 0

202 152 0 0 0 0.973 0 0 0 0

202 202 0 0 0 0.891 0 0 0 0

Variance Power under Simulation Type (b)

Variance of b Variance of ε Shape Number

1○ 2○ 3○ 4○ 5○ 6○ 7○ 8○

102 102 0 0 0 0.995 0 0 0 0

102 152 0 0 0 0.93 0 0 0 0

102 202 0 0 0 0.763 0 0 0 0

152 102 0 0 0 0.995 0 0 0 0

152 152 0 0 0 0.91 0 0 0 0

152 202 0 0 0 0.775 0 0.003 0 0

202 102 0 0 0 0.988 0 0 0 0

202 152 0 0 0 0.89 0 0 0 0

202 202 0 0 0 0.803 0 0 0 0
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Table 2.3.7: Power simulation results for shape 12 (f(x) = 70 ln(−e−x/2 − x+ 10)− 60)

Variance Power under Simulation Type (a)

Variance of b Variance of ε Shape Number

1○ 2○ 3○ 4○ 5○ 6○ 7○ 8○

102 102 0 0 0 0.999 0 0 0 0

102 152 0 0 0 0.954 0 0 0 0

102 202 0 0 0 0.845 0 0 0 0

152 102 0 0 0 0.997 0 0 0 0

152 152 0 0 0 0.959 0 0 0 0

152 202 0 0 0 0.87 0 0 0 0

202 102 0 0 0 0.999 0 0 0 0

202 152 0 0 0 0.971 0 0 0 0

202 202 0 0 0 0.829 0 0 0 0

Variance Power under Simulation Type (b)

Variance of b Variance of ε Shape Number

1○ 2○ 3○ 4○ 5○ 6○ 7○ 8○

102 102 0 0 0 0.99 0 0 0 0

102 152 0 0 0 0.93 0 0 0 0

102 202 0 0 0 0.773 0 0 0 0

152 102 0 0 0 1 0 0 0 0

152 152 0 0 0 0.945 0 0 0 0

152 202 0 0 0 0.808 0 0 0 0

202 102 0 0 0 0.993 0 0 0 0

202 152 0 0 0 0.928 0 0 0 0

202 202 0 0 0 0.788 0 0 0 0
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Table 2.3.8: Power simulation results for shape 14 (f(x) = −1.2(x− 2)2 + 100)

Variance Power under Simulation Type (a)

Variance of b Variance of ε Shape Number

1○ 2○ 3○ 4○ 5○ 6○ 7○ 8○

102 102 0.013 0 0 0.138 0 0.835 0 0

102 152 0.09 0 0 0.239 0 0.545 0 0

102 202 0.16 0 0 0.277 0 0.31 0 0

152 102 0.031 0 0 0.14 0 0.813 0 0

152 152 0.11 0 0 0.212 0 0.584 0 0

152 202 0.161 0 0 0.268 0 0.309 0 0

202 102 0.015 0 0 0.173 0 0.798 0 0

202 152 0.101 0 0 0.255 0 0.532 0 0

202 202 0.18 0 0 0.264 0 0.312 0 0

Variance Power under Simulation Type (b)

Variance of b Variance of ε Shape Number

1○ 2○ 3○ 4○ 5○ 6○ 7○ 8○

102 102 0.023 0 0 0.13 0 0.84 0 0

102 152 0.103 0 0 0.208 0 0.585 0 0

102 202 0.183 0 0 0.235 0 0.345 0 0

152 102 0.033 0 0 0.155 0 0.795 0 0

152 152 0.1 0 0 0.238 0 0.575 0 0

152 202 0.163 0 0 0.263 0 0.345 0 0

202 102 0.023 0 0 0.158 0 0.798 0 0

202 152 0.115 0 0 0.233 0 0.545 0 0

202 202 0.173 0 0 0.285 0 0.328 0 0
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Table 2.3.9: Power simulation results for shape 16 (f(x) = −1.2(x+ 1.5)2 + 100)

Variance Power under Simulation Type (a)

Variance of b Variance of ε Shape Number

1○ 2○ 3○ 4○ 5○ 6○ 7○ 8○

102 102 0 0.018 0 0.079 0 0 0 0.896

102 152 0 0.14 0 0.189 0 0 0 0.609

102 202 0 0.2 0 0.186 0 0 0 0.412

152 102 0 0.034 0 0.079 0 0 0 0.88

152 152 0 0.137 0 0.131 0 0 0 0.675

152 202 0 0.242 0 0.189 0 0 0 0.401

202 102 0 0.021 0 0.061 0 0 0 0.907

202 152 0 0.125 0 0.159 0 0 0 0.641

202 202 0 0.216 0 0.16 0 0 0 0.433

Variance Power under Simulation Type (b)

Variance of b Variance of ε Shape Number

1○ 2○ 3○ 4○ 5○ 6○ 7○ 8○

102 102 0 0.02 0 0.085 0 0 0 0.883

102 152 0 0.123 0 0.173 0 0 0 0.618

102 202 0 0.205 0 0.168 0 0 0 0.428

152 102 0 0.035 0 0.088 0 0 0 0.863

152 152 0 0.133 0 0.173 0 0 0 0.65

152 202 0 0.233 0 0.218 0 0 0 0.403

202 102 0 0.028 0 0.063 0 0 0 0.905

202 152 0 0.138 0 0.173 0 0 0 0.61

202 202 0 0.22 0 0.188 0 0 0 0.433
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suggests that the proposed methodology controls the family-wise error rate while maintaining

good power in detecting the correct shape of the response curve. By applying the method

to the real data, researchers may gain insight into specific biological mechanisms.

The method aims to add shape restriction on the mean effect but not on the individual

effect. Hence, the method is applicable if researchers are interested in population-level

inference. However, if researchers are interested in making inferences or predictions at the

individual- or cluster-level, then the methodology needs to be modified for individual- or

cluster-level shape restrictions. The estimation procedure can also be improved through

iteratively projecting the estimated parameters β̂IS/β̂CS onto a closed orthant in the iterative

algorithm and updating the variance accordingly. The simulation study in this chapter is

based on small number of knots. The parameter estimation and the power of the test may

be influenced by the number of knots and the placement of knots. Researchers can further

explore how the number of knots and the placement of knots will influence the analysis.
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3.0 Mediation Analysis using Semi-parametric Shape-Restricted Regression

Spline

3.1 Introduction

Researchers often build models to analyze the relationship between an exposure and a

potential outcome caused by the exposure. In some cases, the exposure has direct effect on

the outcome. For example, some studies showed that the maternal obesity, characterized

by high circulating glucose, fatty acids, etc., has negative impact on offspring’s metabolic

and cardiovascular functions (Gillman et al., 2003; Drake and Reynolds, 2010). In some

other cases, the exposure may not directly lead to the outcome, but instead, it induces the

outcome through a process. For example, some studies showed that phthalates, chemicals

used in plastics, have impact on placental biomarkers, such as human chorionic gonadotropin

(hCG), and further influence offspring’s brain development (Adibi et al., 2015, 2021b). Me-

diation analysis is designed to explain the causal relationship between the exposure and the

outcome by examining the intermediate stage, which helps researchers understand the path-

way whereby the exposure affects the outcome. When performing the mediation analysis,

researchers often build two models simultaneously - the exposure-mediator model and the

exposure-outcome model. In regression-based mediation analysis, if the assumptions hold

and the models are correctly specified, different effects, including the controlled direct effect,

the natural direct effect and the natural indirect effect, can be estimated through combin-

ing the estimated parameters, and the associated variances can be obtained by applying

delta method. In the circumstance that the relationship between the mediator and the out-

come is curvilinear, in order to reduce the bias introduced by model misspecification, the

exposure-outcome model should be modeled using nonparametric techniques.

In this chapter, we build the exposure-outcome model using semi-parametric shape-

restricted regression spline, estimate the direct and indirect effects analytically, and obtain

the asymptotic confidence intervals of those effects by applying delta method. The regression

spline is built using quadratic I-spline and cubic C-spline because of the two facts described
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in introduction (Section 1.2): (1) a linear combination of quadratic I-spline basis functions

is increasing if and only if the coefficients are positive, and (2) a linear combination of

cubic C-spline basis functions is convex if and only if the coefficients are positive. The

estimation of the coefficients in exposure-outcome model follows the logic of method proposed

by Meyer (Meyer, 2018), and since the model involves with the factor-by-curve interaction,

the estimation procedure is slightly extended. Once the exposure-outcome and exposure-

mediator models are established, the effects as well as their asymptotic variances can be

obtained analytically.

3.2 Methodology

3.2.1 Model setup

3.2.1.1 Basic exposure-outcome and exposure-mediator models

Let Y be the continuous outcome, A be the binary exposure, M be the continuous

mediator, and C be the confounding variable. Suppose the interaction between exposure

and mediator exists, and the relationships between mediator and outcome in both exposure

and non-exposure groups are curvilinear and known to be increasing, decreasing, convex or

concave. The exposure-outcome model will be

Y = β0 + β1A+ f1(M)A+ f2(M)(1− A) + β4C + ε1, (3.2.1)

where f1(M) is the curve of the mediator for the exposure group, f2(M) is the curve of the

mediator for the non-exposure group, and ε1 ∼ N(0, σ2
1), and the exposure-mediator model

will be

M = γ0 + γ1A+ γ2C + ε2, (3.2.2)

where ε2 ∼ N(0, σ2
2).
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3.2.1.2 Specified exposure-outcome model using I-splines and C-splines

In model (3.2.1), if f1(M) is fitted using the quadratic I-splines, then

f1(M) = β21I1(M |2, t) + ...+ β2kIk(M |2, t),

and if f1(M) is fitted using the cubic C-splines, then

f1(M) = β20M + β21C1(M |2, t) + ...+ β2kCk(M |2, t);

if f2(M) is fitted using the quadratic I-splines, then

f2(M) = β31I1(M |2, t) + ...+ β3kIk(M |2, t),

and if f2(M) is fitted using the cubic C-splines, then

f2(M) = β30M + β31C1(M |2, t) + ...+ β3kCk(M |2, t).

In specific, we can fit the following four models depending upon the assumptions on the

shapes of f1(M) and f2(M).

