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Abstract

There has been increasing interest in discovering precision medicine in current drug
development. One aspect of precision medicine is to develop new therapies that target a
subgroup of patients with enhanced treatment efficacy through clinical trials. Another aspect
is to tailor existing therapies to each patient so that everyone can get the most “suitable”
treatment. Motivated by analyzing the Age-Related Eye Disease Study (AREDS) data, this

dissertation proposes new statistical methods to address issues in both aspects.

In the first part, I propose a novel multiple-testing-based approach to simultaneously
identify and infer subgroups with enhanced treatment efficacy. Specifically, I formulate the
null hypotheses through contrasts and construct their simultaneous confidence intervals,
which control both within- and across-marker multiplicity. Two types of outcomes are con-
sidered: survival and binary endpoints. Extensive simulations are conducted to evaluate the
method performance and provide practical guidance. The method is then applied to AREDS
data to assess the efficacy of antioxidants and zinc in delaying AMD progression. I further
validate the findings in AREDS2, by discovering consistent differential treatment responses

in subgroups identified from AREDS.

In the second part, I develop machine-learning-based approaches to estimate individual
treatment effects (ITE) so that individualized tailoring recommendation can be provided.
Specifically, I implement random survival forest, Bayesian accelerated failure time model,
and Cox-based deep neural network survival model under the framework of meta-algorithms:
T-learner and X-learner, to accurately estimate ITEs with survival outcomes. Treatment rec-
ommendation rule is provided based on patient’s ITE estimate and then evaluated by various

performance metrics. I investigate the merits of the proposed methods with comprehensive

v



simulation studies and apply them on AREDS data. Finally, the Boruta algorithm is applied
to identify top variables that contribute to the treatment recommendation rule.

Public health significance: This dissertation addresses two precision medicine re-
search questions: (1) targeted treatment development, i.e., whether there exists subgroup
of patients with beneficial treatment efficacy; (2) tailoring existing therapies through ITE
estimation. It has the potential to significantly improve the current practice in analyzing
treatment effects, and thus to increase the success of modern drug development and precision

medicine research.
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1.0 Introduction

1.1 Overview

Traditional medical treatments are often designed for the “average patient” as a “one-
fits-all” approach, which may benefit some patients but not everyone. Precision medicine, as
an innovative approach for disease treatment and prevention, takes into account individual
variability in genes, environments and lifestyles. Motivated by analyzing the Age-Related
Eye Disease Study (AREDS) data, a large randomized clinical trial (RCT) to study the
efficacy of nutritional supplements in delaying the progression of age-related macular de-
generation (AMD), this dissertation proposes new statistical insights to precision medicine,
from targeted treatment development based on genetic factors of a patient, to individualized
tailoring recommendation based on the heterogeneous treatment effects estimation.

In the rest of this Chapter, I will start by introducing the basic concepts, such as time-
to-event data and binary data, in Sections 1.2 and 1.3. In the following, the concept of
“logic-respecting” treatment efficacy measurements and the commonly used ones will be
introduced for both types of outcomes in Section 1.4. Lastly several meta-algorithms to
estimate the conditional average treatment effect (CATE) will be discussed, followed by

three machine learning models for survival outcomes in Section 1.5.

1.2 Time-to-event data

Time-to-event data is a special type of data that describes time to a well defined endpoint
of interest (e.g., death, heart attack, onset of a pandemic, and remission of cancer). It is also
known as “survival data”, even though the outcome is not always death. There are unique
features of time-to-event variables. First of all, time-to-event variables are always positive
and the distribution can be skewed. Secondly, complete data is not always available. For

example, death could certainly happen after the study ends and the observed time when



patients exit the study is not the actual time to death. Instead, it is called censored time.
There are three types of censoring. The most common one is the right censoring and
occurs when a participant does not have the event of interest during the study and thus their
last observed time is less than their actual time to event. This can occur when a participant
drops out before the study ends or when a participant is event free by the end of the study.
Another type of censoring is the left censoring. It happens when a recruited participant
already has the event of interest prior entry of the study but the time of developing the
event is unknown. The last type is interval censoring when the time to event is known only
to lie within an interval instead of being observed exactly. Truncation often adds complexity
to the data analysis and it is different from the censoring. Truncation is due to sampling
bias that only individuals satisfying specific conditions could be recruited to the study.
Because of the unique features of time-to-event data, the analysis of such data, or survival

analysis, requires different statistical techniques.

1.2.1 Models for time-to-event data

The survival function of event time (7') is defined as the probability that T is greater

than a given time ¢:

S(t)=P(T>1), 0<t<o0.

When T is absolutely continuous, we have a one-to-one relationship between the survival
function S(t), density function f(t¢), hazard function A(¢), and cumulative hazard function

A(t), expressed as:

where
At) = / A(s)ds, A(t) = F(1)/S(2).

Survival functions and (cumulative) hazard functions are more commonly used for modeling
the survival time T' than the density function. Like analysis of other types of outcomes, a
key aspect of survival analysis is to understand the relationship between covariates and the

survival function through regression models.



1.2.1.1 Cox proportional hazards model

The most popular regression model of survival analysis is the Cox proportional hazard

(CoxPH) model (Cox, 1972a). The hazard function can be expressed as:

At; X) = No(t) exp(BX), (1.2.1)

where \y(t) is an unspecified baseline hazard function, X is a vector of covariates, and 3 is a
vector of covariate coefficient parameters. The method does not assume the baseline hazard
function, but it has a key assumption that the effects of the predictor variables upon survival
are constant over time and are additive in one scale. The model is interpreted as the ratio of
hazard functions is a constant (independent of time ¢) between two subjects with different
X. The coefficients in a Cox regression relate to hazard; a positive coefficient indicates a
worse prognosis and a negative coefficient indicates a protective effect of the variable with
which it is associated.

Integrate both sides of equation 1.2.1 from 0 to ¢ to obtain the cumulative hazards:

A(t; X) = Ao(t) exp(8X),

which are also proportional. Further, we can derive the survivor function as:

S(t: X) = e~ No(t)exp(BX) _ {50<t)}9Xp(ﬂX)7

where Sy(t) = exp (—Ay(t)) is a baseline survival function. Thus, the effect of the covariate
values X on the survivor function is to raise it to a power given by the relative risk exp (X).

The PH model is the most popular regression model in survival analysis due to the partial
likelihood approach for right-censored failure time data (Cox, 1972a). The approach is simple
and efficient because the partial likelihood only involves the finite-dimensional § parameter
without the nuisance infinite-dimensional A\g(¢). The resulting 3 estimate is asymptotically

equivalent to that obtained from the full likelihood.



1.2.1.2 Accelerated failure time model

Another commonly used regression model for survival analysis is the accelerated failure
time (AFT) model (Wei, 1992), which proposes the following relationship between covariates
and log T

logT = p+aX + oW,

where (3 is a vector of coefficients, and W follows an unspecific distribution. The above
framework describes a general class of models. Depending on the distribution for W, we will
obtain different models, but all will have the same general structure. Common distributions
used in AFT models includes normal distribution (also known as log-normal model), stan-
dard logistic distribution (log-logistic model), and 2-parameter extreme value distribution
(Weibull model). Notice that Weibull model is the only model that satisfies both AFT and

PH. Given transformations

1
7=
g
i
A = exp(=H
exp(—=),
(6%
ﬁ = T
g

we have a Weibull model with baseline hazard of

h(tlr) = (YA exp(Bz).

Note that different approaches result in different coefficient parameters in a Weibull regres-
sion model. The signs of a and [ are opposite. Special caution is needed for interpretation

of the coefficient parameters.



1.3 Binary data

Binary data refer to those that can take only one of the two values, such as true or false
questions, mortality (dead or alive), and flipping a coin (head or tail). Binary variables have
a variety of applications including but not limited to medical diagnoses, facial recognition,
and decision trees. One of the popular classification example using neural networks is to
determine whether an image is a cat or a dog. For biomedical research such as clinical
trials, binary outcomes serve as a key measure to compare the treatment effects on disease
status. As for all types of outcomes, the analysis of binary outcomes provides unique aspect
of scientific practice, and different statistical considerations are needed as compared to other

types of outcomes such as continuous and time-to-event variables.

1.3.1 Models for binary data

Assume Y follows Bernoulli distribution with P(Y = 1) = m, we will consider models for

7, which can depend on explanatory variables (i.e., x1, xa, ..., xp).
m(z) = P(Y = 1|z, 20, ..., 2p).
Using the generalized linear model,

g(m(x)) = Po+ Brz1 + -+ - + Bpxyp.

Different link function g can result in different models.

1.3.1.1 Logistic model

Logistic regression uses the logit link to explain the relationship between 7 and explana-

tory variables.

g(m(2) = log(77—) = o+ Braa + - + .

Whereas 0 < 7w < 1, the range for logit(n) is all real numbers. However, with the transfor-
mation using logit link, the interpretation of the coefficients estimates is on the scale of odds

ratio (OR).



1.3.1.2 Log-binomial model

Similar to the logistic model, the error term of Y is assumed to follow a Binomial distri-

bution. The different assumption is that the link function is now a log function.

g(m(x)) =log(m) = fo + Pras + - - + By

Since the interpretation of odds ratio is not straightforward and sometimes hard to under-
stand, some researchers prefer using relative risk (RR) instead. Although for rare events,
OR may serve as a good approximation for RR, when events are common, OR tends to
overestimate the risk ratio. The log-binomial model provides a natural interpretation on
the RR scale and thus is a better alternative for the analysis of cross-sectional studies with
binary outcomes (Barros and Hirakata, 2003). When the link function is misspecified or
when the probability distribution of the response variable was truncated, the log-binomial
model tends to provide biased point estimates. A modified Poisson model introduced by Zou

(2003) is generally preferable (Chen et al., 2018).

1.4 Logic-respecting treatment efficacy measures

Typically the goal of a RCT is to compare the new treatment (denoted by Rx) with a
control such as a placebo or a standard of care (denoted by C). The “relative” treatment
effect between Rz and C describes the treatment efficacy. When heterogeneity exists in
the population, the measurement of treatment efficacy in subgroups and in combination of
subgroups is required. Assume a marker separates the population into “marker positive”
group (¢7) and “marker negative” (¢~) group. In targetd treatment development process,
researchers care about not only the treatment efficacy in gt or ¢, but also that in the
combined group {¢g*,¢~}. Formally described in Lin et al. (2019), a “logic-respecting”
treatment efficacy measure requires that the treatment efficacy in the combined group should
be within the range defined by the treatment efficacy for the two individual groups. If we

use i to denote treatment efficacy, then a logic-respecting treatment efficacy measure should



satisfy figgt g1 € [tg—, fg+], assuming prg- < pg+. Although it seems trivial, it has not
been fully recognized and some commonly used efficacy measures are not logic-respecting
for mixture populations. We will demonstrate this issue with examples in time-to-event and

binary outcomes.

1.4.1 Efficacy measures for time-to-event outcomes

Time-to-event outcomes, also known as survival outcomes, are commonly used in clinical
trials, especially in oncology studies. These outcomes take account of both whether the
event occurs and the timing of the event. The most widely used model to analyze time-to-
event data is the CoxPH regression, where the hazard ratio (between Rx and C') is obtained
from the coefficient estimates, and has been a commonly used treatment efficacy measure.
However, as shown in Ding et al. (2016), the HR is not a proper efficacy measure to use when
the population is a mixture of subgroups. This is because the overall population typically
does not have a constant HR. In fact, the HR of the mixture population is usually a complex
function of time, with values at some time points outside the range of [HR,- ,HR,+]. This
is because HRy4+ 4~} can not be expressed as a weighted combination of HR,- and HRgy+.
The combination can only be made on density or cumulative density functions, not on the
hazard ratio scale. For example, we can generate data from a Weibull distribution where
HR,- = exp(0.3) = 1.35, and HR; = exp(—0.4) = 0.67 with an equal prevalence of the two
subgroups. However, the true HRy4+ 4-1 is a smooth function of time and goes below 0.67
when t is large (Figure 1.4.1). Thus using HR as the efficacy measure can lead to paradoxical
findings in patient targeting.

Other commonly accepted treatment efficacy measures under consideration include the
ratio or difference of: (1) survival probability at a specific timepoint, (2) mean (restricted)
survival time, and (3) quantile survival time. Ding et al. (2016) demonstrated that the ratio
or difference of mean or median survival times is logic-respecting. In addition, they have
more direct clinical interpretations compared to HR. In this dissertation, we consider using
the ratio of quantile survival times as treatment efficacy measure in the first part of Chapter

2 and the difference of survival probability as treatment efficacy measures in Chapter 3.
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Figure 1.4.1: The plot of HR for ¢—, ¢*, and {¢™, ¢ }.

1.4.2 Efficacy measures for binary outcomes

As described in Section 1.3, binary outcomes are often modeled using logistic regression
or log-binomial models, where the OR or RR (between Rz and C') are natural choices for
the efficacy measures for binary case. However, as demonstrated in Lin et al. (2019), OR is
not logic-respecting, as we show below.

Table 1.4.1 gives a hypothetical example for responding or non-responding probabilities
in each g7 and g~ subgroup and the overall {g™, g~ }. We can calculate the OR for each

group and the all-comers as follows,

750 x 500 250 x 900 1,000 x 1,400 7
— =3, OR-=—"—"—— =3, ORy+ 1 = — ; = .
500 x 250 7 9 T 100 x 750 0 WO T 600 % 1,000 3

ORys =

Therefore, OR is not logic-respecting since it leads to paradoxical conclusions. For example,
assume OR > 2.5 indicates the new treatment is more efficacious. Then in the ¢g* and g~
group individually, the Rz is clinically more efficacious while in the combined {¢g*, g~} group

it is not.



Table 1.4.1: An example of responding (R) and non-responding (NR) probabilities given
Rz and C, in ¢g" and g~ subgroups and the all-comers {g*, g~} population

g+ subpopulation g~ subpopulation population

R | NR R | NR R NR

Rx | 750 | 250 + 250 | 750 = 1,000 | 1,000

C | 500 | 500 + 100 | 900 = 600 | 1,400
1/2 1/2 1

The other commonly used efficacy measure RR, has been shown to be logic-respecting

in Lin et al. (2019). Back to the previous example in Table 1.4.1,

750 3 250 1,000 5

7504250 __ _ 2504750 _ 2 __ 1,000+41,000 _ 2

RRQ+ T 57 RRQ* — _1w_ T 9 RR{gJﬁg*} = 600 3
500+500 1004900 600-+1,400

Now the RR in the combined group is within the range determined by RRg,+ and RR,-.
Rigorous proof of the property can be found in Lin et al. (2019). In the second part of
Chapter 2 where our interest is on the 10-year progression status of late-AMD, the RR is

used as the efficacy measure.

1.5 Meta-algorithms and machine learning models for survival data

1.5.1 Framework and definitions

Let (Y;(0),Y;(1), X;, Z;) denote the dataset of patient ¢ under Neyman-Rubin potential
outcome framework (Rubin, 1974; Splawa-Neyman et al., 1990), where X is a p—dimensional
covariate matrix, Z; € {0,1} is the treatment indicator, and Y;(0), Y;(1) are the potential
outcomes when ¢ is assigned to the control group and treatment group. The causal effect

of the treatment on a new patient ¢ with the feature vector X; can be estimated by the



individual treatment effect (ITE), which is defined as Y;(1) — Y;(0). However, the counter-
factual outcomes of the same individual cannot be obtained simultaneously. The conditional

average treatment effect (CATE) can then be used to estimate the causal effect which is

defined as follows (Rubin, 2005):

7(X) = Ei(1) - Yi(0)|X; = X]. (15.1)

Kunzel et al. (2018) has shown that the best estimate for the CATE is also the best estimate
for the ITE.
To aid the estimation of CATE, the following three assumptions are needed:

textbfAssumption 1 (Consistency)

Y = ZYi(1) + (1 - Z)Yi(0)

Assumption 2 (Unconfoundedness)

Zi AL (Yi(0), Yi(1))| X

Assumption 3 (Population Overlap)

P(ZZ = 1|XZ = a:l) € (0, 1)

The consistency assumption implies that the actual observed outcome for an individual is
the outcome under his or her observed exposure history. The unconfoundedness assumption
requires the treatment assignment to be independent of the potential outcomes given covari-
ates sets, which rules out the existence of unobserved factors that affect treatment choice
and are also correlated with the outcomes. The population overlap assumption describes
that for each value of covariate set, there is a positive probability of being assigned to both
treatment and control arms, or equivalently, there is sufficient overlap in the characteristics

of treated and untreated patients for adequate matches.
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1.5.2 Meta-algorithms

Kunzel et al. (2018) formally defined a series of meta-algorithms (or meta-learners) to
estimate CATE which take advantage of machine learning or regression estimates in a specific
manner where the base learners can be any form. It adds flexibility to leverage different prior

information and can be easily adapted to various types of data.

1.5.2.1 S-learner

The S-learner takes a single prediction model where the treatment indicator is included
as a feature similar to all of the other covariates. In that case, the training set is defined as

{1, X1, 21),..., (Y, X, Z,)}. The estimated response function is then
pw(z,2) = BE[Y"|X = 2,7 = 2],

using any base learner on the entire dataset. Denote the estimate of the response as ji. The

CATE estimate is given by

~

Os(z) = f(x, 1) — fu(z,0). (1.5.2)

1.5.2.2 T-learner

The T-learner consists two steps to estimate the response function for patients assigned

to treatment and control groups. First, the treatment response function,
() = EIY(1)]X = o]

is estimated by a base learner, such as any supervised machine learning or regression model,
using the observations in the treatment group {X},Y;'}. Second, the response function for

7

patients in the control arm,

po(z) = EY (0)|X = ]

is estimated by another base learner, using the control group observations {X?, Y;"}. Denote

the estimates for both responses by fi;(z) and fip(z), then the CATE estimate is given by

Or(x) = fin(x) — fio(). (1.5.3)



Note that treatment assignment is no longer a feature in the model, since patients from

different treatment arms are now used in estimating two separate response functions.

1.5.2.3 X-learner

Proposed by Kunzel et al. (2018), the X-learner is provably efficient under the scenario
when the number of patient in one group is much larger than that in the other group. It
involves three steps.

Step 1. Estimate the response functions using any base learners (as described in T-

learner).

w(e) = EY (D)|X = 2
olz) = EY (0)]X = .

Step 2. Impute the treatment effects for patients in the treated group based on the
control-response estimate, and the treatment effects for patients in the control group based

on the treatment-response estimate.

Dy =Y = jio(X}),

D} = i (X]) = Y.

Where (Y}, X}) and (Y%, X?) denote the observed response and covariate set for individual
¢ in the treatment or control group, respectively.
Step 3. Estimate the two treatment effect functions using any supervised learning or

regression methods and obtain estimates 71 and 7.

0,(x) = E[D'|X = ]
0o(z) = E[D°|X = x].

Finally the CATE is defined as a weighted linear combination of the two treatment effects

estimates.

0(x) = g(x)bo(x) + (1 = g(x))01(x). (1.5.4)



Here g(x) € {0,1} is a weight function and it is good to use an estimate of the propensity
score for g as suggested by Kunzel et al. (2018).

The base learners for meta-learners (i.e., for each treatment arm in T- and X-learner,
and for overall population in S-learner) can be any machine learning or regression models. It
greatly adds flexibility to the framework and makes it generalizable to any type of outcomes.
For example, if the outcome of interest is continuous, the base learners could be linear
regression or regression tree. While for binary outcomes, logistic regression or random forest
can be used. For time-to-event outcomes, we specifically examined the following three types

of models.

1.5.3 Random survival forest (RSF) model

The random survival forest model (Ishwaran et al., 2008) is a tree-ensemble nonparamet-
ric method for survival outcomes. It grows every single tree by randomly drawing bootstrap
samples from original data and further randomly selecting a subset of predictors as candi-
dates for splitting at each node. At each node, the best split is found among all binary
splits defined by the selected predictors according to a splitting rule, such as the log-rank
test. Finally, the model aggregates terminal nodes across all survival trees and obtain an
ensemble survival prediction. RSF has become a popular survival prediction method, and it
does not assume linearity among predictors. We implement the RSF model through the R

package randomforestSRC (Ishwaran and Kogalur, 2007).

1.5.4 Bayesian accelerated failure time model (BAFT)

The Bayesian accelerated failure time model is based on the function log T = f(X)+ W,
where f(X) is a sum of Bayesian additive regression trees (BART), and W is the residual
term. Henderson et al. (2020) proposed to model the distribution of W as a location-
mixture of Gaussian densities by using the centered Dirichlet process (CDP) prior, which
leads to a non-parametric specification. The individual trees and bottom nodes serve as
model parameters with a regularization prior to allow each tree to contribute only a small

part to the overall fit and thus avoid over-fitting. Technical details can be found in Henderson
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et al. (2020). We implement the BAFT model through the R package AFTrees on Github.

