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Abstract 

Hemodynamic Indices and Shape-Based Models of Left Atrial Appendage to Enhance 
Stroke Prediction in Atrial Fibrillation 

 
Soroosh Sanatkhani, PhD 

 
University of Pittsburgh, 2021 

 
 
 
 

Atrial fibrillation (AF) is the most common arrhythmia that leads to thrombus formation, 

mostly in the left atrial appendage (LAA). The current standard of stratifying stroke risk, based on 

the CHA2DS2-VASc score, does not consider LAA morphology/hemodynamics. The aim of this 

study was to determine whether LAA morphology and hemodynamics-based indices can stratify 

stroke risk independent of CHA2DS2-VASc score, left atrium size, and AF type. In a retrospective 

matched case-control study, patient-specific measurements in 128 AF patients included left atrial 

(LA) and LAA 3D geometry obtained by cardiac computed tomography, heart rate, cardiac output, 

and hematocrit. We quantified patient-specific 3D LAA morphology in terms of a novel LAA 

appearance complexity index (LAA-ACI) and employed computational fluid dynamics (CFD) 

analysis to quantify LAA mean residence time, tm and asymptotic concentration, C∞ of blood-borne 

particles. 

Effects of confounding variables were examined to optimize the CFD analysis. cardiac 

output, but not by the temporal pattern of pulmonary vein inlet flow, significantly affected LAA 

tm. Both the hematocrit level and the blood rheology model (Newtonian vs. non-Newtonian) also 

significantly affected LAA tm. Finally, 10,000 s was found to be a sufficient length of CFD 

simulation to calculate LAA tm in a consistent and reliable manner. 

LAA tm varied significantly within a given LAA morphology as defined by the current 

subjective method, and it was not simply a reflection of LAA geometry/appearance. In addition, 
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LAA-ACI and tm varied significantly for a given CHA2DS2-VASc score, indicating that these two 

indices of stasis are not simply a reflection of the subjects’ clinical status. Using multiple logistic 

regression, we observed that ACI, tm, and C∞ had a modest, but statistically insignificant 

performance in predicting stroke (area under the ROC curve = 0.56–0.61). The temporal 

dissociation between adverse changes in LAA shape and hemodynamics-based indices and the 

actual stroke event can contribute to the negative result; a longitudinal study is necessary to address 

this issue. In addition, it is possible that a multiscale model that combines CFD-based 

hemodynamics simulation and biology-based thrombus formation can yield indices that can better 

stratify stroke risk in AF patients. 
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1.0 Introduction 

1.1 Left Atrium Anatomy and Electrophysiology 

LA wall can be segmented into six regions as it is demonstrated in Figure 1.1. Left atrium 

(LA) is situated posterior and superior with respect to the right atrial chamber, and it is separated 

from the right atrium by the Septum wall. In most cases, two right and two left pulmonary veins 

(PV) enter the posterior wall of the LA, with the left PVs being superior to the right PVs (Sánchez-

Quintana et al., 2014) (Figure 1.1). LA has vestibule that leads to mitral valve which is the 

connection to the left ventricle. The left atrium has a smooth wall in all regions except for the left 

atrial appendage (LAA) which is the prominent region for thrombus formation in LA (Section 

1.5). Knowledge of LA/LAA wall geometry is essential for this study as we perform patient-

specific LA/LAA geometry reconstruction and hemodynamic modeling of LA/LAA. 

An arrhythmia can be initiated by the presence of substrates, triggers, and other altering 

factors of the electrophysiologic properties. In case of atrial fibrillation (AF), remodeling of atrial 

electrical pathways (i.e., substrate modification) together with a trigger is required to initiate the 

arrythmia (Shimizu and Centurion, 2002). Various clinical factors (e.g., aging, AF, heart disease, 

drugs, autonomic nerve system, etc.) change the electrophysiologic properties of the LA and 

consequently determine the progression, treatment, and termination of AF. In the following 

sections we will present an overview of implications and significance of AF, current management 

guidelines, followed by risk stratification in AF which is the topic of this study. 
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Figure 1.1 Left atrium wall regions 

PV: pulmonary vein; LAA: left atrial appendage. Reprinted with permission from (Sanatkhani et al., 2018). 

1.2 Atrial Fibrillation, The Most Common Arrythmia 

A disturbance in the autonomous nervous system and spontaneous pulmonary vein triggers 

can interfere with sinus rhythm and cause AF (Chen et al., 2014). These triggers are typically 

automatic foci of tachycardia type or multiple wavelets spreading through the LA. This arrhythmia 

causes the atrium to quiver at high frequency (approximately 400-600 beats per minute), instead 

of contracting in a synchronized manner. Loss of effective atrial contractile function and sinus 

rhythm contribute to reduction in cardiac output and subsequently result in flow stasis and 
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thrombus formation, which in-turn increase the risk of cardioembolic complications and 

stroke (Gloekler et al., 2017). 

AF is the most common arrhythmia and is a major cause of mortality and morbidity. In the 

U.S., as the baby boomers are getting older and since AF is more prevalent in the aged, the number 

of strokes attributable to AF is expected to increase. Currently, AF is affecting three to six million 

US patients a year. This number is rapidly increasing, with 12.1 million AF patients expected by 

2030 and 15.9 million by 2050  (Mozaffarian et al., 2016, Virani et al., 2020). Due to the significant 

complications associated with AF, including stroke, heart failure (HF), tachycardia, and 

myocardial infarction, AF has considerable economic implications. Currently, this disease costs 

~$6 Billion each year (Vainrib et al., 2017).  

There are numerous underlying risk factors for developing AF, including but not limited 

to age ≥ 60 years, diabetes, HF, hypertension, coronary artery disease, thyroid disease, structural 

heart disease, prior open heart surgery, prior myocardial infarction, untreated atrial flutter, 

obstructive sleep apnea, excessive alcohol or stimulant use, chronic lung disease, and serious 

illness or infection (January et al., 2014). 

According to various longitudinal studies, AF patients are clearly at an increased risk of 

morbidity and mortality. The most dangerous complication is thromboembolic stroke for which 

AF is an independent risk factor. AF patients have a 3-5 fold higher risk of stroke and it is estimated 

that about 15% to 20% of strokes in the US each year can be related to AF (Gloekler et al., 2017, 

Kamel et al., 2016). 

Considering the significance AF, numerous studies have been carried out with the goal of 

improving the clinical management of AF and guidelines have been published regularly as a results 

of these studies (January et al., 2019). 
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1.3 Current AF Management Guidelines 

AF is commonly classified based on its duration of onset and the ability to restore the 

normal sinus rhythm: 1) Paroxysmal, a self-terminating AF episode lasting less than 7 days, 2) 

Persistent, AF episode lasting longer than 7 days and less than a year, and 3) Permanent, when AF 

persists over a year. Management of AF including rate control (e.g., pharmacologic intervention, 

nonpharmacologic intervention) and rhythm control (e.g., antiarrhythmic therapy, ablation 

therapy) strategies are primarily guided based on patient’s AF classification and clinical 

evaluation (Amin et al., 2016, Kakar et al., 2007).  

Initially, the hemodynamic stability of each AF patient is evaluated. In case of 

hemodynamic stability, the management starts with a consideration of the symptomatology and its 

duration. On the other hand, if hemodynamic instability exists, patients are treated by restoring 

sinus rhythm and/or reducing ventricular rates. Sinus rhythm can be restored using direct current 

cardioversion (DCCV). Further, irrespective of hemodynamic status, anticoagulation therapy is 

initiated at this stage with respect to the patients ability and tolerance (Amin et al., 2016). 

After the initial evaluation and treatment, the long-term management of AF focuses on 

managing patient’s symptoms by rate and/or rhythm control strategies. Further, each patient is 

evaluated for thromboembolic risk and treated with anticoagulation accordingly to prevent 

ischemic stroke and other thromboembolic events (Figure 1.2). Further, surgical excision or 

stapling of LAA is performed in association with open heart surgery because most thrombi 

originate in LAA. More recently, there has been improvements in performing the LAA exclusion 

using minimally invasive procedures as an alternative to oral anticoagulation (Section 1.3.4). 

However, patients still might need antithrombotic therapy even after the exclusion of the 

LAA (Camm et al., 2012). 
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Figure 1.2 Simplified overal diagram of atrial fibrillation management 

AF: atrial fibrillation; DCCV: direct current cardioversion; LAA: atrial fibrillation; TEE: transesophageal 

echocardiography; AAD: antiarrhythmic drug. 
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1.3.1 Rate Control 

Rate control can be achieved by either pharmacologic therapy (i.e., beta blockers such as 

metoprolol, propranolol, and esmolol or nondihydropyridine calcium channel blockers such as 

verapamil and diltiazem) or nonpharmacologic interventions (e.g., AV node and permanent 

pacemaker) based on patient’s other conditions. The goal is to decrease the resting and exertion 

rate of the ventricle. In patients with permanent AF, chronic heart failure, and low left ventricular 

ejection fraction, biventricular pacemaker implantation post AV node ablation is 

recommended (Doshi et al., 2005). 

1.3.2 Rhythm Control 

The goal of rhythm control is to maintain the sinus rhythm. Antiarrhythmic therapy is 

carried out based on the AF type and the antiarrhythmic drugs (AAD) side effect profile, and 

underlying heart disease and comorbidities (January et al., 2014). 

1.3.2.1 Ablation and Atrial Remodeling 

The triggers that lead to AF are not objective to characterize although a hypothesis have 

been described in regard to the role of disturbance to the autonomous nervous system (ANS) and 

activation of AF triggers (Chen et al., 2014). The extrinsic and intrinsic nervous systems both have 

roles in AF pathogenesis. The intrinsic cardiac ANS in consisted of large ganglionated plexi (GP). 

Ablation of GP can disconnect the intrinsic nervous system from extrinsic nervous system and 

mitigate the AF. However, autonomic remodeling in term of reinnervation and sprouting of nerves 

causes the return of fibrillation after an atrial effective refractory period (AERP). 
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Due to the low success rates of AADs and their potential long-term side effects, ablative 

therapy is considered as an alternative approach where PVs are isolated with radiofrequency 

ablation or balloon cryoablation. Ablation therapies have proven to be better than AADs in patients 

with paroxysmal or persistent AF, with ~70% of patients  maintaining sinus rhythm during a 12 

month period (Pappone et al., 2003). Due to the necessity of anticoagulation therapy after ablation, 

patients must have the tolerance for anticoagulation.  

LA ablation has become a common AF treatment, however, pre-procedural substrate 

prediction is very important for patient selection (Calkins, 2012). Depending on the AF stage, 

some patients could undergo a simple ablation on the pulmonary veins ostium to eliminate the AF 

triggers (i.e., pulmonary vein isolation, PVI), whereas other patients may require more intricate 

modification of AF substrate in order to avoid recurrences. Further, many factors have been 

associated as predictors of success rate for ablation, including age, left atrial volume, BMI, sleep 

apnea, etc. (Abecasis et al., 2009, Berruezo et al., 2007, Jongnarangsin et al., 2008). 

Despite substrate remodeling with ablative techniques, recurrence of AF is still possible. 

Thus, the prediction of AF recurrence is of great value to reduce the per- and post-procedure 

complications (e.g., phrenic nerves injuries which in critical cases can lead to hemi-paralysis (Goff 

et al., 2016)). Atrial remodeling via enlargement/ballooning due to existence of persistence AF has 

been accepted to be associated to the AF recurrence after PVI. All the patients in the cohort of this 

study have had ablation procedure. 

1.3.3 Anticoagulation Therapy 

Every AF patient is initially evaluated for thromboembolic risk (Section 1.4), with a re-

evaluation performed at each stage of management. A general decision-making flowchart for 
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anticoagulant therapy is illustrated in Figure 1.3. The existence of valvular of nonvalvular AF 

plays a vital role in choosing the type of anticoagulant. AF with moderate-to-severe mitral stenosis 

or artificial heart valves is generally referred to valvular AF. They usually require long-term oral 

anticoagulation with vitamin K antagonist. In case of nonvalvular AF and having low risk 

(CHA2DS2-VASc score = 0) with age < 65, or when there are contraindications to anticoagulation, 

no antithrombotic therapy is administered. Otherwise, depending on the risk of stroke assessed by 

the CHA2DS2-VASc score and risk of bleeding, assessed by HAS-BLED score and other 

individualized assessments, some type of anticoagulation therapy, depending on patient’s 

tolerance and drug to drug compatibility, is needed (Figure 1.3).  
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Figure 1.3 Simplified decision making flowchart for anticoagulation in atrial fibrillation 

AF: atrial fibrillation; LAA: left atrial appendage. 
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1.3.4 Left Atrial Appendage Closure Devices 

LAA is the prominent location for thrombus formation in AF (Section 1.5). 

Anticoagulation with vitamin K antagonist therapy is contraindicated in 14-44% of AF 

patients (Sakellaridis et al., 2014). These patients have a very narrow therapeutic window, require 

specific dietary restrictions, and potential for drug-drug interactions. Therefore, LAA closure is 

desirable in these cases. There are three approaches for excluding LAA: 1) surgical approach to 

amputate or ligate the LAA, 2) percutaneous endovascular approach to inset the occlusion device 

inside the LAA, and 3) percutaneous epicardial ligation to externally exclude the LAA. 

Watchman device and Amplatzer cardiac plug are example of percutaneous left atrial 

appendage transcatheter occlusion devices that have shown encouraging results. Even though 

Current results show that LAA occlusion reduces long-term stroke risk, its efficacy and safety are 

controversial (Apostolakis et al., 2013). According to the guidelines, oral anticoagulation is still 

the preferred therapy in most cases for stroke prevention. However, patients with bleeding risk or 

poor drug tolerance or adherence who are poor candidates for long-term oral anticoagulation can 

be considered for Watchman device. These patients must be suitable for short-term warfarin 

administration and should have CHADS2 ≥ 2 and CHA2DS2-VASc ≥ 3 (January et al., 2019) 

(Figure 1.3). 

Anticoagulation therapy is one of the most important parts of clinical management in AF. 

Stroke risk stratification is essential when making decisions about anticoagulation therapy or LAA 

closure. Accurate stroke stratification is critical to improve the patient selection decision for LAA 

exclusion/occlusion and increase the effectiveness of anticoagulant management while lowering 

the side effects. 
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1.4 Current Clinical Risk Stratification Schemes 

Most stroke and thromboembolism (TE) risk predictions for AF patients are based on 

clinical risk stratification schemes like Framingham, NICE, CHADS2, and CHA2DS2-VASc, 

which have been developed on the basis of risk factors identified from trial cohorts (January et al., 

2014). Efforts have been made to improve the risk stratification for thromboprophylaxis to find 

the higher risk patients more effectively (Kakar et al., 2007). However, many inconsistencies have 

been reported among the risk stratification schemes (Lip and Boos, 2008). The most commonly 

used and validated risk stratification scheme for making clinical decisions regarding the 

anticoagulant or antiplatelet therapy for the management of AF patients are CHADS2 and newer 

CHA2DS2-VASc schemes. Everyone has a score with range of 0 to 6 and 0 to 9 based on CHADS2 

and CHA2DS2-VASc schemes, respectively. The scoring strategies for CHADS2 and CHA2DS2-

VASc schemes are shown in Table 1.1. According to the CHADS2 scheme, score of 0 is considered 

minimal risk, score of 1 or 2 is moderate, and score of ≥ 3 are high risk. Similarly, according to 

the CHA2DS2-VASc scheme, a score of 0 is considered insignificant risk, a score of 1 is considered 

moderate, and ≥ 2 is considered elevated risk. Because of the added risk factors compared to the 

CHADS2 scheme, CHA2DS2-VASc scheme has a better ability to identify low risk patients. 

Further, it has the tendency to classify more patients into the higher risk group rather than moderate 

risk group (Chen et al., 2013). It is recommended that patients who receive score of ≥ 2 from either 

scheme to be treated with anticoagulation therapy. These guidelines are constantly changing to 

improve their accuracy, however, even more refined versions of these schemes (January et al., 

2019, Lip et al., 2010) do not determine stroke risk based on the patient-specific hemodynamics 

and physics. Presently, we stay very limited in predicting who will have a stroke in the context of 

AF. 
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Table 1.1 Scoring strategies for CHADS2 and CHA2DS2-VASc schemes 

CHADS2 Scheme (0-6) CHA2DS2-VASc Scheme (0-9) 

Risk Factor Score Risk Factor Score 
History of Stroke/ Transient Ischemic Attack 2 History of Stroke/ Transient Ischemic Attack  2 

Age > 75 years 1 Age (years): > 75 or > 65 and < 75 2 or 1 

Hypertension 1 Hypertension 1 

Diabetes Mellitus 1 Diabetes Mellitus 1 

Heart Failure 1 Heart Failure 1 

  Vascular Disease 1 

  Female Gender 1 

1.5 LAA: The Most Prominent Region for Thrombus Formation in AF 

LAA, due to its complex morphology as compared to the smooth-walled LA, is a favored 

location for thrombi formation: 91% and 50% of thrombi in nonvalvular AF and valvular AF, 

respectively, are found in LAA (Al-Saady et al., 1999, Holmes et al., 2009, Reddy et al., 2013). 

These thrombi are known to cause stroke in AF patients. As explained in Sections 1.3 and 1.4, 

cardioversion, antiarrhythmic drug therapy, or ablation therapy are used to restore the normal sinus 

rhythm. In addition, to prevent stroke in AF patients, anticoagulation management is required. A 

major limitation to using anticoagulation is the risk of bleeding which is estimated to ~1.4-3% per 

year when all AF patients are considered (Camm et al., 2010, Hughes et al., 2007, Vainrib et al., 

2017). CHA2DS2-VASc score is the most used index for making clinical decisions regarding the 

management of AF patients. While this index is based on clinical data (Table 1.1), it does not 

incorporate the role of LA–LAA geometry or local hemodynamics in the thromboembolic risk 

assessment. Because of the concern for bleeding, about 30-40% of AF patients who are eligible 

for anticoagulation based on the CHA2DS2-VASc score are not on any anticoagulation agents. 
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Recent technologies aiming at LAA occlusion/exclusion are being developed to mitigate this 

problem and exclude the critical origin of thrombus (Section 1.3.4). There is always a tradeoff 

between the risk of bleeding and the risk of stroke but the decision to anticoagulation or not is 

currently not informed by the morphology of patient-specific LAA/LA. 

1.6 Correlation of LAA Appearance/Shape with Stroke Risk 

LAA is a complex structure which arises from the anterolateral of LA. It typically starts 

with an ovoid orifice and reaches the apex via the neck, and it may contain multiple lobes. LAA 

is the most prominent region for thrombus formation in AF patients (Al-Saady et al., 1999). The 

hypothesis that there is a correlation between the LAA morphology and stroke risk has been 

assessed in several studies. Many indices have been examined in this context: LAA orifice 

diameter; number of branches and twigs; degree of coverage with fine structures (Ernst et al., 

1995); LAA volume, depth, and number of lobes (Beinart et al., 2011); LAA takeoff from mitral 

valve (Nedios et al., 2014); and existence of a bend in LAA with an acute angle (Yaghi et al., 

2020). Di Biase et al. (2012) categorized LAA shapes into four groups: chicken wing, windsock, 

cactus, and cauliflower shapes (Figure 1.4). This classification is solely based on the visualization 

of LAA morphology: shape, geometrical features such as the existence of obvious bend, length, 

number of lobes, etc. (Beigel et al., 2014, Wang et al., 2010). Di Biase et al. (2012) concluded that 

patients with the ChickenWing morphology are less likely to have a stroke while Cauliflower 

morphology is associated with more stroke. Although these results are promising, there is a large 

variability in stroke occurrence within a given LAA shape category (Khurram et al., 2013, Nedios 

et al., 2014, Sanatkhani and Menon, 2017, Sanatkhani et al., 2021, Yaghi et al., 2018). The 
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subjective nature of LAA shape categorization may contribute to this variability. In this study, we 

will show an objective index to quantify LAA morphology using the principal component 

analysis (Sanatkhani and Menon, 2018). This approach uses the entire three-dimensional cardiac 

computed tomography (CCT) image, as opposed to isolated measurements of LAA dimensions, 

and therefore is more objective and comprehensive in quantifying LAA appearance. We are 

proposing a methodology that will quantify the complexity of LAA. 

 

Figure 1.4 Clinically identified left atrial appendage shape categories 

ChickenWing: This is the most common shape (48%), with a dominant lobe and an obvious bend in its 

proximal or middle part that folds back on itself. It also may have secondary lobes. Cactus: This is the second 

most common shape (30%), with one dominant central lobe and secondary lobes arising from the dominant 

lobe superiorly and inferiorly. Windsock: With an occurrence frequency of 19%, the primary structure here 

is a dominant lobe and secondary or tertiary lobes may exist at different locations. Cauliflower: It is the least 

common shape (3%), without a dominant lobe and having complex twigs (i.e., small and short-length lobes). 

Reprinted with permission from (Di Biase et al., 2012). 
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1.7 Correlation of LAA Hemodynamics with Stroke Risk 

In the presence of atrial fibrillation (AF), the loss of effective atrial contractile function and 

sinus rhythm contribute to reduction in cardiac output and results in flow stasis and thrombus 

formation, which in-turn increases the risk of cardioembolic complications and stroke. Several 

surrogates of thrombus-promoting flow patterns have been used to relate blood flow in vascular 

structures (including LA and LAA) to probability of clot formation: wall shear stress, shear strain 

rate, time-averaged wall shear stress, oscillatory shear index (Koizumi et al., 2015), time-averaged 

velocity, mean resident time (Rayz et al., 2010), local residence (Esmaily-Moghadam et al., 2013), 

residual virtual contrast agent (Bosi et al., 2018, Otani et al., 2016), and vortex structure (Masci et 

al., 2019, Masci et al., 2020). The most realistic solution to simulate clot formation is to model the 

transport of blood cells (i.e., platelets, red blood cells, etc.) in each geometry. A Lagrangian 

approach can be used for this purpose (Bernsdorf et al., 2006), which requires tracking of a large 

number of particles and a very fine mesh to resolve the flow field for particle tracking, making it 

computationally very expensive (Rayz et al., 2010). An Eulerian approach, where tracer 

concentration transport approximates the Lagrangian particle transport, has been used with 

reasonable success for quantifying indices correlated with thrombus formation (Bosi et al., 2018, 

Esmaily-Moghadam et al., 2013, Masci et al., 2020, Otani et al., 2016, Rayz et al., 2010, 

Sanatkhani et al., 2018, Sanatkhani et al., 2021). However, an index to quantify the stroke risk 

based on LA/LAA hemodynamics is still needed. In the next section we present the theory behind 

our systems-based approach to quantify patient-specific LA/LAA hemodynamics and 

consequently, indices that are likely to be related to the thrombus formation risk. 
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1.7.1 Systems-Based Approach to Quantify Patient-Specific Indices of Thrombosis 

Formation Risk 

We treat LA/LAA as a system to quantify the relevant hemodynamics and consequently, 

the patient-specific indices of thrombosis risk. For the hemodynamic characterization, LA/LAA in 

patients with AF is assumed to be a nonlinear, time-invariant system whose hemodynamic 

behavior is mathematically modeled using the well-established fluid dynamics and material 

transport principles (details in Section 3.1). The system properties (parameters) are comprised of 

the patient-specific attributes: LA/LAA geometry, hematocrit, pulmonary vein input (cardiac 

output), heart rate, etc.). As illustrated in Figure 1.5, an injection of a tracer in LAA corresponds 

to the input of the system and we wish to observe how this tracer is cleared from LAA. The tracer 

clearance is quantified in terms of the output of the system (Figure 1.5): residence time 

distribution function, E(t). Physically, E(t)Δt represents the fraction of tracer exiting the LAA that 

has spent between time t and t+Δt inside the LAA. Two indices of tracer clearance are calculated 

from E(t): mean residence time of the tracer in the LAA (first moment of E(t)) and asymptotic 

tracer concentration remaining in the LAA. These two indices are expected to be positively 

correlated with the risk of thrombus formation. Details regarding E(t) and subsequently calculated 

indices using E(t) are presented in Section 3.1.9. According to the systems-based approach, the 

observed output of the system for an impulse input (i.e., impulse response of the system) is 

exclusively dependent of the system properties (parameters). Therefore, we inject tracer material 

into the LAA instantaneously such that the LAA concentration of the tracer is 1 at t = 0 and observe 

the output, E(t), to learn about the tracer clearance dynamics of our system and consequently, 

calculate tracer clearance indices that are expected to be correlated with thrombus formation.  
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Figure 1.5 Systmes-based appraoch to quantify patient-specific indices of thombus formation risk 

System: left atrium/left atrial appendage (LA/LAA) with patient-specific system properties (i.e., patient-

specific LA/LAA geometry, cardiac output, and hematocrit); Input, N0 δ(t): Impulse injection of the tracer 

material inside the LAA, with N0 being the total amount of injected tracer that results in LAA tracer 

concentration of 1 at t = 0 and δ(t) is the dirac delta; Output: patient-specific residence time distribution 

function, E(t), and associated calculated indices (i.e., mean residence time of the tracer in the LAA and 

asymptotic tracer concentration remaining in the LAA). 

1.8 Objective and Specific Aims 

Current methodologies for shape quantification are subjective and they do not fully 

characterize LAA shape complexities. Calculated particle residence time using the analysis of 

LA/LAA hemodynamics, may correlate with stroke risk in AF patients; but this has not been 

investigated systematically. The objective of the present study was to determine whether LAA 

residence time and LAA appearance indices are able to independently improve stroke 

stratification in AF patients and consequently enhance clinical decision making. There are 

three aims to address the stated objective. 
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1.8.1 Specific Aim 1: Develop a Quantitative Index of LAA Appearance 

The goal here was to develop a new quantitative index of the complexity of LAA 

appearance (shape) directly from measured image data, without using any a priori geometric 

models. This index is based on the Principal Component Analysis (PCA) of the entire three-

dimensional image of the LAA. It is expected that this quantitative index will characterize the 

complex LAA appearance in a comprehensive manner and enhance the current approach for stroke 

risk stratification and clinical management in AF patients. 

1.8.2 Specific Aim 2: Develop a Quantitative Index of LAA Residence Time Using a 

Systems Approach 

The goal here was to develop a computational-fluid dynamics (CFD)-based approach to 

calculate LAA residence time and associated indices in a patient-specific manner and examine the 

effects of confounding variables such as the pulsatility of pulmonary vein waveform, non-

Newtonian blood properties, and hematocrit levels to optimize the computational protocol.  

