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Researchers are beginning to transition from studying human–automation interaction
to human–autonomy teaming. This distinction has been highlighted in recent literature,
and theoretical reasons why the psychological experience of humans interacting with
autonomy may vary and affect subsequent collaboration outcomes are beginning
to emerge (de Visser et al., 2018; Wynne and Lyons, 2018). In this review, we do a
deep dive into human–autonomy teams (HATs) by explaining the differences between
automation and autonomy and by reviewing the domain of human–human teaming
to make inferences for HATs. We examine the domain of human–human teaming to
extrapolate a few core factors that could have relevance for HATs. Notably, these factors
involve critical social elements within teams that are central (as argued in this review)
for HATs. We conclude by highlighting some research gaps that researchers should
strive toward answering, which will ultimately facilitate a more nuanced and complete
understanding of HATs in a variety of real-world contexts.
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BACKGROUND

Teams have long been valuable assets that help organizations address dynamic and complex
objectives. In recent years, within the human factors, computer science, and robotics domains,
the scientific community has sought to extend teaming concepts to human-machine partnerships.
Advancements in computer science in recent decades have allowed researchers to consider the
use of intelligent machines to fulfill viable roles within human teams (Sycara and Lewis, 2004).
Synthetic agents are increasingly being used to augment and partner with humans in realistic tasks
(Demir et al., 2017), which suggests that as a community we are on the cusp of breakthroughs in
technology with an evolving philosophy regarding the nature of contemporary work and how it
gets accomplished.

While considerable work has been done on human-human teams over the past several decades,
the literature on human–autonomy teams (HATs) is less mature but has been growing in recent
years. However, humans have accumulated more than a century of experience with machine
automation which is now increasingly incorporating intelligence. Despite the great sophistication
of many of these machines, an advanced autopilot, for example, our relations to them remain
largely unchanged. While the pilot’s safety is dependent on the autopilot making sophisticated
stability decisions under challenging conditions he is likely to treat it as part of the plane’s controls;
setting heading and altitude much as one might select a floor in an automated elevator. The same
pilot, however, would likely recoil upon being asked to take on a dangerous mission in which his
trusted wingman would be replaced by an autonomous drone. In both situations, the pilot’s fate
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and safety are entrusted to a sophisticated decision making
machine, yet for the autopilot this can be accepted without
a qualm while the autonomous wingman arouses uncertainty
and fear. We believe this distinction is qualitative and real
and involves the degree of autonomy, evolutionary human
predisposition toward cooperation (Bowles and Gintis, 2011;
Tomasello et al., 2012), and distinct forms of neural processing
associated with human cooperation (Mu et al., 2018; Xie et al.,
2020). The autopilot performs a rigid predictable function which
the pilot can easily verify while, in contrast, depending upon
the autonomous wingman requires the pilot to cede control
in the belief that the wingman will ‘have his back’ throughout
the mission and raises concerns about the lack of a “human
thinker” in the cockpit (Lyons et al., 2018). This raises issues
beyond the mere technological aspects of the machine – will
this machine help me when I need it? – do we have a common
understanding of the threats? – can we communicate enough
to address task dynamics? We argue that the two interactions
involve separate modes of human behavior with reliance on
the autopilot depending on normal forms of interaction while
close cooperation (and eventual collaboration) with the wingman
requires summoning social patterns of behavior evolved over our
species’ history of group foraging (Tomasello et al., 2012) and
warfare (Bowles and Gintis, 2011). In conventional interaction,
a machine is treated as a tool but in highly interdependent
interactions under proper conditions, it can come to assume the
role of a teammate benefiting from the increased fluidity and
coherence of joint actions made possible by human propensities
for social cooperation.

The notion of humans and machines sharing authority to
pursue common goals is a prominent research topic within the
human factors and computer science communities (Cummings,
2014; Flemisch et al., 2019). This topic has acquired prominence
in recent years because of its particular importance within the
domain of autonomous car research (Li et al., 2016; Awad
et al., 2018) and military research (Chen and Barnes, 2014).
Sycara and Lewis (2004) have identified three general roles that
machines can support within teams: namely, machines may
support human teams (1) by supporting individuals as they
complete their individual tasks, (2) by assuming the role of
an equal team member, or (3) by supporting the team as a
whole. The first of these roles has been researched to date in
the context of decision support systems; however, the second
and third are the subjects of increasing research since they exist
at the heart of HATs. Recent work considers an agent as a
replacement of a human within a human-human team (McNeese
et al., 2018), essentially a synthetic human (agent). Other work
has considered issues of team processes, such as dynamic trust
building and adaptation in complex and dynamic environments
(Nam et al., 2020). In terms of identifying the components of a
machine teammate that humans may find convincing, relevant
research (e.g., Wynne and Lyons, 2018) has considered the
various psychological antecedents and outcomes of experiencing
a technology as a teammate versus a tool. This last issue is crucial
since it sheds light into the desired characteristics of a machine
as a teammate and hinges upon differences between automation
(tool) and autonomy (potential teammate). Thus, the current

review examines HATs in one of three typologies: (1) as a means
to reveal the psychological antecedents of HAT perceptions,
(2) as a human teammate substitute and communicative team
member, and (3) as an influence on the team dynamics of the
team as a whole.

Why Do We Need Human–Autonomy
Teams?
The overall rationale for the use of HATs is that they may facilitate
better performance relative to humans alone or machines alone,
particularly under situations of high uncertainty (Cummings,
2014). A classic example is provided in Kasparov (2010), wherein
novice chess players can team with an intelligent agent and
outplay master chess players. Autonomous systems often have
computational powers that outmatch human abilities in both
breadth and speed, and they often have better sensors compared
to humans (Arkin, 2009; Scharre, 2018) which can increase
the speed of data processing and increase the breadth of such
analyses. When autonomous systems are used in combination
with humans in HATs they can serve as a force multiplier, for
in theory, fewer soldiers will be needed to execute the mission
(Arkin, 2009; Endsley, 2015; Scharre, 2018). HATs may be most
necessary in open-ended missions where not all of the mission
parameters can be specified a priori (Chen and Barnes, 2014).
However, the potential benefits of HATs are not limited to the
military domain.

Human–autonomy teams may increase psychological safety
for contributing information, making guesses, brainstorming, or
reporting uncomfortable information for humans. Psychological
safety refers to “a shared belief that the team is safe for
interpersonal risk taking . . . that the team will not embarrass,
reject, or punish someone from speaking up” (Edmondson,
1999, p. 354). Autonomous systems don’t judge others, unlike
humans. In fact, there is promising research exploring the use
of robots in helping children with autism (Diehl et al., 2013)
and supporting soldiers with PTSD via intelligent virtual agents
(Kang and Gratch, 2010).

