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Abstract— Leader-follower navigation is a popular class of
multi-robot algorithms where a leader robot leads the follower
robots in a team. The leader has specialized capabilities or
mission critical information (e.g. goal location) that the follow-
ers lack, and this makes the leader crucial for the mission’s
success. However, this also makes the leader a vulnerability -
an external adversary who wishes to sabotage the robot team’s
mission can simply harm the leader and the whole robot team’s
mission would be compromised. Since robot motion generated
by traditional leader-follower navigation algorithms can reveal
the identity of the leader, we propose a defense mechanism
of hiding the leader’s identity by ensuring the leader moves
in a way that behaviorally camouflages it with the followers,
making it difficult for an adversary to identify the leader. To
achieve this, we combine Multi-Agent Reinforcement Learn-
ing, Graph Neural Networks and adversarial training. Our
approach enables the multi-robot team to optimize the primary
task performance with leader motion similar to follower motion,
behaviorally camouflaging it with the followers. Our algorithm
outperforms existing work that tries to hide the leader’s identity
in a multi-robot team by tuning traditional leader-follower
control parameters with Classical Genetic Algorithms. We also
evaluated human performance in inferring the leader’s identity
and found that humans had lower accuracy when the robot
team used our proposed navigation algorithm.

I. INTRODUCTION

Multi-robot systems are useful for many scenarios such
as drone-delivery [1], agriculture [2], search-and-rescue [3],
disaster relief [4] and defense [5]. A class of multi-robot
algorithms called leader-follower navigation is particularly
popular as it simplifies the task of controlling multiple
robots. It involves at least one leader robot which the other
(follower) robots follow. Using leader follower navigation,
it is sufficient to command only the leader robot and the
follower robots simply follow their leader.

Clearly, the leader is crucial for the robot team’s success.
Imagine a critical scenario such as a multi-robot team in
a disaster relief mission as shown in Fig. 1. An external
adversary (enemy) who wishes to sabotage the robot team’s
mission can simply identify and harm just the leader. This
will compromise the whole robot team’s mission. Thus, it is
crucial to hide the leader’s identity in such critical scenarios.
Even if we make the visual appearance of the leader similar
to the followers, it is possible to identify the leader by
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Fig. 1: A leader-follower multi-robot team in a disaster relief
mission in the presence of an external adversary. It is crucial to hide
the leader’s identity from the adversary because if the adversary
identifies and harms the leader then the whole team’s mission would
be compromised.

observing the motion of all the robots over time. E.g. the
leader is usually ahead of the followers. An adversary can
notice this and identify the leader.

We propose a defense mechanism of hiding the leader’s
identity by ensuring the leader moves in a way that be-
haviorally camouflages it with the followers, making it
difficult for an adversary to identify the leader. Here, by
“behavioral camouflage” we refer to leader behavior (motion)
that resembles followers’ motion, blending it with the fol-
lowers. Traditional leader-follower controllers are not good
at hiding the leader’s identity - including an approach [6] that
explicitly tried to hide the leader’s identity, as we will see
in Section V-B). Moreover, it is difficult to design a leader
identity hiding multi-agent controller by hand, since such a
controller would require complex multi-agent coordination.

Hence, instead of relying on traditional leader-follower
controllers, we propose to leverage the recent advancements
in Multi-Agent Reinforcement Learning (MARL), Graph
Neural Networks (GNNs) and adversarial training. MARL
allows us to define the objective of a multi-agent (in our
case multi-robot) team through scalar reward signals given
to the agents which the agents try to maximize. GNNs are
deep learning architectures that allow us to model and train
a large & variable number of agents, which is appealing
for real world applications. Adversarial training allows us
to incorporate an intelligent artificial adversary that seeks to
identify the leader.

We combine the power of MARL, GNNs and adversarial
training for the task of hiding the leader’s identity through
a 3-stage training process. First, agents (robots) are trained
with MARL to maximize a primary task reward, without
caring about hiding the leader’s identity. Then, robot trajec-
tories (spatial coordinates over time) are collected from this
multi-robot team. These trajectories are used as training data
to train an artificial adversary with supervised learning to
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identify the leader. Finally, the agents are trained again with
MARL - but this time they are given both a primary task
reward and an identity hiding reward.

