
New Statistical Insights to Precision Medicine, from Targeted Treatment

Development to Individualized Tailoring Recommendation

by

Yue Wei

BS, Peking University, 2012

MS, University of Illinois, 2016

Submitted to the Graduate Faculty of

the Graduate School of Public Health in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2021



UNIVERSITY OF PITTSBURGH

GRADUATE SCHOOL OF PUBLIC HEALTH

This dissertation was presented

by

Yue Wei

It was defended on

July 26th 2021

and approved by

Ying Ding, PhD, Associate Professor of Biostatistics,

Graduate School of Public Health, University of Pittsburgh

Chaeryon Kang, PhD, Assistant Professor of Biostatistics,

Graduate School of Public Health, University of Pittsburgh

Jong H. Jeong, PhD, Professor and Interim Chair of Biostatistics,

Graduate School of Public Health, University of Pittsburgh

Chung-Chou H. Chang, PhD, Professor of Medicine, Biostatistics, and Clinical and

Translational Science

School of Medicine, Graduate School of Public Health, University of Pittsburgh

Yu Cheng, PhD, Professor of Statistics,

School of Arts and Sciences, University of Pittsburgh

ii



Copyright © by Yue Wei

2021

iii



New Statistical Insights to Precision Medicine, from Targeted Treatment

Development to Individualized Tailoring Recommendation

Yue Wei, PhD

University of Pittsburgh, 2021

Abstract

There has been increasing interest in discovering precision medicine in current drug

development. One aspect of precision medicine is to develop new therapies that target a

subgroup of patients with enhanced treatment efficacy through clinical trials. Another aspect

is to tailor existing therapies to each patient so that everyone can get the most “suitable”

treatment. Motivated by analyzing the Age-Related Eye Disease Study (AREDS) data, this

dissertation proposes new statistical methods to address issues in both aspects.

In the first part, I propose a novel multiple-testing-based approach to simultaneously

identify and infer subgroups with enhanced treatment efficacy. Specifically, I formulate the

null hypotheses through contrasts and construct their simultaneous confidence intervals,

which control both within- and across-marker multiplicity. Two types of outcomes are con-

sidered: survival and binary endpoints. Extensive simulations are conducted to evaluate the

method performance and provide practical guidance. The method is then applied to AREDS

data to assess the efficacy of antioxidants and zinc in delaying AMD progression. I further

validate the findings in AREDS2, by discovering consistent differential treatment responses

in subgroups identified from AREDS.

In the second part, I develop machine-learning-based approaches to estimate individual

treatment effects (ITE) so that individualized tailoring recommendation can be provided.

Specifically, I implement random survival forest, Bayesian accelerated failure time model,

and Cox-based deep neural network survival model under the framework of meta-algorithms:

T-learner and X-learner, to accurately estimate ITEs with survival outcomes. Treatment rec-

ommendation rule is provided based on patient’s ITE estimate and then evaluated by various

performance metrics. I investigate the merits of the proposed methods with comprehensive
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simulation studies and apply them on AREDS data. Finally, the Boruta algorithm is applied

to identify top variables that contribute to the treatment recommendation rule.

Public health significance: This dissertation addresses two precision medicine re-

search questions: (1) targeted treatment development, i.e., whether there exists subgroup

of patients with beneficial treatment efficacy; (2) tailoring existing therapies through ITE

estimation. It has the potential to significantly improve the current practice in analyzing

treatment effects, and thus to increase the success of modern drug development and precision

medicine research.
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1.0 Introduction

1.1 Overview

Traditional medical treatments are often designed for the “average patient” as a “one-

fits-all” approach, which may benefit some patients but not everyone. Precision medicine, as

an innovative approach for disease treatment and prevention, takes into account individual

variability in genes, environments and lifestyles. Motivated by analyzing the Age-Related

Eye Disease Study (AREDS) data, a large randomized clinical trial (RCT) to study the

efficacy of nutritional supplements in delaying the progression of age-related macular de-

generation (AMD), this dissertation proposes new statistical insights to precision medicine,

from targeted treatment development based on genetic factors of a patient, to individualized

tailoring recommendation based on the heterogeneous treatment effects estimation.

In the rest of this Chapter, I will start by introducing the basic concepts, such as time-

to-event data and binary data, in Sections 1.2 and 1.3. In the following, the concept of

“logic-respecting” treatment efficacy measurements and the commonly used ones will be

introduced for both types of outcomes in Section 1.4. Lastly several meta-algorithms to

estimate the conditional average treatment effect (CATE) will be discussed, followed by

three machine learning models for survival outcomes in Section 1.5.

1.2 Time-to-event data

Time-to-event data is a special type of data that describes time to a well defined endpoint

of interest (e.g., death, heart attack, onset of a pandemic, and remission of cancer). It is also

known as “survival data”, even though the outcome is not always death. There are unique

features of time-to-event variables. First of all, time-to-event variables are always positive

and the distribution can be skewed. Secondly, complete data is not always available. For

example, death could certainly happen after the study ends and the observed time when

1



patients exit the study is not the actual time to death. Instead, it is called censored time.

There are three types of censoring. The most common one is the right censoring and

occurs when a participant does not have the event of interest during the study and thus their

last observed time is less than their actual time to event. This can occur when a participant

drops out before the study ends or when a participant is event free by the end of the study.

Another type of censoring is the left censoring. It happens when a recruited participant

already has the event of interest prior entry of the study but the time of developing the

event is unknown. The last type is interval censoring when the time to event is known only

to lie within an interval instead of being observed exactly. Truncation often adds complexity

to the data analysis and it is different from the censoring. Truncation is due to sampling

bias that only individuals satisfying specific conditions could be recruited to the study.

Because of the unique features of time-to-event data, the analysis of such data, or survival

analysis, requires different statistical techniques.

1.2.1 Models for time-to-event data

The survival function of event time (T ) is defined as the probability that T is greater

than a given time t:

S(t) = P (T > t), 0 < t <∞.

When T is absolutely continuous, we have a one-to-one relationship between the survival

function S(t), density function f(t), hazard function λ(t), and cumulative hazard function

Λ(t), expressed as:

S(t) = e−Λ(t),

where

Λ(t) =

∫ t

0

λ(s)ds, λ(t) = f(t)/S(t).

Survival functions and (cumulative) hazard functions are more commonly used for modeling

the survival time T than the density function. Like analysis of other types of outcomes, a

key aspect of survival analysis is to understand the relationship between covariates and the

survival function through regression models.

2



1.2.1.1 Cox proportional hazards model

The most popular regression model of survival analysis is the Cox proportional hazard

(CoxPH) model (Cox, 1972a). The hazard function can be expressed as:

λ(t;X) = λ0(t) exp(βX), (1.2.1)

where λ0(t) is an unspecified baseline hazard function, X is a vector of covariates, and β is a

vector of covariate coefficient parameters. The method does not assume the baseline hazard

function, but it has a key assumption that the effects of the predictor variables upon survival

are constant over time and are additive in one scale. The model is interpreted as the ratio of

hazard functions is a constant (independent of time t) between two subjects with different

X. The coefficients in a Cox regression relate to hazard; a positive coefficient indicates a

worse prognosis and a negative coefficient indicates a protective effect of the variable with

which it is associated.

Integrate both sides of equation 1.2.1 from 0 to t to obtain the cumulative hazards:

Λ(t;X) = Λ0(t) exp(βX),

which are also proportional. Further, we can derive the survivor function as:

S(t;X) = e−Λ0(t) exp(βX) = {S0(t)}exp(βX),

where S0(t) = exp (−Λ0(t)) is a baseline survival function. Thus, the effect of the covariate

values X on the survivor function is to raise it to a power given by the relative risk exp (βX).

The PH model is the most popular regression model in survival analysis due to the partial

likelihood approach for right-censored failure time data (Cox, 1972a). The approach is simple

and efficient because the partial likelihood only involves the finite-dimensional β parameter

without the nuisance infinite-dimensional λ0(t). The resulting β estimate is asymptotically

equivalent to that obtained from the full likelihood.

3



1.2.1.2 Accelerated failure time model

Another commonly used regression model for survival analysis is the accelerated failure

time (AFT) model (Wei, 1992), which proposes the following relationship between covariates

and log T :

log T = µ+ αX + σW,

where β is a vector of coefficients, and W follows an unspecific distribution. The above

framework describes a general class of models. Depending on the distribution for W , we will

obtain different models, but all will have the same general structure. Common distributions

used in AFT models includes normal distribution (also known as log-normal model), stan-

dard logistic distribution (log-logistic model), and 2-parameter extreme value distribution

(Weibull model). Notice that Weibull model is the only model that satisfies both AFT and

PH. Given transformations

γ =
1

σ
,

λ = exp(−µ
σ

),

β = −α
σ
,

we have a Weibull model with baseline hazard of

h(t|x) = (γλtγ−1) exp(βx).

Note that different approaches result in different coefficient parameters in a Weibull regres-

sion model. The signs of α and β are opposite. Special caution is needed for interpretation

of the coefficient parameters.
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1.3 Binary data

Binary data refer to those that can take only one of the two values, such as true or false

questions, mortality (dead or alive), and flipping a coin (head or tail). Binary variables have

a variety of applications including but not limited to medical diagnoses, facial recognition,

and decision trees. One of the popular classification example using neural networks is to

determine whether an image is a cat or a dog. For biomedical research such as clinical

trials, binary outcomes serve as a key measure to compare the treatment effects on disease

status. As for all types of outcomes, the analysis of binary outcomes provides unique aspect

of scientific practice, and different statistical considerations are needed as compared to other

types of outcomes such as continuous and time-to-event variables.

1.3.1 Models for binary data

Assume Y follows Bernoulli distribution with P (Y = 1) = π, we will consider models for

π, which can depend on explanatory variables (i.e., x1, x2, . . . , xp).

π(x) = P (Y = 1|x1, x2, . . . , xp).

Using the generalized linear model,

g(π(x)) = β0 + β1x1 + · · ·+ βpxp.

Different link function g can result in different models.

1.3.1.1 Logistic model

Logistic regression uses the logit link to explain the relationship between π and explana-

tory variables.

g(π(x)) = log(
π

1− π
) = β0 + β1x1 + · · ·+ βpxp.

Whereas 0 ≤ π ≤ 1, the range for logit(π) is all real numbers. However, with the transfor-

mation using logit link, the interpretation of the coefficients estimates is on the scale of odds

ratio (OR).
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1.3.1.2 Log-binomial model

Similar to the logistic model, the error term of Y is assumed to follow a Binomial distri-

bution. The different assumption is that the link function is now a log function.

g(π(x)) = log(π) = β0 + β1x1 + · · ·+ βpxp.

Since the interpretation of odds ratio is not straightforward and sometimes hard to under-

stand, some researchers prefer using relative risk (RR) instead. Although for rare events,

OR may serve as a good approximation for RR, when events are common, OR tends to

overestimate the risk ratio. The log-binomial model provides a natural interpretation on

the RR scale and thus is a better alternative for the analysis of cross-sectional studies with

binary outcomes (Barros and Hirakata, 2003). When the link function is misspecified or

when the probability distribution of the response variable was truncated, the log-binomial

model tends to provide biased point estimates. A modified Poisson model introduced by Zou

(2003) is generally preferable (Chen et al., 2018).

1.4 Logic-respecting treatment efficacy measures

Typically the goal of a RCT is to compare the new treatment (denoted by Rx) with a

control such as a placebo or a standard of care (denoted by C). The “relative” treatment

effect between Rx and C describes the treatment efficacy. When heterogeneity exists in

the population, the measurement of treatment efficacy in subgroups and in combination of

subgroups is required. Assume a marker separates the population into “marker positive”

group (g+) and “marker negative” (g−) group. In targetd treatment development process,

researchers care about not only the treatment efficacy in g+ or g−, but also that in the

combined group {g+, g−}. Formally described in Lin et al. (2019), a “logic-respecting”

treatment efficacy measure requires that the treatment efficacy in the combined group should

be within the range defined by the treatment efficacy for the two individual groups. If we

use µ to denote treatment efficacy, then a logic-respecting treatment efficacy measure should
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satisfy µ{g+,g−} ∈ [µg− , µg+ ], assuming µg− < µg+ . Although it seems trivial, it has not

been fully recognized and some commonly used efficacy measures are not logic-respecting

for mixture populations. We will demonstrate this issue with examples in time-to-event and

binary outcomes.

1.4.1 Efficacy measures for time-to-event outcomes

Time-to-event outcomes, also known as survival outcomes, are commonly used in clinical

trials, especially in oncology studies. These outcomes take account of both whether the

event occurs and the timing of the event. The most widely used model to analyze time-to-

event data is the CoxPH regression, where the hazard ratio (between Rx and C) is obtained

from the coefficient estimates, and has been a commonly used treatment efficacy measure.

However, as shown in Ding et al. (2016), the HR is not a proper efficacy measure to use when

the population is a mixture of subgroups. This is because the overall population typically

does not have a constant HR. In fact, the HR of the mixture population is usually a complex

function of time, with values at some time points outside the range of [HRg− ,HRg+ ]. This

is because HR{g+,g−} can not be expressed as a weighted combination of HRg− and HRg+ .

The combination can only be made on density or cumulative density functions, not on the

hazard ratio scale. For example, we can generate data from a Weibull distribution where

HRg− = exp(0.3) = 1.35, and HR+ = exp(−0.4) = 0.67 with an equal prevalence of the two

subgroups. However, the true HR{g+,g−} is a smooth function of time and goes below 0.67

when t is large (Figure 1.4.1). Thus using HR as the efficacy measure can lead to paradoxical

findings in patient targeting.

Other commonly accepted treatment efficacy measures under consideration include the

ratio or difference of: (1) survival probability at a specific timepoint, (2) mean (restricted)

survival time, and (3) quantile survival time. Ding et al. (2016) demonstrated that the ratio

or difference of mean or median survival times is logic-respecting. In addition, they have

more direct clinical interpretations compared to HR. In this dissertation, we consider using

the ratio of quantile survival times as treatment efficacy measure in the first part of Chapter

2 and the difference of survival probability as treatment efficacy measures in Chapter 3.
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Figure 1.4.1: The plot of HR for g−, g+, and {g+, g−}.

1.4.2 Efficacy measures for binary outcomes

As described in Section 1.3, binary outcomes are often modeled using logistic regression

or log-binomial models, where the OR or RR (between Rx and C) are natural choices for

the efficacy measures for binary case. However, as demonstrated in Lin et al. (2019), OR is

not logic-respecting, as we show below.

Table 1.4.1 gives a hypothetical example for responding or non-responding probabilities

in each g+ and g− subgroup and the overall {g+, g−}. We can calculate the OR for each

group and the all-comers as follows,

ORg+ =
750× 500

500× 250
= 3, ORg− =

250× 900

100× 750
= 3, OR{g+,g−} =

1, 000× 1, 400

600× 1, 000
=

7

3
.

Therefore, OR is not logic-respecting since it leads to paradoxical conclusions. For example,

assume OR > 2.5 indicates the new treatment is more efficacious. Then in the g+ and g−

group individually, the Rx is clinically more efficacious while in the combined {g+, g−} group

it is not.
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Table 1.4.1: An example of responding (R) and non-responding (NR) probabilities given

Rx and C, in g+ and g− subgroups and the all-comers {g+, g−} population

g+ subpopulation g− subpopulation population

R NR R NR R NR

Rx 750 250 + 250 750 = 1, 000 1, 000

C 500 500 + 100 900 = 600 1, 400

1/2 1/2 1

The other commonly used efficacy measure RR, has been shown to be logic-respecting

in Lin et al. (2019). Back to the previous example in Table 1.4.1,

RRg+ =
750

750+250
500

500+500

=
3

2
, RRg− =

250
250+750

100
100+900

=
5

2
, RR{g+,g−} =

1,000
1,000+1,000

600
600+1,400

=
5

3
.

Now the RR in the combined group is within the range determined by RRg+ and RRg− .

Rigorous proof of the property can be found in Lin et al. (2019). In the second part of

Chapter 2 where our interest is on the 10-year progression status of late-AMD, the RR is

used as the efficacy measure.

1.5 Meta-algorithms and machine learning models for survival data

1.5.1 Framework and definitions

Let (Yi(0), Yi(1),Xi, Zi) denote the dataset of patient i under Neyman-Rubin potential

outcome framework (Rubin, 1974; Splawa-Neyman et al., 1990), whereXi is a p−dimensional

covariate matrix, Zi ∈ {0, 1} is the treatment indicator, and Yi(0), Yi(1) are the potential

outcomes when i is assigned to the control group and treatment group. The causal effect

of the treatment on a new patient i with the feature vector Xi can be estimated by the

9



individual treatment effect (ITE), which is defined as Yi(1) − Yi(0). However, the counter-

factual outcomes of the same individual cannot be obtained simultaneously. The conditional

average treatment effect (CATE) can then be used to estimate the causal effect which is

defined as follows (Rubin, 2005):

τ(X) = E[Yi(1)− Yi(0)|Xi = X]. (1.5.1)

Kunzel et al. (2018) has shown that the best estimate for the CATE is also the best estimate

for the ITE.

To aid the estimation of CATE, the following three assumptions are needed:

textbfAssumption 1 (Consistency)

Yi = ZiYi(1) + (1− Zi)Yi(0)

Assumption 2 (Unconfoundedness)

Zi⊥⊥ (Yi(0), Yi(1))|Xi

Assumption 3 (Population Overlap)

P (Zi = 1|Xi = xi) ∈ (0, 1)

The consistency assumption implies that the actual observed outcome for an individual is

the outcome under his or her observed exposure history. The unconfoundedness assumption

requires the treatment assignment to be independent of the potential outcomes given covari-

ates sets, which rules out the existence of unobserved factors that affect treatment choice

and are also correlated with the outcomes. The population overlap assumption describes

that for each value of covariate set, there is a positive probability of being assigned to both

treatment and control arms, or equivalently, there is sufficient overlap in the characteristics

of treated and untreated patients for adequate matches.
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1.5.2 Meta-algorithms

Kunzel et al. (2018) formally defined a series of meta-algorithms (or meta-learners) to

estimate CATE which take advantage of machine learning or regression estimates in a specific

manner where the base learners can be any form. It adds flexibility to leverage different prior

information and can be easily adapted to various types of data.

1.5.2.1 S-learner

The S-learner takes a single prediction model where the treatment indicator is included

as a feature similar to all of the other covariates. In that case, the training set is defined as

{(Y1, X1, Z1), . . . , (Yn, Xn, Zn)}. The estimated response function is then

µ(x, z) = E[Y obs|X = x, Z = z],

using any base learner on the entire dataset. Denote the estimate of the response as µ̂. The

CATE estimate is given by

θ̂S(x) = µ̂(x, 1)− µ̂(x, 0). (1.5.2)

1.5.2.2 T-learner

The T-learner consists two steps to estimate the response function for patients assigned

to treatment and control groups. First, the treatment response function,

µ1(x) = E[Y (1)|X = x]

is estimated by a base learner, such as any supervised machine learning or regression model,

using the observations in the treatment group {X1
i , Y

1
i }. Second, the response function for

patients in the control arm,

µ0(x) = E[Y (0)|X = x]

is estimated by another base learner, using the control group observations {X0
i , Y

0
i }. Denote

the estimates for both responses by µ̂1(x) and µ̂0(x), then the CATE estimate is given by

θ̂T (x) = µ̂1(x)− µ̂0(x). (1.5.3)
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Note that treatment assignment is no longer a feature in the model, since patients from

different treatment arms are now used in estimating two separate response functions.

1.5.2.3 X-learner

Proposed by Kunzel et al. (2018), the X-learner is provably efficient under the scenario

when the number of patient in one group is much larger than that in the other group. It

involves three steps.

Step 1. Estimate the response functions using any base learners (as described in T-

learner).

µ1(x) = E[Y (1)|X = x]

µ0(x) = E[Y (0)|X = x].

Step 2. Impute the treatment effects for patients in the treated group based on the

control-response estimate, and the treatment effects for patients in the control group based

on the treatment-response estimate.

D1
i = Y 1

i − µ̂0(X1
i ),

D0
i = µ̂1(X0

i )− Y 0
i .

Where (Y 1
i , X

1
i ) and (Y 0

i , X
0
i ) denote the observed response and covariate set for individual

i in the treatment or control group, respectively.

Step 3. Estimate the two treatment effect functions using any supervised learning or

regression methods and obtain estimates τ̂1 and τ̂0.

θ1(x) = E[D1|X = x]

θ0(x) = E[D0|X = x].

Finally the CATE is defined as a weighted linear combination of the two treatment effects

estimates.

θ̂(x) = g(x)θ̂0(x) + (1− g(x))θ̂1(x). (1.5.4)
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Here g(x) ∈ {0, 1} is a weight function and it is good to use an estimate of the propensity

score for g as suggested by Kunzel et al. (2018).

The base learners for meta-learners (i.e., for each treatment arm in T- and X-learner,

and for overall population in S-learner) can be any machine learning or regression models. It

greatly adds flexibility to the framework and makes it generalizable to any type of outcomes.

For example, if the outcome of interest is continuous, the base learners could be linear

regression or regression tree. While for binary outcomes, logistic regression or random forest

can be used. For time-to-event outcomes, we specifically examined the following three types

of models.

1.5.3 Random survival forest (RSF) model

The random survival forest model (Ishwaran et al., 2008) is a tree-ensemble nonparamet-

ric method for survival outcomes. It grows every single tree by randomly drawing bootstrap

samples from original data and further randomly selecting a subset of predictors as candi-

dates for splitting at each node. At each node, the best split is found among all binary

splits defined by the selected predictors according to a splitting rule, such as the log-rank

test. Finally, the model aggregates terminal nodes across all survival trees and obtain an

ensemble survival prediction. RSF has become a popular survival prediction method, and it

does not assume linearity among predictors. We implement the RSF model through the R

package randomforestSRC (Ishwaran and Kogalur, 2007).

1.5.4 Bayesian accelerated failure time model (BAFT)

The Bayesian accelerated failure time model is based on the function log T = f(X) +W ,

where f(X) is a sum of Bayesian additive regression trees (BART), and W is the residual

term. Henderson et al. (2020) proposed to model the distribution of W as a location-

mixture of Gaussian densities by using the centered Dirichlet process (CDP) prior, which

leads to a non-parametric specification. The individual trees and bottom nodes serve as

model parameters with a regularization prior to allow each tree to contribute only a small

part to the overall fit and thus avoid over-fitting. Technical details can be found in Henderson
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et al. (2020). We implement the BAFT model through the R package AFTrees on Github.

