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Abstract 

Immune Response to Trauma: A Roadmap from Single-Cell Transcriptome and 
Epigenome to Patient Classifications 

 
Tianmeng Chen, PhD 

 
University of Pittsburgh, 2021 

 
 

 
Immune dysfunction is an important factor driving mortality and adverse outcomes after 

trauma but remains poorly understood, especially at cellular level. In this dissertation, we applied 

both single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible 

chromatin using sequencing (scATAC-seq) to deconvolute the trauma-induced immune response.  

First, we describe our work to apply scRNA-seq to circulating and bone marrow 

mononuclear cells in injured mice and peripheral blood mononuclear cells (PBMCs) in trauma 

patients. These are the first reported studies to characterize the mammalian response to systemic 

injury using scRNA-seq. In mice, the greatest changes in gene expression were seen in monocytes 

across both compartments. After systemic injury, the gene expression pattern of monocytes 

markedly deviated from steady state with corresponding changes in critical transcription factors 

(TFs), which can be traced back to myeloid progenitors. These changes involved up-regulation of 

inflammation and suppression of steady-state features, which were largely recapitulated in the 

human single-cell analysis. We generalized the major changes in human CD14+ monocytes into 

six signatures, which further defined two transcriptional subtypes (Signature Group: SG1 vs. SG2) 

identified in the whole-blood leukocyte transcriptome of trauma patients in the initial 12h after 

injury. Compared with SG2, SG1 patients exhibited delayed recovery, more severe organ 

dysfunction and a higher incidence of infection and non-infectious complications.  

Next, we performed scATAC-seq on PBMCs isolated from a subset of trauma patients 

subjected to scRNA-seq, to determine if trauma-induced immune dysfunction was associated with 
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epigenomic changes. While corroborating previous transcriptomic changes, we uncovered global 

epigenetic alterations reflecting de-repression of polycomb targets, across multiple immune cell 

types. These included developmental loci, not normally expressed in hematopoietic lineages. 

Using whole-blood leukocyte transcriptomes of trauma patients, we validated the newly identified 

pathologic epigenomic signature in an independent dataset and defined the Epigenetic Groups (EG 

subtypes) associated with differential prognosis and distinct from SG subtypes.  

Patient classifications based on either SG or EG subtypes including the independent 

prognostic value for each classification model were also recapitulated in burn and sepsis patients. 

These studies provide evidence for the broad impact of our analyses in the research field of critical 

illness. 
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1.0 Introduction 

1.1 Trauma 

1.1.1 Definition and epidemiology 

Traumatic injury is one of the major etiologies leading to critical illness. Severe injury is 

among top 3 causes of death and morbidity in individuals under 54 years old [1, 2]. Traumatic 

injury is an acute insult and causes an abrupt transition from a healthy state (i.e. homeostasis) to a 

state best described as a system-wide physiologic crisis, involving both innate and adaptive 

immune response, and an increased sensitivity to secondary infections [3]. Advances in clinical 

management have reduced early death substantially; however persistent organ dysfunction and 

delayed infections, both associated with immune dysfunction, remain poorly understood and 

difficult to prevent [4]. 

1.1.2 Transcriptomic studies and patient classifications 

Three dynamic patterns of multiple organ dysfunction syndrome (MODS) after trauma that 

cannot be fully explained by injury severity have been described: (1) early recovery (median Time-

to-Recovery [TTR]: 4 days, mortality: 14.4%), (2) delayed recovery (median TTR: 13 days, 

mortality: 35%) and (3) prolonged recovery (median TTR: 25 days, mortality: 46%) [5]. The 

diversity in clinical trajectories of trauma patients points to the heterogeneity in immune response 

among trauma patients. 
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Up till now, the largest scale transcriptomic analysis of human immune responses to trauma 

was a study of unseparated circulating leukocytes from severely injured patients published in 2011 

by Xiao et al., that included 167 patients sampled longitudinally up to 28 days after injury [6]. 

This study grouped the patients into uncomplicated, intermediate and complicated courses based 

on the outcome parameter (TTR) and discuss how transcriptomic changes differ from these 

outcome-based patient groups. This study introduced a novel paradigm to describe the immune-

inflammatory response to trauma: an early induction of excessive pro-inflammatory pathways and 

simultaneous suppression of adaptive immune responses. Patients suffering complicated courses 

manifested leukocyte transcriptional patterns consistent with prolonged immune dysregulation [6]. 

Cabrera et al. demonstrated subsequently that differential transcriptomic changes could be 

identified within whole-blood leukocytes within 2 hours in severely injured patients who 

subsequently developed multiple organ dysfunction syndrome [7]. The work based on analysis of 

MODS cluster or clustering based on Luminex (cytokines) rather than transcriptomics largely 

supported the above results of trauma patients [8, 9]. 

1.1.3 Remaining questions 

Even though there are several transcriptomic studies, none of these characterized the 

potential transcriptomic heterogeneity and differential prognostic value among trauma patients. 

Besides, all the available transcriptomic studies in trauma are bulk transcriptomes from 

unseparated leukocyte populations of cells. Studies at the single-cell level have been limited to the 

identification of the appearance of Th17 cells by Mass cytometry (CyTOF) in the circulation of 

severely injured patients [10]. Thus, little is known about the cell-specific pathways behind the 

pathogenic inflammation and immunosuppression that follows trauma. 
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1.2 Sepsis 

1.2.1 Definition and epidemiology 

Sepsis is another common etiology leading to critical illness. Different from trauma (non-

infectious inflammatory studies), sepsis involves the host immune response to life-threatening 

infection and has a higher mortality. Compared with trauma patients, the average age of sepsis 

patients is much older, 65-68 years in most developed countries, which may also involve 

deficiency in immune response due to immuno-senescence [11, 12]. Despite of these differences, 

sepsis shares a global gene expression pattern in circulating compartment similar to trauma 

(Spearman correlation coefficient = 0.77, p < 0.0001) [13], indicating different etiologies of critical 

illness share some transcriptomic features. 

1.2.2 Transcriptomic studies and patient classifications 

Transcriptomic subtypes of whole-blood leukocytes have been characterized in sepsis 

patients, yielding two major patient classifications: SRS (1 and 2) [14] and Mars (1, 2, 3 and 4) 

[15], both were published in the journal Lancet Respir Med. For SRS subtypes, SRS1 patients 

exhibited an immunosuppressed phenotype including T-cell exhaustion and suppressed antigen 

presentation, compared with SRS2 patients. For Mars subtypes, Mars2 was associated with a gene 

expression pattern aligned with high levels of inflammation, cytokine signaling and activation of 

pattern recognition pathways. Mars3 was more enriched in adaptive immune signaling pathways, 

and Mars4 more specifically expressed genes involved in interferon signaling. Mars1 was a more 
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distinct subtype from the other 3 Mars subtypes, showing a high level of genes involved in heme 

metabolism along with a marked decrease in both innate and adaptive immune associated genes.  

Among these subtypes, SRS1 and Mars1 were documented to have the worse prognosis in 

the original publications [14, 15]. However, when the authors of Mars paper tried to map the 

patients from the SRS paper using Mars designations, 60-70% of the patients associated with 

Mars1 turned out to be SRS2 patients (Figure S7 from the original paper [15]). Thus, the 

transcriptomic subtypes in sepsis are still not-well resolved and need to be refined. Furthermore, 

the underlying biological and cellular changes among different subtypes are not fully understand. 

Especially, it is difficult to interpret what is happening in the Mars1 patients at the transcriptional 

level. Thus, it is still largely unknown how to differentially treat each subset of patients based on 

their transcriptomic patterns.  

1.2.3 Remaining questions 

Hundreds of clinical trials have been carried out to attempt to improve the survival of sepsis 

patients based on targeting the immune response. However, all have failed to bring new treatments 

into the care of sepsis patients. These failures have been largely attributed to the unresolved patient 

heterogeneity due to non-genetic (different sources of pathogens, sites and timeliness) and genetic 

factors [16], which have not been well-defined as we mentioned above. 
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1.3 Human-mice comparison in critical illness 

The lack of representative preclinical models (esp. rodent models) is another major factor, 

that may underlie numerous failed clinical trials in trauma and sepsis [16]. In 2013, Seok et al [17] 

compared dynamic changes in gene expression and the major signaling pathways activated 

between mouse models of burn, trauma and endotoxemia with the corresponding human subjects 

subjected to similar insults. They concluded that the transcriptomic responses in mouse models 

poorly represent for human responses to trauma, burns and endotoxemia (close to random 

correlation). This report challenged the use of mice in inflammatory diseases. In 2015, Takao et al 

[13] pointed out the issues with statistical analysis in that paper and re-analyzed the same datasets. 

This led to some improvement in consistency between humans and mice. The statistical methods 

used by the two papers are compared side by side below (Table 1): 

 

Table 1 Comparison of statistical methods between two papers. 

 Poorly mimic, Seok et al Greatly mimic, Takao et al 

DEGs included 

for comparison 

Mouse orthologs corresponding to responsive 

human genes, and vice versa. 

Genes significantly changed in both humans 

and mice. 

Correlation Pearson’s coefficient of determination, r2 Spearman’s correlation coefficient, 𝜌𝜌 

(Rational: No reason to assume linearity and 

normal distribution) 

Datasets Some datasets include multiple subsets (Such as different mouse strains). 

Didn’t analyze separately. Compare each condition with the human 

reference condition independently. 

DEGs: Differentially Expressed Genes. 

 

However, there was one confounder which was not addressed in either paper, namely the 

difference in the composition of circulating leukocytes across two species. Human circulating 
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leukocytes are dominated by myeloid cells, while lymphocytes are the major population in mice. 

In this case, the comparison within specific cell populations is necessary and has not been done. 

1.4 Rationale of this dissertation  

Based on the above knowledge gaps in trauma, we decided to use the state-of-art 

technology, single-cell sequencing (scRNA-seq and scATAC-seq), to address the potential 

confounders in prior transcriptomic analyses and provide a full landscape of the immune response 

to trauma. Thus, this dissertation is mainly composed of data-driven hypotheses and validation. 

We used published bulk whole-blood transcriptomic data from trauma patients to validate the 

observations derived from single-cell data, and further explore the patient heterogeneity and 

potential prognostic value of our single-cell findings. Due to the controversy of the consistency 

between human and mice, we performed scRNA-seq on immune cells from both trauma patients 

and mice to provide a cross-species transcriptomic comparison at cellular level. Considering the 

association between trauma, burn and sepsis, we also used the signatures derived from single-cell 

trauma data to query the published bulk whole-blood transcriptomic data from burn and sepsis 

patients, aiming to provide broad new insights shared across different etiologies of critical illness. 
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2.0 A Roadmap from Single-Cell RNA sequencing to Patient Transcriptomic Subtypes for 

the Immune Response to Trauma 

This chapter has been published and adapted from the below publication:  

Chen, T., et al., A road map from single-cell transcriptome to patient classification for the 

immune response to trauma. JCI Insight, 2021. 6(2) [18]. 

2.1 Introduction 

Immune dysfunction is an important factor driving mortality and adverse outcomes after 

trauma but remains poorly understood, especially at cellular level. To deconvolute the trauma-

induced immune response, we applied single-cell RNA sequencing to circulating and bone marrow 

mononuclear cells in injured mice and circulating mononuclear cells in trauma patients. 

To provide the landscape of transcriptomic changes at the single-cell level after systemic 

injury, we carried out scRNA-seq on bone marrow and circulating mononuclear cells (BMMCs 

and PBMCs) from injured mice and PBMCs from trauma patients. Studies in both a well-

controlled mouse model of trauma and a detailed time course study in 10 severely injured humans 

identified the greatest changes in Ly6C+/CD14+ monocytes. This led us to characterize the major 

regulatory features in myeloid cells after systemic injury. To correlate these features with 

outcomes, we analyzed databases representing global gene expression changes in circulating 

leukocytes in large patient studies of trauma, burns and sepsis. In addition to providing a 

comprehensive landscape of the dynamic changes in transcriptomic patterns in myeloid 
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mononuclear cells after severe injury, we identify patient subtypes with potential prognostic value 

along with the critical regulatory networks (transcription factors) at the cellular level. 

2.2 Methods 

2.2.1 Mouse polytrauma model 

We utilized a previously described mouse model of polytrauma that combines features 

commonly observed in critically ill trauma patients, including severe hemorrhagic shock and tissue 

trauma [19, 20]. Briefly, anesthetized 8-12 week old male C57BL/6 (Jackson Laboratory, 

Cat#000664) mice were subjected to bilateral lower extremity crush injury + injection of bone 

homogenate (a surrogate for long bone fracture). This was immediately followed by hemorrhagic 

shock for 1.5hrs at a mean arterial pressure of 28-32mmHg and then resuscitation with Lactated 

Ringers solution at 3x the volume of the shed blood. We harvested the blood and bone marrow 

samples at 3 different time points: 3hrs (escalation phase), 6hrs (peak systemic inflammation), and 

24hrs (recovery phase) post-injury. Uninjured male littermates were used as controls. Peripheral 

blood was collected by cardiac puncture for PBMCs isolation. Tibias and femurs were collected 

for BMMCs isolation. Young male mice were used for this study because the greatest percentage 

of severely injured trauma patients are young males [21].  
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2.2.2 Patient and human volunteer enrollment 

Patients suffering blunt or penetrating trauma that were admitted to the intensive care unit 

and suffering hypotension (systolic blood pressure <90 mmHg) or tachycardia (heart rate > 108) 

on admission were eligible for enrollment. Ten patients covering wide range of age and injury 

severity were selected for analysis. Blood samples for PBMCs isolation were obtained within 4hrs 

of injury and at 24hrs and 72hrs after injury. Blood drawn from a healthy age and sex matched 

uninjured volunteer was used to establish the baseline for each patient. The 72hr samples from 2 

patients are not available (1 early death and 1 subject refused the final blood draw), for a total of 

38 samples. 

2.2.3 PBMCs and BMMCs isolation 

Mouse PBMCs were isolated by standard procedure of Ficoll gradient centrifugation 

(Ficoll-Paque Premium 1.084, Cat#17-5446-02, GE Healthcare). Residual red blood cells were 

removed using red blood cell lysing buffer (R7757, Sigma-Aldrich). Bone marrow was obtained 

from tibias and femurs by flushing the marrow cavities with 3ml PBS (containing 2% FBS and 

2mM EDTA). BMMCs were isolated by Ficoll gradient centrifugation using the same protocol 

described for mouse PBMCs. Human PBMCs were isolated by Ficoll-Paque PLUS (Cat#17-1440-

03, GE Healthcare) using SepMate tubes (Stemcell) to accelerate the procedure. Other steps were 

largely the same as the mouse protocol. 

The isolated cells were cryopreserved and thawed for analysis according to the 10x 

Genomics protocol [22]. Briefly, PBMCs were resuspended in 0.5ml resuspension medium (40% 

FBS in DMEM) and 0.5ml freezing medium (40% FBS + 30% DMSO in DMEM) in a 1:1 ratio. 



 10 

BMMCs were resuspended in 1ml freezing media (90% FBS + 10% DMSO). Cells were chilled 

in CoolCell (Corning) in -80 overnight and transferred to liquid nitrogen. Cryopreserved vials were 

thawed in the water batch at 37°C, removed from water bath when a tiny ice crystal remained and 

then transferred to a 50ml conical tube after thawing was complete. A milliliter of thawing medium 

(PBMCs: 10% FBS in DMEM; BMMCs: 20% FBS in PBS) was added dropwise (5 sec/drop), 

followed by 2ml, 4ml, 8ml, 16ml thawing medium at ~ 1-min intervals. After this, the cells were 

washed and resuspended in calcium and magnesium free buffer (PBMCs: PBS with 0.04% BSA; 

BMMCs: PBS with 10% FBS) for cDNA library preparation. 

2.2.4 Single-cell cDNA library preparation and sequencing 

PBMCs and BMMCs were isolated by standard Ficoll centrifugation. Single-cell 3’ cDNA 

libraries were prepared following 10x Genomics protocol [22] (mouse: v2; human: v3). Cases with 

corresponding controls were processed in parallel within the same batch. Libraries were pair-end 

sequenced on an Illumina HiSeq platform, with a read length of 150bp at each end. On average 

180 million reads were sequenced for each sample. 

2.2.5 Single-cell sequencing data processing (mouse) 

To minimize the potential batch effect, we analyzed each batch of mouse data separately. 

For each batch, raw sequencing data was processed using the 10x Cell Ranger pipeline, cellranger 

count followed by cellranger aggr (mouse: v2.1.0, mapped to mm10) to generate a UMI count 

matrix and then further processed using the Seurat (v2.3.4) [23]. Genes expressed in ≥ 3 cells were 

retained. Cells with gene counts less than 200 or more than 5000 were filtered out. The number of 
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detected molecules per cell (nUMI), an unwanted source of variation, were regressed out by the 

ScaleData() function. Principle Component Analysis (PCA) was performed upon variable genes. 

Significant principal components (PCs) were defined by a clear elbow in the plot of the PC 

standard deviation. t-SNE, UMAP, and clustering analyses were performed based on the 

significant PCs. The resolution for graph-based clustering was tuned back and forth until the 

identified clusters were biologically meaningful. DEGs between clusters were computed by using 

the FindMarkers() function with default methods based on the Wilcoxon rank sum test. For specific 

cell populations of interest, we extracted the UMI count sub matrix and re-did the secondary 

analysis mentioned above in order to analyze the differences at a higher resolution. By this analytic 

workflow, we demonstrated that (1) duplicates largely overlap and (2) the major conclusions can 

be easily confirmed using different batches. 

2.2.6 Single-cell sequencing data processing (human) 

Based on the mouse experiments, biological replicates prepared in parallel were highly 

reproducible. Thus, similar to the mouse analysis, different time points sampled from the same 

patients with the matched healthy control were processed by cellranger count/aggr (v3.0.0, 

mapped to GRCh38) and then by Seurat (v3.0.2) for quality control and pre-processing in order to 

largely preserve the differences along timeline. Genes expressed in ≥ 3 cells were retained. Cells 

with gene counts less than 200 or more than 5000 or ≥ 20% mitochondria genes were filtered out. 

To overcome human heterogeneity and to identify the same cell type or functional state in 

population, the data from different individuals were integrated by Seurat integration standard 

workflow [24]. To clarify, the integrated data were only used for dimension reduction (e.g. PCA, 

UMAP, t-SNE) and the downstream analysis taking the results of dimension reduction as input 
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(e.g. clustering). Other analyses were performed based on the original data matrix. For example, 

DEGs were identified by logistic regression using uncorrected and log-normalized expression data 

with batch as a potential variable, and then corrected by Bonferroni method for multiple testing 

(default method by Seurat). 

2.2.7 Doublet and low-quality cell removal 

Different cell types have different number of expressed genes. E.g. monocytes have more 

expressed genes compared with lymphocytes. One hard cutoff was not be applicable for all cell 

types. Thus, in initial quality control, we used a relatively low threshold to include more potential 

high-quality cells. In the analysis of a specific population, doublets and low-quality cells were 

more distinguishable at the higher resolution, usually forming small isolated clusters. Doublets 

were identified based on the biological knowledge, e.g. co-expressing both T and B cell markers. 

Low-quality cell clusters were identified by: (1) Most top genes were still mitochondria genes after 

initial quality control or (2) The number of expressed genes was extremely lower than other 

clusters and in the absence of cluster-specific genes. Thus, doublet and low-quality cell removal 

was an iterative process. 

2.2.8 Cell staining for flow cytometry 

Fresh mouse BMMCs isolated by Ficoll centrifugation from control and T/HS (time point: 

6hrs) were stained for flow cytometry, 2 mice/group. Transcription Factor Staining Buffer Set 

from eBioscience (Cat# 00-5523-00) was used for intracellular staining of IRF8. Experiment was 

repeated for three times. Analysis was performed on by flow cytometer (LSR-15) and analyzed 
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with FlowJo software. The CD45+ live cells in the monocyte lineage were defined by 2 gating 

strategies: (1) Lin-CD115+Ly6G- and (2) Lin-Ly6C++Ly6G-. Multi-dimensional protein data of Lin-

Ly6C++Ly6G- gated monocytes were also visualized by Matlab/Cyt3 [25]. The compensated data 

(fcs files) of gated populations were taken as the input and Arcsinh transformed. The cells from 

each mouse were down-sampled to 3000 cells for visualization. 

Fluorophore-conjugated antibodies against myeloid lineage markers (CD11b, Ly6G, 

Ly6C, CD115), a transcription factor IRF8 with IgG1 kappa Isotype Control, other lineage markers 

(CD3ε, TCRγδ, B220, NK1.1, Ter119, CD19) and Leukocyte common antigen CD45 were listed 

as below: LIVE/DEAD™ Fixable Aqua Dead Cell Stain Kit (Invitrogen, Cat# L34965), anti-CD3ε 

FITC (145-2C11) (eBioscience, Cat# 11-0031-85), anti-TCRγδ FITC (GL3) (eBioscience, Cat# 

11-5711-82), anti-B220 FITC (RA3-6B2) (eBioscience, Cat# 11-0452-82), anti-NK1.1 FITC 

(PK136) (BD, Cat# 553164), anti-Ter119 FITC (TER-119) (BioLegend, Cat# 116205), anti-CD19 

FITC (1D3) (BD, Cat# 553785), anti-CD45 BUV395 (30-F11) (Bioscience, Cat# 564279), anti-

CD11b PE-Cy7 (M1/70) (BioLegend, Cat# 101216), anti-Ly6G APC-Cy7 (1A8) (BD, Cat# 

560600), anti-Ly6C PerCP-Cy5.5 (HK1.4) (eBioscience, Cat# 45-5932-82), anti-CD115 PE 

(AFS98) (eBioscience, Cat# 12-1152-81), anti-IRF8 APC (V3GYWCH) (eBioscience, Cat# 17-

9852-80), anti-IgG1 kappa Isotype Control APC (P3.6.2.8.1) (eBioscience, Cat# 17-4714-82). 