We test our approach on a simulated multi-robot goal
reaching task where the goal is known only to the leader
and there is no communication between the robots. Using our
proposed approach, the multi-robot team successfully reaches
the goal while hiding the leader’s identity from an artificial
adversary, outperforming the baselines - both traditional
leader-follower controller and MARL algorithms. We also
evaluate human performance in inferring the leader’s identity
from multi-robot navigation videos and found that even
humans found it hard to identify the leader when the multi-
robot team deployed our proposed navigation algorithm.

The paper makes the following contributions:
1) We bring MARL, GNNs and adversarial training under

one umbrella and present a multi-stage training process
for the task of hiding the leader in a multi-robot team
as a defense mechanism against an external adversary.

2) We propose a novel deep learning architecture called
Scalable-LSTM for modeling an artificial adversary.

3) Our method is effective not only against an artificial
adversary but it also ”fools” human observers, i.e human
observers do not detect the leader. To the best of our
knowledge this is the first time this effect has been
reported in the literature.

4) We show that our approach can generalize to multi-robot
teams with different sizes in a 0-shot fashion (wihout
any fine tuning).

II. RELATED WORK

Leader follower navigation is popular in the robotics
community and has been studied in various contexts. [7]
addressed the issues of obstacle avoidance and connectivity
preservation. [8] proposed an adaptive strategy of formation
reconfiguration. [9] experimented with a leader-follower con-
trol algorithm on various mobile robots. All of these relied
on traditional control based algorithms that didn’t involve
deep learning or Reinforcement Learning (RL).

Recent work has tried to incorporate RL into the leader-
follower navigation problem [10]. However, their method
is designed for only 2-member robot teams with a single
leader and a single follower. [11] showed brief results with
2 followers and mentioned that they found it intractable to
train a large number of agents due to exponentially growing
state and action spaces as robot team size increases.

We wish to not only leverage the power of RL but
also have a large robot team with multiple followers. Be-
cause of this, we build up on our previous work on Multi
Agent Reinforcement Learning (MARL) with Graph Neural
Networks (GNNs) [5]. We have previously shown that by
combining MARL & GNNs large multi-agent teams can
be tractably trained with reasonable computational resources
(even a commodity laptop). In this work, we suitably modify
the GNNs architecture to incorporate the constraints of the
leader-follower navigation problem, as delineated in Section
IV-C.
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Fig. 2: A goal reaching task for a leader-follower multi-robot
team. All robots can sense the neighboring robots and additionally
the leader knows the goal location. All robots have the same
visual appearance, the leader is shown in a different color only
for illustrative purpose.

Once we have multiple robots in the leader-follower
problem, protecting the leader’s identity becomes crucial, as
we have already discussed in Section I. The importance of
hiding the leader’s identity has received limited attention in
the past. We only found [6] to have attempted to address
this issue. They used a traditional leader-follower controller
and tuned its parameters with classical Genetic Algorithms
(GAs) to hide leader’s identity from an artificial adversary
- a Convolutional Neural Network (CNN). However their
results have limited evaluation. The adversary isn’t bench-
marked against other adversaries, which could mean that the
adversary isn’t smart enough and hence is easily deceived.
In our experiments we saw that their approach couldn’t hide
the leader’s identity when humans (instead of their artificial
adversary) tried to identify the leader.

We instead propose a novel adversary architecture called
Scalable LSTM (Long Short Term Memory) in Section IV-D
and show its superiority over existing deep learning archi-
tectures in Section V-A. We experimentally show that our
approach, relying on MARL & GNNs rather than traditional
leader-follower controllers, outperforms existing approach,
[6] that tried to hide the leader’s identity. Further, we show
that even humans have low accuracy in identifying the leader
in a multi-robot team that navigates using our proposed
approach.

III. PROBLEM STATEMENT

There is a n-robot team with 1 leader, L and (n− 1) fol-
lowers, as shown in Fig. 2 with no communication between
them. At every time step t, each robot can sense its own
state, Xt

i and the states of its neighbors, {Xt
j | j 6= i}

using on-board sensors. At the start of the mission, the
goal is randomly located in the environment and only the
leader knows its location XG. E.g. in Fig. 2 the leader robot
knows the goal and senses the states of all the neighboring
followers; follower robot 2 only senses the states of the
neighboring followers (to its left and right) and the leader.