1.8.3 Specific Aim 3: Develop a Predictive Model to Stratify Stroke Risk Using LAA 

Appearance and LAA Residence Time Indices 

The goal here was to examine whether indices calculated in Specific Aims 1 and 2 (i.e., 

LAA appearance index and LAA mean residence time and associated indices) have the ability to 

predict stroke in AF patients. Multiple logistic regression is used to predict stroke. This effort is 
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expected to improve significantly stroke risk prediction in AF patients and consequently, enhance 

the decisions made about thromboprophylaxis. 

1.9 Organization of Dissertation 

Methods and the workflow used to quantify the LAA appearance objectively are presented 

in Chapter 2.0. The calculated index (i.e., LAA appearance complexity index) is assessed by 

examining sample subjects. Further, the correlations of LAA appearance complexity index and the 

traditional LAA shape classification and CHA2DS2-VASc score are examined in this chapter. 

The CFD-based methodology for calculating the proposed hemodynamic index (i.e., mean 

residence time) in a patient-specific manner is presented in Chapter 3.0. In addition, the effects of 

confounding physiological variables (patient-specific pulmonary vein waveform, non-Newtonian 

blood properties, and hematocrit levels) and the length the CFD simulation on mean residence time 

are examined. Finally, the correlation between the LAA mean residence time and LAA appearance 

complexity index (LAA-ACI) and between the LAA mean residence time and CHA2DS2-VASc 

score are examined.  

The results regarding whether the LAA appearance and residence time indices enhance the 

current approach for stroke risk stratification in AF patients are presented in In Chapter 4.0.  

An overall summary of our work and suggestions for the future directions are presented in 

Chapter 5.0. 

Supplementary details of our methodologies, such as the detailed workflow of preparing 

LAA images to calculate the appearance complexity index, implementation of custom CFD solver 
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in C++ into the OpenFOAM software, and the analytical tools used for calculating the mean 

residence time, are presented in the appendices. 
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2.0 Specific Aim 1: Develop a Quantitative Index of LAA Appearance 

As discussed in Section 1.5, LAA has more complex morphology as compared to the rest 

of the LA, and this is a favored location for thrombus formation. The complex LAA morphology 

can result in complex flow patterns within LAA, including recirculating zones and blood stasis, 

which increase the risk of thrombus formation. It is surprising to note that the current clinically 

used stroke risk stratification metric in AF patients, CHA2DS2-VASc score, does not take into 

account LAA morphological features of LAA. Therefore, it is reasonable to expect that the 

quantification of LAA morphological features (appearance) and establishing its utility in stroke 

risk stratification can improve the AF management, which in-turn can reduce the likelihood of 

future complications. 

The currently available characterization of LAA appearance is very limited owing to the 

qualitative nature of the appearance classification paradigm. This approach is problematic not only 

because of the subjectivity of human interpretation but also the inadequacies of the descriptors of 

the geometric features used as the basis for the classification (Khurram et al., 2013). Further, 

experienced electrophysiologists don’t always agree; a given LAA is often classified in different 

shape-based groups, marked with a different risk score, and treated in a different way depending 

on the reader’s subjective interpretation of the images. The quantitative characterization of LAA 

appearance using patient-specific clinical images of the left atrium and an algorithmic approach is 

highly desirable and such a quantitative characterization is expected to improve stroke risk 

stratification. 
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2.1 Methodology 

2.1.1  Study Subject Characteristics 

A total of 128 subjects with symptomatic AF (111 paroxysmal, 17 persistent) were studied 

(11 males). All patients included in this study were undergoing evaluation and treatment of AF, 

including medical management and procedural based treatments. Children were excluded from 

this study. Cardiac-computed tomography (CCT) was performed in subjects prior to an AF catheter 

ablation procedure at University of Pittsburgh Medical Center (UPMC, Pittsburgh, PA, USA). 

CCT images were obtained using a multidetector 64-row helical system (Brilliance 64, Philips, 

Netherlands). Scanning was performed gated to the cardiac cycle in cranio-caudal direction from 

the aortic arch towards the diaphragm. The imaging parameters were: 70–120 kV, 850 mA s, 0.6 

mm beam collimation, 0.625–1.25 mm thickness, and 20–30 cm field-of-view. During an end-

inspiratory breath-hold of 20 s and following a timing bolus-chase injection (20 ml at 5 ml s−1), 

90 ml of an iodinated contrast medium (Ultravist 370, Bayer Vital, Cologne, Germany) was 

administered. The average age, heart rate, and cardiac output were 63.6 ± 9.0 years (range: 35–79 

years), 66 bpm (range: 40–132 bpm), and 4.0 L min−1 (range 1.5–8.7 L min−1), respectively. The 

range of CHA2DS2-VASc scores was 0 to 5 (mean = 2.0 ± 1.1). 

2.1.2  Image Segmentation and Feature Vector Preparation 

Contrast-enhanced CCT DICOM (Digital Imaging and Communications in Medicine) 

images were cropped and then smoothed using a median filter with a kernel of 5×5×5 to remove 

the high frequency noise in the image. Next, using the marching cubes method a surface body was 
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created in ParaView (version 5.9.1, Kitware, Inc., Albuquerque, NM, USA) representing the LAA 

surface. Unwanted surfaces attached to the LAA were manually removed in Geomagic Studio 

(version 10, Geomagic, Inc., Research Triangle Park, NC, USA). The remaining surfaces were 

smoothed out in Geomagic Studio. Next, a voxelization filter was used to generate a volume body 

out of the cleaned-up LAA surfaces, in ParaView. This generated volume body was used as a 

binary mask to segment just the LAA from the original CCT image in MATLAB® (version 

R2020b, MathWorks, Inc., Natick, MA) (Figure 2.1). Finally, all volume images were reoriented 

in a similar manner in which the ostium sit on the x-y plane with the surface normal points to +z 

axis. In case the LAA was bent (which almost always at least a slight bend exists), then the 

centerline pointed towards +x axis (i.e., the centerline vector was rotated until it had no y 

component). Next, every LAA was cropped using a cube as tight as possible with the LAA position 

at the center. Finally, LAA images were resampled into a 100×100×100 grid. A detailed flowchart 

of LAA segmentation is presented in Figure 2.1. 
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Figure 2.1 Flowchart for the left atrial appendage extraction process 

A) Flowchart of the procedure employed to extract each patient’s left atrial appendage and prepared it for 

statistical analysis. The numbers alongside boxes are illustrated in section (B) of the figure, to visualize an 

example of each major step. VTK: Visualization Toolkit; LAA: left atrial appendage; STL: 

stereolithography. Adopted with permission from (Sanatkhani and Menon, 2018). 

2.1.3 Principal Component Analysis (PCA) 

PCA is a method for simplifying a multidimensional dataset to lower dimensions for 

analysis, visualization, or data compression. In PCA we look for a set of linear, orthogonal 

projections of the data for which the variance in the corresponding direction (i.e., eigen vectors) is 

maximized. To parametrize LAA volume regions based on principal components (i.e., PCs or 

eigen mode) of greyscale appearance, each LAA image (100×100×100) was reshaped into a long 

vector (Xi) with length of 106 samples, making each patient-specific LAA in the analysis a column 
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with 106 intensity observations in the cohort data matrix 𝐗𝐗 = (𝑿𝑿1, … ,𝑿𝑿128)T. The average 

intensity vector 𝝁𝝁 was subtracted from each column of population matrix before generating the 

(128×128) covariance matrix (𝚺𝚺XX). Next, we computed the projections of the individual intensity 

vectors, 𝜉𝜉𝑖𝑖  on the PCs viz. the eigen vectors of covariance matrix of X (Eq. 2.1). The PCs were 

arranged in decreasing order according to the associated eigen values. By sorting the eigen vectors 

in this manner, the first PC corresponds to a component that explains the variation in the intensity 

data the most. Finally, by reshaping each PC vector (𝝃𝝃) back into a 3D matrix we can generate the 

128 eigen-shapes representing the principal modes of intensity variation in the study cohort: 

 𝜉𝜉𝑖𝑖 = 𝒃𝒃𝒋𝒋𝑻𝑻𝐗𝐗 = 𝑏𝑏𝑖𝑖1𝑿𝑿𝟏𝟏 + ⋯+ 𝑏𝑏𝑖𝑖128𝑿𝑿𝟏𝟏𝟏𝟏𝟏𝟏 Eq. 2.1 

To reconstruct the original LAA images, Xi, the inner product of weights, bj, and the transposed 

matrix of sorted eigen vectors, 𝝃𝝃, was computed (Izenman, 2008). 1 

2.1.4  LAA Appearance Complexity Index (LAA-ACI) 

We reconstructed each patient-specific LAA using a successively increasing number of 

PCs and calculated a normalized residual error in appearance reconstruction for each step, RE(i), 

as follows (Eq. 2.2): 

 𝑅𝑅𝑅𝑅(𝑖𝑖) = �𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖)
𝑇𝑇𝑅𝑅𝑅𝑅

 Eq. 2.2 

where RSS(i) is the residual sum of squares for the ith step (i.e., i PCs used in the reconstruction), 

and TSS is the total sum of squares. RE(i) decreases with increasing i because the more PCs we 

use to reconstruct an image, the more information is available to describe the details of the original 

 

1 In this chapter, vectors are shown in bold and italics and matrices in bold fonts. Other variables are shown in italics. 
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image. Using all PCs would result in the original LAA image with zero residual error [RE(128) = 

0]. We have defined the normalized area under the curve (AUC) of RE(i) vs. i (i.e., 1
𝑁𝑁
𝐴𝐴𝐴𝐴𝐴𝐴(𝑅𝑅𝑅𝑅(𝑖𝑖)), 

where N is the total number of patients in the cohort) as the LAA-ACI; a larger area under the 

curve would correspond to a more complex appearance (e.g., Figure 2.2A). 

2.1.5 Statistical Analysis 

Continuous variables are expressed as mean ± standard deviation. Correlations between 

variables were determined by Spearman rank correlation. All statistical analyses were performed 

in SAS software (version 9.4, SAS Institute, Inc., NC, USA). 

2.2 Results 

2.2.1 Proof of Concept 

In a subcohort of 16 patients, the LAA appearance was quantified using the PCA, 

generating 16 eigen-shapes of appearance variation (Figure 2.2). The zeroth eigen-mode (i.e., first 

PC) of LAA appearance which explains the highest variances in LAA appearance in the study 

cohort had a strong resemblance to the ChickenWing LAA shape, which is known to have the 

lowest stroke risk (Figure 2.2). Further, the ChickenWing shape again was found to appear when 

we subtracted two standard deviations of the weight of the first eigen-mode (i.e., second PC) from 

the cohort average LAA appearance. 
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Figure 2.2 Visualization of 16 eigen-shapes created in the principal component analysis 

Reprinted with permission from (Sanatkhani and Menon, 2018). 

The ChickenWing and Windsock appendages were found to be distinguishable in terms of 

appearance reconstructions based up to 6 PCs, the Cactus shaped LAA reconstructed using up to 

6 most dominant PCs was found to bear a strong resemblance to the ChickenWing (Figure 2.3). 
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Figure 2.3 Reconstructed left atrial appendages using different number of principal compoenents 

The reconstructed image of all four categories using just one principal compoenent (PC) look the same and 

resemble a ChickenWing appendage. This resemblance continues even when using two or more PCs in the 

Windsock and Cactus category, whereas in the Cauliflower case we see a more rapid evolution of appearance 

away from the ChickenWing shape after using two PCs. Reprinted with permission from (Sanatkhani and 

Menon, 2018). 

Next, we chose two sample LAAs, 1) low risk and 2) high risk, based on the traditional 

classification (Di Biase et al., 2012). We reconstructed each LAA image using successively 

increasing number of PCs up to the point where the reconstructed LAA image was easily 

distinguishable. We were able to recognize the low risk LAA image with only using 4 PCs, while 

we used 12 PCs to reconstruct a recognizable image of the high risk LAA sample (Figure 2.4). 
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Figure 2.4 Visualization of reconstruction two left atrial appendage images using different number of 

principal components 

The left atrial appendage (LAA) on the left with lower stroke risk requires only 4 principal components (PCs) 

while the higher stroke risk LAA on the right requires 12 PCs. 

2.2.2 Quantitative Characterization 

The residual error for step i, RE(i), vs. i curves for three representative subjects is shown 

in Figure 2.5A, along with the corresponding geometry of the three LAAs (Figure 2.5B). Subject 

#3 requires significantly more PCs for accurate reconstruction and, therefore, has the largest LAA-

ACI (i.e., area under the curve), indicating that this is the most complex appearance. The rank 

ordering based on the LAA-ACI is subject #3, subject #2, and subject #1. 
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Figure 2.5 Left atrial appendage appearance complexity index of three sample subjects 

(A) Normalized residual error, RE(i), plotted as a function of the number of principal components (i) used to 

reconstruct the left atrial appandage (LAA) appearance for three subjects. As i increases, RE(i) decreases, 

reaching a value of zero when i = 128, corresponding to a perfect reconstruction. LAA appearance complexity 

index (LAA-ACI) is defined as the area the area under the RE(i)–i curve; larger LAA-ACI corresponds to a 

more complex LAA appearance. (B) Geometrical features of these three LAAs, including LAA ostium, tip of 

the LAA, LAA lobes (shown by circles), and LAA centerline bend (shown by curved arrows). The rank 

ordering of these three LAAs based on the LAA-ACI (simplest to most complex) is subject #1, subject #2, and 

subject #3. 
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2.2.3 Minimum Number of Subjects for Principal Component Analysis 

The proposed methodology for computing LAA-ACI for a given subject requires the 

principal component analysis (PCA) of a cohort of AF subjects. We wanted to examine how the 

number of subjects in the cohort used for the PCA affects the calculated values of LAA-ACI and 

their rank ordering with respect to the complexity of LAA appearance. We randomly selected 25 

out of 128 subjects as the reference test group. We then performed the PCA using this reference 

test group and calculated the LAA-ACI value for each of the 25 subjects in this reference test 

group. Next, we performed four additional PCAs using 50, 75, 100, and 128 subjects, each time 

including the 25 subjects from the reference test group and calculating the LAA-ACI value for 

each of the 25 subjects from the reference test group. Thus, we had 5 sets of LAA-ACI values for 

the 25 subjects from the reference test group corresponding to the varying number of subjects used 

in the PCA (25, 50, 75, 100, and 128). The average value of LAA-ACI for the reference test group 

was not affected by the number of subjects used in the PCA, especially above 75 (Figure 2.6). The 

Spearman rank order correlation analysis was performed between each of the 5 sets of LAA-ACI 

values and LAA-ACI values for the set with 128 subjects in the PCA. As illustrated in Figure 2.6, 

the Spearman rank order correlation coefficient is > 0.99 for the number of subjects in the PCA 

above 75 (Note: By definition, the Spearman rank order correlation coefficient for 128 subjects in 

the principal component analysis is equal to 1). Based on these results, our cohort of 128 subjects 

is adequate to calculate LAA-ACI of an individual subject. 
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Figure 2.6 Left atrial appendage appearacne complexity index (LAA-ACI) and rank order correlation 

between LAA-ACI calculated using 128 subjects and smaller subcohorts 

Bar graph: Values of LAA-ACI (mean ± SEM) for the 25 subjects from the reference test group for different 

number of patients in the subcohort used for the principal compoenent analysis. Solid line: The Spearman 

rank order correlation coefficeint, ρ, between the LAA-ACI values calculated for the refeence test group 

using the entire cohort of 128 subjects (ρ  = 1, by definition) and LAA-ACI calculated using smaller 

subcohorts. 

2.2.4 Relating LAA-ACI to Traditional LAA Shape Classification 

The LAA appearance for each of the 128 subjects in the present study was classified into 

one of four groups based on the study by Di Biase et al. (2012). Group data for LAA-ACI (Figure 

2.7) indicated that LAA-ACI had a large variability within each group, resulting in a significant 

overlap of this index of appearance complexity among the four LAA shape groups. 
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Figure 2.7 Left atrial appeadage (LAA) Appearacne Complexity Index (LAA-ACI) variablity among 

traditional shape groups 

Box plots showing the LAA-ACI for each of the four traditional LAA shape groups. There is large variability 

in LAA-ACI  within each traditional LAA shape group. The lower and upper whiskers represent first 

quartile and fourth quartile groups, respectively. The “x” represents the mean. 

2.2.5 Relating LAA-ACI to CHA2DS2-VASc Score 

Spearman rank correlation analysis was performed between LAA-ACI and CHA2DS2-

VASc score (Figure 2.8). It appeared that there was a weak negative correlation between LAA-
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ACI and CHA2DS2-VASc score (ρ = - 0.1, P = 0.26; Figure 2.8)2, but this did not reach statistical 

significance. 

 

Figure 2.8 Relationship between left atrial appendage appearance complexity index and CHA2DS2-VASc 

score 

Relationship between left atrial appendage appearance complexity index (LAA-ACI) and CHA2DS2-VASc 

score, analyzed using Spearman rank correlation analysis, showing a weak and insignificant correlation. 

2.3 Discussion 

The idea that the complexity of LAA geometry plays an important role in stroke risk 

stratification in AF subjects is not new. As discussed in the Introduction Chapter, many indices 

have been examined in this context, e.g., LAA orifice diameter; number of branches and twigs; 

 

2 Correlation coefficient has been shown by ρ in italics throughout the document. 
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degree of coverage with fine structure; LAA volume, depth, and number of lobes; and existence 

of a bend in LAA (Beinart et al., 2011, Di Biase et al., 2012, Ernst et al., 1995, Khurram et al., 

2013, Nedios et al., 2014). While these are isolated features of the complex LAA geometry, our 

LAA-ACI utilizes the entire 3D dataset, and we believe that this integrated index incorporates the 

information provided by isolated measures.  

In a PCA-based study using a subcohort of 16 patients, we showed that the zeroth eigen-

mode (i.e., first PC) of LAA appearance, which explains the highest variances in LAA appearance 

in the study cohort, had a strong resemblance to the ChickenWing LAA shape, which is reported 

to have the lowest stroke risk (Di Biase et al., 2012) (Figure 2.2). These results lead to a hypothesis 

that LAA geometries that are known to be associated with a high stroke risk (e.g., Cauliflower and 

Cactus LAA) require stronger contribution of higher-order PCs in order to reconstruct their 

respective complex appearance as opposed to LAA variants associated with clinically lower stroke 

risk (i.e., ChickenWing and Windsock) (Figure 2.3). We observed that LAA shapes that are 

typically associated with low stroke risk could be reconstructed using a low number of PCs (up to 

4), while high stroke risk shapes required up to 12 PCs for their reconstruction (Figure 2.4). This 

subcohort study showed the feasibility of quantifying LAA appearance (shape) using PC weights 

and this PCA-based analysis (i.e., LAA-ACI) has the potential to discriminate between high and 

low stroke risk LAA shapes. 

Considering the LAA-ACI values for three representative subjects illustrated in Figure 2.5, 

the LAA-ACI for subject #1 is the lowest, indicating that this subject has the simplest appearance. 

Subject #1 has a smoother wall and its total length (length of the LAA centerline from the ostium 

to the tip) is shorter compared with the other two. The appearance of subject #3 is the most 

complex, having several lobes (circled regions in Figure 2.5B). Furthermore, subject #3 has the 
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longest length with a bend along its centerline. Although the LAA of subject #2 is smooth, its ACI 

falls in between the other two subjects because of the large bend along its centerline. Thus, our 

LAA-ACI is an objective and quantitative metric that characterizes the complexity of LAA 

appearance in a holistic way. The next question is whether this integrated index is superior from 

the perspective of improving the stroke risk stratification. We begin to address this question using 

a retrospective dataset (Chapter 5), but a prospective longitudinal study is necessary to address 

this question in a definite manner. 

Other studies have used the LAA morphology classification paradigm of Di Biase (Di 

Biase et al., 2012) to characterize LAA shape. As mentioned before, this is a very subjective 

approach and even experienced cardiologists do not always agree when classifying a given LAA 

into specific shape categories. In addition, there is a large variability in stroke occurrence within a 

given LAA shape category (Khurram et al., 2013, Nedios et al., 2014, Sanatkhani and Menon, 

2017, Yaghi et al., 2018). This is consistent with the large variability LAA-ACI (Figure 2.7) within 

each shape category. The intercategorical LAA-ACI variability may explain the differences in the 

stroke risk seen among subjects with similar overall LAA geometry. This variability underscores 

the importance of considering subject-specific LA and LAA morphologies in constructing a metric 

for stroke risk stratification in AF based on hemodynamics. 

We found an insignificant negative correlation between the LAA-ACI and CHA2DS2-

VASc score (Figure 2.8), indicating that these two indices are not conveying the same information. 

There is a large variability of appearance complexity index for a given CHA2DS2-VASc score. 

This underscores the possibility that LAA-ACI has a potential to add information independent of 

the CHA2DS2-VASc score and consequently, improving the current stroke risk stratification 

protocol that is solely based on the CHA2DS2-VASc score. 
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Due to the nature of calculation of LAA complexity, the LAA-ACI of a specific patient’s 

LAA cannot be calculated standalone and it requires a cohort of LAA images. The LAA-ACI 

calculated for a specific LAA depends on the cohort that was used to generate the eigen shapes 

(i.e., principal components) and then calculate the LAA-ACI (Sections 2.1.3 and 2.1.4). However, 

the rank order of a group of 25 patient’s LAA-ACI did not change when we calculated their LAA-

ACI using larger cohorts (Figure 2.8). This suggests that even though LAA-ACI of a specific 

patient varies depending on the cohort that has been used, LAA-ACI still can quantify the 

complexity of LAA images with respect to each other. Undeniably, a larger cohort would provide 

a better resolution and higher variation between the complexity of different LAAs, but to 

standardize the LAA-ACI values, a fixed reference cohort of LAA images where it includes a vast 

variety of different LAA morphologies is needed. Then, LAA-ACI of each new patient will be 

calculated using the reference cohort plus the new patient. The cohort 128 patients used in this 

study was comprised of variety of LAA morphologies and is a good candidate as the reference 

cohort. 

2.3.1 Limitations 

We cropped and reoriented all the LAAs in a similar manner. Further, we normalized and 

centered the contrast of all the images. However, the CCTs were not all acquired at a same 

condition (i.e., magnification, resolution, contrast, etc.). Calculation of LAA-ACI which is based 

on PCA requires standardized inputs (i.e., LAA images) that have identical properties. A cohort of 

LAA images where images have identical properties (i.e., magnification, resolution, contrast, etc.) 

will be needed to improve the results. 
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Although complexity index was generally high for complex morphologies, in few cases 

where the morphology was consisted of a long narrow bend, the calculated index was high. This 

was due to the rarity of these morphologies and an increase in the size of cohort will solve this 

issue. 
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3.0 Specific Aim 2: Develop a Quantitative Index of LAA Residence Time of Blood-Borne 

Particles Using a Systems Approach 

It is reasonable to expect that LA and LAA hemodynamics, especially the manner in which 

blood-borne particles are transported, is an important determinant of thrombi formation and 

consequently, of the stroke risk. However, the current clinically used stroke risk stratification 

metric in AF patients, CHA2DS2-VASc score, does not consider LA and LAA hemodynamics. A 

computational model to predict blood flow patterns and the transport of blood-borne particles 

within LAA, the primary site for the origin of most thrombi, can help with objective evaluation of 

regional stasis (and consequently, cardioembolic stroke) risk. Such a model, in turn, may help with 

anticoagulant-related therapeutic decision making in AF patients  (Di Biase et al., 2012). To 

develop such a hemodynamics-based tool, we employ computational fluid dynamics (CFD) to 

calculate mean residence time of blood-borne particles in the LAA (tm), an index of LAA blood 

stasis, using 3D LA and LAA geometries and LA inlet blood flow (i.e., pulmonary vein flow) data. 

While subject-specific 3D geometry can be obtained readily, it is not easy to measure all LA inlet 

blood flow waveforms in vivo. Therefore, a sensitivity study of LAA tm to the inlet blood flow 

waveform characteristics (shape and magnitude) has been carried out. In addition, we investigate 

whether the modeling process should include the non-Newtonian behavior of blood and patient 

specific hematocrit levels.  
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3.1 Methodology 

3.1.1 Study Subject Characteristics 

A total of 128 patients with symptomatic AF (111 paroxysmal, 17 persistent) were studied 

(11 males). Patients included in this study were part of another study which goal is to establish a 

clinical database of patients undergoing evaluation and treatment of AF, including medical 

management and procedural based treatments (i.e., ablation, device-based therapies with 

pacemakers/defibrillators, and LAA closure devices) within the Heart and Vascular institute of 

UPMC hospitals. CCT was performed according to the procedure described in Section 2.1.1. 

University of Pittsburgh Medical Center (UPMC, Pittsburgh, PA, USA). The average age, heart 

rate, and cardiac output were 63.6 ± 9.0 years (range: 35–79 years), 66 bpm (range: 40–132 bpm), 

and 4.0 L min−1 (range 1.5–8.7 L min−1), respectively. The range of CHA2DS2-VASc scores was 

0 to 5 (mean = 2.0 ± 1.1). 