Automation Versus Autonomy
The need for HAT arises from situations requiring tightly
coupled interactions between humans and machines. To the
extent the machines’ actions can be precisely predicted, a social
context may not be needed to facilitate interaction, as for
example, in stability augmentation of a control system. Where
the conditions determining a partner’s actions are not evident,
however, attributions involving capabilities, objective functions
(goals), or other characteristics of the machine may be needed
to establish a basis for cooperation. For example, in Chien
et al. (2020), compliance doubled when participants were shown
why a path planner wanted to re-route a UAV while at the
same time an earlier correlation between trust and compliance
was eliminated.

Because machines are deterministic, algorithmic entities, the
distinction between automation and autonomy lies in the eye of
the human beholder and is one of the key debates surrounding
human-autonomy teaming. Automation represents technology
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that actively seeks data, transforms information, makes decisions,
or controls processes in a narrow and well-defined task where
the automation can be pre-programmed (Lee and See, 2004).
In other words, automation is doing something in place of a
human that the human no longer needs to do. Granted, the use
of automation does not eliminate the need for a human, rather it
changes the role of a human often to one of a supervisor of the
automation (Parasuraman and Riley, 1997), which comes with
its own set of potential challenges. In fact, decades of research
has shown that the use of automation often adds considerable
complexity for humans who must monitor the technology (see
Parasuraman and Riley, 1997; Lee and See, 2004; Hoff and Bashir,
2015 for reviews).

A critical assumption of automation is that it does its job in the
confines of what it was programmed to do, making it unusable
outside of that particular context. Automation serves a specific
role, and its use can be associated with increased performance and
reduced workload in nominal conditions (Onnasch et al., 2014).
The literature on automation has developed taxonomies for the
types of behaviors automation can engage in (e.g., information
acquisition, information analysis, decision and action selection,
and action implementation; Parasuraman et al., 2000) as well as
the level of human intervention that is acceptable for a particular
automated response (i.e., levels of automation; Sheridan and
Verplank, 1978). A particularly unique class of automation is
adaptive automation which invokes an automated behavior based
on a detected change in a human’s state (such as physiological
changes indicative of high or low workload; Hancock et al.,
2013; Chen and Barnes, 2014). In this case, an automated tool
can be programmed with a target threshold and granted the
authority to detect dynamic changes of the targeted variable along
a continuum for which it will enact a preset automated response.
Therefore, automation may be delegated higher or lower levels
of task execution flexibility within a specific context, but it lacks
the authority to decide which contexts and the conditions under
which it operates as these are structured a priori by the designer
or operator of the automation. Since automation performs
repeatable behaviors in established domains, predictability of
the automation is a critical factor influencing one’s trust of the
technology (Lee and See, 2004; Hoff and Bashir, 2015). More
specifically, automation ought to operate reliably via underlying
algorithmic processes that are contextually appropriate and
implemented as intended by the designer (Lee and See, 2004,
p. 59). For tasks that are relatively simple, situation-invariant,
repeatable, and low risk, automation can be highly beneficial.
However, for tasks that are complex, context-dependent, fluid,
and high risk, automation use may lose its benefits or lead to
undesirable outcomes due to its inherent inability to handle
situations outside of those for which it has been programmed.

Autonomy, in contrast, is capable of making decisions
independent of human control (Vagia et al., 2016). Autonomy
could be responsive to situations it was not designed for (i.e.,
autonomy is capable of learning and generalization) and it should
possess some authority to direct its own actions, i.e., be goal-
directed (Endsley, 2015). Autonomy focuses on decision making,
adaptation to changing demands, and performance improvement
over time with some level of self-governance (United States Air

Force (USAF), 2013). Self-governance, adaptability, and learning
are important features of autonomy relative to automation.
A cogent definition of autonomy, placing teamwork at the center
of autonomy, is provided by McNeese et al. (2018) who state
that “autonomy is a technology that is capable of working with
humans as teammates to include the essential task work and
teamwork function of a human teammate” (pp. 1–2). Key features
of the autonomy, in this case, involve taking on a role within
a team and communicating with one’s teammates. Given the
focus on teamwork and communication, HATs require intent
information, shared mental models, and social affordances to
enable communication and shared understanding. These same
features are reflected in the interpersonal teaming literature.

What Can We Learn From Human
Teams?
In the past several decades, the research community has placed
considerable emphasis on the topic of teams in organizations,
and this has largely been driven by the fact that organizations
are using teams to accomplish a variety of tasks. Teams are often
formed to help organizations address the need for adaptability
as teams are better at adaptation than the larger organizational
units (Kozlowski and Bell, 2003). Similarly, HATs are envisioned
to support greater adaptability to dynamic situations relative to
human–automation interactions. There are many models that
inform the science of teams. In the management science and
organizational behavior literatures, teams are defined as: two or
more individuals who perform organizationally relevant tasks,
share at least one common goal, interact socially, have task
interdependence, maintain and manage boundaries and roles,
and are embedded in a larger organizational context that sets
objectives, boundaries, constraints on the team, and influences
exchanges with other teams (Kozlowski and Bell, 2003). Teams
include features such as collective ambition, common goals,
alignment of individual goals, high skill differentiation, open
communication, safety, and mutual commitment (van der Hout
et al., 2018). While teams operate as distinguishable (and
measureable) work units partially independent of (but subsumed
within) the organization, the organization constrains and sets
the overall objectives of the team (Kozlowski and Bell, 2003).
Similarly, HATs would acquire the overall strategic objectives of
their parent organization (such as the broader military service
within which the HAT resides, for example). Therefore, it may
be inappropriate to expect that a HAT will evaluate goals
broadly, but rather HATs should consider proximal goals within
the context of the broader goal hierarchy of the organization.
This constrains the space of inquiry to relevant task contexts
of an organization and eliminates the need for discussing the
concept of general artificial intelligence (AI). Yet, teams are
subject to developing proximal environmental features and
dynamics paving the way for team-level influences on individuals
(Kozlowski and Klein, 2000). These may come in the form of
normative influences, shared perceptions, and expectations of
individuals that clearly have both top–down and bottom–up
sequelae. These top–down and bottom–up dynamics are also
likely within HATs.
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Perhaps the best known model for the study of team dynamics
is the Input-Process-Output (IPO) model (McGrath, 1964).
Within this model, inputs (in the form of resources, constraints,
skills, group composition, etc.) influence team processes
(mechanisms that allow the members to combine their inputs)
which mediate the relationship between inputs and outputs.
Team outputs are a key element for any organization employing a
team and they vary according to the organization’s goals/strategy.
However, the team processes are what translate team inputs
into outputs, and thus for the purposes of this review the
emphasis is on the team processes that could be influential in the
context of human–autonomy teaming. Team processes include
coordination, cooperation, and communication (Tannenbaum
et al., 1992), and these team processes can be used to measure
and evaluate how teams process information, make decisions,
and combine individual actions toward joint objectives (i.e.,
the process of team cognition; Salas and Fiore, 2004). Team
processes are central to teams because they (1) influence the
development and implementation of shared mental models,
(2) shape individual motivation toward or away from team
objectives (i.e., they shape intent), and (3) impact team cohesion
(Kozlowski and Bell, 2003).

