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Abstract 

Methods and Genome-Wide Association Study for Meiotic Nondisjunction of Chromosome 

21 

 

Jonathan McKelvey Chernus, PhD 

 

University of Pittsburgh, 2021 

 

ABSTRACT 

 

Up to one quarter of human conceptions may be aneuploid, having too many or too few 

chromosomes relative to the standard 23 pairs. Most often this results from nondisjunction in 

maternal meiosis, making such errors a leading cause of pregnancy loss and congenital 

abnormalities. Prior research has established advanced age and altered patterns of meiotic 

recombination as risk factors for maternal meiotic nondisjunction and has shown that meiosis I 

and II errors may involve different mechanisms, but genetic risk factors have not been 

systematically investigated. The goal of this dissertation is to advance our knowledge of 

aneuploidy by identifying and characterizing common genetic variants associated with maternal 

meiotic nondisjunction of chromosome 21, the most common aneuploid condition in conceptions 

that survive to term. 

The first aim was to perform a candidate gene and genome-wide association study (GWAS) 

in which cases are mothers who have had a child with Down syndrome and controls are the fathers. 

We found plausible associations at variants at relevant loci. Stratifying by the stage of meiosis in 

which nondisjunction occurred (MI or MII), our results are consistent with general nondisjunction 

risk factors as well as some that could be specific for MI or MII. 

In the second aim, we called recombination events on chromosome 21 in our data set in 

order to classify cases (mothers) according to their recombination profiles. We therefore developed 

and implemented novel methods for calling recombination events in both trios and dyads, finding 
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that full-data trios can be used to successfully train the method for calling recombination in dyads, 

which contain less information. 

The third aim was to further characterize the candidate gene and GWAS associations by 

performing stratified analyses in subgroups of mothers defined by recombination profile and 

maternal age. We interpret the associations in the context of possible meiotic error mechanisms. 

The public health significance of this research is its improvement of our understanding of 

the genetic architecture of meiotic errors, a leading factor in pregnancy loss and congenital defects. 

Eventually this could lead to identifying those at higher risk of meiotic errors and enabling more 

informed reproductive choices. 
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1.0 INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

1.1.1 Meiosis, Aneuploidy, and Established Risk Factors 

Human reproduction relies on the generation of haploid gametes during meiosis in order to 

form euploid offspring. But, due to meiotic nondisjunction, at least 10% (and potentially up to a 

quarter) of human conceptions are aneuploid, with the majority not surviving to term [1-5]. 

The higher rate of nondisjunction in women than in men reflects the different timescales 

on which meiosis operates in men and women. Oogenesis begins during development and pauses 

during prophase of meiosis I (MI) after recombination, with resumption at ovulation and 

completion of meiosis II (MII) after fertilization. Hence the duration of an oocyte’s arrest is 

essentially equal to a woman’s age at conception, and the risk of a meiotic error increases 

exponentially with age. Spermatogenesis, in contrast, begins at puberty, without a long period of 

arrest. (This topic is reviewed in [6].) 

Trisomy 21 (Down syndrome) is a useful condition to study for gaining insight into meiotic 

nondisjunction, since most other aneuploidies are not compatible with survival to term. Among 

live-born children with trisomy 21, over 90% of the nondisjunction events are maternal in origin, 

with about 75% due to apparent MI errors and 25% due to apparent MII errors [7]. Given the 

different timescales involved with completion of maternal MI and MII, it’s unsurprising that MI 

and MII nondisjunction have different risk factors. 
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In particular, altered patterns of recombination are a well-established risk-factor for 

maternal nondisjunction of most chromosomes, including chromosome 21 [8]. Specific to maternal 

chromosome 21 nondisjunction, both MI and MII errors are associated with altered recombination 

[9-13]. About half of MI errors show no recombination on chromosome 21, and those with a single 

exchange usually show telomeric recombination [9, 11, 14]. MII errors are associated with 

pericentromeric recombination [9, 11, 13, 14]. 

1.1.2 Possible Mechanisms and Genes of Interest 

As meiosis is a complex process with multiple steps and critical proteins, there are several 

opportunities for errors to occur that can result in trisomy. Here we review several mechanisms 

(see Figure 1.1, which was adapted from “Non-disjunction in Meiosis” by BioRender.com (2020) 

and retrieved from https://app/biorender.com/biorender-templates). 

 

Figure 1.1 Meiotic error mechanisms 

Conceptually, the simplest errors are “classical” MI or MII errors (often referred to in this 

dissertation and elsewhere simply as MI and MII nondisjunction/errors). In a classical MI error, a 

pair of homologs fails to disjoin at MI. Then, at MII, each homolog splits into two sister 

chromatids, so that the oocyte ends up with two non-sister chromatids. In a classical MII error, 
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homolog-pairs separate normally at MI, but sister chromatids fail to separate at MII, resulting in 

an oocyte with two sister chromatids. 

Another mechanism is premature/precocious separation of sister chromatids (PSSC). When 

sister chromatids separate too soon, they may segregate at random, independently of each other 

instead of to opposite poles in a coordinated fashion. If this occurs during MI, the oocyte may 

contain two non-sister chromatids, mimicking a classical MI error. If it occurs during MII, the 

oocyte may contain two sister chromatids, mimicking a classical MII error. 

Finally, reverse segregation (RS) occurs when sister chromatids segregate at MI instead of 

homologs, leading to a euploid intermediate containing two non-sister chromatids. At MII these 

may move together to the oocyte, resulting in an aneuploidy mimicking a classical MI error. 

Note that although PSSC and RS may mimic classical MI and MII errors, all of these 

mechanisms are distinct: chromatids or chromosomes fail to separate vs. separate too soon. The 

technique used in this dissertation cannot distinguish all of these error types from each other, but 

only whether there was an “apparent MI error” or an “apparent MII” error, according to whether 

the other passed two different or two identical copies of chromosome 21 to the child. Therefore, 

while distinct genetic risk factors may influence each mechanism, this study is not designed to 

prove or disprove which mechanism or variants caused each instance of aneuploidy. Patterns of 

association observed across different subgroups and the functions of implicated genes may 

nevertheless provide insight into these questions. 

To complement the genome-wide scan we performed for maternal meiotic nondisjunction, 

we also tested a set of candidate loci. These comprise well-established meiosis protein genes (e.g., 

synaptonemal complex and cohesin subunits) as well as loci associated with genome-wide 
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recombination counts in an Icelandic population [15] (see 2.3 for a discussion of the candidate 

loci). 

1.2 GENOTYPING ARRAY DATA IN THE CONTEXT OF DOWN SYNDROME 

In order to find genetic variants affecting the risk of maternal nondisjunction of 

chromosome 21 and its associated recombination patterns, we studied a group of children with 

Down syndrome and their parents. Genotype array data from these families serves several purposes 

in this study. First, chromosome 21 genotypes enable us to determine which parent contributed the 

child’s extra copy of chromosome 21 and the stage of meiosis in which the error apparently 

occurred (MI vs. MII). Second, we can infer the locations of recombination events on chromosome 

21, with the goal of categorizing nondisjunction events by recombination profile (discussed above 

as a known risk factor). Finally, genome-wide data allow us to systematically test the genome (and 

candidate regions) for association with nondisjunction, while stratifying by stage of error and 

recombination profile. 

1.2.1 Family Data and Informative Markers 

The parent and (with a few assumptions) the meiotic stage of origin for each nondisjunction 

event can be inferred by comparing the parents’ and children’s genotypes at markers along 

chromosome 21. For trios, the parents’ and children’s genotypes are all known, and the procedure 

is a straightforward extension of methods that have been used in previous studies using sparser 
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marker sets (see, e.g., [7, 16]). For mother-child dyads, which contain less information, a new 

method is described below. 

1.2.1.1 Methods for Trios 

To determine the parent of origin in a trio, we compare the child’s genotypes on 

chromosome 21 to the parents’. A marker (here, usually a SNP) is informative when one parent 

has genotype A/A and the other has genotype B/B (i.e., the parents are homozygous with different 

alleles; see Figure 1.2). In that case, the nondisjoining parent must transmit two identical alleles to 

the child, and the other parent transmits one copy of the other allele. Hence if the child’s genotype 

is A/A/B, then the nondisjoining parent is expected to be the parent with genotype A/A. Since any 

particular genotype is uncertain, here we used all informative SNPs on chromosome 21 and 

considered the proportion consistent with maternal nondisjunction. Allowing for genotyping error 

and mosaicism, we can determine that the mother was the nondisjoining parent whenever the 

proportion is near 1. 

 

Figure 1.2 Inferring parent of origin in a trio 
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Next, similar logic is used to infer the meiotic stage of origin for the trisomy in each trio. 

In MII nondisjunction, sister chromatids nondisjoin, so that the mother transmits two identical 

alleles to the child. In MI nondisjunction, homologous chromosomes nondisjoin, so that non-

identical alleles are transmitted. Hence a SNP is informative for the stage of error if the genotypes 

enable us to determine whether the two alleles passed from the mother to the child are identical or 

not. This occurs when the mother is heterozygous (A/B) and the other parent the father is 

homozygous (A/A, say). Figure 1.3 summarizes inference for stage of error. When the mother has 

passed two identical alleles for a SNP, the SNP is scored as reduced to homozygosity (R). If the 

two alleles are different, it is score as nonreduced (N). 

 

Figure 1.3 Determining meiotic stage of error in a trio 

In addition to assuming implicitly a meiotic (rather than mitotic) origin for each trisomy, 

we also assume that no recombination events are close enough to the centromere to go unobserved 

(i.e., more proximal than the nearest informative SNP). Then the zygosity (R or N) of the 

informative 21q SNPs nearest the centromere reflects the stage of error, R indicating an MII error 

and N indicating an MI error (21p SNPs are generally not informative). 

Plotting the state of each informative SNP (1 for N, 2 for R) vs. its physical chromosomal 

position, recombination events appear as changes in the “level” of the graph (e.g., …11112222…), 
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as in the upper panel of Figure 1.4. Manually inspecting the plots, we can flag apparent MII cases 

without recombination (i.e., graphs with 𝑦 = 2 for all SNPs, except for a few genotyping errors); 

these are often considered potentially mitotic and therefore excluded from analysis (Figure 1.4, 

lower panel). 

 

Figure 1.4 Examples of recombination profiles for two trios 

Calling recombination events involves a tradeoff between over- and under-sensitivity. A 

“switch” from R to N (or vice-versa) suggests a recombination event, but not every switch really 

signifies an event (Figure 1.5). On the one hand, a pattern like …NNNNNNRNNNN… would 
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indicate two recombination events very close to each other (“tight double recombination”), which 

is unlikely, given the relative likelihood of genotyping error (either in the child or one of the 

parents) and that of a true tight double recombination (given crossover interference). On the other 

hand, in a pattern like …NNNNNRRRRRNNNNN…, technical error is less likely to account for 

the apparent double recombination. More SNPs in the “middle segment” make the double 

recombination more plausible. 

 

Figure 1.5 Examples of recombination calls in two trios with genotyping “noise” 
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1.2.1.2 Methods for Dyads 

The approach described above for trios requires the genotypes of both parents, in addition 

to the child’s. Inference is still possible in a genotyped parent-child dyad, where one parent’s 

genotypes are unknown. Here we specifically consider mother-child dyads, in which the father’s 

genotypes are unknown (the mother’s nondisjunction and recombination phenotypes are analyzed 

downstream). 

As in trios, the parent of origin is first confirmed to be the mother in each case by 

considering the proportion of SNPs consistent with maternal nondisjunction. 

As in trios, a SNP is informative for stage of error only if the mother is heterozygous (A/B). 

If the child is homozygous (A/A/A or B/B/B), we infer that the mother transmitted two identical 

alleles and score the SNP as R. If the child’s genotype is A/A/B or A/B/B, the SNP is partially 

informative, since it can be inferred that the mother did not transmit B/B or A/A (respectively). In 

that case, the SNP is scored as X. Figure 1.6 summarizes inference in dyads about meiotic stage 

of origin. 
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Figure 1.6 Informative markers in dyads 

For each dyad, we obtain a string of Rs and Xs representing the states of informative (or 

partially informative) SNPs near the centromere. As in trios, a string of Rs near the centromere is 

strong evidence of an MII error. But since SNPs in the N state can’t be observed directly (they’re 

masked as Xs, along with some R SNPs), we can infer MI errors only from the absence of R SNPs. 

Hence a higher ratio of Rs to Xs in a string is stronger evidence of an MII error (and a lower ratio 

is stronger evidence of an MI error). 

Similarly, recombination events are reflected by changes in the density of R vs. X along 

the chromosome. As in the case for trios, there is a problem of over- vs. under-calling 

recombination events, which is further complicated by the lower density of information. Although 

no particular X can be “unmasked” with certainty, the density of Rs nearby provides information. 

For instance, in the pattern …RRXR…, the X is likely to mask an R (an N would imply tight 

double recombination). But in a pattern such as …RRRRRXXXXXXXXXX…, the true state of 
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some of the Xs is probably N (if the state were truly R at each position, it would be unlikely to 

observe a long sequence of Xs). Hence a recombination event likely occurred. See Figure 1.7. 

 

Figure 1.7 Informative markers on chromosome 21 in a dyad 

Using this intuition, a higher density of Xs is evidence that the true state is N; 

recombination can be inferred when the density of Xs changes enough (by some measure). In this 

work we propose using a moving average to identify recombination events, calculating for each 

SNP the proportion of nearby informative SNPs scored X (Figure 1.8). This method leaves the 

number of SNPs to average over and the threshold as parameters to be optimized. To select the 

optimal parameters for this method, we apply it to the full-data trios, treating the fathers’ genotypes 

as missing and the recombination calls in the trios as correct. Full details are given in Section 3.7. 
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Figure 1.8 Using a moving average to call recombination events in a dyad 

1.2.2 Description of Data Set 

This study includes 2,186 subjects, comprising 749 children with trisomy 21 and most of 

their parents. Subjects were initially recruited using birth surveillance through the National Down 

Syndrome Project [7], a multi-site, population-based study, and later using convenience sampling. 
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Trisomy was confirmed by karyotyping; both full and mosaic trisomies are included, but not 

translocation trisomies. Genotyping was performed with the Illumina HumanOmniExpressExome-

8v1-2 array at CIDR, and after quality assurance/control about 1 million single nucleotide 

polymorphism (SNP) genotypes were available. Trisomic genotypes for SNPs on chromosome 21 

were called with previously-developed methods [17]. After imputation using the 1000 Genomes 

Project’s Phase I data and subsequent filtering, genotypes were available for about 9 million SNPs. 

Short tandem repeat (STR) marker genotypes were also available in some cases; STR genotyping 

was done historically as this cohort was recruited primarily to determine the parent and stage of 

origin of the trisomy. 

The dataset includes chromosome 21 SNP genotypes for 630 parent-child trios, 95 mother-

child dyads, and 17 father-child dyads. 

1.3 AIMS AND SUMMARY OF THIS DISSERTATION 

1.3.1 Finding Genetic Risk Factors for Nondisjunction 

The first aim of this dissertation is to identify genetic risk factors for maternal meiotic 

nondisjunction of chromosome 21 in either stage of meiosis. Chapter 2, which consists of a 

published genome-wide association and candidate gene study (see [18]), accomplishes this. 

Briefly, we performed a case-control study in which the mothers of children with Down syndrome 

are treated as cases and the fathers as controls. We found evidence that common variants at loci 

involved with oocyte maturation and meiotic processes may influence nondisjunction risk, with 

some specific to MI or MII. 
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1.3.2 Using Family Data to Call Recombination Events on Chromosome 21 

The second aim is to develop and implement methods for calling recombination events on 

chromosome 21 in parent-child trios and dyads. For trios this is quite straightforward; for mother-

child dyads where the fathers’ genotypes are unavailable, it is more challenging. As there is no 

“gold standard” for either case, we implement a simple method for trios and then use the resulting 

recombination calls as a “training set” to tune parameters in a novel method for calling 

recombination the dyads. We attain a high accuracy on the training set and conclude that it is 

feasible to call recombination events in mother-child dyads, resulting in a larger usable sample for 

association analyses (and potentially lower cost in future studies). Details of these recombination-

calling methods are given in the Appendix of Chapter 3, which has been published as part of [19]. 

1.3.3 Characterizing Genetic Risk Factors for Nondisjunction 

Our third aim is to dissect the associations discovered in the first aim. As apparent MI and 

MII errors may occur through different mechanisms, there may be genetic heterogeneity within 

each (apparent) type of error. Therefore we used the recombination calls from the second aim to 

classify each maternal nondisjunction event by its recombination profile on chromosome 21. This 

enabled us to perform stratified analyses of the loci found in the first aim, using the most important 

nondisjunction risk factors as stratification variables: maternal age and recombination profile. We 

find evidence consistent with genetic heterogeneity and attempt to interpret our results in the 

context of possible mechanisms. The third aim is accomplished in Chapter 3, consisting of a second 

published study (see [19]). 
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2.0 A CANDIDATE GENE ANALYSIS AND GWAS FOR GENES ASSOCIATED WITH 

MATERNAL NONDISJUNCTION OF CHROMOSOME 21 

This chapter has been published in PLoS Genetics. Per PLoS license and copyright policy 

(https://journals.plos.org/plosgenetics/s/licenses-and-copyright), the article is reproduced here 

under a Creative Commons BY license with minor formatting and non-scientific changes. The 

original article and supporting information are available online at 
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2.1 CHAPTER OVERVIEW 

Human nondisjunction errors in oocytes are the leading cause of pregnancy loss, and for 

pregnancies that continue to term, the leading cause of intellectual disabilities and birth defects. 

For the first time, we have conducted a candidate gene and genome-wide association study to 

identify genes associated with maternal nondisjunction of chromosome 21 as a first step to 

understand predisposing factors. A total of 2,186 study participants were genotyped on the 

HumanOmniExpressExome-8v1-2 array. These participants included 749 live birth offspring with 

standard trisomy 21 and 1,437 parents. Genotypes from the parents and child were then used to 

identify mothers with nondisjunction errors derived in the oocyte and to establish the type of error 

(meiosis I or meiosis II). We performed a unique set of subgroup comparisons designed to leverage 

our previous work suggesting that the etiologies of meiosis I and meiosis II nondisjunction differ 

for trisomy 21. For the candidate gene analysis, we selected genes associated with chromosome 

dynamics early in meiosis and genes associated with human global recombination counts. Several 

candidate genes showed strong associations with maternal nondisjunction of chromosome 21, 

demonstrating that genetic variants associated with normal variation in meiotic processes can be 

risk factors for nondisjunction. The genome-wide analysis also suggested several new potentially 

associated loci, although follow-up studies using independent samples are required.  

2.2 AUTHOR SUMMARY 

Approximately one of every 700 babies is born with trisomy 21 - an extra copy of 

chromosome 21. Trisomy 21 is caused by the failure of chromosomes to segregate properly during 
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meiosis, generally in the mother. Past studies have defined altered patterns of recombination along 

nondisjoined chromosomes as risk factors for human nondisjunction and model systems have 

clearly shown that specific genes involved recombination and other early meiotic processes play a 

role in the fidelity of chromosome segregation. However, no genome-wide genetic study (GWAS) 

has ever been conducted using maternal human nondisjunction as the disease phenotype. This 

study takes the first step to understand predisposing factors. We used chromosome 21 genotypes 

from the parents and child to identify mothers with nondisjunction errors derived in the oocyte and 

to establish the type of error (meiosis I or meiosis II). We then conducted a unique set of subgroup 

comparisons designed to leverage our previous work that shows that the etiologies of meiosis I 

and meiosis II nondisjunction differ for trisomy 21. Both the candidate gene study and the GWAS 

provide evidence that meiotic-specific structures and processes are vulnerable to genetic variants 

that lead to increased risk of human chromosome nondisjunction. 

2.3 INTRODUCTION 

Correct segregation of chromosomes during the two successive meiotic divisions is 

essential for the formation of haploid gametes. At least 10% of human pregnancies produce 

aneuploid embryos with too many or too few chromosomes, the majority of which are lost during 

pregnancy. If they survive to term, many have severe congenital defects and developmental and 

intellectual disability. Thus, meiotic nondisjunction is the leading cause of pregnancy loss and 

birth defects in humans and an important limiting factor in women’s reproductive life span. 

(reviewed in [1, 2, 4, 5, 13]).  
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In humans, meiosis in females is highly prone to chromosome segregation errors i.e., 

nondisjunction or premature separation of sister chromatids (PSSC) and these errors increase 

exponentially with increasing maternal age. The differences between the development of oocytes 

and sperm clearly influence susceptibility for meiotic nondisjunction. Most importantly, they work 

on different timelines. In both sexes, meiosis starts with an initial step of DNA replication and the 

establishment of sister chromatid cohesion, followed by synapsis and recombination between 

homologous chromosomes. Homologs then separate at the end of meiosis I (MI), whereas sister 

chromatids separate in meiosis II (MII). Spermatogenesis begins after puberty and cells entering 

meiosis move from one stage to the other without delay. In contrast, oogenesis begins during fetal 

development and is arrested in prophase I after chromosomes synapse and recombine. MI resumes 

in the woman’s adult life just before the ovulation; MI is completed and the first polar body is 

extruded. MII begins but arrests for a short period as the oocyte travels through the Fallopian tubes, 

and is only completed if the oocyte is fertilized. Thus, meiosis in females extends over a 10 to 50 

year period; the age of the woman at conception reflects the age of the oocyte, and basically the 

period of arrest in MI. Given the mechanistic differences and temporal separation of maternal MI 

and MII, it is not surprising that associated risk factors differ for MI and MII nondisjunction errors 

(reviewed in [6]).    

Trisomy 21 has become an important resource to understand meiotic nondisjunction in 

humans, as it is one of the few aneuploid conditions that survives to term. However, even for 

trisomy 21, involving the smallest human autosome, about 50-80% conceptions are estimated to 

be lost during pregnancy [5, 20]. Using chromosome 21 genetic markers to categorize the type of 

meiotic error among live births with trisomy 21, over 90% are derived from errors in the oocyte, 

of which at least 75% are estimated to be initiated in MI and about 25% in MII (e.g., [7]).  
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In this study, our goal was to discover genetic variants that increase the risk for maternal 

nondisjunction of chromosome 21 using both a candidate gene approach and a genome-wide 

association study. We focused on candidate genes that have been associated with chromosome 

dynamics early in meiosis. Accurate segregation depends on the coordinated control of sister 

chromatid cohesion with chromosome synapsis and the assembly of the synaptonemal complex 

(SC) and, within these structures, meiotic recombination [21, 22]. Below we provide a brief 

overview of the role of some of the important meiotic genes that mediate these processes, and that 

we have examined in the present study. Bolcun-Filas and Schimenti [21] have summarized the 

meiotic defects that are observed in the associated mutant mouse models. 