Our objectives are (i) decentralized control for navigating
the leader-follower multi-robot team to the goal location; and
(ii) hide the leader’s identity from an external adversary.

IV. METHOD

We will use the terms robot and agent interchangeably.
Let Q = {1, 2, . . . , n} denote the set of all agents and S =
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Fig. 3: GNNs based multi-agent architecture (Fig. 3a,3b) and Scalable-LSTM adversary architecture (Fig. 3c).

Q− {L} denote the set of followers (excluding the leader).
A denotes the external artificial adversary. We now describe
the various components of our method.

A. MARL Formulation

The problem is formulated as a Decentralized Partially
Observable Markov Decision Process (Dec-POMDP), [12]
with the following components:

1) States and observations: The state of ith agent at time
step t is denoted by Xt

i ∈ R4, which consists of its planar
position and velocity. Each agent can observe it’s own state
Xt
i and the states of its neighbors {Xt

j | j 6= i}. Additionally,
the leader observes the goal location, XG. Xt = {Xt

i | ∀i ∈
Q} denotes the collective state of all agents at time t. X̄t =
Xt
⋃
XG denotes the full environment state at time t.

2) Action space: Each agent has an action space ati ∈ Ai
that consists of accelerating in the ±x or ±y direction or not
accelerating at all.

3) Policy: Each agent follows a policy πi to select its
actions ati ∼ πi. The leader’s policy atL ∼ πL(a | X̄t)
is conditioned on X̄t = Xt

⋃
XG which contains goal

information. On the other other hand each follower’s policy
ati ∼ πi(a | Xt) is conditioned on Xt which does not contain
goal information.

4) Reward structure: The primary task reward for agent
i at time t is:

rti = λr

(
||XG − X̂t−1

i ||2 − ||XG − X̂t
i ||2
)

(1)

Here X̂t
i denotes the position of the agent and λr = 100 is

a scaling factor. This reward indicates how much closer the
agent reached towards the goal in the current time step. Note
that the same reward structure is used for both the leader and
the followers. The reward encourages the leader to take large
steps towards the goal. The followers don’t have access to
the goal location since their policy is not conditioned on XG.
They are indirectly encouraged to follow the leader which in
turn will lead them to the goal.

The standard MARL objective (Naive MARL) for this
reward signal is to maximize the cumulative reward, Eq. 2.
Here, γ = 0.99 is the discount factor. We add an additional

identity hiding reward, µti which is indicative of how well
the multi-robot team is hiding its leader’s identity, Eq. 3.

ObjectiveNaive MARL ≡ maxE

 n∑
i=1

∑
t≥0

γtrti

 (2)

ObjectiveProposed ≡ maxE

 n∑
i=1

∑
t≥0

γt(rti + λµµ
t
i)

 (3)

λµ = 1 is a scaling factor controlling the importance of
hiding leader’s identity over the primary task. Computation
of µti is described in the following sub-section in Eq. 5. Note
that the rewards rti , µ

t
i are only required for training and are

not accessible to the agents at test time.

B. Adversarial Training

The adversary’s goal is to identify the ID of the leader
from i = {1, 2, . . . , n} since there are n agents. the adversary
(A) observes the positions of all the agents X̂t

i up to the
current time step Ot = {X̂k

i |i ∈ Q, k ≤ t} and predicts the
leader ID ltpred.

ltpred = A(Ot) = argmax
i

PA(i | Ot) (4)

µti = −I(ltpred = L) (5)

The adversary is trained with multi-class (since one amongst
the n agents is the leader) cross entropy loss which tries to
match the predicted leader ID ltpred to the true leader ID
L. Once the adversary is trained, its prediction is used to
generate identity hiding reward, µti (Eq. 5) as a feedback
signal to the multi-robot team (Eq. 3). The negative sign in
Eq. 5 denotes that all agents get the same negative identity
hiding reward, i.e. if the leader is identified by the adversary
all the agents are penalized. This encourages cooperation
and team spirit in the multi-agent team to jointly deceive the
adversary by coordinating their motion.

C. Graph Neural Networks Multi-agent Architecture

The agents (robots) in the multi-robot team can be treated
as nodes of a graph to leverage the power of Graph Neural
Networks (GNNs). GNNs are deep-learning architectures



where the computations at the nodes and edges of the graph
are performed by neural networks (parameterized non-linear
functions), [13], [5]. Due to the presence of graph structure
and multiple neural networks, they are called GNNs.