1.5.5 Cox-based deep neural network (DNN) survival model

The DNN model based on the Cox model can be expressed as h(t|Xi) = h0(t)eg(Xi;β),

where the prognostic index g(Xi; β) is an unknown function with parameters β. Traditional

Cox model assumes a simple linear relationship on the prognostic index (g(Xi; β) = βXi),

while the DNN model can approximate various non-linear covariate structures by estimating

g(Xi; β). Sun et al. (2020) implemented the Efron’s approach in the partial likelihood to

handle tied events and introduced the L1 penalty to deal with high-dimensional covariates,

with the DNN loss function presented as:

l(β;X) =
1

ND

∑
j∈D

{∑
i∈Hj

g(Xi; β)−
mj−1∑
l=0

log

(∑
i∈Rj

eg(Xi;β) − l

mj

∑
i∈Hj

eg(Xi;β)

)}
,

where D is the set of all events with size ND and {tj} is the set of unique event times; Hj is

the set of subjects {i} such that Yi = tj and δi = 1 and mj is the size of Hj; and Rj is the

risk set satisfying Yi ≥ tj. Once ĝ(Xi; β̂) is obtained, the predicted survival probability for

subject i at time t can be computed through Ŝ(t|Xi) = exp{−Ĥ0(t)eĝ(Xi;β̂)}.
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2.0 A Simultaneous Inference Procedure to Identify Subgroups from RCTs:

Application to Analysis of AMD Progression

2.1 Introduction

There has been increasing interest in discovering personalized medicine in current phar-

maceutical drug development and medical research. One aspect of personalized medicine

research is to tailor existing therapies to individual patients so that each patient can get

the most “suitable” treatment. Another aspect is to develop new therapies that target a

subgroup of patients through modern randomized controlled trials. This research focuses on

the latter aspect, which is also called “targeted” or “tailored” drug development. In such

a development process, researchers are concerned with finding whether there are subgroups

from an overall patient population that exhibit a differential response to the treatment. The

subgroup with a significantly better response to the treatment could be identified for a tai-

loring strategy with appropriate labeling language and reimbursement considerations in the

market. The best known example of a drug targeting a subgroup of patients is Herceptin for

breast cancer patients with HER2/neu over-expression (Romond et al., 2005). More recent

examples of such drugs include Xalkori for non-small cell lung cancer patients with ALK

translocation (Shaw et al., 2011) and Zelboraf for skin cancer patients with BRAF mutation

(Flaherty et al., 2011).

In RCTs, there is usually a treatment arm and a control arm (e.g., placebo or standard-

of-care). The “relative effect” between treatment and control is referred to as “treatment

efficacy”. How to confidently identify subgroups that exhibit enhanced treatment efficacy

(from testing a large collection of markers) is a fundamental problem in targeted drug devel-

opment. Consequently, how to correctly measure this treatment efficacy is critical and can

be non-trivial. It depends on the nature of the disease being treated and the clinical outcome

of interest. For example, in type-II diabetes, the primary clinical outcome is the decrease

in HbA1c from baseline, which is a continuous and (often) normally distributed outcome.

A natural efficacy measure is the difference in the mean decrease of HbA1c, relative to the
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control arm. However, in studies where the primary endpoint is time-to-event, such as time

to cancer remission, or binary, such as being a responder or not, and when the patient pop-

ulation is a mixture of subgroups with differential treatment responses, the commonly used

hazard ratio HR or odds ratio OR is not a suitable efficacy measure. Lin et al. (2019) fully

discussed this issue and provided a formal definition of “logic-respecting” efficacy measure.

Simply, a logic-respecting efficacy measure has to satisfy the criterion that the efficacy for

the combined (mixture) group has to be between the efficacies of the subgroups. This logic-

respecting property is related to “collapsibility”, which is defined for measures of association

in the literature (Pearl, 2000) as well as for measures of causal effect (Greenland et al., 1999;

Hernan and Robins, 2020; Huitfeldt et al., 2019).

Putting it in context of measuring treatment efficacy when subgroups exist, an efficacy

measure is “strictly collapsible” if each subgroup having the same efficacy implies all-comers

having the same efficacy as well. Thus, being logic-respecting implies collapsibility. Note

that the efficacy measures and their properties (such as “logic-respecting” or “collapsible”)

are defined in the parameter space (i.e., population level), and these properties are specific

to the measures, not the statistical models that are used to estimate these measures.

With enormous advances in genotyping technologies, high-throughput genetic data be-

come more increasingly collected in modern RCTs for the potential of personalized medicine

development. Usually either a pre-selected panel of single nucleotide polymorphisms (SNPs)

or SNPs across the whole genome are genotyped to study how patients respond differently to

the therapy based on their genetic makeup. For example, in our motivating study, the Age-

Related Eye Disease Study (Age-Related Eye Disease Study Research Group, 1999), which

is a large multi-center RCT for an eye disease, age-related macular degeneration, DNA sam-

ples of consenting participants were collected and the genome-wide typing was performed

(Fritsche et al., 2013, 2016). AMD is a polygenic and progressive neurodegenerative dis-

ease, which is a leading cause of blindness in the elderly. Patients can progress to one or

both forms of late-AMD: central geographic atrophy (GA) and choroidal neovascularization

(CNV). Many genetic studies have shown that the development or the progression of AMD is

associated with various genetic risk factors (Fritsche et al., 2016; Seddon et al., 2007; Sun and

Ding, 2019; Wei et al., 2020b; Yan et al., 2018). Specifically, in two recent genomewide asso-
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ciation studies for AMD progression using the AREDS data (Sun and Ding, 2019; Yan et al.,

2018), where time-to-late-AMD is the outcome, multiple variants from ARMS2-HTRA1 and

CFH gene regions have been discovered to be associated with AMD progression. Besides

association analyses where no treatment is involved, multiple research groups also investi-

gated whether variants from these two gene regions are associated with differential treatment

responses. A recent review article by Cascella et al. (2018) summarized the controversial

findings. Research groups such as Klein et al. (2008) and Seddon et al. (2016) reported that

genetic variants from CFH and ARMS2 regions were found to be associated with differen-

tial responses to the antioxidants plus zinc treatment. However, the AREDS investigators

reported no significant associations between CFH and ARMS2 regions and the nutritional

supplements, when multiplicity adjustment has been taken into account (Chew et al., 2015).

To fully understand the effects of those nutritional supplements on AMD progression and

development and to infer whether there are genetic subgroups with enhanced treatment ef-

ficacy, a rigorous statistical procedure that can simultaneously identify and infer subgroups

is required. We are specifically interested in studying the treatment effects of two types of

endpoints: time-to-event endpoint and binary endpoint. The time-to-event endpoint can be

expressed as the time to late AMD status, while the binary endpoint refers to the 10-year

progression status of AMD patients.

2.2 Time-to-event endpoint

2.2.1 Existing methods for identification of subgroups

There is a rich literature for detecting heterogeneous treatment effects across groups for

time-to-event outcomes. One simple but broadly used method is to test the treatment-by-

marker interaction in the CoxPH model (Cox, 1972b). However, this method cannot provide

which group to target directly, nor can it provide inference on subgroup-specific efficacy.

Post-hoc analyses are usually required. Another type of approach focuses on testing the

existence of a subgroup (with an enhanced treatment effect) using either a logistic-Cox model
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for the response in each subgroup and the latent subgroup membership (Wu et al., 2016) or

a new CoxPH model including a nonparametric component for the covariate in the control

group and a subgroup-treatment-interaction effect defined by a change plane (Kang et al.,

2017). There are also many tree-based methods for subgroup identification. For example,

RECursive Partition (RECPAM) (Ciampi et al., 1995; Negassa et al., 2005) tends to select a

split that maximizes the “difference” in Cox partial likelihood between the two child nodes.

Su et al. (2008) developed interaction trees where the splitting criterion is based on the test

statistic for the treatment-by-split interaction within each parent node intended for splitting.

The Subgroup Identification based on Differential Effect Search (SIDES) approach invented

by Lipkovich et al. (2011) focuses on a direct search for subgroups with a beneficial treatment

effect utilizing recursive partitioning on each individual candidate biomarker. Loh et al.

(2015) developed a framework called GUIDE (Generalized, Unbiased, Interaction Detection

and Estimation), which reduces the selection bias in tree-based subgroup search methods by

including an additional screening step to select the best covariates adjusted for the number

of possible splits. Similar ideas were described in the conditional inference trees (Hothorn

et al., 2006) and extended to a more general setting of model-based recursive partitioning

(Seibold et al., 2016; Zeileis et al., 2008). The Virtual Twins method developed by Foster

et al. (2011b) first predicts the individual treatment effect using random forests under the

potential outcome framework and then identifies subgroups by applying classification and

regression trees (CART). Another group of methods aims at finding the optimal treatment

regimes, including Zhao et al. (2012), Zhang et al. (2012) and Xu et al. (2015). Instead

of searching for the subgroups with beneficial treatment effect, these method tend to find

the best treatment for a given patient profile. Lipkovich et al. (2017) provides a thorough

review on but not limited to the above mentioned methods. Interested readers may refer to

Table XV in their paper for key features of commonly used subgroup identification methods.

Recently Zhang et al. (2020) proposed a nonparametric method for subgroup identification

using restricted mean survival time based on maximizing a value function that directly

reflects the subgroup-treatment interaction effect.

The aforementioned methods are mostly machine learning-based. Another main type of

approach for identifying subgroups is through multiple testing, and our proposed method
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belongs to this type. The biggest advantage of our method is that it offers “strong” multi-

ple comparisons error rate control, controlling the expected number of confidence intervals

with false coverages (regardless of what the true parameter values are). Such confidence

statement is challenging for machine learning methods to match. Machine learning methods

often use permutation or other resampling techniques. However, to achieve “strong” mul-

tiple comparisons control, resampling-based cross-validation needs to resample through all

possible parameter configurations (all true, all but one true, all but two true, and etc), which

is computationally prohibitive. It is understandable that methods such as SIDES (Lipkovich

et al., 2011) resample at the so-called “complete-null” only, with all the nulls being true,

resulting in “weak” multiple comparisons error rate control. In the original SIDES paper,

the authors discuss such “weak” control in Section 5. In our motivating disease, AMD, the

markers for subgroup identification are SNPs. With linkage disequilibrium among the SNPs,

the complete-null (no association) hypothesis is statistically false (Ding et al., 2018). In such

circumstances, strong control of multiple comparisons error rate is desired. In addition, none

of these aforementioned methods simultaneously provides inference for treatment efficacy in

both targeted group and non-targeted group, and some approaches use illogical efficacy mea-

sures. The targeted treatment development process usually involves the co-development of

a drug compound and a companion diagnostic tool that identifies the suitable subgroup

of patients for the drug to target. Therefore, the subgroup usually needs to be “simple”

(e.g., defined by one or two biomarkers) for clinical and regulatory feasibility. In this arti-

cle, we develop a multiple-testing-based approach which aims to simultaneous identify and

infer “simple” subgroups with enhanced treatment efficacy defined using a logical efficacy

measure.

The section is organized as follows. Section 2.2.2 introduces the logic-respecting efficacy

measure for time-to-event outcomes that we choose to use and its associated properties, and

with that efficacy measure how we formulate the contrasts to identify subgroups and adjust

for the multiplicity. Section 2.2.3 presents simulations to show finite sample performance of

the proposed method and uses realistic simulations to summarize practical rules for the use

of the method. Then we apply our method on the AREDS data and present our findings in

Section 2.2.4. Finally, we discuss and conclude in Section 2.2.5.
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2.2.2 Proposed Methods

Motivated by the AREDS data set where the SNPs were considered as markers for sub-

group identification, we focus on the setting of ordinal markers that separate the population

into three groups (M = 0, 1, 2) to illustrate our method. Brief discussions are provided in

Section 2.2.5 regarding how to generalize the method to handle markers with more categories

or continuous markers.

2.2.2.1 Ratio of quantile survival times and its property

In the analysis of survival outcomes, it is known that the hazard ratio is lack of collapsi-

bility (Ding et al., 2016) and not logic-respecting (Lin et al., 2019) when subgroups exist.

Therefore other treatment efficacy measures, such as the ratio or difference of (1) survival

probability at a specific time point, (2) mean (restricted) survival time, and (3) quantile

survival time, are considered. Ding et al. (2016) demonstrated that the ratio or difference of

mean or median survival times (between Rx and C) is logic-respecting. In this manuscript,

we choose ratio of quantile survival times as our efficacy measure where quantile value can be

pre-specified. The interpretation of this measure is straightforward and we will also demon-

strate that it has a unique property under the accelerated failure time (AFT) model that we

consider.

Assume the time-to-event data fit the following AFT model:

log T = β0 + β1Trt+ β2I(M = 1) + β3I(M = 2) +

β4Trt× I(M = 1) + β5Trt× I(M = 2) + β6X + σW, (2.2.1)

where Trt = 0 (C) or 1 (Rx) is the treatment assignment, M = 0, 1, or 2 is the marker

for subgroup testing. If the marker is a SNP, then M denotes the number of minor allele

(denoted as ‘a’) the patient carries (0 for AA, 1 for Aa, and 2 for aa). X denotes the

covariates (in addition to M and Trt) that are possibly associated with the outcome, and

the residual term σW can follow various distributions (e.g., extreme value distribution, which
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makes the AFT model equivalent to a Weibull model). X is also called “prognostic” factors.

The model in formula (2.2.1) can also be expressed with respect to the survival function:

S(t|Trt,M,X) = S0(exp{−(β0 + β1Trt+ β2I(M = 1) + β3I(M = 2) +

β4Trt× I(M = 1) + β5Trt× I(M = 2) + β6X)} t), (2.2.2)

where S0(·) is the survival function for the exponentiated residual term eσW .

Denote by νTrtM,τ the corresponding quantile survival time at which survival probability

is equal to τ in each marker-by-treatment group (τ is pre-specified), and denote by rτM the

quantile ratio between Rx and C in each marker group. Then by setting the survival function

for each group equal to τ , the corresponding quantile survival time and their ratios can be

directly calculated as follows:

νRx0,τ = S−1
0 (τ)eβ0+β1+β6X , νC0,τ = S−1

0 (τ)eβ0+β6X , r0 =
νRx0,τ

νC0,τ
= eβ1 ,

νRx1,τ = S−1
0 (τ)eβ0+β1+β2+β4+β6X , νC1,τ = S−1

0 (τ)eβ0+β2+β6X , r1 =
νRx1,τ

νC1,τ
= eβ1+β4 ,

νRx2,τ = S−1
0 (τ)eβ0+β1+β3+β5+β6X , νC2,τ = S−1

0 (τ)eβ0+β3+β6X , r2 =
νRx2,τ

νC2,τ
= eβ1+β5 .

It can be easily seen that the ratio in each subgroup does not depend on the quantile value

τ (and thus we drop τ in the super-index of rM). More importantly, although the quantile

survival time for each group depends on the baseline prognostic factors (β6X), the ratio

does not. We name this as the covariate-invariance property. This property is attractive

as it makes the comparison (between Rx and C) simple. Further it can be shown that this

property also holds in the combined groups. For example, suppose we are interested in the

ratio of quantile survival times in the mixture population of {M = 0, 1} (denoted as rτ01).

We can calculate rτ01 from its definition, rτ01 =
νRx01,τ

νC01,τ
, where νRx01,τ and νC01,τ can be obtained by

solving the following equations,

t = νRx01,τ : p0S0(e(−β0−β1−β6X)t) + (1− p0)S0(e(−β0−β1−β2−β4−β6X)t) = τ,

t = νC01,τ : p0S0(e(−β0−β6X)t) + (1− p0)S0(e(−β0−β2−β6X)t) = τ, (2.2.3)

with p0 representing the prevalence of M = 0 in the combined population {0, 1}. By

combining the two groups at the probability level, this calculation follows the subgroup
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mixable estimation (SME) principle (Ding et al., 2016). Let xRx01,τ = e−β0−β6XνRx01,τ and

xC01,τ = e−β0−β6XνC01,τ , then we have rτ01 = νRx01,τ/ν
C
01,τ = xRx01,τ/x

C
01,τ . Since the solutions for

xRx01,τ and xC01,τ from equations (2.2.3) are free of β6X, we also have the covariate-invariance

property for rτ01. Note that this property holds regardless of which specific error distribution

is chosen.

2.2.2.2 Confident Effect 4 contrasts (CE4) for ratio of quantile survival times

Targeted therapy development concerns about (1) whether there exists a subgroup with

enhanced treatment efficacy and (2) the treatment efficacy in both targeted and non-targeted

subgroups (for appropriate drug labeling and reimbursement considerations). To answer both

questions simultaneously, we propose to use contrasts to directly compare efficacy between

different subgroups and combination of subgroups. The markers in our motivating example

are SNPs, and for each SNP, individuals can be separated to 3 genotype groups AA, Aa,

aa. The traditional SNP testing problem arises from the genome-wide association study

(GWAS), which aims to identify SNPs that are associated with a specific disease (and no

treatment is involved). It is a common practice to test for each SNP whether it has a

dominant, recessive, or additive effect. For a given SNP, assume having minor allele “a”

is harmful. Then for a dominant effect, individuals carrying at least one copy of minor

allele (i.e., Aa, aa) are associated with the disease, and the risks of developing the disease

from individuals carrying one copy and carrying two copies are equal. For a SNP to have a

recessive effect, only individuals carrying two copies of minor allele (i.e., aa) are associated

with the disease. Lastly, for a SNP to have an additive effect, the risk of developing the

disease is linearly associated with the number of minor allele the individual carries.

Some commonly used methods for testing SNP association include the 2-degrees-freedom

F-test, which tests the complete null (H0 : µaa = µAa = µAA) against the existence of a

non-zero contrast (Lettre et al., 2007); the linear trend test which tests the complete null

against an additivity alternative; and the MAX3 test, where the maximum test statistics

under three genetic models is used to denote the significance of a single SNP (Lettre et al.,

2007). However, these methods all focus on testing the complete null against some specific
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alternatives, and as demonstrated by Ding et al. (2018), the complete null can be statistically

false for (almost) all SNPs as long as there is a causal SNP. Moreover, when treatments are

involved, the exact “dominant”, “recessive”, and “additive” effects, measured by a clinical

outcome, can rarely hold. Therefore, testing a complete null versus a specific alternative

can be misleading since it is highly likely none of the specific alternatives or the complete

null is true in reality. More discussion on this can be found in Chapter 15 in the Handbook

of Multiple Comparisons (Cui et al., 2021). To fill the gap, we propose the use of the

following four contrasts with survival endpoints for testing and inferring subgroups with

differential treatment effects. The simultaneous confidence intervals provide direct inference

on all possible SNP effects and their confidence set can be directed toward patient targeting.

log κ(1,2):0 = log(
r12

r0

) = log r12 − log r0, log κ1:0 = log(
r1

r0

) = log r1 − log r0,

log κ2:(0,1) = log(
r2

r01

) = log r2 − log r01, log κ2:1 = log(
r2

r1

) = log r2 − log r1. (2.2.4)

We drop τ in the notation as τ is pre-specified. Moreover, these contrasts are built on the log

scale of the efficacy measure since our previous experience demonstrates that the normality

approximation seems to work better on the log scale (as compared to the original scale) (Ding

et al., 2016). In fact these four contrasts are analogous to the contrasts proposed in Ding et al.

(2018) where the efficacy in their case is measured by a continuous outcome. Specifically,

log κ(1,2):0 tests for a “dominant” effect (of allele a), log κ2:(0,1) tests for a “recessive” effect,

and log κ1:0 and log κ2:1 test for an “additive” effect. Note that although the “superdominant”

effect (e.g., the heterozygous group Aa is different from the combined two homozygous groups

{AA, aa}) is rarely seen in genetics, it can also be inferred from these four contrasts, as these

four contrasts can determine the complete ordering of these three genotype groups (Ding

et al., 2018). From these contrasts, we are able to tell which subgroup or combination of

subgroups exhibits a differential efficacy as compared to its complementary group.

Without assuming the direction of the marker effect is known (i.e., without knowing

whether carrying the minor allele a is beneficial or harmful), we propose to use two-sided

simultaneous confidence intervals on these four contrasts so that we can identify differential

subgroup(s) and infer their efficacy simultaneously. In the situation of a confirmatory trial

when one has enough prior information about the direction of the marker effect, one may
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consider using four one-sided simultaneous confidence intervals. Note that level 100(1−α)%

simultaneous confidence intervals for those contrasts effectively form a level-α interaction

test: reject the null hypothesis of no interaction between Treatment effect (Trt) and marker

group (M) if at least one of the confidence intervals does not contain zero. Moreover, this

formulation of assessing “interaction” effect is advantageous toward patient targeting as it

allows decision-making based on clinically meaningful differences (reflected from confidence

intervals on efficacy comparisons) instead of a mere statistical significance (such as the p-value

from an interaction test). To estimate the four contrasts from equations (2.2.4) under model

(2.2.1), we propose the following three steps and name this approach as “CE4-Survival”:

1. Estimate all the parameters in the survival model (e.g., parameters related to the distri-

bution of error term and β1, . . . , β6 in model (2.2.1)).

2. Estimate r0, r1, r2, r01 and r12 and their variance covariance using estimates obtained

from Step 1.

3. Calculate the four contrasts CE4 in equations (2.2.4) and obtain their joint asymptotic

distribution.

The estimated variance covariance matrices in Steps 2 and 3 can be obtained using the

Delta method. Note that in Step 2, the Delta method for implicitly defined random vari-

ables (Benichou and Gail, 1989) needs to be applied since the quantile survival times in

the combined groups are not explicitly defined, but rather derived from solving equations in

(2.2.3). Details are provided in the Appendix.

The estimated CE4 asymptotically follows a multivariate normal distribution and the

simultaneous confidence intervals can be then derived as follows. We compute the quantile

q such that the four simultaneous confidence intervals

log(κ̂g)− qŝgg < log(κg) < log(κ̂g) + qŝgg, g = {(1,2):0, 2:(0,1), 1:0, 2:1}

have a coverage probability 1− α, that is, the joint probability

Pr
[ | log(κ̂g)− log(κg)|

ŝgg
< q, g = {(1,2):0, 2:(0,1), 1:0, 2:1}

]
= 1− α,
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where ŝ2
gg is the variance estimate for log(κ̂g). The qmvnorm function in R package {mvtnorm}

can be used by inputting 1− α and the 4-dimensional estimated correlation matrix. Mean-

while, the p-value can be obtained from the multivariate normal distribution. If any of the

four contrasts does not cover 0, it suggests that there exists subgroup(s) with differential

treatment efficacy.

2.2.2.3 Multiplicity adjustment across biomarkers

In targeted treatment development, typically a large collection of markers need to be

tested in order to identify subgroups. Therefore, there are two families of inferences need to

be considered: within a marker and across markers. Specifically, strong control of familywise

error rate (FWER) for inference within a marker is desired, since the consequence of an in-

correct inference may target a wrong subgroup, which is dire. The simultaneous confidence

intervals obtained from our CE4-Survival method appropriately controls the within-marker

FWER. While the error rate for inference across multiple markers can be controlled less

stringently, since multiple candidate markers can be identified for tailoring (which may indi-

cate largely overlapped subgroups to target), and therefore the per family error rate seems

acceptable.