Team-Oriented Intent
Effective team members share goals with their team; thus, actions
that signal this goal alignment (i.e., intent) are an important team
process component. One of the risks associated with teamwork
is that one team member could be less motivated toward team
objectives than other team members and engage in behaviors
such as social loafing. Showing motivation to pursue team goals
(versus individual goals) should promote trust - the willingness
to accept vulnerability based on the expectation of a positive
outcome (Mayer et al., 1995) – within a team (Dirks, 1999).
As trust from one team member toward another may have an
influence on the degree to which trust is reciprocated (Serva
et al., 2005), this greater trust should reduce social loafing and
promote more motivation toward team goals. Further, intention-
based information that suggests that a teammate is benevolent
should increase trust of the teammate (Mayer et al., 1995; Serva
et al., 2005).

Intent information can also come in the form of one’s desire
to be part of a team. Team cohesion is a critical team process
as it enables attraction toward the team and joint motivation
on both a social and task level (Kozlowski and Bell, 2003). The
link between cohesion and team performance is reciprocal –
therefore, enhancements to team cohesion increase performance,
which in turn, promote more cohesion (Kozlowski et al., 2015).
The recognition of cohesion as a multidimensional construct
dates back to the seminal work of Festinger (1950). He discussed
cohesion as a culmination of factors, such as attraction to the
members of a group, the activities of a group (task commitment),
and the prestige of the group (group pride). Cohesion develops
after the group has had an opportunity to work together or
at least become acquainted with each other (Gosenpud, 1989;
Matheson et al., 1996; Harrison et al., 1998). A meta-analysis
(Beal et al., 2003) found that all three of Festinger’s (1950)
original components of cohesion—interpersonal attraction,

task commitment, and group pride—each bear significant
independent relations to performance across many criterion
categories. Whether human or machine, knowing the intent of
one’s partner is an important team enabler.

Shared Mental Models
Shared mental models represent knowledge structures that may
be shared among team members that allow team members to
create accurate representations and predictions within a team
task context (Cannon-Bowers et al., 1993). These representations
can be oriented toward the equipment (i.e., material assets)
within a team, the team task (procedures, constraints), the
team members (skills, abilities, strengths, weaknesses), and the
team interactions necessary within the team (roles, expectations,
dependencies) (Cannon-Bowers et al., 1993). Shared mental
models are important for team effectiveness because they
facilitate a common framework from which to interpret the
environment and the team’s progress in relation to shared
goals (Cooke et al., 2013). Research has shown that teams
perform better when they share mental models (Mathieu
et al., 2000). Teams develop shared mental models through a
process called team cognition, which is cognitive activity at the
team level with the desired outcome of shared understanding
among team members (Cooke et al., 2013). Communication
between team members is the foundation for team cognition.
Thus, communication is critical to understanding how well
a team can recognize anomalies, adapt to them, and offer
feedback within the team—all of which ought to impact team
performance outcomes.

Communication
Communication is the cornerstone of teamwork as this is the
mechanism through with teams translate individual action and
effort into collection outcomes. Teams that communicate and
monitor performance in relation to shared goals out-perform
groups that lack shared goals and do not share intent toward
those goals (Aubert and Kelsey, 2003). It is not sufficient
for teams to share goals, but rather, the intent to support
shared goals is a critical team process element that helps
to direct individual contributions toward collective, team-level
objectives. Communication herein is needed to convey this
shared intent and to adjudicate performance monitoring. High
performing teams tend to be more efficient in their use of
questions, asking fewer questions yet still receiving all the
necessary information (Urban et al., 1993). High performing
teams also exhibit behaviors such as situation assessment and
planning that help to achieve and maintain situation awareness
(SA) (Orasanu, 1990). In other words, effective teams must
collectively sense the environment, understand the environment
in relation to shared goals, and act in accordance to those
goals to support others on the team. One characteristic of
effective teaming is to push information to one’s teammates
before they need it (Demir et al., 2017), such that if the
team is well-coordinated and communicates effectively there
may be little reason to pull information from teammates.
It has been observed that teams in which members provide
unsolicited information to other team members generally

Frontiers in Psychology | www.frontiersin.org 4 May 2021 | Volume 12 | Article 589585

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-589585 May 22, 2021 Time: 17:16 # 5

Lyons et al. Human–Autonomy Teaming

perform better than those that do not (Urban et al., 1993;
Johannesen et al., 1994).

In summary, team processes represent the gel that translates
team inputs into collective outputs. Team processes allow for
joint attention, shared goals and shared motivation toward
those goals, and attraction toward the team members socially
and in a task context. Effective team processes can: (1) signal
shared intent toward collective goals, (2) promote team cognition
in support of the development and maintenance of shared
mental models, and (3) promote aiding and performance
monitoring via communication. These same notions learned
through the human–human teaming literature will likely apply
to HATs as well.

Defining Human–Autonomy Teams
(HATs)
In the spirit of Nass et al. (1994) pioneering work that considered
“providing the computer with characteristics associated with
humans” an essential ingredient for eliciting social attributions,
de Visser et al. (2018) consider ‘humanness’ (Haslam, 2006)
to be independent of degree of autonomy. So, for example,
a companion robot such as the baby seal Paro (Šabanović
et al., 2013) might rank high on eliciting social responses while
being devoid of autonomy. An automated cart in a warehouse,
by contrast, might be highly autonomous in choosing goals
and planning to optimize the placement of inventory while
using collision avoidance to avoid humans, yet do so without
any apparent social relationship. The challenges of human-
autonomy teaming rest in developing (1) team-based affordances
for fostering shared awareness and collective motivation, (2) an
understanding of the types of tasks and interactions that stand
to benefit from social cueing, and (3) developing techniques for
using these cues to enhance HAT performance.

To answer the question of how human-machine interactions
can be transformed to a HAT, we must first try to understand
the characteristics of machine, task, and interactions that lead
humans to consider and treat a machine as a teammate
and the conditions under which this is expected to improve
performance. Figure 1 shows a hypothesized relation between
autonomy, interdependence, and perceived human-likeness. The
companion robot Paros is high on perceived human-likeness
but low on both autonomy and interdependence. The robots in
a manufacturing cell are high on interdependence as they are
continuously exchanging and positioning work pieces with the
human and moderately high on autonomy. These interactions
can be expected to benefit from adjustments and synchronization
due to the human mirror neuron system (Pineda and Hecht,
2009) but should not require attributions of humanness. The
Autonomous Wingman HAT exemplar, by contrast, is high
on all three dimensions. Its degree of autonomy is so great
that high interdependence requires an attribution of humanness
and benevolence in order for cooperation to unfold without
continual dysfunctional monitoring and second guessing by
the human.