In a meiotic cell, DNA is organized as an array of loops along a proteinaceous axis. The 

axes are composed of the meiosis-specific synaptonemal complex, in association with 

condensin/cohesin complexes. Several of the components of meiotic cohesin are meiosis-specific, 

including those encoded by SMC1β, REC8, RAD21L, and STAG3. The SC brings homologous 

chromosomes into close proximity and promotes recombination and chiasmata formation [23]. 

The mature SC is a tripartite structure, composed of two parallel axial/lateral elements that bind to 

each homolog and a central element, with transverse filaments joining the individual axial/lateral 

elements [24, 25]. SYCP2 and SYCP3 are components of the axial/lateral elements. SYCP1 is a 

component of the transverse filaments and components of the central element are encoded by 

SYCE1, SYCE2, SYCE3, and TEX12. In addition to these structural sub-units, HORMAD1 and 

HORMAD2 code for proteins that load onto axes of meiotic chromosomes throughout early 

prophase I but are removed upon synapsis, a process that depends on the presence of TRIP13 [26]. 

In general, HORMAD1 and HORMAD2 play a role in coordinating progression of chromosome 

synapsis with meiotic recombination [27].   



 20 

Meiotic recombination is initiated by programmed DNA double-strand breaks (DSBs) that 

occur as the meiotic chromosome axes develop early in prophase I. These breaks are generated by 

the SPO11 protein and its interacting partners MEI1, MEI4 and REC114 (reviewed in Cole et al. 

[28]). The DSBs are processed to generate single-stranded DNA that is bound by strand-exchange 

proteins DMC1 (meiosis specific) and RAD51 (ubiquitously expressed). The single-stranded DNA 

then engages in homology search. Proper function of DMC1 requires interactions with several 

meiotic accessory proteins, one of which is MND1. MND1, complexed with HOP2, stabilizes the 

DMC1 filaments on the resected end of the DSBs. This complex also increases the ability of the 

pre-synaptic filament to capture the double-stranded DNA (reviewed in Sansam and Pezza [29]). 

As homologs synapse, so-called early recombination nodules transiently associate with 

ZMM proteins, including DNA mismatch repair proteins MSH4 and MSH5. Subsequently, a 

proportion of these are converted into late recombination nodules, detected by the mismatch repair 

proteins MLH1 and MLH3, and representing the vast majority of crossovers [30-34]. In addition, 

EXO1 and BLM function in crossover regulation, and with MLH1 and MLH3, appear to play a 

role in the crossover pathway that is subject to crossover interference (reviewed in Manhart and 

Alani [35]). 

In addition to these candidate genes, we chose another group of genes that have been 

associated with the amount of global meiotic recombination in humans. The motivation for these 

candidates is based on the altered recombination patterns observed along nondisjoined 

chromosomes, a well-established predisposing factor for maternal nondisjunction of almost all 

human chromosomes studied to date (reviewed in [8]). Specifically for maternal chromosome 21 

nondisjunction, altered meiotic recombination patterns are associated with both MI and MII error 

types [9-13]. For maternal MI-derived trisomy 21, about 40-47% of MI cases are derived from 
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oocytes with no meiotic exchange [9, 11, 14]. Among those with a single exchange, the majority 

of exchanges occur in the telomeric region of chromosome 21. MII errors are associated with 

pericentromeric exchanges [9, 11, 13, 14]. This apparent effect of an MI process – recombination 

– on MII nondisjunction suggests that at least a portion of so-called MII errors may have their 

origin in MI. In addition, there is evidence that genome-wide recombination counts in oocytes with 

a MI nondisjunction error of chromosome 21 are reduced compared to oocytes with normal 

meiosis [36, 37]. Also, previous studies indicate that oocyte-specific dysregulation of global 

recombination may contribute to the nondisjunction event [36]. Thus, we chose candidate genes 

identified in the largest GWAS study of meiotic recombination conducted on humans, a study 

based on 71,929 parent-offspring pairs from Iceland [15]. They found evidence for 13 variants in 

eight regions that were associated with genome-wide recombination counts. 

For both the candidate gene and genome-wide association studies, we took a unique 

approach by using several different GWAS group comparisons (Table 2.1). These comparisons 

were crafted to address the likelihood that there are both distinct genetic factors influencing MI 

and MII nondisjunction and common factors affecting both. In addition, some of our analyses 

target the conflated phenotype of nondisjunction with survival to term. Study design issues are 

discussed in more detail below. 

Table 2.1 Description of primary analyses and sample sizes 

Analysis Analysis groups Sample size Contrast able to detect: 

Logistic regression Mothers vs. fathers 705 vs. 645 Maternal NDJ and survival to term 

... MI mothers vs. fathers 535 vs. 645 MI-specific effects and survival to term 

... MII mothers vs. fathers 157 vs. 645 MII-specific effects and survival to term 

... MI mothers vs. MII mothers 535 vs. 157 MI- or MII-specific effects 

TDT All complete case trios 615 trios Survival to term 
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2.4 METHODS 

2.4.1 Study Sample 

Our study participants included 749 live born offspring with free (non-translocation), 

maternally-derived trisomy 21 (both full and mosaic trisomy 21 were included) and their available 

biological parents. In almost all instances, the trisomy was confirmed by karyotype, although in 

some it was confirmed by birth record or parent report. Recruitment occurred in the U.S. by 

multiple sites since 1989, when the first population-based study was initiated. Recruitment for 

these population-based studies used birth surveillance systems to identify infants born with Down 

syndrome (details are provided in Freeman et al. [7]). Later, our recruitment strategy was not 

population-based, but instead a convenience sample of families with Down syndrome identified 

through our network of assessment sites, social and website media, and parent groups. Using self-

reported race/ethnicity, 72% reported as White, 4% as Hispanic descent, 2% as African/African-

American or Asian descent and about 23% with other or unknown descent.  

2.4.1.1 Ethics Statement 

Participants were recruited from several geographic areas with the collaboration of several 

institutions, including Arkansas (University of Arkansas for Medical Sciences, Arkansas Center 

for Birth Defects Research and Prevention, Arkansas Children’s Hospital, Arkansas Reproductive 

Health Monitoring Systems), California (California Birth Defects Monitoring Program, Public 

Health Institute), Georgia (Department of Human Genetics, Emory University; Centers for Disease 

Control and Prevention), Iowa (University of Iowa, Registry for Congenital and Inherited 

Disorders), New Jersey (New Jersey Department of Health and Senior Services; Special Child 
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Health Services Registry; Eagleton Institute), and New York (New York State Department of 

Health Congenital Malformations Registry). Each recruitment site obtained IRB approval for their 

protocol, consent forms, and data sharing during the project period from their respective 

institutions. All samples were collected under written consent by each participant or their legal 

guardian. Emory University was the site for the data and biorepository. They obtained IRB 

approval for all sample processing and de-identified sample submission to the Center for Inherited 

Disease Research genotyping service (Emory School of Medicine IRB number IRB00005100). 

IRB approvals for genotyping samples and uploading to dbGaP were approved prior to the 

initiation of that genotyping project (dbGaP: phs000718). 

2.4.1.2 Genotyping 

DNA samples were obtained from lymphoblastoid cell lines (LCLs) (36.8%), saliva 

(23.7%), buffy coat (15.7%), whole blood (13%), unknown source (i.e., no record available) 

(8.4%), and buccal cell (0.09%). The remaining 2.2% of genotyped samples were HapMap 

controls derived from LCLs that were used by the Center for Inherited Disease Research (CIDR) 

for quality control (QC). The samples were genotyped in batches corresponding to 96-well plates 

and each plate contained two study duplicates and HapMap controls. Duplicates were randomly 

selected from all samples with sufficient DNA. Families were randomly distributed across plates 

with all members of each family on the same plate. 

Genotyping was performed on the Illumina HumanOmniExpressExome-8v1-2 array by the 

Center for Inherited Disease Research (CIDR). The algorithm used for calling genotypes was 

GenomeStudio version 2011.1, Genotyping Module version 1.9.4 and GenTrain version 1.0. 

Genotype data that passed initial QC at CIDR were released to the Quality Assurance (QA)/QC) 

analysis team at the University of Washington Genetics Coordinating Center (UWGCC) for data 
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cleaning and imputation. Details of these procedures can be found in Laurie et al. [38] and all data 

are available in dbGaP along with specifics of genotyping and QC (dbGaP: phs000718). After QC, 

genotypes were available for 2,186 unique study participants. We filtered SNPs based a deviation 

of Hardy-Weinberg equilibrium (HWE) at p < 10-6. Overall, the median call rate was 99.86% and 

the error rate estimated from 53 pairs of study sample duplicates is 1x10-4. All samples had a 

missing call rate < 2%. The percent of SNPs with a minor allele frequency (MAF) of < 2% was 

30% for the autosomes and 32.1% for the X chromosome. This calculation was based on all study 

participants for SNPs not located on chromosome 21 and on only study parent samples for SNPs 

on chromosome 21. Trisomic genotypes for all 749 children in the study were called from raw 

genotyping data with previously-developed methods [17].   

Possible chromosomal abnormalities beyond trisomy 21 were examined as possible 

artifacts of the use of DNA from LCLs. This was done using “Log R Ratio” (LRR) and “B Allele 

Frequency” (BAF) [39, 40] and applying the methods outlined in Laurie et al. [41]. Regions or 

chromosomes containing identified anomalies were excluded for genotype imputation purposes 

(see below). For chromosomes other than chromosome 21, 50 large anomalies were identified, of 

which 15 were filtered out of the dataset by setting genotypes in the identified region to missing. 

In addition, Mendelian inconsistencies were examined and one additional family was identified to 

have a genotype pattern consistent with uniparental chromosome 16 in the offspring. Genotypes 

at this chromosome were also set to missing. 

Seven participants with neither parent genotyped were excluded from subsequent analyses. 

Thus in the remaining 742 families, genotypes were available for both the child and either the 

mother only (n = 95), the father only (n = 17), or both parents (n = 630).  
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2.4.1.3 Adjustment for Population Structure 

Binary trait analyses using logistic regression are our primary statistical approach in this 

GWAS study. To adjust for population structure, we first used principal components analysis 

(PCA) as described by Patterson et al. [42], and implemented in R (SNPRelate package). SNPs 

used for PCA were selected by LD pruning from an initial pool that included all non-chromosome 

21 autosomal SNPs with a missing call rate < 5% and MAF > 5%. In addition, the 2q21 (LCT), 

HLA, 8p23, and 17q21.31 regions were excluded from the initial pool. The first three eigenvectors 

were used in subsequent analyses.  

2.4.1.4 Imputation 

The UWGCC used IMPUTE2 software [43] to perform genotype imputation. Details of 

their methods and QC are available at dbGaP:phs000718. The worldwide reference panel of 1,092 

samples from the 1000 Genomes Project’s Phase I integrated variant set [44] was used for 

imputation. We included only imputed variants with a quality metric of ≥ 0.3, as previously 

recommended [45].  

2.4.1.5 Phenotyping 

Our primary association studies were based on mothers who had a live birth with full or 

mosaic trisomy 21 as determined by karyotype and then determined to be due to a maternal 

nondisjunction error based on the characterization of the chromosome 21 genotype contributions 

from parent to the child with trisomy 21. Genotypes were obtained from the Illumina 

HumanOmniExpressExome-8v1-2 array and from previously genotyped variants along 

chromosome 21 using both STRs and SNPs [11, 13] The groups based on maternal nondisjunction 
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errors were compared with fathers of the children with trisomy 21 who represent a random group 

of individuals from the population. 

Methods for defining the type of nondisjunction errors are described in detail in our 

previous work (e.g., [11, 13]). Briefly, parental origin of the meiotic error (maternal or paternal) 

was first determined by establishing the contribution of informative parental chromosome 21 

genotypes to the child with trisomy 21. In families with both parents genotyped and where the 

parent of origin was unambiguously confirmed to be the mother (the vast majority of these 

families), we defined the meiotic stage of origin. We scored the genotype at each informative SNP 

and STR marker on chromosome 21q as either reduced to homozygosity (R) or not (N), according 

to whether the mother transmitted two identical or two different alleles, respectively, to her child 

at that locus. The meiotic stage of nondisjunction (MI or MII) was called according to the zygosity 

at the loci most proximal to the centromere (N or R, respectively). In a few cases (n=7), MII 

nondisjunction was called on the basis of a single, well-genotyped R SNP nearest the centromere 

(followed by a series of N SNPs), but because of the dense SNP genotyping on the chip, stage was 

more typically supported by many markers. 

In families with only one parent genotyped, a slightly different approach was required, as 

missing parental data led to some markers that are partially informative, but not dispositive of 

zygosity. Briefly, we considered the ratio of information in the SNPs near the centromere, and 

called each case as MI or MII depending on the ratio. The threshold for this ratio was selected by 

performing an experiment with the complete trios; for each complete trio, we masked the genotype 

of one parent, calculated the ratio described above, and found the cutoff that optimized the 

predictive accuracy.  



 27 

Lastly, when all informative markers in the parent of origin were reduced to homozygosity 

along 21q, the origin of error was inferred to be a post-zygotic, mitotic error and the case was 

excluded from this study, consistent with previous studies [9]. However, we recognize that a 

proportion of these cases may be MII nondisjunction errors with no recombination.  

2.4.2 Analysis 

2.4.2.1 Sample Size 

As described above, samples from 2,186 participants were genotyped for this study, 

comprising 749 children and 1,437 parents. Participants with unresolved identity swaps, probands 

(children) with neither parent genotyped, and mothers in cases of potentially mitotically-arising 

trisomy were excluded from GWAS. After this filtering, 705 mothers and 645 fathers were retained 

for analysis, comprising 612 complete parent-child trios. Meiotic stage of origin for trisomy was 

determined to be MI in 535 cases, MII in 157 cases, and was not determined in 13 cases. Sample 

sizes for our analysis groups are reported in Table 2.1. 

2.4.2.2 Association Studies 

We performed five primary GWAS analyses (summarized in Table 1). The comparison for 

all mothers vs. fathers can identify maternal genetic factors influencing nondisjunction either in 

MI or MII (or, more powerfully, in both). As noted in the Introduction, some genetic factors 

affecting MI nondisjunction may be shared with MII nondisjunction. Comparison of MI-only or 

MII-only mothers with fathers can identify maternal genetic factors influencing MI nondisjunction 

or MII nondisjunction, respectively. All three of these comparisons will also detect maternally-

derived variants affecting survival of the infant to term. We chose to use fathers within our own 
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study as controls rather than turning to external controls because of the significant problem with 

confounding (chip and study effects) that is introduced when cases genotyped in one study are 

compared to controls genotyped in another. 

However, one risk of using fathers as controls is that in theory the three analyses that 

compare mothers to fathers may also identify spurious associations due to comparing females to 

males. We tested this by running a female vs. male GWAS in a large additional dataset and 

comparing our results to those. The dataset we used was a subset of the COHRA study [46]; this 

study targeted dental phenotypes, but participants were selected in a community-based setting 

without regard to phenotype. We used 456 male and 494 female unrelated self-identified white 

adults in order to have a sample size comparable to the current study. By using sex as the outcome 

measure in a sample that was unselected with regard to phenotype, this analysis gave us a set of 

results to compare to our trisomy dataset in order to determine whether any of our trisomy results 

might instead be male vs. female artifacts. The female vs. male analysis in the COHRA dataset did 

not result in any unusually significant differences (lambda = 0.94). None of the GWAS loci or 

candidate genes described in the results section appeared among the largest differences between 

males and females in the COHRA dataset. The Manhattan plot and QQ plots are provided in the 

Supporting Information (S1 Figure), as well as results from the COHRA analysis in our candidate 

genes (S1 Table). 

The fourth comparison involves MI vs. MII mothers. This comparison has the potential to 

identify unique factors for MI or MII nondisjunction without confounding by trisomy 21 survival; 

that is, both groups of mothers had a live birth child with trisomy 21.  

For the fifth analysis, we conducted a transmission disequilibrium test (TDT) [47]. This 

test examines the association between the child’s genotype and the dual phenotype of 
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nondisjunction and survival to term. Our prior hypothesis is that this test is best for identifying 

fetal “survival genes.” If there is association between maternal genotype and either nondisjunction 

or survival, this test can in theory identify it, but the association would be weakened. We did not 

perform this test for the candidate genes, since they were chosen as candidates for nondisjunction, 

not for survival. For the nondisjoined chromosome 21, we used a trisomic TDT, previously 

developed by our group [48]. 

For all analyses except the TDT, we used the logistic regression model logit(p) = SNP + 

PC1 + PC2 + PC3, where SNP is encoded additively and PC1, PC2, and PC3 are the first three 

principal components of ancestry. The X chromosome was not examined because our primary 

comparative analyses involved mothers vs. fathers.   

For all analyses, we filtered out SNPs with MAF < 1% or with extreme departure from 

HWE. Imputed SNPs with info score < 0.5 were also excluded, and imputed genotypes called with 

less than 90% confidence were coded as missing. Analyses were performed with PLINK and R. 

2.4.2.3 Maternal Age Effect 

Because of the strong maternal age effect in maternal chromosome 21 nondisjunction, it is 

important to consider how maternal age fits into the above analyses. Previous results from our 

group and others suggest not only different etiologies for MI and MII nondisjunction, but likely 

different etiologies in different age groups. Statistically, this would suggest a model that includes 

not only maternal age effect but also an age X genotype interaction term. However, since our 

primary analyses compare mothers to fathers, it is not possible to fit such a model (since fathers 

have no “maternal age”). The logical analysis, then, is to stratify by maternal age group, similar to 

the approach we took for the MI and MII subgroups. We performed several such analyses, but the 
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sample sizes were prohibitively small for interpretation. We elaborate further on this issue in the 

Discussion.   

2.4.2.4 Candidate Gene Analyses 

For candidate gene analyses, we examined a window of 60kb on each side of the gene or 

SNP. We used a statistical significance cutoff based on the method of Li and Ji [49], which 

calculates the equivalent number of independent SNPs in the region and applies a Bonferroni 

correction based on that number. Thus the candidate gene analyses are fully corrected for multiple 

testing at the level of each individual gene. 

2.4.2.5 Follow-up Analyses to Examine Top-Ranked GWAS Signals 

For follow-up analyses of signals of p < 10-5 for the GWAS, we performed literature 

searches on genes within 500kb. For each of those regions, LocusZoom plots were created in all 

analyses to identify common associations across analyses. 

2.5 RESULTS 

2.5.1 Candidate Gene Association Studies 

We focused on two sets of candidate genes/regions: genes that function in early stages of 

meiosis and that have been associated with accurate chromosome segregation (n=24) and regions 

associated with human recombination genome-wide counts (n=8) [15]. The Bonferroni-corrected 

statistical significance cutoffs along with all results are shown in Table 2.2 and LocusZoom plots 
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are provided in Figures 2.1-2.5 and in the Supporting Information (S2-S9 Figures). Each row in 

Table 2.2 represents one candidate locus. Each column represents an analysis. For each cell in the 

table, the most significant association at the locus (not always unique) is reported. P-values 

significant after correcting for multiple testing are marked with an asterisk and highlighted. Note 

that for each analysis in each gene, Table 2.2 lists the most statistically significant result, so that 

the SNP that appears in a given gene is not necessarily the same in each analysis. More detailed 

results are shown in the Supporting Information (S2 Table). 

Table 2.2 Candidate gene results 

Locus 

All mothers 

vs. 

fathers 

MI mothers 

vs. 

fathers 

MII mothers 

vs. 

fathers 

MI mothers 

vs. 

MII mothers 

Significance 

threshold 

SYCP1 P=0.00238 P=0.00255 P=0.002 P=2.69e-05* 9.43e-04 

SYCP2 P=0.017 P=0.00592 P=0.000735* P=3.09e-05* 8.62e-04 

SYCP3 P=0.0078 P=0.00748 P=0.00637 P=0.00151 9.43e-04 

SYCE1 P=0.0336 P=0.022 P=0.0227 P=0.00222 1.35e-03 

SYCE2 P=0.00146 P=0.000425* P=0.0154 P=0.00655 1.14e-03 

SYCE3 P=0.00324 P=0.000764 P=0.0053518 P=0.00337 5.38e-04 

TEX12 P=0.00558 P=0.0219 P=0.013871 P=0.0271 1.19e-03 

BLM P=0.0225 P=0.0378 P=0.00601 P=0.0257 7.04e-04 

DMC1 P=0.0184 P=0.00993 P=0.018619 P=0.0134 1.19e-03 

EXO1 P=0.00924 P=0.0118 P=0.00111 P=0.00303 6.10e-04 

HORMAD1 P=0.0152 P=0.0174 P=0.011377 P=0.00361 1.35e-03 

HORMAD2 P=0.0113 P=0.0156 P=0.00155 P=0.00838 8.93e-04 

MEI1 P=0.00655 P=0.0485 P=0.00951 P=0.0204 9.26e-04 

MEI4 P=0.0147 P=0.0164 P=0.0283 P=0.021 6.33e-04 

MLH1 P=0.0151 P=0.00297 P=0.0162 P=0.0427 1.14e-03 

MLH3 P=0.00472 P=0.0107 P=0.0241 P=0.0207 1.35e-03 

MND1 P=0.0273 P=0.013 P=0.000336* P=9.6e-05* 8.77e-04 

MSH5 P=0.00677 P=0.00135 P=0.0417 P=0.0241 9.26e-04 

REC114 P=0.0187 P=0.0272 P=0.0886 P=0.0118 8.77e-04 

REC8 P=0.00822 P=0.00404 P=0.00195 P=0.00112 9.43e-04 

SMC1B P=0.0115 P=0.00407 P=0.047 P=0.0349 7.81e-04 

SPO11 P=0.0232 P=0.0325 P=0.0115 P=0.0181 1.25e-03 

STAG3 P=0.005 P=0.00472 P=0.0798 P=0.00958 1.19e-03 

TRIP13 P=0.0026 P=0.0122 P=0.00358 P=0.0206 1.61e-03 

rs1254319 

(C14orf39 missense) P=0.0278 P=0.0488 P=0.0372 P=0.00464 1.39e-03 

rs75502650 

(CCDC43 intron) P=0.00203 P=0.00137* P=0.000628* P=0.031 7.58e-04 

rs1132644 

(CCNB1IP1 UTR) P=0.0232 P=0.00657 P=0.0236 P=0.0195 1.32e-03 

rs56162163 

(chr17 inversion) P=0.00666 P=0.00956 P=0.00737 P=0.0166 6.67e-04 
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rs74434767 

(CPLX1 intron) P=0.00611 P=0.0178 P=0.0227 P=0.0329 1.61e-03 

rs5745459 

(MSH4 missense) P=0.0389 P=0.0283 P=0.037 P=0.0198 1.16e-03 

rs150798754 

(PRDM9 intergenic) P=0.00219 P=0.006 P=0.0123 P=0.022 1.25e-03 

rs6889665 

(PRDM9 upstream) P=0.00219 P=0.006 P=0.0104 P=0.0678 8.33e-04 

rs450739 

(RAD21L missense) P=2.49e-05* P=7.47e-05* P=0.00579 P=0.00126 1.09e-03 

rs4045481 

(RNF212 missense) P=0.00475 P=0.0136 P=0.00514 P=0.0131 1.02e-03 

rs658846 

(RNF212 intron) P=0.00292 P=0.0108 P=0.00514 P=0.0131 8.33e-04 

rs12233733 

(RNF212 nearby) P=0.00292 P=0.0108 P=0.00396 P=0.031 1.52e-03 

rs10135595 

(SMEK1 UTR) P=0.0125 P=0.007 P=0.00306 P=0.000183* 1.39e-03 

Each row represents one candidate locus (either a gene with a 60kb border on each side or a 60kb 

window around a SNP). Each column represents an analysis. For each locus-analysis pair, the 

most significant association at the locus (not always unique) is reported. P-values significant after 

correcting for multiple testing (i.e., exceeding the Bonferroni-adjusted significance threshold 

noted in the last column) are marked with an asterisk and highlighted. (MI: meiosis I; MII: 

meiosis II; P: p-value; OR: odds ratio.) The first 24 loci represent genes selected for their function 

(above the double line). The latter 13 loci represent SNPs identified by Kong et al. in their GWAS 

of recombination 33, with annotation in parentheses (below the double line). 

