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Abstract 

Patient-Specific Prediction with Bayesian Personalized Decision Paths 

 

Adriana Louise Jurchak Johnson, PhD 

 

University of Pittsburgh, 2021 

 

 

Machine learning algorithms can be useful in predicting patient outcomes under 

uncertainty. Many algorithms employ “population” methods to optimize a single, static model to 

predict well on average for an entire population, but such models may perform poorly for patients 

who differ greatly from the average patient or majority of the population. Personalized methods 

seek to optimize predictive performance for every patient by tailoring a patient-specific model to 

each individual. Prior work on personalized methods includes clustering methods like k-nearest 

neighbor and tree-derived methods like decision paths.  

It has been shown in multiple domains that ensembles of decision trees often outperform 

single decision tree models by reducing variance, capturing a range of significant features, and 

mitigating the uncertainty involved in model selection. However, ensemble methods have been 

used only sparingly in the context of personalized models. The use of Bayesian scoring in model 

construction has also been shown to improve predictive performance of decision tree and decision 

path algorithms.  

In this dissertation, we developed and evaluated several novel personalized decision path 

methods – including methods that construct single personalized decision paths as well as methods 

that construct ensembles of paths that use Bayesian scoring in the form of personalized random 

forest and personalized boosted trees. We found that the use of a random forest ensemble approach 

was associated with improvements to the predictive performance of personalized decision paths in 

terms of discrimination and calibration, and the use of Bayesian scoring was associated with 

improvements to the predictive performance of personalized decision paths, decision trees, and 
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random forest ensembles of decision trees. However, we did not observe a global performance 

benefit from using personalization, ensemble approaches, and Bayesian scoring together compared 

to corresponding population and non-Bayesian algorithmic methods.  
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Glossary 

Variable: An attribute that can describe an entity (for example, hair color). Variables are denoted 

with upper case letters, such as X. 

Value: A specific measurement for a variable (for example, two possible values for hair color are 

blonde and black). Values are denoted with lower case letters, such as x. 

Feature: A variable with an assigned value (for example, hair color = black). Features are denoted 

with the variable and assigned value, such as X = x. 

Target: The variable whose value supervised machine learning algorithms seek to predict by 

modeling its relationships with other variables of the training data.  

Predictor: A variable of the training data which, along with its values, is used in models by 

supervised machine learning algorithms to predict the target variable.  

Training case: A sample, patient, or individual from a training dataset whose features and target 

value are known. 

Test case: A sample, patient, or individual whose features are known but whose target is unknown. 

Supervised machine learning methods aim to produce models that can predict a test case’s target 

value. 

Training data: A dataset of training cases, described by the n variables V = (X1, X2,…, Xi,…, Xn) 

and the target T = (t1, t2,… tk,…, tr). 

Eager method: An algorithmic method that constructs a predictive model from training data prior 

to encountering a test case. 

Lazy method: An algorithmic method that waits to encounter a test case prior to constructing a 

predictive model from training data. 
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Population method: An algorithmic method that constructs a predictive model by optimizing 

predictive performance on average for all future cases.  

Personalized method: An algorithmic method that constructs a predictive model optimized for 

the test case, often by using information in the test case (other than the target value).  

Population model: A predictive model produced using a population method. 

Personalized model: A predictive model produced for a test case using a personalized method. 

Patient-specific model: A personalized model where the training and test cases are patients. 

AUROC: Area under receiver operating characteristic. A measure of discrimination, or the ability 

of a model to differentiate between positive and negative cases. 

ECE: Expected calibration error. A measure of calibration, or the ability of a model to produce 

class probability predictions that correctly represent uncertainty. 

MPL: Mean path length (of path and tree models). A measure of model complexity, or the number 

of predictor variables used by a model to make a prediction. 
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1.0 Introduction 

Prediction is critical to many activities in clinical medicine. This can include determining 

the presence or absence of disease, assessing risk of disease development in the future, and 

forecasting the likely course of a disease. This is important on an individual level for clinical 

medicine and on a population level for public health and biomedical research. Predictive models 

that are derived from biomedical data can be used to improve predictions by mitigating uncertainty 

and guide decision-making in clinical and public health contexts. Many predictive models are 

probabilistic and derive models from data using statistical and machine learning methods. 

Improving predictive models can help improve decision making and ensuing outcomes, potentially 

benefitting both individual patients and the population at large. Even small improvements in 

predictive performance can have meaningful impact on individual and public health outcomes and 

costs.  

In this chapter, we introduce two different approaches for learning predictive models. The 

first is the use of a population method, which seeks to produce models that perform well for the 

population on average. The second is the use of personalized method, which seeks to a produce a 

patient-specific model that performs well for a patient of interest, customizing a model to each 

individual. We then describe our goals in developing novel patient-specific approaches and discuss 

their significance and innovation. 
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1.1 Overview of Prediction in Medicine 

Clinical medicine requires accurate prediction of a patient’s risk of different outcomes, and 

this task can be supported by predictive models. Machine learning methods can be used to produce 

predictive models which may improve patient care through high-quality predictive performance. 

Most machine learning methods produce a population model which is optimized to perform well 

on average over an entire population of future patients. This approach does not ensure optimal 

performance for every member of the population, however. Population methods can result in 

suboptimal predictions for certain patients, such as those who do not resemble the average member 

of a population. Use of population models may disadvantage certain minority subgroups and could 

negatively impact care and outcomes for such patients.  

An alternate approach when seeking to make a prediction for a patient of interest is to 

produce a personalized predictive model tailored to that individual. Such methods result in a 

patient-specific model which is optimized to predict well for the patient of interest. Personalized 

methods may result in improved predictive performance and could ameliorate disparities in 

predictive performance between subgroups of a population, potentially improving outcomes for a 

broader range of patients. 

Our group has previously developed several personalized methods based on decision trees 

called personalized decision paths. To construct a personalized decision path, the algorithm 

performs a search guided by features present in the patient of interest to generate a patient-

optimized predictive model. Personalized decision path methods have demonstrated superior 

predictive performance compared to population methods like decision trees. However, there 
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remains room for improvement in regard to the overall predictive performance of these patient-

specific models. 

Predictive performance can sometimes be improved through the use of ensemble methods 

where multiple models are generated and their outputs are aggregated. There is always uncertainty 

when selecting a single “best” model based on limited data, and using ensembles can help mitigate 

that uncertainty. Multiple approaches have been developed to construct ensembles, including 

bagging, random forest, boosting, and Bayesian model averaging. In particular, boosting and 

random forest often outperform single decision trees and are popular in biomedicine. Predictive 

performance can also be improved with the use of Bayesian scoring methods, which incorporate 

smoothing and regularization to model uncertainty. In order to try to improve predictive 

performance of personalized decision paths, we have developed a variety of ensembles consisting 

of Bayesian personalized decision path models for patient-specific prediction. These methods were 

evaluated on real clinical datasets to predict presence of disease as well as morbidity and mortality.  

We hypothesize that by combining Bayesian scoring, personalized methods, and ensemble 

approaches, performance is improved compared to entropy-scored single personalized models and 

population ensemble approaches as measured by area under receiver operating characteristic 

(AUROC) and expected calibration error (ECE), and that these new methods result in simpler 

models as modeled by mean path length (MPL). To evaluate this hypothesis, single Bayesian 

personalized decision paths and ensembles of Bayesian personalized decision paths constructed 

via random forest and boosting approaches were compared to ensembles of entropy-scored 

personalized decision paths, population decision trees, and single personalized decision paths, and 

predictive performance was evaluated on a variety of synthetic and real clinical data. 
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1.2 Aims of the Dissertation 

The main goal in this dissertation is to introduce new Bayesian personalized decision path 

algorithmic methods and evaluate whether they yield better performance than commonly used 

population-wide methods. 

Aim 1: Development of personalized Bayesian methods. Development was performed 

using synthetic data and employed single model, random forest, and boosting approaches with 

personalized decision paths that use Bayesian scores as the base model. 

Aim 2: Assessment of predictive performance of personalized Bayesian methods using 

clinical datasets. The primary metric of predictive performance was discrimination as measured 

by AUROC. Additional measures included calibration (measured by expected calibration error) 

and model complexity (measured by mean path length). Patient-specific methods were compared 

to population methods based on decision trees.  

1.3 Significance of Aims 

Clinicians have long used diagnostic scores, risk scores, and predictive models to assist in 

patient diagnosis, prognosis, and risk assessment.1–4 Clinical prediction can be further aided by 

leveraging patient data using computational methods. Automated learning algorithms can identify 

complex patterns in large datasets, producing sophisticated predictive models for use in patient 

care.5 Many such methods have been developed, including applications to diagnosing retinopathy,6 

predicting severe sepsis,7 diagnosing breast cancer,8 and predicting response to chemotherapy.9 
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Some of these methods have been able to match clinician performance on classification tasks, and 

one study demonstrated that clinical implementation of a machine learning derived model for 

predicting sepsis risk was associated with improved patient outcomes.7 

Most current machine learning methods are “population” methods, which fit a model to 

predict well on average for future cases in the population. For some medical problems, especially 

those associated with highly heterogenous patient populations, population methods may not be 

able to achieve high predictive performance.10 Yet even when average performance is adequate, 

population methods may not model optimally for every individual in the population. Population 

methods may fail to capture significant patterns that only occur rarely or only in a minority of 

patients.11 This can result in less informative predictions for individuals with uncommon features, 

such as rare genomic variants or members of minority subgroups, which could result in poorer 

health outcomes for these patients.12  

These issues can possibly be ameliorated by the use of personalized methods, which 

produce a model tailored to the individual for whom a prediction will be made. Using personalized 

methods may help avoid some of the biases that occur in population methods. Personalization can 

come in several forms, including using a patient’s own data to train a model or using a similarity 

metric to curate a training dataset of cases similar to the patient of interest which can then be used 

to train a model.13 These approaches are limited, however; patient-sourced data is not available for 

many clinical prediction tasks (like mortality risk prediction), and models produced from 

personalized training datasets using patient similarity metrics may fail to capture uncommon 

features that are significant to the patient of interest.  

Personalized methods have thus been developed that use patient information to guide 

feature selection and model fitting itself. The personalized decision path is an example of this 
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approach and is based on decision trees.14 Our group has developed novel personalized decision 

path methods for creating patient-specific models, which have demonstrated superior predictive 

performance over population methods like decision trees for a variety of clinical prediction 

tasks.15–18 However, we anticipated that predictive performance of our personalized methods could 

be further improved through ensemble approaches and the use of Bayesian scoring. 

1.4 Innovation of Aims 

We anticipated that the use of Bayesian scoring as well as and random forest and boosting 

ensemble approaches could improve predictive performance of personalized decision paths. 

Ensemble approaches have rarely been used in combination with personalized methods, but the 

few studies that exist have produced promising results.19,20 This investigation into ensembles of 

patient-specific decision paths is the first of its kind and introduces multiple novel methods for 

performing personalized modeling. 

1.5 Overview of Dissertation 

The remainder of the dissertation is structured as follows. Chapter 2 provides relevant 

background on machine learning for clinical prediction, personalized machine learning methods, 

decision trees and decision paths, and ensemble approaches. Chapter 3 introduces the algorithmic 

methods for both the novel and comparison algorithms. Chapter 4 describes in detail the 

experimental methods used to evaluate predictive performance, including the datasets, performance 
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metrics, and statistical analysis used. Chapter 5 presents the results of our experiments. Chapter 6 

contains the discussion of our findings, including limitations and possibilities for future areas of 

inquiry. Chapter 7 presents our main conclusions. 
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2.0 Background 

In this chapter, we provide background on prediction in the clinical context, machine 

learning in medicine including patient specific predictive models, population-wide decision trees 

and personalized decision trees, and different types of ensemble approaches. 

2.1 Prediction in Clinical Context 

Clinicians are frequently required to make judgements in situations that involve 

uncertainty. It may not be clear what disease a patient is experiencing given their symptoms, what 

treatment might be most successful for a patient given their diagnosis, or what a patient’s future 

risk of morbidity and mortality might be given their current presentation. Clinicians must make 

decisions regarding patient care despite this uncertainty. By improving the accuracy of their 

assessments, clinicians can help optimize outcomes for their patients.21  

The process of identifying which disease most likely corresponds to a patient’s presenting 

symptoms is called diagnosis. Depending on the diagnosis, different tests, treatments, and 

recommendations will be made to the patient to manage the disease. Incorrect diagnosis can result 

in the use of unnecessary and potentially invasive tests as well as ineffective or hazardous 

treatments.22 It can also delay the introduction of effective treatment, potentially resulting in 

worsening of disease and prolonged suffering and stress for the patient.23 
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The characterization of a patient’s likely disease course and possible outcomes given 

different interventions is called prognosis. Depending on the patient’s prognosis, different 

therapeutic options can be offered. Prognosis is not dependent on diagnosis alone: two patients 

with the same diagnosis may have different probable disease courses given their underlying health 

conditions or may react differently to the same medication due to genetic differences.24 Accurate 

prognosis allows for targeted interventions which can improve patient outcomes, but inaccurate 

prognosis can have a negative impact on treatment planning, patient quality of life, and result in 

misallocation of resources.  

The identification and stratification of a patient’s future possibility of morbidity and 

mortality given their current state and exposures is called risk assessment. Although a patient may 

not have a specific disease at the present time, identifying a patient’s risk for developing disease 

in the future can help ensure appropriate monitoring, timely diagnosis, and efficient use of 

resources.25 Incorrect risk assessment can lead to stress for the patient, inappropriate resource 

allocation, and missed opportunities for intervention to prevent severe morbidity and mortality. 

Oftentimes clinicians rely on their education and experience in making these predictions 

and determinations, but they may also use tools which have been developed to assist in reducing 

uncertainty when making clinical decisions. Medical scoring systems and scales have long been 

used to aid in the evaluation of a patient’s current state and prediction of future status. One of the 

first such measures to achieve widespread use was the Apgar Score, introduced in 1953 by Dr. 

Virginia Apgar to assess the health of newborns and their likelihood of requiring resuscitation.2 

Other longstanding examples include APACHE, a scoring system for assessing severity of illness 

and risk of death in intensive care unit patients,1 the Beck Depression Inventory, a scale for 

diagnosing and assessing severity of depression,3 and the Framingham coronary heart disease risk 
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score.4 Such tools assign numerical values to objective findings which can then be combined to 

produce an overall risk score. Together, the selected clinical findings and corresponding numerical 

weights can be considered a clinical prediction model.26 

Clinical prediction models can be constructed manually by expert clinicians. Predictor 

variables from a dataset are selected based on a combination of previously reported findings and 

the clinician’s own expertise,27 and these predictors are then statistically evaluated to determine 

their relationship with the outcome of interest. These results can then be used to determine 

predictor weights for the model. This process requires expensive resources (e.g. the time of expert 

clinicians) and limits the complexity of the models, as human cognitive capacity allows one to 

consider the combined effects of only a limited number of predictors.5  

Technological advances and work in artificial intelligence have allowed for the automated 

construction and evaluation of more complex models that consider the influence and interactions 

of many more predictors at much lower cost than expert-derived systems.28 These machine 

learning approaches have provided new ways of developing clinical prediction models. 

2.2 Machine Learning in Medicine 

Advances in machine learning methodologies have allowed for the development of 

sophisticated models with the ability to match the performance of trained physicians.8,29,30 These 

predictive models are learned from patient data, of which there is an ever-increasing volume thanks 

to electronic health records,31 next generation sequencing,32 wearable biosensors,33 and research 

databases.34 The algorithms which produce these models are able to identify clinically useful 
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patterns that would be unidentifiable by humans alone. With the emphasis on evidence-based 

practice in contemporary medicine, such models can be useful in providing data-sourced clinical 

guidance to practitioners.  

Many different types of machine learning methods have been applied to clinical problems. 

Unsupervised machine learning is used on unlabeled data for tasks like clustering to characterize 

the bacterial composition of the gut microbiome, and such methods do not produce a predictive 

model.35 By contrast, supervised machine learning methods are used with “labeled” data for which 

a target outcome is known, such as clinical data that includes the presence or absence of a disease 

in each patient. When performing supervised learning on data with a categorical outcome, the task 

is called classification.36 Machine learning classifiers take a dataset of training cases with labeled 

target outcomes, learn patterns in the data associated with the target outcome by identifying 

meaningful predictors and fitting parameters, and produce a model which can then be used to 

predict the target outcome for unlabeled test cases.37  

A variety of methods have been successfully applied to clinical classification problems. 

Esteva et al.29 presented the results of using a convolutional neural network to classify skin cancer 

from patient images. The model’s performance in classifying malignant versus benign skin cancer 

was found to be similar to that of 21 board-certified dermatologists. Gulshan et al.6 demonstrated 

that a convolutional neural network could be trained to classify diabetic retinopathy from retinal 

fundus photographs, and Ting et al.30 showed that such a classification system could have 

comparable sensitivity to trained human graders, including ophthalmologists. Shimabukuro et al.7 

showed in a randomized controlled trial that a proprietary machine learning algorithm used for 

prediction of severe sepsis38 resulted in a significant decrease in hospital length of stay as well as 

lower rates of in-hospital mortality. Ardekani et al.39 showed that a random forest could use MRI 
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data from patients with mild cognitive impairment to identify those at high risk for developing 

Alzheimer’s disease. Huang et al.40 showed that a support vector machine classifier could predict 

a patient’s response to chemotherapy based on tumor gene expression profiles. Ding et al.9 

demonstrated that a deep learning system could be used to accurately predict the efficacy of anti-

cancer drugs. McKinney et al.8 demonstrated that an ensemble of neural network models could 

classify breast cancer from mammography screenings with greater sensitivity and specificity than 

radiologists. Artzi et al.41 demonstrated that using gradient boosting with decision trees on 

electronic health record data from early pregnancy allowed for accurate prediction of the 

development of gestational diabetes. These are a small selection of the numerous studies 

describing effective clinical prediction models produced by machine learning methods. 

One aspect shared by the machine learning methods discussed above is that all are 

population methods. Population methods produce a fixed model (or collection of models), 

optimized to predict well on average for all future cases from the population. Population methods 

are often “eager learners,” producing a population model from training data prior to encountering 

a “test case,” which is an individual for whom a prediction will be made. The average performance 

of robust population models can be quite good, as seen in the previously described applications to 

clinical problems. However, there may always be patients for whom a population model does not 

predict well. To address the limitations of population methods, personalized methods have been 

developed as an alternative approach. 
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2.3 Patient-Specific Models 

Personalized machine learning methods use known information about the test case to 

influence the generation of the predictive model. Personalized methods are often “lazy learners,” 

in that these methods wait to produce a predictive model until a test case is encountered.14 When 

used for clinical prediction tasks, the resulting predictive model is called a patient-specific model.  

Patient-specific models can be generated by personalizing different aspects of the machine 

learning process. For machine learning classifiers, this process includes using a labeled training 

dataset, identifying meaningful predictors, and fitting a model to predict the target outcome. Thus, 

one approach for producing patient-specific models is to personalize the training dataset. 

A simple option for personalizing the training dataset is to exclusively use the test patient’s 

own data for training the model. Such an approach has been used to predict seizures based on the 

patient’s own EEG recordings42 as well as for predicting heart failure by estimating “remaining 

useful life” of a patient’s cardiovascular system using the patient’s own physiologic data.10 One 

limitation of using exclusively patient-sourced data is that it can be difficult to obtain sufficient 

data to train a model. The seizure prediction study required patients to have EEG recordings of 

multiple seizures, which is costly and time intensive. An additional consequence of using only 

patient-sourced data rather than including data from similar patients is loss of statistical power.43 

Lastly, patient-sourced training data is simply impossible to obtain for many clinical tasks, such 

as the problem of trying to predict a patient’s risk of mortality. Some problems require learning 

from data that is sourced from other patients.  

An alternative approach is to identify a subgroup of training cases in the training dataset 

who are similar to the test patient, and then train a predictive model using this subgroup as a 
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personalized training dataset. One way to identify such a subgroup is by using a patient similarity 

metric (PSM).13 A PSM allows for quantification of each training case’s degree of similarity to the 

test patient. These similarity scores can then be used in a variety of ways to personalize the training 

dataset. The k-Nearest Neighbor (kNN) method selects a cohort of the k most similar training cases 

to the test patient, and the most common target outcome among these training cases is provided as 

the predicted class for the test patient.44 The kNN approach does not produce a model, however. 

Alternatively, the cohort of the k most similar patients can also be used as a personalized training 

dataset to fit a predictive model using a population method like a decision tree45 or logistic 

regression.46 Several forms of PSM have been explored for patient-specific prediction, including 

Euclidean distance,47 Malahanobis distance,46 cosine similarity,45 and random forest proximity.48  

Many PSMs weigh each predictor in the training dataset equally when assessing similarity. 

It is not necessarily the case, however, that all predictors are equally useful in predicting the target 

outcome.49 Feature selection can be performed to eliminate less meaningful predictors or weigh 

features by relative importance,50 but these weights are calculated using population approaches. 

Unfortunately, the same predictors may not be equally meaningful for different patients.51 

Furthermore, the algorithms used to fit models on personalized training datasets are still population 

methods. Thus, the use of PSMs to curate training datasets may fail to capture patterns that are 

significant for the patient of interest.  

Therefore, another option for producing patient-specific models is to personalize the 

selection of predictors and/or fitting of the model. One example of such an approach is the 

personalized regression method developed by Lengerich et al.,52 which constructs personalized 

logistic regression models for each training case in the training dataset using a distance-matching 

regularizer and performs patient-specific prediction for a test case by averaging the model 
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parameters of the k nearest training cases to the test case. This patient-specific method was applied 

to successfully predict cancer status across a wide variety of cancer types.43,52,53 Some machine 

learning methods, such as decision trees, perform predictor selection and model fitting 

simultaneously, and personalization of these concurrent processes allows for both patient-specific 

predictor selection and patient-specific model fitting. Decision trees have been adapted to produce 

personalized models called decision paths. 

2.4 Decision Trees and Decision Paths 

In order to describe personalized decision paths, we first must describe the population 

decision tree approach from which they are derived. In the following section, we describe the 

model structure and search strategy of decision trees as well as shortcomings due to the population 

approach that decision trees use. We then describe personalized decision path models and different 

methods that have been developed to construct them. 

2.4.1 Decision Trees 

Decision trees have been used since the 1960s for predicting clinical outcomes, including 

psychiatric diagnosis, cancer survival, mortality of intensive care unit patients, and hospital 

readmission risk.54–56 The decision tree model consists of branching interior nodes that represent 

predictor variables and (terminal) leaf nodes that represent parameters of the predictive probability 

distribution of the target variable, such as a clinical outcome.57 Each interior node partitions the 
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dataset into distinct subgroups according to the values the predictor variable can take, which are 

represented as branches of the tree. We differentiate between a variable and a feature; a feature is 

a variable – value pair. For example, if variable X denotes a history of angina and takes values 

absent and present, then X = absent and X = present are features. Note that there are two distinct 

features that correspond to a single binary variable X, and a patient will have only one of the two 

features for X. A path in the tree from the root node to a leaf node represents a conjunction of 

features, and the parameters in the leaf node are estimated from the known outcomes of cases in 

the training set whose features match the features in the corresponding path. To perform inference 

for a test case using a decision tree, a path in the tree is identified such that all of the features in 

the path match the features of the test case, and the parameters in the leaf node of the path specify 

the probability distribution of the target variable. Each test patient will have only one applicable 

path in the tree, and each path represents a distinct partition of the dataset.   

Decision trees are often considered well-suited for clinical decision support in part due to 

their interpretability, which is an important aspect of clinician trust in a machine learning method.58 

The explanation for a prediction by a decision tree is given by the collection of features in the path, 

which can be presented as an if-then statement.59 Decision trees are often cited as the canonical 

interpretable machine learning method, as these decision rules can be much easier to understand 

than the weights of a neural network.60 However, decision tree interpretability is dependent on the 

number of features and the complexity of the model, as well as the context of interpretation.61 

Global interpretability of a model refers to whether a user can comprehend the population-wide 

conditional distribution of predictions given all possible input values.62 Decision trees with large 

numbers of paths and features can be difficult to interpret on a global level. Local interpretability 

is the degree to which a single prediction can be explained,60 which for decision trees depends on 
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the number of features in a path, with shorter paths being easier to interpret. However, with the 

development of post-hoc, model agnostic explainability measures that can produce explanations 

for predictions from any type of model (including black-box methods), model-specific 

interpretability may become less important.63,64 Physician evaluations of model explanations 

indicate agreement with post-hoc explanations and a preference for model-agnostic explanations 

over model-specific explanations.58,65,66 Increasing regulatory requirements67 for machine learning 

methods to be able to explain their predictions, however, might make the model-specific local 

explainability of decision trees desirable. However, complex decision tree models comprised of 

lengthy paths will not serve the needs of clinician users in terms of interpretability. 