1.5.5 Cox-based deep neural network (DNN) survival model

The DNN model based on the Cox model can be expressed as h(t|X;) = ho(t)ed i),
where the prognostic index g(Xj; ) is an unknown function with parameters §. Traditional
Cox model assumes a simple linear relationship on the prognostic index (g(X;; 5) = £X;),
while the DNN model can approximate various non-linear covariate structures by estimating
9(Xi; 5). Sun et al. (2020) implemented the Efron’s approach in the partial likelihood to
handle tied events and introduced the L; penalty to deal with high-dimensional covariates,

with the DNN loss function presented as:
1(8; X) = b Z{Z (X;: 8) — mjz_l 1o (Z e9(XisB) _ L Z 69(X2‘§ﬁ))}
, Np jED “ieH; e 1=0 ° i€R, M iem, ’
where D is the set of all events with size Np and {¢;} is the set of unique event times; H; is
the set of subjects {i} such that ¥; = ¢; and 6; = 1 and m; is the size of H;; and R, is the

risk set satisfying Y; > ¢;. Once §(X;; B) is obtained, the predicted survival probability for
subject i at time ¢ can be computed through S(¢|X;) = exp{—Ho(t)e? X9},
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2.0 A Simultaneous Inference Procedure to Identify Subgroups from RCTs:
Application to Analysis of AMD Progression

2.1 Introduction

There has been increasing interest in discovering personalized medicine in current phar-
maceutical drug development and medical research. One aspect of personalized medicine
research is to tailor existing therapies to individual patients so that each patient can get
the most “suitable” treatment. Another aspect is to develop new therapies that target a
subgroup of patients through modern randomized controlled trials. This research focuses on
the latter aspect, which is also called “targeted” or “tailored” drug development. In such
a development process, researchers are concerned with finding whether there are subgroups
from an overall patient population that exhibit a differential response to the treatment. The
subgroup with a significantly better response to the treatment could be identified for a tai-
loring strategy with appropriate labeling language and reimbursement considerations in the
market. The best known example of a drug targeting a subgroup of patients is Herceptin for
breast cancer patients with HER2/neu over-expression (Romond et al., 2005). More recent
examples of such drugs include Xalkori for non-small cell lung cancer patients with ALK
translocation (Shaw et al., 2011) and Zelboraf for skin cancer patients with BRAF mutation

(Flaherty et al., 2011).

In RCTs, there is usually a treatment arm and a control arm (e.g., placebo or standard-
of-care). The “relative effect” between treatment and control is referred to as “treatment
efficacy”. How to confidently identify subgroups that exhibit enhanced treatment efficacy
(from testing a large collection of markers) is a fundamental problem in targeted drug devel-
opment. Consequently, how to correctly measure this treatment efficacy is critical and can
be non-trivial. It depends on the nature of the disease being treated and the clinical outcome
of interest. For example, in type-II diabetes, the primary clinical outcome is the decrease
in HbAlc from baseline, which is a continuous and (often) normally distributed outcome.

A natural efficacy measure is the difference in the mean decrease of HbAlc, relative to the
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control arm. However, in studies where the primary endpoint is time-to-event, such as time
to cancer remission, or binary, such as being a responder or not, and when the patient pop-
ulation is a mixture of subgroups with differential treatment responses, the commonly used
hazard ratio HR or odds ratio OR is not a suitable efficacy measure. Lin et al. (2019) fully
discussed this issue and provided a formal definition of “logic-respecting” efficacy measure.
Simply, a logic-respecting efficacy measure has to satisfy the criterion that the efficacy for
the combined (mixture) group has to be between the efficacies of the subgroups. This logic-
respecting property is related to “collapsibility”, which is defined for measures of association
in the literature (Pearl, 2000) as well as for measures of causal effect (Greenland et al., 1999;

Hernan and Robins, 2020; Huitfeldt et al., 2019).

Putting it in context of measuring treatment efficacy when subgroups exist, an efficacy
measure is “strictly collapsible” if each subgroup having the same efficacy implies all-comers
having the same efficacy as well. Thus, being logic-respecting implies collapsibility. Note
that the efficacy measures and their properties (such as “logic-respecting” or “collapsible”)
are defined in the parameter space (i.e., population level), and these properties are specific

to the measures, not the statistical models that are used to estimate these measures.

With enormous advances in genotyping technologies, high-throughput genetic data be-
come more increasingly collected in modern RCTs for the potential of personalized medicine
development. Usually either a pre-selected panel of single nucleotide polymorphisms (SNPs)
or SNPs across the whole genome are genotyped to study how patients respond differently to
the therapy based on their genetic makeup. For example, in our motivating study, the Age-
Related Eye Disease Study (Age-Related Eye Disease Study Research Group, 1999), which
is a large multi-center RCT for an eye disease, age-related macular degeneration, DNA sam-
ples of consenting participants were collected and the genome-wide typing was performed
(Fritsche et al., 2013, 2016). AMD is a polygenic and progressive neurodegenerative dis-
ease, which is a leading cause of blindness in the elderly. Patients can progress to one or
both forms of late-AMD: central geographic atrophy (GA) and choroidal neovascularization
(CNV). Many genetic studies have shown that the development or the progression of AMD is
associated with various genetic risk factors (Fritsche et al., 2016; Seddon et al., 2007; Sun and

Ding, 2019; Wei et al., 2020b; Yan et al., 2018). Specifically, in two recent genomewide asso-
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ciation studies for AMD progression using the AREDS data (Sun and Ding, 2019; Yan et al.,
2018), where time-to-late-AMD is the outcome, multiple variants from ARMS2-HTRA1 and
CFH gene regions have been discovered to be associated with AMD progression. Besides
association analyses where no treatment is involved, multiple research groups also investi-
gated whether variants from these two gene regions are associated with differential treatment
responses. A recent review article by Cascella et al. (2018) summarized the controversial
findings. Research groups such as Klein et al. (2008) and Seddon et al. (2016) reported that
genetic variants from CFH and ARMS?2 regions were found to be associated with differen-
tial responses to the antioxidants plus zinc treatment. However, the AREDS investigators
reported no significant associations between CFH and ARMS2 regions and the nutritional
supplements, when multiplicity adjustment has been taken into account (Chew et al., 2015).
To fully understand the effects of those nutritional supplements on AMD progression and
development and to infer whether there are genetic subgroups with enhanced treatment ef-
ficacy, a rigorous statistical procedure that can simultaneously identify and infer subgroups
is required. We are specifically interested in studying the treatment effects of two types of
endpoints: time-to-event endpoint and binary endpoint. The time-to-event endpoint can be
expressed as the time to late AMD status, while the binary endpoint refers to the 10-year
progression status of AMD patients.

2.2 Time-to-event endpoint

2.2.1 Existing methods for identification of subgroups

There is a rich literature for detecting heterogeneous treatment effects across groups for
time-to-event outcomes. One simple but broadly used method is to test the treatment-by-
marker interaction in the CoxPH model (Cox, 1972b). However, this method cannot provide
which group to target directly, nor can it provide inference on subgroup-specific efficacy.
Post-hoc analyses are usually required. Another type of approach focuses on testing the

existence of a subgroup (with an enhanced treatment effect) using either a logistic-Cox model
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for the response in each subgroup and the latent subgroup membership (Wu et al., 2016) or
a new CoxPH model including a nonparametric component for the covariate in the control
group and a subgroup-treatment-interaction effect defined by a change plane (Kang et al.,
2017). There are also many tree-based methods for subgroup identification. For example,
RECursive Partition (RECPAM) (Ciampi et al., 1995; Negassa et al., 2005) tends to select a
split that maximizes the “difference” in Cox partial likelihood between the two child nodes.
Su et al. (2008) developed interaction trees where the splitting criterion is based on the test
statistic for the treatment-by-split interaction within each parent node intended for splitting.
The Subgroup Identification based on Differential Effect Search (SIDES) approach invented
by Lipkovich et al. (2011) focuses on a direct search for subgroups with a beneficial treatment
effect utilizing recursive partitioning on each individual candidate biomarker. Loh et al.
(2015) developed a framework called GUIDE (Generalized, Unbiased, Interaction Detection
and Estimation), which reduces the selection bias in tree-based subgroup search methods by
including an additional screening step to select the best covariates adjusted for the number
of possible splits. Similar ideas were described in the conditional inference trees (Hothorn
et al., 2006) and extended to a more general setting of model-based recursive partitioning
(Seibold et al., 2016; Zeileis et al., 2008). The Virtual Twins method developed by Foster
et al. (2011b) first predicts the individual treatment effect using random forests under the
potential outcome framework and then identifies subgroups by applying classification and
regression trees (CART). Another group of methods aims at finding the optimal treatment
regimes, including Zhao et al. (2012), Zhang et al. (2012) and Xu et al. (2015). Instead
of searching for the subgroups with beneficial treatment effect, these method tend to find
the best treatment for a given patient profile. Lipkovich et al. (2017) provides a thorough
review on but not limited to the above mentioned methods. Interested readers may refer to
Table XV in their paper for key features of commonly used subgroup identification methods.
Recently Zhang et al. (2020) proposed a nonparametric method for subgroup identification
using restricted mean survival time based on maximizing a value function that directly

reflects the subgroup-treatment interaction effect.

The aforementioned methods are mostly machine learning-based. Another main type of

approach for identifying subgroups is through multiple testing, and our proposed method
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belongs to this type. The biggest advantage of our method is that it offers “strong” multi-
ple comparisons error rate control, controlling the expected number of confidence intervals
with false coverages (regardless of what the true parameter values are). Such confidence
statement is challenging for machine learning methods to match. Machine learning methods
often use permutation or other resampling techniques. However, to achieve “strong” mul-
tiple comparisons control, resampling-based cross-validation needs to resample through all
possible parameter configurations (all true, all but one true, all but two true, and etc), which
is computationally prohibitive. It is understandable that methods such as SIDES (Lipkovich
et al., 2011) resample at the so-called “complete-null” only, with all the nulls being true,
resulting in “weak” multiple comparisons error rate control. In the original SIDES paper,
the authors discuss such “weak” control in Section 5. In our motivating disease, AMD, the
markers for subgroup identification are SNPs. With linkage disequilibrium among the SNPs,
the complete-null (no association) hypothesis is statistically false (Ding et al., 2018). In such
circumstances, strong control of multiple comparisons error rate is desired. In addition, none
of these aforementioned methods simultaneously provides inference for treatment efficacy in
both targeted group and non-targeted group, and some approaches use illogical efficacy mea-
sures. The targeted treatment development process usually involves the co-development of
a drug compound and a companion diagnostic tool that identifies the suitable subgroup
of patients for the drug to target. Therefore, the subgroup usually needs to be “simple”
(e.g., defined by one or two biomarkers) for clinical and regulatory feasibility. In this arti-
cle, we develop a multiple-testing-based approach which aims to simultaneous identify and
infer “simple” subgroups with enhanced treatment efficacy defined using a logical efficacy

measure.

The section is organized as follows. Section 2.2.2 introduces the logic-respecting efficacy
measure for time-to-event outcomes that we choose to use and its associated properties, and
with that efficacy measure how we formulate the contrasts to identify subgroups and adjust
for the multiplicity. Section 2.2.3 presents simulations to show finite sample performance of
the proposed method and uses realistic simulations to summarize practical rules for the use
of the method. Then we apply our method on the AREDS data and present our findings in

Section 2.2.4. Finally, we discuss and conclude in Section 2.2.5.
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2.2.2 Proposed Methods

Motivated by the AREDS data set where the SNPs were considered as markers for sub-
group identification, we focus on the setting of ordinal markers that separate the population
into three groups (M = 0,1,2) to illustrate our method. Brief discussions are provided in
Section 2.2.5 regarding how to generalize the method to handle markers with more categories

or continuous markers.

2.2.2.1 Ratio of quantile survival times and its property

In the analysis of survival outcomes, it is known that the hazard ratio is lack of collapsi-
bility (Ding et al., 2016) and not logic-respecting (Lin et al., 2019) when subgroups exist.
Therefore other treatment efficacy measures, such as the ratio or difference of (1) survival
probability at a specific time point, (2) mean (restricted) survival time, and (3) quantile
survival time, are considered. Ding et al. (2016) demonstrated that the ratio or difference of
mean or median survival times (between Rz and C) is logic-respecting. In this manuscript,
we choose ratio of quantile survival times as our efficacy measure where quantile value can be
pre-specified. The interpretation of this measure is straightforward and we will also demon-
strate that it has a unique property under the accelerated failure time (AFT) model that we
consider.

Assume the time-to-event data fit the following AFT model:

BaTrt x I(M = 1)+ BsTrt x (M =2)+ 86X + W, (2.2.1)

where Trt = 0 (C) or 1 (Rz) is the treatment assignment, M = 0, 1, or 2 is the marker
for subgroup testing. If the marker is a SNP, then M denotes the number of minor allele
(denoted as ‘a’) the patient carries (0 for AA, 1 for Aa, and 2 for aa). X denotes the
covariates (in addition to M and T'rt) that are possibly associated with the outcome, and

the residual term oW can follow various distributions (e.g., extreme value distribution, which
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makes the AFT model equivalent to a Weibull model). X is also called “prognostic” factors.

The model in formula (2.2.1) can also be expressed with respect to the survival function:

S(t|T7“t, M, X) = So(eXp{—<ﬂ0 + BlTTt + 52[(M = 1) + ﬂg[(M = 2) +
BiTrt x I(M =1) + BsTrt x I(M =2) + B X)} 1), (2.2.2)

where Sp(+) is the survival function for the exponentiated residual term e’V

Denote by Vﬂ"i the corresponding quantile survival time at which survival probability
is equal to 7 in each marker-by-treatment group (7 is pre-specified), and denote by 7}, the
quantile ratio between Rx and C' in each marker group. Then by setting the survival function

for each group equal to 7, the corresponding quantile survival time and their ratios can be

directly calculated as follows:

Rx
v,
— — 0,
V(ff = Sy (1)t theX, V(fr = Sy (r)e®H X g = —& = e,
W r
th
Rr _ g-1 Bo+B1+pB2+B1+Be X c _ o-1 Bo+B2-+BeX _ T pi+B
Vg =S (T)eRTITRIIEReR L = S (e TRy = = = e
Vl,'r
URJZ
Rr _ q—1 Bo+B1+B83+B5+Be X c _ g-1 Bo+B3+Be X _ 27 _Bi+B
Vg = So ()X PmRIITR R oy L= 5 (1)e TR 7“2—1/7—61 .
2,17

It can be easily seen that the ratio in each subgroup does not depend on the quantile value
7 (and thus we drop 7 in the super-index of rj;). More importantly, although the quantile
survival time for each group depends on the baseline prognostic factors (BeX), the ratio
does not. We name this as the covariate-invariance property. This property is attractive
as it makes the comparison (between Rz and C') simple. Further it can be shown that this
property also holds in the combined groups. For example, suppose we are interested in the

ratio of quantile survival times in the mixture population of {M = 0,1} (denoted as r{;).

. .. yliz
We can calculate r7, from its definition, r7, = -~ where v**
01 ) 101 1,001 L) 01,7

and vf; . can be obtained by

solving the following equations,

t = Vé?lﬂ;_ . pOSO(e(—ﬁo—ﬂ1—ﬁ6X)t) +(1— p())SO(6(—ﬂ0—ﬂ1—62—ﬂ4—5ex)t) =T,

t=vs, = poSo(e”PTPNt) 4 (1 — po)So(e R RPe X)) — 7, (2.2.3)

with po representing the prevalence of M = 0 in the combined population {0,1}. By

combining the two groups at the probability level, this calculation follows the subgroup
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mixable estimation (SME) principle (Ding et al., 2016). Let zf, = e Po-PeXylir and

C  _ ,—fo—BeX, C r _ Re /,C _ Rt /,.C : :
To, =€ Vg1, then we have 1§, = 11" /v, = x5, /75, ,- Since the solutions for

af. and xf) . from equations (2.2.3) are free of B¢ X, we also have the covariate-invariance
property for ;. Note that this property holds regardless of which specific error distribution

is chosen.

2.2.2.2 Confident Effect 4 contrasts (CE4) for ratio of quantile survival times

Targeted therapy development concerns about (1) whether there exists a subgroup with
enhanced treatment efficacy and (2) the treatment efficacy in both targeted and non-targeted
subgroups (for appropriate drug labeling and reimbursement considerations). To answer both
questions simultaneously, we propose to use contrasts to directly compare efficacy between
different subgroups and combination of subgroups. The markers in our motivating example
are SNPs, and for each SNP, individuals can be separated to 3 genotype groups AA, Aa,
aa. The traditional SNP testing problem arises from the genome-wide association study
(GWAS), which aims to identify SNPs that are associated with a specific disease (and no
treatment is involved). It is a common practice to test for each SNP whether it has a
dominant, recessive, or additive effect. For a given SNP, assume having minor allele “a”
is harmful. Then for a dominant effect, individuals carrying at least one copy of minor
allele (i.e., Aa, aa) are associated with the disease, and the risks of developing the disease
from individuals carrying one copy and carrying two copies are equal. For a SNP to have a
recessive effect, only individuals carrying two copies of minor allele (i.e., aa) are associated

with the disease. Lastly, for a SNP to have an additive effect, the risk of developing the

disease is linearly associated with the number of minor allele the individual carries.

Some commonly used methods for testing SNP association include the 2-degrees-freedom
F-test, which tests the complete null (Hy : ftaa = ptaa = paa) against the existence of a
non-zero contrast (Lettre et al., 2007); the linear trend test which tests the complete null
against an additivity alternative; and the MAX3 test, where the maximum test statistics
under three genetic models is used to denote the significance of a single SNP (Lettre et al.,

2007). However, these methods all focus on testing the complete null against some specific
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alternatives, and as demonstrated by Ding et al. (2018), the complete null can be statistically
false for (almost) all SNPs as long as there is a causal SNP. Moreover, when treatments are
involved, the exact “dominant”, “recessive”, and “additive” effects, measured by a clinical
outcome, can rarely hold. Therefore, testing a complete null versus a specific alternative
can be misleading since it is highly likely none of the specific alternatives or the complete
null is true in reality. More discussion on this can be found in Chapter 15 in the Handbook
of Multiple Comparisons (Cui et al., 2021). To fill the gap, we propose the use of the
following four contrasts with survival endpoints for testing and inferring subgroups with
differential treatment effects. The simultaneous confidence intervals provide direct inference
on all possible SNP effects and their confidence set can be directed toward patient targeting.
log K(1,2):0 = log(%) =logriys —logry, logkio= log(:—;) = logr, — logry,
T2 7“2)

log Ka.(0,1) = log(r—m) =logry —logrg;, logko, = log(r—1

=logry —logry;. (2.2.4)
We drop 7 in the notation as 7 is pre-specified. Moreover, these contrasts are built on the log
scale of the efficacy measure since our previous experience demonstrates that the normality
approximation seems to work better on the log scale (as compared to the original scale) (Ding
et al., 2016). In fact these four contrasts are analogous to the contrasts proposed in Ding et al.
(2018) where the efficacy in their case is measured by a continuous outcome. Specifically,
log K(1,2):0 tests for a “dominant” effect (of allele a), log ka.(o,1) tests for a “recessive” effect,
and log k1.0 and log k9.1 test for an “additive” effect. Note that although the “superdominant”
effect (e.g., the heterozygous group Aa is different from the combined two homozygous groups
{AA, aa}) is rarely seen in genetics, it can also be inferred from these four contrasts, as these
four contrasts can determine the complete ordering of these three genotype groups (Ding
et al., 2018). From these contrasts, we are able to tell which subgroup or combination of
subgroups exhibits a differential efficacy as compared to its complementary group.

Without assuming the direction of the marker effect is known (i.e., without knowing
whether carrying the minor allele a is beneficial or harmful), we propose to use two-sided
simultaneous confidence intervals on these four contrasts so that we can identify differential
subgroup(s) and infer their efficacy simultaneously. In the situation of a confirmatory trial

when one has enough prior information about the direction of the marker effect, one may
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consider using four one-sided simultaneous confidence intervals. Note that level 100(1 — )%
simultaneous confidence intervals for those contrasts effectively form a level-a interaction
test: reject the null hypothesis of no interaction between Treatment effect (7'rt) and marker
group (M) if at least one of the confidence intervals does not contain zero. Moreover, this
formulation of assessing “interaction” effect is advantageous toward patient targeting as it
allows decision-making based on clinically meaningful differences (reflected from confidence
intervals on efficacy comparisons) instead of a mere statistical significance (such as the p-value
from an interaction test). To estimate the four contrasts from equations (2.2.4) under model

(2.2.1), we propose the following three steps and name this approach as “CE4-Survival”:

1. Estimate all the parameters in the survival model (e.g., parameters related to the distri-
bution of error term and fy, ..., in model (2.2.1)).

2. Estimate rg,r1,79,791 and ri2 and their variance covariance using estimates obtained
from Step 1.

3. Calculate the four contrasts CE4 in equations (2.2.4) and obtain their joint asymptotic

distribution.

The estimated variance covariance matrices in Steps 2 and 3 can be obtained using the
Delta method. Note that in Step 2, the Delta method for implicitly defined random vari-
ables (Benichou and Gail, 1989) needs to be applied since the quantile survival times in
the combined groups are not explicitly defined, but rather derived from solving equations in
(2.2.3). Details are provided in the Appendix.

The estimated CE4 asymptotically follows a multivariate normal distribution and the
simultaneous confidence intervals can be then derived as follows. We compute the quantile

g such that the four simultaneous confidence intervals

log(kg) — q8gg < log(ky) <log(ky) + q54, 9 ={(1,2):0, 2:(0,1), 1.0, 2:1}

have a coverage probability 1 — «, that is, the joint probability

log(#,) — 1
pr|10elRe) Zloslro)l 0 910 2:0.1), 10, 21} =1 —a.

Sgg
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2

where s .

is the variance estimate for log(&,). The gmunorm function in R package {mvtnorm}
can be used by inputting 1 — a and the 4-dimensional estimated correlation matrix. Mean-
while, the p-value can be obtained from the multivariate normal distribution. If any of the
four contrasts does not cover 0, it suggests that there exists subgroup(s) with differential

treatment efficacy.

2.2.2.3 Multiplicity adjustment across biomarkers

In targeted treatment development, typically a large collection of markers need to be
tested in order to identify subgroups. Therefore, there are two families of inferences need to
be considered: within a marker and across markers. Specifically, strong control of familywise
error rate (FWER) for inference within a marker is desired, since the consequence of an in-
correct inference may target a wrong subgroup, which is dire. The simultaneous confidence
intervals obtained from our CE4-Survival method appropriately controls the within-marker
FWER. While the error rate for inference across multiple markers can be controlled less
stringently, since multiple candidate markers can be identified for tailoring (which may indi-
cate largely overlapped subgroups to target), and therefore the per family error rate seems

acceptable.