3.1.2 Imaging and Segmentation 

Contrast-enhanced CCT DICOM images of 128 AF patients having unique LAA 

morphologies were acquired as explained in Section 2.1.2. Images were segmented in 3D to extract 

the LA surface, including LAA and pulmonary venous inlets, until the mitral valve plane 

(excluding valvular structures), using marching cube method (iso-contouring), in ParaView, 

followed by surface preparation steps, including regional smoothing and definition of flat inlets 

and outlet planes in Geomagic Studio, in order to result in surface models suitable for 

computational flow studies. The workflow of segmentation process is illustrated in Figure 3.1. 
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Figure 3.1 LA and LAA segmentation and meshing workflow 

DICOM: digital imaging and communications in medicine; STL: stereolithography. 
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3.1.3 Particle image velocimetry 

To visualize spatially distributed flow patterns and particle stasis in LAA  (Tanne et al., 

2008), 2D particle image velocimetry (PIV) was conducted in a representative patient-specific, 

half-scaled (to reduce the printing costs) physical model of LA and LAA. This patient-specific, 

physical LA/LAA model consisted of a hollowed block of transparent VeroClear material that was 

3D printed using a Stratasys 3D printer (Stratasys Ltd. ©, MN, USA) (Figure 3.2A). The physical 

model was integrated in a mock circulatory loop that circulated 2.0 L min-1 (to retain the dynamic 

similarity between the half-scaled model and full-size LA/LAA, the typical AF pulmonary flow, 

~4 L min-1, was divided by 2) of steady flow water seeded with Thermo Scientific Fluoro-Max red 

aqueous fluorescent particles (Thermo Fisher Scientific Inc., Waltham, MA USA). The 0.1 µm 

particles had a density identical to water which made them buoyant. Further, due to their small 

size, their effect on the flow was negligible. Therefore, they were a good candidate to represent 

the blood-borne particles. Hoffman clamps were used to distribute the total LA inflow equally 

among the four pulmonary veins of the LA physical model. An illuminated laser volume within 

the LAA was used (instead of illuminated sheet) to capture a projection of 3D particle flows in the 

volume of the LAA (Scarano, 2012). The PIV apparatus used a double-pulse Nd:YAG laser 

(Figure 3.2B), each with energy of 50 mJ per pulse at 532 nm and operated at a repetition rate of 

7 Hz and a single charge-coupled device (CCD) camera (model Imager Pro SX 5M, LaVision 

GmbH, Göttingen, Germany. Figure 3.2C). The camera was fitted with a high-pass filter to block 

laser light (i.e., green, 532 nm) and to transmit the emitted fluorescence of the seeded particles in 

the flow (i.e., red, >590 nm).  The raw PIV images were preprocessed by subtracting the sliding 

minimum over a specified time to eliminate background noise followed by a Gaussian smoothing 

filter to reduce pixel-to-pixel noise and finally particle intensity normalization to reduce high 
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intensity fluctuations of particles in the flow domain, prior to vector computation, using the 

LaVision DaVis software (LaVision GmbH, Göttingen, Germany. Figure 3.2D). 

 

Figure 3.2 Particle Image Velocimetry (PIV) setup 

(A) Hollowed 3D printed block using transparent VeroClear material on a Stratasys 3D printer. (B) Double-

pulse Nd:YAG laser with 50 mJ per pulse at 532 nm and repetition rate of 7 Hz. (C) Single CCD (charge-

coupled device) camera (model Imager Pro SX 5M, LaVision) facing the model connected to the circulatory 

loop. (D) Instantaneous screenshot of florescence particles inside the left atrial appendage. Reprinted with 

permission from (Sanatkhani and Menon, 2017) 
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3.1.4 Meshing 

The prepared geometries were meshed in ANSYS Meshing. The maximum length for the 

tetrahedron edge was considered 3.5 mm for the whole geometry (including LA and LAA). Then, 

mesh was refined based on surface curvature to capture the topology. For instance, mesh at the tip 

of the LAA is finer than at the center of LA. Five prismatic layers at wall boundaries were used to 

resolve the boundary layer flow (Figure 3.1C). We used these settings for our course mesh. Next, 

we incrementally increased the number of elements until the changes in asymptotic concentration 

(see Section 3.1.8) in LAA were less than 5%. The number of mesh elements was chosen based 

on our mesh independency study. Based on the size and tortuosity of each subject, the number of 

mesh elements varied between 500,000 and 2,000,000 tetrahedrons with the average of ~800,000 

tetrahedrons, which was considered acceptable according to the literature (Aguado et al., 2019, 

Otani et al., 2016). 

3.1.5 Governing Equations 

In this section the governing equations needed to be solved to simulate the flow and blood-

borne particles inside the LA and LAA are presented. Using conservation of momentum, the 

equation of motion (Cauchy’s equation of motion) is: 

 ρ 𝐷𝐷𝑢𝑢𝑖𝑖
𝐷𝐷𝐷𝐷

= 𝜕𝜕𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

 Eq. 3.1 
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3 where D/Dt is material derivative, t is time, x is coordinate direction, ρ is density, τ is stress 

tensor, and u is velocity. Considering blood as a Newtonian fluid, equation of motion can be 

written in the form of general Navier-Stokes equation (Kundu et al., 2012): 

 ρ 𝐷𝐷𝑢𝑢𝑖𝑖
𝐷𝐷𝐷𝐷

= − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

�2μ𝑒𝑒𝑖𝑖𝑖𝑖 −
2
3
𝜇𝜇(𝛁𝛁.𝐮𝐮)𝛿𝛿𝑖𝑖𝑖𝑖� Eq. 3.2 

where p is pressure, δ is Kronecker delta, µ is viscosity, and eij is the strain rate tensor. Using the 

fact that blood is an incompressible fluid (continuity: 𝛁𝛁.𝒖𝒖 = 0) and using vector notation Eq. 3.2 

shrinks to: 

 ρ 𝐷𝐷𝐮𝐮
𝐷𝐷𝐷𝐷

= −𝛁𝛁𝑝𝑝 + 𝜇𝜇∇2𝐮𝐮 Eq. 3.3 

The blood-borne particles inside the LA and LAA have been simulated by tracer concentration 

using Eulerian approach. The simplified governing equation to model the transport of tracer 

concentration is (Kundu et al., 2012): 

 𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= 𝐷𝐷𝐷𝐷𝛻𝛻2𝐴𝐴 Eq. 3.4 

where C is the tracer concentration and DC is diffusion coefficient. In case of pure advection (i.e., 

Peclet number: 𝑃𝑃𝑒𝑒𝐿𝐿 = 𝐿𝐿.𝑢𝑢
𝐷𝐷𝐶𝐶

= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑖𝑖𝐴𝐴𝐴𝐴
𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑢𝑢𝐷𝐷𝑖𝑖𝐴𝐴𝐴𝐴

= ∞;  𝐷𝐷𝐷𝐷 = 0) Eq. 3.4 reduces to: 

 𝜕𝜕𝐷𝐷
𝜕𝜕𝐷𝐷

+ 𝐮𝐮.𝛁𝛁𝐴𝐴 = 𝜕𝜕𝐷𝐷
𝜕𝜕𝐷𝐷

+ 𝛁𝛁. (𝐮𝐮𝐴𝐴) = 0 Eq. 3.5 

Blood density was considered ρ = 1,060 kg m−3 and in case of Newtonian fluid assumption, the 

dynamic viscosity was considered μ = 0.00371 Pa s (Formaggia et al., 2010). The aforementioned 

governing equations Eq. 3.3 and Eq. 3.5 have been discretized using spatial and temporal 

discretization schemes in OpenFOAM (version 8, The OpenFOAM Foundation Ltd, Inc., UK. See 

Section 3.1.8). 

 

3 In this chapter, vectors are shown in bold and other variables are shown in italics. 
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3.1.6 Quemada Viscosity Model 

Due to the focus of this study around the stasis region (very low shear strain rate) inside 

the LAA, it is important to consider the effects of the shear thinning behavior of whole blood. 

Further, it has been shown that blood viscosity is very sensitive to hematocrit (Formaggia et al., 

2010). To include blood viscosity properties in our model we used generalized Newtonian fluid 

assumption where viscosity depends on the shear rate. Based on this assumption the constitutive 

equation for an incompressible fluid using Stokes assumption can be written as follows (Kundu et 

al., 2012): 

 𝜏𝜏𝑖𝑖𝑖𝑖 = −�𝑝𝑝 + 2
3
𝜇𝜇𝛁𝛁.𝐮𝐮� 𝛿𝛿𝑖𝑖𝑖𝑖 + 2𝜇𝜇𝑒𝑒𝑖𝑖𝑖𝑖 Eq. 3.6 

Eq. 3.6 can be substituted into Eq. 3.1 and by following the procedure in Section 3.1.5, the Navier-

Stokes equations and subsequently the governing equations of our problem can be derived. The 

strain rate tensor in Eq. 3.6 is given by: 

 𝑒𝑒𝑖𝑖𝑖𝑖 = 1
2
�𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖
� Eq. 3.7 

Due to the small mesh size, especially inside the LAA, we assumed that a single value of shear 

strain rate will apply in all directions. With the assumption of generalized Newtonian fluid, we 

calculated the magnitude of strain rate, �̇�𝛾, as follows (Formaggia et al., 2010): 

 �̇�𝛾 = �2(𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖)  Eq. 3.8 

Based on the calculated strain rate, �̇�𝛾, at each time-step and each mesh cell the viscosity model 

was updated to calculate the appropriate apparent viscosity for each cell (Formaggia et al., 2010). 

The Quemada viscosity model (Cokelet et al., 2005, Hund et al., 2017, Quemada, 1978) has been 

chosen as a reliable approach to approximate the non-Newtonian behavior of blood especially in 
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the LAA where strain rate is low. Based on the Quemada model the blood apparent viscosity, 𝜇𝜇𝑎𝑎, 

can be calculated as: 

 𝜇𝜇𝑎𝑎 = 𝜇𝜇𝜕𝜕(1 − 0.5𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)−2 Eq. 3.9 

where 𝜇𝜇𝜕𝜕 = 0.00123 𝑃𝑃𝑃𝑃 𝑠𝑠 is plasma viscosity and Hct is hematocrit level. Coefficient k and its 

other related coefficients are calculated using the relations in Table 3.1. 

Table 3.1 Quemada viscosity model coefficients 

H: hematocrit; �̇�𝜸: shear strain rate; k: intrinsic viscosity; �̇�𝜸𝒄𝒄, k0, k∞: Quemada coefficients 

𝑘𝑘 =  
𝑘𝑘0 + 𝑘𝑘∞�

�̇�𝛾
�̇�𝛾𝐴𝐴�

1 + ��̇�𝛾 �̇�𝛾𝐴𝐴�
 

𝑘𝑘0 = 𝑒𝑒𝑒𝑒𝑝𝑝(3.874 −  10.41𝑘𝑘𝑘𝑘𝑘𝑘 +  13.8𝑘𝑘𝑘𝑘𝑘𝑘2  − 6.738𝑘𝑘𝑘𝑘𝑘𝑘3) 

𝑘𝑘∞ = 𝑒𝑒𝑒𝑒𝑝𝑝(1.3435 −  2.803𝑘𝑘𝑘𝑘𝑘𝑘 +  2.711𝑘𝑘𝑘𝑘𝑘𝑘2  −  0.6479𝑘𝑘𝑘𝑘𝑘𝑘3) 

�̇�𝛾𝐴𝐴 = 𝑒𝑒𝑒𝑒𝑝𝑝(−6.1508 +  27.923𝑘𝑘𝑘𝑘𝑘𝑘 −  25.6𝑘𝑘𝑘𝑘𝑘𝑘2  +  3.697𝑘𝑘𝑘𝑘𝑘𝑘3) 

 

For detail information regarding the implementation of governing equation into 

OpenFOAM code please see Appendix B.1. 

3.1.7 Boundary Conditions 

LA and LAA walls were assumed to be rigid, impermeable, and with no-slip boundary 

conditions where pressure gradient is zero. Furthermore, for simplicity and lowering the 

computational costs, the mitral valve was assumed to be open throughout the simulation with a 

Neumann boundary condition where both gauge pressure and velocity gradient set to zero. To 

prevent outlet backflow divergence, we extended the outlet in our geometries (Figure 3.1C) to 
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develop a uniform flow with zero velocity gradient and zero pressure gradient at the outlets. Inlets 

were set with a Dirichlet boundary condition where a blood velocity profile was prescribed at PV 

inlets based on PV flow waveform (Figure 3.4). Details regarding the implementation of patient-

specific PV inlet boundary conditions are presented in Appendix B.2. 

3.1.8 OpenFOAM Solvers 

Our preliminary study indicated that the Reynolds number was highest at the outlet (i.e., at 

the mitral valve) and this value was in the laminar flow range. Therefore, we solved the governing 

equations using a laminar solver developed from nonNewtonianIcoFoam solver in OpenFOAM 

by implementing the Quemada viscosity model into the nonNewtonianIcoFoam solver. We 

modified the ScalarTransportFoam solver for implementing the tracer transport simulations and 

conducted the tracer transport-related simulations only after a hemodynamic steady state was 

reached. 

We used the asymptotic tracer concentration inside LAA (Section 3.1.9) as our 

convergence criteria to choose time step for our simulations. A time step of 500 µs was chosen 

based on a time-step independence study started with a 2 ms time step and decreased this value 

until the convergence criteria was met. The first-order implicit method was used for time 

discretization and second-order least-square scheme was used for pressure and velocity gradient 

discretization. First-order and second-order upwind schemes were used to discretize the 

divergence terms in the scalar transport equation and the convection term in Navier–Stokes 

equations, respectively. Pressure, velocity, and concentration tolerances were set to be 10−7 Pa, 

10−8 m/s, and 10−8, respectively. For these simulations, 24 threads of dual 12 core Intel Xeon Gold 

6126 CPU with 2.6 GHz clock speed and minimum of 8 GB of RAM were used at the University 
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of Pittsburgh Computing Research Center. The average execution time for each case in a steady 

flow using non-Newtonian model was ~7 days to simulate 10,000 s of tracer concentration 

advection through LA/LAA. 

3.1.9 LAA Residence Time of Blood-Borne Particles 

We first ran the fluid dynamics simulations until a hemodynamic steady-state was reached 

(after ~25 cardiac cycles), as defined by the steady state of wall shear stress averaged over the 

LAA surface area of each subject. Thereafter, we performed simulations to analyze the transport 

of virtual tracer (i.e., passive scalar, representative of blood-borne particles (cells) that are neutrally 

buoyant in plasma) out of LAA. These tracer transport-related simulations were initialized with 

the LAA filled with the tracer concentration, C(t), of unity (representing an impulse filling of LAA 

with the tracer) (Figure 3.9A). Tracer advection was simulated using fluid dynamic analysis where 

the tracer concentration of each cell was calculated in the transport equation coupled with the 

momentum equations. The volumetric average of tracer concentration inside the LAA, C(t), was 

calculated for 10,000 s. Based on the decay characteristics of C(t), we fitted a triple exponential 

model to C(t) that included an asymptotic term, C∞ (Eq. A1, Appendix C). 

The dynamics of the tracer clearance from LAA was quantified in terms of the residence 

time distribution (RTD) function, E(t) (Fogler, 2016): 

 𝑅𝑅(𝑘𝑘) = 𝑀𝑀(𝐷𝐷)
𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 Eq. 3.10 

where M(t) is the outflow of tracer material (amount of tracer material per unit time) from LAA at 

the LAA ostium and Mtotal is the total amount of tracer that leaves LAA over the period 0 to infinity. 

Thus, E(t), with the unit per second, represents the normalized outflow of tracer material from 
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LAA at time t. As shown in the Appendix C, we can rewrite Eq. 3.10 in terms of the LAA tracer 

concentration, C(t), as follows: 

 𝑅𝑅(𝑘𝑘) = [𝐷𝐷(𝐷𝐷)−𝐷𝐷(𝐷𝐷+∆t)]
∆t(1−𝐷𝐷∞)

 Eq. 3.11 

where Δt and C∞ are the time increment used in the finite difference-based estimation of M(t) (Eq. 

A3, Appendix C) and the asymptotic LAA concentration remaining in the LAA (Eq. A1, 

Appendix C), respectively. Two measures of the propensity of particles to stay within the LAA 

were calculated: mean residence time, tm, which is the first moment of E(t) (Eq. A6, Appendix 

C), and C∞ [C∞ = C(t→∞), Eq. A1, Appendix C]. A larger value for either of these two indices is 

expected to increase the clot formation risk. 

3.2 Results 

3.2.1 CFD Validation 

A PIV study on a sample LA/LAA geometry was performed to assess the validity of our 

CFD simulations. A series of CFD simulations on the same LA/LAA geometry was performed 

using similar flow conditions as in the experimental PIV setup wherein tracer concentration 

(representative of blood cells/florescent particles) was injected at pulmonary vein inlets of a 

LA/LAA geometry. It should be noted that this florescent particle injection protocol in the PIV 

study was different from the one used in the CFD simulations for calculating LAA tm and C∞: the 

tracer material was injected directly in LAA in an impulse-like fashion in case of the CFD 

simulations for calculating LAA tm and C∞. 
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Assuming diffusivity for tracer transport (i.e., diffusion coefficient, D > 0 m2 s-1) increases 

the rate of tracer concentration washout significantly and consequently reduces the computational 

time to calculate the residence time significantly. To investigate the feasibility of using diffusion 

term in our transport equation for our final simulations, the tracer transport in the sample LA/LAA 

geometry was simulated using three different diffusivities, D, in three separate CFD simulations: 

1) D = 0 m2 s-1 (pure advection transport), 2) D = 1 m2 s-1 (pure diffusion transport), and 3) D = 

0.01 m2 s-1 (transport with equally important advection and diffusion processes. i.e., Peclet number, 

𝑃𝑃𝑒𝑒𝐿𝐿 = 𝐿𝐿.𝑢𝑢
𝐷𝐷

= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑖𝑖𝐴𝐴𝐴𝐴
𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑢𝑢𝐷𝐷𝑖𝑖𝐴𝐴𝐴𝐴

= 1.). Results of the CFD simulations were compared with the experimental 

data obtained in the PIV study. 

Two recirculation zones in the LAA were observed in both the CFD simulation (Figure 

3.3C) and the PIV experiment (Figure 3.3B), one with low velocity (i.e., blue colored) at the distal 

tip of the appendage and the other with high velocity close to the LAA ostium. The experimental 

results revealed that neutrally buoyant fluorescent particles deposit and remain stagnant within the 

appendage around the upper wall and towards the tip of LAA (Figure 3.3B). Accumulation of 

tracer concentration observed in the CFD simulation using pure advection transport condition (D 

= 0 m2 s-1) was in the same regions as in the PIV experimental study (Figure 3.3D vs. Figure 

3.3B). In contrast, the CFD results based on D > 0 m2 s-1 condition depicted the tip of LAA as the 

only region with high tracer concentration, which does not match with the experimental result. 

The matching flow pattern and regions of particle accumulation in PIV experiment and 

CFD simulation with pure advection transport (D = 0 m2 s-1) provides a reasonable validation of 

our CFD-based analysis. Therefore, we assumed that the diffusion term in the transport of tracer 

material plays a very small role in our CFD simulations (Kim et al., 2004). 
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Figure 3.3 CFD assessment using particle image velocimetry 

A) particle image velocimetry (PIV) vector computation result colored with flow velocity magnitude, 

normalized from minimum (blue for stasis i.e., |V| = 0 m/s) to maximum (red), for particles seen in a 

projection of the illuminated left atrial appendage (LAA) volume. Stasis region is observed at the upper edge 

of the LAA. B) Approximate path-lines of the particles (manually traced as white lines) in the appendage, 

superimposed on an instantaneous screenshot of the same projection plane. The fluorescent particles are 

accumulated at the upper edge of the LAA, corresponding with blue regions of stasis seen in (A).  C) CFD 

generated streamlines of flow in the LAA, colored by velocity magnitude, normalized by minimum to 

maximum, from blue to red. The recirculation regions (shown with dotted circles) seen in (C) matches with 

the recirculation areas seen in (B). There are two recirculation regions seen in (C) and (B), one with low 

velocity (i.e., blue colored) at the distal tip of the appendage and the other with high velocity close to the LAA 

ostium. Further, blue stasis regions in (C) matches with the blue stasis regions in the experimental results (A). 
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(D-F) Contours of traer concentrations in a plane inside the LAA based on three separate CFD simulations 

using three different diffusivity condition for tracer transport (i.e., D = 0, 0.01, and 1 m2 s-1). Due to different 

tracer washout rate in each simulation, different timepoints have been used to show the tracer transport (D-

F). The high tracer concentration region in pure advection model (D) matches with the experimental results 

(B), however, this pattern is different in (E) and (F). In both (B) and (D) particles and tracer have high 

concentration along the top edge of the LAA towards the tip. Reprinted with permission from  (Sanatkhani 

and Menon, 2017) 

3.2.2 Confounding Variables 

There are various confounding variables that can affect regarding the CFD-based modeling 

of hemodynamics and particle transport and consequently, the calculation of LAA residence time. 

In this section we present the results of our subcohort studies carried out to examine the effects of 

each of the confounding variables. These results helped us optimize the CFD-based simulation 

protocol. 

3.2.2.1 Pulsatility 

Patient-Specific 3D geometry can be obtained readily, however, it is not easy to measure 

all PV inlet blood flow waveforms in vivo. A sensitivity study of LAA residence time to the inlet 

blood flow waveform characteristics (shape and magnitude) is needed to examine whether the 

nature of the inlet flow (steady vs. pulsatile) affects LAA residence time. To investigate the effects 

of PV blood flow waveform, various PV blood flow waveforms were generated by modifying a 

template normal waveform (Figure 3.4A). In a subcohort of 25 patients, each subject was 

simulated using 9 settings of PV inlet blood flow characteristics: three levels of mean PV blood 

flow (i.e., cardiac output of 3.3, 4.4, and 5.5 L min-1) and three types of PV flow waveform 
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(pulsatile waveform seen in a typical normal subject, pulsatile waveform seen in a typical AF 

subject, and steady with no pulsatility; Figure 3.4A-C) for each level of cardiac output. The mean 

residence time of blood-borne particles in LAA, LAA tm, and asymptotic concentration inside 

LAA, C∞, were quantified in each simulation. Both LAA tm and C∞ decreased significantly as 

cardiac output was increased, regardless of PV waveform type (Figure 3.4D). 

 

Figure 3.4 Three pulmonary vein flow waveform types and their relation with the hemodynamic indices 

(A) Normal pulsatile pulmonary vein (PV) flow waveform. Systolic, diastolic, and reversal areas in during one 

cardiac cycle are shown. Further, the peak of each period is pointed out. (B) Pulsatile PV flow waveform that 

is seen in a typical atrial fibrillation patient. Systolic, diastolic, and reversal durations are marked. (C) PV 

flow waveform with no pulsatility. (D) Mean residence time and asymptotic concentration in left atrial 

appendage corresponding to different PV flow waveforms and cardiac outputs for a cohort of 25 patients. 

Data: Mean ± SEM. 
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To investigate the effects of pulsatility of PV blood flow waveforms, we characterized PV 

blood flow waveform pulsatility in terms of several parameters (Table 3.2). Next, we performed 

four series of multiple linear regression analyses to investigate the effects of cardiac output (3 

levels) and the PV waveform pulsatility using the defined parameters (each time using one method 

of waveform characteristics parameters in Table 3.2). We used 24 dummy variables to account for 

the inter-subject variability: 

 𝐷𝐷𝑖𝑖 = �
1,             𝑆𝑆𝑆𝑆𝑏𝑏𝑆𝑆𝑒𝑒𝑘𝑘𝑘𝑘 𝑖𝑖
0,           𝑂𝑂𝑘𝑘ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒
−1,            𝑆𝑆𝑆𝑆𝑏𝑏𝑆𝑆𝑒𝑒𝑘𝑘𝑘𝑘 25

 Eq. 3.12 

The raw data used in this analysis are presented in Appendix D. These analyses revealed that only 

cardiac output was a significant independent variable (P < 0.0001). Based on this study, an increase 

of 1 L min-1 in cardiac output decreases the LAA tm by 3.5 s (±0.8 s; adj-R2 = 0.7; P < 0.0001) and 

C∞ by 2.8% (±0.5 s; adj-R2 = 0.8; P < 0.0001). 
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Table 3.2 PV Blood flow waveform pulsatility indices 

Pulmonary vein flow waveform characteristics parameters definitions are presented. Further, their value 

corresponding to each waveform type (pulsatile waveform seen in a typical normal subject, pulsatile 

waveform seen in a typical atrial fibrillation (AF) patient, and steady with no pulsatility; Figure 3.4A-C) and 

cardiac output are shown. Systolic/diastolic/reversal area and systolic/diastolic/reversal peak are shown in 

Figure 3.4A and B. 

M
et

ho
ds

 

Waveform Characteristics Parameter 
Normal 
Pulsatile 

Waveform 

AF 
Pulsatile 

Waveform 

No 
Pulsatility 

Cardiac Output (L min-1) 3.3 4.4 5.5 3.3 4.4 5.5 3.3 4.4 5.5 

1 

Normalized Systolic Duration   = 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒄𝒄 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒄𝒄 𝑫𝑫𝒖𝒖𝑨𝑨𝑨𝑨𝑺𝑺𝑺𝑺𝑺𝑺𝑫𝑫×𝑪𝑪𝑨𝑨𝑨𝑨𝑪𝑪𝑺𝑺𝑨𝑨𝒄𝒄 𝑶𝑶𝒖𝒖𝑺𝑺𝑶𝑶𝒖𝒖𝑺𝑺

 1.5 1.49 1.52 1.11 0.95 1.08 1 1 1 

Normalized Diastolic Duration = 𝑫𝑫𝑺𝑺𝑨𝑨𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒄𝒄 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨
𝑫𝑫𝑺𝑺𝑨𝑨𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒄𝒄 𝑫𝑫𝒖𝒖𝑨𝑨𝑨𝑨𝑺𝑺𝑺𝑺𝑺𝑺𝑫𝑫×𝑪𝑪𝑨𝑨𝑨𝑨𝑪𝑪𝑺𝑺𝑨𝑨𝒄𝒄 𝑶𝑶𝒖𝒖𝑺𝑺𝑶𝑶𝒖𝒖𝑺𝑺

 0.78 0.58 0.55 1.24 0.9 0.72 1 1 1 

Normalized Reversal Duration = 𝑹𝑹𝑨𝑨𝑹𝑹𝑨𝑨𝑨𝑨𝑺𝑺𝑨𝑨𝑺𝑺 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨
𝑹𝑹𝑨𝑨𝑹𝑹𝑨𝑨𝑨𝑨𝑺𝑺𝑨𝑨𝑺𝑺 𝑫𝑫𝒖𝒖𝑨𝑨𝑨𝑨𝑺𝑺𝑺𝑺𝑺𝑺𝑫𝑫×𝑪𝑪𝑨𝑨𝑨𝑨𝑪𝑪𝑺𝑺𝑨𝑨𝒄𝒄 𝑶𝑶𝒖𝒖𝑺𝑺𝑶𝑶𝒖𝒖𝑺𝑺

 0.32 0.44 0.39 0.39 0.12 0.14 1 1 1 

2 

Normalized Systolic Peak          = 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒄𝒄 𝑷𝑷𝑨𝑨𝑨𝑨𝑷𝑷
𝑪𝑪𝑨𝑨𝑨𝑨𝑪𝑪𝑺𝑺𝑨𝑨𝒄𝒄 𝑶𝑶𝒖𝒖𝑺𝑺𝑶𝑶𝒖𝒖𝑺𝑺

 2.25 2.18 2.27 1.55 1.25 1.54 1 1 1 

Normalized Diastolic Peak        = 𝑫𝑫𝑺𝑺𝑨𝑨𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒄𝒄 𝑷𝑷𝑨𝑨𝑨𝑨𝑷𝑷
𝑪𝑪𝑨𝑨𝑨𝑨𝑪𝑪𝑺𝑺𝑨𝑨𝒄𝒄 𝑶𝑶𝒖𝒖𝑺𝑺𝑶𝑶𝒖𝒖𝑺𝑺

 1.54 1.81 1.9 2.4 2.82 2.37 1 1 1 

Normalized Reversal Peak        = |𝑹𝑹𝑨𝑨𝑹𝑹𝑨𝑨𝑨𝑨𝑺𝑺𝑨𝑨𝑺𝑺 𝑷𝑷𝑨𝑨𝑨𝑨𝑷𝑷|
𝑪𝑪𝑨𝑨𝑨𝑨𝑪𝑪𝑺𝑺𝑨𝑨𝒄𝒄 𝑶𝑶𝒖𝒖𝑺𝑺𝑶𝑶𝒖𝒖𝑺𝑺

 0.64 0.91 0.91 0.61 0.18 0.21 1 1 1 

3 Systolic-Diastolic Ratio              = 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒄𝒄 𝑷𝑷𝑨𝑨𝑨𝑨𝑷𝑷
𝑫𝑫𝑺𝑺𝑨𝑨𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒄𝒄 𝑷𝑷𝑨𝑨𝑨𝑨𝑷𝑷

 1.46 1.21 1.2 0.64 0.44 0.65 1 1 1 

4 Pulsatility Index                         = 𝑴𝑴𝑨𝑨𝑴𝑴 𝑷𝑷𝑨𝑨𝑨𝑨𝑷𝑷+|𝑴𝑴𝑺𝑺𝑫𝑫 𝑽𝑽𝑨𝑨𝑺𝑺𝑺𝑺𝑨𝑨𝑺𝑺|
𝑪𝑪𝑨𝑨𝑨𝑨𝑪𝑪𝑺𝑺𝑨𝑨𝒄𝒄 𝑶𝑶𝒖𝒖𝑺𝑺𝑶𝑶𝒖𝒖𝑺𝑺

 2.88 3.09 3.18 2.16 1.43 1.75 0 0 0 

We next investigated whether the pulsatile nature of the inlet flow waveform affect the 

rank ordering of patients. The Spearman rank correlation analysis was performed using calculated 

LAA tm values for the normal pulsatile waveform and the waveform with no pulsatility at all three 

level of cardiac output. A similar analysis was performed using calculated LAA tm values for the 

AF pulsatile waveform and the waveform with no pulsatility. All Spearman rank order correlation 

coefficients were found to be significant (Table 3.3). 
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Table 3.3 Spearman rank correlation coefficeint for left atrial appendage meanresidence time (LAA tm) 

obtained with pulmonary vein wavform with no pulsatility and two other waveform types 

Normal Pulsatility: pulsatile waveform seen in a typical normal subject; AF Pulsatility: pulsatile waveform 

seen in a typical atrial fibrillation (AF) patient; No Pulsatility: steady with no pulsatility. 