It is not yet clear what technology capabilities would be
the ones that would make technology acceptable to humans,

though research has begun to seek answers on this issue
(see de Visser et al., 2018). Discovering these characteristics
is important since robotics researchers can use these as the
characteristics needed for modeling computational algorithms to
make robots acceptable teammates to humans. This perspective,
in considering the psychological view of machines as team
members, is appropriate given the immense challenge of getting
humans to accept machines as viable partners. “Today in almost
all cases the limiting factor in human–agent interaction has
become not computing cycles or connectivity (the machine
side) but the user’s ability or willingness to communicate
his or her desires and sift, organize, and interpret the
machine’s response to satisfy them (the human side)” (Sycara
and Lewis, 2004, p. 204). While this quote was made over
15 years ago, little process has been made to date to help
inform researchers regarding what drives the beliefs of a
machine as a teammate. However, given recent advancements
in computational power, technology capability, and the ubiquity
of robotic systems, it is imperative that the research community
adopt common views of human-autonomy teaming and engage
in integrative research to isolate and validate the components
of effective HATs.

Researchers have long sought to understand the social
interactions between people and machines. Teamwork is by
definition social (in the sense that it involves more than one
individual interacting with one another), as opposed to taskwork
that can be performed by a single individual. In looking at
human–autonomy teaming from a teamwork perspective, and
asking what characteristics make a machine a good teammate,
we assume that the technology will perform its assigned task
correctly to an acceptable degree. Humans tend to respond to
machines socially, even if not intended by the designer because
humans apply social rules to machine interactions (Nass and
Moon, 2000). For example, research looking at human-robot
teams found that people prefer in-group robots over out-group
humans (Fraune et al., 2017). From a psychological perspective
these beliefs impact behavior, and thus must be considered in the
context of HATs.

As a means to investigate the human teamwork factors
composing HAT contexts, Wynne and Lyons (2018) developed
a conceptual model of autonomous agent teammate-likeness
(AAT) which detailed the factors that shape when a person
perceives a technology as a “tool” (purely utilitarian beliefs
[e.g., preprogrammed automation]) versus as a teammate.
They define AAT as: “the extent to which a human operator
perceives and identifies an autonomous, intelligent agent
partner as a highly altruistic, benevolent, interdependent,
emotive, communicative and synchronized agentic teammate,
rather than simply an instrumental tool” (p. 355). In their
model, the concepts of agency, benevolence, interdependence,
communication richness, synchrony, and team focus are the key
factors in shaping the perception of a technology as a teammate
versus as a tool.

Agency
Agency, the capability and authority to act when and how the
agent desires, is a necessary characteristic of a teammate. Humans
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FIGURE 1 | Human propensities for social cooperation are expected to facilitate human–machine performance where both machine autonomy and interdependence
are high.

consider agency to be an important part of what it means for
a machine to be a teammate (Lyons et al., 2019). Agency is
perhaps the most important distinguishing characteristic that
differentiates automation from autonomy (as noted above) and
consequently, it is one of the ingredients that computational
agents must exhibit in order to enable humans to view them as
teammates. In a survey of attitudes toward autonomous weapons,
Arkin (2009) notes that a majority of surveyed humans believe
that autonomous robots should have the ability to refuse orders
that violate some rules of engagement – hence agency. In a review
of human–agent teaming, Chen and Barnes (2014) state that
agents should possess autonomy and be able to sense and act on
their environment. It is difficult to be a teammate if one lacks the
authority or capability to act when necessary, just as it is difficult
to accept an agent as a true teammate if one perceives that the
agent lacks volition.

Communication
In human teams, communication is one of the most important
team processes since it facilitates formation of shared SA,
shared mental models, and goal alignment (as noted above).
The extent to which communication mechanisms support
a wide range of emotional and social cues enhances team
effectiveness (Hanumantharao and Grabowski, 2006) and can
help facilitate the view of robots as teammates (Iqbal and Riek,
2017). HATs need to be able to establish common ground,
communicate shared mental models, shared goals, and shared
understanding of the world (Schaefer et al., 2017). HATs must
be enabled to create the right levels of communication richness,

appropriateness regarding communication content, and the
proper timing. Research on etiquette has found that appropriate
etiquette can enhance performance within human–automation
interaction (Parasuraman and Miller, 2004). Some view this
simply as the machine acting politely. In the context of HATs,
however, machines will need to be much more than just polite,
they will need to be appropriate – this appropriateness is
the core of machine etiquette (Dorneich et al., 2012; Peters
et al., 2019). Gratch et al. (2007) looked at what they labeled
contingent rapport behaviors (i.e., rapport behaviors that are
closely coupled to human actions) and found that contingent
rapport behaviors were more important than the frequency of
agent behavior in influencing human perceptions of the agent.
Thus, behaviors of the machine need to be closely coupled to
an appropriate human expectation in order to maximize their
effectiveness. The technical challenge is to develop algorithms
that will maintain coherence of the human actions and the
communication utterances. The Natural Language Processing
(NLP) community has made large strides toward this goal
in dialogue based systems; however, in HATs there are also
additional challenging aspects such as coherence of utterances
with perceived actions (in other words, integration of computer
vision and language) as well as issues of when is a good time to
interrupt the human team mate which pose additional technical
problems (Altmann and Trafton, 2002; Banerjee et al., 2018).

Shared Mental Models
Communication is used to create shared metal models in
a team. Human teams that share mental models are better
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equipped for common interpretations of dynamic contexts
(Cannon-Bowers et al., 1993; Salas and Fiore, 2004; Cooke
et al., 2013). In other words, they are in synch with the
situation and what actions must be taken in a given situation.
Having these capabilities will allow the HAT to begin to
anticipate the needs, actions, and future problems within the
team. Anticipation of needs and future actions is a critical
teaming function (Liu et al., 2016; Demir et al., 2017; Iqbal and
Riek, 2017; Chen et al., 2018) since it allows mutual adaptation
and a greater degree of team coordination and synchronization
(this has also been labeled fluency; Hoffman and Breazeal,
2007). Shared mental models is more than merely all team
members sharing every bit of information with one another;
such a strategy would be highly inefficient both in terms of
computation and communication bandwidth. Moreover, such
a model amounts to full centralization of the knowledge of
the team, which obviates the need to have multiple individual
teammates. In contrast, Lewis and Sycara (1993) made an
initial attempt to create a computational shared mental model
among specialists that would be computationally efficient.
An effective machine partner will need to understand what
information is important to share with a human partner and
what the most effective timing for sharing the information is,
the latter being just as important as the former from a team
dynamics perspective.