Suppose there are a total of K markers to be tested. Denote by V) the number of
confidence intervals that fail to cover the true values for the k* marker. Then the FWER
for the k™ SNP is ay, = P(V}, > 0) = E{l(v;>0)}. For inference across SNPs, the per family
error rate is E(V,) = E{f I(Vk>0)} = f PV, > 0) = f o, where V, is the number
of markers with at least orlizlof its Conﬁd:;cle intervals failil;lzgl to cover its true value. The
simple additive adjustment proposed by Ding et al. (2018) can be applied. If the desired
expected number of falsely rejected hypothesis per family m is chosen, then the familywise
ay for each marker is set to be % for all markers. Note that this is not the as same as
the Bonferroni probabilistic adjustment for setting oy, = %. The Bonferroni adjustment
only allows « false discoveries on average, where « is the per panel FWER, usually a small
number such as 0.05. While the additive adjustment allows for m false discoveries, where m

is a pre-specified positive integer.
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When SNPs are the biomarkers to define subgroups, the screening process seems similar
to a GWAS. However, our proposal controls for per family error rate instead of the commonly
used false discovery rate (FDR). In GWAS, it is plausible biologically that the vast majority
of the SNPs are not associated with the specific disease. However, when treatments are
involved, the biological processes become more complex, and zero-nulls of no-difference (e.g.,
phrased as Hy : log k(1,20 = 0) are statistically false for almost all SNPs as long as there
exists a causal SNP, which was first observed in the setting of Ding et al. (2018), where
the treatment efficacy was simulated based on a single causal SNP with no random error
being added. It was found that practically all other SNPs would appear “associated” with
the outcome (as sample size reaches infinity) when analyzed in a SNP-by-SNP fashion. The
reason is that most SNPs are not “orthogonal” to each other, and thus any SNP will appear
somewhat associated with treatment outcome as long as the distribution for proportions of
being {AA, Aa,aa} in this SNP and the causal SNP are not independent, which is most of
the cases. When there are no zero-nulls statistically, the “false” discovery seems lame, and
the per family rate is preferred by providing more meaningful candidates. In the rest of
the paper, we use an AFT-Weibull model to demonstrate the performance of the proposed

method.

2.2.3 Simulation Studies
2.2.3.1 Single SNP simulations

First, we conducted simulations to investigate the finite sample performance of the pro-
posed CE4-Survival method on analyzing one SNP with three scenarios: (1) No SNP effect,
i.e., Rz is not efficacious for any genotype group; (2) The allele ¢ has a dominant beneficial
effect on Rz; (3) The allele a has a recessive beneficial effect on Rz. The SNP was simulated
from a multinomial distribution with (P,, = 0.16, P4, = 0.48, P44 = 0.36) (corresponding to
minor allele frequency (MAF) of 0.4). Survival times were first simulated from AFT model
(2.2.1) with extreme value errors (equivalent to a Weibull model), where scale A = e=%0 = 2
and shape k = % = 1.25. The parameters (f1,..., 3s) were set to be (0,0.64,0.64,0,0,0),
(0,0.64,0.64,0.48,0.48,0) and (0,0.64,0.64,0,0.48,0) for the three scenarios respectively.
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The censoring times were generated from an independent uniform distribution U(a, b) with
a and b chosen to yield 25% and 50% censoring rates. We chose the quantile 7 as 0.5 which
corresponds to the median survival time. Then true values of the CE4 contrasts using the
ratio of median survival as the efficacy measure for each scenario are: (1) (1,1,1,1), (2)
(1.62,1.27,1.62,1), and (3) (1.12,1.62,1,1.62). We ran 1000 simulations with sample size
500 for each treatment arm and the results are summarized in Figure 2.2.1. Across all the
scenarios, the biases of the CE4 estimates are minimal and the coverage probabilities for
the simultaneous confidence intervals are all close to 95%. Larger variations are observed
in biases of fg.(0,1) and Ay.1, especially under scenario 3. This is because under the recessive
effect setting, Rz is only efficacious in {aa} patients, which is a small proportion of the
total population. Therefore, the contrasts involving the comparison between {aa} and other

group have larger variances.
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Figure 2.2.1: Finite sample performance of CE4-Survival on single SNP simulations: box
plot of the biases of CE4 estimates and simultaneous coverage probability (SCP) under
Weibull distribution.

To assess the robustness of CE4-Survival method under model mis-specification, we
simulated survival time from two other settings where the Weibull model does not hold.

In the first setting, the data were simulated from a Gompertz distribution where S(t) =
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Figure 2.2.2: Finite sample performance of CE4-Survival: box plots of the biases of CE4

estimates and SCP under Gompertz distribution.

exp{%}. The parameters are set to be A = 0.5, « = 0.25 and (5y,...,0s) =

(0,-0.8,-0.8,0,0,0), (0,-0.8,—0.8,—0.6,—0.6,0) and (0, —0.8,—0.8,0, —0.6,0) to give the
following true values of the CE4 contrasts: (1) (1,1,1,1), (2) (1.54,1.21,1.54,1), and (3)
(1.12,1.54,1,1.54). Such data fit a proportional hazards model but not an AFT model. In
the second setting, the data were simulated from an AFT model with error W generated from
a standard logistic distribution. The model parameters (s, o) were set to be the same as in
the Weibull model described previously in the AFT model (2.2.1) and give the following true
values of CE4 contrasts : (1) (1,1,1,1), (2) (1.82,1.30,1.82,1), and (3) (1.09,1.82,1,1.82).
Therefore the data fit a proportional odds model but not a Weibull model. Then we applied
the CE4-Survival model with Weibull distribution for each scenario. Results from 1000 sim-
ulations with sample size 500 for each treatment arm are summarized in Figure 2.2.2 and
Figure 2.2.3. Although the fitted model is mis-specified, with data generated from Gompertz
distribution, the comparisons between treatment effects of different subgroups (i.e., the four

estimated contrasts) are relatively robust with small biases and the coverage probabilities

28



o 0 [}
XN ~ ~
wn
~N B B
[ : : - : , -
Q H 8
s g - )
o© 1 == Il =SS = o j o ! = o1 == =
5. o i < e i
=
Q
On & &
ol SCP=936 | o SCP=687 | o | SCP=76.0
Ka20 K201 Ko Kz K20 K2{01) Ko Ko K120 X201 Kro Kz
o 0 [}
X ~ N
o
'2)
[ . : . - . - : s
% 4 4+ 4+ S L 4 4 i i ] 4
ol =3 L — o ! == ol =3 | ===
2 —_ == = —— L -
£ e H = EHE S
S -1 = EE - :
@ e e
Q
Cun o &
© SCP =943 © SCP =754 o | SCP =80.7
K120 K201 Kio Kz Ki2o K2(01) Kio  Kazi K20 K2(01) Kro  Kpq
Scenario 1 Scenario 2 Scenario 3

Figure 2.2.3: Finite sample performance of CE4-Survival: box plots of the biases of CE4

estimates under log-logistic distribution.

for the simultaneous confidence intervals are close to the nominal level. For data generated
from the log-logistic distribution, the biases are still minimal for the no effect scenario. How-
ever, for the two scenarios where differential treatment efficacy exists, we observe biases and
under-estimated coverage probabilities. Therefore, the proposed CE4-Survival method has
some robustness against model mis-specification, but like any parametric-based approach,

model fitting diagnostics are necessary in practice.

2.2.3.2 Chromosome-wide realistic simulations

To understand the performance of the proposed CE4-Survival method in real genetic
settings with a large number of SNPs, we used the real SNP data from AREDS. Among those
participants who had DNA collected and genotyped, we randomly selected 1000 Caucasian
participants and “assigned” them in a 1:1 ratio to the treatment Rx and a control C. A variant
1r$2284665 from the well-known AMD risk gene region ARMS2-HTRA1 on Chromosome 10

was selected as the causal SNP, and the minor allele of this variant was assumed to have
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a dominant beneficial effect on Rx. We kept the three genotype groups (defined by the
causal SNP) balanced between Rz and C. The progression times were simulated from the
Weibull model with A = 2 and k& = 1.25. The Bs were set to be (0,0.32,0.32,0.51,0.51,0),
corresponding to (K(1,2):0, K2:(0,1); K1:0, K2:1) = (1.90,1.51,1.90, 1). The censoring rate was set

to be 25%.

We analyzed chromosome 10 using our CE4-Survival model and filtered the SNPs with
less than three patients in each genotype group within each treatment arm, which resulted in
a total of 268,053 SNPs. We set m = 10, allowing on average 10 out of ~ 270,000 SNPs with
at least one confidence interval failing to cover its true value, which is equivalent to setting
the ag level at 3.73x 107° (= R = 55655)

30 SNPs are from the ARMS2-HTRA1 region, including the causal SNP rs2284665. Other

. A total of 37 SNPs were identified, among which

seven SNPs belong to six different gene regions, which are distance away from the causal
gene region. Figure 2.2.4A plotted the positions of these SNPs relative to the causal SNP,
with y-axis (—log,,(p)) showing the significance level of each SNP. Figure 2.2.4B plotted
MaxEff vs —logy(p), where MaxEff (maximal effect) is defined as the maximum absolute
value among the estimated CE4 contrasts that do not cover zero. The causal SNP has the
smallest p-value (= 8.52 x 107!%) and a MaxEff of 2.20. Note that some top SNPs have
very large MaxEff values. For example, SNP rs10857454 from the C100rf128-C100rf71-AS1
region has the largest MaxEff of 29.7, while its p-value is not very small (= 3.21 x 1075,
close to the threshold). We caution against the situation when a huge effect size is seen,
since such a huge effect for treatment efficacy is clinically unlikely. For this specific SNP, it
is not surprising to see the corresponding confidence interval for xs.(,1) is very wide and the

effective patient population only consists 1.5% of the total population.

To further investigate the relationship between the identified SNPs and the causal SNP,
we proposed a novel SNP cross-talk plot. It is based on a ternary diagram using barycentric
coordinates to display the proportion of three variables that sum to one. Specifically, we
projected the percentages of the AA, Aa, and aa categories of the causal SNP rs2284665
in each of these categories of a given top SNP onto the triangular diagram, and connect
the points with lines. If the SNP is highly correlated with the causal SNP in terms of the
distribution of AA, Aa, and aa, the percentages will be close to (1,0,0), (0,1,0) and (0,0,1),

30



A > - A B n
=
ich =
= o
9 -
§+
o =
o
1%}
=
s gt
b2y = o |
< = -
a . - s 4=
~— % = 11]
o — H g S
50 = g =T+ &
) e Q = =
T8 Ee 5
— w - | |
© —g, § '2 % 7t
5 5§ % -
< N o
3 w3 8 .
W oN [ ] E © *
IEJ( = L] A
L] + o~ 4 - . i HH
n L] | JP +
T T T T T T T T T
-1e+08 -6e+07 -2e+07 5 6 7 8 9
relative position to rs2284665 —logy0(P)
< aa
= = Causal-SNP
—— ARMS2-HTRA1
—— MTRNR2L5,ZWINT
—— GAD2
= ABLIM1
= C100rf128,C100rf71-AS1
RNUB-53P,XPNPEP1
W~ NEBL-AS1,CASC10
AA Aa

Figure 2.2.4: 37 identified SNPs from one chromosome-wide realistic simulation. A:
-log1o(p.CE4) vs. relative position to the causal SNP; B: the maximum effect among CE4
vs. -logyo(p.CE4); the red triangle denotes the causal SNP 752284665 and ‘+’s are the
SNPs that are from the same region with the causal SNP. The rests are from other gene

regions; C: SNP cross-talk plot.

31



and thus the connected line segments will be long and lie closely to the two edges of the
triangle. Otherwise, the three dots will be close to each other to give a short angle. For
example, in Figure 2.2.4C, the causal SNP has a perfect match in terms of the percentages
with itself so the three points are the vertexes of the triangle, which makes the connected
line segment coincide with the edges AA — Aa and Aa — aa (denoted by the dashed lines).
From the plot, all 30 SNPs from ARMS2-HTRA1 region are highly correlated with the
causal SNP, indicated by the long red line segments, which explains why they have been
identified by CE4-Survival. For the 7 SNPs from other regions, their line segments are all
short, suggesting they might have been identified due to randomness. Note that the choice
of “m” can be subjective and should be combined with prior knowledge if applicable. In this
simulation study, when using m = 5 instead (i.e., a3, = 1.87x107°), there are 34 “significant”
SNPs with at least one confidence interval that does not cover 0. Thirty of them are in the
ARMS2 region, and the causal SNP is within these 30 SNPs. We recommend to use an “m”
value that corresponds to an oy, of order 107% to 10~° based on our previous experience with

genome-wide subgroup identification using continuous or binary outcomes.

The chromosome-wide realistic simulation were repeated 100 times, where the SNP data
are all the same but the progression times and censoring times are different due to randomness
from the model. By setting m = 10, on average there are 61 SNPs identified per run with
a total of 3292 SNPs being picked at least once. The causal SNP was picked 90 out of 100
times and the distribution of the ranks is shown in the stem-and-leaf plot (upper panel in
Figure 2.2.5). Note that 84 out of 90 times the rank of the causal SNP was among top 30
and 52 times it was among top 10, indicating that our CE4-Survival is robust in identifying
the true causal SNP. The lower panel in Figure 2.2.5 summarizes all the identified SNPs
from all 100 runs in terms of their relative position to the causal SNP and their frequencies
of being picked up. We found that 3256 of the 3292 SNPs (98.9%) were only picked less than
5 times out of 100 repeated simulations, which are highly likely due to randomness. While
for SNPs close to the causal SNP and located in the same ARMS2-HTRA1 gene region, the
selection probability is much higher, among which 27 SNPs were identified for more than
80% of the times. From this repeated chromosome-wide simulations, we confirmed that there

are possibilities that some SNPs are picked by random error but the true causal SNP and its
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surrounding SNPs can be identified with high probabilities by CE4-Survival. Moreover, due
to the existence of linkage disequilibrium among SNPs, it is very unlikely that an isolated
SNP will be the true causal SNP.

Based on the observations from our realistic simulations, we recommend the following
rules to guide the selection of “candidate” SNPs from those identified by CE4-Survival: (1)
There are multiple SNPs (> 3 for example) being picked from the same gene region; (2) The
MaxEff should not be unrealistically large; and (3) The targeted group should be a reasonable
proportion (not too small or large, e.g., 5% — 95%) of the total population. Note that, the
numbers in the parenthesis (> 3 or 5% — 95%) are just examples (as they are subjective),
but not gold standard. After deciding the “candidate” SNP(s), the next step is to identify
the targeted population based on the CE4 results. We provide a flowchart (Figure 2.2.6)
to guide the subgroup identification procedure. Note that the flowchart identifies combined
subgroup for targeting if both individual subgroup(s) and combined subgroup show beneficial
treatment effects. For example, when both SCI1 and SCI2 are positive, {aa} is a subgroup
for the treatment to target since logrsis significantly larger than logry;. However, since
SCI1 is also positive, which indicates that the combined group {Aa, aa} is more efficacious
than {AA}. In this case, we conclude the subgroup for treatment to target is { Aa,aa}. For
the label consideration, if there is evidence that {aa} is more efficacious than {Aa} (e.g.,
SCI4 is positive), it is certainly important to note that in the label. Therefore, even though
subgroups maybe inferred by checking some of the contrasts (not all), all contrasts are useful

for inferring a full picture of the treatment efficacy.

2.2.4 Application to AREDS Data
2.2.4.1 More on AREDS

AREDS is a large multi-center RCT sponsored by the National Eye Institute to evaluate
the effect of antioxidants and/or zinc on delaying the progression of AMD (Age-Related Eye
Disease Study Research Group, 1999). The original study includes four treatment arms:
placebo, antioxidants, zinc and the combination of antioxidants and zinc, where the last

treatment then becomes the “AREDS formula” dietary supplements which are now available
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Figure 2.2.6: Flowchart of determining the targeted population based on CE4 results.

in various drug stores. However, the treatment effects of the non-placebo arms on delaying
the late AMD progression are not statistically significant (Ding et al., 2017). Among the four
arms, we specifically investigated participants in the placebo arm (C') and the combination of
antioxidants and zinc treatment arm (Rz), which included 1,170 Caucasian participants with
both eyes free of advanced AMD progression when entering the study. The outcome is the
time-to-late-AMD from the first progressed eye, where late-AMD is defined as the severity
score reaches 9 or above (9=GA, 10=central GA, 11=CNV, 12=central GA and CNV). As
shown in Table 2.2.1, age, sex and smoking status do not differ between the two treatment
arms. However, the baseline AMD severity score is significantly higher among patients who
were randomized to the Rz group, as compared to patients who were randomized to placebo
(4.04£2.2 vs 2.6 £2.1). This is as expected and is due to the randomization design: patients

free of AMD at baseline can only be randomized to the placebo or antioxidants arms, but
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not the combination arm, and thus the baseline severity score needs to be adjusted in the
analysis. The overall non-progressed rate is about 75%, so we chose 7 = 0.75 as the quantile

of interest (to avoid extrapolation of the survival curves).

2.2.4.2 CE4-Survival on AREDS

We first evaluated the effect of “AREDS formula” on time-to-progression using a Weibull
regression model, adjusting for the known risk factors including age, smoking status and base-
line severity score (Chakravarthy et al., 2010; Ding et al., 2017; Group, 2001). From Section
2.2.3.1 we noticed that the model can be sensitive to the mis-specification, so we graphically

4

checked the model fitting using Cox-Snell residuals for the “null” Weibull regression model
for time-to-late-AMD on AREDS data, where the alignment of the curve with the 45 degree
line indicates the overall fitting is fine. The estimated ratio of 75th quantile progression-free
time for Rz and C is 0.91 with p = 0.12. It suggests that the combination of antioxidants
and zinc does not seem to be effective in slowing down the disease progression in the overall
population, which is consistent with previous findings (Ding et al., 2017). Then we applied
CE4-Survival method using Weibull distribution to analyze all common variants (i.e., MAF
> 0.05) across 22 autosomal chromosomes, resulting in a total of 3,837,556 SNPs. The up-
per panel of Figure 2.2.7 presents the Manhattan plot of this genome-wide CE4-Survival
analysis result. By setting m = 10, a total of 46 SNPs meet the significance threshold
of 2.61 x 107%(= m/K). These SNPs are from nine gene regions on seven chromosomes.
Following the recommendation rule we proposed in Section 2.2.3.2, there are three gene re-
gions each with at least four SNPs meeting the p-value threshold and they are labeled in
the Manhattan plot: CHST3-SPOCK2 on CHR 10 (4 SNPs), ESRRB-VASH1 on CHR 14
(30 SNPs), and C19orf44-CALR3 on CHR 19 (6 SNPs). We examined the correlation be-
tween all 46 identified SNPs using the cross-talk plot and presented the result in the middle
panel of Figure 2.2.7. We picked rs147106198 (ESRRB-VASH1 region on CHR14), which
has the smallest p-value (= 7.00 X 107®) as the reference SNP. It can be seen that the other
29 SNPs from the same ESRRB-VASHI region are highly correlated with this top SNP

rs147106198, indicated by the long edges of the red segments. The other two gene regions,
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CHSTS3-SPOCK2 and C19o0rf}4-CALRS are not highly correlated with this ESRRB-VASH1
region, although multiple SNPs within each region are highly dependent on each other (de-
noted by overlapped segments in green or blue). In this case, there may be more than one
causal SNP that leads to the differential treatment effects. Note that the quantile 7 needs
to be pre-specified and it is based on prior knowledge. To examine the effect of different 7
values on the subgroup identification, we conducted sensitivity analyses using 7 = 0.50 and
7 = 0.25. In summary, the results are very consistent when different 7’s are used. In all three
choices of 7, the same three gene regions were selected (ESRRB-VASH1, CHST3-SPOCK?2
and C19orf}4-CALRS3). The same set of 46 SNPs presented in the paper were found to
be significantly associated with differential treatment effect in all three 7 choices. When
7 = 0.5, these 46 SNPs were identified with slightly different ranking from the scenario with
7 =0.75. When 7 = 0.25, a total of 53 SNPs were identified, where the additional 7 SNPs
are from C19o0rf}4-CALR3 on chromosome 19 and CHST3-SPOCKZ2 on chromosome 10.
Both regions are already identified when setting 7 = 0.75. What’s more, the top SNP with
the smallest p-value (rs147106198 on ESRRB-VASH]I region) when 7 = 0.75 remains to be
the top one when 7 = 0.50 and 7 = 0.25. We used it as our candidate marker for further

discussion.

The lower panel of Figure 2.2.7 demonstrates the treatment effect profiles and simultane-
ous confidence intervals for rs147106198, where the efficacy profile may suggest a dominant
beneficial effect of a. The CE4 simultaneous confidence intervals confirm that the targeted
group is {Aa,aa} combined since the confidence intervals of log(k(12y.0) and log(k1,) are
above the zero line. This targeted group consists about 52% of the total patients, a rea-
sonably high proportion of the entire population. The estimated ratio of 75th quantile
progression-free times in the targeted and non-targeted groups (between Rz and C') are pre-
sented in Table 2.3.6, which are 1.44 and 0.57 for { Aa, aa} and { AA}, respectively, indicating
that the combination of antioxidants and zinc extends the progression time for 44% compared
to the placebo in the targeted group. Table 2.3.6 also provides the baseline characteristics
of targeted and non-targeted population based on rs147106198, in which the patients in the
targeted group do not differ from the patients in the non-targeted group. It indicates that
the enhanced benefit from the treatment in the targeted population is plausibly due to the
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genetic difference rather than the demographic or clinical differences.