Suppose there are a total of K markers to be tested. Denote by Vk the number of

confidence intervals that fail to cover the true values for the kth marker. Then the FWER

for the kth SNP is αk = P (Vk > 0) = E{I(Vk>0)}. For inference across SNPs, the per family

error rate is E(V∗) = E

{
K∑
k=1

I(Vk>0)

}
=

K∑
k=1

P (Vk > 0) =
K∑
k=1

αk, where V∗ is the number

of markers with at least one of its confidence intervals failing to cover its true value. The

simple additive adjustment proposed by Ding et al. (2018) can be applied. If the desired

expected number of falsely rejected hypothesis per family m is chosen, then the familywise

αk for each marker is set to be m
K

for all markers. Note that this is not the as same as

the Bonferroni probabilistic adjustment for setting αk = α
K

. The Bonferroni adjustment

only allows α false discoveries on average, where α is the per panel FWER, usually a small

number such as 0.05. While the additive adjustment allows for m false discoveries, where m

is a pre-specified positive integer.
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When SNPs are the biomarkers to define subgroups, the screening process seems similar

to a GWAS. However, our proposal controls for per family error rate instead of the commonly

used false discovery rate (FDR). In GWAS, it is plausible biologically that the vast majority

of the SNPs are not associated with the specific disease. However, when treatments are

involved, the biological processes become more complex, and zero-nulls of no-difference (e.g.,

phrased as H0 : log κ(1,2):0 = 0) are statistically false for almost all SNPs as long as there

exists a causal SNP, which was first observed in the setting of Ding et al. (2018), where

the treatment efficacy was simulated based on a single causal SNP with no random error

being added. It was found that practically all other SNPs would appear “associated” with

the outcome (as sample size reaches infinity) when analyzed in a SNP-by-SNP fashion. The

reason is that most SNPs are not “orthogonal” to each other, and thus any SNP will appear

somewhat associated with treatment outcome as long as the distribution for proportions of

being {AA,Aa, aa} in this SNP and the causal SNP are not independent, which is most of

the cases. When there are no zero-nulls statistically, the “false” discovery seems lame, and

the per family rate is preferred by providing more meaningful candidates. In the rest of

the paper, we use an AFT-Weibull model to demonstrate the performance of the proposed

method.

2.2.3 Simulation Studies

2.2.3.1 Single SNP simulations

First, we conducted simulations to investigate the finite sample performance of the pro-

posed CE4-Survival method on analyzing one SNP with three scenarios: (1) No SNP effect,

i.e., Rx is not efficacious for any genotype group; (2) The allele a has a dominant beneficial

effect on Rx ; (3) The allele a has a recessive beneficial effect on Rx. The SNP was simulated

from a multinomial distribution with (Paa = 0.16, PAa = 0.48, PAA = 0.36) (corresponding to

minor allele frequency (MAF) of 0.4). Survival times were first simulated from AFT model

(2.2.1) with extreme value errors (equivalent to a Weibull model), where scale λ = e−β0 = 2

and shape k = 1
σ

= 1.25. The parameters (β1, . . . , β6) were set to be (0, 0.64, 0.64, 0, 0, 0),

(0, 0.64, 0.64, 0.48, 0.48, 0) and (0, 0.64, 0.64, 0, 0.48, 0) for the three scenarios respectively.
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The censoring times were generated from an independent uniform distribution U(a, b) with

a and b chosen to yield 25% and 50% censoring rates. We chose the quantile τ as 0.5 which

corresponds to the median survival time. Then true values of the CE4 contrasts using the

ratio of median survival as the efficacy measure for each scenario are: (1) (1, 1, 1, 1), (2)

(1.62, 1.27, 1.62, 1), and (3) (1.12, 1.62, 1, 1.62). We ran 1000 simulations with sample size

500 for each treatment arm and the results are summarized in Figure 2.2.1. Across all the

scenarios, the biases of the CE4 estimates are minimal and the coverage probabilities for

the simultaneous confidence intervals are all close to 95%. Larger variations are observed

in biases of κ̂2:(0,1) and κ̂2:1, especially under scenario 3. This is because under the recessive

effect setting, Rx is only efficacious in {aa} patients, which is a small proportion of the

total population. Therefore, the contrasts involving the comparison between {aa} and other

group have larger variances.

Figure 2.2.1: Finite sample performance of CE4-Survival on single SNP simulations: box

plot of the biases of CE4 estimates and simultaneous coverage probability (SCP) under

Weibull distribution.

To assess the robustness of CE4-Survival method under model mis-specification, we

simulated survival time from two other settings where the Weibull model does not hold.

In the first setting, the data were simulated from a Gompertz distribution where S(t) =
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Figure 2.2.2: Finite sample performance of CE4-Survival: box plots of the biases of CE4

estimates and SCP under Gompertz distribution.

exp{ (1−eαt)λeβX
α

}. The parameters are set to be λ = 0.5, α = 0.25 and (β1, . . . , β6) =

(0,−0.8,−0.8, 0, 0, 0), (0,−0.8,−0.8,−0.6,−0.6, 0) and (0,−0.8,−0.8, 0,−0.6, 0) to give the

following true values of the CE4 contrasts: (1) (1, 1, 1, 1), (2) (1.54, 1.21, 1.54, 1), and (3)

(1.12, 1.54, 1, 1.54). Such data fit a proportional hazards model but not an AFT model. In

the second setting, the data were simulated from an AFT model with error W generated from

a standard logistic distribution. The model parameters (βs, σ) were set to be the same as in

the Weibull model described previously in the AFT model (2.2.1) and give the following true

values of CE4 contrasts : (1) (1, 1, 1, 1), (2) (1.82, 1.30, 1.82, 1), and (3) (1.09, 1.82, 1, 1.82).

Therefore the data fit a proportional odds model but not a Weibull model. Then we applied

the CE4-Survival model with Weibull distribution for each scenario. Results from 1000 sim-

ulations with sample size 500 for each treatment arm are summarized in Figure 2.2.2 and

Figure 2.2.3. Although the fitted model is mis-specified, with data generated from Gompertz

distribution, the comparisons between treatment effects of different subgroups (i.e., the four

estimated contrasts) are relatively robust with small biases and the coverage probabilities
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Figure 2.2.3: Finite sample performance of CE4-Survival: box plots of the biases of CE4

estimates under log-logistic distribution.

for the simultaneous confidence intervals are close to the nominal level. For data generated

from the log-logistic distribution, the biases are still minimal for the no effect scenario. How-

ever, for the two scenarios where differential treatment efficacy exists, we observe biases and

under-estimated coverage probabilities. Therefore, the proposed CE4-Survival method has

some robustness against model mis-specification, but like any parametric-based approach,

model fitting diagnostics are necessary in practice.

2.2.3.2 Chromosome-wide realistic simulations

To understand the performance of the proposed CE4-Survival method in real genetic

settings with a large number of SNPs, we used the real SNP data from AREDS. Among those

participants who had DNA collected and genotyped, we randomly selected 1000 Caucasian

participants and “assigned” them in a 1:1 ratio to the treatment Rx and a control C. A variant

rs2284665 from the well-known AMD risk gene region ARMS2-HTRA1 on Chromosome 10

was selected as the causal SNP, and the minor allele of this variant was assumed to have
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a dominant beneficial effect on Rx. We kept the three genotype groups (defined by the

causal SNP) balanced between Rx and C. The progression times were simulated from the

Weibull model with λ = 2 and k = 1.25. The βs were set to be (0, 0.32, 0.32, 0.51, 0.51, 0),

corresponding to (κ(1,2):0, κ2:(0,1), κ1:0, κ2:1) = (1.90, 1.51, 1.90, 1). The censoring rate was set

to be 25%.

We analyzed chromosome 10 using our CE4-Survival model and filtered the SNPs with

less than three patients in each genotype group within each treatment arm, which resulted in

a total of 268,053 SNPs. We set m = 10, allowing on average 10 out of ∼ 270,000 SNPs with

at least one confidence interval failing to cover its true value, which is equivalent to setting

the αK level at 3.73×10−5 (= m
K

= 10
268,053

). A total of 37 SNPs were identified, among which

30 SNPs are from the ARMS2-HTRA1 region, including the causal SNP rs2284665. Other

seven SNPs belong to six different gene regions, which are distance away from the causal

gene region. Figure 2.2.4A plotted the positions of these SNPs relative to the causal SNP,

with y-axis (− log10(p)) showing the significance level of each SNP. Figure 2.2.4B plotted

MaxEff vs − log10(p), where MaxEff (maximal effect) is defined as the maximum absolute

value among the estimated CE4 contrasts that do not cover zero. The causal SNP has the

smallest p-value (= 8.52 × 10−10) and a MaxEff of 2.20. Note that some top SNPs have

very large MaxEff values. For example, SNP rs10857454 from the C10orf128-C10orf71-AS1

region has the largest MaxEff of 29.7, while its p-value is not very small (= 3.21 × 10−6,

close to the threshold). We caution against the situation when a huge effect size is seen,

since such a huge effect for treatment efficacy is clinically unlikely. For this specific SNP, it

is not surprising to see the corresponding confidence interval for κ2:(0,1) is very wide and the

effective patient population only consists 1.5% of the total population.

To further investigate the relationship between the identified SNPs and the causal SNP,

we proposed a novel SNP cross-talk plot. It is based on a ternary diagram using barycentric

coordinates to display the proportion of three variables that sum to one. Specifically, we

projected the percentages of the AA, Aa, and aa categories of the causal SNP rs2284665

in each of these categories of a given top SNP onto the triangular diagram, and connect

the points with lines. If the SNP is highly correlated with the causal SNP in terms of the

distribution of AA, Aa, and aa, the percentages will be close to (1,0,0), (0,1,0) and (0,0,1),
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Figure 2.2.4: 37 identified SNPs from one chromosome-wide realistic simulation. A:

-log10(p.CE4) vs. relative position to the causal SNP; B: the maximum effect among CE4

vs. -log10(p.CE4); the red triangle denotes the causal SNP rs2284665 and ‘+’s are the

SNPs that are from the same region with the causal SNP. The rests are from other gene

regions; C: SNP cross-talk plot.
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and thus the connected line segments will be long and lie closely to the two edges of the

triangle. Otherwise, the three dots will be close to each other to give a short angle. For

example, in Figure 2.2.4C, the causal SNP has a perfect match in terms of the percentages

with itself so the three points are the vertexes of the triangle, which makes the connected

line segment coincide with the edges AA − Aa and Aa − aa (denoted by the dashed lines).

From the plot, all 30 SNPs from ARMS2-HTRA1 region are highly correlated with the

causal SNP, indicated by the long red line segments, which explains why they have been

identified by CE4-Survival. For the 7 SNPs from other regions, their line segments are all

short, suggesting they might have been identified due to randomness. Note that the choice

of “m” can be subjective and should be combined with prior knowledge if applicable. In this

simulation study, when using m = 5 instead (i.e., αk = 1.87×10−5), there are 34 “significant”

SNPs with at least one confidence interval that does not cover 0. Thirty of them are in the

ARMS2 region, and the causal SNP is within these 30 SNPs. We recommend to use an “m”

value that corresponds to an αk of order 10−6 to 10−5 based on our previous experience with

genome-wide subgroup identification using continuous or binary outcomes.

The chromosome-wide realistic simulation were repeated 100 times, where the SNP data

are all the same but the progression times and censoring times are different due to randomness

from the model. By setting m = 10, on average there are 61 SNPs identified per run with

a total of 3292 SNPs being picked at least once. The causal SNP was picked 90 out of 100

times and the distribution of the ranks is shown in the stem-and-leaf plot (upper panel in

Figure 2.2.5). Note that 84 out of 90 times the rank of the causal SNP was among top 30

and 52 times it was among top 10, indicating that our CE4-Survival is robust in identifying

the true causal SNP. The lower panel in Figure 2.2.5 summarizes all the identified SNPs

from all 100 runs in terms of their relative position to the causal SNP and their frequencies

of being picked up. We found that 3256 of the 3292 SNPs (98.9%) were only picked less than

5 times out of 100 repeated simulations, which are highly likely due to randomness. While

for SNPs close to the causal SNP and located in the same ARMS2-HTRA1 gene region, the

selection probability is much higher, among which 27 SNPs were identified for more than

80% of the times. From this repeated chromosome-wide simulations, we confirmed that there

are possibilities that some SNPs are picked by random error but the true causal SNP and its
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surrounding SNPs can be identified with high probabilities by CE4-Survival. Moreover, due

to the existence of linkage disequilibrium among SNPs, it is very unlikely that an isolated

SNP will be the true causal SNP.

Based on the observations from our realistic simulations, we recommend the following

rules to guide the selection of “candidate” SNPs from those identified by CE4-Survival: (1)

There are multiple SNPs (≥ 3 for example) being picked from the same gene region; (2) The

MaxEff should not be unrealistically large; and (3) The targeted group should be a reasonable

proportion (not too small or large, e.g., 5% − 95%) of the total population. Note that, the

numbers in the parenthesis (≥ 3 or 5% − 95%) are just examples (as they are subjective),

but not gold standard. After deciding the “candidate” SNP(s), the next step is to identify

the targeted population based on the CE4 results. We provide a flowchart (Figure 2.2.6)

to guide the subgroup identification procedure. Note that the flowchart identifies combined

subgroup for targeting if both individual subgroup(s) and combined subgroup show beneficial

treatment effects. For example, when both SCI1 and SCI2 are positive, {aa} is a subgroup

for the treatment to target since log r̂2is significantly larger than log r̂01. However, since

SCI1 is also positive, which indicates that the combined group {Aa, aa} is more efficacious

than {AA}. In this case, we conclude the subgroup for treatment to target is {Aa, aa}. For

the label consideration, if there is evidence that {aa} is more efficacious than {Aa} (e.g.,

SCI4 is positive), it is certainly important to note that in the label. Therefore, even though

subgroups maybe inferred by checking some of the contrasts (not all), all contrasts are useful

for inferring a full picture of the treatment efficacy.

2.2.4 Application to AREDS Data

2.2.4.1 More on AREDS

AREDS is a large multi-center RCT sponsored by the National Eye Institute to evaluate

the effect of antioxidants and/or zinc on delaying the progression of AMD (Age-Related Eye

Disease Study Research Group, 1999). The original study includes four treatment arms:

placebo, antioxidants, zinc and the combination of antioxidants and zinc, where the last

treatment then becomes the “AREDS formula” dietary supplements which are now available
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Figure 2.2.5: Upper: stem-and-Leaf plot for the distribution of the ranks of the Causal

SNP; Lower: present frequency of the identified SNPs in 100 simulations.
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Figure 2.2.6: Flowchart of determining the targeted population based on CE4 results.

in various drug stores. However, the treatment effects of the non-placebo arms on delaying

the late AMD progression are not statistically significant (Ding et al., 2017). Among the four

arms, we specifically investigated participants in the placebo arm (C) and the combination of

antioxidants and zinc treatment arm (Rx), which included 1,170 Caucasian participants with

both eyes free of advanced AMD progression when entering the study. The outcome is the

time-to-late-AMD from the first progressed eye, where late-AMD is defined as the severity

score reaches 9 or above (9=GA, 10=central GA, 11=CNV, 12=central GA and CNV). As

shown in Table 2.2.1, age, sex and smoking status do not differ between the two treatment

arms. However, the baseline AMD severity score is significantly higher among patients who

were randomized to the Rx group, as compared to patients who were randomized to placebo

(4.0± 2.2 vs 2.6± 2.1). This is as expected and is due to the randomization design: patients

free of AMD at baseline can only be randomized to the placebo or antioxidants arms, but
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not the combination arm, and thus the baseline severity score needs to be adjusted in the

analysis. The overall non-progressed rate is about 75%, so we chose τ = 0.75 as the quantile

of interest (to avoid extrapolation of the survival curves).

2.2.4.2 CE4-Survival on AREDS

We first evaluated the effect of “AREDS formula” on time-to-progression using a Weibull

regression model, adjusting for the known risk factors including age, smoking status and base-

line severity score (Chakravarthy et al., 2010; Ding et al., 2017; Group, 2001). From Section

2.2.3.1 we noticed that the model can be sensitive to the mis-specification, so we graphically

checked the model fitting using Cox-Snell residuals for the “null” Weibull regression model

for time-to-late-AMD on AREDS data, where the alignment of the curve with the 45 degree

line indicates the overall fitting is fine. The estimated ratio of 75th quantile progression-free

time for Rx and C is 0.91 with p = 0.12. It suggests that the combination of antioxidants

and zinc does not seem to be effective in slowing down the disease progression in the overall

population, which is consistent with previous findings (Ding et al., 2017). Then we applied

CE4-Survival method using Weibull distribution to analyze all common variants (i.e., MAF

≥ 0.05) across 22 autosomal chromosomes, resulting in a total of 3,837,556 SNPs. The up-

per panel of Figure 2.2.7 presents the Manhattan plot of this genome-wide CE4-Survival

analysis result. By setting m = 10, a total of 46 SNPs meet the significance threshold

of 2.61 × 10−6(= m/K). These SNPs are from nine gene regions on seven chromosomes.

Following the recommendation rule we proposed in Section 2.2.3.2, there are three gene re-

gions each with at least four SNPs meeting the p-value threshold and they are labeled in

the Manhattan plot: CHST3-SPOCK2 on CHR 10 (4 SNPs), ESRRB-VASH1 on CHR 14

(30 SNPs), and C19orf44-CALR3 on CHR 19 (6 SNPs). We examined the correlation be-

tween all 46 identified SNPs using the cross-talk plot and presented the result in the middle

panel of Figure 2.2.7. We picked rs147106198 (ESRRB-VASH1 region on CHR14), which

has the smallest p-value (= 7.00× 10−8) as the reference SNP. It can be seen that the other

29 SNPs from the same ESRRB-VASH1 region are highly correlated with this top SNP

rs147106198, indicated by the long edges of the red segments. The other two gene regions,
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CHST3-SPOCK2 and C19orf44-CALR3 are not highly correlated with this ESRRB-VASH1

region, although multiple SNPs within each region are highly dependent on each other (de-

noted by overlapped segments in green or blue). In this case, there may be more than one

causal SNP that leads to the differential treatment effects. Note that the quantile τ needs

to be pre-specified and it is based on prior knowledge. To examine the effect of different τ

values on the subgroup identification, we conducted sensitivity analyses using τ = 0.50 and

τ = 0.25. In summary, the results are very consistent when different τ ′s are used. In all three

choices of τ , the same three gene regions were selected (ESRRB-VASH1, CHST3-SPOCK2

and C19orf44-CALR3 ). The same set of 46 SNPs presented in the paper were found to

be significantly associated with differential treatment effect in all three τ choices. When

τ = 0.5, these 46 SNPs were identified with slightly different ranking from the scenario with

τ = 0.75. When τ = 0.25, a total of 53 SNPs were identified, where the additional 7 SNPs

are from C19orf44-CALR3 on chromosome 19 and CHST3-SPOCK2 on chromosome 10.

Both regions are already identified when setting τ = 0.75. What’s more, the top SNP with

the smallest p-value (rs147106198 on ESRRB-VASH1 region) when τ = 0.75 remains to be

the top one when τ = 0.50 and τ = 0.25. We used it as our candidate marker for further

discussion.

The lower panel of Figure 2.2.7 demonstrates the treatment effect profiles and simultane-

ous confidence intervals for rs147106198, where the efficacy profile may suggest a dominant

beneficial effect of a. The CE4 simultaneous confidence intervals confirm that the targeted

group is {Aa, aa} combined since the confidence intervals of log(κ(1,2):0) and log(κ1:0) are

above the zero line. This targeted group consists about 52% of the total patients, a rea-

sonably high proportion of the entire population. The estimated ratio of 75th quantile

progression-free times in the targeted and non-targeted groups (between Rx and C) are pre-

sented in Table 2.3.6, which are 1.44 and 0.57 for {Aa, aa} and {AA}, respectively, indicating

that the combination of antioxidants and zinc extends the progression time for 44% compared

to the placebo in the targeted group. Table 2.3.6 also provides the baseline characteristics

of targeted and non-targeted population based on rs147106198, in which the patients in the

targeted group do not differ from the patients in the non-targeted group. It indicates that

the enhanced benefit from the treatment in the targeted population is plausibly due to the
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genetic difference rather than the demographic or clinical differences.

Table 2.2.1: Baseline characteristics of the AREDS data

Number of subjects
All

(n=1170)

Placebo

(n=754)

Antioxidants and Zinc

(n=416)
p-value*

Age 0.309

Mean (SD) 68.4 (4.9) 68.3 (4.8) 68.6 (4.9)

Median (Range) 68.2 (55.3-81.0) 68.0 (55.3-81.0) 68.7 (55.5-79.5)

Sex (n, %) 0.289

Female 655 (56.0) 413 (54.8) 242 (58.2)

Male 515 (44.0) 341 (45.2) 174 (41.8)

Smoking (n, %) 0.758

Never Smoked 571 (48.8) 371 (49.2) 200 (48.1)

Former/Current Smoker 599 (51.2) 383 (50.8) 216 (51.9)

Baseline AMD severity score <0.001

Mean (SD) 3.2 (2.2) 2.6 (2.2) 4.0 (2.1)

Median (Range) 2.0 (1.0-8.0) 1.0 (1.0-8.0) 4.0 (1.0-8.0)

Status (n, %) <0.001

Progressed 269 (23.0) 133 (17.6) 136 (32.7)

*p-value is based on two-sample t test or Pearson Chi-square test for continuous or categorical variables

It should be noted that based on different SNPs, the suggested targeted population may

vary. As shown in the middle panel of Figure 2.2.7, SNPs from the same ESRRB-VASH1

region are highly correlated with the top SNP rs147106198. If we chose another SNP,

rs77000175 in the region to be the candidate marker, the targeted population is about 50% of

the total population, which overlaps with the targeted population indicated by rs147106198

by 94.7%. In another example, if a top SNP from CHST3-SPOCK2 on CHR 10 is considered

as the candidate marker (e.g., rs1245576), the targeted population is about 65.8% of the

total population, which overlaps only 67.1% of the targeted population determined by the

top SNP. Hence, our CE4-Survival method provides reliable and interpretable candidate

targeted populations for consideration, while the final decision on which population to target
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involves many other considerations such as development of companion diagnostics, labeling,

marketing, and reimbursement.

2.2.4.3 Investigation on two reported gene regions using AREDS data

To help elucidate the controversial findings regarding whether genetic polymorphisms

of CFH and ARMS2-HTRA1 alter the treatment efficacy of AREDS formula, we closely

checked six SNPs from these two regions and their results are presented in Table 2.2.3. Note

that rs412852, rs1061170, and rs3766405 from CFH and rs10490924 from ARMS2-HTRA1

have been previously investigated (Assel et al., 2018; Seddon et al., 2016; Vavvas et al.,

2018). We also examined the SNPs with the smallest CE4-based p-value from each region,

which are rs7522681 and rs11200647. None of these SNPs meets the significance threshold

of 2.61 × 10−6, although three SNPs from CFH region meet the nominal level of 0.05. We

further investigated rs412852 from CFH and it seems our CE4-Weibull result suggests the

combination group {AA,Aa} exhibit better treatment efficacy compared to its complemen-

tary group {aa}, which is similar to the findings from Seddon et al. (2016) and Assel et al.

(2018). However, it is worthwhile to note that from our genomewide CE4 analysis, none of

these SNPs ranked top (Table 2.2.3). Therefore, with appropriate multiplicity adjustment,

neither CFH nor ARMS2-HTRA1 region has SNPs showing significant association with

treatment efficacy, which is consistent with the conclusion indicated by Chew et al. (2015).

2.2.4.4 Validation on AREDS2

AREDS2 was another independent large multi-center RCT of AMD (Chew et al., 2012).

It was designed to evaluate the effect of refined AREDS formulations on AMD progression,

as compared to the original AREDS formula. Participants of AREDS2 were more severe at

baseline and the follow-up time was only about half of the AREDS’s follow-up time. There

were four arms with AREDS supplements being the control arm (all other three arms are

AREDS supplements plus additional nutrients). Since there is no placebo arm in AREDS2,

we cannot apply CE4-Survival to identify subgroups with enhanced efficacy of AREDS sup-

plements. Instead, we investigated the patient’s response to the same AREDS supplements
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Figure 2.2.7: A: Manhattan plot from the genomewide CE4-Survival analysis on AREDS

data; B: SNP cross-talk plot for 40 identified SNPs in relationship with the most top SNP

rs147106198; C: Treatment effects and CE4 estimates for the top SNP rs147106198 (Left:

treatment profile using log of the ratio of 75th quantile survivals; Right: CE4 estimates and

simultaneous confidence intervals).