Let IS = [I1(M |2, t), ..., Ik(M |2, t)] and CS = [M,C1(M |2, t), ..., Ck(M |2, t)]. If f1(M)

and f2(M) are assumed to be increasing or decreasing, then they should be fitted using

I-splines, and model (3.2.1) will be expressed as

Y = [1, A, IS • A, IS • (1− A), C]× [β0, β1, β2, β3, β4]T + ε1; (3.2.3)

if f1(M) and f2(M) are assumed to be convex or concave, then they should be fitted using

C-splines, and model (3.2.1) will be expressed as

Y = [1, A, CS • A,CS • (1− A), C]× [β0, β1, β2, β3, β4]T + ε1; (3.2.4)

if f1(M) is assumed to be increasing or decreasing and f2(M) is assumed to be convex

or concave, then f1(M) should be fitted using I-splines and f2(M) should be fitted using

C-splines, and model (3.2.1) will be expressed as

Y = [1, A, IS • A,CS • (1− A), C]× [β0, β1, β2, β3, β4]T + ε1; (3.2.5)
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if f1(M) is assumed to be convex or concave and f2(M) is assumed to be increasing or

decreasing, then f1(M) should be fitted using C-splines and f2(M) should be fitted using

I-splines, and model (3.2.1) will be expressed as

Y = [1, A, CS • A, IS • (1− A), C]× [β0, β1, β2, β3, β4]T + ε1. (3.2.6)

In the formulations above, β2 = [β21, ..., β2k] if the corresponding matrix is IS • A,

or β2 = [β20, β21, ..., β2k] if the corresponding matrix is CS • A; β3 = [β31, ..., β3k] if the

corresponding matrix is IS • (1−A), or β3 = [β30, β31, ..., β3k] if the corresponding matrix is

CS • (1− A). The symbol “•” denotes the face-splitting product.

3.2.2 Estimation and inference

3.2.2.1 Parameter estimation of exposure-outcome and exposure-mediator mod-

els

The parameter estimation procedure of model (3.2.1) follows the logic of method proposed

by Meyer (Meyer, 2018), and we slightly extend Meyer’s method by including the factor-by-

curve interaction. In order to proceed with the estimation, we need to specify the matrices

W0, W and Z for each of the models (3.2.3), (3.2.4), (3.2.5), and (3.2.6).

Let CS = [CS1, CS2], where CS1 = M and CS2 = [C1(M |2, t), ..., Ck(M |2, t)]. For

model (3.2.3),

W0 = [1],W = [A,C], Z1 = [IS • A], Z0 = [IS • (1− A)] and Z = [Z1, Z0]; (3.2.7)

for model (3.2.4),

W0 = [1, CS1•A,CS1•(1−A)],W = [A,C], Z1 = [CS2•A], Z0 = [CS2•(1−A)] and Z = [Z1, Z0];

(3.2.8)

for model (3.2.5),

W0 = [1, CS1 • (1− A)],W = [A,C], Z1 = [IS • A], Z0 = [CS2 • (1− A)] and Z = [Z1, Z0];

(3.2.9)

38



for model (3.2.6),

W0 = [1, CS1•A],W = [A,C], Z1 = [CS2•A], Z0 = [IS•(1−A)] and Z = [Z1, Z0]. (3.2.10)

Following Meyer’s method, we let V = [W0,W ], and ∆ = (I − PV )Z. The projection

matrix I − PV = I − V (V TV )−1V T projects Z onto the null space of V T , N(V T ). Using

hinge algorithm (see Appendix B.1) for cone projection (Meyer, 2013), a subset of columns

of ∆ can be determined. We then keep the corresponding columns of Z and estimate the

parameters in model (3.2.1) using ordinary least squares. The parameters corresponding to

the eliminated columns of Z are estimated as 0’s. During the process of hinge algorithm for

cone projection, if the signs of coefficients for the exposure or non-exposure group splines

are assumed to be non-positive, i.e., the curve is assumed to be decreasing or concave, then

we will use [1− I1(M |2, t), ..., 1− Ik(M |2, t)] or [1−C1(M |2, t), ..., 1−Ck(M |2, t)] instead of

[I1(M |2, t), ..., Ik(M |2, t)] or [C1(M |2, t), ..., Ck(M |2, t)]. For model (3.2.2), we use ordinary

least squares to estimate the parameters.

3.2.2.2 Mediation effects estimation

Under the consistency and no-unmeasured-confounding assumptions described in intro-

duction (Section 1.4), different mediation effects, including controlled direct effect (Yam −

Ya∗m), natural direct effect (YaMa∗ − Ya∗Ma∗ ) and natural indirect effect (YaMa − YaMa∗ ), are

able to be identified. Given the models (3.2.1) and (3.2.2), we can find the expected CDE,

NDE and NIE using the formulas (β1 + f1(m) − f2(m))(a − a∗), (β1 + E[f1(M)|a∗, c] −

E[f2(M)|a∗, c])(a − a∗) and a(E[f1(M)|a, c] − E[f1(M)|a∗, c]) + (1 − a)(E[f2(M)|a, c] −

E[f2(M)|a∗, c]) respectively, where a = 1 and a∗ = 0. Once we determine the shape of

f1(M) and f2(M), the functions can be parameterized using the I-splines and C-splines, and

the expectations of functions can be obtained using the formula E[g(X)] =
∫
x
g(x)f(x)dx,

where f(x) is the probability density function of X. The technical details are shown in

Proposition 3.2.1. Since different mediation effects are different combinations of the pa-

rameters in models (3.2.1) and (3.2.2), they can be estimated by plugging in the estimated

parameters.
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Proposition 3.2.1. Under the consistency, no unmeasured exposure-outcome confounding,

no unmeasured mediator-outcome confounding, no unmeasured exposure-mediator confound-

ing and no mediator-outcome confounding affected by exposure assumptions, and with the

models (3.2.1) and (3.2.2) being correctly specified, the expected controlled direct effect, nat-

ural direct effect and natural indirect effect, conditioning on C = c, are given by

E[Yam − Ya∗m|c] = (β1 + f1(m)− f2(m))(a− a∗), (3.2.11)

E[YaMa∗ − Ya∗Ma∗ |c] = (β1 + E[f1(M)|a∗, c]− E[f2(M)|a∗, c])(a− a∗), (3.2.12)

and

E[YaMa−YaMa∗ |c] = a(E[f1(M)|a, c]−E[f1(M)|a∗, c])+(1−a)(E[f2(M)|a, c]−E[f2(M)|a∗, c]),

(3.2.13)

respectively. If f1(M) is fitted using I-splines, then

E[f1(M)|a, c] =
k∑
i=2

{
∫ ti+1

ti

[β21 + ...+ β2,i−2 + β2,i−1(1− (ti+1 −m)2

(ti+1 − ti)(ti+1 − ti−1)
)

+ β2,i(
(m− ti)2

(ti+1 − ti)(ti+2 − ti)
)]f(m|a, c)dm},

(3.2.14)

where f(m|a, c) = 1√
2πσ2

2

e
−(m−(γ0+γ1a+γ2c))

2

2σ22 ; if f1(M) is fitted using C-splines, then

E[f1(M)|a, c] = β20(γ0 + γ1a+ γ2c)

+
k∑
i=2

{
∫ ti+1

ti

[β21(m− t1 + t2 + t3
3

) + ...+ β2,i−2(m− ti−2 + ti−1 + ti
3

)

+ β2,i−1(m− ti−1 + ti + ti+1

3
+

(ti+1 −m)3

3(ti+1 − ti)(ti+1 − ti−1)
)

+ β2,i(
(m− ti)3

3(ti+1 − ti)(ti+2 − ti)
)]f(m|a, c)dm},

(3.2.15)

where f(m|a, c) = 1√
2πσ2

2

e
−(m−(γ0+γ1a+γ2c))

2

2σ22 . The similar results hold for E[f2(M)|a, c].

40



Proof. Under the consistency, no unmeasured exposure-outcome confounding and no un-

measured mediator-outcome confounding, and with the models (3.2.1) and (3.2.2) being

correctly specified, the expected CDE can be calculated as follows:

E[Yam − Ya∗m|c] = E[Y |a,m, c]− E[Y |a∗,m, c]

= (β0 + β1a+ f1(m)a+ f2(m)(1− a) + β4c)

− (β0 + β1a
∗ + f1(m)a∗ + f2(m)(1− a∗) + β4c

= (β1 + f1(m)− f2(m))(a− a∗).

Under the consistency, no unmeasured exposure-outcome confounding, no unmeasured mediator-

outcome confounding, no unmeasured exposure-mediator confounding and no mediator-

outcome confounding affected by exposure assumptions, and with the models (3.2.1) and

(3.2.2) being correctly specified, the expected NDE and NIE can be calculated as follows:

E[YaMa∗ − Ya∗Ma∗ |c] =

∫
m

{E[Y |a,m, c]− E[Y |a∗,m, c]}f(m|a∗, c)dm

=

∫
m

{(β0 + β1a+ f1(m)a+ f2(m)(1− a) + β4c)

− (β0 + β1a
∗ + f1(m)a∗ + f2(m)(1− a∗) + β4c)}f(m|a∗, c)dm

=

∫
m

{(β1 + f1(m)− f2(m))(a− a∗)}f(m|a∗, c)dm

= (β1 + E[f1(M)|a∗, c]− E[f2(M)|a∗, c])(a− a∗),

and

E[YaMa − YaMa∗ |c] =

∫
m

E[Y |a,m, c]{f(m|a, c)− f(m|a∗, c)}dm

=

∫
m

(β0 + β1a+ f1(m)a+ f2(m)(1− a) + β4c){f(m|a, c)− f(m|a∗, c)}dm

= {(β0 + β1a+ E[f1(M)|a, c]a+ E[f2(M)|a, c](1− a) + β4c)

− (β0 + β1a+ E[f1(M)|a∗, c]a+ E[f2(M)|a∗, c](1− a) + β4c)}

= a(E[f1(M)|a, c]− E[f1(M)|a∗, c]) + (1− a)(E[f2(M)|a, c]− E[f2(M)|a∗, c]).

Let the knot sequence for I-splines and C-splines be L = t1 = t2 < t3 < ... < tk < tk+1 =

tk+2 = U .
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If f1(M) is fitted using I-splines, then

f1(M) = β21I1(M |2, t) + ...+ β2kIk(M |2, t)

=



β21(1− (t3−M)2

(t3−t2)(t3−t1)
) + β22( (M−t2)2

(t3−t2)(t4−t2)
), if t2 ≤M < t3

β21 + β22(1− (t4−M)2

(t4−t3)(t4−t2)
) + β23( (M−t3)2

(t4−t3)(t5−t3)
), if t3 ≤M < t4

...

β21 + ...+ β2,k−2 + β2,k−1(1− (tk+1 −M)2

(tk+1 − tk)(tk+1 − tk−1)
)

+ β2,k(
(M − tk)2

(tk+1 − tk)(tk+2 − tk)
),

if tk ≤M < tk+1

.

The expectation of f1(M) given a and c can be calculated as

E[f1(M)|a, c] = E[β21I1(M |2, t) + ...+ β2kIk(M |2, t)|a, c]

=

∫
m

(β21I1(m|2, t) + ...+ β2kIk(m|2, t))f(m|a, c)dm

=
k∑
i=2

{
∫ ti+1

ti

[β21 + ...+ β2,i−2 + β2,i−1(1− (ti+1 −m)2

(ti+1 − ti)(ti+1 − ti−1)
)

+ β2,i(
(m− ti)2

(ti+1 − ti)(ti+2 − ti)
)]f(m|a, c)dm},

where f(m|a, c) = 1√
2πσ2

2

e
−(m−(γ0+γ1a+γ2c))

2

2σ22 .
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If f1(M) is fitted using C-splines, then

f1(M) = β20M + β21C1(M |2, t) + ...+ β2kCk(M |2, t)

=



β20M, if M < t2

β20M + β21(M − t1+t2+t3
3

+ (t3−M)3

3(t3−t2)(t3−t1)
) + β22( (M−t2)3

3(t3−t2)(t4−t2)
), if t2 ≤M < t3

β20M + β21(M − t1 + t2 + t3
3

)

+ β22(M − t2 + t3 + t4
3

+
(t4 −M)3

3(t4 − t3)(t4 − t2)
)

+ β23(
(M − t3)3

3(t4 − t3)(t5 − t3)
),

if t3 ≤M < t4

...

