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General Neutrino Interactions, Dark Matter, and Electroweak Phase Transition

Hongkai Liu, PhD

University of Pittsburgh, 2021

This thesis consists of several projects in two major directions: (1) neutrino non-standard

interactions and (2) weakly interacting massive particle (WIMP) as cold dark matter (DM).

In the neutrino physics studies, we work on searching general neutrino interactions (GNI)

at both high-energy experiments, such as (HL -) LHC, LHeC, and low-energy experiments,

like COHERENT. We consider GNI arose from two different scenarios. One is from a UV-

complete flavored Z ′ model. Another one is in the Standard Model Effective Field Theory

framework extended with right-handed neutrinos N (SMNEFT) framework. Along the line

of the SMNEFT, we present the gauge coupling terms of the one-loop anomalous dimen-

sion matrix for renormalization group evolution (RGE) of the Wilson coefficients between

a new physics scale and the electroweak scale. We calculate the Yukawa coupling contri-

butions to the one-loop anomalous dimension matrix for the 11 dimension-six four-fermion

SMNEFT operators. We also present the new contributions to the anomalous dimension

matrix for the 14 four-fermion SMEFT operators that mix with the SMNEFT operators

through the Yukawa couplings of the right-handed neutrinos. In the DM aspect, we work on

a WIMP scenario with vanishingly small tree-level spin-independent (SI) scattering cross-

sections. To thoroughly probe interesting and well-motivated WIMP scenarios, we calculate

the electroweak corrections to the SI scattering amplitude at the tree-level blind spot from

the next-to-leading-order (NLO). It is observed that in a significant region of the singlet-

doublet model-space, the one-loop corrections “unblind” the tree-level blind spots and lead

to detectable SI scattering rates at future multi-ton scale liquid Xenon experiments. We

consider another WIMP DM candidates in a non-Abelian dark SU(2)D model where the

dark sector couples to the Standard Model (SM) through a Higgs portal. We utilize the ex-

isting collider results of the Higgs signal rate, direct heavy Higgs searches, and electroweak

precision observables to constrain the model parameters. The resulting two stable massive

dark gauge bosons and pseudo-Goldstone bosons from symmetry breaking can be viable cold

iv



DM candidates. We study in detail the pattern of strong first-order phase transition and

gravitational wave (GW) production triggered by the dark sector symmetry breaking.
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1.0 Introduction

The milestone discovery of the Higgs boson predicted in the Standard Model (SM) at

the CERN Large Hadron Collider (LHC) has deepened our understanding of nature at the

shortest distances, and in the same time sharpened our questions about the Universe. The

three of the most pressing mysteries in contemporary particle physics and cosmology are the

origin of neutrino masses and baryon asymmetry, and the nature of the dark matter (DM).

The new physics accounting for the neutrino masses may be at very high scale and beyond

the reach of our high-energy experiments. In this sense, a model-independent framework is

appropriate to describe the new physics in the neutrino sector. In this thesis, we mainly

focus on the general neutrino interaction, including all kinds of Lorentz structure. Weakly

interacting massive particles (WIMP) is the mostly studied DM candidate as it can naturely

obtaine the correct DM relic density. We consider two WIMP models one carries SM charges

and the other does not. The new physics may be responsible for both DM and the baryon

asymmetry in the Universe. In this thesis, we study one of such possibilities.

1.1 Neutrino General Interactions

Neutrino oscillations have been confirmed by many neutrino experiments using solar,

atmospheric, reactor, and accelerator neutrinos in the last two decades. Since the explanation

of neutrino oscillations requires nonvanishing neutrino masses, the observation of neutrino

oscillation provides clear evidence of new physics beyond the Standard Model (BSM) [8]. A

model-independent way of studying new physics in neutrino oscillations was first formulated

in Ref. [9], and is now generalized in the framework of an effective field theory (EFT) for

nonstandard interactions (NSI); for reviews see Ref. [10, 11, 12].

Generically, departures from the SM at energies below a new physics scale can be de-

scribed by a model-independent EFT after integrating out the heavy degrees of freedom in

the new physics sector. Such an effective Lagrangian was first constructed by Fermi for the 4-
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fermion contact interaction involving a neutrino in nuclear β-decay. In the SM language, the

contact interaction is a result of integrating out a heavy particle, the electroweak W -boson.

Neutrino interactions at low energies can be obtained in this framework by integrating out

the heavy particles t,W±, Z and the Higgs boson h. The 4-fermion neutrino interactions via

the SM neutral and charged currents at the leading order (LO), after integrating out the Z

and W± propagators, are

L NC
SM = −GF√

2
δαβδγδ[ναγµ(1− γ5)νβ][gL,ffγγ

µ(1− γ5)fδ + gR,ffγγ
µ(1 + γ5)fδ] , (1.1)

L CC
SM = −GF√

2
V ∗δγδ

αβ[ναγµ(1− γ5)`β][dγγ
µ(1− γ5)uδ] + h.c. , (1.2)

where the Fermi constant GF/
√

2 = (2v2)−1 = g2
2/8M

2
W . f denotes quarks and charged

leptons, V is the CKM quark-mixing matrix, g2 is the SM SU(2)L gauge coupling, MW is the

mass of the W boson given by the Higgs vacuum expectation value gv2/2, and α, β, γ, and δ

are flavor indices. The chiral couplings gL,f and gR,f are defined as

gL,f = T 3
f −Qf sin2 θW , gR,f = −Qf sin2 θW , (1.3)

where Qf is the fermion’s charge in units of +e. We choose a flavor basis such that the down-

type quark and the lepton Yukawa matrices are diagonal for convenience of calculation. The

transformation for the up-type quarks between the flavor (primed) and mass basis (unprimed)

reads

u′L,α = V †αβ uL,β . (1.4)

In the spirit of EFT, the theory is valid only at low energies, E � MW . To explore new

physics near or above the electroweak scale, it is appropriate to adopt an EFT, respecting the

full SM gauge symmetry SU(3)C ×SU(2)L×U(1)Y with the SM field content, the so-called

Standard Model Effective Field Theory (SMEFT) [13, 14, 15, 16].

Within the SMEFT framework, we can introduce neutrino non-standard interactions

(NSI) at dimension-six level. To account for NSI, Wolfenstein proposed 4-fermion interac-

tions with general couplings [9], that have helped understand matter effects in solar neutrino

oscillation experiments. Much theoretical and experimental effort has been made to search

for potential new physics along the lines of neutrino NSI; for reviews see Refs. [10, 11, 12].
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Similar to the standard matter effect [9, 17], neutral current NSI affect neutrino propaga-

tion in matter via coherent forward scattering, in which the momentum transfer is negligibly

small compared with other relevant scales involved. Therefore, the adoption of effective four-

fermion interactions in Eq. (2.1) is well justified regardless of the mass of the mediator that

induces NSI. Also, for neutrinos propagating in unpolarized matter at rest, only the vector

combination contributes to the matter potential. To study NSI at both high-energy and

low-energy experiments, we use a flavored Z ′ model as our benchmark model as discussed in

Chapter 2. NSI only contains vector interactions as the absence of right-handed neutrinos

in the SM.

However, the right-handed neutrino is one of most well studied extension of the SM

motivated by, among other things, the observation of neutrino masses and mixing. There

are well-motivated ultraviolet (UV) complete models that introduce SM singlet right-handed

neutrinos. U(1)B−L extensions of the SM generate vector interactions between right-handed

neutrinos and SM particles. In models with left-right symmetry [18, 19, 20], such interac-

tions are generated after left-right symmetry breaking. Leptoquark models [21, 22] generate

various neutrino-quark interactions. Each of these leads to model-dependent phenomenol-

ogy if the new states are kinematically accessible, which we will not explore further. Instead

of considering all possible models, an efficient alternative is to use a model independent

approach based on the principles of effective theory. The idea is to construct all possible

operators representing the interaction of the sterile neutrinos with the SM fields consistent

with the symmetries of the SM. The validity of such a framework is between µEW - the scale

of electroweak symmetry breaking- and Λ which is the cut-off scale for new physics. If light

sterile neutrinos are now introduced in the theory, then one can construct the Standard

Model Neutrino Effective Field Theory (SMNEFT) which augments SMEFT with sterile

right-handed neutrinos n [23, 24, 25, 26, 22].

In Chapter 3 and 4, we adopt this framework including right-handed neutrino states

n that are lighter than a keV. Naturally, they are “sterile neutrinos” with no SM gauge

charges. However, we do not specify their possible Majorana mass terms. We restrict our

study to the case in which the left-handed neutrino states are Dirac in nature. Then, new

flavor-conserving neutral current vector and tensor interactions are possible. The SMNEFT
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has been presented in Ref. [26, 22]. We follow this well motivated formalism. A framework

for model-independent General Neutrino Interactions (GNI) below the electroweak scale has

been also constructed in Ref. [27]. All operators of scalar, pseudoscalar, vector, axial vector

and tensor interactions of neutrinos with SM fermions are included, leading to potentially

rich phenomenology. We note that scalar and tensor GNI operators cannot be embedded in

SMEFT at the dimension-six level, but are present in SMNEFT.

1.2 WIMP Dark Matter

Another astonishing fact that cannot be explained by the SM is the existence of DM and

matter (baryon asymmetry). There is mounting evidence for the existence of DM through

its gravitational effects. WIMP, a possible candidate for the DM in the Universe, are being

intensely searched for both in laboratory experiments and through a broad range of astro-

physical probes [28, 29]. Among the laboratory probes, the decades-long programme looking

for signals of nuclear recoil is the primary one, with increasing levels of sensitivity to the

DM-nucleon scattering rate, owing to both larger fiducial detector volumes, as well as the

construction of ultra-low noise detectors [30, 31, 32]. However, the null results of the last fifty

years of searches challenge the most theoretically attractive candidates, namely, the stan-

dard weakly interacting massive particles (WIMPs), that are charged under the SM weak

interactions (see Ref. [28] for review). We consider two different scenarios to go beyond the

standard WIMP model. The first case is a WIMP DM but sit in a fine-tunning parameter

space, called blind spot, in which the leading order predictions for DM-nucleon scattering

cross-sections are negligibly small or even exactly zero either due to symmetry reasons or

due to cancellations among different contributions to the relevant DM effective couplings.

The details of this scenario are described in Chapter 5.

On the other hand, it is quite conceivable that the DM particles live in a dark sector

that are not charged under the SM gauge group. Furthermore, the dark sector may have a

rich particle spectrum, leading to other observable consequences [33]. A massless dark gauge

field, dubbed as the dark radiation (DR), is one of the quite interesting extensions that
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could help to alleviate the tension between Planck and HST measurements of the Hubble

constant [34]. DM-DR interactions and DM self-interactions can provide solutions to the

small-scale structure problems which challenge the cold dark matter (CDM) paradigm [35,

36, 37].

In Chapter 6, we would like to explore the potentially observable effects beyond the

gravitational interactions from a hypothetical dark sector. We assume that the dark sector

interacts with the SM particles only through the Higgs portal [38]. An immediate conse-

quence of this would be the modification of the Higgs boson properties that will be probed in

the on-going and future high energy experiments [39, 40]. The DM searches from the direct

and indirect detection experiments will provide additional tests for the theory [28]. Perhaps,

an even more significant impact would be on the nature of the electroweak phase transition

(EWPT) at the early Universe (see, e.g., [41, 42, 43] for recent reviews), which could shed

light on another profound mystery: the origin of baryon asymmetry in the Universe. Indeed,

one of the best-motivated solutions to this mystery is the electroweak baryogenesis (EWBG)

[44, 45, 46, 47] (see also [48, 49] for pedagogical introductions). For a successful generation

of the baryon asymmetry during the EWPT, all of the three Sakharov conditions [50] have

to be satisfied. One of the three Sakharov conditions is to assure a strong first-order phase

transition (FOPT), that is absent within the minimal SM, but could be achieved by the

Higgs portal to a sector beyond the SM. It is important to note that many well-motivated

extensions of the SM predict gravitational wave (GW) signals through a strong FOPT, that

are potentially detectable at future LISA-like space-based GW detectors.
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2.0 Non-Standard Neutrino Interactions with Flavored Gauge Boson Z ′

In this chapter, we consider the NSI induced by a flavored gauge boson Z ′ [51]. In

general, neutral and charged current NSI can be described by dimension-six four-fermion

operators of the form [9, 52],

L NC
NSI = −2

√
2GF

∑
C

εfPCαβ (ν̄αγ
µPLνβ)(f̄γµPCf)

= −
√

2GF ε
fV
αβ (ν̄αγ

µPLνβ)(f̄γµf)−
√

2GF ε
fA
αβ (ν̄αγ

µPLνβ)(f̄γµγ
5f) ,

(2.1)

L CC
NSI = −2

√
2GF

∑
C

εff
′,PC

αβ (ν̄αγ
µPL`β)(f̄γµPCf

′)

= −
√

2GF ε
ff ′,V
αβ (ν̄αγ

µPL`β)(f̄γµf
′)−
√

2GF ε
ff ′,A
αβ (ν̄αγ

µPL`β)(f̄γµγ
5f ′) ,

(2.2)

where α, β label the lepton flavors (e, µ, τ), f and f ′ denote the fermion fields (u, d, e), and

C indicates the chirality (L,R). Here,

εfVαβ ≡ εfLαβ + εfRαβ , εfAαβ ≡ εfRαβ − εfLαβ , (2.3)

with εfLαβ , εfRαβ being dimensionless parameters that quantify the strength of the new interac-

tions in units of the Fermi constant, GF ≡ (
√

2v2
h)
−1, with vh = 246 GeV, the electroweak

scale. These contact interactions arise as a result of integrating out a vector mediator

significantly heavier than the typical momentum transfer of the processes. As such, the

dimensionless coupling parameters are naturally of the order of ε ∼ g′2v2
h/M

2, where M and

g′ are the mediator’s mass and coupling. Note that NSI are of the same form as Eqs. (1.1)

and (1.2), but the scale and couplings are free parameters to reflect the unknown nature of

new physics.

In this chapter, we focus on a simple model in which the NSI is induced by a gauge

boson Z ′ associated with a new U(1)′ symmetry. Assuming the presence of three right-

handed neutrinos, the most general anomaly-free U(1)′ model can be generated by

X = Q′1B1 +Q′2B2 +Q′3B3 +Q′eLe +Q′µLµ +Q′τLτ , (2.4)
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with the quark charges Q′1,2,3 and lepton charges Q′e,µ,τ satisfying the constraint [53]

3(Q′1 +Q′2 +Q′3) +Q′e +Q′µ +Q′τ = 0 . (2.5)

We further require Q′1 = Q′2 = Q′3 = Q′q to avoid large flavor changing neutral currents in

the quark sector. The Lagrangian can be written as

L = LSM −
1

4
Z ′µνZ ′µν +

1

2
M2

Z′Z
′µZ ′µ + Z ′µJ

µ
X , (2.6)

where the current1

JµX = g′
[∑

q

Q′q q̄γ
µq +

∑
L`=ν`L,`

Q′`L`γ
µL`

]
, (2.7)

with g′ being the U(1)′ coupling constant. Since neutrino oscillations are not affected by

flavor universal NSI, here we only consider nonuniversal flavor-conserving NSI. Also, because

scenarios involving Le are heavily constrained in the low-mass region by electron beam-dump

experiments [54, 55, 56, 57, 58, 59], we set Q′e = 0 and only consider the less constrained

eletrophobic NSI. For the sake of illustration, we take the following three cases for our

benchmark studies [60]:

(A) Q′q = 1/3, Q′µ = −3, Q′e = Q′τ = 0.

(B) Q′q = 1/3, Q′µ = Q′τ = −3/2, Q′e = 0.

(C) Q′q = 1/3, Q′τ = −3, Q′e = Q′µ = 0.

Note that in all three cases the new gauge boson couples to quarks universally. The partial

decay width to a pair of fermions is given by

Γ(Z ′ → ff̄) =
NfQ

′2
f g
′2

12πMZ′
(M2

Z′ + 2m2
f )

√
1−

4m2
f

M2
Z′
, (2.8)

where Nq = 3, Nl = 1, and Nν = 1/2. The branching fractions can then be calculated

assuming that the total decay width of the Z ′ is the sum over the SM fermion final states

given in Fig. 1. It is important to note that a SM gauge-invariant formulation of NSI often

leads to simultaneous couplings to charged leptons due to the symmetry nature of the gauge

doublet2 (ν, `). This opens up new avenues to search for the new physics associated with
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Figure 1: The branching fractions of Z ′ for Case A (upper right), B (upper left), and C

(bottom), with q = {u, d, c, s, b}.

NSI, and it also results in stringent constraints on NSI owing to the correlation with the

charged leptons. As such, the new gauge boson, if heavy, can be most conveniently searched

for at high-energy colliders, especially at the LHC in the di-lepton final state,

p p→ `+`− +X , (2.9)

where X denoted everything in an inclusive search. For our benchmark choices, we have

` = µ for Cases A and B, and ` = τ for Case C. We note that in Cases A and B, where muon

number Lµ is involved, one also can make use of e+e−/pp → 4µ decays at the B-factories

1We have decoupled νR assuming they are heavy and inaccessible.
2It is possible, though, to arrange for the charged lepton coupling to vanish [61, 62].
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and LHC to search for a relatively low mass gauge boson. We do not consider Z ′ bosons

lighter than 5 MeV to avoid affecting big bang nucleosynthesis. Once a signal for new physics

is observed, it is ultimately important to seek other complementary signals to establish a

consistent picture of the underlying physics. In this thesis, we set out to consider correlated

signatures between CEνNS and collider searches.

2.1 Neutrino Oscillation Experiments

The Hamiltonian for neutrino propagation in the presence of neutral current NSI is

H =
1

2E
U


0 0 0

0 ∆m2
21 0

0 0 ∆m2
31

U † + V , (2.10)

where E is the neutrino energy and U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

mixing matrix [8]

U =


c13c12 c13s12 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ c13s23

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c13c23

 , (2.11)

and V is the potential from interactions of neutrinos in matter, which can be expressed using

the NSI operators in Eq. (2.1) as

V = VCC


1 + εee εeµ εeτ

ε∗eµ εµµ εµτ

ε∗eτ ε∗µτ εττ

 . (2.12)

Here, VCC ≡
√

2GFNe, is the standard matter potential, and the effective NSI parameters

are

εαβ ≡
∑
q

εqVαβ
Nq

Ne

(2.13)
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with Nq,e the number density of fermions q = u, d and e. The diagonal elements are real

and can lead to lepton flavor non-universality. The off-diagonal terms are complex and can

generate flavor-changing processes. There are a total of 3 (f = {u, d, e}) × 2 (C = {R,L})
× 9 = 54 free parameters in the NSI parameterization. Neutrino oscillation experiments are

not sensitive to the absolute matter potential. Thus, without loss of generality, the εµµ can

be subtracted out and the diagonal parts are diag(1+ εee− εµµ, 0, εττ − εµµ). This degeneracy

can be probed by scattering experiment, like COHERENT. As a consequence of the CPT

symmetry, neutrino propagation is invariant under H → −H∗, which lead to

∆m2
31 → −∆m2

31 + ∆m2
21 = −∆m2

32, (2.14)

θ12 → π/2− θ12, (2.15)

δCP → π − δCP , (2.16)

εee − εµµ → −(εee − εµµ)− 2, (2.17)

εττ − εµµ → −(εττ − εµµ), (2.18)

εαβ → −ε∗βα (α 6= β). (2.19)

The transformation in Eq. (2.14) will flip the mass spectrum. So, there is degeneracy in NSI

parameters with different mass ordering. This is also probable via scattering experiments.

The charged-current NSI can modify the production and detection in the neutrino oscil-

lation experiments. In this work, we will noly consider neutral-current NSI induced from a

Z ′ model. Since neutrino propagation in matter is affected by coherent forward scattering,

in which the momentum transfer is zero, the effective Lagrangian from Eq. (2.6) that is

relevant for NSI can be written as

Leff = −(g′)2

M2
Z′

[∑
q

Q′q q̄γ
µq

][∑
α

Q′αν̄αγ
µPLνα

]
, (2.20)

regardless of the Z ′ mass. Comparing Eqs. (2.1) and (2.20), we have

εqVαα =
(g′)2Q′αQ

′
q√

2GFM2
Z′

. (2.21)

We can then use the bounds on the NSI parameters from neutrino oscillation experiments

to constrain the parameter spaces in the Z ′ models. For Case A (C), the model predicts
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Figure 2: Bounds on g′ for Cases A (upper left panel), B (upper right panel) and C (lower

panel). The details of descriptions are in the main text.

that only εµµ (εττ ) is nonzero. For Case B, since εµµ is equal to εττ , and neutrino oscilla-

tion probabilities are not affected by a subtraction of a diagonal contribution from the full

Hamiltonian, we can obtain constraints on Case B from bounds on NSI with only εee being

nonzero.

We adopt the 2σ bounds on εuαα from the global analysis of current oscillation data [1]

as compiled in Table 1. Note that neutrino oscillation data constrain differences between

two diagonal ε’s, not individual diagonal ε’s. To obtain bounds on a single ε, we set one

of the two ε’s to be zero. We bound εuµµ by choosing the smaller of the values obtained

by setting εuee = 0 in εuee − εuµµ and εuττ = 0 in εuττ − εuµµ. We apply them to constrain the

theory parameter space in the (MZ′ , g
′) plane and the exclusion regions are shown as the
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Current data DUNE+T2HK

εuee [−1.192,−0.802]⊕ [−0.020,+0.456] [−0.407,−0.270]⊕ [−0.072,+0.064]

εuµµ [−0.130, 0.152] [−0.019,+0.018]

εuττ [−0.152, 0.130] [−0.017,+0.017]

Table 1: 2σ allowed ranges for the diagonal NSI parameters from the global analysis of

current neutrino oscillation data [1], and from a simulation of DUNE and T2HK.

purple areas in Fig. 2. Note that the bounds from the global analysis are obtained under the

assumption that all NSI parameters are nonzero and then projected to one NSI parameter.

Since degeneracies among NSI parameters can significantly weaken the constraints on an

individual NSI parameter [63], the current bounds from the global analysis of oscillation

data should be considered to be conservative.

We also consider the sensitivity of the next generation long-baseline neutrino oscillation

experiments, DUNE [64] and T2HK [65]. We follow the procedure of Ref. [66], and simulate

the DUNE and T2HK data assuming the normal neutrino mass hierarchy, the neutrino CP

phase δ = 0, and εαα = 0. We scan over both the mass hierarchies, the neutrino oscillation

parameters and take only one diagonal εαα to be nonzero at a time. The 2σ allowed ranges

for the diagonal NSI parameters are provided in the last column of Table 1. The expected

sensitivities in the (MZ′ , g
′) parameter space are shown as the purple dashed lines in Fig. 2.

As expected, it simply scales linearly with g′/MZ′ . The reaches for the three cases are

roughly similar. For instance, at MZ′ ∼ 10 GeV, the sensitivity for the couplings can reach

g′ ∼ 0.008 (0.02) [0.008] for Case A (B) [C]. We see that future bounds on NSI will be

improved by a factor of a few compared to current bounds, and the current constraints on

the parameter space in Case C for MZ′ . 200 GeV only come from neutrino oscillation data.
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2.2 CEνNS

CEνNS has recently been measured by the COHERENT experiment, which detects neu-

trinos from the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Neu-

trinos at the SNS [67] consist of a prompt component of monoenergetic νµ from the stopped

pion decays, π+ → µ+ + νµ, and two delayed components of ν̄µ and νe from the subsequent

muon decays, µ+ → e+ + ν̄µ + νe. As a result of two-body decay, the νµ is monochromatic

with energy to be Eνµ = (m2
π−m2

µ)/(2mπ) ≈ 29.7 MeV, where mπ and mµ are the pion and

muon masses, respectively. The delayed neutrinos νe and ν̄µ follow a continuous distribution

with a kinematic upper bound, mµ/2 ≈ 50 MeV. The normalized fluxes of three neutrino

flavors (νµ, ν̄µ and νe) are well known and given by

φνµ(Eνµ) = N 2mπ

m2
π −m2

µ

δ

(
1− 2Eνµmπ

m2
π −m2

µ

)
,

φνe(Eνe) = N 192

mµ

(
Eνe
mµ

)2(
1

2
− Eνe
mµ

)
, (2.22)

φνµ(Eνµ) = N 64

mµ

(
Eνµ
mµ

)2(
3

4
− Eνµ
mµ

)
,

where N is a normalization factor determined by the experimental setup. The expected

number of events with recoil energy in the energy range [Er, Er + ∆Er] and arrival time in

the time interval [t, t+ ∆t] is given by

Nth(t, Er, ε) =
∑
α

mdetNA

M

∫
∆Er

dEr

∫
∆t

dtρα(t)

∫ Emax
ν

Emin
ν

dEν φα(Eν)
dσα(ε)

dEr
, (2.23)

where mdet is the detector mass, M is the molar mass of the target nucleus, NA = 6.022 ×
1023 mol−1, ρα(t) is the arrival time Probability Density Function (PDF) provided in the

COHERENT data release [68], and α = νµ, ν̄µ, νe. We assume that the presence of new

neutral current interactions do not modify the arrival time PDF.