As it is computationally intractable to exhaustively search the model space of all possible 

entire decision trees, decision tree methods rely on heuristic search to derive a locally optimal 

model from a dataset. Many decision tree methods use a greedy search called recursive splitting 

to select predictors that optimize a specified scoring criterion. At each step, every candidate 

variable is scored using the criterion, and the best-scoring variable is added to the tree, splitting 

the variable space into distinct branches based on the values the variable can take. For each branch, 

the next best-scoring variable is then identified; this process is repeated until a stopping condition 

is met.  

The score of each candidate predictor is calculated using its leaf nodes. A candidate 

predictor defines a new partition of the dataset, resulting in a new set of candidate leaf nodes 

defined by the possible values the candidate predictor can take. Each candidate leaf node is scored 

using its probability distribution over the target, and the candidate predictor score is calculated as 

a weighted average of the scores of its leaf nodes. The weight is based on the proportion of training 

cases that correspond to each candidate leaf node. The score is commonly related to impurity, 



 18 

 

where the best score is achieved when all cases corresponding to a leaf node share the same target 

value. Decision tree methods differ in the scoring criterion used: the Classification And Regression 

Tree (CART) uses the Gini index,68 while the Interactive Dichotomizer 3 (ID3) and the C4.5 use 

entropy.57  

Due to the use of the weighted average, the candidate predictor score can be heavily 

influenced by leaf nodes that correspond to values present in a larger proportion of the training 

dataset, and this influence can overwhelm the contributions to the score from smaller leaf nodes. 

Table 1 lays out the possible implications of this influence. Take a binary candidate variable X that 

has two candidate leaf nodes representing the two values (x1 and x2) that X can take. If a larger 

proportion of cases have feature X = x1, the score of that leaf node may dominate the score of X.  

 

Table 1. Possible tradeoffs in population decision tree methods. 

Binary Candidate Predictor X If leaf node X = x1 has a large proportion of corresponding cases 

and a: 

High Score  

(X = x1 is informative) 

Low Score  

(X = x1 is uninformative) 

If leaf node  

X = x2 has a 

small 

proportion of 

corresponding 

cases and a: 

High Score 

(X = x2 is 

informative)  

• X will have a high 

average score 

• Both features are 

informative  

(no tradeoff) 

• X will have a low-medium 

average score  

• Model may exclude informative 

feature X = x2 

Low Score 

(X = x2 is 

uninformative) 

• X will have a high-

medium average score 

• Model may include 

uninformative feature  

X = x2 

• X will have a low average score  

• Both features are uninformative  

(no tradeoff) 
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This can lead to tradeoffs in selecting predictors for the model, resulting in the inclusion 

of uninformative features or exclusion of meaningful features that correspond to smaller 

proportions of the training dataset. With each addition of a variable, the training data is split into 

smaller subgroups, and this fragmentation of the data reduces the statistical support for 

predictions.69 If a given variable, added to a path in the tree, is not informative on one of its values, 

then the addition of the uninformative feature adds to the complexity of the model while 

simultaneously reducing the statistical support for that path’s prediction. Personalized decision 

path methods eliminate these tradeoffs by optimizing only the score of the feature that corresponds 

to the test case. 

2.4.2 Personalized Decision Paths 

As mentioned previously, a decision tree is a collection of paths, and a decision tree 

algorithm seeks to identify the collection of paths that result in the highest average score. Since a 

test case only corresponds to one path in the decision tree, a decision path algorithm attempts to 

identify the highest scoring individual path for that test case. This personalized path, which 

consists of a collection of features, corresponds to a subgroup of the training dataset of training 

cases which share all features with the path. The decision path method attempts to identify an 

appropriate subgroup for the test case by identifying high-scoring features from the test case. In 

the process of searching those features, the algorithm constructs a predictive model defined by and 

tailored to the subgroup that shares the features in the path. 

Like a decision tree, a decision path model is also derived from a dataset using greedy 

search and optimizes a scoring criterion. Unlike a decision tree, the decision path model consists  
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Figure 1. An example of a decision tree and a personalized decision path for predicting in-hospital mortality 

for a patient admitted with heart failure. 

Panel (a) lists the training variables and corresponding values for a patient (test case) whose outcome we 

want to predict. Panel (b) shows a decision tree and the path (arrows in bold) used for inference for the 

patient, and panel (c) shows a personalized decision path (derived by the PDP-Bay method) for the patient. 

Terminal leaf nodes contain counts of corresponding training samples who survived or died during 

hospitalization. The patient in this case survived. 
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of a single path (rather than a collection of paths) whose features are shared by the test case. The 

search proceeds by extending the path by appending one feature (rather than a variable as in the 

tree) at a time from the test case that optimizes the scoring criterion. 

 

Figure 1 illustrates the difference between a decision tree model and a decision path model 

for predicting in-hospital mortality for a patient admitted with heart failure. Panel (a) lists the 

variables and corresponding values for a patient (test case) whose outcome we want to predict. 

Panel (b) shows a decision tree and the path (arrows in bold) with features that are present in that 

patient, and panel (c) shows a personalized decision path (derived by the PDP-Bay method that is 

described in the next chapter) with features from the patient. For the current patient, the decision 

tree model contains many paths, including a path with features that are present in that patient, and 

the decision path model contains just one path. Terminal leaf nodes contain counts of 

corresponding training cases who survived or died during hospitalization. The probabilities of in-

hospital mortality estimated by the decision tree and the decision path are 1.0 and 0.03 respectively. 

The patient in this case did not die in the hospital. With a probability threshold of 0.5, the decision 

tree would misclassify the patient, but the decision path would classify them correctly. 

Furthermore, the features in the two paths differ, and in this example the path in the tree has more 

features than the personalized path. 

The first personalized decision path method was the Lazy Decision Tree.14 The approach 

was similar to a standard decision tree in that it recursively partitioned the training dataset by 

evaluating and selecting combinations of predictors. The score used by the algorithm was a class-

normalized information gain score. However, instead of calculating average entropy across all of 

the leaf nodes that correspond to the possible values of a given predictor variable, the LazyDT 
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only calculated entropy for the leaf to which the test case corresponds, and only considered that 

feature for further splitting. By only scoring the features that were present in the test case for 

inclusion in the model, the algorithm avoided the tradeoff that occurs when a predictor has a 

combination of high and low scoring leaf nodes that result in a high average score. This approach 

allows for construction of a model that is optimized for the features present in the test case.  

Freidman et al. compared the predictive performance of the LazyDT method to a 

population decision tree method called C4.5 in terms of accuracy. To evaluate the algorithms, 28 

UC Irvine datasets were used, which included medical datasets on heart disease, diabetes, breast 

cancer, and audiology. LazyDT had an average accuracy of 84.00% compared to the decision tree’s 

average accuracy of 82.09%, and LazyDT outperformed the decision tree in terms of accuracy on 

16 of the 28 datasets.  

The next investigation into decision paths came in the form of the Patient-Specific Decision 

Path with Information Gain (PSDP-IG) and Balanced Accuracy (PSDP-BA) by Ferreira et al.17 in 

2013. These methods were very similar to LazyDT in that predictors were evaluated only using 

data that shared features with the test case, but both PSDP methods made modifications to the 

scoring metrics. Additionally, both PSDP methods attempted to perform pruning and used a 

Bayesian estimator called BDeu (as opposed to the more commonly used maximum likelihood 

estimate) to calculate probability estimates to mitigate possible overfitting. The PSDP-IG selected 

predictors whose leaves resulted in the highest information gain in terms of entropy, making it 

quite similar to LazyDT. PSDP-BA selected predictors whose leaves resulted in the highest 

balanced accuracy (calculated as the arithmetic mean of sensitivity and specificity) using leave-

one-out cross validation. The methods were compared to a population decision tree method, 

CART, in terms of balanced accuracy and area under receiver operating characteristic curve 
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(AUROC) on five clinical datasets. They found that the population and personalized methods 

performed equally well in terms of balanced accuracy, but the PSDP methods outperformed the 

decision tree in terms of AUROC, with the mean AUROCs of the PSDP-IG ranging from 0.70 to 

0.75 and those of the decision tree ranging from 0.65 to 0.68.  

In 2015, Visweswaran et al.15 introduced three new personalized decision path methods, 

each with a unique scoring criterion: DP-BAY, DP-IG, and DP-AUC. These methods all differed 

from LazyDT in that they used a novel approach to evaluate predictors for inclusion in the decision 

path, applied pruning to the final model, and used the BDeu estimator for calculating probability 

parameters in the models. Unlike previous decision path methods (which evaluated candidate 

predictors using only those cases in the training data that shared all features with the candidate 

path), the DP algorithm’s scoring procedure also incorporated cases from the training data that 

shared all features with the path except for the value of the candidate predictor. Each candidate 

model therefore contained two leaf nodes, and the scores of these leaf nodes were combined as a 

weighted average to score the candidate predictor. This approach more closely resembled a 

population decision tree, in that the score incorporated data from training cases that did not share 

all features in the decision path with the test case.  

The DP-BAY method used a Bayesian score that sought to derive the posterior probability 

of the candidate model given the data and select the candidate predictor that resulted in the model 

with the highest posterior probability. The DP-IG method used an Information Gain score that 

sought to identify the predictor that resulted in the greatest reduction in entropy. The DP-AUC 

method sought to select the predictor with the highest AUROC when calculated on the training 

data using leave-one-out cross validation. The DP methods were evaluated on five clinical and 

genomic datasets and compared to a population decision tree method, CART, in terms of AUROC 



 24 

 

and Brier-skill-score (BSS). The DP-BAY had the highest mean AUROC (0.748), and both the 

DP-BAY and DP-IG had statistically significantly better performance than the decision tree in 

terms of AUROC and BSS. 

Another AUROC-based personalized decision path method called PSDP-AUC was 

introduced by Ribeiro et al. in 2015.16 Like LazyDT, PSDP-IG, and PSDP-Bay, the scoring only 

incorporated training data cases that shared all path features with the test case. When evaluated on 

13 UC Irvine datasets, it had comparable performance to the PSDP-IG in terms of AUROC. 

There have been a variety of personalized decision path methods developed over the past 

few decades. All of these methods construct a personalized decision path for a test case and can 

only handle discrete data. The differences between these methods are listed in Table 2. While all 

have demonstrated equivalent or superior performance to population methods, none resulted in 

notably high performance as measured by metrics such as accuracy or AUROC. Work therefore 

remains in improving the predictive performance of these methods. 

 

Table 2. Differences across various decision path methods. 

Method Scoring Metric Score incorporates 

training data that does 

not share all path 

features with test case 

(non-path cases) 

Pruning Parameter 

Estimate 

Smoothing 

LazyDT Entropy No non-path cases No Pruning No Smoothing 

PSDP-IG Entropy No non-path cases Pruning Smoothing 

PSDP-BA Balanced Accuracy No non-path cases Pruning Smoothing 

DP-Bay Bayesian Some non-path cases Pruning Smoothing 

DP-IG Entropy Some non-path cases Pruning Smoothing 

DP-AUC AUROC Some non-path cases Pruning Smoothing 

PSDP-AUC AUROC No non-path cases No Pruning Smoothing 
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2.4.3 Scoring Criteria 

As exhaustive search over all possible decision trees (referred to as the model space) for a 

globally optimal model is often intractable, heuristic search of the model space is often employed. 

The heuristic search is guided by a scoring criterion that assesses the degree of fitness between 

different models and the training data. Here we describe several approaches used in scoring 

decision tree and decision path models.  

2.4.3.1 Information Theoretic Scoring 

Decision tree methods, like CART and ID3, commonly use information theoretic scores.57 

Information theoretic scores seek to minimize the impurity of the partitions of a decision tree. The 

primary measure of the impurity is entropy, defined as 𝐻(𝑋) =  − ∑ 𝑃(𝑥𝑖) log2 𝑃(𝑥𝑖)
𝑛
𝑖=1  for a 

discrete random variable X with possible outcomes x1, ..., xn. Entropy varies based on the 

probability distribution of the outcomes: when the outcomes of a variable have fairly uniform 

probabilities, the variable is uninformative and the entropy is high, while if the probabilities of 

outcomes are unevenly distributed, the variable is informative and entropy is low. Purity is 

achieved when all samples with a given value of the variable share the same outcome. Information 

gain is a commonly used information theoretic score that measures the change in entropy following 

the transformation of an entity, such as the addition of a variable to a decision tree. The greatest 

information gain score results from the addition of a variable that results in the greatest reduction 

of entropy. It has been shown there is little difference in predictive performance for decision trees 

trained using different variations of information theoretic scoring criteria.70  
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2.4.3.2 Bayesian Scoring 

The application of Bayesian methods to learning decision trees was first investigated by 

Buntine and Chipman.71,72 When using Bayesian scores for model construction, we seek to identify 

the tree structure that maximizes the posterior probability of the tree conditioned on the data, 

thereby quantifying the degree of fitness between the structure and the data.73 Bayesian scores tend 

to favor simpler structures, but can flexibly accommodate more complex structures if such 

structures are supported by sufficient data, and in this balance Bayesian trees may avoid 

overfitting.74 

Bayesian scores take their name from Bayes’ Theorem, which states: 𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
. 

Given a model M training dataset D, we aim to evaluate 𝑃(𝑀|𝐷), the posterior probability of the 

tree conditioned on the data. By Bayes’ theorem, we see that 𝑃(𝑀|𝐷) =  
𝑃(𝐷|𝑀)𝑃(𝑀)

𝑃(𝐷)
, where 

𝑃(𝐷|𝑀) is the marginal likelihood of the data given the model, 𝑃(𝑀) is the prior probability of 

the model structure, and 𝑃(𝐷) is the probability of the data and is constant. Thus, 𝑃(𝑀|𝐷) ∝

 𝑃(𝐷|𝑀)𝑃(𝑀). When all models are considered equally likely a priori, the prior 𝑃(𝑀) is a 

constant, and 𝑃(𝑀|𝐷) ∝  𝑃(𝐷|𝑀). Therefore, by calculating the conditional probability 

distribution 𝑃(𝐷|𝑀) (or a quantity proportional to it), Bayesian scores can be used to identify the 

model structure M with the highest posterior probability 𝑃(𝑀|𝐷).  

Bayesian scores incorporate prior probability distributions for the model structure and 

model parameters. It is often assumed that all models are equally likely a priori, resulting in the 

use of a uniform structure prior probability distribution.74 However, prior belief regarding the 

expected number of predictor variables for a model can be used to calculate a nonuniform structure 

prior probability distribution, which can exert a regularization effect on model construction. 
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Similarly, the parameter prior probability distribution can use an uninformed prior (as is seen in 

the K2 score)75 or it can incorporate a smoothing parameter called the prior equivalent sample size, 

which represents belief regarding the number of cases which would need to be seen to reach our 

current confidence in the parameter distribution (as seen in the BDe score).76 The choice of this 

parameter is dependent on the user, and the effects of different values on model structures are not 

always predictable.77 

2.5 Ensembles and Forests 

As described previously, a decision tree algorithm constructs a model by selecting the 

highest scoring predictors to produce the highest scoring model. However, as exhaustive search 

over the model space is intractable and training data is finite, there is always uncertainty regarding 

the selection of the final model and its optimality. Rather than select a single model for prediction, 

one approach to address this uncertainty is to construct a variety of diverse models called an 

ensemble and average their outputs for prediction. This can reduce variance, resulting in lower 

error rates and higher predictive performance. When the base model used is a decision tree, the 

ensemble is referred to as a “forest.” 

2.5.1 Bagging 

Bootstrap Aggregation, or Bagging, is a method for producing ensembles of models from 

a single training dataset.78 The approach involves constructing multiple bootstrap datasets from 
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the original training dataset, training a given type of base model on each bootstrap, and averaging 

their individual predictions. Given a training dataset of m cases, a bootstrap dataset is produced by 

uniformly sampling m training cases with replacement from the original training dataset. On 

average, each bootstrap dataset contains approximately 62% of the cases from the training 

dataset.79 Since the data distribution varies slightly between bootstrap datasets, a different model 

results from each bootstrap dataset despite using the same algorithm for training the models. 

Decision trees that are constructed with greedy search strategies can demonstrate instability and 

are sensitive to small changes in the data, and so bagging can be effective for improving predictive 

performance of decision trees.80  Producing a variety of models may help capture the true 

relationships between the features and the target more effectively that a single model. To perform 

inference, the individual outputs of the models in the ensemble are averaged to produce an 

aggregate output.  

2.5.2 Boosting 

To further enhance the performance of ensembles of learners, an iterative approach for 

training models on weighted training datasets called boosting has been developed. Whereas 

bagging generates bootstrap datasets independently of one another in parallel, boosting modifies 

the training dataset in a sequential manner, incorporating performance information from the 

previous model trained on the weighted training dataset to influence the generation of a new 

weighted dataset via relevance weights.  

Starting with equal weights initially, a boosting method trains a model on the training 

dataset and applies it to classify the cases in the uniformly weighted training dataset. The training 
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cases from the training dataset that are misclassified by the model are identified, and those training 

cases are weighted more heavily, while correctly classified training cases receive lower weights. 

The process is then repeated. This allows subsequent models in the ensemble to learn from 

difficult-to-classify cases and improve on the performance of previous models. One canonical 

boosting method is AdaBoost,81 which uses decision trees as the base model and was found to 

reduce the classification error rate when compared to other ensemble methods like bagging. 

2.5.3 Bayesian Model Averaging 

Another ensemble approach is Bayesian model averaging (BMA), where multiple models 

are combined using their posterior probabilities. The theoretical “Optimal Bayes Classifier” is an 

ensemble of every possible model in the model space, and each model is weighted by its posterior 

probability when averaging across the ensemble to produce a prediction.82 No other classifier can 

outperform this theoretical ensemble on average given the same model space and prior 

probabilities, but the construction of this optimal ensemble is not usually computationally feasible. 

To approximate this ensemble, heuristic search is used and models with posterior probabilities 

above a certain threshold are combined to form an ensemble. An even simpler approach involves 

performing bagging and calculating the target prediction as a weighted average according to each 

model’s posterior probability; however, this approach may have issues with overfitting.83 
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2.5.4 Random Forest 

One highly successful ensemble approach that uses decision trees is the random forest 

method.84 Random forests use bagging to create an ensemble of randomized decision trees in 

parallel. The randomized decision tree algorithm only allows a random subset of predictors to be 

considered for inclusion in the decision tree at each potential split, which helps to increase the 

diversity of models in the ensemble. The number of variables sampled can vary, but a commonly 

used number is the square root of the total number of variables in the training dataset.  By training 

a set of decorrelated trees, the random forest is better able to capture significant patterns in the data 

without increasing bias. Averaging the outputs of these trees then allows for a reduction of 

variance, lowering the overall error. Inference using a random forest is performed in the same 

manner as a bagged ensemble of standard decision trees: the corresponding path and leaf node for 

the test case is identified in each tree in the forest, and the parameters from the leaf nodes are then 

averaged to produce an aggregate probability distribution of the target variable.  Random forest 

has been successfully used for clinical prediction, such as predicting future development of 

Alzheimer’s disease in patients with mild cognitive impairment using MRI data.39 

2.5.5 Personalized Ensembles and Forests 

Some work has been done in developing personalized versions of the ensemble methods 

described above. Lee et al.85 introduced a patient-specific bagging method where a patient 

similarity metric was used to quantify each training data case’s similarity to the test case, and these 

similarity values were used as resampling weights to generate personalized bootstrap datasets. 
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Training cases that were more similar to the test case would appear with greater frequency in the 

bootstrap datasets. Standard decision tree and logistic regression models were trained on the 

bootstrap datasets, resulting in patient-specific bagged ensembles, but the authors failed to find an 

improvement in predictive performance using their method.  

Margineantu et al.19 presented the Bagged Lazy Option Tree in 2002, which used a variant 

of the LazyDT method in an ensemble approach. Option trees are similar to decision trees, except 

rather than select a single predictor and value to form an interior node, the option tree algorithm 

selects several possible predictors (or options) at an interior node and averages their predictions to 

produce the model prediction. Margineantu et al. developed a lazy option tree method based on 

LazyDT and used a standard bagging approach to create a personalized ensemble, which 

demonstrated better calibration than a population method when applied to 16 UC Irvine datasets.  

Fern et al.20 developed a novel personalized boosting method called BO-LazyDT that used 

LazyDT as the base model. Traditional boosting methods require classification of every case in 

the training dataset by the model to generate training case weights, but this is impossible with 

decision paths like LazyDT because a decision path model can only classify those cases that share 

all features contained in the path. The novel personalized boosting method proposed by Fern 

instead weights training cases using a path-derived relevance weight. The relevance weight is 

calculated by identifying the number of features in the path shared by each case in the training 

dataset. This allows each case in the training dataset to be weighted according to its relevance to 

the test case, and this weighted training dataset is used to train the subsequent model. This method 

was shown to outperform the base model (LazyDT) as well as a bagged ensemble of the base 

model (BA-LazyDT) in terms of accuracy and demonstrated comparable performance to 

AdaBoost, a population boosting method. Furthermore, the paths produced by the BO-LazyDT 
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were significantly shorter than those produced by the population method, indicating that 

personalized methods may allow for greater comprehensibility without sacrificing predictive 

performance. 

Visweswaran et al.86 described a novel machine learning approach that performed BMA 

with an ensemble of personalized Bayesian network models. This method was then employed to 

predict patient outcomes in four clinical datasets.87 The authors found that, in terms of logarithmic 

loss and squared error, the patient-specific BMA approach outperformed both logistic regression 

and a patient-specific approach that selected a single model for prediction. These models were 

computationally expensive, however. 

There has been little work in personalization of random forests, and the existing work 

involves personalization of the bootstrap datasets using similarity metrics. The Case-Specific 

Random Forest (CSRF) introduced by Xu et al.88 in 2016 used a distance metric to identify cases 

in the training dataset which were similar to the test case. Similarity weights were then applied 

when bootstrap datasets were generated, so that similar cases appeared more frequently in the 

bootstrap datasets. Randomized decision trees are then trained on these personalized bootstrap 

datasets. Lee et al.48 introduced a patient-specific random forest method that trained a random 

forest using a subset of the M most similar training data cases in the training dataset, determined 

using a patient similarity metric. They compared this method to CSRF to predict 30-day mortality 

in ICU patients, finding that both methods had an average AUROC of approximately 0.83.  

Thus, limited work has been done on bagged and boosted ensembles of personalized 

decision paths, but these investigations did not focus on their use in patient-specific prediction. 

Furthermore, no investigation has previously been done into using personalized decision paths in 
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a random forest approach. The field of patient-specific prediction could thus benefit from further 

evaluation of novel personalized decision paths in ensemble approaches. 

2.6 Existing and Novel Methods 

Prior investigations in tree-based methods have explored the effects of different scoring 

criteria, search strategies, and approaches for constructing ensembles. In this dissertation, we 

present three novel algorithms.  

First is the Personalized Decision Path with Bayesian score (PDP-Bay), which produces a 

single personalized model using Bayesian scoring. The second novel algorithmic method is the 

Lazy Random Forest (LazyRF), which produces an ensemble of randomized personalized decision 

paths. The third method is the Boosted PDP-Bay (BO-PDP-Bay), which produces an ensemble of 

boosted personalized decision paths with Bayesian scoring.  

In Table 3 we provide an overview of prior work and highlight areas of new inquiry which 

are explored in this dissertation (designated in italics). 
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Table 3. Overview of tree-based models and ensemble methods. 

Model Decision Tree Personalized Path 

Entropy-Scored Single 

Model 

CART (Breiman, 1984) LazyDT (Friedman, 1996) 

Bayesian-Scored Single 

Model 

Bayes Trees (Buntine, 1992) PDP-Bay (Johnson, 2020) 

Bagged Ensemble Bagged CART (Breiman, 1996) BA-LazyDT (Fern, 2003) 

Random Forest Ensemble Random Forest (Breiman, 2001) LazyRF (Johnson, in 

submission) 

Boosted Ensemble AdaBoost (Freund, 1997) BO-LazyDT (Fern, 2003) 

Bayesian Ensemble Tree Averaging (Buntine, 1992) 

BART (Chipman, 2010) 

Boosted PDP-Bay 
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3.0 Algorithmic Methods 

This chapter describes the personalized and the corresponding population algorithmic 

methods used in this dissertation. Section 3.1 describes algorithms that learn personalized single 

decision paths; Section 3.2 describes algorithms that derive population decision trees; Section 3.3 

describes algorithms that learn random forest ensembles of personalized decision paths; Section 

3.4 describes algorithms that derive population random forests; Section 3.5 describes algorithms 

that derive boosted ensembles of personalized decision paths, and Section 3.6 describes AdaBoost 

which is a population boosting method. Figure 2 contains a Venn diagram which lists the 

algorithmic methods described in this chapter and displays the paradigms 

(personalized/ensemble/Bayesian) incorporated by each method. 
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Figure 2. Venn diagram of algorithmic methods and correponding modeling paradigms. 