40



Table 2.2.2: Characteristics of targeted and non-targeted populations

rs147106198: chr14, ESRRB-VASH1 region

Targeted Non-targeted p-value

# of subjects (n,%) 605 (51.7) 565 (48.3)

Treatment efficacy
ν̂Rx,0.75

ν̂C,0.75
† (SE) 1.44 (1.01) 0.57 (1.01) 6.99× 10−8?

Age 0.560

Mean (SD) 68.5 (4.8) 68.4 (4.9)

Median (range) 68.2 (55.3-81.0) 68.2 (55.8-80.5)

Sex (n, %) 0.982

Female 338 (55.9) 317 (56.1)

Male 267 (44.1) 248 (43.9)

Smoking (n, %) 0.169

Never Smoked 283 (46.8) 288 (51.0)

Former/Current Smoker 322 (53.2) 277 (49.0)

Treatment (n, %) 0.510

Placebo 384 (63.5) 370 (65.5)

Antioxidant + Zinc 221 (36.5) 195 (34.5)

Baseline AMD severity score 0.487

Mean (SD) 3.1 (2.2) 3.2 (2.2)

Median (range) 2.0 (1.0-8.0) 3.0 (1.0-8.0)

†: ν̂ denotes the estimated quantile progression time

?: p-value is from the corresponding CE4 contrast when simultaneous type I error is controlled, without adjusting for cross-SNP multiplicity

arm to check whether we observe similar differential response patterns between the targeted

and non-targeted groups (identified from AREDS) in AREDS2. Table 2.2.4 presents the

patient characteristics within the targeted and non-targeted groups (determined by SNP

rs147106198), separately for AREDS and AREDS2. None of these baseline risk factors dif-

fers between targeted and non-targeted populations in each study. The only difference is the

genotype in terms of rs147106198. Figure 2.2.9 compares the progression-free Kaplan-Meier
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Figure 2.2.8: Top identified SNP from AREDS, rs147106198. Left: treatment profile using

log of the ratio of 75th quantile survivals; Right: CE4 results by taking the difference

between the log ratio of 75th quantile progression time to late AMD in the presented

contrasts.

Table 2.2.3: CE4 results of six selected SNPs from CFH and ARMS2-HTRA1 regions

Gene SNP p.CE4 rank.CE4

CFH

rs7522681 3.74× 10−4 3843

rs412852 9.49× 10−4 9021

rs1061170 1.22× 10−2 71651

rs3766405 0.38 1614412

ARMS2-HTRA1
rs11200647 7.75× 10−2 378198

rs10490924 0.77 3059694

curves between the targeted and non-targeted groups within each study. In both studies, the

targeted population shows an obvious better progression-free profile than the non-targeted

population (the log-rank test p = 0.00011 and 0.013 respectively). Therefore, we successfully

validated our identified targeted group based on rs147106198 in AREDS2.
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Table 2.2.4: Characteristics of targeted and non-targeted populations in AREDS and AREDS2

AREDS AREDS2

Targeted Non-targeted p-value* Targeted Non-targeted p-value*

# of subjects (n,%) 221 (53.1) 195 (46.9) 164 (51.1) 157 (48.9)

Age 0.696 0.242

Mean (SD) 68.6 (4.8) 68.8 (5.0) 70.2 (7.4) 71.1 (7.8)

Median (range) 68.4 (55.5-78.5) 68.9 (56.1-79.5) 71.0 (51.0-85.0) 71.0 (53.0-86.0)

Sex (n, %) 0.700 0.824

Female 131 (59.3) 111 (56.9) 96 (58.5) 89 (56.7)

Male 90 (40.7) 84 (43.1) 68 (41.5) 68 (43.3)

Smoking (n, %) 0.806 0.587

Never Smoked 108 (48.9) 92 (47.2) 77 (47.0) 68 (43.3)

Former/Current Smoker 113 (51.1) 103 (52.8) 87 (53.0) 89 (56.7)

Baseline AMD severity score 0.375 0.347

Mean (SD) 4.0 (2.1) 4.2 (2.1) 6.5 (1.1) 6.6 (1.0)

Median (range) 4.0 (1.0-8.0) 4.0 (1.0-8.0) 7.0 (2.0-8.0) 7.0 (2.0-8.0)

Genetic risk score 0.157 0.840

Mean (SD) 0.99 (0.13)) 1.01 (0.14) 1.09 (0.13) 1.09 (0.13)

Median (range) 0.99 (0.62-1.30) 1.01 (0.71-1.34) 1.10 (0.71-1.37) 1.10 (0.58-1.40)

*p-value is based on two-sample t test or Pearson Chi-square test for continuous or categorical variables
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Figure 2.2.9: Kaplan-Meier curves for targeted/non-targeted patients taking AREDS

supplements in AREDS and AREDS2, where the subgroup is defined by rs147106198.

2.2.5 Conclusion and Discussion

In this work, We develop and implement a new method to confidently identify and infer

subgroups in modern randomized clinical trials with time-to-event outcomes. Different from

machine learning based approaches, our CE4-Survival, derived from the fundamental mul-

tiple testing principle, provides simultaneous confidence intervals on contrasts that directly

compare the treatment efficacy between subgroups or combination of subgroups. The con-

trasts are built upon a logic-respecting efficacy measure, the ratio of quantile survival times,

which is easy to interpret and enjoys the unique covariate invariance property. Our CE4-

Survival adjusts for multiplicity both within and across the markers. It rigorously combines

two error rate controls, family-wise error rate control within marker, and per family error

rate control across markers. Such error control is appropriate for drug development, as it

allows flexibility in the exploration of multiple candidate markers, while being confident in

the subgroup to target from any selected marker.
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Our realistic simulation studies used the SNP data taken from individuals who partici-

pated in the AREDS, where the allele frequency and linkage disequilibrium are preserved.

Therefore, these studies can provide recommendations of practical rules for identifying “can-

didate” markers. Finally, we successfully applied our method on AREDS data to identify

subgroups that exhibit enhanced treatment efficacy with combination of antioxidant supple-

ments and zinc in delaying AMD progression. We further validated the subgroups defined by

the top SNP rs147106198 from ESRRB-VASH1 region using the data from an independent

AREDS2 study. SanGiovanni et al. (2013) found that the estrogen related receptor beta

(ESRRB) was associated with CNV AMD. Wakusawa et al. (2008) first demonstrated the

angiogenesis modulation of VASH is involved in the pathological process of AMD. Later

Zeng et al. (2012) inferred that AREDS supplements is likely to affect both angiogenesis

and endothelial-macrophage interactions. Thus our findings provide new perspectives on the

differential treatment efficacy for AMD.

Although we use the SNP testing to demonstrate our method, the key elements of the

method apply to broader scenarios with all kinds of markers. When the marker separates the

patient population into more groups, additional contrasts need to be considered to obtain

the complete ordering of the treatment efficacy. When the marker is with three groups

but categorical instead (not ordinal as SNPs are), one may consider using a modified CE5

contrasts to build inference on comparing the combined {0, 2} group and {1} by adding the

contrast log κ(0,2):1 = log r02−log r1. Similar steps described in Section 2.2.2.2 can be applied.

The current version of our method only handles discrete markers and more work is required

to generalize it for continuous markers. In doing that, one may borrow the idea from Liu

et al. (2016) which considers all candidate thresholds for a continuous marker when deriving

simultaneous confidence intervals. Note that, unlike machine learning based methods, our

CE4 method is not designed to test multiple markers simultaneously in a joint model.

AFT model is used to build CE4 contrasts in the current method, since it directly links

to the logic-respecting treatment efficacy measure we use: the ratio of quantile survival ratio.

In addition, it shows a good covariate-invariance property that makes interpretation of the

treatment effect free of other prognostic factors. However, it does not mean the CE4 can

only couple with the AFT model. Actually, it can be generalized to any survival model
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framework as long as the treatment efficacy in the mixed population is carefully derived

following the SME principle. For example, one may consider using Cox models. In order

to derive the asymptotic distribution of CE4 contrasts, the variance-covariance matrices of

the quantile survival time in each group and the combined group need to be constructed,

which requires the variance-covariance matrix of the inverse function of Breslow estimates

of baseline cumulative hazard.

In this paper, we did not account for the variability of the estimates of p0 and p1 (i.e., we

did not treat them as parameters). Here, p0 denotes the prevalence of M = 0 in the combined

group {0, 1}, and p1 denotes the prevalence of M = 1 in the combined group {1, 2}. They

are used in calculating the quantile survival time in {0, 1} group and {1, 2} group. This

is in concordance with the “OM” (observed margins) option in the LSmeans statement of

SAS (Proc GLM, Proc Mixed), where the empirical estimate of prevalence is used, and it

is not treated as a parameter in the inference procedure. One can also use the “population

level” prevalence (if SNP is the marker, its prevalence can be derived from the minor allele

frequency in a public genetic database, TOPMED, for example). However, the variability

of the estimates of p0 and p1 can be accounted in our CE4 method (if one choose so). The

key modification is on the parameter set in the Delta method for implicit random variables

(which is described in Section 5 of Supplemental Materials). We explored this option in our

simulation studies and the results are very similar to the situation without accounting for

the variability of the estimates of p0 and p1.

2.3 Binary endpoints

2.3.1 Relative risk with log-linear model

With binary outcomes, a logistic regression model is often fitted and the OR is commonly

used to measure treatment efficacy. However, it is not suitable when there exits a mixture of

populations, which is demonstrated in Lin et al. (2019). Specifically, the OR in the combined

group is not guaranteed to be bounded within the ORs in the two separate groups. That
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is, OR01 (true value, not estimated) can be outside of [OR0,OR1], where the indices ‘0’, ‘1’,

and ‘01’ denote the individual or combined group. This is partly because OR01 can not be

expressed as a weighted combination of OR0 and OR1, i.e., OR is not (strictly) collapsible.

Both Lin et al. (2019) and Huitfeldt et al. (2019) gave similar counter examples.

Another efficacy measure that is frequently used for binary outcomes is RR. In our

motivating example, it is defined as the ratio of the probability of progression to late-AMD

in 10 years between those who took the treatment and those who took the placebo. It

has been mathematically proven that the RR is logic-respecting with RR0 ≤ RR01 ≤ RR1

always holds. Note that using whether OR or RR as the efficacy measure reflects a choice of a

clinically meaningful summary statistic to characterize the drug effect, and it is independent

of what statistical model is used to fit the data. In this manuscript, we demonstrate that

using RR as efficacy measure under a log-linear model has a unique and nice property for

subgroup identification determined by SNPs.

Assume the binary data fit the following model:

g{Pr(Y = 1|Trt,M,X)} = β0 + β1I(Trt = 1) + β2I(M = 1) + β3I(M = 2) +

β4I(Trt = 1)× I(M = 1) + β5I(Trt = 1)× I(M = 2) + β6X, (2.3.1)

where Y = 1 indicates the event of interest, g is the link function, Trt = 0 (C) or 1 (Rx)

is the treatment assignment, and M = 0, 1, or 2 denote the genotype group AA, Aa, or aa.

X represents all prognostic factors that are regardless of treatment assignment. Then the

relative risk (RR) for each genotype group can be derived as follows:

RR0 =
Pr(Y = 1|Trt = 1,M = 0,X)

Pr(Y = 1|Trt = 0,M = 0,X)
=
g−1(β0 + β1 + β6X)

g−1(β0 + β6X)
,

RR1 =
Pr(Y = 1|Trt = 1,M = 1,X)

Pr(Y = 1|Trt = 0,M = 1,X)
=
g−1(β0 + β1 + β2 + β4 + β6X)

g−1(β0 + β2 + β6X)
,

RR2 =
Pr(Y = 1|Trt = 1,M = 2,X)

Pr(Y = 1|Trt = 0,M = 2,X)
=
g−1(β0 + β1 + β3 + β5 + β6X)

g−1(β0 + β3 + β6X)
.

The commonly used link functions for binary outcomes include logit link, log link and

probit link. When log link is applied, the RRs for each genotype group can be simplified as

RR0 = eβ1 , RR1 = eβ1+β4 , and RR2 = eβ1+β5 .
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It is worthwhile mentioning that although the probability of Y = 1 for each genotype group

depends on the prognostic factors (β6X), the ratios are all free of these covariates. This is

the “covariate-invariance” property we mentioned in Section 2.2.2.1. This property makes

the comparison between treatment arms straightforward and simple. However, if a logistic

regression is applied (i.e., g is the logit link), this property will not hold any more. For

example, the RR for the AA group under the logit link is:

RR0 =
1/{1 + e−(β0+β1+β6X)}

1/{1 + e−(β0+β6X)}
=

1 + e−(β0+β6X)

1 + e−(β0+β1+β6X)
,

which contains β6X. Therefore, we recommend to considering the log-linear model.

Besides that the RRs of individual groups from the log-linear model are covariate-

invariant, it can be shown that this property also holds in the combined groups. Following

the SME principle (Ding et al., 2016), denote by π0 the prevalence of M = 0 in the combined

population {0, 1}, then 1− π0 is the prevalence of M = 1 in the combined population. The

probability of Y = 1 within Rx and C in the {0, 1} combined population can be expressed

as:

pRx01 (Y = 1) = π0p
Rx
0 (Y = 1)+(1−π0)pRx1 (Y = 1) = π0e

β0+β1+β6X+(1−π0)eβ0+β1+β2+β4+β6X ,

pC01(Y = 1) = π0p
C
0 (Y = 1) + (1− π0)pC1 (Y = 1) = π0e

β0+β6X + (1− π0)eβ0+β2+β6X .

Then the RR for the combined group can be calculated as:

RR01 =
pRx01 (Y = 1)

pC01(Y = 1)
= eβ1

π0 + (1− π0)eβ2+β4

π0 + (1− π0)eβ2
.

Similarly, one can derive that RR12 = π1eβ2+β4+(1−π1)eβ3+β5

π1eβ2+(1−π1)eβ3
. It can be seen that these RRs are

also free of β6X and thus the covariate-invariant property holds for the combined groups as

well.
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2.3.2 CE4 for relative risks

Inspired by CE4-Survival method, we propose the following four contrasts to get a com-

plete ordering of the treatment efficacy in all subgroups and their combinations using RRs.

log κ(1,2):0 = logRR12 − logRR0, log κ1:0 = logRR1 − logRR0,

log κ2:(0,1) = logRR2 − logRR01, log κ2:1 = logRR2 − logRR1. (2.3.2)

Since we focus on binary outcomes in this article and we name the proposed method as

“CE4-Binary”. We propose to use four two-sided simultaneous confidence intervals on the

four contrasts in (2.3.2). It has been proved that this approach would guarantee to control

the family-wise error rate (FWER) strongly from testing four contrasts simultaneously (see

Theorem 4 of Hsu and Berger (1999)). As indicated by Ding et al. (2018), these two-

sided simultaneous confidence intervals are equivalent to testing the following eight one-

sided null hypotheses where each one is to test an inequality against its complement (i.e.,

H0: log κ(1,2):0 ≤ 0 vs Ha: log κ(1,2):0 > 0) rather than testing a zero null (such as H0 :

log κ(1,2):0 = 0).

H≤(1,2):0 : log κ(1,2):0 ≤ 0, H≤(0,1):2 : log κ(0,1):2 ≤ 0, H≤1:0 : log κ1:0 ≤ 0, H≤1:2 : log κ1:2 ≤ 0,

H≤2:(0,1) : log κ2:(0,1) ≤ 0, H≤0:(1,2) : log κ0:(1,2) ≤ 0, H≤2:1 : log κ2:1 ≤ 0, H≤0:1 : log κ0:1 ≤ 0.

We refer to Ding et al. (2018) for detailed reasons why testing zero-null hypotheses is not

appropriate in this setting. With these four simultaneous confidence intervals, one can tell

which allele is beneficial and the possible effect size of each effect. For example, if the

lower bound of the confidence interval of contrast log κ(1,2):0 in (2.3.2) is greater than zero

(assuming a larger value implies a better efficacy), then it indicates that the minor allele a

is beneficial and the effect could be dominant.

With binary outcomes, the contrast estimates can be obtained from fitting the log-linear

model (2.3.1), where each RR (for individual genotype groups and the two combined groups)
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has been derived in Section 2.3.1. On log scale, the four contrasts are:

log κ(1,2):0 = log{π1e
β2+β4 + (1− π1)eβ3+β5} − log{π1e

β2 + (1− π1)eβ3},

log κ2:(0,1) = β5 − log{π0 + (1− π0)eβ2+β4}+ log{π0 + (1− π0)eβ2},

log κ1:0 = β4,

log κ2:1 = β5 − β4. (2.3.3)

Let A1 = π1e
β2+β4 + (1− π1)eβ3+β5 , A2 = π1e

β2 + (1− π1)eβ3 , A3 = π0 + (1− π0)eβ2+β4 ,

and A4 = π0 + (1 − π0)eβ2 . The first order partial derivative matrix of the CE4 contrasts

(2.3.3) with respect to β can be derived as:

DCE4(β) =


π1eβ2+β4

A1
− π1eβ2

A2

(1−π1)eβ3+β5

A1
− (1−π1)eβ3

A2

π1eβ2+β4
A1

(1−π1)eβ3+β5

A1

− (1−π0)eβ2+β4

A3
+ (1−π0)eβ2

A4
0 − (1−π0)eβ2+β4

A3
1

0 0 1 0

0 0 −1 1



Denote Ω(β) to be the variance-covariance matrix of β̂ = (β̂2, β̂3, β̂4, β̂5), which can be

estimated from fitting the log-linear model in (2.3.1). The estimated variance-covariance

matrix of (2.3.3) can be obtained using the Delta method: Σ̂CE4 = D̂CE4(β̂)Ω̂(β̂)D̂−1
CE4

(β̂).

The estimated CE4 asymptotically follows a multivariate normal distribution and the

simultaneous confidence intervals can then be derived as described in 2.2.2.2 using R package

mvtnorm (Genz et al., 2020) (details can be found from the R code in https://github.com/

yingding99/CE4-Binary). One big advantage of the proposed CE4 method is that it can

provide inference on treatment efficacy for the targeted and non-targeted groups through

simultaneous confidence intervals, instead of just producing p-values.

Same procedure described in Section 2.2.2.3 applies to control the FWER within each

SNP and the per family error rate across multiple SNPs, since it allows flexibility in the

exploration of multiple candidate SNPs and it is possible that different SNPs lead to similar

patient population for targeting, especially for SNPs within the tight linkage disequilibrium

(LD) region.
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2.3.3 Extension to bivariate binary outcomes

So far the proposed CE4-Binary method with RR being the efficacy measure is for uni-

variate binary outcomes. In our motivating example, since AMD is a bilateral eye disease,

the correlation between the two eyes of the same individual needs to be considered. Given

the SNP effects on treatment efficacy is more appropriate to be interpreted on a marginal

population-level than on a (conditional) subject-level, we choose to use the generalized esti-

mating equations (GEE) approach (Liang and Zeger, 1986).

To estimate the RRs directly for binary data, usually either a log-binomial or a Poisson

model (with log link) is recommended. However, model convergence issue seems to be more

likely for the log-binomial model (Williamson et al., 2013). Zou (2003) proposed to use

a Poisson model with the robust sandwich variance estimate. Yelland et al. (2011) and

Chen et al. (2018) conducted thorough simulations to compare the performance between

log-binomial and robust Poisson models for estimating RRs and concluded that the robust

Poisson model is preferred when model is misspecified or predictors are continuous. Therefore

in the following simulations and real-data analysis, we use the GEE-based Poisson regression

model to estimate the RRs using the R package geepack (Halekoh et al., 2006). Assuming

the conditional distribution of Yij given the predictor variables follows a Poisson distribution,

with the mean response related to the predictors by the link function log(µij) = xTijβ. We

use i = 1, . . . , n to denote subject and j = 1, 2 to denote each eye of a subject. Let

Yi = (Yi1, Yi2) and µi = (µi1, µi2). A Poisson-GEE model with log link solves the following

generalized estimating equation for β:

S(β) =
n∑
i=1

(
∂µi
∂β

)TV −1
i (Yi − µi) = 0,

where Vi is the working variance matrix that can be decomposed as Vi = φA
1
2
i RiA

1
2
i . Ai is

the diagonal matrix of the 2× 2 conditional variance-covariance matrix for subject i, where

under Poisson distribution, the two elements are µi1 and µi2. Ri is a 2×2 working correlation

matrix (for example, the exchangeable structure is used in the following sections), and φ is

a scale parameter that will be estimated by the data. Under certain regularity conditions,
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the solution β̂ has an asymptotic normal distribution β̂
n→∞−→ N(β,Σ), where Σ = I−1

0 I1I
−1
0 ,

with I0 =
∑n

i=1
∂µi
∂β

T
V −1
i

∂µi
∂β

and I1 =
∑n

i=1
∂µi
∂β

T
V −1
i (Yi − µi(β))(Yi − µi(β))TV −1

i
∂µi
∂β

.

2.3.4 Simulation Studies

2.3.4.1 Single SNP simulations

In this section, we examine the performance of CE4-Binary for testing a single SNP. Since

our motivating example has bivariate binary outcomes (progression status of both eyes), we

performed all of our simulations in the context of bivariate binary outcomes. Specifically, we

used the R package SimCorMultRes to simulate bivariate binary outcome under the marginal

model specification P (Yij = 1|xij) = F (xTijβ) (Touloumis, 2019). In particular, Yij = 1 if

Uij ≤ 2xTijβ, where Uij = xTijβ + eij, and eij ∼ F for all i and j. For each subject i,

the correlation structure among the clustered binary responses {Yij : j = 1, 2} depends on

{eij : j = 1, 2}. We denote r the correlation between ei1 and ei2. Here, we chose F to be

the cumulative density function of the standard logistic distribution. In SimCorMultRes,

the authors employ the tetra-variate extreme value distribution to simulate correlated error

terms (Gumbel, 2012) and details can be found in their package description.

To proceed, we simulated a single SNP, a binary treatment (Rx or C ) and a bivariate

binary outcome. Specifically, the SNP was simulated from a multinomial distribution with

minor allele frequency (MAF) of 0.4, corresponding to probabilities Paa = 0.16, PAa =

0.48, and PAA = 0.36. We considered three efficacy scenarios: (1) no SNP effect, i.e., Rx

is not efficacious for any SNP genotype group; (2) the allele a has a dominant beneficial

effect on Rx ; (3) the allele a has a recessive beneficial effect on Rx. Here we use Y = 1

to indicate occurrence of a undesirable event, for example, AMD progression. We also

considered two sets of marginal outcome probabilities for each treatment and genotype group

combination: (i) high probability of event across all combinations, denoted as Phigh, and (ii)

low probability of event across all combinations, denoted as Plow. The overall design is

shown in Table 2.3.1, which presents the (marginal) event probabilities for each treatment-

by-genotype combination, as well as the RR between Rx and C. To further assess the effect of

correlation (between bivariate outcomes), we simulated the bivariate binary outcomes with
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Table 2.3.1: Overall design of single SNP simulations. Probability in each cell refers to the

marginal probability of event in each corresponding treatment-by-genotype group

Phigh Plow

AA Aa aa AA Aa aa

No effect

Rx 0.4 0.4 0.4 0.2 0.2 0.2

C 0.6 0.6 0.6 0.4 0.4 0.4

RR 0.67 0.67 0.67 0.5 0.5 0.5

Dominant effect

Rx 0.6 0.4 0.4 0.4 0.2 0.2

C 0.6 0.6 0.6 0.4 0.4 0.4

RR 1 0.67 0.67 1 0.5 0.5

Recessive effect

Rx 0.6 0.6 0.4 0.4 0.5 0.2

C 0.6 0.6 0.6 0.4 0.4 0.4

RR 1 1 0.67 1 1 0.5

two different correlations, r = 0.3 or 0.6, using the approach we mentioned above.