Neglecting radiative corrections, the differential cross section for a given neutrino flavor

να scattering off a nucleus is given by

dσα(ε)

dEr
=
G2
F

2π
Q2
αF

2(Q2)M(2− MEr
E2
ν

) , (2.24)
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where F (Q2) refers to the nuclear form factor taken from Ref. [69]. In the presence of NSI,

the effective charge can be written as

Q2
α = [Z(gVp + 2εuVαα + εdVαα) +N(gVn + εuVαα + 2εdVαα)]2 , (2.25)

where Z (N) is the number of protons (neutrons) in the nucleus, gVp = 1
2
− 2 sin2 θW and

gVn = −1
2

are the SM weak couplings, and θW is the weak mixing angle. The NSI parameters

for coupling to up and down quarks can be written as

εuVee = εdVee =
g′2Q′qQ

′
e√

2GF (2MEr +M2
Z′)

,

εuVµµ = εdVµµ =
g′2Q′qQ

′
µ√

2GF (2MEr +M2
Z′)

.

(2.26)

For the CsI detector, the total cross section is a sum of the contributions of 133Cs and 127I,

i.e.,
dσα,CsI

dEr
=
dσα,Cs

dEr
+
dσα,I
dEr

. (2.27)

To compare with COHERENT data, we convert the nuclear recoil energy to the number of

photoelectrons (nPE) using the relation [70],

nPE = 1.17(Er/keV) . (2.28)

Note that we do not use the new quenching factor reported in Ref. [71] as it is still under in-

vestigation by the COHERENT collaboration [72]. We employ the acceptance function [68],

A(nPE) =
k1

1 + e−k2(nPE−x0)
θ(nPE − 5) , (2.29)

where k1 = 0.6655, k2 = 0.4942, x0 = 10.8507 and θ(x) is the Heaviside step function.

Because the number of events is small and experimental uncertainties large, we use the

energy spectrum (but not the timing information) measured by the CsI detector to evaluate

the statistical significance of a nonstandard scenario. We define

χ2 =
15∑
i=4

[
N i

meas −N i
th(1 + γ)−Bon(1 + β)

σistat

]2

+

(
γ

σγ

)2

+

(
β

σβ

)2

, (2.30)
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where N i
meas and N i

this the number of measured and predicted events per energy bin, re-

spectively. The statistical uncertainty per energy bin is σistat =
√
N i

exp + 2Bi
SS +Bi

on, where

BSS and Bon are the estimated steady-state and beam-on backgrounds, respectively. BSS is

determined by the anti-coincident (AC) data, and Bon mainly consists of prompt neutrons.

Both the spectral and temporal distributions of the backgrounds are provided by the CO-

HERENT collaboration [68]. For the signal normalization uncertainty, we follow the original

COHERENT analysis and choose σγ = 0.28, which includes the neutrino flux uncertainty

(10%), form factor uncertainty (5%), signal acceptance uncertainty (5%), and quenching

factor uncertainty (25%). For the beam-on background uncertainty, we fix σβ = 0.25 [70].

We scan over values of the coupling g′ and the mediator mass MZ′ . The 2σ exclusion re-

gions in the (MZ′ , g
′) plane are shown as the red regions in Fig. 2 for Cases A and B. For

MZ′ & 50 MeV, the current constraint from COHERENT CsI is comparable to the expected

sensitivity of DUNE+T2HK for Case B, and is weaker by about a factor of two for Case

A. For very small MZ′ DUNE+T2HK has greater sensitivty than the current COHERENT

bounds for both Cases A and B. Note that COHERENT data does not place bounds on

Case C because the SNS beam does not have ντ and ν̄τ .

The COHERENT collaboration has an extensive upgrade plan [73], part of which is a

750 kg LAr detector located at L = 29 m from the source. We assume a 4-year exposure

with the same neutrino production rate as the current setup, which corresponds to 8.4×1023

protons-on-target (POT) in total. Since both the spectral and temporal distributions of

the recoil energy events depend on the flavor structure, we perform a two dimensional anal-

ysis that utilizes both the spectral and temporal information. To estimate the projected

sensitivities at the LAr detector, we adopt the likelihood function from Ref. [74], i.e.,

L(~θ) ∝
∏

(t,Er)

∫ ∫
exp{−λ(t, Er)}

{λ(t, Er)}Nobs(t,Er)
Nobs(t, Er)!

× exp(−γ2/2σ2
γ)√

σ2
γ

× exp{−βNobs,bg(t, Er)}
{βNobs,bg(t, Er)}Nobs,bg(t,Er)

Nobs,bg(t, Er)!
dγ dβ . (2.31)

where λ(t, Er) = (1 + γ)Nth(t, Er, ε) + βNobs,bg(t, Er). We calculate the number of events

expected in the SM for each bin within the range 0 < t < 6µs and 20 keV < Er < 100 keV,

with bin sizes of 0.5 µs and 2 keV, respectively. We assume that the steady-state background
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is uniform in energy and is 1/4 of the SM expectation. We also assume the systematic

uncertainty σγ to be 17.5%, which corresponds to a reduced quenching factor uncertainty

of 12.5% for LAr. A more precise treatment would include energy-dependent form factor

uncertainties [75]. The projected sensitivities are shown by the purple dashed line in Fig. 2.

A factor of three improvement is expected in the sensitivity to the coupling, compared to

the current CsI results. We see that future CEνNS experiments will set stronger bounds

than next generation neutrino oscillation experiments for most Z ′ masses in Cases A and B,

and will provide the strongest constraints for 20 (10) MeV .MZ′ . 1 GeV in Case A (B).

2.3 Collider Searches

As emphasized in the introduction, a SM gauge-invariant formulation of NSI often results

in simultaneous couplings to charged leptons. This opens up new avenues to search for the

new physics associated with NSI, in particular at colliders. We explore the sensitivity reach

at the LHC for NSI via a di-lepton final state from the Drell-Yan (DY) production of a Z ′,

pp→ Z ′ → `+`− +X , (2.32)

with ` = µ, τ and X denotes other inclusive states (like a jet) when kinematically favorable

for the signal identification. This is a particularly sensitive signal MZ′ > MZ . We also

include a four-lepton final state,

pp→ Z∗/γ∗ → `+`− + Z ′ → `+`− + `+`− +X. (2.33)

This channel is more suitable for a low mass Z ′ as we will see below.

We use the Monte Carlo event generator MadGraph5 aMC@NLO [76] to generate signal

and background samples with the NN23LO1 PDF set [77]. The NSI Lagrangian is imple-

mented in the FeynRules 2.0 [78] framework. Pythia 8.1 [79, 80] is used for parton showering

and hadronization. Matching is performed with the MLM prescription [81]. The generated

events are passed into Delphes 3.4.1 [82] for fast detector simulation.
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2.3.1 Cases A and B: µ final states

In Case A, the new gauge boson couples to quarks universally, and only to second gen-

eration leptons. While in Case B, the new gauge boson couples equally to second and third

generations leptons. We first apply the existing LHC bound on searches for the di-muon

final state to both cases, given that muons are much easier to identify than taus at the LHC.

ATLAS [83] has performed a search for di-lepton resonances in the 250 GeV .MZ′ . 6 TeV

mass range setting a 2σ upper limit on the fiducial cross section times branching ratio with

139 fb−1 at
√
s = 13 TeV. The fiducial region is defined by the acceptance cuts,

pµT > 30 GeV, |ηµ| < 2.5, m`` > MZ′ − 2ΓZ′ . (2.34)

To extract limits on g′, we calculate σ(pp→ Z ′+X) ·B(Z ′ → µ+µ−) in the fiducial region at

leading order (LO). The expected signal yields are rescaled to next-to-leading order (NLO)

accuracy using a K-factor of 1.3 [84]. From the auxiliary figure 2c of Ref. [83], the upper

limits at 2σ on the fiducial cross section from ATLAS are translated into the bounds on our

model parameters, shown as the blue shaded regions in the upper panels of Fig. 2. This

search excludes g′ & 1.6 (2.4)× 10−3 for MZ′ ≈ 250 GeV in Case A (B).

Searches for dark photons decaying to di-leptons can shed light on new vector bosons, es-

pecially relatively light ones. In Cases A and B, we recast prompt-like dark photon searches

at LHCb [85] to obtain constraints in the mass range 200 MeV to 70 GeV based on the

framework developed in Ref. [86]. This is the most sensitive probe currently in this mass

window except near the resonances like J/ψ, Υ and approaching the Z-pole. The corre-

sponding upper limits on the coupling at 90% CL are shown by the blue shaded regions in

Fig. 2.

Having discussed the bounds from the di-muon final state, we turn to the four-muon

final state. Both the BaBar and CMS have performed searches for the decay, γ∗/Z∗ →
µ+µ−Z ′ → 4µ. The BaBar searches [87] set a 90% CL upper limit on the new gauge

coupling based on a Lµ − Lτ model corresponding to Q′q = Q′e = 0, Q′µ = −Q′τ = 1 in

our parameterization. The CMS searches [88] set a 2σ upper limit on g′ by assuming the

branching ratio B(Z ′ → µ+µ−) = 1/3 and Q′µ = 1. By rescaling the observed bounds
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according to the branching fractions and production cross section, we extract bounds for

our scenarios. The brown curves show the BaBar and CMS bounds in the upper panels of

Fig. 2. We see that the current bound from the LHCb dark photon search is dominant in

the medium mass range and disfavors g′ & 10−4 for MZ′ ≈ 200 MeV.

We further estimate the sensitivity reach via the di-muon channel Z ′ → µ+µ− for 10 .

MZ′ . 6000 GeV at the high-luminosity LHC (HL-LHC) with the full 3000 fb−1 integrated

luminosity. The signal is from the DY process as in Eq. (2.32). We select events that

contain at least two opposite-sign muons. The leading (subleading) muon is required to have

pT > 22 (10) GeV. All muons are required to have |η| < 2.4. Finally, in calculating the

sensitivity, we apply a mass window cut 0.97 MZ′ < M(`+`−) < 1.03 MZ′ below 3 TeV,

and use a 3 − 6 TeV mass window to ensure enough background events in the high mass

region, to optimize the signal observability. The dominant background is from the SM DY

process. We also include smaller background contributions from tt̄, tW , WW and ZZ. We

generate the signal and DY background with up to two additional jets in the phase space

Mµµ < 60 GeV. This is so that for a lighter Z ′, the additional jets help to kick the leptons to

a high momentum for more efficient triggering. For Mµµ > 60 GeV, we generate the signal

and DY background at LO and apply the combined QCD and electroweak corrections to the

invariant mass distributions according to Ref. [89]. tt̄ and tW backgrounds are generated at

LO and normalized to NNLO + NNLL by a K-factor of 1.84 [90] and 1.35 [91] respectively.

TheWW,WZ, and ZZ backgrounds are normalized to NNLO QCD by a K-factor of 1.98 [92],

2.07 [93], and 1.74 [94] respectively. The local significance is defined as

Sl =
NS√
NB

, (2.35)

where NS (NB) is the expected number of signal (SM background) events. The blue solid

(dashed) curves in the upper panels of Fig. 2 show the 2σ (5σ) sensitivities. The sensitivity

is significantly improved in a broad mass range.
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2.3.2 Case C: τ final states

For Case C, the signal channel at the LHC is pp → Z ′ + X with Z ′ decaying to a tau

pair. For a high-mass mediator decaying to di-tau, ATLAS [95] and CMS [96] have set a 2σ

upper limit on inclusive σ(pp → Z ′ + X) · B(Z ′ → τ+τ−) in the 200 GeV . MZ′ . 4 TeV

(ATLAS) and 500 GeV .MZ′ . 3 TeV (CMS) mass ranges with
√
s = 13 TeV and 36.1 fb−1

and 2.2 fb−1, respectively. We only display the ATLAS constraint on g′ in the lower panel

of Fig. 2.

We also estimate the sensitivity reach for 20 GeV . MZ′ . 6000 GeV at the HL-LHC

with 3000 fb−1 of integrated luminosity. There are mainly four decay modes for di-tau,

namely, τeτµ(6%), τeτh(23%), τµτh(23%), and τhτh(42%), where h denotes a hadron. In this

analysis, we use the TauDecay package [97] to model the relatively clean leptonic and semi-

leptonic decay modes of the taus. The main backgrounds for τeτµ are tt̄, WW , and DY. For

the semi-leptonic modes, the main backgrounds are DY and W+jets. To include the QCD

multijet background in the semi-leptonic modes, we add 6% and 28% of the sum of the DY

and W+jets backgrounds for the τµτh and τeτh modes, respectively [96]. The signal and DY

background events are generated at LO and scaled by a K-factor of 1.3 [84] for Mττ > MZ ,

while for Mττ < MZ , we generate the signal and DY background with up to two additional

jets in the final states. We generate tt̄, WW , and W+jets background events at LO. To take

higher-order corrections into account, the LO cross section of tt̄ is normalized to the NNLO

+ NNLL cross section by a factor of 1.84 [90]. The LO cross sections of WW and W+jets

are normalized to NNLO QCD by a factor of 1.98 [92] and 1.46 [98], respectively. To reduce

the background, we implement two different selection rules SR1 and SR2 for MZ′ below and

above the Z-pole. In the τeτµ mode, both SR1 and SR2 require:

• Only one muon and one oppositely charged electron with pT > 20 GeV and |η| < 2.4,

• veto b-tagged jets,

• 0.2MZ′ < Mτ1τ2 < 0.8MZ′ ,

• Mµ
T < 40 GeV,

where τ1 and τ2 are respectively e and µ, and Mµ
T is the transverse mass of the charged
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lepton µ and the missing transverse momentum ~/ET is defined as

Mµ
T =

√
2P µ

T · /ET (1− cos ∆φ(µ, ~/ET )) .

In addition, SR1 requires

• ∆R(τ1, τ2) < ∆Rcut , (2.36)

where ∆R is the angular distance between τ1 and τ2. ∆Rcut is varied with MZ′ to maximize

the local significance Sl. For example, we choose ∆Rcut = 1.0 (1.6) for MZ′ = 20 (40) GeV.

SR2 further requires

• cos ∆φ(τ1, τ2) < −0.95 ,

• cos ∆φ(τ1,
~/ET ) + cos ∆φ(τ2,

~/ET ) > −0.1 ,

• /ET > /E
cut
T ,

(2.37)

where the missing energy cut /E
cut
T is varied with MZ′ to maximize the local significance Sl.

We take /E
cut
T to be 40 (450) GeV for MZ′ = 500 (2000) GeV. In the τ`τh modes, both SR1

and SR2 require:

• Only one charged lepton and at least one opposite-sign tau-tagged jet with

pT > 20 GeV and |η| < 2.4,

• veto b-tagged jets,

• 0.3MZ′ < Mτ1τ2 < 0.9MZ′ ,

• M `
T < 40 GeV.

(2.38)

The further requirements of SR1 and SR2 are the same as for the leptonic τeτµ mode, with

τ1 and τ2 the charged lepton and tau-tagged jet, respectively. The blue solid (dashed) curve

in the lower panel of Fig. 2 shows the 2σ (5σ) sensitivity for Case C using a combination of

the three decay modes (τeτµ, τeτh, and τµτh), respectively, with 3000 fb−1 at the HL-LHC.
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2.4 Correlated Signatures at CEνNS and Collider Experiments

It is of fundamental importance that we observe correlated signals of NSI in different

experiments. In this section, we study correlated signatures at future CEνNS and collider

experiments. We first simulate spectra in the presence of NSI and then examine the consis-

tency between the two experiments in the hope of identifying a correlated signal. We select

the benchmark point,

MZ′ = 10 GeV and g′ = 0.002 ,

for Cases A and B and explore how a signal observed in one experiment will manifest in

another. The point is marked with a star in Fig. 2. The point is chosen so that observable

signals can be produced at COHERENT and at the LHC. Since this set of parameters does

not produce a signal at DUNE and T2HK, we focus on correlated signatures at COHERENT

with an upgraded LAr detector and the high luminosity LHC with L = 3000 fb−1. Note

that the benchmark point is chosen in a currently allowed narrow region near m(Υ(1S)),

and that LHCb data impose strong constraints for MZ′ below and above it.

We first study signatures at COHERENT with an upgraded LAr detector. The recoil

energy and temporal distributions of the events are shown in the left and right panel of

Fig. 3, respectively. As can be seen from the left panel, the event excess is mainly at low

energies. From the right panel, we see that the event excess peaks at around t = 1 µs. This

is due to the fact that the prompt component of the COHERENT flux is primarily composed

of νµ, and the NSI coupling to νµ leads to a modification of the number of events in Cases

A and B. To analyze the spectra and to facilitate a joint analysis with simulated LHC data,

we define

χ2(~θ) = −2 ln(L(~θ)) , (2.39)

where L(~θ) is defined in Eq. (2.31) with ~θ = {g′,MZ′}. We then calculate ∆χ2 = χ2 − χ2
min.

The 2σ allowed region for Case A and 1σ allowed region for Case B, with data simulated

with our benchmark point, are the regions between the red curves in Fig. 4. The 2σ regions

for Case B are too large to display.

We now study signatures at the HL-LHC. Since we are interested in the low-mass region,

we focus on the clean channel, Z → µ+µ−Z ′ → 4µ. We generate the leading process qq̄ → 4µ
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Figure 3: Recoil energy (left) and temporal (right) distributions in an upgraded

COHERENT LAr detector with mdet = 750 kg and 4 years of data. The black dashed

histograms correspond to the SM case, the red (blue) lines correspond to Case A (B) with

MZ′ = 10 GeV and g′ = 0.002.

at the leading order (LO). Following the CMS analysis [88], we require at least four well-

identified and isolated muons to have pT > 5 GeV and to be in the central region of the

detector |η| < 2.4, with at least two muons to have pT > 10 GeV and at least one to have

pT > 20 GeV. Dimuon candidates formed from an opposite sign muon pair are required to

have 4 < Mµ+µ− < 120 GeV. The four selected muons are required to have zero net charge

and 80 < M4µ < 100 GeV. The NNLO/LO K-factor is chosen to be 1.29 [88]. By following

the CMS procedure in Ref. [88], we are able to reconstruct MZ′ , whose distributions are

shown in the left panel of Fig. 5. Unfortunately for Z ′s of GeV mass, COHERENT sees an

overall suppression in the CEνNS event rate, but no spectral distortion, thereby precluding

it from determining MZ′ . So a di-muon invariant mass cut cannot be applied and the look-

elsewhere effect must be taken into account. Instead, we employ the M4µ distributions

(shown in the right panel of Fig. 5) to evaluate the precision with which the Z ′ parameters

can be determined. We divide the range of M4µ (80 GeV, 100 GeV) equally into 10 bins and
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perform a χ2 analysis with

χ2 =
∑
i

N2
S,i

NB,i + (σBNB,i)2
, (2.40)

where NS,i (NB,i) is the expected number of signal (background) events in the ith bin. The

background systematic uncertainty σB is chosen to be 5%. The parameters favored at 2σ

for Case A and at 1σ for Case B lie between the blue curves in Fig. 4; Case B has no lower

blue curve because the SM is allowed at 1σ. (The brown dashed curves in Fig. 2 for the 2σ

sensitivity to the 4µ channel are produced by requiring the di-muon invariant mass Mµ+µ−

to be within 2% of MZ′ , and defining the local significance as NS/
√
NB + σ2

BN
2
B.)
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Figure 4: 2σ allowed regions for Case A (left) and 1σ allowed regions for Case B (right)

from COHERENT with a large LAr detector (within the red curves) and HL-LHC Z → 4µ

decays (within the blue curves). The purple shaded regions (2σ for case A and 1σ for Case

B) are from our joint analysis. The magenta shaded regions are the allowed regions after

including the LHCb bound as a prior. The stars mark the best fit points from our joint

analysis.

We perform a joint analysis of future COHERENT and HL-LHC data by combining

the two χ2 in Eqs. (2.39) and (2.40). The resulting 2σ allowed regions for Case A and 1σ

allowed regions for Case B are shaded in purple in Fig. 4. Consider Case A. The fact that

the allowed regions from COHERENT and LHC have different slopes enables a combination
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of their datasets to limit MZ′ to be below about 60 GeV. However, a precise determination

of MZ′ is not achieved even by combining the datasets. For Case B, both COHERENT and

HL-LHC only provide upper bounds on g′ at 2σ. COHERENT dominates the sensitivity and

the HL-LHC does not lead to a clear signal observation in the parameter region considered.
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Figure 5: Distributions of the reconstructed MZ′ (left) and M4µ (right) at the HL-LHC

with
√
s = 14 TeV and L = 3000 fb−1 for MZ′ = 10 GeV and g′ = 0.002, for Case A (red

curves) and Case B (blue curves).

We now impose the stringent bounds from LHCb. To include the LHCb constraint,

for each value of MZ′ we add χ2
LHCb = 2.71(g′/g′bound)2 to our joint χ2, where g′bound is the

90% CL exclusion limit from LHCb at that value of MZ′ ; note that the LHCb dark photon

search [85] is performed independently at each mass, so that only one parameter, g′, is varied

in the analysis. On including the LHCb constraint, the allowed regions shrink significantly;

see the magenta shaded regions in Fig. 4.
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3.0 Renormalization Group Evolution of the SMNEFT Dimension Six

Operators

The SM of particle physics is an effective theory valid to some mass scale Λ. New physics

at the scale Λ may address important issues like the origin of the electroweak scale, µEW .

In the SM, electroweak symmetry breaking arises from a complex fundamental Higgs scalar.

Between µEW and Λ, an EFT framework can be used to describe new physics in a model

independent way. In this approach, the leading terms are given by the SM, and corrections

from an underlying theory beyond the SM are described by higher dimension operators,

L =
∑
i

CiOi . (3.1)

The operators Oi are SU(3)C × SU(2)L × U(1)Y invariant and are constructed only from

SM fields. The renormalization scale dependent Wilson coefficient (WC) Ci, determines the

size of the contribution of operator Oi, and is calculated by matching the effective theory

with the underlying theory.

Analyses of higher dimension operators [13] have begun anew in the study of the SM

as an EFT. Due to the phenomenological success of the SM gauge theory and the Higgs

mechanism, the most studied EFT is the SMEFT [14, 15, 16], which respects the SM gauge

symmetry with only SM field content. The one-loop renormalization group evolution (RGE)

of all dimension-six operators in SMEFT have been calculated in Refs. [99, 100, 101].

In the SMEFT framework, new physics is considered to be heavy with Λ� µEW . How-

ever, many experiments point to new physics with a mass scale well below the electroweak

scale, and many experiments to search for new light states are planned. Since these states do

not appear in SMEFT, its Lagrangian must be supplemented by interactions between these

new states and the SM fields. Possible new states are right-handed neutrinos that are sterile

under SM gauge interactions. The masses of the sterile neutrinos can vary over a large range

and can be heavy or light compared to the electroweak scale. Light sterile neutrinos have

been invoked to explain many phenomena; see Ref. [102] for a review.
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We consider the sterile neutrinos to be light so that they appear as explicit degree of

freedoms in the EFT framework. We use the SMNEFT which augments SMEFT with right-

handed neutrinos n [23, 24, 25, 26, 22]. The RGE of some SMNEFT operators have been

calculated. The mixing between the bosonic operators has been calculated in Refs. [103, 104],

and the one-loop RGE of a subset of four-fermion operators are given in Ref. [105]. In this

chapter, we present the gauge terms of the one-loop RGE of all dimension-six operators

in SMNEFT [106]. We also calculate the Yukawa coupling contributions to the one- loop

anomalous dimension matrix for the 11 dimension-six four-fermion SMNEFT operators and

the new contributions to the anomalous dimension matrix for the 14 four-fermion SMEFT

operators that mix with the SMNEFT operators through the Yukawa couplings of the right-

handed neutrinos [107].