β20M + β21(M − t1 + t2 + t3
3

) + ...+ β2,k−2(M − tk−2 + tk−1 + tk
3

)

+ β2,k−1(m− tk−1 + tk + tk+1

3
+

(tk+1 −m)3

3(tk+1 − tk)(tk+1 − tk−1)
)

+ β2,k(
(m− tk)3

3(tk+1 − tk)(tk+2 − tk)
),

if tk ≤M < tk+1

β20M, if M ≥ tk+1

.

The expectation of f1(M) given a and c can be calculated as

E[f1(M)|a, c] = E[β20M + β21C1(M |2, t) + ...+ β2,kCk(M |2, t)|a, c]

=

∫
m

(β20m+ β21C1(m|2, t) + ...+ β2kCk(m|2, t))f(m|a, c)dm

= β20(γ0 + γ1a+ γ2c)

+
k∑
i=2

{
∫ ti+1

ti

[β21(m− t1 + t2 + t3
3

) + ...+ β2,i−2(m− ti−2 + ti−1 + ti
3

)

+ β2,i−1(m− ti−1 + ti + ti+1

3
+

(ti+1 −m)3

3(ti+1 − ti)(ti+1 − ti−1)
)

+ β2,i(
(m− ti)3

3(ti+1 − ti)(ti+2 − ti)
)]f(m|a, c)dm},

where f(m|a, c) = 1√
2πσ2

2

e
−(m−(γ0+γ1a+γ2c))

2

2σ22 .
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3.2.2.3 Mediation effects inference

According to Proposition 3.2.1, the expected CDE is a function of β1, β2 and β3, the

expected NDE is a function of β1, β2, β3, γ0, γ1, γ2 and σ2
2, and the expected NIE is a

function of β2, γ0, γ1, γ2 and σ2
2. In the parameter estimation procedure described in Section

3.2.2.1, when we estimate the parameters in model (3.2.1), we keep the necessary columns

of spline bases and estimate the parameters using ordinary least squares. Therefore, we can

apply delta method to obtain the asymptotic variances of different mediation effects, and

the asymptotic variances can be estimated by plugging in the estimated parameters. Once

we estimate the variances of different mediation effects, the 95% confidence intervals can

be obtained as (g(θ̂)− z0.975

√
̂var(g(θ̂)), g(θ̂) + z0.975

√
̂var(g(θ̂))). The technical details are

shown in Proposition 3.2.2.

Proposition 3.2.2. Let θCDE = (β1, β2, β3), θNDE = (β1, β2, β3, γ0, γ1, γ2, σ
2
2) and θNIE =

(β2, γ0, γ1, γ2, σ
2
2), where β2 = (β21, ..., β2k) if f1(M) is fitted using I-splines or β2 = (β20, β21,

..., β2k) if f1(M) is fitted using C-splines, and β3 = (β31, ..., β3k) if f2(M) is fitted using

I-splines or β3 = (β30, β31, ..., β3k) if f2(M) is fitted using C-splines. Denote the expected

controlled direct effect as gCDE(θCDE), the expected natural direct effect as gNDE(θNDE) and

the expected natural indirect effect as gNIE(θNIE). Then the asymptotic variances of expected

CDE, NDE and NIE are ∇θCDEgCDE(θCDE)TΣθCDE∇θCDEgCDE(θCDE),

∇θNDEgNDE(θNDE)TΣθNDE∇θNDEgNDE(θNDE) and ∇θNIEgNIE(θNIE)TΣθNIE∇θNIEgNIE(θNIE)

respectively, where ΣθCDE , ΣθNDE and ΣθNIE are the covariance matrices corresponding to

θCDE, θNDE and θNIE. If f1(M) is fitted using I-splines, then

∂E[f1(M)|a, c]
∂β2i

=

∫ ti+1

ti

(m− ti)2

(ti+1 − ti)(ti+2 − ti)
f(m|a, c)dm

+

∫ ti+2

ti+1

(1− (ti+2 −m)2

(ti+2 − ti+1)(ti+2 − ti)
)f(m|a, c)dm

+

∫ ti+3

ti+2

f(m|a, c)dm+ ...

+

∫ tk+1

tk

f(m|a, c)dm, i = 1, ..., k,

(3.2.16)

44



∂E[f1(M)|a, c]
∂γ0

=
k∑
i=2

{
∫ ti+1

ti

[β21 + ...+ β2,i−2 + β2,i−1(1− (ti+1 −m)2

(ti+1 − ti)(ti+1 − ti−1)
)

+ β2,i(
(m− ti)2

(ti+1 − ti)(ti+2 − ti)
)]f(m|a, c)2(m− (γ0 + γ1a+ γ2c)

2σ2
2

dm},

(3.2.17)

∂E[f1(M)|a, c]
∂σ2

2

=
k∑
i=2

{
∫ ti+1

ti

[β21 + ...+ β2,i−2 + β2,i−1(1− (ti+1 −m)2

(ti+1 − ti)(ti+1 − ti−1)
)

+ β2,i(
(m− ti)2

(ti+1 − ti)(ti+2 − ti)
)]f(m|a, c)(− 1

2σ2
2

+
(m− (γ0 + γ1a+ γ2c))

2

2(σ2
2)2

)dm},

(3.2.18)

where f(m|a, c) = 1√
2πσ2

2

e
−(m−(γ0+γ1a+γ2c))

2

2σ22 , and ∂E[f1(M)|a,c]
∂γ1

and ∂E[f1(M)|a,c]
∂γ2

have similar re-

sults as ∂E[f1(M)|a,c]
∂γ0

. If f1(M) is fitted using C-splines, then

∂E[f1(M)|a, c]
∂β20

= γ0 + γ1a+ γ2c, (3.2.19)

∂E[f1(M)|a, c]
∂β2i

=

∫ ti+1

ti

(m− ti)3

3(ti+1 − ti)(ti+2 − ti)
f(m|a, c)dm

+

∫ ti+2

ti+1

(m− ti + ti+1 + ti+2

3
+

(ti+2 −m)3

3(ti+2 − ti+1)(ti+2 − ti)
)f(m|a, c)dm

+

∫ ti+3

ti+2

(m− ti + ti+1 + ti+2

3
)f(m|a, c)dm+ ...

+

∫ tk+1

tk

(m− ti + ti+1 + ti+2

3
)f(m|a, c)dm, i = 1, ..., k,

(3.2.20)

∂E[f1(M)|a, c]
∂γ0

= β20

+
k∑
i=2

{
∫ ti+1

ti

[β21(m− t1 + t2 + t3
3

) + ...+ β2,i−2(m− ti−2 + ti−1 + ti
3

)

+ β2,i−1(m− ti−1 + ti + ti+1

3
+

(ti+1 −m)3

3(ti+1 − ti)(ti+1 − ti−1)
)

+ β2,i(
(m− ti)3

3(ti+1 − ti)(ti+2 − ti)
)]f(m|a, c)2(m− (γ0 + γ1a+ γ2c)

2σ2
2

dm},

(3.2.21)
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∂E[f1(M)|a, c]
∂σ2

2

=
k∑
i=2

{
∫ ti+1

ti

[β21(m− t1 + t2 + t3
3

) + ...+ β2,i−2(m− ti−2 + ti−1 + ti
3

)

+ β2,i−1(m− ti−1 + ti + ti+1

3
+

(ti+1 −m)3

3(ti+1 − ti)(ti+1 − ti−1)
)

+ β2,i(
(m− ti)3

3(ti+1 − ti)(ti+2 − ti)
)]f(m|a, c)(− 1

2σ2
2

+
(m− (γ0 + γ1a+ γ2c))

2

2(σ2
2)2

)dm},

(3.2.22)

where f(m|a, c) = 1√
2πσ2

2

e
−(m−(γ0+γ1a+γ2c))

2

2σ22 , and ∂E[f1(M)|a,c]
∂γ1

and ∂E[f1(M)|a,c]
∂γ2

have similar re-

sults as ∂E[f1(M)|a,c]
∂γ0

.

3.3 Simulation

We evaluate the performance of our method by measuring the coverage probability,

average absolute relative bias and average mean squared error (MSE). The data set is created

with the similar characteristics as a prenatal screening program data set. The simulated

data set contains 500 observations and 10 variables. The confounding variables are age

(randomly sampled from 18 to 40 with an increment 0.5), inverse maternal weight (randomly

sampled from 2 to 14.3 with an increment of 0.1), race (randomly sampled from 1 to 5 with

probabilities 0.46, 0.28, 0.13, 0.1 and 0.03 respectively), season of blood draw (randomly

sampled from 1 to 4 with the same probability 0.25), smoking status (randomly sampled

from a binomial distribution with success probability 0.25), ovum donor status (randomly

sampled from a binomial distribution with success probability 0.15) and pre-existing diabetes

status (randomly sampled from a binomial distribution with success probability 0.2). The

exposure variable is pesticide exposure (randomly sampled from a binomial distribution

with success probability 0.5). The mediator variable is hormone (gestational age multiple

of median, calculated via exposure-mediator model). The outcome variable is birth weight

(grams, calculated via exposure-outcome model).

We consider 6 different combinations of functions for exposure-outcome model, which

are summarized in Table 3.3.1, and the corresponding plots are shown in Figure 3.3.1. We
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fix the variance of ε2 in exposure-mediator model at 0.32, and ε1 in exposure-outcome model

is draw from N(0, 102), N(0, 202), N(0, 302) and N(0, 402). The number of bases is set to 5.

For CDE, the mediator is set to its mean value. Since the parameters β1, γ0, γ1, γ2 and σ2
2

and the functions f1(m) and f2(m) are known, the true effects can be calculated using the

formulas in proposition 3.2.1. The number of simulations is 500, and the results of coverage

probability, average absolute relative bias and average MSE are shown in Tables 3.3.2 - 3.3.7

(the plots can be found in Appendix B.2).