 

2.5.1.1 Candidate Genes Associated with Chromosome Segregation 

These genes are shown in the top half (above the double line) of Table 2.2. Examination 

of genes involved in the meiotic cohesion complex showed a statistically significant association 

with RAD21L, a meiosis-specific member of the α-kleisin protein family [50-53]. This was 

significant in both the mothers vs. fathers and the MI mothers vs. fathers comparisons, and has a 

similar effect (odds ratio) in the MII cases at the same SNP (Figure 2.1). Meiotic cohesins are 

essential for sister chromatid cohesion, but also have an effect on other prophase I processes, 

including formation of the axial/lateral elements, assembly of the SC, and crossing-over (e.g., [54, 

55]). Gene disruption of RAD21L leads to sexually dimorphic phenotypes in mice. Male mice are 

infertile, whereas female mice show age-related infertility, reminiscent of primary ovarian 



 33 

insufficiency. The reduced efficiency in synapsis in fetal oocytes may result in a lower ovarian 

reserve to be established [53] In human males, variants in RAD21L have been implicated in 

meiotic arrest and Sertoli cell-only syndrome [56]. 
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Figure 2.1 LocusZoom plot for RAD21L 
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Variants in seven genes coding for components of the SC were also investigated in this 

candidate gene group. Of the genes coding for components of the central element of the SC (i.e., 

SYCE1, SYCE2, SYCE3, TEX12), SYCE2 showed a statistically significant association (in the MI 

mothers vs. fathers) (Figure 2.2), although the association with SYCE3 was close to the cutoff for 

significance (also in MI mothers vs. fathers). 
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Figure 2.2 LocusZoom plot for SYCE2 

The other SC genes we examined code for the transverse filament (SYCP1) and 

components of the axial/lateral elements (SYCP2 and SYCP3). SYCP1 showed significant 
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association in the MI vs. MII analysis, but not in the other analyses (Figure 2.3). The signal in 

SYCP1 was primarily located at an imputed SNP, at rs35401563, so this result requires 

confirmation by further genotyping. SYCP2 showed highly significant associations in both the MII 

mothers vs. fathers and the MI vs. MII comparisons (Figure 2.4), suggesting the potential for an 

effect specific to MII. SYCP3 was nearly significant in the MI vs. MII comparison.  
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Figure 2.3 LocusZoom plot for SYCP1 
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Figure 2.4 LocusZoom plot for SYCP2 

Among the other candidate genes in this group, the only statistically significant result was 

for MND1. The observed significant association was strongest in the MI vs. MII comparison, was 
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also strong in the MII vs. fathers comparison, and was much weaker in the MI vs. fathers 

comparison. This pattern suggests that this locus may be associated with MII nondisjunction. 

Based on genetic and cellular analysis of deletion mutants, MND1, acting with HOP2, plays a role 

in the initial processing of DSBs. Specifically, the HOP2-MND1 complex is involved in two 

separate stages of the DMC1-promoted recombination process: first, in the stabilization of DMC1 

filaments on the resected end of the DSBs, and second, in the promotion of the subsequent strand 

invasion steps. In higher eukaryotes (mouse [57] and Arabidopsis thaliana [58, 59]), MND1 

appears to be required for normal male and female fertility. Mutations result in normal 

recombination initiation, but meiotic DSBs are abnormally repaired and chromosome synapsis is 

aberrant [29]. The HOP2-MND1 complex has also been implicated in ovarian dysfunction and 

biochemically, is capable of driving RAD51-mediated alternative lengthening of telomeres in 

somatic cells [60]. If this association is confirmed, understanding why the effect of the variant is 

stronger in MII errors vs. MI errors may shed more light on its function.  

2.5.1.2 Genes Association with Human Genome-Wide Recombination Counts (Shown in 

the Bottom Half of Table 2.2, Below the Double Line) 

We also examined the eight regions identified in Kong et al. that were highly associated 

with genome-wide recombination counts in a large Icelandic study of 71,929 parent-offspring pairs 

[15]. Of the eight regions, three showed associations with maternal nondisjunction that were 

statistically significant according to the cutoffs shown in Table 2.2. The first region included 

RAD21L for which results are discussed above, as it was also in the group of candidate genes for 

meiotic processes. The second statistical signal was in the region of SMEK1 (also known as protein 

phosphatase 4 regulatory subunit 3 (PPP4R3A)) and was strongest in the MI vs. MII mothers 

comparison (Figure 2.5). SMEK1 is known as a regulator of cellular functions, including 
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apoptosis, cell growth, microtubule organization, cell cycle arrest, and TNF and PI3K/Akt 

signaling (e.g., [61, 62]). It is also known to play a role in endothelial cell function and subsequent 

angiogenesis [63]. However, its role in meiosis is unknown, although it is known to be expressed 

in the ovary. 
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Figure 2.5 LocusZoom plot for SMEK1 

The third signal is in the region of CCDC43, and was evident in both the MI mothers vs. 

fathers analysis and the MII mothers vs. fathers analysis (see S7 Figure). There is no known 
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function of CCDC43 in meiosis. In the study of Kong et al. [15], the SNP associated with 

recombination (rs75502650) was located in an intron of CCDC43. It was estimated to increase the 

global recombination rate by 76 cM and this effect was limited to females.  

2.5.2 Strongest Results from the Genome-Wide Association Study 

Because of the limited sample size in this study, the full GWAS produced only suggestive 

results, though a few of those top results have strong support in the literature for the relevance of 

the gene functions to meiosis or fetal survival. Manhattan plots and Q-Q plots for each GWAS 

analysis are included in the Supporting Information (S10 Figure). Tables 2.3-2.7 show the most 

statistically significant results from each of the comparisons in the genome-wide association study. 

For each result for a given comparison, the corresponding table also gives the smallest p-value 

within 20kb in each of the other comparisons. Detailed results are included in the Supporting 

Information (S3-S7 Tables). 

Table 2.3 Top hits from the all mothers vs. fathers genome-wide association study 

Locus 

All mothers 

vs. 

fathers 

MI mothers 

vs. 

fathers 

MII mothers 

vs. 

fathers 

MI mothers 

vs. 

MII mothers 

TDT 

rs10948101 P=7.65e-07 P=1.58e-06 P=0.000897 P=0.0634 P=0.00514 

rs35141718 P=2.02e-06 P=1.92e-05 P=0.0109 P=0.127 P=0.0499 

rs11535058 P=2.42e-06 P=2.1e-05 P=7.69e-05 P=0.0411 P=0.015 

rs62086686 P=4.45e-06 P=0.000292 P=8.53e-05 P=0.0171 P=0.0133 

rs75733466 P=5.09e-06 P=0.00023 P=1.24e-05 P=0.00189 P=0.0212 

rs117746305 P=5.14e-06 P=0.000168 P=3.93e-06 P=0.056 P=0.0881 

rs12947774 P=5.62e-06 P=0.000199 P=0.000949 P=0.00229 P=0.0339 
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rs1612273 P=5.93e-06 P=7.22e-05 P=1.62e-05 P=0.000934 P=0.00432 

rs12652455 P=6.43e-06 P=2.43e-05 P=0.000437 P=0.0429 P=0.0518 

rs148846406 P=6.79e-06 P=3.85e-05 P=0.00673 P=0.0562 P=0.00883 

rs11026040 P=8.22e-06 P=0.000238 P=3.1e-05 P=0.00505 P=0.00794 

rs7010571 P=8.27e-06 P=3.41e-05 P=0.0185 P=0.0796 P=0.0477 

rs35816728 P=9.96e-06 P=6.09e-05 P=0.00101 P=0.00124 P=0.00815 

Suggestive associations (p < 10-5) are recorded (highlighted cells). For each such locus, the most significant 

association within 20kb is recorded for each of the other four genome-wide analyses. Rows are ordered by 

significance.  (MI: meiosis I; MII: meiosis II; P: p-value.) 

 

Table 2.4 Top hits from the MI mothers vs. fathers genome-wide assocation study 

Locus 

All mothers 

vs. 

fathers 

MI mothers 

vs. 

fathers 

MII mothers 

vs. 

fathers 

MI mothers 

vs. 

MII mothers 

TDT 

rs10948100 P=7.65e-07 P=1.58e-06 P=0.000897 P=0.0634 P=0.00514 

rs35288347 P=1.26e-05 P=2.72e-06 P=0.023 P=0.0298 P=0.0339 

rs4649043 P=0.000148 P=3.1e-06 P=0.00388 P=0.000408 P=0.00556 

rs437933 P=1.79e-05 P=3.29e-06 P=0.0683 P=0.05 P=0.0186 

rs16847735 P=2.44e-05 P=3.77e-06 P=0.0173 P=0.0135 P=0.0617 

rs2467011 P=5.02e-05 P=4.29e-06 P=0.0902 P=0.00786 P=0.158 

rs9442389 P=1.88e-05 P=5.27e-06 P=0.0701 P=0.0164 P=0.0241 

rs731245 P=0.000148 P=6.91e-06 P=0.00772 P=0.000809 P=0.00654 

rs984968 P=1.48e-05 P=6.95e-06 P=0.0741 P=0.0425 P=0.0833 

rs9984132 P=5.86e-05 P=9.87e-06 P=0.0539 P=0.00662 NA 

Suggestive associations (p < 10-5) are recorded (highlighted cells). For each such locus, the most significant 

association within 20kb is recorded for each of the other four genome-wide analyses. Rows are ordered by 

significance.  (MI: meiosis I; MII: meiosis II; P: p-value.) 



 45 

Table 2.5 Top hits from the MII mothers vs. fathers genome-wide association study 

Locus 

All mothers 

vs. 

fathers 

MI mothers 

vs. 

fathers 

MII mothers 

vs. 

fathers 

MI mothers 

vs. 

MII mothers 

TDT 

rs1855111 P=6.48e-05 P=0.00213 P=2.2e-06 P=0.00698 P=0.00494 

rs76740710 P=7.19e-06 P=0.000236 P=3.93e-06 P=0.0341 P=0.00648 

rs12981234 P=0.0013 P=0.00911 P=4.28e-06 P=8.8e-05 P=0.0854 

rs200216460 P=0.000209 P=0.0104 P=4.99e-06 P=0.00373 P=0.00284 

rs11668205 P=0.00588 P=0.00218 P=5.49e-06 P=3.34e-05 P=0.0233 

rs146838878 P=0.0197 P=0.0249 P=6.16e-06 P=0.000328 P=0.000463 

rs115281615 P=0.047 P=0.0792 P=6.34e-06 P=7.33e-07 P=0.0712 

rs62359711 P=0.0024 P=0.00108 P=6.91e-06 P=0.000191 P=0.0112 

rs73178888 P=0.00754 P=0.0041 P=7.05e-06 P=1.72e-05 P=0.0122 

rs9966603 P=0.00967 P=0.0639 P=7.05e-06 P=0.00208 P=0.00759 

rs13020106 P=0.00149 P=0.0335 P=7.12e-06 P=0.00336 P=0.0162 

rs2560850 P=0.0016 P=0.00365 P=7.69e-06 P=0.000332 P=0.00604 

rs1191234 P=0.00176 P=0.0137 P=9.98e-06 P=0.00157 P=0.0411 

Suggestive associations (p < 10-5) are recorded (highlighted cells). For each such locus, the most significant 

association within 20kb is recorded for each of the other four genome-wide analyses. Rows are ordered by 

significance.  (MI: meiosis I; MII: meiosis II; P: p-value.) 

 

Table 2.6 Top hits from the MI mothers vs. MII mothers genome-wide association study 

Locus 

All mothers 

vs. 

fathers 

MI mothers 

vs. 

fathers 

MII mothers 

vs. 

fathers 

MI mothers 

vs. 

MII mothers 

TDT 

rs115281615 P=0.047 P=0.0792 P=6.34e-06 P=7.33e-07 P=0.0712 

rs6440985 P=0.0958 P=0.0112 P=0.000198 P=1.31e-06 P=0.00796 

rs2806747 P=0.0934 P=0.0656 P=0.00037 P=1.35e-06 P=0.00284 

rs9319652 P=0.0225 P=0.0267 P=0.00243 P=4.09e-06 P=0.039 
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rs11977478 P=0.00474 P=0.00902 P=0.00019 P=4.18e-06 P=0.00232 

rs11034351 P=0.0124 P=0.00284 P=7e-04 P=4.3e-06 P=0.0295 

rs7685548 P=0.00618 P=0.000955 P=0.00884 P=4.82e-06 P=0.00226 

rs71967233 P=0.044 P=0.0785 P=0.000135 P=5.24e-06 P=0.0163 

rs34282937 P=0.0334 P=0.0368 P=5.95e-05 P=5.48e-06 P=0.0298 

rs77525287 P=0.0707 P=0.000444 P=0.0124 P=5.9e-06 P=0.099 

rs4818884 P=0.0454 P=0.0312 P=0.00354 P=9.57e-06 NA 

rs61999085 P=0.00851 P=0.000125 P=0.0449 P=9.84e-06 P=0.00243 

Suggestive associations (p < 10-5) are recorded (highlighted cells). For each such locus, the most significant 

association within 20kb is recorded for each of the other four genome-wide analyses. Rows are ordered by 

significance.  (MI: meiosis I; MII: meiosis II; P: p-value.) 

 

Table 2.7 Top hits from the TDT (transmission disequilibrium test) 

Locus 

All mothers 

vs. 

fathers 

MI mothers 

vs. 

fathers 

MII mothers 

vs. 

fathers 

MI mothers 

vs. 

MII mothers 

TDT 

rs3802065 P=0.0144 P=0.0066 P=0.0318 P=0.00859 P=4.84e-07 

rs2867076 P=0.0164 P=0.0227 P=0.008 P=0.00904 P=1.05e-06 

rs7451700 P=0.0186 P=0.0169 P=0.054 P=0.0195 P=1.71e-06 

rs7389783 P=0.0421 P=0.0397 P=0.0048 P=0.00741 P=1.93e-06 

rs17769147 P=0.182 P=0.152 P=0.0738 P=0.0624 P=2.06e-06 

rs201634098 P=0.00592 P=0.00385 P=0.0722 P=0.015 P=3.52e-06 

chr23:154539980 NA NA NA NA P=3.63e-06 

rs74615884 P=0.0801 P=0.037 P=0.0167 P=0.00236 P=3.73e-06 

rs158866 P=0.036 P=0.00582 P=0.0103 P=0.0102 P=3.77e-06 

rs1187600 P=0.0553 P=0.0636 P=0.204 P=0.156 P=6.25e-06 

rs55743346 P=0.0514 P=0.0371 P=0.0834 P=0.0234 P=7.34e-06 

rs183199067 P=0.0131 P=0.00285 P=0.0396 P=0.0254 P=9.55e-06 

rs140022090 P=0.0163 P=0.00733 P=0.0538 P=0.00493 P=9.55e-06 
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rs34518363 P=0.00538 P=0.00186 P=0.049 P=0.0394 P=9.55e-06 

rs6681167 P=0.0358 P=0.0505 P=0.0648 P=0.0377 P=9.58e-06 

Suggestive associations (p < 10-5) are recorded (highlighted cells). For each such locus, the most significant 

association within 20kb is recorded for each of the other four genome-wide analyses. Rows are ordered by 

significance.  (MI: meiosis I; MII: meiosis II; P: p-value.) 

2.5.2.1 rs10948101 on chromosome 6 near VEGFA 

The observed signal for this locus was strongest for the analysis of all mothers vs. fathers 

and was located within LOC100132354, a long non-coding RNA (lncRNA) (Figure 2.6). Upstream 

of this intergenic lncRNA is VEGFA, the gene encoding vascular endothelial growth factor A 

(VEGFA). In a recent meta-analysis, LOC100132354 was confirmed to be highly associated with 

VEGF circulating levels in serum [64]. VEGFA plays multiple roles in ovarian development and 

function (reviewed in McFee and Cupp [65]). Vascularization plays a role in the formation of early 

ovarian structures, primordial follicle assembly, and follicle activation. Further, ovarian function 

is highly dependent on the development and continual remodelling of a complex vascular system. 

This allows the follicle and the corpus luteum to receive the needed oxygen, nutrients, and systemic 

hormones and the release of ovarian hormones (reviewed in Robinson et al. [66]). If angiogenesis 

is disrupted, follicular growth is reduced, ovulation is perturbed, and development and function of 

the corpus luteum is significantly altered. The action of VEGFA is necessary at all these stages of 

development. We did not see any significant effect in the TDT analysis, so there is no suggestion 

that this locus is associated with survival to term. 
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Figure 2.6 LocusZoom plot for VEGFA locus 
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2.5.2.2 rs11535058 on chromosome 2 near SLC39A10 

The observed signal in this region, strongest in the mothers vs. fathers comparison, was 

located 132kb downstream of SLC39A10 (Figure 2.7), with a similar, but non-significant, effect 

size for both MI mothers vs. fathers and MII mothers vs. fathers. SLC39A10 is involved in the zinc 

transport network. Regulation of intracellular zinc is essential for oocyte maturation and activation. 

In mouse, progression of the oocyte from a cell arrested in prophase of MI into a mature egg 

arrested at metaphase of MII is accompanied by an increase in total zinc content. This increase is 

required for proper meiotic progression [67]. Also, exit from MII during oocyte activation requires 

decreasing cellular zinc through the rapid export of zinc from the oocyte. These ‘zinc sparks’ are 

required for oocyte activation and resumption of the cell cycle [68].  

Specific to SLC39A10, Lisle et al. [69] found a complex zinc transport network present in 

the cumulus-oocyte complex in mouse oocytes. They found that mRNA transcripts for specific 

zinc transporter proteins (SLC family), including Slc39a10 were higher in oocytes, while another 

unique set of zinc transporter protein transcripts were higher in cumulus cells. Thus, zinc 

homeostasis, regulated in the cumulus-oocyte complex, may affect both MI and MII processes. 
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Figure 2.7 LocusZoom plot for SLC39A10 locus 
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2.5.2.3 rs35288347 on chromosome 19 near AURKC 

This signal occurs primarily in the MI mothers vs. fathers analysis (Figure 2.8), with a 

similar but less significant effect in the mothers vs. fathers analysis. Consistent with the possibility 

of an effect specific to MI, mutations in the AURKC gene in this region (160kb away) cause 

tetraploidy in human sperm and MI arrest in mouse oocytes [70, 71]. 
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Figure 2.8 LocusZoom plot for AURKC locus 



 53 

2.5.2.4 rs9984132 on chromosome 21 located in a gene rich region 

The signal at rs9984132 on chromosome 21 is located in a gene-rich region (Figure 2.9). 

The strongest signal at this locus was identified in the comparison of MI mothers with fathers. 

Two genes stand out as possible candidates for involvement in chromosome segregation. COL6A2, 

located 34kb upstream of the signal, codes for one of the components of collagen that is part of 

the extracellular matrix (ECM) formed by cumulus cells. This ovarian follicular ECM is related to 

proliferation, steroidogenesis, and luteinization [72]. As the formation of this ECM is involved in 

fertilization and embryo quality, the observation that this signal appears to be only related to MI 

nondisjunction reduces the support of COL6A2 as a candidate. 

PCNT is a gene located about 260kb upstream from the signal. Pericentrin, coded by PCNT, 

is a highly conserved component of the acentriolar microtubule-organizing centers (aMTOCs) in 

mouse oocytes. aMTOCs play a vital role in meiotic spindle assembly and stability. Depletion of 

pericentrin in mouse oocytes leads to increased rates of aneuploidy [73]. Human oocytes differ 

from mouse oocytes in that they lack PNCT and aMTOCs in MI, where spindle assembly is 

mediated from chromosomes by the small guanosine triphosphates [74]. Thus, more work is 

needed to confirm this signal and its underlying genetic association.  
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Figure 2.9 LocusZoom plot for rs9984132 locus 
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2.5.2.5 rs73178888 on chromosome 8 near a region associated with meiotic recombination 

This signal, located in an intron of ERICH1, is primarily observed in the MII mothers vs. 

fathers analysis and in the MI vs. MII analysis, suggesting that it might be an MII risk locus (Figure 

2.10). The location is noteworthy because Begum et al. [75] identified a variant 59kb away in this 

region as potentially associated with meiotic recombination (specifically recombination outside of 

hotspots) in a euploid population. There is no evidence to suggest that ERICH1 or DLGAP2 (also 

known as ERICH1-AS1), 3kb from the signal, is involved in recombination or meiosis. The next 

closest gene is TDRP. The deficiency of TDRP in mice is suggested to be involved in sperm 

motility and may play a role in spermatogenesis [76], but there is no evidence for involvement is 

oogenesis. 
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Figure 2.10 LocusZoom plot for DLGAP2 locus 
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2.5.2.6 rs115281615 on chromosome 4 near CPEB2 

The signal at this locus is primarily observed in the MII mothers vs. fathers comparison 

(Figure 2.11). The genes in the region, C1QTNF7, and CC2D2A, do not have evidence for a role 

in meiosis. CPEB2, located 193kb from the signal, encodes an RNA-binding protein, cytoplasmic 

polyadenylation element binding protein and is thought to be involved in regulated translation, a 

system that allows the rapid production of selective proteins in response to a physiological signal. 