3.1 Framework

In this section, we present the framework of SMNEFT. The dimension-six B and L

conserving SMNEFT Lagrangian is

L (6)
SMNEFT ⊃ LSM + in̄/∂n+ LYukawa + +

∑
i

CiOi , (3.2)

where Ci are the WCs with the scale of new physics absorbed in them, and the SM Lagrangian

is given by

LSM = = −1

4
GA
µνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν

+ (Dµφ)†(Dµφ) +m2φ†φ− λ

2
(φ†φ)2

+ i(¯̀/D`+ ē /De+ q̄ /Dq + ū /Du+ d̄ /Dd)

− (¯̀Yeeφ+ q̄Yuuφ̃+ q̄Yddφ+ h.c.) . (3.3)
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Here, φ̃j = εjk(φk)
∗, and the Higgs vacuum expectation value is 〈φ〉 = vh/

√
2 with vh =

246 GeV. The covariant derivative and field strength tensors are defined by

Dµ = ∂µ + ig1yBµ + ig2
τ I

2
W I
µ + ig3

T a

2
Ga
µ , (3.4)

Bµν = ∂µBν − ∂νBµ , (3.5)

W I
µν = ∂µW

I
ν − ∂νW I

µ − g2ε
IJKW J

µW
K
ν , (3.6)

Ga
µν = ∂µG

a
ν − ∂νGa

µ − g3f
abcGb

µG
c
ν , (3.7)

where g1, g2, and g3 are the gauge couplings of U(1)Y , SU(2)L, and SU(3)C , respectively,

and y is the hypercharge. εIJK and fabc are the SU(2)L and SU(3)C structure constants,

respectively. The Yukawa terms are

LYukawa = −[φ†j d̄Ydqj + φ̃†jūYuqj + φ†j ēYe`j + φ̃†jn̄Yn`j + h.c.], (3.8)

The 16 baryon and lepton number conserving (∆B = ∆L =0 ) operators involving the

field n in SMNEFT are shown in Table 2 [26] in the Warsaw basis convention [14]. The four

types of Yukawa interaction vertices for the quark sector are shown in Fig. 6.

3.2 Anomalous Dimensions in SMNEFT

The Lagrangian can be written in terms of bare fields ~O(0)

LSMNEFT ⊃ ~C T · ~O = ~C T · Z · ~O(0), (3.9)

where Z = Zct/Zwr is the renormalization constant matrix which depends on corrections

from the counterterms, Zct, and the wavefunction renormalizations, Zwr. Given that the

bare operators and Lagrangian are independent of the renormalization scale µ, the RG

equations for the Wilson coefficients are

~̇C ≡ 16π2µ
d

dµ
~C = −16π2(ZT )−1µ

d

dµ
ZT ~C . (3.10)

The main task is to calculate the expressions for Zwr and Zct.
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(R̄R)(R̄R) (L̄L)(R̄R) (L̄R)(R̄L) and (L̄R)(L̄R)

Ond (n̄pγµnr)(d̄sγ
µdt) Oqn (q̄pγµqr)(n̄sγ

µnt) O`n`e (¯̀j
pnr)εjk(

¯̀k
set)

Onu (n̄pγµnr)(ūsγ
µut) O`n (¯̀

pγµ`r)(n̄sγ
µnt) O(1)

`nqd (¯̀j
pnr)εjk(q̄

k
sdt)

One (n̄pγµnr)(ēsγ
µet) O(3)

`nqd (¯̀j
pσµνnr)εjk(q̄

k
sσ

µνdt)

Onn (n̄pγµnr)(n̄sγ
µnt) O`nuq (¯̀j

pnr)(ūsq
j
t )

Onedu (n̄pγµer)(d̄sγ
µut)

ψ2φ3 ψ2φ2D ψ2Xφ

Onφ (φ†φ)(l̄pnrφ̃) Oφn i(φ†
↔
Dµφ)(n̄pγ

µnr) OnW (¯̀
pσ

µνnr)τ
I φ̃W I

µν

Oφne i(φ̃†Dµφ)(n̄pγ
µer) OnB (¯̀

pσ
µνnr)φ̃Bµν

Table 2: The 16 SMNEFT operators involving the right-handed neutrinos n in the Warsaw 

convention which conserve baryon and lepton number (∆B = ∆L = 0). The flavor indices 

‘prst’ are suppressed for simplicity. The fundamental SU(2)L indices are denoted by j, k, 

and I is the adjoint index.

3.3 Anomalous Dimensions in SMNEFT: Yukawa Dependence

Wavefunction renormalization is to renormalize the bare fieldψ (0) into the renormalized

fieldψ R as
ψR =

1√
Z

ψ(0). (3.11)
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dr qjp

φj

∝ [Y †
d ]pr

qjr dp

φj

∝ [Yd]pr

ur qjp

φk

∝ εjk[Y
†
u ]pr

qjr up

φk

∝ (ε†)kj[Yu]pr

Figure 6: The four types of Yukawa interaction vertices. The flavor indices ‘pr’ and SU(2)L

indices ‘jk’ are written explicitly.

Considering the four-fermion operator O4ψ = ψ̄1ψ2ψ̄3ψ4, the wavefunction renormalization

constant is given as

Zwr ≡

√√√√ 4∏
i=1

Zψi . (3.12)

From Fig. 7 , the Yukawa dependent wavefunction renormlaization of right-handed neutrino

n is

Z(Y )
n
pr

= 1−
γ

(Y )
n
pr

16π2ε
, (3.13)

where γ
(Y )
n
pr

= [YnY
†
n ]pr following the notation in Ref. [100] where we have assumed, in dimen-

sional regulation, dimension D = 4− 2ε. And similarly, we have,

γ
(Y )
`
pr

=
1

2
[Y †e Ye + Y †nYn]pr, γ(Y )

e
pr

= [YeY
†
e ]pr,

γ(Y )
q =

1

2
[Y †d Yd + Y †uYu]pr, γ

(Y )
d
pr

= [YdY
†
d ]pr, γ(Y )

u
pr

= [YuY
†
u ]pr. (3.14)

The corrections from counterterms cancel the UV divergence from the one-loop diagrams.

In the one-loop diagrams, there are 14 different structures as in Fig. 8; there are seven

counterparts to those shown. We display the UV divergent part of each structure in Fig. 8.
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nr np
`jv

φk

εjk[Y
†
n ]vr (ε†)kj [Yn]pv

Figure 7: Self-energy of n.

The UV divergent parts in Figs. 8a to 8c are of the form

Da = − 1

64π2ε
(ψ̄1γ

µΓ1γµψ2)(ψ3Γ2ψ4) , (3.15)

Db = − 1

64π2ε
(ψ̄1γ

µΓ1ψ2)(ψ̄3γµΓ2ψ4) , (3.16)

Dc = − 1

64π2ε
(ψ̄1Γ1γ

µψ2)(ψ̄3γµΓ2ψ4) , (3.17)

where Γ1 and Γ2 are the Lorentz structures for the upper and lower vertex, respectively.

In Fig. 8d, Γ1 has to be P2, which is the projection operator of the chiral fermion field ψ2,

because for the other possibilities, the UV divergent parts vanish. Thus we obtain

Dd =
1

16π2ε
(ψ̄1P2ψ2)(ψ̄3P4ψ4) . (3.18)

The UV divergent part of Fig. 8e is

De = − 1

32π2ε
(ψ̄1γ

µP2ψ2)(ψ̄3γµP4ψ4) . (3.19)

For the dipole operators in Figs. 8f and 8g, the UV divergent parts are

Df =
i

64π2ε
(ψ̄1σ

µνP2ψ2)(ψ̄3γ
βγαP4ψ4)(gµβgνα − gµαgνβ)

=
1

32π2ε
(ψ̄1σ

µνP2ψ2)(ψ̄3σµνP4ψ4) , (3.20)

Dg =
i

64π2ε
(ψ̄1σ

µνP2ψ2)(ψ̄3γ
αγβP4ψ4)(gµβgνα − gµαgνβ)

= − 1

32π2ε
(ψ̄1σ

µνP2ψ2)(ψ̄3σµνP4ψ4) . (3.21)

30



×
×

ψ2 ψ1

ψ4 ψ3

φ

(a)

×
×

ψ2 ψ1

ψ4 ψ3

φ

(b)

×
×

φ

ψ2 ψ1

ψ4 ψ3

(c)

×
×

ψ2 ψ1

ψ4 ψ3

φ

(d)

×
×

ψ2 ψ1

ψ4 ψ3

φ φ

(e)

×
×

ψ2 ψ1

ψ4 ψ3

V µ φ

(f)

×
×

ψ2 ψ1

ψ4 ψ3

φ V µ

(g)

Figure 8: The seven structures that contribute to the four-fermion operator anomalous

dimension matrix at the one-loop level.

To simplify our results further, we follow Ref. [100] and define the amplitudes in Fig. 9 in
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connection with Fig. 8d:

ξn
pr

= 2C `n
pwvr

[Y †n ]wv −NcC(1)
`nqd
prvw

[Yd]wv −NcC`nuq
prvw

[Y †u ]wv − C`n`e
prvw

[Ye]wv ,

ξ e
pr

= 2C `e
pwvr

[Y †e ]wv −NcC`edq
prvw

[Y †d ]wv +NcC(1)
`equ
prvw

[Yu]wv − C`n`e
vwpr

[Yn]wv ,

ξu
pr

= 2(C(1)
qu
pwvr

+ CF,3C(8)
qu
pwvr

)[Y †u ]wv − (NcC(1)
quqd
prvw

+
1

2
C(1)
quqd
vrpw

+
1

2
CF,3C(8)

quqd
vrpw

)[Y †d ]wv

+C(1)
`equ
vwpr

[Ye]wv − C∗`nuq
vwrp

[Y †n ]vw ,

ξ d
pr

= 2(C(1)
qd
pwvr

+ CF,3C(8)
qd
pwvr

)[Y †d ]wv − (NcC(1)
quqd
vrpw

+
1

2
C(1)
quqd
prvw

+
1

2
CF,3C(8)

quqd
prvw

)[Y †u ]wv

−C∗`edq
vwrp

[Y †e ]vw − C(1)
`nqd
vwpr

[Yn]wv , (3.22)

where the quadratic Casimir CF,3 = 4
3

and the number of colors Nc = 3. The ξ parameter

×
×

nr `p

φ

×
×

er `p

φ

×
×

ur qp

φ

×
×

dr qp

φ

Figure 9: The Feynman diagrams associated with the ξ parameters.

for right-handed neutrinos n (ξn), corresponds to the new terms in SMNEFT, while the last

terms in ξe, ξu and ξd are contributions from the right-handed neutrino Yukawa couplings

not present in SMEFT.

In this section, we present the Yukawa coupling contributions to the one-loop RGE for

all four-fermion SMNEFT operators, and the new RGE terms for the four-fermion SMEFT

operators due to the mixing between SMEFT and SMNEFT operators via the right-handed

neutrino Yukawa couplings Yn. The contributions from the fermionic operators come from
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the Feynman diagrams in Figs. 8a to 8d, with contributions from Fig. 8d given by the ξ

parameters.

The bosonic operators in Table 2 contribute to the SMNEFT ADM but not the SMEFT

ADM. The contribution from the bosonic operator ψ2φ2D is shown in Fig. 8e. The RGE

of the dipole operators O`n`e and O(3)
`nqd is modified by the ψ2Xφ operators in Table 2 and

the relevant diagrams are shown in Figs. 8f and 8g. These terms contain both gauge and

Yukawa coupling contributions.

3.3.1 SMNEFT: (R̄R)(R̄R)

Ċ nd
prst

= −2[YnY
†
n ]prCφd

st

+ 2[YdY
†
d ]stCφn

pr

− 2[Yn]pv[Y
†
n ]wrC `d

vwst
− 2[Yd]sv[Y

†
d ]wtC qn

vwpr

−([Yn]pv[Yd]swC(1)
`nqd
vrwt

+ [Y †n ]vr[Y
†
d ]wtC(1)∗

`nqd
vpws

) + 12([Yn]pv[Yd]swC(3)
`nqd
vrwt

+ [Y †n ]vr[Y
†
d ]wtC(3)∗

`nqd
vpws

)

+γ(Y )
n
pv

C nd
vrst

+ γ
(Y )
d
sv

C nd
prvt

+ C nd
pvst
γ(Y )
n
vr

+ C nd
prsv

γ
(Y )
d
vt

, (3.23)

Ċ nu
prst

= −2[YnY
†
n ]prCφu

st

− 2[YuY
†
u ]stCφn

pr

− 2[Yn]pv[Y
†
n ]wrC `u

vwst
− 2[Yu]sv[Y

†
u ]wtC qn

vwpr

+([Yn]pv[Y
†
u ]wtC`nuq

vrsw

+ [Y †n ]vr[Yu]swC∗`nuq
vptw

)

+γ(Y )
n
pv

C nu
vrst

+ γ(Y )
u
sv

C nu
prvt

+ C nu
pvst
γ(Y )
n
vr

+ C nu
prsv

γ(Y )
u
vt

, (3.24)

Ċ ne
prst

= −2[YnY
†
n ]prCφe

st

+ 2[YeY
†
e ]stCφn

pr

+ 2[YeY
†
n ]srCφne

pt

+ 2[YnY
†
e ]ptC∗φne

rs

− 2[Yn]pv[Y
†
n ]wrC `e

vwst

−([Yn]pv[Ye]swC`n`e
vrwt

+ [Y †n ]vr[Y
†
e ]wtC∗`n`e

vpws

) + ([Yn]pw[Ye]svC`n`e
vrwt

+ [Y †n ]wr[Y
†
e ]vtC∗`n`e

vpws

)

−2[Ye]sv[Y
†
e ]wtC `n

vwpr
+ γ(Y )

n
pv

C ne
vrst

+ γ(Y )
e
sv

C ne
prvt

+ C ne
pvst
γ(Y )
n
vr

+ C ne
prsv

γ(Y )
e
vt

, (3.25)

Ċ nn
prst

= −[YnY
†
n ]prCφn

st

− [YnY
†
n ]stCφn

pr

− [Yn]pv[Y
†
n ]wrC `n

vwst
− [Yn]sv[Y

†
n ]wtC `n

vwpr

+γ(Y )
n
pv

C nn
vrst

+ γ(Y )
n
sv

C nn
prvt

+ C nn
pvst
γ(Y )
n
vr

+ C nn
prsv

γ(Y )
n
vt

, (3.26)
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Ċnedu
prst

= 2[YdY
†
u ]stCφne

pr

+ 2[YnY
†
e ]prC∗φud

ts

− [Yn]pv[Yd]sw(C(1)
`equ
vrwt

− 12C(3)
`equ
vrwt

) + [Yn]pv[Y
†
u ]wtC`edq

vrsw

+[Y †e ]vr[Y
†
u ]wt(C(1)∗

`nqd
vpws

− 12C(3)∗
`nqd
vpws

) + [Y †e ]vr[Yd]swC∗`nuq
vptw

+γ(Y )
n
pv

Cnedu
vrst

+ γ
(Y )
d
sv

Cnedu
prvt

+ Cnedu
pvst

γ(Y )
e
vr

+ Cnedu
prsv

γ(Y )
u
vt

. (3.27)

3.3.2 SMNEFT: (L̄L)(R̄R)

Ċ qn
prst

= [Y †uYu − Y †d Yd]prCφn
st

− 2[YnY
†
n ]stC(1)

φq
pr

− 2[Yn]sv[Y
†
n ]wtC(1)

`q
vwpr

− [Yu]wr[Y
†
u ]pvC nu

stvw

+
1

2
([Yn]sw[Yd]vrC

(1)
`nqd
wtpv

+ [Y †n ]wt[Y
†
d ]pvC

(1)∗
`nqd
wsrv

) + 6([Yn]sw[Yd]vrC
(3)
`nqd
wtpv

+ [Y †n ]wt[Y
†
d ]pvC

(3)∗
`nqd
wsrv

)

−1

2
([Yn]sw[Y †u ]pvC`nuq

wtvr

+ [Y †n ]wt[Yu]vrC
∗
`nuq
wsvp

)− [Yd]wr[Y
†
d ]pvC nd

stvw

+γ(Y )
q
pv

C qn
vrst

+ γ(Y )
n
sv

C qn
prvt

+ C qn
pvst

γ(Y )
q
vr

+ C qn
prsv

γ(Y )
n
vt

, (3.28)

Ċ `n
prst

= [Y †nYn − Y †e Ye]prCφn
st

− 2[YnY
†
n ]stC(1)

φ`
pr

+ [Y †n ]pw[Yn]svC `n
vrwt

+ [Y †n ]vt[Yn]wrC `n
pvsw

−2[Y †n ]pv[Yn]wrC nn
vtsw
− 2[Y †n ]pv[Yn]wrC nn

vwst
− 2[Y †n ]vt[Yn]swC ``

pvwr
− 4[Y †n ]wt[Yn]svC ``

prvw

+
1

2
([Ye]wr[Yn]svC`n`e

vtpw
+ [Y †e ]pv[Y

†
n ]wtC∗`n`e

wsrv

) + ([Ye]wr[Yn]svC`n`e
ptvw

+ [Y †e ]pv[Y
†
n ]wtC∗`n`e

rswv

)

+[Yn]srξn
pt

+ [Y †n ]ptξ
∗
n
rs

+ γ
(Y )
`
pv

C `n
vrst

+ γ(Y )
n
sv

C `n
prvt

+ C `n
pvst
γ

(Y )
`
vr

+ C `n
prsv

γ(Y )
n
vt

− [Y †e ]pv[Ye]wrC ne
stvw

.

(3.29)

3.3.3 SMNEFT: (L̄R)(R̄L) and (L̄R)(L̄R)

Ċ`n`e
prst

= −4([Y †n ]vr[Y
†
e ]wtC ``

pvsw
− [Y †n ]vr[Y

†
e ]wtC ``

svpw
) + 4([Y †n ]wr[Y

†
e ]vtC ``

pvsw
− [Y †n ]wt[Y

†
e ]vtC ``

svpw
)

−4([Y †n ]pv[Y
†
e ]swC ne

vrwt
− [Y †n ]sv[Y

†
e ]pwC ne

vrwt
) + 4[Y †n ]sw[Y †e ]vtC `n

pvwr
+ 4[Y †n ]vr[Y

†
e ]pwC `e

svwt

+4g1(ye + y`)CnB
pr

[Y †e ]st − 8g1(ye + y`)CnB
sr

[Y †e ]pt − 6g2CnW
pr

[Y †e ]st + 12g2CnW
sr

[Y †e ]pt

+4g1(yn + y`)CeB
st

[Y †n ]pr − 8g1(yn + y`)CeB
pt

[Y †n ]sr − 6g2CeW
st

[Y †n ]pr + 12g2CeW
pt

[Y †n ]sr

−2ξn
pr

[Y †e ]st − 2ξ e
st

[Y †n ]pr + γ
(Y )
`
pv

C`n`e
vrst

+ γ
(Y )
`
sv

C`n`e
prvt

+ C`n`e
pvst

γ(Y )
n
vr

+ C`n`e
prsv

γ(Y )
e
vt

, (3.30)
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Ċ(1)
`nqd
prst

= −2[Y †n ]vr[Y
†
e ]pwC∗`edq

vwts

+ 2[Y †n ]pw[Y †d ]vtC qn
svwr

+ 2[Y †e ]pw[Y †u ]svC∗nedu
rwtv

+ 2[Y †n ]vr[Y
†
d ]swC `d

pvwt

−2[Y †d ]wt[Y
†
u ]svC`nuq

prvw

− 2[Y †n ]pw[Y †d ]svC nd
wrvt
− 2[Y †n ]vr[Y

†
d ]wtC(1)

`q
pvsw

+ 6[Y †n ]vr[Y
†
d ]wtC(3)

`q
pvsw

−2ξn
pr

[Y †d ]st − 2ξd
st

[Y †n ]pr + γ
(Y )
`
pv

C(1)
`nqd
vrst

+ γ(Y )
q
sv

C(1)
`nqd
prvt

+ C(1)
`nqd
pvst

γ(Y )
n
vr

+ C(1)
`nqd
prsv

γ
(Y )
d
vt

,

(3.31)

Ċ(3)
`nqd
prst

= −1

2
[Y †e ]pw[Y †u ]svC∗nedu

rwtv

+
1

2
[Y †n ]vr[Y

†
d ]wtC(1)

`q
pvsw

− 3

2
[Y †n ]vr[Y

†
d ]wtC(3)

`q
pvsw

1

2
[Y †n ]vr[Y

†
d ]swC `d

pvwt
+

1

2
[Y †n ]pw[Y †d ]vtC qn

svwr

+
1

2
[Y †n ]pw[Y †d ]svC nd

wrvt

−g1(yd + yq)CnB
pr

[Y †d ]st − g1(yn + y`)CdB
st

[Y †n ]pr +
3

2
g2CnW

pr
[Y †d ]st +

3

2
g2CdW

st
[Y †n ]pr

+γ
(Y )
`
pv

C(3)
`nqd
vrst

+ γ(Y )
q
sv

C(3)
`nqd
prvt

+ C(3)
`nqd
pvst

γ(Y )
n
vr

+ C(3)
`nqd
prsv

γ
(Y )
d
vt

, (3.32)

Ċ`nuq
prst

= 2[Y †n ]wr[Y
†
e ]pvC(1)∗

`equ
wvts

− 2[Y †n ]pw[Yu]svC qn
vtwr

+ 2[Y †n ]pw[Yu]vtC nu
wrsv

+ 2[Y †e ]pw[Yd]vtC∗nedu
rwvs

+2[Y †n ]vr[Yu]wtC(1)
`q
pvwt

+ 6[Y †n ]vr[Yu]wtC(3)
`q
pvwt

− 2[Y †n ]vr[Yu]wtC `u
pvsw
− 2[Y †u ]sv[Yd]wtC(1)

`nqd
prvw

−2ξn
pr

[Yu]st − 2ξ∗u
st

[Y †n ]pr + γ
(Y )
`
pv

C`nuq
vrst

+ γ(Y )
u
sv

C`nuq
prvt

+ C`nuq
pvst

γ(Y )
n
vr

+ C`nuq
prsv

γ(Y )
q
vt

, (3.33)

where yn = 0, ye = −1, y` = −1/2, yu = 2/3, yd = −1/3, and yq = 1/6 are the hypercharges.

The Yukawa interactions of the right-handed neutrinos modify the RGE of the four-fermion

SMEFT operators listed in Table 3. We only provide the additional terms induced by the

right-handed neutrino Yukawa couplings Yn. For the operators in the lower panel of Table 3,

the anomalous dimensions are modified via the ξ parameters in Eq. (3.22).

3.3.4 SMEFT: (L̄L)(L̄L)

Ċ ``
prst

⊃ 1

2
[Y †nYn]pr(C(1)

φ`
st

+ C(3)
φ`
st

) +
1

2
[Y †nYn]st(C(1)

φ`
pr

+ C(3)
φ`
pr

)

−1

2
[Yn]sv[Yn]wtC `n

prvw
− 1

2
[Yn]pv[Yn]wrC `n

stvw

−1

2
([Yn]vr[Ye]wtC`n`e

pvsw
+ [Yn]wt[Ye]vrC`n`e

swpv
)− 1

2
([Y †n ]pv[Y

†
e ]swC∗`n`e

rvtw

+ [Y †n ]sw[Y †e ]pvC∗`n`e
twrv

),

(3.34)
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(L̄L)(L̄L) (L̄L)(R̄R) (L̄R)(R̄L) and (L̄R)(L̄R)

O`` (¯̀
pγµ`r)(¯̀

sγ
µ`t) O`d (¯̀

pγµ`r)(d̄sγ
µdt) O(1)

`equ (¯̀j
per)εjk(q̄

k
sut)

O(1)
`q (¯̀

pγµ`r)(q̄sγ
µqt) O`u (¯̀

pγµ`r)(ūsγ
µut) O(3)

`equ (¯̀j
pσµνer)εjk(q̄

k
sσ

µνut)

O(3)
`q (¯̀

pγµτ
I`r)(q̄sγ

µτ Iqt) O`e (¯̀
pγµ`r)(ēsγ

µet) O`edq (¯̀j
per)(d̄sq

j
t )

O(1)
qu (q̄pγµqr)(ūsγ

µut) O(1)
quqd (¯̀j

pnr)(ūsq
j
t )

O(8)
qu (q̄pγµT

Aqr)(ūsγ
µTAut)

O(1)
qd (q̄pγµqr)(d̄sγ

µdt)

O(8)
qd (q̄pγµT

Aqr)(d̄sγ
µTAdt)

Table 3: The 14 four-fermion SMEFT operators whose anomalous dimensions are 

modified by right-handed neutrino Yukawa couplings. Here, I(A) is the adjoint index of 

SU(2)L (SU(3)C ).