2.2.9 Computation of PC associated genes and PC functional annotation 

For the PC of interest, we computed Pearson’s correlation between the scaled expression 

value by Seurat [23] and PC coordinates for each gene. A Benjamini-Hochberg adjusted p-value 

≤ 0.05 was used as the cutoff to define PC-associated genes. With the correlation coefficient as the 

rank, GSEA was performed using the fgsea R package (v1.6.0). The top enriched gene sets with 
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positive NES (normalized enrichment scores) largely indicated the biological functions on the PC 

positive side, vice versa. 

2.2.10 Pseudotime estimation 

Pseudotime was computed by the Monocle [26] R package (v2.8.0) using the default 

parameters taking UMI matrix as input. To avoid the influence of cell cycle phases, pseudotime 

was computed after removing all cell cycle genes based on GO term annotation (GO:0007049). 

We forced the myeloid progenitor-enriched state as pseudotime zero. Among the variable genes 

identified from Seurat [23], the genes differentially expressed along pseudotime were identified 

by the differential GeneTest() function. The genes with q-value <0.001 (q-value was provided by 

Monocle) were used to build up the transcriptomic profile and cluster into gene modules. 

2.2.11 Regulon detection and PCA projection 

Myeloid regulons were computed with the SCENIC [27] R package (v1.0.1.1) using the 

UMI count matrix of myeloid cells with the default parameters. The computed regulons were 

further used as the gene sets for enrichment analysis or to calculate signature scores. 

For motif references (from https://resources.aertslab.org/cistarget/), “mm10__refseq-

r80__500bp_up_and_100bp_down_tss.mc9nr.feather” and “mm10__refseq-

r80__10kb_up_and_down_tss.mc9nr.feather” RcisTarget databases were downloaded for mouse 

regulon detection. “hg38__refseq-r80__10kb_up_and_down_tss.mc9nr.feather” and 

“hg38__refseq-r80__500bp_up_and_100bp_down_tss.mc9nr.feather” were downloaded for 

human regulon detection. 

https://resources.aertslab.org/cistarget/
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Regulons were projected onto PCA 2D space largely following the published methods [28, 

29]. Each single cell had a coordinate for each PC and was assigned an AUC (area under curve) 

value for each regulon by SCENIC. Pearson’s correlation was calculated between AUC values and 

PC coordinates. Finally, each regulon was plotted on PCA 2D space based on the correlation 

coefficients with corresponding two PCs, respectively. 

2.2.12 Cell cycle phase assignment 

Cell cycle phases were computed by the cyclone() function from scran R package (v1.8.2). 

The UMI count matrix was taken as the input. The pre-defined classifiers provided with the scran 

package were used to assign cell cycle phases. 

2.2.13 RNA velocity computation 

RNA velocity of myeloid progenitors was computed by velocyto [30] (v0.17). The mouse 

specific reference, “mm10_rmsk.gtf”, was downloaded from UCSC genome browser as expressed 

repeats annotation. “genes.gtf” was generated by cellranger mkref as a genome annotation file. 

The cellranger count output was taken as the input to generate a loom file for each sample. Loom 

files from different samples were merged using the loompy python package. Finally, RNA velocity 

was estimated using the velocyto R package (v0.6). 

https://genome.ucsc.edu/cgi-bin/hgTables?hgsid=611454127_NtvlaW6xBSIRYJEBI0iRDEWisITa&clade=mammal&org=Mouse&db=mm10&hgta_group=allTracks&hgta_track=rmsk&hgta_table=0&hgta_regionType=genome&position=chr12%3A56694976-56714605&hgta_outputType=primaryTable&hgta_outputType=gff&hgta_outFileName=mm10_rmsk.gtf
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2.2.14 Enrichment analysis 

(1) Enrichment between two gene sets: For a pre-ranked gene list, GSEA [31] was 

performed using the fgsea R package (v1.6.0). For the gene lists without rank, “a” represents the 

number of shared genes between gene set 1 and gene set 2; “b” represents the number of genes 

only in gene set 2; “c” represents the number of genes only in gene set 1. Universe genes (N) were 

defined as the genes expressed in ≥ 0.5% of the cells used to compute corresponding gene modules. 

Fold enrichment (FE) was computed as below: 

𝐹𝐹𝐹𝐹 =  
𝑎𝑎

𝑎𝑎 + 𝑏𝑏
𝑎𝑎 + 𝑐𝑐
𝑁𝑁

�  

The hypergeometric p value for enrichment was computed and adjusted by the Benjamini-

Hochberg method for multiple testing. MSigDB gene sets v5.2 were used. 

(2) Enrichment or deletion between human monocyte clusters and time points: the two-

sided p values of the χ2 test and odds ratio were computed. The p value was adjusted by the 

Benjamini-Hochberg method. 

2.2.15 Hierarchical clustering  

Ward clustering was performed using hclust() function in R with the agglomeration method 

set as “ward.D2” [32]. The distance matrix was 1 minus Pearson’s correlation. Hierarchical 

clustering was used to identify gene or patient clusters. 
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2.2.16 Generation of customized signatures 

(1) Circulating monocyte markers: To roughly estimate the developmental relationship 

among mouse circulating monocytes, GSE95702 [33] was used to generate this signature. The 

monocyte development referenced in this paper is MDP (monocyte-macrophage DC progenitors) 

→ cMoP (common monocyte progenitors) → BM Ly6C+ → blood Ly6C+ → blood Ly6Cint → 

blood Ly6Clow. We identified the genes that were up-regulated in circulating monocytes compared 

with the monocyte progenitors and Ly6C+ monocytes in BM. DEGs were computed using the 

limma R package (v3.36.3) on the log2 transformed expression values with Benjamini-Hochberg 

adjusted p-value = 10-4 as the cutoff. 

(2) Monocyte differentiation associated genes: To validate the pseudotime of the monocyte 

lineage, we extracted the genes which are positively or negatively correlated with monocyte 

differentiation in bone marrow from the published dataset GSE95702 [33]. First, PCA was 

performed on the samples of MDP, cMop and BM Ly6C+ monocytes. PC1 largely represented the 

differentiation process of monocytes in bone marrow, with the above 3 populations aligning from 

the left, middle and to the right. For each gene, we computed Pearson’s correlation between the 

log2 transformed expression value and PC1 coordinates. Benjamini-Hochberg adjusted p-value ≤ 

0.05 was used as the cutoff to define the genes which are significantly associated with PC1. Among 

these genes, the ones with positive Pearson’s correlation coefficient are the genes which are 

gradually down regulated along monocyte differentiation (signature name: Diff down), and those 

with negative Pearson’s correlation coefficient were gradually up regulated along monocyte 

differentiation (signature name: Diff up). 

(3) MDSC signatures: To evaluate immunosuppressive potential, signatures for MDSC 

from 5 different sources were extracted from the published dataset GSE21927 [34]. Generally, 
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different sources of MDSC were compared with the CD11b+ counterparts isolated from healthy 

spleen from the same species. DEGs were computed using the limma R package (v3.36.3) on the 

expression values (already log2 transformed). The genes that were significantly up-regulated in 

MDSC were used to identify MDSC signatures. The cutoff was set as Benjamini-Hochberg 

adjusted p-value = 10-3 for BM-derived MDSC and 10-5 for tumor-derived MDSC. 

2.2.17 Signature score calculation 

Signature scores were calculated as the average expression of the signature genes (or 

probes for microarray data) after z-score transformation across the patients, as described by Guo 

et al [35]. The “signature score matrix” based on the six human monocyte signatures was 

calculated in this way. 

(1) For mouse single-cell RNA sequencing data, the average of Seurat (v2.3.4) [23] scaled 

values (stored in @scale.data slot which are normalized, scaled, log and z-score transformed) was 

the signature score for each cell. (2) For GEO datasets, the expression values in the matrix were 

log2 transformed (if this had not already been performed) and z-score transformed. Then, the 

average of the log2 and z-score transformed expression values was defined as the signature score 

for each subject.  

We noticed that MDSC signatures contains multiple cell cycle genes. In this case, cell cycle 

phases would become a significant cofounder, especially in the BM. Thus, MDSC signatures were 

calculated after removal of all the cell cycle genes based on the GO term annotation 

(http://www.informatics.jax.org/go/term/GO:0007049). 

http://www.informatics.jax.org/go/term/GO:0007049
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2.2.18 Intrinsic signature score and intrinsic deviation score (IDS) calculation 

We defined intrinsic signature scores (annotated as IC1-IC6, corresponding to the six 

signatures C1-C6) in order to reflect relative expression of the six signatures the within an 

individual. For each patient, six intrinsic signature scores were calculated as follows: (1) Extraction 

of the log2 transformed expression values of 129 signature genes from the full transcriptomic data; 

(2) Z-score transformation across all signature genes; (3) For each signature, the corresponding z-

score transformed values were averaged to get the intrinsic signature score. Thus, each patient was 

assigned 6 values.  

Random forest was used to establish the classifier taking the six intrinsic signature scores 

as input to predict which subtype the patient should belong to. We used all the first sampled data 

points from 167 trauma patients as the training data set with 5-fold cross validation. Subtypes were 

obtained from clustering analysis. Burn and Sepsis datasets with available survival data were used 

as two independent validation cohorts. 

C1-C3 were the signatures induced after trauma, so their signs were “+1”. C4-C6 were the 

signatures suppressed after trauma, so their signs were “-1”. IDS was calculated by the equation 

shown below: 

𝐼𝐼𝐼𝐼𝐼𝐼 =  
∑  𝐼𝐼𝐼𝐼𝑖𝑖  ×  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖6
𝑖𝑖=1

6
 

2.2.19 Clinical annotations of trauma dataset 

In the trauma dataset, samples annotated as either “low RNA quality” or “incomplete time 

points” in metadata were excluded. Trauma patient outcomes were originally classified as an 
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uncomplicated when time to recovery (TTR) was <5 days, intermediate when TTR was ≥ 5 and ≤ 

14 days and complicated when TTR was >14 days or the patient died within 28 days. TTR was 

defined as the number of days following the trauma event until organ dysfunction had resolved 

[6]. For the analysis of this data set, we pooled intermediate and uncomplicated cases together and 

classified the patients into either complicated (TTR >14 days or death) or non-complicated (TTR 

≤ 14 days) categories. 

2.2.20 Time-to-event analysis 

For the gene array datasets that have multiple time points for each patient (trauma and 

burn), only the 1st sampled gene array data points were included for the survival analysis. For 

trauma patients, event was set as recovery status, due to the very few cases of in-hospital deaths 

(160 alive vs. 7 dead, mortality rate: 4.2%). The definition of recovery was based on the annotation 

from the original dataset [6]. For non-survivors, “hospital length of stay” was used as the time and 

recovery status was annotated as “No”. For burn and sepsis patients, the event was set as in-hospital 

death. A Kaplan-Meier curve was plotted by survival R package (v2.43.3) for visualization 28-day 

prognosis and the Log-rank p value was computed. Cox proportional hazards model was 

performed by coxph() function in R adjusting for covariates, including age, sex, serum lactate 

within 6hr and severity (if available). 

2.2.21 Deconvolution of cell composition 

To prepare the input of the array data, CEL files were downloaded from GSE36809 and 

then processed by CEL_to_mixture.R provided by CIBERSORT. For the input of signature matrix, 
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we used the signature matrix of LM22, which is CIBERSORT provided and contains 22 

functionally defined human immune subsets. We used the deconvoluted results for the 1st time 

points of 167 trauma patient and added the neutrophil + monocyte percentage into the cox 

regression model. 

2.2.22 Entrez ID – gene symbol and mouse – human homolog gene exchange 

Genome wide annotation for mouse (org.Mm.eg.db, v3.6.0) and for human (org.Hs.eg.db, 

v3.6.0) were installed. Entrez ID – gene symbol exchange was performed by AnnotationDbi R 

package (v1.42.1). The HomoloGene data file was obtained by getHomologene() function from 

homologene R package. Mouse entrez IDs were mapped to human homolog entrez IDs using 

annotation Tools R package (v1.58.0) 

2.2.23 Study approval 

Mouse experimental protocols were approved by the Institutional Animal Use and Care 

Committee of the University of Pittsburgh. Experimental procedures were carried out in 

accordance with all regulations regarding the care and use of experimental animals (National 

Institutes of Health). 

Trauma patients and healthy volunteers were enrolled in an observational study approved 

by the University of Pittsburgh Institutional Review Board. Informed consent was obtained from 

all the subjects (or next of kin). 
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2.2.24 Data and materials availability 

The raw scRNA-seq datasets (both human and mouse) in the FASTQ format with filtered 

gene/barcode matrix have been uploaded to the Gene Expression Omnibus (GEO) (GSE162806). 

The analyzed published datasets can be accessed via GEO (Trauma bulk data: GSE36809, Burn 

bulk data: GSE37069, Mars sepsis bulk data: GSE65682, SRS sepsis bulk data: E-MTAB-4421). 

All clinical annotations for trauma and burn bulk data were obtained from the lead author of the 

original paper [6]. 

2.3 Results 

2.3.1 Dramatic transcriptomic changes in mouse circulating monocytes after systemic 

injury 

To deconvolute the immune response to trauma, scRNA-seq was performed on PBMCs 

isolated from mice subjected to tissue trauma with hemorrhagic shock (T/HS) [19, 20] and their 

uninjured littermates (2 mice/group) (Figure 1A). As shown in the t-Distributed Stochastic 

Neighbor Embedding [36] (t-SNE) plots (Figure 1B), biological duplicates overlapped very well. 

Thus, the shift between experimental groups can be expected reflect the trauma-induced 

differences. At 6h after injury, the peak of systemic inflammation [37], the greatest changes were 

observed in monocytes represented by an obvious transcriptomic shift in the t-SNE plot and the 

largest number of DEGs (Figure 1B-1H). 
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Figure 1 Overview of transcriptomic changes in mouse PBMCs at 6hrs after T/HS. 

(A) Experimental design of the data shown in Figure 1-2. (B) t-SNE plot shows PBMCs from four mice color coded 

by major cell types, by animal groups or by individual mice. (C) Identified six clusters in circulating monocytes. (D) 

t-SNE plot of PBMCs as shown in Figure 1B. The expression of representative markers is shown. (E) Changes in the 

fractions of major cell types in PBMCs after T/HS. (F) The number of DEGs detected in each cell type (adjusted p-

value < 0.05). (G-H) The number of molecules (UMI: unique molecular identifier) (G) and detected genes (H) are 

shown by cell types + groups. Each dot represents a cell. 
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To characterize monocytes at a higher resolution, we extracted and re-analyzed monocytes 

separately. The designation of mouse circulating monocytes is based on the surface marker Ly6C 

(coded by Ly6c2) [38], and circulating Ly6C+ monocytes give rise to Ly6C- monocytes [33]. We 

recapitulated two steady state clusters corresponding to classical (cluster 2: Ly6c2+) and patrolling 

monocytes (cluster 3: Ly6c2-) [38] in the uninjured mice. We also identified three new monocyte 

clusters that were distinct from steady-state monocytes, which showed a gradient in Ly6c2 

expression after T/HS (clusters 1, 0 and 5: Ly6c2high, Ly6c2int, Ly6c2low). Cluster 4 was comprised 

of monocyte-platelet aggregates highly expressing platelet markers (Pf4 and Pbpp) (Figure 1C and 

Figure 2A). Principal component analysis (PCA) revealed a right shift of monocytes after T/HS 

on PC1. Based on gene set enrichment analysis (GSEA) [31], the right side of PC1 associates with 

inflammation and the left side with lymphocyte activation (Figure 2B-2C), suggesting that T/HS-

induced monocytes are more inflammatory but deficient in the capacity for lymphocyte activation 

compared with steady-state monocytes. 

The monocyte clusters that appeared after T/HS could be derived from cells already present 

in the circulation that underwent transcriptional changes or from bone marrow (BM). To address 

these possibilities, we generated a customized gene signature representing the upregulated genes 

in circulating monocytes compared with BM monocytes under steady state [33] (Figure 3). 

Monocyte-platelet aggregates (cluster 4) were excluded from the analyses of developmental status, 

due to the confounding effects of multiplets in single-cell analysis. The newly identified 

monocytes after T/HS displayed lower signature scores than the steady-state monocytes (Figure 

2D), indicating that the monocytes after T/HS were more immature. Furthermore, the DEG were 

largely preserved in the newly identified clusters after T/HS (1→0→5, “→” followed a decreasing 

gradient in Ly6c2 expression) and in the steady-state clusters (2→3), but were minimally shared 
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between the two experimental conditions (Figure 2E). Both of these observations suggested that 

the new monocyte clusters observed after trauma were derived from BM. 
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Figure 2 Dramatic transcriptomic changes in mouse circulating monocytes after systemic injury. 

(A) Top markers for each monocyte cluster as shown in Figure 1C. Cells (columns) are ordered by clusters. (B) PCA 

plot of circulating monocytes color coded by groups. Biological interpretations are annotated based on the results 

shown in (B). (C) Selected enriched GO terms of PC1-associated genes by GSEA. (D) The monocytes after T/HS 

express less monocyte circulating markers than monocytes from control mice. (E) RNA profile of circulating 

monocytes built upon pairwise DEGs between each two-cluster combination. Cells (columns) are ordered by clusters. 

Genes (rows) are clustered into two large clusters generally representing either steady-state or T/HS-induced features.  
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Figure 3 Generation of monocyte circulating markers. 

(A) Schema describing the workflow for how monocyte circulating markers were extracted from GSE95702 dataset. 

(B) Visualization of the expression of extracted monocyte circulating markers in monocyte subsets characterized in 

GSE95702 dataset, which confirms the extracted signatures are indeed the genes up-regulated in circulating 

monocytes. 

2.3.2 Continuous changes in the myeloid cell transcriptome from the BM to the circulation 

after T/HS 

We next carried out scRNA-seq on paired PBMCs and BMMCs from additional control 

and T/HS mice at 6h (2 mice/group) (Figure 4A). t-SNE across the circulating and BM 

compartments displays the large differences in myeloid cells after T/HS, especially in the 

monocyte lineage. The changes initiated in the BM were continuous to the circulating 

compartment (Figure 4B and Figure 5). PCA indicates that BM neutrophil and monocyte lineages 

underwent similar changes after systemic injury demonstrated by the positive side of PC3 and 

represented by inflammation, response to stress, and apoptosis (Figure 6A-6C).  
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Figure 4 Overview of paired mouse BMMCs + PBMCs at 6 hrs after T/HS. 

(A) Experimental design for the data shown in Figure 4-13, 2 mice/group. (B) t-SNE plot of BMMCs + PBMCs from 

the four mice are color coded by individual mice, by groups, by cell compartments or by cell lineages. HSC: 

hematopoietic stem cells; MPP: multipotent progenitors. 



 29 

 

Figure 5 Expression of representative markers in paired BMMCs + PBMCs as shown in Figure 4B.  
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Figure 6 Overview of transcriptomic changes in BMMCs at 6 hrs after T/HS. 

(A) PCA plot (PC1 vs. PC3)  of BMMCs including HSC/MPP (hematopoietic stem cells/multipotent progenitors) and 

mP (myeloid progenitors) as shown in the 4th panel of Figure 4B color coded by groups. (B) Expression of lineage 

markers. (C) Top ten hallmark pathways enriched on the positive side of PC3. (D) PCA (PC1 vs. PC2) plot of BM 

myeloid cells, including HSC/MPP + myeloid progenitors, color coded by groups. Expression of lineage markers are 

shown in (E). (F) Projection of the regulons on the PCA 2D space as shown in (D-E). Well-established TFs (e.g. 

Cebpe ~ neutrophils [39], Irf8 ~ monocytes [39], Sox4 ~ stem cells [40]) largely overlay with the known corresponding 

lineages, supporting the reliability of the computed regulons. (G) Changes in the fractions of major cell types in 

BMMCs after T/HS. 

 

The regulatory pathways associated with the myeloid trajectories were further explored by 

computing gene regulatory networks (regulons) using SCENIC [27]. A regulon represents the co-
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expressed set of genes detected within scRNA-seq data, including a core transcription factor (TF) 

and the TF regulated genes containing the TF binding motif depicted as “TF (number of genes)”. 

We followed published methods [28, 29] and projected the regulons on PCA 2D space. Well-

established TFs largely overlay with the known corresponding lineages (Figure 6D-6F), supporting 

the reliability of the computed regulons. SCENIC provides two kinds of regulons: (1) Main 

regulons (non-extended) only using the high confidence annotations; and (2) extended regulons 

also including lower confidence annotations. Both types of regulons yielded similar results (Figure 

6F). In the following analysis, we only used the main regulons to establish the regulatory 

landscape. 

2.3.3 Characterization of the transcriptomic changes in myeloid progenitors after T/HS 

We next characterized the transcriptomic changes in myelopoiesis at a proximal branching 

point by analyzing BM myeloid progenitors (mP) from control and T/HS mice (Figure 4B, the 4th 

panel). These cells co-expressed myeloid progenitor mRNA markers (Ctsg, Mpo and Elane) 

(Figure 5) and largely corresponded to common myeloid progenitors (CMP) and granulocyte-

monocyte progenitors (GMP) as previously characterized [39]. We identified five distinct 

progenitor clusters (Figure 7A) that included: multi-Lin (clusters 3 and 4), monocyte-skewed 

(clusters 0 and 1) and neutrophil-skewed (cluster 2) mP as shown in UMAP (Uniform Manifold 

Approximation and Projection) [41]. RNA velocity [30] is an algorithm estimating the future state 

of single cells. The opposite directions in the RNA velocity (shown by the arrows) observed for 

clusters 3 and 4 further suggests two potential cell fates and supports their identity as multi-Lin 

progenitors (Figure 7B). Monocle [26] is an algorithm to reconstruct the trajectory of 
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differentiation using scRNA-seq data. The trajectories of mP established by Monocle (Figure 7C) 

were largely consistent with the identified clusters.  