  No Pulsatility 

 Cardiac 
Output 

(L min-1) 
3.3 4.4 5.5 

N
or

m
al

 
Pu

ls
at

ili
ty

 3.3 ρ = 0.67 
P = 0.0003 

  

4.4  ρ = 0.76 
P < 0.0001 

 

5.5   ρ = 0.72 
P < 0.0001 

A
F 

Pu
ls

at
ili

ty
 3.3 ρ = 0.77 

P < 0.0001 
  

4.4  ρ = 0.83 
P < 0.0001 

 

5.5   ρ = 0.73 
P < 0.0001 

 

According to these results LAA blood stasis risk, as quantified by LAA tm and C∞, is 

significantly affected by the mean value of inlet flow (i.e., cardiac output), but not by temporal 

pattern of the inlet flow. Therefore, the patient-specific LAA blood stasis risk can be reliably 

estimated using patient-specific LA and LAA 3D geometries and patient-specific cardiac output, 

without any need for patient-specific PV blood flow waveform. 

3.2.2.2 Hematocrit and Non-Newtonian Fluid 

A subcohort consisting of 25 patients was chosen to investigate the effects of hematocrit 

level and non-Newtonian behavior of blood on the calculated indices (LAA tm and C∞). The non-

Newtonian behavior of blood was simulated for three different hematocrit levels (Hct = 27.4%, 
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45.5%, and 60.4%) using the Quemada viscosity model. Further, the equivalent Newtonian 

viscosity of each hematocrit level was calculated based on Figure 3.5 (η = 2.4×10-6, 3.5×10-6, and 

5.1×10-6 m2 s for Hct = 27.4%, 45.5%, and 60.4%, respectively). Six CFD-based simulations were 

conducted for each subject: non-Newtonian and Newtonian behavior of blood for each of the 3 

levels of hematocrit. A pulmonary vein flow waveform with no pulsatility with cardiac output of 

4.4 L min-1 was used in these simulations. 

 

Figure 3.5 Blood viscosity as a function of shear strain rate and hematocrit using Quemada viscosity model 

and Newtonian fluid model 

The equivalent Newtonian viscosity of each hematocrit level was calculated based on the corresponding 

viscosity calculated using Quemada model at  �̇�𝜸 = 2000 s-1. Hct: hematocrit. 

Both LAA tm and C∞ were lower for a hematocrit level using the Newtonian model 

compared with their corresponding values in the non-Newtonian model. In both Newtonian and 

non-Newtonian models, both LAA tm and C∞ increased with increasing hematocrit level (Figure 

3.6). A multiple linear regression analysis was performed using CFD simulation results with the 
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non-Newtonian fluid characterization (Quemada viscosity model). A variable for hematocrit (Hct 

= 27.4%, 45.5%, 60.4%) and 24 dummy variables (to account for inter-subject variability similar 

to Section 3.2.2.1) were used in the regression equation. Hematocrit level was found to be a 

significant independent variable for both LAA tm (β = 1.02±0.15; adj-R2 = 0.58; P < 0.0001) and 

C∞ (β = 0.66±0.05; adj-R2 = 0.84; P < 0.0001); both LAA tm and C∞ increase with an increase in 

the hematocrit level. 

 

Figure 3.6 Mean residence time and asypmtotic concentration inside left atrial appendage as afunction of 

hematocrit using Newtonian and non-Newtonian models. 

Left atrial appendage mean residence time, LAA tm, LAA asymptotic concentration, C∞, increased as a 

function of cardiac output. Data: Mean ± SEM. 

To examine whether the fluid characterization (Newtonian vs. non-Newtonian) affects the 

rank ordering of patients, we performed the Spearman rank correlation analysis of results obtained 

using the Newtonian model and the non-Newtonian model (i.e., Quemada model). Based on 150 

simulations (75 Newtonian and 75 non-Newtonian), LAA tm and C∞ from the non-Newtonian 
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model and the Newtonian model were highly correlated (ρ = 0.75, P < 0.0001 for LAA tm and ρ = 

0.82, P < 0.0001 for LAA C∞). 

In conclusion, we have to use patient-specific hematocrit as one of our inputs for our CFD 

simulations. Although absolute values of LAA tm and C∞ are affected by the fluid characterization 

(Newtonian vs. non-Newtonian), the rank ordering of patients using the two characterizations are 

highly correlated. This suggests that the non-Newtonian model of blood may not be necessary. 

However, the increase in computational cost when using a non-Newtonian model was 

insignificant. Therefore, patient-specific hematocrit with a non-Newtonian behavior of blood 

based on the Quemada viscosity model were used in the final simulations. 

3.2.2.3 Length of Simulation 

In theory, one needs to continue the CFD-based simulation of tracer transport to infinite 

time for calculating the mean residence time; this is not possible. Therefore, simulations have to 

be truncated at some point and predicted values based on a decay function are used to calculate 

LAA tm and C∞. Depending on the wellness of the fitting function and truncation time, calculated 

LAA tm and C∞ values will differ from their theoretical values that can be only calculated at infinite 

time  (Curl and McMillan, 1966). Based on our study, the temporal pattern of the LAA tracer 

concentration decay following an impulse injection of tracer is complex – it is certainly not a single 

exponential decay. We chose a triple exponential decay function (capable of fitting to a period of 

fast tracer washout at the beginning of simulation, moderate washout rate in the middle, and slow 

washout rate at the end of the simulation) (Appendix C.1) as a compromise between over fitting 

and accuracy. It is important to know what minimum length of simulation is necessary for a reliable 

calculation of the mean residence time. 
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To examine the adequacy of simulation length, we used a subcohort of 25 patients and 

calculated LAA tm and C∞ after running the CFD-based simulation for a long time—30,000 s. It 

was expected that the calculated LAA tm and C∞ values would reach an asymptotic steady state at 

the end of this lengthy simulation. Next, LAA tm and C∞ data were calculated using shorter 

simulation times and compared with the result the 30,000 s simulation results. as a function of 

simulation length, the mean of LAA tm and C∞ increased and decreased, respectively (Figure 3.7). 

Although some individual subjects reach steady-state after 30,000 s of simulation, it does not 

appear that the mean LAA tm and C∞ for the subcohort of 25 patients reach steady-state values. 

 

Figure 3.7 Left atrial appendage mean residence time, LAA tm, and asymptotic concentration, C∞ as a 

function of simulation length 

LAA tm and C∞ did not reach a steady state even after 30,000 s of simulation. Data: Mean ± SEM. 

Although reaching a steady state is ideal, the consistency of the rank order of patients is 

more important. Spearman rank order correlation analyses between LAA tm and C∞ values 

calculated using 30,000 s simulation and results based on shorter simulation lengths were 

performed. Based on these results, 10,000 s found to be a sufficient length to calculate LAA tm (ρ 
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= 0.73, P < 0.0001; Figure 3.8A) and C∞ (ρ = 0.95, P < 0.0001; Figure 3.8B); this simulation 

duration was used in the final simulations. 

 

Figure 3.8 Left atrial appendage mean residence time, LAA tm, and asymptotic concentration, C∞ rank order 

correlation coefficeint as a fucntion of the length of simulation 

The Spearman rank order correlation coefficient, ρ, between the LAA tm and C∞ for the reference group 

using 30,000 s of simulation (ρ = 1, by definition) and LAA tm and C∞ calculated using smaller simulation 

lengths. 
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3.2.3 Relating LAA RTD Function to Traditional LAA Shape Classification 

The C(t) curve for a representative subject is shown in Figure 3.9A. The tracer washed out 

from the regions close to the LAA ostium after 2–10 s and tracer concentration continued to be 

high at the tip of the LAA even at the end of the simulation (t = 10,000 s). 

The RTD function, E(t), for three representative subjects (same as those in Figure 2.5) is 

illustrated in Figure 3.9B, starting with t = 1000 s until the end of simulation (t =10,000 s) to better 

focus on the tail area of the E(t) curve. Subject #2 started with lower initial normalized rate of 

tracer washout, E(t), across the LAA ostium, however, the rate of washout in subject #1 and #3 

decayed faster compared to subject #2 as time progressed. Based on these E(t) curves and 

associated tm values, the tracer exited from the LAA of subject #3 the fastest, followed by subjects 

#1 and subject #2 in that order. 

The LAA morphology for each of the 128 subjects in the present study was classified into 

one of four groups based on the study by Di Biase et al. (2012). Group data for LAA tm (Figure 

3.9C) indicated that LAA tm had a large variability within each group, resulting in a significant 

overlap of this index of RTD function among the four LAA shape groups. 
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Figure 3.9 Tracer concentration washout, residence time function, and mean residence time intercategorical 

variability 

(A) Spatially averaged LAA tracer concentration, C(t), plotted as a function of time for a representative LAA. 

Inset: Tracer concentration contours for selected time, illustrating the tracer washout from most of the LAA, 

except for the tip of the LAA. (B) the residence time distribution function, E(t), quantifying the normalized 

rate of tracer washout across the LAA ostium, as a function of time for three representative subjects. Data for 

the first 100 s are shown to highlight the early washout. (C) Box plots showing the mean residence time, tm, 

for each of the four traditional LAA shape groups. First and third quartiles are shown via error bars. There 

is large variability in tm within each traditional LAA shape group. 

3.2.4 Relating LAA Mean Residence Time to LAA Asymptotic Tracer Concentration 

The propensity of particles to stay within the LAA was characterized in terms of two 

indices: LAA mean residence time, tm, and LAA asymptotic tracer concentration, C∞. Spearman 

rank correlation analysis showed that there was a significant positive correlation between these 

two indices (ρ = 0.69, P < 0.0001; Figure 3.10), suggesting that only one of these indices may be 

sufficient to characterize the propensity of particles to stay within LAA. 
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Figure 3.10 Relationship between the two indices of left atrial appendage (LAA) residence time distribution 

(RTD) function: mean residence time, tm, and aymptotic LAA concentration, C∞. 

The Spearman rank correlation analysis indicates that LAA tm and C∞ are highly correlated, suggesting that 

only one of these indices is sufficent to characterizie the LAA RTD function. The three representative subjects 

shown in Figure 2.5 are identified. 

3.2.5 Relating LAA Mean Residence Time to LAA Appearance Complexity 

Given that the calculation of LAA tm is computationally expensive, we wanted to examine 

whether LAA appearance complexity, which is easier to calculate, can provide the same 

information as that provided by LAA tm. The Spearman rank correlation analysis indicated that 

LAA tm and LAA-ACI are not correlated (ρ = 0.04, P = 0.61; Figure 3.11). 
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Figure 3.11 Relationship between left atrial appendage (LAA) appearance complexity index (LAA-ACI) and 

LAA tm. 

The Spearman rank correlation analysis indicates a weak (although statistically significant) correlation, 

suggesting that these two variables do not provide the same infoamtion. 

3.2.6 Relating LAA Mean Residence Time to CHA2DS2-VASc Score 

Spearman rank correlation analysis was performed between LAA tm and CHA2DS2-VASc 

score (Figure 3.12). LAA tm was not correlated with CHA2DS2-VASc score (ρ = -0.09, P = 0.33; 

Figure 3.12).  



 68 

 

Figure 3.12 Relationship between left atrial appendage mean residence time, LAA tm, and CHA2DS2-VASc 

score. 

A weak and insignificant correlation was found between LAA tm, and CHA2DS2-VASc score based on 

Spearman rank correlation analysis. 

3.3 Discussion 

Lingering of blood cells inside the LAA could result in an elevated risk of thrombus 

formation and, consequently, stroke. In the present study, we quantify the propensity of blood cell 

lingering within the LAA in terms of the RTD function, E(t), and associated calculated variables 

(mean residence time of blood-borne particles in LAA, LAA tm, and asymptotic concentration 

remaining inside LAA, C∞). Both LAA and LA morphological features and spatially distributed 

hemodynamic milieu determine the LAA tm and C∞. The key contributions of the this chapter are 

as follows: 1) the development of a Eulerian and systems-based approach for quantifying the LAA 
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RTD function and associated calculated variable (LAA tm); 2) the validation of CFD simulation of 

a sample LA-LAA geometry using particle image velocimetry; 3) the Investigation of the 

confounding variables corresponding to LAA tm and C∞; 4) the observation that LAA-ACI does 

not fully capture the information contained in LAA tm; and 5) the observation that the LAA tm can 

add independent information to the CHA2DS2-VASc score and thereby potentially enhance its 

ability to stratify stroke risk in AF patients. 

Several surrogates of thrombus-promoting flow patterns exist where they relate blood flow 

in LA and LAA to the probability of clot formation. These indices are mostly a direct derivation 

from flow velocity field (e.g., wall shear stress, time-averaged wall shear stress, oscillatory shear 

index, time-averaged velocity, local relative residence time, vortex structure, flow kinetic energy, 

and ECAP), whereas LAA RTD incorporates the transport of blood-borne particles, and it 

measures the propensity of blood cell lingering within the LAA by definition. Although the 

velocity field-based indices require only a short simulation time, we believe that LAA RTD has 

the capability to better simulate the transport and lingering of blood cells in LAA. 

A systems-based approach was used to calculate E(t) in that it is the tracer washout 

response to an impulse injection of tracer in LAA. LAA E(t) curves are depicted in Figure 3.9 for 

the same three subjects as in Figure 2.5. Subject #1 and subject #2 had higher starting point (i.e., 

value at t = 0) compared to subject #3. However, the washout rate in subjects #1 and #2 decays in 

a faster pace than subject #3. The values in subjects #1 and #2 becomes lower only after ~20 s. 

These lower values are a consequence of the flow entering the LAA ostium that does not go all the 

way up to the LAA tip, resulting in a stagnant region at the tip. These data would predict that 

subject #2 has the highest risk of clot formation and subject #3 has the lowest risk. 
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We used the classification paradigm of Di Biase et al. (2012) to characterize LAA shape. 

This is a very subjective approach and even experienced cardiologists may not always agree when 

classifying a LAA into specific shape categories. In addition, there is a large variability in stroke 

occurrence within a given LAA shape category (Khurram et al., 2013, Nedios et al., 2014, 

Sanatkhani and Menon, 2017, Yaghi et al., 2018). This is consistent with the large variability of tm 

(Figure 3.9C) and LAA-ACI (Figure 2.7) within each shape category and in LAA values that exist 

even within a given LAA shape category (Figure 3.9C). The intercategorical tm (and LAA-ACI) 

variability may explain the differences in the stroke risk seen among subjects with similar overall 

LAA geometry. This variability underscores the importance of considering patient-specific LA 

and LAA morphologies in constructing a metric for stroke risk stratification in AF based on 

hemodynamics. 

It has been suggested that under the AF flow condition, where the systolic and end-diastolic 

atrial reversal wave are diminished (Feng et al., 2021), the hemodynamic indices predict higher 

chance of thrombus formation compared to the healthy PV flow condition (Bosi et al., 2018). 

Further, several studies have shown that AF flow condition together with AF contraction patterns 

in LA and LAA would result in high risk of thrombus formation (Feng et al., 2021, Masci et al., 

2020, Vella et al., 2021). However, Dueñas-Pamplona et al. (2021b) indicated that LA-LAA 

contractility is more important than PV flow and mitral boundary condition. Due to their nature, 

these types of investigations are heavily computationally expensive. Therefore, the 

aforementioned studies were done using an exceedingly small cohort. Further, the sensitivity of 

LAA tm and C∞ to PV flow waveform characteristics was not yet been examined. In the present 

study, using a cohort of 25 patient-specific LA-LAA geometries, the LAA blood stasis risk, as 

quantified by LAA tm and C∞, was significantly affected by the mean value of inlet flow (i.e., 
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cardiac output), but not by temporal pattern of the inlet flow. Therefore, the patient-specific LAA 

blood stasis risk can be reliably estimated using patient-specific LA and LAA 3D geometries and 

patient-specific cardiac output, without any need for patient-specific PV blood flow waveform. 

Newtonian fluid assumption is a reasonable for modeling the blood flow inside the 

LA (Bosi et al., 2018, Dueñas-Pamplona et al., 2021a, Vella et al., 2021, Zhang and Gay, 2008), 

however, due to the existence stasis regions inside the LAA and significance reduction in shear 

strain rate, blood rheology might be an indicating factor in calculating LAA tm and C∞. LAA tm and 

C∞ were affected significantly by hematocrit level and blood rheology (Newtonian vs. non-

Newtonian) significantly in our study cohort. Even though LAA tm and C∞ varied as a function of 

blood rheology, choice of blood rheology model did not affect patients’ LAA tm and C∞ rank order. 

Therefore, one might quantify the LAA tm and C∞ in a study cohort using Newtonian fluid model 

with viscosity corresponding to the hematocrit level. The computational cost of using a non-

Newtonian blood rheology model (i.e., Quemada model) was negligible. Therefore, we will 

consider non-Newtonian model for our future simulation. 

Based on our investigation on length of simulation as a confounding variable in quantifying 

LAA tm and C∞, we believe that it is necessary to perform the fluid dynamics simulation for at least 

10,000 s. As a result, simulations would take ~7 days to complete (24 threads of dual 12 core Intel 

Xeon Gold 6126 CPU with 2.6 GHz clock speed and minimum of 8 GB of RAM). Further 

improvements of this model such as one-way and two-way fluid-wall interactions and multiscale 

analysis of biochemical coagulation cascade would significantly increase the computational cost. 

A method to reconstruct RTD has been introduced by Sierra-Pallares et al. (2017) that might be 

able to reduce the computational cost of LAA tm and C∞, however, its accuracy has not been tested 

in LA-LAA geometries. In recent studies, deep neural network has been implemented to predict 
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CFD simulation results in LA-LAA geometries (Morales et al., 2020). This approach would 

decrease the computational cost significantly. However, a large number of CFD simulations are 

still needed to develop the ground truth for LAA tm and C∞ (and any other indices developed in the 

future). 

We have shown that the LAA tm and LAA-ACI are weakly correlated (Figure 3.11). This 

suggests that LAA tm, representing a holistic measure of subject-specific LA–LAA geometry 

features and hemodynamics, and LAA-ACI have a potential to contribute independent information. 

We found a weak and insignificant correlation between the LAA tm and CHA2DS2-VASc 

score (Figure 3.12). In addition, LAA tm varied significantly for a given CHA2DS2-VASc score 

(Figure 3.12). The mean residence time for patients with low CHA2DS2-VASc score of 0 and 1 

ranges between 144–755 s and 6–1917 s, respectively (Figure 3.12). This would suggest that a 

patient with a low CHA2DS2-VASc score (= 0, 1) could still have a high risk of stroke. In contrast, 

patients with high CHA2DS2-VASc score of 5 in our cohort had relatively low values of LAA tm 

(Figure 3.12); we would suggest that these subjects have a very low risk of stroke despite their 

high CHA2DS2-VASc scores. These observations suggest that the hemodynamics-based index 

(i.e., LAA tm) and appearance indices (i.e., LAA-ACI) can add independent information to the 

CHA2DS2-VASc score. 

3.3.1 Limitations 

For LA outlet boundary condition, the mitral valve was assumed to be open throughout the 

simulation, with both gauge pressure and velocity gradient set to zero. A better representation of 

LA outlet boundary condition would be in terms of left ventricular nonlinear diastolic compliance 

and patient-specific left ventricular end-diastolic or end-systolic volume. These left ventricular 
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diastolic compliance and volume data were not available for our cohort. A future study should be 

planned to conduct parametric studies to examine how left ventricular compliance and end-

diastolic (or end-systolic) volume affect the calculated index, LAA tm. 

We used the assumption of rigid LA and LAA walls. It has been shown that LA-LAA wall 

contractility pattern in AF increases the risk of thrombus formation predicted by fluid dynamics 

indices and rigid wall simulation is inadequate in modeling such effects (Dueñas-Pamplona et al., 

2021a, Dueñas-Pamplona et al., 2021b, Feng et al., 2021, García-Villalba et al., 2021, Masci et al., 

2019, Otani et al., 2016, Qureshi et al., 2020, Vella et al., 2021, Zhang and Gay, 2008). To perform 

such analyses, for a simple model, 4D CT or 4D magnetic resonance imaging (MRI) of the study 

cohort is needed in order to impose the LA-LAA wall motion through the cardiac cycles. For a 

more sophisticated fluid-structure interaction models, myocardium muscle modelling and LA-

LAA physiological wall properties are needed (Feng et al., 2021, Zhang and Gay, 2008). 

Parametric studies to examine the effects of LA-LAA wall properties and contraction patterns on 

LAA tm and C∞ in larger cohorts are needed. 

Further, the effects of left ventricle were not considered in this study. The association of 

mitral regurgitation (MR) in AF to stroke is still controversial (Bisson et al., 2019). Modeling left 

ventricle attached to the LA will provide us the opportunity to study the effect of mitral valve 

function as well as MR on LAA tm and C∞ (Feng et al., 2021). 

Finally, thrombus formation pathways or biochemical coagulation cascades were not 

coupled with our CFD model in this study. The findings of biological studies regarding thrombus 

formation pathways and mechanisms should be included in the CFD-based simulations. This will 

require multiscale simulations or could be done via simplifications within the macroscale CFD 
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simulations by defining some other combined hemodynamics- and thrombosis-related indices. 

Eventually, the embolus transport model to the brain would provide us the ultimate prediction. 
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4.0 Specific Aim 3: Improve CHA2DS2-VASc-Based Stroke Risk Stratification Using LAA 

Appearance and LAA Residence Time Indices 

Our ultimate aim in this study was to determine whether LAA residence time and LAA 

appearance indices are able to independently improve stroke stratification in AF patients and 

consequently enhance clinical decision making. In this chapter we use the indices that were 

calculated in the previous chapters (i.e., LAA-ACI, LAA tm, and LAA C∞) to stratify the stroke 

risk. 
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Figure 4.1 Schematic workflow of the overal study.  

A) 128 Patient-Specific cardiac CT were used. B) Each patient-specific left atrium and left atrial appendage 

(LA-LAA) geometry was segmented and and prepared for CFD analysis. C) Library of patient-specficic LAA 

images were created. D) CFD analysis were performed to calculated mean residence time and asymptotic 

concentration inside the LAA for each patient. E) Principal component analysis was performed using the 

library of LAA images to calculated LAA appearance complexity index of each LAA morphology. F) Indices 

generated in (D) and (E) were used as covariates of a multiple logistic regression model to predict stroke risk. 
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4.1 Methodology 

The schematic workflow of this study is shown in Figure 4.1. 

4.1.1 Study Design 

This is a retrospective, matched case-control study. 50 AF patients who had prior history 

of stroke were enrolled, and patients without history of stroke were matched 2:1 according to left 

atrium (LA) size (within 0.1–0.2 cm), CHA2DS2-VASc score - 2, and AF type (i.e., persistent vs. 

paroxysmal). Patients included in this study were part of another study which goal is to establish 

a clinical database of patients undergoing evaluation and treatment of AF, including medical 

management and procedural based treatments (i.e., ablation, device-based therapies with 

pacemakers/defibrillators, and LAA closure devices) within the Heart and Vascular institute of 

University of Pittsburgh Medical Center (UPMC, Pittsburgh, PA, USA) hospitals. 

4.1.2 Data Acquisition 

Clinical data were provided in the registry data format. Cardiac-computed tomography 

(CCT) was performed in subjects prior to an AF catheter ablation procedure with the objective of 

delineating the anatomy of the left atrium and the pulmonary veins (PV) as well as ruling out the 

presence of a clot in the LAA. CCT images were obtained using a multi-slice 256 detector rows 

helical CT scanner (Revolution Apex, General Electric Medical System, LLC., Chicago, IL, USA). 