We ran 1000 simulations for each scenario. The sample size is set as n = 1000 pairs and

the treatment arm (Rx or C ) is randomly assigned with a 1:1 ratio. The results of biases for

the four contrast estimates (on the log scale) and the coverage probability for simultaneous

95% confidence intervals are summarized in Table 2.3.2. It can be seen that the biases

are close to 0 and the empirical coverage probabilities are close to the nominal level under

all scenarios. The standard deviation of 1000 estimated biases from the high probability

scenario is smaller than that from the low probability scenario for all four contrasts across

all settings. When correlation increases, the standard deviation of biases increases for all

contrasts through all scenarios. This is because the “effective” sample size decreases as
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correlation increases. In addition, we also computed the frequency that the confidence

interval for log κ(1,2):0 does not cover 0 under the dominant effect setting and the confidence

interval for log κ2:(0,1) does not cover 0 under the recessive effect setting, respectively. In

general, we found that the frequency increases with larger effect size (i.e., RR is more away

from 1) and decreases with larger correlation, which are expected (details not shown).

We further conducted two additional sets of simulations by varying sample sizes to n =

500 pairs and n = 2000 pairs. The results are summarized in Table 2.3.3 and Table 2.3.4. In

general, in addition to the findings described above, we observed that the standard deviation

of 1000 estimated biases gets smaller with increasing sample size, and we also noticed that

the empirical SCPs are close to the nominal level under all studied scenarios even when

n = 500 pairs.

2.3.4.2 Chromosome-wide realistic simulations

In this section, we further use the chromosome-wide data from AREDS to evaluate the

performance of CE4-Binary in a real setting for testing a large number of SNPs. First, we

randomly selected 1000 Caucasian participants who had their DNA collected and genotyped,

and randomly “assigned” them to one of the treatment arms (Rx vs C ) in a 1:1 ratio. We

chose a common variant rs2284665 from the well-known AMD risk gene region ARMS2

on chromosome 10 as the causal SNP, and assumed the minor allele of this SNP has a

dominant beneficial effect on Rx. To be specific, we assumed the marginal probability of

AMD progression for the control group is 0.3 among all genotype groups, and the relative

risks of AMD progression between the treatment group and the control group are (RRAA,

RRAa, RRaa) = (1, 0.5, 0.5) for AA, Aa and aa genotype groups, respectively. The Pearson’s

correlation between the bivariate outcome is set as 0.3, which is estimated from the real study.

We applied our proposed CE4-Binary method to test all common SNPs (i.e., SNPs

with at least 5 observations in each treatment-by-genotype group) on chromosome 10, and

repeated the simulation 100 times. The average total number of SNPs being included in the

analysis is 199,071. We set m = 10 to allow on average 10 out of ∼ 200,000 SNPs to have

at least one confidence interval failing to cover its true value, which is equivalent to set αK
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Table 2.3.2: Mean (SD) of estimated biases for log CE4 estimates (log κ(1,2):0, log κ2:(0,1),

log κ1:0, log κ2:1) and simultaneous coverage probability (SCP) for the 95% simultaneous

confidence interval (N=1000)

r = 0.3 r = 0.6

Phigh Plow Phigh Plow

No effect

log κ(1,2):0 0.0015 (0.106) 0.0011 (0.169) 0.0038 (0.111) 0.0008 (0.184)

log κ2:(0,1) -0.0042 (0.135) -0.0053 (0.229) -0.0003 (0.158) -0.0100 (0.248)

log κ1:0 0.0018 (0.115) -0.0007 (0.175) 0.0031 (0.120) -0.0003 (0.196)

log κ2:1 -0.0041 (0.147) -0.0033 (0.237) -0.0008 (0.170) -0.0079 (0.263)

SCP 0.948 0.951 0.953 0.942

Dominant effect

log κ(1,2):0 0.0007 (0.115) -0.0095 (0.192) -0.0050 (0.131) 0.0123 (0.203)

log κ2:(0,1) 0.0010 (0.139) -0.0114 (0.223) -0.0012 (0.156) -0.0010 (0.243)

log κ1:0 -0.0006 (0.121) -0.0098 (0.203) -0.0064 (0.137) 0.0105 (0.212)

log κ2:1 0.0017 (0.145) -0.0072 (0.236) 0.0019 (0.163) -0.0027 (0.252)

SCP 0.960 0.938 0.944 0.955

Recessive effect

log κ(1,2):0 0.0045 (0.122) -0.0002 (0.195) -0.0033 (0.138) -0.0004 (0.220)

log κ2:(0,1) 0.0025 (0.142) -0.0054 (0.226) -0.0178 (0.165) -0.0069 (0.249)

log κ1:0 0.0040 (0.130) 0.0005 (0.216) 0.0004 (0.150) -0.0008 (0.237)

log κ2:1 0.0010 (0.152) -0.0054 (0.248) -0.0179 (0.180) -0.0064 (0.267)

SCP 0.953 0.948 0.931 0.955

at approximately 5× 10−5(∼= 10
199,071

) level.

Among all 100 repeated simulations, on average, there are 22 SNPs being identified by

CE4-Binary per simulation run, with a total of 1082 unique SNPs being picked at least once.
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Table 2.3.3: Mean (SD) of estimated biases for log CE4 estimates (log κ(1,2):0, log κ2:(0,1),

log κ1:0, log κ2:1) and simultaneous coverage probability (SCP) for the 95% simultaneous

confidence interval (N=500)

r = 0.3 r = 0.6

Phigh Plow Phigh Plow

No effect

log κ(1,2):0 -0.0021 (0.151) 0.0037 (0.241) -0.0065 (0.170) 0.0092 (0.254)

log κ2:(0,1) -0.0043 (0.201) -0.0186 (0.333) -0.0116 (0.216) -0.0392 (0.363)

log κ1:0 -0.0033 (0.160) 0.0026 (0.258) -0.0066 (0.178) 0.0135 (0.271)

log κ2:1 -0.0018 (0.212) -0.0159 (0.355) -0.0075 (0.225) -0.041 (0.385)

SCP 0.956 0.945 0.950 0.949

Dominant effect

log κ(1,2):0 0.0043 (0.168) -0.0147 (0.275) 0.0047 (0.186) -0.0053 (0.289)

log κ2:(0,1) -0.0021 (0.203) -0.0306 (0.323) -0.0032 (0.215) -0.0270 (0.361)

log κ1:0 0.0033 (0.178) -0.0135 (0.286) 0.0042 (0.194) -0.0051 (0.305)

log κ2:1 -0.0032 (0.213) -0.0239 (0.335) -0.0046 (0.225) -0.0249 (0.381)

SCP 0.947 0.962 0.951 0.960

Recessive effect

log κ(1,2):0 -0.0051 (0.178) -0.0003 (0.292) -0.0105 (0.186) 0.0019 (0.323)

log κ2:(0,1) 0.0021 (0.203) -0.0184 (0.336) -0.0127 (0.225) -0.0298 (0.376)

log κ1:0 -0.0077 (0.193) -0.0018 (0.316) -0.0105 (0.199) 0.0061 (0.352)

log κ2:1 0.0053 (0.220) -0.0176 (0.360) -0.0085 (0.240) -0.0330 (0.404)

SCP 0.948 0.952 0.949 0.945

The causal SNP was identified 45 out of 100 times (and it is the most frequently identified

SNP), and 29 out of the 45 times it was ranked top 30, which demonstrates the validity

and robustness of our proposed CE4-Binary method. The relative positions of all identified
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Table 2.3.4: Mean (SD) of estimated biases for log CE4 estimates (log κ(1,2):0, log κ2:(0,1),

log κ1:0, log κ2:1) and simultaneous coverage probability (SCP) for the 95% simultaneous

confidence interval (N=2000)

r = 0.3 r = 0.6

Phigh Plow Phigh Plow

No effect

log κ(1,2):0 -0.0013 (0.075) 0.0009 (0.120) 0.0014 (0.083) 0.0018 (0.131)

log κ2:(0,1) 0.0001 (0.100) -0.0082 (0.165) 0.0019 (0.106) -0.0109 (0.171)

log κ1:0 -0.0020 (0.080) 0.0016 (0.126) 0.0004 (0.088) 0.0033 (0.138)

log κ2:1 0.0012 (0.106) -0.008 (0.174) 0.0021 (0.114) -0.0114 (0.179)

SCP 0.953 0.948 0.949 0.949

Dominant effect

log κ(1,2):0 0.0001 (0.082) -0.0050 (0.136) -0.0050 (0.088) -0.0024 (0.141)

log κ2:(0,1) -0.0003 (0.098) -0.0035 (0.157) 0.0035 (0.101) -0.0030 (0.173)

log κ1:0 -0.0003 (0.086) -0.0063 (0.141) -0.0063 (0.092) -0.0036 (0.148)

log κ2:1 -0.0002 (0.103) 0.0062 (0.163) 0.0062 (0.107) -0.0011 (0.182)

SCP 0.957 0.951 0.959 0.950

Recessive effect

log κ(1,2):0 0.0006 (0.088) 0.0050 (0.139) 0.0009 (0.094) 0.0030 (0.156)

log κ2:(0,1) -0.0058 (0.098) 0.0011 (0.165) -0.0018 (0.113) 0.0080 (0.175)

log κ1:0 0.0023 (0.096) 0.0037 (0.148) 0.0010 (0.100) -0.0006 (0.168)

log κ2:1 -0.0068 (0.107) -0.0004 (0.176) -0.0023 (0.119) 0.0083 (0.188)

SCP 0.945 0.950 0.948 0.949

SNPs to the causal SNP and their frequencies of being identified are summarized in Figure

2.3.1. We found that 1051 out of 1082 SNPs (97.1%) were picked less than 5 times, which

is highly likely due to randomness. The remaining 30 SNPs (in addition to the causal SNP)

57



are highly correlated to the causal SNP, with a mean ∆2 (a correlation measure of LD, see

Hill and Robertson (1968)) of 0.894 and a median ∆2 of 0.948. We computed ∆2 using the

R package genetics in this study (Warnes, 2019).

The distribution of ∆2 (with the causal SNP) for the 1051 SNPs (picked less than 5 times)

and the 30 SNPs (picked greater than or equal to 5 times) is summarized in Figure 2.3.2.

Clearly, the SNPs picked < 5 times have a much lower ∆2 value as compared to the SNPs

picked for ≥ 5 times. In addition, for those 30 SNPs, each of them was picked for 37 times

on average, and they are all located on the same gene region (PLEKHA1/ARMS2/HTRA1 ).

Finally, out of 100 simulations, 56 times there are at least one SNP from this gene region

being picked. From these results we conclude: (1) the true causal SNP and its surrounding

SNPs can be identified with high probabilities by our proposed CE4-Binary; (2) some noise

SNPs might be identified by random chance; (3) due to the existence of LD among SNPs,

the causal SNP is more likely to be among a cluster of SNPs.

We further conducted another set of realistic simulations with a different parameter

setting, where the effect size is bigger, with (RRAA, RRAa, RRaa) = (1, 0.4, 0.4) (i.e., larger

differences in RRs between genotype groups). Similar results were observed and the relative

positions of all identified SNPs to the causal SNP and their frequencies are summarized in

Figure 2.3.3. In general, due to the larger effect size, the likelihood of identifying causal SNP

or its surrounding SNPs increases. For instance, under this circumstance, the causal SNP

was identified 88 out of 100 times.

2.3.5 SNP Effects on Treatment Efficacy of AREDS Data

2.3.5.1 AREDS data description

In this study, we chose the 10-year progression (to late-AMD) status as the outcome,

where late-AMD is defined as the severity score reaches 9 or above (9=geographic atrophy

(GA), 10=central GA, 11=choroidal neovascularization (CNV), 12=central GA and CNV).

This is consistent with the AREDS report for evaluating long-term effects of AREDS treat-

ments on AMD progression (Chew et al., 2013). We analyzed a total of 1,127 Caucasian

participants from the combination treatment arm and the placebo arm who were free of
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Figure 2.3.1: Histogram for the frequency of SNPs being identified in 100 chromosome-wide

realistic simulations.

late-AMD in at least one eye at enrollment and did not censor from the study by 10 years.

This results in a total of 2,044 eyes for analysis. DNA samples were collected and genotyped

through a customized HumanCoreExome array by Illumina (Fritsche et al., 2013, 2016).

Table 2.3.5 summarizes the characteristics of our study cohort. Participants receiving

placebo or AREDS formula do not differ in terms of age, sex and smoking status. However,

the baseline AMD severity score is higher in the treatment arm, as compared to the placebo

arm (3.9± 2.2 vs 2.7± 2.2), and so is the 10-year progression rate (32.1% vs 18.8%). This is

due to the stratified randomization strategy where the least severe participants (denoted as

“AMD category 1”) were not randomized to receive the treatments with zinc because of its

potential side effect. All other participants (AMD category 2-4) were equally randomized to

any of the four treatment arms. The distribution of patients in the AMD categories confirms

that participants in category 1 did not receive the antioxidants plus zinc treatment.

We then further investigated the 10-year progression rate for all 2,044 study eyes, strat-

ified by their own and their fellow eyes’ baseline (BL) severity scale. As shown in Figure

2.3.4, the progression rate increases as the study eye’s own BL severity level increases (3.6%
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Figure 2.3.2: Distribution of correlations with causal SNP (measured by ∆2) for SNPs

picked less than 5 times and SNPs picked greater than or equal to 5 times.
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Figure 2.3.3: Histogram for the frequency of SNPs being identified in 100 chromosome-wide

realistic simulations for the setting (RRAA, RRAa, RRaa) = (1, 0.4, 0.4).

for severity in 1-3, 40.8% for severity in 4-6, and 80.6% for severity in 7-8), indicated by the

white bars. Within each category of the study eye’s own BL severity level, the progression

rate increases as the fellow eye’s BL severity increases. For example, the 10-year progression

rate for eyes with BL severity score in 4-6 increases from 18.0% to 37.9%, 61.4% and 79.4%,

as the fellow eye’s BL severity score increases from 1-3 to 4-6, 7-8, and 9+, respectively. As

a bilateral disease, the progression of one eye highly depends on the severity of the other

eye, and thus the correlation between two eyes cannot be ignored.

2.3.5.2 CE4 analysis of AREDS data

We first studied the overall treatment effect of AREDS formula on reducing the 10-year

progression rate. To account for the between-eye correlation, the GEE model with Poisson

distribution and log-link function was applied, adjusting for the known risk factors including

age, smoking status, and baseline severity score. The estimated relative risk between Rx

and C is 1.10 with p = 0.15, which indicates that the combination of antioxidants and zinc
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Table 2.3.5: Characteristics of the AREDS data (Bivariate Binary Outcomes)

Number of subjects
All

(n = 1127)

Placebo

(n = 677)

Antioxidants and Zinc

(n = 450)
p-value?

Age 0.441

Mean (SD) 68.6 (4.9) 68.5 (4.8) 68.8 (5.0)

Median (Range) 68.3 (55.3-81.0) 68.1 (55.3-81.0) 68.7 (55.5-79.8)

Sex (n, %) 0.159

Female 616 (54.7) 358 (52.9) 258 (57.3)

Male 511 (45.3) 319 (47.1) 192 (42.7)

Smoking (n, %) 0.969

Never Smoked 543 (48.2) 327 (48.3) 216 (43.0)

Former/Current Smoker 584 (51.8) 350 (51.7) 234 (52.0)

AREDS AMD categories (n, %) <0.001

1 277 (24.6) 277 (40.9) 0 (0)

2 241 (21.4) 119 (17.6) 122 (27.1)

3 415 (36.8) 190 (28.1) 225 (50.0)

4 194 (17.2) 91 (13.4) 103 (22.9)

Eye-level variables

Number of eyes n = 2044 n = 1255 n = 789

Baseline AREDS AMD severity score <0.001

Mean (SD) 3.1 (2.3) 2.7 (2.3) 3.9 (2.3)

Median (Range) 2.0 (1.0-8.0) 1.0 (1.0-8.0) 4.0 (1.0-8.0)

10-year progression (n, %) <0.001

Progressed 489 (23.9) 236 (18.8) 253 (32.1)

?p-value is based on two-sample t-test or Chi-square test for continuous or categorical variables.
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Figure 2.3.4: Progression rates (from enrollment up to 10 years) by baseline (BL) AMD

severity score, stratified by the fellow eye’s BL AMD severity score.
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is not efficacious in the overall population, as compared to the placebo. To investigate the

heterogeneity of the efficacy in the subgroups defined by a SNP, we apply our CE4-Binary

method to common variants across the genome. Similar to the chromosome-wide simulation

study, we kept SNPs with ≥ 5 observations in each treatment-by-genotype group, resulting

in a total of K = 3, 895, 495 SNPs for analysis. The same set of risk factors was included as

covariates in the model.

The Manhattan plot in Figure 2.3.5 shows the findings of the genome-wide CE4 analysis.

We set m = 10, which corresponds to a significance level at 2.57 × 10−6 in this case. A

total of 28 SNPs from seven gene regions on seven chromosomes are identified. Among those

gene regions, three of them have more than 3 SNPs meeting the p-value threshold and they

are labeled in the Manhattan plot: ANGPT2-MCPH1 on chromosome 8 (5 SNPs), CHST3-

SPOCK2 on chromosome 10 (11 SNPs), and PPM1H on chromosome 12 (4 SNPs). The

CHST3-SPOCK2 region was also found to have multiple SNPs with heterogeneous treatment

efficacy (in terms of the AREDS formula) for AMD progression in a survival analysis by Wei

et al. (2020a) and is discussed in Section 2.2.4.2.

Figure 2.3.5: Genome-wide SNP effects on treatment efficacy.

Within each gene region, the identified SNPs are highly correlated in terms of ∆2 (as

shown by the heatmap in Figure 2.3.6). Therefore, we examined the subgroups determined

by the top SNP (i.e., SNP with the smallest p-value) in each region. The subgroups deter-

mined by other SNPs in the same region are similar. For example, Figure 2.3.7A presents

the estimated efficacy profile of each genotype group determined by SNP rs1245576 on chro-
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mosome 10 and rs1498716 on chromosome 12, respectively. The estimated CE4 contrasts

and their simultaneous confidence intervals (adjusted for both within- and across-SNP mul-

tiplicity) are also presented on the right panel. The efficacy profile for rs1245576 suggests a

dominant beneficial effect of the minor allele, and it is confirmed by the contrast log κ2:(0,1),

of which the multiplicity-adjusted simultaneous confidence interval just misses covering 0.

The {Aa, aa} group by this SNP consists about 65.4% of the total population, a reasonable

size to target. For the other SNP rs1498716, the efficacy profile suggests a recessive effect of

the minor allele, and it is confirmed by the confidence intervals for the contrast log κ2:(0,1).

The targeted population {aa} is about 19.6% of the entire population.

In this real data analysis, the results from CE4-Binary provides multiple SNPs from

different regions as potential candidates for researchers to make their decisions. The fi-

nal decision of which SNP or SNPs to be chosen as the biomarker for targeting requires

multi-dimensional considerations. Note that the CE4 method does not directly consider

the subgroups defined by more than one SNPs. As a post-hoc analysis, we further exam-

ined the targeted and non-targeted populations by the two SNPs illustrated above. Figure

2.3.7B presents the population into three categories: suggested as non-targeted population

by both SNPs (M0), suggested as targeted population by both SNPs (M2), and suggested

as non-targeted population by one SNP but targeted by the other SNP (M1). It can be

seen that more than half of the population (57%) belongs to M1, which may appear to be

inconclusive. Since these three groups co-defined by two SNPs may look similar to the sit-

uation where a single SNP separates the population into three genotype groups, one may

consider applying CE4-Binary on this new 3-group scenario to further investigate the effi-

cacy from each subgroup and their combinations. If that direction is pursued, one needs to

understand that there is likely to have heterogeneous treatment efficacy within these newly

defined subgroups, and the naive way of assuming the same efficacy for each subgroup may

not be optimal (especially for M1). As an alternative, one may consider to apply the general

SME principle proposed by Ding et al. (2016) to cautiously get the efficacy estimates for

each newly defined subgroup.

Finally, we examined the characteristics of targeted and non-targeted population based

on each of the two SNPs (Table 2.3.6). The estimated relative risk is much lower in the
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targeted group than that in the non-targeted group for both biomarkers (0.87 vs 1.85 for

subgroups defined by rs1245576, and 0.58 vs 1.30 for subgroups defined by rs1498716). This

is one of the advantages of the proposed CE4 method, where the corresponding estimated

treatment efficacy in both the targeted and non-targeted group can be obtained together

with a p-value for testing their difference. Other covariates including age, sex, smoking

status and baseline severity score do not vary between the targeted group and non-targeted

group, regardless of which SNP is used for targeting. It suggests that the differential effects

are plausibly due to genetics.

Figure 2.3.6: Heatmap of correlations between identified 20 SNPs.

2.3.5.3 Differential treatment efficacy persists in moderate to severe partici-

pants

As reported by Chew et al. (2013), the AREDS supplements was claimed to be most

beneficial for moderate to severe patients, which corresponds to those in AMD categories 2,

3, and 4. We re-examined our findings by excluding the participants in category 1. Table

2.3.7 illustrated the characteristics for the patients among the two treatment arms. Note

that since participants in category 1 were only allowed to be in the placebo arm, the number

of participants taking the AREDS supplements remains the same. These participants were
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Figure 2.3.7: Two selected SNPs from AREDS analyses. A: treatment profile using

log(RR) (left); CE4 estimates and their corresponding simultaneous confidence intervals

(right). B: Sub-populations co-defined by two SNPs.
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Table 2.3.6: Characteristics of targeted and non-targeted subgroups determined by two separate SNPs

rs1245576: CHR10, CHST3-SPOCK2 rs1498716: CHR12, PPM1H

Targeted Non-targeted p-value Targeted Non-targeted p-value

number of subjects (n,%) 737 (65.4) 390 (34.6) 221 (19.6) 906 (80.4)

Treatment efficacy RR (SE) 0.87 (1.18) 1.85 (1.08) 1.09× 10−6? 0.58 (1.16) 1.30 (1.08) 2.29× 10−6?

