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Abstract—The ability to collaborate with previously un-
seen human teammates is crucial for artificial agents to be
effective in human-agent teams (HATs). Due to individual
differences and complex team dynamics, it is hard to de-
velop a single agent policy to match all potential teammates.
In this paper, we study both human-human and human-
agent teams in a dyadic cooperative task, Team Space
Fortress (TSF). Results show that the team performance
is influenced by both players’ individual skill level and
their ability to collaborate with different teammates by
adopting complementary policies. Based on human-human
team results, we propose an adaptive agent that identifies
different human policies and assigns a complementary
partner policy to optimize team performance. The adap-
tation method relies on a novel similarity metric to infer
human policy and then selects the most complementary
policy from a pre-trained library of exemplar policies.
We conducted human-agent experiments to evaluate the
adaptive agent and examine mutual adaptation in human-
agent teams. Results show that both human adaptation and
agent adaptation contribute to team performance.

Index Terms—Human-robot teams, Adaptive Systems,
Team coordination, Team performance.

I. INTRODUCTION

In human-agent teaming (HAT), humans and agents
perform interdependent actions in order to achieve com-
mon team goals [1]. In such a setting, intelligent agents
are more than tools for assisting humans, but rather
independent actors that closely collaborate with human
team members [2]. This imposes additional challenges
for agents to perform effective team behaviors including
communicating essential information [3], and accounting
for human individual differences [2]. Human teammates
in HAT might have varying skill levels, knowledge
backgrounds, and individual preferences [3]. Individual
differences lead to complex behavioral patterns and
intentions [4] which may make it impossible for an
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agent to develop a globally optimal policy to fit observed
human behavior. Additional challenges to developing
agents to team with humans include inconsistencies in
human behavior which pose an obstacle to learning, the
large number of examples commonly needed to learn in
a large and/or continuous state and action space, and the
nonstationarity of human behavior.

The basic problem of an agent attempting to team with
an unknown human can be divided into two parts: 1)
predicting the human’s behavior and 2) choosing actions
to move the team toward its common goal. One approach
to predicting human behavior is to hypothesize a single
model, then use it in choosing agent actions [1]. In this
case human departures from the model are treated as
noise. An alternative is to consider differences in human
behavior to arise from differences among human types
providing multiple models. The agent’s problem then
becomes identifying the human’s type, in order to use
that type for choosing agent actions.

This paper follows the second approach. Our Team
Space Fortress task has two interdependent roles of bait
and shooter. Agents are trained under a variety of regi-
mens for each of the roles, creating a diverse set of types
for each role. The agents are then paired in self-play to
determine each type’s best partner. So, for example, for
a bait of type i there will be some shooter of type j
providing the highest scores in self-play. The problem of
teaming with an unknown human then becomes one of
identifying the most similar agent-type to the human and
choosing its predetermined complement to provide an
agent policy which is optimal within the set of available
agent-types.

In this paper, we investigate real-time adaptive agents
that coordinate with human teammates in a nontrivial
strategic game, Team Space Fortress (see Sec. III). We
initially studied human-human teams to explore charac-
teristics of performance and teamwork at the TSF task
in Sec. IV. The complementary policies and complicated
team dynamics found in human teams served as guidance
for developing agents compatible with individual dif-



ferences among human policies in human-agent teams.
In Sec. V, we propose an adaptive agent based on an
exemplar policy library and similarity measurement. We
evaluated our approach in Sec. VI by having human
players play with both agents with exemplar static policy
and adaptive policy. Experimental results show that our
method is able to identify human policies and predict
team performance accurately, with the similarity between
the agent-type nearest the human shooter’s trajectory
and the optimal agent-type accounting for 70% of the
variance in team performance. Our proposed online
adaptive agent outperforms a random adaptation baseline
by 42.3% and achieves stable team state faster than a
non-adaptive baseline.
Contributions:

• This paper introduces a novel method treating hu-
man behavior as arising from a factored MDP in
which task-related components are captured by a
library of diverse policies circumventing both prob-
lems of task irrelevant actions and nonstationarity
of intentions.

• Highly accurate prediction of Human-Agent per-
formance from Agent-Agent self-play validates our
optimization by proxy approach.