Table 2.2.1: Baseline characteristics of the AREDS data

Number of subjects All Placebo Antioxidants and Zinc —
(n=1170) (n=T754) (n=416)
Age 0.309
Mean (SD) 68.4 (4.9) 68.3 (4.8) 68.6 (4.9)
Median (Range) 68.2 (55.3-81.0) 68.0 (55.3-81.0) 68.7 (55.5-79.5)
Sex (n, %) 0.289
Female 655 (56.0) 413 (54.8) 242 (58.2)
Male 515 (44.0) 341 (45.2) 174 (41.8)
Smoking (n, %) 0.758
Never Smoked 571 (48.8) 371 (49.2) 200 (48.1)
Former/Current Smoker 599 (51.2) 383 (50.8) 216 (51.9)
Baseline AMD severity score <0.001
Mean (SD) 3.2 (2.2) 2.6 (2.2) 4.0 (2.1)
Median (Range) 2.0 (1.0-8.0) 1.0 (1.0-8.0) 4.0 (1.0-8.0)
Status (n, %) <0.001
Progressed 269 (23.0) 133 (17.6) 136 (32.7)

*p-value is based on two-sample t test or Pearson Chi-square test for continuous or categorical variables

It should be noted that based on different SNPs, the suggested targeted population may
vary. As shown in the middle panel of Figure 2.2.7, SNPs from the same ESRRB-VASH1
region are highly correlated with the top SNP rs147106198. If we chose another SNP,
rs77000175 in the region to be the candidate marker, the targeted population is about 50% of
the total population, which overlaps with the targeted population indicated by rs147106198
by 94.7%. In another example, if a top SNP from CHST3-SPOCK2 on CHR 10 is considered
as the candidate marker (e.g., rs1245576), the targeted population is about 65.8% of the
total population, which overlaps only 67.1% of the targeted population determined by the
top SNP. Hence, our CE4-Survival method provides reliable and interpretable candidate

targeted populations for consideration, while the final decision on which population to target
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involves many other considerations such as development of companion diagnostics, labeling,

marketing, and reimbursement.

2.2.4.3 Investigation on two reported gene regions using AREDS data

To help elucidate the controversial findings regarding whether genetic polymorphisms
of CFH and ARMS2-HTRA1 alter the treatment efficacy of AREDS formula, we closely
checked six SNPs from these two regions and their results are presented in Table 2.2.3. Note
that rs412852, rs1061170, and rs3766405 from CFH and rs10490924 from ARMS2-HTRA1
have been previously investigated (Assel et al., 2018; Seddon et al., 2016; Vavvas et al.,
2018). We also examined the SNPs with the smallest CE4-based p-value from each region,
which are rs7522681 and rs11200647. None of these SNPs meets the significance threshold
of 2.61 x 1079, although three SNPs from CFH region meet the nominal level of 0.05. We
further investigated rs412852 from CFH and it seems our CE4-Weibull result suggests the
combination group {AA, Aa} exhibit better treatment efficacy compared to its complemen-
tary group {aa}, which is similar to the findings from Seddon et al. (2016) and Assel et al.
(2018). However, it is worthwhile to note that from our genomewide CE4 analysis, none of
these SNPs ranked top (Table 2.2.3). Therefore, with appropriate multiplicity adjustment,
neither CFH nor ARMS2-HTRA1 region has SNPs showing significant association with

treatment efficacy, which is consistent with the conclusion indicated by Chew et al. (2015).

2.2.4.4 Validation on AREDS2

AREDS?2 was another independent large multi-center RCT of AMD (Chew et al., 2012).
It was designed to evaluate the effect of refined AREDS formulations on AMD progression,
as compared to the original AREDS formula. Participants of AREDS2 were more severe at
baseline and the follow-up time was only about half of the AREDS’s follow-up time. There
were four arms with AREDS supplements being the control arm (all other three arms are
AREDS supplements plus additional nutrients). Since there is no placebo arm in AREDS2,
we cannot apply CE4-Survival to identify subgroups with enhanced efficacy of AREDS sup-

plements. Instead, we investigated the patient’s response to the same AREDS supplements
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Figure 2.2.7: A: Manhattan plot from the genomewide CE4-Survival analysis on AREDS
data; B: SNP cross-talk plot for 40 identified SNPs in relationship with the most top SNP
rs147106198; C: Treatment effects and CE4 estimates for the top SNP rs147106198 (Left:
treatment profile using log of the ratio of 75th quantile survivals; Right: CE4 estimates and

simultaneous confidence intervals).
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Table 2.2.2: Characteristics of targeted and non-targeted populations

rs147106198: chrl4, ESRRB-VASH1 region

Targeted Non-targeted p-value
# of subjects (n,%) 605 (51.7) 565 (48.3)
Treatment efficacy % T (SE) 1.44 (1.01) 0.57 (1.01) 6.99 x 1078
Age 0.560
Mean (SD) 68.5 (4.8) 68.4 (4.9)
Median (range) 68.2 (55.3-81.0) 68.2 (55.8-80.5)
Sex (n, %) 0.982
Female 338 (55.9) 317 (56.1)
Male 267 (44.1) 248 (43.9)
Smoking (n, %) 0.169
Never Smoked 283 (46.8) 288 (51.0)
Former/Current Smoker 322 (53.2) 277 (49.0)
Treatment (n, %) 0.510
Placebo 384 (63.5) 370 (65.5)
Antioxidant + Zinc 221 (36.5) 195 (34.5)
Baseline AMD severity score 0.487
Mean (SD) 3.1 (2.2) 3.2 (2.2)
Median (range) 2.0 (1.0-8.0) 3.0 (1.0-8.0)

t: © denotes the estimated quantile progression time

*: p-value is from the corresponding CE4 contrast when simultaneous type I error is controlled, without adjusting for cross-SNP multiplicity

arm to check whether we observe similar differential response patterns between the targeted
and non-targeted groups (identified from AREDS) in AREDS2. Table 2.2.4 presents the
patient characteristics within the targeted and non-targeted groups (determined by SNP
rs147106198), separately for AREDS and AREDS2. None of these baseline risk factors dif-
fers between targeted and non-targeted populations in each study. The only difference is the

genotype in terms of rs147106198. Figure 2.2.9 compares the progression-free Kaplan-Meier
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Figure 2.2.8: Top identified SNP from AREDS, rs147106198. Left: treatment profile using
log of the ratio of 75th quantile survivals; Right: CE4 results by taking the difference
between the log ratio of 75th quantile progression time to late AMD in the presented

contrasts.

Table 2.2.3: CE4 results of six selected SNPs from CFH and ARMS2-HTRA1 regions

Gene SNP p.CE4 rank.CE4

rs7522681  3.74 x 1074 3843
rs412852  9.49 x 10~* 9021

CFH
rs1061170  1.22 x 1072 71651
rs3766405 0.38 1614412
rs11200647 7.75 x 1072 378198
ARMS2-HTRA 1
rs10490924 0.77 3059694

curves between the targeted and non-targeted groups within each study. In both studies, the
targeted population shows an obvious better progression-free profile than the non-targeted
population (the log-rank test p = 0.00011 and 0.013 respectively). Therefore, we successfully
validated our identified targeted group based on rs147106198 in AREDS2.
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Table 2.2.4: Characteristics of targeted and non-targeted populations in AREDS and AREDS2

AREDS AREDS2
Targeted Non-targeted — p-value* Targeted Non-targeted — p-value*
# of subjects (n,%) 221 (53.1) 195 (46.9) 164 (51.1) 157 (48.9)
Age 0.696 0.242
Mean (SD) 68.6 (4.8) 68.8 (5.0) 70.2 (7.4) 71.1 (7.8)
Median (range) 68.4 (55.5-78.5) 68.9 (56.1-79.5) 71.0 (51.0-85.0) 71.0 (53.0-86.0)
Sex (n, %) 0.700 0.824
Female 131 (59.3) 111 (56.9) 96 (58.5) 89 (56.7)
Male 90 (40.7) 84 (43.1) 68 (41.5) 68 (43.3)
Smoking (n, %) 0.806 0.587
Never Smoked 108 (48.9) 92 (47.2) 77 (47.0) 68 (43.3)
Former/Current Smoker 113 (51.1) 103 (52.8) 87 (53.0) 89 (56.7)
Baseline AMD severity score 0.375 0.347
Mean (SD) 4.0 (2.1) 4.2 (2.1) 6.5 (1.1) 6.6 (1.0)
Median (range) 4.0 (1.0-8.0) 4.0 (1.0-8.0) 7.0 (2.0-8.0) 7.0 (2.0-8.0)
Genetic risk score 0.157 0.840
Mean (SD) 0.99 (0.13)) 1.01 (0.14) 1.09 (0.13) 1.09 (0.13)
Median (range) 0.99 (0.62-1.30) 1.01 (0.71-1.34) 1.10 (0.71-1.37)  1.10 (0.58-1.40)

*p-value is based on two-sample t test or Pearson Chi-square test for continuous or categorical variables
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Figure 2.2.9: Kaplan-Meier curves for targeted /non-targeted patients taking AREDS
supplements in AREDS and AREDS?2, where the subgroup is defined by rs147106198.

2.2.5 Conclusion and Discussion

In this work, We develop and implement a new method to confidently identify and infer
subgroups in modern randomized clinical trials with time-to-event outcomes. Different from
machine learning based approaches, our CE4-Survival, derived from the fundamental mul-
tiple testing principle, provides simultaneous confidence intervals on contrasts that directly
compare the treatment efficacy between subgroups or combination of subgroups. The con-
trasts are built upon a logic-respecting efficacy measure, the ratio of quantile survival times,
which is easy to interpret and enjoys the unique covariate invariance property. Our CE4-
Survival adjusts for multiplicity both within and across the markers. It rigorously combines
two error rate controls, family-wise error rate control within marker, and per family error
rate control across markers. Such error control is appropriate for drug development, as it
allows flexibility in the exploration of multiple candidate markers, while being confident in

the subgroup to target from any selected marker.
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Our realistic simulation studies used the SNP data taken from individuals who partici-
pated in the AREDS, where the allele frequency and linkage disequilibrium are preserved.
Therefore, these studies can provide recommendations of practical rules for identifying “can-
didate” markers. Finally, we successfully applied our method on AREDS data to identify
subgroups that exhibit enhanced treatment efficacy with combination of antioxidant supple-
ments and zinc in delaying AMD progression. We further validated the subgroups defined by
the top SNP rs147106198 from ESRRB-VASHI region using the data from an independent
AREDS2 study. SanGiovanni et al. (2013) found that the estrogen related receptor beta
(ESRRB) was associated with CNV AMD. Wakusawa et al. (2008) first demonstrated the
angiogenesis modulation of VASH is involved in the pathological process of AMD. Later
Zeng et al. (2012) inferred that AREDS supplements is likely to affect both angiogenesis
and endothelial-macrophage interactions. Thus our findings provide new perspectives on the

differential treatment efficacy for AMD.

Although we use the SNP testing to demonstrate our method, the key elements of the
method apply to broader scenarios with all kinds of markers. When the marker separates the
patient population into more groups, additional contrasts need to be considered to obtain
the complete ordering of the treatment efficacy. When the marker is with three groups
but categorical instead (not ordinal as SNPs are), one may consider using a modified CE5
contrasts to build inference on comparing the combined {0, 2} group and {1} by adding the
contrast log k(g,2):1 = log g2 —log r;. Similar steps described in Section 2.2.2.2 can be applied.
The current version of our method only handles discrete markers and more work is required
to generalize it for continuous markers. In doing that, one may borrow the idea from Liu
et al. (2016) which considers all candidate thresholds for a continuous marker when deriving
simultaneous confidence intervals. Note that, unlike machine learning based methods, our

CE4 method is not designed to test multiple markers simultaneously in a joint model.

AFT model is used to build CE4 contrasts in the current method, since it directly links
to the logic-respecting treatment efficacy measure we use: the ratio of quantile survival ratio.
In addition, it shows a good covariate-invariance property that makes interpretation of the
treatment effect free of other prognostic factors. However, it does not mean the CE4 can

only couple with the AFT model. Actually, it can be generalized to any survival model
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framework as long as the treatment efficacy in the mixed population is carefully derived
following the SME principle. For example, one may consider using Cox models. In order
to derive the asymptotic distribution of CE4 contrasts, the variance-covariance matrices of
the quantile survival time in each group and the combined group need to be constructed,
which requires the variance-covariance matrix of the inverse function of Breslow estimates
of baseline cumulative hazard.

In this paper, we did not account for the variability of the estimates of py and p; (i.e., we
did not treat them as parameters). Here, py denotes the prevalence of M = 0 in the combined
group {0, 1}, and p; denotes the prevalence of M = 1 in the combined group {1,2}. They
are used in calculating the quantile survival time in {0,1} group and {1,2} group. This
is in concordance with the “OM” (observed margins) option in the LSmeans statement of
SAS (Proc GLM, Proc Mixed), where the empirical estimate of prevalence is used, and it
is not treated as a parameter in the inference procedure. One can also use the “population
level” prevalence (if SNP is the marker, its prevalence can be derived from the minor allele
frequency in a public genetic database, TOPMED, for example). However, the variability
of the estimates of py and p; can be accounted in our CE4 method (if one choose so). The
key modification is on the parameter set in the Delta method for implicit random variables
(which is described in Section 5 of Supplemental Materials). We explored this option in our
simulation studies and the results are very similar to the situation without accounting for

the variability of the estimates of py and p;.

2.3 Binary endpoints

2.3.1 Relative risk with log-linear model

With binary outcomes, a logistic regression model is often fitted and the OR is commonly
used to measure treatment efficacy. However, it is not suitable when there exits a mixture of
populations, which is demonstrated in Lin et al. (2019). Specifically, the OR in the combined
group is not guaranteed to be bounded within the ORs in the two separate groups. That
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is, ORq; (true value, not estimated) can be outside of [ORg,OR4], where the indices ‘0’, ‘1’,
and ‘01" denote the individual or combined group. This is partly because ORy; can not be
expressed as a weighted combination of ORg and ORy, i.e., OR is not (strictly) collapsible.
Both Lin et al. (2019) and Huitfeldt et al. (2019) gave similar counter examples.

Another efficacy measure that is frequently used for binary outcomes is RR. In our
motivating example, it is defined as the ratio of the probability of progression to late-AMD
in 10 years between those who took the treatment and those who took the placebo. It
has been mathematically proven that the RR is logic-respecting with RRy < RRy < RR;
always holds. Note that using whether OR or RR as the efficacy measure reflects a choice of a
clinically meaningful summary statistic to characterize the drug effect, and it is independent
of what statistical model is used to fit the data. In this manuscript, we demonstrate that
using RR as efficacy measure under a log-linear model has a unique and nice property for
subgroup identification determined by SNPs.

Assume the binary data fit the following model:

g{Pr(Y =1Trt, M, X)} = o+ Bl (Trt = 1) + Bl (M = 1) + 5 I(M = 2) +

B I(Trt =1) x I(M = 1) + BsI(Trt = 1) x I(M = 2) + B X, (2.3.1)

where Y = 1 indicates the event of interest, g is the link function, Trt = 0 (C) or 1 (Rx)
is the treatment assignment, and M = 0, 1, or 2 denote the genotype group AA, Aa, or aa.
X represents all prognostic factors that are regardless of treatment assignment. Then the

relative risk (RR) for each genotype group can be derived as follows:

RR, — Priy =1Trt=1,M=0,X) g '(Bo+ i + PsX)
Pr(Y =1|Trt=0,M =0, X) 9 B+ BeX)

RR, — Pr(Y =1Trt=1,M =1,X) g "(Bo+ B + B2+ s+ BeX)
Pr(Y =1Trt=0,M =1, X) 91 (Bo + B2 + BeX) ’

RR, — PriY =1Trt=1,M =2,X) g '(Bo+ i+ B+ P +ﬁ6X)'
Pr(Y =1|Trt =0,M =2, X) 9 (Bo + Bs + BeX)

The commonly used link functions for binary outcomes include logit link, log link and

probit link. When log link is applied, the RRs for each genotype group can be simplified as
RRy =€, RR, =™ and RRy = "7,
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It is worthwhile mentioning that although the probability of Y = 1 for each genotype group
depends on the prognostic factors (36X ), the ratios are all free of these covariates. This is
the “covariate-invariance” property we mentioned in Section 2.2.2.1. This property makes
the comparison between treatment arms straightforward and simple. However, if a logistic
regression is applied (i.e., g is the logit link), this property will not hold any more. For
example, the RR for the AA group under the logit link is:

1/41 —(Bo+P1+Be X) 1 —(Bo+BeX)
RR, = /{l+e } _ 1+te |
1/{1 + e~ (BotBe X)} 1 + e—(Bo+p1+Be X)

which contains Bg X . Therefore, we recommend to considering the log-linear model.
Besides that the RRs of individual groups from the log-linear model are covariate-
invariant, it can be shown that this property also holds in the combined groups. Following
the SME principle (Ding et al., 2016), denote by mg the prevalence of M = 0 in the combined
population {0, 1}, then 1 — 7 is the prevalence of M = 1 in the combined population. The
probability of ¥ = 1 within Rz and C in the {0,1} combined population can be expressed

as:
pORlac(Y _ 1) _ WOP(J)%Z(Y _ 1)—}—(1—71’0)]?{%(}/ — 1) — 7T0€/80+61+ﬂ6x+(1_7T0)650+61+B2+64+56X’

P =1) =mp§ (Y = 1) + (1 — mo)pS (Y = 1) = mpe®tPeX 1 (1 — p)efothatPeX

Then the RR for the combined group can be calculated as:

) 8, 0 + (1 _ 71—0)6,324-54
=e
) 7o + (1 — mp) e

m1eP2tPa 4 (1—mp)ef31P5
w1eP2 +(1—m1)eP3

Similarly, one can derive that RR1s = . It can be seen that these RRs are
also free of B¢ X and thus the covariate-invariant property holds for the combined groups as

well.
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2.3.2 CEA4 for relative risks

Inspired by CE4-Survival method, we propose the following four contrasts to get a com-

plete ordering of the treatment efficacy in all subgroups and their combinations using RRs.

log K(1,2).0 = log RR12 — log RRy, log k1.0 = log RRy — log RRy,

log Ko:(0,1) = log RRy — log RRy1, log ko.1 = log RRy — log RR;. (2.3.2)

Since we focus on binary outcomes in this article and we name the proposed method as
“CE4-Binary”. We propose to use four two-sided simultaneous confidence intervals on the
four contrasts in (2.3.2). It has been proved that this approach would guarantee to control
the family-wise error rate (FWER) strongly from testing four contrasts simultaneously (see
Theorem 4 of Hsu and Berger (1999)). As indicated by Ding et al. (2018), these two-
sided simultaneous confidence intervals are equivalent to testing the following eight one-
sided null hypotheses where each one is to test an inequality against its complement (i.e.,
Hy: logkgpo < 0 vs Hy: log k2.0 > 0) rather than testing a zero null (such as Hy :

log K(1,2).0 = 0).

H(§1,2):0 +log k120 <0, H(%),l):Q tlog K(o,1)2 < 0, H5y i logrio <0, Hf,:logkis <0,

HQS:(O’I) - log Ko:(0,1) < 0, H(%(Lz) s log ko.(1,2) < 0, Hy, - logroy <0, Hyy :log gy < 0.

We refer to Ding et al. (2018) for detailed reasons why testing zero-null hypotheses is not
appropriate in this setting. With these four simultaneous confidence intervals, one can tell
which allele is beneficial and the possible effect size of each effect. For example, if the
lower bound of the confidence interval of contrast log x(; 2).0 in (2.3.2) is greater than zero
(assuming a larger value implies a better efficacy), then it indicates that the minor allele a
is beneficial and the effect could be dominant.

With binary outcomes, the contrast estimates can be obtained from fitting the log-linear

model (2.3.1), where each RR (for individual genotype groups and the two combined groups)
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has been derived in Section 2.3.1. On log scale, the four contrasts are:

log k(1200 = 10g{7r16/32+ﬂ‘1 +(1- 7r1)ef33+ﬂ5} — log{meﬁ2 +(1-— 7T1)€’B3},
log kiz.01) = B — log{my + (1 —mo)e™ 7} + log{my + (1 — mp)e™},
10g R1.0 = 547

log ko = Ps — fba. (2.3.3)

Let A; = mef2P 4 (1 —m)efstPs ) Ay = meP? + (1 — my)eP?, Az = mo + (1 — mp)eP2Hhs,
and A; = 7y + (1 — mp)eP2. The first order partial derivative matrix of the CE4 contrasts
(2.3.3) with respect to 3 can be derived as:

mieP2tha o meb2 (1*7!'1)653+B5 . (1771'1)6[33 meP2tPa (177T1)€ﬁ3+ﬁ5 T
A1 A2 A1 A2 Al Al
_(1,7T0)652+/34 + (1—mp)el2 0 _(1,7r0)eﬂ2+/34 1
— As Ay Asz
DCE4 (ﬁ) -
0 0 1 0
0 0 —1 1

Denote () to be the variance-covariance matrix of B = (32, Bs, B, 35), which can be
estimated from fitting the log-linear model in (2.3.1). The estimated variance-covariance
matrix of (2.3.3) can be obtained using the Delta method: S¢p, = Deg, (B)Q(B)ﬁ5}54 (B).

The estimated CE4 asymptotically follows a multivariate normal distribution and the
simultaneous confidence intervals can then be derived as described in 2.2.2.2 using R package
mvtnorm (Genz et al., 2020) (details can be found from the R code in https://github. com/
yingding99/CE4-Binary). One big advantage of the proposed CE4 method is that it can
provide inference on treatment efficacy for the targeted and non-targeted groups through
simultaneous confidence intervals, instead of just producing p-values.