Age 0.087 0.423

Mean (SD) 69.0 (4.8) 68.5 (4.9) 68.9 (4.9) 68.6 (4.9)

Median (range) 68.1 (55.3-81.0) 68.9 (55.8-80.0) 68.8 (55.3-79.6) 68.9 (55.5-81.0)

Sex (n, %) 0.194 0.845

Female 392 (53.2) 224 (57.4) 119 (53.8) 497 (54.9)

Male 345 (46.8) 166 (42.6) 102 (46.2) 409 (45.1)

Smoking (n, %) 0.745 0.550

Never Smoked 352 (47.8) 191 (49.0) 102 (46.2) 441 (48.7)

Former/Current Smoker 385 (52.2) 199 (51.0) 119 (53.8) 465 (51.3)

Treatment (n, %) 0.426 0.029

Placebo 436 (59.2) 241 (61.8) 118 (53.4) 559 (61.7)

Antioxidant + Zinc 301 (40.8) 149 (38.2) 103 (46.6) 347 (38.3)

Eye-level variables

Number of eyes n = 1399 n=705 n = 398 n=1646

Baseline AMD severity score 0.530 0.130

Mean (SD) 3.2 (2.3) 3.1 (2.3) 3.3 (2.3) 3.1 (2.3)

Median (range) 2.0 (1.0-8.0) 2.0 (1.0-8.0) 2.0 (1.0-8.0) 2.0 (1.0-8.0)

?: p-value is from the corresponding CE4 contrast when simultaneous type I error is controlled, without adjusting for cross-SNP multiplicity
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randomized with equal probability to each treatment arm, and thus the baseline character-

istics are all balanced between treatment and placebo. We specifically examined the two

SNPs in the new population and obtained their efficacy profiles. Overall, they look almost

identical as in the previous analyses. All the baseline characteristics do not differ between

targeted and non-targeted population (Table 2.3.8), regardless of which SNP is used as the

candidate marker for targeting. We conclude that the differential treatment efficacy that we

discover persists in moderate to severe participants.

2.3.6 Summary and Discussion

Modern drug development in RCTs involves the evaluation of efficacy of a new treatment

Rx relative to a control treatment C, based on a clinical meaningful outcome. This makes

testing SNPs for a potential tailoring strategy fundamentally different from the traditional

association detection for SNPs with a quantitative trait. Therefore, traditional genetic mod-

els or tests for association detection cannot be simply applied to such a SNP testing problem

in drug development.

In this work, we develop a novel SNP testing method to confidently identify and infer

subgroups with differential treatment efficacy from RCTs with binary outcomes. Our pro-

posed CE4-Binary method, derived from the fundamental multiple testing principle, assesses

all clinically plausible effects of a SNP through four contrasts. These contrasts are directly

formulated based upon a logic-respecting efficacy measure, the RR. Using a log-linear model

for the binary outcome, we demonstrate that the RR has a unique covariate-invariant prop-

erty, which makes the comparison of treatment response between Rx and C straightforward

in subgroups and their combinations.

Our multiplicity adjustment approach rigorously combines two error rate controls, strong

FWER control within each SNP, and per family error rate control across the SNPs. Such

an error control is appropriate for the new drug development purpose, which takes the

dependence into account, both within each SNP and across the SNPs, and it allows flexibility

in the exploration of multiple candidate SNPs, while being confident in the patient subgroup

to target from any selected SNP.
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Table 2.3.7: Characteristics of the AREDS participants with AMD category 2, 3, or 4

Number of subjects
Placebo

(n=400)

Antioxidants and Zinc

(n=450)
p-value*

Age 0.335

Mean (SD) 69.1 (5.1) 68.8 (5.0)

Median (Range) 68.7 (55.3-81.0) 68.7 (55.5-79.8)

Sex (n, %) 0.446

Female 218 (53.2) 258 (57.3)

Male 182 (45.5) 192 (42.7)

Smoking (n, %) 0.881

Never Smoked 195 (48.8) 216 (43.0)

Former/Current Smoker 205 (51.2) 234 (52.0)

AREDS AMD categories (n, %)

1 0 (0) 0 (0)

2 119 (29.8) 122 (27.1)

3 190 (47.5) 225 (50.0)

4 91 (22.8) 103 (22.9)

Eye-level variables

Number of eyes n=702 n=789

Baseline AREDS AMD severity score 0.517

Mean (SD) 4.0 (2.3) 3.9 (2.2)

Median (Range) 4.0 (1.0-8.0) 4.0 (1.0-8.0)

*p-value is based on two-sample t test or Chi-square test for continuous or categorical variables
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Table 2.3.8: Characteristics of the targeted and non-targeted populations for participants with AMD category 2, 3, or 4

rs1245576: CHR10, CHST3-SPOCK2 rs1498716: CHR12, PPM1H

Targeted Non-targeted p-value Targeted Non-targeted p-value

# of subjects (n,%) 562 (66.1) 288 (33.9) 180 (21.2) 670 (78.8)

Treatment efficacy RR (SE) 0.80 (1.08) 1.67 (1.14) 1.89× 10−6? 0.53 (1.16) 1.20 (1.08) 1.19× 10−6?

Age 0.277 0.379

Mean (SD) 68.8 (5.1) 69.2 (4.9) 69.2 (5.0) 68.8 (5.1)

Median (range) 68.5 (55.3-81.0) 69.2 (55.8-80.0) 69.0 (55.3-79.6) 68.6 (55.5-81.0)

Sex (n, %) 0.178 0.774

Female 305 (54.3) 171 (59.4) 103 (57.2) 373 (55.7)

Male 257 (45.7) 117 (40.6) 77 (42.8) 297 (44.3)

Smoking (n, %) 0.799 0.928

Never Smoked 274 (48.8) 137 (47.6) 86 (47.8) 325 (48.5)

Former/Current Smoker 288 (51.2) 151 (52.4) 94 (52.2) 345 (51.5)

Treatment (n, %) 0.666 0.226

Placebo 261 (46.4) 139 (48.3) 77 (42.8) 323 (48.2)

Antioxidant + Zinc 301 (53.6) 149 (51.7) 103 (57.2) 347 (51.8)

Eye-level variables

Number of eyes n = 990 n=501 n = 316 n=1175

Baseline AMD severity score 0.835 0.693

Mean (SD) 3.9 (2.3) 4.0 (2.2) 3.9 (2.3) 4.0 (2.3)

Median (range) 4.0 (1.0-8.0) 4.0 (1.0-8.0) 5.0 (1.0-8.0) 4.0 (1.0-8.0)

?: p-value is from the corresponding CE4 contrast when simultaneous type I error is controlled, without adjusting for cross-SNP multiplicity
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We successfully applied CE4-Binary on AREDS data to identify subgroups that exhibit

enhanced efficacy with the treatment of antioxidants plus zinc in reducing AMD progression

rate. Multiple gene regions have been discovered to suggest subgroups with significantly

enhanced efficacy, which include the ANGPT2-MCPH1 region on chromosome 8, CHST3-

SPOCK2 on chromosome 10, and PPM1H on chromosome 12. Using two top SNPs as an

example, we further examined the treatment efficacy and patient characteristics in the tar-

geted and non-targeted subgroups. Our findings provide new perspectives on the differential

treatment efficacy, suggested by genetic polymorphisms for reducing AMD progression rate.

Although we only focus on SNP testing in this article, the key elements of the method

are applicable to broader scenarios with other types of markers for testing. For example, the

marker separates the patient population into more groups (> 3) such as the immunohisto-

chemistry test, or the subgroups co-defined by multiple markers (i.e., SNP and immunohis-

tochemistry test). In these scenarios, additional contrasts need to be constructed to obtain

the complete ordering of the treatment efficacy in individual subgroups and some of their

combinations, which will then be used to identify the subgroups.
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3.0 Individual Treatment Effects Estimation through Machine Learning in

Survival Data

3.1 Introduction

One important aspect of precision medicine is allowing doctors to select treatments that

are most likely to help patients based on their own clinical or other characteristics. Differ-

ent from traditional clinical studies where the focus is on estimating the average treatment

effect (ATE) in a representative population (usually through a well-designed clinical trial),

assisting patients to shape their individualized-treatment plan requires an understanding of

the heterogeneity of treatment effects (HTE) from a more patient-centric view. With the

increase amount of large bioinformatic datasets and the use of electronic health record data,

a full picture of individuals’ characteristics is forming, which also brings challenges to sta-

tistical analyses due to the complexity of the data structure. Thus using flexible modeling

techniques such as machine learning methods or deep learning methods within the counter-

factual framework shows great potential and receives much attention. Foster et al. (2011a)

proposed the virtual twins approach to study the treatment effect heterogeneity among in-

dividuals and then identify subgroups of individuals who can benefit from a treatment. The

basic idea is to calculate the treatment effects by taking the difference between predicted

response values obtained from an individual’s observed and “twin” data point by altering

the treatment assignment. The outcomes are then used in classification or regression trees

on covariates to identify potential subgroups with differential treatment effects compared to

the average value. Wager and Athey (2018) modified the random forest by changing the

splitting rule to maximize the treatment difference within a node. They also use hold out

data from different treatment groups to calculate the treatment effect for each terminal node

and then average over the forest. Hill (2011) described an adaptive approach of the Bayesian

Additive Regression Trees (BART) to accommodate the causal inference framework, which

is similar to the virtual twin but instead using the BART as base learner. Lu et al. (2017)

conducted simulations to compare the performance of different methods including virtual
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twins, causal forest, synthetic forest and BART in estimating individual treatment effect

(ITE). It is worth mentioning that in many research paper, the ITE refers to the condi-

tional average treatment effect (CATE), which is not the true individual treatment effect,

but rather the treatment effect for the observed individual that represents the cohort with

the same set of characteristics. It is impossible to collect all information of an individual

that could distinguish him or her from all other people, and thus the exchangeable use of

ITE and CATE is acceptable.

Kunzel et al. (2018) formally defined the meta-algorithms to estimate the CATE function.

A meta-algorithm consists two level of models. The base learner is used to build prediction

model for the response value of individuals and it can be any form of machine learning

methods, deep learning methods or the regression methods, which can easily be adapted to

various types of outcome variables. The meta-level algorithm can be seen as a function of

the base learners for computing the CATE of each individual. Three meta-algorithms were

discussed in Kunzel et al. (2018) including: S-learner, T-learner and X-learner. The S-learner

is constructed on a single prediction model where the treatment assignment is considered

as one covariate similar to other characteristic variables. By altering the treatment assign-

ment of an individual while keeping the rest covariates as observed values, the CATE is then

computed as the difference between the two predicted values. The T-learner is based on two

prediction models where each one is built on either the treatment or the control cohorts. In

this setting, the treatment assignment is used to separate the population into two groups

where two models are fit separately. The CATE is then estimated from taking the difference

between the predicted values obtained from the two models. The X-learner is a modification

of T-learner, which is more efficient when the treatment assignment is heavily unbalanced

(i.e., one treatment arm contains much more patients than the other). After constructing two

prediction models, the pseudo-CATE is imputed by taking the difference between observed

outcome and the potential outcome obtained from the corresponding model. The imputed

pseudo-CATE is then regressed on covariates to build two prediction models for each treat-

ment arm (any type of machine learning/ deep learning/ regression model can be used) and

thus for each individual two predicted “CATE” can be obtained. The two estimates are then

combined using a weighted sum to get the final estimate of CATE. Details of the algorithms
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are discussed in Section 1.5.

Time-to-event outcomes primarily arise from medical and biological studies and also

widely exist in epidemiological, sociological, economic, and financial research. They are the

most commonly used outcomes in cancer studies and thus for oncology drug development, un-

derstanding the estimation of CATE for survival outcomes is essential. However, the unique

“missingness” happened in such outcomes which is known as censoring makes the survival

analysis more complicated than other types of outcomes. While most studies we mentioned

focus on the continuous or binary outcomes, there are some research about the estimation of

CATE using time-to-event outcomes. Zhu and Gallego (2020) proposed a framework to first

estimate ITE and then using a scoring system to identify variables contributing to the HTE.

They converted the original survival data into a sequence of binary outcomes over time and

then applied the Super-learner to estimate the conditional hazard rate at each time point.

The estimation step is more on the binary type of data rather than the survival data. Cui

et al. (2020) recently developed a causal survival tree method which is an extension of Wager

and Athey (2018) to accommodate right censoring in survival outcomes. Tabib and Larocque

(2020) proposed to use a special splitting rule in the random forest where the distance be-

tween the ITE of the left and right node population is maximized considering the node sizes.

Unfortunately, none of the three methods has a publicly available software or package.

In this project, we specifically examined the use of the meta-algorithm with machine

learning base learners that are designed for survival outcomes to estimate CATE for each

individual. Further, based on the CATE estimation, we will identify potential subgroups

for recommending appropriate treatment. We will identify the prescriptive variables that

predicts the HTE to help understand the mechanism of the HTE. The chapter is organized

as follows. Section 3.2 introduces the framework of the problem, treatment efficacy measures

to use, and the machine learning/deep learning methods we considered, followed by an

algorithm to identify important variables related to the treatment recommendation. In

Section 3.3, intensive simulations are conducted to compare the performance of different

models in estimating CATE and recommending the “right” treatment for individuals under

various conditions. The models are then applied to the AREDS data in Section 3.4 and

important variables contributing to the treatment recommendation are identified. Finally,
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we discuss and conclude in Section 3.5.

3.2 Methods

3.2.1 Framework and notations

Consider a study with two treatment arms and denote Zi ∈ {0, 1} a binary treatment

assignment variable (Zi = 1 for treatment and Zi = 0 for control). Xi is a p−dimensional

covariate vector. Let (Ti(0), Ti(1)) denote the counterfactual survival times of individual i

under Neyman-Rubin potential outcome framework (Rubin, 1974; Splawa-Neyman et al.,

1990). If the observed survival time and censoring time are (Ti, Ci), then the observed

outcome would be Yi = min(Ti, Ci) with the event indicator di = I(Ti < Ci). We assume the

censoring time is independent of the survival time, which is also known as noninformative

censoring: Ci(z)⊥⊥ Ti(z)|(Xi, Zi). To aid the estimation of CATE, the following assumptions

need to be made.

Assumption 1 (Consistency)

Ti = ZiTi(1) + (1− Zi)Ti(0),

Assumption 2 (Unconfoundedness)

Zi⊥⊥ (Ti(0), Ti(1))|Xi,

Assumption 3 (Population Overlap)

P (Zi = 1|Xi = xi) ∈ (0, 1).

The consistency assumption guarantees the counterfactual model applied to the observed

outcomes as: Yi = ZiYi(1) + (1−Zi)Yi(0) and di = Zidi(1) + (1−Zi)di(0). The unconfound-

edness assumption requires the treatment assignment to be independent of the potential

outcomes given covariates sets, which rules out the existence of unobserved factors that af-

fect treatment choice and are also correlated with the outcomes. The population overlap
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assumption describes that for each value of covariate set, there is a positive probability of

being assigned to both treatment and control arms, or equivalently, there is sufficient overlap

in the characteristics of treated and untreated patients for adequate matches.

The commonly used treatment efficacy measures for time-to-event outcomes include dif-

ference or ratio of: (1) survival probability at a specific timepoint, (2) mean (restricted) sur-

vival time, and (3) quantile survival time. We specifically examined the survival probability

at a specific timepoint in the project, which is defined as S(ti = t|Zi,Xi) = P (ti > t|Zi,Xi).

The corresponding CATE function can then be determined as

θ(t,x) = E[S(t|1,x)− S(t|0,x)] (3.2.1)

3.2.2 Estimating CATE with meta-algorithms

The estimation of CATE largely rely on the performance of base learners when using

the meta-algorithms. Machine learning methods stand out when complex high-dimentional

data become available nowadays. For survival outcomes, we consider using three machine

learning/ deep learning techniques as base learners: random survival forest (RSF, (Ishwaran

and Kogalur, 2007)), Bayesian accelerated failure time model (BAFT, (Henderson et al.,

2020)), and deep neural network (DNN) survival model (Sun et al., 2020).

We first review the S-learner using the survival outcomes. A single prediction model

is fitted using observed outcomes and covariates, together with the treatment assignment,

denoted as Ŝ(t, Z,X) =. The predicted survival probability at a given timepoint under

different treatment conditions is then obtained by altering the treatment assignment for

individuals and the CATE estimate is then given by

θ̂(t,x) = Ŝ(t, 1,x)− Ŝ(t, 0,x).

As noted in Foster et al. (2011a), manually including treatment-covariate interactions in

the design matrix can improve the performance of the tree-based learners or algorithms.

Including the interaction terms, ZX and (1− Z)X, in the S-learner using RSF as the base

learner adds the chance that the treatment assignment is selected in the variable sets to grow
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a tree. Since the BART algorithm is in general more adaptive, there is no need to manually

add the interaction matrix.

As for the T-learner, two prediction models are fitted using individuals under different

treatment conditions. In this case, the treatment indicator is no longer a covariate in the

prediction model. Denote Ŝ1(t,X) as the prediction model using individuals with treatment,

and Ŝ0(t,X) as the prediction model using individuals with control. The predicted survival

probability at a given time point under different treatment conditions is then obtained by

fitting the two models using the same set of covariates from individuals and the CATE

estimate is then given by

θ̂(t,x) = Ŝ1(t,x)− Ŝ0(t,x).

The X-learner is based on T-learner but additional steps are involved to have a more

efficient estimate when unbalanced design happens (i.e., much more individuals are random-

ized in one treatment condition than that in the other condition). Since the individual-level

survival probability at certain time point is not observed, the imputed treatment effects for

individuals in the treated group and control group are modified as:

D̃1(x1) = Ŝ1(t,x1)− Ŝ0(t,x1),

D̃0(x0) = Ŝ1(t,x0)− Ŝ0(t,x0).

Here the superscripts {0, 1} denote the cohort under control or treatment condition. Any

supervised learning or regression method(s) can be applied to estimate the treatment ef-

fects using either the imputed treatment effects in the treatment group to obtain θ̂1(x) =

E[D̃1|X1 = x] and similarly in the control group to obtain θ̂0(x) = E[D̃0|X0 = x]. Thus

for each individual there are two potential estimates for CATE. The final CATE estimate is

defined as a weighted sum of the two estimates in this stage:

θ̂(x) = g(x)θ̂0(x) + (1− g(x))θ̂1(x),

where g ∈ (0, 1) is a weight function. Following the recommendation of Kunzel et al. (2018),

we use the estimate for the propensity score P [Z = 1|X] as g(x).
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As pointed out by Kunzel et al. (2018), the performance of each estimate can largely

vary by the settings. For example, since the S-learner treats the treatment assignment

like other predictors, without considering modifying the model by including the interaction

terms, the original model using RSF as base learner can completely ignore the treatment

indicator by not splitting on it. This only works well when the CATE is around 0 (i.e., no

treatment effects), which is not of our interest. Adding interactions can solve the issue, but

the estimates can be biased when the treatment assignment is severely unbalanced.

3.2.3 Identification of important variables contributing to treatment recom-

mendation rule

CATE describe the heterogeneity of treatment effects. The next step is to use CATE to

select the “correct” treatment for each individual, i.e., to build the treatment recommenda-

tion rule. A straightforward approach is to use 0 as the threshold (when the treatment effects

are based on the difference of survival probability). Patients with estimated CATE greater

than zero would benefit more from taking the treatment while for those with estimated

CATE less than zero, the control is the to-go drug. This way the treatment recommenda-

tion for patients becomes a binary classification problem, and the important variables are

identified as those that contribute most to minimize the classification error. We used Boruta

algorithm (Kursa and Rudnicki, 2010) for identification of these important variables.

The algorithm started by generating “shadow variables” by shuffling the values of each

original feature to remove any potential correlation with the target binary outcome, in our

case, the treatment recommendation. These “shadow variables” are then added to the orig-

inal dataset so that the total number of variables is doubled. A random forest classifier is

used to run on the extended dataset and z-scores are computed for all variables including

real and shadow ones. The maximum score of all “shadow variables” serves as a threshold

to assign a “Hit” to the original variables (i.e., if the z-score of original feature is greater

than the threshold, a “Hit” is marked). For variables with undetermined importance, a two-

sided test of equality with the max z-score in the shadow variables is conducted and those

with significantly lower z-score are permanently removed from the dataset. After removing
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unimportant variables and all shadow variables, repeat the procedure until either the impor-

tance is assigned for all variables or the pre-specified number of iterations is reached. This

algorithm identifies variables that significantly contribute to the treatment recommendation

strategy (i.e., whether the individual can benefit from one treatment over the other treat-

ment). We can understand the heterogeneity in the treatment efficacy from these important

variables and provide guidance for future trial designs.

3.3 Simulation study

3.3.1 Simulation design

We conducted intensive simulations to compare the finite sample performance of the

proposed methods for estimating CATE. We simulated 10 independent covariates X1, . . . , Xp

from N(0, 0.352) and dichotomized X8, X9, X10 through I(X > 0). The total sample size was

n = 1, 000. The treatment indicator was generated from Z|X ∼ Bernoulli(exp(X)), where

Z = 1 for treatment group and Z = 0 for control group. We considered three randomization

designs: (1) balanced design where exp(X) = 0.5; (2) unbalanced design where exp(X) =

0.05; and (3) slight violation of unconfoundedness assumption where logit(exp(X)) = β0 +

1.3 × X1 − 0.8 × X5. β0 was selected to have an overall 1 : 1 treatment-control ratio. We

denote the third design as dependent design in the following context.

The survival times T were simulated from the following Weibull survival curve:

S(t|X = x, Z = z) = exp

[
exp{hz(x)}( t

λz
)η
]
,

where hz(x) denotes the prognostic function under Cox model. By inverse-transforming the

survival function, the survival times were then simulated as:

T (X = x, Z = z) = λz

[
− log(U)

exp{hz(x)}

] 1
η

,

where U ∼ Unif[0, 1]. We set the shape parameter η = 2 and the scale parameter λ0 = 18

and λ1 = 20 so that individuals in the treatment group have a larger baseline (hz(x) = 0)
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survival probability, i.e., longer survival time. The censoring times were simulated from an

exponential distribution to have an overall censoring rate of 30%. Three types of heteroge-

neous treatment effects were introduced by the following structures for hz(x):

Scenario 1: h0(x) = 0.2X1 + 0.7X2 + 0.4X9,

h1(x) = −0.5X1 − 2X2 − 0.25X9.

Scenario 2: h0(x) = −0.5X1 + 0.7X2 + 0.2X9 + 0.9X2X9,

h1(x) = −0.05eX1 − 0.2X2
2 + 0.35X9. (3.3.1)

Scenario 3: h0(x) = −0.5X1 + 0.7X2 + 0.2X9 + 0.9X2X9 + 0.6X3 − 0.5X2
4 + 0.6X8,

h1(x) = −0.05eX1 − 0.2X2
2 + 0.2X9 − 0.1eX5 + 0.7 sin (X6) + 0.5X10.

From this setting, the ITEs are determined by X1, X2, and X9 in a linear form in Scenario

1, and in a complex form in Scenario 2. In Scenario 3, treatment effects of the two groups

are functions of two different sets of covariates, and two treatment groups share a small

subset of the covariates ((X1, X2, and X9). We explored the following combinations of the

meta-algorithms and base learners: T-learner with RSF (R-T), X-learner with RSF (R-X),

T-learner with BAFT (B-T), X-learner with BAFT (B-X), T-learner with DNNSurv (D-T)

and X-learner with DNNSurv (D-X). A true Weibull model was also included as the optimal

CATE estimate. We trained each model on the simulated training set of n = 1, 000 patients,

and we evaluated its performance on an independent test set of N = 105 patients for which

we can calculate the true CATE from their covariate sets. We repeated the Monte-Carlo

simulation B = 100 times. The performance measures we assessed are bias and root mean

squared error (RMSE) within quantile-bins which are defined as:

Bias =
1

Q

Q∑
i=1

1

nq

nq∑
j=1

(θ̂j − θj),

RMSE =
1

Q

Q∑
i=1

√√√√ 1

nq

nq∑
j=1

(θ̂j − θj)2.