 

 

Figure 7 Characterization of transcriptomic changes in the BM myeloid progenitors (mP) at 6 hrs after T/HS. 

(A) UMAP plot color coded by five mP clusters. (B) UMAP plot color coded by groups (RNA velocity shown as 

arrows). (C) The developmental trajectories constructed by Monocle 2. Cells are color coded by mP clusters. (D) RNA 

profile built upon pairwise DEG between mP clusters (fold change ≥ 2 & Bonferroni adjusted p-value < 0.05). Cells 

(columns) are ordered first by groups then by clusters. Genes (rows) are clustered into eight gene modules 

(mP_C1~C8). Single-cell transcriptomic data were collected from n=2 mice/group as shown in Figure 4A. (E) 

Enrichment analysis is performed between mP_C2 and each gene module identified from the BM monocyte and 

neutrophil lineages, demonstrating that the features of mP_C2 are preserved in the downstream lineages. 

Hypergeometric p-value was computed and then adjusted by Benjamini-Hochberg methods. Black vertical dash line 

annotated where adjusted p-value is equal to 0.05. 
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The transcriptomic profiles between the five mP clusters were established by pairwise 

DEGs comparisons. Ward hierarchical clustering [32] yielded 8 gene modules (mP_C1-C8) 

(Figure 7D). All mouse gene modules in this study are annotated as “CellType_Cluster (C)#”. The 

steady state multi-Lin mP expressed neutrophil and monocyte lineage modules at low levels, while 

clusters representing skewed mP highly expressed single lineage-specific modules. These patterns 

are consistent with the binary cell fate choice in myeloid progenitors described under baseline 

conditions by Olsson et al [39]. Trauma induced two major changes that include: (1) A monocyte-

to-neutrophil shift in multi-Lin mP and (2) an up-regulation of gene module mP_C2 across all 

T/HS mP clusters. The features of mP_C2 were preserved in the analysis of the downstream 

monocytes and neutrophils discussed below (Figure 7E). 

2.3.4 Characterization of the transcriptomic changes in the BM monocyte lineage after 

T/HS 

To characterize the full developmental trajectories during monopoiesis, we analyzed BM 

monocytes along with BM mP together (Scheme of the analysis depicted in Figure 8A). PCA 

indicates that T/HS induced dramatic changes in the monocyte lineage represented by PC1 (Figure 

8B and 8F). To characterize the changes along monocyte differentiation, we first computed 

pseudotime using Monocle 2 [26]. The pseudotime analysis was validated using genes extracted 

from an independent dataset that correlate with normal BM monocyte differentiation [33] (Figure 

8C). In control mice, the changes of these genes were consistent with our computed pseudotime 

confirming that our pseudotime is biologically relevant (Figure 8D).  
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Figure 8 Overview of transcriptomic changes in the BM monocyte lineages at 6 hrs after T/HS. 

(A) Schema describing the workflow for Figure 8-10. (B) PCA plot of BM monocyte lineage (including all mP, as 

shown in the 4th panel of Figure 4B) color coded by groups. (C) To validate the computed pseudotime, we extracted 

genes positively and negatively associated with BM monocyte differentiation from the GSE95702 dataset 

(Supplemental Methods). (D) Signature scores were calculated for each single cell shown in PCA plot in (B) and 

plotted along pseudotime. Smoothing lines were fitted by Loess regression. (E) RNA profile of the BM monocyte 

lineage built upon pseudotime-associated genes identified by Monocle 2. Cells (columns) are ordered first by groups 

then by pseudotime. Genes (rows) are clustered into six gene modules (Mono_C1~C6). (F) Expression of 

representative markers are shown in the PCA plot as shown in (B). 

 

We next established the RNA profile of pseudotime-associated genes and identified six 

gene modules (Mono_C1-C6) by Ward clustering (Figure 8E). To interpret biological functions 

and reveal critical regulatory networks, we performed an enrichment analysis using the MSigDB 
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[42] gene ontology and hallmark gene sets and computed regulons using SCENIC [27] (Table 2 

and Figure 9). Mono_C2, which was Cebpb (C/EBPb protein coding gene)-regulon associated was 

up-regulated after T/HS and increased continuously along differentiation (Figure 9A). This is 

consistent with the known roles for Cebpb in emergency myelopoiesis [43, 44]. The CD11b coding 

gene, Itgam, is also included in Mono_C2 (Table 2), and this corresponded to changes observed 

in circulating cells (Figure 2E). Klf4 and Irf8 are TFs critical for steady state monopoiesis [45]. 

Irf8 is also responsible for monocyte lineage commitment [39]. Mono_C1 and Mono_C5, were 

associated with Klf4 and Irf8 regulons, respectively (Figure 9D). The monocyte lineage marker 

Csf1r (gene coding CD115), was included in Mono_C1 (Table 2). Unexpectedly, both Mono_C1 

and Mono_C5 were down regulated after T/HS (Figure 9A). The changes in the gene expression 

of these critical TFs after T/HS were consistent with the corresponding changes in regulon 

expression (Figure 9B-9C), further supporting the results of the regulon enrichment analysis. We 

also identified a cell-cycle module (Mono_C6), a progenitor module (Mono_C4) and a stress-

responsive module (Mono_C3) (Table 2 and Figure 9). 
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Figure 9 Characterization of transcriptomic changes in the BM monocyte lineages at 6 hrs after T/HS. 

(A-C) Expression of each gene module (A), critical TF (B) and corresponding regulon (C) along pseudotime. 

Smoothing lines were fitted by Loess regression. (D) Enrichment analysis between gene modules and regulons. 

Hypergeometric p-value was computed. Only the relationships with Benjamini-Hochberg adjusted p-value < 0.05 

(labeled as black vertical dashed line) with fold enrichment (FE) ≥ 2 and the number of overlapping genes ≥ 15 are 

shown. Relationships are color coded by top enriched gene modules (with highest FE).  
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Table 2 Brief summary of gene modules identified from mouse bone marrow monocyte lineage. 

 

 

To characterize the major differences in BM monocytes between control and T/HS, we 

extracted PC1-associated genes from the PCA shown in Figure 8B (Pearson’s correlation: adjusted 

p-value < 0.05 and |r| ≥ 0.3) and identified three gene modules (MonoPC1_C1-C3) (Figure 8A and 

Figure 10A). MonoPC1_C1 corresponded to steady-state module Mono_C5. MonoPC1_C2 

related to inflammatory module found in Mono_C2 and mP_C2. In addition, we identified a 

Neutrophil-like module MonoPC1_C3 (e.g. S100a8, S100a9, Ltf, Lcn2) highest expressed in 

neutrophils and up-regulated in monocyte lineage after T/HS, which is consistent with the 

monocyte-to-neutrophil shift observed in multi-Lin mP and can be mapped to mP_C1 (Figure 10B-

10C). These three modules derived from bone marrow monocytes were also reflected in the 

circulating monocytes (Figure 10D). 

 

 

Modules Representative genes Regulons  Biological functions 

Mono_C1 Csf1r, Cd74, H2-Aa, Ear2, Ly6i Klf4, Irf5 Lymphocyte activation, IL-12 production 

Mono_C2 
Itgam, Cd14, Thbs1, Cebpb, Mmp8, 

Sell, Hif1a, Mafb 
Cebpb, Junb Inflammation, chemotaxis 

Mono_C3 Junb, Fos, Fosb, Hsp90aa1 Jund, Jun Response to stress 

Mono_C4 Mpo, Ctsg, Elane, Lcn2, Ltf Erg, Ets1 Progenitor or neutrophil associated genes 

Mono_C5 Irf8, Klf4, Stat1, Irf7, Mx1 Irf8, Stat1 Steady-state monopoiesis 

Mono_C6 Tubb4b, Top2a, Cenpa E2f7, E2f1 cell cycle 
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Figure 10 Transcriptomic changes in the BM monocyte lineages at 6 hrs after T/HS, Cont’d. 

(A) Extraction of the major differences between groups from the PC1 as shown in Figure 8B. Ward clustering yielded 

three gene modules (MonoPC1_C1~C3) of PC1-associated genes (Pearson’s correlation: adjusted p-value < 0.05 and 

|r| ≥ 0.3). (B) Summary of the three gene modules identified in (A). (C) Enrichment analysis between the three gene 

modules and mP/monocyte/neutrophil gene modules identified at 6 hrs in mouse BM. Relationships are colored by 

binned number of overlapping genes. Only the relationship with ≥5 overlapping genes are visible. Mono_C1-C6 were 

characterized in Figure 8-9, Neu_C1-C4 in Figure 12 and mP_C1-C8 in Figure 7. (D) Visualization of the signature 

scores in the t-SNE plots. 

 

We validated the unexpected changes in two critical markers (monocyte lineage marker 

CD115/Csf1r and lineage TF Irf8) at the protein level in BM monocytes. Since CD115 gene 

expression was suppressed after T/HS, we used two gating strategies when selecting the cells in 

the monocyte lineage that included: (1) Lin-CD115+Ly6G- and (2) Lin-Ly6C++Ly6G- (Figure 11A). 

In control mice, the cells gated by the two strategies appeared identical. Following T/HS, the 

proportion of Lin-CD115+Ly6G- defined monocytes was significantly lower than that of Lin-

Ly6C++Ly6G--defined monocytes, due to a significant decrease in CD115 protein expression. Lin-

Ly6C++Ly6G- gated cells expressed less IRF8 and became more CD11b positive. To visualize the 
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colocalization of protein changes in Lin-Ly6C++Ly6G- gated cells, we chose Matlab/Cyt3 [25]. 

Similar to scRNA-seq, monocytes from the two experimental groups were largely separated in 2D 

dimension reduction space (first panel in Figure 11B). The higher CD11b expression and 

suppressed protein levels of IRF8 and CD115 were colocalized in most of the monocytes after 

T/HS (circled area in Figure 11B). Combined, the findings from the transcriptomics, regulatory 

networks and multi-dimensional protein analyses consistently characterized known and novel 

features in T/HS-induced monocytes compared to steady state monocytes. Therefore, circulating 

monocytes after T/HS are not a simply an immature version of steady state but instead a new 

myeloid trajectory evident at the mP level.  

 

 

Figure 11 Validation of transcriptomic changes in the BM monocyte lineage at 6 hrs after T/HS by flow 

cytometry. 

The results from one experiment (2 mice/group) are shown, which has been repeated for two extra times. (A) FlowJo 

analysis. (B) Matlab/Cyt3 analysis of Lin-Ly6C++Ly6G- monocytes (C: Ctrl; T: T/HS, 6hr).  
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2.3.5 Characterization of the transcriptomic changes in the BM neutrophil lineage after 

T/HS 

To characterize the full developmental trajectory during emergency neutropoiesis, BM mP 

and BM neutrophils were analyzed together (Figure 12A-12B). Using the same scheme outlined 

in Figure 8A, we identified 4 gene modules (Neu_C1-C4) with differential expression along 

pseudotime (Figure 12C). Similar to emergency monopoiesis, Neu_C2, was enriched in Cebpb 

regulons and associated with inflammation. After T/HS, this module continued to increase during 

neutrophil differentiation (Figure 12D-12F). The well-established granulocyte-lineage TF Cebpe 

[39] and surface marker Ly6g, were associated with Neu_C1. Even though Cebpe mRNA and 

regulon expression trended downward after T/HS (Figure 12G-12H), the steady-state module 

represented by Neu_C1 was not obviously suppressed (Figure 12F). The surface expression of 

Ly6G in BM neutrophils was also comparable before and after T/HS (Figure 11A). This is in 

contrast to monocytes where the steady state features were obviously suppressed after T/HS. 
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Figure 12 Characterization of transcriptomic changes in the BM neutrophil lineage at 6 hrs after T/HS. 
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(A) PCA plot of BM neutrophil lineage including all myeloid progenitors as shown in the 4th panel of Figure 4B, and 

expression of representative markers are shown in (B). (C) RNA profile of the BM neutrophil lineage is built upon 

pseudotime associated genes computed by Monocle 2. Cells (columns) are ordered first by groups, then by states 

identified using Monocle2 and lastly by pseudotime (from progenitors to committed cells). Genes (rows) are clustered 

by Ward clustering into four gene modules (Neu_C1~C4). (D) Enrichment analysis between the four gene modules 

and regulons. Hypergeometric p-value was computed. Only the relationships with Benjamini-Hochberg adjusted p-

value < 0.05 with fold enrichment (FE) ≥ 2 and the number of overlapping genes ≥ 15 are shown. Relationships are 

color coded by top enriched gene modules (highest FE). (E) Summary of the four gene modules. (F) Expression of the 

four gene modules, (G) critical regulons and (H) corresponding TFs along pseudotime color coded by groups. 

Smoothing lines were fitted by Loess regression. (I) Trajectories constructed by Monocle2 are color coded by states 

and wrapped by groups. (J) Expression of Neu_C2 along pseudotime color coded by states. 

 

Monocle [26] identified 3 states in the BM neutrophil lineage. State 3 corresponds to the 

progenitor state, and the other 2 states were neutrophil-committed states. Steady-state BM 

neutrophils were mostly in state 1. After T/HS, the proportion of the cells in state 2 increased 

dramatically, with only a small group of cells remaining in state 1 (Figure 12C and 12I). State 2 is 

characterized by high expression of the inflammatory module Neu_C2 (Figure 12J). Thus, we 

defined state 2 as the stimulated state and state 1 as the unstimulated state. T/HS induced a 

significant shift to the stimulated state during neutropoiesis.  

Taken together, our analysis of monocytes and neutrophils after T/HS in mice indicates 

that these cells become more inflammatory represented as the up-regulation of the inflammatory 

modules Mono_C2 and Neu_C2. Compared with neutrophils, monocytes displayed an earlier BM 

branching point and more pronounced changes, characterized as partially losing steady-state 

features and also gaining neutrophil-associated genes. We also assessed for the presence of 

transcriptomic signatures described for MDSC [34] and found these to be simultaneously up-
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regulated in both monocyte and neutrophil lineages after trauma (Figure 13). The gene modules 

and changes in TFs derived from the 6h time point in mouse BM were present at 3h and partially 

preserved to the 24h time point following injury (Figure 14).  
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Figure 13 Simultaneous initiation of inflammatory and features of MDSC during emergency myelopoiesis. 

(A) Development of MDSC gene signatures. (B-C) MDSC signatures are up-regulated in BM monocytes after T/HS 

(B) and in BM neutrophil stimulated state (state 2) (C) along pseudotime. A smoothing line was fitted by Loess 



 45 

regression. (D) MDSC signatures are up-regulated in circulating monocytes after T/HS. Cumulative frequencies of 

signature scores (CDF curves) are shown. (E) Enrichment analysis between MDSC signatures and each gene module 

identified from BM monocyte and neutrophil lineages at 6hrs after T/HS. Hypergeometric p-value was computed. 

Relationships are color coded by binned number of overlapping genes. Only relationships with ≥5 overlapping genes 

are visible. The MDSC signatures were significantly enriched in the inflammatory modules (Mono_C2 and Neu_C2, 

Cebpb regulon associated), especially Mono_C2. (F-G) RNA expression of some functional markers associated with 

MDSC in BM monocytes (F) and BM neutrophils (G) after T/HS.  
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Figure 14 Characterization of transcriptomic changes in the BM monocyte and neutrophil lineages at 3 hrs 

and 24 hrs after T/HS. 

(A) Experimental design of isolating paired BMMCs + PBMCs at 3 hrs and 24 hrs for scRNA-seq. (B-J) Analysis of 

BM monocyte lineage at 3hrs and 24hrs after T/HS. (B) PCA plot of BM monocyte lineage. The changes induced by 

T/HS are represented by PC2. (C) Top 10 hallmark pathways enriched in the positive side of PC2 by GSEA. (D) RNA 

profile was built upon PC2-associated genes (Pearson’s correlation: |r| ≥ 0.2 and adjusted p-value ≤ 0.05). Cells 

(columns) are ordered first by groups then by pseudotime. Cell cycle stages are also labeled. Genes (rows) are clustered 

into 5 gene modules, Mono_C1~C5 (3 & 24 hr). (E) Enrichment analysis between identified gene modules and 

regulons. Regulons were computed based on the myeloid cells including HSC/MPP and myeloid progenitors at 3hrs 

and 24hrs. Hypergeometric p-value was computed. Only the relationships with adjusted p-value < 0.05 and fold 

enrichment (FE) ≥ 2 and the number of overlapping genes ≥ 15 are shown. (F) Map the gene modules identified at 3 

& 24 hrs to the ones at 6 hrs (enrichment analysis). Relationships are colored by binned number of overlapping genes. 

(G) The gene modules derived from the 6hr time point were largely recapitulated at 3hrs and 24hrs. (H-J) Expression 

of each gene module (H), critical TF (I) and corresponding regulon (J) along pseudotime. Smoothing lines were fitted 

by Loess regression. (K-M) Analysis of BM neutrophil lineage at 3hrs and 24hrs after T/HS. (K) PCA plot of BM 

neutrophil lineage. Although BM neutrophils did not show obvious global transcriptomic changes 3 & 24hrs, the 

critical TFs (L) and corresponding regulons (M) followed a similar trend to those seen at 6hrs shown in Figure 12. 

2.3.6 Overview of the time-dependent transcriptomic changes in PBMCs from trauma 

patients 

To extend our landscape analysis into the human response to injury, we isolated PBMCs 

from 10 trauma patients (Table 3) sampled at 3 time points (<4h, 24h, 72h) after systemic injury. 

Each patient was paired with an age- and sex-matched healthy control subject (Figure 15A). The 

72h samples from two patients were not available leaving of 38 samples subjected to single-cell 

RNA sequencing. A total of 151,470 immune cells passed initial quality control, with a mean of 

1757 genes/cell. 
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Table 3 Trauma Patient Clinical Characteristics. 

Patient ID ISS Age Sex Injury 
Admission chemistry 

SBP HR GCS BD Lactate 

MM3001 22 21 Male MVC/motorcycle 71 127 15 12 4.8 

MM3005 22 35 Male MVC/PED 60 112 3 15 7 

MM3008 19 26 Male Penetrating 70 110 15 12 6.9 

MM3009 13 71 Male Fall 88 130 15 5 5.8 

MM3012 17 56 Male MVC 125 111 14 NA 3.7 

MM3015 38 21 Male Fall 45 74 3 17 3.4 

MM3016 18 32 Male MVC 127 148 15 19 2.4 

MM3020 27 78 Male Fall 83 51 8 11 NA 

MM3038 22 44 Female MVC 112 70 3 12 5.6 

MM3040 25 58 Male Fall/TBI/SDH 138 82 3 4 22 

Abbreviations:  

ISS: Injury severity score; HR: Heart rate; GCS: Glasgow Coma Scale/Score; BD: Base deficit; MVC: Motor vehicle collision; 

PED: Pedestrian; TBI: Traumatic brain injury; SDH: Subdural hematoma; NA: Not available. 
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Figure 15 Overview of the transcriptomic changes in PBMCs from trauma patients over time. 

(A) Experimental design for human scRNA-seq experiments. Blood samples for PBMCs isolation were obtained 

within 4hrs of injury and at 24hrs and 72hrs after injury from 10 patients. Blood drawn from a healthy age and sex 

matched uninjured volunteer was used to establish the baseline for each patient. The 72hr samples from 2 patients are 

not available, for a total of 38 samples (Ctrl: n=10; <4h: n=10; 24h: n=10; 72h: n=8). (B) UMAP plot of all human 
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PBMCs are color coded by major cell types. (C) Expression of major lineage markers in each cell type shown in (B). 

(D) Changes of cell type composition in each patient along with matched control subject. (E) UMAP plot as shown in 

(B) wrapped by patients and color coded by time points. (F) The number of significant DEGs (compared with healthy 

control, Bonferroni adjusted p-value < 0.05) at different time points in major cell types. 

 

The common PBMCs cell types were easily distinguished in all 38 samples with clear 

differences in transcriptomic patterns (Figure 15B-15C). The frequencies of major cell types in 

healthy controls were consistent with a previous report [46]. After trauma, changes in cell 

frequencies were variable between patients (Figure 15D). However, similar to mouse the data, the 

myeloid compartment (mostly monocytes) exhibited a significant and time-dependent shift shown 

by UMAP (Figure 15E) and contained the largest number of DEGs among the major cell types 

(Figure 15F). NK cells displayed the second largest number of DEGs followed by lymphocytes. 

The greatest changes were observed at the <4h time point. 

2.3.7 Characterization of the transcriptomic changes in human circulating monocytes 

Because there were no clear boundaries between dendritic cells (DC), CD14+ monocytes, 

and CD16+ monocytes in the UMAP plot (Figure 15B), we analyzed these cell populations 

separately to deconvolute the circulating monocytes at a higher resolution (Scheme shown in 

Figure 16A). This yielded 14 clusters of myeloid cells that included, 1 DC (cluster 8), 1 CD16+ 

(cluster 4), 1 cycling myeloid cells (cluster 13), 1 monocyte-platelet aggregates (cluster 9), 3 

CD14int monocytes (clusters 6, 10 and 12) and 7 CD14+ monocytes (clusters 0, 1, 2, 3, 5, 7 and 11). 

The CD14+ monocyte population displayed the most striking differences across time (Figure 16B-

16D). To order the clusters in a more biologically meaningful way, we designated each cluster 
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based on assigned cell cluster number (CC#), major cell subset and enrichment time point (Figure 

16E). If a cluster tended to be distributed evenly along time series (highest odd ratio ≤ 2.5), it was 

labeled as “pan”. The clusters were ordered first by monocyte developmental orders 

(CD14+→CD14int→CD16+) [47] and then by time series (4h→24h→72h→control) (Figure 16F-

16G).  
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Figure 16 Characterization of the transcriptomic changes in human circulating monocytes after trauma. 