Same procedure described in Section 2.2.2.3 applies to control the FWER within each
SNP and the per family error rate across multiple SNPs, since it allows flexibility in the
exploration of multiple candidate SNPs and it is possible that different SNPs lead to similar
patient population for targeting, especially for SNPs within the tight linkage disequilibrium
(LD) region.
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2.3.3 Extension to bivariate binary outcomes

So far the proposed CE4-Binary method with RR being the efficacy measure is for uni-
variate binary outcomes. In our motivating example, since AMD is a bilateral eye disease,
the correlation between the two eyes of the same individual needs to be considered. Given
the SNP effects on treatment efficacy is more appropriate to be interpreted on a marginal
population-level than on a (conditional) subject-level, we choose to use the generalized esti-
mating equations (GEE) approach (Liang and Zeger, 1986).

To estimate the RRs directly for binary data, usually either a log-binomial or a Poisson
model (with log link) is recommended. However, model convergence issue seems to be more
likely for the log-binomial model (Williamson et al., 2013). Zou (2003) proposed to use
a Poisson model with the robust sandwich variance estimate. Yelland et al. (2011) and
Chen et al. (2018) conducted thorough simulations to compare the performance between
log-binomial and robust Poisson models for estimating RRs and concluded that the robust
Poisson model is preferred when model is misspecified or predictors are continuous. Therefore
in the following simulations and real-data analysis, we use the GEE-based Poisson regression
model to estimate the RRs using the R package geepack (Halekoh et al., 2006). Assuming
the conditional distribution of Y;; given the predictor variables follows a Poisson distribution,
with the mean response related to the predictors by the link function log(u;;) = azgﬂ We
use ¢ = 1,...,n to denote subject and j = 1,2 to denote each eye of a subject. Let
Y; = (Y1, Yio) and p; = (i1, piz)- A Poisson-GEE model with log link solves the following

generalized estimating equation for 5:

n

S(8) = Y (S TV Y= ) =0,

where V; is the working variance matrix that can be decomposed as V; = (;SAZ% R,AZ-%. A; is
the diagonal matrix of the 2 x 2 conditional variance-covariance matrix for subject 7, where
under Poisson distribution, the two elements are p;; and ;. R; is a 2 X 2 working correlation
matrix (for example, the exchangeable structure is used in the following sections), and ¢ is

a scale parameter that will be estimated by the data. Under certain regularity conditions,
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the solution B has an asymptotic normal distribution B =y N(B,%), where ¥ = 10_1_71]0_1,

. n T . n T _ )
with To = D0, G5 Vit g and I = 300, 96 Vi (Vi — () (Y — ()" Vi 5

2.3.4 Simulation Studies
2.3.4.1 Single SNP simulations

In this section, we examine the performance of CE4-Binary for testing a single SNP. Since
our motivating example has bivariate binary outcomes (progression status of both eyes), we
performed all of our simulations in the context of bivariate binary outcomes. Specifically, we
used the R package SimCorMultRes to simulate bivariate binary outcome under the marginal
model specification P(Yj; = 1|z;;) = F(z};3) (Touloumis, 2019). In particular, Y;; = 1 if
Uy < ng;ﬂ, where U;; = :1:17;,8 + ei;, and e;; ~ F for all 7 and j. For each subject ¢,
the correlation structure among the clustered binary responses {Y;; : 7 = 1,2} depends on
{e;; : 7 = 1,2}. We denote r the correlation between e;; and e;5. Here, we chose F' to be
the cumulative density function of the standard logistic distribution. In SimCorMultRes,
the authors employ the tetra-variate extreme value distribution to simulate correlated error
terms (Gumbel, 2012) and details can be found in their package description.

To proceed, we simulated a single SNP, a binary treatment (Rz or C) and a bivariate
binary outcome. Specifically, the SNP was simulated from a multinomial distribution with
minor allele frequency (MAF) of 0.4, corresponding to probabilities P,, = 0.16, P4, =
0.48, and Pas = 0.36. We considered three efficacy scenarios: (1) no SNP effect, i.e., Rz
is not efficacious for any SNP genotype group; (2) the allele a has a dominant beneficial
effect on Rz; (3) the allele a has a recessive beneficial effect on Rz. Here we use Y = 1
to indicate occurrence of a undesirable event, for example, AMD progression. We also
considered two sets of marginal outcome probabilities for each treatment and genotype group
combination: (i) high probability of event across all combinations, denoted as Py, and (ii)
low probability of event across all combinations, denoted as P,,. The overall design is
shown in Table 2.3.1, which presents the (marginal) event probabilities for each treatment-
by-genotype combination, as well as the RR between Rz and C. To further assess the effect of

correlation (between bivariate outcomes), we simulated the bivariate binary outcomes with
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Table 2.3.1: Overall design of single SNP simulations. Probability in each cell refers to the

marginal probability of event in each corresponding treatment-by-genotype group

Phign Plow
AA  Aa  aa AA Aa aa
No effect
Rx 04 04 04 0.2 02 02
C 06 06 06 04 04 04
RR 0.67 0.67 0.67 0.5 05 05

Dominant effect
Rx 06 04 04 04 0.2 0.2
¢ 06 06 06 04 04 04
RR 1 067 0.67 1 05 05

Recessive effect
Rz 06 06 04 04 05 0.2
¢ 06 06 06 04 04 04
RR 1 1 0.67 1 1 05

two different correlations, » = 0.3 or 0.6, using the approach we mentioned above.

We ran 1000 simulations for each scenario. The sample size is set as n = 1000 pairs and
the treatment arm (Rxz or C) is randomly assigned with a 1:1 ratio. The results of biases for
the four contrast estimates (on the log scale) and the coverage probability for simultaneous
95% confidence intervals are summarized in Table 2.3.2. It can be seen that the biases
are close to 0 and the empirical coverage probabilities are close to the nominal level under
all scenarios. The standard deviation of 1000 estimated biases from the high probability
scenario is smaller than that from the low probability scenario for all four contrasts across
all settings. When correlation increases, the standard deviation of biases increases for all

contrasts through all scenarios. This is because the “effective” sample size decreases as
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correlation increases. In addition, we also computed the frequency that the confidence
interval for log r(1,2).0 does not cover 0 under the dominant effect setting and the confidence
interval for log kg.(,1) does not cover 0 under the recessive effect setting, respectively. In
general, we found that the frequency increases with larger effect size (i.e., RR is more away

from 1) and decreases with larger correlation, which are expected (details not shown).

We further conducted two additional sets of simulations by varying sample sizes to n =
500 pairs and n = 2000 pairs. The results are summarized in Table 2.3.3 and Table 2.3.4. In
general, in addition to the findings described above, we observed that the standard deviation
of 1000 estimated biases gets smaller with increasing sample size, and we also noticed that
the empirical SCPs are close to the nominal level under all studied scenarios even when

n = 500 pairs.

2.3.4.2 Chromosome-wide realistic simulations

In this section, we further use the chromosome-wide data from AREDS to evaluate the
performance of CE4-Binary in a real setting for testing a large number of SNPs. First, we
randomly selected 1000 Caucasian participants who had their DNA collected and genotyped,
and randomly “assigned” them to one of the treatment arms (Rz vs C) in a 1:1 ratio. We
chose a common variant r$2284665 from the well-known AMD risk gene region ARM S2
on chromosome 10 as the causal SNP, and assumed the minor allele of this SNP has a
dominant beneficial effect on Rz. To be specific, we assumed the marginal probability of
AMD progression for the control group is 0.3 among all genotype groups, and the relative
risks of AMD progression between the treatment group and the control group are (RR4a4,
RR A4, RRuo) = (1, 0.5, 0.5) for AA, Aa and aa genotype groups, respectively. The Pearson’s
correlation between the bivariate outcome is set as 0.3, which is estimated from the real study.

We applied our proposed CE4-Binary method to test all common SNPs (i.e., SNPs
with at least 5 observations in each treatment-by-genotype group) on chromosome 10, and
repeated the simulation 100 times. The average total number of SNPs being included in the
analysis is 199,071. We set m = 10 to allow on average 10 out of ~ 200,000 SNPs to have

at least one confidence interval failing to cover its true value, which is equivalent to set o
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Table 2.3.2: Mean (SD) of estimated biases for log CE4 estimates (log x(1,2).0, 108 K2:(0,1
log k1.0, log ka.1) and simultaneous coverage probability (SCP) for the 95% simultaneous

confidence interval (N=1000)

Phign Piow Phign Piow
No effect
log k(1,20 | 0.0015 (0.106)  0.0011 (0.169) 0.0038 (0.111)  0.0008 (0.184)
log k2.(0,1y | -0.0042 (0.135) -0.0053 (0.229) -0.0003 (0.158) -0.0100 (0.248)
log k1.0 | 0.0018 (0.115) -0.0007 (0.175) 0.0031 (0.120) -0.0003 (0.196)
log ko1 | -0.0041 (0.147) -0.0033 (0.237) -0.0008 (0.170) -0.0079 (0.263)
SCP 0.948 0.951 0.953 0.942

Dominant effect

log k(1,20 | 0.0007 (0.115) -0.0095 (0.192) -0.0050 (0.131) 0.0123 (0.203)

log k2.0.1y | 0.0010 (0.139) -0.0114 (0.223) -0.0012 (0.156) -0.0010 (0.243)
log k1.0 | -0.0006 (0.121) -0.0098 (0.203) -0.0064 (0.137) 0.0105 (0.212)

log ke.y | 0.0017 (0.145) -0.0072 (0.236) 0.0019 (0.163) -0.0027 (0.252)
SCP 0.960 0.938 0.944 0.955

Recessive effect
( -0.0002 (0.195) -0.0033 (0.138) -0.0004 (0.220)
log k20,1 | 0.0025 (0.142) -0.0054 (0.226) -0.0178 (0.165) -0.0069 (0.249)
log k1.0 | 0.0040 (0.130)  0.0005 (0.216) 0.0004 (0.150) -0.0008 (0.237)
log ko.1 | 0.0010 (0.152) -0.0054 (0.248) -0.0179 (0.180) -0.0064 (0.267)
SCP 0.953 0.948 0.931 0.955

log K(1,2):0 | 0.0045 (0.122

)
)
)
)

10

50,071 ) level.

at approximately 5 x 1075 (~=

Among all 100 repeated simulations, on average, there are 22 SNPs being identified by
CE4-Binary per simulation run, with a total of 1082 unique SNPs being picked at least once.
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Table 2.3.3: Mean (SD) of estimated biases for log CE4 estimates (log x(1,2).0, 108 K2:(0,1
log k1.0, log ka.1) and simultaneous coverage probability (SCP) for the 95% simultaneous

confidence interval (N=500)

Phign Piow Phign Piow
No effect
log K(1,2):0 | -0.0021 (0.151) 0.0037 (0.241) -0.0065 (0.170)  0.0092 (0.254)
log k2.(0,1y | -0.0043 (0.201) -0.0186 (0.333) -0.0116 (0.216) -0.0392 (0.363)
log k1.0 | -0.0033 (0.160) 0.0026 (0.258) -0.0066 (0.178) 0.0135 (0.271
log ko1 | -0.0018 (0.212) -0.0159 (0.355) -0.0075 (0.225)  -0.041 (0.385
SCP 0.956 0.945 0.950 0.949

)
)

Dominant effect

l0g k(1250 | 0.0043 (0.168) -0.0147 (0.275)  0.0047 (0.186) -0.0053 (0.289)
10g Ka:0.1) | -0.0021 (0.203) -0.0306 (0.323)  -0.0032 (0.215) -0.0270 (0.361)
log k1o | 0.0033 (0.178) -0.0135 (0.286)  0.0042 (0.194) -0.0051 (0.305)
log k2. | -0.0032 (0.213) -0.0239 (0.335)  -0.0046 (0.225) -0.0249 (0.381)

SCP 0.947 0.962 0.951 0.960

Recessive effect
log (1,90 | -0.0051 (0.178) -0.0003 (0.292) -0.0105 (0.186
log k20,1 | 0.0021 (0.203) -0.0184 (0.336) -0.0127 (0.225
log k1.0 | -0.0077 (0.193) -0.0018 (0.316) -0.0105 (0.199) 0.0061 (0.352)
log ko.1 | 0.0053 (0.220) -0.0176 (0.360) -0.0085 (0.240) -0.0330 (0.404)
SCP 0.948 0.952 0.949 0.945

0.0019 (0.323)

)
) -0.0298 (0.376)
)
)

The causal SNP was identified 45 out of 100 times (and it is the most frequently identified
SNP), and 29 out of the 45 times it was ranked top 30, which demonstrates the validity

and robustness of our proposed CE4-Binary method. The relative positions of all identified
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Table 2.3.4: Mean (SD) of estimated biases for log CE4 estimates (log x(1,2).0, 108 K2:(0,1
log k1.0, log ka.1) and simultaneous coverage probability (SCP) for the 95% simultaneous

confidence interval (N=2000)

Phign Piow Phign Piow
No effect
log K(1,2):0 | -0.0013 (0.075)  0.0009 (0.120) 0.0014 (0.083)
log k20,1 | 0.0001 (0.100) -0.0082 (0.165) 0.0019 (0.106) -0.0109 (0.171)
log k1.0 | -0.0020 (0.080) 0.0016 (0.126) 0.0004 (0.088)  0.0033 (0.138)
log Koy | 0.0012 (0.106)  -0.008 (0.174) 0.0021 (0.114) -0.0114 (0.179)
SCP 0.953 0.948 0.949 0.949

0.0018 (0.131)

Dominant effect
log k(1,20 | 0.0001 (0.082) -0.0050 (0.136) -0.0050 (0.088) -0.0024 (0.141)
log k2.(0,1y | -0.0003 (0.098) -0.0035 (0.157) 0.0035 (0.101) -0.0030 (0.173)
log k19 | -0.0003 (0.086) -0.0063 (0.141) -0.0063 (0.092) -0.0036 (0.148)
log k.1 | -0.0002 (0.103) 0.0062 (0.163) 0.0062 (0.107) -0.0011 (0.182)
SCP 0.957 0.951 0.959 0.950

(
(

Recessive effect
log K (1,2).0 | 0.0006 (0.088)  0.0050 (0.139) 0.0009 (0.094)  0.0030 (0.156)
log K2.(0,1y | -0.0058 (0.098) 0.0011 (0.165 -0.0018 (0.113)  0.0080 (0.175)
log k1.0 | 0.0023 (0.096) 0.0037 (0.148 0.0010 (0.100) -0.0006 (0.168)
log k.1 | -0.0068 (0.107) -0.0004 (0.176) -0.0023 (0.119)  0.0083 (0.188)
SCP 0.945 0.950 0.948 0.949

)
)

SNPs to the causal SNP and their frequencies of being identified are summarized in Figure
2.3.1. We found that 1051 out of 1082 SNPs (97.1%) were picked less than 5 times, which
is highly likely due to randomness. The remaining 30 SNPs (in addition to the causal SNP)
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are highly correlated to the causal SNP, with a mean A? (a correlation measure of LD, see
Hill and Robertson (1968)) of 0.894 and a median A? of 0.948. We computed A? using the
R package genetics in this study (Warnes, 2019).

The distribution of A? (with the causal SNP) for the 1051 SNPs (picked less than 5 times)
and the 30 SNPs (picked greater than or equal to 5 times) is summarized in Figure 2.3.2.
Clearly, the SNPs picked < 5 times have a much lower A? value as compared to the SNPs
picked for > 5 times. In addition, for those 30 SNPs, each of them was picked for 37 times
on average, and they are all located on the same gene region (PLEKHA1/ARMS2/HTRATL).
Finally, out of 100 simulations, 56 times there are at least one SNP from this gene region
being picked. From these results we conclude: (1) the true causal SNP and its surrounding
SNPs can be identified with high probabilities by our proposed CE4-Binary; (2) some noise
SNPs might be identified by random chance; (3) due to the existence of LD among SNPs,
the causal SNP is more likely to be among a cluster of SNPs.

We further conducted another set of realistic simulations with a different parameter
setting, where the effect size is bigger, with (RRaa, RRaq, RRu) = (1,0.4,0.4) (i.e., larger
differences in RRs between genotype groups). Similar results were observed and the relative
positions of all identified SNPs to the causal SNP and their frequencies are summarized in
Figure 2.3.3. In general, due to the larger effect size, the likelihood of identifying causal SNP
or its surrounding SNPs increases. For instance, under this circumstance, the causal SNP

was identified 88 out of 100 times.

2.3.5 SNP Effects on Treatment Efficacy of AREDS Data
2.3.5.1 AREDS data description

In this study, we chose the 10-year progression (to late-AMD) status as the outcome,
where late-AMD is defined as the severity score reaches 9 or above (9=geographic atrophy
(GA), 10=central GA, 11=choroidal neovascularization (CNV), 12=central GA and CNV).
This is consistent with the AREDS report for evaluating long-term effects of AREDS treat-
ments on AMD progression (Chew et al., 2013). We analyzed a total of 1,127 Caucasian

participants from the combination treatment arm and the placebo arm who were free of
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Figure 2.3.1: Histogram for the frequency of SNPs being identified in 100 chromosome-wide

realistic simulations.

late-AMD in at least one eye at enrollment and did not censor from the study by 10 years.
This results in a total of 2,044 eyes for analysis. DNA samples were collected and genotyped
through a customized HumanCoreExome array by Illumina (Fritsche et al., 2013, 2016).

Table 2.3.5 summarizes the characteristics of our study cohort. Participants receiving
placebo or AREDS formula do not differ in terms of age, sex and smoking status. However,
the baseline AMD severity score is higher in the treatment arm, as compared to the placebo
arm (3.9 £2.2 vs 2.7£2.2), and so is the 10-year progression rate (32.1% vs 18.8%). This is
due to the stratified randomization strategy where the least severe participants (denoted as
“AMD category 17) were not randomized to receive the treatments with zinc because of its
potential side effect. All other participants (AMD category 2-4) were equally randomized to
any of the four treatment arms. The distribution of patients in the AMD categories confirms

that participants in category 1 did not receive the antioxidants plus zinc treatment.

We then further investigated the 10-year progression rate for all 2,044 study eyes, strat-
ified by their own and their fellow eyes’ baseline (BL) severity scale. As shown in Figure

2.3.4, the progression rate increases as the study eye’s own BL severity level increases (3.6%

29
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Figure 2.3.2: Distribution of correlations with causal SNP (measured by A?) for SNPs
picked less than 5 times and SNPs picked greater than or equal to 5 times.
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Figure 2.3.3: Histogram for the frequency of SNPs being identified in 100 chromosome-wide
realistic simulations for the setting (RRaa, RRaq, RR..) = (1, 0.4, 0.4).

for severity in 1-3, 40.8% for severity in 4-6, and 80.6% for severity in 7-8), indicated by the
white bars. Within each category of the study eye’s own BL severity level, the progression
rate increases as the fellow eye’s BL severity increases. For example, the 10-year progression
rate for eyes with BL severity score in 4-6 increases from 18.0% to 37.9%, 61.4% and 79.4%,
as the fellow eye’s BL severity score increases from 1-3 to 4-6, 7-8, and 9+, respectively. As
a bilateral disease, the progression of one eye highly depends on the severity of the other

eye, and thus the correlation between two eyes cannot be ignored.

2.3.5.2 CEA4 analysis of AREDS data

We first studied the overall treatment effect of AREDS formula on reducing the 10-year
progression rate. To account for the between-eye correlation, the GEE model with Poisson
distribution and log-link function was applied, adjusting for the known risk factors including
age, smoking status, and baseline severity score. The estimated relative risk between Rx

and C'is 1.10 with p = 0.15, which indicates that the combination of antioxidants and zinc

61



Table 2.3.5: Characteristics of the AREDS data (Bivariate Binary Outcomes)

Number of subjects All Placebo Antioxidants and Zinc p-valuc*
(n = 1127) (n = 677) (n = 450)
Age 0.441
Mean (SD) 68.6 (4.9) 68.5 (4.8) 68.8 (5.0)
Median (Range) 68.3 (55.3-81.0) 68.1 (55.3-81.0) 68.7 (55.5-79.8)
Sex (n, %) 0.159
Female 616 (54.7) 358 (52.9) 258 (57.3)
Male 511 (45.3) 319 (47.1) 192 (42.7)
Smoking (n, %) 0.969
Never Smoked 543 (48.2) 327 (48.3) 216 (43.0)
Former /Current Smoker 584 (51.8) 350 (51.7) 234 (52.0)
AREDS AMD categories (n, %) <0.001
1 277 (24.6) 277 (40.9) 0 (0)
2 241 (21.4) 119 (17.6) 122 (27.1)
3 415 (36.8) 190 (28.1) 225 (50.0)
4 194 (17.2) 91 (13.4) 103 (22.9)
Eye-level variables
Number of eyes n = 2044 n = 1255 n =789
Baseline AREDS AMD severity score <0.001
Mean (SD) 3.1(2.3) 2.7 (2.3) 3.9 (2.3)
Median (Range) 2.0 (1.0-8.0) 1.0 (1.0-8.0) 4.0 (1.0-8.0)
10-year progression (n, %) <0.001
Progressed 489 (23.9) 236 (18.8) 253 (32.1)

*p-value is based on two-sample t-test or Chi-square test for continuous or categorical variables.
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is not efficacious in the overall population, as compared to the placebo. To investigate the
heterogeneity of the efficacy in the subgroups defined by a SNP, we apply our CE4-Binary
method to common variants across the genome. Similar to the chromosome-wide simulation
study, we kept SNPs with > 5 observations in each treatment-by-genotype group, resulting
in a total of K = 3,895,495 SNPs for analysis. The same set of risk factors was included as
covariates in the model.