We incorporate the constraints of the leader-follower prob-
lem by ensuring that the goal information is accessible only
to the leader and not the followers. In the following we
describe the computations performed by an arbitrary follower
and the leader.

1) Followers: Computation performed by an arbitrary
follower agent i is pictorially shown in Fig. 3a. At every
time step t, it takes as input its state, Xt

i and passes it
through a non-linear function, fθa to compute an embedding,
hti. Similarly, it computes embeddings for all the other
neighboring agents.

hti = fθa(Xt
i ) ∀i ∈ Q (6)

Follower agent i then computes scaled dot-product atten-
tion [14], ψij with all the other neighboring followers vj’s.

ψ̂tij =
1√
d
< hti, h

t
j > ∀j ∈ S, j 6= i (7)

ψtij =
exp(ψ̂tij)∑

k∈S,k 6=i exp(ψ̂tik)
(8)

mt
i =

∑
j∈S,j 6=i

ψtijh
t
j (9)

eti = fθb(concat(hti,m
t
i)) (10)

d is the dimension of the vectors in dot product <,>.
ψtij denotes the attention paid by agent follower agent i to
follower agent j at time t. The total attention paid to the
neighbors sums to 1 due to the normalization in Eq. 8. It
then concatenates eti with leader embedding, htL to compute
its final embedding, Ht

1.

Ht
i = concat(eti, h

t
L) (11)

2) Leader: The leader’s computation is pictorially shown
in Fig. 3b. It is similar to followers’ computations with the
key differnces being (i) Leader state (Xt

L) is replaced by
goal position (XG) and (ii) fθc is used instead of fθa for
computing goal embedding.

3) Policy and Value function: Once each follower com-
putes its final embedding, it conditions its policy and value
function on it.

πi(a | Xt) = fθd(a | Ht
i ) ∀i ∈ S (12)

Vπi(X
t) = fθe(Ht

i ) ∀i ∈ S (13)

The leader computes its policy and value function in a similar
way but uses a different set of parameters.

πL(a | X̄t) = fθf (a | Ht
L) (14)

VπL
(X̄t) = fθg (Ht

L) (15)

D. Scalable LSTM Adversary Architecture

Long Short Term Memory (LSTM), [15] is a memory
based deep learning architecture that can work with sequen-
tial data. It takes data at current time step as input and retains
the past data in memory. It is temporally adaptable since it
can handle input of any time duration.

However, it is not adaptable to different number of agents.
This is because, the input & output sizes at time t depend
on the number of agents n and an LSTM can be designed
to handle only fixed sizes of input & output. If we directly
feed the positions of all agents at time t to an LSTM, the
input size would be 2 × n (planar position) and the output
size would be n (probability of each agent being the leader).

We propose Scalable-LSTM adversary architecture which
builds on top of LSTM. It inputs the position of each agent
separately (to handle variable size inputs) and has a dot
product operation (to handle variable size outputs).

At every time step t, the adversary takes as input the
position of each agent separately, X̂t

i and passes it through
an LSTM to compute an embedding ĥti. Therefore, for n
agents there would be n passes through the same LSTM as
follows:

ĥti, ĉ
t
i = LSTM(X̂t

i , ĥ
t−1
i , ĉt−1i ) ∀i ∈ Q (16)

Because the adversary does n separate passes, the LSTM gets
fixed size (=2) input irrespective of how large n is. Here, ĥti
and ĉti denote the hidden state and cell state of LSTM at
time t.

The adversary then computes pairwise dot product be-
tween each agent’s embedding, ĥti and an adversary em-
bedding, v (a trainable parameter vector) as in Eq. 17. The
output is passed through soft-max function to compute its
probabilistic belief of the leader’s identity as in Eq. 18.

yti =< v, ĥti > ∀i ∈ Q (17)

PA(i|Ot) =
exp(yti)∑

m∈Q exp(ytm)
∀i ∈ Q (18)

If we have n agents, there would be n dot-products yti =<
v, ĥti > for i = 1 to n and correspondingly n output
probability values PA(i|Ot), irrespective of dimension of hti.
Thus, number of outputs automatically scales with no. of
agents. Here, Ot denotes the observations of the adversary
up to time step t, i.e. Ot = {X̂k

i |i ∈ Q, k ≤ t}.
The adversary architecture consists of two sets of trainable

parameters, LSTM weights and a adversary embedding v
which we collectively denote as θA.