Table 3.3.1: Different combinations of functions for exposure-outcome model

Case No. f1(M) f2(M)

1 −6(M−5/3)2

5
+ 100 50e6M/5

2+e6M/5
+ 50

2 −eM−100M2

50
+ 100 −6(M+5/3)2

5
+ 100

3 70ln(−e−M/2 −M + 10)− 60 50e−6M/5

2+e−6M/5 + 50

4 −6(M−5/3)2

5
+ 100 300ln(−eM/2 +M + 40)− 1000

5 50e6M/5

2+e6M/5
+ 50 300ln(−eM/2 +M + 40)− 1000

6 5.5M + 70 9.5M + 60

If f1(M) and f2(M) are not linear, semi-parametric shape-restricted regression spline

outperforms linear regression in general. Using semi-parametric shape-restricted regression

spline, the coverage probability always keeps around 95%, but using linear regression, the

coverage probability tends to be 0 when the variance of ε1 is small and the effect size is

large (see Proposition 3.3.1). Both average absolute relative bias and average MSE of the

estimated effects from semi-parametric shape-restricted regression spline become large when

the variance of ε1 increases, but they are much smaller than those from linear regression,

especially for small variance of ε1 and large effect size. If f1(M) and f2(M) are linear,

although linear regression performs better, the metrics from semi-parametric shape-restricted

regression spline are still acceptable.

Proposition 3.3.1. If the mediation effect from linear regression deviates from the true

mediation effect, then as the variance of ε1 decreases, the coverage probability decreases.
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(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

Figure 3.3.1: Plots of hormone vs. birth weight varying by pesticide under different cases

Proof. Using linear regression, the exposure-outcome model becomes

Y = β0 + β1A+ β2M + β3AM + β4C + ε1 (3.3.1)

where ε1 ∼ N(0, σ2
1), while the exposure-mediator model keeps the same as model (3.2.2).

The expected CDE, NDE and NIE, conditioning on C = c, are given by

E[Yam − Ya∗m|c] = (β1 + β3m)(a− a∗), (3.3.2)

E[YaMa∗ − Ya∗Ma∗ |c] = (β1 + β3(γ0 + γ1a
∗ + γ2c))(a− a∗), (3.3.3)
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Table 3.3.2: Simulation results of coverage probability, average absolute relative bias and

average MSE for case 1 (true CDE: ∼43.99, true NDE: 44.85, true NIE: 1.030)

Semi-parametric shape-restricted regression spline

Variance of ε1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE

102 0.936 0.954 0.964 0.031 0.030 0.407 3.453 2.719 0.283

202 0.942 0.938 0.954 0.058 0.055 0.720 10.83 9.597 0.906

302 0.946 0.950 0.958 0.083 0.080 1.029 21.80 20.02 1.862

402 0.946 0.958 0.956 0.107 0.103 1.335 36.07 33.86 3.151

Linear regression

Variance of ε1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE

102 0 0 0.916 0.186 0.193 0.432 74.61 76.36 0.311

202 0.032 0.024 0.942 0.184 0.192 0.746 76.58 78.37 0.957

302 0.268 0.226 0.938 0.183 0.190 1.090 80.74 82.59 2.045

402 0.512 0.458 0.938 0.183 0.190 1.443 87.09 89.01 3.575
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Table 3.3.3: Simulation results of coverage probability, average absolute relative bias and

average MSE for case 2 (true CDE: ∼21.10, true NDE: 19.58, true NIE: -0.292)

Semi-parametric shape-restricted regression spline

Variance of ε1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE

102 0.952 0.976 0.980 0.072 0.071 1.375 3.328 2.963 0.265

202 0.946 0.962 0.970 0.131 0.131 2.694 10.97 10.15 1.008

302 0.952 0.964 0.966 0.185 0.186 3.995 21.97 20.68 2.209

402 0.942 0.960 0.966 0.235 0.238 5.283 35.57 33.92 3.859

Linear regression

Variance of ε1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE

102 0.552 0.638 0.928 0.124 0.116 1.804 6.798 6.376 0.439

202 0.802 0.830 0.940 0.133 0.129 2.827 9.748 9.376 1.112

302 0.884 0.896 0.940 0.157 0.157 3.999 14.89 14.58 2.228

402 0.912 0.926 0.940 0.189 0.191 5.216 22.21 21.99 3.786
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Table 3.3.4: Simulation results of coverage probability, average absolute relative bias and

average MSE for case 3 (true CDE: ∼46.84, true NDE: 43.58, true NIE: -1.308)

Semi-parametric shape-restricted regression spline

Variance of ε1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE

102 0.902 0.926 0.980 0.033 0.034 0.300 3.060 3.501 0.254

202 0.940 0.940 0.972 0.059 0.061 0.539 10.56 11.04 0.828

302 0.938 0.946 0.962 0.084 0.087 0.780 22.33 22.88 1.738

402 0.938 0.944 0.956 0.109 0.113 1.012 37.37 38.00 2.947

Linear regression

Variance of ε1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE

102 0 0 0.792 0.235 0.222 0.501 107.1 94.50 0.637

202 0.002 0.008 0.886 0.233 0.220 0.711 108.8 96.36 1.324

302 0.082 0.132 0.930 0.232 0.218 0.961 112.6 100.1 2.453

402 0.288 0.366 0.940 0.230 0.217 1.226 118.7 106.7 4.023
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Table 3.3.5: Simulation results of coverage probability, average absolute relative bias and

average MSE for case 4 (true CDE: ∼13.64, true NDE: 13.60, true NIE: 1.030)

Semi-parametric shape-restricted regression spline

Variance of ε1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE

102 0.936 0.954 0.968 0.104 0.100 0.390 3.090 2.864 0.261

202 0.942 0.956 0.964 0.187 0.182 0.755 10.13 9.578 0.978

302 0.956 0.962 0.962 0.264 0.258 1.119 20.19 19.27 2.141

402 0.954 0.962 0.956 0.339 0.331 1.482 33.10 31.79 3.744

Linear regression

Variance of ε1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE

102 0.742 0.802 0.930 0.140 0.125 0.494 4.794 3.95 0.416

202 0.858 0.876 0.936 0.175 0.165 0.792 8.388 7.53 1.085

302 0.896 0.902 0.934 0.224 0.216 1.124 14.17 13.30 2.195

402 0.908 0.926 0.940 0.277 0.271 1.469 22.14 21.28 3.748

52



Table 3.3.6: Simulation results of coverage probability, average absolute relative bias and

average MSE for case 5 (true CDE: ∼-14.37, true NDE: -15.26, true NIE: 4.191)

Semi-parametric shape-restricted regression spline

Variance of ε1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE

102 0.928 0.944 0.906 0.100 0.088 0.186 3.484 2.893 0.923

202 0.938 0.948 0.912 0.185 0.163 0.278 10.76 9.848 2.132

302 0.950 0.952 0.932 0.265 0.235 0.381 21.52 20.45 4.067

402 0.950 0.954 0.936 0.342 0.305 0.488 35.49 34.52 6.706

Linear regression

Variance of ε1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE

102 0 0 0.128 0.655 0.615 0.467 92.92 89.39 4.225

202 0.010 0.008 0.496 0.660 0.620 0.469 97.65 94.08 4.809

302 0.166 0.148 0.720 0.666 0.625 0.491 104.6 101.0 5.835

402 0.386 0.358 0.804 0.674 0.632 0.532 113.7 110.1 7.303

53



Table 3.3.7: Simulation results of coverage probability, average absolute relative bias and

average MSE for case 6 (true CDE: ∼25.20, true NDE: 25.65, true NIE: 1.65)

Semi-parametric shape-restricted regression spline

Variance of ε1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE

102 0.938 0.936 0.956 0.056 0.054 0.299 3.043 3.027 0.378

202 0.936 0.930 0.902 0.108 0.105 0.541 11.39 11.40 1.262

302 0.944 0.936 0.866 0.158 0.153 0.773 24.31 24.27 2.691

402 0.942 0.940 0.854 0.206 0.200 1.019 41.78 41.60 4.819

Linear regression

Variance of ε1 Coverage Probability Average |Relative Bias| Average MSE

CDE NDE NIE CDE NDE NIE CDE NDE NIE

102 0.936 0.934 0.938 0.033 0.032 0.235 1.101 1.104 0.239

202 0.936 0.936 0.942 0.066 0.065 0.453 4.357 4.405 0.897

302 0.936 0.934 0.942 0.099 0.097 0.676 9.801 9.908 1.996

402 0.936 0.934 0.944 0.132 0.130 0.900 17.43 17.62 3.538
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and

E[YaMa − YaMa∗ |c] = (β2γ1 + β3γ1a)(a− a∗), (3.3.4)

respectively.

Let X = [1, A,M,AM,C], then β̂ ∼ N(β, σ2
1(XTX)−1). The expected CDE, NDE and

NIE can all be expressed as a linear combination of β. Let θ̂LR = aβ̂ ∼ N(aβ, σ2
1a(XTX)−1aT ).

Then,

P (|θ̂LR − θtrue| ≤ zα/2

√
V ar(θ̂LR))

= P (−zα/2
√
V ar(θ̂LR) ≤ θ̂LR − θtrue ≤ zα/2

√
V ar(θ̂LR))

= P (−zα/2 ≤
θ̂LR − θLR + θLR − θtrue√

V ar(θ̂LR)
≤ zα/2)

= P (−zα/2 +
θtrue − θLR√
V ar(θ̂LR)

≤ θ̂LR − θLR√
V ar(θ̂LR)

≤ zα/2 +
θtrue − θLR√
V ar(θ̂LR)

)

= φ(zα/2 +
θtrue − θLR

σ1

√
a(XTX)−1aT

)− φ(−zα/2 +
θtrue − θLR

σ1

√
a(XTX)−1aT

).

Therefore, as σ1 decreases, the coverage probability decreases if θtrue − θLR is large.

3.4 Discussion

If researchers have evidence that the relationship between the mediator and the outcome

is curvilinear, then using linear regression to build exposure-outcome model will result in

biased estimator. Our method is designed to relax the linearity assumption when building

the exposure-outcome model to reduce the bias introduced by model misspecification. In

our method, the exposure-outcome model is specified using quadratic I-spline basis functions

and/or cubic C-spline basis functions depending upon the prior knowledge on the specific

shapes between the mediator and the outcome in both exposure and non-exposure groups.

The parameter estimation procedure follows the logic of method proposed by Meyer (2018),

and since the model involves the factor-by-curve interaction, the estimation procedure is

slightly extended. The core algorithm used in the estimation procedure is hinge algorithm

(Meyer, 2013), which selects the necessary columns of spline bases and forces the coefficients
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of unselected columns to be 0. Once the parameters in both exposure-mediator and exposure-

outcome models are estimated, the mediation effects as well as their asymptotic variances

can be obtained analytically.

We extended the regression-based mediation analysis into the shape-restricted frame-

work, where the relationship between the mediator and the outcome is not limited to linear.

Our simulation study suggested that the proposed method performs well in terms of coverage

probability, average absolute relative bias and average mean squared error. If researchers

have prior knowledge on the specific shapes between the mediator and the outcome (increas-

ing, decreasing, convex or concave), then they can apply our method. Although monotonic

curves do not allow peaks and valleys and convex or concave curves do not allow any sort

of wiggling, in order to make more precise predictions, the number of knots and the knots

placement may still need to be considered. The proposed method is not suitable if shapes

other than monotonic, convex and concave are considered. In such cases, researchers may

apply the simulation-based method developed by Imai et al. (2010).