The Manhattan plot in Figure 2.3.5 shows the findings of the genome-wide CE4 analysis.
We set m = 10, which corresponds to a significance level at 2.57 x 107% in this case. A
total of 28 SNPs from seven gene regions on seven chromosomes are identified. Among those
gene regions, three of them have more than 3 SNPs meeting the p-value threshold and they
are labeled in the Manhattan plot: ANGPT2-MCPH1 on chromosome 8 (5 SNPs), CHSTS-
SPOCK2 on chromosome 10 (11 SNPs), and PPMI1H on chromosome 12 (4 SNPs). The
CHST3-SPOCK2 region was also found to have multiple SNPs with heterogeneous treatment
efficacy (in terms of the AREDS formula) for AMD progression in a survival analysis by Wei
et al. (2020a) and is discussed in Section 2.2.4.2.
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Figure 2.3.5: Genome-wide SNP effects on treatment efficacy.

Within each gene region, the identified SNPs are highly correlated in terms of A? (as
shown by the heatmap in Figure 2.3.6). Therefore, we examined the subgroups determined
by the top SNP (i.e., SNP with the smallest p-value) in each region. The subgroups deter-
mined by other SNPs in the same region are similar. For example, Figure 2.3.7A presents

the estimated efficacy profile of each genotype group determined by SNP rs1245576 on chro-
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mosome 10 and rs1498716 on chromosome 12, respectively. The estimated CE4 contrasts
and their simultaneous confidence intervals (adjusted for both within- and across-SNP mul-
tiplicity) are also presented on the right panel. The efficacy profile for rs1245576 suggests a
dominant beneficial effect of the minor allele, and it is confirmed by the contrast log ra.(0,1),
of which the multiplicity-adjusted simultaneous confidence interval just misses covering 0.
The {Aa, aa} group by this SNP consists about 65.4% of the total population, a reasonable
size to target. For the other SNP 51498716, the efficacy profile suggests a recessive effect of
the minor allele, and it is confirmed by the confidence intervals for the contrast log xa.(o,1)-

The targeted population {aa} is about 19.6% of the entire population.

In this real data analysis, the results from CE4-Binary provides multiple SNPs from
different regions as potential candidates for researchers to make their decisions. The fi-
nal decision of which SNP or SNPs to be chosen as the biomarker for targeting requires
multi-dimensional considerations. Note that the CE4 method does not directly consider
the subgroups defined by more than one SNPs. As a post-hoc analysis, we further exam-
ined the targeted and non-targeted populations by the two SNPs illustrated above. Figure
2.3.7B presents the population into three categories: suggested as non-targeted population
by both SNPs (M), suggested as targeted population by both SNPs (M), and suggested
as non-targeted population by one SNP but targeted by the other SNP (M;). It can be
seen that more than half of the population (57%) belongs to M;, which may appear to be
inconclusive. Since these three groups co-defined by two SNPs may look similar to the sit-
uation where a single SNP separates the population into three genotype groups, one may
consider applying CE4-Binary on this new 3-group scenario to further investigate the effi-
cacy from each subgroup and their combinations. If that direction is pursued, one needs to
understand that there is likely to have heterogeneous treatment efficacy within these newly
defined subgroups, and the naive way of assuming the same efficacy for each subgroup may
not be optimal (especially for M;). As an alternative, one may consider to apply the general
SME principle proposed by Ding et al. (2016) to cautiously get the efficacy estimates for
each newly defined subgroup.

Finally, we examined the characteristics of targeted and non-targeted population based

on each of the two SNPs (Table 2.3.6). The estimated relative risk is much lower in the
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targeted group than that in the non-targeted group for both biomarkers (0.87 vs 1.85 for
subgroups defined by rs1245576, and 0.58 vs 1.30 for subgroups defined by rs1498716). This
is one of the advantages of the proposed CE4 method, where the corresponding estimated
treatment efficacy in both the targeted and non-targeted group can be obtained together
with a p-value for testing their difference. Other covariates including age, sex, smoking
status and baseline severity score do not vary between the targeted group and non-targeted
group, regardless of which SNP is used for targeting. It suggests that the differential effects
are plausibly due to genetics.
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Figure 2.3.6: Heatmap of correlations between identified 20 SNPs.

2.3.5.3 Differential treatment efficacy persists in moderate to severe partici-

pants

As reported by Chew et al. (2013), the AREDS supplements was claimed to be most
beneficial for moderate to severe patients, which corresponds to those in AMD categories 2,
3, and 4. We re-examined our findings by excluding the participants in category 1. Table
2.3.7 illustrated the characteristics for the patients among the two treatment arms. Note
that since participants in category 1 were only allowed to be in the placebo arm, the number

of participants taking the AREDS supplements remains the same. These participants were
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Table 2.3.6: Characteristics of targeted and non-targeted subgroups determined by two separate SNPs

rs1245576: CHR10, CHST3-SPOCK?2 rs1498716: CHR12, PPM1H
Targeted Non-targeted p-value Targeted Non-targeted p-value
number of subjects (n,%) 737 (65.4) 390 (34.6) 221 (19.6) 906 (80.4)
Treatment efficacy RR (SE) 0.87 (1.18) 1.85 (1.08) 1.09 x 1076+ 0.58 (1.16) 1.30 (1.08) 2.29 x 1076*
Age 0.087 0.423
Mean (SD) 69.0 (4.8) 68.5 (4.9) 68.9 (4.9) 68.6 (4.9)
Median (range) 68.1 (55.3-81.0) 68.9 (55.8-80.0) 68.8 (55.3-79.6) 68.9 (55.5-81.0)
Sex (n, %) 0.194 0.845
Female 392 (53.2) 224 (57.4) 119 (53.8) 497 (54.9)
Male 345 (46.8) 166 (42.6) 102 (46.2) 409 (45.1)
Smoking (n, %) 0.745 0.550
Never Smoked 352 (47.8) 191 (49.0) 102 (46.2) 441 (48.7)
Former/Current Smoker 385 (52.2) 199 (51.0) 119 (53.8) 465 (51.3)
Treatment (n, %) 0.426 0.029
Placebo 436 (59.2) 241 (61.8) 118 (53.4) 559 (61.7)
Antioxidant + Zinc 301 (40.8) 149 (38.2) 103 (46.6) 347 (38.3)
Eye-level variables
Number of eyes n = 1399 n="705 n = 398 n=1646
Baseline AMD severity score 0.530 0.130
Mean (SD) 3.2 (2.3) 3.1(2.3) 3.3 (2.3) 3.1 (2.3)
Median (range) 2.0 (1.0-8.0) 2.0 (1.0-8.0) 2.0 (1.0-8.0) 2.0 (1.0-8.0)
*: p-value is from the corresponding CE4 contrast when simultaneous type I error is controlled, without adjusting for cross-SNP multiplicity
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randomized with equal probability to each treatment arm, and thus the baseline character-
istics are all balanced between treatment and placebo. We specifically examined the two
SNPs in the new population and obtained their efficacy profiles. Overall, they look almost
identical as in the previous analyses. All the baseline characteristics do not differ between
targeted and non-targeted population (Table 2.3.8), regardless of which SNP is used as the
candidate marker for targeting. We conclude that the differential treatment efficacy that we

discover persists in moderate to severe participants.

2.3.6 Summary and Discussion

Modern drug development in RCTs involves the evaluation of efficacy of a new treatment
Rx relative to a control treatment C', based on a clinical meaningful outcome. This makes
testing SNPs for a potential tailoring strategy fundamentally different from the traditional
association detection for SNPs with a quantitative trait. Therefore, traditional genetic mod-
els or tests for association detection cannot be simply applied to such a SNP testing problem

in drug development.

In this work, we develop a novel SNP testing method to confidently identify and infer
subgroups with differential treatment efficacy from RCTs with binary outcomes. Our pro-
posed CE4-Binary method, derived from the fundamental multiple testing principle, assesses
all clinically plausible effects of a SNP through four contrasts. These contrasts are directly
formulated based upon a logic-respecting efficacy measure, the RR. Using a log-linear model
for the binary outcome, we demonstrate that the RR has a unique covariate-invariant prop-
erty, which makes the comparison of treatment response between Rz and C' straightforward
in subgroups and their combinations.

Our multiplicity adjustment approach rigorously combines two error rate controls, strong
FWER control within each SNP, and per family error rate control across the SNPs. Such
an error control is appropriate for the new drug development purpose, which takes the
dependence into account, both within each SNP and across the SNPs, and it allows flexibility
in the exploration of multiple candidate SNPs, while being confident in the patient subgroup

to target from any selected SNP.
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Table 2.3.7: Characteristics of the AREDS participants with AMD category 2, 3, or 4

Number of subjects Placebo Antioxidants and Zinc povalue*
(n=400) (n=450)
Age 0.335
Mean (SD) 69.1 (5.1) 68.8 (5.0)
Median (Range) 68.7 (55.3-81.0) 68.7 (55.5-79.8)
Sex (n, %) 0.446
Female 218 (53.2) 258 (57.3)
Male 182 (45.5) 192 (42.7)
Smoking (n, %) 0.881
Never Smoked 195 (48.8) 216 (43.0)
Former/Current Smoker 205 (51.2) 234 (52.0)
AREDS AMD categories (n, %)
1 0 (0) 0 (0)
2 119 (29.8) 122 (27.1)
3 190 (47.5) 225 (50.0)
4 91 (22.8) 103 (22.9)
Eye-level variables
Number of eyes n="702 n="789
Baseline AREDS AMD severity score 0.517
Mean (SD) 4.0 (2.3) 3.9 (2.2)
Median (Range) 4.0 (1.0-8.0) 4.0 (1.0-8.0)

*p-value is based on two-sample t test or Chi-square test for continuous or categorical variables
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Table 2.3.8: Characteristics of the targeted and non-targeted populations for participants with AMD category 2, 3, or 4

rs1245576: CHR10, CHST3-SPOCK?2 rs1498716: CHR12, PPM1H
Targeted Non-targeted p-value Targeted Non-targeted p-value
# of subjects (n,%) 562 (66.1) 288 (33.9) 180 (21.2) 670 (78.8)
Treatment efficacy RR (SE) 0.80 (1.08) 1.67 (1.14) 1.89 x 1076+ 0.53 (1.16) 1.20 (1.08) 1.19 x 1076+
Age 0.277 0.379
Mean (SD) 68.8 (5.1) 69.2 (4.9) 69.2 (5.0) 68.8 (5.1)
Median (range) 68.5 (55.3-81.0) 69.2 (55.8-80.0) 69.0 (55.3-79.6) 68.6 (55.5-81.0)
Sex (n, %) 0.178 0.774
Female 305 (54.3) 171 (59.4) 103 (57.2) 373 (55.7)
Male 257 (45.7) 117 (40.6) 77 (42.8) 297 (44.3)
Smoking (n, %) 0.799 0.928
Never Smoked 274 (48.8) 137 (47.6) 86 (47.8) 325 (48.5)
Former/Current Smoker 288 (51.2) 151 (52.4) 94 (52.2) 345 (51.5)
Treatment (n, %) 0.666 0.226
Placebo 261 (46.4) 139 (48.3) 77 (42.8) 323 (48.2)
Antioxidant + Zinc 301 (53.6) 149 (51.7) 103 (57.2) 347 (51.8)
Eye-level variables
Number of eyes n = 990 n=>501 n = 316 n=1175
Baseline AMD severity score 0.835 0.693
Mean (SD) 3.9 (2.3) 4.0 (2.2) 3.9 (2.3) 4.0 (2.3)
Median (range) 4.0 (1.0-8.0) 4.0 (1.0-8.0) 5.0 (1.0-8.0) 4.0 (1.0-8.0)
*: p-value is from the corresponding CE4 contrast when simultaneous type I error is controlled, without adjusting for cross-SNP multiplicity
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We successfully applied CE4-Binary on AREDS data to identify subgroups that exhibit
enhanced efficacy with the treatment of antioxidants plus zinc in reducing AMD progression
rate. Multiple gene regions have been discovered to suggest subgroups with significantly
enhanced efficacy, which include the ANGPT2-MCPH1 region on chromosome 8, CHSTS3-
SPOCK2 on chromosome 10, and PPMI1H on chromosome 12. Using two top SNPs as an
example, we further examined the treatment efficacy and patient characteristics in the tar-
geted and non-targeted subgroups. Our findings provide new perspectives on the differential
treatment efficacy, suggested by genetic polymorphisms for reducing AMD progression rate.

Although we only focus on SNP testing in this article, the key elements of the method
are applicable to broader scenarios with other types of markers for testing. For example, the
marker separates the patient population into more groups (> 3) such as the immunohisto-
chemistry test, or the subgroups co-defined by multiple markers (i.e., SNP and immunohis-
tochemistry test). In these scenarios, additional contrasts need to be constructed to obtain
the complete ordering of the treatment efficacy in individual subgroups and some of their

combinations, which will then be used to identify the subgroups.
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3.0 Individual Treatment Effects Estimation through Machine Learning in

Survival Data

3.1 Introduction

One important aspect of precision medicine is allowing doctors to select treatments that
are most likely to help patients based on their own clinical or other characteristics. Differ-
ent from traditional clinical studies where the focus is on estimating the average treatment
effect (ATE) in a representative population (usually through a well-designed clinical trial),
assisting patients to shape their individualized-treatment plan requires an understanding of
the heterogeneity of treatment effects (HTE) from a more patient-centric view. With the
increase amount of large bioinformatic datasets and the use of electronic health record data,
a full picture of individuals’ characteristics is forming, which also brings challenges to sta-
tistical analyses due to the complexity of the data structure. Thus using flexible modeling
techniques such as machine learning methods or deep learning methods within the counter-
factual framework shows great potential and receives much attention. Foster et al. (2011a)
proposed the virtual twins approach to study the treatment effect heterogeneity among in-
dividuals and then identify subgroups of individuals who can benefit from a treatment. The
basic idea is to calculate the treatment effects by taking the difference between predicted
response values obtained from an individual’s observed and “twin” data point by altering
the treatment assignment. The outcomes are then used in classification or regression trees
on covariates to identify potential subgroups with differential treatment effects compared to
the average value. Wager and Athey (2018) modified the random forest by changing the
splitting rule to maximize the treatment difference within a node. They also use hold out
data from different treatment groups to calculate the treatment effect for each terminal node
and then average over the forest. Hill (2011) described an adaptive approach of the Bayesian
Additive Regression Trees (BART) to accommodate the causal inference framework, which
is similar to the virtual twin but instead using the BART as base learner. Lu et al. (2017)

conducted simulations to compare the performance of different methods including virtual
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twins, causal forest, synthetic forest and BART in estimating individual treatment effect
(ITE). It is worth mentioning that in many research paper, the ITE refers to the condi-
tional average treatment effect (CATE), which is not the true individual treatment effect,
but rather the treatment effect for the observed individual that represents the cohort with
the same set of characteristics. It is impossible to collect all information of an individual
that could distinguish him or her from all other people, and thus the exchangeable use of

ITE and CATE is acceptable.

Kunzel et al. (2018) formally defined the meta-algorithms to estimate the CATE function.
A meta-algorithm consists two level of models. The base learner is used to build prediction
model for the response value of individuals and it can be any form of machine learning
methods, deep learning methods or the regression methods, which can easily be adapted to
various types of outcome variables. The meta-level algorithm can be seen as a function of
the base learners for computing the CATE of each individual. Three meta-algorithms were
discussed in Kunzel et al. (2018) including: S-learner, T-learner and X-learner. The S-learner
is constructed on a single prediction model where the treatment assignment is considered
as one covariate similar to other characteristic variables. By altering the treatment assign-
ment of an individual while keeping the rest covariates as observed values, the CATE is then
computed as the difference between the two predicted values. The T-learner is based on two
prediction models where each one is built on either the treatment or the control cohorts. In
this setting, the treatment assignment is used to separate the population into two groups
where two models are fit separately. The CATE is then estimated from taking the difference
between the predicted values obtained from the two models. The X-learner is a modification
of T-learner, which is more efficient when the treatment assignment is heavily unbalanced
(i.e., one treatment arm contains much more patients than the other). After constructing two
prediction models, the pseudo-CATE is imputed by taking the difference between observed
outcome and the potential outcome obtained from the corresponding model. The imputed
pseudo-CATE is then regressed on covariates to build two prediction models for each treat-
ment arm (any type of machine learning/ deep learning/ regression model can be used) and
thus for each individual two predicted “CATE” can be obtained. The two estimates are then

combined using a weighted sum to get the final estimate of CATE. Details of the algorithms
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are discussed in Section 1.5.

Time-to-event outcomes primarily arise from medical and biological studies and also
widely exist in epidemiological, sociological, economic, and financial research. They are the
most commonly used outcomes in cancer studies and thus for oncology drug development, un-
derstanding the estimation of CATE for survival outcomes is essential. However, the unique
“missingness” happened in such outcomes which is known as censoring makes the survival
analysis more complicated than other types of outcomes. While most studies we mentioned
focus on the continuous or binary outcomes, there are some research about the estimation of
CATE using time-to-event outcomes. Zhu and Gallego (2020) proposed a framework to first
estimate ITE and then using a scoring system to identify variables contributing to the HTE.
They converted the original survival data into a sequence of binary outcomes over time and
then applied the Super-learner to estimate the conditional hazard rate at each time point.
The estimation step is more on the binary type of data rather than the survival data. Cui
et al. (2020) recently developed a causal survival tree method which is an extension of Wager
and Athey (2018) to accommodate right censoring in survival outcomes. Tabib and Larocque
(2020) proposed to use a special splitting rule in the random forest where the distance be-
tween the ITE of the left and right node population is maximized considering the node sizes.

Unfortunately, none of the three methods has a publicly available software or package.

In this project, we specifically examined the use of the meta-algorithm with machine
learning base learners that are designed for survival outcomes to estimate CATE for each
individual. Further, based on the CATE estimation, we will identify potential subgroups
for recommending appropriate treatment. We will identify the prescriptive variables that
predicts the HTE to help understand the mechanism of the HTE. The chapter is organized
as follows. Section 3.2 introduces the framework of the problem, treatment efficacy measures
to use, and the machine learning/deep learning methods we considered, followed by an
algorithm to identify important variables related to the treatment recommendation. In
Section 3.3, intensive simulations are conducted to compare the performance of different
models in estimating CATE and recommending the “right” treatment for individuals under
various conditions. The models are then applied to the AREDS data in Section 3.4 and

important variables contributing to the treatment recommendation are identified. Finally,
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we discuss and conclude in Section 3.5.

3.2 Methods

3.2.1 Framework and notations

Consider a study with two treatment arms and denote Z; € {0,1} a binary treatment
assignment variable (Z; = 1 for treatment and Z; = 0 for control). X; is a p—dimensional
covariate vector. Let (7;(0),7;(1)) denote the counterfactual survival times of individual ¢
under Neyman-Rubin potential outcome framework (Rubin, 1974; Splawa-Neyman et al.,
1990). If the observed survival time and censoring time are (7;,C;), then the observed
outcome would be Y; = min(T;, C;) with the event indicator d; = I(T; < C;). We assume the
censoring time is independent of the survival time, which is also known as noninformative
censoring: C;(z) 1L T;(2)|(X;, Z;). To aid the estimation of CATE, the following assumptions
need to be made.

Assumption 1 (Consistency)
T = 2T,(1) + (1 = Z)Ti(0),
Assumption 2 (Unconfoundedness)
Zi 1L (T3(0), T:(1))| X,
Assumption 3 (Population Overlap)
P(Z =1|X; = z;) € (0,1).

The consistency assumption guarantees the counterfactual model applied to the observed
outcomes as: Y; = Z;Y;(1)+ (1 - Z,)Y;(0) and d; = Z;d;(1) + (1 — Z;)d;(0). The unconfound-
edness assumption requires the treatment assignment to be independent of the potential
outcomes given covariates sets, which rules out the existence of unobserved factors that af-

fect treatment choice and are also correlated with the outcomes. The population overlap
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assumption describes that for each value of covariate set, there is a positive probability of
being assigned to both treatment and control arms, or equivalently, there is sufficient overlap
in the characteristics of treated and untreated patients for adequate matches.

The commonly used treatment efficacy measures for time-to-event outcomes include dif-
ference or ratio of: (1) survival probability at a specific timepoint, (2) mean (restricted) sur-
vival time, and (3) quantile survival time. We specifically examined the survival probability
at a specific timepoint in the project, which is defined as S(t; = t|Z;, X;) = P(t; > t|Z;, X;).

The corresponding CATE function can then be determined as
O(t,x) = E[S(t|1,x) — S(t]0, )] (3.2.1)

3.2.2 Estimating CATE with meta-algorithms

The estimation of CATE largely rely on the performance of base learners when using
the meta-algorithms. Machine learning methods stand out when complex high-dimentional
data become available nowadays. For survival outcomes, we consider using three machine
learning/ deep learning techniques as base learners: random survival forest (RSF, (Ishwaran
and Kogalur, 2007)), Bayesian accelerated failure time model (BAFT, (Henderson et al.,
2020)), and deep neural network (DNN) survival model (Sun et al., 2020).

We first review the S-learner using the survival outcomes. A single prediction model
is fitted using observed outcomes and covariates, together with the treatment assignment,
denoted as S (t,Z,X) =. The predicted survival probability at a given timepoint under
different treatment conditions is then obtained by altering the treatment assignment for

individuals and the CATE estimate is then given by

~

0t,x) = S(t, 1, ) — S(t,0,x).

As noted in Foster et al. (2011a), manually including treatment-covariate interactions in
the design matrix can improve the performance of the tree-based learners or algorithms.
Including the interaction terms, ZX and (1 — Z)X, in the S-learner using RSF as the base

learner adds the chance that the treatment assignment is selected in the variable sets to grow
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a tree. Since the BART algorithm is in general more adaptive, there is no need to manually
add the interaction matrix.