• Although widely used in Opponent Modeling and
Game Theory, application of type-based reasoning
to teamwork is largely novel

II. RELATED WORK

Early work in multiagent and human-agent teamwork
such as STEAM [5], or Playbook [6] relied on shared
protocols and choreographed joint actions to achieve
coordination. While efficient, pre-coordinated systems
have difficulty incorporating new members who may
not conform fully to the system’s protocols. This is
particularly true for humans [5]. This paper focuses on
the complementary problem of enabling agents to adapt
their behavior in real-time to observed behavior of a
(previously unseen) human team member. Developing
agents capable of real-time adaptation in response to
observed human behaviors is an active area of interest in
several important domains, including human-robot inter-
action [7], [8], shared autonomy [9], and autonomous
driving [10].

The problem of adapting to a previously unknown
human is an instance of the more general problem of
Ad Hoc Teamwork, cooperating with any previously
unknown teammate introduced by [1]. The difficulties
of the problem arise if: 1) the Ad Hoc agent does
not initially know how its teammates behave 2) yet
must choose its own actions so as to influence these

teammates to optimally guide the team to its goal. In
their example [1] simplifies the problem by postulating
the unknown teammate as a naı̈ve but greedy learner
reducing the effort to finding optimal actions for the
Ad Hoc teammate. Later work follows a similar course
considering uncertainty in identifying teammate behavior
(choosing between best response vs. another Ad Hoc
agent) [11] or when to communicate [12]. While some
work such as the naı̈ve but greedy learner in [1] hy-
pothesize a human model directly, a majority of work
within robotics has modeled human intentions based on
assumptions about human policies (e.g. stationarity and
rationality) and then trains robot policies in accordance
with these human models [8].

These normative approaches to adaptation in human-
agent and human-robot teams develop explicit models
of human decision-making in the context of a shared-
reward Markov game with partial information, inferring
the underlying reward function (i.e., goals and intents)
of the human based on observed behavior; the robot
or agent policy is then derived from a partially observ-
able Markov decision process, POMDP, which maintains
beliefs over the human’s reward function [13]. Many
of these models assume human policies are station-
ary, Boltzmann rational, and are generated with ideal
understanding of the environmental dynamics. Recent
research has been focused on relaxing these assumptions
to better capture real-world human behaviors, such as
considering non-stationary human rewards [14], mutual
adaptation [15], risk-sensitivity [13], imperfect under-
standing of environment dynamics [9], or more represen-
tative models of rationality [16]. Normative approaches
to human behavior suffer from several drawbacks that
are relevant to our work.

• Individual differences among human behaviors can
be very large making them difficult to capture
within a single normative model.

• Long agent training times make human-in-the-loop
training impractical and real-time adaptation infea-
sible.

• Explicit models do not scale well to large and/or
continuous state and action spaces.

• Inconsistency and/or nonstationarity in human be-
havior may violate assumptions made in inferring a
reward function leading to either failure to converge
or a model unrepresentative of human behavior

An alternative borrowed from Bayesian Game Theory
posits, not one, but multiple possible types to capture
the large range of individual differences among humans
by focusing on a relatively small set of policies in the
infinite space of possible behaviors. Ample historical
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data suggests there may be very large variations in
human policies, even among those leading to equiv-
alent performance. While there is a long history of
type-based reasoning in Game Theory and opponent
modeling, applications involving teamwork are rarer.
Barrett and Stone [17] implement an algorithm that
learns policies to cooperate with past teammates and then
reuses these policies to quickly adapt to new teammates
in pursuit-evasion [18] and robot soccer [17]. Initial
policies are obtained through a variant of Q-learning,
while a distribution of team-types is hypothesized and
updated with each observation to choose a learned policy
to execute. [4] further addresses the problem of non-
stationarity among types by executing a type check at
each timestep assessing the posterior distribution over
types using a convolutional neural network for change
point detection to identify behavior switching. [7], by
contrast, adopts an a priori definition of human types
as things such as expertise and stamina and demonstrate
performance improvements for a simulation of humans
working with robots. [19], by contrast, follows a factored
state approach to types using unsupervised learning to
cluster human trajectories by types. Clusters are then
used as the basis for learning policies uncontaminated
by latent human states such as goals, trust or attention.

[20] developed an algorithm combining stochastic and
Bayesian games with the Bellman optimality equation
to provide a definition for type-based reasoning. Their
original paper included human experiments in which
the algorithm beat human opponents and outperformed
alternative reasoners at ‘paper, scissors, and rock’ and
Prisoner’s Dilemma. In a later paper [21] the authors
use their algorithm to define different belief formulations
and analyze their convergence properties. In their con-
struction, posterior beliefs about the relative likelihood of
types are formed by comparing predictions of types with
observed actions. The beliefs and types are then used
to find an action which maximizes expected payoffs.
Our method differs in that rather than updating with
Bayesian improvement in estimates it uses a sliding
window and an unchanging uniform prior in the form
of the library (section V). This difference appears to
make our approach immune to effects of prior beliefs
but cannot guarantee convergence to correct beliefs.