56



4.0 Illustrations

4.1 Shape Detection using Semi-parametric Shape-Restricted Mixed Effects

Regression Spline

Relationships between several serum placental-fetal biomarkers and birth weight are well-

studied in the literature. For example, maternal serum levels of PAPP-A were reported to

be significantly lower in SGA (small for gestational age) newborns than in controls and

significantly higher in LGA (large for gestational age) newborns than in controls (Tul et al.,

2003; Canini et al., 2008), and maternal serum estriol levels in the 29th week and at delivery

were significantly positively correlated with birth weight (Nagata et al., 2006). However, the

relationships are usually examined on specific birth cohort rather than at the population-level

and the overall trends are rarely reported.

Using a population-level data set from a prenatal screening program, we model the

relationships between 1st and 2nd trimester maternal serum placental-fetal biomarkers (GA-

MoM) and neonatal birth weight (gram) (N = 810,812, Nfemale = 397,820, Nmale = 409,653).

We consider serum placental-fetal biomarkers, hCG, PAPP-A, estriol, AFP and inhibin-A

in our analysis, and all analyses are stratified by fetal sex and adjusted for maternal race,

year of blood draw, month of blood draw, smoking status, ovum donor status, pre-existing

diabetes status, maternal age and inverse maternal weight. To adjust for confounding by

geographic variability across the state and all the unmeasured confounders that determine

where a woman lives, we treated zip code of maternal residence as a random effect.

Based on scientific literature, we believe that the relationships between serum placental-

fetal biomarkers and neonatal birth weight have a specific shape (increasing, decreasing,

convex or concave) but not always linear. Therefore, we apply our method to the data to

detect the underlying shape in each relationship. Because we have a large sample size, we

set the number of internal knots to 4 and let the knots be placed at the 20th, 40th, 60th and

80th percentiles of the data. The results are shown in Table 4.1.1.

According to the results in Table 4.1.1, we can make some relevant inferences on the
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Table 4.1.1: Shape detection results on population-level prenatal screening program data

Female Infant

1st-trimester

hCG
PAPP-A

2nd-trimester

hCG
Estriol AFP Inhibin-A

T1

(p-value)

0.9985

(0.0034)

0.9982

(0.0031)

0.8594

(0.0567)

0.9994

(0.0039)

0

(1)

0.3330

(0.3840)

T2

(p-value)

0

(1)

0

(1)

0.0189

(0.7535)

0

(1)

1

(<0.0001)

0.5628

(0.2210)

T3

(p-value)

0

(1)

0

(1)

0

(1)

0

(1)

0

(1)

0

(1)

T4

(p-value)

0.9733

(0.0056)

1

(<0.0001)

1

(<0.0001)

0.9975

(0.0014)

0.7996

(0.0658)

0.9830

(0.0045)

Shape Number 6○ 6○ 4○ 6○ 2○ 4○

Male Infant

1st-trimester

hCG
PAPP-A

2nd-trimester

hCG
Estriol AFP Inhibin-A

T1

(p-value)

0.9952

(0.0043)

0.9994

(0.0024)

0.6048

(0.1852)

0.9968

(0.0046)

0

(1)

0.1546

(0.5660)

T2

(p-value)

0

(1)

0

(1)

0.1611

(0.5401)

0

(1)

0.9974

(0.0056)

0.7640

(0.1075)

T3

(p-value)

0

(1)

0

(1)

0

(1)

0

(1)

0

(1)

0

(1)

T4

(p-value)

1

(<0.0001)

0.9993

(0.0003)

0.9976

(0.0009)

0.7940

(0.0697)

0.9019

(0.0276)

0.9879

(0.0035)

Shape Number 6○ 6○ 4○ 1○ 2○ 4○
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relationships between placental-fetal hormones and birth weight. The relationships between

1st-trimester hCG and birth weight and between PAPP-A and birth weight are categorized

as concave with increasing trend in both female and male infants. The relationships between

2nd-trimester hCG and birth weight and between Inhibin-A and birth weight are categorized

as concave in both female and male infants. The relationships between AFP and birth

weight are categorized as decreasing in both female and male infants. The relationship

between Estriol and birth weight is categorized as concave with increasing trend in female

infants while it is categorized as increasing in male infants.

Results from our methodology will help researchers to make judgements on the potential

relationships between maternal serum placental-fetal biomarkers and neonatal birth weight.

With such judgements, researchers can correctly choose corresponding prediction methods

to make relevant predictions.

4.2 Mediation Analysis using Semi-parametric Shape-Restricted Regression

Spline

Pesticide is used in agriculture to control pests and improve yields. However, it usually

has negative influences on organisms and ecosystem and may also negatively impact birth

outcomes of human beings (Larsen et al., 2017). Larsen et al. (2017) reported that for

individuals in high exposure group in 1st-trimester pregnancies, the birth weight is about

13 grams lower, and being in high exposure group reduces gestational age and increases

the probability of preterm birth and the probability of birth abnormality. Chemicals often

do not directly affect the fetuses but instead they alter the levels of placental biomarkers

and further influence the birth outcomes, which is regarded as a placentally-mediated effect

(Adibi et al., 2021a). In order to examining the mediation effects of placental biomarkers,

we perform the mediation analysis using semi-parametric shape-restricted regression spline.

The pesticide data is from California’s pesticide use reporting (PUR) program, where

pesticide use is reported monthly. The data is at the county level, so for each zip code, we

have a pesticide exposure data point. We merge the pesticide data with the population-
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level prenatal screening data, dichotomize the pesticide exposure variable using its median,

and model the relationship among dichotomized pesticide exposure, 1st trimester hCG (GA-

MoM) and neonatal birth weight (gram). The analyses are stratified by fetal sex and adjusted

for maternal race, year of blood draw, month of blood draw, smoking status, ovum donor

status, pre-existing diabetes status, maternal age and inverse maternal weight.

We apply our method to several subsets of data with specific types of pesticide. For per-

methrin, within male infants cohort, there are 21,433 observations, the relationship between

1st trimester hCG and neonatal birth weight is inferred as increasing in above-median ex-

posure group and as concave with increasing trend in below-median exposure group; within

female infants cohort, there are 20,895 observations, the relationship between 1st trimester

hCG and neonatal birth weight is inferred as concave with increasing trend in above-median

exposure group and as increasing in below-median exposure group. For glyphosate iso-

propylamine salt, within male infants cohort, there are 56,299 observations, the relationship

between 1st trimester hCG and neonatal birth weight is inferred as concave with increasing

trend in above-median exposure group and as increasing in below-median exposure group;

within female infants cohort, there are 55,052 observations, the relationship between 1st

trimester hCG and neonatal birth weight is inferred as increasing in above-median exposure

group and as concave with increasing trend in below-median exposure group. To perform

mediation analysis using semi-parametric shape-restricted regression spline, the number of

bases is set to 5 and the confounding variables are controlled at their mean values; for CDE,

the mediator is set to its mean value. The results are summarized in Table 4.2.1.

For permethrin exposure, when the confounding variables are controlled at their mean

values, within female infants cohort, the CDE with the mediator being set to its mean value

is 13.27 (95% C.I.: -4.09 - 30.63), the NDE is 6.70 (95% C.I.: -5.25 - 18.65) and the NIE is

-1.19 (95% C.I.: -2.06 - -0.31); within male infants cohort, the CDE with the mediator being

set to its mean value is 12.45 (95% C.I.: -3.55 - 28.46), the NDE is 15.67 (95% C.I.: 3.53

- 27.80) and the NIE is -2.42 (95% C.I.: -3.55 - -1.29). For glyphosate isopropylamine salt

exposure, when the confounding variables are controlled at their mean values, within female

infants cohort, the CDE with the mediator being set to its mean value is 4.95 (95% C.I.:

-6.96 - 16.87), the NDE is 8.89 (95% C.I.: -11.68 - 29.46) and the NIE is -1.63 (95% C.I.:
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Table 4.2.1: Mediation analysis results on population-level prenatal screening program data

Female Infant

CDE with 95% C.I. NDE with 95% C.I. NIE with 95% C.I.

permethrin
13.270

(-4.0927, 30.633)

6.7042

(-5.2455, 18.654)

-1.1889

(-2.0636, -0.3142)

glyphosate

isopropylamine salt

4.9524

(-6.9646, 16.869)

8.8868

(-11.683, 29.457)

-1.6303

(-2.2427, -1.0178)

Male Infant

CDE with 95% C.I. NDE with 95% C.I. NIE with 95% C.I.

permethrin
12.454

(-3.5468, 28.455)

15.665

(3.5325, 27.797)

-2.4189

(-3.5479, -1.2899)

glyphosate

isopropylamine salt

8.0234

(-3.0360, 19.083)

5.8625

(-1.6837, 13.409)

-2.4338

(-3.1993, -1.6683)

-2.24 - -1.02); within male infants cohort, the CDE with the mediator being set to its mean

value is 8.02 (95% C.I.: -3.04 - 19.08), the NDE is 5.86 (95% C.I.: -1.68 - 13.41) and the

NIE is -2.43 (95% C.I.: -3.20 - -1.67). The NIE is significant in each case, indicating that

1st trimester hCG has significant impact on the relationship between permethrin/glyphosate

isopropylamine salt exposure and neonatal birth weight within male infants cohort or female

infants cohort.
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5.0 Discussion and Future Work

5.1 Discussion and Future Work for Chapter 2

The linear regression is a widely used statistical model in numerous fields because it is

easy to be applied and the results are easy to be interpreted. However, if the underlying

pattern between two continuous variables is curvilinear, using linear regression will result

in model misspecification and introduce bias. In such a scenario, nonparametric techniques,

such as splines, should be introduced to build a flexible model. In the first part of the disser-

tation, we develop a shape detection method to help researchers identify the most probable

shape of relationship between two continuous variables among increasing, decreasing, convex

and concave shapes while controlling for confounders and accounting for random effects. In

specific, we build the mixed effects models, derive a test statistic to test the null hypothesis

of constant function against the alternative that there is an underlying shape, and apply

Holm-Bonferroni method to classify the underlying shape into a reasonable category. The

proposed method is based on the properties of I-splines and C-splines, i.e., a linear combi-

nation of quadratic I-splines is increasing if and only if the coefficients are positive, and a

linear combination of cubic C-splines is convex if and only if the coefficients are positive.

5.1.1 Group-level shape detection using semi-parametric shape-restricted re-

gression splines

In practice, the functional form of the covariate effect may vary across different groups.

For example, the association between circulating levels of the placental hormone human

chorionic gonadotropin (hCG) and infant anogenital distance may be different in different

maternal stressful life event groups. Coull et al. (2001) proposed a method to incorporate

factor-by-curve interactions into generalized additive models, where they used penalized

spline method and truncated power bases. We can adopt the idea from Coull et al. (2001)

to extend the original shape-restricted regression spline by incorporating the factor-by-curve
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interaction. In order to determine the group-level shape of the curve, the constraints should

be applied to both main and interaction effects.