As for the T-learner, two prediction models are fitted using individuals under different
treatment conditions. In this case, the treatment indicator is no longer a covariate in the
prediction model. Denote S; (t, X) as the prediction model using individuals with treatment,
and §0(t, X) as the prediction model using individuals with control. The predicted survival
probability at a given time point under different treatment conditions is then obtained by
fitting the two models using the same set of covariates from individuals and the CATE

estimate is then given by

0t,z) = Si(t, ) — So(t, x).

The X-learner is based on T-learner but additional steps are involved to have a more
efficient estimate when unbalanced design happens (i.e., much more individuals are random-
ized in one treatment condition than that in the other condition). Since the individual-level
survival probability at certain time point is not observed, the imputed treatment effects for

individuals in the treated group and control group are modified as:

D' (') = Si(t, x') — Sy(t, "),

D%(x®) = Sy (t, x°) — So(t, x°).
Here the superscripts {0, 1} denote the cohort under control or treatment condition. Any
supervised learning or regression method(s) can be applied to estimate the treatment ef-
fects using either the imputed treatment effects in the treatment group to obtain él(m) =
E[D' X" = z] and similarly in the control group to obtain fy(x) = E[D°|X° = z]. Thus
for each individual there are two potential estimates for CATE. The final CATE estimate is

defined as a weighted sum of the two estimates in this stage:

~ ~ ~

O(x) = g(x)by(x) + (1 — g(x))b: (),

where g € (0,1) is a weight function. Following the recommendation of Kunzel et al. (2018),

we use the estimate for the propensity score P[Z = 1|X] as g(x).
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As pointed out by Kunzel et al. (2018), the performance of each estimate can largely
vary by the settings. For example, since the S-learner treats the treatment assignment
like other predictors, without considering modifying the model by including the interaction
terms, the original model using RSF as base learner can completely ignore the treatment
indicator by not splitting on it. This only works well when the CATE is around 0 (i.e., no
treatment effects), which is not of our interest. Adding interactions can solve the issue, but

the estimates can be biased when the treatment assignment is severely unbalanced.

3.2.3 Identification of important variables contributing to treatment recom-

mendation rule

CATE describe the heterogeneity of treatment effects. The next step is to use CATE to
select the “correct” treatment for each individual, i.e., to build the treatment recommenda-
tion rule. A straightforward approach is to use 0 as the threshold (when the treatment effects
are based on the difference of survival probability). Patients with estimated CATE greater
than zero would benefit more from taking the treatment while for those with estimated
CATE less than zero, the control is the to-go drug. This way the treatment recommenda-
tion for patients becomes a binary classification problem, and the important variables are
identified as those that contribute most to minimize the classification error. We used Boruta

algorithm (Kursa and Rudnicki, 2010) for identification of these important variables.

The algorithm started by generating “shadow variables” by shuffling the values of each
original feature to remove any potential correlation with the target binary outcome, in our
case, the treatment recommendation. These “shadow variables” are then added to the orig-
inal dataset so that the total number of variables is doubled. A random forest classifier is
used to run on the extended dataset and z-scores are computed for all variables including
real and shadow ones. The maximum score of all “shadow variables” serves as a threshold
to assign a “Hit” to the original variables (i.e., if the z-score of original feature is greater
than the threshold, a “Hit” is marked). For variables with undetermined importance, a two-
sided test of equality with the max z-score in the shadow variables is conducted and those

with significantly lower z-score are permanently removed from the dataset. After removing
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unimportant variables and all shadow variables, repeat the procedure until either the impor-
tance is assigned for all variables or the pre-specified number of iterations is reached. This
algorithm identifies variables that significantly contribute to the treatment recommendation
strategy (i.e., whether the individual can benefit from one treatment over the other treat-
ment). We can understand the heterogeneity in the treatment efficacy from these important

variables and provide guidance for future trial designs.

3.3 Simulation study

3.3.1 Simulation design

We conducted intensive simulations to compare the finite sample performance of the
proposed methods for estimating CATE. We simulated 10 independent covariates X, ..., X,
from N(0,0.35%) and dichotomized Xz, Xg, X1 through I(X > 0). The total sample size was
n = 1,000. The treatment indicator was generated from Z|X ~ Bernoulli(exp(X)), where
Z =1 for treatment group and Z = 0 for control group. We considered three randomization
designs: (1) balanced design where exp(X) = 0.5; (2) unbalanced design where exp(X) =
0.05; and (3) slight violation of unconfoundedness assumption where logit(exp(X)) = By +
1.3 x X7 — 0.8 x X5. [y was selected to have an overall 1 : 1 treatment-control ratio. We
denote the third design as dependent design in the following context.

The survival times T were simulated from the following Weibull survival curve:
St X =x,Z =z) =exp [exp{hz(w)}(—)"] :

where h,(x) denotes the prognostic function under Cox model. By inverse-transforming the

survival function, the survival times were then simulated as:

—log(U) ]

TNX=x,Z=2z)=\, {m

where U ~ Unif[0, 1]. We set the shape parameter n = 2 and the scale parameter \y = 18

and \; = 20 so that individuals in the treatment group have a larger baseline (h,(x) = 0)
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survival probability, i.e., longer survival time. The censoring times were simulated from an
exponential distribution to have an overall censoring rate of 30%. Three types of heteroge-

neous treatment effects were introduced by the following structures for h,(x):

Scenario 1: ho(x) = 0.2X; + 0.7X5 4+ 0.4X,,
hi(z) = —0.5X; —2X, — 0.25X,.
Scenario 2: ho(x) = —0.5X7+ 0.7X5 4+ 0.2X9 + 0.9X, X,
hi(x) = —0.05¢* —0.2X7 + 0.35X,. (3.3.1)
Scenario 3: ho(x) = —0.5X; 4+ 0.7X5 +0.2Xy + 0.9X, Xy + 0.6X3 — 0.5X7 + 0.6X,
hi(x) = —0.05¢*" —0.2X2 +0.2Xy — 0.1 + 0.7 sin (Xg) 4 0.5X1,.

From this setting, the ITEs are determined by X;, X5, and Xy in a linear form in Scenario
1, and in a complex form in Scenario 2. In Scenario 3, treatment effects of the two groups
are functions of two different sets of covariates, and two treatment groups share a small
subset of the covariates ((X7, X2, and Xg). We explored the following combinations of the
meta-algorithms and base learners: T-learner with RSF (R-T), X-learner with RSF (R-X),
T-learner with BAFT (B-T), X-learner with BAFT (B-X), T-learner with DNNSurv (D-T)
and X-learner with DNNSurv (D-X). A true Weibull model was also included as the optimal
CATE estimate. We trained each model on the simulated training set of n = 1, 000 patients,
and we evaluated its performance on an independent test set of N = 10° patients for which
we can calculate the true CATE from their covariate sets. We repeated the Monte-Carlo
simulation B = 100 times. The performance measures we assessed are bias and root mean

squared error (RMSE) within quantile-bins which are defined as:

_ 11O,
Bias = ézzl n_ Z(QJ - 0]),

j=1
1l |1,
RMSE = =)~ | = "(6; - 0,).
Q i—1 \ ' j=1

Here @@ denote the number of bins based on true CATE quantiles, where true CATE for

individual 7 was computed by:

’I]]

0; = Si(t = 11X = @5,1) — Si(t = | X = @,0) = PP @I _ fortho@) 5],
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Table 3.3.1: 2 x 2 table of recommendation rule from true CATE and estimated CATE

Rule by 6
.| TP | FP

Rule by 6
FN | TN

The overall median time for all individuals in the test dataset was used as ¢, and other
parameters from (3.3.1) were plugged in the above equation, together with the covariate set
of individual j. We set @) = 50 in the simulation studies. For X-learner, the machine learning
method used for estimating imputed treatment effects was gradient boosting machine (GBM)
(Greenwell et al., 2020), and the estimate of propensity score was obtained from random
forest (RF) classification (Liaw and Wiener, 2002).

The CATE estimate from each method was used to set up treatment recommendation
rule. Patients with 6 > 0 were labeled as recommended for treatment (RT) and patients with
0 < 0 were labeled as recommended for control (RC). Assuming that the label based on true
CATE is the gold standard, the recommendation rule generated by each CATE estimate is a

classification problem and the prediction accuracy metrics for 2 x 2 table can be used (Table

3.3.1). The following measurements were considered: accuracy (ACC = W), positive
predictive value (PPV = TI;{L%), negative predictive value (NPV = %), sensitivity

), specificity (= =~2==), and F-score (= 2 ).

_ TP
( TPLFN TN+FP PPV-1+Sensitivity

3.3.2 Simulation results
3.3.2.1 Balanced Design

Figure 3.3.1 presents the binned bias and RMSE for CATE estimates from each method
under balanced design. The CATE estimate from correctly specified Weibull model shows
the best performance one can get. In general, the BAFT base learners (i.e., B-T and B-X)

have relatively large biases and RMSEs compared to other methods, except for the simple
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linear case where they have the smallest biases. The RSF- and DNNSurv-based models
have comparable biases under all scenarios, but DNNSurv-models provide smaller RMSE.
Overall, the X-learner has a better performance in terms of RMSE than T-learner. The
prediction accuracy metrics are summarized in Table 3.3.2, with the best performer other
than Weibull model being highlighted in bold. For scenario 1 when only linear terms are
involved, X-learner with DNNSurv had the best measurements across all six metrics. For
scenario 2 and 3, X-learner with DNNSurv provides the best or the second best performance
for all metrics. While T-learner with DNNSurv and X-learner with RSF outperform D-T at
some metrics under more complicated scenarios (e.g., D-T has a larger specificity under both
scenario 2 and 3, and PPV under scenario 3), the D-X still provides comparable prediction

accuracy.

3.3.2.2 Unbalanced Design

Under unbalanced design, the BAFT-based learners have smallest biases under relatively
simple scenarios (scenarios 1 and 2) as compared to other methods, but still show inflated
RMSEs compared to RSF-based methods. The biases from RSF- and DNNSurv-based mod-
els are similar across all scenarios, but the RMSEs from DNNSurv-based methods show
much larger biases (Table 3.3.2). In the simple linear scenario, D-X has the best ACC,
PPV and specificity whereas R-T has the best NPV, sensitivity and F-score. In Scenario 2
when non-linear terms are involved R-T outperforms other methods for all metrics except for
specificity where it has the second best performance after B-T. In the most complex scenario
(Scenario 3), no single model outshines others. R-T, R-X and B-T are the best performer
under different metrics.

With two hidden layers and 30 nodes per layer, DNNSurv-based models contain more
tuning parameters than other machine learning methods, and thus require sizeable samples
to obtain a stabilized and minimized loss value. In the unbalanced design with n = 1,000 and
e(X) = 0.05, the treatment arm only contains about 50 people and around 30% are censored.
Such a small sample size can cause variable results across 100 runs. To demonstrate the

impact of sample size, we combined 2, 4, and 10 training datasets to enlarge the training
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Figure 3.3.1: Box plots to compare the performance of CATE estimates: balanced design.
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Table 3.3.2: Prediction Accuracy using CATE estimates: balanced design

R-T R-X B-T B-X D-T D-X Weibull
Scenario 1

ACC
90.11 (1.81)  90.58 (1.85) 85.99 (2.03) 8855 (1.91) 9239 (1.71)  93.44 (1.67)  96.37 (1.62)

mean (SD)

PPV
91.78 (3.21)  92.33 (3.30) 90.67 (2.32) 9218 (2.50)  94.96 (3.02)  95.52 (2.94)  97.36 (2.33)

mean (SD)

NPV
87.17 (5.99)  87.56 (6.19) 76.13 (4.54) 80.93 (4.81)  87.62 (5.77)  89.63 (5.43)  94.68 (4.90)

mean (SD)

Sensitivity
94.56 (3.24)  94.62 (3.38) 89.26 (2.96) 9151 (2.94) 9430 (3.25)  95.25 (3.04)  97.55 (2.44)

mean (SD)

Specificity
79.74 (9.21)  81.16 (9.29) 78.36 (6.22) 81.64 (6.66)  87.92 (3.00)  89.20 (7.63)  93.62 (5.89)

mean (SD)

F-score
93.05 (1.22)  93.36 (1.27) 89.90 (1.52) 91.79 (1.39) 9454 (1.22)  95.31 (1.20)  97.41 (1.15)

mean (SD)

Scenario 2

ACC
79.68 (4.01)  80.50 (4.15) 7215 (3.78) 75.29 (3.91)  82.10 (4.50)  82.76 (4.68)  91.04 (3.53)

mean (SD)

PPV
86.55 (4.87)  86.97 (5.11) 84.69 (3.50) 86.18 (4.01)  89.60 (5.28)  89.63 (5.78)  94.07 (4.47)

mean (SD)

NPV
66.96 (9.64) 68.80 (10.19) 51.73 (5.27) 56.37 (6.08)  70.15(11.31) 72.14 (11.67) 86.84 (10.55)

mean (SD)
Sensitivity

mean (SD)

85.31 (8.21)

86.15 (8.26)

74.42 (5.21)

78.00 (5.61)

85.38 (8.42)

86.57 (8.68)

93.69 (6.01)

Specificit;
P | 65.80 (16.12)  66.65 (16.80) 66.60 (9.65) 68.66 (11.45) 74.07 (16.28) 73.41 (18.48) 8453 (12.63)

mean (SD)

F-score
seore 85.50 (3.47)  86.12 (3.51)  79.08 (3.20) 81.70 (3.19) 87.00 (3.74) 87.57 (3.78)  93.64 (2.65)

mean (SD)

Scenario 3

ACC
83.47 (2.16)  83.74 (220) 79.21 (2.83) 8130 (257)  86.73 (2.58)  86.77 (2.19)  92.12 (1.89)

mean (SD)

PPV
86.61 (3.66)  86.42 (3.86) S8T.52 (2.46) 88.06 (2.57) 91.22 (3.19)  90.34 (3.70)  94.86 (2.53)

mean (SD)

NPV
76.62 (7.85)  78.17 (7.93) 62.53 (5.16) 66.87 (5.52)  77.89 (8.26)  79.66 (7.75)  86.67 (6.79)

mean (SD)

Sensitivity
Y1 0133 (4.92) 92.08 (4.77) 82.76 (4.15) 8553 (4.31)  90.35 (5.21)  OL38 (4.73)  94.20 (3.63)

mean (SD)

Specificit;
P Y1 63.91 (12.66) 6295 (13.52) 70.37 (7.06) 70.77 (7.78)  7TT.73 (9.68)  TA.TT (11.60)  86.96 (7.14)

mean (SD)

F-score
HOT ] 8872 (159)  88.97 (150)  84.99 (2.28) 86.67 (2.06)  90.62 (2.05)  90.78 (1.60)  94.45 (L41)

mean (SD)
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Figure 3.3.2: Box plots to compare the performance of CATE estimates: unbalanced design.
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Table 3.3.3: Prediction Accuracy using CATE estimates: unbalanced design

R-T R-X B-T B-X D-T D-X Weibull
Scenario 1
ACC
81.38 (5.73) 8128 (6.74)  78.90 (3.79)  79.79 (4.80) 78.74 (6.20) 81.56 (5.78)  91.29 (3.59)
mean (SD)
PPV
SL74 (6.87) 8216 (8.19)  83.20 (4.33)  83.48 (5.31) 88.02 (4.75) 89.02 (5.31) 94.13 (4.73)
mean (SD)
NPV
88.55 (11.52) 87.31 (11.31)  68.91 (9.07)  71.31 (10.76) 63.95 (10.32) 68.88 (10.54)  87.27 (9.38)
mean (SD)
Sensitivity

95.99 (5.50) 95.58 (5.40) 88.07 (5.80)  89.43 (5.85) 80.96 (8.95)  84.53 (8.09)  93.82 (5.31)
mean (SD)

Specificity
mean (SD)

47.33 (24.57) 47.94 (29.10) 57.52 (14.47)  57.31 (17.88) 73.57 (12.32) 74.62 (14.47) 85.40 (12.85)

F-score

mean (SD)

87.94 (3.29) 8791 (3.72)  85.36 (2.72)  86.11 (3.19) 83.99 (5.39)  86.38 (4.75)  93.77 (2.59)

Scenario 2

ACC

76.52 (7.74) 7561 (8.11) 7142 (6.09)  70.18 (6.80) 64.10 (8.58)  65.78 (8.51)  80.01 (10.25)
mean (SD)
PPV

86.51 (7.18)  86.14 (8.13)  83.99 (4.65) 8242 (5.58) 77.89 (6.10)  79.39 (6.56)  88.75 (6.15)
mean (SD)
NPV

65.65 (14.14) 63.54 (15.07) 52.01 (9.11) 50.20 (9.92) 41.43 (11.85) 44.19 (12.58)  71.22 (19.75)
mean (SD)

Sensitivity

mean (SD)

81.55 (16.47) 81.01 (17.09)  74.32 (10.03) 74.53 (11.24) 69.39 (12.12) 70.82 (13.19)  83.07 (16.18)

Specificity
mean (SD)

64.20 (25.16)  62.39 (28.57)  64.32 (13.76) 59.51 (17.65) 51.13 (17.40) 53.41 (19.92) 72.52 (18.47)

F-score

mean (SD)

82.20 (9.82) 8148 (10.75)  78.38 (5.82)  77.64 (6.50) 72.83 (8.08)  74.05 (8.23)  84.71 (9.73)

Scenario 3
ACC
78.71 (3.75) 77.37 (3.89) 77.16 (4.71) 75.53 (4.61)  69.76 (6.83) 73.47 (6.03) 81.38 (5.76)
mean (SD)
PPV
84.60 (6.22) 8277 (6.09)  85.99 (4.18) 84.07 (4.20) 81.62 (5.35)  83.85 (5.14)  88.94 (4.76)
mean (SD)
NPV

70.18 (11.67)  70.50 (13.25)  60.60 (8.92)  58.86 (9.55) 48.97 (11.19) 54.99 (11.35)  68.90 (12.97)
mean (SD)

Sensitivity

mean (SD)

87.40 (10.45)  88.01 (10.99)  81.67 (7.92)  S1.67 (8.74) 7479 (9.61)  78.49 (9.83)  84.93 (9.22)

Specificit;
P Y| 57.07 (23.29)  50.87 (24.46) 65.92 (13.48) 60.25 (14.82) 57.22 (1543) 60.99 (16.52) 72.55 (14.72)
mean (SD)
F-score

mean (SD)

85.20 (3.62) 8449 (3.88)  83.46 (4.05)  82.45 (4.14) 77.67 (5.90)  80.59 (5.32)  86.48 (4.80)
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sample size into 2,000, 4,000, and 10,000, with treatment arm roughly contains 100, 200,
and 500 individuals, and the performance was evaluated on the test dataset. The number
of replications was deducted from 100 to 50, 25 and 10 respectively. Figures 3.3.3, 3.3.4,
and 3.3.5 present the biases and RMSEs of CATE estimates on test dataset, with model
trained by the combined training datasets. Firstly, as sample size increases, the variation
of the estimates is getting smaller, reflected by narrow boxes. When 2 training datasets are
combined, the RMSEs from D-T and D-X models are comparable to the BAFT-based model,
but still greater than the RSF-based model. As sample size increases to 200 individuals in the
treatment arm (combining 4 training datasets), the RMSEs from DNNSurv-based models
are similar to those from RSF-based models in scenarios 2 and 3, and in scenario 1, the
RMSEs are the smallest. Finally, when 10 datasets are combined, DNNSurv-based models
become the best performers with the smallest RMSEs. Note that results on Figure 3.3.5 are

from only 10 runs, so it is understandable that the biases are relatively large.

Under unbalanced design, the X-learner is expected to have the best performance since
it adjusts the estimate based on the unbalanced allocation. However, we do not see a clear
trend in the modified version for the time-to-event outcomes. More discussions are in Section

3.5.