(A) Schema describing the workflow for this figure. (B-C) UMAP plot of all human peripheral blood mononuclear 

myeloid cells color coded by identified clusters (B) or by time points (C). (D) Expression of monocyte, dendritic cell 

and platelet representative markers. (E) Overlap between myeloid clusters and time points were evaluated by χ2 test. 

Two-sided p values were computed and adjusted by the Benjamini-Hochberg method. OR: odds ratio. (F) Enrichment 

analysis between cluster specific markers and regulons. Hypergeometric p-value was computed. Only the relationships 
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with Benjamini-Hochberg adjusted p-value < 0.05 with fold enrichment (FE) ≥ 2 and the number of overlapping genes 

≥ 5 are shown. (G) Gene expression of enriched TFs corresponding to the regulons shown in (F). Color coded TFs or 

regulons in (F-G) are the ones also identified in mouse monocytes. Red: up-regulated; Blue: down-regulated after 

trauma. 

 

To prioritize critical transcription factors (TFs), we first computed SCENIC [27] regulons 

using all myeloid cells. Then, we performed enrichment analysis between regulons and identified 

top markers for each cluster (Figure 16A). Each cluster displayed distinct enriched regulons. There 

are roughly two blocks of TFs/regulons; one associated with CD14+ monocytes at early time points 

after injury, and another associated with CD14+ cells in the controls (Figure 16F). The expression 

of corresponding TFs was largely consistent with the regulon enrichment results (Figure 16G). 

Since regulon computation is independent of the Seurat integration workflow, this analysis 

provides independent confirmation for the identified clusters.  

2.3.8 Generation of six CD14+ monocyte signatures 

To further generalize the changes in CD14+ monocytes, we identified the pairwise DEGs 

between each pair of CD14+ monocyte clusters. This identified 129 genes above the threshold 

(adjusted p-value < 0.05 & fold change ≥ 2). These genes could be clustered into 6 signatures in 

which C1-, C2- and C3-associated genes were induced after trauma and C4, C5 and C6 represented 

the features dominant under steady state; these were suppressed after trauma (Figure 17A and 

Table 4). To biologically interpret these signatures, we performed enrichment analysis (Figure 17B 

and Table 5). C1-C3 were associated with the innate immune response, the response to oxygen 

containing compounds, the inflammatory response and regulation of hematopoiesis. Enriched 
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regulons included JUN, STAT3, XBP1, MAFB, CEBPD, and CEBPB, among others. C4 associates 

with an interferon (IFN)-specific program, highly enriched in the regulons of STAT1, STAT2 and 

IFN regulatory factors (IRF1, IRF7 and IRF9) [48]. It is noteworthy that a small but dominant 

population of CD14+ monocytes (cluster 11, Figure 16F) was highly associated with IFN signaling 

and significantly enriched in healthy controls. Many C5 genes are MHC II molecules and enriched 

in the regulon of MHC II activating TF RFX5 [49]. There were only 8 genes in C6, which were 

not enough to identify significantly enriched GO terms or regulons. Thus, we generalized the 

changes in monocytes after systemic injury into six signatures with central TFs and biological 

interpretations.  
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Table 4 Six signatures derived from human CD14+ monocytes. 

Signature 

Names 
Genes 

C1 CLU, NKG7, S100A8, S100A9, LGALS1, S100A12, CTSD, RETN, RNASE2, PLAC8, PLBD1, FOLR3, JUN, 

ALOX5AP, HP, EGR1 

C2 NAMPT, ACSL1, IL1R2, SOCS3, CD63, PIM1, CXCL8, VCAN, SLC2A3, AGFG1, CD55, SLC11A1, SAMSN1, 

MCEMP1, GCA, FKBP5, BCL2A1, SERPINB1, SLC25A37, CYP1B1, MCTP2, CCND3, ADM, G0S2 

C3 FTH1, THBS1, EREG, MARCKS, SRGN, CD300E, TIMP1, CTSL, HMOX1, LITAF, CD163, GK, GLUL, HLA-

DQA1, ASPH, AREG, IL1B, GK5, AQP9, PHC2, PLSCR1, GPR183, ETS2, CEBPB, CXCL2, SAP30, MAFB, 

FCGR1A, DDIT4, TPM4, MAP3K8, HIF1A, HLA-DRB5, ID2 

C4 OAS2, EPSTI1, IFIT1, RNF213, PARP14, IFIT3, IFI44, XAF1, LY6E, IFI44L, MX1, ISG15, IFI6, STAT1, OAS3, 

IFIT2, MX2, HERC5, EIF2AK2, SAMD9L, RSAD2, APOBEC3A, OAS1, TNFSF10, GBP1, IFITM3, LAP3, 

TMEM123, MT2A, SP110, STAT2 

C5 HLA-DRB1, HLA-DRA, HLA-DPA1, HLA-DPB1, FGL2, CD74, TXNIP, LGALS2, HLA-DMB, HLA-DMA, HLA-

DQB1, DUSP6, CPVL, ZFP36L2, AP1S2, TGFBI 

C6 NCF1, AHNAK, TAGLN2, CRIP1, JAML, RAB11FIP1, NUP214, LTA4H 
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Figure 17 Generation and validation of six CD14+ monocyte signatures. 

(A) RNA profile of pairwise DEGs (Bonferroni adjusted p-value < 0.05 and fold change ≥ 2) between seven CD14+ 

monocyte clusters. Columns represent the average gene expression for each cluster. Genes (rows) are clustered into 

six signatures (C1~C6). (B) Enriched regulons for the signatures shown in (A). Hypergeometric p-value was 

computed. Only the relationships with Benjamini-Hochberg adjusted p-value < 0.05 with fold enrichment (FE) ≥ 2 

and the number of overlapping genes ≥ 5 are shown. Relationships are color coded by top enriched gene modules 

(with highest FE). (C) Validation of the six signatures in published trauma dataset (37 healthy controls vs. longitudinal 

data from 167 patients). Expression of each signature along timeline (up to 28 days after injury) are shown. Smoothing 

lines were fitted by Loess regression. The vertical dotted line labels the 24 hrs timepoint after injury.  
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Table 5 Selected enriched GO terms for human CD14+ signatures. 

Signature name Selected GO terms 

C1 

Defense response to bacterium 

Leukocyte activation 

Response to biotic stimulus 

Innate immune response 

C2 

Response to lipid 

Response to organic cyclic compound 

Response to oxygen containing compound 

C3 

Acute phase response 

Acute inflammatory response 

Inflammatory response 

Regulation of hemopoiesis 

C4 

Response to interferon alpha 

Response to interferon gamma 

Defense response to virus 

C5 

MHC class ii protein complex 

Lymphocyte co-stimulation 

Interferon gamma mediated signaling pathway 

 

The human and mouse data are generally consistent in the monocyte compartment before 

and after trauma (Figure 18 and color-coded regulons/TFs in Figure 16F and 16G). The six human 

monocyte signatures can be mapped to mouse bone marrow gene modules. Human monocyte 

signatures C2 and C3 overlap with mouse inflammatory modules Neu_C2 and Mono_C2. S100A8 

and S100A9, both neutrophil-associated genes, are contained in human C1. Human C4 (IFN 

signaling) and C5 (MHCII signaling) correspond to mouse steady-state modules Mono_C5 (Irf8, 

Irf7) and Mono_C1 (lymphocyte activation, including Cd74 and H2-Aa), respectively. Globally, 

shared DEGs derived from human and mouse monocytes after trauma display an intermediate level 

of correlation (Spearman correlation: ρ > 0.6). 
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Figure 18 The human and mouse data are generally consistent in the monocyte compartment before and after 

trauma.  

(A) Enrichment analysis between six human signatures (C1-C6) and the monocyte/neutrophil modules identified from 

mouse BM (Mono_C1-C6 & Neu_C1-C4) at 6hrs after T/HS. Hypergeometric p-value was computed and adjusted by 

Benjamini-Hochberg method. Relationships are colored by binned number of overlapping genes. Only relationships 

with ≥ 5 overlapping genes are visible. Correlation of monocyte DEGs identified from mouse BM vs. human 

circulating monocytes (B) or from mouse circulating vs. human circulating monocytes (C). FC: fold change.  

 

Our findings in human PBMCs further extend the conclusions derived from the mouse 

T/HS model. Specifically, changes in monocytes do not simply involve a switch between two fixed 

trajectories representing steady state versus post trauma. Instead, monocytes shift away from 

steady state in a graded manner (Figure 16C): C1-C3 vs. C4-C6 correspond to the two distinct 

directions of the trajectory shifting away or toward steady state. 

2.3.9 Validation of the six signatures in bulk RNA datasets 

To provide confirmation for the gene signature patterns derived from our single-cell 

analysis, we queried a published dataset [6] of the transcriptomic changes of whole-blood 
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leukocytes from 167 severely injured humans in a 28-day time course, along with a baseline 

obtained from healthy controls. The changes in the six signatures could be largely recapitulated in 

this database (Figure 17C). Compared to healthy controls, C1-C3 were significantly induced and 

C4-C6 were suppressed to different degrees after injury. The response to systemic injury was most 

pronounced at the first sampling time point (~12 hours after injury) and then gradually returned to 

baseline. The changes were also associated with different clinical trajectories. Complicated cases 

(TTR >14 days) showed both higher magnitude and persistence of the changes compared with the 

non-complicated cases (TTR ≤ 14 days). It is noteworthy that the changes in six monocyte 

signatures in whole-blood leukocytes may also include the contribution of neutrophils, considering 

the similar changes between monocytes and neutrophils we observed in mouse bone marrow. 

2.3.10 Two subtypes of trauma patients defined by the six signatures with differential 

prognostic value 

To explore potential patient heterogeneity in the six-signature response, we clustered the 

patients based on a signature score matrix of the six signatures (Figure 19A). Because early 

identification of patients at risk for adverse outcomes could be clinically useful, we extracted the 

first sampled time point from all 167 trauma patients (mean ± standard deviation: 8.0 ± 3.4h). 

Trauma patients exhibited obvious heterogeneity at the early time point. The six signatures roughly 

clustered the patients into two subtypes (SG1 vs. SG2, Groups clustered based on Signature scores, 

Figure 19B). Compared with SG2, SG1 patients expressed higher C1-C3 and lower C4-C6, and 

experienced worse clinical outcomes including (Table 6), longer hospital length of stay, more 

severe multi-organ dysfunction, and higher incidence of infectious and non-infectious 

complications. Kaplan-Meier analysis demonstrated that SG1 patients underwent significantly 
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slower 28-day recovery than SG2 patients (Figure 19C). Well-established prognostic factors for 

trauma include injury severity [50], brain injury [51] and serum lactate levels [52]. To determine 

the influence of these factors, we assessed patient baseline characteristics (Table 6). Whereas many 

parameters were distributed evenly, injury severity score (ISS) and maximal serum lactate within 

6h after admission were not. Considering the counts of myeloid cells from this dataset may not 

come from the same sample sent for microarray, we also deconvoluted myeloid composition using 

RNA data matrix by CIBERSORT [53]. Even though SG1 patients had higher ISS and lactate 

levels within 6h, multivariate analysis using a Cox model indicated that SG1 remained an 

independent risk factor for slower recovery (Figure 19D) after adjusting for these potential co-

variants including myeloid composition ~12 hr after injury. These results suggest that patients 

have intrinsically different responses to systemic injury. Our findings provide additional 

information for differential prognosis that cannot be explained by injury severity or other known 

prognostic factors. 
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Figure 19 Six signatures define two patient subtypes associated with different prognosis. 

(A) Schema describing the workflow for Figure 19-20. (B-D) Trauma dataset (n=167). (B) Trauma patients were 

clustered into two subtypes (SG1 vs SG2) using the signature score matrix. (C-D) Time-to-event analyses (event = 

recovery). (C) Kaplan-Meier curve was plotted by the two subtypes to visualize 28-day recovery. Log-rank p value is 

shown. (D) Hazard ratio of the subtypes after adjusting potential covariates using cox proportional hazards model. 

Compared with SG2 (shown as the reference), SG1 is significantly associated with slower recovery after adjusting for 

the potential co-variants. (E-H) Burn/sepsis patients were clustered into two subtypes, and Kaplan-Meier curve was 

plotted to visualize 28-day survival. Log-rank p value is shown. (E-F) Burn dataset (n=241). (G-H) Sepsis dataset 

(n=479).  
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Table 6 Basic characteristics and outcome parameters between two subtypes of trauma patients. 

 

SG1 

(n=106) 

SG2 

(n=61) p value 

Basic characteristics 
   

Age 33.43 (10.8) 34.89 (11.62) 0.4540 

Sex: Male 66 (62.3%) 40 (65.6%) 0.7400 

Weight 85.84 (22.43) 89.2 (20.6) 0.1600 

Height 174.2 (11.24) 174.44 (9.7) 0.8580 

No Bad Head 93 (87.7%) 56 (91.8%) 0.6050 

Injury Severe Score (ISS) 33.77 (12.29) 27.13 (14.05) 0.0020** 

Apache II Score 27.74 (6.44) 26.66 (4.85) 0.0930 

Transfused blood 0-12 hours since injury 

(ml) 2553.39 (2068.78) 2203.25 (1981.93) 0.0915 

Total volume crystalloids received 0-12 

hours since injury (ml)                13307.42 (7833.21) 12167.21 (5915.39) 0.7150 

Chemistry 
   

Highest lactate 0-6 hrs 5.03 (2.25) 4.81 (3.95) 0.0499* 

Highest lactate 6-12 hrs 4.07 (2.28) 3.27 (1.65) 0.0865 

Highest lactate 12-18 hrs 3.18 (1.79) 2.45 (1.36) 0.0678 

Highest lactate 18-24 hrs 2.92 (1.92) 2.57 (1.46) 0.6460 

Max glucose 0-24 hrs 195.43 (63.41) 187.87 (45.87) 0.8820 

Max insulin requirement 0-24 hrs 1.38 (2.07) 1.61 (2.26) 0.3860 

Worst base deficit 0-6 hrs -10.2 (4.64) -9.14 (4.51) 0.1830 

Worst base deficit 6-12 hrs -4.85 (4.07) -3.96 (4.35) 0.1640 

Worst base deficit 12-18 hrs -2.29 (3.76) -1.18 (3.84) 0.1520 

Worst base deficit 18-24 hrs -1.25 (4.09) -0.4 (3.39) 0.5040 

Cell fraction in white blood cells (%) (~12 hrs) 

Myeloid cells (Neu + Mono) 0.86 (0.1) 0.87 (0.08) 0.7390 

Lymphocytes 0.11 (0.08) 0.11 (0.07) 0.5730 

Outcome parameters 
   

Survival 101 (95.3%) 59 (96.7%) 1.0000 

Max Denver 2 Score 2.58 (2.11) 1.43 (1.7) 0.0001** 

Hospital Length Of Stay 26.85 (18.57) 21.05 (16.65) 0.0096** 

Max MOF+ (Marshall Score) 6.07 (2.88) 4.5 (2.26) 0.0002*** 

Day of max Marshall Score 3.67 (4.53) 2.48 (2.74) 0.2470 

Max MOF Neuro 3.6 (0.97) 3.72 (0.71) 0.7150 

Max MOF Cardio 2.74 (0.97) 2.36 (1.05) 0.0269* 

Max MOF Resp 2.01 (1.14) 1.27 (1.07) <0.0001*** 
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Table 6 continued 

 

SG1 

(n=106) 

SG2 

(n=61) p value 

Max MOF Renal 1.06 (0.75) 0.82 (0.34) 0.0305* 

Max MOF Hepatic 0.77 (1.1) 0.45 (0.81) 0.0669 

Max MOF Hema 0.68 (0.65) 0.52 (0.67) 0.0601 

Nosocomial Infections 70 (66.0%) 22 (36.1%) 0.0002** 

Non-Infectious Complications 66 (62.3%) 20 (32.8%) 0.0004** 

Surgical Site Infection 29 (27.4%) 8 (13.1%) 0.0349* 

* p < 0.05, ** p < 0.01, *** p < 0.001  

Continuous variables were shown as mean (standard deviation) and evaluated by Wilcoxon test. Categorical variables were shown 

as count (percentage) and evaluated by Fisher’s exact test. Two-sided p values were computed. 
+Max MOF Neuro: Worst central nervous system score over 28 days. Max MOF Cardio: Worst cardio score over 28 days. Max 

MOF Resp: Worst respiratory score over 28 days. Max MOF Renal: Worst renal score over 28 days. Max MOF Hepatic: Worst 

hepatic score over 28 days. Max MOF Hema: Worst hematologic score over 28 days. For all MOF scores, high is bad. Max MOF: 

The sum of the above 5 organ components without neurologic component, since this study precluded the cases with severe head 

injuries. 

 

 
In addition to blunt trauma, burns and sepsis are common clinical problems that lead to 

acute critical illness. To determine if burns and sepsis result in the emergence of similar leukocyte 

gene expression patterns, we examined burn and sepsis datasets. We analyzed the first sampled 

time point after hospitalization (burn) or ICU (sepsis) admission. Similar to the trauma dataset, the 

burn and sepsis patients also fell into two subtypes. SG1 patients showed higher C1-C3 and lower 

C4-C6 signature scores and worse 28-day survival vs. those in SG2 (Figure 19E-19H). Considering 

there are 26 combinations of the six signatures (up vs. down), we performed PCA on the 6-signature 

score matrix to comprehensively evaluate the prognostic values of the six signatures (Figure 20). 

The sum of the first three PCs can explain >80% of the variation. Across these diseases, the PCs 

corresponding to the degree of separation between C1-C3 vs. C4-C6 among patients (1st PC in 

trauma and sepsis, and 2nd PC in burns), demonstrated the highest and the most significant 

association with prognosis.  
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Figure 20 Systemic characterization of the prognostic value for the six signatures.  

(A) PCA was performed on the signature score matrix. Patients were color coded by the groups demonstrated in the 

original paper. Ellipses indicate 95% confidence interval. (B) The signature loadings on first three PCs are shown. 

The PCs representing the degree of separation between C1-C3 vs. C4-C6 among patients are highlighted in red blocks. 

(C) The prognostic values of the first three PCs were evaluated by a Cox model after adjustment of age, sex and 
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severity (if available). The names of datasets are labeled in the first column. No groups documented for burn dataset, 

so all the patients are in black. Sepsis SRS dataset do not provide time-to-event data. Thus, clustering results are shown 

instead. 

 

At the single-cell level, trauma induced an increase in C1-C3 and simultaneously decrease 

in C4-C6 in CD14+ monocytes (Figure 17A). However, we have only discussed the relative 

expression of each signature among patients (see methods for the description of the calculation of 

signature scores). To fill this gap between single-cell observations and patient subtypes, we next 

determined the relative changes in the genes comprising signatures C1-C6 in individual patients. 

To quantify this, an “intrinsic signature score” was calculated for each signature. We then 

generalized the six intrinsic signature scores from C1-C6 into a single score, the “intrinsic 

deviation score” (IDS), to roughly reflect the degree that C1-C3 exceeds C4-C6 in each patient 

(Figure 21A). SG1 patients displayed a much higher IDS than SG2 patients and this difference 

could not be explained by age, sex, injury severity or early lactate levels (Figure 21B-21F). The 

IDS was highly and linearly correlated with the PCs representing the separation based on the 

expression levels of C1-C3 vs. C4-C6 in the population (Figure 22). Thus, the changes in CD14+ 

monocytes we characterized at single-cell level may reflect an underlying biological process that 

results in patient heterogeneity. Since C1-C3 align with pro-inflammatory gene programs and 

suppressed C4-C6 relate to impaired immune responses, it is possible that the excessive and 

sustained over “deviation” in these myeloid gene sets contributes to worse prognosis. 
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2.3.11 Generation and validation of a classifier for subtype designation 

We have demonstrated that the SG subtypes were consistently associated with different 

outcomes. Thus, assignment of patients to SG1 or SG2 early after admission could assist with 

clinical decision-making. Considering SG subtypes were defined based patient populations, we 

sought a strategy to translate the observation in individual patients. Thus, we sought a reliable 

internal, patient-specific normalization strategy to predict patient SG classification in the future. 

Considering the distinct distribution of IDS between SG1 and SG2, we built a random forest 

classifier using the first time point from the 167 published blunt trauma patients [6], taking the six 

intrinsic signature scores for each patient to predict subtype assignment (Figure 21A). After 5-fold 

cross validation we obtained a test error of 0.114 ± 0.046 and AUC = 0.954, indicating that we 

found an optimal internal normalization to provide a practical way to predict patient SG 

classification.  
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Figure 21 Generation of intrinsic signature score (IDS) to give a potential biological explanation for the 

patient heterogeneity with critical illness. 

(A) Schema describing the workflow for Figure 21 and Figure 23. (B-F) Two subtypes of trauma patients (n=167) 

have different IDS distribution (B), which cannot be explained by different (C) injury severity (ISS), (D) age, (E) sex 

and (F) maximal lactate levels within 6 hrs after admission. Data points are color coded by two subtypes.  

 

 

Figure 22 Correlation between IDS and the PC highlighted in red blocks shown in Figure 20. 
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We applied this classifier to human burn, sepsis [15] and experimental endotoxemia 

datasets [54]. The predicted SG1 burn and sepsis patients were consistently associated with worse 

survival (Figure 23A-23D). Experimental endotoxemia in human volunteers has been used to 

induce a transient systemic inflammatory response (recovery within 24h). Experimental subjects 

treated with either placebo or endotoxin displayed lower IDS than trauma patients and were all 

assigned to SG2 (Figure 23E-23F). Experimental endotoxemia induced C1-C3 gene signatures but 

only minimally suppressed C5 and C6 in circulating leukocytes over 24h. Instead of suppression, 

endotoxin promoted C4 expression (anti-viral program) (Figure 23G), which was consistent with 

previous publications [55, 56]. Our analyses highlight the shared and distinct features between a 

systemic inflammatory response that rapidly resolves (endotoxemia) and one that does not 

(sustained critical illness) at the single-cell level. 
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Figure 23 Generation and validation of the classifier for SG subtype designation. 