Here Q denote the number of bins based on true CATE quantiles, where true CATE for

individual j was computed by:

θj = Sj(t = t̃|X = xj , 1)− Sj(t = t̃|X = xj , 0) = e
[exp{h1(xj)( t̃

λ1
)η}] − e[exp{h0(xj)}( t̃

λ0
)η ]
.
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Table 3.3.1: 2× 2 table of recommendation rule from true CATE and estimated CATE

Rule by θ

Rule by θ̂
TP FP

FN TN

The overall median time for all individuals in the test dataset was used as t̃, and other

parameters from (3.3.1) were plugged in the above equation, together with the covariate set

of individual j. We set Q = 50 in the simulation studies. For X-learner, the machine learning

method used for estimating imputed treatment effects was gradient boosting machine (GBM)

(Greenwell et al., 2020), and the estimate of propensity score was obtained from random

forest (RF) classification (Liaw and Wiener, 2002).

The CATE estimate from each method was used to set up treatment recommendation

rule. Patients with θ̂ > 0 were labeled as recommended for treatment (RT) and patients with

θ̂ < 0 were labeled as recommended for control (RC). Assuming that the label based on true

CATE is the gold standard, the recommendation rule generated by each CATE estimate is a

classification problem and the prediction accuracy metrics for 2×2 table can be used (Table

3.3.1). The following measurements were considered: accuracy (ACC = TP+TN
N

), positive

predictive value (PPV = TP
TP+FP

), negative predictive value (NPV = TN
TN+FN

), sensitivity

(= TP
TP+FN

), specificity (= TN
TN+FP

), and F-score (= 2

PPV −1+Sensitivity−1 ).

3.3.2 Simulation results

3.3.2.1 Balanced Design

Figure 3.3.1 presents the binned bias and RMSE for CATE estimates from each method

under balanced design. The CATE estimate from correctly specified Weibull model shows

the best performance one can get. In general, the BAFT base learners (i.e., B-T and B-X)

have relatively large biases and RMSEs compared to other methods, except for the simple
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linear case where they have the smallest biases. The RSF- and DNNSurv-based models

have comparable biases under all scenarios, but DNNSurv-models provide smaller RMSE.

Overall, the X-learner has a better performance in terms of RMSE than T-learner. The

prediction accuracy metrics are summarized in Table 3.3.2, with the best performer other

than Weibull model being highlighted in bold. For scenario 1 when only linear terms are

involved, X-learner with DNNSurv had the best measurements across all six metrics. For

scenario 2 and 3, X-learner with DNNSurv provides the best or the second best performance

for all metrics. While T-learner with DNNSurv and X-learner with RSF outperform D-T at

some metrics under more complicated scenarios (e.g., D-T has a larger specificity under both

scenario 2 and 3, and PPV under scenario 3), the D-X still provides comparable prediction

accuracy.

3.3.2.2 Unbalanced Design

Under unbalanced design, the BAFT-based learners have smallest biases under relatively

simple scenarios (scenarios 1 and 2) as compared to other methods, but still show inflated

RMSEs compared to RSF-based methods. The biases from RSF- and DNNSurv-based mod-

els are similar across all scenarios, but the RMSEs from DNNSurv-based methods show

much larger biases (Table 3.3.2). In the simple linear scenario, D-X has the best ACC,

PPV and specificity whereas R-T has the best NPV, sensitivity and F-score. In Scenario 2

when non-linear terms are involved R-T outperforms other methods for all metrics except for

specificity where it has the second best performance after B-T. In the most complex scenario

(Scenario 3), no single model outshines others. R-T, R-X and B-T are the best performer

under different metrics.

With two hidden layers and 30 nodes per layer, DNNSurv-based models contain more

tuning parameters than other machine learning methods, and thus require sizeable samples

to obtain a stabilized and minimized loss value. In the unbalanced design with n = 1, 000 and

e(X) = 0.05, the treatment arm only contains about 50 people and around 30% are censored.

Such a small sample size can cause variable results across 100 runs. To demonstrate the

impact of sample size, we combined 2, 4, and 10 training datasets to enlarge the training
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Figure 3.3.1: Box plots to compare the performance of CATE estimates: balanced design.
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Table 3.3.2: Prediction Accuracy using CATE estimates: balanced design

R-T R-X B-T B-X D-T D-X Weibull

Scenario 1

ACC

mean (SD)
90.11 (1.81) 90.58 (1.85) 85.99 (2.03) 88.55 (1.91) 92.39 (1.71) 93.44 (1.67) 96.37 (1.62)

PPV

mean (SD)
91.78 (3.21) 92.33 (3.30) 90.67 (2.32) 92.18 (2.50) 94.96 (3.02) 95.52 (2.94) 97.36 (2.33)

NPV

mean (SD)
87.17 (5.99) 87.56 (6.19) 76.13 (4.54) 80.93 (4.81) 87.62 (5.77) 89.63 (5.43) 94.68 (4.90)

Sensitivity

mean (SD)
94.56 (3.24) 94.62 (3.38) 89.26 (2.96) 91.51 (2.94) 94.30 (3.25) 95.25 (3.04) 97.55 (2.44)

Specificity

mean (SD)
79.74 (9.21) 81.16 (9.29) 78.36 (6.22) 81.64 (6.66) 87.92 (8.00) 89.20 (7.63) 93.62 (5.89)

F-score

mean (SD)
93.05 (1.22) 93.36 (1.27) 89.90 (1.52) 91.79 (1.39) 94.54 (1.22) 95.31 (1.20) 97.41 (1.15)

Scenario 2

ACC

mean (SD)
79.68 (4.01) 80.50 (4.15) 72.15 (3.78) 75.29 (3.91) 82.10 (4.50) 82.76 (4.68) 91.04 (3.53)

PPV

mean (SD)
86.55 (4.87) 86.97 (5.11) 84.69 (3.50) 86.18 (4.01) 89.60 (5.28) 89.63 (5.78) 94.07 (4.47)

NPV

mean (SD)
66.96 (9.64) 68.80 (10.19) 51.73 (5.27) 56.37 (6.08) 70.15 (11.31) 72.14 (11.67) 86.84 (10.55)

Sensitivity

mean (SD)
85.31 (8.21) 86.15 (8.26) 74.42 (5.21) 78.00 (5.61) 85.38 (8.42) 86.57 (8.68) 93.69 (6.01)

Specificity

mean (SD)
65.89 (16.12) 66.65 (16.80) 66.60 (9.65) 68.66 (11.45) 74.07 (16.28) 73.41 (18.48) 84.53 (12.63)

F-score

mean (SD)
85.50 (3.47) 86.12 (3.51) 79.08 (3.20) 81.70 (3.19) 87.00 (3.74) 87.57 (3.78) 93.64 (2.65)

Scenario 3

ACC

mean (SD)
83.47 (2.16) 83.74 (2.20) 79.21 (2.83) 81.30 (2.57) 86.73 (2.58) 86.77 (2.19) 92.12 (1.89)

PPV

mean (SD)
86.61 (3.66) 86.42 (3.86) 87.52 (2.46) 88.06 (2.57) 91.22 (3.19) 90.34 (3.70) 94.86 (2.53)

NPV

mean (SD)
76.62 (7.85) 78.17 (7.93) 62.53 (5.16) 66.87 (5.52) 77.89 (8.26) 79.66 (7.75) 86.67 (6.79)

Sensitivity

mean (SD)
91.33 (4.92) 92.08 (4.77) 82.76 (4.15) 85.53 (4.31) 90.35 (5.21) 91.58 (4.73) 94.20 (3.63)

Specificity

mean (SD)
63.91 (12.66) 62.95 (13.52) 70.37 (7.06) 70.77 (7.78) 77.73 (9.68) 74.77 (11.60) 86.96 (7.14)

F-score

mean (SD)
88.72 (1.59) 88.97 (1.50) 84.99 (2.28) 86.67 (2.06) 90.62 (2.05) 90.78 (1.60) 94.45 (1.41)
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Figure 3.3.2: Box plots to compare the performance of CATE estimates: unbalanced design.
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Table 3.3.3: Prediction Accuracy using CATE estimates: unbalanced design

R-T R-X B-T B-X D-T D-X Weibull

Scenario 1

ACC

mean (SD)
81.38 (5.73) 81.28 (6.74) 78.90 (3.79) 79.79 (4.80) 78.74 (6.20) 81.56 (5.78) 91.29 (3.59)

PPV

mean (SD)
81.74 (6.87) 82.16 (8.19) 83.20 (4.33) 83.48 (5.31) 88.02 (4.75) 89.02 (5.31) 94.13 (4.73)

NPV

mean (SD)
88.55 (11.52) 87.31 (11.31) 68.91 (9.07) 71.31 (10.76) 63.95 (10.32) 68.88 (10.54) 87.27 (9.38)

Sensitivity

mean (SD)
95.99 (5.50) 95.58 (5.40) 88.07 (5.80) 89.43 (5.85) 80.96 (8.95) 84.53 (8.09) 93.82 (5.31)

Specificity

mean (SD)
47.33 (24.57) 47.94 (29.10) 57.52 (14.47) 57.31 (17.88) 73.57 (12.32) 74.62 (14.47) 85.40 (12.85)

F-score

mean (SD)
87.94 (3.29) 87.91 (3.72) 85.36 (2.72) 86.11 (3.19) 83.99 (5.39) 86.38 (4.75) 93.77 (2.59)

Scenario 2

ACC

mean (SD)
76.52 (7.74) 75.61 (8.11) 71.42 (6.09) 70.18 (6.80) 64.10 (8.58) 65.78 (8.51) 80.01 (10.25)

PPV

mean (SD)
86.51 (7.18) 86.14 (8.13) 83.99 (4.65) 82.42 (5.58) 77.89 (6.10) 79.39 (6.56) 88.75 (6.15)

NPV

mean (SD)
65.65 (14.14) 63.54 (15.07) 52.01 (9.11) 50.20 (9.92) 41.43 (11.85) 44.19 (12.58) 71.22 (19.75)

Sensitivity

mean (SD)
81.55 (16.47) 81.01 (17.09) 74.32 (10.03) 74.53 (11.24) 69.39 (12.12) 70.82 (13.19) 83.07 (16.18)

Specificity

mean (SD)
64.20 (25.16) 62.39 (28.57) 64.32 (13.76) 59.51 (17.65) 51.13 (17.40) 53.41 (19.92) 72.52 (18.47)

F-score

mean (SD)
82.20 (9.82) 81.48 (10.75) 78.38 (5.82) 77.64 (6.50) 72.83 (8.08) 74.05 (8.23) 84.71 (9.73)

Scenario 3

ACC

mean (SD)
78.71 (3.75) 77.37 (3.89) 77.16 (4.71) 75.53 (4.61) 69.76 (6.83) 73.47 (6.03) 81.38 (5.76)

PPV

mean (SD)
84.60 (6.22) 82.77 (6.09) 85.99 (4.18) 84.07 (4.20) 81.62 (5.35) 83.85 (5.14) 88.94 (4.76)

NPV

mean (SD)
70.18 (11.67) 70.50 (13.25) 60.60 (8.92) 58.86 (9.55) 48.97 (11.19) 54.99 (11.35) 68.90 (12.97)

Sensitivity

mean (SD)
87.40 (10.45) 88.01 (10.99) 81.67 (7.92) 81.67 (8.74) 74.79 (9.61) 78.49 (9.83) 84.93 (9.22)

Specificity

mean (SD)
57.07 (23.29) 50.87 (24.46) 65.92 (13.48) 60.25 (14.82) 57.22 (15.43) 60.99 (16.52) 72.55 (14.72)

F-score

mean (SD)
85.20 (3.62) 84.49 (3.88) 83.46 (4.05) 82.45 (4.14) 77.67 (5.90) 80.59 (5.32) 86.48 (4.80)
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sample size into 2,000, 4,000, and 10,000, with treatment arm roughly contains 100, 200,

and 500 individuals, and the performance was evaluated on the test dataset. The number

of replications was deducted from 100 to 50, 25 and 10 respectively. Figures 3.3.3, 3.3.4,

and 3.3.5 present the biases and RMSEs of CATE estimates on test dataset, with model

trained by the combined training datasets. Firstly, as sample size increases, the variation

of the estimates is getting smaller, reflected by narrow boxes. When 2 training datasets are

combined, the RMSEs from D-T and D-X models are comparable to the BAFT-based model,

but still greater than the RSF-based model. As sample size increases to 200 individuals in the

treatment arm (combining 4 training datasets), the RMSEs from DNNSurv-based models

are similar to those from RSF-based models in scenarios 2 and 3, and in scenario 1, the

RMSEs are the smallest. Finally, when 10 datasets are combined, DNNSurv-based models

become the best performers with the smallest RMSEs. Note that results on Figure 3.3.5 are

from only 10 runs, so it is understandable that the biases are relatively large.

Under unbalanced design, the X-learner is expected to have the best performance since

it adjusts the estimate based on the unbalanced allocation. However, we do not see a clear

trend in the modified version for the time-to-event outcomes. More discussions are in Section

3.5.

3.3.2.3 Dependent Design

We further examined the performance under slight violation of unconfoundedness as-

sumption where the treatment assignment depends on covariates X1 and X5. The overall

allocation was 1:1. The CATE estimates had similar performance as compared to the bal-

anced design regarding biases and RMSEs (Figure 3.3.6), indicating the robustness of these

methods under minor violation of the unconfoundedness assumption. The D-T and D-X still

provided the best estimates with small biases and RMSEs, followed by RSF-based models.

Similar conclusions can be drawn from the prediction accuracy metrics. According to Table

3.3.4, D-T and D-X in general have comparable results and they tend to have the best pred-

ication accuracy. While R-X is the best performer for some metrics under different scenarios

(NPV in scenario 1, and sensitivity in all three scenarios).
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Figure 3.3.3: Box plots to compare the performance of CATE estimates: unbalanced

design, combining 2 training datasets.
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Figure 3.3.4: Box plots to compare the performance of CATE estimates: unbalanced

design, combining 4 training datasets.
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Figure 3.3.5: Box plots to compare the performance of CATE estimates: unbalanced

design, combining 10 training datasets.
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In summary, from simulation studies, DNNSurv-based models tend to provide more

reliable estimates of CATE and the recommendation rule proposed based on the estimates

are closer to the classification rule based on the true CATE. Results from T-learner and

X-learner are similar most of the times. DNNsurv-based model may suffer from a limited

sample size, where RSF and BAFT perform reasonably. All methods have shown some

robustness against minor violation of the unconfoundedness assumption.
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Figure 3.3.6: Box plots to compare the performance of CATE estimates: Z depends on X.

93



Table 3.3.4: Prediction Accuracy using CATE estimates: Z depends on X

R-T R-X B-T B-X D-T D-X Weibull

Scenario 1

ACC

mean (SD)
89.86 (1.67) 90.41 (1.72) 85.64 (2.18) 88.21 (1.94) 92.23 (2.34) 92.99 (2.25) 96.29 (1.88)

PPV

mean (SD)
91.47 (3.07) 92.10 (3.17) 90.78 (1.95) 92.34 (2.16) 95.25 (2.38) 95.99 (2.26) 97.71 (2.15)

NPV

mean (SD)
87.17 (6.46) 87.68 (6.65) 75.12 (5.09) 79.78 (5.28) 86.68 (6.90) 87.56 (6.88) 93.70 (5.39)

Sensitivity

mean (SD)
94.54 (3.64) 94.65 (3.75) 88.53 (3.38) 90.78 (3.31) 93.70 (4.28) 94.03 (4.24) 97.06 (2.78)

Specificity

mean (SD)
78.94 (8.77) 80.55 (8.90) 78.88 (5.23) 82.23 (5.76) 88.80 (6.03) 90.55 (5.72) 94.52 (5.37)

F-score

mean (SD)
92.87 (1.21) 93.24 (1.25) 89.59 (1.71) 91.49 (1.50) 94.37 (1.89) 94.90 (1.82) 97.34 (1.38)

Scenario 2

ACC

mean (SD)
79.03 (4.68) 79.71 (4.88) 71.93 (4.35) 74.76 (4.55) 81.79 (5.62) 82.24 (5.27) 90.45 (4.82)

PPV

mean (SD)
86.59 (4.76) 86.97 (5.00) 84.66 (3.60) 86.11 (4.19) 90.64 (5.18) 90.56 (5.33) 94.37 (4.80)

NPV

mean (SD)
64.76 (9.15) 66.18 (9.46) 51.51 (5.89) 55.52 (6.62) 68.61 (11.08) 69.38 (10.42) 84.63 (11.40)

Sensitivity

mean (SD)
84.06 (8.20) 84.74 (8.48) 74.03 (5.63) 77.16 (5.95) 83.65 (10.09) 84.50 (9.45) 92.51 (7.18)

Specificity

mean (SD)
66.72 (15.36) 67.38 (16.19) 66.79 (9.37) 68.89 (11.39) 77.21 (15.06) 76.70 (16.01) 85.42 (13.33)

F-score

mean (SD)
84.91 (4.08) 85.41 (4.29) 78.85 (3.72) 81.20 (3.75) 86.42 (5.48) 86.88 (5.07) 93.14 (3.76)

Scenario 3

ACC

mean (SD)
83.68 (2.26) 83.98 (2.29) 79.55 (2.84) 81.49 (2.68) 86.94 (2.81) 86.83 (2.39) 91.94 (2.33)

PPV

mean (SD)
86.71 (3.52) 86.62 (3.72) 87.94 (2.74) 88.44 (2.99) 91.85 (3.64) 91.09 (3.77) 95.36 (2.97)

NPV

mean (SD)
76.81 (7.44) 78.42 (7.88) 62.95 (5.13) 66.93 (5.49) 77.71 (8.41) 78.71 (8.11) 85.25 (6.87)

Sensitivity

mean (SD)
91.48 (4.82) 92.16 (4.88) 82.83 (4.17) 85.40 (4.28) 90.00 (5.38) 90.77 (5.11) 93.42 (3.91)

Specificity

mean (SD)
64.24 (12.09) 63.61 (12.88) 71.38 (7.99) 71.76 (9.04) 79.34 (11.18) 77.02 (11.80) 88.25 (8.20)

F-score

mean (SD)
88.86 (1.66) 89.12 (1.63) 85.21 (2.26) 86.78 (2.08) 90.72 (2.18) 90.74 (1.83) 94.28 (1.74)
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3.4 Application to AREDS

3.4.1 Data description

In this study, we analyzed a total of 806 participants with moderate-to-severe AMD

(AREDS AMD categories 2, 3, or 4) from the placebo group and antioxidants and zinc

combination group (also known as AREDS formula or supplements) of the AREDS, who

were free of late-AMD in at least one eye at enrollment. Table 3.4.1 summarized patients

characteristics. Participants were randomized corresponding to AMD categories, and thus

they did not differ on age, sex, smoking, and baseline AMD severity score between the two

treatment arms.

We used the first eye progression time to late-AMD as the outcome of interest and

the survival probability at 8 years (median overall survival time) as the treatment efficacy

measure. In terms of the potential variables, we considered baseline characteristics including

age at enrollment, smoking status, sex, education and baseline AMD severity scale, and 686

SNPs including 46 SNPs identified to be associated with treatment effect from Section 2.2

(Wei et al., 2020a) and 640 SNPs identified to be associated with AMD progression with

p < 10−5 and MAF > 0.05 (Yan et al., 2018). We first examined the overlap of the two

cohorts regarding the confounders to check the violation of unconfoundedness assumption.

Random forest classification (Liaw and Wiener, 2002) on the treatment assignment was used

to estimate the propensity score (based on 4-fold cross validation). Figure 3.4.1 showed large

overlap between the two groups, indicating the unconfoundedness assumption is valid in the

AREDS dataset.

3.4.2 CATE estimation

Similar to the simulation studies, we applied the following methods to estimate CATE:

R-T, R-X, B-T, B-X, D-T and D-X. In this analysis, we considered 3 random splits of data.

For each split, 4-fold cross-validation was used to construct CATE estimates. For each

method, individuals with CATE estimates ≥ 0 were labeled as RT (recommended for taking

the treatment, i.e., AREDS supplements); otherwise, they were labeled RC (recommended
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Table 3.4.1: Characteristics of the AREDS participants with AMD category 2, 3,or 4

Number of subjects
All

(n = 806)

Placebo

(n = 391)

Antioxidants and Zinc

(n = 415)
p-value?

Age 0.4905

Mean (SD) 68.77 (5.05) 68.90 (5.17) 68.66 (4.93)

Median (Range) 68.60 (55.30-81.00) 68.50 (55.30-81.00) 68.70 (55.50-79.50)

Sex (n, %) 0.8236

Female 466 (57.82) 224 (57.29) 242 (58.31)

Male 340 (42.18) 167 (42.71) 173 (41.69)

Smoking (n, %) 0.6877

Never Smoked 393 (48.76) 194 (49.62) 199 (47.95)

Former/Current Smoker 413 (51.24) 197 (50.38) 216 (52.05)

AREDS AMD categories (n, %) 0.5474

2 312 (38.71) 158 (40.41) 154 (37.11)

3 457 (56.70) 214 (54.73) 243 (58.55)

4 37 (4.59) 19 (4.86) 18 (4.34)

Baseline AREDS AMD severity score 0.6303

Mean (SD) 4.09 (2.06) 4.13 (2.06) 4.06 (2.07)

Median (Range) 4 (1-8) 4.00 (1-8) 4 (1-8)

?p-value is based on two-sample t-test or Chi-square test for continuous or categorical variables.
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Figure 3.4.1: Distribution of estimated propensity score.

for taking control, i.e., placebo).

Under each method and each split of data, we compared the mean treatment effects

within RT and RC by taking the difference of survival probabilities at 8 years between two

treatment arms estimated through Kaplan-Meier (KM). Figure 3.4.2 visualized the mean

treatment effect in RT cohorts defined by CATE estimate from each method, and the overall

averaged treatment effect. In all splits of data, it showed positive treatment effect under

recommendations of each method. Particularly, participants showed largest mean treatment

effect under recommendations of D-T and D-X in all splits of data. Figure 3.4.3 showed

mean treatment effect in RC cohorts from each method. Similarly, participants showed

largest mean treatment effect under recommendations of D-T and D-X for placebo. Note

that the treatment effect in RC cohorts is expected to be negative, since these participants

should benefit more from taking the placebo as compared to taking the AREDS supplements.