III. TEAM SPACE FORTRESS

We have adapted Space Fortress, a game which has
been used extensively for psychological research, for
teams. Team Space Fortress (TSF) is a cooperative com-
puter game where two players control their spaceships
to destroy a fortress [22]. The player can be either
human or (artificial) agent, thus there are three possible

combinations in teams: human-human, human-agent, and
agent-agent.

A sample screen from the game is shown in Fig.
1. At the center of the screen lies a rotating fortress.
The fortress and two spaceships can all fire missiles
towards each other when they are within a certain range
of each other. The first spaceship entering the activation
region (the hexagon area) will be shot at by the fortress.
The fortress is protected by a shield (hexagonal border
around it). The back of the shield opens as the fortress
is firing (see Fig. 1) thus becoming vulnerable to being
shot through the opening by the spaceships. Spaceships
die immediately whenever they hit any obstacles (e.g.
boundaries, missiles, the fortress). The game resets every
time either fortress or both players are killed. Once the
fortress has been killed, both players must leave the
activation region before the game respawns. The team
performance is measured by the total number of fortress
kills that the team achieves in each 1-minute game.

In order to test heterogeneity and tight teamwork,
players were assigned roles of either bait or shooter. The
bait enters the activation region first and tries to attract
the fortress’s attention, i.e. becoming vulnerable to being
shot by the fortress. When the fortress attempts to shoot
at the bait, its shield lifts making it vulnerable. The other
player in the role of shooter can now shoot at the fortress
and destroy it. This sequential dependency of the game
requires two players to collaborate closely to achieve the
common goal. Spaceships in the initial human-human
experiment used 2nd order dynamics without decelera-
tion making them very difficult to control. Friction was
added in later experiments to facilitate training agents
as well as stabilize human performance. Results from
the first experiment, therefore, can provide insight into
the complementarity of roles or adaptation but cannot be
compared directly to later experiments.

IV. HUMAN-HUMAN TEAMS

To better understand the team dynamics and overall
difficulty in TSF, we first collected data from human-
human teams. This experiment shed light on the gen-
eral strategy of adaptation when humans paired with
unknown teammates. Analyzing human teamwork also
gives us a baseline when designing agents in terms of
reward function and adaptive behaviors. The results of
this human teamwork experiment are reported in more
detail in [23], [24]. Here we briefly discuss the insights
it brings to our work in human agent teaming.

1) Performance analysis: In TSF, baits and shooters
have their own role-specific tasks but also must coor-
dinate their positions and sequences of actions. There-
fore players’ individual capabilities are confounded with
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Bait Shooter
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Figure 1: Sample TSF game screen (line drawing version, original
screen is in black background). Spaceships are labeled as shooter and
bait. Entity at center is the rotating fortress with the border around it
as the shield. Activation region is the hexagon area around players’
spaceships. One projectile (the ellipsoid) is emitted from the shooter
towards the fortress, and another one is from the fortress towards the
bait. All the entities are within the rectangle map borders.

their adaptive behaviors when evaluating performance
(non-stationarity). To disentangle these effects, a special
design was employed which assigns two baits and two
shooters to a squad. Shooter-bait pairings within a squad
were exchanged halfway through the experiment so
that both individual and team performances could be
observed in a controlled way. We conducted a two-way
ANOVA analysis with shooter and bait as two factors to
test the contribution of each role to team performance
and their interaction effect. Results show that the team
performance in TSF is influenced by both players’ in-
dividual skill level and their ability to collaborate with
different teammates. In some teams, pairs of good indi-
vidual players produced high team performance, which
means the team performance was largely determined
by how good each individual was. However, interaction
effects found in other teams revealed the contribution
of team dynamics on performance. In other words, good
teams are not simply the addition of two good individual
players, but also rely on good coordination such as
adaptive actions and complementary strategies. These
observations guide our development of agents for HAT
that adapt to human individual differences in skill level
and playing style.

2) Adaptation analysis: There are multiple possible
explanations for the good and bad performance of pair-
ings in addition to players’ individual skill level. One
hypothesis is that some players are good at adapting
their policies to different teammates, therefore they
can change their policies rapidly after team reorgani-
sation [23]. Analyzing the similarity between players’
trajectories when pairing with different partners could
help uncover the relationship between individual adap-
tation and team performance. In order to quantitatively

measure the similarity and distinctness among trajec-
tories, we obtained third-party human judgements on
the online crowd-sourcing platform Amazon Mechanical
Turk. Results showed that players who changed their
policy when switching partners tend to have a better
team performance. This finding indicates that individual
adaptive actions contribute to team coordination and
therefore improve team performance.