(A-D) For burn/sepsis patients, predicted subtypes and calculated IDS are added to Figure 19E/19G. Kaplan-Meier 

curve was plotted to visualize 28-day survival between predicted subtypes. Log-rank p value is shown. (A-B) Burn 

dataset (n=241). (C-D) Sepsis dataset (n=479). (E-G) Endotoxemia dataset (LPS: n=4, placebo: n=4). (E) 

Visualization of IDS between two groups within 24 hours after LPS or placebo administration. (F) Histogram of the 

predicted probabilities of SG1 in all the data points shown in (E). (G) Expression of the six signatures in healthy 

volunteers within 24 hours after administration of LPS or placebo.  
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2.4 Discussion  

The primary goal of this work was to describe the landscape of transcriptomic changes in 

circulating immune cells induced by severe injury. Complimentary findings in injured mice and 

humans found dramatic changes in circulating Ly6C+/CD14+ monocytes that result from the 

changes in BM. In mice, the trauma-induced changes in monocytes are traceable to progenitor 

cells in the BM and characterized by three simultaneous features, including (1) induction of 

features of inflammation, (2) suppressed steady-state features and (3) up-regulation of some 

neutrophil-associated genes. Neutrophils show similar changes, but smaller in magnitude. Our 

observations in injured humans showed that the monocyte changes can be generalized into six 

signatures with distinct and biologically relevant regulatory networks/TFs. These six signatures 

diverge after injury and further define two patient subtypes associated with different prognosis 

after severe injury.  

The degree of overlap in the inflammatory response between humans and mice has been a 

topic of debate [13, 17]. Some of the lack of consistency between the species is likely due to 

genetic differences, however the different composition of cell populations may also be a factor 

[11]. In this study, we independently analyzed and compared the monocyte responses between 

injured humans and mice in the early phase of the response. The DEGs revealed an intermediate 

degree of correlation, suggesting consistencies are generally overlapping in the response of the 

monocyte compartment between the species early after injury. More importantly, many critical 

TFs and signaling pathways were shared, indicating that the major biological processes are 

preserved within this cell population. 

Two pathways (G vs. M) of monocyte development derived from progenitors have been 

documented by Yanez et al [57]. The new trajectory derived from BM we characterized in mice 
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can be generally mapped to G pathway (Figure 24). In humans, we further demonstrated that the 

gene expression pattern of monocytes deviates from steady state in a continuous manner after 

injury, rather than a simple binary pattern. We generalized the degree of deviation into a score 

(IDS). Experimental endotoxemia induces a lower deviation compared with trauma. More 

importantly, severely injured patients also exhibit distinct magnitudes of deviation, with thresholds 

represented in two subtypes that cannot be explained by injury severity alone. Thus, by 

characterizing the full range of transcriptomic patterns observable in monocytes after major 

systemic perturbations in vivo, our studies go beyond the current model for monocyte 

development.  
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Figure 24 Similarity between the new trajectory of monocytes after T/HS and the G pathway characterized 

by Yanez et al.  

(A) Introduction of the major points in the paper from Yanez et al [57]. (B) Gene expression matrix was downloaded 

from GSE88982 GEO dataset. PCA was performed on the six subsets involved in monocyte development. This is 

largely consistent with Figure 3A in the original paper. (C) Signature scores of MonoPC1_C1-C3 (characterized in 

Figure 10) were calculated for each sample shown in (B). Monocyte subsets are color coded by the corresponding 

pathways they demonstrated. Similar to the changes in BM monocytes after T/HS, the G pathway shows increase in 

MonoPC1_C2-C3 and decrease in MonoPC1_C1 compared with the M pathway. GMP: granulocyte-monocyte 

progenitors; MP: monocyte-committed progenitors; G-mono: G pathway-derived monocytes; MDP: monocyte-

dendritic cell progenitors; cMoP: common monocyte progenitors; M-mono: M pathway-derived monocytes. 
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We provide evidence that the monocyte gene expression patterns that appear after trauma 

are also observable in other common acute immunological insults leading to critical illness, 

including burns and sepsis. A very recent report also identified major changes in CD14+ monocytes 

in patients suffering bacterial urinary tract infections, consistent with the finding that the activation 

of inflammatory and suppression of MHC II programs in this cell population is a generalizable 

feature of the early response to trauma and infection [58]. Similar features have also recently been 

reported in COVID-19 patients [59]. Thus, the transcriptomic features of immune response we 

identified within myeloid cells may be a pattern common in critical illness due to many etiologies.  

Several transcriptional or clinical sub-classifications have been documented for sepsis, 

including two transcriptional subtype analyses (SRS1-2 [14] and Mars1-4 [15]) and one clinical 

classification (phenotypes α, β, γ and δ [60]). Transcriptional subtypes SRS1 and Mars1 have the 

worst prognosis in the original reports; however, >60-70% SRS1 patients were mapped to Mars2 

rather than Mars1 (Figure S7D of Mars paper [15]). Our subtype SG1 (high deviation and worse 

prognosis) largely fits with SRS1, Mars2 and clinical phenotype δ. Mars3, Mars4 and SRS2 map 

to SG2 (low deviation and better prognosis), with Mars4 similar to endotoxemia-like response 

(Figure 25A and Figure 23G). The majority of Mars1 has an intermediate deviation (Figure 25B-

25C). We notice that the Mars1-specific PC (PC3, Figure 20) is also a prognostic PC achieving 

statistical significance, suggesting that the biological explanation for the worse outcome in the 

Mars1 patients is distinct from SRS1 patients (This unsolved question will be answered in Chapter 

4). In the future, all of these separate phenotyping efforts may be usefully combined to achieve a 

more accurate stratification for precision medicine. We advance that goal with our single-cell 

analyses by linking outcomes in critical illness to specific changes in gene expression in a subset 

of myeloid cells.  
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Figure 25 Interpretation of sepsis subtypes using our findings. 

(A) Expression of the six signatures in sepsis Mars subtypes compared with healthy control. Base on Figure 23G, 

Mars4 displays an endotoxemia-like response. (B) IDS distribution among four sepsis Mars subtypes. (C) IDS 

distribution between two sepsis SRS subtypes. 

 

A limitation of our study is the focus of our single-cell studies on the first three days. 

However, we confirmed that gene expression patterns we identified early persisted in patients and 

further defined two subtypes of trauma patients (identifiable as early as ~12 hours after injury) 

with differential prognosis, which were also recapitulated in burn and sepsis patients. We also 

limited our evaluation of neutrophils to the BM compartment in mice. Further studies will be 

required to confirm these gene expression patterns persist in circulating neutrophils. 

In summary (Figure 26), our landscape findings provide a new paradigm for the immune 

response to trauma. In the near term, the two subtypes of trauma patients could be translated 
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quickly for early identification of the patients at high risk (SG1). In the long term, our findings 

point to studies on the regulatory mechanisms in myeloid progenitors and CD14+ monocytes as a 

fruitful area for further research on the mechanisms leading to immune dysfunction after severe 

injury. Our landscape analysis will act as a new starting point for further study of the regulatory 

mechanisms and identify the potential target for precision medicine in trauma, which may also 

beneficial for other causes of critical illness.  

 

 

Figure 26 Graphic summary of single-cell RNA-seq analyses. 
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3.0 Longitudinal Analysis of Transcriptomic Subtypes in Trauma Patients 

3.1 Introduction 

Trauma is very common among humans and contributes to 10% of deaths and 16% of 

disabilities worldwide [1]. Furthermore, the diversity in clinical trajectories (e.g. rapid resolution 

vs. multi-organ dysfunction) points to heterogeneity in the immune response among critically ill 

trauma patients [5]. We have shown previously that the transcriptomic patterns in human blood 

CD14+ monocytes could be generalized into six gene signatures that identified two patient 

subtypes (SG1 vs. SG2) using whole-blood leukocyte transcriptome data from 167 patients at 12h 

after injury [18]. Patients classified as SG1 had significantly worse outcomes (delayed recovery, 

more severe organ dysfunction and a higher incidence of infection and non-infectious 

complications) than patients designated as SG2. The main transcriptomic features of SG1 patients 

includes an upregulation of pro-inflammatory genes and a simultaneous suppression of genes 

representing MHC II (Major histocompatibility complex II) expression and interferon signaling 

compared with SG2 patients. To better understand the prognostic value of SG subtype designation 

over time, we sought to characterize the longitudinal changes in SG subtypes in association with 

a range of clinical outcomes. 
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3.2 Methods 

Longitudinal, whole-blood leukocyte RNA microarray data were downloaded from Gene 

Expression Omnibus (GSE36809) [6]. Samples annotated as either “low RNA quality” or 

“incomplete time points” in metadata were excluded from the following analyses. SG subtypes 

were computed for each data point from trauma patients (each patient at a specific time point) as 

we reported previously [18]. The sampling time points were binned into the nearest time point, for 

a total of 7 time bins: 12h, 1d, 4d, 7d, 14 d, 21 d or 28d. If a patient had >1 time point falling in 

the same time bin, only the first time point in the bin was analyzed. Kaplan-Meier analysis was 

performed using the survival R package (v3.1.8) to evaluate 28-day recovery between (1) SG 

subtypes at a specific time point or (2) longitudinal SG subgroups. The time-to-event data at a 

specific time point was defined as the Time-to-Recovery (TTR) from the original data minus the 

analyzed sampling time point. For longitudinal SG subgroups, the later sampling time point (in the 

time bin of 1d) was used as time zero. For non-survivors, “hospital length of stay” minus the 

analyzed sampling time point was used as the time-to-event data, and recovery status was 

annotated as “no”. Patients that recovered prior to the analyzed sampling time point were excluded. 

To compare other parameters between groups, continuous variables were depicted as median ± 

median absolute deviation (MAD) and tested by Wilcoxon rank-sum test. Categorical variables 

were depicted as counts (percentages) and tested by Fisher’s Exact test. A two-sided p value was 

computed. p < 0.05 was considered as significant. 
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3.3 Results 

The gene array transcriptomic dataset generated from whole-blood leukocytes, obtained 

from severely injured humans by The Inflammation and the Host Response to Injury Large-Scale 

Collaborative [6], was used to assess clinical outcomes as a function of SG subtype designation 

over time. Patients were assigned to either SG1 or SG2 subtypes based on leukocyte transcriptomic 

patterns at 12h, 1d, 4d, 7d, 14 d, 21 d and 28d after injury. SG subtype designation displayed 

dynamic changes after trauma within 12h-7d post injury, with a general trend to transition from 

SG1 to SG2 over time (Figure 27A). The 12h time point had the highest percentage of SG1 

patients. Approximately 50% of patients identified as SG1 at 12h converted to SG2 by 1d, a trend 

that continued at later time points. However, there was also a small number of patients that 

switched from SG2 to SG1 between 12h and 1d and over time (Figure 27A). By 4-7d post injury, 

subgroup designation remained relatively stable in surviving patients. 

To investigate the prognostic value of SG status at later time points, we performed Kaplan-

Meier (K-M) analyses to establish the differences in TTR between SG subtypes at each time point 

separately. Due to limited numbers of SG1 patients after 7d post injury, we only analyzed the data 

points falling in the time bins ≤ 7 days. SG1 designation consistently associated with a subsequent 

slower recovery (Figure 27B-27D).  
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Figure 27 Prognostic value of SG subtypes at 1d, 4d and 7d post injury.  

(A) Overview of SG subtypes over time after injury. Sampling time points were binned in the nearest time bin. For 

the patients with >1 time point in a time bin, the 1st time point was kept. (B-D), K-M analysis at each later time point. 

Log-ranked p value was provided. (B) Patients were grouped by the SG status at 1d. (C) Patients were grouped by the 

SG status at 4d. (D) Patients were grouped by the SG status at 7d. Time zero for K-M analysis was set as the analyzed 

time point. 

 

Our analysis indicates that categorizing patients as SG1 as early as 12h or less could be 

useful to identify patients at risk for a delayed recovery [18]. The finding that some patients 

converted from SG2 to SG1 at 1d suggested that assessing SG status at both 12h and 1 day could 

improve prognostic accuracy. Therefore, we next performed K-M analysis in subgroups of patients 

based on the SG status at both time points (Figure 28). For the patients who were SG1 at one of 

the two time points (at either 12h or 1d), the SG status at another time point only showed a trend 
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without achieving statistical significance (Figure 28A-28B). However, for the patients who were 

SG2 at either time point, the SG status at the other time point markedly associated with recovery 

rates. As shown in Figure 28C, for patients that were classified as SG2 at 1d and SG1 at 12h the 

recovery was dramatically slower than those classified as SG2 at both time points (p = 0.0024). A 

similar pattern was seen in the patients who were SG2 at 12h but then became SG1 at 1 d (p = 

0.073, Figure 28D).  
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Figure 28 K-M analysis in subgroup analysis.  

Patients were divided into subgroups into their SG status at either 12h or 1d. Log-ranked p value was provided. (A) 

Of all SG1 patients at 1d, the prognostic value of SG status at 12h was evaluated. Time zero for K-M analysis was set 

as the time point falling in the bin of 1d. (B) Of all SG1 patients at 12h, the prognostic value of SG status at 1d was 

evaluated. (C) Of all SG2 patients at 1d, the prognostic value of SG status at 12h was evaluated. (D) Of all SG2 

patients at 12h, the prognostic value of SG status at 1d was evaluated. 

 

In addition to TTR, a measure of global recovery from organ dysfunction, we also 

examined other outcome parameters (Appendix Spreadsheet 1 and 2) and potential associated 

factors (Appendix Spreadsheet 3 and 4) in our subgroup analysis. Generally, SG1 was also 

associated with worse outcome parameters, such as higher Marshall (MOF) or Denver 2 score, in 
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each of the four subgroup analyses. Among the patients that were SG2 at either time point (12h or 

1d), the patients that were SG1 at the other time point exhibited significantly longer ICU and 

hospital stays as well as more days on the ventilator. These findings show that an SG1 designation 

at either time point has additional prognostic value beyond each other and associates with a 

subsequent delay in recovery. 

Interestingly, in the subgroup analysis among SG2 patients at 12h, patients that converted 

to SG1 at 1d showed early evidence of cardiovascular dysfunction (e.g. higher heart rate, higher 

respiratory rate, lower PaO2, and lower systolic blood pressure after arrival, Appendix Spreadsheet 

3). This association was not found in other subgroups. These patients also showed higher cardiac 

MOF scores and delayed cardiac recovery (Appendix Spreadsheet 1). These results suggest that 

early cardiovascular dysfunction may be a factor for the conversion from SG2 to SG1 between 12 

and 24h post-injury. Perhaps more importantly, these findings suggest that a favorable immune 

profile on admission can deteriorate within the first 24h and that this deterioration may be driven 

by hemodynamic instability.  

In our previous study, we showed that SG1 designation at 12h only correlated significantly 

with limited number of known prognostic factors, including higher Injury Severity Score and 

higher lactate levels in the initial 6h, compared with SG2 patients. Furthermore, after adjusting for 

potential co-variants including the two above using Cox regression model, we demonstrated that 

SG status at 12h has independent prognostic value beyond elevated circulating lactate or injury 

severity [18]. In contrast to our findings at 12h, we report here that SG1 status at 1d was correlated 

significantly with more known prognostic factors, including higher APACHE II score, higher 

crystalloids, and blood transfusion during the first 12h, and higher lactate and lower base deficit 

at later time points within 24h post injury (Appendix Spreadsheet 5). Taken together, these results 
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show that SG subtype designation associates with unique outcome parameters based on the time 

point, and that assessing subtype at both 12h and 1d provides even more information on patient 

outcomes than assessment at a single time point.  

To visualize the prognostic value of SG status determination at both 12h and 1d, we divided 

all the patients with data available at both 12h and 1d (n = 145) into four groups, labeled as SG 

status at 12h --> SG status at 1d, including two groups of SG-non-converters (SG1-->SG1 or SG2-

->SG2) and two groups of converters (SG1-->SG2 or SG2-->SG1). For categorical outcomes 

(nosocomial infections and non-infectious complications), SG1 non-converters had the highest 

incidence and SG2 non-converters had the lowest incidence. The two groups of converters showed 

an intermediate incidence of these outcomes (Figure 29A-29B). Notably, all SG1 non-converters 

exhibited a TTR of 5 days or greater (Figure 29C). Similar patterns were observed in global 

recovery. As shown in Figure 29D, SG1 non-converters underwent the slowest recovery, followed 

by the two groups of converters, and then SG2 non-converters with the fastest recovery.  

 



 84 

 

Figure 29 Differential outcomes across four the SG1-SG2 combinations for 12h and 1d.  

(A) Incidence of non-infectious complications among the four groups. (B) Incidence of nosocomial infections among 

the four groups. (C) Incidence of complicated (TTR > 14 days or dead), intermediate (5 days ≤ TTR ≤ 14 days) and 

uncomplicated (TTR < 5 days) among four groups. (D) K-M analysis. Time zero was set as the sampling time point 

falling in the bin of 1d. 
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3.4 Discussion 

This study was undertaken to extend our previous findings using a patient classifier 

developed from transcriptomic patterns identified in circulating CD14+ monocytes from injured 

humans [18]. Using transcriptomic data from bulk leukocytes, we were able to use the classifier to 

designate patients as SG1 (worse prognosis) or SG2 (better prognosis) at multiple time points after 

injury. We confirmed that patient designation as SG1 as early as 12h after injury correlated 

strongly with slow recovery. We went on to show that a subset of patients with early hemodynamic 

instability convert from SG2 to SG1 by 1d, showing that unstable patients can evolve to a 

pathogenic gene signature after admission. Finally and most importantly, monitoring SG subtype 

at two time points over the first day can provide additional prognostic value beyond each other 

and leads to a very high capture of patients likely to experience slow recovery and organ 

dysfunction.  

Interestingly, the patients that converted from SG2 to SG1 were associated with worse 

cardiovascular parameters (higher HR and lower BP) early post injury. Thus, the switch from SG2 

to SG1 within day 1 may result from cardiovascular dysfunction, traumatic shock, or ongoing 

bleeding. The idea that the transcriptomic profile can shift away from a favorable state to an 

unfavorable state early after arrival points to the importance of monitoring transcriptomic subtypes 

over time should this strategy be adopted for clinical decision support. In addition, our findings 

confirm that the prevention or reversal of hemodynamic instability after admission is of paramount 

importance to minimize immune dysfunction [61, 62]. 

We have demonstrated previously that SG subtypes also associate with a dysfunctional 

immune response across several etiologies of critical illness, including sepsis and burns [18]. Thus, 
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longitudinally monitoring transcriptomic subtypes as described in other etiologies of critical 

illnesses [14, 15] may also be helpful and warrants further exploration. 
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4.0 Single-cell ATAC-seq Reveals Global Epigenetic Alterations in Immune Cells during 

Severe Trauma 

4.1 Introduction 

Trauma induces a system-wide physiologic crisis including strong activation of the innate 

immune system. When excessive, this gives way to immune dysfunction leading to impaired 

resistance to infection [1]. However, there is considerable patient-to-patient heterogeneity in these 

responses and the associated clinical trajectories [5]. This suggest that patient intrinsic factors 

contribute to the variability of the immune response following injury. In chapter 2, we extracted 

gene signatures from scRNA-seq data derived from circulating CD14+ monocytes from severely 

injured patients [18]. Using these gene signatures within a whole-blood leukocyte gene array 

trauma dataset [6], we characterized the two transcriptomic subtypes (Signature Groups: SG1 vs. 

SG2). Compared with SG2, SG1 trauma patients exhibited higher up-regulation of inflammation 

and greater suppression of MHC II and IFN signaling, and had worse clinical outcomes (prolonged 

organ dysfunction and higher infection rates). Similar outcome-associated SG patterns were 

observed in burn and sepsis patients [3].  

scATAC-seq (single-cell assay for transposase-accessible chromatin using sequencing) 

[63] can provide representative information on open chromatin accessibility within cell subsets 

derived heterogenous populations of cells. Currently, scATAC profiles have not been widely 

studied in specific diseases, including the immune dysfunction associated with acute critical 

illness. We postulated that scATAC-seq would allow us to explore open chromatin profiles and 

the regulatory mechanisms across cell types in PBMCs isolated from trauma patients and explore 
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regulatory mechanisms for the transcriptomic subtypes we defined previously, and may also 

provide additional information beyond that cannot be obtained from scRNA-seq alone.  

The ChromHMM 15-state model [64] provides detailed information on various human 

epigenomes for primary cells and tissues including the major circulating leukocyte cell types. This 

allowed us to map the differentially accessible (DA) open chromatin regions identified from 

scATAC-seq with reference chromatin states. The DA peaks associated with the genes used to 

define SG subtypes in CD14+ monocytes (referred as SG signatures in the following context) were 

largely mapped to active chromatin states of CD14+ monocyte reference epigenome. 

Unexpectedly, scATAC-seq also revealed that trauma induced global epigenetic alterations across 

major immune cell types that pointed to increased accessibility in chromatin structure and de-

repression of polycomb targets, which should normally be suppressed in hematopoietic lineages. 

We developed a strategy to extract the gene signatures associated with these novel global 

epigenetic alterations identified by scATAC-seq. Using whole-blood leukocyte transcriptomes, we 

were able to validate the pathological epigenomic gene signatures identified in cells from 

representative trauma patients in independent and large datasets of patients with critical illness 

spanning different etiologies including trauma, burns and sepsis. Importantly, these features were 

associated with worse prognosis across all three causes of acute critical illness. Furthermore, the 

gene signatures associated with the global epigenetic alterations were distinct from the well-

established transcriptomic patterns associated with acute systemic inflammation, characterized 

previously by us and others in the context of trauma. 
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4.2 Methods 

4.2.1 Patient and human volunteer enrollment 

Trauma patients and healthy volunteers were enrolled in an observational study approved 

by the University of Pittsburgh Institutional Review Board. Informed consent was obtained from 

all the subjects or next of kin. Patients suffering blunt or penetrating trauma that were admitted to 

the intensive care unit and suffering hypotension (systolic blood pressure <90 mmHg) or 

tachycardia (heart rate > 108) on admission were eligible for enrollment. Four patients representing 

two different clinical trajectories (quicker recovery: MM3001 and MM3016, versus slower 

recovery: MM3008 and MM3038) were selected for scATAC-seq. Blood samples were obtained 

within 4hrs of injury and at 24hrs and 72hrs after injury. Each sample was paired with an age and 

sex matched healthy control, for a total of 16 samples.  