Intent
While shared mental models reflect the knowledge of the
team regarding its environment, goals, and plans, shared intent
reflects the particular sub-goal and action that a teammate may
undertake in the near future. Communicating intent to support
shared goals is a necessary process in human teams and this
importance could extend to HATs. Initial research pointing in
this direction has examined communication content in human
teams in time critical and dynamic environments such as aircraft
crews (Orasanu, 1990) and foraging scenarios (Sukthankar et al.,
2009). Research on these teams has found that the highest
performing teams are proficient at conveying high-level intent
among the team members versus sharing all possible information
(Sukthankar et al., 2009). This decreases information overload
and allows the teams to focus on the important issues that
must be addressed.

Lyons (2013) states that machines (i.e., robots) should
communicate their intent in relation to humans who interact
with them. This information should include information about
shared goals. Notably, information regarding intent could involve
planned actions for a teammate to accomplish her own goals, or a
teammate’s goals, if the teammate is perceived as being incapable
of accomplishing them herself (intent expressing helping
behaviors). Task-based intent could present communications that
a partner is pursuing a particular course of action (e.g., “I plan to
complete the tasks in area 3”). Intent in this sense is similar to the
highest level of transparency in the Chen et al. (2018) Situation-
Awareness-based Transparency (SAT) Model as it provides a
projection of future behavior. Studies have shown, for instance,
that failure to signal intent can cause delays in activities such
as hand-overs between humans and robots (Cakmak et al.,

2011). Work in computer science and robotics on conveying
intent has mainly focused on plan recognition (Sukthankar
and Sycara, 2006, 2008) and Inverse Reinforcement Learning
(IRL), where an agent views human decision trajectories, and
under the assumption that the human obeys a Markov Decision
Process (MDP), infers the reward function of the human (Hughes
et al., 2020). Under an MDP, the reward function expresses
the reasoner’s intent, since she will follow a course of action
to maximize the reward. However, most of the IRL literature
assumes (a) that the trajectories are given to the agent ex post
facto for a static computation of the reward function, (b) that the
agent uses the inferred reward function so as to learn to imitate
the behavior of the human, and (c) that the preferences/reward
of the human is static. However, these assumptions do not hold
in dynamic HAT missions. In recent work (Hughes et al., 2020),
researchers have demonstrated an algorithm that allows an agent
to infer in real time changing human preferences (rewards) as
the environment changes dynamically. This is the first system
to do so, and it opens the way to develop agents that, knowing
a human’s intent, can reason about the best way to plan their
own actions to enable the team to address a changing and
uncertain environment.

Advances in AI over the past 20 years have come largely
from the adoption of these Markov decision models. More
recently, Deep Neural Networks (DNNs) have been incorporated
as function approximators (Deep Reinforcement Learning, or
DRL) allowing the solution of even larger problems. This advance
has enabled difficult to believe feats, such as programs that
acquire human to superhuman skill at Atari games (Mnih et al.,
2015) just by playing them, choosing actions based on the pixels
on the screen. It is these highly capable AI programs that offer the
most promise for dealing with the complexity and non-linearity
of real time military and civilian systems.

Unfortunately, DRL is inherently opaque and difficult for
humans to predict or understand. We find ourselves compelled
to attribute causation even when it is clearly absent (Thines,
1991). The result is that our most capable AI teammates
may also be the most difficult to understand and work
with. One common result (Iyer et al., 2018; Anderson et al.,
2019) is that while some DRL agent actions are easy to
understand and predict, others seem completely alien and
counter to our expectations. This perceived “strangeness” has
led to a taxonomy (Chakraborti et al., 2019) of explicability-
consistency with believed intent, predictability-consistency with
predicted action, and legibility-distinguishing between alternate
intentions. For example, a PacMan that neglected nearby
edible pellets to move closer to a hostile ghost (Iyer et al.,
2018) would appear inexplicable and its behavior unpredictable.
Other peculiarities of learned behavior such as spacecraft in
Team Space Fortress (described in the Sample HAT Research
section) that learn to spin about as they fly may not preclude
teamwork. The spinning, possibly an artifact of limiting
collision detection to the center of the ship, is inexplicable
but does not impede cooperation with a human shooter.
While research in human–autonomy teaming typically poses
the question of how autonomy can adapt to, promote, or
better manage interaction with humans, the characteristics of
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high performing DRL agents are such that the burden of
adaptation may need to be borne from both sides if the
partnership is to work. This problem of promoting trust and
teamwork with an inherently opaque teammate is one that HAT
research must confront to take advantage of our most capable
potential partners.

Communicating intent is one way to reduce opacity of
agents. This can be expressed by communication that reflects
expressions of support, benevolent intent, and adherence to
goals that are a priority for the partner (e.g., “I can see you
are struggling with this task so I will help you” or “I plan to
complete the tasks in area 3 because I know they are important
to you”). Expressions of benevolence, the belief that an entity
has one’s best interest in mind and plans to act on those
intentions, is a fundamental aspect of the human trust process
(Mayer et al., 1995). Similarly, Lyons et al. (2021) found that
providing participants with information regarding the stated
social intent of the robot influences trustworthiness perceptions
of the robot. Stated social intent characterized by self-sacrifice
(perhaps the quintessential form of benevolence) was related to
higher benevolence and integrity beliefs relative to other types
of stated social intent (Lyons et al., 2021). The intent-based
programming of machines matters. However, Lee and See (2004)
noted that because automation has no intentionality or agency,
ascriptions of automation benevolence (or purpose) are really
ascriptions toward the automation’s designer.

As technology transitions from automation to autonomy
emulating more human-like characteristics, humans may begin
to ascribe intentionality toward the autonomy in a genuine
way. There is currently little research on algorithms that would
recognize shortcomings of human skill or errors in human
performance that would allow the robot to intervene and express
its willingness and intention to help. Such work is needed to test
(a) the ability of the robots to diagnose human task failures, (b)
the ability of the robot to perform the correct helping behavior,
and (c) the extent to which such behavior makes the human
consider the robot as a teammate.

Interdependence
Interdependence is a core aspect of teamwork (Kozlowski and
Bell, 2003). When working toward shared goals, team members
must have common task work and interdependence on each
other for team outputs. Interdependence is also a key need
within human–machine partnerships (Johnson and Vera, 2019).
Working interdependently means that humans and machines
will undertake roles and divide teamwork in interdependent
tasks that each one must perform. Similarly, in operations
research and computer science there are multiple works in task
allocation in agent-only teams (Luo et al., 2011), but there
is a dearth of literature in task allocation in multi-individual
human-autonomy teams in complex environments. Besides task
allocation, interdependence implies shared responsibility for task
accomplishment. In its extreme, shared responsibility is shared
control where a human and an agent, for example, push a box
together (Wang and Lewis, 2007), or where a passenger switches
control of a driverless car with the car controller (Stanton and
Young, 2005). In the box pushing example, synchronization of

movement of the robot and human is very challenging, and in the
car example, the challenge mainly lies in when to switch and how
to safely and robustly make the handoff.