Scanning was performed gated to the cardiac cycle in cranio-caudal direction from the aortic arch 

towards the diaphragm. The imaging parameters were: 70–120–140 kV, 850 mA s, 0.6 mm beam 
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collimation, 0.625–1.25 mm thickness, and 20–30 cm field-of-view. Contrast medium was used to 

opacify LA-LAA structures as well as the PVs. 

4.1.3 Statistical Analysis 

Continuous variables are expressed as mean ± standard deviation. Correlations between 

variables were determined by Spearman rank correlation. All statistical analyses were performed 

in SPSS software (IBM Corp. Released 2021. IBM SPSS Statistics for Windows, Version 28.0. 

Armonk, NY: IBM Corp). 

Multiple logistic regression was performed to stratify the stroke risk. Our dependent 

variable was history of prior stroke (1 = yes; 0 = no). The probability of occurrence of stroke was 

related to 3 independent variables (i.e., LAA-ACI, LAA tm, and LAA C∞) and their two-way 

interactions via Eq. 4.1: 

 Probability(Stroke = Yes|𝑿𝑿) = e(β0+∑ β𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 )

1+e(β0+∑ β𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 ) Eq. 4.1 

where X is consisted of LAA-ACI, LAA tm, LAA C∞, and their two-way interactions. The 

coefficients, βi, of the regression model were predicted by maximizing the log-likelihood for the 

128 observations in SPSS. 
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4.2 Results 

4.2.1 Patients Characteristics 

Patients were kept in the study if the structure of LAA had sufficient visibility. A total of 

128 patients with symptomatic AF (111 paroxysmal, 17 persistent) were studied (78 males) where 

39 patients had history of prior stroke and 89 did not have prior stroke. The average age, heart rate, 

cardiac output, hematocrit level, and LA size were 63.6 ± 9.0 years (range: 35–79 years), 66 bpm 

(range: 40–132 bpm), 4.0 L min−1 (range 1.5–8.7 L min−1), 41.6% (range: 30.4%–53.6%), and 4.0 

cm (range: 2.6–5.4 cm), respectively. The range of CHA2DS2-VASc scores was 0 to 5 (mean = 

2.0 ± 1.1). 

4.2.2 Multiple Logistic Regression 

We performed multiple logistic regression to develop a stroke risk prediction model using 

the three calculated hemodynamic and appearance indices (i.e., LAA-ACI, LAA tm, and LAA C∞), 

and their two-way interactions. Three separate multiple logistic regression analyses using three 

sets of covariates were performed: 1) Only LAA tm; 2) Only LAA-ACI; 3) All three calculated 

indices and their two-way interactions. Coefficients, significance values, and odds ratios for the 

model 4 parameters are presented in Table 4.1. Based on the Wald t2 value, ACI, ACI×tm, and 

C∞×tm individually contributed to the prediction the most. 
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Table 4.1 Variables in the multiple logistic regression equation 

Covariates and their interactions used in losgistic regression are presented with their coefficents (βi), 

standard error, Wald t2 value, P value, odds ratio, and confidence interval, respectively. None of the 

covariates were found significant. 

 βi 
Standard 

Error Wald t2 P eβ
i 

(OR) 

95% C.I. for 
eβ

i 

tm -0.001 0.002 0.69 0.407 0.999 [0.995,1.002] 

C∞ 0.017 0.088 0.036 0.85 1.017 [0.855,1.209] 

ACI -3.368 1.553 4.703 0.03 0.034 [0.002,0.723] 

C∞ × tm 0 0 1.027 0.311 1 [1,1] 

ACI × tm 0.003 0.002 2.414 0.12 1.003 [0.999,1.007] 

ACI × C∞ 0.03 0.082 0.132 0.716 1.03 [0.878,1.209] 

Constant 1.165 1.165 0.999 0.318 3.205  

Area under the curve (AUC) of receiver operating characteristic (ROC) curve of each 

model’s prediction was calculated (Figure 4.2). Area under the ROC curve increased modestly by 

using either hemodynamic or appearance parameters (AUC (model 1) = 0.56; ACU (model 2) = 

0.57) compared to the reference (i.e., random prediction). Further, adding the interactions between 

covariates further improved the prediction performance modestly (AUC (model 3) = 0.61). 

However, none of our results reached statistical significance. The sensitivity of prediction using 

model 3 was only 7.7%, and its specificity was 100% at a cutoff of 0.5 for probability of stroke. 

The model was able to only explain 8% (Nagelkerke R2) of the variance in occurrence of stroke 

and the overall model was not statistically significant (P = 0.31). 
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Figure 4.2 Receiver operating characteristicv (ROC) curve for prediction of stroke 

ROC curve for prediction of stroke based on three models is shown: 1) Only LAA tm; 1) Only LAA-ACI; 3) 

All three calculated indices and their two-way interactions. Area under the ROC curve (AUC) increased by 

adding hemodynamic and appearance parameters with respect to the random prediction. Further, adding the 

interactions between parameters improved the prediction performance (model 3). 

4.3 Discussion 

Extended linger of blood cells in the LAA (i.e., increased LAA tm), perpetually trapped 

blood cells within the LAA (i.e., increased C∞), increased complexity of LAA morphology (i.e., 

increased LAA-ACI), and patient’s clinical status (i.e., higher CHA2DS2-VASc score) can 

contribute to the elevated risk of stroke occurrence. Among these variables, CHA2DS2-VASc score 

is currently being used as a thromboembolism risk predictor, however, there is a large variability 

in CHA2DS2-VASc score among the patients with prior history of stroke and those without a prior 
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stroke, making it not ideal for stratifying stroke. CHA2DS2-VASc score is solely based on clinical 

variables and the patient-specific LA/LAA hemodynamics and morphology are not included in its 

calculation. In this study we hypothesized that patient-specific LA/LAA hemodynamics and 

morphology may add value to CHA2DS2-VASc score and therefore enhance the stroke prediction 

in AF. The LAA morphology was quantified via LAA-ACI in Chapter 2 and the LA/LAA 

hemodynamics was quantified via LAA tm and C∞ in Chapter 3. The focus of the present chapter 

is on examining whether LAA morphology and hemodynamics-based indices (i.e., ACI, tm, and 

C∞) can enhance stroke risk prediction in AF patients. 

As discussed in the Chapter 2, many indices have been examined in this context of 

predicting stroke risk in AF patients, e.g., LAA orifice diameter; number of branches and twigs; 

degree of coverage with fine structure; LAA volume, depth, and number of lobes; and existence 

of a bend in LAA (Beinart et al., 2011, Di Biase et al., 2012, Ernst et al., 1995, Khurram et al., 

2013, Nedios et al., 2014). However, these are isolated features of the complex LAA geometry, 

and they do not represent the whole LAA morphology. A more insightful quantification of LAA 

morphology introduced by Wang et al. (2010), where they classified the LAA morphologies into 

four groups (i.e., ChickenWing, Windsock, Cauliflower, and Cactus). This quantification of LAA 

morphology was still based on measurements of isolated features. Further, this is a very subjective 

approach and even experienced cardiologists may not always agree when classifying a LAA into 

specific shape categories. In addition, there is a large variability in stroke occurrence within a given 

LAA shape category (Khurram et al., 2013, Nedios et al., 2014, Yaghi et al., 2018). More recently, 

Bieging et al. (2021) assessed the LAA shape using PCA. They found three shape parameters to 

be predictive of stroke. Although, their quantitively method showed a promising result in 

stratifying stroke risk, this method was based on reconstructed LAA surface geometry and 
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information regarding the channels inside the LAA was not considered. Further, due to the 

smoothing during surface reconstruction procedure, some detailed and complex features of LAA 

morphology was lost. In this study, the morphology of 128 patient’s LAA were quantified using a 

novel index (i.e., LAA-ACI) in Chapter 2. LAA-ACI utilizes the entire 3D dataset, and we believe 

that this integrated index incorporates the information provided by all possible isolated measures 

and their interactions. However, the LAA-ACI only quantifies the LAA alone and does not 

incorporate the effect of LA morphology, the location of LAA with respect to LA, and the 

mechanics of blood flow inside the LA/LAA.  

To factor in the missing aforementioned effects (i.e., location of LAA with respect to LA, 

and the mechanics of blood flow inside the LA/LAA), we simulated the 128 patient-specific 

LA/LAA geometries using patient-specific cardiac output and hematocrit and quantified their 

hemodynamics using residence time distribution function (Chapter 3). There are several studies 

in the literatures where various hemodynamic measures (i.e., wall shear stress, shear strain rate, 

time-averaged wall shear stress, oscillatory shear index (Koizumi et al., 2015), time-averaged 

velocity, mean resident time (Rayz et al., 2010), local residence time (Esmaily-Moghadam et al., 

2013), residual virtual contrast agent (Bosi et al., 2018, Otani et al., 2016), and vortex structure) 

were used to quantify the LA/LAA hemodynamics. However, none of the studies were designed 

to actually stratify the stroke risk in AF patients (Boyle et al., 2021, García-Villalba et al., 2021, 

Masci et al., 2019, Masci et al., 2020, Morales et al., 2020, Morales et al., 2021, Otani et al., 2016, 

Zhang and Gay, 2008). We showed that both the hemodynamic indices (i.e., tm, C∞) and the 

morphology-based index (i.e., LAA-ACI) have the potential to add information to the CHA2DS2-

VASc score. 
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Using multiple logistic regression, we observed that ACI, tm, C∞, and their two-way 

interactions modestly predict stroke (AUC of the ROC curve = 0.58–0.66; Figure 4.2), suggesting 

that LAA morphology and hemodynamics-based indices modestly stratify stroke risk, independent 

of CHA2DS2-VASc score. 

The insignificant results from the multiple logistic regression might be due to the temporal 

dissociation between the covariates and occurrence of stroke. We believe that changes in the 

covariates (i.e., LAA-ACI, LAA tm, or LAA C∞) precede the actual stroke event. Therefore, it is 

possible that there are patients currently in the No Stroke group whose covariates have already 

changed; these subjects are highly likely to have the stroke event in the future. Only a longitudinal 

study can address this issue definitively. However, to get some preliminary insight, the first 

(bottom 25%) and third (top 25%) quartile of each covariate alone or two covariates together were 

examined closely with respect the stroke status (Table 4.2). For each covariate and combination 

of covariates, percentages (absolute numbers) of patients in the Stroke and No Stroke groups 

corresponding to top 25% and bottom 25% are presented in Table 4.2. The overall stroke status in 

our population was as follows: ~30% patients with stroke and ~70% without stroke. We expect 

that percentage of the stroke patients should be higher than 30% in top 25% group and it should 

be lower than 30% in the bottom 25% group. Although LAA tm showed this expected pattern of 

change in the percentage of stroke patients, this was a modest change (7%) (Table 4.2). In contrast, 

when the top 25% and bottom 25% separation was done based on both hemodynamic indices (i.e., 

LAA tm and LAA C∞), there was a stronger evidence in support of the expected change (Table 

4.2): the top 25% group had 70% patients with stroke (OR = 2.7; CI = [0.5,14.5]). However, this 

result did not reach statistical significance because of the low numbers of patients in the bottom 

and top 25% group (Table 4.2). We strongly believe that a longitudinal study of AF subjects in 
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the top 25% of LAA tm and LAA C∞ is needed to definitely address whether these two changes are 

predictive of future stroke. 

Table 4.2 Population and percentage of top 25% and bottom 25% of each variable with respoect to the 

history of prior stroke 

Population of each group is shown in parentheses. Each row presents two sets of information. The column for 

Top 25% represents the subjects that their corresponding variable is among the top 25%. The percentage (or 

population) of those subjects that had prior stroke (or did not have stroke) are presented in the specified sub-

columns. The column of Bottom 25% represents the same information but for the subjects whom their 

corresponding variable is among the bottom 25%. The last four rows include the subjects which two of their 

variables are among the top 25% (or bottom 25 %) at the same time. Odds ratio (exposure: top 25%, no 

exposure: bottom 25%) and its corresponding confidence interval are presented in last two columns for each 

variable. 

Variables 
 Top 25%  Bottom 25%  

OR CI  Stroke No Stroke  Stroke No Stroke  

tm  37% (12) 63% (20)  28% (9) 72% (23)  1.5 [0.5,4.4] 

ACI  22% (7) 78% (25)  41% (13) 59% (19)  0.4 [0.1,1.2] 

C∞  31% (10) 69% (22)  28% (9) 72% (23)  1.2 [0.4,3.4] 

tm & C∞  70% (7) 30% (3)  47% (7) 53% (8)  2.7 [0.5,14.5] 

tm & ACI  67% (2) 33% (1)  83% (5) 17% (1)  0.4 [0.0,10.0] 

C∞ & ACI  25% (3) 75% (9)  45% (5) 55% (6)  0.4 [0.1,2.3] 

 

4.3.1 Limitations 

Limitations specific to LAA appearance quantification and LA/LAA hemodynamic 

quantification are presented in Chapter 2 and Chapter 3, respectively. Our results regarding the 
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stroke risk prediction in AF patients using our predictive model were negative. There maybe two 

underlying reasons: 

First, although our results indicate that LAA tm, C∞, and ACI improve stroke risk 

stratification power of CHA2DS2-VASc score, results were not statistically significance. A 

longitudinal study with a larger number of subjects will be needed to examine whether these 

indices can indeed enhance stroke prediction independent of CHA2DS2-VASc score. Further, the 

CCT imaging used for the stroke group of this study were acquired after the occurrence of stroke. 

Collecting the clinical data and imaging data prior to occurrence of stroke would eliminate the 

possibility of clinical, geometrical parameter changes after a stroke. 

Second, in this study we quantified the LA-LAA hemodynamics using scalar concentration 

residence time distribution. Scalar concentration used in this study was representative of neutrally 

buoyant blood cell moving though LA and LAA. Coupling a biological simulation (Ye et al., 2020, 

Zheng et al., 2020), specifically designed for LAA wherein thrombus formation pathways are 

considered, with the current methodology would enhance the hemodynamic quantification of LA-

LAA and consequently improve the stroke risk stratification model. 
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5.0 Summary and Future Directions 

5.1 Summary 

AF is the most common arrhythmia and is a major cause of mortality and morbidity. The 

most dangerous complication is thromboembolic stroke for which AF is an independent risk factor. 

Every AF patient is initially evaluated for thromboembolic risk (Section 1.4), with a re-evaluation 

performed at each stage of management. Anticoagulation therapy is one of the most important 

parts of clinical management in AF. Stroke risk stratification is essential when making decisions 

about anticoagulation therapy or LAA closure. Accurate stroke stratification is critical to improve 

the patient selection decision for LAA exclusion/occlusion and increase the effectiveness of 

anticoagulant management while lowering the side effects. The most commonly used and validated 

risk stratification scheme for making clinical decisions regarding the anticoagulant or antiplatelet 

therapy for the management of AF patients is CHA2DS2-VASc scheme where everyone has a score 

with range of 0 to 9 (Table 1.1). According to the CHA2DS2-VASc scheme, a score of 0 is 

considered insignificant risk, a score of 1 is considered moderate, and ≥ 2 is considered elevated 

risk. It is recommended that patients who receive score of ≥ 2 to be treated with anticoagulation 

therapy. However, while 91% and 50% of thrombi in nonvalvular AF and valvular AF, 

respectively, are found in LAA (Al-Saady et al., 1999, Holmes et al., 2009, Reddy et al., 2013) 

CHA2DS2-VASc does not incorporate the role of LA/LAA geometry or local hemodynamics in 

the thromboembolic risk assessment. Presently, we are very limited in predicting who will have a 

stroke in the context of AF and quantification of LA/LAA hemodynamics and morphology could 

add value to CHA2DS2-VASc scheme and consequently enhance stroke risk stratification. 
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In the present study, we quantified LAA morphology in terms of the LAA appearance 

complexity index (LAA-ACI) that was calculated using the PCA. In addition, we quantified 

LA/LAA hemodynamics via fluid dynamics simulations by calculating scalar concentration mean 

residence time, LAA tm, and asymptotic concentration, C∞, inside the LAA. The ultimate goal was 

to determine whether LAA residence time and LAA appearance indices are able to 

significantly improve stroke stratification in AF patients and consequently enhance clinical 

decision making. 

Patient-specific LAA CCT images were quantified using a PCA-based analysis where LAA 

morphology complexity was represented by LAA-ACI. We found an insignificant negative 

correlation between the LAA-ACI and CHA2DS2-VASc score (Figure 2.8), indicating that these 

two indices are not conveying the same information. There is a large variability of appearance 

complexity index for a given CHA2DS2-VASc score. This underscores the possibility that LAA-

ACI has a potential to add information independent of the CHA2DS2-VASc score and 

consequently, improving the current stroke risk stratification protocol that is solely based on the 

CHA2DS2-VASc score. 

Next, we employed CFD to calculate mean residence time of blood-borne particles in the 

LAA (tm), an index of LAA blood stasis, using 3D LA and LAA geometries and LA inlet blood 

flow (i.e., pulmonary vein flow) data. Effects of confounding variables including pulsatility of PV 

flow waveform, hematocrit level and non-Newtonian fluid model, and length of simulation were 

investigated. According to our investigations, LAA blood stasis risk, as quantified by LAA tm and 

C∞, is significantly affected by the mean value of inlet flow (i.e., cardiac output), but not by 

temporal pattern of the inlet flow. Therefore, the patient-specific LAA blood stasis risk can be 

reliably estimated using patient-specific LA and LAA 3D geometries and patient-specific cardiac 
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output, without any need for patient-specific PV blood flow waveform. We showed that patient-

specific hematocrit is also an important factor and should be considered as one of the input 

variables in our simulations. Further, we concluded that at least 10,000 s of tracer concentration 

transport simulation is needed to calculate LAA tm reliably and consistently. Results of our 

investigations regarding the confounding variables were used to adjust our CFD -based simulation 

methodology for calculating LAA tm and C∞. Patient-specific LA/LAA CCT images from 128 AF 

patients were reconstructed to generate surface bodies and prepared for CFD simulation. Patient-

specific cardiac outputs and hematocrit levels were used to simulate tracer concentration washout 

from LAA where blood was modeled as a non-Newtonian fluid based on Quemada model. LAA 

tm and C∞ were calculated based on 10,000 s of simulation for each patient. We found a weak and 

insignificant correlation between the LAA tm and CHA2DS2-VASc score (Figure 3.12) suggesting 

that hemodynamics-based indices (i.e., LAA tm and C∞) could add independent information to the 

CHA2DS2-VASc score. 

Using multiple logistic regression, we demonstrated that LA/LAA hemodynamics and 

LAA appearance quantifications could modestly enhance the prediction of stroke occurrence. 

Specifically, ACI, tm and C∞ increased the area under the ROC curve compared to the reference 

line (random prediction), indicating that the shape and hemodynamics quantification adds positive 

value to stroke stratification independent of CHA2DS2-VASc score, LA size, and AF type. 

However, our results did not reach statistical significance. There may be three underlying reasons 

for the negative result (i.e., statistically insignificant enhancement of the stroke risk prediction in 

AF patients). First, we believe that adverse changes in LAA shape and hemodynamics-based 

indices precede the actual stroke event. Clearly, this temporal dissociation can contribute to the 

negative result; a longitudinal study is necessary to address this issue. Second, we have not 
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incorporated the biology of thrombus formation in our CFD model-based simulations. It is possible 

that a multiscale model that combines CFD-based hemodynamics simulation and biology-based 

thrombus formation can yield indices that can better stratify stroke risk in AF patients. Third, given 

that the differences in AF management, including the anticoagulation treatment, can affect the 

biological end point (stroke), future studies should include this as a confounding variable.  

5.2 Future Directions 

Future efforts should be directed in two directions: 1) improving the current CFD-based 

predictive model, and 2) improving the study design.  

5.2.1 Improving the Current CFD-Based Predictive Model 

The current CFD-based predictive model can be improved in several ways: (1) patient-

specific compliant LA/LAA walls, (2) incorporation of blood thrombosis biology, and (3) machine 

learning to accelerate the CFD-based simulations. 

5.2.1.1 Patient-Specific Compliant LA/LAA Walls 

Due to significant complexity and computational costs of modeling patient-specific 

compliant LA/LAA wall for 10,000 s, we considered this to be out of scope of this dissertation. 

However, studies have shown that emptying velocity of LAA is associated with risk of clot 

formation inside the LAA (Petersen et al., 2014). Emptying velocity is highly correlated with 

movement and contraction of LAA, therefore, it is beneficial to include the LA/LAA wall 
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movement in future studies. Further, we are currently using a simple boundary condition at the 

outlet (i.e., mitral valve) where a constant gauge pressure of zero is set (representative of atrial 

systole). A compliant LA wall enables us to consider more sophisticated boundary condition to 

represent opening and closing of mitral valve. 

5.2.1.2 Incorporation of Blood Thrombosis Biology 

Several clinical factors are known to increase the risk of thromboembolic events. However, 

the mechanisms of thrombus formation in AF are still not fully known. Studies have suggested 

that AF confers a hypercoagulable state, resulting in increase in risk of thromboembolism and 

stroke (Feng et al., 2001, Lip, 1997). Several factors have been indicated to be associated with left 

atrial thromboembolism such as LAA velocity, von Willebrand factor, and beta-

thromboglobulin (Heppell et al., 1997). There are multiple mechanisms that lead to thrombus 

formation in AF. These mechanisms are complex and closely interact with each other which adds 

up to the complications in these studies. However, for an ideal predictive model to stratify stroke 

risk in AF, the fundamental mechanisms must be known and included in the hemodynamic model. 

To develop an ideal stroke prediction model in AF, the findings of biological studies 

regarding thrombus formation pathways and mechanisms should be included in the CFD-based 

simulations. This will require multiscale simulations or could be done via simplifications within 

the macroscale CFD simulations by defining some other combined hemodynamics- and 

thrombosis-related indices. 

5.2.1.3 Machine Learning to Accelerate the CFD-Based Simulations  

In recent studies, deep neural network has been implemented to predict CFD simulation 

results in LA/LAA geometries (Morales et al., 2020, Morales et al., 2021). This approach would 
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decrease the computational cost significantly. However, a large number of CFD simulations are 

still needed to develop the ground truth for LAA tm, and C∞ (and any other indices developed in 

the future). 

5.2.2 Improving the Study Design 

We strongly believe that there is a temporal dissociation between the changes in the 

covariates and the occurrence of stroke – covariate changes precede the actual stoke event. Thus, 

we hypothesize that this temporal dissociation is a confounding variable for the analysis of data 

obtained in a cross-sectional study. A longitudinal study of AF subjects is necessary to test our 

hypothesis and evaluate the performance of our CFD-based simulations to stratify stroke risk. Such 

a study would require several years of data collection. Contrast enhanced CCT images must be 

acquired from each AF subject prior to any occurrence of stroke to eliminate the possibility of 

geometrical changes due to stroke. 

Unlike, the LAA morphology that remains relatively unchanged throughout the life, LA-

LAA hemodynamics of a patient can change significantly over time, which, in turn, can affect the 

calculated indices (i.e., LAA tm, and C∞). Our CFD simulations for calculating LAA tm, and C∞ 

utilized patient-specific hemodynamic measurements obtained at one time point. It is probably 

better to obtain longitudinal hemodynamics measurements and calculate corresponding LAA tm, 

and C∞ values. This temporal pattern of changes in LAA tm, and C∞ may be more predictive of the 

stroke risk than the prediction based on a single time point.  

Furthermore, in the present study, we focused on predicting the stroke. Changing the 

prediction goal to an earlier and local event, such as the existence of a clot inside the LAA, could 

improve our prediction performance. 
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Appendix A LAA-ACI Calculation 

As explained in Section 2.1.2, a MATLAB code is used to separate LAA from the rest of 

LA using a mask volume surrounding the LAA (Appendix A.1). This program takes two inputs: 

1) A volume image in VTK (Visualization Toolkit) format enclosing LAA and the vasculature 

around it, 2) A volume image tightly enclosing the LAA morphology where all voxels have 

intensity of 10. The output is LAA 3D image with original intensities and surrounding vasculatures 

removed. Next, a MATLAB code was used to reshape 3D LAA images into a 1D vector 

(Appendix A.2). Finally, a MATLAB code (Appendix A.3) was used to perform PCA (Section 

2.1.3). The input for this program is a matrix of 1,000,000×128 consisting of 1D vectors of 128 

LAA images generated in Appendix A.2. The output of this program is the calculated total sum of 

squares, TSS, and residual sum of squares root, RSSR (Section 2.1.4). 