4.2.2 PBMC isolation, cryopreservation, and thawing 

Human PBMC were isolated by standard Ficoll centrifugation (Ficoll-Paque PLUS, 

Cat#17-1440-03, GE Healthcare) as described previously[18]. SepMate tubes (Cat#85415, 

StemCell) were used to regulate the procedure. The isolated cells were cryopreserved and thawed 

for analysis according to the 10x Genomics protocol. Briefly, PBMC were resuspended in 0.5ml 

resuspension medium (40% FBS in DMEM) and 0.5ml freezing medium (40% FBS + 30% DMSO 

in DMEM) in a 1:1 ratio. Cells were chilled in CoolCell (Cat#CLS432002, Corning) in -80 

overnight and transferred to liquid nitrogen. Cryopreserved vials were thawed in the water batch 

at 37°C and then transferred to a 50mL conical tube after thawing was complete. A milliliter of 
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thawing medium (PBMC: 10% FBS in DMEM; BMMC: 20% FBS in PBS) was added dropwise 

(5 sec/drop), followed by 2mL, 4mL, 8mL, 16mL thawing medium at ~ 1-min intervals. After this, 

the cells were washed and resuspended in calcium and magnesium free buffer (PBMC: PBS with 

0.04% BSA) for cell counting and nucleus isolation. 

4.2.3 Nucleus isolation 

Isolated single-cell suspensions were processed for nuclei isolation immediately prior to 

single-cell ATAC library preparation, strictly following the 10x Genomics protocol 

(CG000169_RevD). Briefly, single-cell suspensions were centrifuged 300 rcf for 5 min. After 

removing the supernatant, cell pellets were resuspended with DNase I (Cat#07900, StemCell) and 

incubated at room temperature for 15 min. After centrifugation at 300 rcf for 5 min, cells were 

resuspended in lysis buffer and placed on ice for 3 min. Then, wash buffer was added, and samples 

were centrifuged at 500 rcf for 5min and then resuspend in diluted nuclei buffer. 

4.2.4 Single-cell ATAC library preparation and sequencing 

Chromium Next GEM Single-Cell ATAC Library & Gel Bead Kit v1.1 (Cat#1000175, 10x 

Genomics), Chromium Next GEM Chip H Single-Cell Kit (Cat#1000162, 10x Genomics) and 

Single Index Kit N Set A (Cat#1000212, 10x Genomics) were purchased for scATAC library 

preparation. The experimental steps strictly followed 10x Genomics Next GEM single-cell ATAC 

kit v1.1 protocol (CG000209_RevD). We targeted 5000 nuclei for each sample. Single-cell nuclei 

suspensions were first digested with the 10x ATAC enzyme, Transposase, and then prepared for 

Gel Bead-In Emulsions (GEMs) and barcoded. GEMs were purified by Dynabeads and SPRIselect 
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reagent cleanup steps. Then, samples were indexed, PCR amplified and processed for double sided 

size selection using the SPRIselect reagents to create the final libraries. Post-library QC was 

performed with an Agilent TapeStation 4150 with 2 µL from each library. A periodical pattern 

representing preserved nucleosomal structure indicated good quality for the prepared library. 

Libraries were pair-end and dual-indexing sequenced on an Illumina NovaSeq 6000 in UPMC 

Genome Center.  

To clarify, the 4 time points (including the paired healthy control) for the same patient were 

processed in parallel. The 16 samples were processed in 4 parallel batches. That single one cluster 

of DC and single one cluster of CD16+ monocytes were identified across different time points in 

contrast to multiple clusters of CD14+ monocytes after trauma further confirmed that the batch 

effects were minimal compared with the biological changes (Figure 32A-32D). 

4.2.5 Single-cell ATAC data processing 

The BCL files generated by Illumina sequencer were processed by Cell Ranger Atac 

pipeline (v1.2.0) for demultiplexing using cellranger-atac mkfastq and generated count matrix for 

peaks for each sample using cellranger-atac count (mapped to GRCh38 human reference genome). 

cellranger-atac aggr were used to aggregate the outputs from multiple samples. The aggregated 

peak-barcode count matrix were processed using Signac R package (v1.0.0.9000) [65] and Seurat 

R package (v3.2.0) [24]. The peaks accessible in ≥ 10 cells and the cells with ≥ 200 peaks detected 

were retained. The cells with total number of fragments in peaks ≤ 3000 or ≥ 30000 were excluded 

to remove the cells with low sequencing depth or potential multiplets. The cells with fraction of 

fragments in peaks ≤ 15%, poor nucleosome banding pattern (nucleosome signal ≥ 4) or low TSS 

enrichment score (TSS ≤ 2) were excluded to remove potential low-quality cells. The cells with 
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ratio of reads in genomic blacklist regions ≥ 0.05 were excluded to remove artifactual signals. 

Then, the count matrix was normalized by TF-IDF normalization followed by singular value 

decomposition (SVD), known as latent semantic indexing (LSI) [66]. The 2nd ~ 30th dimensions 

were used for graph-based clustering and non-linear dimension reduction. The resolution for 

graph-based clustering was tuned back and forth until the identified clusters were biologically 

meaningful. Transcription factor binding profiles were obtained from JASPAR2020 R package.  

4.2.6 Identification of DA peaks 

We borrowed the H value (Shannon Entropy) and Q value [67] that were previously used 

to quantify tissue specificity of RNA expression and to assign the genes to a specific tissue for the 

identification of cluster-specific peaks among multiple clusters. To identify the DA peaks between 

two clusters, we adopted the method provided by Signac R package (v1.0.0.9000), using logistic 

regression and adding the total number of fragments and experimental batches as latent variables. 

The peaks of interest were annotated as the nearest genes using ChIPseeker R package (v1.20.0). 

4.2.7 Chromatin state enrichment analysis 

For a set of peaks (single peak or a group of peaks) and a specific chromatin state provided 

by 15-state ChromHMM model (E124), fold enrichment (FE) and hypergeometric p value were 

computed as mentioned in the Epigenome Roadmap paper [64], quantified by the overlap of bases 

in genome. After that, for each peak set, FE for a given state i was further scaled within 0 to 1 as 

below: 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 =  𝐹𝐹𝐹𝐹𝑖𝑖 − min (𝐹𝐹𝐹𝐹)
(max(𝐹𝐹𝐹𝐹) − min(𝐹𝐹𝐹𝐹))�  

where FE = (FE1, …, FE15). 

4.2.8 Generation of state-barcode matrix and identification of state clusters 

To evaluate the global epigenetic changes across 15 chromatin states, we began from the 

fragment file (fragments.tsv.gz) generated by cellranger-atac aggr and created the cut site count 

matrix for the 15 chromatin states of the reference epigenome E124. To clarify, different from the 

peak-barcode matrix, we counted the number of all the cut sites falling into each chromatin state 

in the genome for each single CD14+ monocyte, regardless whether they were in peaks or not. 

Then, the new count matrix was processed by Signac [65], largely similar to the methods used in 

preparing the peak-barcode matrix. There were two major differences. First, since all the cells for 

this analysis already passed the filtering step when we analyzed the peak-barcode count matrix. 

Thus, no extra filtering step was needed for this analysis. Second, the state-barcode matrix was no 

longer a sparse matrix and much more resistant to sequencing depth, and the 1st dimension of LSI 

was no longer highly correlated with sequencing depth. Thus, the 1st dimension of LSI was also 

included for the downstream clustering and nonlinear dimension reduction. 

4.2.9 Enrichment analysis between gene sets 

For a list of genes with rank, gene set enrichment analysis (GSEA) [31] was performed 

using the fgsea R package (v1.6.0). For a list of genes without rank, fold enrichment and 

hypergeometric p value were computed. Raw p values were corrected by Benjamini-Hochberg 
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method for multiple testing. FDR < 0.05 was considered as significant. MSigDB gene sets v5.2 

were used. 

4.2.10 Hierarchical clustering 

1 minus Pearson’s correlation was used as the distance matrix. hclust() function was used 

for hierarchical clustering with the method as "ward.D2" [68]. 

4.2.11 Calculation of signature scores 

To calculate the signature score for a set of genes, the expression values for each gene were 

first z-score transformed across all the analyzed samples. After that, the expression values of the 

signature genes were averaged within each sample, and the calculated mean was the signature 

score for each corresponding sample. 

4.2.12 Time-to-event analysis 

For the longitudinal gene array datasets (trauma and burn), only the 1st sampled gene array 

data points were included for the time-to-event analysis. Due to the very few cases of in-hospital 

deaths (mortality rate: 4.2%), event was set as recovery status in trauma patients. The definition of 

recovery was based on the annotation from the original dataset [6]. For non-survivors, “hospital 

length of stay” was used as the time and recovery status was annotated as “No”. For burn and 

sepsis patients, the event was set as in-hospital death. A Kaplan-Meier curve was plotted by 

survival R package (v3.1.8) for visualization 28-day prognosis and the Log-rank p value was 
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computed. Cox proportional hazards model was performed by coxph() function in R for adjusting 

covariates. 

4.3 Results 

4.3.1 Overview of trauma-induced open chromatin changes in PBMCs 

To characterize the accessible chromatin regions in circulating cells after severe injury, we 

harvested PBMCs from four trauma patients across three time points (<4hr, 24hr, 72hr) post-injury 

(Figure 30A). These cells were analyzed in parallel with age and sex matched healthy controls 

yielding a total of 16 samples that were subjected to scATAC-seq. The four seriously injured 

patients (Injury Severity Score [ISS] ≥ 18) were selected to represent two distinct clinical 

trajectories; (i) rapid recovery and a short duration of organ dysfunction (patients MM3001 and 

MM3016) and (ii) slow recovery and persistent organ dysfunction (patients MM3008 and 

MM3038), based on multiple organ dysfunction (MOD) scores [69] over time (Figure 30B). 

UMAP plots were constructed based on ATAC-seq peaks with ~57,000 cells passing the quality 

control (see Methods for the filtering criteria), and yielded clusters of the major mononuclear 

immune cell types (Figure 31). Generally, cells from MM3001 and MM3016 (rapid recovery) were 

more similar to each other, while MM3008 and MM3038 (slow recovery) tended to show more 

distinct patient-specific patterns (Figure 31D).  
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Figure 30 Overview of patient clinical information for scATAC-seq 

(A) Experimental design and patient clinical information. (B) Changes in Multiple Organ Dysfunction Scores (MODS) 

in the four patients. 
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Figure 31 Overview of open chromatin profile in PBMCs isolated from trauma patients in a time-series 

manner and paired with healthy controls. 

(A) UMAP plot of PBMCs color coded by major cell types. (B) UMAP plot of PBMCs color coded by different 

experimental batches. All the samples for the same patients were processed in the same batch. (C) Gene activities 

(computed by Signac R package) of major lineage markers in different cell types. (D) UMAP plot of PBMCs color 

coded by different time points and wrapped by individual patient. UMAP was performed based on the globally 

accessibility of peaks. 

 

4.3.2 Overview of trauma-induced open chromatin changes in circulating monocytes 

Given our previous scRNA-seq analyses of myeloid cells in severely injured patients [18], 

we first analyzed for corresponding chromatin alterations within this immune compartment. The 

most substantial changes took place in CD14+ monocytes (Figure 32A-32D), consistent with our 
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previous scRNA-seq analyses of trauma [18]. The single clusters of dendritic cells (DC, C10) and 

CD16+ monocytes (C6) provided an internal control for batch effect and human heterogeneity, 

indicating that the differences between CD14+ monocyte clusters can be interpreted as meaningful 

epigenomic changes. These clusters are referred to as “Peak_CC#” (Cell Cluster) in Figure 35D, 

since they are the cell clusters identified based on the ATAC-seq peak profiles. 

The ten CD14+ clusters were generally clustered into three blocks (Figure 32E). Block I 

clusters were enriched in either control samples (C4 and C11) or the later time points from cases 

with rapid recovery (C1 and C8). Block II clusters enriched in either the early time points from the 

cases with quicker recovery (C2 and C3) or later timepoints from the cases with slower recovery 

(C0 and C5). Cluster 9 in block III was highly associated with the 24 and 72h timepoints from 

MM3008, the case with the slowest recovery (Figure 32F). Thus, the clusters in block I shared 

features associated with a more favorable clinical state similar to healthy controls, while the 

clusters in block II and block III were distinct from controls and therefore likely to include features 

associated with an unfavorable clinical state.  

We mapped the DA peaks between CD14+ clusters from block I, II, or III versus the 

corresponding control cluster (C4 or C11) to the ChromHMM 15-state model for CD14+ 

monocytes (E124) [64] (Figure 32G). Within block I, the DA peaks were mainly associated with 

active states. In contrast, there was an increase in the relative enrichment of normally repressed 

states, such as bivalent regions seen in block II and this extended to include polycomb or quiescent 

chromatin regions in block III.  
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Figure 32 Characterization of the trauma-induced open chromatin profiles in myeloid cells. 
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(A-C) UMAP plots of peripheral mononuclear myeloid cells color coded by identified cell clusters (A), color coded 

by experimental batches (B) or color coded by time points and wrapped by individual patients (C). UMAP was 

performed based on the globally accessibility of peaks. These clusters are also referred as “Peak_CC#” to designate 

clusters identified based on peak profiles. (D) Gene activities (computed by Signac R package) of myeloid cell markers 

[70] in different myeloid clusters shown in (A). (E) Hierarchical clustering of myeloid clusters shown in (A). CPeak#: 

cluster-specific peaks for the corresponding cluster. The matrix represents the average accessibility of CPeaks in each 

myeloid cluster. Color represents the relative average accessibility of each group of CPeaks across myeloid clusters 

(column-wise scale). (F) Enrichment between myeloid cell clusters and different time points for each patient. (G) 

Different enrichment patterns in the ChromHMM 15-state model (E124) across three blocks of CD14+ clusters. The 

clusters significantly enriched in control samples (C4 and C11) are labelled in red. Gray blocks show unavailable 

results, since no DA peaks were significantly up-regulated in C1 when compared to C4. 

 

4.3.3 Different regulatory mechanisms for the DA peaks at different CD14+ chromatin 

states 

To interpret the unexpected chromatin state changes observed in block II and III, we further 

examined the chromatin state for each DA peak. We first performed the 15-state enrichment 

analysis for each DA peak identified between the clusters from block II and cluster 9 versus the 

control-associated clusters (C4 and C11). Next, we performed hierarchical clustering. The DA 

peaks could be generally clustered into five Epigenetic Clusters that we refer to as EC1-5 (Figure 

33A). EC3-EC5 represented the peaks associated with active chromatin states in the reference 

genome. Peaks in EC3 were more specific to enhancer regions (Enh), while EC4 contained peaks 

in proximity to active transcription start sites (TssA), and EC5 peaks flanked the active TSSs 

(TssAFlnk). The peaks in EC2 were enriched in bivalent domains. The peaks enriched in other 

chromatin states were clustered into EC1. The DA peaks were then further divided into trauma or 
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control groups based on whether the DA peak associated cluster enriched in trauma or control 

samples, respectively. Because cluster 7 did not have an obvious association with either trauma or 

control, we excluded C7 from this analysis. This yielded 10 groups of DA peaks based on 

experimental groups and epigenetic clusters (Figure 33B).  
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Figure 33 Different regulatory mechanisms for the DA peaks at different chromatin states. 

(A) Hierarchical clustering of CD14+ DA peaks based on a matrix of relative fold enrichment in the ChromHMM 15-

state model. The peaks were resolved into 5 epigenetic clusters EC1-EC5. (B) The ratio of DA peaks under each EC 

from control and trauma groups. (C) Motif enrichment results for DA peaks for each EC associated with either trauma 

or control. All significantly enriched motifs (the number of observed motifs ≥ 5 and FDR < 0.05) were plotted and 

sorted by fold enrichment. The Top 15 enriched motifs are labeled. 

 

We next analyzed for enrichment of transcription factor (TF) binding site motifs in the 

various DA peaks. Of the peaks more accessible in control CD14+ monocytes (Figure 33C), EC3 
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had no significantly enriched motifs. The EC4 and EC5 peaks were largely associated with the 

motifs dominant in steady or differentiated states (i.e., IRF/SPIC/KLF families [45, 71, 72]). In 

contrast, the active state peaks with more accessibility after trauma (Figure 33C), especially those 

in EC3 and EC5, were associated with inflammation-related motifs (i.e. FOS/JUN/JUNB/JUND 

[73]). Previously, we extracted gene signatures from scRNA-seq data derived from circulating 

CD14+ monocytes from severely injured patients [18]. Based on a whole-blood leukocyte gene 

array dataset from severely injured humans [6], these gene signatures were used to identify two 

transcriptomic subtypes (Signature Groups: SG1 vs. SG2) [18]. Compared with SG2, SG1 trauma 

patients exhibited a higher up-regulation of inflammation and greater suppression of MHC II and 

IFN signaling, and had worse clinical outcomes (prolonged organ dysfunction and higher infection 

rates). The DA peaks that mapped to the genes present in SG transcriptomic signatures [18] were 

largely associated with the active state (Figure 34). These results indicated that the up-regulation 

of inflammation and down-regulation of MHC II or IFN signaling were largely associated with the 

chromatin regions already accessible at steady-state. After trauma, these regions may undergo 

additional histone modifications (H3K4me1, H3K27Ac or H3K27me3) leading to enhanced or 

reduced accessibility. 
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Figure 34 ChromHMM 15-state model enrichment.  

Enrichment in the ChromHMM 15-state model (E124) for the DA peaks identified in (Figure 32G) whose nearest 

genes were also included in SG signatures we previously extracted [18]. The enrichment analysis was performed 

between a specific chromatin state and a specific peak. SG signatures associated DA peaks were largely enriched in 

active chromatin states (states 1-8) from the reference epigenome. 

 

Interestingly, the number of peaks at repressed states (EC2, bivalent domains) were 

markedly increased after trauma (Figure 33B). These peaks were associated with a number of 

HOX/PAX family TF motifs (Figure 33C), which are known to be critical in the regulation of 

embryogenesis including morphogenesis [74]. The activities of many developmental genes 

including those encoding the HOX/PAX family TFs are known to be cross-regulated and in turn 
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controlled by bivalent chromatin domains and polycomb repressive complexes [75]. The 

enrichment of HOX and PAX motifs in bivalent chromatin domains conformed to expectations. 

However, it was not clear what lead to this increased accessibility after trauma. Since there was an 

enrichment of bivalent and polycomb targeted regions in the DA peaks more accessible in block 

II and III clusters (Figure 32G), we wondered whether de-repression of regions encoding 

developmental regulators was associated with a wider alteration in chromatin structure in the cells 

from block II and III.  

4.3.4 Characterization of CD14+ cell clustering based on global epigenetic alterations. 

To test this hypothesis, we developed a strategy to evaluate global epigenetic alterations 

(Figure 35A). A state-barcode matrix was generated by counting total cut sites for each of the 15 

states in individual cells for all CD14+ monocytes. Seven clusters were identified based on the 

new count matrix (Figure 35B). These clusters are referred to as “State15_CC#” in order to 

distinguish these clusters from the Peak_CC# described in Figure 32. By hierarchical clustering, 

the seven State15 clusters could be generally classified into two categories (Figure 35C). 

State15_CC4, 5, 2 and 1 aligned with the global accessibility pattern similar to the reference 

epigenome. In contrast, State15_CC0, 3 and 6 exhibited greater accessibility in regions that were 

less accessible in the reference epigenome. These accessible epigenomic regions were in turn 

linked to polycomb targeted or heterochromatin domains. Furthermore, the Peak_CC# clusters in 

block I were largely enriched in the State15_CC4, 5, 2 or 1, while the Peak_CC# clusters in block 

II and III were mostly enriched into State15_CC0, 3 or 6 (Figure 35D), supporting our hypothesis 

that block II and III clusters associated with wider alterations of chromatin structure. 
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Figure 35 Characterization of global epigenetic changes across ChromHMM 15 states in CD14+ monocytes. 

(A) Schematic of workflow of how we generated a state-barcode count matrix and extracted the COC3C6_up 

signature. (B) UMAP was performed and color coded by the cell clusters identified based on the state-barcode matrix. 

These clusters are referred to as “State15_CC#”. (C) Hierarchical clustering of the State15_CC# clusters shown in 

(B). (D) Co-occurrence between the Peak_CC# clusters (shown in Figure 32) and State15_CC# clusters, tested by 

Fisher’s Exact test. p values were corrected by Benjamini-Hochberg method for multiple testing. 

 

4.3.5 Generation and validation of gene signatures representing the global epigenetic 

alterations. 