In addition, we calculated the difference of survival probabilities at 8 years by using KM

estimates between those recommended for the treatment and actually taking the treatment
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Figure 3.4.2: The mean treatment effect of participants recommended for treatment.
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Figure 3.4.3: The mean treatment effect of participants recommended for placebo.
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(RT & Taking treatment) and all individuals in the treatment group; and the difference of

the survival probabilities at 8 years between those recommended for the placebo and actu-

ally taking the placebo (RC & Taking Placebo) and all individuals in the placebo group,

respectively. From Figure 3.4.4, the estimated survival probability is higher in ‘RT & Taking

treatment’ group than that in treatment group for all methods and all splits of data. Similar

findings are observed by comparing those in ‘RC & Taking Placebo’ and those in placebo

group. For ‘RT & Taking Treatment’ and ‘RC & Taking Placebo’, we can assume that the

survival outcome of these subgroups are expected to be the survival if people were treated

following the individual treatment recommendation. In that case, the survival probabilities

among these people should be higher as compared to all individuals within the same treat-

ment arm. Especially, in comparing survival probabilities between ‘RT & Taking treatment’

vs treatment group, D-X shows the largest differences, while in comparing survival proba-

bilities between ‘RC & Taking placebo’ vs placebo group, both D-T and D-X show larger

differences.

These analyses show that D-T and D-X perform the best among all of the methods we

applied. These two methods recommend about 40% to 50% participants for treatment in

each split of data with about 25% in the overlap across 3 splits: D-T recommends 394, 366,

388 out of 806 participants for treatment with 237 participants in the overlap of 3 splits

of data; D-X recommends 414, 414, 418 out of 806 participants for treatment with 264

participants in the overlap of 3 splits of data.

3.4.3 Identification of important variables

Based on the analysis in the previous section, we chose to use CATE estimate from D-X

to generate a treatment recommendation rule for patients. In the next step, we applied

Boruta algorithm within each split of data to identify important variables in constructing

the treatment recommendation rule (Kursa and Rudnicki, 2010). Confirmed variables were

extracted from three splits: we identified 40 variables in split 1 with 39 SNPs consistent

with those that were identified in Section 2.2 (denote as CE4-survival SNPs); 33 confirmed

variables in split 2 with 30 SNPs from CE4-survival SNPs; 51 confirmed variables in split
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Figure 3.4.4: Difference of survival probabilities at 8 years by using KM estimates between

those recommended for the treatment and actually taking the treatment (RT & Taking

treatment) and those in the treatment group; and the difference of the survival

probabilities at 8 years between those recommended for the placebo and actually taking

the placebo (RC & Taking placebo) and those in the placebo group.
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3 with 43 SNPs from CE4-survival SNPs. Across all identified SNPs from three splits, 23

SNPs were present to be “confirmed” important variables for all three splits and they were

all from CE4-survival SNPs.

The SNPs we identified were mainly from chromosome 10, chromosome 19, and chro-

mosome 14, which are the three regions mentioned in Section 2.2. We selected one SNP

from each gene region and generated genotype distributions between RC and RT in 3 splits

of data (Table 3.4.2). Participants who were recommended for placebo were less likely to

have aa (less than the prevalence of aa in the overall population in 3 splits of data and in 3

selected SNPs); whereas participants who were recommended for the combination treatment

were more likely to have Aa or aa (more than the prevalence of Aa and aa in 3 splits of

data and in 3 selected SNPs). We used χ2 test to see the difference of genotype distributions

between RC and RT, and it is significant for all three splits of data and three selected SNPs.

Figure 3.4.5 shows the mean of ITE estimates with standard errors estimates from D-X

in data split 1 and the estimated difference of survival probabilities at 8 years from Weibull

model by genotype groups. The trends are consistent in data split 2 and 3 so we omitted

the results. In the selected SNPs, mean ITE estimates were negative in AA group (-0.1 to 0)

whereas positive in Aa and aa groups, with aa having largest mean of ITE estimates (>0.1).

We observed similar trend from fitting Weibull regressions with treatment by corresponding

SNP interaction, adjusting for age at enrollment, smoking status, and baseline severity score.

The estimated difference of survival probabilities at 8 years in each genotype group was

computed based on the parameters estimated from Weibull model. In summary, patients

carrying at least one copy of minor allele in these SNPs are more likely to benefit from taking

the AREDS supplements.

3.5 Conclusion and Discussion

In this work, we implemented the meta-algorithms on right-censored time-to-event out-

comes using RSF, BAFT and DNNSurv as base learners, to estimate the CATE and provide

a best treatment recommendation for patients between two treatment options to prolong
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Table 3.4.2: Genotype distributions by the recommended treatment using D-X across 3 splits of data

Split 1 Split 2 Split 3

Genotype Overall RC RT RC RT RC RT

n=392) (n=414) (n=392) (n=414) (n=388) (n=418)

rs1245576

(SPOCK2, CHR10)

AA 266 (33.00%) 189 (48.21%) 77 (18.60%) 182 (46.43%) 84 (20.29%) 176 (45.36%) 90 (21.53%)

Aa 408 (50.62%) 177 (45.15%) 231 (55.80%) 184 (46.94%) 224 (54.11%) 179 (46.13%) 229 (54.78%)

aa 132 (16.37%) 26 (6.63%) 106 (25.60%) 26 (6.63%) 106 (25.60%) 33 (8.51%) 99 (23.68%)

rs8109218

(C19orf44-CALR3, CHR19)

AA 388 (48.14%) 238 (60.71%) 150 (36.23%) 244 (62.24%) 144 (34.78%) 228 (58.76%) 160 (38.28%)

Aa 333 (41.32%) 134 (34.18%) 199 (48.07%) 134 (34.18%) 199 (48.07%) 136 (35.05%) 197 (47.13%)

Aa 85 (10.55%) 20 (5.10%) 65 (15.70%) 14 (3.57%) 71 (17.15%) 24 (6.19%) 61 (14.59%)

rs147106198

(ESRRB-VASH1, CHR14)

AA 387 (48.01%) 237 (60.46%) 150 (36.23%) 232 (59.18%) 155 (37.44%) 243 (62.63%) 144 (34.45%)

Aa 343 (42.56%) 139 (35.46%) 204 (49.28%) 142 (36.22%) 201 (48.55%) 136 (35.05%) 207 (49.52%)

aa 76 (9.43%) 16 (4.08%) 60 (14.49%) 18 (4.59%) 58 (14.01%) 9 (2.32%) 67 (16.03%)

?All tests between RC and RT based on Chi-squared tests are statistically significant at the significance level of 0.05.
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Figure 3.4.5: Treatment effect by genotype groups. The plots in the upper panel show the

mean of ITE estimates from data split 1 using D-X by genotype groups. The plots in the

lower panel show the difference of survival probabilities between the combination treatment

and placebo groups at 8 years using Weibull regressions by genotype groups.

104



the time to late AMD. The performance of these methods was evaluated using intensive

simulation studies. We observed that DNNSurv-based learners outperform other compared

methods with smaller biases and RMSEs. RSF-based models generally have comparable

biases with DNNSurv-based models, but the RMSEs from these models are relatively large.

We applied these meta-learners on AREDS data to identify patients who can benefit from

the AREDS supplements. T- and X-learner with DNNSurv model were used to identify

the group of patients with greatest enhanced treatment effects. Lastly, Boruta algorithm

was applied to identify important variables that contribute to constructing the treatment

recommendation rule. Several SNPs were confirmed to be important variables in distinguish-

ing patients with enhanced treatment effects. All of these SNPs are from regions that we

know to be associated with differential treatment efficacy of using AREDS supplements in

delaying the AMD progression from previous study. The trend of mean estimated individual

treatment effects across genotype groups is consistent with the estimated group treatment

effects from Weibull regressions.

Our study provides practical information which would be helpful to implement the meta-

algorithm using the machine learning methods to estimate HTE and develop individual treat-

ment recommendation. First, the simulation results suggest a limitation of using DNNSurv-

based model. It requires a sizable cohort to train multiple tuning hyperparameters, and if the

sample size is not large enough, the performance can be unstable. Second, under unbalanced

design, the X-learner does not have dramatically improved performance as compared to the

T-learner. The reason for that is we are now using the estimated survival probability in the

second stage to construct imputed ITEs, where the original X-learner uses the observed value

to serve as the most trustful values and gives it a larger weight. In our case, since there

is no observed value for survival probability, by using the estimated values, the imputed

treatment efficacy can be biased when the model is misspecified, and thus the performance

of X-learner may not be better than the T-learner. To improve X-learner’s performance, one

can consider other approaches. For example, the observed progression status can be used as

the true survival probability at certain time point to substitute the estimated values, and

the censored data points needs to be imputed carefully.
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4.0 Future work

In Chapter 2.2, we have developed a multiple testing based model to identify and infer

subgroups with beneficial differential treatment efficacy using time-to-event outcomes. While

AMD is a bilateral disease, the correlation between two eyes of the same individual needs

to be carefully addressed, as mentioned in Chapter 2.3. In the future, I could extend the

current approach to bivariate time-to-event data using copula models. Additionaly, the

current approach is based on fully parametric AFT models. I am also interested in extending

the method to semi-parametric models like CoxPH model, or semi-parametric AFT models,

to have more flexibility. In Chapter 3, we implemented the X-learner with time-to-event

data by using the predicted efficacy measure to substitute the original observed values from

continuous and binary outcomes. However, this approach does not guarantee the gains

of using X-learner since the model to predict efficacy measure may still be mis-specified

and lead to biased estimates. I hope to modify the X-learner by using the inverse-weighted

probability estimates of survival status at certain time point to substitute the observed value

in the second step of X-learner. These new methods may facilitate precision medicine and

subgroup identification.
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Appendix Delta method for estimating the variance-covariance matrix of CE4

contrasts with time-to-event outcome

We demonstrate the use of Delta method to estimate the variance-covariance (var-cov)

matrix of CE4 contrasts with time-to-event outcome. It includes two steps. We first used

Delta method for implicit random variable (Benichou and Gail, 1989) to construct var-cov

matrix for the following parameters:

(log r0, log r1, log r2, ν
Rx
12,τ , ν

C
12,τ , ν

Rx
01,τ , ν

C
01,τ ).

Then the second step is to use Delta method for explicit random variable to estimate the

var-cov of CE4 contrasts which are built from these parameters:

log κ(1,2):0 = log(
r12

r0

) = log r12 − log r0 = log
νRx12,τ

νC12,τ

− log r0,

log κ1:0 = log(
r1

r0

) = log r1 − log r0,

log κ2:(0,1) = log(
r2

r01

) = log r2 − log r01 = log r2 −
νC01,τ

νC01,τ

,

log κ2:1 = log(
r2

r1

) = log r2 − log r1. (A.0.1)

Starting from the following AFT model (equation (1)):

log T = β0 + β1Trt+ β2I(M = 1) + β3I(M = 2) +

β4Trt× I(M = 1) + β5Trt× I(M = 2) + β6X + σW, (A.0.2)

we further assume W follows Weibull distribution as demonstrated throughout the manuscript.

Denote exp (β0) by λ, exp (−βi
σ

) by θi, where i = 1, . . . , 5 and exp (−β6X
σ

) by θ6. Let

A = (log r0, log r1, log r2, ν
Rx
12,τ , ν

C
12,τ , ν

Rx
01,τ , ν

C
01,τ ), the parameters we are interested in, and

B = (λ, σ, θ1, . . . , θ6). By fitting a Weibull model, point estimates and var-cov matrix of B

(denote by Σ) can be obtained. Benichou and Gail (Benichou and Gail, 1989) showed that

if G = (g1, . . . , gp) is a vector of p functions of A and B, let J denote the p× p matrix with

elements ∂g
∂x

, and let H denote the p × k matrix with elements ∂g
∂y

, where k is the number
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of parameters in B (k = 8 in our setting), then the var-cov for the derived variates A is

J−1HΣH
′
(J−1)

′
.

Step 1: Calculate the var-cov for A. Define p0 = PAA
PAA+PAa

and p1 = PAa
PAa+Paa

, where

PAA, PAa, Paa represent the prevalence of genotype AA, Aa, and aa. The G function is

defined as:

g1 = −σ log θ1 − log r0,

g2 = −σ log (θ1θ4)− log r1,

g3 = −σ log (θ1θ5)− log r2,

g4 = p1 exp (−θ1θ2θ4θ6(
νRx12,τ

λ
)

1
σ ) + (1− p1) exp (−θ1θ3θ5θ6(

νRx12,τ

λ
)

1
σ )− τ,

g5 = p1 exp (−θ2θ6(
νC12,τ

λ
)

1
σ ) + (1− p1) exp (−θ3θ6(

νC12,τ

λ
)

1
σ )− τ,

g6 = p0 exp (−θ1θ6(
νRx01,τ

λ
)

1
σ ) + (1− p0) exp (−θ1θ2θ4θ6(

νRx01,τ

λ
)

1
σ )− τ,

g7 = p0 exp (−θ6(
νC01,τ

λ
)

1
σ ) + (1− p0) exp (−θ2θ6(

νC01,τ

λ
)

1
σ )− τ.

Then the J matrix is a diagonal matrix with J11 = J22 = J33 = −1,

J44 =
∂g4

∂νRx12,τ

= −θ1θ2θ4θ6p1

σλ
(
νRx12,τ

λ
)( 1
σ
−1) exp (−θ1θ2θ4θ6)(

νRx12,τ

λ
)

1
σ

− θ1θ3θ5θ6(1− p1)

σλ
(
νRx12,τ

λ
)( 1
σ
−1) exp (−θ1θ3θ5θ6(

νRx12,τ

λ
)

1
σ ),

J55 =
∂g5

∂νC12,τ

= −θ2θ6p1

σλ
(
νC12,τ

λ
)( 1
σ
−1) exp (−θ2θ6)(

νC12,τ

λ
)

1
σ

− θ3θ6(1− p1)

σλ
(
νC12,τ

λ
)( 1
σ
−1) exp (−θ3θ6(

νC12,τ

λ
)

1
σ ),

J66 =
∂g6

∂νRx01,τ

= −θ1θ6p0

σλ
(
ν01

12,τ

λ
)( 1
σ
−1) exp (−θ1θ6)(

νRx01,τ

λ
)

1
σ

− θ1θ2θ4θ6(1− p0)

σλ
(
νRx01,τ

λ
)( 1
σ
−1) exp (−θ1θ2θ4θ6(

νRx01,τ

λ
)

1
σ ),

J77 =
∂g7

∂νC01,τ

= −θ6p0

σλ
(
νC01,τ

λ
)( 1
σ
−1) exp (−θ6)(

νC01,τ

λ
)

1
σ

− θ2θ6(1− p0)

σλ
(
νC01,τ

λ
)( 1
σ
−1) exp (−θ2θ6(

νC01,τ

λ
)

1
σ ).
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H matrix is a 7× 8 matrix with the unit defined by ∂g
∂Y

.

H11 =
∂g1

∂λ
= 0, H12 =

∂g1

∂σ
= − log θ1, H13 =

∂g1

∂θ1

= − σ
θ1

,

H14 = · · · = H18 = 0,

H21 =
∂g2

∂λ
= 0, H22 =

∂g2

∂σ
= − log(θ1θ4), H23 =

∂g2

∂θ1

= − σ
θ1

,

H24 = H25 = 0, H26 =
∂g2

∂θ4

= − σ
θ4

, H27 = H28 = 0,

H31 =
∂g3

∂λ
= 0, H32 =

∂g3

∂σ
= − log(θ1θ5), H33 =

∂g3

∂θ1

= − σ
θ1

,

H34 = H35 = H36 = 0, H37 =
∂g3

∂θ5

= − σ
θ5

, H38 = 0,

H41 =
∂g4

∂λ
=
p1θ1θ2θ4θ6

λ
exp (−θ1θ2θ4θ6(

νRx12,τ

λ
)

1
σ )

1

σ
(
νRx12,τ

λ
)

1
σ

+
(1− p1)θ1θ3θ5θ6

λ
exp (−θ1θ3θ5θ6(

νRx12,τ

λ
)

1
σ )

1

σ
(
νRx12,τ

λ
)

1
σ ,

H42 =
∂g4

∂σ
=
p1θ1θ2θ4θ6

σ2
exp (−θ1θ2θ4θ6(

νRx12,τ

λ
)

1
σ ) ln (

νRx12,τ

λ
)(
νRx12,τ

λ
)

1
σ

+
(1− p1)θ1θ3θ5θ6

σ2
exp (−θ1θ3θ5θ6(

νRx12,τ

λ
)

1
σ ) ln (

νRx12,τ

λ
)(
νRx12,τ

λ
)

1
σ ,

H43 =
∂g4

∂θ1

= −p1θ2θ4θ6 exp (−θ1θ2θ4θ6(
νRx12,τ

λ
)

1
σ )(

νRx12,τ

λ
)

1
σ

− (1− p1)θ3θ5θ6 exp (−θ1θ3θ5θ6(
νRx12,τ

λ
)

1
σ )(

νRx12,τ

λ
)

1
σ ,

H44 =
∂g4

∂θ2

= −p1θ1θ4θ6 exp (−θ1θ2θ4θ6(
νRx12,τ

λ
)

1
σ )(

νRx12,τ

λ
)

1
σ ,

H45 =
∂g4

∂θ3

= −(1− p1)θ1θ5θ6 exp (−θ1θ3θ5θ6(
νRx12,τ

λ
)

1
σ )(

νRx12,τ

λ
)

1
σ ,

H46 =
∂g4

∂θ4

= −p1θ1θ2θ6 exp (−θ1θ2θ4θ6(
νRx12,τ

λ
)

1
σ )(

νRx12,τ

λ
)

1
σ ,

H47 =
∂g4

∂θ5

= −(1− p1)θ1θ3θ6 exp (−θ1θ3θ5θ6(
νRx12,τ

λ
)

1
σ )(

νRx12,τ

λ
)

1
σ ,

H48 =
∂g4

∂θ6

= −p1θ1θ2θ4 exp (−θ1θ2θ4θ6(
νRx12,τ

λ
)

1
σ )(

νRx12,τ

λ
)

1
σ

− (1− p1)θ1θ3θ5 exp (−θ1θ3θ5θ6(
νRx12,τ

λ
)

1
σ )(

νRx12,τ

λ
)

1
σ ,

H51 =
∂g5

∂λ
=
p1θ2θ6

λ
exp (−θ2θ6(

νC12,τ

λ
)

1
σ )

1

σ
(
νC12,τ

λ
)

1
σ

+
(1− p1)θ3θ6

λ
exp (−θ3θ6(

νC12,τ

λ
)

1
σ )

1

σ
(
νC12,τ

λ
)

1
σ ,
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H52 =
∂g5

∂σ
=
p1θ2θ6

σ2
exp (−θ2θ6(

νC12,τ

λ
)

1
σ ) ln (

νC12,τ

λ
)(
νC12,τ

λ
)

1
σ

+
(1− p1)θ3θ6

σ2
exp (−θ3θ6(

νC12,τ

λ
)

1
σ ) ln (

νC12,τ

λ
)(
νC12,τ

λ
)

1
σ ,

H53 =
∂g5

∂θ1

= 0,

H54 =
∂g5

∂θ2

= −p1θ6 exp (−θ2θ6(
νC12,τ

λ
)

1
σ )(

νC12,τ

λ
)

1
σ

H55 =
∂g5

∂θ3

= −(1− p1)θ6 exp (−θ3θ6(
νC12,τ

λ
)

1
σ )(

νC12,τ

λ
)

1
σ ,

H56 =
∂g5

∂θ4

= H57 =
∂g5

∂θ5

= 0,

H58 =
∂g5

∂θ6

= −p1θ2 exp (−θ2θ6(
νC12,τ

λ
)

1
σ )(

νC12,τ

λ
)

1
σ

− (1− p1)θ3 exp (−θ3θ6(
νC12,τ

λ
)

1
σ )(

νC12,τ

λ
)

1
σ ,

H61 =
∂g6

∂λ
=
p0θ1θ6

λ
exp (−θ1θ6(

νRx01,τ

λ
)

1
σ )

1

σ
(
νRx01,τ

λ
)

1
σ

+
(1− p0)θ1θ2θ4θ6

λ
exp (−θ1θ2θ4θ6(

νRx01,τ

λ
)

1
σ )

1

σ
(
νRx01,τ

λ
)

1
σ ,

H62 =
∂g6

∂σ
=
p0θ1θ6

σ2
exp (−θ1θ6(

νRx01,τ

λ
)

1
σ ) ln (

νRx01,τ

λ
)(
ν01

12,τ

λ
)

1
σ

+
(1− p0)θ1θ2θ4θ6

σ2
exp (−θ1θ2θ4θ6(

νRx01,τ

λ
)

1
σ ) ln (

νRx01,τ

λ
)(
νRx01,τ

λ
)

1
σ ,

H63 =
∂g6

∂θ1

= −p0θ6 exp (−θ1θ6(
νRx01,τ

λ
)

1
σ )(

νRx01,τ

λ
)

1
σ

− (1− p0)θ2θ4θ6 exp (−θ1θ2θ4θ6(
νRx01,τ

λ
)

1
σ )(

νRx01,τ

λ
)

1
σ ,

H64 =
∂g6

∂θ2

= −(1− p0)θ1θ4θ6 exp (−θ1θ2θ4θ6(
νRx01,τ

λ
)

1
σ )(

νRx01,τ

λ
)

1
σ ,

H65 = 0,

H66 =
∂g6

∂θ4

= −(1− p0)θ1θ2θ6 exp (−θ1θ2θ4θ6(
νRx01,τ

λ
)

1
σ )(

νRx01,τ

λ
)

1
σ ,

H67 = 0,

H68 =
∂g6

∂θ6

= −p0θ1 exp (−θ1θ6(
νRx01,τ

λ
)

1
σ )(

νRx01,τ

λ
)

1
σ

− (1− p0)θ1θ2θ4 exp (−θ1θ2θ4θ6(
νRx01,τ

λ
)

1
σ )(

νRx01,τ

λ
)

1
σ ,
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H71 =
∂g7

∂λ
=
p0θ6

λ
exp (−θ6(

νC01,τ

λ
)

1
σ )

1

σ
(
νC01,τ

λ
)

1
σ

+
(1− p0)θ2θ6

λ
exp (−θ2θ6(

νC01,τ

λ
)

1
σ )

1

σ
(
νC01,τ

λ
)

1
σ ,

H72 =
∂g7

∂σ
=
p0θ6

σ2
exp (−θ6(

νC01,τ

λ
)

1
σ ) ln (

νC01,τ

λ
)(
νC01,τ

λ
)

1
σ

+
(1− p0)θ2θ6

σ2
exp (−θ2θ6(

νC01,τ

λ
)

1
σ ) ln (

νC01,τ

λ
)(
νC01,τ

λ
)

1
σ ,

H73 =
∂g7

∂θ1

= 0,

H74 =
∂g7

∂θ2

= −(1− p0)θ6 exp (−θ2θ6(
νC01,τ

λ
)

1
σ )(

νC01,τ

λ
)

1
σ

H75 =
∂g7

∂θ3

= H76 =
∂g7

∂θ4

= H77 =
∂g7

∂θ5

= 0,

H78 =
∂g7

∂θ6

= −p0 exp (−θ6(
νC01,τ

λ
)

1
σ )(

νC01,τ

λ
)

1
σ

− (1− p0)θ2 exp (−θ2θ6(
νC01,τ

λ
)

1
σ )(

νC01,τ

λ
)

1
σ .

With J and H derived from these procedures, Σ obtained from Weibull model, the

var-cov for A = (log r0, log r1, log r2, ν
Rx
12,τ , ν

C
12,τ , ν

Rx
01,τ , ν

C
01,τ ) is computed as J−1HΣH

′
(J−1)

′
.

Step 2: Calculate var-cov for CE4 contrast. This step is based on Delta method for ex-

plicit random variable and the matrix can be easily obtained in R using function deltamethod

from package {msm}.
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