In summary, a HAT requires five essential elements. First, the
machine must have a high level of agency to act as a teammate.
Second, the machine must be communicative. Humans are
assumed to also be both agentic and able to communicate.
This communication should [third] convey information that
allows the human teammate understand the intent of the
machine. Fourth, the human and machine should share mental
models of the team assets, team strengths/weaknesses, division
of labor, and task context. Finally, a HAT is characterized by
interdependence between the human and machine. The section
that follows will discuss some of the extant literature regarding
HATs. Rather than organize this section according to the HAT
elements discussed above, this section was organized based on
the taxonomy mention at the outset of the review, namely
psychological antecedents, teammate substitutes, and factors that
influence the team as a whole.

Samples of HAT Research
The following section is not intended to be exhaustive of the
HAT literature, but rather it examines some of the recent HAT
studies and programs to aid in our understanding of the extant
literature. These examples adopt the HAT typologies mentioned
in the early sections of the manuscript: (1) as a means to reveal the
psychological antecedents of HAT perceptions, (2) as a human
teammate substitute and communicative team member, and (3)
as an influence on the dynamics of the team as a whole.

Psychological Antecedents of HAT Perceptions
Taking the psychological perspective of HATs, several studies
have examined the AATs dimensions to develop valid and
reliable scales to assess these constructs. Lyons et al. (2019)
first conducted a qualitative study to ask workers about their
experiences in working with technologies they considered
“intelligent.” When asked about whether or not these
technologies were teammates versus tools, about one third
responded with the belief that the technology was a teammate.
The authors further asked several open-ended questions
regarding why the participants thought the technologies were
teammates, or alternatively, if the participants believed their
technology to be a tool what it would take for the technology to be
considered a teammate. These open-ended questions were then
coded using qualitative analysis techniques by four independent
coders who sought to organize the results into themes. The
six dimensions of the AAT model played out prominently in
the data. In addition, the broad concept of humanness was
also a dominant theme within the data, but it was not clear if
the participants believed some of the AAT dimensions to be
examples of humanness (see Lyons et al., 2019). This initial study
suggested that the AAT model proposed by Wynne and Lyons
(2018) had some validity.

This initial study was followed up by a second study to
examine the psychometric properties of initial AATs scales
(Wynne and Lyons, 2019). The psychometric study resulted
in scales to index perceptions of the AAT dimensions. These
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scales were, in turn, used in a third study wherein they
were incorporated into a narrative research design. Lyons
and Wynne (2021) created narratives of technology that were
high and low on the AATs factors. Participants reviewed
the narratives and measured participants’ perceived AATs
dimensions, teaming perceptions, and commitment to the
technology. Results from the study demonstrated that the AATs
scales were sensitive to the narrative manipulation. Further, the
AAT dimensions of interdependency, communication richness,
and team focus were uniquely related to higher commitment to
the technology. While these initial AAT studies are promising,
additional research is needed to fully examine the AAT model.
However, these findings provide broad support the importance
of agency, teammate-oriented intent, interdependence, shared
mental models, and communication.

Human Teammate Substitute
Taking the perspective of an agent replacing a human role in a
team of humans, research by Demir et al. (2017) examined the
role of a synthetic teammate in team process and performance
using an unmanned aerial vehicle simulation task. They used
a control condition consisting of novice human subjects, an
expert team consisting of an expert confederate playing as one
of the three roles (a pilot, navigator, and sensor operator), and
a synthetic condition wherein one of the team members was
a synthetic, ACT-R (Anderson and Lebiere, 1998) based agent.
They found that the synthetic-agent condition performed the
same as the control condition – which is useful to demonstrate
that a partially synthetic team can perform at the same level
as an all-human (though novice) team. Both the synthetic
and the control conditions performed worse than the expert
team, which is understandable. One really interesting finding,
however, was that the synthetic teams tended to push less
information. This is critical because effective teams push more
information than they pull, signaling an ability to anticipate
one’s needs in this experimental paradigm. Using the same
research paradigm as above, McNeese et al. (2018) found that
synthetic teammates were slower to respond to changes in the
experiment and they tended to process targets slower than
all-human teams. Taken together, the results of these studies
show that teams comprising autonomous teammates may have
challenges regarding communication and experience potential
bottlenecks when unforeseen events take place, suggesting the
need for shared mental models.

In recent work, Li et al. (2020) examined teammate
collaboration and action adaptation during the mission in
tightly coupled, time stressed teamwork. In collaborative tasks,
the final outcome is determined by individual level (e.g.,
skill level, motivation, and personality) and team level (e.g.,
communication, team coherence, and complementary strategy)
criterion of interest. It is also worth noting that in high quality
teams the adaptation is mutual among team members (Salas and
Fiore, 2004). Therefore, the problem of measuring the process
of mutual adaptation within teams is very challenging because
adaptation is non-stationary. Identifying teammate contributions
is complicated by differences in play due to adaptation to other
teammates leading to equilibria in which each player’s actions and

contributions may be quite distinct from team to team. In this
work (Li et al., 2020), the researchers identified the components of
team adaptation in more detail, with respect to not only the final
outcome (performance measure) but also the adaptive behaviors
that occur as the mission evolves, a quantification that is novel
in the human factors and multi-agent literature. Space Fortress
(Agarwal et al., 2019), a game that has been used extensively
for psychological research, was adapted for investigate teams.
Team/Co-Op Space Fortress (TSF) is a 2-D cooperative game
where two players control spaceships to destroy a fortress. An
example interface is given as Figure 2. The fortress is located
at the center of the screen while two airships are controlled
by human players via XBox controllers (or can be autonomous
agents). The first airship, the bait entering the hexagon area,
is locked on and shot at by the fortress. The fortress becomes
vulnerable (its back shield opens) while it is firing. The other
teammate in the role of shooter can now shoot at the fortress
to try to destroy it. The team performance is measured by the
number of fortress kills and the task is highly interdependent as
one team member must assume a more vulnerable role in order
for the other to fire on the fortress.

Results showed that human players who adapted their policy
when switching partners also led to better team performance.
This finding indicates that individual adaptive actions during
the course of the mission contribute to team coordination and
therefore improve team performance. These findings suggest
that an effective agent in a human-agent team must both learn
to adapt to teammates and to adapt in such a way that their
actions complement the teammate’s behavior. Researchers have
developed agent learning strategies via Deep Reinforcement
Learning. Agents learn to play with other agent teammates in
TSF and make similarity judgments of the play trajectories of
agent teammates, categorizing them into player types. When
faced with an unknown human teammate, the agent recognizes
the human type and adapts its strategy appropriately, based on
similarity judgments and experiences of playing with previous
agent teammates (Sycara et al., 2020). A challenge of adaptation
on the part of the human is that, as agents train via self-play or
all-agent team play, they come up with new strategies, some of
which are unintuitive to humans, and therefore humans must
adapt to them quickly.