3.1 Personalized Decision Paths 

We developed a novel algorithm that learns a single decision path that is personalized to a 

test case (or a test individual); we call this method the Personalized Decision Path that uses a 

Bayesian score (PDP-Bay). We compare PDP-Bay with a previously developed personalized 

decision path method called the Personalized Decision Path that uses an Entropy score (PDP-Ent). 
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3.1.1 Background 

The first Bayesian-scored personalized decision path was introduced by Visweswaran et 

al. in the form of the DP-Bay algorithm.15 Algorithms that use Bayesian scoring seek to identify 

the model with the highest posterior probability given the corresponding data. This novel method, 

the PDP-Bay, provides a simpler procedure for identifying the most probable model than DP-Bay. 

We compared its performance to an entropy-scored personalized decision path algorithm (PDP-

Ent, which is analogous to LazyDT) as well as population decision trees with entropy and Bayesian 

scores.  

3.1.2 The PDP-Bay Method 

This section provides details of the novel personalized decision path method, namely PDP-

Bay. We first describe the model structure, then the search strategy, and finally the scoring criterion 

of the PDP-Bay method. 

3.1.2.1 Model Structure  

A decision-path model M is represented as M = (S, ), where S is a path and  are the 

parameters of the probability distributions over the target T, which can take r possible values 

denoted by (t1, t2,… tk,…, tr). Let V = (X1, X2,…, Xi,…, Xn) be a list of the n variables in the training 

dataset D. A path S consists of a conjunction of q features, such that S = (X1 = x1  X2 = x2  … Xj 

= xj  …  Xq = xq). The variable list VS = (X1, X2,…, Xj,…, Xq) is a subset of V. The value list vS 

= (x1, x2,…, xj,…, xq) consists of values for the variables in VS in the test case. Finally, the parameter 
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list  = (1, 2,…, k ,..,r) denotes the r probabilities for the distribution P(T | VS = vS) over the 

target variable T.  

The values of those probabilities are estimated from the cases in the training set for which 

VS = vS. To control for overfitting, we use a Bayesian estimator called the K2 score for calculating 

these probabilities. The estimate for probability k is given as follows:  

𝜃𝑘 ≡ 𝑃(𝑇 = 𝑡𝑘|𝑽𝑆 = 𝒗𝑆) =
1+𝑁𝑘

𝑟+𝑁
 ,                                                                                   (3.1) 

where N is the number of cases in the training set that satisfy VS = vS and Nk is the number of those 

cases that satisfy VS = vS and for which T = tk. 

3.1.2.2 Search Strategy  

The pseudocode for the PDP-Bay method is shown in Figure 2. The method uses a forward-

stepping, greedy hill-climbing search and a sample-normalized Bayesian score (explained in the 

next section) as the criterion for evaluating features for inclusion in the path. Beginning with an 

empty path S, the algorithm successively adds features to S that locally maximize the score, until 

the score can no longer be improved. Currently, the method is designed to work with discrete data 

only. 

PDP-Bay uses a training dataset D and a test case Test. For each possible feature X = x, the 

algorithm temporarily appends X = x to S to produce candidate path S’. This path is scored using 

training data DS’, which is the data for all cases that share the features in S’. If the score of S’ is 

greater than that of S, the score and candidate feature are stored. When all the features in V have 

been scored, the highest scoring feature is appended to S to create a new version of S, and the 

training dataset is reduced to cases that share values with Test for the variables in that new S. The 

growth of the path is terminated when no candidate feature can improve the score of path S, no 
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remaining training cases share values with Test for the variables in S’, or all remaining cases have 

the same value for T. 
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Figure 3. Pseudocode for PDP-Bay method. 

3.1.2.3 Bayesian Scoring Criterion 

The PDP-Bay method uses a Bayesian score which seeks to identify the model structure 

with the highest posterior probability. Given a candidate path S’ that is derived from path S by 

temporarily appending a candidate feature X = x, we define the posterior probability of the path S’ 

(i.e., the model structure) given the data, DS’, that contains the cases that satisfy the path S’ as   

𝑃(𝑆′|𝐷𝑆′) =
𝑃(𝐷𝑆′|𝑆′)𝑃(𝑆′)

𝑃(𝐷𝑆′)
,                                                                                                 (3.2) 
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where 𝑃(𝐷𝑆′|𝑆′) is the marginal likelihood of the data given the model structure, 𝑃(𝑆′) is the prior 

probability of the model structure, and 𝑃(𝐷𝑆′) is a normalizing constant. Thus, we see that 

𝑃(𝑆′|𝐷𝑆′) ∝ 𝑃(𝐷𝑆′|𝑆′)𝑃(𝑆′).                                                                                           (3.3) 

The marginal likelihood 𝑃(𝐷𝑆′|𝑆′) is measure of how well the path structure fits the data.  

Marginal likelihood. Using the Bayesian approach, we compute 𝑃(𝐷𝑆′|𝑆′) by integrating 

over the parameter values: 

𝑃(𝐷𝑆′|𝑆′) = ∫ 𝑃(𝐷𝑆′|𝑆′, 𝜽)𝑃(𝜽|𝑆′)𝑑𝜽
 

𝜽
,                                                                          (3.4) 

where 𝑃(𝐷𝑆′|𝑆′, 𝜽) is the likelihood of the data given the path-model (𝑆′, 𝜽) and 𝑃(𝜽|𝑆′) is the 

prior distribution over different parameter values. Assuming a multinomial sample, parameter 

modularity and independence, no data is missing, cases occur independently, and parameter priors 

follow a Dirichlet distribution, we can compute the integral in Equation 3.4 in closed form using 

the Bayesian-Dirichlet likelihood equivalent (BDe) metric,76 which is given by 

𝑃(𝐷𝑆′|𝑆′) =
Γ(𝛼0)

Γ(𝑁+𝛼0)
 ∏

Γ(𝑁𝑘+𝛼𝑘)

Γ(𝛼𝑘)

𝑟
𝑘=1  ,                                                                                (3.5) 

where r is the number of values of the target T, Nk is the number of cases in DS’ for which T = tk, 

𝑁 = ∑ 𝑁𝑘
𝑟
𝑘=1  which is equal to | DS’ |, 𝛼0 is a user-specified parameter prior, and 𝛼𝑘 =  

𝛼0

𝑟
. In this 

equation, (•) represents the gamma function. In this special case, when the parameter prior 𝛼𝑘  is 

uniform, we get a specialized BDe score called the Bayesian-Dirichlet likelihood equivalent and 

uniform (BDeu) score.                 

If all values are also discrete, the integral in Equation 3.4 can alternatively be computed in 

closed form using the K2 metric,75 which is given by 

𝑃(𝐷𝑆′|𝑆′) =
(𝑟−1)!

(𝑁+𝑟−1)!
 ∏ 𝑁𝑘!𝑟

𝑘=1  ,                                                                                      (3.6) 
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where r is the number of values of the target T, Nk is the number of cases in DS’ for which T = tk, 

and 𝑁 = ∑ 𝑁𝑘
𝑟
𝑘=1 , which is equal to | DS’ |. It is useful to note that when the target variable is binary 

and 𝛼0 = 2, Equations 3.5 and 3.6 provide equivalent results (details are provided in Appendix 

B). 

Structure prior. The structure prior probability distribution is often assumed to be 

uniform, in which case we see that 𝑃(𝑆′|𝐷𝑆′) ∝ 𝑃(𝐷𝑆′|𝑆′), as 𝑃(𝑆′) is constant. If we do not 

assume that all model structures are equally likely a priori, then we provide an informative 

structure prior 𝑃(𝑆′) in Equation 3.3 using a binomial prior distribution. For a given path 𝑆′, let q 

be the number of features in 𝑆′. Let 𝑒 be the number of predictor variables in D that a domain 

expert would expect to be predictive of the target variable, and let n be the total number of 

predictors in D. The structure prior is then given by 

𝑃(𝑆′) =  (
𝑒

𝑛
)

𝑞
(1 −

𝑒

𝑛
)

(𝑛−𝑞)

.                                                                                          (3.7)  

Note that if 𝑒 = 0 or 𝑛, the structure prior reduces to the uniform structure prior distribution. 

Sample normalization. We sample-normalize the marginal likelihood by taking the 

geometric mean to enable score comparison between paths with varying sample sizes. Since we 

assume that cases occur independently, we see that 𝑃(𝐷𝑆′|𝑆′) =  ∏ 𝑃(𝐶𝑎𝑠𝑒𝑙|𝑆
′)𝑁

𝑙=1 , and so by 

taking the geometric mean we calculate the expected value of 𝑃(𝐶𝑎𝑠𝑒|𝑆′). The sample-normalized 

posterior probability represents the expected marginal likelihood of a single future case, which 

serves a measure of how well on average P(T | Test) predicts the cases in DS’. For computational 

efficiency and precision, the final score is calculated in logarithmic form.  

BayScore. The score of a path S’ that includes the addition of variable X is therefore 

defined as 
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𝐵𝑎𝑦𝑆𝑐𝑜𝑟𝑒(𝑆′) = log [𝑃(𝐷𝑆′|𝑆′)
1

𝑁⁄ ∙ 𝑃(𝑆′)].                                                                  (3.8) 

This equation provides us with a value that is proportional to the log of the expected posterior 

probability of 𝑆′. Substituting the expression for 𝑃(𝐷𝑆′|𝑆′) from Equation 3.5 and the expression 

for 𝑃(𝑆′) from Equation 3.7 into Equation 3.8, we obtain the BayScore using the BDeu score as 

𝐵𝑎𝑦𝑆𝑐𝑜𝑟𝑒𝐵𝐷𝑒𝑢(𝑆′) = log [[(
Γ(𝛼0)

Γ(𝑁+𝛼0)
 ∏

Γ(𝑁𝑘+𝛼𝑘)

Γ(𝛼𝑘)
𝑟
𝑘=1 )]

1
𝑁⁄

∙ ((
𝑒

𝑛
)

𝑞
(1 −

𝑒

𝑛
)

(𝑛−𝑞)
)],                     (3.9) 

which can be simplified to        

𝐵𝑎𝑦𝑆𝑐𝑜𝑟𝑒𝐵𝐷𝑒𝑢(𝑆′) =
1

𝑁
[log (

Γ(𝛼0)

Γ(𝑁+𝛼0)
) + ∑ log (

Γ(𝑁𝑘+𝛼𝑘)

Γ(𝛼𝑘)
)𝑟

𝑘=1 ] + 𝑞 log (
𝑒

𝑛
) + (𝑛 − 𝑞) log (1 −

𝑒

𝑛
).      (3.10) 

If we instead substitute the expression for 𝑃(𝐷𝑆′|𝑆′) from Equation 3.6 into Equation 3.8, we 

obtain the BayScore using the K2 score as 

𝐵𝑎𝑦𝑆𝑐𝑜𝑟𝑒
𝐾2

(𝑆′) = log [[(
(𝑟−1)!

(𝑁+𝑟−1)!
 ∏ 𝑁𝑘!𝑟

𝑘=1 )]
1

𝑁⁄
∙ ((

𝑒

𝑛
)

𝑞
(1 −

𝑒

𝑛
)

(𝑛−𝑞)

)],                       (3.11) 

which can be simplified to 

𝐵𝑎𝑦𝑆𝑐𝑜𝑟𝑒𝐾2(𝑆′) =
1

𝑁
[log (

(𝑟−1)!

(𝑁+𝑟−1)!
) + ∑ log 𝑁𝑘!𝑟

𝑘=1 ] + 𝑞 log (
𝑒

𝑛
) + (𝑛 − 𝑞) log (1 −

𝑒

𝑛
).    (3.12) 

 

3.1.3  PDP-Bay-BDeu  

When using the 𝐵𝑎𝑦𝑆𝑐𝑜𝑟𝑒 to train a personalized decision path with PDP-Bay, the user may 

specify the expected number of predictors 𝑒 as a hyperparameter of the structure prior, and when 

using 𝐵𝑎𝑦𝑆𝑐𝑜𝑟𝑒𝐵𝐷𝑒𝑢, the user may also specify the equivalent sample size 𝛼0 as a hyperparameter 

of the parameter prior. Here we present the PDP-Bay-BDeu, which performs a grid search over 

combinations of 𝛼0 and 𝑒 to empirically identify the prior hyperparameters that correspond to the 
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model with the highest AUROC. For each combination of 𝛼0 and 𝑒, we performed stratified 5-fold 

cross validation (5FCV) to estimate performance of decision paths trained using PDP-Bay in terms 

of AUROC. We then use the combination of 𝛼0 and 𝑒 that resulted in the highest AUROC to train 

a decision path with the PDP-Bay method. Pseudocode for PDP-Bay-BDeu appears in Figure 3. 

 

 

Figure 4. Pseudocode for PDP-Bay-BDeu method. 
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3.1.4 The PDP-Ent Method  

The PDP-Ent method is our implementation of a previously described decision path 

method that uses an entropy score (like LazyDT14). We describe the model structure, the search 

strategy, and the scoring criterion of the PDP-Ent method. 

3.1.4.1 Model Structure 

The PDP-Ent has the same model structure at PDP-Bay (described in 3.1.2.1). A decision-

path model M is represented as M = (S, ), where S is a collection of features and  are the 

parameters of the probability distributions over the target T. 

3.1.4.2 Search Strategy 

PDP-Ent utilizes a search strategy that is similar to that used in the PDP-Bay method. It 

performs a forward-stepping, greedy hill-climbing search and evaluates features for inclusion in 

the path using an information gain score based on the entropy of the path. Beginning with an empty 

path S, the algorithm successively adds features to S that locally maximize the score, until the score 

can no longer be improved. 

3.1.4.3 Entropy Scoring Criterion 

For a candidate path S and data DS that contains the training cases that satisfy the path S, 

the entropy of S is given by 

𝐻(𝑆) =  − ∑ 𝑃(𝑇 = 𝑡𝑘|𝑽𝑆 = 𝒗𝑆) log2 𝑃(𝑇 = 𝑡𝑘|𝑽𝑆 = 𝒗𝑆)𝑟
𝑘=1 ,                                   (3.13) 
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where P(T = tk|𝑽𝑆 = 𝒗𝑆) is the proportion of cases in the dataset DS’ that have the value tk for T. 

In the PDP-Ent method, we use the maximum likelihood estimator to calculate the probabilities θ 

associated with a path S. The estimate for probability 𝜃𝑘 is given by 

𝜃𝑘 ≡ 𝑃(𝑇 = 𝑡𝑘|𝑽𝑆 = 𝒗𝑆) =
𝑁𝑘

𝑁
 ,                                                                                     (3.14) 

where 𝑁 is the number of cases in the training set that satisfy VS = vS and 𝑁𝑘 is the number of 

those cases that satisfy VS = vS and for which T = tk. This is a common estimator that is used in 

many decision tree methods. Thus, the entropy of a variable 𝑋 under consideration for inclusion 

in the candidate path S’ is defined as 

𝐸𝑛𝑡𝑆𝑐𝑜𝑟𝑒(𝑆′) =  − ∑
𝑁𝑘

𝑁
log2 (

𝑁𝑘

𝑁
) .𝑟

𝑘=1                                                                           (3.15) 

After some algebraic manipulation, Equation 15 can be rewritten as 

𝐸𝑛𝑡𝑆𝑐𝑜𝑟𝑒(𝑆′) = −
1

𝑁
(∑ 𝑁𝑘  log2

𝑁𝑘

𝑁

𝑟
𝑘=1 ),                                                                       (3.16) 

where 𝑁 is the number of cases in the training set that satisfy VS = vS, 𝑁𝑘 is the number of those 

cases that satisfy VS = vS and for which T = tk, and the term inside the parentheses is the log-

likelihood. The search selects variables that maximize the information gain, which is calculated as 

the difference in entropy between the current path 𝑆 and candidate path 𝑆′. The pseudocode for the 

PDP-Ent algorithm can be found in Appendix A, Figure 1. 
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3.2 The Decision Tree Method 

We compare the predictive performance of personalized decision paths with population 

decision trees. We describe the model structure, the search strategy, and the scoring criteria of the 

decision tree methods. 

3.2.1 Model Structure and Search Strategy 

The decision-tree model M is represented as M = (T, ), where T = (S1, S2,…, Sh,…, Sm) is 

a collection of m paths. Given a training dataset D, the method performs a forward stepping, greedy 

hill-climbing search to add one variable at a time that locally maximizes a scoring criterion. The 

decision tree method does not perform pruning and terminates when the addition of a variable does 

not increase the tree’s score. 

3.2.2 Decision Tree with Entropy Score 

The decision tree with entropy score (DT-Ent) uses a scoring criterion that maximizes 

information gain, which is the difference in entropy between the existing tree and the candidate 

tree. The entropy score of a tree T is given by 

𝑇𝑟𝑒𝑒𝐸𝑛𝑡𝑆𝑐𝑜𝑟𝑒(𝑇) = ∑ [
|𝐷𝑆ℎ|

|𝐷|
∑ 𝐻(𝑆ℎ) 

ℎ ]𝑚
ℎ=1 ,                                                                 (3.17) 

where 𝐷𝑆ℎ is the set of cases in D that satisfy the path 𝑆ℎ and 𝐻(𝑆ℎ) is given by Equation 3.13. 

Like in PDT-Ent, we use the maximum likelihood estimator as given by Equation 3.14 for 
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calculating the probabilities θ associated with a path 𝑆ℎ. This is a standard implementation of 

information gain in decision tree algorithms.57  

3.2.3 Decision Tree Method with Bayesian Score 

The decision tree with Bayesian score (DT-Bay) uses a scoring criterion that maximizes 

the posterior probability distribution of the tree structure given the data, 𝑃(𝑇|𝐷). By Bayes’ 

theorem,  

𝑃(𝑇|𝐷) ∝ 𝑃(𝐷|𝑇)𝑃(𝑇),                                                                                               (3.18) 

where 𝑃(𝐷|𝑇) is the marginal likelihood of the data given the tree and 𝑃(𝑇) is the prior probability 

of the tree structure.  

Marginal likelihood. Using the Bayesian approach, we compute the marginal likelihood 

of the data given the tree, 𝑃(𝐷|𝑇), by integrating over the parameter values: 

𝑃(𝐷|𝑇) = ∫ 𝑃(𝐷|𝑇, 𝜽)𝑃(𝜽|𝑇)𝑑𝜽
 

𝜽
,                                                                                 (3.19) 

where 𝑃(𝐷|𝑇, 𝜽) is the likelihood of the data given the tree-model (𝑇, 𝜽) and 𝑃(𝜽|𝑇) is the prior 

distribution over different parameter values. Assuming a multinomial sample, parameter 

modularity and independence, no data is missing, cases occur independently, and parameter priors 

follow a Dirichlet distribution, we can compute the integral in Equation 3.19 in closed form using 

the BDeu score,76 which is given by 

𝑃(𝐷|𝑇) = ∏
Γ(𝛼𝑙)

Γ(𝑁𝑙+𝛼𝑙)
𝑚
𝑙=1  [∏

Γ(𝑁𝑙𝑘+𝛼𝑙𝑘)

Γ(𝛼𝑙𝑘)

𝑟
𝑘=1 ] ,                                                                   (3.20) 

where m is the number of paths in T, r is the number of values of the target XT, Nlk is the number 

of cases in D which belong to path l for which XT = tk, 𝑁𝑙 = ∑ 𝑁𝑙𝑘
𝑟
𝑘=1 , which is equal to the number 



 49 

 

of cases that belong to path l, 𝛼𝑙 =  
𝛼0

𝑚
 where 𝛼0 is a user-specified parameter prior, and 𝛼𝑙𝑘 =  

𝛼𝑙

𝑟
.  

In this equation, (•) represents the gamma function. 

Alternately, assuming parameter modularity and independence and that the variables are 

discrete, no data is missing, cases occur independently, and parameter priors follow a Dirichlet 

distribution, we can compute the integral in Equation 3.19 in closed form using the K2 score,75 

resulting in  

𝑃(𝐷|𝑇) = ∏
(𝑟−1)!

(𝑁𝑙+𝑟−1)!

𝑚
𝑙=1  [∏ 𝑁𝑙𝑘!𝑟

𝑘=1 ] ,                                                                          (3.21) 

where m is the number of paths in T, r is the number of values of the target XT, Nlk is the number 

of cases in D which belong to path l for which XT = tk, and 𝑁𝑙 = ∑ 𝑁𝑙𝑘
𝑟
𝑘=1 , which is equal to the 

number of cases that belong to path l. 

Structure Prior. The structure prior probability distribution is often assumed to be 

uniform, in which case we see that 𝑃(𝑇|𝐷) ∝ 𝑃(𝐷|𝑇), as 𝑃(𝑇) is constant. If we do not assume 

that all model structures are equally likely a priori, then we can also provide an informative 

structure prior 𝑃(𝑇) in Equation 3.18 using a binomial prior distribution.  

For a given tree 𝑇, let q be the number of features in T. Let 𝑒 be the number of predictor 

variables in D that a domain expert would expect to be predictive of the target variable, and let n 

be the total number of predictors in D. The structure prior is then given by 

𝑃(𝑇) =  (
𝑒

𝑛
)

𝑞
(1 −

𝑒

𝑛
)

(𝑛−𝑞)

.                                                                                            (3.22)  

Note that if 𝑒 = 0 or 𝑛, the structure prior assumes a uniform distribution. 

TreeBayScore. For computational efficiency and precision, the final score is calculated in 

logarithmic form. Thus, substituting  

𝑇𝑟𝑒𝑒𝐵𝑎𝑦𝑆𝑐𝑜𝑟𝑒(𝑇) = log[𝑃(𝐷|𝑇)𝑃(𝑇)].                                                                       (3.23) 
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Substituting the equation for 𝑃(𝐷|𝑇) from Equation 3.20 and the equation for 𝑃(𝑇) from Equation 

3.22 into Equation 3.23, we obtain 

𝑇𝑟𝑒𝑒𝐵𝑎𝑦𝑆𝑐𝑜𝑟𝑒𝐵𝐷𝑒𝑢(𝑇) = log [(∏
Γ(𝛼𝑙)

Γ(𝑁𝑙+𝛼𝑙)
𝑚
𝑙=1 [ ∏

Γ(𝑁𝑙𝑘+𝛼𝑙𝑘)

Γ(𝛼𝑙𝑘)
𝑟
𝑘=1 ])  (

𝑒

𝑛
)

𝑞
(1 −

𝑒

𝑛
)

(𝑛−𝑞)
].             (3.24) 

Rewritten, this takes the form        

𝑇𝑟𝑒𝑒𝐵𝑎𝑦𝑆𝑐𝑜𝑟𝑒𝐵𝐷𝑒𝑢(𝑇) = ∑ [log (
Γ(𝛼𝑙)

Γ(𝑁𝑙+𝛼𝑙)
) +  ∑ log (

Γ(𝑁𝑘+𝛼𝑘)

Γ(𝛼𝑘)
)𝑟

𝑘=1 ]𝑚
𝑙=1 + 𝑞 log (

𝑒

𝑛
) + (𝑛 − 𝑞) log (1 −

𝑒

𝑛
).       (3.25) 

If we instead substitute the equation for 𝑃(𝐷|𝑇) from Equation 3.21 into Equation 3.23, we obtain 

𝑇𝑟𝑒𝑒𝐵𝑎𝑦𝑆𝑐𝑜𝑟𝑒
𝐾2

(𝑇) = log [(∏
(𝑟−1)!

(𝑁𝑙+𝑟−1)!

𝑚
𝑙=1  [∏ 𝑁𝑙𝑘!𝑟

𝑘=1 ])  (
𝑒

𝑛
)

𝑞
(1 −

𝑒

𝑛
)

(𝑛−𝑞)

].              (3.26) 

Rewritten, this takes the form        

𝑇𝑟𝑒𝑒𝐵𝑎𝑦𝑆𝑐𝑜𝑟𝑒𝐾2(𝑇) = ∑ [log (
(𝑟−1)!

(𝑁𝑙+𝑟−1)!
) + ∑ log (𝑁𝑙𝑘!)𝑟

𝑘=1 ]𝑚
𝑙=1 + 𝑞 log (

𝑒

𝑛
) + (𝑛 − 𝑞) log (1 −

𝑒

𝑛
).     (3.27) 

DT-Bay-BDeu. The DT-Bay-BDeu is a variation of the DT-Bay algorithmic method which 

scores models using Equation 3.24 and performs prior hyperparameter tuning using 5FCV on the 

training data to identify the combination of 𝛼0 and 𝑒 that results in the highest AUROC. 