V. AGENT ADAPTATION

In this section, we formulate our method for agent
adaptation. First we introduce a factored state model of
human behavior and its relation to the policy library.
Next we introduce the policy library that we developed
by training agents in the bait and shooter roles and
evaluating their team performance in agent-agent play.
This library will be used by the agent adaptation process,
for human policy identification and adaptive policy gen-
eration. Third, we introduce the policy similarity metric
adopted for human policy identification that measures
the distance between human and exemplar policies from
human-agent trajectories. Finally, we propose an agent
adaptation method based on similarity between human
and exemplar policies.

A. Human Model

Following [25], [26] we consider human behavior to
depend on latent states (such as goal, trust, attention) in
addition to the observable states of the task. As the latent
factors are unrelated to the task they can contaminate
estimates of a type’s policy. [25] addresses this problem
by clustering trajectories in order to learn policies for
clusters rather than from noisy human trajectories. We
take the alternative approach of independently learning
a diverse set of role-satisfying policies corresponding to
potential task-relevant components of human states. If
indeed this coverage is wide enough to subsume the role-
relevant components of human policies, then our beliefs
about human types (policy matches) and shifts between
types (nonstationarity) should be correct.

B. Exemplar Policies Library

The exemplar policies library L = LB ∪ LS consists
of two sets of policies in bait (B) and shooter (S) roles,
LB and LS respectively. Both bait policies and shooter
policies are trained using a combination of imitation
learning (IL), reinforcement learning (RL), and rule-
based methods. To make these different policies diverse,
we train them using different reward functions, inspired
by human-human experiments where there were multiple
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Agent Role & IDs Method Algorithm Reward Obs dim Act dim Hyperparameters

B1-B3 RL A2C [27] Alive bonus 6 1 Target Speed
B4-B6 RL A2C, PPO, TRPO [28] Alive bonus 8 2 Algorithm

B7 RL PPO [29] Alive bonus 12 2 N/A
B8-B9 RL PPO Distance+Angle+Death 16 2 Reward weights

B10-B13 IL & RL SQIL [30] Alive bonus 9 2 Alive bonus+loss weight

S1-S3 RL DDQN [31] Distance+Angle 3 1 Target Speed
S4-S7 Rule Mirror strategy N/A N/A N/A Distance threshold
S8-S11 IL & RL SQIL [30] Fortress kill 8 2 Kill bonus+loss weight

Table I: Brief descriptions of the agents in the library grouped by learning methods used to create different strategy types. For each type of
agent, we describe its method, training algorithm, reward design, observation and action dimension, hyperparameters that generate the agent
instances in that type, and corresponding agent IDs where the prefix B and S are referred to as Bait and Shooter agents, respectively.

Figure 2: The flowchart of the proposed adaptive agent architecture.
The adaptation module (in dotted border) takes the input of the
trajectory at current timestamp, and then assigns the adaptive agent
with new policy at next timestamp. The adaptation procedure can be
deployed in real-time (online).

ways to achieve good performance. There are in total
11 shooter policies/types and 13 bait policies/types in
the exemplar policies library. Their brief descriptions are
shown in Table I.

1) Reinforcement Learning policies: For RL-based
policies, we design the reward functions attempting to
encode the desirable behavior of a player in either role.
Agent policies are then trained in an agent-only task
environment to achieve an optimal behavior with respect
to the given reward function. RL-based baits are trained
with an alive bonus reward, which encourages the bait
agents to learn to survive within the activation region
while making the fortress vulnerable to the shooter. The
RL shooters’ reward functions are based on the prior
knowledge of TSF game that a good shooter should
have a position opposite the Bait, which was observed in
many successful human-human teams. Other individual
differences we found in human game play are imple-
mented as hyperparameters to create diverse policies. For
example, the observation that some players adapt to their
teammate’s action is implemented as whether the agents
are able to perceive the teammate’s position and velocity
in their observation space. Those combinations of RL

methods, reward functions and hyperparameters provide
in total 12 policies in both shooter and bait roles.

2) Rule-based policies: Rule-based methods are used
in developing shooter agents with a mirror strategy.
The mirror shooters adopt the team strategy of opposite
positions. They try to keep opposite the current position
of the bait, on the back side of the Space Fortress. When
an opportunity to destroy the fortress arises, it stops
mirroring and fires towards the fortress. By controlling
the threshold of distance to the target position, we
derived agents S4-7.