If the interaction between two groups is absent, we will fit a semi-parametric shape-

restricted regression spline model of the form

yi = β0 + β1ai + f(xi) + β2c1i + ...+ βpcpi + εi, (5.1.1)

where xi is a continuous predictor, yi is a continuous outcome variable, ai is a binary group

variable (exposure vs. non-exposure, male vs. female, etc.), c1i, ..., cpi are potential con-

founding variables, and εi
iid∼ N(0, σ2). In this model, f(xi) is the curve of the predic-

tor, and it can be fitted using the combination of quadratic I-spline bases, i.e., f(xi) =

θ1I1(xi|2, t)+θ2I2(xi|2, t)+...+θkIk(xi|2, t), or using the combination of cubic C-spline bases,

i.e., f(xi) = θ0xi + θ1C1(xi|2, t) + θ2C2(xi|2, t) + ...+ θkCk(xi|2, t). We estimate all parame-

ters using ordinary least-squares, and project the unconstrained estimates of θ = (θ1, ..., θk)
T ,

denoted as θ̂, onto a suitable polyhedral cone with respect to Σθ = Cov(θ̂) to obtain the con-

strained estimates of θ, θ̃ = arg minθ∈O(θ−θ̂)TΣ−1
θ (θ−θ̂). In practice, Σθ is usually unknown,

and thus the estimate of Σθ, Σ̂θ = Ĉov(θ̂), is used. We test the hypotheses H0 : θ = 0 vs.

Ha : θ ∈ O using the test statistic T =
θ̂TΣ−1

θ θ̂−minθ∈O(θ−θ̂)TΣ−1
θ (θ−θ̂)

θ̂TΣ−1
θ θ̂

. Once we obtain four test

statistics, we will apply Holm-Bonferroni procedure to classify the shape of the curve into

the category increasing, decreasing, convex, concave, convex with increasing trend, concave

with increasing trend, convex with decreasing trend, or concave with decreasing trend (see

Chapter 2 for details).

If the interaction between two groups is considered, we will fit a semi-parametric shape-

restricted regression spline model incorporating the factor-by-curve interaction of the form

yi = β0 + β1ai + f1(xi) + f2(xi)ai + β2c1i + ...+ βpcpi + εi. (5.1.2)

In this model, f1(xi) is the curve of the predictor for the non-exposure group and f2(xi)

is the difference of the curves for the exposure group and non-exposure group, and they

can be fitted using the combination of quadratic I-spline bases simultaneously, i.e., f1(xi) =

θ1I1(xi|2, t) + θ2I2(xi|2, t) + ...+ θkIk(xi|2, t) and f2(xi)ai = γ1I1(xi|2, t)ai + γ2I2(xi|2, t)ai +

... + γkIk(xi|2, t)ai, or using the combination of cubic C-spline bases simultaneously, i.e.,
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f1(xi) = θ0xi + θ1C1(xi|2, t) + θ2C2(xi|2, t) + ... + θkCk(xi|2, t) and f2(xi)ai = γ0xiai +

γ1C1(xi|2, t)ai + γ2C2(xi|2, t)ai + ...+ γkCk(xi|2, t)ai. Model (5.1.2) can be written in matrix

notation as

y = Xβ + ε, (5.1.3)

where

X =


1 a1 I1(x1) ... Ik(x1) I1(x1)a1 ... Ik(x1)a1 c11 ... cp1

1 a2 I1(x2) ... Ik(x2) I1(x2)a2 ... Ik(x2)a2 c12 ... cp2

... ... ... ... ... ... ... ...

1 an I1(xn) ... Ik(xn) I1(xn)an ... Ik(xn)an c1n ... cpn

 ,

β =
[
β0 β1 θ1 ... θk γ1 ... γk β2 ... βp

]T
and ε ∼ N(0, σ2I) for model fitted using the combination of quadratic I-spline bases, or

X =


1 a1 x1 C1(x1) ... Ck(x1) x1a1 C1(x1)a1 ... Ck(x1)a1 c11 ... cp1

1 a2 x2 C1(x2) ... Ck(x2) x2a2 C1(x2)a2 ... Ck(x2)a2 c12 ... cp2

... ... ... ... ... ... ... ...

1 an xn C1(xn) ... Ck(xn) xnan C1(xn)an ... Ck(xn)an c1n ... cpn

 ,

β =
[
β0 β1 θ0 θ1 ... θk γ0 γ1 ... γk β2 ... βp

]T
and ε ∼ N(0, σ2I) for model fitted using the combination of cubic C-spline bases. Note that

we use Ij(xi) and Cj(xi) as shorthand notations of Ij(xi|2, t) and Cj(xi|2, t).

To determine the shape of the curve for non-exposure group, i.e., f1(xi), we should follow

the steps described in Chapter 2. To determine the shape of the curve for exposure group,

i.e., f1(xi) + f2(xi), we will follow the steps described below.

The unconstrained estimates of all parameters are obtained using ordinary least-squares,

which are denoted as β̂ = (β̂0, β̂1, θ̂1, ..., θ̂k, γ̂1, ..., γ̂k, β̂2, ..., β̂p)
T for model fitted using the

combination of quadratic I-spline bases and β̂ = (β̂0, β̂1, θ̂0, θ̂1, ..., θ̂k, γ̂0, γ̂1, ..., γ̂k, β̂2, ..., β̂p)
T

for model fitted using the combination of cubic C-spline bases. Once we obtain the uncon-

strained estimates, we will project η̂ = (Ik, Ik)(θ̂, γ̂)T = (θ̂1+γ̂1, ..., θ̂k+γ̂k)
T onto the suitable

polyhedral cone with respect to Ση = Σθ+γ = (Ik, Ik)Σ(θ,γ)(Ik, Ik)
T , where θ̂ = (θ̂1, ..., θ̂k),
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γ̂ = (γ̂1, ..., γ̂k), Ik is a k × k identity matrix and Σ(θ,γ) = Cov((θ̂, γ̂)T ). The constrained

estimates are

η̃i = arg minηi∈Oi(ηi − η̂i)
TΣ−1

ηi
(ηi − η̂i), i = 1, 2, 3, 4 (5.1.4)

where η1 and η2 involve θ and γ from the model fitted using the combination of quadratic

I-spline bases and η3 and η4 involve θ and γ from the model fitted using the combination of

cubic C-spline bases, and O1 and O3 are the non-negative orthants, i.e., {η|η ≥ 0}, and O2

and O4 are the non-positive orthants, i.e., {η|η ≤ 0}. In practice, Σηi is usually unknown,

and thus we will use its estimate Σ̂ηi = ̂Cov((θ̂, γ̂)T ). We then formulate four tests with the

same form of test statistics to test the hypotheses

H0i : ηi = 0 vs. Hai : ηi ∈ Oi, (5.1.5)

and the test statistics are

Ti =
η̂Ti Σ−1

ηi
η̂i − (η̃i − η̂i)TΣ−1

ηi
(η̃i − η̂i)

η̂Ti Σ−1
ηi
η̂i

. (5.1.6)

Corollary 5.1.1. Suppose ηi is a k-dimensional vector. If Σηi is known, then P (Ti ≤

c|H0i) =
∑k

j=0 wj(k,Σηi ,R+p)P (Beta( j
2
, k−j

2
) ≤ c) and if Σηi is unknown, then P (T̂i ≤

c|H0i)
asymp.

=
∑k

j=0wj(k,Σηi ,R+p)P (Beta( j
2
, k−j

2
) ≤ c), where wj(k,Σηi ,R+p) are non-negative

weights and
∑k

j=0 wj(k,Σηi ,R+p) = 1.

Proof. The unconstrained estimate of β in model 5.1.3, β̂ ∼ N(β, σ2(XTX)−1), and thus

Rβ ∼ N(Rβ, σ2R(XTX)RT ). For the model fitted using the combination of quadratic I-

spline bases, R = (0, 0, Ik, Ik, 0, ..., 0), and for the model fitted using the combination of cubic

C-spline bases, R = (0, 0, 0, Ik, 0, Ik, 0, ..., 0), where Ik is a k × k identity matrix and 0 is a

k × 1 vector. The remaining proof is the same as the proof of Theorem 2.2.1 in Chapter

2.
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If Σηi is known, then the test statistic Ti under null hypothesis H0i follows a beta-bar

distribution. If Σηi is unknown, then the test statistic T̂i under null hypothesis H0i follows

a beta-bar distribution asymptotically.

After obtaining the p-values from those four tests, we will apply Holm-Bonferroni method

to perform multiple testing of the four sets of hypotheses. According to Holm-Bonferroni

method, we sort the p-values in ascending order, i.e. p(1) ≤ p(2) ≤ p(3) ≤ p(4), and then

compare the p-values with the corresponding significance levels, i.e. α(1) = α
4
≤ α(2) = α

3
≤

α(3) = α
2
≤ α(4) = α. The decisions of rejections are made sequentially. Depending upon the

rejections by using the decision rules, we make decisions regarding the shape of the curve

for exposure group as described in Table 2.2.1 in Chapter 2.

The simulation study should be performed in the future to show the family-wise error

rate as well as power of the group-level shape detection method.

5.1.2 Knots consideration

The spline technique that we use in the entire dissertation is regression spline. The esti-

mation procedure of a model using regression splines is relatively straightforward comparing

with other spline techniques. Once the spline basis functions are determined, we can use

least squares to estimate the parameters. However, in order to determine the spline basis

functions, we need to ascertain the degree of the functions, the number of knots and the lo-

cations of knots (Wegman and Wright, 1983). From Fact 1.2.1 and Fact 1.2.2 in Chapter 1,

the quadratic I-splines and the cubic C-splines are the building blocks of our regression spline

models. Nevertheless, the number of knots and the locations of knots are still undetermined.

There are several popular methods of knots placement, including “equally spaced” method,

“equally spaced sample quantiles as knots” method and “model selection based” method

(Wu and Zhang, 2006). In the simulation study in Chapter 2 and the real data analysis in

Chapter 4, we adopt the “equally spaced sample quantiles as knots” method. In specific, we

set the number of internal knots to 4 and let the knots be placed at the 20th, 40th, 60th and

80th percentiles of the data. The choice of the number of knots is arbitrary in our analysis,

so in order to systematically understand the influence of the number of knots, we refine the
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Figure 5.1.1: Family-wise error rate curve

functions of the main effect and examine the family-wise error rates and the powers under

different number of bases in a fixed effect regression spline setting. The random error ε

is drawn from N(0, 102), N(0, 152), N(0, 202), N(0, 252) and N(0, 302), and the number of

bases is from 5 to 15. The simulated family-wise error rates and the simulated powers are

shown in Figure 5.1.1 to Figure 5.1.9.