E. Scalability, Adaptability and Decentralized Control

The trainable parameters in our GNNs based Multi-agent
architecture are θ = {θa, θb, . . . , θg} of the non-linear func-
tions fθa , fθb , . . . , fθg respectively. We model these functions
as neural networks, hence the name GNNs. Since the number
of parameters is independent of the number of agents, the
architecture is scalable and adaptable to different number of
agents. The scalability and adaptability of Scalable LSTM
adversary architecture is already described in the previous



(a) Naive MARL Multi-robot trajectories (b) Adversary’s confidence increases over time

Fig. 4: An episode of Naive MARL Multi robot trajectories (Fig. 4a) which the Scalable-LSTM adversary observes and tries to identify
the leader. Scalable-LSTM predicts the leader at every time step t based on the trajectory observation till time t. Initially it fails to identify
the leader correctly (shown in black) but within 10 time steps in predicts leader correctly (shown in red). Fig. 4b shows confidence of
the adversary on its prediction for the same episode. Again we can observe that initially Scalable LSTM has low confidence and fails
to identify the leader (shown in black) but within 10 time it identifies the leader correctly (shown in red) and within 20 time steps its
confidence is almost 1 (100% confident).

section (IV-D). We validate these in our experimental results
(Section V-A and V-B.4).

The parameters θa, θb are shared across all agents and the
paramters θd, θe are shared across all the followers. This
means that each agent maintains a separate copy of their
respective parameters at test time for decentralized control.

F. Training

We train a leader-hiding multi-agent strategy in 3 stages:
1) Training without identity hiding reward: We first train

a multi-agent team with the Naive MARL objective (Eq. 2,
doesn’t include identity hiding reward µti) using Proximal
Policy Optimization (PPO) [16], a popular model-free RL
algorithm. The multi-agent team learns to navigate to the goal
location without caring about hiding the leader’s identity.

2) Training an adversary: Once we have a trained Naive
MARL policy, we run the policy for multiple episodes and
save the multi-robot trajectories along with the true leader
ID in each episode. These trajectories and leader ID’s are
provided to the adversary as training data. The adversary is
trained with Stochastic Gradient Descent (SGD) supervised
learning algorithm to predict the leader ID by minimizing
the multi-class cross-entropy loss.

3) Training with identity hiding reward: Now that we
have a trained adversary, we train a new multi-agent policy
which tries to maximize both goal reaching reward and
identity hiding reward (Eq. 3 using PPO).

Due to the use of shared parameters in GNNs, our
proposed approach is very simple to train with reasonable
computational resources. We performed all our training on
a commodity laptop with i7-7700HQ CPU, 16GB of RAM
and a GTX 1060 GPU.
Remark
We would like to highlight that our formulation is consistent
with the leader-follower problem because:
1) Followers are not given goal information as input. As
shown in Eq. 12, follower policies are conditioned on the
embedding Ht

i which doesn’t contain any goal information.
Goal information XG is completely absent from the GNNs
based follower architecture, Fig. 3a.

2) Reward is NOT accessible at test time. Primary task
reward is calculated using goal information, Eq. 1. This
might raise the confusion that the followers have access to
goal information at test time. This is not the case as the
agents have access to the reward only at training time and
not at test time.
3) Goal location is randomly changed in every episode. At
the start of every episode, the goal is placed at a random
location. The test goal location is different from the training
location and it is impossible for the multi-agent policy to
memorize a fixed goal-location seen during training.
G. Environment

The environment is a simulated goal reaching task built
using Multi Agent Particle Environment (MAPE) [17].

V. RESULTS

A. Adversary performance

TABLE I: Comparison of Adversary Architectures

Architecture Accuracy No. of Adaptability
(max. 1) Params. Temporal No. of agents

Random guess 0.20 0 3 3
LSTM 0.95 2574 3 7

Zheng et al. [6] 0.97 109286 7 7
Scalable-LSTM 0.99 936 3 3

Fig. 5: Scalable-LSTM adversary’s 0-shot generalization to differ-
ent number of agents. The blue curve, which shows the accuracy of
Scalable-LSTM in identifying the leader in robot teams with differ-
ent number of agents, constantly stays high (close to 1). Although
Scalable-LSTM adversary was trained with only 6 agents (shown
with dashed vertical line), it had high accuracy in identifying the
leader in robot teams with number of agents varying between 3 and
10.