3) Imitation Learning policies: Lastly, to include
more human-like policies into the library, we trained
policies based on soft Q-imitation learning (SQIL) [30]
using the demonstrations collected from pilot human-
agent experiments. Details about this human data collec-
tion are introduced in Sec. VI. SQIL is a pure imitation
learning method, so it does not consider the task reward.
However, when the human demonstrations are far from
optimal, they may hinder learning [32]. We introduced
a simple improvement upon SQIL to mitigate this issue:
we incorporated a pre-defined task reward function into
the objective as inductive bias, resulting in what could be
viewed as a mixture of IL and RL policies. We trained
both bait and shooter SQIL agents with hyperparameter
tuning on the weight between IL and RL reward, and
selected the best four agents, namely B10-B13 and S8-
S11.

4) Self-play performance: We evaluated the perfor-
mance of each shooter-bait pair in the exemplar policy li-
brary by self-play in the TSF environment, and recorded
the results in the self-play performance table P . The
table P has rows with the number of bait policies in
LB and columns with the number of shooter policies
in LS , with each entry the average performance of the
bait-shooter pair. When applied to our policy library, a
subgroup of table P is showed in Table II.

Similar to human-human teams, agent-agent teams
also show complementary policy pairs that work ex-
tremely well with each other. An example would be B6
(RL bait policy) which yielded a dominant performance
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when pairing with most of the shooters except for S9 and
S11. While for specific shooter policies such as S9 and
S11 (IL shooter policies), the best teammate would be
B11 (IL bait policies) instead of the more “optimal” B6.
Inspection of the self-play table shows that the space of
reasonable policies in the TSF game is indeed diverse,
and there are multiple ways to achieve good team
dynamics and team performance. This confirms again
the potential gains from introducing real-time adaptive
agents into human-agent teams.

S1 S2 S3 S4 S7 S9 S11 Avg

B3 5.8 6.6 5.7 8.1 8.1 2.3 1.9 5.5
B6 6.0 6.9 6.0 7.9 7.6 3.1 3.5 5.9
B7 6.1 6.6 5.7 7.7 7.7 3.0 3.1 5.7
B8 4.6 5.1 5.1 3.2 3.0 2.1 2.6 3.7
B9 4.6 5.5 4.7 2.8 2.7 1.8 2.3 3.5
B11 5.4 6.3 5.3 5.7 6.0 3.5 3.6 5.1
B13 5.3 6.0 4.9 6.1 6.5 3.0 3.0 5.0

Avg 5.4 6.1 5.3 5.9 5.9 2.7 2.8 4.9

Table II: Self-play agent performance table. Each row is for one bait
agent policy named Bi in LB (i ∈ [1, 13]), and each column is for
one shooter agent policy named Sj in LS (j ∈ [1, 11]). Each entry is
computed by per-minute team performance (number of fortress kills)
of the corresponding pair. We mark the “optimal” shooters in bold
teaming with a given bait, and the “optimal” baits teaming with a
given shooter.

C. Similarity Metric

Now we introduce the cross-entropy metric (CEM)
as the policy similarity metric used for our agent adapta-
tion process. Cross-entropy, well-known in information
theory, can measure the (negative) distance between two
policies π1, π2:

CEM(π1, π2) = Es,a∼π1 [log π2(a|s)] (1)

where π1(·|s), π2(·|s) are action distributions given state
s.

If the policy π2 and state-action samples from π1
are obtained, we can then estimate the cross-entropy
between two policies CEM(π1, π2) by Monte Carlo
sampling, even without access to the target policy π1.
In human-agent teaming, human policy πH , though
unknown, can be compared using CEM as the similarity
metric with each agent policy πA in the library because
the state-action pairs generated by the human policy can
be easily obtained.

Given a sliding window of frames that record the
observed behavior of the human policy πH , we can
estimate the CEM between a human policy πH and any
known agent policy πA by the following formula:

1

T

T∑
t=1

log πA(at|st), where (st, at)
T
t=1 ∼ πH (2)

where (st, at)
T
t=1 are the sequential state-action pairs

from human policy play, T is the window size, a
hyperparameter to be tuned. We believe this approach
of referencing task-relevant aspects of human behavior
to an agent model is novel and potentially applicable
to human-human comparisons as well, particularly for
capturing behavioral alternatives that may have crucial
implications for safety or reliability but are missed by
normative measures.

D. Adaptive Agent Method

The prerequisite for the architecture is the exemplar
policies library L introduced in the Sec. V-B and the
self-play table P of the library to translate human-agent
performance in the adaptation process.