CPEB2 interacts with the elongation factor, eEF2, to slow down peptide elongation of CPEB2-

bound RNA [77]. In mice, this protein is highly similar to the family of CPEBs that regulate 

cytoplasmic polyadenylation of mRNA as a trans-factor in oogenesis and spermatogenesis. CPEB2 

is expressed post-meiotically in mouse spermatogenesis, which suggests a possible role in 

translational regulation of stored mRNAs in transcriptionally inactive haploid spermatids [78]. 
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Figure 2.11 LocusZoom plot for CPEB2 locus 
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2.5.2.7 rs2560850 on chromosome 5 in an intron of MYO10 

The comparison between MII mothers vs. fathers shows the strongest statistical 

significance for this locus which includes MYO10 (Figure 2.12). Myosin-10 proteins are 

phosphoinositide-binding, actin-based motors that play an important role during meiosis in the 

integration of the F-actin and microtubule cytoskeletons. Proper spindle positioning and 

orientation are essential for asymmetric cell division and these functions are particularly important 

in meiosis. In Xenopus oocytes, Weber et al. [79] showed that myosin-10 is associated with 

microtubules and is concentrated where the meiotic spindle contacts the F-actin-rich cortex. This 

observation and others suggest that myosin-10, the microtubule-binding myosin, is required for 

anchoring the spindle and an actin-binding kinesin is required for meiotic cytokinesis [79, 80]. 

Recently F-actin was shown to permeate the microtubule spindles in oocytes of many mammals, 

including human, where it prevents lagging chromosomes and thus segregation errors, including 

during anaphase I [81]. 
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Figure 2.12 LocusZoom plot for MYO10 locus 
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2.5.3 Strongest Results from the TDT Analyses 

Together with the other case/control association tests to identify genes associated with 

nondisjunction, we also had the opportunity to use the TDT. We assumed that the TDT might help 

tease apart genes associated with nondisjunction from those associated with fetal “survival genes.” 

If there is association between maternal genotype and either nondisjunction or survival, this test 

can theoretically identify it. We only performed this test in our GWAS approach, not our candidate 

genes, since the candidates were chosen for possible involvement in nondisjunction per se. Here 

we highlight two genes where the statistical signal was relatively strong, although not genome-

wide significant.  

The first is located at rs17769147, 24kb upstream of the gene RNF182, which encodes a 

RING-finger-containing transmembrane protein that includes an E3 ubiquitin ligase activity. 

There was no statistical signal for any of the case/control comparisons, only for the TDT. Studies 

have shown that this gene is expressed preferentially in the brain and is up-regulated in 

Alzheimer’s disease brain and in neuronal cell cultures that are subject to stress-induced cell death 

[82]. In another line of study, RNF182 was found to be one of the gene targets of MeCP2, the gene 

involved in Rett syndrome. The group of identified gene targets are involved in the regulation of 

the cell growth and survival of neuronal cells [83].  

Another strong TDT signal was found at rs158866, with no statistical signal for any of the 

case/control comparisons. This signal is located within NEDD4L (also referred to as NEDD4-2), a 

gene encoding a ubiquitin ligase. This protein binds and regulates membrane-associated proteins 

(although not exclusively), particularly ion channels and transporters (reviewed in Goel et al. [84]). 

NEDD4L interacts with several other proteins and may regulate other important substrates as well 
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(e.g., [85, 86]). Based on current evidence, this ligase is essential for the maintenance of cellular 

homeostasis. 

2.6 DISCUSSION 

We present, for the first time, a candidate gene study and GWAS of chromosome 21 

maternal nondisjunction. The goal of this project was to gain insight into factors that may 

predispose a woman to this common chromosomal error.  

2.6.1 Genes Associated with Cohesin Complex 

The meiosis-specific cohesin subunits are encoded by SMC1β, REC8, RAD21L, and 

STAG3. Of these genes, we found that variation in RAD21L was associated with nondisjunction, 

with the strongest signal with MI nondisjunction. As part of the cohesion complex [50-53], 

RAD21L plays a role in the structural maintenance of chromosomes (SMC) complex. The SMC 

complex includes cohesin, condensin and SMC5/6, and is an important regulator of chromosome 

dynamics and structure during both mitosis and meiosis. In female mice, mutations in meiosis-

specific cohesins and in the SMC complex increase the frequency of oocyte aneuploidy and 

primary ovarian insufficiency [53, 87-89]. The study of Kong et al. [15] found a highly significant 

association of RAD21L with male recombination and a much weaker signal in females; Begum et 

al. [75] did not replicate this finding, although the genomic region had poor coverage in two of the 

three datasets of their study. Together, this suggests a sex-specific role of RAD21L and one in 
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females that maybe more directly related to segregation of bivalents than recombination counts 

per se. 

There are several possible explanations for why genetic variation in RAD21L was 

associated with maternal nondisjunction whereas variation in REC8 was not, although both are α-

kleisin subunits that are part of the cohesin complex. One possible explanation is that there is 

reduced power to detect a signal based on allele frequencies of variants in REC8 compared with 

RAD21L. Alternatively one gene may play a more essential role in meiosis, where variation is not 

tolerated or not compatible with the oocyte surviving to fertilization. It is known that these genes 

play unique roles during meiosis and thus have differential effects on the meiotic process [90-92]. 

2.6.2 Genes Associated with the Synaptonemal Complex (SC) 

The general structure of the SC is highly conserved across yeast and mammals, although 

the genes and proteins involved are not always conserved (reviewed in Cahoon and Hawley [22]). 

The tripartite protein structure extends along the entire length of the synapsed homologues and 

assembles alongside cohesin and cohesin-like proteins that hold the sister chromatids of the 

homologues together (e.g., [93, 94]). Mutations in genes coding for SC components have been 

identified previously among women with infertility or recurrent miscarriages (reviewed in 

Geisinger and Benavente [95]). At this time, only mutations in SYCP3 and SYCE1 have been 

identified, but most studies had <100 women available for study. In our study, we found evidence 

for an association of variants in genes of all three SC components with maternal nondisjunction. 

We had supporting evidence for SYCP3 (although not statistically significant), with the strongest 

statistical signal being found in the comparison of MI vs. MII. In addition, we found a statistically 

significant association of SYCE2 in MI vs. fathers and with SYCP2 in the comparison of MI vs. 
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MII. Thus, with an increased sample size and a more homogeneous reproductive outcome, we 

were able to confirm the importance of the SC structure for proper segregation of chromosome 

during human oogenesis. 

2.6.3 Association with Recombination-Related Variants 

It is now well established that there is both significant sex-specific and individual variation 

in genome-wide recombination counts and location of events, in spite of the need for the 

recombination process to be tightly controlled [96-98]. When there are alterations in the number 

of recombinants (reduced or no recombination) or their location (pericentromeric or telomeric), 

there is a high risk for human chromosome nondisjunction [99-101]. Variation in genes that play 

a role in recombination has been identified and we examined those that were identified in a large 

Icelandic study using linkage analyses of live births [15]. Begum et al. [75] also attempted to 

replicate the association of these variants in a population of primarily Northern European ancestry. 

Their GWAS meta-analyses were extended to the study of recombination phenotypes, including 

the average recombination count along with those related to placement relative to historical 

recombination hotspots. Here, we asked whether these variants would also explain susceptibility 

to maternal nondisjunction. Our results are interesting both with respect the identification of 

associated regions and to the lack of evidence in the others.  

Both Kong et al. [15] and Begum et al. [75] found a strong association of SMEK1 (also 

known as PPP4R3A) with recombination in females only. Our results identified the strongest 

association in the comparison of MI vs. MII nondisjunction, which suggests a stage-specific role 

of this protein, as well as a sex-specific role identified in the recombination studies. At this time, 

there is no known role of SMEK1 in meiosis. It is a member of the PP2A subfamily. PP2A is 
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involved in de-protection of centromere cohesin in MII of mammals, a process that is essential for 

proper sister chromatid segregation (reviewed in Wassmann [102]). Although it is intriguing to 

think that variation in SMEK1 may alter this MII-associated process, this is no direct link at this 

time. 

Another locus that deserves follow-up is on chromosome 8 near rs73178888, one of the 

top hits in our genome-wide analyses. Begum et al. [75] identified this same region as potentially 

associated with meiotic recombination in a euploid population. Although the genes in the region 

do not appear to be linked to recombination, further investigation is warranted. 

With respect to the two most well-established genes associated with recombination, 

RNF212 and PRDM9, our data showed no association with nondisjunction. Variation in RNF212 

is sex-specific, some variants being associated with increased recombination in males and others 

in females [15, 75, 98, 103-105]. RNF212 is known to form many discrete foci along chromosomes 

early in meiotic prophase I; these foci are then reduced to a few sites where crossovers are formed 

[106]. For small chromosomes such as chromosome 21, perhaps female-specific variation in this 

process is less evident compared with genome-wide alterations.  

Variation in PRDM9 is known to be associated with recombination hotspots in both males 

and females. Kong et al. [15] showed that variants were also associated with total recombination 

counts in males, but not females. Begum et al. [75] provided further evidence that in females, 

variants were associated with both recombinant counts within and outside of historical hotspots, 

in opposite directions. They suggested that females might have a compensatory mechanism, such 

that increased recombination in hotspots is balanced by decreased recombination elsewhere; 

thereby not altering the overall recombination count. In males, variants were only associated with 

recombinants within historical hotspots. In our previous study, we found that historical hotspot 
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usage along maternally-derived nondisjoined chromosomes 21 was similar to that in controls, 

particularly among MI errors, indicating that the observed altered telomeric placement probably 

does not involve differential hotspot usage [12]. Subsequently, Oliver et al. [107] studied sequence 

variation in the zinc finger-binding domain (ZFBD) of PRDM9 in a subset of the study sample 

presented here. They found that the frequency of the PRDM9 ZFBD minor alleles was significantly 

increased among women who had a chromosome 21 nondisjunction event and no observed 

recombination on 21q. Further, when these PRDM9 minor alleles were compared with the major 

A-allele, fewer predicted binding sites on 21q were found. Together, these observations suggest 

that allelic variation in PRDM9 may play a role in nondisjunction, but that the effect size may be 

small and it may be limited to nondisjunction of achiasmate chromosomes. 

2.6.4 Gene Discovery 

When we conducted a GWAS, no variants were genome-wide significant; thus, the 

marginally significant signals need replication prior to additional speculation. We highlighted a 

few findings in Results for signals in genes that are known to be involved in oogenesis. If these 

are true signals, our data are consistent with the idea that the underlying susceptibility for 

chromosome nondisjunction involves different components of oogenesis.  

2.6.5 Conclusion and Future Directions 

Our candidate gene study was successful in detecting statistically significant associations 

of maternal nondisjunction of chromosome 21 and variation in genes that are essential for proper 

chromosome segregation during meiosis. Future studies are needed to investigate other known risk 



 67 

factors and their interaction with the genetic variation. For example, stratification by maternal age 

at the time of birth of the infant with trisomy 21 could provide insight into mechanism of the 

identified genetic variants. In our exploratory analyses, we did not observe unique age-associated 

variants; however, our sample sizes were limited. Thus, expansion of the study sample with 

enrichment of the youngest and oldest maternal age groups would be valuable. Also, studies that 

further stratify meiotic errors by recombination risk patterns known to increase susceptibility of 

nondisjunction, namely lack of observed recombination, a single telomeric recombination event 

or a pericentromeric event, may provide further insight into the function of the genetic variant. 

Another possible approach is to examine other sources of samples from which information 

on aneuploidy may be drawn to obtain larger sample sizes. For example McCoy et al. [108] studied 

day-3 embryos obtained from in vitro fertilization cycles and parents to identify both meiotic and 

mitotic segregation errors. Irrespective, we have begun to gain insight into which meiotic proteins 

may be more susceptible to genetic variation, leading to abnormal chromosome segregation. 

Independent studies are needed to replicate findings from our GWAS study to further identify 

novel susceptibility genes. 
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3.1 CHAPTER OVERVIEW 

Objective: In our previous work, we performed the first genome-wide association study to 

find genetic risk factors for maternal nondisjunction of chromosome 21. The objective of the 

current work was to perform stratified analyses of the same dataset to further elucidate potential 

mechanisms of genetic risk factors. 

https://doi.org/10.1002/pd.5919
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Methods: We focused on loci that were statistically significantly associated with maternal 

nondisjunction based on this same dataset in our previous study and performed stratified 

association analyses in seven subgroups defined by age and meiotic recombination profile. In each 

analysis, we contrasted a different subgroup of mothers with the same set of fathers, the mothers 

serving as cases (phenotype: meiotic nondisjunction of chromosome 21) and the fathers as 

controls. 

Results: Our stratified analyses identified several genes whose patterns of association are 

consistent with generalized effects across groups, as well as other genes that are consistent with 

specific effects in certain groups.  

Conclusions: While our results are epidemiological in nature and cannot conclusively 

prove mechanisms, we identified a number of patterns that are consistent with specific 

mechanisms. In many cases those mechanisms are strongly supported by available literature on 

the associated genes. 

3.2 INTRODUCTION 

At least 5% and possibly as many as 20% of human conceptions are aneuploid as a result 

of errors in meiosis, and the vast majority of these errors occur in maternal meiosis I, which begins 

in oocytes during fetal development and is arrested in prophase I for years until resumption in 

adulthood [1-5, 109]. The decades-long timespan for female meiosis and the different timescales 

and processes involved in completion of meiosis I and meiosis II make maternal age a critical risk 

factor for nondisjunction but also make each stage susceptible to different error mechanisms [6, 

109]. In addition to maternal age, altered patterns of meiotic recombination are also associated 



 70 

with nondisjunction [8-14]. As one of the few aneuploid conditions with which humans survive to 

term, trisomy 21 provides crucial insight into human meiotic nondisjunction [5-7, 20].  

In our previous work, we performed the first genome-wide association study to find genetic 

risk factors for maternal nondisjunction of chromosome 21 [18]. There we contrasted groups of 

mothers of live-born children with standard trisomy 21 derived from maternal nondisjunction with 

fathers (a convenient control group). Because earlier research suggested that maternal meiosis I 

(MI) and meiosis II (MII) nondisjunction of chromosome 21 may have some unique etiological 

factors and some factors in common, we stratified mothers by meiotic stage of error in order to 

clarify how genetic risk factors contribute to nondisjunction in each stage. In addition to the 

genome-wide analyses, we also investigated candidate genes and loci known to be involved with 

meiotic processes or associated with global recombination counts in humans. We observed a 

number of interesting associations with loci plausibly involved in maternal meiotic nondisjunction. 

In this study we extend our earlier work by performing further stratified analyses of the 

same dataset in order to dissect the genetic associations we found with MI and MII errors. These 

analyses will help explore whether the MI/MII classification masks heterogeneity in maternal 

meiotic nondisjunction and may suggest how genes contribute to particular nondisjunction 

mechanisms. For example, stratifying by maternal age can clarify whether younger mothers have 

a higher genetic risk burden than older mothers (or different risk factors altogether). Similarly, 

within MI and MII errors, different genes may contribute to the recombination profiles on 

chromosome 21 associated with nondisjunction in each stage. These stratifications may also 

provide a glimpse into how genes contribute to nonstandard mechanisms such as premature 

separation of sister chromatids (PSSC) and reverse segregation (RS). Because this further 
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stratification reduces sample sizes, we performed these stratified analyses in a hypothesis-driven 

manner, only examining genes and loci that have strong prior support based on the previous work. 

3.3 METHODS 

3.3.1 Study Participants and Ethics Statement 

3.3.1.1 Participants 

The participants of our study were 749 individuals with non-translocation, maternally-

derived trisomy 21 and their 1,437 available biological parents. Self-reported race/ancestry was 

72% white, 4% Hispanic, 2% African/African-American or Asian, and 23% other or unknown 

descent. Participants were recruited in the United States through a birth surveillance system for 

Down syndrome and later through convenience sampling [7] (see also [18]). 

3.3.1.2 Ethics Statement 

At each site an IRB approved the study protocol, consent forms, and data sharing. At Emory 

University, the data and biological sample repository, the IRB approved sample processing and 

submission to the Center for Inherited Disease Research for genotyping (Emory School of 

Medicine IRB number IRB00005100). Study data were uploaded to dbGaP (phs000718) with IRB 

approval. 
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3.3.2 Genotyping, Imputation, and Population Structure 

The genotyping, imputation, and investigation of population structure for this study group 

have been described in our previous study [18]. Briefly, genotypes were assayed with the Illumina 

HumanOmniExpressExome-8v1-2 array and initially processed at the Center for Inherited Disease 

Research. Genotypes for 2,186 unique participants were released to the University of Washington 

Genetic Coordinating Center for quality assurance/control and imputation. QA/QC for GWAS 

followed standard procedures described by Laurie et al. [38], and imputation to the 1000 Genomes 

Project’s Phase I reference panel [44] was performed with IMPUTE2 [43]. Trisomic SNP 

genotypes on chromosome 21 were called from the array data using previously described methods 

[17]. In addition to these SNP genotypes, STR genotypes from an earlier phase of the study were 

available on chromosome 21 and were used in a few cases to determine the meiotic stage of 

trisomy, as described below. Principal components of ancestry were calculated to adjust for 

population structure; the first three were used as covariates in all regression analyses below. 

Detailed reports on QA/QC, population structure, and imputation are available through dbGaP 

(phs000718). 

Trisomy (full or mosaic) was confirmed by karyotype in nearly all 749 individuals with 

Down syndrome, but in a few cases a birth record or parent report was used. Trisomic genotype 

cluster plots were visually inspected for all 12,982 chromosome 21 SNPs; 3,853 SNPs subjectively 

regarded as showing poor clustering or showing small minimum cluster sizes were excluded from 

analysis. As a further quality control step, we compared parental and child SNP genotypes on 

chromosome 21 to confirm consistency with maternal origin of the trisomy. In 16 instances, the 

SNP genotypes were not broadly consistent with maternal origin. Most of these cases were 

traceable to mosaic trisomies or other anomalies identified by karyotyping, but we excluded these 
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families from downstream analyses, which required broadly reliable genotypes in the children. In 

7 instances neither parent was genotyped. In all, 615 parent-child trios and 94 mother-child dyads 

were available for calling recombination events. 

3.3.3 Determining Meiotic Stage of Error and Recombination on Chromosome 21 

The primary analyses in this study were centered on mothers who had had a nondisjunction 

event resulting in live birth of a child with full or mosaic trisomy 21. Subgroups of maternal errors 

were defined by known risk factors: recombination pattern on the nondisjoined chromosome 21 

and maternal age. 

To do this, we used parent and offspring SNP and STR genotypes on chromosome 21 to 

determine stage of meiotic error and to call recombination events on chromosome 21 in each 

family. Because no “gold standard” procedure exists, we developed new methods for calling 

recombination events. These methods are fully described in the Appendix. 

It is important to note that our classification for MI and MII nondisjunction errors is not 

precise, although it has been useful to identify distinct risk factors for maternal age, recombination 

pattern on chromosome 21, and environment [8-14]. The classification is based on whether the 

variants in the pericentromeric q-arm of chromosome 21 contributed by the parent-of-origin of the 

nondisjunction error remain heterozygous or are reduced to homozygosity. The former is deemed 

an “MI error”, as there are representations from both parental homologous chromosomes. The 

latter defines an “MII error”, as only one parental homolog is represented. However, it is now 

evident that there are many paths to each of these groups. Whole chromosome nondisjunction 

clearly leads to an “MI error”, but it is also true that premature (or precocious) separation of sister 

chromatids (PSSC), either at MI or MII, can appear as an MI or MII error, depending on the 
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random segregation of chromatids at each stage; reverse segregation (RS, in which sister 

chromatids from both homologues segregate from each other in MI) can also appear as an MI error, 

or potentially result in euploidy [110, 111]. Further, there is evidence that MII errors are increased 

among oocytes affected by MI errors, potentially complicating the ability to define risk factors 

[112]. Lastly, the U-shaped maternal age curve associated with aneuploidy has been found to be 

the result of the different age-related patterns associated with the underlying mechanisms [113]. 

Specifically, PSSC and reverse segregation significantly increase with maternal age, while the gain 

or loss of a whole chromosome at MI appeared to decrease with the age of the woman. Thus, our 

simplified classification of “MI errors” and “MII errors” will begin to reveal associated genetic 

risk factors, but it is only the first step. 

3.3.4 Association Analyses 

In order to avoid the multiple-testing problems that typically affect subgroup analyses, we 

focused on loci that were statistically significantly associated with maternal MI or MII 

nondisjunction in our previous study of the same dataset, with the goal of further dissecting those 

associations and understanding how they may differ across subgroups. Subgroup differences may 

suggest models of etiology, although such models would require rigorous verification in future 

studies, both statistical and mechanistic. 

In order to understand how genetic associations with maternal nondisjunction of 

chromosome 21 vary across relevant risk subgroups of mothers, we performed stratified 

association analyses in seven subgroups (not all disjoint). In each analysis, we contrasted a 

different subgroup of mothers with the same set of fathers, the mothers serving as cases 
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(phenotype: meiotic nondisjunction of chromosome 21) and the fathers as controls. Table 3.1 

summarizes the association analyses, abbreviations used to refer to them, and the sample sizes. 

Table 3.1 Definition of stratified analysis subgroups and associated sample sizes 

Stratification group (fathers are controls) 

Abbreviation 

Sample size 

(645 fathers) Meiotic stage of error Subgroup 

Meiosis I 0 events MI R0 328 

Meiosis I Single, telomeric event MI telomeric 44 

Meiosis I < 34 years old MI younger 234 

Meiosis I ≥ 34 years old MI older 297 

Meiosis II At least 1 centromeric event MII centromeric 44 

Meiosis II < 34 years old MII younger 73 

Meiosis II ≥ 34 years old MII older 82 

Recombination events refer here to events observed on chromosome 21. 

 

We first stratified by the meiotic stage in which nondisjunction occurred in the oocyte, MI 

or MII. We excluded 16 cases in which the error was determined to be an MII with no 

recombination events detected, as these may represent mitotic rather than meiotic errors. Then, 

within each error type, we defined subgroups based on maternal age and recombination pattern on 

chromosome 21. Specifically, mothers with MI and MII errors were each divided into younger and 

older subsets using a median maternal age split (the median age, 34 years for both MI and MII 

errors, was included in the older group; see Figure 3.1). 
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Figure 3.1 Distribution of maternal ages by meiotic stage of error 
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those with MI errors with a single event near the telomere (“MI telomeric”), and those with MII 

errors with an event near the centromere (“MII centromeric”). To define telomeric and centromeric 

events, we plotted the distributions of the positions of single MI events and of the most proximal 

MII events. Single MI events were defined to be telomeric if they occurred at a position greater 

than 43Mb. Most-proximal MII events were considered centromeric if they occurred at a position 

less than 17 Mb (see Figure 3.2). 
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Figure 3.2 Distributions of positions of single MI recombination events and most proximal MII events 

observed on chromosome 21 
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For each of these seven subgroups, we tested two sets of loci from our prior analysis of this 

dataset (discussed in detail in [18]). One set of loci consisted of the 48 individual variants that 

were identified as associated with nondisjunction in our earlier GWAS of MI and MII 

nondisjunction. Since our aim in the present study was to explore these pre-recorded associations 

that had previously attained p < 1x10-5 rather than to identify new loci, we did not apply a multiple-

testing correction for the number of single-SNP loci tested. Although these loci were already 

significant in the MI or MII groups as a whole, we did penalize for the number of subgroups, 

conservatively applying a significance threshold of p = 0.05/7 = 7.14x10-3 (this is conservative 

because the subgroups partially overlap). Therefore a subgroup association passing this threshold 

was considered to be evidence that the subgroup helped to “drive” the earlier GWAS association 

in the larger group of mothers with MI or MII errors. Note that in these analyses, it is expected to 

observe nominal significance (p < 0.05) in one or more subgroups for each SNP, and our aim is to 

gain insight by comparing effects across subgroups.  