We first show that our proposed Scalable-LSTM adversary
architecture performs extremely well in identifying the leader



(a) Primary task reward (b) Identity hiding reward
Fig. 6: Multi-agent performance on primary task reward and identity hiding reward using different algorithms. Values are normalized
between 0 and 1.

(a) Zheng et al. [6]

(b) Ours
Fig. 7: Multi-agent navigation using approach of Zheng et al. [6] and our approach for the same goal location (shown as black circle).
The leader is shown as a blue circle while the followers are shown as green circles. All agents have a number written on them - e.g.
the leader (blue circle) is numbered 4. The leader’s identity isn’t concealed well by Zheng et al. (Fig. 7a) as it is clearly ahead of the
followers. Using our approach, the leader smartly moves with the followers as a group, hiding its identity (Fig. 7b) - E.g. in 3rd snapshot
of Fig. 7b, a follower agent (numbered 3) deceptively seems to be leading the multi-agent team while the leader is behind.

(a) Goal location 1 (b) Goal Location 2 (c) Goal location 3

Fig. 8: Leader-follower navigation to different goal locations (shown as blue circle) using our proposed approach. The multi-
agent team could successfully reach different goal locations while fooling the adversary which made a wrong prediction of
the leader’s identity as depicted by the black color of the leader trajectory in most regions.

when the multi-robot team doesn’t try to hide it’s leader’s
identity. This is important because there would be no point

in designing and evaluating a multi-agent policy against a
weak adversary.



Fig. 9: 0-shot generalization of our proposed approach to different multi-agent team size. We trained a multi-agent policy with n = 6
agents using our approach directly tested the performance with 2n = 12 agents without any fine-tuning. The multi-agent team with double
the number of agents in able to navigate to the goal location while successfully hiding the leader within the followers.

(a) Humans’ Score (b) Humans’ Accuracy (c) Humans’ Confidence

Fig. 10: This figure presents comparative results of human observers (adversary) trying to identify the leader in multi-robot teams
executing different navigation algorithms (Scirpted PD, Zheng et al. [6], Naive MARL and ours). The results show that our algorithm
performs better (lower value is better) in terms of overall score (10a), accuracy (10b) and confidence (10c).

We collect 100 episodes of multi-agent (6 agents) trajecto-
ries from a Naive MARL policy (Section IV-F.1) and test the
performance of Scalable-LSTM along with other baselines
in identifying the leader correctly. The baselines includes
random guess and deep learning adversary architectures
LSTM, [15] and Zheng et al. [6] which has a Convolutional
Neural Network (CNN) architecture. Scalable-LSTM has an
accuracy of 0.99 which is higher than that of LSTM (0.95)
and Zheng et al. (0.97) as shown in Table I. Table I also
shows that Scalable-LSTM has 2 orders of magnitude lesser
parameters than Zheng et al. [6] and still performs better.

Another advantage of Scalabe-LSTM over the baseline
deep learning architectures is that it is adaptable both tem-
porally and in the number of agents, which is appealing for
real world applications as an adversary might observe only
a part of the trajectory or the multi-agent team size might
change.

1) Temporal adaptability: We show an example episode
in Fig. 4 to demonstrate temporal adaptability. The adversary
can make a prediction of the leader’s identity at every time
step, i.e. even from partial trajectories. Within 10 time steps,
the adversary correctly identifies the leader and as time flows
it predicts the true leader with higher confidence (assigns
higher probability to true leader).

2) Adaptability in no. of agents: We trained the Scalable-
LSTM adversary to identify the leader in 6-agent team and
tested it on 3 to 10 agent teams without any fine tuning on
different team sizes. Leader prediction accuracy remains high
in all cases as shown in Fig. 5. Thus Scalable-LSTM shows

0-shot generalization to different number of agents.