Ċ(1)
`q
prst

⊃ [Y †nYn]prC(1)
φq
st

− [Y †n ]pv[Yn]wrC qn
stvw

+
1

4
([Yn]vr[Yu]swC`nuq

pvwt

+ [Y †n ]pv[Y
†
u ]wtC∗`nuq

rvws

)

−1

4
([Yn]vr[Yd]wtC(1)

`nqd
pvsw

+ [Y †n ]pv[Y
†
d ]swC(1)∗

`nqd
rvtw

) + 3([Yn]vr[Yd]wtC(3)
`nqd
pvsw

+ [Y †n ]pv[Y
†
d ]swC(3)∗

`nqd
rvtw

) ,

(3.35)

Ċ(3)
`q
prst

⊃ −[Y †nYn]prC(3)
φq
st

+
1

4
([Yn]vr[Yu]swC`nuq

pvwt

+ [Y †n ]pv[Y
†
u ]wtC∗`nuq

rvws

)

+
1

4
([Yn]vr[Yd]wtC(1)

`nqd
pvsw

+ [Y †n ]pv[Y
†
d ]swC(1)∗

`nqd
rvtw

)− 3([Yn]vr[Yd]wtC(3)
`nqd
pvsw

+ [Y †n ]pv[Y
†
d ]swC(3)∗

`nqd
rvtw

) .

(3.36)
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3.3.5 SMEFT: (L̄L)(R̄R)

Ċ `d
prst

⊃ [Y †nYn]prCφd
st

− [Yn]pv[Y
†
n ]wrC nd

vwst
+

1

2
([Yd]sw[Yn]vrC(1)

`nqd
pvwt

+ [Y †d ]wt[Y
†
n ]pvC(1)∗

`nqd
rvws

)

+6([Yd]sw[Yn]vrC(3)
`nqd
pvwt

+ [Y †d ]wt[Y
†
n ]pvC(3)∗

`nqd
rvws

) , (3.37)

Ċ `u
prst

⊃ [Y †nYn]prCφu
st

− [Yn]pv[Y
†
n ]wrC nu

vwst
− 1

2
([Y †u ]wt[Yn]vrC`nuq

pvsw

+ [Yu]sw[Y †n ]pvC∗`nuq
rvtw

) ,(3.38)

Ċ `e
prst

⊃ [Ye]srξ e
pt

+ [Y †e ]ptξ
∗
e
rs

+ [Y †nYn]prCφe
st

− [Yn]pv[Y
†
n ]wrC ne

vwst

+
1

2
([Ye]sw[Yn]vrC`n`e

pvwt
+ [Y †e ]wt[Y

†
n ]pvC∗`n`e

rvws

) , (3.39)

Ċ(1)
qu
prst

⊃ 1

Nc

[Yu]srξu
pt

+
1

Nc

[Y †u ]ptξ
∗
u
rs

, (3.40)

Ċ(8)
qu
prst

⊃ 2[Yu]srξu
pt

+ 2[Y †u ]ptξ
∗
u
rs

, (3.41)

Ċ(1)
qd
prst

⊃ 1

Nc

[Yd]srξd
pt

+
1

Nc

[Y †d ]ptξ
∗
d
rs

, (3.42)

Ċ(8)
qd
prst

⊃ 2[Yd]srξd
pt

+ 2[Y †d ]ptξ
∗
d
rs

. (3.43)

3.3.6 SMEFT: (L̄R)(R̄L) and (L̄R)(L̄R)

Ċ`edq
prst

⊃ −2[Yd]stξ e
pr
− 2[Y †e ]prξ

∗
d
ts

+ 2[Y †n ]pv[Y
†
e ]wrC(1)∗

`nqd
wvst

+ 2[Y †n ]pv[Yu]wtCnedu
vrsw

, (3.44)

Ċ(1)
`equ
prst

⊃ 2[Y †u ]stξ e
pr

+ 2[Y †e ]prξu
st

+ 2[Y †n ]pv[Y
†
e ]wrC∗`nuq

wvts

− 2[Y †n ]pv[Y
†
d ]swCnedu

vrwt
, (3.45)

Ċ(3)
`equ
prst

⊃ 1

2
[Y †n ]pv[Y

†
d ]swCnedu

vrwt
, (3.46)
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Ċ(1)
quqd
prst

⊃ −2[Y †u ]prξd
st
− 2[Y †d ]stξu

pr
. (3.47)

3.4 Anomalous Dimensions in SMNEFT: Gauge Coupling Dependence

In this section, we compute one-loop contributions to the ADM due to SM gauge cou-

plings. The four-fermion operators (ψ4) in Table 2 can be divided into four categories:

(R̄R)(R̄R), (L̄L)(R̄R), (L̄R)(R̄L), and (L̄R)(L̄R) on the basis of the chiralities of the fields.

The remaining operators are of the form ψ2φ3, ψ2φ2D and ψ2Xφ. We focus on the ψ4-ψ4

and ψ4 - ψ2φ2D operator mixing since the mixing between ψ2φ3, ψ2φ2D and ψ2Xφ has been

computed in the Ref. [104] using the background field method. We have checked that the re-

sulting 5×5 matrix is consistent with the result for the corresponding SMEFT operators [101]

which have a similar ADM structure.

×
×

ψ2 ψ1

ψ4 ψ3(a)

Xµ

×
×

ψ2 ψ1

ψ4 ψ3(b)

Xµ
×
×

Xµ

ψ2 ψ1

ψ4 ψ3(c)

Figure 10: Current-current topologies with four-fermion insertions. Here Xµ represents the

gauge bosons Bµ, Wµ and Gµ. The fermion fields q, u, d, `, e and n are represented by ψI .

For the mixing between ψ4-ψ4 and ψ4-ψ2φ2D, the current-current (Fig. 10) and penguin

(Fig. 11) topologies mediated by the gauge bosons Xµ = Bµ,Wµ, Gµ, or the scalar, have to

be calculated.

We now present terms for the one-loop ADM that depend on the gauge couplings α1, α2

and α3 for all 16 SMNEFT operators. The ADM for bosonic SMNEFT operators is given

in Ref. [104]. The ADM of most SMNEFT operators can be obtained from the ADM of the

SMEFT operators [101] with a similar structure. For example, the ADM for the SMNEFT

operators O`nuq, O(1)
`nqd and O(3)

`nqd, can be obtained by replacing e with n, and switching u and
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×
×

ψ2 ψ1

ψ4 ψ3(d)

Xµ

×
×

ψ2 ψ1

ψ4 ψ3(e)

Xµ

Figure 11: Penguin topologies with four-fermion (d) and boson (e) insertions.

d in the SMEFT operators O`edq, O(1)
`equ and O(3)

`equ. We use this procedure as a cross-check

when available. No such comparison is possible for Onedu, which has a structure not present

in SMEFT.

3.4.1 ψ4

The ADM for four-fermion operators are provided below.

Ċ nd
prst

= (
4

3
Ncy

2
dC nd

prww
+

4

3
NcydyuC nu

prww
+

4

3
ydyeC ne

prww
+

8

3
NcydyqC qn

wwpr

+
8

3
ydy`C `n

wwpr

+
4

3
ydyhCφn

pr

)g2
1δst , (3.48)

Ċ nu
prst

= (
4

3
NcyuydC nd

prww
+

4

3
Ncy

2
uC nu

prww
+

4

3
yuyeC ne

prww
+

8

3
NcyuyqC qn

wwpr

+
8

3
yuy`C `n

wwpr

+
4

3
yuyhCφn

pr

)g2
1δst , (3.49)

Ċ ne
prst

= (
4

3
NcyeydC nd

prww
+

4

3
NcyeyuC nu

prww
+

4

3
y2
eC ne

prww
+

8

3
NcyeyqC qn

wwpr

+
8

3
yey`C `n

wwpr

+
4

3
yeyhCφn

pr

)g2
1δst , (3.50)

Ċnedu
prst

= ((yd − yu)2 + ye(ye + 8yu − 2yd))g
2
1Cnedu

prst
, (3.51)

Ċ nn
prst

= 0 , (3.52)

39



Ċ qn
prst

= (
4

3
NcyqydC nd

stww
+

4

3
NcyqyuC nu

stww
+

4

3
yqyeC ne

stww
+

8

3
Ncy

2
qC qn

wwst

+
8

3
yqy`C `n

wwst

+
4

3
yqyhCφn

st

)g2
1δpr , (3.53)

Ċ `n
prst

= (
4

3
Ncy`ydC nd

stww
+

4

3
Ncy`yuC nu

stww
+

4

3
y`yeC ne

stww
+

8

3
Ncy`yqC qn

wwst

+
8

3
y2
`C `n

wwst

+
4

3
y`yhCφn

st

)g2
1δpr . (3.54)

Ċ`n`e
prst

= ((y2
e − 8yey` + 6y2

` )g
2
1 −

3

2
g2

2)C`n`e
prst
− (4y`(ye + y`)g

2
1 − 3g2

2)C`n`e
srpt

, (3.55)

Ċ(1)
`nqd
prst

= ((y2
d − 2yd(y` + 4yq) + (y` + yq)

2)g2
1 − 8g2

3)C
(1)
`nqd
prst

,

+(−24y`(yd + yq)g
2
1 + 18g2

2)C
(3)
`nqd
prst

, (3.56)

Ċ(3)
`nqd
prst

= (−1

2
y`(yd + yq)g

2
1 +

3

8
g2

2)C
(1)
`nqd
prst

+((y2
d − 6ydy` + y2

` + 6y`yq + y2
q )g

2
1 − 3g2

2 +
8

3
g3

2)C
(3)
`nqd
prst

, (3.57)

Ċ`nuq
prst

= (((y` + yu)
2 + yq(yq − 2y` − 8yu))g

2
1 − 8g2

3)C`nuq
prst

. (3.58)
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3.4.2 ψ2φ3

Ċnφ
pr

=− (9y2
` g

2
1 +

27

4
g2

2)Cnφ
pr

− 6(4y2
hy`g

3
1 − yhg1g

2
2)CnB

pr

+ 3(4yhy`g
2
1g2 − 3g3

2)CnW
pr
.

(3.59)

3.4.3 ψ2φ2D

Ċφn
pr

= (
4

3
y2
hCφn

pr

+
4

3
NcydyhC nd

prww
+

4

3
NcyuyhC nu

prww
+

4

3
yeyhC ne

prww
+

8

3
NcyqyhC qn

wwpr

+
8

3
y`yhC `n

wwpr
)g2

1 , (3.60)

Ċφne
pr

= (−3y2
eCφne

pr

)g2
1 . (3.61)

3.4.4 ψ2Xφ

ĊnW
pr

= ((3CF,2 − b0,2)g2
2 − 3y2

` g
2
1)CnW

pr
+ 3y`g1g2CnB

pr
, (3.62)

ĊnB
pr

= (−3CF,2g2
2 + (3y2

` − b0,1)g2
1)CnB

pr
+ 12CF,2y`g1g2CnW

pr
, (3.63)

where the quadratic Casimir CF,2 = 3
4
. b0,1 = −41

6
and b0,2 = 19

6
are the first coefficients in

the g1 and g2 β−functions, respectively.

3.4.5 Operator mixing

We study operator mixing by solving the RG equations presented above in the leading-

log approximation. The solution to these equations for running between scales Λ and µ is

Ci(µ) =

(
δij +

(γC)ij
16π2

ln
µ

Λ

)
Cj(Λ) . (3.64)
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Depending upon the mixing structure the operators an be divided into five subsets form-

ing 6×6, 3×3, 3×3, 2×2, and 2×2 ADMs. Defining δCi(µ) = Ci(µ)−Ci(Λ), the leading-log

solution for the first group reads

δC nd
prst

δC nu
prst

δC ne
prst

δC qn
stpr

δC `n
stpr

δCφn
pr


(µ)

=
α1

4π
ln
µ

Λ



4
9
δst −8

9
δst

4
9
δst −4

9
δst

4
9
δst −2

9
δst

−8
9
δst

16
9
δst −8

9
δst

8
9
δst −8

9
δst

4
9
δst

4
3
δst −8

3
δst

4
3
δst −4

3
δst

4
3
δst −2

3
δst

−2
9
δst

4
9
δst −2

9
δst

2
9
δst −2

9
δst

1
9
δst

2
3
δst −4

3
δst

2
3
δst −2

3
δst

2
3
δst −1

3
δst

−2
3

4
3

−2 2
3

−2
3

1
3





C nd
prww

C nu
prww

C ne
prww

C qn
wwpr

C `n
wwpr

Cφn
pr


(Λ)

.

(3.65)

Summation over the repeated w index is implicit. Next, we have the 3× 3 structure,
δCnφ

pr

δCnW
pr

δCnB
pr


(µ)

=
1

16π2
ln
µ

Λ


−9

4
(g2

1 + 3g2
2) −3g2(g2

1 + 3g2
2) 6g3

1

0 − 1
12

(9g2
1 + 11g2

2) −3g1g2
2

0 −9g1g2
2

9
4
(91

27
g2

1 − g2
2)



Cnφ
pr

CnW
pr

CnB
pr


(Λ)

.

(3.66)

The operators C(1)
`nqd and C(3)

`nqd mix according toδC(1)
`nqd
prst

δC(3)
`nqd
prst


(µ)

= ln
µ

Λ
[
α1

4π

 1
3

−2

− 1
24
−10

9

+
α2

4π

0 18

3
8
−3

+
α3

4π

−8 0

0 8
3

]

C(1)
`nqd
prst

C(3)
`nqd
prst


(Λ)

.

(3.67)

The operator C`n`e mix with different flavors:δC`n`eprst

δC`n`e
srpt


(µ)

=
α1 + α2

4π
ln
µ

Λ

−3
2
−3

−3 −3
2


C`n`eprst

C`n`e
srpt


(Λ)

. (3.68)

The remaining operators do not mix:
δCnedu

prst

δC`nuq
prst

δCφne
pr


(µ)

= ln
µ

Λ
[
α1

4π


−4

−2
3

−3

+
α3

4π


0

−8

0

]


Cnedu
prst

C`nuq
prst

Cφne
pr


(Λ)

. (3.69)
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To study the running numerically, we set {prst} = {1111} for illustration. We list the

16× 16 ADM in the basis

~C = {Cnd, Cnu, Cne, Cqn, C`n, Cφn, Cnφ, CnW , CnB, C(1)
`nqd, C

(3)
`nqd, Cnedu, C`n`e, C`nuq, Cφne, Cnn} .

(3.70)

The gauge couplings at 1 TeV are set to g1 = 0.36, g2 = 0.64, g3 = 1.1. The 16 WCs at MZ

and at Λ = 1 TeV are related by

δC(MZ)

10−3
=



−0.92 1.8 −0.92 0.92 −0.92 0.46
01.8 −3.7 1.8 −1.8 1.8 −0.92
−2.8 5.5 −2.8 2.8 −2.8 1.4
0.46 −0.92 0.46 −0.46 0.46 −0.23
−1.4 2.8 −1.4 1.4 −1.4 0.69
1.4 −2.8 4.1 −1.4 1.4 −0.69

49 41 −4.5
0 7.5 5.5
0 17 −1.1

160 −110
−2.4 −30

8.3
−0.45

160
6.2

0


C(Λ) .

(3.71)

The running effects in the 6 × 6 and 3 × 3 blocks are small because only electroweak

gauge couplings contribute. The mixing in the 2× 2 block is large as it is governed by QCD.

3.4.6 Phenomenology

We briefly comment on some phenomenological consequences of our results. Semileptonic

decays of the b quark are topical given that both charged current and neutral current decay

measurements are hinting at new physics. SMNEFT operators lead to the charged current

decay b→ c`n̄, which contributes at the hadronic level to B → D(∗)τ ν̄τ . They also generate

the neutral current decay b → sn̄n which contributes at the hadronic level to B → K(∗) +

invisible decays, which is interpreted as B → K(∗)ν̄ν in the SM. In the lepton sector, of

interest are the FCNC decays τ → µ + invisible and µ → e + invisible. To make contact
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with low-energy phenomenology, we first run the RG equations down to the weak scale and

then match to the low-energy effective field theory extended with right-handed neutrinos

n (LNEFT). Depending on the process, further RG running must be performed from the

electroweak scale to the appropriate low energy scale such as the mb scale for B meson

decay and the mτ scale for τ decay. Note that the sterile neutrino can mix with the active

neutrinos, which in itself produces interesting phenomenology, but to keep our discussion

simple we neglect this mixing. We select the following four types of process and list the

SMNEFT operators relevant to them:

• B → D(∗)τ ν̄τ : Onedu, O`nuq, O(1)
`nqd, and O(3)

`nqd

• B → K(∗)νν̄ & K → πνν̄: Ond, Oqn, O(1)
`nqd, and O(3)

`nqd

• t→ cνν̄ & c→ uνν̄: Onu, Oqn, and O`nuq
• τ → µνν̄ & µ→ eνν̄: One, O`n, and O`n`e

The FCNC operators, Ond, Onu, One, Oqn and O`n do not run when only gauge interactions

are considered. So we do not study these operators and focus on the five operators, Onedu,
O`nuq, O(1)

`nqd, O
(3)
`nqd and O`n`e. Interestingly, O`nuq, O(1)

`nqd and O(3)
`nqd can contribute to both

the charged current and neutral current decays, and to coherent elastic neutrino-nucleus

scattering [105]. For certain flavor combinations, O`n`e can produce both τ → µ and µ→ e

decays.

Before studying the low-energy phenomenology, we first run the operators down from

the new physics scale Λ to the weak scale µEW . By using the leading-log approximation in

Eq. (3.64), we relate the values of the WCs at MZ to their values at 1 TeV:

Cnedu
prst
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C
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=
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1.0 0 0 0

0 1.2 0 0

0 0 1.2 −0.11

0 0 −0.0024 0.97





Cnedu
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C`nuq
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C
(1)
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C
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(1 TeV)

, (3.72)

C`n`eprst

C`n`e
srpt


(MZ)

=

 1.01 −0.013

−0.013 1.01


C`n`eprst

C`n`e
srpt


(1 TeV)

. (3.73)
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To study the phenomenology at energies below the electroweak scale one can no longer

use SMNEFT because of electroweak symmetry breaking. Instead, LNEFT, which respects

the SU(3)C × U(1)Q symmetry must be employed to study the processes listed above. We

introduce the relevant LNEFT operators and match them with the SMNEFT operators at the

weak scale. The SMNEFT operators can generate both neutral and charged current processes

after electroweak symmetry breaking. The induced LNEFT operators in the convention of

Ref. [22] are displayed in Table 4 and their matching relations at tree level are

CV,RR
nedu
prst

= Cnedu
prst

, CS,RL
enud
prst

= C`nuq
prst

, CS,RR
enud
prst

= −C(1)
`nqd
prδt

Vsδ
Vst

,

CT,RR
enud
prst

= −C(3)
`nqd
prδt

Vsδ
Vst

, CS,RR
enνe
prst

= −C`n`e
prst

,

(3.74)

CS,RL
νnuu
prst

= C`nuq
prsδ

V ∗tδ , CS,RR
νndd
prst

= C
(1)
`nqd
prst

, CT,RR
νndd
prst

= C
(3)
`nqd
prst

, CS,RR
νnee
prst

= C`n`e
prst

. (3.75)

where we chose a flavor basis in which the left-handed down-type quarks and charged leptons 

are aligned. The flavor basis for up-type quarks in terms of the mass basis is given by V †uL, 

where V is the SM CKM matrix. The neutrino fields are in the flavor basis for convenience. 

In the next subsections, we study the low-energy phenomenology of the listed processes.

3.4.6.1 B → D(∗)τν¯ The CC LNEFT operators induced by the SMNEFT operators

Onedu
α332

,O`nuq
3α23

,O(1)
`nqd
3α23

and O(3)
`nqd
3α23

can affect this process; see Table 4. Here, α is the flavor index

of the right-handed neutrino n. Accounting for QED and QCD running below the weak

scale, the one-loop RGE for the four LNEFT operators is given by
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ĊT,RR
enud
3α23


(µ)

= [e2


−4 0 0 0

0 4
3

0 0

0 0 4
3

8

0 0 1
6
−40

9

+ g2
3


0 0 0 0

0 −8 0 0

0 0 −8 0

0 0 0 8
3

]



CV,RR
nedu
α332

CS,RL
enud
3α23

CS,RR
enud
3α23

CT,RR
enud
3α23


(µ)

, (3.76)
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SMNEFT NC LNEFT CC LNEFT

Onedu
prst

- OV,RR
nedu
prst

= (n̄Rpγ
µeRr)(d̄Rsγ

µuRt)

O`nuq
prst

OS,RL
νnuu
prst

= (ν̄LpnRr)(ūRsuLt) OS,RL
enud
prst

= (ēLpnRr)(ūRsdLt)

O(1)
`nqd
prst

OS,RR
νndd
prst

= (ν̄LpnRr)(d̄LsdRt) OS,RR
enud
prst

= (ēLpnRr)(ūLsdRt)

O(3)
`nqd
prst

OT,RR
νndd
prst

= (ν̄Lpσ
µνnRr)(d̄LsσµνdRt) OT,RR

enud
prst

= (ēLpσ
µνnRr)(ūLsσµνdRt)

O`n`e
prst

OS,RR
νnee
prst

= (ν̄LpnRr)(ēLseRt) OS,RR
enνe
prst

= (ēLpnRr)(ν̄LseRt)

Table 4: Operator structure matching between SMNEFT and LNEFT.
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where e is the QED coupling. Using Eq. (3.64), we relate the four LNEFT operators at the

mb and MZ scales:

CV,RR
nedu
α332

CS,RL
enud
3α23

CS,RR
enud
3α23

CT,RR
enud
3α23


(mb)

=


1.0 0 0 0

0 1.2 0 0

0 0 1.2 −1.5× 10−2

0 0 −3.1× 10−4 0.93





CV,RR
nedu
α332

CS,RL
enud
3α23

CS,RR
enud
3α23

CT,RR
enud
3α23


(MZ)

. (3.77)

The mixing between OS,RR
enud and OT,RR

enud is small as it is induced by QED. However, the corre-

sponding mixing of the SMNEFT operators is relatively strong as it comes from electroweak

effects.