According to Figure 5.1.1 to Figure 5.1.9, the family-wise error rates are controlled

reasonably overall. For shape 1 and shape 10, the powers are large under each number of

bases and each standard deviation of ε. For shape 2, shape 11 and shape 12, the powers are

large when the number of bases is relatively small (< 10); as the number of bases increases,

the powers decrease, especially when the standard deviation of ε is small, where the method

is prone to detect the shape as convex with increasing trend for shape 2, concave with

increasing trend for shape 11, and concave with decreasing trend for shape 12. For shape 3,

the powers are large overall, but when the number of bases is small, the method will have

chance to report the shape as flat. For shape 14 and shape 16, powers are large when the

standard deviation of ε is relatively small; as the standard deviation of ε increases, the powers

decrease, especially when the number of bases is small; with large standard deviation of ε

and small number of bases, the method is prone to detect the shape as increasing or concave
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(a) Scatter plot of simulated curve (b) Power Curve

Figure 5.1.2: Power curve for shape 1 (f(x) = 6.5x+ 75)

(a) Scatter plot of simulated curve (b) Power Curve

Figure 5.1.3: Power curve for shape 2 (f(x) = 50 e1.2x

2+e1.2x
+ 50)
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(a) Scatter plot of simulated curve (b) Power Curve

Figure 5.1.4: Power curve for shape 3 (f(x) = (2x
3

)3 + 3x
2

+ 75)

(a) Scatter plot of simulated curve (b) Power Curve

Figure 5.1.5: Power curve for shape 10 (f(x) = −ex−150x2

50
+ 100)
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(a) Scatter plot of simulated curve (b) Power Curve

Figure 5.1.6: Power curve for shape 11 (f(x) = 300 ln(−ex/1.55 + 1.6x+ 40)− 1005)

(a) Scatter plot of simulated curve (b) Power Curve

Figure 5.1.7: Power curve for shape 12 (f(x) = 70 ln(−e−x/1.6 − 1.5x+ 11)− 60)
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(a) Scatter plot of simulated curve (b) Power Curve

Figure 5.1.8: Power curve for shape 14 (f(x) = −1.5(x− 5/3)2 + 100)

(a) Scatter plot of simulated curve (b) Power Curve

Figure 5.1.9: Power curve for shape 16 (f(x) = −1.5(x+ 5/3)2 + 100)
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for shape 14 and decreasing or concave for shape 16, while with large standard deviation of

ε and large number of bases, the method is prone to detect the shape as increasing for shape

14 and decreasing for shape 16. Overall, 8 or 9 is a better choice for the number of bases.

Some knot selection techniques for shape-restricted regression spline are proposed (Meyer,

2012, 2013; Choi et al., 2019), whose aim is to minimize the distance between the observed

and the estimated responses. However, the goal of our method is to test the null hypothesis

of constant function against the alternative that there is an underlying shape and classify

the underlying shape into a reasonable category. Therefore, the proposed knot selection

techniques do not seem to be suitable in our setting, and thus we need further explorations

on knots placement. There are some recommendations on knots placement that can be

followed, for example, more knots should be placed in the regions where the shape changes

rapidly (Choi et al., 2019), and extrema should be centered between knots and inflection

points should be placed near knots (Wegman and Wright, 1983).

5.2 Discussion and Future Work for Chapter 3

The mediation analysis is developed to interpret the causal relationship between an

exposure and a potential outcome directly or indirectly caused by the exposure through

examining the intermediate stage. The regression-based mediation analysis developed by

VanderWeele (2015) is based on linear regression. If the relationship between the mediator

and the outcome is curvilinear, applying method based on linear regression may lead to biased

estimates of mediation effects. In such a case, the exposure-outcome model should be built

using nonparametric techniques. In the second part of the dissertation, we develop a method

to help researchers analytically estimate the mediation effects and make inferences on them

when the shape of relationship between the mediator and the outcome is previously inferred

or known to be increasing, decreasing, convex or concave. In specific, we build the exposure-

mediator and exposure-outcome models, estimate the exposure-mediator model parameters

through least squares and the exposure-outcome model parameters through a cone projection

method, combine the model parameters through a specific process to estimate the mediation

72



effects, and apply delta method to obtain the asymptotic variances of different mediation

effects.

5.2.1 Mediation analysis with continuous exposure, continuous mediator and

continuous outcome

The method that we develop in Chapter 3 is based on binary exposure, continuous me-

diator and continuous outcome. However, in some scenarios, the exposure could also be

measured in continuous scale. If the exposure, the mediator and the outcome are all contin-

uous, the relationships between the exposure and the mediator, between the exposure and

the outcome and between the mediator and the outcome are curvilinear, and the interaction

between the exposure and the mediator exist, then the exposure-outcome model will be

Y = β0 + f1(A) + f2(M) + f3(A,M) + β4C + ε1, (5.2.1)

where f1(A) is the curve of the exposure, f2(M) is the curve of the mediator, f3(A,M) is

the surface of the interaction between the exposure and the mediator and ε1 ∼ N(0, σ2
1), and

the exposure-mediator model will be

M = γ0 + g1(A) + γ2C + ε2, (5.2.2)

where g1(A) is the curve of the exposure and ε2 ∼ N(0, σ2
2).

In model 5.2.1, f1(A) and f2(M) can be fitted using one-dimensional smoothers, such as

cubic splines and P-splines, and f3(A,M) can be fitted using tensor product splines (Wood,

2017). In model 5.2.2, g1(A) can be fitted using one-dimensional smoother. To facilitate

readers’ understanding of the exposure-outcome model, we generate several figures (see Fig-

ure 5.2.1 and Figure 5.2.2). Figure 5.2.1a to Figure 5.2.1c are drawn in the circumstance

of binary exposure, continuous mediator and continuous outcome. With binary exposure,

we are able to visualize the relationship among the exposure, the mediator and the pre-

dicted outcome after controlling for confounders in a 2D plot. Figure 5.2.2a to Figure 5.2.2c

are drawn in the circumstance of continuous exposure, continuous mediator and continuous

outcome. When the exposure is continuous, we need to draw a 3D plot to visualize the
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relationship among the exposure, the mediator and the predicted outcome after controlling

for confounders. Figure 5.2.2c is an example of model 5.2.1.

To estimate the mediation effects, we need to adopt the ideas from simulation-based

mediation analysis (Imai et al., 2010). The estimation procedure is slightly modified and

summarized below:

• Step 1: Draw a random sample with replacement of size n from the original data.

• Step 2: Fit models 5.2.1 and 5.2.2.

• Step 3: Keep A at some level a1 (say 25th percentile) and calculate Ma1 for each individual

using fitted model 5.2.2 in Step 2; keep A at some other level a2 (say 75th percentile)

and calculate Ma2 for each individual using fitted model 5.2.2 in Step 2.

• Step 4: Keep A at some level a1 (say 25th percentile) and calculate Ya1Ma1
or Ya1Ma2

for

each individual using fitted model 5.2.1 in Step 2 and calculated Ma1 or Ma2 in Step 3;

keep A at some other level a2 (say 75th percentile) and calculate Ya2Ma2
or Ya2Ma1

for

each individual using fitted model 5.2.1 in Step 2 and calculated Ma2 or Ma1 in Step 3.

• Step 5: Calculate the NDE for the random sample as 1
n

∑
(Ya2Ma1

−Ya1Ma1
) and the NIE

for the random sample as 1
n

∑
(Ya2Ma2

− Ya2Ma1
).

• Step 6: Repeat Step 1 to Step 5 m times and take the median of all calculated sample

NDEs/NIEs as the point estimate of NDE/NIE, the standard deviation of all calcu-

lated sample NDEs/NIEs as the standard error of NDE/NIE and the percentiles of all

calculated sample NDEs/NIEs to construct the confidence interval of NDE/NIE.
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(a) Linear, no interaction (b) Linear, with interaction

(c) Curvilinear, with interaction

Figure 5.2.1: Plots of mediator and predicted outcome varying by binary exposure
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(a) Linear, no interaction (b) Linear, with interaction

(c) Curvilinear, with interaction

Figure 5.2.2: Plots of mediator and predicted outcome varying by continuous exposure
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Appendix A Appendix for Chapter 2

A.1 Technical details of Henderson’s Mixed Model Equations

Since in model (2.2.1), b ∼ N(0, D̃) and ε ∼ N(0, R), then y|b ∼ N(Xβ + Zb,R), and

thus the density function of b is f(b) = e−
1
2 [bT D̃−1b]

(2π)
1
2 (qc)|D̃|1/2

and the conditional density function

of y given b is f(y|b) = e−
1
2 [(y−Xβ−Zb)TR−1(y−Xβ−Zb)]

(2π)
1
2 (N)|R|1/2

. Therefore, the joint density function

of y and b is f(y, b) = f(y|b)f(b) = e−
1
2 [(y−Xβ−Zb)TR−1(y−Xβ−Zb)+bT D̃−1b]

(2π)
1
2 (N+qc)|R|1/2|D̃|1/2

. The twice negative

logarithm of the joint density function of y and b is l(β, b|y) = (y − Xβ − Zb)TR−1(y −

Xβ − Zb) + bT D̃−1b+ (N + qc)log(2π) + log|D̃|+ log|R|. The partial derivative of l(β, b|y)

with respect to β is ∂l(β,b|y)
∂β

= −2XTR−1(y − Xβ − Zb), and by setting it to 0, we obtain

XTR−1Xβ +XTR−1Zb = XTR−1y ( A.1.1). The partial derivative of l(β, b|y) with respect

to b is ∂l(β,b|y)
∂b

= −2ZTR−1(y − Xβ − Zb) + 2D̃−1b, and by setting it to 0, we obtain

ZTR−1Xβ + ZTR−1Zb + D̃−1b = ZTR−1y ( A.1.2). Equations ( A.1.1) and ( A.1.2) are

Henderson’s Mixed Model Equations and can be rewritten into a matrix form asXTR−1X XTR−1Z

ZTR−1X ZTR−1Z + D̃−1

β
b

 =

XTR−1y

ZTR−1y

 .
From equation ( A.1.2), we obtain b̂ = (ZTR−1Z + D̃−1)−1(ZTR−1y − ZTR−1Xβ̂), and by

plugging b̂ into equation ( A.1.1), we obtainXTR−1Xβ+XTR−1Z(ZTR−1Z+D̃−1)−1ZTR−1(y−

Xβ̂) = XTR−1y ( A.1.3). Let ZD̃ZT +R = V , then according to the results on Schur com-

plements, V −1 = R−1 −R−1Z(ZTR−1Z + D̃−1)−1ZTR−1, and thus equation ( A.1.3) can be

written as XTV −1Xβ̂ = XTV −1y. Therefore, β̂ = (XTV −1X)−1XTV −1y. According to the

results on Schur complements, (ZTR−1Z + D̃−1)−1ZTR−1 = (D̃ − D̃ZTV −1ZD̃)ZTR−1 =

D̃ZT (R−1 − V −1ZD̃ZTR−1) = D̃ZT (R−1 − V −1(V − R)R−1) = D̃ZTV −1, and then b̂ =
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D̃ZTV −1(y −Xβ). The covariance matrix of β̂ is

COV (β̂) = ((XTV −1X)−1XTV −1)COV (y)((XTV −1X)−1XTV −1)T

= (XTV −1X)−1XTV −1V (V −1)TX((XTV −1X)−1)T

= (XTV −1X)−1((XTV −1X)−1XTV −1X)T

= (XTV −1X)−1,

and the covariance matrix of b̂ is

COV (b) = (D̃ZTV −1)COV (y −Xβ)(D̃ZTV −1)T

= (D̃ZTV −1)(I −X(XTV −1X)−1XTV −1)V (I −X(XTV −1X)−1XTV −1)T (D̃ZTV −1)T

= (D̃ZTV −1)(V −X(XTV −1X)−1XT )(D̃ZTV −1)T

= D̃ZTV −1ZD̃ − D̃ZTV −1X(XTV −1X)−1XTV −1ZD̃.