Appendix A.1 Masking 

close all; 
clear; 
clc; 
  
ID = '%%% Patient ID %%%'; 
  
InputVTKfile = strcat(ID,'_1_LAA.vtk'); 
MaskVTKfile = strcat(ID,'_2_Mask.vtk'); 
MaskedVTKfile = strcat(ID,'_3_Masked.vtk'); 
  
MaskedVTK = vtk_mask_volume(InputVTKfile, MaskVTKfile); 
MaskedVTK.Origin = [0 0 0]; 
disp('Writing VTK volume ...'); 
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write_vtk_Volume(MaskedVTK.array, MaskedVTK.Spacing, 
MaskedVTK.Origin, MaskedVTKfile); 
  
disp('Done!'); 
  
function MaskedVTK = vtk_mask_volume(InputVTKfile, MaskVTKfile) 
    disp('Reading original VTK header ...'); 
    InputVTKinfo = vtk_read_header(InputVTKfile); 
    disp('Reading original volume ...'); 
    InputVTK = vtk_read_volume(InputVTKinfo); 
  
    disp('Reading mask VTK header ...'); 
    MaskVTKinfo = vtk_read_header(MaskVTKfile); 
    disp('Reading mask volume ...'); 
    MaskVTK = vtk_read_volume(MaskVTKinfo); 
  
    disp('Reading done!'); 
  
    Xc = 
InputVTKinfo.Origin(1):InputVTKinfo.PixelDimensions(1):InputVTKi
nfo.Origin(1)+InputVTKinfo.PixelDimensions(1)*InputVTKinfo.Dimen
sions(1)-InputVTKinfo.PixelDimensions(1); 
    Yc = 
InputVTKinfo.Origin(2):InputVTKinfo.PixelDimensions(2):InputVTKi
nfo.Origin(2)+InputVTKinfo.PixelDimensions(2)*InputVTKinfo.Dimen
sions(2)-InputVTKinfo.PixelDimensions(2); 
    Zc = 
InputVTKinfo.Origin(3):InputVTKinfo.PixelDimensions(3):InputVTKi
nfo.Origin(3)+InputVTKinfo.PixelDimensions(3)*InputVTKinfo.Dimen
sions(3)-InputVTKinfo.PixelDimensions(3); 
  
    [Xcr,Ycr,Zcr] = ndgrid(Xc,Yc,Zc); 
    S_CroppedVTK = single(InputVTK); 
    CroppedMesh = S_CroppedVTK; 
  
    Xv = 
MaskVTKinfo.Origin(1):MaskVTKinfo.PixelDimensions(1):MaskVTKinfo
.Origin(1)+MaskVTKinfo.PixelDimensions(1)*MaskVTKinfo.Dimensions
(1)-MaskVTKinfo.PixelDimensions(1); 
    Yv = 
MaskVTKinfo.Origin(2):MaskVTKinfo.PixelDimensions(2):MaskVTKinfo
.Origin(2)+MaskVTKinfo.PixelDimensions(2)*MaskVTKinfo.Dimensions
(2)-MaskVTKinfo.PixelDimensions(2); 
    Zv = 
MaskVTKinfo.Origin(3):MaskVTKinfo.PixelDimensions(3):MaskVTKinfo
.Origin(3)+MaskVTKinfo.PixelDimensions(3)*MaskVTKinfo.Dimensions
(3)-MaskVTKinfo.PixelDimensions(3); 
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    [Xvo,Yvo,Zvo] = ndgrid(Xv,Yv,Zv); 
    MaskMesh = 
interpn(Xvo,Yvo,Zvo,MaskVTK,Xcr,Ycr,Zcr,'cubic',0); 
  
    disp('Matrix Multiplication ...'); 
    MaskedVTK.array = (MaskMesh.*CroppedMesh)./10; 
    MaskedVTK.Spacing = [InputVTKinfo.PixelDimensions(1) 
InputVTKinfo.PixelDimensions(2) 
InputVTKinfo.PixelDimensions(3)]; 
    MaskedVTK.Origin = [InputVTKinfo.Origin(1) 
InputVTKinfo.Origin(2) InputVTKinfo.Origin(3)]; 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function info = vtk_read_header(filename) 
% Function for reading the header of a Visualization Toolkit 
(VTK) 
%  
% info  = vtk_read_header(filename); 
% 
% examples: 
% 1,  info=vtk_read_header() 
% 2,  info=vtk_read_header('volume.vtk'); 
  
if(exist('filename','var')==0) 
    [filename, pathname] = uigetfile('*.vtk', 'Read vtk-file'); 
    filename = [pathname filename]; 
end 
  
fid=fopen(filename,'rb'); 
if(fid<0) 
    fprintf('could not open file %s\n',filename); 
    return 
end 
  
str = fgetl(fid); 
info.Filename=filename; 
info.Format=str(3:5); % Must be VTK 
info.Version=str(end-2:end); 
info.Header = fgetl(fid); 
info.DatasetFormat= lower(fgetl(fid)); 
str = lower(fgetl(fid)); 
info.DatasetType = str(9:end); 
  
readscalars=false; 
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while(~readscalars) 
    str=fgetl(fid); 
    s=find(str==' ',1,'first'); 
    if(~isempty(s)) 
        type=str(1:s-1); data=str(s+1:end); 
    else 
        type=''; data=str; 
    end 
     
    switch(lower(type)) 
        case 'dimensions' 
            info.Dimensions=sscanf(data, '%d')'; 
        case 'point_data' 
            info.NumberOfComponents = sscanf(data,'%d'); 
        case 'spacing' 
            info.PixelDimensions=sscanf(data, '%lf')'; 
        case 'origin' 
            info.Origin=sscanf(data, '%lf')'; 
        case 'color_scalars' 
            readscalars=true; 
            s=find(data==' ',1,'first'); 
            info.DataName=data(1:s-1); 
            info.NumberOfComponents=sscanf(data(s+1:end),'%d'); 
            if ( info.NumberOfComponents == 1) 
                info.PixelType='scalar'; 
            else 
                info.PixelType='vector'; 
            end 
            if(info.DatasetFormat(1)=='a') 
                info.DataType='float'; 
            else 
                info.DataType='uchar'; 
            end 
        case 'scalars' 
            readscalars=true; 
            s=find(data==' '); 
            info.DataName=data(1:s(1)-1); 
             
            if ( length(s) > 1) 
                info.DataType=data(s(1)+1:s(2)-1); 
                
info.NumberOfComponents=sscanf(data(s(2)+1:end),'%d'); 
            else 
                info.DataType=data(s(1)+1:end); 
            end 
    end 
end 
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switch(info.DataType) 
    case 'char', info.BitDepth=8; 
    case 'uchar', info.BitDepth=8; 
    case 'short', info.BitDepth=16; 
    case 'ushort', info.BitDepth=16; 
    case 'int', info.BitDepth=32; 
    case 'uint', info.BitDepth=32; 
    case 'float', info.BitDepth=32; 
    case 'double', info.BitDepth=64; 
    otherwise, info.BitDepth=0; 
end 
  
b=ftell(fid); 
str=fgetl(fid); 
s=find(str==' ',1,'first'); 
type=str(1:s-1); data=str(s+1:end); 
switch(lower(type)) 
    case 'lookup_table' 
        info.TableName=data; 
    otherwise 
        fseek(fid,b,'bof'); 
end 
info.HeaderSize=ftell(fid); 
fclose(fid); 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function V = vtk_read_volume(info) 
if(~isstruct(info)), info=vtk_read_header(info); end 
% Open file 
fid=fopen(info.Filename,'rb','ieee-be'); 
% Skip header 
fseek(fid,info.HeaderSize,'bof'); 
  
datasize=prod(info.Dimensions)*info.BitDepth/8; 
% datasize=prod(info.Dimensions)*16; 
% V= uint16(fread(fid,datasize,'ushort'));  
% V = single(fread(fid,datasize,'float'));    
% Read the Data 
switch(lower(info.DatasetFormat(1))) 
    case 'b' 
        switch(info.DataType) 
            case 'char' 
                 V = int8(fread(fid,datasize,'char'));  



 98 

            case 'uchar' 
                V = uint8(fread(fid,datasize,'uchar'));  
            case 'short' 
                V = int16(fread(fid,datasize,'short'));  
            case 'ushort' 
                V = uint16(fread(fid,datasize,'ushort'));  
            case 'int' 
                 V = int32(fread(fid,datasize,'int'));  
            case 'uint' 
                 V = uint32(fread(fid,datasize,'uint'));  
            case 'float' 
                 V = single(fread(fid,datasize,'float'));    
            case 'double' 
                V = double(fread(fid,datasize,'double')); 
        end 
    case 'a' 
        t=prod(info.Dimensions); 
        switch(info.DataType) 
            case 'char', type='int8'; 
            case 'uchar', type='uint8'; 
            case 'short', type='int16'; 
            case 'ushort', type='uint16'; 
            case 'int', type='int32'; 
            case 'uint', type='uint32'; 
            case 'float', type='single'; 
            case 'double', type='double'; 
            otherwise, type='double'; 
        end 
    V=zeros([1 t],type); 
    for i=1:t, V(i)=str2double(fgetl(fid)); end 
end 
  
disp(info.Dimensions); 
disp(length(V)); 
fclose(fid); 
V = reshape(V,info.Dimensions); 
end 
function write_vtk_Volume(array, Spacing, Origin, filename) 
    [nx, ny, nz] = size(array); 
    fid = fopen(filename, 'wt'); 
    fprintf(fid, '# vtk DataFile Version 2.0\n'); 
    fprintf(fid, 'Comment goes here\n'); 
    fprintf(fid, 'ASCII\n'); 
    fprintf(fid, '\n'); 
    fprintf(fid, 'DATASET STRUCTURED_POINTS\n'); 
    fprintf(fid, 'DIMENSIONS    %d   %d   %d\n', nx, ny, nz); 
    fprintf(fid, '\n'); 
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    fprintf(fid, 'ORIGIN    %d   %d  %d\n', Origin(1), 
Origin(2), Origin(3)); 
    fprintf(fid, 'SPACING   %d   %d  %d \n', 
Spacing(1),Spacing(2),Spacing(3)); 
    fprintf(fid, '\n'); 
    fprintf(fid, 'POINT_DATA   %d\n', nx*ny*nz); 
    fprintf(fid, 'SCALARS scalars double\n'); 
    fprintf(fid, 'LOOKUP_TABLE default\n'); 
    fprintf(fid, '\n'); 
    for a=1:nz 
        for b=1:ny 
            for c=1:nx 
                fprintf(fid, '%d ', array(c,b,a)); 
            end 
            fprintf(fid, '\n'); 
        end 
    end 
    fclose(fid); 
return 
end 
 

Appendix A.2 Reshaping 3D Images into Vectors 

close all; 
clc; 
clear; 
  
folders = ls; 
VTK2DMatrix = zeros(10000,100,128); 
VTKVector = zeros(1000000,128); 
count = 0; 
  
for i = 3:1:130 
    [CaseNo] = strread(folders(i,:),'%s','emptyvalue',NaN); 
    PatientsList(i-2,1) = str2num(strtrim(CaseNo (Abecasis et 
al., 2009))); 
    fprintf('%d\n',PatientsList(i-2,1)); 
    count = count + 1; 
     
    VTKfile = sprintf('%d%s',PatientsList(i-2,1),'.vtk'); 
    info = vtk_read_header(sprintf('%s%d%s%s','%%% Directory 
Path %%%',PatientsList(i-2,1),'\',VTKfile)); 
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    VTK3DMatrix = vtk_read_volume(info); 
  
    for ii = 1:1:100 
        for jj = 1:1:100 
            for kk = 1:1:100 
                VTKVector(((ii-1).*10000)+((jj-
1).*100)+kk,count) = VTK3DMatrix(kk,jj,ii); 
            end 
        end 
    end 
end 
LAA_vectorized = VTKVector; 

Appendix A.3 Principal Component Analysis 

close all; 
clear; 
clc; 
load LAA_vectorized.mat; 
  
  
Obs = 1;      %Case ID 
p = 1000000;     %Total number of parameters (total number of 
voxels) 
p_k = 128;      %Number of parameters to keep (total = n) 
n = 128;        %Number of cases 
LAA = LAA_vectorized'; 
TS = zeros(n,1); 
  
faces_normalized = zeros(n,p); 
faces_centered = zeros(n,p); 
for i = 1:n 
    faces_normalized(i,:) = (LAA(i,:) - 
min(LAA(i,:)))./(max(LAA(i,:))-min(LAA(i,:))); 
    faces_centered(i,:) = faces_normalized(i,:) - 
mean(faces_normalized(i,:)); 
    for ii = 1:p 
        TS(i,1) = TS(i,1) + faces_centered(i,p).^2; 
    end 
end 
  
  
D_eu = zeros(p_k,n); 
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for Obs = 1:n   
   Obs 
   for k = 1:p_k 
       COEFF = 
pca(faces_centered','Economy',false,'Centered',false,'Algorithm'
,'eig'); 
       RowFeatureVector = COEFF(:,1:k)'; 
       RowDataAdjust = faces_centered; 
       FinalData = RowFeatureVector*RowDataAdjust; 
  
       RowFeatureVectorT = RowFeatureVector'; 
       NewRowDataAdjust = RowFeatureVectorT*FinalData; 
  
       for i = 1:p 
           D_eu(k,Obs) = D_eu(k,Obs) + (NewRowDataAdjust(Obs,i) 
- faces_centered(Obs,i)).^2; 
       end 
  
       D_eu(k,Obs) = sqrt(D_eu(k,Obs)); 
   end 
end 
RSSR = D_eu'; 
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Appendix B OpenFOAM 

Several OpenFOAM solvers and boundary conditions were developed for this dissertation 

based on original OpenFOAM codes. To investigate the effects of patient-specific PV flow 

waveform, we developed the ScalarAdvection solver which is based on original icoFoam solver 

of OpenFOAM. In this solver transport equation is coupled with the momentum equations 

(Appendix B.1). To investigate the effects of patient-specific hematocrit levels and non-

Newtonian vs. Newtonian fluid modeling, we developed nonNewtonianDistVel (Appendix B.2), 

icoFoamDistVel (Appendix B.3), and passiveScalarAdvection (Appendix B.4) solvers which are 

based on original nonNewtonianIcoFoam, icoFoam, and ScalarTransportFoam solvers of 

OpenFOAM, respectively. In our final simulations, nonNewtonianDistVel and 

passiveScalarAdvection solvers were used. 

Appendix B.1 ScalarAdvection 

This solver is consisted of a main function defined in ScalarAdvection.C and a boundary 

condition for PV inlets, DistributedVelocityInlet. Continuity equation, momentum equations and 

transport equations are solved in ScalarAdvection.C. A Piso loop is being used to solve momentum 

equations. Transport equation is being solved at each time step after pressure and velocity 

calculation in Piso loop. Further, PV flow is read from a CSV file at each time step and velocity 

at PV inlets is calculated based on the total surface area of PV inlets. ScalarAdvection.C is 

presented below: 
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////////////////////////////////////////////////////////////////////// 
// * * * * * * * * * * ScalarAdvection.C * * * * * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 
#include "fvCFD.H" 
#include "pisoControl.H" 
#include "scalarIOList.H" 
#include "DistributedVelocityInlet.C" 
#include "DistributedVelocityInletFvPatchVectorField.H" 
 
///////// For CSV Reader ////////////// 
#include <fstream> 
#include <iostream> 
#include <sstream> 
#include <string> 
#include <vector> 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *// 
 
int main(int argc, char *argv[]) 
{ 
    #include "setRootCaseLists.H" 
    #include "createTime.H" 
    #include "createMesh.H" 
 
    pisoControl piso(mesh); 
 
    #include "createVelocityInlet.H" 
    #include "createFields.H" 
    #include "initContinuityErrs.H" 
 
////////////////////////////////////////////////////////////////////// 
    std::vector<std::vector<std::vector<double>>> FlowRate; 
    for (int i = 0; i<1; i++) 
    { 
    std::ifstream in(TotalFlowRateFile); 
    std::vector<std::vector<double>> FlowRate2; 
    if (in) 
    { 
    std::string line; 
    while (getline(in, line)) 
    { 
    std::stringstream sep(line); 
    std::string flowrate; 
    FlowRate2.push_back(std::vector<double>()); 
    while (getline(sep, flowrate, ',')) 
    { 
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    FlowRate2.back().push_back(stod(flowrate)); 
    } 
    } 
    } 
    FlowRate.push_back(FlowRate2); 
    } 
 
    Calculate_TotalArea(mesh); 
  
////////////////////////////////////////////////////////////////////// 
 
    Info<< "\nStarting time loop\n" << endl; 
 
int d = int(round(1000*runTime.value())) % FlowRate[0].size(); 
 
    UniformVelocity[0] = (FlowRate[0][d][1]/60000)/TotalArea; 
 
    while (runTime.loop()) 
    { 
        Info<< "Time = " << runTime.timeName() << nl << endl; 
 
        #include "CourantNo.H" 
 
        // Momentum predictor 
 
        fvVectorMatrix UEqn 
        ( 
            fvm::ddt(U) 
          + fvm::div(phi, U) 
          - fvm::laplacian(nu, U) 
        ); 
 
        if (piso.momentumPredictor()) 
        { 
            solve(UEqn == -fvc::grad(p)); 
        } 
 
        // --- PISO loop 
        while (piso.correct()) 
        { 
            volScalarField rAU(1.0/UEqn.A()); 
            volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p)); 
            surfaceScalarField phiHbyA 
            ( 
                "phiHbyA", 
                fvc::flux(HbyA) 
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              + fvc::interpolate(rAU)*fvc::ddtCorr(U, phi) 
            ); 
 
            adjustPhi(phiHbyA, U, p); 
 
            // Update the pressure BCs to ensure flux consistency 
            constrainPressure(p, U, phiHbyA, rAU); 
 
            // Non-orthogonal pressure corrector loop 
            while (piso.correctNonOrthogonal()) 
            { 
                // Pressure corrector 
 
                fvScalarMatrix pEqn 
                ( 
                    fvm::laplacian(rAU, p) == fvc::div(phiHbyA) 
                ); 
 
                pEqn.setReference(pRefCell, pRefValue); 
 
                pEqn.solve(); 
 
                if (piso.finalNonOrthogonalIter()) 
                { 
                    phi = phiHbyA - pEqn.flux(); 
                } 
            } 
 
            U = HbyA - rAU*fvc::grad(p); 
            U.correctBoundaryConditions(); 
        } 
 
        solve(fvm::ddt(s) + fvm::div(phi,s)); 
 
#include "continuityErrs.H" 
 
        runTime.write(); 
 
        Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" 
            << "  ClockTime = " << runTime.elapsedClockTime() << " s" 
            << nl << endl; 
    } 
 
    Info<< "End\n" << endl; 
 
    return 0; 
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} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 

Velocity and pressure fields together with viscosity and tracer concentration are defined in 

createFields.H. These values are calculated and saved for each cell of LA/LAA mesh at each time 

step: 

////////////////////////////////////////////////////////////////////// 
// * * * * * * * * * * createFields.H * * * * * * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 
Info<< "Reading transportProperties\n" << endl; 
 
IOdictionary transportProperties 
( 
    IOobject 
    ( 
        "transportProperties", 
        runTime.constant(), 
        mesh, 
        IOobject::MUST_READ_IF_MODIFIED, 
        IOobject::NO_WRITE 
    ) 
); 
 
dimensionedScalar nu 
( 
    "nu", 
    dimViscosity, 
    transportProperties.lookup("nu") 
); 
 
Info<< "Reading field p\n" << endl; 
volScalarField p 
( 
    IOobject 
    ( 
        "p", 
        runTime.timeName(), 
        mesh, 
        IOobject::MUST_READ, 
        IOobject::AUTO_WRITE 
    ), 
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    mesh 
); 
 
Info<< "Reading field s\n" << endl; 
volScalarField s 
( 
    IOobject 
    ( 
        "s", 
        runTime.timeName(), 
        mesh, 
        IOobject::MUST_READ, 
        IOobject::AUTO_WRITE 
    ), 
    mesh 
); 
 
Info<< "Reading field U\n" << endl; 
volVectorField U 
( 
    IOobject 
    ( 
        "U", 
        runTime.timeName(), 
        mesh, 
        IOobject::MUST_READ, 
        IOobject::AUTO_WRITE 
    ), 
    mesh 
); 
 
#include "createPhi.H" 
 
label pRefCell = 0; 
scalar pRefValue = 0.0; 
setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell, 
pRefValue); 
mesh.setFluxRequired(p.name()); 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 

Further, UniformVelocity variable array is defined to store the PV velocity inlets magnitude at each 

time step. This variable is defined in createVelocityInlet.H: 
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////////////////////////////////////////////////////////////////////// 
// * * * * * * * * * * createVelocityInlet.H * * * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 
IOdictionary VelocityInletProperties 
( 
    IOobject 
    ( 
        "VelocityInletProperties", 
        runTime.constant(), 
        mesh, 
        IOobject::MUST_READ_IF_MODIFIED, 
        IOobject::NO_WRITE 
    ) 
); 
 
const wordList titleNames(VelocityInletProperties.toc()); 
 
forAll(titleNames, item) 
{ 
    const word& titleName = titleNames[item]; 
    const dictionary& subDict = 
VelocityInletProperties.subDict(titleName); 
} 
 
Info<< "Reading scalar list UniformVelocity \n" << endl; 
scalarIOList UniformVelocity 
( 
    IOobject 
    ( 
        "UniformVelocity", 
        runTime.timeName(), 
        mesh 
    ), 
    1 
); 
/*Initialising the storage array*/ 
for (int i = 0; i <1; i++) 
{ 
  UniformVelocity[i] = 0; 
} 
/* Initialise the VelocityInlet Properties*/ 
initialiseVel(VelocityInletProperties);  

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 
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The total PV inlets surface area needed for UniformVelocity calculation is computed in 

DistributedVelocityInlet.C: 

////////////////////////////////////////////////////////////////////// 
// * * * * * * * * * DistributedVelocityInlet.C * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 
double TotalArea; 
std::string TotalFlowRateFile; 
 
void initialiseVel(const dictionary& VelocityInletProperties) 
{ 
 /* Initialising */ 
 
const wordList titleNames(VelocityInletProperties.toc()); 
 
forAll(titleNames, item) 
{ 
const word& titleName = titleNames[item]; 
 
const dictionary& subDict = 
VelocityInletProperties.subDict(titleName); 
 
TotalFlowRateFile = string(subDict.lookup("TotalFlowRateFile")); 
   } 
} 
 
void Calculate_TotalArea(fvMesh & mesh) 
{ 
label pv1 = mesh.boundaryMesh().findPatchID("pv1"); 
label pv2 = mesh.boundaryMesh().findPatchID("pv2"); 
label pv3 = mesh.boundaryMesh().findPatchID("pv3"); 
label pv4 = mesh.boundaryMesh().findPatchID("pv4"); 
TotalArea =gSum(mesh.magSf().boundaryField()[pv1]) 
+gSum(mesh.magSf().boundaryField()[pv2]) 
+gSum(mesh.magSf().boundaryField()[pv3]) 
+gSum(mesh.magSf().boundaryField()[pv4]); 
} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 

Velocity vector field normal to each individual PV inlet is calculated in 

DistributedVelocityInletFvPatchVectorField.C: 
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////////////////////////////////////////////////////////////////////// 
// * * * * * DistributedVelocityInletFvPatchVectorField.C * * * * *// 
////////////////////////////////////////////////////////////////////// 
 

#include "DistributedVelocityInletFvPatchVectorField.H" 
#include "volFields.H" 
#include "addToRunTimeSelectionTable.H" 
#include "fvPatchFieldMapper.H" 
#include "surfaceFields.H" 
#include "mathematicalConstants.H" 
#include "vectorField.H" 
#include "fvc.H" 
#include "scalarIOList.H" 
 
// * * * * ** * * * * * * Constructors  * * * * * * * * * * * * * * // 
Foam::DistributedVelocityInletFvPatchVectorField:: 
DistributedVelocityInletFvPatchVectorField 
( 
    const fvPatch& p, 
    const DimensionedField<vector, volMesh>& iF 
) 
: 
    fixedValueFvPatchField<vector>(p, iF) 
 (Abecasis et al., 2009) 
 
Foam::DistributedVelocityInletFvPatchVectorField:: 
DistributedVelocityInletFvPatchVectorField 
( 
    const fvPatch& p, 
    const DimensionedField<vector, volMesh>& iF, 
    const dictionary& dict 
) 
: 
    fixedValueFvPatchField<vector>(p, iF, dict) 
{} 
 
Foam::DistributedVelocityInletFvPatchVectorField:: 
DistributedVelocityInletFvPatchVectorField 
( 
    const DistributedVelocityInletFvPatchVectorField& ptf, 
    const fvPatch& p, 
    const DimensionedField<vector, volMesh>& iF, 
    const fvPatchFieldMapper& mapper    
) 
: 
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    fixedValueFvPatchField<vector>(ptf, p, iF, mapper) 
{} 
 
Foam::DistributedVelocityInletFvPatchVectorField:: 
DistributedVelocityInletFvPatchVectorField 
(const DistributedVelocityInletFvPatchVectorField& ptf): 
    fixedValueFvPatchField<vector>(ptf) 
{} 
 
Foam::DistributedVelocityInletFvPatchVectorField:: 
DistributedVelocityInletFvPatchVectorField 
( 
    const DistributedVelocityInletFvPatchVectorField& ptf, 
    const DimensionedField<vector, volMesh>& iF 
) 
: 
    fixedValueFvPatchField<vector>(ptf, iF) 
{} 
// * * * * * * ** * * * Member Functions  * * * * * * * * * * * * * // 
 
void Foam::DistributedVelocityInletFvPatchVectorField::updateCoeffs() 
{ 
    if (updated()) 
    { 
        return; 
    } 
    /* Accessing the variables stored in mesh */ 
    const fvMesh& mesh = patch().boundaryMesh().mesh(); 
    const scalarIOList& UniformVelocity = 
mesh.lookupObject<scalarIOList>("UniformVelocity"); 
 
    const scalar U = UniformVelocity[0];  
operator==(-U*patch().nf()); 
 
    fixedValueFvPatchField<vector>::updateCoeffs(); 
} 
 
void Foam::DistributedVelocityInletFvPatchVectorField::write(Ostream& 
os) const 
{ 
    fvPatchVectorField::write(os); 
    writeEntry(os, "value", *this); 
} 
namespace Foam 
{ 
   makePatchTypeField 
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   ( 
       fvPatchVectorField, 
       DistributedVelocityInletFvPatchVectorField 
   ); 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 
 
Classes used in DistributedVelocityInletFvPatchVectorField.C is defined in 

DistributedVelocityInletFvPatchVectorField.H: 

////////////////////////////////////////////////////////////////////// 
// * * * * * DistributedVelocityInletFvPatchVectorField.H * * * * *// 
////////////////////////////////////////////////////////////////////// 
#ifndef DistributedVelocityInletFvPatchVectorField_H 
#define DistributedVelocityInletFvPatchVectorField_H 
 
#include "fixedValueFvPatchFields.H" 
 
namespace Foam 
{ 
class DistributedVelocityInletFvPatchVectorField: 
    public fixedValueFvPatchVectorField 
{ 
public: 
 
   //- Runtime type information 
   TypeName("DistributedVelocityInlet"); 
   // Constructors 
        //- Construct from patch and internal field 
        DistributedVelocityInletFvPatchVectorField 
        ( 
            const fvPatch&, 
            const DimensionedField<vector, volMesh>& 
        ); 
 
        //- Construct from patch, internal field and dictionary 
        DistributedVelocityInletFvPatchVectorField 
        ( 
            const fvPatch&, 
            const DimensionedField<vector, volMesh>&, 
            const dictionary& 
        ); 
 
        //- Construct by mapping given 
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        //  flowRateInletVelocityFvPatchVectorField 
        //  onto a new patch 
        DistributedVelocityInletFvPatchVectorField 
        ( 
            const DistributedVelocityInletFvPatchVectorField&, 
            const fvPatch&, 
            const DimensionedField<vector, volMesh>&, 
            const fvPatchFieldMapper& 
        ); 
 
        //- Construct as copy 
        DistributedVelocityInletFvPatchVectorField 
        ( 
            const DistributedVelocityInletFvPatchVectorField& 
        ); 
 
        //- Construct and return a clone 
        virtual tmp<fvPatchVectorField> clone() const 
        { 
            return tmp<fvPatchVectorField> 
            ( 
                new DistributedVelocityInletFvPatchVectorField(*this) 
            ); 
        } 
 
        //- Construct as copy setting internal field reference 
        DistributedVelocityInletFvPatchVectorField 
        ( 
            const DistributedVelocityInletFvPatchVectorField&, 
            const DimensionedField<vector, volMesh>& 
        ); 
 
        //- Construct and return a clone setting internal field 
reference 
        virtual tmp<fvPatchVectorField> clone 
        ( 
            const DimensionedField<vector, volMesh>& iF 
        ) const 
        { 
            return tmp<fvPatchVectorField> 
            ( 
                new DistributedVelocityInletFvPatchVectorField(*this, 
iF) 
            ); 
        } 
    // Member functions 
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        //- Update the coefficients associated with the patch field 
        virtual void updateCoeffs(); 
 
        //- Write 
        virtual void write(Ostream&) const; 
}; 
} // End namespace Foam 
#endif 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 
 

Appendix B.1.1 Sample Simulation Setup Using ScalarAdvection Solver 

Directory structure for setup of a sample subject simulation using ScalarAdvection is 

presented below: 

 
│   LAA_ID.stl 
│   PV_Flow.csv 
│ 
├───0 
│                p 
│                s 
│                U 
│ 
├───constant 
│   │          transportProperties 
│   │          VelocityInletProperties 
│   │ 
│   └───polyMesh 
│       │               boundary 
│       │               cellZones.gz 
│       │               faces.gz 
│       │               faceZones.gz 
│       │               neighbour.gz 
│       │               owner.gz 
│       │               points.gz 
│       │               pointZones.gz 
│       │ 
│       └───sets 
│                        LAA.gz 
│ 
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└───system 
                    controlDict 
                    decomposeParDict 
                    fvSchemes 
                    fvSolution 
                    setFieldsDict 
                    topoSetDict 
 

where LAA surface geometry is presented in LAA_ID.stl. PV flow throughout a cardiac 

length is stored in PV_Flow.csv in two columns separated by a comma, where time is in the first 

column and PV flow (L min-1) in second column. Folder 0 is consisted of boundary conditions and 

initial values for pressure, velocity, and tracer concentration. CFD Mesh information is stored in 

polyMesh folder within the constant folder. Viscosity and density of blood are set in 

transportProperties file. Discretization schemes and model tolerances are defined in fvSchemes 

and fvSolution respectively. Number of domains that the CFD mesh is decomposed into for 

parallel processing is set in decomposeParDict. setFieldsDict is used to set the initial tracer 

concentration inside the LAA to 1. topoSetDict is used to define LAA as a zone so that it can later 

be used in a function in controlDict to calculate volumetric average of tracer concentration inside 

the LAA at each time step. 