3.4.6.2 B → K(∗)νν¯ & K → πνν¯ B → K(∗)+invisible decay, which would be interpreted

as B → K(∗)νν̄ in the SM, is produced by OS,RR
νndd and OT,RR

νndd . The flavor structures are

{prst} = {αβ23}. The process K → πνν̄ can also be generated with the flavor structures,

{prst} = {αβ12}. The ADM for OS,RR
νndd and OT,RR

νndd isĊS,RR
νndd
αβ23

ĊT,RR
νndd
αβ23


(µ)

= [e2

−2
3

0

0 2
9

+ g2
3

−8 0

0 8
3

]

CS,RR
νndd
αβ23

CT,RR
νndd
αβ23


(µ)

. (3.78)

The WCs at mb and MZ are related byCS,RR
νndd
αβ23

CT,RR
νndd
αβ23


(mb)

=

1.2 0

0 0.92


CS,RR

νndd
αβ23

CT,RR
νndd
αβ23


(MZ)

. (3.79)

While there is no mixing between the NC LNEFT operators, their corresponding SMNEFT

operators can mix above the weak scale. For K → πνν̄ one has to run down to a scale

appropriate for kaon decays.
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3.4.6.3 t → cνν¯ & c → uνν¯ The NC LNEFT operator Oν
S,R

nuu
L induced by O`nuq can

generate the rare decay t → cνν¯ with {prst} = {αβ23}. The RG equation for O S,RL
νnuu below

the weak scale is

ĊS,RL
νnuu (µ) = [e2(−8

3
) + g2

3(−8)]CS,RL
νnuu (µ) , (3.80)

and

CS,RL
νnuu (µ = mb) = 1.2CS,RL

νnuu (µ = MZ) . (3.81)

3.4.6.4 τ → µνν¯ & µ → eνν¯ The decays τ → µ + invisible and µ → e + invisible are 

generated by Oν
S,R

nee
R and OS

enν
,R
e
R. Note that the flavor is mixed for O`n`e. The flavor 

combination {prst} = {1132} can generate both τ → µ and µ → e decays. The relevant

operators are OS,RR
νnee
1132

, OS,RR
enνe
1132

, OS,RR
νnee
3112

and OS,RR
enνe
3112

. The running at one-loop order is given by



ĊS,RR
νnee
1132

ĊS,RR
enνe
3112

ĊS,RR
enνe
1132

ĊS,RR
νnee
3112


(µ)

= e2


−6 4

0 2

−6 4

0 2





CS,RR
νe

1132

CS,RR
eννe
3112

CS,RR
eννe
1132

CS,RR
νe

3112


(µ)

. (3.82)

The WCs at mτ and MZ are related by

CS,RR
νnee
1132

CS,RR
enνe
3112

CS,RR
enνe
1132

CS,RR
νnee
3112


(mτ )

=


1.01 −9.6× 10−3

0 0.995

1.01 −9.6× 10−3

0 0.995





CS,RR
νnee
1132

CS,RR
enνe
3112

CS,RR
enνe
1132

CS,RR
νnee
3112


(MZ)

. (3.83)

The small mixing between these operators is a consequence of QED. For muon decay, one

needs to run down to the muon mass.
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3.4.6.5 Electroweak precision observables The operators Oφn and Oφne give rise to

RH Z-couplings to n and RH W couplings to n and leptons. The RH Z couplings to n can

be parameterized in terms of the Wilson coefficient Cφn as

δLZ = −gZ
2
v2[Cφn]pr (n̄pγµnr) Zµ , (3.84)

where g2
Z = g2

1 + g2
2. Therefore, Cφn contributes to the Z-width via Γ(Z → nn̄). Similary,

the RH W couplings can be parameterized in terms of Cφne as

δLW = − g2

2
√

2
v2[Cφne]pr (n̄pγ

µer) W
+
µ + h.c. . (3.85)

Note that such leptonic RH W couplings are absent in SMEFT because the RH neutrino

field is absent. The modified Z and W couplings affect electroweak precision observables.

Interestingly, whileOφne does not mix with the other operators as can be seen from Eq. (3.61),

Oφn has mixing with other operators; see Eq. (3.60). Hence, electroweak precision observables

can place indirect constraints on the Ond, Onu, One, Oqn and O`n operators that mix with

Oφn, by a global fit.
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4.0 General Neutrino Interactions in The SMNEFT

Going beyond the SM, the full list of dimension-six four-fermion SMNEFT operators,

which include the left-handed and right-handed neutrino states, are given in Ref. [22]. Inte-

grating out W±, Z, h and t leads to the low-energy effective field theory (LEFT), respecting

SU(3)C × U(1)Q. GNI via neutral and charged currents, containing scalar, pseudoscalar,

vector, axial vector and tensor terms at dimension-six level can be parameterized as

L NC
LEFT ⊃ −GF√

2

10∑
j=1

(
(∼)
ε j,f )

αβγδ(ναOjνβ)(fγO
′
jfδ) , (4.1)

L CC
LEFT ⊃ −

GFV
∗
δγ√

2

10∑
j=1

(
(∼)
ε j,du)

αβγδ(ναOj`β)(dγO
′
juδ) + h.c. , (4.2)

where the operators Oj, O
′
j and parameters

(∼)
ε are listed in Table 5. The Dirac spinor

να = (νLα, Nα)T , and u and d indicate the mass eigenstates of up- and down-type quarks,

respectively.1 Hermiticity of the Lagrangian requires the scalar and tensor effective couplings

to satisfy

εαβγδS,f = (ε̃βαδγS,f )∗, εαβγδP,f = −(ε̃βαδγP,f )∗, εαβγδT,f = (ε̃βαδγT,f )∗ ,

εαβγδS,du = (ε̃βαδγS,ud )∗, εαβγδP,du = −(ε̃βαδγP,ud )∗, εαβγδT,du = (ε̃βαδγT,ud )∗ .
(4.3)

If the BSM new physics scale is Λ with a typical tree-level coupling κ, then parametrically
(∼)
ε ∼ κ2v2/Λ2. Note that the operators with j = 1, 3 are the familiar NSI terms, and are a

subset of SMEFT.

In this chapter, we present the bounds on the WCs of three SMNEFT operators, from

low-energy and high-energy experiments [105]. Those three chirality-flipping operators that

couple to quarks are

1. Oαβγδ
NLQu = (NαL

j
β)(Q

j

γuδ) ,

2. Oαβγδ
NLdQ = (NαL

j
β)εjk(dγQ

k
δ ) ,

3. O′αβγδNLdQ = (NασµνL
j
β)εjk(dγσ

µνQk
δ ) ,

1Our analysis can also be applied to Majorana neutrinos with the neutrino bilinears in Eqs. (1.1) and (4.1)
replaced by NMαOνMβ , where the Majorana spinors are νM = (νL, ν

c
L)T , NM = (N c, N)T .
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j
(∼)
ε j Oj O′j

1 εL γµ(1− γ5) γµ(1− γ5)

2 ε̃L γµ(1 + γ5) γµ(1− γ5)

3 εR γµ(1− γ5) γµ(1 + γ5)

4 ε̃R γµ(1 + γ5) γµ(1 + γ5)

5 εS 1− γ5 1

6 ε̃S 1 + γ5 1

7 −εP 1− γ5 γ5

8 −ε̃P 1 + γ5 γ5

9 εT σµν(1− γ5) σµν(1− γ5)

10 ε̃T σµν(1 + γ5) σµν(1 + γ5)

Table 5: Effective coupling constants and operators.

where the fields are written in two-component spinors. L and Q are the left-handed lepton

and quark doublet, respectively, and N is the right-handed neutrino state. Here, σµν =

i
2
[σµσν − σνσµ], with σµ = (1, ~σ) and σµ = (1,−~σ). We do not consider other dim-6 4-

fermion SMNEFT operators since they lead to nonstandard charged lepton interactions and

are therefore strongly constrained [22]. We can write the effective Lagrangian as

Leff = LSM + 2
√

2GF [CNLdQONLdQ + CNLQuONLQu + C ′NLdQO
′
NLdQ] , (4.4)

where the flavor indices are omitted for simplicity. In the same spirit of power counting as in

the last subsection, the Wilson coefficients (WCs) have the general dependence C ∼ κ2v2/Λ2.

For instance, C ∼ O(10−4) if Λ ∼ 10 TeV and κ ∼ 1.

To jointly interpret the results of experiments at very different energy scales, a consistent

theoretical framework is needed. LEFT and SMNEFT are the language we use to describe

the physics below and above the electroweak scale v, respectively. The renormalization group

(RG) running below and above the electroweak scale makes it possible to directly compare
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low-energy and high-energy probes. Leading-order (LO) matching between these two EFTs

is performed at the electroweak scale.

4.1 Running and Matching

Since we will use both low-energy neutrino scattering experiments and high-energy col-

liders to constrain these Wilson coefficients (WCs), renormalization group (RG) running and

matching have to be implemented. We perform leading-order (LO) matching of these two

EFTs at the eletroweak scale:

εαβγδS,d = −Cαβγδ
NLdQ , εαβγδS,u = −Cαβρδ

NLQuVργ ,

εαβγδP,d = −Cαβγδ
NLdQ , εαβγδP,u = Cαβρδ

NLQuVργ ,

εαβγδT,d = −C ′αβγδNLdQ ,

εαβγδS,du =
Cαβγρ
NLdQV

†
ρδ − Cαβγδ

NLQu

V ∗δγ
, εαβγδP,du =

Cαβγρ
NLdQV

†
ρδ + Cαβγδ

NLQu

V ∗δγ
,

εαβγδT,du = C ′αβγρNLdQ

V †ρδ
V ∗δγ

.

(4.5)

As we run down, both neutral and charged current WCs are induced by each of the three

SMNEFT operators. Therefore they are not independent of each other. Their relations at

the electroweak scale are

εαβγδS,d = − V †γρ
2Vδρ

(εαβγρS,du + εαβγρP,du ) , εαβγδP,d = −εαβγδS,d ,

εαβγδS,u =
1

2
VγρV

∗
δρ(ε

αβγρ
S,du − εαβγρP,du ) , εαβγδP,u = −εαβγδS,u ,

εαβγδT,d = −εαβγρT,du

Vργ
V ∗ρδ

.

(4.6)

We have performed the RG running above and below the weak scale, the details of which

are described in section 3.4. The RG equations are run from 2 GeV to 1 TeV, which is
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the typical LHC scale. Eventually we place bounds on the SMNEFT WCs at 1 TeV. The

anomalous dimension matrix we calculated at the one-loop level is

µ
d

dµ


CNLQu

CNLdQ

C ′NLdQ


(µ)

= [
α1(µ)

2π


−1/3 0 0

0 1/6 −1

0 −1/48 −5/9

+
α2(µ)

2π


0 0 0

0 0 9

0 3/16 −3/2



+
α3(µ)

2π


−4 0 0

0 −4 0

0 0 4/3

]


CNLQu

CNLdQ

C ′NLdQ


(µ)

,

(4.7)

µ
d

dµ


εS,du

εP,du

εT,du


(µ)

= [
αe(µ)

2π


2/3 0 4

0 2/3 4

1/24 1/24 −20/9

+
α3(µ)

2π


−4 0 0

0 −4 0

0 0 4/3

]


εS,du

εP,du

εT,du


(µ)

,

(4.8)

µ
d

dµ


εS,d

εP,d

εT,d


(µ)

= [
αe(µ)

2π


−1/9 0 0

0 −1/9 0

0 0 5/36

+
α3(µ)

2π


−4 0 0

0 −4 0

0 0 4/3

]


εS,d

εP,d

εT,d


(µ)

,

(4.9)

µ
d

dµ


εS,u

εP,u

εT,u


(µ)

= [
αe(µ)

2π


−4/9 0 0

0 −4/9 0

0 0 5/9

+
α3(µ)

2π


−4 0 0

0 −4 0

0 0 4/3

]


εS,u

εP,u

εT,u


(µ)

,

(4.10)

where the flavor indices are implicit. The QED and weak couplings are important as they

introduce mixing between different operators. Solving the differential equations with the
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three-loop β-functions and taking into account the top and bottom quark mass thresholds,

we obtain the numerical relations between effective couplings at different energy scales:
CNLQu

CNLdQ

C ′NLdQ


(µ=MZ)

=


1.18 0 0

0 1.18 −0.117

0 −2.44× 10−3 0.966



CNLQu

CNLdQ

C ′NLdQ


(µ=1 TeV)

, (4.11)


εS,du

εP,du

εT,du


(µ=2 GeV)

=


1.52 2.34× 10−6 −0.0218

2.34× 10−6 1.52 −0.0218

−2.26× 10−4 −2.26× 10−4 0.878



εS,du

εP,du

εT,du


(µ=MZ)

, (4.12)


εS,d

εP,d

εT,d


(µ=2 GeV)

=


1.52 0 0

0 1.52 0

0 0 0.869



εS,d

εP,d

εT,d


(µ=MZ)

, (4.13)


εS,u

εP,u

εT,u


(µ=2 GeV)

=


1.53 0 0

0 1.53 0

0 0 0.867



εS,u

εP,u

εT,u


(µ=MZ)

. (4.14)

The numerical relations between LEFT WCs at 2 GeV and SMNEFT WCs at 1 TeV, with

Vud = 0.97420 [8], are

εS,du = −1.84CNLQu + 1.79CNLdQ − 0.199C ′NLdQ ,

εP,du = 1.84CNLQu + 1.79CNLdQ − 0.157C ′NLdQ ,

εT,du = 5.49× 10−4CNLQu − 2.14× 10−3CNLdQ + 0.849C ′NLdQ ,

εS,u = −1.76CNLQu ,

εP,u = 1.76CNLQu ,

εT,u = 0 ,

εS,d = −1.80CNLdQ + 0.179C ′NLdQ ,

εP,d = −1.80CNLdQ + 0.179C ′NLdQ ,

εT,d = 2.12× 10−3CNLdQ − 0.839C ′NLdQ .

(4.15)
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Low energy constraints on the SMNEFT WCs from nuclear beta decay, pseudoscalar

meson decay, and coherent scattering have been discussed in Ref. [22] without accounting

for the effects of RG running. The RG running is crucial, as it introduces operator mixing

which produces degeneracies in the WCs. Here we first calculate the LEFT and SMNEFT

WCs below and above the electroweak scale, respectively. After the RG running, we convert

the low energy constraints on the LEFT WCs to the high energy constraints on the SMNEFT

WCs, and compare them with those from high energy collider experiments at the same energy

scale.

4.2 Neutrino Mass Bounds

Scalar and tensor interactions that flip the neutrino chirality contribute to the neutrino

mass radiatively. Both one- and two-loop corrections to the neutrino mass can be generated

by chirality-changing operators. Here we ignore the one-loop corrections since, except for

the top quark, they are (counterintuitively) suppressed by a factor of (mq/MZ)2 as compared

to the two-loop corrections [108, 109]. The two-loop contribution is estimated as

∆mν ' 3g2GF ε
mqM

2
W

(4π)4
(ln

µ2

M2
W

)2 , (4.16)

where mq is a quark mass, µ is the renormalization scale, and ε can be either a NC or CC

GNI parameter. We conservatively take µ to not be too far above the electroweak scale so

that the top quark loop correction is suppressed.

Bounds from neutrino masses and oscillations are very model specific because of the im-

portance of the properties of the particles in the loops and the possibility of cancellations

between loop and other contributions. However, barring fine-tuned cancellations, they pro-

vide an order of magnitude estimate of how much the new interactions may contribute to

neutrino masses. For our estimates, we assume neutrinos acquire mass only from loop effects

due to the new interactions, i.e., neutrino masses vanish as ε→ 0. Then, constraints on the

contact interactions can be obtained by requiring ∆mν <
∑
mν . A recent upper bound on

the sum of neutrino mass from cosmological observations and particle physics experiments
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is
∑
mν . 0.26 eV [110], which is model dependent. The most recent model-independent

bound is that obtained by the KATRIN Collaboration [111]. They reported a 1.1 eV up-

per bound on the effective neutrino mass based on the β-decay electron spectrum. The

bounds on the scalar and tensor contact interactions from neutrino masses without (with)

cosmological inputs are

|εαβ11
S,P,T | . 10−3 (10−4) , |εαβ22

S,P,T | . 10−5 (10−6) , |εαβ33
S,P,T | . 10−6 (10−7) . (4.17)

The bounds using cosmological data are only suggestive because we have not evaluated how

the relic neutrino abundance is affected by the new interactions. From Eq. (4.17), we see

that if GNI are also coupled to heavy quark flavors, the bounds on the SMNEFT WCs

CNLQu, CNLdQ, andC ′NLdQ are too strong to be probed by other experiments, current or

future. Despite the highly model-dependent nature of this conclusion, we focus on couplings

to first generation quarks in the rest of this chapter.

Related bounds arise from neutrino magnetic moments via an external photon attached

to the fermion loop responsible for neutrino mass generation. The magnetic moment induced

by scalar and tensor GNI is bounded by [112]

µν ≈
eGFmd

8π2
ε . 3× 10−11µB , (4.18)

where the Bohr magneton µB = e~
2mec

' 2.9× 10−7 eV−1. This yields

| εαβ11
S,P,T |. 30 , (4.19)

which are much weaker than the bounds above.

56



4.3 Pseudoscalar Meson Decay

The pseudoscalar quark bilinear can contribute to the leptonic decay of a pseudoscalar

meson (P ). In the SM, the decay is helicity suppressed so that the width ΓSM(P → `ν) ∝ m2
` .

The suppression is lifted by pseudoscalar GNI

ΓGNI,p(P → `βνα) ∝ (εαβ11
P,du )2 m4

π

(mu +md)2
. (4.20)

The branching ratio

Rπ ≡
Γ(π → eν[γ])

Γ(π → µν[γ])
= R(0)

π [1 + ∆π], with R(0)
π =

m2
e

m2
µ

(
m2
π −m2

e

m2
π −m2

µ

)2 , (4.21)

serves as a good observable, as the experiment systematic uncertainties shared by the two

processes cancel in the ratio. ∆π contains higher order corrections [113]. Γ(π→`ν[γ]) contains

physical and virtual photons (radiative corrections). Including pseudoscalar GNI interac-

tions [114],

Rπ

RSM
π

=
1+ | B0

me
εαe11
P,du |2

1+ | B0

mµ
εαµ11
P,du |2

, (4.22)

where B0(µ) = m2
π/(mu(µ) + md(µ)). Taking mπ = 139.57 MeV, mMS

u (µ = 2 GeV) =

2.16 MeV and mMS
d (µ = 2 GeV) = 4.67 MeV [8], gives BMS

0 (µ = 2 GeV) = 2.8 × 103 MeV.

The current combined uncertainty in Rexp
π [115, 116, 117, 8] and RSM

π [113, 118] are

Rπ = 1.2327(23)× 10−4 , RSM
π = 1.2352(1)× 10−4 . (4.23)

If both εαe11
P,du and εαµ11

P,du are allowed to vary simultaneously, no bound on either parameter is

obtained because they are degenerate, as is evident from Eq. (4.22). With the assumption

that only one of εP,du is nonzero, the 90% C.L. bounds are

| εαe11
P,du |< 6.2× 10−6, and | εαµ11

P,du |< 2.7× 10−3 . (4.24)

Because the measured branching to the electron channel is tiny, εαe11
P,du is highly constrained.

These bounds are much stronger than the ones obtained in Ref. [114], which assumed that

both εP,du and ε̃P,du are simultaneously nonzero, which however, cannot be realized with the

three SMNEFT operators considered here. The bounds on the coefficients of the low-energy
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effective Lagrangian can be translated to bounds on the three SMNEFT WCs by adopting

the relations in Eq. (4.15), which display degeneracies between the SMNEFT WCs. We

therefore bound the individual WCs by setting the other two to zero. The 90% C.L. bounds

on the SMNEFT WCs are

| Cαe11
NLQu |< 3.3× 10−6 , | Cαe11

NLdQ |< 3.4× 10−6 , | C ′αe11
NLdQ |< 3.9× 10−5 , (4.25)

| Cαµ11
NLQu |< 1.5× 10−3 , | Cαµ11

NLdQ |< 1.5× 10−3 , | C ′αµ11
NLQu |< 1.7× 10−2 . (4.26)

The correlations between the CNLdQ and CNLQu (C ′NLdQ), with C ′NLdQ (CNLQu) set to zero,

are shown by the green lines in the upper (lower) panel of Fig. 12.

To circumvent the degeneracy in εαe11
P,du and εαµ11

P,du in Eq. (4.22), we now apply the individual

decay width measurements of π → `ν[γ] to set the bounds. In the SM, the decay width at

tree level is

Γ(π→`ν[γ]) =
G2
F

8π
f 2
πV

2
udm

2
`mπ(1− m2

`

m2
π

)2(1 + ∆π) . (4.27)

The theoretical uncertainties are mainly from calculations of the decay constant and radiative

corrections. According to Refs. [8, 119, 120, 118, 121],

∆π = 0.0176± 0.0021 , fπ = 130.2± 1.2 MeV . (4.28)

The universal theoretical uncertainties yield

δΓ(π+→e+νe[γ])

Γ(π+→e+νe[γ])

=
δΓ(π+→µ+νµ[γ])

Γ(π+→µ+νµ[γ])

= 1.9× 10−2 . (4.29)

Measurements give BR(π+ → e+νe[γ]) = (1.230 ± 0.004) × 10−4%, BR(π+ → µ+νµ[γ]) =

(99.98770 ± 0.00004)%, and τπ± = 26.033(5) ns [8]. The experimental uncertainties in the

electron (muon) channel is 3.3× 10−3 (1.9× 10−4) and can be neglected. Assuming that the

new physics contributions do not exceed the theoretical uncertainties, the bounds on εαe11
P,du

and εαµ11
P,du are given by

| B0

me

εαe11
P,du |2<

δΓ(π+→e+νe[γ])

Γ(π+→e+νe[γ])

, | B0

mµ

εαµ11
P,du |2<

δΓ(π+→µ+νµ[γ])

Γ(π+→µ+νµ[γ])

, (4.30)
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Figure 12: The 90% C.L. allowed regions in the CNLdQ-CNLQu planes (upper panels) and

CNLdQ-C ′NLdQ planes (lower panels) at 1 TeV with electron flavor (left panels) and muon

flavor (right panels). The details of descriptions are in the main text.

which yield

| εαe11
P,du |< 3.4× 10−5 , | εαµ11

P,du |< 6.6× 10−3 , (4.31)

at the 90% C.L. By allowing only one WC to be nonzero at a time, the 90% C.L. bounds on

the SMNEFT WCs derived from individual decay channels are

| Cαe11
NLQu |< 1.9× 10−5 , | Cαe11

NLdQ |< 1.9× 10−5 , | C ′αe11
NLdQ |< 2.2× 10−4 , (4.32)
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| Cαµ11
NLQu |< 3.6× 10−3 , | Cαµ11

NLdQ |< 3.7× 10−3 , | C ′αµ11
NLQu |< 4.2× 10−2 . (4.33)

4.4 Nuclear Beta Decay

Nuclear β-decay is another low-energy probe that is sensitive to the new CC GNI

interactions. The nucleon-level effective Lagrangian contributing to neutron beta decay,

n→ p+ e− + νe, is using Eq. (4.3),

LN = − GF√
2
Vud[pγ

µ(gV − gAγ5)n · eγµ(1− γ5)νe + gS(εαe11
S,du )∗ pn · e(1 + γ5)νe

− gP (εαe11
P,du)∗ pγ5n · e(1 + γ5)νe + 2gT (εαe11

T,du)∗ pσµνn · eσµν(1 + γ5)νe] + h.c. ,(4.34)

where gV (A) is the (axial-)vector charge and gS,P,T are the nonstandard charges. Neglecting

nucleon recoil and the pseudoscalar contribution in the q2 → 0 limit, the neutron β decay

width is

Γ =
G2
FV

2
ud

2π3
[g2
V (3λ2 + 1) + g2

S | εαe11
S,du |2 +48g2

T | εαe11
T,du |2] I , (4.35)

where λ ≡ gV /gA and

I =

∫
peEe(Mn −Mp − Ee)2dEe ≈ 0.06 MeV5 . (4.36)

The decay width can also be written in terms of the NC effective couplings by using the

relations in Eq. (4.6):

Γ =
G2
FV

2
ud

2π3
[g2
V (3λ2 + 1) + g2

S(
εαe11
S,u

V 2
ud

− εαe11
S,d )2 + 48g2

T (εαe11
T,d )2] I . (4.37)

From Ref. [122], the 90% C.L. bounds, based on the differential observables from polarized

nuclear beta decay, are

| εαe11
S,du |< 0.063 , | εαe11

T,du |< 0.024 . (4.38)

Bounds on the NC parameters can be computed by using the relations in Eq. (4.6) with εαe11
P,du

taken to be 0:

| εαe11
S,d | , | εαe11

P,d |< 0.063 , | εαe11
S,u | , | εαe11

P,u |< 0.060 , | εαe11
T,d |< 0.024 . (4.39)
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Degeneracies do not permit simultaneous bounds on all the SMNEFT WCs. With the

assumption that only one of them is nonzero, the 90% C.L. bounds are

| Cαe11
NLQu |< 3.4× 10−2 , | Cαe11

NLdQ |< 3.5× 10−2 , | C ′αe11
NLdQ |< 2.8× 10−2 . (4.40)

These constraints are much weaker than the ones from charged pion decay.