The other set of loci consisted of 37 regions centered around genes relevant to meiotic 

processes and/or loci associated with global recombination counts in humans [15]. Due to limited 

sample sizes in the subgroups, we confined this study to these previously-nominated loci instead 

of performing a new genome-wide scan. Though only a handful of these candidate loci were 

significant in our previous analysis, we investigated all 37 here in order to uncover possible 

heterogeneous subgroup effects that may have been masked (with the caveat that weaker new 

associations must be interpreted cautiously). Since each candidate locus includes numerous SNPs, 

we used the smallest observed p-value to summarize the association. To adjust for multiple testing 

at candidate loci, we approximated Neff, the effective number of independent SNPs tested at each 

locus and applied a Bonferroni-corrected threshold for significance (0.05/Neff) [49]. For 
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conservatively declaring formal statistical significance, we divided this threshold by the number 

of subgroups (seven) as above. 

All association analyses were performed using logistic regression in R [114] and PLINK 

[115], encoding SNP alleles additively and adjusting for the first 3 principal components of 

ancestry. In addition to QA/QC filtering described above, SNPs with extreme deviation from 

Hardy-Weinberg equilibrium and imputed SNPs with info score < 0.5 were excluded. Imputed 

genotypes called with less than 90% confidence were coded as missing. While all candidate-locus 

SNPs were subjected to a ≥1% MAF filter (calculated separately for each analysis), the set of 48 

GWAS-identified SNPs were not. 

We used forest plots to visualize results for single-SNP analyses and LocusZoom [116] 

plots for candidate regions. We also created two “heatmaps” (Figures 3-4) in order to summarize 

the results across all GWAS and candidate loci. 

3.4 RESULTS 

Our previous study of this dataset performed genome-wide and candidate locus association 

analyses of maternally-derived chromosome 21 nondisjunction. We designed those studies to 

identify and distinguish variants associated with nondisjunction in maternal MI errors, MII errors, 

or all maternal errors. Thus, we performed four tests for candidate genes and for the genome-wide 

scans: mothers with MI errors vs. fathers, mothers with MII errors vs. fathers, all maternal errors 

combined vs. fathers, and, lastly, mothers with MI errors vs. those with MII errors. Here we refined 

our analyses into subgroups to further characterize 37 candidate locus associations and 48 GWAS 

associations resulting from that study. Figures 3.3 and 3.6 summarize the results of our stratified 
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analyses for the candidate and GWAS loci, respectively. Table 3.2 provides a qualitative summary 

of selected results. More detailed results are included in the Supporting Information. Below we 

describe each set of loci in turn. 

Table 3.2 Summary of selected results 

 Subgroups 

MI 

R0 

MI 

telomeric 

MI 

younger 

MI 

older 

MII 

centromeric 

MII 

younger 

MII 

older 

 Locus Notes and references        

Prior 

maternal 

meiotic 

nondisjunction 

GWAS 

variants 

rs10948100 

(near VEGFA) 

Involved in ovary/follicle development 

[65, 66] + + + + + + + 

rs12947774 
(near AKAP1) 

Involved in meiotic maturation of 
porcine oocytes (meiotic resumption 

and MII development) [117] 

- - - - - - - 

rs1612273 

(near 

DLGAP2,  
TDRP) 

Variants in DLPGA2 are associated 

with meiotic recombination outside of 

hotspots [75]; TDRP may be involved 
in spermatogenesis [76] 

+ + + + + + + 

rs1855111 

(near CXCL12) 

Involved in oocyte development in 

sheep [118] 
+  + + + + + 

rs12652455 

(near RICTOR) 

Involved in folliculogenesis in mice 

[119] +  + +  + + 
rs117746305 

(in FZD3) 

May be involved in follicle growth and 

oocyte maturation in mice [120] +  + +  + + 
rs148846406 

(near 

EPB41L3) 

Possibly involved in folliculogenesis in 

mice [121] - - - -  -  

rs200216460 

(in ARMC4) 

circARMC4 is involved in porcine 

oocyte meiotic maturation [122] 
 +  + + + + 

rs11535058 

(near 
SLC39A10) 

Also known as ZIP10; involved in 

oocyte zinc regulation and meiotic 
maturation in mice [123] 

+   +  + + 

rs35288347 

(near AURKC) 

involved in chromosome alignment 

and other meiotic processes [124] +  + +    

rs9984132 

(near 
COL6A2, 

PCNT) 

Pericentrin is involved in mammalian 

somatic cell centrosome assembly and 
meiotic spindle formation in mouse 

oocytes (with knockdown leading to 

meiotic spindle disruption, PSSC, and 

aneuploidy) [73] though it is not 

present in human meiotic oocytes [74]; 
Col6a2 is present in the extracellular 

matrix of cumulus cells in mice [72] 

-  - -    

rs4649043 

(near RUNX3) 

Involved in folliculogenesis in mice 

[125] -  - -    

rs2467011 
(near ARID2) 

Also known as BAF200; may be 
involved in epigenetically 

reprogramming oocytes; promotes 

homologous recombination repair of 

double strand breaks; a specific role in 

meiosis has not been proven [126, 127] 

+  + +    

rs16847735 

(near CEP70 

Centrosomal protein involved in 

mitotic spindle assembly [128] (about 

500kb from signal) 
+  + +  +  

rs984968 

(near 
MACROD2) 

Haploinsufficiency/knockout causes 

gross aneuploidies in mouse 
embryonic fibroblasts and various 

mitotic segregation defects in human 

colon cancer cells [129] 

+  + +  +  

rs2560850 

(in MYO10) 

Involved in mitotic and meiotic spindle 

assembly [79, 130-133] 
   + + + + 
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rs73178888 

(near 
DLGAP2, 

TDRP) 

Variants in DLPGA2 are associated 

with meiotic recombination outside of 
hotspots [75]; TDRP may be involved 

in spermatogenesis [76] 

    + + + 

rs12981234 

(near XAB2) 

Involved in mitotic cell cycle 

regulation (with knockdown leading to 

errors in chromosome alignment and 
segregation) and end resection in 

homologous recombination [134, 135] 

    + + + 

rs62359711 

(near DAB2) 

May be involved with porcine oocyte 

maturation (particularly MII) [136, 

137] 

    + + + 

rs115281615 

(near CPEB2) 

Involved in meiotic maturation of 

porcine oocytes [138] 
     + + 

rs9966603 

(near 

HAUS1/HEI-
C) 

Involved in mitotic division [139] 

    + + + 

Candidate 

regions 

RAD21L 

region 

(around 

rs450739) 

Associated with genome-wide 

recombination counts [15]; meiotic 

cohesin subunit [50-53, 55] *  *  *   

MND1 Involved in processing meiotic double 

strand breaks and recombination [29, 

57-60] 
*      ** 

SYCE2 Component of central element of 

synaptonemal complex  **   *   
SYCP2 Lateral element component of 

synaptonemal complex    *  *  
CCDC4 

 region 

(around 
rs75502650) 

Associated with genome-wide 

recombination counts [15]; near FZD2, 

which may be involved in follicle 
growth, oocyte maturation in mice 

[140, 141] 

 *      

REC114 Influences meiotic recombination by 

involvement in double-strand break 
location (in a manner dependent on 

distance to the telomere on short 

chromosomes in yeast) [28, 142] 

 *      

REC8 Meiotic cohesin subunit [54, 55]   *     
SYCP1 Transverse filament component of 

synaptonemal complex    **    
HORMAD2 Involved in chromosome 

synapsis/meiotic recombination [26]     **  ** 
RNF212 

region 

(around 

rs4045481, 

rs658846) 

Associated with genome-wide 

recombination counts [15, 75]; also 

involved with oocyte quality control 

[143] 

 

    *  * 

CPLX 

 region 

(around 

rs74434767) 

Associated with genome-wide 

recombination counts [15] 
    *   

HORMAD1 Involved in chromosome 
synapsis/meiotic recombination [26, 

27] 
     *  

SPO11 Involved in meiotic double strand 

break formation [28]      *  
Large + and - denote formally significant associations for prior GWAS variants (p < 0.05/7 = 7.14x10-3), with the effect allele conferring risk or protection for nondisjunction, 
respectively. Small + and – denote nominal significance (p < 0.05). ** Denotes significant associations for candidate loci (correcting for the number of independent variants tested 

and the number of subgroups). * Denotes nominal significance for candidate regions (correcting for the number of independent variants only). 
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3.4.1 Candidate Loci 

The 37 candidate loci we tested comprise two groups. The first group consists of 13 regions 

surrounding SNPs found by Kong et al. to be associated with global recombination counts in a 

large Icelandic population [15]. The second group consists of 24 candidate genes involved with 

recombination and other meiotic processes (see [18] for a discussion of these). The “heatmap” in 

Figure 3.3 summarizes the results across all candidate loci. Of these, 22 associations across 14 loci 

were nominally significant (p < 0.05/number of SNPs at locus), though only 5 associations across 

4 loci passed the conservative threshold. Figures 3.4 and 3.5 show LocusZoom plots for some of 

these loci, noting that these loci represent small windows around specific SNPs and genes, not 

single-SNP loci. Additional LocusZoom plots are included in the Supporting Information. 
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Figure 3.3 Summary of stratified analysis results for 37 candidate loci 
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3.4.1.1 Results for Candidate Loci Associated with Genome-Wide Recombination Counts 

Among the 13 recombination-associated loci tested in our previous analysis, we found 

three that were statistically significantly associated with maternal MI or MII nondisjunction: 

RAD21L, CCDC43 and SMEK1. In these stratified analyses, none of those loci showed subgroup 

associations that passed the conservative significance threshold. In order to describe which 

subgroups may have driven the previous significant associations, we simply identify the strongest 

subgroup associations (formally significant or not). The RAD21L (rs450739) locus was previously 

associated with all maternal cases and MI cases. The results of the MI subgroup analyses, while 

not passing the conservative significance threshold, suggest that the MI R0 and MI younger 

subgroups may have primarily driven the previous association. The CCDC43 (rs75502650) locus 

was previously associated with both MI and MII maternal nondisjunction. Among the MI 

subgroups, the single telomeric exchange subgroup shows the strongest effect; among the MII 

subgroups, none is even nominally significant. Though CCDC43 itself has not otherwise been 

linked to meiotic processes, the nearby gene FZD2 may be involved in ovarian follicle/oocyte 

development [140, 141]. The SMEK1 (rs10135595) region was the only candidate locus of this 

group that showed a significant association in our previous GWAS (in the MI vs. MII contrast) but 

showed only weak associations in the seven subgroups in the stratified analyses. 

We observed nominally significant associations for two candidate loci not found significant 

in our previous analyses. The CPLX1 (rs74434767) locus was nominally significant in the MII 

centromeric subgroup. The RNF212 locus (specifically, windows surrounding rs4045481 and 

rs658846, located in that gene) was nominally significantly associated in the MII centromeric and 

MII older subgroups. Regional association plots for the CCDC43, RAD21L, and CPLX1/RNF212 

loci are shown in Figure 3.4. 
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Figure 3.4 LocusZoom plots for selected associations in candidate loci for global recombination (CCDC43, 

RAD21L, and CPLX1/RNF212 loci) 
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3.4.1.2 Results for Candidate Loci Involved with Meiotic Processes 

Among the 24 meiosis/recombination gene loci tested for maternal nondisjunction in our 

previous work, four were significant: SYCP1 (MI vs. MII), SYCP2 (MII and MI vs. MII), SYCE2 

(MI), and MND1 (MII and MI vs. MII). In our stratified analyses, we found significant associations 

in three of these four genes and in an additional gene not previously found associated with maternal 

nondisjunction (HORMAD2). The stratified analyses honed in on associations with specific 

subgroups in genes that play a role in the synaptonemal complex: SYCP1 (MI older), SYCP2 (the 

strongest associations, only nominally significant, were in the MI older and MII younger 

subgroups), and SYCE2 (significant for MI single telomeric and nominally for MII centromeric). 

HORMAD2, which plays a role in coordinating progression of chromosome synapsis with meiotic 

recombination, was significant in the MII centromeric and MII older subgroups. Regional 

association plots for SYCP1, SYCP2, and MND1 are shown in Figure 3.5, and the remaining loci 

are shown in the supporting information. 

There were several nominally significant associations in genes that were not previously 

significantly associated with maternal nondisjunction. Some of these associations involved genes 

with a role in DNA double strand breaks, the precursor to recombination. These include SPO11, 

that was nominally significant in the MII younger subgroup, REC114 that was nominally 

significant in the MI single telomeric group and MND1 that was nominally significant in the MI 

R0 and MII older subgroups. Lastly, REC8, a component of the meiotic cohesin complex, was 

nominally significantly associated in the MI younger subgroup. 
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Figure 3.5 LocusZoom plots for selected associations in candidate genes involved in meiotic processes (SYCP1, 

SYCP2, and MND1) 
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3.4.2 Prior chromosome 21 nondisjunction GWAS associations 

Based on our previous study design using four analyses to understand MI- and MII-specific 

risk factors, 48 SNPS were nominated as associated with nondisjunction in MI, MII, or both. In 

the present study we performed stratified analyses of these SNPs. For each prior association, we 

investigated whether the strength and direction of that SNP’s association varied across the seven 

strata, as summarized in Figure 3.6. Examples of forest plots summarizing the associations at four 

selected loci are shown in Figure 3.7 (note that for three of the four loci shown, the effect allele 

generally confers risk; for the VEGFA locus, the effect allele appears protective). Below we discuss 

the results in detail, grouping the SNPs according to their prior associations. The Supporting 

Information includes a table of results for each subgroup as well as a forest plot for each GWAS 

locus. 
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Figure 3.6 Summary of stratified analysis results for 48 previous nondisjunction GWAS loci 
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Figure 3.7 Forest plots for four selected prior GWAS loci 
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3.4.2.1 Results for Top Associations from Previous All Maternal (MI and MII) Errors 

Combined Analysis 

Among the 13 variants previously identified from the combined MI and MII mothers vs. 

fathers analysis, we observed consistent estimated directions of effect for all seven subgroups (i.e., 

for each SNP, either all odds ratios were estimated to be < 1 or all were estimated to be > 1, though 

confidence interval widths varied). This is unsurprising, given that these variants were identified 

because they were associated with the phenotype of maternal nondisjunction, combining both MI 

and MII errors. However, it is also possible that strong effects in one or more subgroup “drive” 

these associations, with weak or null effects in others. Here we saw that the MI R0, MI younger, 

and MI older subgroups (three of the larger subgroups) passed the conservative significance 

threshold (p < 7.14x10-3) for 12, 11, and 10 of the 13 variants, respectively. The two smallest 

subgroups (MI single telomeric and MII centromeric) each passed the conservative threshold for 

only one subgroup. Given the lack of heterogeneity in the point estimates, the pattern of 

significance we observe across subgroups appears broadly consistent with homogeneous effects 

with low power in smaller subgroups (though our analysis is not designed to prove this). 

Here we highlight some associated SNPs that occur near genes that play roles in follicle or 

oocyte development. rs11535058 near SLC39A10 (also known as ZIP10, involved in the oocyte-

to-egg transition [123]) was significantly associated in the MI R0 and older subgroups as well as 

the MII younger and older subgroups (Figure 3.6, Maternal MI and MII (combined), locus #3). 

rs12652455 near RICTOR (involved in folliculogenesis in mice [119]) was significantly associated 

in all but the MI telomeric and MII centromeric subgroups (Figure 3.6, Maternal MI and MII 

(combined), locus #9). rs148846406 near EPB41L3 (Figure 3.6, Maternal MI and MII (combined), 
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locus #10) was significantly associated in the three largest subgroups (MI R0, MI younger, MII 

older). EPB41L3 may have a role in folliculogenesis [121].  

No loci passed the conservative threshold for across all seven subgroups, though two 

attained nominal significance (p < 0.05) in all subgroups: rs12947774 (near AKAP1, which has a 

role in porcine oocyte maturation [117]; Figure 3.6, Maternal MI and MII (combined), locus #7) 

and rs1612273 (near DLGAP2, found to be associated with recombination outside of hotspots [75]; 

also near TDRP, possibly involved in spermatogenesis [76]; Figure 3.6, Maternal MI and MII 

(combined), locus #8). Another variant at this locus is discussed below as an MII association. 

In our previous analyses, several of the strongest associations from the combined MI and 

MII analysis also showed evidence of an effect in the stratified MI and MII error analyses, 

sometimes at a nearby variant rather than at the same variant. The most significant association 

from our previous GWAS was rs10948101 (Figure 3.6, Maternal MI and MII (combined), locus 

#1), near VEGFA (involved in folliculogenesis [65, 66]), which was significant in the three largest 

subgroups (MI R0, MI younger, and MI older). Another SNP nearby (rs10948100, Figure 3.6, 

Maternal MI errors locus #1) showed the same pattern. Similarly, rs117746305 (Figure 3.6, 

Maternal MI and MII (combined), locus #6) in FZD3 was near rs76740710, an MII-associated 

locus (Figure 3.6, Maternal MII errors locus #2). Recent research has shown that Frizzled 3 may 

have a role in follicular development and oocyte maturation [120]. These two FZD3 variants were 

significantly associated with nondisjunction in all but the MI telomeric and MII centromeric 

subgroups. 

3.4.2.2 Results for Top Associations from Previous Maternal MI Errors Analysis 

Among the 10 MI-specific prior associations, there appears to be little evidence of different 

effects across the MI R0, MI younger, or MI older groups. Only in one instance does the direction 
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of a point estimate differ among subgroups. rs35288347 near AURKC (involved in chromosome 

alignment and other meiotic processes [124]; Figure 3.6, Maternal MI errors locus #2) shows 

significance in all MI subgroups except the single telomeric exchange subgroup. rs4649043 and 

rs2467011 (Figure 3.6, Maternal MI errors locus #3 and #6, near RUNX3 and ARID2, respectively) 

follow the same pattern. RUNX3 is involved in folliculogenesis in mice [125]. ARID2 (also known 

as BAF200) may be involved in epigenetically reprogramming oocytes and has been shown to 

promote homologous recombination repair of double strand breaks, though a specific role in 

meiosis has not been proven [126, 127]. rs9984132, similarly, passes the conservative significance 

threshold in the MI R0 and MI older subgroups, but attains only nominal significance in the MI 

younger subgroup (Figure 3.6, Maternal MI errors loci #10). This association is near PCNT, which 

encodes pericentrin, a protein involved in mammalian somatic cell centrosome assembly and 

meiotic spindle formation in mouse oocytes, with knockdown leading to meiotic spindle 

disruption, PSSC, and aneuploidy [73].  

The smallest subgroup, MI single telomeric, passes the conservative significance threshold 

in only one case, generally tracking the other subgroups but with a wider confidence interval. This 

significant association occurs at rs437933 (Figure 3.6, Maternal MI errors locus #4), discussed 

further below. Though none of the MII subgroups show a significant effect (p < 7.14x10-3) at any 

of these MI loci, the MII younger subgroup confidence intervals for three MI loci may suggest a 

(possibly weaker) effect, tracking the significant effects in the MI R0, MI younger, and MI older 

subgroups, (rs437933, rs16847735, and rs984968; Figure 3.6, Maternal MI errors locus #4, #5, 

and #9). Of these, rs437933 (mentioned above), which has the strongest MI single telomeric 

association among all 48 loci, is located near THEG5 (“testis highly expressed protein 5”), which 

is poorly characterized; rs16847735 is located about 500kb from CEP70 (a centrosomal protein 
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involved in mitotic spindle assembly [128]); and rs984968 is in MACROD2 

(haploinsufficiency/knockout of which causes gross aneuploidies in mouse embryonic fibroblasts 

and various mitotic segregation defects in human colon cancer cells [129]). 

3.4.2.3 Results for Top Associations from Previous Maternal MII Errors Analysis 

Of 13 variants associated with maternal MII nondisjunction in our previous analyses, eight 

show generally consistent effects across all MII subgroups and little evidence of effect in any MI 

groups. For all 13 loci, effect directions are the same across all MII subgroups, though the MII 

centromeric group generally has larger confidence intervals and lower significance, reflecting its 

smaller sample size. For instance, rs115281615 near CPEB2 shows consistent MII subgroup 

associations with no significant associations in any MI subgroups (Figure 3.6, Maternal MII errors 

locus #7). This gene is necessary for meiotic maturation of porcine oocytes, particularly for 

reaching MII metaphase [138]. rs62359711 near DAB2 (Figure 3.6, Maternal MII errors locus #8), 

which may be involved in oocyte maturation, particularly at MII [136, 137], follows a similar 

pattern. rs73178888 (Figure 3.6, Maternal MII errors locus #9), also significantly associated with 

nondisjunction in all three MII subgroups, is located near DLGAP2 but is not in linkage 

disequilibrium with rs1612273 (discussed above in the combined MI and MII analysis); therefore, 

these associations may represent independent signals. rs9966603 (Figure 3.6, Maternal MII errors 

locus #10) is located near HAUS1 (also known as HEI-C), which is required for proper mitotic 

division, with depletion resulting in an abnormal mitotic spindle [139]. The strongest association 

for the MII centromeric group was at rs12981234 (Figure 3.6, Maternal MII errors locus #3). This 

SNP lies in a gene-rich region that includes XAB2. XAB2 has numerous functions, including 

mitotic cell cycle regulation (with knockdown leading to errors in chromosome alignment and 

segregation) as well as end resection in homologous recombination [134, 135]. 
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Several of the remaining loci may suggest shared effects in some MI subgroups, with the 

added caveat that some of these MI associations are only nominally significant, without passing 

the conservative threshold. These include rs76740710 in FZD3, mentioned above (Figure 3.6, 

Maternal MII errors locus #2), significant in the MI R0, MI younger, and MI older subgroups. 