3.3 Lazy Random Forest 

In our first personalized ensemble method, we introduce a new method called the Lazy 

Random Forest (LazyRF). This method uses the previously described PDP-Bay as the base model 

of a Random Forest ensemble. We hypothesized that the new method would perform better than 

1) the PDP-Bay alone and 2) a population Random Forest approach, and we evaluated this 

hypothesis on a range of datasets. 



 51 

 

3.3.1 Background 

Random forests are bagged ensembles of randomized decision trees, which are described 

in 2.5.4. Bagging, which is discussed in greater detail in 2.5.1, involves generating bootstrap 

datasets by sampling with replacement from a training dataset. Models are trained on these 

bootstrap datasets, and the individual predictions are averaged to produce an aggregate prediction. 

The standard random forest uses a population method, the randomized decision tree, as its base 

model, though some efforts have been made to produce patient-specific random forests. Lee et 

al.48 used the Case Specific Random Forest (CSRF)88 for patient-specific prediction. The CSRF 

constructs a personalized random forest by creating personalized bootstrap datasets using a patient 

similarity metric (PSM). However, the base model of the CSRF remains the randomized decision 

tree, which is a population method. To our knowledge, no work has been published using 

personalized modeling methods like decision paths to produce a personalized random forest. 

Some studies have explored personalized forests consisting of ensembles of personalized 

decision paths, which were discussed in more detail in section 2.5.5. Fern et al.20 introduced two 

new ensembles of personalized decision paths, the bagged LazyDT (BA-LazyDT) and the boosted 

LazyDT (BO-LazyDT), and demonstrated that using these ensemble approaches with personalized 

decision paths improved predictive accuracy over the base method and matched performance of 

an analogous population method. 

Our novel method, the LazyRF-Bay, uses a randomized version of a personalized decision 

path method (the PDP-Bay described in 3.1.2) as the base model to produce a new type of 

personalized ensemble. This method, described in greater detail in the next section, is to our 

knowledge the first random forest approach using personalized decision paths. 
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3.3.2 The LazyRF-Bay Method 

We describe the base model structure, the search strategy, and the scoring criterion of the 

LazyRF-Bay method.  

3.3.2.1 Base Model Structure 

The ensemble produced by the LazyRF-Bay method consists of a forest of decision-path 

models. Detailed terminology regarding the structure of decision-paths is outlined in 3.1.2.1. The 

base model is a randomized Personalized Decision Path that uses a Bayesian score (PDP-Bay), 

which is a modified version of the algorithm described in 3.1.2. In the LazyRF-Bay, the PDP-Bay 

search is modified to randomize variable selection, which is described in the next section. 

3.3.2.2 Search Strategy 

The pseudocode for the LazyRF-Bay method is shown in Figure 4. Given a training dataset 

D and a test case Test, the method constructs multiple bootstrap datasets and trains a randomized 

decision-path on each one to produce forest F = (S1, S2,…, Sh,…, Sb). A bootstrap dataset Bh is a 

set of m cases uniformly sampled with replacement from D. Let B = (B1, B2,…, Bh,…, Bb) be the 

set of bootstrap datasets. 

The LazyRF-Bay method constructs a randomized decision-path model for each bootstrap 

dataset Bh in B. To construct each path, the method uses a forward-stepping, greedy hill-climbing 

search and a Bayesian score as the criterion for evaluating features for inclusion in the path. 

Beginning with an empty path S, the algorithm successively adds features from Test to S that 
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locally maximize the score, until the score can no longer be improved. Currently, the method is 

designed to work with discrete data only. 

The algorithm starts by uniformly sampling u variables without replacement from the set 

of variables V to form subset VU = (X1, X2,…, Xp,…, Xu), where u = √𝑛  (rounded to the nearest 

integer). The value list vU = (x1, x2,…, xp,…, xu) consists of values in the test case for the variables 

in VU. For each possible feature X = x, the algorithm temporarily appends X = x to S to produce 

candidate path S’. This path is scored using training data DS’, which is the data for all cases that 

share values with Test for the features in S’. If the score of S’ is greater than that of S, the score 

and candidate feature are stored. When all the features in VU have been scored, the highest scoring 

feature is appended to S to create a new version of S, and the training dataset is reduced to cases 

that share values with Test for the variables in that new S. The growth of the path is terminated 

when no candidate feature can improve the score of path S, no remaining training cases share 

values with Test for the variables in S’, or all remaining cases have the same value for T. 

3.3.2.3 Bayesian Scoring Criterion 

The score of a candidate path S’ is calculated using the BayScoreK2 described in 3.1.2.3 

with a uniform structure prior. This score selects variables that maximize the posterior probability 

of the model structure given the corresponding data. 

3.3.2.4 Inference 

To perform inference for Test, parameter estimates are calculated using Equation 3.1 for 

each path S in forest F. These parameter estimates are then averaged. The estimate for probability 

𝜃𝑘 is therefore given by: 
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𝜃𝑘 ≡
1

𝑏
∑ 𝑃ℎ(𝑇 = 𝑡𝑘|𝑽𝑆ℎ

= 𝒗𝑆ℎ
)𝑏

ℎ=1 =
1

𝑏
∑

1+𝑁𝑘ℎ

𝑟+𝑁ℎ

𝑏
ℎ=1  ,                                                          (3.28) 

Where b is the number of paths in the forest, r is the number of values taken by the target variables, 

𝑁ℎ is the number of cases in the bootstrap dataset Bh that satisfy 𝑽𝑆ℎ
= 𝒗𝑆ℎ

, and 𝑁𝑘ℎ is the number 

of those cases that satisfy 𝑽𝑆ℎ
= 𝒗𝑆ℎ

and for which T = tk. 

 
Figure 5. Pseudocode for LazyRF-Bay method. 
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3.3.3 LazyRF-Ent 

The LazyRF-Ent is a personalized random forest method that uses a randomized 

personalized decision path with entropy score (based on PDP-Ent, described in 3.1.4) rather than 

the randomized PDP-Bay as the base model. Inference is performed using the average of the 

individual path predictions in the ensemble, each of which is calculated using Equation 3.14. 

Although the scores for model construction and inference differ, the LazyRF-Ent has the same 

model structure and search strategies as LazyRF-Bay. 

3.4 The Random Forest Method 

We compare the predictive performance of the LazyRF-Bay method with a population 

random forest method. We describe the model structure, the search strategy, and the scoring 

criteria of the decision tree methods. 

3.4.1 Model Structure and Search Strategy 

The random forest method trains an ensemble of randomized decision trees on b bootstrap 

datasets. The structure of a decision tree is described in 3.2.1. The randomized decision tree is a 

population method that does not incorporate features from Test in the model search. The 

randomized decision tree is a variant of the decision tree described in 3.2 where the search is 

modified to add one variable at a time from a random selection of variables (rather than the full 

set of variables). Given a bootstrapped dataset Db from training dataset D, the method performs a 
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forward stepping, greedy hill-climbing search to add one variable at a time from a random selection 

of variables that locally maximizes a scoring criterion. The randomized decision tree method does 

not perform pruning and terminates when the addition of a variable does not increase the tree’s 

score. 

3.4.2 Random Forest with Entropy Score 

The random forest with entropy score (RF-Ent) is comprised of randomized decision trees 

that maximize an entropy information gain scoring criterion given by TreeEntScore, described in 

3.2.2, to evaluate variables. Each randomized decision tree calculates parameter probabilities using 

the maximum likelihood estimator as given by Equation 3.14. Like the LazyRF-Ent method, forest 

parameter estimates are calculated as an average of the parameter estimates from the trees in the 

forest. This is our implementation of Breiman’s random forest.84 

3.4.3 Random Forest with Bayesian Score 

The random forest with Bayesian score (RF-Bay) is comprised of randomized decision 

trees that maximize a decision trees that maximize a Bayesian scoring criterion, the 

TreeBayScoreK2 as described in 3.2.3 using a uniform structure prior. Parameter probabilities are 

calculated using the K2 estimator as given by Equation 3.1. Like the LazyRF-Bay method, forest 

parameter estimates are calculated as an average of the parameter estimates from the trees in the 

forest.  
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3.5 Boosted Personalized Decision Paths 

In this section, we introduce the Boosted PDP-Bay, a boosted ensemble of Bayesian 

decision paths. It constructs an ensemble of personalized decision paths in sequence, varying the 

models in the ensemble by altering the training data case weights. Each training data case is 

weighted according to a relevance metric based on the features present in the decision path 

generated in the previous iteration. 

3.5.1 Background 

As mentioned previously, the small amount of work in ensembles of personalized decision 

paths includes the work of Fern et al.20 in developing a boosted ensemble of LazyDTs. 

Traditionally, boosting involves weighting the training cases in a training dataset, training a model, 

and then using that model to re-weight the training cases, thereby producing an ensemble of diverse 

models. The re-weighting is typically done by using the model to classify the training cases and 

then increasing the weights of training cases that are incorrectly classified by the model and 

decreasing the weights of training cases that are correctly classified by the model. A decision path 

S cannot use this boosting approach, however, as only those training cases that correspond to all 

the features in S can be classified by S. 

Fern et al.20 thus developed a novel boosting method for personalized decision paths that 

re-weights a training case based on the number of features shared with a decision path. They 

compared the results of single LazyDTs, bagged LazyDTs (BA-LazyDT), and boosted LazyDTs 

(BO-LazyDT), and demonstrated that using these ensemble approaches with personalized decision 
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paths improved predictive accuracy over the base method and matched performance of the 

analogous population method, AdaBoost. 

We used the personalized boosting methodology developed by Fern with our novel PDP-

Bay method (described in 3.1.2) as the base model to produce a new type of Bayesian personalized 

ensemble. 

3.5.2 The Boosted PDP-Bay Method 

We first describe the base model structure, search strategy, and scoring criterion of the 

Boosted PDP-Bay (BO-PDP-Bay).  

3.5.2.1 Base Model Structure 

The ensemble produced by the BO-PDP-Bay method consists of a forest of decision-path 

models. Detailed terminology regarding the structure of decision-paths is outlined in section 

3.1.2.1. The base model of the BO-PDP-Bay is the Personalized Decision Path that uses a Bayesian 

score (PDP-Bay), which is described in section 3.1.2.  

3.5.2.2 Search Strategy 

The pseudocode for the BO-PDP-Bay method is shown in Figure 5. Given a training dataset 

D of m training cases and a test case Test, the method starts with uniform weights W = (w1, ... , 

wm) where w = 1 for all of the training cases in D. A decision path S is trained in the manner 

described in section 3.1.2.2 with the BayScoreBDeu scoring criterion. To construct each path, the 

method uses a forward-stepping, greedy hill-climbing search and a Bayesian score as the criterion 
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for evaluating features for inclusion in the path. Beginning with an empty path S, the algorithm 

successively adds features from Test to S that locally maximize the score, until the score can no 

longer be improved. Currently, the method is designed to work with discrete data only. 

Once S is complete, the features in S and the corresponding predicted value for the target 

class are used to update W (the weights of the training cases). The predicted value for the target 

class tS is determined by identifying the target value with the highest probability according to S. 

Weights are increased for training cases with target values that differ from tS, while weights are 

decreased for training cases that share tS as a target value.  

Training cases that share more features with S have greater “relevance” to Test and their 

weights are scaled accordingly. Recall that a decision path S = (X1 = x1  X2 = x2  … Xj = xj  … 

 Xq = xq) contains q features and can be organized in a hierarchical manner as nodes in a graph, 

starting with the initial “root node” X1 = x1, and terminating with a leaf node representing the 

probability distribution of the target variable. Each node represents a different “level” of the path. 

To calculate the relevance R of a training case Train, the number of levels shared by Train and S 

are counted, starting with the root node X1 = x1. If Train does not take the same value as the root 

node, R = 0, and if Train shares all features with all levels of S, R = q (the total number of levels 

in S). As the order of features in S is necessary to calculate relevance, it is possible that relevance 

is not necessarily equal to the total number of features shared by Train and S.  

If Train has the same target value as the predicted target value from S, its weight is 

multiplied by R, otherwise its weight is multiplied by R, where  < 1 and  >1. When the weights 

for all training cases in D have been updated, the weights are normalized. A new decision path can 

then be trained on DW, the training data weighted using the updated weights in W. This process is 
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repeated b times, producing an ensemble F of b decision paths. In this research, the number of 

paths b was set to 10,  = 0.98, and  = 1.15, to match the parameters used by Fern et al.20  

 

 

Figure 6. Pseudocode for BO-PDP-Bay method. 

3.5.2.3 Bayesian Scoring Criterion  

The score of a candidate path S’ is calculated using the BayScoreBDeu given by Equation 

3.10 in 3.1.2.3 using a uniform structure prior and parameter prior 𝛼0 = 2. BayScoreBDeu 
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incorporates the number of training cases N that correspond to a given path, as well as the number 

of those cases which take each possible value of the target, denoted as Nk for the kth value of the 

target. When calculating N and the values of Nk for a given path, the counts of the training cases 

are scaled according to their corresponding weights in W. This score selects features that maximize 

the posterior probability of the model structure given the corresponding data. When this score is 

used with these settings, it produces equivalent results to BayScoreK2 for discrete values, but it can 

also handle continuous values which occur when non-integer weights are applied to the training 

data, resulting in non-integer values for N. 

3.5.2.4 Inference 

To perform inference for Test, parameter estimates are calculated using Equation 3.1 for 

each path S in forest F. These parameter estimates are then averaged, and the estimate for 

probability 𝜃𝑘 is therefore calculated in the same manner as LazyRF-Bay, which is given in 

Equation 3.28 in 3.3.2.4. 

3.5.3 Boosted PDP-Ent 

The Boosted PDP-Ent (BO-PDP-Ent) is a personalized boosted ensemble method that uses 

a personalized decision path with entropy score (PDP-Ent) rather than the PDP-Bay as the base 

model. Inference is performed using the average of the individual path predictions in the ensemble, 

each of which is calculated using Equation 3.14. Although the scores for model construction and 

inference differ, the BO-PDP-Ent has the same model structure and search strategies as BO-PDP 

-Bay. This is our implementation of Fern’s BO-LazyDT.20 
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3.6 AdaBoost 

AdaBoost is a canonical boosting method that trains an ensemble of decision “stumps” 

(decision trees that are limited to a single variable) in sequence, using classification information 

from the previous model to weight training cases to increase the prevalence of misclassified (or 

“challenging”) training cases.  

3.6.1 Model Structure  

The base model of AdaBoost is a decision stump, which is a decision tree that is limited to 

a single variable X. The decision-tree model M is represented as M = (T, ), where T = (S1, S2,…, 

Sh,…, Sm) is a collection of m paths, where each path Sh = (X = xh) consists of a single feature 

(value for variable X) and m is the number of values taken by the variable X. Given a training 

dataset D, the method selects a single variable that locally maximizes a scoring criterion.  

3.6.2 Search Strategy 

Starting with uniform weights W = (W1, ..., Wm) where Wl = 1 for each training data case, 

a decision tree that is limited to a single variable is trained with the weighted training data. The 

tree is used to classify the training cases, and the predicted class for each training case Trainl is 

compared to the true class. C = (C1, ..., Cm) contains information regarding classifications for the 

m training cases, where Cl = 0 if Trainl was classified correctly and Cl = 1 if Trainl was 

misclassified by the tree. The weighted misclassification error is then calculated as 
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𝐸𝑟𝑟𝑜𝑟 =  ∑ 𝑊𝑙𝐶𝑙
𝑚
𝑙=1 / ∑ 𝑊𝑙

𝑚
𝑙=1  ,                                                                                      (3.29) 

where Wl is the weight for Trainl.                                                           

This misclassification error is used to calculate a tree weight, defined as 

𝜔𝑡 =  
1

2
log (

1−𝐸𝑟𝑟𝑜𝑟𝑡

𝐸𝑟𝑟𝑜𝑟𝑡
) ,                                                                                                  (3.30) 

which is used to weight tree t in the ensemble prediction as well as update training case weights. 

Weight Wl for Trainl is updated as  

𝑊𝑙 =  (1 − 𝐶𝑙)𝑊𝑙𝑒
−𝜔𝑡 + 𝐶𝑙𝑊𝑙𝑒

𝜔𝑡 ,                                                                                                  (3.31) 

which results in misclassified training cases receiving higher weights and correctly classified cases 

receiving lower weights. The weights are normalized  

𝑊𝑙 =  𝑊𝑙
𝑚

𝑊𝑠𝑢𝑚
,                                                                                                               (3.32) 

where m is the number of training cases and Wsum is the sum of all the weights in W. A new decision 

tree is trained on the re-weighted training data, and this process is repeated b times. A prediction 

for 𝜃𝑓𝑜𝑟𝑒𝑠𝑡  is made by taking a weighted average of the individual outputs of the trees in the 

ensemble, 

𝜃𝑓𝑜𝑟𝑒𝑠𝑡 =  ∑ 𝜔𝑡𝜃𝑡
𝑏
𝑡=1  ,                                                                                                                          (3.33) 

where 𝜔𝑡 is the weight of tree t and 𝜃𝑡 is the prediction for parameter 𝜃 by tree t. 

3.6.3 AdaBoost with Entropy Score 

AdaBoost with entropy score (AB-Ent) is comprised of boosted decision trees that 

maximize an entropy information gain scoring criterion given by TreeEntScore in 3.2.2 to evaluate 

variables and calculates parameter probabilities using the maximum likelihood estimator as given 
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by Equation 3.14. Each decision tree is limited to a single variable. This is our implementation of 

Freund and Schapire’s AdaBoost algorithm.84 

3.6.4 AdaBoost with Bayesian Score 

AdaBoost with Bayesian score (AB-Bay) is comprised of boosted decision trees that 

maximize a Bayesian scoring criterion given by TreeBayScoreBDeu as described in 3.2.3. The 

structure prior is uniform and 𝛼0 = 2 to match the priors used by the Boosted PDP-Bay. Parameter 

probabilities are calculated using the K2 estimator as given by Equation 3.1. Each decision tree is 

limited to a single variable. 

3.7 Overview of Algorithms 

In Table 4, we provide an overview of the algorithmic methods described in this chapter. 

The primary experimental algorithms are the PDP-Bay, LazyRF-Bay, and BO-PDP-Bay. All other 

algorithmic methods were used as control algorithms. The novel algorithmic methods include the 

three primary experimental algorithms (PDP-Bay, LazyRF-Bay, and BO-PDP-Bay) as well as 

PDP-Bay-BDeu, LazyRF-Ent, and DT-Bay-BDeu. 
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Table 4. Overview of algorithmic methods with descriptions. 

Algorithmic methods in bold were developed for this dissertation. Red font denotes the primary experimental 

algorithmic methods, and algorithmic methods in italics were used as control algorithms.  

Name Full name Brief description 

PDP-Bay Personalized Decision Path that 

uses a K2 Bayesian score 

Single model, personalized, Bayesian 

score with uniform structure prior 

PDP-Bay-

BDeu 

Personalized Decision Path that 

uses a BDeu Bayesian score  

Single model, personalized, Bayesian 

score with prior hyperparameter tuning 

PDP-Ent Personalized Decision Path that 

uses an Entropy score 

Single model, personalized, entropy score 

LazyRF-Bay Lazy Random Forest that uses a 

Bayesian score 

Ensemble model, personalized, Bayesian 

score with uniform structure prior 

LazyRF-Ent Lazy Random Forest that uses 

an Entropy score 

Ensemble model, personalized, entropy 

score 

BO-PDP-Bay Boosted Personalized Decision 

Path that uses a Bayesian score 

Ensemble model, personalized, Bayesian 

score with uniform structure prior 

BO-PDP-Ent Boosted Personalized Decision 

Path that uses an Entropy score 

Ensemble model, personalized, entropy 

score 

DT-Bay Decision Tree that uses a K2 

Bayesian score 

Single model, population, Bayesian score 

with uniform structure prior 

DT-Bay-BDeu Decision Tree that uses a BDeu 

Bayesian score  

Single model, population, Bayesian score 

with prior hyperparameter tuning 

DT-Ent Decision Tree that uses an 

Entropy score 

Single model, population, entropy score 

RF-Bay Random Forest that uses a 

Bayesian score 

Ensemble model, population, Bayesian 

score with uniform structure prior 

RF-Ent Random Forest that uses an 

Entropy score 

Ensemble model, population, entropy 

score 

AB-Bay Adaptive Boosting of Decision 

Trees that uses a Bayesian score 

Ensemble model, population, Bayesian 

score with uniform structure prior 

AB-Ent Adaptive Boosting of Decision 

Trees that uses an Entropy score 

Ensemble model, population, entropy 

score 
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3.8 Hypotheses 

Here we state the three hypotheses of this dissertation.  

1. We hypothesize that the novel PDP-Bay method outperforms the entropy-scored 

personalized decision path and decision tree methods.  

2. We hypothesize that the novel LazyRF-Bay method outperforms the single PDP-Bay 

and random forest methods.  

3. We hypothesize that the novel BO-PDP-Bay method outperforms the single PDP-Bay 

and AdaBoost methods. 

The method of personalization used in this dissertation is a simple one that has been shown to 

improve predictive performance over population methods in non-Bayesian approaches, although 

the method is prone to overfitting.14 The use of Bayesian scoring incorporates smoothing, which 

may mitigate overfitting and improve predictive performance over non-Bayesian personalized 

methods as well as population methods. Furthermore, ensemble approaches often result in better 

predictive performance than single model methods, such as in the case of boosting non-Bayesian 

decision paths.20 Ensemble approaches like boosting and random forest combined with Bayesian 

scoring may result in further performance improvements for personalized decision paths. Overall, 

we hypothesize that personalized methods outperform population methods, that Bayesian methods 

outperform non-Bayesian methods, and that ensemble approaches outperform single model 

methods. 
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4.0 Experimental Methods 

This chapter provides details of the experimental methods used for evaluating the novel 

algorithms used in this dissertation. Section 4.1 briefly describes the datasets, and Sections 4.2-4.4 

describe the evaluation metrics, the statistical tests, and the algorithmic comparisons. 

4.1 Datasets 

We used the following datasets for evaluation of our methods. There are thirteen main 

datasets that include synthetic, genomic, and clinical datasets. We provide brief descriptions of the 

datasets in Table 5. 

4.1.1 Chronic Pancreatitis Dataset 

The chronic pancreatitis dataset was collected as part of the multicenter North American 

Pancreatitis Study 2.89 It consists of the predictor variables, which are 142 SNVs, and a binary 

target variable (developed chronic pancreatitis or not). The data were previously de-identified and 

consist of 2,201 patients, 980 (44.5%) of whom were diagnosed with chronic pancreatitis, and 

1,221 of whom were not.  
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Table 5. Datasets used in experimental evaluation. 

Dataset # 

Variables 

# Values 

per variable 

# 

Target values 

# of Cases # of Positive Cases 

(% of dataset) 

chronic-pancreatitis  142  3  2  2201  980 (44.5%)  

pneumonia  156  2-8  2  2287  261 (11.4%)  

sepsis-d  19  2-5  2  1673  189 (11.3%)  

sepsis-s  18  2-5  2  1673  478 (28.6%)  

heart-failure-d  17  2-7  2  11,178  500 (4.47%)  

heart-failure-c  20  2-7  2  11,178  1255 (11.2%)  

synthetic-large  1000  3  2  10,000  1270 (12.7%)  

synthetic-small  35  3  2  10,000  1270 (12.7%)  

cleveland 13 1-4 2 296 136 (45.9%) 

breast 30 1-4 2 569 212 (37.3%) 

hepatitis 19 1-2 2 80 13 (16.3%) 

heart 13 1-2 2 270 150 (55.6%) 

diabetes 8 1-4 2 768 268 (34.1%) 

 

4.1.2 Pneumonia Dataset 

The pneumonia dataset was collected by the Pneumonia Patient Outcomes Research Team 

in a multisite study.90 The dataset consists of 2,287 adult patients admitted with community 

acquired pneumonia. From data collected at the time of presentation, we have 156 predictor 

variables, which include clinical, laboratory, and radiographic findings. The target variable is a 

binary variable called dire outcome. A patient was considered to have experienced a dire outcome 

if any of the following occurred: 1) death within 30 days of presentation, 2) an initial intensive 

care unit admission for respiratory failure, respiratory or cardiac arrest, or shock, or 3) the presence 

of one or more specific, severe complications. According to these criteria, 261 patients (11.4%) 

experienced a dire outcome and 2,026 did not. 
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4.1.3 Sepsis Dataset 

The sepsis dataset was collected in the multisite Genetic and Inflammatory Markers of 

Sepsis (GenIMS) project.91 Data were collected on 1,673 patients who were admitted from an 

emergency department with a diagnosis of community acquired pneumonia. From the data 

collected at the time of presentation, we have 19 predictor variables that consist of demographic, 

clinical, and genetic findings as well as inflammatory markers. Two binary outcome variables were 

used: 1) death within 90 days of enrollment in the study, which was true for 189 patients (11.3%, 

sepsis-d dataset) and 2) development of severe sepsis during hospitalization, which was true for 

478 patients (28.6%, sepsis-s dataset). 