4.5 Neutrino Deep Inelastic Scattering

Neutrino deep inelastic scattering on nucleons can be modified by scalar, pseudoscalar,

and tensor GNI. Please note that the charged current cannot be affected by the three GNI

considered in this chapter, as the right-handed neutrino is absent in the neutrino beams.

The total charged current and neutral current neutrino-nucleon scattering cross sections in

the SM are

σCCνN,SM =
2G2

F

π
EνMN [〈xdN + x

1

3
uN〉], (4.41)

σCCνN,SM =
2G2

F

π
EνMN [〈x1

3
uN + xdN〉], (4.42)

σNCνN,SM =
2G2

F

π
EνMN [(g2

L,u +
1

3
g2
R,u)〈xuN〉+ (g2

L,d +
1

3
g2
R,d)〈xdN〉

+(g2
R,u +

1

3
g2
L,u)〈xuN〉+ (g2

R,d +
1

3
g2
L,d)〈xdN〉],

(4.43)

σNCνN,SM =
2G2

F

π
EνMN [(g2

R,u +
1

3
g2
L,u)〈xuN〉+ (g2

R,d +
1

3
g2
L,d)〈xdN〉

+(g2
L,u +

1

3
g2
R,u)〈xuN〉+ (g2

L,d +
1

3
g2
R,d)〈xdN〉],

(4.44)

where we have neglected contributions from heavy quarks, and

〈xqN〉 ≡
∫ 1

0

xqN(x)dx, 〈xqN〉 ≡
∫ 1

0

xqN(x)dx , (4.45)
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determine the fraction of nucleon momentum carried by quarks and anti-quarks. gL,f and

gR,f are the SM effective couplings given in Eq. (1.3). We take [123]

gL,u = 0.3457 , gR,u = −0.1553 , gL,d = −0.4288 , gR,d = 0.0777 , (4.46)

which include the one-loop and leading two-loop corrections. The neutral current is modified

by scalar, pseudoscalar, and tensor GNI:

σNCνN,S(P ) = σNCνN,S(P ) =
G2
F

12π
EνMN [ε2S(P ),u〈x(uN + uN)〉+ ε2S(P ),d〈x(dN + dN)〉] ,(4.47)

σNCνN,T = σNCνN,T =
56G2

F

3π
EνMN [ε2T,u〈x(uN + uN)〉+ ε2T,d〈x(dN + dN)〉] , (4.48)

where the flavor indices are suppressed for simplicity. In the following analysis, we assume

the target is isoscalar and composed of free nucleons, so that we may use the proton PDF.

Under these assumptions, the nuclear PDFs become

〈xdN〉 = 〈xuN〉 =
N

2
〈x(up + dp)〉 , 〈xdN〉 = 〈xuN〉 =

N

2
〈x(dp + up)〉 . (4.49)

4.5.1 CHARM: νeq → νq

The CHARM collaboration measured the ratio of total cross sections for semileptonic νe

and νe scattering to be [124]

Re ≡ σ(νeN → νX) + σ(νeN → νX)

σ(νeN → e−X) + σ(νeN → e+X)
= 0.406± 0.140 . (4.50)

The SM prediction from Eqs. (4.41) to (4.44) is

Re = g2
L + g2

R = 0.3335 , (4.51)

where

g2
L = g2

L,u + g2
L,d, g2

R = g2
R,u + g2

R,d . (4.52)

Including the new GNI contributions from Eqs. (4.47) and (4.48), Re becomes

Re = g2
L + g2

R +
1

12

∑
q=u,d

((εαe11
s,q )2 + (εαe11

p,q )2 + 224(εαe11
T,q )2) . (4.53)
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The 90% C.L. bounds on the LEFT parameters are

| εαe11
S,q | , | εαe11

P,q |< 1.9 , | εαe11
T,q |< 0.13 . (4.54)

With only a single constraint on Re, the degeneracy between the three SMNEFT WCs

remains unbroken. The bounds on the SMNEFT WCs, with the assumption that only one

of the WCs is nonzero at a time, are

| Cαe11
NLQu |< 0.77 , | Cαe11

NLdQ |< 0.75 , | C ′αe11
NLdQ |< 0.15 , (4.55)

which are much weaker than the bounds from charged pion decay and nuclear beta decay.

4.5.2 NuTeV: νµq → νq

The NuTeV collaboration has measured the ratios of neutral current to charged current

neutrino-nucleon cross sections [125]:

Rν ≡ σ(νµN → νX)

σ(νN → µ−X)
= 0.3916± 0.0013, Rν ≡ σ(νµN → νX)

σ(νN → µ+X)
= 0.4050± 0.0027 . (4.56)

In the SM, the cross section ratios on an isoscalar target composed of free nucleons are

Rν
SM =

(g2
L + 1

3
g2
R)fq + (g2

R + 1
3
g2
L)fq

fq + 1
3
fq

, Rν
SM =

(g2
R + 1

3
g2
L)fq + (g2

L + 1
3
g2
R)fq

1
3
fq + fq

, (4.57)

where fq and fq determine the fraction of proton momentum carried by the first generation

of quarks and anti-quarks:

fq = 〈xu+ xd〉 = 0.42, fq = 〈xu+ xd〉 = 0.068 . (4.58)

Here we used the CT10 PDFs [126] and the Mathematica package ManeParse [127] to obtain

the numerical values of fq and fq at Q2 = 20 GeV2. After including the contributions from

scalar, pseudoscalar, and tensor GNI, Rν and Rν are

Rν =

(g2
L + 1

3
g2
R)fq + (1

3
g2
L + g2

R)fq + 1
24

∑
q=u,d

((εαµ11
s,q )2 + (εαµ11

p,q )2 + 224(εαµ11
T,q )2)(fq + fq)

fq + 1
3
fq

, (4.59)

Rν =

(1
3
g2
L + g2

R)fq + (g2
L + 1

3
g2
R)fq + 1

24

∑
q=u,d

((εαµ11
s,q )2 + (εαµ11

p,q )2 + 224(εαµ11
T,q )2)(fq + fq)

1
3
fq + fq

. (4.60)
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Using the numerical values in Eq. (4.46) and (4.58), we obtain our naive SM values Rν
SM =

0.32 and Rν
SM = 0.37, which deviate significantly from the NuTeV measured values in

Eq. (4.56). Including nuclear effects, partonic charge symmetry violation and strange quarks

resolves the NuTeV anomaly [128], bringing the experimental measurements in good agree-

ment with the SM values Rν = 0.3950 and Rν = 0.4066. We simply rescale our naive SM

calculations to the more accurate ones. We apply the same rescaling to the new physics

contributions to set the 90% C.L. bounds,

| εαµ11
S,q | , | εαµ11

P,q |< 0.19 , | εαµ11
T,q |< 0.013 . (4.61)

The degeneracies between the three SMNEFT WCs can be broken by the Rν and Rν mea-

surements. By plugging the numerical relations in Eq. (4.15) into Eqs. (4.59) and (4.60), the

bounds on the three SMNEFT WCs, allowing all of them to be nonzero simultaneously, are

| Cαµ11
NLQu |< 0.078 , | Cαµ11

NLdQ |< 0.076 , | C ′αµ11
NLdQ |< 0.015 . (4.62)

4.6 CEνNS

Coherent elastic neutrino-nucleus scattering occurs when the momentum exchanged is

smaller than the inverse of the nucleus size, which typically requires neutrino energies of

O(10 MeV). The cross section is enhanced by the square of the number of nucleons, thus

providing an excellent tool to investigate GNI at low energies. The COHERENT experiment

has recently observed CEνNS in a low-threshold CsI detector at the 6.7σ level. This is

consistent with the SM at 1σ [70]. As we have discussed in section 2.2, the neutrino flux

from the Spallation Neutron Source (SNS) is comprised of prompt, monoenergetic νµ from

stopped pion decays, π+ → µ+ + νµ, and νµ and νe from the subsequent muon decays,

µ+ → e+ + νµ + νe. The νµ energy is fixed at (m2
π −m2

µ)/(2mπ) ≈ 30 MeV due to the two-

body pion decay. The νe and νµ energies have a kinematic upper bound, mµ/2 ≈ 50 MeV.
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The differential cross section including scalar, vector, and tensor contributions reads [27]

dσβa
dEr

=
G2
F

4π
MaN

2
a [(ξβS)2 Er

Er,max

+ (ξβV )2(1− Er
Er,max

− Er
Eν

) + (ξβT )2(1− Er
2Er,max

− Er
Eν

)]F 2(q2) ,

(4.63)

where a denotes the target material and α denotes the neutrino flavor. Ma and Na are the

molar mass of the target nucleus and neutron number of the target, respectively. The flavor

index β = µ includes both νµ and νµ. F (q2) is the nuclear form factor [69]. The maximum

recoil energy Er,max = 2E2
ν

Ma+2Eν
≈ 2E2

ν

Ma
. Since the typical recoil energy Er is O(10) keV, and

the neutrino energy Eν is O(10) MeV, we can safely ignore the interference term between

scalar and tensor interactions, which is proportional to Er/Eν . The ξS, ξV , and ξT collect

the contributions from scalar, vector, and tensor interactions, respectively, and are defined

as

(ξβS)2 =
1

N2
a

{(
∑
q=u,d

2Re(εαβ11
S,q )[N

mn

mq

fnTq + Z
mp

mq

fpTq])
2

+(
∑
q=u,d

2Im(εαβ11
S,q )[N

mn

mq

fnTq + Z
mp

mq

fpTq])
2} ,

(ξβV )2 =
2

N2
a

(Z(2gV,u + gV,d) +N(gV,u + 2gV,d))
2 , (4.64)

(ξβT )2 =
8

N2
a

(
∑
q=u,d

4 Re(εαβ11
T,q )[Zδpq +Nδnq ])2 ,

where fpTq and fnTq are the mass fractions of quark q in the respective nucleon, and the δq’s

are the corresponding nucleon tensor charges. The effective vector coupling gV,q is

gV,q ≡ gL,q + gR,q . (4.65)

The expected number of events per day with recoil energy in the energy range [Er, Er+∆Er]

and arrival time in the time interval [t, t+ ∆t] is given by

Nth(t, Er, ε) =
∑
β=e,µ

mdetNA

Ma

∫
∆Er

dEr

∫
∆t

dtρα(t)

∫ Emax
ν

Emin
ν

dEν φβ(Eν)
dσβa (ε)

dEr
, (4.66)

where mdet is the detector mass, NA = 6.022 × 1023 mol−1, and ρα(t) is the arrival time

probability density function. To calculate the differential neutrino-nucleus scattering cross
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section, we need to evaluate the matrix elements of the operators between nuclear states.

We adopt the following numerical values of the nuclear matrix elements [129, 130]

fpTu = 0.0208 , fpTd = 0.0411 , fnTu = 0.0189 , fnTd = 0.0451 ,

δpu = 0.792 , δpd = −0.194 , δnu = −0.194 , δnd = 0.792 .
(4.67)
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Figure 13: The SM recoil energy (left) and temporal (right) distributions in the current

COHERENT CsI detector (solid lines) and a future COHERENT LAr detector (dashed

curves). Threshold effects are included. The red (blue) [orange] curves correspond to the

contribution from muon (electron) [anti-muon] neutrinos. The black lines correspond to the

sum of all the flavor contributions.

Following Ref. [51], we study the current and projected constraints on the three GNI from

the COHERENT experiment. Several COHERENT experiments with multiple targets have

been proposed. In this study, we consider a future 750 kg liquid argon (LAr) detector with

a 610 kg fiducial mass taking data for four years. The energy threshold is around 20 keV,

which is higher than the 6.5 keV CsI energy threshold. The observed event distributions

based on the SM simulations are shown in Fig. 13. The future LAr experiment will provide

much more statistics even though it has a higher threshold of nuclear recoil energy. GNI

can modify the shape of the recoil energy and temporal distributions. The scalar and tensor

GNI distributions comparing to the SM are shown in Fig. 14. The muon flavor contribu-

tions dominate over the electron flavor as there are twice as many muon flavor neutrinos
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as electron flavor neutrinos. Since the νµ energy distribution peaks at the end point mµ/2,

there are more events in the tail of the energy spectrum for GNI involving the muon flavor.

Another observation from Fig. 14 is that COHERENT experiment is much more sensitive

to the scalar interactions than tensor interactions. By using the energy spectrum of the

current COHERENT data, we find that the current 90% C.L. bounds on the scalar or tensor

interactions, allowing only a single nonzero parameter, are

(ξµS)2 < 0.60 , (ξµT )2 < 0.73 , (ξeS)2 < 1.5 , (ξeT )2 < 1.6 . (4.68)

Also, the projected 90% C.L. bounds from future COHERENT data by using both the

spectral and temporal information are

(ξµS)2 < 0.012 , (ξµT )2 < 0.013 , (ξeS)2 < 0.030 , (ξeT )2 < 0.027 , (4.69)

which is an order of magnitude improvement. Again, the bounds are set based on only

one of them being nonzero. The projected 90% C.L. bounds in the (ξαS)2-(ξαT )2 plane are

shown in Fig. 15. Because of degeneracies between the SMNEFT WCs in Eq. (4.15), bounds

on individual parameters cannot be placed if all the parameters are allowed to float. The

bounds on the individual can be derived after running and matching. The current (projected)

90% C.L. bounds on SMNEFT WCs, after setting the others to zero, are

| Cαe11
NLQu |< 8.1× 10−2 (3.2× 10−3) , | Cαµ11

NLQu |< 5.1× 10−2 (2.0× 10−3),

| Cαe11
NLdQ |< 7.7× 10−2(3.1× 10−3) , | Cαµ11

NLdQ |< 4.9× 10−2 (1.9× 10−3),

| C ′αe11
NLdQ |< 2.0× 10−1 (2.1× 10−2) , | C ′αµ11

NLdQ |< 1.4× 10−1 (1.4× 10−2) .

(4.70)

The projected 90% C.L. bounds in the CNLQu-CNLdQ (CNLdQ-C ′NLdQ) planes, are shown by

the brown dashed contours in the upper (lower) panels of Fig. 12. We have set CNLQu =

0 in the CNLdQ-C ′NLdQ planes, because otherwise the bounds are too weak to display. The

current COHERENT bounds are not shown as they are irrelevant in comparison.
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Figure 14: The recoil energy (left) and temporal (right) distributions in a future

COHERENT LAr detector. Threshold effects are included. The black solid lines are the

SM case including all flavors. The blue (red) curves correspond to the electron

(muon+antimuon) flavor contributions. The dashed (dotted) curves correspond to the

contributions from the scalar (tensor) interactions with CNLdQ (C ′NLdQ) = 2× 10−3.

4.7 Collider Constraints

High-energy colliders can set strong bounds on the Wilson coefficients of scalar, pseu-

doscalar, and tensor interactions. In this section, we study the sensitivity to the WCs at

proton-proton and electron-proton colliders. We set bounds using the LHC and evaluate the

potential of the HL-LHC and LHeC to probe GNI. By integrating over the full phase space,

we find the partonic cross sections of the SM mediated by the W boson and of the contact

scalar and tensor interactions to be [131]

LHC : σ̂S =
G2
F ŝ

24π
C2
S , σ̂T =

2G2
F ŝ

9π
C2
T , σ̂SM(ud→ W ∗ → µ+νµ) =

G2
F ŝ

18π

M4
W

(ŝ−M2
W )2

, (4.71)

LHeC : σ̂S =
G2
F ŝ

24π
C2
S , σ̂T =

14G2
F ŝ

3π
C2
T , σ̂SM(eq → νeq

′) =
G2
F ŝ

2π

M2
W

ŝ+M2
W

, (4.72)
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Figure 15: Projected 90% C.L. upper bounds from the future COHERENT experiment

with a 610 kg fiducial mass of LAr.

where CS ∈ {CNLQu, CNLdQ}, CT = C ′NLdQ. Note that the ratios of the tensor to scalar cross

sections, σ̂T/σ̂S, are 16/3 at the LHC and 112 at the LHeC. Clearly, the LHeC is much more

sensitive to tensor interactions than scalar interactions. Owing to its lower center-of-mass

energy, we expect bounds derived from the LHeC to be weaker than those from the LHC,

given the ŝ-dependence of the higher-dimensional operators.

The interference between chirality-flipped operators and SM operators are helicity sup-

pressed, and the interference between the scalar (ONLdQ) and tensor (O′NLdQ) interactions is

generally nonzero. The differential distributions for the interference of the latter operators

in the center-of-mass frame are found to be

LHC:
dσ̂ST
d cos θ∗

=
G2
F ŝ

12π
(C∗SCT + C∗TCS) cos θ∗ ,

LHeC:
dσ̂ST
d cos θ∗

=
G2
F ŝ

16π
(C∗SCT + C∗TCS)(cos2 θ∗ − 2 cos θ∗ − 3) .

(4.73)

The interference leads to a linear asymmetry at the LHC and the integrated rate vanishes,

while the integrated rate at the LHeC is σ̂ST = −G2
F ŝ/3π(C∗SCT + C∗TCS).
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The hadronic cross sections can be obtained by convolving with the parton distribution

functions,

σLHC =
∑
q,q′

∫ τmax

τmin

dτ

∫ 1

τ

dx

x
fq(x, µF )fq′(τ/x, µF )σ̂(τs) , (4.74)

σLHeC =
∑
q

∫ xmax

xmin

dxfq(x, µF )σ̂(xs) . (4.75)

In the following, we use the Monte Carlo event generator MadGraph5 aMC@NLO [76] to

generate signal and background samples at the LHC and LHeC. The GNI Lagrangian is

implemented in the FeynRules 2.0 [78] framework. PYTHIA8 [132] (PYTHIA6 [80]) is

used for parton showering and hadronization at the LHC (LHeC). We perform the detector

simulations using Delphes 3.4.1 [82].

Before evaluating the collider sensitivity to the Wilson coefficients, we note that our EFT

description is valid only for
√
ŝ < Λ, which calls for an assumption about the energy scale of

the new physics. We consider two representative scenarios of the new physics scale, which

we call low-scale new physics (LNP) with Λ ∼ 1 TeV, and high-scale new physics (HNP)

with Λ � 1 TeV. In the HNP case, we assume the EFT method to be valid for the entire

energy scale relevant to LHC data. In the LNP case, however, we limit our analysis to a

subset of the LHC data below 1 TeV.

4.7.1 Proton-proton colliders

Both scalar and tensor CC contact interactions can be probed at high-energy proton-

proton colliders, under the assumption that the energy scale of the new dynamics is not

kinematically accessible. The signal channel is the Drell-Yan (DY) process, pp → `ν + X.

Due to the missing neutrino in the final state, our analysis is based on the distribution of the

transverse mass, which is reconstructed by the charged lepton transverse momentum (p`T )

and the missing transverse momentum (Emiss
T )

mT =
√

2p`TE
miss
T (1− cos ∆φ(p`T , E

miss
T )) . (4.76)

The main background for large values of mT is DY production of W bosons. The latest

analysis for charged lepton and missing transverse momentum events conducted by ATLAS
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used 139 fb−1 of data collected at
√
s = 13 TeV [133]. In the rest of our study, we only use

the mT distributions below 800 GeV for the LNP scenario, and the full range of mT for the

HNP scenario. For our analyses, we define the statistical significance in terms of

χ2 =
∑
i

(nb,i + ns,i − ndata,i)
2

ndata,i + (σindata,i)2
, (4.77)

where nb(data),i is the number of background (observed) events in the ith bin, which is obtained

directly from Ref. [133]. ns,i is the number of signal events simulated in Madgraph at LO.

σi is the total systematic uncertainty, which is chosen according to Ref. [133]:

electron channel: σe ∼ 10% (12%) for mT = 300 (2000) GeV;

muon channel: σµ ∼ 10% (17%) for mT = 300 (2000) GeV.

The current 90% C.L. bounds, defined by ∆χ2 < 2.71, on the LNP (HNP) scalar and tensor

operators are

| Cαe11
NLQu |< 2.5 (0.44)× 10−3 , | Cαe11

NLdQ |< 2.6 (0.46)× 10−3 , | C ′αe11
NLdQ |< 1.2 (0.24)× 10−3 ,

(4.78)

| Cαµ11
NLQu |< 2.9 (0.66)× 10−3 , | Cαµ11

NLdQ |< 3.0 (0.68)× 10−3 , | C ′αµ11
NLdQ |< 1.4 (0.40)× 10−3 .

(4.79)

The bounds on CNLQu are slightly stronger than for CNLdQ because of the size of the CKM

matrix element Vud. These bounds are consistent with those in Ref. [133]. The 90% C.L.

allowed regions in the CNLdQ-CNLQu and CNLdQ-C ′NLdQ planes are shown in the Fig. 12. The

solid red (blue) contours correspond to the LNP (HNP) case. We have checked numerically

using Madgraph that the interference between scalar operator ONLdQ and tensor operator

O′NLdQ can be ignored.

To assess the future potential of the LHC, we assume an integrated luminosity of L =

3 ab−1 and
√
s = 14 TeV at the HL-LHC. In this analysis, we simulate the DY W back-

ground at LO multiplied by a scale factor obtained from Ref. [133], to include other smaller

backgrounds including top pairs, single top, W → τν, DY Z, and di-bosons. The signals are

also generated at tree level. We do not include a K factor as it applies to both signal and
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background, so the significance is simply scaled by
√
K after including higher-order correc-

tions. The selection rules applied in this analysis are slightly different between the electron

and muon final states. For the muon (electron) final states, we require

• p
µ(e)
T > 55 (65) GeV and |η`| < 2.4,

• veto b-tagged jets,

• discard additional electron or muon with pT > 20 GeV and |η`| < 2.4,

• mT > 300 GeV,

(4.80)

in which, the electron pT cut is slightly stronger than the muon pT cut, in order to suppress

the non-prompt backgrounds. The distributions of mT above 300 GeV after applying the

cuts are shown in Fig 16a. Deviations from the SM arise in the tails of the mT distributions

because the sub-process cross sections for a dim-6 operator scale as ŝ; see Eq. (4.71). For the

same size WC, tensor interactions have a larger cross section than scalar interactions. The

χ2 used in this analysis is defined in Eq. (4.77), with ndata replaced by the values from SM

simulations. The projected 90% C.L. bounds on the LNP (HNP) scalar and tensor operators

are

| Cαe11
NLQu |< 2.3 (0.28)× 10−3 , | Cαe11

NLdQ |< 2.4 (0.28)× 10−3 , | C ′αe11
NLdQ |< 1.1 (0.18)× 10−3 ,

(4.81)

| Cαµ11
NLQu |< 2.7 (0.28)× 10−3 , | Cαµ11

NLdQ |< 2.8 (0.29)× 10−3 , | C ′αµ11
NLdQ |< 1.3 (0.18)× 10−3 .

(4.82)

The bounds from HL-LHC on scalar (tensor) interactions with the assumption of LNP are

comparable with (much stronger than) the ones we obtained for the future COHERENT

experiment. The dashed red (blue) contours in Fig. 12 show the 90% C.L. projections for

the HL-LHC with the LNP (HNP) assumption. The bounds on the WCs are stronger for

HNP than for LNP, because the signals in the high-energy tails of the mT distributions are

not buried in the SM background. These bounds can be converted into limits on the effective

couplings κ =
√
|C|(Λ/v) for fixed values of the new physics scale Λ. The 90% C.L. bounds

on κ are provided in Table 6 for LNP (with Λ = 1 TeV) and HNP (with Λ = 10 TeV).
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As expected, bounds on κ are stronger in the LNP case than the HNP case. Alternatively,

if we assume that κ ≈ 1, then HL-LHC bounds on the WCs for HNP imply a sensitivity

to Λ ∼ 20 TeV. This is comparable to the expected sensitivity of W ′ searches at the HL-

LHC [134].
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Figure 16: Left: Distribution of mT at the HL-LHC with an integrated luminosity of

3 ab−1. Right: Distribution of Emiss
T at the LHeC with 3 ab−1 and a 1.3 TeV center-of-mass

energy. The black histograms corresponds to the SM. The red (blue) histograms

correspond to scalar (tensor) interactions with CNLdQ (C ′NLdQ) = 2× 10−3.