Figure 2 shows the overall flowchart of our adaptive
agent framework. When the game starts and a new
human player A starts to play as one pre-specified role
R1 ∈ {B,S} in TSF, the adaptive agent framework will
first randomly assign a policy B from the library LR2

in teammate role R2 such that {R1, R2} = {B,S},
and keep track of the joint trajectories (state-action
sequences) and record them into memory.

The adaptation process is as follows. As we maintain
the latest human trajectories of a pre-specified window
size, we use the data to compute the similarity by cross-
entropy metric between the human trajectory and any of
the exemplar policies in the library LR1 with same role.
Then we find the most similar policy C ∈ LR1 to the
human trajectory, and look in the performance table P to
find the optimal complementary policy D ∈ LR2

to the
predicted human policy type C. Finally, we assign the
agent D as the complementary policy at next timestamp
with the human player.

The adaptation process on the exemplar policies selec-
tion is based on the following assumption: if the human
policy A with role R1 is similar to one exemplar policy
C ∈ LR1 within some threshold, then the human policy
A will have similar team performance with teammates
as C, i.e., if C performs better with D ∈ LR2

than
E ∈ LR2

, so does A. This enables us to adapt the agent
policy in real-time from recent data without modeling
the human policy directly.

VI. HUMAN-AGENT TEAMING EXPERIMENTS

In this section, we first introduce our experiment de-
sign for human-agent teaming, then evaluate the human-
agent performance when paired with static policy agents
(introduced in Sec. V-B) and proposed adaptive agents
(introduced in Sec. V-D).
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By analyzing the collected human-agent data, we aim
to answer the following motivated questions:

1) How well do human players’ policies correspond
to agent policies in our library?

2) Is our adaptive agent architecture capable of iden-
tifying human policies and predicting team perfor-
mance for human-agent teams?

3) Do our adaptive agents perform better than static
policy agents in human-agent teams?

A. Experiment 1: Static policy agents

1) Experimental Design: We recruited 104 partic-
ipants from Amazon Mechanical Turk for our first
human-agent experiment. They were paid USD 2 for
participating in the 15-min online study. Participants
were randomly assigned a role of either shooter or bait
and then teamed in randomized order with five artificial
agents in the opposite role. Participants completed three
1-min game trials with each agent. The five variants
were selected from our static agent library L balanced
for performance in the self-play table and diversity
by considering different training methods and reward
functions. Specifically, we selected {B3, B6, B7, B8,
B9} to test as static baits and {S1, S2, S3, S4, S7}
to test as shooters. In the dataset of human and static
agent teams, we collected 25 valid sessions from human
shooters and 29 valid sessions for human baits.

2) Policy space representation: To quantify the rela-
tionship between real human policies in the experiments
and agent policies in the library, we compared the
distance between the collected human trajectories and
agent policies using CEM measurement (see Sec. V-C).
This provides us with a high-dimensional policy space
w.r.t. exemplar policies in our library. Then, we applied
principal component analysis (PCA) based on the log-
probability dataset to project the high-dimensional policy
space into a 2D plane for a better visualization. The two
primary components left explain more than 99% of the
variance.

Fig. 3 illustrates where observed human policies fell in
relation to the static agent dataset. Policies in the library
cover a wide space and subsume the distribution of hu-
man policies with particular overlap between human and
SQIL policies. Additionally, the distribution of human
policies correlates with their team performance (circle
size) in that human baits (see Fig 3a) perform better at
the left of the figure while human shooters performed
better when located at the center (see Fig 3b).

3) Human policy identification: In the proposed adap-
tive agent architecture, our model infers human policy by
associating it with the most similar policy in the library

(a) Human baits (b) Human shooters

Figure 3: Policy representations of each human baits (left) and shooters
(right) in the static agent dataset (after PCA dimension reduction). Each
colored node in the figures represents the average policy of a human
player, while the size indicates her average team performance. Red
nodes are reference points of exemplar policies.

based on CEM measurement, then assigns the agent with
the corresponding complementary policy in the self-play
table. One way of verifying this method is to see if
human-agent teams performed better when the predicted
human policy was closer to the complementary match
(i.e. best partner) in the self-play table P . Assuming each
human maintains a consistent policy over each 1-min
interaction when paired with a specific teammate with
static policy, we could then calculate, for each human-
agent pair, the similarity between human policy and the
best partner policy for the agent that the human was
playing with.