Other research has examined autonomous agent collaboration
within a multi-agent system, for example the RETSINA
system (Sycara et al., 2003). To have an agent that is
capable of both monitoring its own performance/goals and the
performance/goals of other agents (including human agents),
the agent must have a model of the performance or goal and
a mechanism for monitoring it. Methods such as the RETSINA
multi-agent framework have been used in DoD planning to aid
humans in evaluating a humanitarian crisis, supporting plans
for evacuation, monitoring activity, and dynamically re-planning
(Sycara and Lewis, 2004).

Influence on the Team as a Whole
Within the Air Force, researchers have developed single
operator control strategies of multiple unmanned aircraft
systems using a human-autonomy team design. Using the
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FIGURE 2 | Team Space Fortress interface. The Fortress has dropped its shield to shoot at the Bait while the Shooter has begun firing at the vulnerable Fortress.

Intelligent Multi-unmanned vehicle Planner with Adaptive
Collaborative/control Technologies (IMPACT) platform, Draper
et al. (2017) enabled a human operator to juxtapose higher-level
intent with intelligent agents to manage Unmanned Vehicles
(UxVs) in an operational mission context. The IMPACT system
works through a combination of intuitive human-machine
interface features, a play-calling framework that allows users
to represent higher-level mission intent, and intelligent agents
that can translate the higher-level intent into task execution
for the UxVs. The agents leverage formal domain models
(to represent a task context) and multi-objective optimization
algorithms when aligning options for plays that are visualized
and actioned by a human operator (Hansen et al., 2016). Under
nominal conditions the human operator can orchestrate the
mission space and convey mission intent to the system and
allow the agents to optimize responses; notably, the human
can modify any aspect of a play at any time, and the system
will autonomously modify the ongoing play by dynamically re-
allocating assets where appropriate and maintaining the human’s
intent. Furthermore, the level of decision authority of the
agents can be accelerated to allow the agent to automatically
respond to agreed upon stimuli (Draper et al., 2017). The
automatic response to a priori events would be considered
automation using the above constraints; however, the automatic

and dynamic response of the agents to a novel demand
in ways that are not known a priori would classify it as
autonomy. In this research the agent has a high level of agency,
communicates changes and awareness of the situation, and
shared intent is designed into the system in advance (in the
form of human-accepted scenarios in which the agent can
autonomously execute plays).

Also within the Air Force, research has been done to
examine interaction methods between pilots and autonomous
wingmen (robotic aircraft flying alongside a manned fighter
platform). A study by Panganiban et al. (2019) examined the
style of communication from the robot aircraft using natural
language. They found that communication styles from the
robot that emphasized benevolent intentions were able to
reduce pilot workload and improved perceptions of the team
collaboration using a sample of students, showing the benefits
of rich communication and team-oriented intent. Further,
the Autonomy for Air Combat Missions (ATACM) program
developed a tactical battle manager (TBM) to enable a pilot
to command multiple unmanned aircraft from a cockpit in
contested domains (Schumacher et al., 2017). The ATACM
technologies enable a pilot to maintain operational control of a
team of unmanned aircraft in a tactical situation through a system
of human–machine interfaces, autonomous aircraft behaviors,
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and AI-based multi-agent controller showing interdependence
and communication.

Considerable work has been done on human–robot
interaction in proximate space. Iqbal and Riek (2017) discuss
methods to promote awareness of the action of others (e.g., a
human working with a robot) in proximate space. Specifically,
they have developed methods to allow the robot to anticipate
and react to complementary actions from a human partner
and these methods have been shown to improve human-robot
coordination and performance in tasks such as hand-overs
and joint work in small, shared spaces. These methods were
also applied to understanding team communication dynamics
and were found to result in greater human–robot team
synchronization relative to interactions without the algorithms
(Iqbal et al., 2016). The benefits of human-aware algorithms
have also been demonstrated by Lasota and Shah (2015) and
Liu et al. (2016). Thus, it appears that awareness of one’s
teammate is an important feature in HATs, as noted above. Also,
notable research is being lead to examine the role of robotic
teammates on inter- and intra-group perceptions and dynamics
(see Fraune et al., 2017).

In summary, some empirical studies have been conducted in
the context of HATs and these tend to focus on psychological
factors that shape HAT perceptions, substituting machines
in team roles which were previously occupied by humans,
and research to examine how HATs influence the team as a
whole. These studies show the importance of agency, team-
oriented intent, shared mental models, communication, and
interdependence within HATs. However, research in the HAT is
at its infancy and considerable research is needed to further our
understanding of HATs.

Research Gaps
We have identified the features of human–autonomy teaming
and why HATs could add value to contemporary operations; yet,
HATs are an emergent research topic and several gaps remain for
the research community to fill. The following section will discuss
some of the notable research gaps within this space.

One challenge in human–autonomy teaming is the capability
of the agent to communicate its intent (Schaefer et al.,
2017). As noted above, communicating intent could be task-
focused to represent the projection of activity and focus
of the machine’s attention, or it could signal the machine’s
intention on providing help to the human. In addition, the
agent must be able to infer the human’s intent so as to
adapt its own goals and actions toward joint team goal
fulfillment. No one debates the importance of communicating
intent, but understanding how to do this effectively and
what impact it has on HAT performance is a critical need
within the research community. This is a gap that will be
filled with theoretical and experimental research, both in
the development of computational models for agents and
experiments involving HATs. As mentioned earlier, Lyons (2013)
states that machines should and could (Lyons et al., 2021)
communicate their intent and goals with their teammates to
affect human teammate perceptions, and such findings provide
a first step in instantiating intent in a seemingly autonomous

teammate and exploring how this apparent intent affects HAT
interactions. Research has begun to investigate HATs which
comprise intelligent agents that emulate critical task-based
attributes of an effective human teammate (McNeese et al.,
2018), and future work ought to investigate how autonomy
intentionality can be manipulated and investigated in the lab to
isolate the mechanisms responsible for intentionality perceptions
and their sequelae.

Second, how can researchers enable team-level flow, peak
performance, and positive psychological experiences such as
cohesion within HATs? Team flow is an emergent topic within
team sciences and requires volitional attention and action toward
team goals/activities (van der Hout et al., 2018). How can we
establish and maintain unit cohesion with the introduction
of machines as teammates? A good beginning is to start
operationalization of the components of cohesion, namely
interpersonal attraction, task commitment, and group pride so as
to be able to develop computational models of cohesion and HAT
experiments. But is there a possibility that introduction of robots
in a human team may disrupt team cohesion?