Coupling καe11
NLQu καe11

NLdQ κ′αe11
NLdQ καµ11

NLQu καµ11
NLQu κ′αµ11

NLQu

LHC: LNP (HNP) 0.20 (0.85) 0.21 (0.87) 0.14 (0.63) 0.22 (1.0) 0.22 (1.1) 0.15 (0.81)

HL-LHC: LNP (HNP) 0.19 (0.68) 0.20 (0.68) 0.13 (0.55) 0.21 (0.68) 0.22 (0.69) 0.15 (0.55)

Table 6: Current and projected 90% C.L. bounds on the new physics coupling κ from LHC

and HL-LHC data, respectively, for the LNP (Λ = 1 TeV) and HNP (Λ = 10 TeV) cases.
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4.7.2 Electron-proton colliders

The HERA collaboration set bounds on the contact interaction eνqq′ using the charged

current process, e±p → (−)
ν X, from the Q2 and x distributions [135]. The lower bound on

the mass scale of the contact term is around 1 TeV with the strong coupling ∼ 4π. This

bound can be translated to our scenario:

| Cαe11
NLQu |, | Cαe11

NLdQ |, | C ′αe11
NLdQ |. 5 , (4.83)

which is very weak compared to bounds from high-energy colliders.

Next, we consider the future ep collider, LHeC, with
√
s = 1.3 TeV (Ee = 60 GeV,

Ep = 7 TeV) and L = 3 ab−1. The signal channel is mono-jet, ep → jν + X, through the

t-channel. The main background is mediated by SM W bosons. For the analysis we use the

following set of basic cuts:

• leading jet should have pjT > 20 GeV and |ηj| < 2.5,

• veto any electrons with peT > 20 GeV and |ηe| < 2.5,

• the angular distance between jet and missing ET should be bigger than 0.4.

The distributions of the missing transverse energy above 100 GeV after applying the cuts

are shown in Fig 16b. To maximize our χ2 = S2/B, in which we do not include systematic

uncertainties, we select the cut on the missing transverse energy as Emiss
T > 300 GeV. The

projected 90% C.L. bounds on the individual SMNEFT WCs are

| Cαe11
NLQu |< 3.9× 10−3 , | Cαe11

NLdQ |< 4.0× 10−3 , | C ′αe11
NLdQ |< 0.38× 10−3 , (4.84)

with only one WC taken to be nonzero. If all parameters are allowed to be nonzero, the

bounds weaken slightly due to the mixing between ONLdQ and O′NLdQ:

| Cαe11
NLQu |< 3.9× 10−3 , | Cαe11

NLdQ |< 6.1× 10−3 , | C ′αe11
NLdQ |< 0.58× 10−3 . (4.85)

The projected 90% C.L. bounds on the CNLdQ-CNLQu and CNLdQ-C ′NLdQ are shown in Fig. 12

by the purple dashed contours. Due to the smaller center-of-mass energy, the bounds on the

scalar interactions from LHeC are weaker than the ones from HL-LHC. However, for tensor

interactions, the bounds from LHeC are stronger than HL-LHC for the LNP case. We

compiled all the bouns in Table 7 and 8.
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WC π+ decay β decay ν DIS CEνNS HERA LHC: LNP(HNP)

Cαe11
NLQu 3.3× 10−6 3.4× 10−2 0.77 8.1× 10−2 ∼ 5 2.5 (0.44)× 10−3

Cαe11
NLdQ 3.4× 10−6 3.5× 10−2 0.75 7.7× 10−2 ∼ 5 2.6 (0.46)× 10−3

C ′αe11
NLdQ 3.9× 10−5 2.8× 10−2 0.15 0.20 ∼ 5 1.2 (0.24)× 10−3

Cαµ11
NLQu 1.5× 10−3 - 7.8× 10−2 5.1× 10−2 - 2.9 (0.66)× 10−3

Cαµ11
NLdQ 1.5× 10−3 - 7.6× 10−2 4.9× 10−2 - 3.0 (0.68)× 10−3

C ′αµ11
NLdQ 1.7× 10−2 - 1.5× 10−2 0.14 - 1.4 (0.40)× 10−3

Table 7: Current 90% C.L. bounds on the three SMNEFT WCs CNLQu, CNLdQ, and

C ′NLdQ, for the electron and muon flavors at a 1 TeV energy scale. The constraints

obtained by allowing all WCs to simultaneously vary are in boldface.

WC CEνNS-LAr LHeC HL-LHC: LNP(HNP)

Cαe11
NLQu 3.2× 10−3 3.9× 10−3 2.3 (0.28)× 10−3

Cαe11
NLdQ 3.1× 10−3 6.1× 10−3 2.4 (0.28)× 10−3

C ′αe11
NLdQ 2.1× 10−2 0.58× 10−3 1.1 (0.18)× 10−3

Cαµ11
NLQu 2.0× 10−3 - 2.7 (0.28)× 10−3

Cαµ11
NLdQ 1.9× 10−3 - 2.8 (0.29)× 10−3

C ′αµ11
NLdQ 1.4× 10−2 - 1.3 (0.18)× 10−3

Table 8: Projected 90% C.L. bounds on the three SMNEFT WCs CNLQu, CNLdQ, and

C ′NLdQ, with electron and muon flavor, at 1 TeV energy scale. The constraints obtained by

allowing all WCs to simultaneously vary are in boldface.

75



5.0 Dark Matter Blind Spots at One-Loop

The current level of experimental sensitivity therefore calls for increased accuracy of the

theoretical predictions as well, in order to thoroughly probe interesting and well-motivated

WIMP scenarios. This becomes especially important if the leading order predictions for

these scattering cross-sections are negligibly small or even exactly zero either due to symme-

try reasons or due to cancellations among different contributions to the relevant DM effective

couplings. Next-to-leading order corrections then become important, and would constitute

a benchmark for the near-future multi-ton scale liquid Xenon-based direct detection experi-

ments, targeting at a DM-nucleon scattering cross-section below 10−47cm2.

A well-studied example of the above scenario where the one-loop contributions to the

DM-nucleon scattering rate become important is DM belonging to a multiplet of the SM weak

interaction group SU(2)L [136, 137]. For both real SU(2)L triplets with zero hypercharge (e.g.,

the wino in the minimal supersymmetric standard model, MSSM) and Majorana SU(2)L

doublets (e.g., the Higgsino in the MSSM) the leading contribution to spin-independent (SI)

scattering with nucleons appears at one-loop. In the former case, the SI cross-section with

nucleon is only mildly sensitive to the DM mass and is obtained to be around 2.3×10−47cm2

in the limit MDM � MW , including higher order corrections at next-to-leading order in

αs [138, 139]. Therefore, these DM candidates are natural benchmark targets for multi-ton

scale detectors. For Higgsino-like SU(2)L doublet Majorana fermions, the rate is further

suppressed by two orders of magnitude, and the SI cross-section is around 10−49cm2. Such

cross-sections are below the irreducible neutrino floor [140, 141], thereby making necessary

larger detector volumes and exposure time, as well as the development of directional detection

methods [142, 143].

While for the pure SU(2)L multiplets discussed above the tree-level SI scattering rates

are absent due to symmetry reasons, there are other scenarios in which very small tree-level

rates are obtained due to cancellations of different contributions to the relevant effective

couplings. For example, if the neutral components of different SU(2)L multiplets mix after

electroweak symmetry breaking, generically there are regions of parameter space where the
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effective coupling to the Higgs boson(s), which determines the leading contribution to the SI

scattering rate, either becomes small or even vanishes, a scenario dubbed as “blind spots” for

DM direct detection [144, 145, 146, 147, 148, 149, 150, 151]. While the particular values and

relations of the theory parameters that result in the blind spots may not have any deeper

theoretical implications, or may even be viewed as a fine-tuning to a special hypersurface

within the parameter space, they do characterize a distinctive class of phenomena that need

to be scrutinized. Such blind spots for DM-nucleon scattering therefore present us with

another context in which the higher-order electroweak corrections, involving states from

both the DM and the SM sectors in the loop amplitudes, are important to evaluate in order

to quantify its detectability. In this chapter, we compute the one-loop corrections to DM-

nucleon scattering processes near such blind spots, and assess their implications for different

direct detection probes.

As an example scenario, which represents all the features of more involved models such

as the bino-Higgsino mixed DM in the MSSM [28], we begin by studying a DM model

with mixing between an SU(2)L×U(1)Y singlet fermion and the neutral components of two

SU(2)L doublet fermions [152, 153, 149, 154]. The details of this simplified model and the

appearance of tree-level blind spots are reviewed in Section 5.1. We then systematically

evaluate the impact of the one-loop corrections for the SI scattering rates near the blind

spots in the singlet-doublet model, after defining an on-shell renormalization procedure for

the DM sector. The computational framework and the results of the one-loop corrections

are discussed in Section 5.2, while the details of the on-shell renormalization scheme adopted

are summarized in Appendix A. In Section 5.3 we utilize these one-loop results to find out

the prospects of observing DM-nucleon scattering near the tree-level blind spots. In this

section, we also compare the prospects for probing the one-loop SI rates with the reach from

the tree-level spin-dependent (SD) DM-nucleon scattering searches. We also briefly review

the computational framework adopted in this chapter for SI and SD DM-nucleon scattering

in Appendix B, and the mapping of the singlet-doublet model parameters to the case for

MSSM bino-Higgsino mixed DM scenario in Appendix C.
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5.1 Singlet-doublet Dark Matter and Tree-level Blind Spot

To understand the appearance of blind spots for DM direct detection, it is instructive to

consider a simple model, in which the DM candidate is a linear combination of an electroweak

singlet Majorana fermion χS, and the neutral components of two SU(2)L doublet states χD1

and χD2, with hypercharge +1/2 and −1/2, respectively [144, 149],

χD1 = (χ+
1 , χ

0
1)> and χD2 = (χ0

2, χ
−
2 )>. (5.1)

The mixing between the singlet and the neutral components of the doublet states occurs after

electroweak symmetry breaking. Such a scenario can appear in beyond-the-standard-model

constructions such as the MSSM, in which the singlet state is the bino, and the two doublet

states correspond to the two Higgsinos. In the MSSM some of the couplings of these states

with the SM sector are determined by gauge symmetry and supersymmetry, and therefore

the results of the singlet-doublet model can be mapped to the MSSM case, as long as all the

sfermions, heavy scalars and wino are decoupled.

In order to have a stable DM candidate, we impose an additional Z2 symmetry, under

which the DM sector states are odd, and all the SM sector states are even. Thus, the lightest

neutral state in the dark sector is the DM candidate, where the mass spectrum and Yukawa

couplings of the dark sector particles are determined by the following Lagrangian

LY = −
(

1

2
MSχSχS +MDχD1 · χD2 − y1χSχD1 · H̃ − y2χSχD2 ·H

)
+ h.c., (5.2)

where H =
(
φ+, (v + h+ iη)/

√
2
)>

is the SM Higgs doublet, with a vacuum expectation

value v = 246 GeV, while H̃ = iσ2H
∗. The dot products in Eq. (5.2) indicate the contraction

of SU(2)L indices to form a singlet.

We see that the mass spectrum is determined by four free parameters, namely, MD, MS, y1

and y2. By re-defining the fields χD1, χD2, and χS, we can make three of them positive, cho-

sen to be y1, y2, and MS. For simplicity, we do not include any possible CP violation in the

DM sector, and restrict to real values of MD only. After electroweak symmetry breaking,
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the neutral components of the doublet and singlet dark fermions mix, and the mass matrix

of neutral dark sector in the gauge basis χ0 = (χS,−χ0
2, χ

0
1)> is given by

MN =


MS

yv cosβ√
2

yv sinβ√
2

yv cosβ√
2

0 MD

yv sinβ√
2

MD 0

 , (5.3)

where tan β = y1/y2, with y1 = y sin β and y2 = y cos β.

5.1.1 Spin-independent interaction

The dominant contribution to SI direct detection cross-section stems from the Higgs

boson exchange diagram, and we obtain the tree-level DM-Higgs coupling using the low

energy theorem

C0
hχ̃0

1χ̃
0
1

=
1

2

∂Mχ̃0
1
(v)

∂v
=

y2v[MD sin(2β) +Mχ̃0
1
]

6M2
χ̃0
1
− 4Mχ̃0

1
MS − 2M2

D − y2v2
, (5.4)

where χ̃0
1 is the lightest neutral mass eigenstate. In the limit of vanishing momentum transfer

relevant for nuclear-recoil experiments, the SI direct detection rate is fixed by the Wilson

coefficient fq of the operator mqχ̃0
1χ̃

0
1qq. The t-channel Higgs exchange process leads to the

following isospin-conserving Wilson coefficient for interactions with up-type and down-type

quarks

fu = fd = −
C0
hχ̃0

1χ̃
0
1

vm2
h

. (5.5)

There is an additional effective coupling to a pair of gluons in the nucleon, which is obtained

on integrating out the heavy quarks coupled to the Higgs propagator, and the corresponding

Wilson coefficient is given as [28]

fG = − 1

12

∑
q=c,b,t

fq . (5.6)

Combining the quark and the gluon contributions, we obtain the effective coupling of the

DM state to nucleons, fN χ̃0
1χ̃

0
1NN , with

fN/mN =
∑

q=u,d,s

fqf
N
Tq +

2

27

∑
q=c,b,t

fqf
N
TG = −

C0
hχ̃0

1χ̃
0
1

vm2
h

[ ∑
q=u,d,s

fNTq +
2

9
fNTG

]
, (5.7)
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where fNTq and fNTG are the mass-fraction parameters of the quarks and the gluon in the

nucleon N , respectively, and fNTG ≡ 1 −∑q=u,d,s f
N
Tq. We have summarized the additional

details in the computation of DM-nucleon scattering in Appendix B.

Thus, we see from the above discussion that at the leading order, the SI DM-nucleon

scattering rate via the Higgs boson exchange would vanish if the mass and Yukawa coupling

parameters satisfy the following blind-spot condition [144, 155, 149]

MD sin(2β) +Mχ̃0
1

= 0. (5.8)

For our choice of the phases of the mass and Yukawa coupling parameters, we see that the

blind-spot condition can be satisfied for MD < 0. For the specific choice of parameters that

satisfy the blind-spot condition, since the coupling of the DM mass eigenstate to the Higgs

boson is zero, the physical mass of the DM state is either MS or MD, depending upon the

hierarchy. Thus the two possibilities are

1. Mχ̃0
1

= MS, −MD > MS, sin(2β) = MS/(−MD),

2. Mχ̃0
1

= −MD, −MD <
(
MS +

√
M2

S + (yv)2
)
/2, tan β = 1.

While the first possibility leads to an SI blind spot, the second one implies a blind spot for

both SI and SD scattering. For our subsequent analyses, we take up the first case as an

illustration.

5.1.2 Spin-dependent interaction

In the singlet-doublet model, the spin-dependent interaction of DM with the nucleon

is determined by the gauge interaction of the doublet components with the Z-boson. The

relevant interaction Lagrangian is given in terms of the gauge eigenstates by

Lint = − e

2 cos θW sin θW

[
(χ0

1)†σµ−χ
0
1 − (χ0

2)†σµ−χ
0
2

]
Zµ, (5.9)

where θW is the Weinberg angle. Thus the axial-vector coupling of the DM state to the

Z-boson, which leads to the spin-dependent interaction with nucleons is obtained to be

C0
Zχ̃0

1χ̃
0
1

=
e

2sW cW
(U2

21 − U2
31), (5.10)
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where sW = sin θW , cW = cos θW , and the mixing matrix in the neutral dark sector is defined

by

χ̃0 = U †χ0, (5.11)

with the mass eigenstates χ̃0 = (χ̃0
1, χ̃

0
2, χ̃

0
3)
>

. Therefore, the Wilson coefficient of the relevant

low-energy effective interaction χ̃0
1γ

µγ5χ̃0
1qγµγ

5q is found to be (please see Appendix B for

further details on the standard formalism adopted)

du =
−e2(U2

21 − U2
31)

8M2
Zs

2
W c

2
W

= −dd . (5.12)

5.2 Radiative Corrections to DM-nucleon Scattering

We now turn to the electroweak radiative corrections to the spin-independent DM direct

detection rate near the tree-level blind spots. Since the SI scattering rates are vanishingly

small around this region of mass and coupling parameters, the next-to-leading order (NLO)

corrections are expected to play an important role in determining the detectability of such

DM model-space. Furthermore, as we will see in the following, there also appears a new

blind spot at NLO order, at a shifted parameter region compared to the tree-level one.

5.2.1 Computational framework

In addition to the interaction Lagrangians described in Eqs. (5.2) and (5.9), the following

additional interaction terms (in the gauge basis) involving the charged components of the

DM doublets and the weak bosons enter the computation of the radiative corrections

Lint =
e√

2 sW

[(
(χ0

1)†σµ−χ
+
1 + (χ−2 )†σµ−χ

0
2

)
W−
µ + h.c.

]
. (5.13)

There are two different amplitudes contributing to the NLO electroweak corrections to

DM-nucleon scattering, with representative Feynman diagrams depicted in Fig. 17. The

first one stems from the one-loop vertex corrections to the Higgs-DM coupling, as shown in

Fig. 17a, while the second one is given by the box diagrams shown in Fig. 17b. Since the
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triangle diagrams are ultraviolet (UV) divergent, we need to renormalize the relevant mass,

mixing and coupling parameters. We have adopted the on-shell renormalization scheme for

the DM sector, the details of which are described in Appendix A.
q q
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Figure 17: Representative Feynman diagrams contributing to DM-quark spin-independent

scattering.

In addition to the class of diagrams represented in Fig. 17, there are other sets of diagrams

entering the NLO electroweak corrections to the same process. These involve the Higgs self-

energy corrections and the vertex corrections to the quark Yukawa couplings. However, the

contribution of these latter diagrams to the DM-quark effective vertex is proportional to the

tree-level DM-Higgs coupling, which is vanishingly small near the tree-level blind-spot region

of our interest. We therefore focus on the diagrams in Fig. 17 for our computation, which

constitute a UV-finite subset.

We have generated the relevant Feynman diagrams and the corresponding matrix ele-

ments using FeynArts [156], which are then passed onto FeynCalc [157, 158] to perform the

Passarino-Veltman reduction of the one-loop integrals. We have used Collier [159, 160, 161,

162] for the numerical evaluation of the one-loop scalar integrals. We have adopted the

Feynman gauge for our computations.

5.2.2 Results

The contribution to the effective DM-quark interaction from the vertex corrections repre-

sented by the triangle diagrams in Fig. 17a, f tri
N , has the same form as the tree-level t-channel
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Figure 18: Contributions to the absolute value of fN as a function of MD, from tree-level

diagrams (blue), one-loop triangle diagrams (red), and one-loop box diagrams (green). The

dashed lines indicate negative values of fN . The value of the singlet dark fermion mass is

fixed as MS = 200 GeV, with tan β = 2 (upper panels) and tan β = 10 (lower panels), for

representative values of y = 0.3 (left columns) and y = 1.5 (right columns).

Higgs exchange vertex, with the Higgs-DM coupling C0
hχ̃0

1χ̃
0
1

replaced by its one-loop coun-

terpart Ctri
hχ̃0

1χ̃
0
1

f tri
N /MN = −

Ctri
hχ̃0

1χ̃
0
1

vm2
h

( ∑
q=u,d,s

fTq +
2

9
fTG

)
. (5.14)

83



The box diagrams shown in Fig. 17b also induce corrections to the Wilson coefficient of the

operator χ̃0
1χ̃

0
1qq, denoted as Cbox

q , which are not universal for different flavors, and lead to

the following corrections to the DM-nucleon effective scalar coupling:

fbox
N /MN =

∑
q=u,d,s

Cbox
q

mq

fTq +
2

27
fTG

∑
q=c,b,t

Cbox
q

mq

, (5.15)

The other possible structures for spin-independent operators generated by the radiative

corrections are suppressed either by the small momentum transfer or by powers of small DM

velocity [163].

We show the resulting magnitudes of the tree-level f tree
N , the triangle diagram f tri

N , and

the box diagram fbox
N contributions as a function of MD in Fig. 18, where we have adopted

the Feynman gauge for our computations. The results are shown for MS = 200 GeV with

various values of y and tan β. Here, dashed lines have been used to indicate negative values of

the Wilson coefficients. We note several interesting features in Fig. 18. First of all, although

the tree-level contribution naturally dominates in the parameter region away from the blind

spot, near the blind spot it decreases dramatically. The one-loop contribution, especially

from the triangle diagrams, therefore gives rise to the leading contribution in this region.

Secondly, away from the blind spot, the one-loop electroweak effects are still appreciable.

For example, we see in Figs. 18b and 18c that the contributions from the triangle diagrams

considered can shift the tree-level results by up to 10%. Third, the box diagram contribution

can be comparable to the triangles in certain regions of parameter space. Fourth, there are

values of parameters around which the triangle and the box contributions can change sign

individually, and therefore have their own blind spots, as seen in Figs. 18b and 18c.

Most importantly, the full amplitude, which is a coherent sum of all the diagrams, always

shows a new blind spot at the NLO level, perturbatively shifted from the tree-level blind

spot. We quantify this shift by introducing a mass parameter difference

δMD = M
(0)
D −M

(1)
D , (5.16)

which is the difference between the tree-level blind spot M
(0)
D = −Mχ̃0

1
/ sin 2β and the new

blind spot M
(1)
D obtained at NLO, on including the one-loop corrections. This variation in

δMD is shown in Fig. 19 as a function of MS. The amount of the shift in the values of MD
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Figure 19: Shift in the position of the blind spot δMD versus MS, with

δMD = M
(0)
D −M

(1)
D . The results are shown for two values of the coupling y = 0.3 (red) and

y = 1.5 (blue), with tan β = 2 (upper panels) and tan β = 10 (lower panels). We also show

the ratio δMD/M
(0)
D in the right panels.

is almost linearly proportional to the value of MS as seen in Figs. 19a and 19c. The results

are shown for two values of the coupling y = 0.3 (red) and y = 1.5 (blue), with tan β = 2

(upper panels) and tan β = 10 (lower panels). As we can see from this figure, the shift is

larger for large values of tan β and small values of y. We also show the ratio δMD/M
(0)
D in

Figs. 19b and 19d (the right panels), and it can be around O(1%) for small values of y.
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We note that the red curves in Figs. 19a and 19b, with y = 0.3 and tan β = 2, exhibit two

cusps at MS ' 330 GeV and 470 GeV. These are due to the opening of new thresholds where

the decays χ̃0
2,3 → χ̃0

1 Z and χ̃0
2,3 → χ̃0

1 h, respectively, become kinematically accessible1. On

the other hand, the blue curves in Figs. 19a and 19b, and all the curves in Figs. 19c and 19d

do not have such cusps, as the decay channels χ̃0
2,3 → χ̃0

1 Z and χ̃0
2,3 → χ̃0

1 h are always

allowed in the relevant parameter regions.

5.3 Direct Detection: Current Constraints and Future Prospects

We now apply the results of the previous section to estimate the reach of ongoing and

future direct detection experiments in the singlet-doublet model parameter space near the

tree-level blind spot region. After discussing the NLO contribution to the spin-independent

scattering, we also show the LO estimate for the reach of spin-dependent scattering experi-

ments for comparison.

5.3.1 Spin-independent scattering cross-sections at one-loop

In this section, we focus on the parameter region for the tree-level SI blind spot, where

the NLO corrections are most impactful in extending the reach of SI direct detection probes.

For a fixed value of tan β, this then leads to a two-dimensional parameter space of interest,

that of the DM mass (Mχ̃0
1
) and Yukawa coupling y plane. The value of MD, for each Mχ̃0

1
,

is fixed to be −Mχ̃0
1
/ sin (2β) as given by the blind-spot condition in Eq. (5.8).