Another example is rs200216460 in ARMC4, which is significantly associated in all MII subgroups 

as well as the MI telomeric group, with nominal significance in the MI older group (Figure 3.6, 

Maternal MII errors locus #4). Recent work has shown that ARMC4 circular RNAs are crucial to 

oocyte maturation in pigs [122]. The top MII variant, rs1855111 (in TMEM72-AS1; Figure 3.6, 

Maternal MII errors locus #1), attained nominal significance in the MI R0, MI younger, and MI 

older groups, but did not pass the conservative threshold. Although neither TMEM72-AS1 nor the 

nearby TMEM72 appear to be involved in meiosis, the gene CXCL12 (470kb downstream) may 

play a role in ovine oocyte development [118]. Finally, rs2560850 in MYO10 is significantly 

associated in the MII centromeric and MII younger subgroups and attains nominal significance in 

the MI older and MII older subgroups (Figure 3.6, Maternal MII errors locus #12). In addition to 

roles in mitotic spindle function and mitotic progression, MYO10 is required for meiotic spindle 

assembly [79, 130-133]. 

3.4.2.4 Results for Top Associations from Previous Maternal MI Errors vs. MII Errors 

Analysis 

For the variants we found associated from the “MI vs. MII” previous analyses, we expected 

to observe evidence of effects in the opposite direction among the associations in MI and the MII 

subgroups. Among the 12 variants analyzed, six followed this pattern: they were at least nominally 

significantly associated in at least one MI subgroup and at least one MII subgroup, with opposite 

directions of effect. Of these six, four suggested (at least) a contrast between the MI R0 group and 
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the MII older group (Figure 3.6, Maternal MI errors vs MII errors locus #6, #7, #8 and #10). 

Another suggested opposite significant effects for the MI younger and MII older subgroups (Figure 

3.6, Maternal MI errors vs MII errors locus #4); the last of these contrasted the MI telomeric and 

older groups with the MII younger and older groups (Figure 3.6, Maternal MI errors vs MII errors 

locus #2). The remaining six variants did not show the expected pattern for an “MI vs. MII” variant, 

although there were noted associations within MI error (Figure 3.6, Maternal MI errors vs MII 

errors locus #12) or MII error (Figure 3.6, Maternal MI errors vs MII errors locus #1, #3, #5, #9 

and #11) subgroups. 

3.5 DISCUSSION 

The purpose of this study was to better understand maternal meiotic disjunction of 

chromosome 21 by following up our previous findings from a GWAS and candidate gene study. 

In that study, we stratified maternal nondisjunction based on MI- or MII-derived errors (see 

Introduction and below). Here, we further examined heterogeneity within those groups based on 

known risk factors, namely maternal age and recombination profile on chromosome 21 in order to 

gain further insight into potential modes of action for each gene. While our study was not designed 

to prove or disprove any particular mechanism, it does complement recent important research by 

investigating how common genetic variation may contribute to these mechanisms. Below we 

discuss our results within the context of the proposed mechanisms and the limitations of our 

approach. 

The simplest conceptual category of genetic risk factors is those that cause general 

nondisjunction risk. Such variants would broadly increase the risk of an error across all subgroups 
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of MI and MII nondisjunction, irrespective of risk factors such as age and recombination. The prior 

GWAS associations we followed up on here are enriched for variants near oocyte development or 

folliculogenesis genes (Table 2), and the results of our stratified analyses indicate that such genes 

are consistent with this model of contributing to meiotic nondisjunction errors broadly. For 

example, the VEGFA, AKAP1, and the DLGAP2 (rs1612273) loci all have at least nominally 

significant associations with the same effect directions across all subgroups. Additionally, the 

SLC39A10, RICTOR, FZD3, CXCL12, ARMC4, and EPB41L3 loci may follow a similar pattern, 

but with small sample sizes limiting power in some subgroups. Conversely, it should be noted that 

consistent associations across subgroups for a given locus do not necessarily imply the same 

mechanism across subgroups, since such results are also consistent with pleiotropic effects. 

We also observed results that are consistent with standard MI and MII errors and their 

associated recombination profiles (for MI, either no observed recombination on chromosome 21, 

or a single telomeric, exchange; pericentromeric recombination for MII). Both types of errors are 

associated with advanced maternal age. With respect to the altered recombination patterns, the MI-

associated patterns are independent of maternal age while MII-associated pericentromeric 

recombination increases with increasing maternal age [11, 13]. Our results suggest that genetic 

variants may contribute to standard MI or MII nondisjunction mechanisms (these could be either 

the common variants we tested or unobserved variants, possibly rare, in linkage disequilibrium 

with them). This interpretation is based on functions of the implicated genes and the patterns of 

associations across subgroups. For example, the AURKC locus is broadly associated with 

nondisjunction in MI (significantly in the younger, older, and R0 subgroups). While the functions 

of AURKC in meiosis are complex and not fully understood, loss of AURKC function in mouse 

oocytes can cause misalignment of chromosomes at MI and aneuploidy in MII oocytes [124]. On 
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the other hand, the XAB2 and HAUS1/HEI-C loci were both broadly associated with 

nondisjunction in MII subgroups. XAB2 and HAUS1 are required for proper mitotic division, which 

has important similarities with MII division. These results are consistent with a hypothetical 

mechanism in which defects in machinery shared with mitotic processes cause failure of sister 

chromatids to segregate at MII. 

Additionally, several candidate loci were associated specifically with nondisjunction in MI 

or MII recombination subgroups, suggesting these loci could contribute to standard MI or MII 

errors by increasing the likelihood of “susceptible” recombination patterns on chromosome 21. 

For instance, the previously observed SYCE2 (a synaptonemal complex element) association 

appears to be driven primarily by the MI single telomeric and the MII centromeric subgroups. 

Another possible example is REC114, nominally significantly associated only in the MI single 

telomeric subgroup, which influences meiotic recombination in yeast by controlling double-strand 

break location in a manner dependent on distance to the telomere on short chromosomes [142]. 

(The nominal REC114 association should be interpreted cautiously, since REC114 was not 

significantly associated with nondisjunction in our previous study). Contrasting the SYCE2 and 

REC114 associations with the loci discussed above as possible candidates for standard 

nondisjunction, we observe evidence of potentially important genetic heterogeneity. Whereas 

SYCE2 and REC114 appear to be associated only in recombination-defined subgroups, the 

AURKC, XAB2, and HAUS1/HEI-C loci are broadly associated across MI or MII subgroups, with 

significant associations both in subgroups defined by recombination and those not. Together these 

observations suggest that some variants in/near meiosis genes could contribute “narrowly” to 

nondisjunction risk by contributing specifically to aberrant recombination, while others may 
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contribute broadly, independently adding to (or possibly interacting with) recombination-

associated risk within a particular stage of meiosis. 

Several other results in the recombination-defined subgroups are more difficult to interpret 

and merit discussion. We note that among the global recombination count loci identified by Kong 

et al. [15], only the RAD21L locus was even nominally associated in the MI R0 subgroup, where 

we might have expected several other recombination-count genes to be associated, given evidence 

that lower genome-wide recombination is associated with aneuploidy in oocytes [111]. Another 

counterintuitive finding is that two previous synaptonemal complex gene associations appeared to 

be driven primarily by subgroups not defined by recombination profile (specifically, SYCP1 for 

the MI older subgroup, and SYCP2 for the MI older and MII younger subgroups). 

Our results give limited insight into issues around PSSC and RS mechanisms. The 

simplistic classification of meiotic nondisjunction events as “MI errors” or “MII errors” based 

solely on whether homologous chromosomes vs. sister chromatids are passed from mother to child 

is an inference from incomplete data, since effectively only one product of female meiosis is 

observed (the oocyte). Without further information about the chromosomal content of the other 

products of meiosis (the first and second polar bodies), the sequence of events leading to 

aneuploidy in the oocyte cannot be directly inferred. Indeed, other mechanisms such as premature 

separation of sister chromatids (PSSC) or reverse segregation (RS) are major causes of aneuploidy 

in oocytes but are indistinguishable from standard MI or MII errors in our study. It is important to 

note that although both mechanisms involve separation of sister chromatids in MI, the relative 

rates of PSSC and RS suggest that the latter is not simply due to two independent occurrences of 

the former [111]. This is further corroborated by the more extensive loss of cohesion involved in 

RS than in PSSC. These observations suggest that the two mechanisms could either share genetic 



 101 

factors (influencing, e.g., cohesion in general) or have some unique factors (affecting, e.g., 

cohesion at the centromere vs. chromosome-wide). 

These additional mechanisms likely explain some of the heterogeneity in our results. Since 

PSSC can lead to apparent MI or MII errors, variants affecting the risk of PSSC may be represented 

in our results as signals shared by MI and MII subgroups. Additionally, since lack of recombination 

may contribute to PSSC and RS [111], signals shared with the MI R0 subgroup may implicate 

these mechanisms. This could explain, for instance, why the previous MND1 association appears 

to be driven by the MI R0 and MII older groups. Our candidate gene results also suggest that age-

related associations in cohesin genes could represent PSSC and/or RS. For instance, REC8 is 

nominally associated in the MI younger group (with a similar but non-significant effect in the MII 

younger group; note, however, that REC8 was not significant in our previous analysis). The prior 

association with the cohesin subunit gene RAD21L (also associated with genome-wide 

recombination [15]) appeared to be driven by associations in the MI R0, MI younger, and MII 

centromeric groups. These signals suggest that variants at this locus could contribute to multiple 

mechanisms: increasing the risk of MI nondisjunction due to lack of recombination, promoting 

sister chromatid separation through age-related degradation of cohesin, or exacerbating 

pericentromeric recombination. 

Among the potentially heterogeneous associations we observed in the GWAS loci were 

several involving maternal age subgroups. rs437933, rs16847735, and rs984968 (near THEG5, 

CEP70, and MACROD2, respectively), which are each significantly associated with 

nondisjunction in the MI R0, MI younger, and the MI older groups, and nominally associated in 

the MII younger group but with null effects in the MII older group. rs2560850 (near MYO10) was 

significantly associated with nondisjunction in MII subgroups and nominally in the MI older 
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group, but with no effect in the MI younger group. If genuine, these heterogeneous signals could 

represent genetic effects contributing to apparent MI and MII errors through age-dependent effects 

on PSSC. But further work is needed to characterize these complex associations, especially given 

that some are only nominally significant. 

It is important to note that this study had limited ability to detect heterogeneous effects 

among subgroups precisely because of how the loci were chosen. The 48 maternal meiotic 

nondisjunction associations we investigated first came to our attention because our prior GWAS 

that stratified only by type of nondisjunction error: MI or MII. In order to be statistically significant 

in this previous analysis, it is expected that effects within each error type were in the same 

direction; otherwise, the heterogeneity would be masked. Thus it is unsurprising that we did not 

generally observe statistically significant associations with opposite directions of effect for MI and 

MII error subgroups. 

3.6 CONCLUSION 

Our stratified analyses succeeded in uncovering heterogeneity in earlier genetic 

associations. While our approach of classifying errors as MI or MII in origin does not enable us to 

infer nondisjunction mechanisms in particular cases, our results provide insight into how variation 

in oocyte development and meiotic processes may contribute to specific nondisjunction 

mechanisms. In future studies, larger sample sizes will enable efforts to replicate the reported 

associations and perhaps even genome-wide scans in the smallest subgroups. In the future it may 

also be possible to perform a similar study in which all products of female meiosis are recovered, 

allowing inference of the nondisjunction mechanism in each case and more refined stratifications. 
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Finally, we are planning analyses of altered maternal recombination on chromosome 21 as an 

outcome in itself, which may have higher power for detecting genetic variants contributing to 

nondisjunction risk and may therefore clarify our understanding of how recombination affects that 

risk. 

3.7 APPENDIX: METHODS FOR CALLING MEIOTIC STAGE OF 

NONDISJUNCTION AND RECOMBINATION EVENTS 

3.7.1 Overview 

We used a different method for calling stage of origin and recombination events in trios 

(with child and both parents genotyped) than in dyads (with mother and child genotyped, but not 

the father), since the latter contain less information. Because our analyses focus on recombination 

in oocytes, we did not call recombination events in father-child dyads. Our overall approach for 

calling recombination in trios and dyads is summarized in Figure 3.8. 
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Figure 3.8 Overview of methods for calling recombination in trios and dyads 

3.7.2 Calling Stage of Origin in Trios 

Determining the stage of origin of trisomy 21 in a complete parent-child trio first entails 

comparing the parents’ and their child’s genotypes at informative markers on chromosome 21. 

Briefly, a marker is informative if the parent in which the error was derived (the mother, in our 

application) is heterozygous and the genotypes of both parents together make it possible to infer 

whether the parent of origin passed two identical versus two different alleles to the child. In the 

former case, the marker is scored as “reduced to homozygosity” (R), and in the latter “not reduced 

to homozygosity” (N). Assuming there are no genotyping errors, recombination events are 

indicated by changes in zygosity between adjacent markers. 

After scoring markers (STRs and SNPs) on chromosome 21 in this way, we determined 

the stage of meiotic error by considering the scores of proximal markers (those nearest the 
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centromere) on the long arm of the chromosome. Assuming no recombination events occur 

between the centromere and the most proximal marker, the stage of origin is indicated by the 

zygosity of that proximal marker: N for an MI error, or R for an MII error. 

In almost all trios, the most proximal informative marker was a SNP, but in a few cases the 

stage of origin was called based on an STR. In nine trios, the stage of origin call was determined 

by a single SNP or STR (that is, the zygosity changed at the very next marker). In the 15 trios 

where the parent of origin was unclear based on SNP genotypes (due to mosaicism or poor 

genotyping), no attempt was made to call the stage of origin. These were excluded from our 

analyses. 

3.7.3 Calling Recombination Events in Trios 

As described above, recombination events are indicated by changes in zygosity between 

nearby ordered markers. In the presence of genotyping error, however, not every change in 

zygosity truly represents recombination. For instance, the pattern RRRRRNRRRRR likely reflects 

a genotyping error at a single SNP rather than two extremely close recombination events, whereas 

RRRRRNNNNNRRRRR shows stronger evidence of two recombination events (since multiple, 

independent genotyping errors in a row are less likely). Thus there is a tradeoff between over- and 

under-calling recombination from changes in SNP scores. 

Here we used a simple algorithm to call recombination in the presence of genotyping errors. 

At each informative SNP in the interior of the chromosome, we considered a moving window 

centered at that SNP and consisting of the information from seven SNPs: the SNP itself and the 

three nearest SNPs on either side. SNPs are coded as N=1 and R=2 and then averaged for each 

window (Figure 3.9). 
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Figure 3.9 Method for calling recombination events in a full trio 

For the three most informative proximal SNPs on the chromosome arm and the three most 

telomeric SNPs, we had to use a different method to calculate the seven-SNP-window score. We 

made the assumption that the chance for a more extreme recombinant (i.e., one closer to the 

centromere or one beyond the most telomeric SNP) was highly unlikely. Thus, we simply counted 
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the most proximal (telomeric) SNP more than once toward these averages. This procedure yielded 

a moving average at each SNP, for the purpose of smoothing out “noise” due to genotyping errors.  

Recombination events were called when the moving average of each window crossed a 

threshold of 1.5 (equivalent to the local 7-SNP “majority vote” changing). The exact location of 

the recombination was called as halfway between the two informative SNPs flanking the event. In 

the nine trios where the stage of error was called on the basis of a single SNP or STR, 

recombination was also called on the basis of that single proximal SNP or STR. In the two cases 

where an STR was used, the recombination location was approximated with the position of the 

most proximal SNP. 

To call multiple recombinants along the chromosome using a window size of seven SNPs 

effectively placed a lower bound of four SNPs for the plausible distance between two 

recombination events. This bears out the intuition (arrived at through trial and error) that patterns 

such as RRRRRNNNNNRRRRR and RRRRRNNNRNRRRRR represent true double-

recombination events (the latter with some “noise” due to genotyping error), but that 

RRRRRNNNRRRRR may not. 

The number of recombination events for each trio was also recorded. In two trios with 

excessive “noise” in the scores, recombination events could not be called with confidence. In all, 

recombination events were called for 613 trios. Plots showing the recombination profiles are 

included in the Supporting Information. 
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3.7.4 Overview of Inference in Dyads 

In addition to the 613 full trios in which we successfully called recombination events, we 

also attempted to call stage of origin and recombination events in 94 mother-child dyads. Our 

approach is similar to that used above for trios: scoring informative markers and calculating 

moving averages. The analysis differs because the absence of paternal genotype information, 

which results in less informative marker scoring. While markers can still be scored as R in dyads 

(e.g., mother=AT; child=TTT), the N state cannot be directly inferred by comparing the genotypes 

of mother and child (e.g., mother=AT; child=AAT). However, this state (X) provides partial 

information. Calling stage and recombination therefore entails making plausible inference about 

the true state when X is observed. For instance, when we observe RRRRXRRRR or 

RRRRXXXXRRRR, we can assume that X masks R in the first case with more confidence than 

in the second case. Observing RRRRXXXXXXXXXXXXXXXXRRRR, it becomes likely that 

there is a double recombinant event and that the series of Xs is masking N. Using this intuition, 

we tend to infer a state of N where the density of X is high relative to R. 

Because our study focuses on maternal nondisjunction and recombination in oocytes, we 

did not attempt to determine stage of origin or call recombination events in father-child dyads. 

3.7.5 Calling Stage of Origin in Dyads 

Our method for calling stage of meiotic error has been described elsewhere [18]. Briefly, 

following the logic described above, we used the ratio of the number of X to the number of R SNPs 

near the centromere to predict the true zygosity there (R or N). The number of SNPs to include 

and the classification threshold for this ratio were treated as parameters to be optimized. The full 
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trios were used as a training set to obtain the optimal parameters, since masking the father’s 

genotypes in a trio yields a mother-child dyad (with stage of meiotic origin determined above). 

3.7.6 Calling Recombination Events in Dyads 

To call recombination events in the 94 mother-child dyads, we used an algorithm 

combining the logic used for calling recombination in the full trios and the logic for calling stage 

of origin in the dyads (see Figure 3.8). 

First, informative SNPs on chromosome 21 were scored as R or X in each dyad. As in the 

trios, we formed a window centered at each informative SNP. Using the coding R=2 and X=3, a 

moving average for a window was calculated using each SNP (as before, the most proximal and 

distal SNP were counted more than once in order to provide a full window around 

telomeric/centromeric “edge” SNPs).  

As above, we sought to call a recombination event whenever the moving average crossed 

a threshold between adjacent SNPs (using average position of the two SNPs flanking the event). 

The number of SNPs in the window and the threshold were treated as parameters to be optimized, 

the number of possible thresholds depending on the number of SNPs in the window.  

We used the full trios as a training set to optimize these parameters, treating the 

recombination calls already obtained for the trios as the truth. Each trio represents a mother-child 

dyad plus a father, so by masking the father’s genotypes and coding SNPs (R=2, X=3) we obtained 

613 pseudo-dyads with “true” recombination calls. 

For each window size (ranging from 7 to 41 SNPs, using odd numbers of SNPs), a moving 

average was calculated across the chromosome. SNPs near the ends of the chromosome were given 



 110 

extra weight, as above. For each possible threshold, recombination events were called in each trio 

(halfway between any two SNPs where the threshold was crossed). 

Because an interval that is reduced to homozygosity in a dyad will be represented by a 

more or less random streak of 2s and 3s, the moving average may fluctuate rapidly even over a 

short distance. Therefore we used several filtering steps to avoid oversensitivity in calling tight 

double recombination events and recombination events near the ends of the chromosome. Tight 

double recombination calls were filtered out if they were separated by fewer than seven 

informative SNPs or less than 500kb. More stringent filtering was applied to tight double 

recombination calls representing a middle segment not reduced to homozygosity (i.e. a middle 

segment with a high proportion of partially informative SNPs coded X). These were filtered out 

unless supported by a streak of 40 consecutive X SNPs. Recombination calls based on inferring 

non-homozygosity near the ends of the chromosome were filtered out if not supported by a streak 

of 12 X SNPs at the centromeric end or 40 X SNPs near the telomeric end. We applied these 

filtering steps both in training our algorithm in the pseudo-dyads and in making final 

recombination calls for the dyads. 

For each possible pair of parameter values (i.e., the number of SNPs in a window and the 

threshold for calling a recombinant), the recombination calls were scored numerically on each 

pseudo-dyad. The “best” pair of parameter values was defined to be the one that maximized the 

total score across all pseudo-dyads in the training set. We calculated the score as follows. 

 

Figure 3.10 Scoring recombination calls in the training set trios 
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For simplicity, all types of correct/incorrect recombinant calls were weighed equally in a 

trio (see Figure 3.10). In the case of a pseudo-dyad with k=0 true recombination events, a score of 

+1 was added if the algorithm correctly called 0 events in that “dyad”; otherwise -1 was deducted 

for each incorrectly-called event. In the case of k > 1 true events, +1 was awarded for each of the 

k events detected by a call within 1 Mb, -1 was deducted for each of the k events not detected by 

a call within 1 Mb, and -1 was deducted for each additional event erroneously called. Figure 3.11 

shows an example of calling recombination and scoring in a masked dyad. Plots showing 

recombination-calling in all 613 pseudo-dyads are included in the Supporting Information. 
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Figure 3.11 Method for calling recombination events in a masked-trio dyad 
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The optimal window size was found to be 25 SNPs, and the optimal threshold for calling 

recombination was 2.74. Figure 3.12 shows the score attained for each window-size/threshold pair. 

We therefore applied the algorithm to the 94 dyads using these parameters and (summarizing the 

steps described above), adding extra weight to SNPs near the end of the chromosome, calling 

events halfway between SNPs where the threshold was crossed, and filtering out tight double 

recombination and proximal/distal events. We did not find it necessary to exclude any dyads for 

excessive “noise” (i.e., implausibly large recombination counts). Plots showing recombination 

calls for the dyads are included in the Supporting Information.  

 

Figure 3.12 Optimizing recombination calls on the pseudo-dyads 
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4.0 CONCLUSION 

4.1 SUMMARY OF FINDINGS 

This dissertation has three aims: performing a GWAS and candidate gene study to find 

genetic risk factors for maternal meiotic nondisjunction of chromosome 21, calling recombination 

events on chromosome 21 in trios and dyads, and then dissecting the genetic associations, 

stratifying by recombination profile (as well as maternal age and meiotic stage of error). These 

aims were successful. The initial study (Chapter 2) found plausible associations with candidate 

genes such as the synaptonemal complex gene SYCP2 and the cohesin subunit gene RAD21L as 

well as suggestive GWAS associations near genes such as VEGFA, SLC39A10, AURKC, and 

MYO10. The results were consistent with the existence of MI- and MII-specific risk factors as well 

as shared risk factors. In the second aim (Chapter 3, Appendix) we called recombination events on 

chromosome 21 in trios and found that those calls can be used in turn to train an accurate algorithm 

for calling recombination in mother-child dyads. In the third aim (Chapter 3) we performed 

stratified analyses of the candidate and GWAS loci in subgroups of mothers defined by 

recombination profile, age, and meiotic stage of error. The results are consistent with models in 

which some variants may, for example, confer general nondisjunction risk across all subgroups, 

some may act broadly within MI or MII, and some could cause or exacerbate particular 

“susceptible” recombination patterns. While these analyses are not designed to prove or disprove 

any models or mechanisms, they could prove to be a first step toward describing the genetic 

architecture of meiotic nondisjunction. 
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4.2 STRENGTHS AND LIMITATIONS 

This study is the first genome-wide association study of meiotic nondisjunction, a 

surprisingly common occurrence in humans with important implications for health and 

reproduction. We found evidence that plausible loci may confer risk of meiotic errors, possibly in 

a mechanism-specific manner. In particular, the candidate gene analysis successfully combined 

GWAS data with biological insights to begin dissecting the genetics of meiotic nondisjunction. 