Third, mutual monitoring is a feature of effective teamwork.
However, research shows that agents are trusted less than
humans when directly compared to humans in the same
study (Johnson and Mislin, 2011), so identifying how the
introduction of an agent influences the broader team is a
critical endeavor. If an expectation is violated by a machine
partner, how does the machine repair the trust they may have
had with the human partner (de Visser et al., 2018)? Liu
et al. (2019a,b) have started answering this question via an
algorithm whereby the system (a multi-robot swarm) repairs
itself upon losing human trust. Another way is for the system to
explain its behavior (become more transparent), since inability
to understand system behavior may have been the reason for
the human loss of trust. There is budding research in the
computational community, especially involving neural networks
that are opaque in enabling the system to explain its behavior
(Annasamy and Sycara, 2019).

Fourth, given the criticality of team process as a determinant
of HAT effectiveness, methods are needed to facilitate joint
attention between the humans and machines. Novel interfaces
are needed to convey where the machine is focusing its attention,
particularly for distributed interactions (Iqbal and Riek, 2017).
Methods to signal joint attention could be instrumental in
ensuring alignment of mental models as the HAT experiences
novel stimuli. Computer Vision algorithms output bounding
boxes and also points, e.g., outlining lips that are recognized as
smiling (De la Torre and Cohn, 2011), could help in this regard.
Novel research needs to be done to test the effectiveness of these
techniques in conveying joint attention in HATs and to examine
their impact of shared mental models.

Fifth, methods are needed to facilitate joint understanding
of states like confusion, mutual agreement, concern, and even
emotion between humans and machines. Such socio-emotional
cues are critical features within teams as they are used to
determine and evaluate common ground, problems, and conflict
among team members (Hanumantharao and Grabowski, 2006).
Neurophysiological measurements such as EEG and fNIRS have
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been recently used along with appropriate computational models
of the output signals to construct indicators of workload, focus
of attention, and emotions (McKendrick et al., 2017). Further,
advanced communication methods could shape shared awareness
of these states in HATs.

Sixth, how do we establish shared accountability within the
context of a HAT? There are often asymmetries that exist
when comparing expectations and consequences of machine-
based actions/decisions versus human ones. Research shows that
robots for instance, are given less blame when an error occurs
relative to human operators. This is supported by recent survey
work which found that people tend to ascribe less blame to an
autonomous car (relative to a human driver) when both parties
are at fault for an accident (Li et al., 2016). However, the blame
on robots increases as the robot’s level of autonomy increases
(Arkin, 2009).

Seventh, what is the optimal level and method of training
to team with machines so that an effective combination of
skills within the team can be achieved? Similar to human
teammates, it is a highly flawed belief that HATs will initially
work without error. In contrast, researchers and practitioners
need to consider what experiential knowledge is necessary to
equip humans with awareness of the machine’s capabilities and
limitations in various contexts (Christensen and Lyons, 2017).
This will require a degree of self-awareness and transparency on
the part of the machine, so it can be aware of its capabilities
and limitations and make them known to humans. Initial work
on enabling machines to communicate uncertainty on their
decisions, explain their decisions, and make human partners
aware of their capabilities via learning is beginning to appear in
the computer science and robotics literature (Chien et al., 2012;
Phillips et al., 2016).

CONCLUSION

As technologies evolve from assistive tools to collaborators,
researchers are beginning to reorient their focus from human–
automation interaction to human–autonomy teaming (de Visser
et al., 2018). In this review, we pursued four challenges to extend
the HAT literature. We began by deciphering the differences
between automation and autonomy and then segued into a
brief review of linkages between human–human teams and
HATs. We then defined HATs followed by a summary of
recent work on HATs which classified studies based on the
psychological antecedents of HAT perceptions, studies on using
intelligent machines as substitutes for human teammates, and
research on the HAT’s influence on the team as a whole.
We then concluded by offering research gaps that scientists
ought to fill.

It is our hope that researchers will use this review as a
springboard for identifying where the state of human–autonomy
research has come from, where it resides (as well as the
burgeoning technologies that can be leveraged in research),
and what questions need answering for a more thorough
understanding of human-autonomy teaming. Readers should
take away the following key points as they strive toward HAT

research. Machines used as part of HAT must have some
decision authority (beyond automation) to determine action
appropriately. The task scenarios that seek to invoke HATs
must emphasize interdependence between the human and their
machine partner(s). Yet, while both agency and interdependence
are necessary conditions for HATs they are not sufficient.
HATs are characterized by team-oriented intent signaling, shared
mental models, and rich communication affordances which,
no doubt, form the underlying basis for the development and
management of team-oriented intentions and shared mental
models. HATs are no longer limited to science fiction movies, it
is time for the research community to dive into this interesting,
scary, and provocative topic.

SCOPING STATEMENT

The current manuscript sought to review the concept of Human–
Autonomy Teaming (HAT), a burgeoning topic within human
factors, robotics, and computer science. Like any review, this is an
ambitious undertaking and, as such, the authors offer a statement
to appropriately scope the manuscript and to calibrate the reader.
First, this manuscript does not pursue the issue of generalized
artificial intelligence. Second, as a major user of tightly coupled
human–machine systems, the US military has been a primary
sponsor and promoter of HATs. Because the majority of work in
this field to date has come from military research, this is where
we draw most (but not all) examples and applications. Thus, one
must use caution when extrapolating lessons learned from this
review beyond a military domain. Third, there are many team
frameworks and typologies within management science, but for
the purposes of this review, we focus on the internal dynamics
of teams as these dynamics will have the greatest relevance for
HATs. With this emphasis on team dynamics we concentrate on
the influences that shape team member intent, shared mental
models, and communication. In doing so we acknowledge that
factors such as team size, team leadership, team typology, top–
down team goals, and demographic makeup of team members all
shape team functioning. We assume that within military HATs:
(1) there will be higher-level objectives (independent of the task
objectives) that constrain the HAT goals, (2) team leadership
will mostly reside with the human though it may be somewhat
fluid depending on the situation and the relative capabilities of
both the human and the machine, (3) the HAT will be used
in a task context which is constrained by higher-level mission
objectives, and (4) the HAT will comprise at least two types
of individual entities (human and machine) though it is not
limited to only two entities. This review does adopt the view that
teams pass through different stages along a lifecycle of a team
(Tuckman, 1965), and thus the lifecycle of a HAT is a necessary
and relevant consideration.

Given the above, the manuscript sought to pursue a number
of HAT-oriented challenges. One of the central challenges in
HAT research is identifying the characteristics of machines
and tasks needed to elicit human treatment of a machine as
a teammate. A central tenet of this review is that machine-
based intent, shared mental models, and social affordances
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for communication and understanding are necessary for HAT
development and maintenance. A second challenge in HAT
research is in distinguishing automation from autonomy –
this is critical because autonomy forms the basis of a HAT.
A third major challenge for HAT research is in understanding
what features of human–human teaming can be leveraged
and extended for HATs. A fourth challenge involves defining
the essential features of a HAT. A final challenge involves
communicating research needs in the context of HATs for the
research community. The current manuscript sought to the
address these challenges while discussing a few examples of HAT
research and technologies to demonstrate the state of the art in
this emerging domain.
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