Appendix Table 1 Boundary conditions used with ScalarAdvection solver 

 U p s 

PVs DistributedVelocityInlet zeroGradient type       fixedValue; 
value       uniform 0; 

Mitral zeroGradient type       fixedValue; 
value       uniform 0; 

zeroGradient 

Wall noSlip zeroGradient zeroGradient 

 

////////////////////////////////////////////////////////////////////// 
// * * * * * * * * * * * * * * * setFieldsDict * * * * * * * * * * *// 
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////////////////////////////////////////////////////////////////////// 
defaultFieldValues 
( 
    volScalarFieldValue s 0 
); 
 
regions 
( 
    surfaceToCell 
    { 
file"LAA_135.stl"; 
outsidePoints((0 0 0)); 
includeCuttrue; 
includeInsideyes; 
includeOutsideno; 
nearDistance-0.01; 
curvature0.5; 
        fieldValues 
        ( 
            volScalarFieldValue s 1 
        ); 
    } 
); 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 
 
////////////////////////////////////////////////////////////////////// 
// * * * * * * * * * * * * * topoSetDict * * * * * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 
actions 
( 
    // LAA 
    { 
        name    LAA; 
        type    cellZoneSet; 
        action  new; 
        source  surfaceToCell; 
        sourceInfo 
        { 
file"LAA_135.stl"; 
outsidePoints((0 0 0)); 
includeCuttrue; 
includeInsideyes; 
includeOutsideno; 
nearDistance-0.01; 
curvature0.5; 
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        } 
    } 
); 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 
 
////////////////////////////////////////////////////////////////////// 
// * * * * * * * * * * * * * controlDict Function * * * * * * * * * // 
////////////////////////////////////////////////////////////////////// 
functions 
{ 
 
LAA_S 
{ 
type            volFieldValue; 
libs            ("libfieldFunctionObjects.so"); 
log             true; 
writeControl    timeStep; 
writeInterval   1600; 
writeFields     false; 
writeFormatascii; 
writePrecision  2; 
writeToFile     true; 
regionType      cellZone; 
name            LAA; 
operation       volIntegrate; 
fields 
( 
s 
); 
} 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 

Appendix B.2 nonNewtonianDistVel 

nonNewtonianDistVel solver is developed to simulate non-Newtonian blood flow based on 

Quemada model inside LA/LAA until reaching steady state. The velocity and pressure fields 

computed in steady state is then used as initial values for simulating tracer concentration transport 
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using passiveScalarAdvection solver. The simulation setup for nonNewtonianDistVel solver is 

similar to ScalarAdvection solver. However, transport equation is not solved in this solver. 

Therefore, all associated parts to transport equation are omitted. Instead, the hematocrit levels, 

plasma viscosity, and maximum allows viscosity for blood need to be set in transportProperties 

file. nonNewtonianDistVel solver is consisted of createFields.H, createVelocityInlet.H, 

DistributedVelocityInlet.C, DistributedVelocityInletFvPatchVectorField.C, 

DistributedVelocityInletFvPatchVectorField.H, nonNewtonianDistVel.C, Quemada.C, and 

Quemada.H. 

////////////////////////////////////////////////////////////////////// 
// * * * * * * * * * * * * * * * createFields.H * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 
Info<< "Reading field p\n" << endl; 
volScalarField p 
( 
    IOobject 
    ( 
        "p", 
        runTime.timeName(), 
        mesh, 
        IOobject::MUST_READ, 
        IOobject::AUTO_WRITE 
    ), 
    mesh 
); 
 
Info<< "Reading field U\n" << endl; 
volVectorField U 
( 
    IOobject 
    ( 
        "U", 
        runTime.timeName(), 
        mesh, 
        IOobject::MUST_READ, 
        IOobject::AUTO_WRITE 
    ), 
    mesh 
); 
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#include "createPhi.H" 
 
singlePhaseTransportModel fluid(U, phi); 
 
 
label pRefCell = 0; 
scalar pRefValue = 0.0; 
setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell, 
pRefValue); 
mesh.setFluxRequired(p.name()); 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 
 
////////////////////////////////////////////////////////////////////// 
// * * * * * * * * * * * * nonNewtonianDistVel.C * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 
#include "fvCFD.H" 
#include "singlePhaseTransportModel.H" 
#include "pisoControl.H" 
#include "scalarIOList.H" 
#include "DistributedVelocityInlet.C" 
#include "DistributedVelocityInletFvPatchVectorField.H" 
// *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
int main(int argc, char *argv[]) 
{ 
    #include "postProcess.H" 
 
    #include "setRootCaseLists.H" 
    #include "createTime.H" 
    #include "createMeshNoClear.H" 
    #include "createControl.H" 
    #include "createVelocityInlet.H" 
    #include "createFields.H" 
    #include "initContinuityErrs.H" 
    // *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
Calculate_TotalArea(mesh); 
UniformVelocity[0] = (TotalFlowRate/60000)/TotalArea; 
 
    Info<< "\nStarting time loop\n" << endl; 
 
    while (runTime.loop()) 
    { 
        Info<< "Time = " << runTime.timeName() << nl << endl; 
 
        #include "CourantNo.H" 
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        fluid.correct(); 
 
        // Momentum predictor 
 
        fvVectorMatrix UEqn 
        ( 
            fvm::ddt(U) 
          + fvm::div(phi, U) 
          - fvm::laplacian(fluid.nu(), U) 
          - (fvc::grad(U) & fvc::grad(fluid.nu())) 
        ); 
 
        if (piso.momentumPredictor()) 
        { 
            solve(UEqn == -fvc::grad(p)); 
        } 
 
        // --- PISO loop 
        while (piso.correct()) 
        { 
            volScalarField rAU(1.0/UEqn.A()); 
            volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p)); 
            surfaceScalarField phiHbyA 
            ( 
                "phiHbyA", 
                fvc::flux(HbyA) 
              + fvc::interpolate(rAU)*fvc::ddtCorr(U, phi) 
            ); 
 
            adjustPhi(phiHbyA, U, p); 
 
            // Update the pressure BCs to ensure flux consistency 
            constrainPressure(p, U, phiHbyA, rAU); 
 
            // Non-orthogonal pressure corrector loop 
            while (piso.correctNonOrthogonal()) 
            { 
                // Pressure corrector 
 
                fvScalarMatrix pEqn 
                ( 
                    fvm::laplacian(rAU, p) == fvc::div(phiHbyA) 
                ); 
 
                pEqn.setReference(pRefCell, pRefValue); 
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                pEqn.solve(); 
 
                if (piso.finalNonOrthogonalIter()) 
                { 
                    phi = phiHbyA - pEqn.flux(); 
                } 
            } 
 
            #include "continuityErrs.H" 
 
            U = HbyA - rAU*fvc::grad(p); 
            U.correctBoundaryConditions(); 
        } 
 
        runTime.write(); 
 
        Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" 
            << "  ClockTime = " << runTime.elapsedClockTime() << " s" 
            << nl << endl; 
    } 
 
    Info<< "End\n" << endl; 
 
    return 0; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 
 
////////////////////////////////////////////////////////////////////// 
// * * * * * * * * * * * * * * * Quemada.H * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 
#include "Quemada.H" 
#include "addToRunTimeSelectionTable.H" 
#include "surfaceFields.H" 
// * * * * * * * * * * Static Data Members * * * * * * * * * * * * // 
namespace Foam 
{ 
namespace viscosityModels 
{ 
    defineTypeNameAndDebug(Quemada, 0); 
 
    addToRunTimeSelectionTable 
    ( 
        viscosityModel, 
        Quemada, 
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        dictionary 
    ); 
} 
} 
// * * * * * * * * Private Member Functions  * * * * * * * * * * // 
Foam::tmp<Foam::volScalarField> 
Foam::viscosityModels::Quemada::calcNu() const 
{ 
return min( 
nuMax_, 
nuP_*pow(1.0-0.5* 
((exp(3.874 - 10.41*H_ + 13.8*H_*H_ - 6.738*H_*H_*H_) 
+exp(1.3435 - 2.803*H_ + 2.711*H_*H_ - 0.6479*H_*H_*H_) 
*sqrt((dimensionedScalar(dimTime, 1.0)*strainRate())/exp(-6.1508 + 
27.923*H_ - 25.6*H_*H_ + 3.697*H_*H_*H_))) 
/(1.0+sqrt((dimensionedScalar(dimTime, 1.0)*strainRate())/exp(-6.1508 
+ 27.923*H_ - 25.6*H_*H_ + 3.697*H_*H_*H_)))) 
*H_ 
,-2)); 
} 
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * // 
Foam::viscosityModels::Quemada::Quemada 
( 
    const word& name, 
    const dictionary& viscosityProperties, 
    const volVectorField& U, 
    const surfaceScalarField& phi 
) 
: 
    viscosityModel(name, viscosityProperties, U, phi), 
    QuemadaCoeffs_ 
    ( 
        viscosityProperties.optionalSubDict(typeName + "Coeffs") 
    ), 
    nuP_("nuP", dimViscosity, QuemadaCoeffs_), 
    nuMax_("nuMax", dimViscosity, QuemadaCoeffs_), 
    H_("H", dimless, QuemadaCoeffs_), 
    nu_ 
    ( 
        IOobject 
        ( 
            name, 
            U_.time().timeName(), 
            U_.db(), 
            IOobject::NO_READ, 
            IOobject::AUTO_WRITE 
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        ), 
        calcNu() 
    ) 
{} 
// * * *  * * * * * * * Member Functions  * * * * * * * * * * * * * // 
bool Foam::viscosityModels::Quemada::read 
( 
    const dictionary& viscosityProperties 
) 
{ 
    viscosityModel::read(viscosityProperties); 
 
    QuemadaCoeffs_ = 
        viscosityProperties.optionalSubDict(typeName + "Coeffs"); 
 
    QuemadaCoeffs_.lookup("nuP") >> nuP_; 
    QuemadaCoeffs_.lookup("nuMax") >> nuMax_; 
    QuemadaCoeffs_.lookup("H") >> H_; 
 
    return true; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 
 
////////////////////////////////////////////////////////////////////// 
// * * * * * * * * * * * * * * * Quemada.H * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 
#ifndef Quemada_H 
#define Quemada_H 
 
#include "viscosityModel.H" 
#include "dimensionedScalar.H" 
#include "volFields.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * // 
 
namespace Foam 
{ 
namespace viscosityModels 
{ 
 
/*------------------------------------------------------------------*\ 
                           Class Quemada Declaration 
\*------------------------------------------------------------------*/ 
class Quemada: 
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    public viscosityModel 
{ 
    // Private Data 
 
        dictionary QuemadaCoeffs_; 
 
        dimensionedScalar nuP_; 
        dimensionedScalar nuMax_; 
        dimensionedScalar H_; 
 
        volScalarField nu_; 
 
    // Private Member Functions 
        //- Calculate and return the laminar viscosity 
        tmp<volScalarField> calcNu() const; 
 
public: 
    //- Runtime type information 
    TypeName("Quemada"); 
 
    // Constructors 
        //- Construct from components 
        Quemada 
        ( 
            const word& name, 
            const dictionary& viscosityProperties, 
            const volVectorField& U, 
            const surfaceScalarField& phi 
        ); 
    //- Destructor 
    virtual ~Quemada() 
    {} 
 
    // Member Functions 
        //- Return the laminar viscosity 
        virtual tmp<volScalarField> nu() const 
        { 
            return nu_; 
        } 
        //- Return the laminar viscosity for patch 
        virtual tmp<scalarField> nu(const label patchi) const 
        { 
            return nu_.boundaryField()[patchi]; 
        } 
 
        //- Correct the laminar viscosity 
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        virtual void correct() 
        { 
            nu_ = calcNu(); 
        } 
 
        //- Read transportProperties dictionary 
        virtual bool read(const dictionary& viscosityProperties); 
}; 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
} // End namespace viscosityModels 
} // End namespace Foam 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
#endif 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 

Appendix B.3 icoFoamDistVel 

icoFoamDistVel solver is based on original icoFoam where DistributedVelocityInlet 

boundary condition is included to distribute blood flow between PV inlets. This solver is consisted 

of createFields.H, createVelocityInlet.H, DistributedVelocityInlet.C, 

DistributedVelocityInletFvPatchVectorField.C, DistributedVelocityInletFvPatchVectorField.H, 

and icoFoamDistVel.C. 

////////////////////////////////////////////////////////////////////// 
// * * * * * * * * * * * * * * icoFoamDistVel.C * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 
#include "fvCFD.H" 
#include "pisoControl.H" 
#include "scalarIOList.H" 
#include "DistributedVelocityInlet.C" 
#include "DistributedVelocityInletFvPatchVectorField.H" 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
int main(int argc, char *argv[]) 
{ 
    #include "setRootCaseLists.H" 
    #include "createTime.H" 
    #include "createMesh.H" 
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    pisoControl piso(mesh); 
    #include "createVelocityInlet.H" 
    #include "createFields.H" 
    #include "initContinuityErrs.H" 
 
    // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
Calculate_TotalArea(mesh); 
UniformVelocity[0] = (TotalFlowRate/60000)/TotalArea; 
    Info<< "\nStarting time loop\n" << endl; 
    while (runTime.loop()) 
    { 
        Info<< "Time = " << runTime.timeName() << nl << endl; 
        #include "CourantNo.H" 
        // Momentum predictor 
        fvVectorMatrix UEqn 
        ( 
            fvm::ddt(U) 
          + fvm::div(phi, U) 
          - fvm::laplacian(nu, U) 
        ); 
        if (piso.momentumPredictor()) 
        { 
            solve(UEqn == -fvc::grad(p)); 
        } 
        // --- PISO loop 
        while (piso.correct()) 
        { 
            volScalarField rAU(1.0/UEqn.A()); 
            volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p)); 
            surfaceScalarField phiHbyA 
            ( 
                "phiHbyA", 
                fvc::flux(HbyA) 
              + fvc::interpolate(rAU)*fvc::ddtCorr(U, phi) 
            ); 
            adjustPhi(phiHbyA, U, p); 
            // Update the pressure BCs to ensure flux consistency 
            constrainPressure(p, U, phiHbyA, rAU); 
            // Non-orthogonal pressure corrector loop 
            while (piso.correctNonOrthogonal()) 
            { 
                // Pressure corrector 
                fvScalarMatrix pEqn 
                ( 
                    fvm::laplacian(rAU, p) == fvc::div(phiHbyA) 
                ); 
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                pEqn.setReference(pRefCell, pRefValue); 
                pEqn.solve(); 
                if (piso.finalNonOrthogonalIter()) 
                { 
                    phi = phiHbyA - pEqn.flux(); 
                } 
            } 
            #include "continuityErrs.H" 
            U = HbyA - rAU*fvc::grad(p); 
            U.correctBoundaryConditions(); 
        } 
        runTime.write(); 
        Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" 
            << "  ClockTime = " << runTime.elapsedClockTime() << " s" 
            << nl << endl; 
    } 
    Info<< "End\n" << endl; 
    return 0; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 

Appendix B.4 passiveScalarAdvection 

passiveScalarAdvection solver is used to simulate tracer concentration advection transport 

using steady state velocity and pressure fields computed from simulations using 

nonNewtonianDistVel or icoFoamDistVel solvers. 

////////////////////////////////////////////////////////////////////// 
// * * * * * * *  * * * passiveScalarAdvection.C * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 
#include "fvCFD.H" 
#include "fvOptions.H" 
#include "simpleControl.H" 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
int main(int argc, char *argv[]) 
{ 
    #include "setRootCaseLists.H" 
    #include "createTime.H" 
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    #include "createMesh.H" 
    simpleControl simple(mesh); 
    #include "createFields.H" 
    // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
    Info<< "\nCalculating scalar transport\n" << endl; 
    #include "CourantNo.H" 
    while (simple.loop(runTime)) 
    { 
        Info<< "Time = " << runTime.timeName() << nl << endl; 
        while (simple.correctNonOrthogonal()) 
        { 
            fvScalarMatrix TEqn 
            ( 
                fvm::ddt(s) 
              + fvm::div(phi, s) 
             == 
                fvOptions(s) 
            ); 
            TEqn.relax(); 
            fvOptions.constrain(TEqn); 
            TEqn.solve(); 
            fvOptions.correct(s); 
        } 
        runTime.write(); 
    } 
    Info<< "End\n" << endl; 
    return 0; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *// 
////////////////////////////////////////////////////////////////////// 
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Appendix C Curve fitting, Mean Residence Time, Asymptotic Concentration 

The computational fluid dynamics model yields LAA tracer concentration, C(t), every 1 s 

over the entire simulation period t = 0–10,000 s (Figure 3.9A). The C(t) decay curve seems to 

have multiple time constants and a non-zero asymptotic value (Figure 3.9A). Accordingly, a triple 

exponential model with non-zero asymptote was used to characterize the C(t) curve: 

 𝐴𝐴(𝑘𝑘) = 𝑃𝑃1𝑒𝑒−𝑏𝑏1𝐷𝐷 + 𝑃𝑃2𝑒𝑒−𝑏𝑏2𝐷𝐷 + 𝑃𝑃3𝑒𝑒−𝑏𝑏3𝐷𝐷 + 𝐴𝐴∞ Eq. A1 

where a1, a2, a3, b1, b2, and b3 are the parameters to be estimated by fitting the triple exponential 

model (Eq. A1) to the calculated C(t) data. Given that 𝐴𝐴(𝑘𝑘 = 0) = 1, 𝐴𝐴∞ = 1 − 𝑃𝑃1 − 𝑃𝑃2 − 𝑃𝑃3.  

The dynamics of the tracer clearance from LAA was quantified in terms of the RTD 

function, E(t) (Fogler, 2016): 

 𝑅𝑅𝑅𝑅𝐷𝐷 𝐹𝐹𝑆𝑆𝐹𝐹𝑘𝑘𝑘𝑘𝑖𝑖𝐹𝐹𝐹𝐹:      𝑅𝑅(𝑘𝑘) = 𝑀𝑀(𝐷𝐷)
𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 Eq. A2 

where M(t) is the outflow of tracer material (amount of tracer material per unit time) from LAA at 

the LAA ostium and Mtotal is the total amount of tracer that will leave the LAA over the period 0 

to infinity. M(t) can be written in terms of C(t) using the finite difference approximation: 

 𝑀𝑀(𝑘𝑘) = [𝐷𝐷(𝐷𝐷)−𝐷𝐷(𝐷𝐷+∆𝐷𝐷)]𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿
∆𝐷𝐷

 Eq. A3 

where Δt and VLAA are the time increment used in the finite difference-based estimation of M(t) 

and the LAA volume, respectively. 

Given that 𝐴𝐴(𝑘𝑘 = 0) = 1 and 𝐴𝐴(𝑘𝑘 → ∞) = 𝐴𝐴∞, Mtotal is given by: 

 𝑀𝑀𝐷𝐷𝐴𝐴𝐷𝐷𝑎𝑎𝑡𝑡 = (1 − 𝐴𝐴∞)𝑉𝑉𝐿𝐿𝐴𝐴𝐴𝐴 Eq. A4 

Substituting Eq. A3 and Eq. A4 in Eq. A2, we get: 

 𝑅𝑅(𝑘𝑘) = [𝐷𝐷(𝐷𝐷)−𝐷𝐷(𝐷𝐷+∆𝐷𝐷)]
∆𝐷𝐷(1−𝐷𝐷∞)

 Eq. A5 
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E(t)∆t is the fraction of fluid exiting the LAA that has spent between time t and t + Δt inside the 

LAA. Thus, the LAA mean residence time, tm, is given by the first moment of E(t): 

 𝑘𝑘𝑚𝑚 = ∫ 𝑘𝑘𝑅𝑅(𝑘𝑘)𝑑𝑑𝑘𝑘 = ∞
0

1
∆𝐷𝐷(1−𝐷𝐷∞)∫ [𝑘𝑘𝐴𝐴(𝑘𝑘) − 𝑘𝑘𝐴𝐴(𝑘𝑘 + ∆𝑘𝑘)]𝑑𝑑𝑘𝑘∞

0  Eq. A6 

It should be noted that since C(t) is comprised of exponentially decaying terms, ∫ 𝑘𝑘𝐴𝐴(𝑘𝑘)d𝑘𝑘∞
0  is 

finite and the result can be written in terms of an analytical expression. For example, 

∫ 𝑘𝑘𝑒𝑒−𝑎𝑎𝐷𝐷d𝑘𝑘 ∞
0 = 𝑃𝑃−2. Finally, writing the Eq. A6 in the differential form, we get: 

 𝑘𝑘𝑚𝑚 = 1
1−𝐷𝐷∞

�𝑎𝑎1
𝑏𝑏1

+ 𝑎𝑎2
𝑏𝑏2

+ 𝑎𝑎3
𝑏𝑏3
� Eq. A7 

A custom program was developed in the MATLAB® (version R2020b, MathWorks, Inc., 

Natick, MA, USA) environment to estimate the six parameters (a1, a2, a3, b1, b2, and b3) using a 

nonlinear iterative optimization algorithm and perform subsequent data processing to calculate 

LAA mean residence time, tm. 

Appendix C.1 MATLAB Code for Curve Fitting 

%Reading Data 
clc 
clear 
close all 
format long 
  
numTimePoints = 10001; 
lastTimepoint = 10000; 
Scalar = zeros(numTimePoints,1); 
fileID = fopen('volFieldValue.dat'); 
Data = textscan(fileID, '%f %s', 'emptyvalue', NaN, 
'headerlines', 4); 
fclose(fileID); 
SamplingRate = 1; 
for i = 1:numTimePoints 
    Scalar(i,1) = str2double(Data{2}{i}); 
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end 
fileID2 = fopen('volFieldValue.dat'); 
Data2 = textscan(fileID2, '%s %s %s %s', 'emptyvalue', NaN, 
'headerlines', 2); 
fclose(fileID2); 
LAA_Volume = str2double(Data2{4}{1}); 
  
% Assign time (time) and measured concentration (C) arrays and # 
of points (np) 
time=(0:SamplingRate:lastTimepoint).'; 
C = Scalar/LAA_Volume; 
  
time = time(time<=10000); 
C = C(time<=10000); 
% %%%%%%%%%%%%%%%%%%%%%%% 
[xData, yData] = prepareCurveData( time, C ); 
ft = fittype('(a1/%%A1_norm%%)*exp(-
(b1/%%B1_norm%%)*x)+(a2/%%A2_norm%%)*exp(-
(b2/%%B2_norm%%)*x)+(a3/%%A3_norm%%)*exp(-
(b3/%%B3_norm%%)*x)+(1-(a1/%%A1_norm%%)-(a2/%%A2_norm%%)-
(a3/%%A3_norm%%))','independent','x','dependent','y'); 
opts = fitoptions( 'Method', 'NonlinearLeastSquares' ); 
opts.Algorithm = 'Trust-Region'; 
opts.DiffMinChange = 1e-8; 
opts.DiffMaxChange = 0.1; 
opts.MaxFunEvals = 600; 
opts.MaxIter = 400; 
opts.Robust = 'LAR'; 
opts.StartPoint =[%%Computed using MATLAB Curve Fitting Tool%%]; 
opts.Lower = [0 0 0 0 0 0]; 
opts.upper = [Inf Inf Inf Inf Inf Inf]; 
     
% Fit model to data. 
[fitresult, gof] = fit( xData, yData, ft, opts ); 
CI = confint(fitresult); 
a1 = (fitresult.a1)/A1_norm; 
a2 = (fitresult.a2)/A2_norm; 
a3 = (fitresult.a3)/A3_norm; 
b1 = (fitresult.b1)/B1_norm; 
b2 = (fitresult.b2)/B2_norm; 
b3 = (fitresult.b3)/B3_norm; 
  
Cinf = 1-a1-a2-a3; 
tm = (a1./b1+a2./b2+a3./b3)./(1.0-Cinf); 
  
a(1) = a1; 
a(2) = a2; 
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a(3) = a3; 
b(1) = b1; 
b(2) = b2; 
b(3) = b3; 
[sortedb, ib] = sort([1./b1 1./b2 1./b3]); 
Results = [tm Cinf.*100 1./(b(ib(1))) 1./(b(ib(2))) 
1./(b(ib(3))) a(ib(1)) a(ib(2)) a(ib(3))]; 
fprintf("tm = %.0f\nCinf = %.1f\ntau1 = %.0f\ntau2 = %.0f\ntau3 
= %.0f\na1 = %.2f\na2 = %.2f\na3 = %.2f\n",Results(:)); 
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Appendix D Raw Data 

Appendix D.1 Clinical Data 

Appendix Table 2 Clinical Data 

CO: Cardiac Output; HR: Heart Rate; AF Type: 1 (paroxysmal), 2 (persistent), 3 (permanent); SV: Stroke 

Volume; LVEDD: Left ventricle end diastolic diameter; LVESD: Left ventricle end systolic diameter. 