4.1.4 Heart Failure Dataset 

The heart failure dataset was collected by 192 hospitals in Pennsylvania and consists of 

11,178 patients who presented in emergency departments and were admitted with a diagnosis of 

heart failure.92 There are 20 predictor variables that consist of demographic, clinical, laboratory, 

electrocardiographic, and radiographic findings. Two binary outcome variables were used: 1) 

death from any cause during hospitalization, which was true for 500 patients (4.47%, heart failure-

d dataset) and 2) development of one or more severe complications (including death) during 

hospitalization, which was true for 1,255 patients (11.2%, heart failure-c dataset). 
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4.1.5 Synthetic Dataset 

The synthetic datasets were generated using R code to generate synthetic genomic datasets. 

Each predictor variable represents a single nucleotide variant (SNV), which is a variation in a 

single nucleotide in a specific position in the genome. For a given SNV, alleles can be designated 

as “major” (the most commonly appearing allele in members of a population) and “minor” (the 

second most commonly appearing allele in members of a population), and the minor allele 

frequency (MAF) quantifies how frequently the minor allele appears in a population. It is thought 

that SNVs with rare MAFs can have a large impact on susceptibility to certain diseases.93 

For the SNVs in the synthetic datasets, the binary disease variable was modeled as a 

function of 35 “signal” SNVs. To generate the MAFs and odds ratios (ORs) for these 35 SNVs, 

random values were sampled from a uniform distribution between a minimum and maximum value 

using the “runif” function. Of the 35 signal SNVs, 25 were “rare” with MAFs sampled from 

(0.0001, 0.01), and 10 were “common” with MAFs sampled from (0.05, 0.50). For each signal 

SNV, ORs were also randomly sampled, with values between (2, 10) for the 25 rare SNVs and 

between (1.05, 1.50) for the 10 common SNVs. 

For each case, two random values for alleles were sampled from a uniform distribution 

from (0, 1) for each SNV, and if the value for an allele was less than the MAF for that SNV, the 

case was assigned a “1” for the presence of a rare allele. The values for the two alleles were then 

summed to determine a value for the SNV predictor variable. Since each case has two possible 

alleles for each SNV, the case could be assigned a total value of 0 (no rare alleles), 1 (one rare 

allele), or 2 (two rare alleles). 
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To determine the target value for each case, the value for each signal SNV was multiplied 

by the OR of that SNV to produce a risk value, and these products were summed across the 35 

signal SNVs to calculate a total risk for the case. If a case’s total risk surpassed a given threshold 

(set to 10), the case was designated as “disease.” 

The small dataset consists only of the 35 “signal” SNVs and the binary disease variable. 

The large synthetic dataset consists of 1,000 single nucleotide variants (SNVs) as predictor 

variables and the binary disease variable. The large synthetic dataset contains 965 “noise” SNVs 

in addition to the 35 signal SNVs, and these were randomly assigned MAFs from common to rare 

and had no effect on the disease status. Both datasets consist of 10,000 “patients,” of which 1270 

(12.7%) have a disease target value. 

4.1.6 UCI Datasets 

There are five additional health-related datasets from University of California at Irvine’s 

(UCI) public dataset repository. These have been used as benchmark datasets for machine learning 

methods in a number of publications. The cleveland dataset94 comes from Dr. Robert Detrano at 

the Cleveland Clinic Foundation and contains clinical and demographic data from 303 patients, 

139 of whom (45.9%) were found to have clinically significant heart disease. The breast dataset95 

comes from the University of Wisconsin and contains pathology data from breast tissue samples 

from 699 women, 241 of whom (34.5%) were found to have malignant breast masses. The hepatitis 

dataset94 comes from the Jozef Stefan Institute in Yugoslavia and contains clinical and 

demographic data from 155 patients with hepatitis, 32 of whom (20.6%) died. The heart dataset96 

comes from Faisalabad Institute of Cardiology in Pakistan and contains clinical and demographic 
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data from 299 patients with heart failure, of whom 96 (32.1%) died. The diabetes dataset97 comes 

from the National Institute of Diabetes and Digestive and Kidney Diseases and contains clinical 

and demographic data from 768 female patients of Pima Indian heritage, of whom 268 (34.9%) 

had diabetes. 

Each dataset that contained more than 1000 cases was divided into approximately 

80%/20% train/test splits with approximately equal prevalence of the positive target in train and 

test datasets. We performed stratified 10-fold cross-validation twice (2x10FCV) on the UCI 

datasets, resulting in 20 train and test datasets. The predictions from individual folds were then 

aggregated to calculate the evaluation metrics. 

4.2 Evaluation Metrics  

In this section, we describe the metrics used to evaluate the methods as well as the statistical 

methods used to compare results. 

4.2.1 Discrimination 

Discrimination characterizes the ability of a classifier to differentiate between target 

classes. For binary targets, this can be measured by the area under the receiver operating 

characteristic curve (AUROC), which represents the probability that a randomly selected case from 

cases with the positive target class will be assigned a higher probability of a positive outcome by 
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the classifier than a randomly selected case from the negative class. The best possible value for 

AUROC is 1 and the worst is 0.5. 

4.2.2 Calibration  

Calibration characterizes the ability of a classifier to assign an accurate probability estimate 

of a positive outcome to a case. For example, we would expect that, of the cases assigned a 90% 

probability of a positive outcome by a well-calibrated model, 90% of these cases would actually 

have a positive target value. This can be measured by expected calibration error (ECE), which 

approximates the true calibration error by discretizing probability estimates and assigning cases 

into their corresponding bins.98 The ECE is then given by the following equation: 

𝐸𝐶𝐸 =  ∑ 𝑃(𝑖)| 𝑜𝑖 − 𝑒𝑖|,
𝐾

𝑖=1
 

where K is the number of bins, P(i) is the fraction of cases corresponding to bin i, oi is the fraction 

of positive cases in bin i, and ei is mean of the predicted probabilities that the target value is positive 

for each of the cases in bin i. The best possible value for ECE is 0. For our experiments, K was set 

to 10.  

4.2.3 Model Complexity  

To characterize model complexity, we measure the mean path length (MPL) for each case 

in the test dataset. Each test case corresponds to a single path in a given model, which is either a 

standalone personalized path or a path from a decision tree, and path length is defined as the 

number of features in the path. For ensembles, the mean path length for each test case is calculated 
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as the average of the path lengths in the ensemble used for prediction, and these average path 

lengths are averaged across all test cases to produce the overall mean path length. Simpler models 

require fewer features to make a prediction and are likely to be easier to comprehend. Thus, shorter 

mean path lengths are considered better for the purposes of this work. 

4.3 Statistical Tests  

Measures were compared between methods across all datasets using Wilcoxon Signed 

Rank Test. Additionally, AUROCs were compared pairwise on individual datasets using DeLong’s 

test. These are nonparametric tests that do not require the distribution of the data to be normal. 

Each dataset was randomly split approximately 80%/20% into a training and a test set such that 

the proportion of positive cases was the same across each pair of training and test sets. We trained 

models using the training sets and performed the evaluations on the test sets. We evaluated the 

methods on discrimination, calibration, and model complexity. For model complexity, we 

measured the average predictive path length and defined path length as the number of variables in 

the path that was used for inference. For ensembles, we calculated the average path length of the 

predictive paths in the ensemble. 

4.4 Algorithmic Comparisons 

An overview of the main comparisons can be found in Table 6. 
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Table 6. Overview of comparisons. 

 Primary Method Comparison Methods 

Single Model Methods PDP-Bay DT-Bay, PDP-Ent, DT-Ent 

 PDP-Bay PDP-Bay-BDeu 

 DT-Bay DT-Bay-BDeu 

Ensemble Methods LazyRF-Bay LazyRF-Ent, RF-Bay, RF-Ent 

 BO-PDP-Bay AB-Bay, BO-PDP-Ent, AB-Ent 

 

We compared the predictive performance of the novel PDP-Bay to a personalized decision 

path with entropy score (PDP-Ent) and population decision trees, one with an entropy score (DT-

Ent) and the other with a Bayesian score (DT-Bay), on the datasets listed in Table 5. By comparing 

PDP-Bay to PDP-Ent, we evaluate potential differences in predictive performance associated with 

Bayesian scoring. By comparing PDP-Bay to DT-Bay, we evaluate potential differences in 

predictive performance associated with personalization. By comparing PDP-Bay to DT-Ent, we 

evaluate potential differences in predictive performance associated with the combination of both 

personalization and Bayesian scoring, and compare our novel method (PDP-Bay) with an 

implementation of a commonly used machine learning algorithm (DT-Ent). 

We compared the predictive performance of PDP-Bay with PDP-Bay-BDeu and the 

performance of DT-Bay with DT-Bay-BDeu on the datasets listed in Table 5. By comparing PDP-

Bay to PDP-Bay-BDeu, we evaluate potential differences in predictive performance associated 

with the use of hyperparameter optimization in the context of personalized methods, and by 

comparing DT-Bay to DT-Bay-BDeu, we evaluate potential differences in predictive performance 

associated with the use of hyperparameter optimization in the context of population methods. 

We compared the predictive performance of the novel LazyRF-Bay to the base model, 

PDP-Bay, and population random forest using both entropy (RF-Ent) and Bayesian (RF-Bay) 
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scores on the datasets listed in Table 5.  By comparing LazyRF-Bay to PDP-Bay, we evaluate 

potential differences in predictive performance associated with the use of the random forest 

ensemble approach in the context of personalized Bayesian algorithmic methods. By comparing 

LazyRF-Bay to LazyRF-Ent, we evaluate potential differences in predictive performance 

associated with Bayesian scoring. By comparing LazyRF-Bay to RF-Bay, we evaluate potential 

differences in predictive performance associated with personalization. By comparing LazyRF-Bay 

to RF-Ent, we evaluate potential differences in predictive performance associated with the 

combination of both personalization and Bayesian scoring, and compare our novel method 

(LazyRF-Bay) with an implementation of a commonly used machine learning algorithm (RF-Ent). 

We compared the predictive performance of the novel BO-PDP-Bay to the base model 

PDP-Bay, boosted decision paths with an entropy score (BO-PDP-Ent), and boosted ensembles of 

decision trees using both entropy (AB-Ent) and Bayesian (AB-Bay) scores on the datasets listed 

in Table 5. By comparing BO-PDP-Bay to PDP-Bay, we evaluate potential differences in 

predictive performance associated with the use of the personalized boosting approach in the 

context of personalized Bayesian algorithmic methods. By comparing BO-PDP-Bay to BO-PDP -

Ent, we evaluate potential differences in predictive performance associated with Bayesian scoring. 

By comparing BO-PDP -Bay to AB-Bay, we evaluate potential differences in predictive 

performance associated with personalization. By comparing BO-PDP -Bay to AB-Ent, we evaluate 

potential differences in predictive performance associated with the combination of both 

personalization and Bayesian scoring, and compare our novel method (BO-PDP -Bay) with an 

implementation of a commonly used machine learning algorithm (AB-Ent). 

We compared the predictive performance of all personalized methods described above 

(PDP-Bay, PDP-Bay-BDeu, PDP-Ent, LazyRF-Bay, LazyRF-Ent, BO-PDP-Bay, and BO-PDP-
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Ent) with that of all population methods described above (DT-Bay, DT-Bay-BDeu, DT-Ent, RF-

Bay, RF-Ent, AB-Bay, and AB-Ent). By comparing all personalized methods with corresponding 

population methods, we evaluate potential differences in predictive performance associated with 

our method of personalization. 

We compared the predictive performance of all Bayesian methods described above (PDP-

Bay, DT-Bay, LazyRF-Bay, RF-Bay, BO-PDP-Bay, and AB-Bay) with that of all non-Bayesian 

methods described above (PDP-Ent, DT-Ent, LazyRF-Ent, RF-Ent, BO-PDP-Ent, and AB-Ent). 

By comparing all Bayesian methods with corresponding non-Bayesian methods, we evaluate 

potential differences in predictive performance associated with our method of model scoring. 

4.5 Bayesian Prior Hyperparameter Settings 

For the Bayesian algorithmic methods, there were several possibilities for Bayesian scores 

and prior hyperparameter settings. Table 7 lists the specific score used and the prior 

hyperparameters used for the experiments. 
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Table 7. Prior hyperparameter values for Bayesian algorithmic methods. 

Algorithmic 

Method 

Score  Parameter Prior (0) Structure Prior (e) 

PDP-Bay BayScoreK2 n/a 0 

DT-Bay TreeBayScoreK2 n/a 0 

PDP-BDeu BayScoreBDeu [0.1, 0.5, 1.0, 2.0, 5.0, 10.0] [0, 1, 3, 6] 

DT-Bay-BDeu TreeBayScoreBDeu [0.1, 0.5, 1.0, 2.0, 5.0, 10.0] [0, 1, 3, 6] 

LazyRF-Bay  BayScoreK2 n/a 0 

RF-Bay Tree BayScoreK2 n/a 0 

BO-PDP-Bay  BayScoreBDeu 2 0 

AB-Bay TreeBayScoreBDeu 2 0 

 

A value of zero for the structure prior indicates that a uniform distribution was used for the 

structure prior probability distribution. 

4.6 Implementation 

We statistically compared the methods for each of the evaluation measures across the 

datasets with the Wilcoxon signed-rank test statistic using the R function “wilcox.test”. For 

discrimination, we computed the AUROCs and performed pairwise comparison of AUROCs given 

specific datasets with DeLong’s test using the R package “pROC”. We implemented the three 

methods in Python (version 3.7). We performed all experiments on a MacBook Pro with a 3.3 GHz 

Dual-Core Intel Core i5 processor and 16GB of RAM, running the 64-bit macOS Catalina 

operating system. 
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5.0 Results 

This chapter presents the results of evaluation of the novel personalized algorithmic 

methods. Section 5.1 focuses on the PDP-Bay and PDP-BDeu methods, Section 5.2 focuses on the 

LazyRF-Bay method, and Section 5.3 focuses on the Boosted PDP-Bay method. Each of the 

personalized methods is compared to several comparison methods including population 

algorithmic methods. The evaluation results are presented in terms of discrimination (measured 

with AUROC), calibration (measured with ECE), and model complexity (measured with MPL). 

In most cases, the personalized methods were statistically compared to the comparison methods 

with the Wilcoxon signed-rank test. 

5.1 PDP-Bay and Single Model Methods 

This section presents the results of the personalized PDP-Bay method and compares its 

performance to that of population methods, DT-Bay and DT-Ent, and the entropy-scored 

personalized method, PDP-Ent (see Table 4 for descriptions of algorithmic methods). All of these 

methods derive a single model: PDP-Bay and PDP-Ent derive a single decision path model and 

DT-Bay and DT-Ent derive a single decision tree model.   
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5.1.1 Discrimination 

The mean AUROC for the PDP-Bay method was 0.78. Mean AUROCs for comparison 

methods were 0.80 for DT-Bay, 0.70 for PDP-Ent, and 0.71 for DT-Ent. AUROCs for each method 

and dataset are listed in Table 8.  

PDP-Bay did not have statistically significantly different mean AUROCs than DT-Bay (p 

= 0.273), and had statistically significantly higher mean AUROCs than PDP-Ent (p = 0.002) and 

DT-Ent (p = 0.006) at the 0.05 level on the Wilcoxon signed-rank test. In summary, in terms of 

the AUROC, the PDP-Bay performed better than the entropy-based personalized and population 

methods and on par with the Bayesian population method.  
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Table 8. AUROCs for PDP-Bay, DT-Bay, PDP-Ent, and DT-Ent methods. 

Results in red font indicate statistically significantly higher AUROCs than that of PDP-Bay, and results in 

blue font indicate statistically significantly lower AUROCs than that of PDP-Bay on DeLong’s test (values 

marked with * indicate Wilcoxon signed-rank test). 

 Dataset  PDP-Bay DT-Bay PDP-Ent DT-Ent 

chronic-pancreatitis 0.83 

 

0.81  

(p = 0.254) 

0.74  

(p < 0.001) 

0.72  

(p < 0.001) 

pneumonia 0.66  

 

0.82  

(p < 0.001) 

0.51  

(p < 0.001) 

0.67  

(p = 0.875) 

sepsis-d 0.81  

 

0.84  

(p = 0.175) 

0.55  

(p < 0.001) 

0.66 

(p < 0.001) 

sepsis-s 0.74 

 

0.75 

(p = 0.455) 

0.64 

(p < 0.001) 

0.63 

(p < 0.001) 

heart-failure-d 0.69  

 

0.73 

(p = 0.084) 

0.54 

(p < 0.001) 

0.54 

(p < 0.001) 

heart-failure-c 0.64 

 

0.73 

(p < 0.001) 

0.52 

(p < 0.001) 

0.58 

(p < 0.001) 

synth-large 0.77  

 

0.63 

(p < 0.001) 

0.81 

(p = 0.080) 

0.59 

(p < 0.001) 

synth-small 0.82  

 

0.70 

(p < 0.001) 

0.83 

(p = 0.739) 

0.66 

(p < 0.001) 

cleveland 0.83 

 

0.88 

(p < 0.001) 

0.76 

(p < 0.001) 

0.79 

(p = 0.025) 

breast 0.97 

 

0.98 

(p = 0.172) 

0.95 

(p < 0.001) 

0.95 

(p  = 0.010) 

hepatitis 0.77 

 

0.79 

(p = 0.453) 

0.63 

(p = 0.049) 

0.84 

(p = 0.069) 

heart 0.85 

 

0.86 

(p = 0.252) 

0.81 

(p = 0.002) 

0.82 

(p = 0.170) 

diabetes 0.83 

 

0.83 

(p = 0.894) 

0.82 

(p = 0.019) 

0.80 

(p = 0.003) 

Mean  0.78 

 

0.80 

(p = 0.273) 

0.70* 

(p = 0.002) 

0.71* 

(p = 0.006) 
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5.1.2 Calibration 

The mean ECE for PDP-Bay was 0.13, for DT-Bay mean ECE was 0.05, for PDP-Ent mean 

ECE was 0.14, and for DT-Ent mean ECE was 0.15. ECEs for each method and dataset are listed 

in Table 9. 

 
Table 9. ECEs for PDP-Bay, DT-Bay, PDP-Ent, and DT-Ent methods. 

Results in red font indicate statistically significantly lower mean ECEs than that of PDP-Bay, and results in 

blue font indicate statistically significantly higher mean ECEs than that of PDP-Bay on the Wilcoxon signed-

rank test. 

Dataset  PDP-Bay DT-Bay PDP-Ent DT-Ent 

chronic-pancreatitis 0.25 0.10 0.26 0.25 

pneumonia 0.11 0.09 0.11 0.14 

sepsis-d 0.09 0.03 0.10 0.15 

sepsis-s 0.14 0.04 0.21 0.26 

heart-failure-d 0.04 0.01 0.04 0.09 

heart-failure-c 0.09 0.04 0.11 0.18 

synth-large 0.05 0.13 0.07 0.19 

synth-small 0.07 0.02 0.07 0.10 

cleveland 0.21 0.06 0.25 0.20 

breast 0.04 0.02 0.05 0.05 

hepatitis 0.13 0.07 0.12 0.12 

heart 0.24 0.06 0.26 0.17 

diabetes 0.17 0.03 0.18 0.09 

Mean   0.13 

 

0.05 

(p = 0.006) 

0.14 

(p = 0.002) 

0.15 

(p = 0.191) 

 

PDP-Bay had statistically significantly higher mean ECEs than DT-Bay (p = 0.006), 

statistically significantly lower mean ECEs than PDP-Ent (p = 0.002), and did not have statistically 

significantly different mean ECEs than DT-Ent (p = 0.191) at the 0.05 level on the Wilcoxon 
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signed-rank test. In summary, the Bayesian population method had the best calibration and the 

entropy-based population method had the worst calibration with the personalized methods 

performing in between. 

5.1.3 Model Complexity 

The mean MPL for PDP-Bay was 4.38, for DT-Bay mean MPL was 4.35, for PDP-Ent 

mean MPL was 4.00, and for DT-Ent mean MPL was 6.02. MPLs for each method and dataset are 

listed in Table 10. 

Table 10. MPLs for PDP-Bay, DT-Bay, PDP-Ent, and DT-Ent methods. 

Results in blue font indicate statistically significantly longer mean MPLs than that of PDP-Bay, and results in 

red font indicate statistically significantly shorter mean MPLs than that of PDP-Bay on the Wilcoxon signed-

rank test. 

 

 

 

 

 

 

 

Dataset  PDP-Bay DT-Bay PDP-Ent DT-Ent 

chronic-pancreatitis 2.76 5.74 2.44 5.25 

pneumonia 2.97 8.44 2.36 4.79 

sepsis-d 3.53 2.08 3.15 5.79 

sepsis-s 4.27 2.16 3.95 6.26 

heart-failure-d 6.37 3.18 5.96 7.80 

heart-failure-c 8.20 5.10 7.42 8.87 

synth-large 2.41 9.44 2.09 8.72 

synth-small 13.53 4.69 11.79 9.79 

cleveland 3.43 3.93 3.35 4.72 

breast 1.53 2.23 1.49 2.89 

hepatitis 1.94 2.52 1.64 2.79 

heart 3.39 3.82 3.51 5.55 

diabetes 2.65 3.20 2.84 5.05 

Mean   4.38 

 

4.35 

(p = 1.00) 

4.00 

(p = 0.005) 

6.02 

(p = 0.017) 
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PDP-Bay did not have statistically significantly different mean MPLs than DT-Bay (p = 

1.00), had statistically significantly longer mean MPLs than PDP-Ent (p = 0.005) and had 

statistically significantly shorter mean MPLs than DT-Ent (p = 0.017) at the 0.05 level on the 

Wilcoxon signed-rank test. In summary, the entropy-based personalized method had the simplest 

models, while the entropy-based population method had the most complex models. The Bayesian 

personalized and population methods fell in between. 

5.1.4 PDP-Bay-BDeu  

This section presents the results of the personalized PDP-Bay-BDeu method and 

population DT-Bay-BDeu method and compares their performance to that of the personalized 

PDP-Bay and population DT-Bay methods (see Table 4 for descriptions of algorithmic methods). 

All of these methods derive a single model: PDP-Bay and PDP-Bay-BDeu derive a single decision 

path model and DT-Bay and DT-Bay-BDeu derive a single decision tree model. The PDP-Bay-

BDeu and DT-Bay-BDeu methods perform hyperparameter tuning to select optimized parameter 

and structure priors, while the PDP-Bay and DT-Bay use simple uniform priors. 

5.1.4.1 Discrimination 

The mean AUROC of the PDP-Bay was 0.78, and for the PDP-Bay-BDeu mean AUROC 

was 0.80. The mean AUROC of the DT-Bay was 0.80, and for the PDP-Bay-BDeu mean AUROC 

was 0.79. AUROCs for each method and dataset are listed in Table 11. 
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Table 11. AUROCs for PDP-Bay, PDP-BDeu, DT-Bay, and DT-BDeu methods. 

Results in red font indicate statistically significantly higher AUROCs than that of corresponding non-

optimized method (PDP-Bay for PDP-Bay BDeu and DT-Bay for DT-Bay-BDeu), and results in blue font 

indicate statistically significantly lower AUROCs than that of corresponding non-optimized method on 

DeLong’s test. 

 

 

 

Dataset  PDP-Bay PDP-Bay-BDeu DT-Bay DT-Bay-BDeu 

chronic-pancreatitis 0.83 

 

0.84 

(p =  0.548) 

0.81  

 

0.83 

(p =  0.209) 

pneumonia 0.66  

 

0.76 

(p = 0.003) 

0.82  

 

0.77 

(p = 0.050) 

sepsis-d 0.81  

 

0.84 

(p = 0.216) 

0.84  

 

0.83 

(p = 0.331) 

sepsis-s 0.74 

 

0.75 

(p = 0.498) 

0.75 

 

0.76 

(p =  0.673) 

heart-failure-d 0.69  

 

0.72 

(p = 0.075) 

0.73 

 

0.71 

(p = 0.160) 

heart-failure-c 0.64 

 

0.69 

(p < 0.001) 

0.73 

 

0.74 

( p =  0.677) 

synth-large 0.77  

 

0.75 

(p = 0.395) 

0.63 

 

0.69 

(p =  0.034) 

synth-small 0.82  

 

0.86 

(p =  0.015) 

0.70 

 

0.66 

(p =  0.078) 

cleveland 0.83 

 

0.81 

(p = 0.033) 

0.88 

 

0.82 

(p < 0.001) 

breast 0.97 

 

0.98 

(p = 0.003) 

0.98 

 

0.98 

(p = 0.092) 

hepatitis 0.77 

 

0.79 

(p = 0.816) 

0.79 

 

0.84 

(p = 0.212) 

heart 0.85 

 

0.83 

(p = 0.003) 

0.86 

 

0.81 

(p < 0.001) 

diabetes 0.83 

 

0.82 

(p = 0.798) 

0.83 

 

0.79 

(p < 0.001) 

Mean  0.78 

 

0.80 

(p = 0.110) 

0.80 

 

0.79 

(p = 0.497) 



 86 

 

PDP-Bay did not have statistically significantly different mean AUROCs than PDP-Bay-

BDeu (p = 0.110), and DT-Bay did not have statistically significantly different mean AUROCs 

than DT-Bay-BDeu (p = 0.497) at the 0.05 level on the Wilcoxon signed-rank test. In summary, 

in terms of AUROC, the BDeu-scored Bayesian methods performed on par with the K2-scored 

Bayesian methods.  