This “similarity to best partner” quantifies the degree
to which a human player is similar to the optimal policy
for an agent teammate in our architecture. Correlation
analysis shows that “similarity to best partner” is posi-
tively correlated with team performance in both bait (r =
0.636, p = .0002) and shooter (r = 0.834, p < .0001)
groups. These results in which complementary pairings
of the human shooter accounted for 70% of the variance
among teams shows the high payoff potentially available
from our approach to matching. The result indicates
that the complementary policy pairs we found in agent-
agent self-play can be successfully extended to human-
agent teams, and that our proposed architecture is able to
accurately identify human policy types and predict team
performance.

B. Experiment 2: Adaptive agents

1) Experimental Design: In the previous experiment
and analysis, we validated our proposed architecture
on a static agent dataset. In the second experiment,
we evaluate the performance of an adaptive agent that
dynamically chooses policies complementary to the hu-
man. A between-subject design was employed with one
experimental group and two control groups.
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In the experimental group, participants were paired
with the adaptive agent in either shooter or bait role.
The Adaptive group used the CEM similarity metric
(Sec. V-C) to identify the policy most similar to the
human behavior over a fixed number of recent preceding
game frames. To perform the adaptation procedure; when
each trial starts, the agent identifies the most similar
agent policy to the policy of the human teammate in
the last trial, and then refers to the self-play table
to select the policy that would best complement the
teammate’s estimated policy for the current trial. In the
two control groups, two different policy agents were
chosen as baselines. The Fixed group selected a single
policy at random from the library and maintained it
through the whole experiment. This baseline controls
for human learning from an agent that does not adapt
allowing the human to adapt to a fixed agent policy.
The Random condition randomly selects a static policy
from the library for each trial. This baseline controls
for the effects of human adaptation by presenting a new
agent policy at each trial preventing human learning and
adaptation. All three groups randomly select one static
policy for the first trial as initialization.

134 participants from Amazon MTurk were randomly
divided into the three groups, and played 15 trials of
the TSF game with corresponding agent partners. After
deleting low quality data (e.g. unfinished trials, long idle
times, low performance) we collected sessions from 42
valid human shooters and 29 valid human baits.

2) Results: The average performance of three groups
of the human-agent teams are plotted in Fig. 4. We ex-
cluded the first 5 trials as a training phase and performed
a statistical analyses on the data from last 10 trials.
We ran a mixed two-way ANOVA for the number of
fortress kills where trial number is the within-subject in-
dependent variable and agent type is the between-subject
independent variable. This analysis illustrates how team
performance changes over time in the three experimental
conditions. In human bait - agent shooter teams, average
team performance is not significantly different between
conditions (F (2, 25) = 0.67, p = .520). This conclu-
sion aligns with the pattern of Fig. 4a, in which three
groups show strong learning effects with similar slope
and finally reach a similar level of performance. More
interesting patterns are found in human shooter - agent
bait teams (Fig. 4b). There is a significant difference in
team performance between three experimental conditions
(F (2, 39) = 3.45, p = .042). Also, the main effect
of trial numbers (F (9, 351) = 3.53, p < .001) and
interaction effect between conditions and trial numbers
(F (18, 351) = 1.74, p = .031) are both significant. To
analyze the interaction effect, we ran post-hoc t-tests to

compare the performance difference between groups in
different time periods. Overall, the adaptive group out-
performs the random group (t(25.8) = 2.87, p = .008)
but not the fixed group (t(20.8) = 1.61, p = .122).
However immediately following the training phase dur-
ing trials 6-8, the average performance of the adaptive
group is significantly higher than the other two groups
(p < .01).

(a) Human bait - agent shooter (b) Human shooter - agent bait

Figure 4: (Best viewed in color) Average performance of human-agent
teams. Solid blue line represents the learning curve of teams in the
Adaptive condition, while the other two dashed lines represent Random
and Fixed baseline, respectively. Shaded areas indicate one standard
error from the mean. Red horizontal lines are the average performance
of agent-agent teams in self-play as a reference.

(a) Human bait - agent shooter (b) Human shooter - agent bait

Figure 5: (Best viewed in color) Frequency distributions of adaptive
agent’s policy selection (inner circle) and human type identification
results (outer circle) among all human-agent teams.