3.3.2.3 Dependent Design

We further examined the performance under slight violation of unconfoundedness as-
sumption where the treatment assignment depends on covariates X; and X5. The overall
allocation was 1:1. The CATE estimates had similar performance as compared to the bal-
anced design regarding biases and RMSEs (Figure 3.3.6), indicating the robustness of these
methods under minor violation of the unconfoundedness assumption. The D-T and D-X still
provided the best estimates with small biases and RMSEs, followed by RSF-based models.
Similar conclusions can be drawn from the prediction accuracy metrics. According to Table
3.3.4, D-T and D-X in general have comparable results and they tend to have the best pred-
ication accuracy. While R-X is the best performer for some metrics under different scenarios

(NPV in scenario 1, and sensitivity in all three scenarios).
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Figure 3.3.3: Box plots to compare the performance of CATE estimates: unbalanced

design, combining 2 training datasets.
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Figure 3.3.4: Box plots to compare the performance of CATE estimates: unbalanced

design, combining 4 training datasets.
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Figure 3.3.5: Box plots to compare the performance of CATE estimates: unbalanced

design, combining 10 training datasets.
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In summary, from simulation studies, DNNSurv-based models tend to provide more
reliable estimates of CATE and the recommendation rule proposed based on the estimates
are closer to the classification rule based on the true CATE. Results from T-learner and
X-learner are similar most of the times. DNNsurv-based model may suffer from a limited
sample size, where RSF and BAFT perform reasonably. All methods have shown some

robustness against minor violation of the unconfoundedness assumption.
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Figure 3.3.6: Box plots to compare the performance of CATE estimates: Z depends on X.
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Table 3.3.4: Prediction Accuracy using CATE estimates: Z depends on X

R-T R-X B-T B-X D-T D-X Weibull

Scenario 1

ACC
mean (SD)
PPV
mean (SD)
NPV
mean (SD)

89.86 (1.67)  90.41 (1.72) 85.64 (2.18) 8821 (1.94) 9223 (2.34)  92.99 (2.25)  96.29 (1.88)

91.47 (3.07) 9210 (3.17)  90.78 (1.95) 92.34 (2.16)  95.25 (2.38)  95.99 (2.26)  97.71 (2.15)

87.17 (6.46) 87.68 (6.65) 75.12 (5.00) 79.78 (5.28)  86.68 (6.90)  87.56 (6.88)  93.70 (5.39)

Sensitivity

94.54 (3.64) 94.65 (3.75) 88.53 (3.38) 90.78 (3.31) 93.70 (4.28) 94.03 (4.24) 97.06 (2.78)

mean (SD)

Specificity

78.94 (8.77)  80.55 (8.90) 78.88 (5.23) 82.23 (5.76)  88.80 (6.03)  90.55 (5.72)  94.52 (5.37)

mean (SD)
F-score

02.87 (1.21)  93.24 (1.25) 89.59 (1.71) 91.49 (1.50)  94.37 (1.89)  94.90 (1.82)  97.34 (1.38)
mean (SD)

Scenario 2

ACC

79.03 (4.68)  79.71 (4.88) 71.93 (4.35) 7476 (4.55)  SL.79 (5.62)  82.24 (5.27)  90.45 (4.82)
mean (SD)
PPV

86.59 (4.76)  86.97 (5.00) 84.66 (3.60) 86.11 (4.19) 90.64 (5.18)  90.56 (5.33)  94.37 (4.80)
mean (SD)
NPV

64.76 (9.15)  66.18 (9.46) 51.51 (5.89) 55.52 (6.62)  68.61 (11.08) 69.38 (10.42) 84.63 (11.40)
mean (SD)

Sensitivity

84.06 (8.20) 84.74 (8.48) 74.03 (5.63) 77.16 (5.95)  83.65 (10.09) 8450 (9.45) 9251 (7.18)
mean (SD)
Specificity
66.72 (15.36) 67.38 (16.19) 66.79 (9.37) 68.89 (11.39) 77.21 (15.06) 76.70 (16.01)  85.42 (13.33)
mean (SD)

F-score

84.91 (4.08)  85.41 (4.29) 78.85 (3.72) 81.20 (3.75)  86.42 (5.48)  86.88 (5.07)  93.14 (3.76)
mean (SD)

Scenario 3

ACC

83.68 (226)  83.98 (2.20) 79.55 (2.84) 81.49 (2.68) 86.94 (2.81)  86.83 (239)  91.94 (2.33)
mean (SD)
PPV

86.71 (3.52)  86.62 (3.72) 8T.04 (2.74) 88.44 (2.99) 91.85 (3.64)  91.09 (3.77)  95.36 (2.97)
mean (SD)
NPV

76.81 (7.44)  78.42 (7.88) 62.95 (5.13) 66.93 (5.49)  77.71 (841)  78.71 (8.11)  85.25 (6.87)
mean (SD)

Sensitivity

91.48 (4.82) 92.16 (4.88) 82.83 (4.17) 85.40 (4.28) 90.00 (5.38) 90.77 (5.11) 93.42 (3.91)

mean (SD)

Specificity

64.24 (12.09) 63.61 (12.88) 71.38 (7.99) 7176 (9.04) 79.34 (11.18) 77.02 (11.80)  88.25 (8.20)

mean (SD)
F-score

88.86 (1.66)  89.12 (1.63) 85.21 (226) 86.78 (2.08)  90.72 (2.18)  90.74 (1.83)  94.28 (1.74)
mean (SD)
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3.4 Application to AREDS

3.4.1 Data description

In this study, we analyzed a total of 806 participants with moderate-to-severe AMD
(AREDS AMD categories 2, 3, or 4) from the placebo group and antioxidants and zinc
combination group (also known as AREDS formula or supplements) of the AREDS, who
were free of late-AMD in at least one eye at enrollment. Table 3.4.1 summarized patients
characteristics. Participants were randomized corresponding to AMD categories, and thus
they did not differ on age, sex, smoking, and baseline AMD severity score between the two
treatment arms.

We used the first eye progression time to late-AMD as the outcome of interest and
the survival probability at 8 years (median overall survival time) as the treatment efficacy
measure. In terms of the potential variables, we considered baseline characteristics including
age at enrollment, smoking status, sex, education and baseline AMD severity scale, and 686
SNPs including 46 SNPs identified to be associated with treatment effect from Section 2.2
(Wei et al., 2020a) and 640 SNPs identified to be associated with AMD progression with
p < 107° and MAF > 0.05 (Yan et al., 2018). We first examined the overlap of the two
cohorts regarding the confounders to check the violation of unconfoundedness assumption.
Random forest classification (Liaw and Wiener, 2002) on the treatment assignment was used
to estimate the propensity score (based on 4-fold cross validation). Figure 3.4.1 showed large

overlap between the two groups, indicating the unconfoundedness assumption is valid in the

AREDS dataset.

3.4.2 CATE estimation

Similar to the simulation studies, we applied the following methods to estimate CATE:
R-T, R-X, B-T, B-X, D-T and D-X. In this analysis, we considered 3 random splits of data.
For each split, 4-fold cross-validation was used to construct CATE estimates. For each
method, individuals with CATE estimates > 0 were labeled as RT (recommended for taking

the treatment, i.e., AREDS supplements); otherwise, they were labeled RC (recommended
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Table 3.4.1: Characteristics of the AREDS participants with AMD category 2, 3,or 4

Number of subjects All Placebo Antioxidants and Zinc povalue*
(n = 806) (n = 391) (n = 415)
Age 0.4905
Mean (SD) 68.77 (5.05) 68.90 (5.17) 68.66 (4.93)
Median (Range) 68.60 (55.30-81.00) 68.50 (55.30-81.00)  68.70 (55.50-79.50)
Sex (n, %) 0.8236
Female 466 (57.82) 224 (57.29) 242 (58.31)
Male 340 (42.18) 167 (42.71) 173 (41.69)
Smoking (n, %) 0.6877
Never Smoked 393 (48.76) 194 (49.62) 199 (47.95)
Former/Current Smoker 413 (51.24) 197 (50.38) 216 (52.05)
AREDS AMD categories (n, %) 0.5474
2 312 (38.71) 158 (40.41) 154 (37.11)
3 457 (56.70) 214 (54.73) 243 (58.55)
4 37 (4.59) 19 (4.86) 18 (4.34)
Baseline AREDS AMD severity score 0.6303
Mean (SD) 4.09 (2.06) 4.13 (2.06) 4.06 (2.07)
Median (Range) 4 (1-8) 4.00 (1-8) 4 (1-8)

*p-value is based on two-sample t-test or Chi-square test for continuous or categorical variables.
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Figure 3.4.1: Distribution of estimated propensity score.

for taking control, i.e., placebo).

Under each method and each split of data, we compared the mean treatment effects
within RT and RC by taking the difference of survival probabilities at 8 years between two
treatment arms estimated through Kaplan-Meier (KM). Figure 3.4.2 visualized the mean
treatment effect in RT cohorts defined by CATE estimate from each method, and the overall
averaged treatment effect. In all splits of data, it showed positive treatment effect under
recommendations of each method. Particularly, participants showed largest mean treatment
effect under recommendations of D-T and D-X in all splits of data. Figure 3.4.3 showed
mean treatment effect in RC cohorts from each method. Similarly, participants showed
largest mean treatment effect under recommendations of D-T and D-X for placebo. Note
that the treatment effect in RC cohorts is expected to be negative, since these participants

should benefit more from taking the placebo as compared to taking the AREDS supplements.

In addition, we calculated the difference of survival probabilities at 8 years by using KM

estimates between those recommended for the treatment and actually taking the treatment
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(RT & Taking treatment) and all individuals in the treatment group; and the difference of
the survival probabilities at 8 years between those recommended for the placebo and actu-
ally taking the placebo (RC & Taking Placebo) and all individuals in the placebo group,
respectively. From Figure 3.4.4, the estimated survival probability is higher in ‘RT & Taking
treatment’ group than that in treatment group for all methods and all splits of data. Similar
findings are observed by comparing those in ‘RC & Taking Placebo’ and those in placebo
group. For ‘RT & Taking Treatment’ and ‘RC & Taking Placebo’, we can assume that the
survival outcome of these subgroups are expected to be the survival if people were treated
following the individual treatment recommendation. In that case, the survival probabilities
among these people should be higher as compared to all individuals within the same treat-
ment arm. Especially, in comparing survival probabilities between ‘RT & Taking treatment’
vs treatment group, D-X shows the largest differences, while in comparing survival proba-
bilities between ‘RC & Taking placebo’ vs placebo group, both D-T and D-X show larger

differences.

These analyses show that D-T and D-X perform the best among all of the methods we
applied. These two methods recommend about 40% to 50% participants for treatment in
each split of data with about 25% in the overlap across 3 splits: D-T recommends 394, 366,
388 out of 806 participants for treatment with 237 participants in the overlap of 3 splits
of data; D-X recommends 414, 414, 418 out of 806 participants for treatment with 264

participants in the overlap of 3 splits of data.

3.4.3 Identification of important variables

Based on the analysis in the previous section, we chose to use CATE estimate from D-X
to generate a treatment recommendation rule for patients. In the next step, we applied
Boruta algorithm within each split of data to identify important variables in constructing
the treatment recommendation rule (Kursa and Rudnicki, 2010). Confirmed variables were
extracted from three splits: we identified 40 variables in split 1 with 39 SNPs consistent
with those that were identified in Section 2.2 (denote as CE4-survival SNPs); 33 confirmed
variables in split 2 with 30 SNPs from CE4-survival SNPs; 51 confirmed variables in split
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Figure 3.4.4: Difference of survival probabilities at 8 years by using KM estimates between
those recommended for the treatment and actually taking the treatment (RT & Taking
treatment) and those in the treatment group; and the difference of the survival
probabilities at 8 years between those recommended for the placebo and actually taking

the placebo (RC & Taking placebo) and those in the placebo group.
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3 with 43 SNPs from CE4-survival SNPs. Across all identified SNPs from three splits, 23
SNPs were present to be “confirmed” important variables for all three splits and they were
all from CE4-survival SNPs.

The SNPs we identified were mainly from chromosome 10, chromosome 19, and chro-
mosome 14, which are the three regions mentioned in Section 2.2. We selected one SNP
from each gene region and generated genotype distributions between RC and RT in 3 splits
of data (Table 3.4.2). Participants who were recommended for placebo were less likely to
have aa (less than the prevalence of aa in the overall population in 3 splits of data and in 3
selected SNPs); whereas participants who were recommended for the combination treatment
were more likely to have Aa or aa (more than the prevalence of Aa and aa in 3 splits of
data and in 3 selected SNPs). We used x? test to see the difference of genotype distributions
between RC and RT, and it is significant for all three splits of data and three selected SNPs.

Figure 3.4.5 shows the mean of ITE estimates with standard errors estimates from D-X
in data split 1 and the estimated difference of survival probabilities at 8 years from Weibull
model by genotype groups. The trends are consistent in data split 2 and 3 so we omitted
the results. In the selected SNPs, mean ITE estimates were negative in AA group (-0.1 to 0)
whereas positive in Aa and aa groups, with aa having largest mean of ITE estimates (>0.1).
We observed similar trend from fitting Weibull regressions with treatment by corresponding
SNP interaction, adjusting for age at enrollment, smoking status, and baseline severity score.
The estimated difference of survival probabilities at 8 years in each genotype group was
computed based on the parameters estimated from Weibull model. In summary, patients
carrying at least one copy of minor allele in these SNPs are more likely to benefit from taking

the AREDS supplements.

3.5 Conclusion and Discussion

In this work, we implemented the meta-algorithms on right-censored time-to-event out-
comes using RSF, BAFT and DNNSurv as base learners, to estimate the CATE and provide

a best treatment recommendation for patients between two treatment options to prolong
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Table 3.4.2: Genotype distributions by the recommended treatment using D-X across 3 splits of data

Split 1 Split 2 Split 3
Genotype Overall RC RT RC RT RC RT
n=392) (n=414) (n=392) (n=414) (n=388) (n=418)
- AA 266 (33.00%) 189 (48.21%) 77 (18.60%) 182 (46.43%) 84 (20.29%) 176 (45.36%) 90 (21.53%)
rs12455
Aa 408 (50.62%) 177 (45.15%) 231 (55.80%) 184 (46.94%) 224 (54.11%) 179 (46.13%) 229 (54.78%)
(SPOCK2, CHR10)
aa 132 (16.37%) 26 (6.63%) 106 (25.60%) 26 (6.63%) 106 (25.60%) 33 (8.51%) 99 (23.68%)
2109218 AA 388 (48.14%) 238 (60.71%) 150 (36.23%) 244 (62.24%) 144 (34.78%) 228 (58.76%) 160 (38.28%)
rs

Aa 333 (41.32%) 134 (34.18%) 199 (48.07%) 134 (34.18%) 199 (48.07%) 36 (35.06%) 197 (47.13%)

(C19orf44-CALRS, CHR19)
Aa 85 (10.55%) 20 (5.10%) 5 (15.70%) 4 (3.57%) 71 (17.15%) 24 (6.19%) 61 (14.59%)
. AA 387 (48.01%) 237 (60.46%) 150 (36.23%) 232 (59.18%) 155 (37.44%) 243 (62.63%) 144 (34.45%)

rs147106198

Aa 343 (42.56%) 39 (35.46%) 204 (49.28%) 142 (36.22%) 201 (48.55%) 136 (35.05%) 207 (49.52%)

(ESRRB-VASH1, CHR14)
aa 76 (9.43%) 6 (4.08%) 60 (14.49%) 18 (4.59%) 58 (14.01%) 9 (2.32%) 67 (16.03%)

*All tests between RC and RT based on Chi-squared tests are statistically significant at the significance level of 0.05.

103



o~ | o
=] =]

Mean of ITE estimates

-0.2
0.2

0.2

-0.2

0.2
0.2

Difference of survival probabilities at 8 years

)
S

0.1

0.0

0.1

)
S A

0.2
L

]
S

AA Aa aa

rs1245576 (SPOCK2, CHR10) rs8109218 (C190rf44-CALR3, CHR19)

AR

- r
Aa aa

AA Aa aa
rs147106198 (ESRRB-VASH1, CHR14)

Figure 3.4.5: Treatment effect by genotype groups. The plots in the upper panel show the

mean of ITE estimates from data split 1 using D-X by genotype groups. The plots in the

lower panel show the difference of survival probabilities between the combination treatment

and placebo groups at 8 years using Weibull regressions by genotype groups.
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the time to late AMD. The performance of these methods was evaluated using intensive
simulation studies. We observed that DNNSurv-based learners outperform other compared
methods with smaller biases and RMSEs. RSF-based models generally have comparable
biases with DNNSurv-based models, but the RMSEs from these models are relatively large.
We applied these meta-learners on AREDS data to identify patients who can benefit from
the AREDS supplements. T- and X-learner with DNNSurv model were used to identify
the group of patients with greatest enhanced treatment effects. Lastly, Boruta algorithm
was applied to identify important variables that contribute to constructing the treatment
recommendation rule. Several SNPs were confirmed to be important variables in distinguish-
ing patients with enhanced treatment effects. All of these SNPs are from regions that we
know to be associated with differential treatment efficacy of using AREDS supplements in
delaying the AMD progression from previous study. The trend of mean estimated individual
treatment effects across genotype groups is consistent with the estimated group treatment
effects from Weibull regressions.

Our study provides practical information which would be helpful to implement the meta-
algorithm using the machine learning methods to estimate HTE and develop individual treat-
ment recommendation. First, the simulation results suggest a limitation of using DNNSurv-
based model. It requires a sizable cohort to train multiple tuning hyperparameters, and if the
sample size is not large enough, the performance can be unstable. Second, under unbalanced
design, the X-learner does not have dramatically improved performance as compared to the
T-learner. The reason for that is we are now using the estimated survival probability in the
second stage to construct imputed I'TEs, where the original X-learner uses the observed value
to serve as the most trustful values and gives it a larger weight. In our case, since there
is no observed value for survival probability, by using the estimated values, the imputed
treatment efficacy can be biased when the model is misspecified, and thus the performance
of X-learner may not be better than the T-learner. To improve X-learner’s performance, one
can consider other approaches. For example, the observed progression status can be used as
the true survival probability at certain time point to substitute the estimated values, and

the censored data points needs to be imputed carefully.
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4.0 Future work

In Chapter 2.2, we have developed a multiple testing based model to identify and infer
subgroups with beneficial differential treatment efficacy using time-to-event outcomes. While
AMD is a bilateral disease, the correlation between two eyes of the same individual needs
to be carefully addressed, as mentioned in Chapter 2.3. In the future, I could extend the
current approach to bivariate time-to-event data using copula models. Additionaly, the
current approach is based on fully parametric AFT models. I am also interested in extending
the method to semi-parametric models like CoxPH model, or semi-parametric AFT models,
to have more flexibility. In Chapter 3, we implemented the X-learner with time-to-event
data by using the predicted efficacy measure to substitute the original observed values from
continuous and binary outcomes. However, this approach does not guarantee the gains
of using X-learner since the model to predict efficacy measure may still be mis-specified
and lead to biased estimates. 1 hope to modify the X-learner by using the inverse-weighted
probability estimates of survival status at certain time point to substitute the observed value
in the second step of X-learner. These new methods may facilitate precision medicine and

subgroup identification.
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Appendix Delta method for estimating the variance-covariance matrix of CE4

contrasts with time-to-event outcome

We demonstrate the use of Delta method to estimate the variance-covariance (var-cov)
matrix of CE4 contrasts with time-to-event outcome. It includes two steps. We first used
Delta method for implicit random variable (Benichou and Gail, 1989) to construct var-cov

matrix for the following parameters:

Rx C Rx C
(logro,logry,logrs, Vo7 V12,05 Yo1,79 I/Ol,‘l')'

Then the second step is to use Delta method for explicit random variable to estimate the

var-cov of CE4 contrasts which are built from these parameters:

- 12y - Vg?
log k(1,2):0 = log(—=) = log r12 — log 1y = log c log 7o,
To Vi, r
logrig = log(ﬂ) = log 1 — log ro,
To
c
v,
log ka.01) = log(ﬁ) =logry — logrg; = logry — OC}’T,
To1 Yoi,r
log ko1 = log(z) = logry —logry. (A.0.1)
(A

Starting from the following AFT model (equation (1)):

logT:Bo+51Trt+ﬁgf(M: 1)+531(M: 2) +

BuTrt x I[(M =1)+ B5Trt x (M =2) + 36X + oW, (A.0.2)

we further assume W follows Weibull distribution as demonstrated throughout the manuscript.

Denote exp (8y) by A, exp (—%) by 6;, where i = 1,...,5 and exp (—ﬁGTX) by 6¢. Let
A = (logro,logry,log rg,l/gﬂ,y%myﬁfﬂyﬁﬁ), the parameters we are interested in, and
B = (\,0,01,...,06). By fitting a Weibull model, point estimates and var-cov matrix of B
(denote by ¥) can be obtained. Benichou and Gail (Benichou and Gail, 1989) showed that
if G = (¢g1,...,9p) is a vector of p functions of A and B, let J denote the p x p matrix with

elements g—g, and let H denote the p x k matrix with elements g—z, where k is the number
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of parameters in B (k = 8 in our setting), then the var-cov for the derived variates A is

JTTHYH (J7Y.

Step 1: Calculate the var-cov for A. Define py = 44— and p; =
Pua, Pag, P, represent the prevalence of genotype AA, Aa, and aa.

defined as:
g1 = —ologt, —logry,
g2 = —olog(616,) — logry,
gs = —olog(6105) —logrs,
Rz Rx
Vigri1 Vigr\1
gs = plexp(—91929496( )\ )U)+(1—p1)exp( 01939596( )\ )0)—7',
,C e,
12,7\ L1 127'
g5 = prexp (—0206( 3 )o) + (1 — p1) exp (—8506( h ) ) =T,
V(?le 1 é?le 1
g6 = poexp (—016s( /\’ )7) 4+ (1 — po) exp (—61020406( \ )e) — T,
v V<
01,7\ 1 01,71
g7 = poexp (—bs( 3 )7 ) + (1 — po) exp (—0206( ) )e) —T.
Then the J matrix is a diagonal matrix with Jj; = Jogs = J33 = —1,
dga 01020406p1 Vi5, | (1 Vi, 1
Ju = = — Ty (1) 0,0,0,0 )z
44 81/ng o\ ( \ ) eXp( 1020405 ( \ )
0,0560505(1 — Vi T RIT 1
-~ 10305 6( Pl)( 12 )(a Dexp( 91039596( Vig );)7
oA A A
dgs 02061 VlczT (L_1) V1CQT 1
p— —_ —_— _7 (e —0 0 2 o
0506(1 — v v
- PO (oo o (0522,
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6 = gt = 5 e () ()
0,6050,05(1 — vlite Z
~ DO =) (Mt e (10,000 217 ),
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m v, o a7 e () ()
9 0 1 - V T VC’T 1
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Paa+Paq
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H matrix is a 7 x 8 matrix with the unit defined by g_}g/

dg1 o dg o
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With J and H derived from these procedures, ¥ obtained from Weibull model, the
var-cov for A = (logrg,logry,logrs, Vﬁfﬂ 1/102,7_, V(ﬁ"fﬂ ’/ocl,r) is computed as J'HYH (J71).

Step 2: Calculate var-cov for CE4 contrast. This step is based on Delta method for ex-
plicit random variable and the matrix can be easily obtained in R using function deltamethod

from package {msm}.
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