Next, we sought to directly extract the features associated with the global epigenetic 

alterations by identifying the DA peaks between State15_CC0, 3, and 6 vs. State15_CC1, 2, 4 and 

5 (Figure 35A, Table 7 and Appendix Spreadsheet 6). Interestingly, 83 peaks were significantly 
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more accessible in State15_CC0, 3, and 6, while no peaks were significantly more accessible in 

State15_CC1, 2, 4, and 5. These 83 peaks corresponded to 65 unique genes, which we refer to as 

the “C0C3C6_up” signature (peaks or genes). Among MSigDB [42] (v5.2) C2 curated gene sets 

(Appendix Spreadsheet 6), the top enriched gene sets (p < 0.05 & the number of overlapping genes 

≥ 5, sorted by decreasing fold enrichment) associated with C0C3C6_up signature largely involved 

bivalent domains and polycomb targets (SUZ12 or domains with H3K27me3). Consistently, the 

top enriched GO terms were mostly associated with neuron development or morphogenesis, which 

are known to involve developmental genes marked by bivalent domains and regulated by 

polycomb-group proteins (PcG) [75].  
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Table 7 C0C3C6_up signature 

Peak Nearest gene 

chr3-93470153-93471006 PROS1 

chrY-56825450-56851853 SPRY3 

chr21-10693195-10738780 TPTE 

chr21-10413349-10432882 BAGE2 

chr9-40922055-40931475 MIR1299 

chr21-7930519-7958237 KCNE1B 

chrY-11290781-11297100 GYG2P1 

chr5-49599254-49603103 EMB 

chr21-10329531-10333013 BAGE2 

chrY-11304439-11323747 GYG2P1 

chr16-46385961-46392033 ANKRD26P1 

chr15-20338949-20359301 CHEK2P2 

chr6-168048129-168057957 FRMD1 

chr16-34581040-34589122 UBE2MP1 

chr9-40906828-40916361 MIR1299 

chr5-49656325-49662011 EMB 

chr20-31057589-31069509 DEFB115 

chr21-10457775-10466597 BAGE2 

chrY-11331673-11334570 GYG2P1 

chr5-131984427-132004795 ACSL6 

chr14-99173913-99220651 BCL11B 

chr10-86653791-86671651 LDB3 

chr14-99223431-99275903 BCL11B 

chr10-46519808-46531356 GPRIN2 

chr22-11033735-11039390 FRG1FP 

chr9-41229221-41230848 MIR4477A 

chr21-7915852-7929905 KCNE1B 

chr3-13625519-13637992 FBLN2 

chr13-18211584-18213670 FAM230C 

chr20-28804507-28817951 FRG1CP 

chr1-226976773-226988501 COQ8A 

chr1-228357438-228379773 OBSCN 

chr10-41902942-41915241 LOC441666 

chr2-240711188-240726164 KIF1A 

chr10-38526648-38530001 LINC00999 

chr2-240889169-240900861 MAB21L4 

chr10-49735174-49746098 OGDHL 

chr19-27352841-27362955 LINC00662 
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Table 7 continued 

Peak Nearest gene 

chr22-10775030-10783980 FRG1FP 

chr8-142520691-142550077 ADGRB1 

chr1-227919342-227928735 MIR5008 

chr14-16096743-16105285 OR11H12 

chr7-149810832-149829633 SSPO 

chr2-232476744-232489024 ECEL1 

chr1-228332736-228347496 OBSCN 

chr4-49116744-49121450 CWH43 

chr2-89826282-89837073 LOC101927050 

chr5-180618615-180634135 FLT4 

chr17-16922328-16936127 TBC1D27P 

chr16-46392851-46396684 ANKRD26P1 

chr20-29873849-29879518 FRG1EP 

chr7-30905464-30917521 AQP1 

chr1-53076915-53089065 PODN 

chr1-228285806-228295363 OBSCN 

chr15-29101631-29119156 APBA2 

chr7-152402010-152407690 KMT2C 

chr3-75667652-75670740 LINC00960 

chr3-127026273-127040010 PLXNA1 

chr1-227883027-227897635 MIR5008 

chr12-47974824-47991735 COL2A1 

chr11-128462571-128480938 ETS1 

chr3-133831782-133842339 SRPRB 

chr21-8987971-8996653 MIR3648-2 

chr2-134457484-134464875 TMEM163 

chr16-34590530-34596332 UBE2MP1 

chr8-12583550-12589880 LOC729732 

chr20-30811892-30816844 MLLT10P1 

chr2-130822654-130829713 ARHGEF4 

chr10-48444884-48452694 ARHGAP22 

chr16-46398079-46401836 ANKRD26P1 

chr10-86678858-86687490 LDB3 

chr20-31070330-31076126 DEFB115 

chr2-240756647-240774217 KIF1A 

chr10-43213785-43222742 RASGEF1A 

chr10-43036725-43047037 RET 

chr1-43595745-43610176 PTPRF 
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Table 7 continued 

Peak Nearest gene 

chr1-2651463-2656432 MMEL1 

chr14-104098469-104109681 ASPG 

chr3-126957013-126966118 CHCHD6 

chr1-10650776-10672122 CASZ1 

chr18-79451022-79463960 NFATC1 

chr7-100949044-100961824 MUC3A 

chr4-2064429-2078691 POLN 

 

 

We sought to validate the new gene signature inferred from profiling of chromatin states 

using a comprehensive trauma dataset. We queried a large-scale whole-blood leukocyte 

transcriptomic dataset from trauma patients (n=167) [18] (Figure 36A). Compared with the healthy 

controls, the C0C3C6_up signature was up-regulated after trauma. Notably, this upregulation 

tended to persist in patients with a slow recovery based on persistent organ dysfunction (time-to-

recovery [TTR] ≥ 14 days) and was maintained at an even higher level in the patients that failed 

to recover within 28 days after injury (Figure 36B). We extracted the genes from this bulk dataset 

that were highly correlated with the C0C3C6_up signature (Spearman correlation: |ρ| > 0.3), and 

performed GSEA [31] using the correlation coefficient as the rank (Figure 36A). The gene sets 

which included bivalent domains and polycomb targets were highly and significantly enriched in 

genes positively correlated with the C0C3C6_up signature (Figure 36F-36H, Appendix 

Spreadsheet 7). Thus, the transcriptional signature that we extracted from single-cell global 

epigenetic alterations induced by trauma (4 representative patients) was reflected in a bulk whole-

blood leukocyte transcriptomic dataset (167 patients). In addition, the gene sets enriched in the 

genes negatively correlated with global epigenetic signature were associated with DNA repair and 

RNA processing (Appendix Spreadsheet 7), indicating that the global epigenetic alterations we 

identified involve in multiple biological processes. Importantly, no genes from the previous SG 
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signatures [18] showed a Spearman correlation coefficient |ρ| > 0.3 (Figure 36C-36E), indicating 

that the chromatin alterations revealed by epigenetic profiling in this study, while confirming the 

earlier work, yielded a new set of actionable trauma induced epigenomic changes.  
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Figure 36 Validation of the C0C3C6_up signature in trauma bulk microarray data. 

(A) Schematic of the workflow of the analyses shown in this figure. (B) The changes in C0C3C6_up signature scores 

after trauma, color coded by different clinical trajectories (TTR: Time-To-Recovery). (C-E) Spearman’s correlation 

coefficients were computed for a genome-wide gene correlation with the C0C3C6_up signature score. Density plot of 

correlation coefficients ρ were plotted in (C). |ρ|= 0.3 was labeled as the vertical dashed lines. The genes from the 
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CD14+ signatures we previously used to define SG subtypes [18] were color coded in blue as shown in (D), and were 

largely associated with inflammation, MHC II expression and IFN signaling. The genes associated with PcG protein 

complex were color coded in purple as shown in (E). The genes with |ρ| > 0.3 in either category above were further 

annotated with the gene symbols. (F-H) GSEA results of hallmark gene sets (F), curated gene sets (G) and GO terms 

(H) (MSigDB gene sets v5.2) using the highly correlated genes identified above (|ρ| > 0.3). The significantly enriched 

pathways associated with genes positively correlated with C0C3C6_up are shown (adjusted p-value < 0.05 and NES 

> 0) and sorted by normalized enrichment scores (NES). Significance (adjusted p-value = 0.05) was annotated by the 

vertical dashed line. If the number of significantly enriched pathways was more than 20, only the top 20 pathways are 

shown in the figure. 

 

4.3.6 Global epigenetic alterations were the common changes across major immune cell 

types. 

Because the genes associated with morphogenesis or neuron development would not be 

expected to be expressed in myeloid, or even in hematopoietic lineages, we wondered whether 

other types of immune cells also underwent similar changes. To assess this, we reanalyzed the 

scATAC-seq data and calculated the average accessibility of the C0C3C6_up signature (83 peaks) 

in other major immune cell types. Notably, B cells, NK and T cells, DC and CD16+ monocytes 

also showed an increase in the accessibility of the C0C3C6_up signature after trauma that was 

observed in CD14+ monocytes (Figure 37).  
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Figure 37 The changes in the accessibility of C0C3C6_up peaks in other immune cell types besides CD14+ 

monocytes. 

The average accessibility of C0C3C6_up peaks in CD14+ monocytes, CD16+ monocytes, DC, NK and T, and B cells 

is shown for four trauma patients across time and for healthy controls.  

 

4.3.7 The independent prognostic value of epigenetic subtypes in trauma patients. 

Next, we sought to determine if we could identify patient heterogeneity based on gene 

signatures for the global epigenetic response to systemic injury. Using the trauma bulk gene array 

from 167 severely injured patients, we extracted the C0C3C6_up signature genes to cluster the 

patients. This was done based on 37 genes from the C0C3C6_up signature present in the trauma 

bulk gene array data. Based on the first timepoint (~12 h after injury), patients were clustered into 

three groups (Epigenetic Group, EG1-EG3) (Figure 38A, Appendix Spreadsheet 8). EG3 was the 
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most distinct and had the highest expression of C0C3C6_up signature genes and polycomb targets 

(Figure 38B and Figure 39A). Of the genes associated with the PcG complex, EG3 trauma patients 

tended to express lower PRC2 core components (SUZ12, EED, EZH2, RBBP4/7), lower PRC2 

cofactors (AEBP2, MTF2), and lower SIRT1 (maintaining gene silencing [76] and genome 

stability [77]), but higher H3K27me3 demethylases (KDM6A and KDM6B) compared with EG1 

and EG2 trauma patients (Figure 39B). These changes suggest global epigenetic alterations 

associated with increased accessibility in chromatin structure and de-repression of polycomb 

targets in a subset of severely injured patients (EG3).  
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Figure 38 Epigenetic subtypes and prognostic value in trauma patients.  

(A) Hierarchical clustering of trauma patients by C0C3C6_up signature genes with an available expression value in 

the trauma dataset. The 1st sampled time point (all within 12 hrs of injury) for each patient (n = 167) was extracted for 

the clustering analysis. Patients were clustered into different subtypes referred to as epigenetic groups (EGs). (B) 

C0C3C6_up signature scores among trauma EGs derived from (A) and the healthy controls. (C-E) Time-to-event 

analysis between Trauma_EG3 (highest level of C0C3C6_up signature) versus Trauma_EG1+EG2. Event was set as 

recovery (absence of organ dysfunction). (C) Univariant analysis by Kaplan-Meier estimate. (D) Multivariant analysis 

using Cox model to adjust potential co-variants of EGs. (E) Multivariant analysis using Cox model to further adjust 

for SG subtype designations. 
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Figure 39 Expression of epigenetic signatures or genes among trauma Epigenetic Groups (EGs) along with 

healthy controls. 
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(A) Signatures of polycomb targets. (B) Critical epigenetic regulators, including GO: 

PCG_PCG_PROTEIN_COMPLEX along with H3K27me3 demethylase <KDM6A, KDM6B> and CTCF. 

 

To further characterize the global transcriptomic profiles between trauma epigenetic 

subtype EG3 vs. EG1+EG2, we identified the DEGs between these two groups of patients (Figure 

40A). The genes up-regulated in EG3 trauma patients were largely associated with bivalent 

domains and polycomb targets (PRC2, EED, SUZ12 or domains with H3K27me3) (Figure 40B-

40D, Appendix Spreadsheet 10). This was highly consistent with the GSEA analysis using 

C0C3C6_up highly correlated genes (Figure 36F-36H, Appendix Spreadsheet 7) and the gene set 

over-representation test directly using C0C3C6_up signature genes (Appendix Spreadsheet 6). 

This indicated that the 37 gene subset from the C0C3C6_up signature genes could be viewed as 

representative of the global epigenetic alterations and sufficient to define epigenetic subtypes in 

trauma patients. 
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Figure 40 Gene expression profile among trauma Epigenetic Groups (EGs) (related to Figure 38).  

(A) Schematic workflow for generating trauma epigenetic DEGs that were further used to cluster burn and sepsis 

patients. (B-D) GSEA results of curated gene sets (B), GO terms (C) and hallmark gene sets (D) (MSigDB gene sets 

v5.2), using highly significant DEGs (FDR < 10-5 identified by Limma R package). The significantly enriched 

pathways associated with Trauma_EG3 are shown (adjusted p-value < 0.05 and NES > 0) and sorted by the normalized 

enrichment score (NES). Significance (adjusted p-value = 0.05) was annotated as the vertical dashed line. If the 

number of significantly enriched pathways was more than 20, only the top 20 pathways are shown in the figure. (E) 

The profile of top 4000 DEGs (top 2000 up and top 2000 down DEGs in Trauma_EG3) among trauma patients. The 

4000 DEGs can be clustered into 3 gene clusters Trauma_GC1-GC3. These genes were used to cluster burn and sepsis 
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patients, and additional filter was applied in order to only keep the variable genes with standard deviation of scaled 

expression ≥ 0.5 among the analyzed samples. 

 

We next compared clinical outcomes between the EG3 versus the EG1+EG2 trauma 

patients. EG3 trauma patients tended to show a slower recovery (Kaplan-Meier analysis, log-rank 

p value = 0.076, Figure 38C), compared with EG1+EG2. The co-variants of sex, height, ISS (Injury 

Severe Score) and total crystalloids received within 12 hours after injury 

(TOTAL_XLOIDS_12HR, a marker of worse disease state) were significantly and differentially 

distributed between EG3 patients vs. EG1+EG2 (Appendix Spreadsheet 9). After adjusting for 

these co-variants using Cox regression, the p value for EG classification became highly significant 

(p = 0.006, Figure 38D). Noticeably, after adding SG designation [18], the transcriptomic subtypes 

we previously defined, into the Cox model both SG1 and EG3 were significantly associated with 

slower recovery (Figure 38E). This analysis suggests there are two different mechanisms that 

contribute to the differential prognosis following systemic injury that are reflected by the SG and 

EG signatures.  

The gene sets of polycomb targets (PRC2/SUZ12/EED/H3K27me3) were derived from 

human embryonic stem cells (ES) [78]. Thus, these polycomb targets should include both 

hematopoietic and non-hematopoietic developmental genes. To explore whether the de-repressed 

targets are relevant to hematopoiesis and immune cell states, we plotted the gene expression 

profiles of all polycomb targets (union of the 4 gene sets) across trauma patients (Figure 41A). 

These genes fell into 3 gene clusters (PcGtargets_TraumaGC1-GC3). Interestingly, the PcG targets 

relevant to hematopoietic lineages (e.g. leukocyte/lymphocyte differentiation/regulation) were 

much more enriched in PcGtargets_TraumaGC2, which was suppressed in EG3 patients. The de-

repressed polycomb targets (PcGtargets_TraumaGC1+GC3) were largely associated with 
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morphogenesis or non-hematopoietic tissue development (Figure 41B). This evidence suggests 

that the de-repression of polycomb targets, encoding non-hematopoietic genes, in immune cells of 

EG3 trauma patients, may lead to their dysfunctional states. 

 

Figure 41 Gene expression profile of polycomb targets across trauma patients shown in (Figure 38A). 

(A) Polycomb targets (rows) were collected as the union of 4 gene sets: BENPORATH_ES_WITH_H3K27ME3, 

BENPORATH_SUZ12_TARGETS, BENPORATH_PRC2_TARGETS, BENPORATH_EED_TARGETS (MSigDB 

gene sets v5.2). Patients (columns) were sorted by EG subtypes identified in (Figure 38A). Polycomb targets were 

clustered into 3 clusters, PcGtargets_TraumaGC1-GC3. (B) GO enrichment for the 3 gene clusters identified in (A). 

Top 10 enriched GO terms (sorted by fold enrichment (FE) decreasingly) for each gene cluster were shown (threshold 

for significance: FDR < 0.05 & the number of overlapped genes ≥ 10 & FE >2). Hematopoietic relevant GO terms 

were pointed out by blue arrows. 
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4.3.8 Recapitulation of epigenetic profile in scRNA data of trauma patients 

Since we had previously generated scRNA-seq data for these 16 samples used for ATAC-

seq profiling, we wondered whether the global epigenetic alterations were also reflected in the 

scRNA-seq dataset. Thus, we used the top 500 up and top 500 down DEGs identified in EG3 

trauma patients (817 of these genes were detectable in the scRNA data) to cluster the scRNA data 

from CD14+ monocytes (Figure 42A-42E). Consistently, the control samples mostly clustered 

together and were separated from trauma patients by these top DEGs. Furthermore, the DEGs that 

were up-regulated in EG3 trauma patients were largely separated from the down-regulated DEGs 

(Figure 42A). We noticed that the epigenetic DEGs were expressed at a much lower level and with 

less variation than the previously characterized genes associated with the SG signatures [18] 

(Figure 42F-42I). It is not surprising that genes associated with inflammation, IFN and MHC II 

signaling dominate the transcriptomic analysis [14, 15, 18, 58]. The full range of epigenetic-

associated genes are likely to be more challenging to detect in scRNA datasets due to data sparsity 

and transcript abundance. Thus, scATAC-seq allowed us to extract genes directly associated with 

global epigenetic alterations that could not be recovered by scRNA analysis alone. 
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Figure 42 Recapitulate epigenetic profile in scRNA data.  

(A) Top 500 up-regulated and top 500 down-regulated DEGs (row colors) in trauma EG3 patients were used to cluster 

CD14+ monocytes scRNA data. Pseudobulk matrix averaged by different samples was shown. These DEGs were 
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clustered into two groups of genes, C1 and C2. C1 genes largely corresponded to the down-regulated DEGs in trauma 

EG3 patients, and C2 genes largely mapped to the up-regulated DEGs in trauma EG3 patients. (B-C) Visualization of 

C1 genes (B) and C2 genes (C) among the 16 samples subjected to scATAC-seq. (D-E) Top 10 enriched gene sets for 

C1 or C2 genes. (D) MSigDB C2 curated gene sets. (E) MSigDB Hallmark gene sets. (F-I) Differences in distribution 

of average expression and expression variation of SG signatures and trauma EG3 DEGs. 

 

4.3.9 The independent prognostic value of global epigenetic changes in burn and sepsis 

patients. 

We have previously shown that the SG subtypes and the association with differential 

prognosis can be recapitulated using whole-blood leukocyte transcriptomic datasets from burn and 

sepsis patients [18]. To determine if our findings on global epigenetic heterogeneity could also be 

identified in burn and sepsis patients, we sought to use C0C3C6_up signature genes to cluster burn 

and sepsis patients. However, the patient clusters based on C0C3C6_up signature genes did not 

show an obvious association with survival. This observation led us to hypothesize that while these 

other etiologies for acute critical illness are likely to be influenced by epigenetic processes, the 

gene co-expression patterns are likely to be different from trauma. Hence, the C0C3C6_up 

signature may be more specific to trauma.  

Therefore, we took the following two steps to identify the potential epigenetic-associated 

genes for clustering burn or sepsis patients. In step 1, we extracted the top 2000 up-regulated and 

top 2000 down-regulated genes in Trauma_EG3 patients vs. Trauma_EG1+EG2 patients as the 

initial pool of features. These 4000 top DEGs generally included three gene clusters: Trauma_GC3 

(highly expressed in EG3 trauma patients), Trauma_GC2 (markedly suppressed in EG3 trauma 

patients) and a small fraction of relatively less variable genes (Trauma_GC1) (Figure 40E). A 
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relatively low threshold for including DEGs was used to maximize the pool of DEGs that can be 

potentially influenced by global epigenetic alterations across different etiologies of critical illness. 

In Step 2, we used only the variable genes (standard deviation of scaled expression ≥ 0.5 among 

the analyzed samples) from the top 4000 DEGs to cluster the burn or sepsis patients. 

The Burn dataset is a longitudinal dataset. We extracted the 1st time point from all adult 

burn patients (≥ 18yr, n = 121). Based on the two steps described above, 1482 genes were used to 

cluster burn patients (Figure 43-44) leading to three epigenetic groups (Burn_EG1-EG3) and two 

gene clusters (Burn_GC1-GC2) (Figure 43A and Appendix Spreadsheet 11-12). EG2 burn patients 

had a higher expression of the genes in the C0C3C6_up signature (Figure 43B) and underwent a 

worse prognosis (K-M analysis: log-rank p = 0.019, Figure 43D). After adjusting for potential co-

variants and SG classification, EG2 burn patients still showed a trend towards worse survival 

compared with the other burn patients (p = 0.076, Figure 43E-43F), similar to the clinical pattern 

seen in EG3 trauma patients. Furthermore, the gene expression profile of EG2 burn patients (gene 

cluster: Burn_GC2) can be generally mapped to EG3 trauma patients (gene cluster: Trauma_GC3) 

(Figure 43C). Unlike the adult blunt trauma group, the complete burn dataset contained a large 

number of young children and infants. The prognostic value of the EG subtypes showed a different 

pattern between the patients ≥ 18yr vs. <18yr (Figure 45). In contrast, the prognostic value of SG 

subtype designation exhibited a similar pattern between the two groups of ages of burn patients. 

This interesting finding suggests a lower influence of global epigenetic alterations on the outcomes 

of very young children after burns. 
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Figure 43 Epigenetic subtypes and prognostic value in burn patients.  