5.1.4.2 Calibration 

The mean ECE for the PDP-Bay was 0.13, and for the PDP-Bay-BDeu mean ECE was 

0.11. The mean ECE for the DT-Bay was 0.05, and for the DT-Bay-BDeu mean ECE was 0.04. 

ECEs for each method and dataset are listed in Table 12. 

PDP-Bay-BDeu had statistically significantly lower mean ECEs than PDP-Bay (p = 0.033), 

and DT-Bay did not have statistically significantly different mean ECEs than DT-Bay-BDeu (p = 

0.376) at the 0.05 level on the Wilcoxon signed-rank test. In summary, in terms of ECE, the 

personalized BDeu-scored Bayesian methods performed better than the personalized K2-scored 

Bayesian methods.  

 

 

 

 

 

 



 87 

 

Table 12. ECEs for PDP-Bay, PDP-BDeu, DT-Bay, and DT-BDeu methods. 

Results in red font indicate statistically significantly lower ECEs than that of PDP-Bay on the Wilcoxon 

signed-rank test. 

 

 

5.1.4.3 Model Complexity 

The mean MPL for the PDP-Bay was 4.38, and for the PDP-Bay-BDeu mean MPL was  

3.53. The mean MPL for the DT-Bay was 4.35, and for the DT-Bay-BDeu mean MPL was 2.58. 

MPLs for each method and dataset are listed in Table 13. 

PDP-Bay-BDeu had statistically significantly shorter mean MPLS than PDP-Bay-BDeu (p 

= 0.017), and DT-Bay had statistically significantly shorter mean MPLS than DT-Bay-BDeu (p = 

0.003) at the 0.05 level on the Wilcoxon signed-rank test. In summary, in terms of MPL, the BDeu-

scored Bayesian methods produced simpler models than the K2-scored Bayesian methods. 

 

Dataset  PDP-Bay PDP-Bay-BDeu DT-Bay DT-Bay-BDeu 

chronic-pancreatitis 0.25 0.26 0.10 0.01 

pneumonia 0.11 0.07 0.09 0.04 

sepsis-d 0.09 0.06 0.03 0.03 

sepsis-s 0.14 0.04 0.04 0.04 

heart-failure-d 0.04 0.03 0.01 0.01 

heart-failure-c 0.09 0.08 0.04 0.02 

synth-large 0.05 0.01 0.13 0.02 

synth-small 0.07 0.08 0.02 0.02 

cleveland 0.21 0.21 0.06 0.10 

breast 0.04 0.03 0.02 0.03 

hepatitis 0.13 0.12 0.07 0.10 

heart 0.24 0.25 0.06 0.09 

diabetes 0.17 0.17 0.03 0.02 

Mean  0.13 0.11  

(p = 0.033) 

0.05 

 

0.04 

(p = 0.376) 



 88 

 

Table 13. MPLs for PDP-Bay, PDP-BDeu, DT-Bay, and DT-BDeu methods. 

Results in red font indicate statistically significantly shorter MPLs than that of PDP-Bay or DT-Bay on the 

Wilcoxon signed-rank test. 

 

5.2 LazyRF-Bay and Random Forest Methods 

This section presents the results of the personalized LazyRF-Bay method and compares its 

performance to that of population methods, RF-Bay and RF-Ent, and the personalized methods, 

LazyRF-Ent and PDP-Bay (see Table 4 for descriptions of algorithmic methods). All of these 

methods, except for PDP-Bay, derive ensemble models: LazyRF-Bay and LazyRF-Ent derive 

ensembles of decision paths and RF-Bay and RF-Ent derive ensembles of trees. 

Dataset  PDP-Bay PDP-Bay-BDeu DT-Bay DT-Bay-BDeu 

chronic-pancreatitis 2.76 2.69 5.74 1.99 

pneumonia 2.97 1.00 8.44 3.39 

sepsis-d 3.53 1.00 2.08 2.12 

sepsis-s 4.27 1.00 2.16 1.68 

heart-failure-d 6.37 6.68 3.18 2.16 

heart-failure-c 8.20 8.58 5.10 2.53 

synth-large 2.41 1.00 9.44 3.63 

synth-small 13.53 12.80 4.69 3.35 

cleveland 3.43 3.15 3.93 2.66 

breast 1.53 1.18 2.23 2.62 

hepatitis 1.94 1.09 2.52 2.64 

heart 3.39 3.18 3.82 2.89 

diabetes 2.65 2.61 3.20 1.86 

Mean  4.38 3.53 

(p = 0.017) 

4.35 2.58 

(p = 0.003) 
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5.2.1 Discrimination 

The mean AUROC for LazyRF-Bay was 0.82. Mean AUROCs for comparison methods 

were 0.78 for PDP-Bay, 0.81 for RF-Bay, 0.80 for LazyRF-Ent, and 0.77 for RF-Ent. AUROCs 

for each method and dataset are listed in Table 14. 

LazyRF-Bay had statistically significantly higher mean AUROCs than PDP-Bay (p = 

0.040), and did not have statistically significantly different mean AUROCs than RF-Bay (p = 

0.273), LazyRF-Ent (p = 0.305), and RF-Ent (p = 0.080) at the 0.05 level on the Wilcoxon signed-

rank test. In summary, in terms of AUROC, the LazyRF-Bay performed better than the single-

model method and on par with the other ensemble methods. 

  



 90 

 

Table 14. AUROCs for LazyRF- Bay, PDP-Bay, RF-Bay, LazyRF-Ent, and RF-Ent methods.  

Results in red font indicate statistically significantly higher AUROC than LazyRF-Bay, and results in blue 

indicate statistically significantly lower AUROC than LazyRF-Bay on DeLong’s test (values marked with * 

indicate Wilcoxon signed-rank test). 

 

 

Dataset  LazyRF-Bay PDP-Bay RF-Bay LazyRF-Ent RF-Ent 

chronic-pancreatitis 0.83 

 

0.83 

(p = 0.786) 

0.84 

(p = 0.313) 

0.82 

(p = 0.769) 

0.79 

(p = 0.44) 

pneumonia 0.72 

 

0.66  

(p = 0.174) 

0.82 

(p < 0.001) 

0.54 

(p < 0.001) 

0.74 

(p = 0.520) 

sepsis-d 0.83 

 

0.81  

(p = 0.571) 

0.87 

(p = 0.035) 

0.84 

(p = 0.305) 

0.85 

(p = 0.303) 

sepsis-s 0.78 

 

0.74 

(p = 0.177) 

0.77 

(p = 0.170) 

0.77 

(p = 0.141) 

0.75 

(p = 0.066) 

heart-failure-d 0.75 

 

0.69  

(p = 0.051) 

0.75 

(p = 1.00) 

0.72 

(p = 0.007) 

0.64 

(p < 0.001) 

heart-failure-c 0.74 

 

0.64 

(p < 0.001) 

0.77 

(p = 0.003) 

0.71 

(p < 0.001) 

0.70 

(p = 0.003) 

synth-large 0.62 

 

0.77  

(p < 0.001) 

0.59 

(p = 0.546) 

0.65 

(p = 0.235) 

0.49 

(p < 0.001) 

synth-small 0.93 

 

0.82  

(p < 0.001) 

0.67 

(p < 0.001) 

0.91 

(p = 0.328) 

0.61 

(p < 0.001) 

cleveland 0.88 

 

0.83 

(p = 0.026) 

0.90 

(p = 0.065) 

0.88 

(p = 0.090) 

0.89 

(p = 0.491) 

breast 0.99 

 

0.97 

(p = 0.028) 

0.99 

(p = 0.016) 

0.99 

(p = 0.853) 

0.99 

(p = 0.025) 

hepatitis 0.86 

 

0.77 

(p = 0.275) 

0.89 

(p = 0.372) 

0.87 

(p = 0.769) 

0.86 

(p= 0.866) 

heart 0.87 

 

0.85 

(p = 0.425) 

0.88 

(p = 0.269) 

0.87 

(p = 0.288) 

0.86 

(p = 0.986) 

diabetes 0.82 

 

0.83 

(p = 0.787) 

0.83 

(p = 0.037) 

0.82 

(p = 0.346) 

0.82 

(p = 0.486) 

Mean  0.82 

 

0.78* 

(p = 0.040) 

0.81 

(p = 0.273) 

0.80 

(p = 0.305) 

0.77 

(p = 0.080) 
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5.2.2 Calibration 

The mean ECE for LazyRF-Bay was 0.08, for PDP-Bay mean ECE was 0.13, for RF-Bay 

mean ECE was 0.04, for LazyRF-Ent mean ECE was 0.08, and for RF-Ent mean ECE was 0.05. 

ECEs for each method and dataset are listed in Table 15. 

 

Table 15. ECEs for LazyRF-Bay, PDP-Bay, RF-Bay, LazyRF-Ent, and RF-Ent methods. 

Results in blue font indicate statistically significantly higher mean ECEs than that of LazyRF-Bay, and 

results in red font indicate statistically significantly lower mean ECEs than that of LazyRF-Bay on the 

Wilcoxon signed-rank test. 

 

LazyRF-Bay had statistically significantly lower mean ECEs than PDP-Bay (p = 0.033), 

had statistically significantly higher mean ECEs than RF-Bay (p < 0.001) and RF-Ent (p = 0.002), 

Dataset  LazyRF-Bay PDP-Bay RF-Bay LazyRF-Ent RF-Ent 

chronic-pancreatitis 0.08 0.25 0.03 0.10 0.08 

pneumonia 0.11 0.11 0.01 0.11 0.04 

sepsis-d 0.07 0.09 0.05 0.08 0.03 

sepsis-s 0.07 0.14 0.06 0.10 0.07 

heart-failure-d 0.03 0.04 0.01 0.04 0.04 

heart-failure-c 0.07 0.09 0.03 0.08 0.06 

synth-large 0.12 0.05 0.04 0.14 0.09 

synth-small 0.09 0.07 0.02 0.08 0.04 

cleveland 0.06 0.21 0.05 0.04 0.05 

breast 0.04 0.04 0.04 0.04 0.03 

hepatitis 0.09 0.13 0.08 0.13 0.09 

heart 0.07 0.24 0.05 0.06 0.07 

diabetes 0.13 0.17 0.04 0.13 0.02 

Mean   0.08 

 

0.13 

(p = 0.033) 

0.04 

(p < 0.001) 

0.08 

(p = 0.340) 

0.05 

(p = 0.002) 
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and did not have statistically significantly different mean ECEs than LazyRF-Ent (p = 0.340) at 

the 0.05 level on the Wilcoxon signed rank test. In summary, in terms of ECE, the population 

ensemble methods had the best calibration, the single-model method had the worst calibration, and 

the personalized ensemble methods performed in between. 

5.2.3 Model Complexity 

The mean MPL for LazyRF-Bay was 3.95, for PDP-Bay mean MPL was 4.38, for RF-Bay 

mean MPL was 3.87, for LazyRF-Ent mean MPL was 3.94, and for RF-Ent mean MPL was 5.76. 

MPLs for each method and dataset are listed in Table 16. 

LazyRF-Bay did not have statistically significantly different mean MPLs than PDP-Bay (p 

= 0.376), RF-Bay (p = 0.080), and LazyRF-Ent (p = 0.839), and had statistically significantly 

shorter mean MPLs than RF-Ent (p = 0.021) at the 0.05 level on the Wilcoxon signed rank test.  In 

summary, in terms of MPL, LazyRF-Bay produced simpler models than the entropy-based 

population ensemble, and was on par with the other Bayesian personalized and population methods 

as well as the entropy-based personalized ensemble method. 
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Table 16. MPLs for LazyRF-Bay, PDP-Bay, RF-Bay, LazyRF-Ent, and RF-Ent methods. 

Results in blue font indicate statistically significantly longer mean MPLs than that of LazyRF-Bay on the 

Wilcoxon signed-rank test. 

 

5.3 BO-PDP-Bay and Boosted Methods 

This section presents the results of the personalized BO-PDP-Bay method and compares 

its performance to that of population methods, AB-Bay and AB-Ent, and the personalized methods, 

BO-PDP-Ent and PDP-Bay (see Table 4 for descriptions of algorithmic methods). All of these 

methods, except for PDP-Bay, derive ensemble models using boosting: BO-PDP-Bay and BO-

PDP-Ent derive ensembles of decision paths and AB-Bay and AB-Ent derive ensembles of trees.   

Dataset  LazyRF-Bay PDP-Bay RF-Bay LazyRF-Ent RF-Ent 

chronic-pancreatitis 4.00 2.76 4.68 3.73 5.09 

pneumonia 4.84 2.97 6.28 4.18 5.66 

sepsis-d 2.74 3.53 3.07 3.00 5.82 

sepsis-s 3.06 4.27 3.51 3.41 5.95 

heart-failure-d 4.66 6.37 3.83 4.89 8.34 

heart-failure-c 5.84 8.20 5.88 6.08 9.86 

synth-large 4.15 2.41 6.61 3.78 7.63 

synth-small 12.41 13.53 2.09 12.17 6.71 

cleveland 2.59 3.43 3.73 2.74 5.01 

breast 1.92 1.53 2.13 1.98 2.59 

hepatitis 1.47 1.94 1.86 1.56 2.74 

heart 2.33 3.39 3.67 2.41 5.30 

diabetes 1.29 2.65 3.00 1.33 4.21 

Mean   3.95 

 

4.38 

(p = 0.376) 

3.87 

(p = 0.080) 

3.94 

(p = 0.839) 

5.76 

(p = 0.021) 
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5.3.1 Discrimination 

The mean AUROC for BO-PDP-Bay was 0.82. Mean AUROCs for comparison methods 

were 0.78 for PDP-Bay, 0.80 for AB-Bay, 0.80 for BO-PDP-Ent, and 0.81 for AB-Ent. AUROCs 

for each method and dataset are listed in Table 17. 

BO-PDP-Bay did not have statistically significantly different mean AUROCs than PDP-

Bay (p = 0.168), BO-PDP-Ent (p = 0.147), AB-Bay (p = 0.191), or AB-Ent (p = 0.168) at the 0.05 

level on the Wilcoxon signed-rank test.  
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Table 17. AUROCs for BO-PDP-Bay, PDP-Bay, AB-Bay, BO-PDP-Ent, and AB-Ent methods. 

Results in red font indicate statistically significantly higher AUROC than BO-PDP-Bay, and results in blue 

font indicate statistically significantly lower AUROC than BO-PDP-Bay on Delong’s test. 

 

Dataset  BO-PDP-Bay PDP-Bay AB-Bay BO-PDP-Ent AB-Ent 

chronic-pancreatitis 0.83 

 

0.83 

(p = 0.667) 

0.83 

(p = 0.993) 

0.81 

(p = 0.097) 

0.83 

(p = 0.989) 

pneumonia 0.78 

 

0.66  

(p = 0.005) 

0.82 

(p = 0.066) 

0.64 

(p < 0.001) 

0.81 

(p = 0.170) 

sepsis-d 0.85 

 

0.81  

(p = 0.066) 

0.85 

(p = 0.953) 

0.81 

(p = 0.061) 

0.85 

(p = 0.798) 

sepsis-s 0.77 

 

0.74 

(p = 0.169) 

0.78 

(p = 0.561) 

0.75 

(p = 0.206) 

0.78 

(p = 0.539) 

heart-failure-d 0.66 

 

0.69  

(p = 0.229) 

0.73 

(p < 0.001) 

0.61 

(p = 0.003) 

0.73 

(p < 0.001) 

heart-failure-c 0.74 

 

0.64 

(p < 0.001) 

0.77 

(p < 0.001) 

0.68 

(p < 0.001) 

0.77 

(p < 0.001) 

synth-large 0.92 

 

0.77  

(p < 0.001) 

0.62 

(p < 0.001) 

0.90 

(p = 0.043) 

0.62 

(p < 0.001) 

synth-small 0.98 

 

0.82  

(p < 0.001) 

0.62 

(p < 0.001) 

0.97 

(p = 0.134) 

0.62 

(p < 0.001) 

cleveland 0.82 

 

0.83 

(p = 0.653) 

0.86 

(p = 0.004) 

0.82 

(p = 0.758) 

0.89 

(p < 0.001) 

breast 0.98 

 

0.97 

(p = 0.390) 

0.99 

(p < 0.001) 

0.97 

(p = 0.435) 

0.99 

(p = 0.001) 

hepatitis 0.79 

 

0.77 

(p = 0.901) 

0.89 

(p = 0.063) 

0.86 

(p = 0.088) 

0.89 

(p = 0.069) 

heart 0.80 

 

0.85 

(p = 0.096) 

0.87 

(p < 0.001) 

0.83 

(p = 0.011) 

0.88 

(p < 0.001) 

diabetes 0.79 

 

0.83 

(p = 0.012) 

0.81 

(p = 0.006) 

0.80 

(p = 0.047) 

0.83 

(p < 0.001) 

Mean  0.82 

 

0.78 

(p = 0.168) 

0.80 

(p = 0.191) 

0.80 

(p = 0.147) 

0.81 

(p = 0.168) 
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5.3.2 Calibration 

The mean ECE for BO-PDP-Bay was 0.14. Mean ECEs for comparison methods were 0.13 

for PDP-Bay, 0.20 for AB-Bay, 0.13 for BO-PDP-Ent, and 0.20 for AB-Ent. ECEs for each method 

and dataset are listed in Table 18. 

 
Table 18. ECEs for BO-PDP-Bay, PDP-Bay, AB-Bay, BO-PDP-Ent, and AB-Ent methods. 

 

BO-PDP-Bay did not have statistically significantly different mean ECEs than PDP-Bay 

(p = 0.542), AB-Bay (p = 0.216), BO-PDP-Ent (p = 1.00), or AB-Ent (p = 0.244) at the 0.05 level 

on the Wilcoxon signed-rank test.  

Dataset  BO-PDP-Bay PDP-Bay AB-Bay BO-PDP-Ent AB-Ent 

chronic-pancreatitis 0.12 0.25 0.35 0.14 0.35 

pneumonia 0.05 0.11 0.08 0.10 0.08 

sepsis-d 0.02 0.09 0.04 0.04 0.04 

sepsis-s 0.11 0.14 0.22 0.08 0.20 

heart-failure-d 0.18 0.04 0.03 0.08 0.03 

heart-failure-c 0.28 0.09 0.04 0.18 0.04 

synth-large 0.05 0.05 0.09 0.05 0.09 

synth-small 0.48 0.07 0.09 0.42 0.09 

cleveland 0.17 0.21 0.32 0.17 0.32 

breast 0.02 0.04 0.27 0.03 0.27 

hepatitis 0.08 0.13 0.13 0.11 0.12 

heart 0.17 0.24 0.44 0.18 0.42 

diabetes 0.10 0.17 0.54 0.13 0.52 

Mean  0.14 0.13 

(p = 0.542) 

0.20 

(p = 0.216) 

0.13 

(p = 1.00) 

0.20 

(p = 0.244) 
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5.3.3 Model Complexity 

The mean MPL for BO-PDP-Bay was 3.65. Mean MPLs for comparison methods were 

4.38 for PDP-Bay, 0.89 for AB-Bay, 3.57 for BO-PDP-Ent, and 1.00 for AB-Ent. MPLs for each 

method and dataset are listed in Table 19. 

 

Table 19. MPLs for BO-PDP-Bay, PDP-Bay, AB-Bay, BO-PDP-Ent, and AB-Ent methods. 

Results in red font indicate statistically significantly shorter mean MPLs than that of BO-PDP-Bay on the 

Wilcoxon signed-rank test. 

 

BO-PDP-Bay did not have statistically significantly different mean MPLs than PDP-Bay 

(p = 0.094) and BO-PDP-Ent (p = 0.244); it had statistically significantly longer mean MPLs than 

AB-Bay (p < 0.001) and AB-Ent (p < 0.001) at the 0.05 level on the Wilcoxon signed-rank test. In 

Dataset  BO-PDP-Bay PDP-Bay AB-Bay BO-PDP-Ent AB-Ent 

chronic-pancreatitis 2.89 2.76 1.00 2.56 1.00 

pneumonia 2.79 2.97 1.00 2.50 1.00 

sepsis-d 3.32 3.53 0.90 3.26 1.00 

sepsis-s 4.33 4.27 0.40 4.10 1.00 

heart-failure-d 6.69 6.37 1.00 6.45 1.00 

heart-failure-c 7.82 8.20 1.00 7.35 1.00 

synth-large 2.64 2.41 1.00 2.38 1.00 

synth-small 5.37 13.53 1.00 5.96 1.00 

cleveland 3.07 3.43 0.82 3.18 1.00 

breast 1.52 1.53 1.00 1.49 1.00 

hepatitis 1.80 1.94 1.00 1.65 1.00 

heart 2.82 3.39 0.73 2.96 1.00 

diabetes 2.34 2.65 0.79 2.59 1.00 

Mean  3.65 4.38 

(p = 0.094) 

0.89 

(p < 0.001) 

3.57 

(p = 0.244) 

1.00 

(p < 0.001) 
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summary, in terms of MPL, BO-PDP-Bay produced more complex models than the population 

ensemble methods and produced similarly complex models as the other personalized methods. 

5.4 Personalized Methods 

We aggregated results of personalized and population methods (see Table 20) and 

compared the two groups using a paired Wilcoxon signed-rank test.  

 

Table 20. Personalized methods and population methods. 

Personalized Methods Population Methods 

PDP-Bay (13 datasets) 

PDP-Bay-BDeu (13 datasets) 

PDP-Ent (13 datasets) 

LazyRF-Bay (13 datasets) 

LazyRF-Ent (13 datasets) 

Boosted PDP-Bay (13 datasets) 

Boosted PDP-Ent (13 datasets) 

DT-Bay (13 datasets) 

DT-Bay-BDeu (13 datasets) 

DT-Ent (13 datasets) 

RF-Bay (13 datasets) 

RF-Ent (13 datasets) 

AB-Bay (13 datasets) 

AB-Ent (13 datasets) 

 

The mean AUROC across all personalized methods was 0.79 and the mean AUROC across 

all population methods was 0.78. Personalized and population methods did not have statistically 

significantly different AUROCs (p = 0.058) at the 0.05 level. The mean ECE across all 

personalized methods was 0.12 and the mean ECE across all population methods was 0.11. 

Population methods had statistically significantly lower ECEs than personalized methods (p = 

0.039) at the 0.05 level. The mean MPL across all personalized methods was 3.86 and the mean 

MPL across all population methods was 3.50. Personalized and population methods did not have 
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statistically significantly different MPLs (p = 0.710) at the 0.05 level. These results are listed in 

Table 21.  

Table 21. Aggregate results of personalized and population methods. 

Results in red font indicate statistically significantly lower ECE than personalized methods on Wilcoxon 

signed-rank test. 

 Personalized Methods Population Methods 

Mean AUROC 0.79 0.78 (p = 0.058) 

Mean ECE 0.12 0.11 (p = 0.039) 

Mean MPL 3.86 3.50 (p = 0.710) 

 

In summary, in terms of calibration, personalized methods had slightly worse performance 

than population methods, and in terms of discrimination and model complexity, personalized 

methods had performance on par with population methods. 

5.5 Bayesian Methods 

We aggregated results of Bayesian and non-Bayesian scored methods (see Table 22) and 

compared them using a paired Wilcoxon signed-rank test.  

 

Table 22. Bayesian and non-Bayesian methods. 