3) Discussion: We observe different patterns in
human-agent teams when the adaptive agent takes differ-
ent roles. Particularly for the Adaptive bait, the results
align with our expectation that the Adaptive bait out-
performs the Random baseline by 42.3% and achieves
high team performance faster than the Fixed baseline
(agent adapts more rapidly than human). We observe
effects of both human adaptation and agent adaptation on
team performance as shown in Fig. 4b. The superiority
of the Fixed over the Random condition shows that
improvement in the Fixed condition is due to human
adaptation to the particular agent with which they were
paired rather than increasing experience with TSF. For
human shooters convergence to a stable team strategy
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with high performance is being achieved in both Adap-
tive and Fixed conditions. However, the Adaptive agent
is able to speed up this process by selecting comple-
mentary policies. The unique mutual adaptation in the
Adaptive group leads to the best team performance in the
early stages (trial 6-8) compared to both baselines. This
advantage of fast recovering after team reorganization
(i.e. introducing unseen human teammates) brought by
mutual adaptation has important implications for highly
dynamic environments.

The Adaptive shooter, by contrast, does not show
significantly better performance than either of the base-
lines. The performance gap between the two roles could
be partially explained by the distribution of identified
human policies and selected, complementary agent poli-
cies. As shown in Fig 5a, the adaptive shooter selects a
single policy 90% of the time as most human baits are
identified to be the same type while there are three to
four major policies among human shooters in Fig 5b.
Therefore the adaptive bait has a more diverse policy
distribution and diverse policies are necessary to benefit
from agent adaptation. An examination of table II shows
that the dominant human bait policy, B8, is the next
to poorest performing policy in the self-play table with
4:7 entries coming in under 4 while the table averages
4.9. Two factors might contribute to these difficulties: 1)
The nature of the TSF game creates different policy/type
spaces for shooter and bait roles. There might be too little
variation in human bait policy for an agent to distinguish
into types and select complementary policy accordingly.
2) Our independently constructed bait policy library is
not a good representation of the true human type space
and thus cannot provide accurate type identification for
the agent to adapt to.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel adaptive agent
framework in human agent teaming (HAT) based on
the cross-entropy similarity measure and a pre-trained
static policy library. The framework was inspired by
human teamwork research, which illustrates important
characteristics of teamwork such as the existence of
complementary policies, influence of adaptive actions
on team performance, and the dynamic human policies
in cooperation [23], [24]. The CEM measure making
it possible to directly measure and compare behavior
among humans and agents provides a tool of broad
applicability.

We constructed a high-dimensional policy space based
on types of policies in a pre-trained library and leveraged
it as a reliable way to categorize and pair human policies
with appropriate agent policies. The distance between

human policy and the optimal complementary policy for
his/her teammate is shown to be positively correlated
with team performance, which confirms the validity of
our proposed framework. An online adaptation method
is employed to identify human policy shifting during the
course of interaction and adapt the agent policy in real
time. HAT evaluation shows that adaptive agents in the
shooter role outperform agents using random adaptation
strategies and achieve high team performance faster
than a non-adaptive strategy. This result confirms the
effectiveness of our proposed adaptive agent architecture.
Further, the advantage of mutual adaptation in both over-
all team performance and faster team state convergence
may be useful in highly dynamic environments.

This research has limitations that could be improved
by future work. First, the effectiveness of the proposed
adaptive agent depends on the representativeness of the
policy library. A larger or more precise coverage in the
policy space of the team task could lead to more accu-
rate estimation of human policy and better selection of
complementary policies. In the present study agents were
trained in plausible ways we thought likely to encompass
actual human policies. In future work, we would like
to enrich the static agent library using methods [33]
designed to generate a diversity of policies providing
assurance of coverage.

Our method is dependent on clearly defined roles to
exhaustively compare policy combinations to optimize
the library. If boundaries between roles are porous (tasks
can be performed by either agent) this process becomes
much more difficult. In addition, required comparisons
increase exponentially in the number of roles which
along with diversity linked increases in number of poli-
cies could make optimizing computations expensive for
larger problems. At execution, in compensation, compar-
isons are linear in the number of policies matching an
actor’s role.

While the adaptive bait agent outperformed randomly
assigned static agents in trials 6-8 of the second ex-
periment, human adaptation closed the gap over trials
9-14, suggesting people can learn to compensate for
even a poorly matched partner. Finding effects of human
adaptation to be on a par with agent adaptation suggests
an additional role our agent might play. In keeping with
the duty of the Ad Hoc teammate to guide the team
to an optimal trajectory, the agent upon detecting an
approaching asymptote, could nudge the human toward
a higher performance policy pairing. The self-play table
could perform a similar function in cases such as the
human bait-agent shooter teams where agent policies
could support much stronger performance than pairing
with the human preferred policy allows. Provided hu-
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mans could learn to approximate agent performance,
nudging could again be used to guide the team toward
more advantageous pairings.
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