B. Multi-Agent Performance

1) Baselines: We test the multi-agent policy’s perfor-
mance based on primary task reward (efficiently reaching the
goal) and and on its ability to hide the leader’s identity from
artificial adversary (identity hiding reward). These rewards
are only used for evaluation purpose and are not accessible
to the agents at test time. We compare the performance
against traditional leader-follower controllers - Scripted PD
and Zheng et al. [6] as well as Naive MARL policy (Section
IV-F.1). Scripted PD is a Proportional-Differential (PD)
controller based algorithm where the leader tracks the goal
location and the followers track the leader. Zheng et al. [6]
used traditional control based method to track waypoints in
the trajectory. In their method, the followers don’t know the
leader’s identity. We adopted their method to track the single
goal instead of multiple waypoints. Scripted PD and Naive
MARL only try to reach the goal location while Zheng et al.
[6] and our approaches also try to hide the leader’s identity.

2) Goal reaching task: On the goal reaching task, Fig.
6a, all the methods we tested performed well and could
successfully navigate the swarm to its goal. The slight drop in
performance of our approach and Zheng et al. [6] is expected
as these methods might have to trade-off primary task
objective with identity hiding objective. Among the methods
that considered identity hiding objective, our approach got
higher reward than Zheng et al. [6].

3) Leader Identity hiding: In terms of identity hiding
reward, Fig. 6b, our approach significantly outperformed all



the baselines, hiding the leader successfully in most of the
cases.

Fig. 7 shows example multi-robot trajectories using the
approach of Zheng et al. [6] and our approach. In case of
Zheng et al. [6], the leader clearly leads the followers and
this makes it easy for an adversary to identify the leader,
Fig. 7a. Using our approach, the leader doesn’t naively lead
the other agents. It rather smartly moves together with the
group while informing the target motion direction through
hidden movement cues. This smart strategy helps our multi-
agent team deceive the adversary while achieving the primary
goal, Fig. 7b. We show successful leader-follower navigation
to different goal locations while hiding the leader’s identity
using our proposed approach 8.

4) 0-shot generalization: We demonstrate the 0-shot gen-
eralization of our multi-agent policy to different number of
agents in Fig. 9, where we train a policy on n = 6 agents
and test on 2n = 12 agents without any fine-tuning.

C. Effectiveness against Human observers

Although we have shown that our trained multi-agent pol-
icy can successfully hide its leader’s identity from artificial
adversary, we wish to push it further and test how well the
learnt navigation strategy can deceive humans when they act
as adversaries and try to identify the leader. In the following
sections we describe the experimental setup and the results.

1) Experimental setup: We tasked humans with identify-
ing the leader in a multi-agent team by showing videos of
leader-follower multi-robot navigation with visually identical
leader and followers. The human’s goal was to maximize a
score that incentivized answers that were both correct and
quick. For each algorithm (our and baselines), we collected
data from ∼ 30 humans and showed 50 videos to each hu-
man. In total, we collected ∼ 30×50 = 1500 data points for
each algorithm to get a good estimate of its performance. We
collected our data through a web based interface via Amazon
Mechanical Turk (MTurk) [18]. Amazon Mechanical Turk
is a crowd-sourcing platform where real humans are paid
money to perform tasks.

2) Results: Fig. 10 shows the performance of different
algorithms - Scripted PD, Zheng et al. [6], Naive MARL
and ours against human adversaries. From a multi-robot
team’s perspective, a lower score achieved by humans is
indicative of better performance of multi-robot team. Across
all the metrics, our algorithm outperformed all of the other
algorithms. Humans got much lower score (Fig. 10a), lower
accuracy (Fig. 10b) and lacked confidence (Fig. 10c) in their
decisions. It is interesting to note that the Zheng et al. [6]
didn’t generalize to human data well and performed worse
than the Naive MARL policy we trained. On the other hand,
our algorithm generalized well to completely unseen humans
making it hard for humans to infer the leader’s identity.

VI. CONCLUSION AND FUTURE WORK

In this paper we brought together MARL, GNNs and
adversarial training for the task of hiding the leader’s identity
in a multi-robot team as a defense mechanism. Our proposed

leader-follower navigation algorithm allows decentralized
control, adapts to a variable number of agents and generalizes
to unseen human adversaries showing the effectiveness of our
algorithm. Given the formulation of leader identity hiding
as a MARL problem, other leader-follower tasks (such as
trajectory following) could also be adopted by changing the
task-related reward structure of MARL.
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