Given the modest sample size of this study, it is unsurprising that the GWAS did not reach 

genome-wide significance (whereas some candidate loci did meet a less stringent Bonferroni 

threshold). As in any genetic association study, the results of our genome-wide, candidate gene, 

and follow-up stratified analyses need to be replicated in an independent cohort.  

Our work here with a population-based cohort complements previous studies of aneuploidy 

in oocytes, which have often been performed in the context of assisted reproduction and therefore 

may not be representative of the general population. However, we only analyzed common SNPs 

in a mostly European-background group. Therefore, in addition to studying rare and structural 

variants, we should also study meiotic nondisjunction in other populations. 

4.3 FUTURE ANALYSES 

In addition to replication studies of the same phenotype in other populations and studying 

rarer variation, several other follow-up approaches may be feasible, some more purely 

epidemiological and others that could combined standard genetic epidemiology with exciting new 

techniques. 
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First, we plan further genome-wide association studies of recombination phenotypes in this 

cohort. In those analyses, genetic variants will be tested for association with “susceptible” 

recombination patterns on chromosome 21 and the number of recombination events on the 

chromosome. An interesting extension would be to phase the genotypes in parent-child trios, which 

would enable recombination-calling on the other chromosomes, in turn allowing us to investigate 

genome-wide recombination in mothers who experienced meiotic nondisjunction of chromosome 

21. 

Second, recent molecular and imaging advances have partially overcome some of the 

technical and ethical challenges of studying the origins of aneuploidy in humans. These include 

the novel procedure of “meiomapping”, which combines maternal autosomal DNA with SNP array 

data from the first and second polar bodies along with oocyte (or early embryo) [144]. Analysis of 

all of the products of meiosis in addition to maternal DNA accomplishes several important tasks. 

First, it enables inference of the mechanism in an instance of meiosis that has resulted in 

aneuploidy (see Figure 1.1). Second, it allows inference of meiotic stage of error and genome-wide 

recombination patterns. Together, these full-meiotic-product data have yielded important new 

insights that could not be fully addressed through mathematical modeling, such as disentangling 

rate estimates for specific error mechanisms and establishing selection for recombinant chromatids 

at MII [111, 112]. 

The genetic epidemiology approach of this dissertation could be extended to the context of 

meiomapping by performing more refined stratified genome-wide analyses to identify risk loci for 

specific error mechanisms (possibly further stratified by recombination pattern and/or maternal 

age). By stratifying into what may be the most biologically meaningful subsets and by accessing 

meiotic products relatively early (before a large proportion of aneuploidies are spontaneously 
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aborted), such studies may have better power to find associations. This may also enable us to 

identify interactions of genetics with age for mechanisms in which maternal age plays a role.  

Recent research has corroborated the underlying the U-shaped aneuploidy vs. age curve, 

where the mechanism of aneuploidies for MI errors in the younger mothers  (the left side of the 

“U”) are less clear than those in older mothers [113]. If sufficient samples were available, a 

meiomapping and GWAS approach in this group could help us infer the error mechanisms and 

genetic risk factors for MI errors in young women. A limitation of the meiomapping approach 

would be that such data, often obtained from assisted reproduction contexts, may not be 

representative of human meioses in general. Another complementary approach may be enabled by 

advances in single-cell RNA-seq that enable sensitive detection of mitotic or meiotic aneuploidies 

in embryos [145]. 

Finally, another direction would be to perform molecular genetics studies of loci identified 

here (particularly GWAS loci). For example, if knockout/knockdown of homologous genes in 

model organisms causes aberrant recombination or higher aneuploidy rates, this would constitute 

important corroboration of our results and could help to associate particular genes and variants 

with specific error mechanisms. 



 119 

BIBLIOGRAPHY 

[1]. Hassold T, Hall H, Hunt P. The origin of human aneuploidy: where we have been, where we 

are going. Hum Mol Genet. 2007;16 Spec No. 2:R203-8. 

[2]. Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev 

Genet. 2001;2(4):280-91. 

[3]. Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms and new insights into an 

age-old problem. Nat Rev Genet. 2012;13(7):493-504. 

[4]. Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, Treff NR, et al. Aneuploidy 

across individual chromosomes at the embryonic level in trophectoderm biopsies: changes with 

patient age and chromosome structure. J Assist Reprod Genet. 2014;31(11):1501-9. 

[5]. Hassold T, Chiu D, Yamane JA. Parental origin of autosomal trisomies. Ann Hum Genet. 

1984;48(2):129-44. 

[6]. Sherman SL, Allen EG, Bean LJH. Maternal Age and Oocyte Aneuploidy: Lessons Learned 

from Trisomy 21. In: Schlegel PN, Fauser BC, Carrell DT, Racowsky C, editors. Biennial Review 

of Infertility: Volume 3. New York, NY: Springer New York; 2013. p. 69-85. 

[7]. Freeman SB, Allen EG, Oxford-Wright CL, Tinker SW, Druschel C, Hobbs CA, et al. The 

National Down Syndrome Project: design and implementation. Public Health Rep. 

2007;122(1):62-72. 

[8]. Lamb NE, Sherman SL, Hassold TJ. Effect of meiotic recombination on the production of 

aneuploid gametes in humans. Cytogenet Genome Res. 2005;111(3-4):250-5. 

[9]. Lamb NE, Freeman SB, Savage-Austin A, Pettay D, Taft L, Hersey J, et al. Susceptible 

chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal 

meiosis I and meiosis II. Nat Genet. 1996;14(4):400-5. 

[10]. Lamb NE, Yu K, Shaffer J, Feingold E, Sherman SL. Association between maternal age and 

meiotic recombination for trisomy 21. Am J Hum Genet. 2005;76(1):91-9. 

[11]. Oliver TR, Feingold E, Yu K, Cheung V, Tinker S, Yadav-Shah M, et al. New insights into 

human nondisjunction of chromosome 21 in oocytes. PLoS Genet. 2008;4(3):e1000033. 

[12]. Oliver TR, Middlebrooks CD, Tinker SW, Allen EG, Bean LJ, Begum F, et al. An 

examination of the relationship between hotspots and recombination associated with chromosome 

21 nondisjunction. PLoS One. 2014;9(6):e99560. 

[13]. Oliver TR, Tinker SW, Allen EG, Hollis N, Locke AE, Bean LJ, et al. Altered patterns of 

multiple recombinant events are associated with nondisjunction of chromosome 21. Hum Genet. 

2012;131(7):1039-46. 

[14]. Lamb NE, Feingold E, Savage A, Avramopoulos D, Freeman S, Gu Y, et al. Characterization 

of susceptible chiasma configurations that increase the risk for maternal nondisjunction of 

chromosome 21. Hum Mol Genet. 1997;6(9):1391-9. 

[15]. Kong A, Thorleifsson G, Frigge ML, Masson G, Gudbjartsson DF, Villemoes R, et al. 

Common and low-frequency variants associated with genome-wide recombination rate. Nat Genet. 

2014;46(1):11-6. 

[16]. Antonarakis SE, Petersen MB, McInnis MG, Adelsberger PA, Schinzel AA, Binkert F, et al. 

The meiotic stage of nondisjunction in trisomy 21: determination by using DNA polymorphisms. 

Am J Hum Genet. 1992;50(3):544-50. 



 120 

[17]. Lin Y, Tseng GC, Cheong SY, Bean LJ, Sherman SL, Feingold E. Smarter clustering 

methods for SNP genotype calling. Bioinformatics. 2008;24(23):2665-71. 

[18]. Chernus JM, Allen EG, Zeng Z, Hoffman ER, Hassold TJ, Feingold E, et al. A candidate 

gene analysis and GWAS for genes associated with maternal nondisjunction of chromosome 21. 

PLoS Genet. 2019;15(12):e1008414. 

[19]. Chernus JM, Sherman SL, Feingold E. Analyses stratified by maternal age and recombination 

further characterize genes associated with maternal nondisjunction of chromosome 21. Prenat 

Diagn. 2021;41(5):591-609. 

[20]. Hook EB, Mutton DE, Ide R, Alberman E, Bobrow M. The natural history of Down 

syndrome conceptuses diagnosed prenatally that are not electively terminated. Am J Hum Genet. 

1995;57(4):875-81. 

[21]. Bolcun-Filas E, Schimenti JC. Genetics of meiosis and recombination in mice. Int Rev Cell 

Mol Biol. 2012;298:179-227. 

[22]. Cahoon CK, Hawley RS. Regulating the construction and demolition of the synaptonemal 

complex. Nat Struct Mol Biol. 2016;23(5):369-77. 

[23]. Zickler D, Kleckner N. Recombination, Pairing, and Synapsis of Homologs during Meiosis. 

Cold Spring Harb Perspect Biol. 2015;7(6). 

[24]. Moses MJ. Chromosomal structures in crayfish spermatocytes. J Biophys Biochem Cytol. 

1956;2(2):215-8. 

[25]. Fawcett DW. The fine structure of chromosomes in the meiotic prophase of vertebrate 

spermatocytes. J Biophys Biochem Cytol. 1956;2(4):403-6. 

[26]. Wojtasz L, Daniel K, Roig I, Bolcun-Filas E, Xu H, Boonsanay V, et al. Mouse HORMAD1 

and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed 

chromosome axes with the help of TRIP13 AAA-ATPase. PLoS Genet. 2009;5(10):e1000702. 

[27]. Daniel K, Lange J, Hached K, Fu J, Anastassiadis K, Roig I, et al. Meiotic homologue 

alignment and its quality surveillance are controlled by mouse HORMAD1. Nat Cell Biol. 

2011;13(5):599-610. 

[28]. Cole F, Keeney S, Jasin M. Evolutionary conservation of meiotic DSB proteins: more than 

just Spo11. Genes Dev. 2010;24(12):1201-7. 

[29]. Sansam CL, Pezza RJ. Connecting by breaking and repairing: mechanisms of DNA strand 

exchange in meiotic recombination. FEBS J. 2015;282(13):2444-57. 

[30]. de Vries SS, Baart EB, Dekker M, Siezen A, de Rooij DG, de Boer P, et al. Mouse MutS-

like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes 

Dev. 1999;13(5):523-31. 

[31]. Edelmann W, Cohen PE, Kane M, Lau K, Morrow B, Bennett S, et al. Meiotic pachytene 

arrest in MLH1-deficient mice. Cell. 1996;85(7):1125-34. 

[32]. Kneitz B, Cohen PE, Avdievich E, Zhu L, Kane MF, Hou H, Jr., et al. MutS homolog 4 

localization to meiotic chromosomes is required for chromosome pairing during meiosis in male 

and female mice. Genes Dev. 2000;14(9):1085-97. 

[33]. Lipkin SM, Moens PB, Wang V, Lenzi M, Shanmugarajah D, Gilgeous A, et al. Meiotic 

arrest and aneuploidy in MLH3-deficient mice. Nat Genet. 2002;31(4):385-90. 

[34]. Plug AW, Peters AH, Keegan KS, Hoekstra MF, de Boer P, Ashley T. Changes in protein 

composition of meiotic nodules during mammalian meiosis. J Cell Sci. 1998;111 ( Pt 4):413-23. 

[35]. Manhart CM, Alani E. Roles for mismatch repair family proteins in promoting meiotic 

crossing over. DNA Repair (Amst). 2016;38:84-93. 



 121 

[36]. Middlebrooks CD, Mukhopadhyay N, Tinker SW, Allen EG, Bean LJ, Begum F, et al. 

Evidence for dysregulation of genome-wide recombination in oocytes with nondisjoined 

chromosomes 21. Human molecular genetics. 2014;23(2):408-17. 

[37]. Brown AS, Feingold E, Broman KW, Sherman SL. Genome-wide variation in recombination 

in female meiosis: a risk factor for non-disjunction of chromosome 21. Hum MolGenet. 

2000;9(4):515-23. 

[38]. Laurie CC, Doheny KF, Mirel DB, Pugh EW, Bierut LJ, Bhangale T, et al. Quality control 

and quality assurance in genotypic data for genome-wide association studies. Genet Epidemiol. 

2010;34(6):591-602. 

[39]. Conlin LK, Thiel BD, Bonnemann CG, Medne L, Ernst LM, Zackai EH, et al. Mechanisms 

of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism 

array analysis. Hum Mol Genet. 2010;19(7):1263-75. 

[40]. Peiffer DA, Le JM, Steemers FJ, Chang W, Jenniges T, Garcia F, et al. High-resolution 

genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. 

Genome Res. 2006;16(9):1136-48. 

[41]. Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR, McHugh CP, et al. Detectable clonal 

mosaicism from birth to old age and its relationship to cancer. Nat Genet. 2012;44(6):642-50. 

[42]. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genetics. 

2006;2(12):e190. 

[43]. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for 

the next generation of genome-wide association studies. PLoS Genet. 2009;5(6):e1000529. 

[44]. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. 

An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56-

65. 

[45]. de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, Voight BF. Practical aspects 

of imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet. 

2008;17(R2):R122-8. 

[46]. Shaffer JR, Wang X, Feingold E, Lee M, Begum F, Weeks DE, et al. Genome-wide 

association scan for childhood caries implicates novel genes. J Dent Res. 2011;90(12):1457-62. 

[47]. Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: the 

insulin gene region and isulin-dependent diabetes mellitus (IDDM). American Journal Human 

Genetic. 1993;52:506-16. 

[48]. Kerstann KF, Feingold E, Freeman SB, Bean LJ, Pyatt R, Tinker S, et al. Linkage 

disequilibrium mapping in trisomic populations: Analytical approaches and an application to 

congenital heart defects in Down syndrome. Genet Epidemiol. 2004;27(3):240-51. 

[49]. Li J, Ji L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a 

correlation matrix. Heredity (Edinb). 2005;95(3):221-7. 

[50]. Lee J, Hirano T. RAD21L, a novel cohesin subunit implicated in linking homologous 

chromosomes in mammalian meiosis. J Cell Biol. 2011;192(2):263-76. 

[51]. Ishiguro K, Kim J, Fujiyama-Nakamura S, Kato S, Watanabe Y. A new meiosis-specific 

cohesin complex implicated in the cohesin code for homologous pairing. EMBO Rep. 

2011;12(3):267-75. 

[52]. Gutierrez-Caballero C, Herran Y, Sanchez-Martin M, Suja JA, Barbero JL, Llano E, et al. 

Identification and molecular characterization of the mammalian alpha-kleisin RAD21L. Cell 

Cycle. 2011;10(9):1477-87. 



 122 

[53]. Herran Y, Gutierrez-Caballero C, Sanchez-Martin M, Hernandez T, Viera A, Barbero JL, et 

al. The cohesin subunit RAD21L functions in meiotic synapsis and exhibits sexual dimorphism in 

fertility. EMBO J. 2011;30(15):3091-105. 

[54]. Watanabe Y, Nurse P. Cohesin Rec8 is required for reductional chromosome segregation at 

meiosis. Nature. 1999;400(6743):461-4. 

[55]. Klein F, Mahr P, Galova M, Buonomo SB, Michaelis C, Nairz K, et al. A central role for 

cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast 

meiosis. Cell. 1999;98(1):91-103. 

[56]. Minase G, Miyamoto T, Miyagawa Y, Iijima M, Ueda H, Saijo Y, et al. Single-nucleotide 

polymorphisms in the human RAD21L gene may be a genetic risk factor for Japanese patients 

with azoospermia caused by meiotic arrest and Sertoli cell-only syndrome. Hum Fertil (Camb). 

2017;20(3):217-20. 

[57]. Pezza RJ, Voloshin ON, Volodin AA, Boateng KA, Bellani MA, Mazin AV, et al. The dual 

role of HOP2 in mammalian meiotic homologous recombination. Nucleic Acids Res. 

2014;42(4):2346-57. 

[58]. Kerzendorfer C, Vignard J, Pedrosa-Harand A, Siwiec T, Akimcheva S, Jolivet S, et al. The 

Arabidopsis thaliana MND1 homologue plays a key role in meiotic homologous pairing, synapsis 

and recombination. J Cell Sci. 2006;119(Pt 12):2486-96. 

[59]. Domenichini S, Raynaud C, Ni DA, Henry Y, Bergounioux C. Atmnd1-delta1 is sensitive to 

gamma-irradiation and defective in meiotic DNA repair. DNA Repair (Amst). 2006;5(4):455-64. 

[60]. Zhao W, Sung P. Significance of ligand interactions involving Hop2-Mnd1 and the RAD51 

and DMC1 recombinases in homologous DNA repair and XX ovarian dysgenesis. Nucleic Acids 

Res. 2015;43(8):4055-66. 

[61]. Lee DH, Goodarzi AA, Adelmant GO, Pan Y, Jeggo PA, Marto JA, et al. Phosphoproteomic 

analysis reveals that PP4 dephosphorylates KAP-1 impacting the DNA damage response. EMBO 

J. 2012;31(10):2403-15. 

[62]. Yoon YS, Lee MW, Ryu D, Kim JH, Ma H, Seo WY, et al. Suppressor of MEK null 

(SMEK)/protein phosphatase 4 catalytic subunit (PP4C) is a key regulator of hepatic 

gluconeogenesis. Proc Natl Acad Sci U S A. 2010;107(41):17704-9. 

[63]. Kim BR, Seo SH, Park MS, Lee SH, Kwon Y, Rho SB. sMEK1 inhibits endothelial cell 

proliferation by attenuating VEGFR-2-dependent-Akt/eNOS/HIF-1alpha signaling pathways. 

Oncotarget. 2015;6(31):31830-43. 

[64]. Choi SH, Ruggiero D, Sorice R, Song C, Nutile T, Vernon Smith A, et al. Six Novel Loci 

Associated with Circulating VEGF Levels Identified by a Meta-analysis of Genome-Wide 

Association Studies. PLoS Genet. 2016;12(2):e1005874. 

[65]. McFee RM, Cupp AS. Vascular contributions to early ovarian development: potential roles 

of VEGFA isoforms. Reprod Fertil Dev. 2013;25(2):333-42. 

[66]. Robinson RS, Woad KJ, Hammond AJ, Laird M, Hunter MG, Mann GE. Angiogenesis and 

vascular function in the ovary. Reproduction. 2009;138(6):869-81. 

[67]. Kim AM, Vogt S, O'Halloran TV, Woodruff TK. Zinc availability regulates exit from meiosis 

in maturing mammalian oocytes. Nat Chem Biol. 2010;6(9):674-81. 

[68]. Kim AM, Bernhardt ML, Kong BY, Ahn RW, Vogt S, Woodruff TK, et al. Zinc sparks are 

triggered by fertilization and facilitate cell cycle resumption in mammalian eggs. ACS Chem Biol. 

2011;6(7):716-23. 

[69]. Lisle RS, Anthony K, Randall MA, Diaz FJ. Oocyte-cumulus cell interactions regulate free 

intracellular zinc in mouse oocytes. Reproduction. 2013;145(4):381-90. 



 123 

[70]. Dieterich K, Zouari R, Harbuz R, Vialard F, Martinez D, Bellayou H, et al. The Aurora 

Kinase C c.144delC mutation causes meiosis I arrest in men and is frequent in the North African 

population. Hum Mol Genet. 2009;18(7):1301-9. 

[71]. Fellmeth JE, Ghanaim EM, Schindler K. Characterization of macrozoospermia-associated 

AURKC mutations in a mammalian meiotic system. Hum Mol Genet. 2016;25(13):2698-711. 

[72]. Adriaenssens T, Mazoyer C, Segers I, Wathlet S, Smitz J. Differences in collagen expression 

in cumulus cells after exposure to highly purified menotropin or recombinant follicle-stimulating 

hormone in a mouse follicle culture model. Biol Reprod. 2009;80(5):1015-25. 

[73]. Baumann C, Wang X, Yang L, Viveiros MM. Error-prone meiotic division and subfertility 

in mice with oocyte-conditional knockdown of pericentrin. J Cell Sci. 2017;130(7):1251-62. 

[74]. Holubcova Z, Blayney M, Elder K, Schuh M. Human oocytes. Error-prone chromosome-

mediated spindle assembly favors chromosome segregation defects in human oocytes. Science. 

2015;348(6239):1143-7. 

[75]. Begum F, Chowdhury R, Cheung VG, Sherman SL, Feingold E. Genome-Wide Association 

Study of Meiotic Recombination Phenotypes. G3 (Bethesda). 2016;6(12):3995-4007. 

[76]. Mao S, Wu F, Cao X, He M, Liu N, Wu H, et al. TDRP deficiency contributes to low sperm 

motility and is a potential risk factor for male infertility. Am J Transl Res. 2016;8(1):177-87. 

[77]. Chen PJ, Huang YS. CPEB2-eEF2 interaction impedes HIF-1alpha RNA translation. EMBO 

J. 2012;31(4):959-71. 

[78]. Kurihara Y, Tokuriki M, Myojin R, Hori T, Kuroiwa A, Matsuda Y, et al. CPEB2, a novel 

putative translational regulator in mouse haploid germ cells. Biol Reprod. 2003;69(1):261-8. 

[79]. Weber KL, Sokac AM, Berg JS, Cheney RE, Bement WM. A microtubule-binding myosin 

required for nuclear anchoring and spindle assembly. Nature. 2004;431(7006):325-9. 

[80]. Samwer M, Dehne HJ, Spira F, Kollmar M, Gerlich DW, Urlaub H, et al. The nuclear F-actin 

interactome of Xenopus oocytes reveals an actin-bundling kinesin that is essential for meiotic 

cytokinesis. EMBO J. 2013;32(13):1886-902. 

[81]. Mogessie B, Schuh M. Actin protects mammalian eggs against chromosome segregation 

errors. Science. 2017;357(6353). 

[82]. Liu QY, Lei JX, Sikorska M, Liu R. A novel brain-enriched E3 ubiquitin ligase RNF182 is 

up regulated in the brains of Alzheimer's patients and targets ATP6V0C for degradation. Mol 

Neurodegener. 2008;3:4. 