 CO HR Hct Prior 
Stroke 

CHA2DS2-
VASc Age Gender AF 

Type 
SV 
(ml) 

LVEDD 
(cm) 

LVESD 
(cm) 

1 2.8 66 49.3 1 2 69 M 1 41.8 3.8 2.4 
2 3.6 78 39.7 1 3 62 F 1 46.4 4.2 2.9 
3 4.7 78 43.3 1 1 55 F 1 60.2 4.5 2.9 
4 3.9 84 37.8 1 2 62 F 1 46.4 4.2 2.9 
5 2.3 55 38.6 1 3 68 F 1 41.6 4.5 3.5 
6 3.4 54 39.1 1 2 68 F 2 62.3 4.6 3.0 
7 3.8 46 38.9 1 2 71 M 1 83.3 4.9 2.8 
8 2.6 51 35.0 1 4 78 F 1 51.5 4.7 3.5 
9 7.2 99 46.2 1 1 61 M 2 72.9 5.1 3.5 
10 2.3 64 35.8 1 3 54 M 1 35.4 4.6 3.8 
11 2.6 58 39.9 1 3 57 M 1 45.0 4.5 3.4 
12 1.8 40 41.3 1 0 49 M 2 44.2 4.7 3.7 
13 5.6 59 42.4 1 0 68 M 1 94.5 5.2 3.0 
14 2.7 67 37.4 1 4 75 F 1 40.0 3.7 2.3 
15 3.7 68 46.4 1 3 66 M 1 54.0 4.2 2.6 
16 4.6 76 44.2 1 3 71 F 1 60.2 4.5 2.9 
17 3.7 56 48.5 1 3 68 M 1 65.3 5.3 4.0 
18 2.8 79 42.7 1 2 65 M 1 35.6 4.3 3.4 
19 5.5 84 38.6 1 2 61 M 2 65.7 5.1 3.7 
20 4.1 69 42.9 1 1 59 F 1 60.1 4.8 3.4 
21 2.9 49 40.1 1 1 61 F 1 58.4 4.9 3.6 
22 3.1 85 41.2 1 3 69 F 1 36.3 4.1 3.1 
23 3.2 69 43.4 1 2 69 M 1 46.5 4.6 3.5 
24 1.6 43 46.2 1 1 74 M 1 36.3 4.1 3.1 
25 5.9 61 42.4 1 1 56 M 1 96.9 6.0 4.3 
26 4.7 70 37.6 1 3 62 F 1 67.4 5.0 3.5 
27 4.9 100 36.8 1 3 69 F 1 49.0 4.2 2.8 
28 3.5 49 40.3 1 1 60 M 1 72.4 5.7 4.4 
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Appendix Table 2 (continued)       
       

29 3.2 61 38.5 1 2 69 F 1 51.9 4.1 2.5 
30 3.2 56 46.7 1 2 68 M 1 56.3 5.0 3.8 
31 3.6 73 42.9 1 3 75 F 1 49.6 4.1 2.6 
32 4.3 70 35.5 1 1 35 F 1 61.4 4.7 3.2 
33 2.9 41 41.0 1 4 79 M 1 71.9 4.9 3.2 
34 2.4 55 44.6 1 4 56 M 1 44.0 5.4 4.6 
35 2.3 48 43.1 1 2 78 M 1 48.2 5.0 4.0 
36 3.6 91 36.1 1 2 47 F 1 39.2 4.1 3.0 
37 4.8 73 41.2 1 2 68 M 1 65.1 4.6 2.9 
38 3.0 52 45.8 1 2 63 M 1 57.4 4.5 3.0 
39 3.3 67 44.1 1 5 76 F 1 49.6 4.1 2.6 
40 3.8 59 42.5 0 3 58 M 1 64.4 4.7 3.1 
41 1.9 52 39.3 0 2 64 F 1 36.8 4.4 3.5 
42 5.3 60 42.5 0 3 70 F 1 87.6 6.0 4.5 
43 7.2 80 40.1 0 3 73 M 1 90.4 5.4 3.5 
44 6.8 46 38.2 0 3 71 M 1 148.6 5.9 2.6 
45 6.8 62 44.3 0 1 44 M 1 109.3 5.2 2.4 
46 5.0 58 37.5 0 1 41 M 2 85.5 5.5 3.8 
47 2.4 52 42.7 0 2 66 M 1 46.4 4.2 2.9 
48 3.9 64 45.9 0 2 70 M 1 61.4 4.7 3.2 
49 6.9 62 44.0 0 1 69 M 1 111.4 5.2 2.3 
50 6.0 64 36.0 0 1 50 F 1 94.1 5.7 3.9 
51 3.3 47 43.6 0 2 57 F 1 69.4 5.3 3.9 
52 6.7 74 41.9 0 2 68 M 1 90.0 5.7 4.0 
53 2.4 63 44.3 0 2 56 M 2 37.9 5.9 5.3 
54 2.1 53 41.2 0 2 70 M 1 39.2 4.1 3.0 
55 2.8 48 43.8 0 1 58 M 1 57.7 5.7 4.7 
56 4.8 59 45.4 0 2 65 M 1 80.6 4.9 2.9 
57 2.9 53 38.8 0 3 70 F 1 54.5 4.5 3.1 
58 4.9 49 43.1 0 1 58 M 1 99.2 5.1 2.6 
59 4.9 62 41.9 0 3 68 F 1 78.6 5.2 3.5 
60 4.2 52 43.8 0 2 54 M 1 80.9 5.3 3.6 
61 7.8 111 40.0 0 3 67 F 1 70.1 4.5 2.5 
62 5.8 121 36.5 0 5 67 F 1 47.7 5.3 4.4 
63 1.9 50 45.1 0 2 75 M 1 38.9 3.9 2.7 
64 2.5 53 46.6 0 1 67 M 1 47.2 4.1 2.7 
65 3.5 67 41.4 0 2 56 M 1 51.6 4.2 2.7 
66 4.2 61 43.3 0 1 58 M 1 68.5 7.0 6.1 
67 3.0 61 38.2 0 4 75 F 1 49.0 4.2 2.8 
68 3.3 73 35.9 0 4 73 F 1 45.8 3.9 2.4 
69 4.8 60 38.1 0 3 60 F 1 80.3 5.0 3.1 
70 2.8 54 42.3 0 2 73 F 1 51.5 4.7 3.5 
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Appendix Table 2 (continued)        
            

71 4.9 79 42.9 0 2 55 F 1 62.3 4.6 3.0 
72 3.2 44 43.8 0 1 56 M 1 71.9 4.9 3.2 
73 2.9 59 45.5 0 0 50 M 2 49.9 4.6 3.4 
74 6.4 101 44.2 0 2 62 M 1 63.8 5.0 3.6 
75 4.4 50 40.0 0 1 50 M 1 88.0 5.8 4.2 
76 5.0 70 40.0 0 2 60 M 2 70.9 5.9 4.7 
77 4.9 49 45.8 0 4 61 M 1 100.4 5.4 3.2 
78 2.4 56 36.1 0 3 75 F 1 42.0 4.1 2.9 
79 4.4 62 41.5 0 3 67 M 1 70.8 5.0 3.4 
80 4.3 69 49.2 0 0 65 M 1 62.9 4.5 2.8 
81 2.6 51 44.0 0 1 54 M 1 50.1 5.5 4.6 
82 4.7 63 37.2 0 1 59 F 1 75.3 4.7 2.7 
83 5.0 90 44.0 0 3 45 M 1 55.3 5.2 4.1 
84 1.9 52 37.0 0 0 41 M 1 36.4 3.9 2.8 
85 3.2 62 45.0 0 1 52 M 1 51.5 4.7 3.5 
86 4.0 81 33.1 0 0 65 M 1 49.6 4.1 2.6 
87 2.3 57 42.5 0 3 66 F 1 39.6 3.8 2.5 
88 2.5 53 36.1 0 2 74 F 1 48.1 4.3 3.0 
89 4.5 64 36.7 0 4 69 F 1 70.1 4.5 2.5 
90 1.9 51 38.5 0 3 73 F 1 38.2 3.6 2.2 
91 8.3 111 43.1 0 1 64 M 1 75.1 5.2 3.6 
92 2.8 71 38.1 0 4 78 F 1 40.0 3.7 2.3 
93 4.6 57 40.8 0 1 46 M 1 80.5 4.8 2.7 
94 3.7 57 45.8 0 1 62 M 1 65.7 5.1 3.7 
95 3.6 67 46.1 0 0 68 M 1 53.1 4.8 3.6 
96 2.3 53 44.7 0 2 59 F 1 43.6 3.9 2.5 
97 4.6 63 42.4 0 1 73 M 1 73.4 5.3 3.8 
98 1.5 95 47.0 0 1 67 M 2 15.6 4.0 3.6 
99 2.7 61 41.3 0 2 72 M 1 44.7 4.1 2.8 
100 3.9 45 46.7 0 2 56 M 1 85.8 5.7 4.1 
101 3.7 68 38.5 0 2 73 F 1 54.5 4.5 3.1 
102 4.5 67 47.9 0 1 67 M 2 67.1 5.4 4.1 
103 7.3 72 41.4 0 3 55 F 1 102.0 5.0 2.2 
104 3.9 102 33.9 0 2 55 M 2 38.6 4.9 4.1 
105 3.8 70 42.1 0 3 55 F 1 53.7 5.8 4.9 
106 5.5 62 46.2 0 1 65 M 1 87.9 5.3 3.4 
107 4.6 64 35.6 0 1 63 M 1 71.9 4.9 3.2 
108 5.1 68 30.4 0 0 70 F 1 75.3 4.7 2.7 
109 4.7 89 45.8 0 2 66 M 1 52.7 4.4 3.0 
110 2.9 62 47.0 0 1 64 M 1 46.7 4.4 3.2 
111 2.1 65 53.6 0 1 68 M 1 32.4 3.8 2.8 
112 2.8 57 47.7 0 1 66 M 1 49.0 4.2 2.8 
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Appendix Table 2 (continued)        
            

113 3.6 54 47.6 0 2 75 M 1 66.6 4.8 3.2 
114 2.7 63 41.8 0 0 73 F 2 42.1 4.3 3.2 
115 4.4 71 34.3 0 3 56 F 1 61.4 4.7 3.2 
116 4.7 73 40.1 0 2 69 M 2 63.8 5.0 3.6 
117 8.7 132 42.8 0 2 56 F 3 65.7 5.1 3.7 
118 4.4 65 40.3 0 2 68 M 2 67.4 5.0 3.5 
119 3.2 70 43.0 0 2 66 M 1 45.8 3.9 2.4 
120 2.4 45 40.1 0 0 52 M 2 52.5 5.7 4.8 
121 2.4 60 38.3 0 3 73 M 1 40.4 4.7 3.8 
122 4.9 70 43.2 0 1 47 M 1 70.1 4.7 2.9 
123 8.1 79 39.8 0 2 71 F 1 103.1 5.3 2.9 
124 2.8 62 45.4 0 3 78 F 1 45.2 4.3 3.1 
125 3.9 79 34.5 0 3 58 M 1 48.9 5.4 4.5 
126 4.8 111 44.1 0 2 63 F 2 42.9 4.6 3.6 
127 4.4 70 42.5 0 3 77 M 1 63.4 4.8 3.3 
128 4.4 62 39.7 0 3 55 F 1 71.5 4.4 2.2 

 

Appendix D.2 Calculated Hemodynamic and Appearance Indices 

Appendix Table 3 Hemodynamic and appearance indices 

tm: Mean residence time; C∞: Asymptotic concentration; ACI: Appearance complexity index; τ: exponential 

decay time constant; a: exponential decay coefficient. 

 tm (s) C∞ 
(%) τ1 (s) τ2 (s) τ3 (s) a1 a2 a3 ACI Traditional 

Category 

1 702.7 13.0 64.29 329.0 2655 0.34 0.36 0.18 1.02 ChickenWing 
2 518.3 11.7 12.00 280.0 4043 0.62 0.16 0.10 0.72 ChickenWing 
3 465.4 5.4 4.32 231.3 3461 0.67 0.16 0.12 1.35 ChickenWing 
4 179.1 6.8 2.08 205.8 2780 0.83 0.05 0.06 0.42 Windsock 
5 145.3 0.7 5.23 174.0 1608 0.72 0.21 0.07 0.37 Cactus 
6 761.3 12.0 3.57 268.8 8731 0.74 0.07 0.07 0.85 Windsock 
7 692.9 7.0 8.10 212.2 6002 0.71 0.12 0.10 0.46 Cauliflower 
8 677.0 4.3 24.29 358.7 2790 0.50 0.27 0.19 0.30 Cactus 
9 813.9 10.6 1.97 107.3 4059 0.63 0.09 0.18 0.80 ChickenWing 
10 1136.0 27.5 23.79 363.7 4559 0.36 0.20 0.16 0.96 Cauliflower 
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11 2362.4 15.1 47.87 445.0 8771 0.43 0.20 0.22 1.03 Windsock 
12 492.3 25.3 27.08 349.1 3168 0.50 0.16 0.09 1.25 Windsock 
13 245.7 4.8 1.87 340.3 3307 0.79 0.10 0.06 0.45 Cauliflower 
14 505.2 9.1 4.12 255.2 3393 0.65 0.13 0.12 0.39 Cauliflower 
15 153.3 1.6 3.37 257.0 2200 0.82 0.11 0.05 0.74 Cauliflower 
16 1162.3 14.5 28.57 324.0 8124 0.59 0.15 0.11 0.51 Cactus 
17 861.8 9.2 10.47 309.3 5344 0.60 0.17 0.14 0.66 Windsock 
18 925.6 32.7 32.02 478.8 4569 0.40 0.15 0.12 0.84 ChickenWing 
19 173.9 3.7 4.99 185.0 2711 0.79 0.12 0.05 0.58 Cauliflower 
20 830.4 8.6 22.63 351.9 4940 0.57 0.21 0.14 0.47 Cauliflower 
21 1073.9 7.2 8.01 271.2 7565 0.68 0.12 0.13 0.83 Cauliflower 
22 1234.3 24.4 30.51 500.8 4239 0.40 0.16 0.20 1.62 Windsock 
23 815.3 18.2 15.13 174.5 2808 0.43 0.16 0.22 0.83 ChickenWing 
24 1276.5 18.8 16.78 194.3 4749 0.43 0.17 0.21 0.36 Cauliflower 
25 615.2 14.0 5.68 290.8 2795 0.56 0.13 0.17 0.81 ChickenWing 
26 102.5 1.9 1.42 241.3 2727 0.90 0.05 0.03 0.83 Windsock 
27 91.7 1.1 11.26 171.8 2133 0.85 0.11 0.03 0.51 Cactus 
28 571.0 13.8 14.25 286.2 2875 0.48 0.24 0.15 0.93 Cactus 
29 416.2 14.2 6.06 301.8 3465 0.64 0.13 0.09 0.53 Windsock 
30 135.4 11.8 10.69 183.9 1936 0.67 0.17 0.04 0.95 Cactus 
31 366.9 3.4 7.77 265.9 3762 0.74 0.14 0.08 1.09 ChickenWing 
32 362.2 7.1 7.06 282.1 2745 0.65 0.18 0.10 0.69 Cauliflower 
33 321.5 26.1 12.19 222.1 2948 0.48 0.19 0.06 1.04 ChickenWing 
34 2877.2 20.7 14.82 339.9 13317 0.51 0.12 0.17 0.96 ChickenWing 
35 876.0 15.9 18.60 260.6 4249 0.50 0.18 0.16 0.37 Cauliflower 
36 10.9 0.0 2.61 37.6 587 0.91 0.08 0.01 0.81 Cactus 
37 653.4 12.9 1.91 89.8 2939 0.62 0.06 0.19 0.82 ChickenWing 
38 467.9 20.5 22.52 304.4 3285 0.51 0.19 0.09 0.98 Cactus 
39 324.8 7.3 9.40 350.9 3605 0.75 0.11 0.07 0.62 Cactus 
40 605.6 8.3 8.08 349.5 3489 0.60 0.18 0.14 0.24 Cactus 
41 575.0 12.6 19.21 309.9 3464 0.53 0.23 0.12 0.98 Windsock 
42 302.7 9.0 9.30 246.4 2920 0.66 0.17 0.08 0.86 ChickenWing 
43 231.1 10.6 6.37 253.3 3313 0.76 0.08 0.05 1.46 Windsock 
44 292.4 10.2 1.40 252.0 3841 0.76 0.07 0.06 0.64 ChickenWing 
45 402.8 5.2 4.05 160.3 3727 0.74 0.11 0.10 1.52 Cauliflower 
46 407.9 17.0 12.15 317.9 3090 0.58 0.15 0.09 1.10 Windsock 
47 649.0 30.8 30.54 364.2 3687 0.44 0.15 0.10 1.25 Cauliflower 
48 675.4 11.1 8.07 275.7 3059 0.45 0.27 0.17 0.86 ChickenWing 
49 241.1 4.8 2.04 279.4 5684 0.86 0.05 0.04 1.29 Cactus 
50 6.5 0.0 1.21 16.3 211 0.83 0.15 0.01 1.07 Cauliflower 
51 514.4 11.8 11.25 247.3 2724 0.46 0.28 0.14 0.98 Windsock 
52 94.9 0.4 3.64 153.0 1256 0.80 0.14 0.06 0.48 Cactus 
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53 736.0 7.5 13.22 462.5 3163 0.45 0.31 0.17 0.42 Cauliflower 
54 833.1 16.2 25.09 353.8 3403 0.48 0.18 0.18 0.82 Cauliflower 
55 1020.3 12.1 30.87 489.5 3769 0.42 0.26 0.20 0.78 Cauliflower 
56 624.1 8.4 8.81 370.7 4084 0.68 0.11 0.13 1.01 Cauliflower 
57 488.7 11.5 9.29 274.2 4530 0.68 0.11 0.09 0.68 Cauliflower 
58 505.7 13.9 9.81 192.7 4282 0.60 0.17 0.09 0.80 Windsock 
59 991.8 5.6 3.28 150.6 6411 0.72 0.08 0.14 1.08 Cauliflower 
60 100.7 3.3 1.88 219.8 2619 0.84 0.09 0.03 0.56 Cauliflower 
61 794.4 12.4 10.66 350.4 5250 0.61 0.15 0.12 0.60 Cauliflower 
62 61.8 2.7 1.28 211.7 1741 0.86 0.09 0.02 0.92 Cauliflower 
63 3374.5 20.3 27.64 ##### 10350 0.24 0.38 0.18 0.77 Cactus 
64 1094.9 15.3 16.97 814.1 4535 0.44 0.25 0.16 0.61 Cactus 
65 397.0 5.6 4.06 184.4 3017 0.72 0.11 0.12 0.45 Cactus 
66 696.6 21.9 49.55 428.3 3479 0.45 0.21 0.12 1.10 Cactus 
67 940.1 15.2 11.02 213.7 5951 0.60 0.12 0.13 0.84 ChickenWing 
68 968.5 25.6 31.84 422.9 5374 0.45 0.18 0.12 1.08 Windsock 
69 314.5 6.8 4.43 254.7 4072 0.77 0.09 0.07 1.00 Windsock 
70 909.0 10.2 44.46 327.3 5209 0.57 0.19 0.14 0.70 Cactus 
71 124.3 1.8 6.36 192.5 2185 0.83 0.11 0.04 0.85 ChickenWing 
72 1567.8 22.6 42.20 ##### 4798 0.34 0.24 0.20 0.63 Cauliflower 
73 144.9 2.5 5.37 115.2 1872 0.78 0.13 0.07 0.56 Cauliflower 
74 195.4 5.1 5.27 196.7 4389 0.81 0.10 0.04 0.59 Windsock 
75 434.7 11.6 14.49 266.2 3208 0.60 0.18 0.10 0.50 Cauliflower 
76 334.9 12.9 12.54 238.1 2637 0.59 0.19 0.09 1.35 Cactus 
77 95.0 3.2 1.15 184.5 2689 0.88 0.05 0.03 0.53 Cactus 
78 1265.1 8.5 11.74 837.5 4016 0.33 0.37 0.21 0.79 Cauliflower 
79 561.4 10.1 9.87 229.9 5568 0.67 0.14 0.08 0.86 Windsock 
80 504.0 3.6 3.34 136.8 4299 0.77 0.08 0.11 1.19 Cactus 
81 1124.1 21.2 41.17 450.7 3917 0.37 0.22 0.20 1.50 ChickenWing 
82 555.1 11.4 6.68 249.0 4718 0.62 0.18 0.09 1.07 Cauliflower 
83 174.3 2.3 5.49 180.2 2532 0.79 0.13 0.06 0.65 Windsock 
84 670.1 8.9 19.03 300.7 3007 0.48 0.25 0.17 0.35 Cactus 
85 338.8 4.6 3.72 224.4 4210 0.75 0.13 0.07 0.92 Cauliflower 
86 617.9 11.4 7.60 201.9 3070 0.60 0.12 0.17 0.63 Cactus 
87 525.3 10.0 9.46 242.9 3325 0.52 0.26 0.12 0.71 Cauliflower 
88 329.2 2.0 12.67 289.8 2278 0.62 0.25 0.11 0.69 Cactus 
89 282.8 5.0 3.80 145.4 2688 0.77 0.08 0.09 1.04 ChickenWing 
90 1682.3 14.1 6.20 79.8 3924 0.33 0.17 0.36 0.72 Cauliflower 
91 478.0 10.3 3.31 328.8 3099 0.66 0.11 0.13 0.75 Windsock 
92 1626.7 31.9 6.14 175.6 4759 0.33 0.13 0.23 1.04 ChickenWing 
93 1030.7 27.3 21.31 413.8 4160 0.39 0.18 0.16 0.86 Cactus 
94 1917.4 8.9 14.42 342.5 7025 0.56 0.11 0.24 0.59 Cactus 
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95 755.3 18.6 14.21 335.7 4832 0.53 0.17 0.11 0.43 Cauliflower 
96 618.9 16.6 5.24 198.8 2634 0.56 0.09 0.19 0.57 Windsock 
97 204.4 4.8 4.49 129.9 2445 0.75 0.13 0.07 0.89 ChickenWing 
98 1461.5 30.6 58.22 583.2 3912 0.26 0.21 0.22 0.84 Windsock 
99 264.6 1.3 8.12 214.9 2672 0.72 0.19 0.08 0.40 Cactus 
100 1042.2 9.8 10.12 368.9 3984 0.50 0.18 0.22 1.01 ChickenWing 
101 346.0 5.9 9.98 201.2 3157 0.68 0.17 0.09 0.59 Cauliflower 
102 487.0 7.7 9.66 203.0 3187 0.64 0.16 0.13 0.83 Windsock 
103 189.9 5.6 1.23 249.9 4021 0.87 0.04 0.04 1.17 ChickenWing 
104 169.1 2.2 5.88 204.8 1881 0.76 0.15 0.07 0.65 Cauliflower 
105 1090.1 22.3 23.11 412.1 4040 0.40 0.19 0.19 0.94 Windsock 
106 355.7 14.1 6.49 263.2 4845 0.70 0.11 0.06 1.16 Windsock 
107 464.9 6.4 4.73 341.1 3118 0.71 0.10 0.13 0.58 Cauliflower 
108 235.6 15.0 1.79 114.1 2264 0.71 0.05 0.09 0.82 ChickenWing 
109 335.2 3.6 13.16 222.6 2426 0.63 0.22 0.11 0.89 ChickenWing 
110 636.7 17.0 16.40 352.5 5068 0.53 0.21 0.09 0.61 Windsock 
111 770.4 17.5 53.94 422.6 3722 0.41 0.29 0.13 1.27 ChickenWing 
112 1065.7 30.3 17.48 537.4 3824 0.35 0.18 0.17 0.50 ChickenWing 
113 377.7 9.3 3.90 147.5 3223 0.72 0.08 0.10 0.68 Cauliflower 
114 304.5 38.2 10.21 195.0 2825 0.44 0.12 0.06 1.15 ChickenWing 
115 183.0 7.8 5.29 221.1 2428 0.74 0.12 0.06 0.98 Cauliflower 
116 336.3 26.0 14.04 251.9 3226 0.50 0.18 0.06 0.60 Windsock 
117 16.8 0.1 1.67 52.8 1114 0.93 0.06 0.01 0.70 Cauliflower 
118 373.7 4.4 8.87 254.9 2665 0.66 0.19 0.11 1.76 ChickenWing 
119 323.0 32.8 8.60 259.8 2622 0.50 0.10 0.07 2.17 ChickenWing 
120 869.1 30.8 43.60 422.6 3329 0.33 0.21 0.15 0.73 Windsock 
121 551.9 8.6 10.53 279.9 3074 0.61 0.16 0.15 0.74 Windsock 
122 230.7 2.9 2.65 243.4 2839 0.79 0.11 0.07 0.75 Cactus 
123 270.3 3.6 2.50 181.7 4640 0.85 0.06 0.05 0.68 Cauliflower 
124 335.0 10.7 6.95 284.2 3520 0.68 0.14 0.07 0.69 Cauliflower 
125 206.5 3.0 8.18 207.9 2393 0.74 0.16 0.07 1.45 Windsock 
126 80.3 4.2 1.89 129.1 3847 0.89 0.05 0.02 0.70 ChickenWing 
127 276.4 3.8 6.49 264.2 3717 0.80 0.10 0.06 0.59 Cauliflower 
128 224.2 2.9 1.93 187.9 5012 0.87 0.06 0.04 0.74 Windsock 
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