(A) Epigenetic subtypes in adult burn patients. The 1st sampled time point for each patient was extracted for the 

clustering analysis. The top 2000 up and top 2000 down DEGs in trauma EG3 patients that showed standard deviation 

of scaled expression ≥ 0.5 among the 121 burn samples were used to cluster burn patients. These genes largely fell 

into two gene clusters Burn_GC1-GC2. (B) C0C3C6_up signature scores among burn EGs as shown in (A) and 

healthy controls. (C) Mapping of gene clusters derived from Burn patients (Burn_GC#) to those identified in Trauma 

patients (Trauma_GC#). Fold enrichment was computed between each Burn_GC# and each Trauma_GC# and then 

scaled between 0 to 1 for each Burn_GC#. (D-F) Survival analysis between Burn_EG2 (highest level of C0C3C6_up 

signature) versus the other Burn patients. (D) Univariant analysis by Kaplan-Meier estimate. (E) Multivariant analysis 

using Cox model to adjust potential co-variants. (F) Multivariant analysis using Cox model to further adjust SG 

subtype designations. 
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Figure 44 Expression of epigenetic signatures and genes among burn Epigenetic Groups (EGs) along with 

healthy controls (related to Figure 43).  
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(A) Signatures of polycomb targets. (B) Critical epigenetic regulators, including GO: 

PCG_PCG_PROTEIN_COMPLEX along with H3K27me3 demethylase <KDM6A, KDM6B> and CTCF. 
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Figure 45 Different prognostic patterns of EGs in burn patients and impact of age on the patterns.  

(A) Epigenetic subtypes in all burn patients. The 1st sampled time point for each patient was extracted for the clustering 

analysis. The top 2000 up and top 2000 down DEGs from trauma EG3 patients that also showed standard deviation 

of scaled expression ≥ 0.5 among the analyzed burn samples were used to cluster burn patients. To distinguish the 

epigenetic groups characterized in Figure 43, burn epigenetic groups (bEGs) were only used to specify the epigenetic 

groups identified by the clustering across all burn patients in this figure. (B) Distribution of ages across analyzed burn 

patients shown in (A). (C) C0C3C6_up signature scores among burn bEGs as shown in (A). (D-F) Survival analysis 

in burn patients with age ≥ 18yr. (D) K-M analysis between bEG2 and bEG1+bEG3. (E) K-M analysis between SG1 

and SG2. (F) Multi-variant survival analysis by Cox model. (G-I) Survival analysis in burn patients with age < 18yr. 
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(G) K-M analysis between bEG2 and bEG1+bEG3. (H) K-M analysis between SG1 and SG2. (I) Multi-variant 

survival analysis by Cox model. 

 

The Sepsis dataset [15] contained a single sampled time point for each patient within 24h 

of ICU admission. All but one patient in this dataset was ≥ 18yr (one patient was 17yr). Therefore, 

we included all patients from both the discovery and validation cohorts, a total of 479 patients 

(Figure 46-47). After applying our two-step process, 976 genes were used to cluster these 479 

patients. Sepsis patients were generally clustered into three epigenetic groups (Sepsis_EG1-EG3) 

and the genes used for clustering formed four gene clusters (Sepsis_GC1-GC4) (Figure 46A and 

Appendix Spreadsheet 11-12). Of the three sepsis epigenetic groups, EG3 sepsis patients had the 

highest level of C0C3C6_up signature genes (Figure 46B) and a higher level of polycomb targets 

(Figure 47A). These results indicated that EG3 sepsis patients underwent a higher degree of global 

epigenetic alterations than the other sepsis EG groups, a pattern similar to EG3 trauma and EG2 

burn patients. Consistent with the burn and trauma findings, EG3 sepsis patients also experienced 

worse survival compared with the other sepsis patients (K-M analysis: p = 0.012, Figure 46D). 

After adjusting for age, sex and SG classification by Cox model, the EG3 sepsis subtype still 

significantly associated with worse survival (p = 0.013, Figure 46E-46F).  
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Figure 46 Epigenetic subtypes and prognostic value in sepsis patients.  

(A) Epigenetic subtypes in sepsis patients. The top 2000 up and top 2000 down DEGs in trauma EG3 patients that 

also showed standard deviation of scaled expression ≥ 0.5 among the analyzed sepsis samples were used to cluster 

sepsis patients. These genes largely fell into four gene clusters Sepsis_GC1-GC4. (B) C0C3C6_up signature scores 

among Sepsis EGs as shown in (A) and healthy controls. (C) Mapping of gene clusters derived from Sepsis patients 

(Sepsis_GC#) to those identified in Trauma patients (Trauma_GC#). Fold enrichment was computed between each 

Sepsis_GC# and each Trauma_GC# and then scaled between 0 to 1 for each Sepsis_GC#. (D-F) Survival analysis 

between Sepsis_EG3 (highest level of C0C3C6_up signature) versus the other sepsis patients. (D) Univariant analysis 

by Kaplan-Meier estimate. (E) Multivariant analysis using Cox model to adjust potential co-variants. (F) Multivariant 

analysis using Cox model to further adjust SG subtype designations. 
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Figure 47 Expression of epigenetic signatures and genes among sepsis Epigenetic Groups (EGs) along with 

healthy controls (related to Figure 46).  
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(A) Signatures of polycomb targets. (B) Critical epigenetic regulators, including GO: 

PCG_PCG_PROTEIN_COMPLEX along with H3K27me3 demethylase <KDM6A, KDM6B> and CTCF. 

 

EG3 sepsis patients highly expressed the gene cluster Sepsis_GC1. Surprisingly, 

Sepsis_GC1 was more highly enriched in genes found in Trauma_GC1 (relatively low variable 

DEGs in trauma) compared with Trauma_GC3 (highest expressed in the trauma patients with 

worse prognosis, Trauma_EG3) (Figure 46C). The expression of PRC2 components also showed 

a more complex pattern across Sepsis EG subtypes (Figure 47B). Some co-factors (JARID2 and 

MTFs) were lowest in EG3 sepsis patients, while most core components (EED, RBBP4/7, EZH2) 

were not. Thus, while the global epigenetic changes in sepsis exhibit characteristics that go beyond 

the SG classification, the suppression of PRC2 components may be more specific to trauma. The 

upstream epigenetic regulators that play a dominant role in sepsis may be different and possibly 

involve more PRC1 components (CBX4, CBX6 and CBX7, Figure 47B), leading to a different 

downstream co-expression profile. This suggests that a single-cell epigenomic analysis of sepsis 

is warranted to identify the sepsis-specific epigenetic changes. 

Finally, we assessed the gene expression profile of polycomb targets (ES-derived) across 

sepsis patients. Compared with EG1 and EG2 sepsis patients, EG3 sepsis patients expressed 

markedly higher level of PcGtargets_SepsisGC1 genes, which were largely associated with non-

hematopoietic developmental GO terms. In contrast, the GO terms associated with 

myeloid/leukocyte/hematopoietic progenitor cell differentiation, were only significantly enriched 

in PcGtargets_SepsisGC2 genes (Figure 48). Thus, in spite of some differences in the co-

expression pattern of epigenetic associated genes between Trauma_EG3 and Sepsis_EG3 (Figure 

46-47), the shared epigenetic features between these two groups of patients (both with worse 

prognosis) include a higher de-repression of non-hematopoietic developmental genes rather than 
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the hematopoietic developmental genes. The de-repression of developmental genes could 

potentially contribute dysfunctional states in immune cells. 
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Figure 48 Gene expression profile of polycomb targets across sepsis patients.  

(A) Polycomb targets (rows) were collected as the union of 4 gene sets: BENPORATH_ES_WITH_H3K27ME3, 

BENPORATH_SUZ12_TARGETS, BENPORATH_PRC2_TARGETS, BENPORATH_EED_TARGETS. Patients 

(columns) were sorted by EG subtypes identified in (Figure 46A). Polycomb targets were clustered into 2 clusters, 

PcGtargets_SepsisGC1-GC2. (B) GO enrichment for the 2 gene clusters identified in (A). Top 15 enriched GO terms 
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(sorted by fold enrichment (FE) decreasingly) for each gene cluster were shown (threshold for significance: FDR < 

0.05 & the number of overlapped genes ≥ 10 & FE >2). Hematopoietic relevant GO terms were pointed out by blue 

arrows. 

4.4 Discussion 

This study characterized the open chromatin patterns in PBMCs using scATAC-seq in 

humans subjected to an acute systemic insult that resulted in either a rapid recovery or a transition 

into a state of persistent critical illness. Using standard methods combined with HSMM 15-state 

epigenome model [64] within CD14+ monocytes, we show that known changes in transcriptomic 

patterns associated with the immune dysfunction of critical illness (excessive up-regulation of 

proinflammatory genes and suppression of MHC and interferon signaling) largely relate to the 

changes of active chromatin states (TssA/TssAFlnk/Enh) of reference epigenome. Unexpectedly, 

we also found that failure to resolve critical illness was associated with a higher degree of global 

epigenetic alterations, that include the de-repression of polycomb targets (associated with many 

developmental genes) not typically expressed in hematopoietic lineages. PcG is a well-

characterized system essential for stable gene silencing [79]. We provide the first evidence that 

this system is impaired very rapidly (4-24h), along with the release of normally repressed targets 

during extreme stress caused by acute injury and other etiologies, in both myeloid and lymphoid 

lineages, and that this associates with worse clinical outcome. 

Trauma and other etiologies leading to acute critical illness can be associated with immune 

dysfunction that manifests as early hyper-inflammation followed by a sustained immune-paralysis 

[1]. From our previous studies [18] and the studies of others [58, 59] using single-cell RNA 
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sequencing of PBMC from critically ill patients, a common finding across trauma and sepsis is the 

up-regulation of proinflammatory genes and suppression of genes associated with MHC and 

interferon signaling in myeloid cells. In the current study we go beyond the information captured 

in single-cell transcriptomics to identify epigenetic group (EG) subtypes in whole-blood leukocyte 

across three etiologies of critical illness. Here, we found that at the bulk level the signatures we 

used to define SG subtypes were not among the top genes highly correlated the pathologic EG 

subtype, the C0C3C6_up gene signature. This further supports the notion the factors that drive the 

pathologic SG and EG gene signatures are part of different processes. Nonetheless, patients that 

were defined as SG1 and had EG subtypes with the highest representation of the C0C3C6_up 

signature were consistently and independently associated with the worse prognosis across three 

etiologies of critical illness. This suggests that both processes contribute to the dysfunctional 

immune responses that associated with critical illness. 

Intriguingly, a high dose of Lipopolysaccharide (LPS) exposure in multiple mouse strains, 

resulting in >75% morbidity within 48h, has been shown to result in alterations in expression of 

hedgehog signaling components and the developmental regulators Pax4, Hoxa4 and Cdx2 [80]. In 

keeping with these observations, macrophages deficient in one of the hedgehog receptors (Ptch1+/-

) were resistant to LPS induced inflammatory cytokine production. These findings indicate that 

some developmental regulatory genes also modulate inflammatory responses. We speculate that 

the molecular chaos of high and sustained stress signaling, along with other inputs (e.g., hypoxia, 

reactive oxygen species) drive rapid and global epigenetic alterations which result in mis-

expression of developmental regulators that impact inflammatory cytokine signaling. This could, 

in turn, contribute to the wide-spread immune dysfunction of critical illness.  
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There were some paradoxes based on the current sepsis transcriptomic classification in 

circulation. The Mars [15] and SRS [14] sepsis classifications were based on gene array studies of 

whole-blood leukocytes from sepsis patients obtained at a single time point. The Mars1 and SRS1 

subtypes have the worse outcomes in both of the studies. However, Mars1 was found to be largely 

mapped to SRS2 rather than SRS1 [15]. We had demonstrated in our previous paper (also 

discussion in Chapter 2) that SG1 and SRS1 shared common transcriptomic and outcome patterns, 

involving the higher degree of both up-regulated inflammation and down-regulated MHC II and 

IFN signaling pathways in the myeloid compartment, but this was not the case for Mars1, which 

also had worse outcomes [18]. Mars1 patients exhibited a pronounced decrease in both innate and 

adaptive immune response but only displayed an increase in metabolic pathways (mainly heme 

metabolism). The information above is far from sufficient for us to understand how immune 

response are dysfunctional in Mars1 patients. These led us to examine the relationship between 

Mars endotypes and the epigenetic subtypes we defined in our study. It turned out that the Mars1 

endotype was significantly enriched in EG3 sepsis patients (Figure 49).  

Thus, Mars study captured more features associated with global epigenetic alterations, 

while SRS study captured more local features (eg. inflammatory genes). Failure to distinguish the 

two different sources of features from each other led to the paradoxical but both reasonable 

conclusions of the two publications. This provides further support for the separation of biologic 

process identified by transcriptomic analysis alone and epigenomic analysis of the same 

conditions. This could also explain why anti-inflammatory therapies had marginal effects in trials 

of human sepsis [81]. Using single-cell sequencing data for feature selection helped us to better 

link patient heterogeneity within patient populations to specific cellular changes, and provided a 

more straightforward interpretation for the identified subtypes.  
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Figure 49 Relationship between Mars and EG classifications. 

(A) C0C3C6_up signature scores among Mars endotypes and healthy controls. (B) Fisher’s Exact test between 

Sepsis_EGs and Mars endotypes. p values were corrected by Benjamini-Hochberg method for multiple testing. 

 

We also provide an analytic workflow incorporating the findings scATAC-seq data and 

bulk transcriptomic data to explore the global epigenetic heterogeneity in patient populations. Most 

importantly, we provide a strategy to directly extract the signature associated with global 

epigenetic changes in specific cell types using scATAC-seq data. In the future, this workflow can 

be used to establish a more burn or sepsis-specific epigenetic classification by directly scATAC 

sequencing burn or sepsis patients. The workflow can also be applied to other diseases suspected 

to undergo global epigenetic changes, such as aging [82].  

While our studies using epigenetic analysis provides new insights into the processes 

involved gene regulation in immune cells during acute critical illness, we also provide some clarity 

on the path forward to better understand the mechanisms of immune dysfunction in this 

challenging area of research. Specifically, we need to understand where (cell compartments and 

cell types) and under what forms of cell stress and activation the de-repression takes place. What 

are the most proximal signaling events involved in the epigenomic reprogramming? What is the 

range of functional consequences stemming from the de-repression of polycomb targets in immune 
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cells and how long do these changes last? Finally, are these changes restricted to critical illness or 

will these changes be part of other more chronic immune and inflammatory processes? 
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5.0 Conclusions and Future Work 

This collection of studies was undertaken to deconvolute the immune response to systemic 

injury. We began with scRNA-seq followed by scATAC-seq to characterize the transcriptomic 

and epigenomic changes in human PBMCs and extended this work to mouse PBMCs and BMMCs 

as well.  

Using scRNA-seq, we found that myeloid cells (esp. CD14+ monocytes) underwent 

dramatic changes, including up-regulation of inflammation and suppression of specific immune 

pathways (genes associated with MHC II and IFN signaling), along with the changes of several 

critical transcriptional factors. These changes were largely consistent between humans and mice, 

and we were able to in silico track these changes back to myeloid progenitors in a mouse T/HS 

model. In addition, these single-cell derived features were used to define two transcriptional 

subtypes in the whole leukocyte transcriptome of trauma patients, which we called SG subtypes. 

The SG1 trauma patients, which exhibited higher levels of inflammation and lower levels of MHC 

II and IFN signaling pathways, displayed a slower recovery.  

Using scATAC-seq, we were first able to recapitulate the transcriptomic changes we 

characterized using scRNA-seq (local features). More importantly, we revealed that trauma 

induced global epigenetic alterations across the major immune cell types that pointed to global 

increased accessibility in chromatin structure and de-repression of polycomb targets, which should 

be normally suppressed in hematopoietic lineages. The features associated with the global 

epigenetic alterations were used to define epigenetic subgroups (EG subtypes) in the whole blood 

leukocyte transcriptome of trauma patients. The EG3 trauma patients, who displayed a higher 

degree of global epigenetic alterations than other patients, suffered worse outcomes. To highlight, 
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the gene signatures associated with global epigenetic alterations were distinct from the 

transcriptomic features used to define SG subtypes (Figure 36C-36E). Furthermore, both SG and 

EG subtypes were significantly associated with differential prognosis, and were independent of 

each other. Thus, we provided two biologically driven trauma patient classifications that associated 

with distinct cellular mechanisms (Table 8, Figure 50).  

 

Table 8 The comparison between SG and EG classification 

 SG subtypes EG subtypes 

Dataset where the features 

derived from 
scRNA-seq scATAC-seq 

Extracted signature(s) Six signatures (C1-C6), Table 4 
C0C3C6_up signature (83 peaks/ 65 genes), 

Table 7 

Biological interpretation 
Up-regulation of inflammation and 

suppression of MHCII and IFN signaling 
Global epigenetic alterations 

Involved immune cell 

types 
Myeloid, mainly CD14+ monocytes Myeloid + lymphoid 

The subtype associated 

with worse prognosis 

SG1 (higher inflammation & lower MHC II 

and IFN signaling) 

The EG subtype with higher levels of global 

epigenetic alterations (Trauma: EG3) 

BM-derived Yes 
Uncertain, considering that lymphocytes are 

also involved. 

 

More broadly, the SG and EG classifications were largely recapitulated in the patients with 

critical illness spanning different etiologies, including burn and sepsis, and demonstrated 

independent prognostic values in these patient groups as well. Thus, our findings reveal immune 

response patterns that are shared across several causes of acute critical illness. Trauma, sepsis and 

burns represent states of extreme stress that are often lethal even in the setting of advanced medical 

care. Hence, we would expect these common causes of major systemic stress in humans to manifest 

aberrant response patterns at the molecular level. We summarize these patterns as follows:  
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(1) Transcriptomic features: At the level of an excessive adaptive response, SG subtypes 

reveal the adaptive and mal-adaptive relationships with the safe (early resolution) and excessive 

(slow resolution) ranges detected in the deviation in gene subsets in myeloid cells. These changes 

in transcription are initiated in the BM and seen in the periphery as the extent of deviation from 

steady state --- SG1 (excessive/ maladaptive) and SG2 (non-excessive/ adaptive).  

(2) Epigenomic features: In parallel, the extreme stress states also result in global 

alterations in the chromatin accessibility driven by processes mostly independent from the adaptive 

changes as revealed by the EG patterns.  

When the wider global epigenetic alterations (Trauma_EG3, Burn_EG2, Sepsis_EG3) 

occur on top of the changes seen in SG1, immune dysfunction may become severe and sustained. 

The EG changes are more global and could explain the dysfunction seen across multiple cell types.  

Admittedly, both single-cell studies (scRNA or scATAC) were based on a small number 

of patients. However, we were able to validate the single-cell derived signatures in whole blood 

leukocyte transcriptomes including hundreds of patients across three etiologies of critical illness, 

demonstrating that our conclusions are valid and reproducible. More importantly, the large-scale 

datasets with sufficient number of patients allowed us to characterize patient heterogeneity and 

provided sufficient statistical power to explore the association with clinical outcomes. 

To reveal the epigenetic heterogeneity, we used global epigenetic associated genes to 

explore the transcriptomic data. It will be interesting to directly explore patient heterogeneity using 

large-scale epigenetic datasets, such as CpG methylation or H3K27me3 ChIP-seq. Our scATAC-

seq study highlights a new and important feature when analyzing large-scale epigenetic datasets 

in the future; the importance of keeping in mind global vs. local epigenetic modifications and 
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analyzing these modifications separately. This approach is likely to give us clearer overview and 

better interpretation of the regulatory mechanisms immune mediated diseases. 

In addition, more work will be needed to specifically align the transcriptomic and 

epigenomic findings with cell functional changes. Whether or how these two mechanisms interact 

with each other also needs to be elucidated. This dissertation provides a roadmap from single-cell 

transcriptomics and single-cell epigenomics to two distinct patient classification systems related 

to patient outcomes. In the short term, rapid identification of EG and SG subtypes early after 

admission could prognostication for outcomes. In the long term, the findings establish the 

foundations for promoting precision medicine in critical illness, by identification of patient subsets 

most likely to respond to targeted therapies (eg. anti-IL-6) and/or through the development of 

therapies aimed at preventing the global epigenetic alterations in appropriate subset of patients. 

Thus, this work has the potential to open new pre-clinical research directions and more 

sophisticated design of clinical trials in the future. 
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Figure 50 New diagram of patient classifications in critical illness: Two different methods of classifications 

with independent prognostic value beyond each other. 
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Appendix Spreadsheets 

Appendix Spreadsheet 1: Subgroup analysis for outcome parameters based on SG status at 12h. 

https://d-scholarship.pitt.edu/41614/1/STable1.xlsx 

Appendix Spreadsheet 2: Subgroup analysis for outcome parameters based on SG status at 1d. 

https://d-scholarship.pitt.edu/41614/2/STable2.xlsx 

Appendix Spreadsheet 3: Subgroup analysis for associated factors based on SG status at 12h. 

https://d-scholarship.pitt.edu/41614/3/STable3.xlsx 

Appendix Spreadsheet 4: Subgroup analysis for associated factors based on SG status at 1d. 

https://d-scholarship.pitt.edu/41614/4/STable4.xlsx 

Appendix Spreadsheet 5: Association between SG status at 1d and known prognostic factors. 

https://d-scholarship.pitt.edu/41614/5/STable5.xlsx 

Appendix Spreadsheet 6: C0C3C6_up signature information and results gene set over-

representation. https://d-scholarship.pitt.edu/41614/6/STable6.xlsx 

Appendix Spreadsheet 7: C0C3C6_up highly correlated genes and GSEA results. https://d-

scholarship.pitt.edu/41614/7/STable7.xlsx 

Appendix Spreadsheet 8: Trauma patient classifications. https://d-

scholarship.pitt.edu/41614/8/STable8.xlsx 

Appendix Spreadsheet 9: Demographic comparison between EG3 trauma patients versus 

EG1+EG2. https://d-scholarship.pitt.edu/41614/9/STable9.xlsx 

Appendix Spreadsheet 10: DEGs between Trauma_EG3 vs EG1+EG2 and GSEA results. 

https://d-scholarship.pitt.edu/41614/10/STable10.xlsx 
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Appendix Spreadsheet 11: Burn and sepsis patient classifications. https://d-

scholarship.pitt.edu/41614/11/STable11.xlsx 

Appendix Spreadsheet 12: Gene clusters identified from trauma, burn or sepsis patients. 

https://d-scholarship.pitt.edu/41614/12/STable12.xlsx 
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