A.2 Iterative procedures based on Henderson’s Mixed Model Equations

We assume D̃ = diag(σ2
1In1 , ..., σ

2
cInc) and R = σ2

eIN , then the iterative procedure based

on MME for ML has the following steps:

• Step 0: Set r = 0, and set the starting values of σ2
i and σ2

e as σ2
i(0) and σ2

e(0).

• Step 1: Calculate W(r) = (σ2
e(r)I + ZTZD̃(r))

−1σ2
e(r), set r = r + 1, and update β(r) and

b(r) using XTX XTZD̃(r−1)

ZTX W(r−1)

β(r)

v(r)

 =

XTy

ZTy

 ,
and b(r) = D̃(r−1)v(r).

• Step 2: Update σ2
e(r) and σ2

i(r) using σ2
e(r) =

yT (y−Xβ(r)−Zb(r))
N

and σ2
i(r) =

bT
i(r)

bi(r)

ni−tr(Wii(r−1))
.

• Step 3: Repeat Steps 1 and 2 until convergence.

and the the iterative procedure based on MME for REML has the following steps:
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• Step 0: Set r = 0, and set the starting values of σ2
i and σ2

e as σ2
i(0) and σ2

e(0).

• Step 1: Calculate W(r) = (σ2
e(r)I +ZTZD̃(r))

−1σ2
e(r), T(r) = (I +

ZT [I−X(XTX)−XT ]ZD̃(r)

σ2
e(r)

)−1

set r = r + 1, and update β(r) and b(r) usingXTX XTZD̃(r−1)

ZTX W(r−1)

β(r)

v(r)

 =

XTy

ZTy

 ,
and b(r) = D̃(r−1)v(r).

• Step 2: Update σ2
e(r) and σ2

i(r) using σ2
e(r) =

yT (y−Xβ(r)−Zb(r))
N−rank(X)

and σ2
i(r) =

bT
i(r)

bi(r)

ni−tr(Tii(r−1))
.

• Step 3: Repeat Steps 1 and 2 until convergence.

A.3 Simulation of beta-bar weights

• Step 1: Generate β̂i from N(0,Σi)

• Step 2: Calculate β̃i = ΠΣi(β̂i|R+p) = arg minβi∈R+p(βi − β̂i)TΣ−1
i (βi − β̂i)

• Step 3: Count the number of positive components of β̃i

• Step 4: Repeat Steps 1 to 3 N times and wj(p,Σi,R+p) can be calculated as

the total times of j positive components of β̃i
N

A.4 Family-wise error rate simulation using residual bootstrap

• Step 1: Generate the response vector ynull under the null hypothesis

– ynull = XFβF + Zb+ ε, where XF and Z are from the real data, βF are assumed to

be the true parameters, b is drawn from N(0, D̃) and ε is drawn from N(0, R)

• Step 2: Fit the model y = XSβS + XFβF + Zb + ε under constraints on βS using ynull

and calculate the test statistics T1, T2, T3, T4

• Step 3: Fit the model y = XFβF + Zb+ ε using ynull

• Step 4: Bootstrap the null distribution

– Bootstrap the random effects and noise from the model in Step 2
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– Adopt the fixed effects estimates β̂F in Step 3

– Generate the response vector yboot under the null hypothesis using bootstrapped

random effects and noise

– Fit the model y = XSβS + XFβF + Zb + ε under constraints on βS using yboot and

calculate the test statistics T ∗1 , T ∗2 , T ∗3 , T ∗4

– Compare Ti with T ∗i (if Ti ≤ T ∗i then pij = 1, else pij = 0), where i = 1, 2, 3, 4

• Step 5: Repeat Step 4 N times and calculate pi as
∑N
j=1 pij

N
, where i = 1, 2, 3, 4; calculate

p = min(p1, p2, p3, p4) (if p < 0.0125, then Uk = 1, else Uk = 0)

• Step 6: Repeat Step 1 to Step 5 M times and calculate family-wise error rate as
∑M
k=1 Uk
M

A.5 Power simulation using residual bootstrap

• Step 1: Generate the response vector ynull under the null hypothesis

– ynull = XFβF + Zb+ ε, where XF and Z are from the real data, βF are assumed to

be the true parameters, b is drawn from N(0, D̃) and ε is drawn from N(0, R)

• Step 2: Generate the response vector yalternative under a specific shape by using some

function of the main effect

– yalternative = f(Xmain) + XFβF + Zb + ε, where f(Xmain) is a function of the main

effect, XF and Z are from the real data, βF are assumed to be the true parameters,

b is drawn from N(0, D̃) and ε is drawn from N(0, R)

• Step 3: Fit the model y = XSβS+XFβF +Zb+ε under constraints on βS using yalternative

and calculate the test statistics T1, T2, T3, T4

• Step 4: Fit the model y = XFβF + Zb+ ε using ynull

• Step 5: Bootstrap the null distribution

– Bootstrap the random effects and noise from the model in Step 3

– Adopt the fixed effects estimates β̂F in Step 4

– Generate the response vector yboot under the null hypothesis using bootstrapped

random effects and noise
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– Fit the model y = XSβS + XFβF + Zb + ε under constraints on βS using yboot and

calculate the test statistics T ∗1 , T ∗2 , T ∗3 , T ∗4

– Compare Ti with T ∗i (if Ti ≤ T ∗i then pij = 1, else pij = 0), where i = 1, 2, 3, 4

• Step 6: Repeat Step 5 N times and calculate pi as
∑N
j=1 pij

N
, where i = 1, 2, 3, 4; sort p1,

p2, p3, p4 in ascending order and follow the Holm-Bonferroni strategy to calculate Vk

(for example, for increasing shape, if p(1) < 0.0125 and p(2) ≥ 0.05/3, then Vk = 1, else

Vk = 0)

• Step 7: Repeat Step 1 to Step 6 M times and calculate power as
∑M
k=1 Vk
M

A.6 Plots of power curve under simulation type (a)

(a) Scatter plot of simulated curve (b) Power Curve

Figure A.6.1: Power curve for shape 1 (f(x) = 5.5x+ 70)
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(a) Scatter plot of simulated curve (b) Power Curve

Figure A.6.2: Power curve for shape 2 (f(x) = 50 e1.2x

2+e1.2x
+ 50)

(a) Scatter plot of simulated curve (b) Power Curve

Figure A.6.3: Power curve for shape 3 (f(x) = (2x
3

)3 + x
2

+ 50)
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(a) Scatter plot of simulated curve (b) Power Curve

Figure A.6.4: Power curve for shape 10 (f(x) = −ex−100x2

50
+ 100)

(a) Scatter plot of simulated curve (b) Power Curve

Figure A.6.5: Power curve for shape 11 (f(x) = 300 ln(−ex/2 + x+ 40)− 1000)
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(a) Scatter plot of simulated curve (b) Power Curve

Figure A.6.6: Power curve for shape 12 (f(x) = 70 ln(−e−x/2 − x+ 10)− 60)

(a) Scatter plot of simulated curve (b) Power Curve

Figure A.6.7: Power curve for shape 14 (f(x) = −1.2(x− 2)2 + 100)

84



(a) Scatter plot of simulated curve (b) Power Curve

Figure A.6.8: Power curve for shape 16 (f(x) = −1.2(x+ 1.5)2 + 100)
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Appendix B Appendix for Chapter 3

B.1 Hinge algorithm

Let C = {φ ∈ Rn : φ = v +
∑

j∈J bjδ
j, where bj ≥ 0 and v ∈ V }. Define Ω =

C ∩ V ⊥, where V ⊥ is the linear space orthogonal to V . Then Ω = {φ ∈ Rn : φ =∑
j∈J bjδ

j, where bj ≥ 0}. The optimization problem is minφ∈C ||y − φ||2, and the nec-

essary and sufficient conditions for the optimization problem are < y − φ̂, φ̂ >= 0 and

< y − φ̂, φ >≤ 0 ∀ φ ∈ C.

The hinge algorithm has the following steps:

• The initial guess J0 can be any subset of J for which the corresponding δj form a linearly

independent set.

• At the kth iteration:

– Step 1: Project z onto the linear space spanned by {δj, j ∈ Jk}, to get φk =∑
j∈Jk b

(k)
j δj.

– Step 2: Check to see if φk satisfies the constraints, that is, if all b
(k)
j are nonnegative:

if yes, go to Step 3; if no, choose j for which b
(k)
j is smallest, remove it from the set,

and go to Step 1.

– Step 3: Compute < y − φk, δj > for each j /∈ Jk. If these are all nonpositive, then

stop. If not, choose j for which this inner product is largest, add it to the set, and

go to Step 1.

B.2 Plots of simulation results of coverage probability, average length of 95%

C.I., average absolute relative bias and average MSE
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(a) Coverage probability (b) Average length of 95% C.I.

(c) Average |Relative Bias| (d) Average MSE

Figure B.2.1: Plots of simulation results for case 1
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(a) Coverage probability (b) Average length of 95% C.I.

(c) Average |Relative Bias| (d) Average MSE

Figure B.2.2: Plots of simulation results for case 2
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(a) Coverage probability (b) Average length of 95% C.I.

(c) Average |Relative Bias| (d) Average MSE

Figure B.2.3: Plots of simulation results for case 3
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(a) Coverage probability (b) Average length of 95% C.I.

(c) Average |Relative Bias| (d) Average MSE

Figure B.2.4: Plots of simulation results for case 4
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(a) Coverage probability (b) Average length of 95% C.I.

(c) Average |Relative Bias| (d) Average MSE

Figure B.2.5: Plots of simulation results for case 5
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(a) Coverage probability (b) Average length of 95% C.I.

(c) Average |Relative Bias| (d) Average MSE

Figure B.2.6: Plots of simulation results for case 6
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D. Bates, M. Mächler, B. Bolker, and S. Walker. Fitting linear mixed-effects models using

lme4. Journal of Statistical Software, 67(1):1–48, 2015.

S. Canini, F. Prefumo, D. Pastorino, L. Crocetti, C. Afflitto, P. Venturini, and P. De Bi-

asio. Association between birth weight and first-trimester free beta-human chorionic go-

nadotropin and pregnancy-associated plasma protein A. Fertility and Sterility, 89(1):

174–178, 2008.

J. Choi, J. Lee, J. Jhong, and J. Koo. Penalized I-spline monotone regression estimation.

Communications in Statistics - Simulation and Computation, 2019. doi: https://doi.org/

10.1080/03610918.2019.1630433.

93



B. Coull, D. Ruppert, and M. Wand. Simple incorporation of interactions into additive

models. Biometrics, 57(2):539–545, 2001.
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