[83]. Nectoux J, Fichou Y, Rosas-Vargas H, Cagnard N, Bahi-Buisson N, Nusbaum P, et al. Cell 

cloning-based transcriptome analysis in Rett patients: relevance to the pathogenesis of Rett 

syndrome of new human MeCP2 target genes. J Cell Mol Med. 2010;14(7):1962-74. 

[84]. Goel P, Manning JA, Kumar S. NEDD4-2 (NEDD4L): the ubiquitin ligase for multiple 

membrane proteins. Gene. 2015;557(1):1-10. 

[85]. Low LH, Chow YL, Li Y, Goh CP, Putz U, Silke J, et al. Nedd4 family interacting protein 1 

(Ndfip1) is required for ubiquitination and nuclear trafficking of BRCA1-associated ATM 

activator 1 (BRAT1) during the DNA damage response. J Biol Chem. 2015;290(11):7141-50. 

[86]. Xu C, Fan CD, Wang X. Regulation of Mdm2 protein stability and the p53 response by 

NEDD4-1 E3 ligase. Oncogene. 2015;34(3):281-9. 

[87]. Hodges CA, Revenkova E, Jessberger R, Hassold TJ, Hunt PA. SMC1beta-deficient female 

mice provide evidence that cohesins are a missing link in age-related nondisjunction. Nat Genet. 

2005;37(12):1351-5. 



 124 

[88]. Murdoch B, Owen N, Stevense M, Smith H, Nagaoka S, Hassold T, et al. Altered cohesin 

gene dosage affects Mammalian meiotic chromosome structure and behavior. PLoS Genet. 

2013;9(2):e1003241. 

[89]. Hwang G, Sun F, O'Brien M, Eppig JJ, Handel MA, Jordan PW. SMC5/6 is required for the 

formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes. 

Development. 2017;144(9):1648-60. 

[90]. Ward A, Hopkins J, McKay M, Murray S, Jordan PW. Genetic Interactions Between the 

Meiosis-Specific Cohesin Components, STAG3, REC8, and RAD21L. G3 (Bethesda). 

2016;6(6):1713-24. 

[91]. Biswas U, Hempel K, Llano E, Pendas A, Jessberger R. Distinct Roles of Meiosis-Specific 

Cohesin Complexes in Mammalian Spermatogenesis. PLoS Genet. 2016;12(10):e1006389. 

[92]. Agostinho A, Manneberg O, van Schendel R, Hernandez-Hernandez A, Kouznetsova A, 

Blom H, et al. High density of REC8 constrains sister chromatid axes and prevents illegitimate 

synaptonemal complex formation. EMBO Rep. 2016;17(6):901-13. 

[93]. McNicoll F, Stevense M, Jessberger R. Cohesin in gametogenesis. Curr Top Dev Biol. 

2013;102:1-34. 

[94]. Zickler D, Kleckner N. Meiotic chromosomes: integrating structure and function. Annu Rev 

Genet. 1999;33:603-754. 

[95]. Geisinger A, Benavente R. Mutations in Genes Coding for Synaptonemal Complex Proteins 

and Their Impact on Human Fertility. Cytogenet Genome Res. 2016;150(2):77-85. 

[96]. Broman K, Murray J, Sheffield V, White R, Weber J. Comprehensive human genetic maps: 

individual and sex-specific variation in recombination. American Journal Human Genetic. 

1998;63:861-9. 

[97]. Cheung VG, Burdick JT, Hirschmann D, Morley M. Polymorphic variation in human meiotic 

recombination. American Journal Human Genetic. 2007;80(3):526-30. 

[98]. Fledel-Alon A, Leffler EM, Guan Y, Stephens M, Coop G, Przeworski M. Variation in 

human recombination rates and its genetic determinants. PLoS One. 2011;6(6):e20321. 

[99]. Hou Y, Fan W, Yan L, Li R, Lian Y, Huang J, et al. Genome analyses of single human 

oocytes. Cell. 2013;155(7):1492-506. 

[100]. Brieno-Enriquez MA, Cohen PE. Double trouble in human aneuploidy. Nat Genet. 

2015;47(7):696-8. 

[101]. MacLennan M, Crichton JH, Playfoot CJ, Adams IR. Oocyte development, meiosis and 

aneuploidy. Semin Cell Dev Biol. 2015;45:68-76. 

[102]. Wassmann K. Sister chromatid segregation in meiosis II: deprotection through 

phosphorylation. Cell Cycle. 2013;12(9):1352-9. 

[103]. Coop G, Wen X, Ober C, Pritchard JK, Przeworski M. High-Resolution Mapping of 

Crossovers Reveals Extensive Variation in Fine-Scale Recombination Patterns Among Humans. 

Science. 2008. 

[104]. Chowdhury R, Bois PR, Feingold E, Sherman SL, Cheung VG. Genetic analysis of variation 

in human meiotic recombination. PLoS Genet. 2009;5(9):e1000648. 

[105]. Kong A, Thorleifsson G, Stefansson H, Masson G, Helgason A, Gudbjartsson DF, et al. 

Sequence Variants in the RNF212 Gene Associate with Genomewide Recombination Rate. 

Science. 2008. 

[106]. Qiao H, Prasada Rao HB, Yang Y, Fong JH, Cloutier JM, Deacon DC, et al. Antagonistic 

roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination. Nat 

Genet. 2014;46(2):194-9. 



 125 

[107]. Oliver TR, Middlebrooks C, Harden A, Scott N, Johnson B, Jones J, et al. Variation in the 

Zinc Finger of PRDM9 is Associated with the Absence of Recombination along Nondisjoined 

Chromosomes 21 of Maternal Origin. J Down Syndr Chromosom Abnorm. 2016;2(2). 

[108]. McCoy RC, Demko Z, Ryan A, Banjevic M, Hill M, Sigurjonsson S, et al. Common variants 

spanning PLK4 are associated with mitotic-origin aneuploidy in human embryos. Science. 

2015;348(6231):235-8. 

[109]. Capalbo A, Hoffmann ER, Cimadomo D, Ubaldi FM, Rienzi L. Human female meiosis 

revised: new insights into the mechanisms of chromosome segregation and aneuploidies from 

advanced genomics and time-lapse imaging. Hum Reprod Update. 2017;23(6):706-22. 

[110]. Capalbo A, Bono S, Spizzichino L, Biricik A, Baldi M, Colamaria S, et al. Sequential 

comprehensive chromosome analysis on polar bodies, blastomeres and trophoblast: insights into 

female meiotic errors and chromosomal segregation in the preimplantation window of embryo 

development. Hum Reprod. 2013;28(2):509-18. 

[111]. Ottolini CS, Newnham L, Capalbo A, Natesan SA, Joshi HA, Cimadomo D, et al. Genome-

wide maps of recombination and chromosome segregation in human oocytes and embryos show 

selection for maternal recombination rates. Nat Genet. 2015;47(7):727-35. 

[112]. Tyc KM, McCoy RC, Schindler K, Xing J. Mathematical modeling of human oocyte 

aneuploidy. Proc Natl Acad Sci U S A. 2020;117(19):10455-64. 

[113]. Gruhn JR, Zielinska AP, Shukla V, Blanshard R, Capalbo A, Cimadomo D, et al. 

Chromosome errors in human eggs shape natural fertility over reproductive life span. Science. 

2019;365(6460):1466-9. 

[114]. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, 

Austria2017. 

[115]. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool 

set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 

2007;81(3):559-75. 

[116]. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: 

regional visualization of genome-wide association scan results. Bioinformatics. 

2010;26(18):2336-7. 

[117]. Nishimura T, Sugiura K, Naito K. A-kinase anchor protein 1 (AKAP1) regulates cAMP-

dependent protein kinase (PKA) localization and is involved in meiotic maturation of porcine 

oocytes. Biol Reprod. 2013;88(4):85. 

[118]. Zhang RN, Pang B, Xu SR, Wan PC, Guo SC, Ji HZ, et al. The CXCL12-CXCR4 signaling 

promotes oocyte maturation by regulating cumulus expansion in sheep. Theriogenology. 

2018;107:85-94. 

[119]. Chen Z, Kang X, Wang L, Dong H, Wang C, Xiong Z, et al. Rictor/mTORC2 pathway in 

oocytes regulates folliculogenesis, and its inactivation causes premature ovarian failure. J Biol 

Chem. 2015;290(10):6387-96. 

[120]. Wang SB, Liu YP, Zhang ZH, Wang ZK, Xu YX, Wang ZC. Temporal and spatial 

expression profiles of Frizzled 3 in the ovary during the estrous cycle. Genet Mol Res. 2016;15(1). 

[121]. Segers I, Adriaenssens T, Smitz J. Expression patterns of poliovirus receptor, erythrocyte 

protein band 4.1-like 3, regulator of g-protein signaling 11, and oxytocin receptor in mouse ovarian 

cells during follicle growth and early luteinization in vitro and in vivo. Biol Reprod. 2012;86(1):1-

11. 



 126 

[122]. Cao Z, Gao D, Xu T, Zhang L, Tong X, Zhang D, et al. Circular RNA profiling in the oocyte 

and cumulus cells reveals that circARMC4 is essential for porcine oocyte maturation. Aging 

(Albany NY). 2019;11(18):8015-34. 

[123]. Kong BY, Duncan FE, Que EL, Kim AM, O'Halloran TV, Woodruff TK. Maternally-

derived zinc transporters ZIP6 and ZIP10 drive the mammalian oocyte-to-egg transition. Mol Hum 

Reprod. 2014;20(11):1077-89. 

[124]. Nguyen AL, Schindler K. Specialize and Divide (Twice): Functions of Three Aurora Kinase 

Homologs in Mammalian Oocyte Meiotic Maturation. Trends Genet. 2017;33(5):349-63. 

[125]. Ojima F, Saito Y, Tsuchiya Y, Ogoshi M, Fukamachi H, Inagaki K, et al. Runx3 regulates 

folliculogenesis and steroidogenesis in granulosa cells of immature mice. Cell Tissue Res. 

2019;375(3):743-54. 

[126]. Awe JP, Byrne JA. Identifying candidate oocyte reprogramming factors using cross-species 

global transcriptional analysis. Cell Reprogram. 2013;15(2):126-33. 

[127]. de Castro RO, Previato L, Goitea V, Felberg A, Guiraldelli MF, Filiberti A, et al. The 

chromatin-remodeling subunit Baf200 promotes homology-directed DNA repair and regulates 

distinct chromatin-remodeling complexes. J Biol Chem. 2017;292(20):8459-71. 

[128]. Shi X, Sun X, Liu M, Li D, Aneja R, Zhou J. CEP70 protein interacts with gamma-tubulin 

to localize at the centrosome and is critical for mitotic spindle assembly. J Biol Chem. 

2011;286(38):33401-8. 

[129]. Sakthianandeswaren A, Parsons MJ, Mouradov D, MacKinnon RN, Catimel B, Liu S, et al. 

MACROD2 Haploinsufficiency Impairs Catalytic Activity of PARP1 and Promotes Chromosome 

Instability and Growth of Intestinal Tumors. Cancer Discov. 2018;8(8):988-1005. 

[130]. Woolner S, O'Brien LL, Wiese C, Bement WM. Myosin-10 and actin filaments are essential 

for mitotic spindle function. J Cell Biol. 2008;182(1):77-88. 

[131]. Sandquist JC, Larson ME, Hine KJ. Myosin-10 independently influences mitotic spindle 

structure and mitotic progression. Cytoskeleton (Hoboken). 2016;73(7):351-64. 

[132]. Kwon M, Bagonis M, Danuser G, Pellman D. Direct Microtubule-Binding by Myosin-10 

Orients Centrosomes toward Retraction Fibers and Subcortical Actin Clouds. Dev Cell. 

2015;34(3):323-37. 

[133]. Brieno-Enriquez MA, Moak SL, Holloway JK, Cohen PE. NIMA-related kinase 1 (NEK1) 

regulates meiosis I spindle assembly by altering the balance between alpha-Adducin and Myosin 

X. PLoS One. 2017;12(10):e0185780. 

[134]. Hou S, Li N, Zhang Q, Li H, Wei X, Hao T, et al. XAB2 functions in mitotic cell cycle 

progression via transcriptional regulation of CENPE. Cell Death Dis. 2016;7(10):e2409. 

[135]. Onyango DO, Howard SM, Neherin K, Yanez DA, Stark JM. Tetratricopeptide repeat factor 

XAB2 mediates the end resection step of homologous recombination. Nucleic Acids Res. 

2016;44(12):5702-16. 

[136]. Budna J, Chachula A, Kazmierczak D, Rybska M, Ciesiolka S, Bryja A, et al. 

Morphogenesis-related gene-expression profile in porcine oocytes before and after in vitro 

maturation. Zygote. 2017;25(3):331-40. 

[137]. Kulus M, Kranc W, Jeseta M, Sujka-Kordowska P, Konwerska A, Ciesiółka S, et al. 

Cortical Granule Distribution and Expression Pattern of Genes Regulating Cellular Component 

Size, Morphogenesis, and Potential to Differentiation are Related to Oocyte Developmental 

Competence and Maturational Capacity In Vivo and In Vitro. Genes (Basel). 2020;11(7). 

[138]. Prochazkova B, Komrskova P, Kubelka M. CPEB2 Is Necessary for Proper Porcine Meiotic 

Maturation and Embryonic Development. Int J Mol Sci. 2018;19(10). 



 127 

[139]. Einarson MB, Cukierman E, Compton DA, Golemis EA. Human enhancer of invasion-

cluster, a coiled-coil protein required for passage through mitosis. Mol Cell Biol. 2004;24(9):3957-

71. 

[140]. Wang SB, Xing BS, Yi L, Wang W, Xu YX. Expression of Frizzled 2 in the mouse ovary 

during oestrous cycle. J Anim Physiol Anim Nutr (Berl). 2010;94(4):437-45. 

[141]. Bothun AM, Woods DC. Dynamics of WNT signaling components in the human ovary 

from development to adulthood. Histochem Cell Biol. 2019;151(2):115-23. 

[142]. Murakami H, Lam I, Huang PC, Song J, van Overbeek M, Keeney S. Multilayered 

mechanisms ensure that short chromosomes recombine in meiosis. Nature. 2020;582(7810):124-

8. 

[143]. Qiao H, Rao H, Yun Y, Sandhu S, Fong JH, Sapre M, et al. Impeding DNA Break Repair 

Enables Oocyte Quality Control. Mol Cell. 2018;72(2):211-21 e3. 

[144]. Ottolini CS, Capalbo A, Newnham L, Cimadomo D, Natesan SA, Hoffmann ER, et al. 

Generation of meiomaps of genome-wide recombination and chromosome segregation in human 

oocytes. Nat Protoc. 2016;11(7):1229-43. 

[145]. Starostik MR, Sosina OA, McCoy RC. Single-cell analysis of human embryos reveals 

diverse patterns of aneuploidy and mosaicism. Genome Res. 2020;30(6):814-25. 

 

 


	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	1.0 INTRODUCTION
	1.1 BACKGROUND AND MOTIVATION
	1.1.1 Meiosis, Aneuploidy, and Established Risk Factors
	1.1.2 Possible Mechanisms and Genes of Interest
	Figure 1.1 Meiotic error mechanisms

	1.2 GENOTYPING ARRAY DATA IN THE CONTEXT OF DOWN SYNDROME
	1.2.1 Family Data and Information Markers
	1.2.1.1 Methods of Trios
	Figure 1.2 Inferring parent of origin in a trio
	Figure 1.3 Determining meiotic stage of error in a trio
	Figure 1.4 Examples of recombination profiles for two trios
	Figure 1.5 Examples of recombination calls in two trios with genotyping "noise"

	1.2.1.2 Methods for Dyads
	Figure 1.6 Informative markers in dyads
	Figure 1.7 Informative markers on chromosome 21 in a dyad
	Figure 1.8 Using a moving average to call recombination events in a dyad


	1.2.2 Description of Data Set

	1.3 AIMS AND SUMMARY OF THIS DISSERTATION
	1.3.1 Finding Genetic Risk Factors for Nondisjunction
	1.3.2 Using Family Data to Call Recombination Events on Chromosome 21
	1.3.3 Characterizing Genetic Risk Factors for Nondisjunction


	2.0 A CANDIDATE GENE ANALYSIS AND GWAS FOR GENES ASSOCIATED WITH MATERNAL NONDISJUNCTION OF CHROMOSOME 21
	2.1 CHAPTER OVERVIEW
	2.2 AUTHOR SUMMARY
	2.3 INTRODUCTION
	Table 2.1 Description of primary analyses and sample sizes

	2.4 METHODS
	2.4.1 Study Sample
	2.4.1.1 Ethics Statement
	2.4.1.2 Genotyping
	2.4.1.3 Adjustment for Population Structure
	2.4.1.4 Imputation
	2.4.1.5 Phenotyping

	2.4.2 Analysis
	2.4.2.1 Sample Size
	2.4.2.2 Association Studies
	2.4.2.3 Maternal Age Effect
	2.4.2.4 Candidate Gene Analyses
	2.4.2.5 Follow-up Analyses to Examine Top-Ranked GWAS Signals


	2.5 RESULTS
	2.5.1 Candidate Gene Association Studies
	Table 2.2 Candidate gene results
	2.5.1.1 Candidate Genes Associated with Chromosome Segregation
	Figure 2.1 LocusZoom plot for RAD21L
	Figure 2.2 LocusZoom plot for SYCE2
	Figure 2.3 LocusZoom plot for SYCP1
	Figure 2.4 LocusZoom plot for SYCP2

	2.5.1.2 Genes Association with Human Genome-Wide Recombination Counts (Shown in the Bottom Half of Table 2.2, Below the Double Line)
	Figure 2.5 LocusZoom plot for SMEK1


	2.5.2 Strongest Results from the Genome-Wide Association Study
	Table 2.3 Top hits from the all mothers vs. fathers genome-wide association study
	Table 2.4 Top hits from the MI mothers vs. fathers genome-wide assocation study
	Table 2.5 Top hits from the MII mothers vs. fathers genome-wide association study
	Table 2.6 Top hits from the MI mothers vs. MII mothers genome-wide association study
	Table 2.7 Top hits from the TDT (transmission disequilibrium test)
	2.5.2.1 rs10948101 on chromosome 6 near VEGFA
	Figure 2.6 LocusZoom plot for VEGFA locus

	2.5.2.2 rs11535058 on chromosome 2 near SLC39A10
	Figure 2.7 LocusZoom plot for SLC39A10 locus

	2.5.2.3 rs35288347 on chromosome 19 near AURKC
	Figure 2.8 LocusZoom plot for AURKC locus

	2.5.2.4 rs9984132 on chromosome 21 located in a gene rich region
	Figure 2.9 LocusZoom plot for rs9984132 locus

	2.5.2.5 rs73178888 on chromosome 8 near a region associated with meiotic recombination
	Figure 2.10 LocusZoom plot for DLGAP2 locus

	2.5.2.6 rs115281615 on chromosome 4 near CPEB2
	Figure 2.11 LocusZoom plot for CPEB2 locus

	2.5.2.7 rs2560850 on chromosome 5 in an intron of MYO10
	Figure 2.12 LocusZoom plot for MYO10 locus


	2.5.3 Strongest Results from the TDT Analyses

	2.6 DISCUSSION
	2.6.1 Genes Associated with Cohesin Complex
	2.6.2 Genes Associated with the Synaptonemal Complex (SC)
	2.6.3 Association with Recombination-Related Variants
	2.6.4 Gene Discovery
	2.6.5 Conclusion and Future Directions

	2.7 ACKNOWLEDGMENTS

	3.0 ANALYSES STRATIFIED BY MATERNAL AGE AND RECOMBINATION FURTHER CHARACTERIZE GENES ASSOCIATED WITH MATERNAL NONDISJUNCTION OF CHROMOSOME 21
	3.1 CHAPTER OVERVIEW
	3.2 INTRODUCTION
	3.3 METHODS
	3.3.1 Study Participants and Ethics Statement
	3.3.1.1 Participants
	3.3.1.2 Ethics Statement

	3.3.2 Genotyping, Imputation, and Population Structure
	3.3.3 Determining Meiotic Stage of Error and Recombination on Chromosome 21
	3.3.4 Association Analyses
	Table 3.1 Definition of stratified analysis subgroups and associated sample sizes
	Figure 3.1 Distribution of maternal ages by meiotic stage of error
	Figure 3.2 Distributions of positions of single MI recombination events and most proximal MII events observed on chromosome 21


	3.4 RESULTS
	Table 3.2 Summary of selected results
	3.4.1 Candidate Loci
	Figure 3.3 Summary of stratified analysis results for 37 candidate loci
	3.4.1.1 Results for Candidate Loci Associated with Genome-Wide Recombination Counts
	Figure 3.4 LocusZoom plots for selected associations in candidate loci for global recombination (CCDC43, RAD21L, and CPLX1/RNF212 loci)

	3.4.1.2 Results for Candidate Loci Involved with Meiotic Processes
	Figure 3.5 LocusZoom plots for selected associations in candidate genes involved in meiotic processes (SYCP1, SYCP2, and MND1)


	3.4.2 Prior chromosome 21 nondisjunction GWAS associations
	Figure 3.6 Summary of stratified analysis results for 48 previous nondisjunction GWAS loci
	Figure 3.7 Forest plots for four selected prior GWAS loci
	3.4.2.1 Results for Top Associations from Previous All Maternal (MI and MII) Errors Combined Analysis
	3.4.2.2 Results for Top Associations from Previous Maternal MI Errors Analysis
	3.4.2.3 Results for Top Associations from Previous Maternal MII Errors Analysis
	3.4.2.4 Results for Top Associations from Previous Maternal MI Errors vs. MII Errors Analysis


	3.5 DISCUSSION
	3.6 CONCLUSION
	3.7 APPENDIX: METHODS FOR CALLING MEIOTIC STAGE OF NONDISJUNCTION AND RECOMBINATION EVENTS
	3.7.1 Overview
	Figure 3.8 Overview of methods for calling recombination in trios and dyads

	3.7.2 Calling Stage of Origin in Trios
	3.7.3 Calling Recombination Events in Trios
	Figure 3.9 Method for calling recombination events in a full trio

	3.7.4 Overview of Inference in Dyads
	3.7.5 Calling Stage of Origin in Dyads
	3.7.6 Calling Recombination Events in Dyads
	Figure 3.10 Scoring recombination calls in the training set trios
	Figure 3.11 Method for calling recombination events in a masked-trio dyad
	Figure 3.12 Optimizing recombination calls on the pseudo-dyads


	3.8 ACKNOWLEDGMENTS

	4.0 CONCLUSION
	4.1 SUMMARY OF FINDINGS
	4.2 STRENGTHS AND LIMITATIONS
	4.3 FUTURE ANALYSES

	BIBLIOGRAPHY