Bayesian Methods Non-Bayesian Methods 

PDP-Bay (13 datasets) 

LazyRF-Bay (13 datasets) 

BO-PDP-Bay (13 datasets) 

DT-Bay (13 datasets) 

RF-Bay (13 datasets) 

AB-Bay (13 datasets) 

PDP-Ent (13 datasets) 

LazyRF-Ent (13 datasets) 

BO-PDP-Ent (13 datasets) 

DT-Ent (13 datasets) 

RF-Ent (13 datasets) 

AB-Ent (13 datasets) 
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The mean AUROC across all Bayesian methods was 0.81 and the mean AUROC across all 

population methods was 0.76. Bayesian methods had statistically significantly higher AUROCs 

than non-Bayesian methods (p < 0.001) at the 0.05 level. The mean ECE across all Bayesian 

methods was 0.11 and the mean ECE across all population methods was 0.13. Bayesian methods 

had a statistically significantly lower ECEs than non-Bayesian methods (p < 0.001) at the 0.05 

level. The mean MPL across all Bayesian methods was 3.52 and the mean AUROC across all 

population methods was 4.05. Bayesian methods had a statistically significantly shorter MPLs than 

non-Bayesian methods (p = 0.035) at the 0.05 level. These results are listed in Table 23. 

 

Table 23. Aggregate results of Bayesian and non-Bayesian methods. 

Results in blue font indicate statistically significantly worse value than Bayesian methods on Wilcoxon signed-

rank test (lower for AUROC, higher for ECE and MPL).  

 Bayesian Methods Non-Bayesian Methods 

Mean AUROC 0.81 0.76 (p < 0.001) 

Mean ECE 0.11 0.13 (p < 0.001) 

Mean MPL 3.52 4.05 (p = 0.035) 

 

In summary, in terms of discrimination, calibration, and model complexity, Bayesian 

methods had better performance than non-Bayesian methods. 

We performed pairwise comparison between Bayesian and non-Bayesian personalized 

methods for each approach (single personalized decision path, lazy random forest, and boosted 

ensemble of personalized decision paths).  
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Table 24. Paired results of Bayesian and non-Bayesian personalized methods. 

Results in red font indicate statistically significantly better value than corresponding Bayesian method, and 

results in blue font indicate statistically significantly worse value than corresponding Bayesian method on 

Wilcoxon signed-rank test (lower for AUROC, higher for ECE and MPL). 

 

In summary, in terms of discrimination and calibration, the Bayesian personalized decision 

path had superior performance to the non-Bayesian personalized decision path. In terms of model 

complexity, the Bayesian personalized decision path had more complex models than the non-

Bayesian personalized decision path. In terms of discrimination, calibration, and model 

complexity, there was no difference between the Bayesian and non-Bayesian ensembles of 

personalized decision paths. These results are listed in Table 24.  

We also performed pairwise comparison between Bayesian and non-Bayesian population 

methods for each approach (single decision tree, random forest, and boosted ensemble of decision 

trees), the results of which are listed in Table 25. 

 

 

 

 PDP-

Bay 

PDP-Ent      LazyRF-

Bay 

LazyRF-

Ent 

BO-PDP-

Bay 

BO-PDP-

Ent 

Mean AUROC 0.78 0.70 

(p = 0.002) 

0.82 0.80 

(p = 0.305) 

0.82 

 

0.80 

(p = 0.147) 

Mean ECE 0.13 0.14 

(p = 0.002) 

0.08 0.08 

(p = 0.340) 

0.14 

 

0.13 

(p = 1.00) 

Mean MPL 4.38 4.00 

(p = 0.005) 

3.95 

 

3.94 

(p = 0.839) 

3.65 

 

3.57 

(p = 0.244) 
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Table 25. Paired results of Bayesian and non-Bayesian population methods. 

Results in blue font indicate statistically significantly worse value than corresponding Bayesian method on 

Wilcoxon signed-rank test (lower for AUROC, higher for ECE and MPL). 

 

In summary, in terms of discrimination, calibration, and model complexity, the Bayesian 

decision tree had statistically significantly better performance than the non-Bayesian decision tree, 

the Bayesian random forest had statistically significantly better performance than the non-

Bayesian random forest, and the Bayesian boosted ensemble had performance on par with the non-

Bayesian boosted ensemble. 

For our final comparison, we performed comparison of the aggregated results of the three 

novel personalized Bayesian algorithmic methods (PDP-Bay, LazyRF-Bay, and BO-PDP-Bay) 

with the population non-Bayesian algorithmic methods. These results are listed in Table 26 

 

Table 26. Aggregate results of Bayesian personalized and non-Bayesian population methods. 

 Bayesian Personalized Methods Non-Bayesian Population Methods 

Mean AUROC 0.81 0.76 (p = 0.064) 

Mean ECE 0.12 0.13 (p = 0.403) 

Mean MPL 3.99 4.26 (p = 0.380) 

 

In summary, in terms of discrimination, calibration, and model complexity, the Bayesian 

personalized methods were on par with the non-Bayesian population methods. 

 DT-Bay DT-Ent RF-Bay RF-Ent AB-Bay AB-Ent 

Mean AUROC 0.80 0.71  

(p = 0.003) 

0.81 0.77  

(p < 0.001) 

0.80 

 

0.81  

(p = 0.307) 

Mean ECE 0.05 0.15  

(p < 0.001) 

0.04 0.05  

(p = 0.040) 

0.20 

 

0.20  

(p = 0.162) 

Mean MPL 4.35 6.02  

(p = 0.027) 

3.87 

 

5.76  

(p = 0.001) 

0.89 

 

1.00  

(p = 0.059) 
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6.0 Discussion 

This chapter discusses the results and insights gained from this dissertation, describes 

potential shortcomings, and explores directions for future work. 

6.1 Summary of Results and Insights 

This section reviews the main results across the algorithmic methods and discusses the 

findings in the context of the hypotheses. An overview of the best performing and worst 

performing algorithmic methods for a given experiment on a specific performance metric is given 

in Table 27. 
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Table 27. Summary of results. 

Methods in red font had best performance of group for given metric, methods in blue font had worst 

performance for given metric, and methods in black font had performance in between. 

Experimental Method vs Control Methods Support for 

corresponding 

hypothesis? 

PDP-Bay vs DT-Bay, PDP-Ent, DT-Ent 

Discrimination PDP-Bay, DT-Bay, PDP-Ent, DT-Ent 1: Partial 

Calibration PDP-Bay, DT-Bay, PDP-Ent, DT-Ent 1: Partial 

Model Complexity PDP-Bay, DT-Bay, PDP-Ent, DT-Ent 1: Partial 

LazyRF-Bay vs PDP-Bay, RF-Bay, LazyRF-Ent, RF-Ent 

Discrimination LazyRF-Bay, PDP-Bay, RF-Bay, LazyRF-Ent, RF-Ent 2: Partial 

Calibration LazyRF-Bay, PDP-Bay, RF-Bay, LazyRF-Ent, RF-Ent 2: Partial 

Model Complexity LazyRF-Bay, PDP-Bay, RF-Bay, LazyRF-Ent, RF-Ent 2: Partial 

BO-PDP-Bay vs PDP-Bay, AB-Bay, BO-PDP -Ent, AB-Ent 

Discrimination BO-PDP-Bay, PDP-Bay, AB-Bay, BO-PDP-Ent, AB-Ent 3: None 

Calibration BO-PDP-Bay, PDP-Bay, AB-Bay, BO-PDP-Ent, AB-Ent 3: None 

Model Complexity BO-PDP-Bay, PDP-Bay, AB-Bay, BO-PDP-Ent, AB-Ent 3: None 

 

6.1.1 PDP-Bay 

Our hypothesis is that the Bayesian-scored personalized decision path demonstrates 

superior predictive performance to population decision trees (with both Bayesian and non-

Bayesian scores) and the entropy-scored personalized decision path. We compared results across 

13 datasets in terms of discrimination, calibration, and model complexity. 

We found that in terms of discrimination, PDP-Bay is better than both population and 

personalized entropy-scored methods and equivalent to the Bayesian population method. In terms 
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of calibration, PDP-Bay is better than the entropy-scored personalized method, comparable to the 

entropy-scored population method, and inferior to the Bayesian population method. In terms of 

model complexity, PDP-Bay is better than the entropy-scored population method, comparable to 

the Bayesian-scored population method, and inferior to the entropy-scored personalized method. 

Thus, the PDP-Bay has equivalent or better performance on all three measures when 

compared to the entropy-scored population method, mixed performance when compared to the 

entropy-scored personalized method, and equivalent or worse performance when compared to the 

Bayesian population method. No single method dominated across all three measures of 

performance.  

As the PDP-Bay has equivalent or inferior performance to the Bayesian population method 

(DT-Bay), these results indicate that our approach to personalization may not greatly improve 

predictive performance. The method of personalization used in this dissertation has previously 

been observed to be prone to overfitting, although we hypothesized that the used of Bayesian 

scoring would help mitigate this. In comparing the calibration of the PDP-Bay and DT-Bay, we 

see that the Bayesian population method has significantly better calibration than the personalized 

method. This may indicate that our method of personalization is still overfitting, resulting in lower 

calibration than the population method. At the same time, the Bayesian personalized method had 

better calibration than the non-Bayesian personalized method, indicating that Bayesian scoring 

does mitigate some degree of overfitting resulting from the chosen method of personalization. One 

noteworthy strength of the PDP-Bay method is that it has better performance than the entropy-

scored population method (DT-Ent), which is our implementation of an approach that is commonly 

used to train classification trees.   
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The PDP-Bay demonstrates worse performance in terms of calibration and model 

complexity and comparable performance  in terms of discrimination when compared with the PDP-

Bay-BDeu. We also compared the DT-Bay with DT-Bay-BDeu, and the DT-Bay demonstrates 

comparable performance with DT-Bay-BDeu in terms of discrimination and calibration and 

inferior performance in terms of model complexity. The PDP-Bay and DT-Bay use uniform 

parameter and structure priors, whereas PDP-Bay-BDeu and DT-Bay-BDeu perform a grid search 

to select optimized prior hyperparameters (which may or may not be uniform). These results 

demonstrate that some performance improvements can be derived from hyperparameter tuning 

with Bayesian methods. 

6.1.2 LazyRF-Bay 

Our hypothesis is that LazyRF-Bay, the Bayesian-scored random forest of personalized 

decision paths, demonstrates superior predictive performance over a single Bayesian personalized 

decision path, population random forests with decision trees scored using both Bayesian and non-

Bayesian methods, and the entropy-scored random forest of personalized decision paths. We 

compared results across 13 datasets in terms of discrimination, calibration, and model complexity. 

We found that in terms of discrimination, LazyRF-Bay is superior to the single Bayesian-

scored personalized decision path and on par with the entropy-scored random forest of 

personalized decision paths and population random forests. In terms of calibration, LazyRF-Bay 

is superior to the single Bayesian-scored personalized decision path, on par with the entropy-

scored random forest of personalized decision paths, and inferior to the population random forests. 

In terms of model complexity, LazyRF-Bay’s performance is on par with the single Bayesian-
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scored personalized decision path, the entropy-scored random forest of personalized decision 

paths, and the Bayesian population random forest and superior to the entropy-scored population 

random forest.  

Thus, the LazyRF-Bay has equivalent performance on all three measures to the entropy-

scored random forest of personalized decision paths. LazyRF-Bay has equivalent or better 

performance on all three measures when compared to the single Bayesian personalized decision 

path. LazyRF-Bay has mixed performance when compared to the entropy-scored population 

random forest method, and equivalent or worse performance when compared to the Bayesian 

population random forest method. No single method dominated across all three measures of 

performance.  

As the LazyRF-Bay has equivalent or inferior performance to the Bayesian population 

method (RF-Bay), these results (like the PDP-Bay results) indicate that our approach to 

personalization may not greatly improve predictive performance. The LazyRF-Bay method has 

better performance on the whole than the single Bayesian personalized decision path, indicating 

that the use of ensemble methods and feature randomization may improve predictive performance 

in personalized decision paths as is seen with population decision trees. This is likely due to the 

reduction in variance while maintaining bias across models that results from training and averaging 

multiple decorrelated models.80 However, the bias and variance of the LazyRF-Bay was not 

explicitly evaluated in these experiments. 
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6.1.3 BO-PDP-Bay 

Our hypothesis is that BO-PDP-Bay, the ensemble of boosted Bayesian-scored 

personalized decision paths, demonstrates superior predictive performance over a single Bayesian-

scored personalized decision path, population ensembles of boosted Bayesian-scored and entropy-

scored decision trees, and the ensemble of boosted entropy-scored personalized decision paths. 

We compared results across 13 datasets in terms of discrimination, calibration, and model 

complexity.  

We found that in terms of discrimination and calibration, BO-PDP-Bay performs on par 

with all comparison methods. In terms of model complexity, BO-PDP-Bay is on par with the single 

Bayesian-scored personalized decision path and the ensemble of boosted entropy-scored 

personalized decision paths and is inferior to the population ensembles of boosted decision trees.  

It is important to note, however, that AdaBoost, the method for training population 

ensembles of boosted decision trees, specifies that each tree in the ensemble is limited to a single 

variable. This makes the maximum possible mean path length for AB-DT and AB-Ent equal to 

one. The method for training ensembles of boosted personalized decision paths developed by Fern 

et al.,20 which was used for the BO-PDP-Bay and BO-PDP-Ent, does not limit the length of the 

decision path. Thus, difference in mean path lengths between the personalized and population 

ensembles of boosted models cannot be solely attributed to personalization.  

In the original results of Fern et al., which compared ensembles of boosted entropy-scored 

personalized decision paths to single entropy-scored personalized decision paths as well as 

population ensembles of boosted entropy-scored decision trees, they found that ensembles of 

boosted personalized decision paths have better performance in terms of accuracy than single 



 109 

 

decision paths and have comparable performance to population ensembles of boosted decision 

trees. The BO-PDP-Ent is our implementation of the BO-LazyDT in the Fern paper, and to 

replicate their results, we compared the mean AUROCs of BO-PDP-Ent with PDP-Ent and AB-

Ent on Wilcoxon signed-rank test (detailed in Appendix Table 1). Like Fern et al., we found that 

the ensembles of boosted entropy-scored personalized decision paths have better performance in 

terms of discrimination than single entropy-scored decision paths and have comparable 

performance to population ensembles of boosted entropy-scored decision trees.  

Fern et al. also found that ensembles of boosted personalized decision paths have shorter 

mean path lengths than population ensembles of boosted decision trees. Their results indicate that 

they used a different implementation of AdaBoost which did not restrict the number of variables 

allowed in the decision trees, as the mean path length of the models produced by their approach 

was greater than one. We therefore cannot compare our results on model complexity for the 

boosted methods with their findings. 

6.1.4 Personalized Methods 

When we aggregated the results of all personalized methods and compared these to the 

aggregated results of all population methods, we found that there was no statistically significant 

difference between personalized methods and population methods in terms of discrimination and 

model complexity (although, as noted in the previous section, the restriction of tree size for the 

population ensembles of boosted decision trees may have affected these results). The personalized 

methods had statistically significantly worse calibration than the population methods, which may 

be due to possible overfitting by this type of personalization. These findings indicate that our 
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approach to personalization alone does not guarantee improved predictive performance in terms 

of discrimination, calibration, and model complexity. It is important to note, however, that the 

approach to personalization tested in this dissertation is only one of many possible approaches, 

and that other methods of personalization could produce very different findings. These conclusions 

therefore do not apply to all types of patient-specific modelling. 

6.1.5 Bayesian Methods 

When we aggregated the results of all Bayesian methods and compared these to the 

aggregated results of all non-Bayesian methods, we found that the Bayesian methods had 

statistically significantly superior performance in terms of discrimination, calibration, and model 

complexity. The results indicate that, on average, the use of Bayesian scoring results in better 

predictive performance for tree models. 

One common issue with tree methods (including some personalized decision paths) is 

overfitting. This occurs when models incorporate non-informative features that correlate with 

specific target outcomes in the training data, but do not represent real relationships in the overall 

population. These observations of false relationships become more likely when sample sizes are 

small. The stopping criteria for tree methods often aim to achieve purity, which is when all training 

cases corresponding to a given partition share the same target value. This can result in partitions 

that produce very small and skewed subgroups, including subgroups consisting of a single training 

case. The subgroups defined by the tree are used for parameterization and prediction. Thus, 

predictions from these small, pure subgroups are often poorly calibrated, incorporate many non-

informative features, and are based on a very small sample size. Furthermore, many tree methods 
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estimate parameters using maximum likelihood. When a subgroup corresponds to a single training 

case, the predicted probability of the target outcome will be 100% for the value of the target for 

that training case when the subgroup is used for inference. 

The use of Bayesian scoring prevents overfitting in several ways, which may account for 

the observed improvements in predictive performance. The Bayesian scoring methods incorporate 

a parameter prior probability distribution that is not present in the entropy-based scoring methods, 

as they use an entropy score that is equivalent to the sample-normalized log likelihood. The use of 

the prior exerts regularization effects on model training. Additionally, the parameter estimates of 

Bayesian methods involve Laplace smoothing, so that even when a pure subgroup is used for 

inference, it is not possible to predict with 0% or 100% probability. This helps account for 

uncertainty in calculating predictions using limited data and may limit overfitting. 

However, the performance improvements associated with Bayesian methods are not 

necessarily uniform. We observed that for single population decision trees and population random 

forests, Bayesian scoring was associated with better performance in terms of discrimination, 

calibration, and model complexity, but for ensembles of boosted decision trees, there was no 

difference in terms of discrimination, calibration, or model complexity. We observed that for 

single personalized decision paths, Bayesian scoring was associated with better discrimination and 

calibration, but inferior model complexity. For personalized random forests and ensembles of 

boosted personalized decision paths, there was no difference in performance between Bayesian 

and non-Bayesian methods. Prior empiric work has shown that information theoretic scores may 

perform better than Bayesian scores for small datasets.99 Though our results support the use of 

Bayesian scoring for tree methods, further work is needed to characterize the relationships between 

datasets and optimal machine learning approaches. 
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Additionally, performance gains from the use of ensemble approaches may be limited when 

combined with Bayesian methods. Of note, we found that ensembles of boosted Bayesian 

personalized decision paths did not have better performance than single Bayesian personalized 

decision paths. This may be a result of the higher baseline performance of the single Bayesian 

personalized decision paths when compared to the single entropy-scored personalized decision 

path. The mean AUROCs of the PDP-Ent and BO-PDP-Ent were 0.70 and 0.80, respectively; 

meanwhile, the mean AUROCs of the PDP-Bay and BO-PDP-Bay were 0.78 and 0.82, 

respectively.  

Additionally, the method used for boosting may not work well with Bayesian approaches. 

The personalized boosting method aims to improve predictive performance by altering training 

case weights used to train the personalized decision paths. Changes to the training weights are 

dependent on the classifications made by previous iterations of decision paths in the ensemble. 

Boosting methods like AdaBoost usually use weak learners (such as shallow decision trees).81 It 

is therefore possible that the PDP-Bay is not sufficiently weak to benefit from boosting. Tree 

methods are notoriously sensitive to changes in data, which is why boosting methods result in a 

diverse set of models via perturbations of the training data weights. However, Bayesian scoring 

methods are potentially less sensitive to these small changes in the training data due to previously 

discussed features like Laplace smoothing in parameter estimation and a parameter prior. These 

elements of the BayScore, which may be responsible for the higher mean AUROC of the PDP-

Bay compared to the PDP-Ent, may also be the reason why boosting does not appear to improve 

predictive performance for Bayesian personalized decision paths. If the Bayesian scoring metric 

used by PDP-Bay makes it less sensitive to perturbations of the data, the changes to the distribution 

of the data from altering training case weights might not affect the predictor scores. 
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Figure 7. Two ensembles of boosted personalized decision paths. 

This figure shows two ensembles of decision paths (the top one produced by the BO-PDP-Ent method and the 

bottom one produced by the BO-PDP-Bay method) for the same test case from the chronic pancreatitis dataset. 

Each color represents a specific feature, and each distinct combination of features is labeled with a letter (A-

E).  In this example, the BO-PDP-Ent ensemble is more heterogenous than the BO-PDP-Bay ensemble. 

 

This could result in the same predictors being selected by the BO-PDP-Bay algorithm 

repeatedly, resulting in less diverse ensembles of models than when non-Bayesian scoring metrics 

are used. Figure 7 shows two ensembles of boosted decision paths for a single test case, one 

produced by the BO-PDP-Ent method and the other by the BO-PDP-Bay. The Bayesian-scored 

ensemble is less diverse than the non-Bayesian scored ensemble in this example. When ensembles 

consist of the same model repeatedly, the average prediction will not be very different from the 

prediction of a single model, and no effect on predictive performance will be observed. This is 
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consistent with our results from the BO-PDP-Bay experiments. Rather than see synergistic benefits 

of Bayesian and ensemble approaches in combination, there may be different benefits to each 

method that may not be additive when used together. 

6.2 Limitations 

This section discusses some of the limitations of the algorithmic methods and findings of 

this dissertation.  

6.2.1 Generalizability 

The generalizability of the results may be limited by several factors. The clinical datasets 

used for evaluation were all collected for research purposes, were comprised of discretized data, 

and had binary targets. For most of the datasets, experts selected the features for inclusion in the 

dataset, and it is not clear how well the datasets used in this dissertation represent all possible 

clinical datasets. Therefore, our results may not generalize to other clinical datasets, such as those 

with more heterogenous or noisy data like electronic health record data. Additionally, we used 

only a moderate number of datasets.  Further development and evaluation would be needed before 

these new algorithms could be used with a wider range of data sources. 

We only evaluated one method of personalization in this dissertation, and our findings may 

not generalize to other personalized decision path methods or other approaches to producing 

personalized models. Other methods for producing personalized decision paths like DP-Bay 
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incorporate more data from the training dataset, whereas our method only uses training data cases 

which share specific features with the test case. Comparing our methods to a wider range of 

personalized decision path algorithms and creating ensembles using different types of personalized 

decision paths could provide more insight into the potential differences in predictive performance 

associated with various approaches to personalization. 

We aimed to assess the effects of personalization, Bayesian scoring, and ensemble 

approaches on predictive performance of algorithms, and in focusing on those effects, we did not 

include other strategies that are commonly used with tree algorithms. For example, we did not 

implement pruning for the population decision trees (DT-Bay and DT-Ent) because our base 

personalized decision path methods did not perform pruning. However, pruning is often employed 

with tree algorithms to improve model parsimony and avoid overfitting.80 There are methods for 

pruning personalized decision paths,20 and the effects of pruning on personalized decision paths 

could be an additional area of inquiry for improving the performance of our methods.  

We did not perform hyperparameter tuning for ensemble size or for the boosting 

hyperparameters, and instead chose values that were used by other studies to allow for replication 

of other published work, comparison across methods, and efficiency. Early results from initial 

experiments did not show a significant difference in AUROCs for ensembles trained using 10 

versus 25 models, and we did not evaluate performance on larger ensembles. We do not know if 

our findings change with larger ensemble sizes. Hyperparameter tuning can increase the time 

needed to train a model (especially in the case of ensembles of models). For population methods, 

this may not be significant, as the model is usually trained in a distinct process from performing 

inference on patients of interest. In the case of personalized methods, the model is trained at the 

time of the encounter with the patient of interest. Thus, the costs of using time-consuming 
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approaches like hyperparameter tuning or larger ensemble sizes that greatly increase model 

training time must be weighed against the possible corresponding gains in predictive performance. 

However, time complexity was not explicitly evaluated in this dissertation. Further work 

comparing different hyperparameter settings, ensemble sizes, and pruning applied to both 

personalized methods and population methods might be necessary to increase the generalizability 

of results by incorporating these commonly used strategies for learning tree models. 

6.2.2 Mean Path Length 

One of the evaluation metrics used in this dissertation was mean path length (MPL), which 

measured the average number of predictors in a decision path used for prediction. In the case of 

ensembles, this was calculated as the mean across all models in the ensemble, and then averaged 

across all test cases. For single model methods, it was calculated as the mean across all test cases. 

While most methods did not limit the number of predictors that could be included in a model, the 

AdaBoost methods (AB-Ent and AB-Bay) limited the number of predictors in each model in the 

ensemble to one. This metric was used as a measure of model complexity with the assumption that 

less complex models are easier for users to comprehend. It is not clear, however, whether a longer 

single decision path is less comprehensible than a collection of many shorter decision paths in the 

form of an ensemble. We could alternately have measured the average total number of predictors 

across all paths in each ensemble, but since the same path might appear multiple times in an 

ensemble, this may not be a useful measure of complexity either. Thus, MPL may not adequately 

capture model comprehensibility or consistently assess whether a given method produced simpler 

or more comprehensible models. 



 117 

 

6.2.3 Clinical Significance 

It is difficult to determine the significance of our findings without knowledge of the clinical 

decision being supported by a given algorithmic method. While statistically significant 

improvements in performance were observed for several methods, the clinical significance of a 

given performance improvement is difficult to evaluate without knowledge of the context of the 

clinical decision that these methods would be employed to support. For example, AUROC 

characterizes the probability that a randomly selected case with a positive target value will have a 

higher prediction for the positive class than a randomly selected case with a negative target value. 

This measures discrimination, or the ability to differentiate between positive and negative cases 

on average. A classifier with a high AUROC can help avoid excessive false positive or false 

negative predictions. Without knowing the cost of these false predictions, however, it is difficult 

to assess whether a small performance gain in terms of discrimination is clinically meaningful. A 

difference of 0.04 between two AUROCs may or may not correspond to a clinically meaningful 

difference in a clinical decision support system, which can also depend on the patient population, 

clinical decision, utilities of outcomes, clinical workflow, and users.   

Additionally, the selected performance metrics may not measure the most important 

aspects of predictive performance for a given clinical problem. AUROC does not incorporate any 

assessment of the calibration of the predicted probabilities themselves; it only represents the 

relationship between predictions for positive and negative cases on average. However, depending 

on the use case, another metric (such as the calibration of a model) may be more important than 

discrimination. For example, if an algorithmic method is used to calculate patient-specific 

probabilities of outcomes for use in combination with utilities as part of formal decision analysis, 
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low ECE may be more important than high AUROC. No single algorithmic method was decidedly 

superior to every other method in terms of all three performance measures, and future use in 

clinical decision support may require application of other metrics not used in this dissertation for 

evaluating predictive performance depending on the goals and needs of the clinical problem. 

6.2.4 Patient-Specific Performance and Algorithmic Fairness 

All of the performance measures used in this dissertation distill average performance into 

a single number, which allows for succinct and clear statistical comparison between methods. 

However, these measures do not tell us how the algorithms differ on a case-by-case basis.  As 

mentioned previously, the goal of precision medicine is to provide the right care to the right patient 

at the right time. Our analysis of these algorithmic methods does not tell us whether specific 

individuals receive better predictions from the use of personalized algorithmic methods over 

population algorithmic methods. We do not know whether observed performance improvements 

stem from performance gains for only certain subgroups of patients – gains that may outweigh and 

mask possible performance losses for other subgroups in the test data.  

One of the reasons machine learning is applied to decision support is the perception that it 

is objective. Unfortunately, models produced via machine learning are susceptible to a range of 

biases caused by both the data that is used to create them and the methods used for model 

construction.100 Research has shown that an algorithm used in the criminal justice system to make 

sentencing recommendations discriminated against people of color, and an algorithm used for 

hiring at Amazon was abandoned after it was found to discriminate against women.101 These 

examples demonstrate how machine learning methods can learn patterns that reflect biased 
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practices. Other work has shown that automated facial analysis algorithms trained on datasets 

comprised of predominantly lighter-skinned faces demonstrate significantly higher 

misclassification rates for darker-skinned female faces. This example demonstrates how, in the 

process of fitting a model, many machine learning algorithms disregard rare patterns present only 

in minority subgroups of the training data, leading to disparities in predictive performance in such 

groups.102  

Machine learning in the medical domain is not immune: Obermeyer et al.103 found that an 

algorithm used to allocate healthcare resources disadvantaged Black patients. Machine learning 

algorithms faithfully learn and reproduce patterns in data, including patterns that are caused by 

and reflect social inequities.104 The use of such machine learning algorithms can then contribute 

to a vicious cycle that perpetuates those inequities. Even when the training data does not reflect 

discriminatory practices, underrepresentation of minority populations can also lead algorithms to 

learn unfair models. Most machine learning algorithms fit models that represent patterns present 

in the majority of the samples in the data, and this can lead to minority subgroups being modeled 

poorly.11 

Concerns regarding such findings have led to a rise in research into fair machine learning 

with the goal of defining and measuring fairness in the context of machine learning as well as 

developing fairness-aware algorithms.105 This field aims to identify unfair models and develop 

algorithms that produce models that do not discriminate against or disadvantage subgroups, 

especially legally protected classes.106 

Fairness in medical machine learning is especially important because underrepresentation 

of minority groups in research data is a longstanding and rampant problem in biomedical research 

and trials used to evaluate treatments and establish care guidelines.107–109 Although the National 
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Institutes of Health mandated representative inclusion of women and members of racial minority 

groups in clinical research in 1993,110 numerous studies demonstrate that women, racial minorities, 

elderly patients, rural patients, and patients of low socioeconomic status remain underrepresented 

in research studies, including investigations into cancer treatment,111 AIDS/HIV treatment,112 

migraine treatment,113 and cardiovascular health guidelines.108 Use of these imbalanced research 

datasets for training algorithms for clinical decision support may result in unfair models that do 

not generalize to the entire population, resulting in disparate impact and possibly poorer outcomes 

for members of these underrepresented subgroups.114  

This type of disparate impact may be mitigated by algorithms that can better fit models to 

subgroups in the population. Chen et al.115 hypothesized that clustering methods may mitigate this 

type of algorithmic unfairness. It is possible that personalized methods may result in fairer models, 

as the predictive model is tailored to the individual patient rather than the majority or population 

on average. A number of papers have been published in recent years discussing the importance of 

considering fairness in the context of clinical machine learning.12,116–120 Many measurements have 

also been proposed to aid in the evaluation of algorithmic fairness (some of which are, 

unfortunately, mathematically incompatible).121 However, only a few studies have actually 

evaluated the fairness of clinical machine learning algorithms.103,115,122–124 This dissertation did not 

examine the demographics of training datasets or evaluate the predictive performance on 

subgroups of the training data to evaluate fairness, but this would be a crucial area of investigation 

prior to using such methods for clinical decision support. 
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6.3 Future Work 

An open question following this dissertation is why Bayesian methods and ensemble 

methods are not consistently associated with improved predictive performance when used in 

combination. Bayesian scoring and ensemble approaches separately have each been associated 

with improved predictive performance for tree models. Ensemble methods have been found to 

reduce variance through averaging the outputs of multiple decorrelated models without increasing 

bias, which results in an overall reduction of error. Performing bias-variance analysis on the 

algorithmic methods presented in this dissertation could provide insight into how these approaches 

work. 

Since Bayesian methods were shown to often be associated with improved predictive 

performance, further exploration into hyperparameter tuning for the PDP-Bay-BDeu could be 

beneficial. Hyperparameter tuning was performed using simple grid search to identify priors that 

resulted in models that maximized AUROC. More sophisticated tuning procedures could also 

improve performance, and different metrics could be used to evaluate the performance of models 

using different priors, such as the BayScore of the models themselves (which is proportional to the 

expected posterior probability of model given the data).  

Although we conjectured that personalized methods could increase predictive performance 

over population methods by selecting informative combinations of features that do not appear in 

population models, we did not explicitly examine which features from each dataset were used for 

prediction by personalized and population methods. It could therefore be useful to identify 

differences in the specific features used for prediction by personalized and population tree models 

and evaluate whether personalized methods are able to identify a wider range of meaningful 
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features than population methods. For ensemble methods, feature importance rankings for each 

prediction can be calculated, either by ordering features by frequency of occurrence in the 

ensemble or by producing post-hoc explanations using a method like LIME.64 Once significant 

features are identified, they could also be evaluated by clinicians to characterize the explainability 

of different methods. We assume that shorter mean path lengths indicate more comprehensible 

models, but it is not clear how to compare the interpretability of the output of a single complex 

decision tree with a collection of 10 parsimonious personalized decision paths. It is likely that 

summary methods for identifying significant features could be necessary for ensembles of simple 

models, and limited work has been done comparing clinicians’ evaluations of interpretability of 

different types of models and explanation methods.  

We also conjectured that personalized methods could reduce performance disparities 

amongst subgroups of the population, but we did not calculate performance measures on subgroups 

of the test datasets. Automated methods for identifying subgroups with performance disparities 

and comparing rates of disparities between algorithmic methods have been developed and could 

be useful in evaluating the fairness of personalized algorithms.11 

We only evaluated one type of personalization in this dissertation. It is important to 

determine how our PDP-Bay method compares to other types of Bayesian personalized decision 

path algorithms like DP-Bay.15 Additionally, using alternative methods of personalization with the 

boosting and random forest ensemble approaches may produce different results, and so further 

exploration into personalized ensembles using methods like DP-Bay is necessary. 

Evaluating the performance of these algorithmic methods a wider variety of datasets would 

also be beneficial. Prior to using these methods for any type of clinical decision support, the 

algorithms would need to be evaluated on less curated datasets (such as electronic health record 
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data). This would likely require the development of a machine learning pipeline, which could 

process the data for use with the algorithms, as well as adjustments to the algorithms to handle a 

wider variety of data types. Incorporating methods for handling both continuous and discrete 

variables would allow for application of these algorithms to a wider variety of datasets. 
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7.0 Conclusions 

This dissertation presents several new personalized machine learning algorithms that use 

Bayesian scores, including the personalized decision path with Bayesian score (PDP-Bay), the 

personalized decision path with BDeu score (PDP-Bay-BDeu), the lazy random forest with 

Bayesian score (LazyRF-Bay), and the boosted personalized decision path with Bayesian score 

(BO-PDP-Bay). This dissertation also presents the first investigation into random forest ensembles 

of personalized decision paths as well as the first evaluation of ensembles of personalized decision 

paths on biomedical data for predicting patient-specific outcomes. 

Our main findings are as follows: 

• Our method of personalization is not associated with performance improvements 

when applied to single Bayesian trees, random forest ensembles of Bayesian 

decision trees, or ensembles of boosted Bayesian decision trees. 

• The use of Bayesian scoring methods is associated with performance improvements 

over corresponding non-Bayesian tree methods in terms of discrimination, 

calibration, and model complexity when applied to single personalized decision 

paths, single decision trees, and random forest ensembles of decision trees. This 

association does not hold for random forest ensembles of personalized decision 

paths, ensembles of boosted personalized decision paths, and ensembles of boosted 

decision trees.  

• The use of a random forest ensemble approach is associated with performance 

improvements over corresponding single, non-randomized tree models in terms of 
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discrimination and calibration when applied to Bayesian and non-Bayesian 

personalized decision paths and entropy-scored decision trees. This association 

does not hold for Bayesian decision trees.  

• The use of a boosting ensemble approach is associated with performance 

improvements over corresponding single tree models in terms of discrimination 

when applied to non-Bayesian personalized decision paths and decision trees. This 

associated does not hold for Bayesian personalized decision paths and decision 

trees. 

The findings of this dissertation indicate that while ensemble approaches and Bayesian 

scoring can separately improve predictive performance of tree models, the benefits are not 

necessarily additive when combined together. Furthermore, we found that our method of 

personalization did not improve predictive performance over population Bayesian methods.  

Further work is needed to deeply understand the mechanisms of each approach and the 

effects of their use in combination. However, the novel combinations of personalization, Bayesian 

scoring, and ensemble approaches for tree algorithms presented in this dissertation demonstrate 

equivalent or superior performance on clinical datasets to commonly used entropy-scored 

algorithms like decision trees and random forests, and could be considered when choosing 

algorithmic methods for clinical decision support. 
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Appendix A – Pseudocode of Comparison Methods 

The pseudocode for the PDP-Ent and LazyRF-Ent methods is provided in this section. 

 

Appendix Figure 1. Pseudocode for PDP-Ent method. 
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Appendix Figure 2. Pseudocode for LazyRF-Ent method. 
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Appendix B – Comparison of BayScoreK2 and BayScoreBDeu for Binary Targets 

Recall the equations for the sample normalized Bayesian scores from 3.1.2.3: 

𝐵𝑎𝑦𝑆𝑐𝑜𝑟𝑒𝐾2(𝑆′) =
1

𝑁
[log (

(𝑟 − 1)!

(𝑁 + 𝑟 − 1)!
) + ∑ log 𝑁𝑘!

𝑟

𝑘=1

] + 𝑞 log (
𝑒

𝑛
) + (𝑛 − 𝑞) log (1 −

𝑒

𝑛
) 

𝐵𝑎𝑦𝑆𝑐𝑜𝑟𝑒𝐵𝐷𝑒𝑢(𝑆′) =
1

𝑁
[log (

Γ(𝛼0)

Γ(𝑁 + 𝛼0)
) + ∑ log (

Γ(𝑁𝑘 + 𝛼𝑘)

Γ(𝛼𝑘)
)

𝑟

𝑘=1

] + 𝑞 log (
𝑒

𝑛
) + (𝑛 − 𝑞) log (1 −

𝑒

𝑛
) 

When a uniform structure prior is used, these scores simplify to: 

𝐵𝑎𝑦𝑆𝑐𝑜𝑟𝑒𝐾2(𝑆′) =
1

𝑁
[log (

(𝑟 − 1)!

(𝑁 + 𝑟 − 1)!
) + ∑ log 𝑁𝑘!

𝑟

𝑘=1

] 

𝐵𝑎𝑦𝑆𝑐𝑜𝑟𝑒𝐵𝐷𝑒𝑢(𝑆′) =
1

𝑁
[log (

Γ(𝛼0)

Γ(𝑁 + 𝛼0)
) + ∑ log (

Γ(𝑁𝑘 + 𝛼𝑘)

Γ(𝛼𝑘)
)

𝑟

𝑘=1

] 

For a dataset with a binary target, r = 2. If 𝛼0 = 2 and r = 2, 𝛼𝑘 = 1. Note that (n) = (n – 1)!, and 

so if N and Nk are integers,  

𝐵𝑎𝑦𝑆𝑐𝑜𝑟𝑒𝐵𝐷𝑒𝑢(𝑆′) =  
1
𝑁

(log [
Γ(2)

Γ(𝑁 + 2)
] + ∑ log 

Γ(𝑁𝑘 + 1)

Γ(1)

𝑟

𝑘=1

 ) 

=  
1

𝑁
(log [

(2 − 1)!

(𝑁 + 2 − 1)!
] + ∑ log 

(𝑁𝑘 + 1 − 1)!

(1 − 1)!

𝑟

𝑘=1

 ) 

=  
1

𝑁
(log [

(2 − 1)!

(𝑁 + 2 − 1)!
] + ∑ log

(𝑁𝑘)!

1
!

𝑟

𝑘=1

 ) 

=  
1

𝑁
(log [

(2 − 1)!

(𝑁 + 2 − 1)!
] + ∑ log 𝑁𝑘!

𝑟

𝑘=1

 ) 

which is equivalent to BayScoreK2 when r = 2. 
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Appendix C – Comparison of Entropy-Scored Single Path and Boosted Methods 

In Appendix Table 1, the mean results from the ensemble of boosted entropy-scored 

personalized decision paths (BO-PDP-Ent) are compared to those of the single entropy-scored 

personalized decision path (PDP-Ent) and the population ensemble of boosted entropy-scored 

decision trees (AB-Ent). 

 

Appendix Table 1. Comparison of results for entropy-scored single path and boosted ensemble methods. 

Results in blue font indicate statistically significantly worse values than BO-PDP-Ent, and results in red font 

indicate statistically significantly better values than BO-PDP-Ent on Wilcoxon signed-rank test,. 

 

 

 

 

 

 

In summary, in terms of discrimination, the ensemble of boosted entropy-scored 

personalized decision paths has superior performance over the single entropy-scored personalized 

decision path and equivalent performance to the population ensemble of boosted entropy-scored 

decision trees. In terms of model complexity, the ensemble of boosted entropy-scored personalized 

decision paths has more complex models than the population ensemble of boosted entropy-scored 

decision trees. 

Dataset  BO-PDP-Ent PDP-Ent AB-Ent 

Mean AUROC 0.80 

 

0.70 

(p < 0.001) 

0.81 

(p = 0.168) 

Mean ECE 0.13 

 

0.14 

(p = 0.168) 

0.20 

(p = 0.191) 

Mean MPL 3.57 

 

4.00 

(p = 1.00) 

1.00 

(p < 0.001) 
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Appendix D – Comparison of Base Models and Ensembles 

Appendix Table 2 presents the results of base models with corresponding ensemble results. 

Appendix Table 2. Comparisons of base models with ensemble models. 

Results in red font indicate statistically significantly better value than base model, and results in blue font 

indicate statistically significantly worse value than base model on Wilcoxon signed-rank test. 

Non-Bayesian Decision Tree DT-Ent RF-Ent AB-Ent 

Mean AUROC 0.71 

 

0.77 

(p = 0.033) 

0.81 

(p = 0.002) 

Mean ECE  0.15 

 

0.05 

(p < 0.001) 

0.20 

(p = 0.684) 

Mean MPL  6.02 

 

5.76 

(p = 0.497) 

1.00 

(p < 0.001) 

Bayesian Decision Tree DT-Bay RF-Bay AB-Bay 

Mean AUROC 0.80 

 

0.81 

(p = 0.080) 

0.80 

(p = 0.414) 

Mean ECE 

 

0.05 

 

0.04 

(p = 0.685) 

0.20 

(p = 0.006) 

Mean MPL 

 

4.35 

 

3.87 

(p = 0.305) 

0.89 

(p < 0.001) 

Non-Bayesian Personalized Decision Path PDP-Ent LazyRF-Ent BO-PDP-Ent 

Mean AUROC 0.70 

 

0.80 

(p = 0.008) 

0.80 

(p < 0.001) 

Mean ECE 

 

0.14 

 

0.08 

(p = 0.033) 

0.13 

(p = 0.168) 

Mean MPL 

 

4.00 

 

3.94 

(p = 0.787) 

3.57 

(p = 1.00) 

Bayesian Personalized Decision Path PDP-Bay LazyRF-Bay BO-PDP-Bay 

Mean AUROC 0.78 

 

0.82 

(p = 0.040) 

0.82 

(p = 0.168) 

Mean ECE 

 

0.13 

 

0.08 

(p = 0.033) 

0.14 

(p = 0.542) 

Mean MPL 

 

4.38 

 

3.95 

(p = 0.376) 

3.65 

(p = 0.094) 
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Appendix E – Training and Prediction Times 

In this section, we present the average times for model training and prediction for each 

algorithmic method. Training times for personalized methods and prediction times for both 

personalized and population methods were measured using 10 test cases and full training datasets. 
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Appendix Table 3. Mean training and prediction times for single model algorithmic methods (in seconds). 

Results in blue font indicate statistically significantly longer mean times than PDP-Bay, and results in red 

font indicate statistically significantly shorter mean times than PDP-Bay on the Wilcoxon signed-rank test. 

Dataset  PDP-Bay DT-Bay PDP-Ent DT-Ent 

Training 

chronic-pancreatitis 7.27E-02 91.3 7.27E-02 156 

pneumonia 0.135 131 0.135 67.5 

sepsis-d 1.35E-02 1.86 1.35E-002 15.8 

sepsis-s 9.06E-03 1.28 9.04E-03 29.7 

heart-failure-d 3.66E-02 14.9 3.66E-02 158 

heart-failure-c 4.70E-02 106 4.70E-02 515 

synth-large 2.77 34200 2.77 7830 

synth-small 8.20E-02 18.7 8.21E-02 356 

Mean  0.396 4320  

(p = 0.008) 

0.396  

(p = 1) 

1140  

(p = 0.008) 

Prediction 

chronic-pancreatitis 0.238 1.98E-05 0.260 3.66E-05 

pneumonia 0.379 4.01E-05 0.361 1.85E-05 

sepsis-d 4.81E-02 3.02E-05 2.83E-02 1.94E-05 

sepsis-s 4.51E-02 9.56E-06 1.35E-02 2.47E-05 

heart-failure-d 0.165 1.18E-05 0.104 5.61E-05 

heart-failure-c 0.243 1.6E-05 0.132 4.93E-05 

synth-large 5.92 3.64E-04 4.51 4.12E-05 

synth-small 0.991 1.67E-05 0.514 3.11E-05 

Mean  1.00 6.35E-05  

(p = 0.008) 

0.740  

(p = 0.039) 

3.46E-05  

(p = 0.008) 
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Appendix Table 4. Mean training and prediction times for random forest methods (in seconds). 

Results in blue font indicate statistically significantly longer mean times than LazyRF-Bay, and results in red 

font indicate statistically significantly shorter mean times than LazyRF-Bay on the Wilcoxon signed-rank 

test. 

Dataset  LazyRF-Bay PDP-Bay RF-Bay LazyRF-Ent RF-Ent 

 Training 

chronic-pancreatitis 0.342 7.27E-02 44.4 0.267 59.2 

pneumonia 0.457 0.135 38.3 0.321 57.9 

sepsis-d 0.121 1.35E-02 1.86 0.103 14.6 

sepsis-s 0.115 9.06E-03 5.08 0.107 31.5 

heart-failure-d 0.937 3.66E-02 52.6 0.578 285 

heart-failure-c 0.823 4.70E-02 292 0.654 829 

synth-large 4.24 2.77 6390 3.75 3630 

synth-small 3.20 8.20E-02 10.2 2.27 402 

Mean 1.28 0.396 

(p = 0.008) 

854 

(p = 0.008) 

1.01 

(p = 0.008) 

664 

(p = 0.008) 

 Prediction 

chronic-pancreatitis 2.43E-04 0.238 2.05E-04 2.35E-04 2.10E-04 

pneumonia 2.79E-04 0.379 2.09E-04 2.30E-04 2.30E-04 

sepsis-d 1.92E-04 4.81E-02 1.61E-04 2.00E-04 2.49E-04 

sepsis-s 2.18E-04 4.51E-02 1.50E-04 2.38E-04 2.51E-04 

heart-failure-d 3.29E-04 0.165 1.91E-04 2.88E-04 3.83E-04 

heart-failure-c 3.23E-04 0.243 2.11E-04 3.44E-04 3.94E-04 

synth-large 2.62E-04 5.92 2.50E-04 2.45E-04 2.86E-04 

synth-small 6.65E-04 0.991 1.29E-04 6.97E-04 2.76E-04 

Mean  3.14E-04 

 

1.00 

(p = 0.008) 

1.88E-04 

(p = 0.008) 

3.10E-04 

(p = 0.844) 

2.85E-04 

(p = 0.674) 
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Appendix Table 5. Mean training and prediction times for boosted algorithmic methods (in seconds). 

Results in blue font indicate statistically significantly longer mean times than BO-PDP-Bay, and results in red 

font indicate statistically significantly shorter mean times than BO-PDP-Bay on the Wilcoxon signed-rank 

test. 

Dataset  BO-PDP-Bay PDP-Bay AB-Bay BO-PDP-Ent AB-Ent 

 Training 

chronic-pancreatitis 2.61 7.27E-02 3.35 2.49 3.33 

pneumonia 3.02 0.135 3.25 2.89 3.04 

sepsis-d 0.518 1.35E-02 0.547 0.503 0.579 

sepsis-s 0.715 9.06E-03 0.474 0.641 0.729 

heart-failure-d 5.15 3.66E-02 3.37 4.76 3.14 

heart-failure-c 7.13 4.70E-02 4.16 5.88 3.91 

synth-large 66.0 2.77 109 66.5 106 

synth-small 10.8 8.20E-02 6.51 11.5 7.21 

Mean 12.0 

 

0.396 

(p = 0.008) 

16.3 

(p = 0.742) 

11.9 

(p = 0.547) 

16.0 

(p = 1) 

 Prediction 

chronic-pancreatitis 2.25E-04 0.238 1.03E-04 2.11E-04 9.86E-05 

pneumonia 2.20E-04 0.379 9.88E-05 2.10E-04 1.03E-04 

sepsis-d 2.50E-04 4.81E-02 1.01E-04 2.45E-04 1.07E-04 

sepsis-s 3.33E-04 4.51E-02 7.87E-05 2.81E-04 1.09E-04 

heart-failure-d 4.10E-04 0.165 1.05E-04 4.54E-04 1.15E-04 

heart-failure-c 5.16E-04 0.243 1.81E-04 4.58E-04 9.96E-05 

synth-large 2.12E-04 5.92 1.04E-04 2.04E-04 9.78E-05 

synth-small 3.61E-04 0.991 9.59E-05 4.23E-04 2.02E-04 

Mean  3.16E-04 

 

1.00 

(p = 0.008) 

1.08E-04 

(p = 0.008) 

3.11E-04 

(p = 0.547) 

1.17E-04 

(p = 0.008) 

 

 

Overall, mean training times for personalized methods were statistically significantly 

shorter than population methods for single model and random forest methods, and were not 

statistically significantly different for boosted methods. Mean training times for personalized 

methods ranged from 9 milliseconds to 1 minute and 6 seconds, whereas training times for 
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population methods ranged from 0.5 seconds to 9.5 hours. Training times were largely dependent 

on dataset size, with datasets that had more predictor variables and more training samples  taking 

more time. Methods that evaluated a greater number of predictors took more time to train models 

on average.  

Prediction times for personalized methods were statistically significantly longer than 

population methods for all but one population method. Mean prediction times for personalized 

methods ranged from 0.192 milliseconds to 5.92 seconds, and mean prediction times for 

population methods ranged from 0.00956 milliseconds to 0.394 milliseconds. These results reflect 

an opportunity for optimization of our code, as the methods for prediction using decision trees and 

decision paths should be similar, but our implementation of predicting for personalized methods 

is clearly less efficient. 
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