In Fig. 20, we show the contours of SI DM-nucleon scattering cross-section, σSI, in the

y −Mχ̃0
1

plane, for values of tan β = 2 (left) and tan β = 10 (right). As we can see, for

tan β = 2, σSI takes values in the range of about 10−47 cm2 to 10−50 cm2, for Mχ̃0
1

values in

the interval 100 GeV− 2 TeV, and coupling coefficient y in the range 0.3− 1.5. For a given

coupling, the cross-section decreases with increasing DM mass, and the future projection

from the LZ experiment [2] (blue shaded region) is expected to probe a DM mass upto

1The masses of χ̃0
2 and χ̃0

3 are nearly degenerate close to the tree-level blind spot parameter region.
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Figure 20: Spin-independent DM-nucleon scattering cross-section (σSI) in the DM mass

(Mχ̃0
1
)–Yukawa coupling (y) plane, with MD fixed by the blind-spot condition. The results

are shown for tan β = 2 (left panel) and tan β = 10 (right panel). The contours represent

lines with fixed values of log10 σ
SI, with σSI expressed in cm2 units. The projected reach of

the LZ [2] (blue shaded) and DARWIN [3] (red shaded) experiments are also shown.

about 500 GeV (blue shaded region in Fig. 20), for the above range of y. This reach can be

further extended by the DARWIN experiment [3] (red shaded region), which can probe DM

masses of upto 1250 GeV for the same range of coupling values. For higher values of tan β,

as seen with tan β = 10 in the right panel of Fig. 20, the expected cross-section is smaller due

to the suppression from smaller mixing angles, with a maximum of around 10−49 cm2, which

may not be accessible to DARWIN. Thus, the small tan β scenario leads to similar σSI as in

the case of wino-like real triplet DM, as discussed in the introduction, while the intermediate

tan β scenario predicts cross-sections similar to the case of Majorana Higgsino-like doublets.
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5.3.2 Tree-level spin-dependent scattering cross-sections

In the spin-independent (SI) blind-spot region considered above, the effective coupling of

the DM mass eigenstate to the Higgs boson vanishes. On the other hand, the spin-dependent

(SD) scattering rate, which is determined at the tree level by the DM-Z-boson coupling, can

have an appreciable rate for the same set of model parameters. In general, though the

experimental sensitivity of SD scattering is weaker than that of SI scattering, near the blind

spot they might have comparable reach [150], since the SI rates appear only at NLO.

We show the spin-dependent scattering cross-sections, σpSD for proton and σnSD for neutron,

in Fig. 21 in the y −Mχ̃0
1

plane, with all other parameters and conditions being the same

as in Fig. 20. The corresponding cross-sections are in the range of 10−38 − 10−43 cm2 for

tan β = 2, and around an order of magnitude lower for tan β = 10, in the parameter space

studied. The reach from the current PICO-60 experiment [164, 165, 166] (blue shaded region)

and the future projections from the LZ experiment [2] (red shaded region) are also shown.

For tan β = 2, the reach from PICO-60 is upto about Mχ̃0
1

= 840 GeV, while the future

projection from LZ can probe DM masses upto 1560 GeV. For tan β = 10, the reach from

PICO-60 is reduced to 230 GeV and that of LZ to around 350 GeV.

Thus in the particular simple model adopted in this study the tree-level SD scattering

has somewhat better prospects in probing the model parameter space, compared to the one-

loop SI scattering rates. However, since the SI and SD rates probe the coupling of the DM

particle to different sets of SM particles, both of them are necessary probes of the model,

with combined experimental observations leading to a unified picture of the DM-nucleon

effective couplings.

Before concluding, a special remark is in order. The search for missing particles, the

potential DM candidates, at high-energy colliders is complementary to the DM direct detec-

tion. The charged and neutral dark sector states can be pair-produced in quark-antiquark

annihilation via the s-channel W±, Z-boson exchange in the Drell-Yan process. These states,

apart from the lightest neutral DM particle, would decay via electroweak interactions to final

states containing W and Z bosons. Thus, multiple leptons and missing transverse momenta

are the most promising channels to search for at hadron colliders, such as the LHC [167, 168],
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Figure 21: Spin-dependent DM-nucleon scattering cross-sections (σp,nSD ) in the DM mass

(Mχ̃0
1
)–Yukawa coupling (y) plane, with all other parameters and conditions being the same

as in Fig. 20. The contours represent lines with fixed values of log10 σ
p
SD (dashed) and

log10 σ
n
SD (dotted), with σp,nSD expressed in cm2 units. The reach of the ongoing PICO-60

experiment (blue shaded) and the projected reach of the LZ experiment (red shaded) are

also shown.

including its luminosity (HL-LHC) [169, 170], and possibly energy (HE-LHC) upgrades [171].

For small mass gaps between the charged and neutral dark sector particles, a likely scenario

under our consideration, searches for disappearing tracks and displaced vertices are rele-

vant [172]. For a detailed discussion of the LHC complementarity for DM search near the

blind-spot region, we refer the reader to Ref. [150]. On the other hand, the situation could

be more optimistic if there are relatively light colored states (such as gluinos and squarks in

SUSY), that could be copiously produced at hadron colliders and that could subsequently

decay to the DM states resulting in large missing transverse momentum and multiple jets in

the final state [173].
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6.0 Dark Matter and Electroweak Phase Transition with an SU(2) Dark

Sector

There is mounting evidence for the existence of DM through its gravitational effects.

However, the null results of the last fifty years of searches challenge the most theoretically

attractive candidates, namely, the standard weakly interacting massive particles (WIMPs),

that are charged under the SM weak interactions (see Ref. [28] for review). On the other

hand, it is quite conceivable that the DM particles live in a dark sector that are not charged

under the SM gauge group. Furthermore, the dark sector may have a rich particle spectrum,

leading to other observable consequences [33]. A massless dark gauge field, dubbed as the

dark radiation (DR), is one of the quite interesting extensions that could help to alleviate

the tension between Planck and HST measurements of the Hubble constant [34]. DM-

DR interactions and DM self-interactions can provide solutions to the small-scale structure

problems which challenge the cold dark matter (CDM) paradigm [35, 36, 37].

In this chapter, we would like to explore the potentially observable effects beyond the

gravitational interactions from a hypothetical dark sector [174]. We assume that the dark

sector interacts with the SM particles only through the Higgs portal [38]. An immediate con-

sequence of this would be the modification of the Higgs boson properties that will be probed

in the on-going and future high energy experiments [39, 40]. The DM searches from the direct

and indirect detection experiments will provide additional tests for the theory [28]. Perhaps,

an even more significant impact would be on the nature of the electroweak phase transition

(EWPT) at the early Universe (see, e.g., [41, 42, 43] for recent reviews), which could shed

light on another profound mystery: the origin of baryon asymmetry in the Universe. Indeed,

one of the best-motivated solutions to this mystery is the electroweak baryogenesis (EWBG)

[44, 45, 46, 47] (see also [48, 49] for pedagogical introductions). For a successful generation

of the baryon asymmetry during the EWPT, all of the three Sakharov conditions [50] have

to be satisfied. One of the three Sakharov conditions is to assure a strong first-order phase

transition (FOPT), that is absent within the minimal SM, but could be achieved by the

Higgs portal to a sector beyond the SM. It is important to note that many well-motivated
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extensions of the SM predict gravitational wave (GW) signals through a strong FOPT, that

are potentially detectable at LIGO and future LISA-like space-based GW detectors.

Given the rich physics associated with a dark sector, there have been significant activities

in the literature dealing with many different aspects of the theory and phenomenology. In

the dark sector, both Abelian (U(1)D) and non-Abelian (SU(2)D, SU(3)D) gauge sectors have

been studied with different symmetry breaking patterns induced by various scalar scenarios.

Building upon the existing literature, in this chapter, we will focus on a dark SU(2)D model

un-charged under the SM gauge group. Some early exploration and the phenomenology

associated with the model have been examined [175, 176, 177, 178, 179, 180, 181, 182, 183,

184, 185]. The previous works mainly focused on the DM studies. In this work, we will study

the EWPT and GW with this well-motivated DM model. In this class of models, it remains

largely unconstrained on the choice of the dark scalar sector. With just one real scalar

triplet, we could achieve a FOPT at the early Universe by transitioning from an electroweak

symmetric vacuum that breaks the SU(2)D symmetry to an electroweak broken vacuum that

preserves the SU(2)D symmetry [186]. As such, all the dark sector particles would remain

massless, and there would be no cold DM candidate in this simplest scenario. Alternatively,

we would like to explore the following two cases to facilitate a strong FOPT in the early

Universe and to have viable cold DM candidates

1. one real scalar triplet and one real scalar singlet;

2. two real scalar triplets.

For both cases, at zero temperature, only one scalar triplet gets a nonzero vacuum expecta-

tion value (VEV) and partially breaks the SU(2)D into U(1)D. The massless vector gauge

boson associated with the unbroken U(1)D symmetry can serve as a dark radiation (DR).

The other two massive gauge bosons associated with the symmetry breaking are our vector

DM candidates. Due to the presence of the non-Abelian gauge boson couplings, the DM-DR

and DM-DM interactions can be naturally introduced. The other scalar triplet or singlet

can develop a non-zero VEV at a finite temperature and can thus trigger a strong FOPT,

besides providing the scalar DM candidates.

The rest of the chapter is organized as follows. In section 6.1, we introduce our model
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and particle spectrum, with the phenomenological constraints presented in section 6.2 and

DM phenomenology in section 6.3. In section 6.4, we perform the study of EWPT and the

GWs spectrum with two benchmark points (BMs) as shown in Table 9.

6.1 Theoretical Framework

In addition to the SM, we include a non-Abelian SU(2)D dark sector. We consider two

scenarios for the dark scalar sector, a real singlet plus a real triplet (ST), or two real triplets

(TT) under the dark gauge group SU(2)D:

Φ1 =

ST 1√
2
(v1 + ω)

TT 1√
2
(ω1, ω2, v1 + ω3)T

, Φ2 =
1√
2

(ϕ1, v2 + ϕ2, ϕ3)T. (6.1)

We assume that the dark sector does not carry SM charges but rather interacts with the

SM particles through the Higgs portal interactions. Therefore, the Lagrangian of the model

consists of three parts

L = LSM + Lportal + LDS, (6.2)

−LSM ⊃ VSM = m2
H |H|2 +

λH
2
|H|4, (6.3)

−Lportal ⊃ Vportal = λH11|H|2|Φ1|2 + λH22|H|2|Φ2|2, (6.4)

LDS = −1

4
W̃ a
µνW̃

aµν + |DµΦ1|2 + |DµΦ2|2 − VDS, (6.5)

where W̃ a
µν = ∂µW̃

a
ν −∂νW̃ a

µ + g̃fabcW̃ b
µW̃

c
ν is the dark gauge field strength tensor; Dµ = ∂µ−

ig̃T aW̃ a
µ is the covariant derivative in the dark sector with T a being the SU(2)D generators,

which is given in the 3-dimensional representation by

T1 =


0 0 0

0 0 −i
0 i 0

 , T2 =


0 0 i

0 0 0

−i 0 0

 , T3 =


0 −i 0

i 0 0

0 0 0

 ; (6.6)
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and HT = (G+, (vh + h0 + iG0)/
√

2), being the SM Higgs doublet. The most general

renormalizable hidden sector potential with an assumed Z2 symmetry is given by

VDS = m2
11|Φ1|2 +m2

22|Φ2|2 +
λ1

2
|Φ1|4 +

λ2

2
|Φ2|4 + λ3|Φ1|2|Φ2|2 + λ4|Φ†1Φ2|2, (6.7)

where λ4 = 0 in the ST model. In principle, there can be cubic terms for the singlet scalar,

which can change the phase transition dramatically. However, we will not consider breaking

the Z2 symmetry in this work.1

In our phenomenological analyses in the following sections, we choose v1 = 0 at the zero

temperature. An important consequence of this choice is to leave the dark U(1)D unbro-

ken so that there will be a massless dark gauge field, DR, which would have observational

implications.

6.1.1 Mass spectrum

With the choice of v1 = 0, the SM Higgs boson mixes only with the SU(2)D dark scalar

ϕ2. In the TT scenario, the mass terms for the scalar bosons are

−L mass
scalar ⊃

1

2
hTMhh +

1

2
m2
ω2
ω2

2 +m2
ω±ω

+ω−, (6.8)

where h = {h0, ϕ2} are two neutral scalars with the mass matrix

Mh =

 λHv
2
h λH22v2vh

λH22v2vh λ2v
2
2

 , (6.9)

and m2
ω± = 1

2
(λ3v

2
2 + 2m2

11 + λH11v
2
h) is the mass of the SU(2)D charged scalars. The mass

for another neutral scalar ω2 is m2
ω2

= 1
2
((λ3 + λ4)v2

2 + 2m2
11 + λH11v

2
h). The scalar fields ω±

are defined as

ω+ ≡ ω1 − iω3√
2

, ω− ≡ ω1 + iω3√
2

. (6.10)

1In doing so, there could be the formation of domain walls during the phase transition when the field
acquires a non-zero VEV, which serves as another source for GW production when they annihilate (see,
e.g., [187]). If they persist and still exist today, that might be problematic. These are interesting questions
and needs a dedicated analysis of their formation, evolution and annihilation in a specified cosmological
context, which however is beyond the scope of the current study and will be left to a future investigation.
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In the ST scenario, there is only one massive scalar with mass

m2
ω = m2

ω± . (6.11)

Please note that the sign ± refers to the dark SU(2)D charge. The neutral scalars h0 and ϕ2

are mixed. The mass eigenstates h′ = {h1, h2} can be obtained from a rotation on hh1

h2

 = R(θ)

h0

ϕ2

 . (6.12)

The rotation matrix can be parametrized by one mixing angle θ as

R(θ) =

 cos θ sin θ

− sin θ cos θ

 . (6.13)

The mass eigenvalues are

RMhRT =

m2
h1

0

0 m2
h2

 . (6.14)

Here and henceforth, we identify h1 as the SM-like Higgs boson with mh1 = 125 GeV, and

h2 is a heavier scalar in the model.

The scalar fields ϕ1 and ϕ3 are the Nambu-Goldstone (NG) bosons absorbed by two of

the SU(2)D gauge bosons W̃1 and W̃3. The mass terms of dark gauge bosons are contained

in (DµΦ1)2 and (DµΦ2)2 in Eq. (6.5)

−L mass
vector ⊃

1

2
M2

W̃

∑
i=1,3

W̃ 2
i = m2

W̃±
W̃+W̃−, (6.15)

where

W̃+ ≡ W̃1 − iW̃3√
2

, W̃− ≡ W̃1 + iW̃3√
2

, mW̃± = g̃v2, (6.16)

and W̃2 remains massless.
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6.1.2 Interactions

The interactions between the SM and the dark sector are generated through the Higgs

portal as in Eq. (6.4), specifically

L int
DS-SM ⊃ 2g̃2v2(sin θh1 + cos θh2)W̃+W̃− + g̃2(sin θh1 + cos θh2)2W̃+W̃−

−
∑
i=1,2

(cihiω
+ω− − dihiω2

2)−
∑
i,j=1,2
i<j

(cijhihjω
+ω− − dijhihjω2

2) , (6.17)

where the scalar couplings are given in terms of the mixing angle and the other model

parameters

c1 = λ3v2 sin θ + λH11vh cos θ, d1 =
1

2
((λ3 + λ4)v2 sin θ + λH11vh cos θ), (6.18)

c2 = λ3v2 cos θ − λH11vh sin θ, d2 =
1

2
((λ3 + λ4)v2 cos θ − λH11vh sin θ), (6.19)

c11 =
1

2
(λ3 sin2 θ + λH11 cos2 θ), d11 =

1

4
((λ3 + λ4) sin2 θ + λH11 cos2 θ), (6.20)

c12 =
1

2
(λ3 − λH11) sin 2θ, d12 =

1

4
(λ3 + λ4 − λH11) sin 2θ, (6.21)

c22 =
1

2
(λ3 cos2 θ + λH11 sin2 θ), d22 =

1

4
((λ3 + λ4) cos2 θ + λH11 sin2 θ). (6.22)

In the ST scenario, ci, cij, and λ4 are zero. The above interactions govern the phenomenology

relevant for the potential experimental observations, such as the Higgs properties, the DM

relic density and direct detections, and EWPT at the early Universe, as we will explore in

the following sections.

6.2 Phenomenological Constraints

The scalar potential of the model is

VS =
m2
H

2
h2

0+
λH
8
h4

0+
m2

11

2
ω2

3+
λ1

8
ω4

3+
m2

22

2
ϕ2

2+
λ2

8
ϕ4

2+
λH11

4
h2

0ω
2
3+

λH22

4
h2

0ϕ
2
2+

λ3

4
ω2

3ϕ
2
2. (6.23)

The two minima conditions ∂VS
∂h0

= 0 and ∂VS
∂ϕ2

= 0 evaluated at the VEVs are

vh(2m
2
H + λHv

2
h + λH11v

2
1 + λH22v

2
2) = 0 , (6.24)

v2(2m2
22 + λH22v

2
h + λ3v

2
1 + λ2v

2
2) = 0 . (6.25)
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The mass parameters mH and m22 can be solved by using these two minima conditions

m2
H = −1

2
(λHv

2
h + λH11v

2
1 + λH22v

2
2), (6.26)

m2
22 = −1

2
(λH22v

2
h + λ3v

2
1 + λ2v

2
2). (6.27)

In the TT model as described in the last section, there are fourteen parameters

g̃, vh, v1, v2, m
2
H , m

2
11, m

2
22, λH , λH11, λH22, λ1, λ2, λ3, λ4.

By applying the two extrema conditions in Eqs. (6.24) and (6.25) for the scalar potential

and v1 = 0, we can get rid of three parameters. Adopting the SM values mh1 = 125 GeV,

vh = 246 GeV, we are left with nine independent parameters, which can be chosen as

sin θ, g̃, mW̃+ , mh2 , mω+ , mω2 , λ1, λH11, λ3. (6.28)

In the ST model, we have one less free parameter as mω+ and mω2 are replaced by one

parameter mω.

We wish to have observable imprints from the dark sector in the current and future

experiments. We thus take the SU(2)D symmetry breaking not too far from the electroweak

scale in the SM, and vary the mass of the second Higgs boson mh2 in the range of 200

GeV−1 TeV. We will not consider mh2 > 1 TeV, as the perturbative GW calculations are

not reliable. We examine the possible bounds on the other model parameters from the

existing experiments in the following sessions. For the purpose of illustration, we choose

two benchmark points (BMs) for the input parameters as shown in Table 9. Some other

calculated physical quantities are also summarized in the table.
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Parameters BM1 BM2

sin θ −0.25 −0.12

g̃ 0.094 0.133

mW̃± 94 GeV 133 GeV

mh2 200 GeV 290 GeV

mω± 1.2 TeV 1.3 TeV

mω2 2.0 TeV 1.9 TeV

λ1 3.5 3.5

λH11 2.0 2.0

λ3 3.0 3.5

λH 0.28 0.27

λ2 3.8× 10−2 8.3× 10−2

λH22 2.4× 10−2 3.2× 10−2

λ4 5.0 4.0

v2 1 TeV 1 TeV

ΩW̃±h
2 0.096 0.12

σSI (cm2) 7.8× 10−47 8.0× 10−47

Tc (GeV) 177 252

Tn (GeV) 147 234

β/Hn 297 760

α 0.32 5.1× 10−2

phase transition pattern 2-step (6.85) 3-step (6.86)

Table 9: Model parameters and calculated physical quantities with two benchmark points,

BM1 and BM2. The independent model parameters in Eq. (6.28) are listed in the upper

part of the table. 97



6.2.1 Vacuum stability

A stable physical vacuum has to be bounded from below keeping the scalar fields from

running away. The behavior of the scalar potential is dominant by the quartic part when the

field strength approaches infinity. The conditions of vacuum stability are given in Ref. [188,

189]. Following their procedure, we find the following conditions

λH > 0, λ1 > 0, λ2 > 0, (6.29)

λ3 + λ4 +
√
λ1λ2 > 0, (6.30)

λH11 +
√
λHλ1 > 0, λH22 +

√
λHλ2 > 0. (6.31)

6.2.2 Partial wave unitarity

The scattering amplitudes for spin-less 2 → 2 processes can be decomposed into a sum

over the partial waves aj as

A(α) = 16π
∞∑
j=0

aj(2j + 1)Pj(cosα), (6.32)

where Pj(cosα) are the Legendre polynomials in terms of the scattering angle α. The

perturbative unitarity requires Im(aj) = |aj|2, which implies

|aj| ≤ 1, |Re(aj)| ≤
1

2
. (6.33)

We will adopt the second condition as it turns out to be more constraint. The s-wave

amplitude can be computed by

a0 =
1

32π

∫ 1

−1

A(α)d cosα, aj = 0 (j > 0). (6.34)

For a spin-less 2→ 2 elastic scattering process, the unitarity bound can be rephrased as

|A| < 8π. (6.35)

Owing to the Goldstone-boson equivalence theorem, the scattering of the longitudinal gauge

bosons can be approximated by the pseudo-Goldstone boson scattering in the high-energy

limit. Given the fact that the high energy scattering is dominated by the four-scalar contact
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interactions, we only need to evaluate the quartic or bi-quadratic terms. There are ten scalar

fields in the TT scenario, namely, ωi (i = 1 to 3), ϕj (j = 1 to 3), Gk (k = 0 to 2), and h0.

So there are 55 pair combinations and 1540 scattering channels. An additional symmetric

factor 1/
√

2 needs to be included for each pair of identical particles in the initial or final

states. The unitarity bounds from scattering amplitude matrix A55×55 are

|λH | < 8π, |λH11| < 8π, |λH22| < 8π,

|λ3 −
1

2
λ4| < 8π, |λ3 +

1

2
λ4| < 8π, |λ3 + 2λ4| < 8π, (6.36)

|λ1 + λ2 −
√

(λ1 − λ2)2 + λ2
4| < 16π, |λ1 + λ2 +

√
(λ1 − λ2)2 + λ2

4| < 16π,

|Eigenvalues[P ]| < 8π,

where

P =
1

2


5λ1 3λ3 + λ4 2

√
3λH11

3λ3 + λ4 5λ2 2
√

3λH22

2
√

3λH11 2
√

3λH22 6λH

 . (6.37)

Similarly, for the ST case, there are a total of eight scalar fields and therefore 36 pair

combinations. The unitarity bounds from scattering amplitude matrix A36×36 are

|λH | < 8π, |λH11| < 8π, |λH22| < 8π, (6.38)

|λ2| < 8π, |λ3| < 8π, |Eigenvalues[P ′]| < 8π, (6.39)

where

P ′ = 1

2


3λ1 3λ3 2λH11

λ3 5λ2 2
√

3λH22

2λH11 2
√

3λH22 6λH

 . (6.40)

6.2.3 Electroweak precision observables

Quantum corrections to the W boson mass [7] and the electroweak oblique parame-

ters [190], from the mixing between SM Higgs and the dark massive eigenstates, can put

constraints on the model parameters sin θ and mh2 . The bound from W boson mass con-

straint, which is shown by the gray shaded region in Fig. 22, turns out to be more stringent

than that from the oblique parameters [7, 191]. The bound from oblique parameters are

shown by the dashed brown line in Fig. 22 for comparison.
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Figure 22: Upper bounds on the mixing angle | sin θ| versus the heavy Higgs mass mh2 .

The horizontal purple line is from the Higgs signal rate measurement [4]. The yellow

shaded region shows the upper bound from the direct searches for the heavy Higgs at LEP

and LHC (
√
s = 7 TeV) [5]. The blue (red) shaded regions are excluded by the LHC

di-boson searches with VBF (ggF) channels. The blue and red dashed lines correspond to

the HL-LHC projection for these two channels, respectively [6]. The grey shaded area

labelled by W mass, and the area above the brown dashed line labelled by S, T, U are

excluded by the electroweak precision observables [7].

6.2.4 Higgs phenomenology

The scalar state h0 mixes with ϕ2 after the electroweak symmetry breaking. We identify

that the lighter mass eigenstate h1 is the observed SM-like Higgs boson with a mass of 125

GeV. The couplings of the physical scalars h1 and h2 to the SM particles are

L ⊃ h1 cos θ − h2 sin θ

vh
(2m2

WW
+
µ W

µ− +m2
ZZµZ

µ −
∑
f

mf f̄f). (6.41)
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The SM-like Higgs boson coupling to the SM particles are modified by a universal factor

cos θ. The relevant Higgs self-interactions in the scalar sector are

L ⊃ −κ111h
3
1 − κ112h

2
1h2 − κ122h1h

2
2 − κ222h

3
2, (6.42)

κ111 =
m2
h1

(v2 cos3 θ + vh sin3 θ)

2v2vh
, κ112 = −sin 2θ(2m2

h1
+m2

h2
)(v2 cos θ − vh sin θ)

4v2vh
,

κ122 =
sin 2θ(m2

h1
+ 2m2

h2
)(v2 sin θ + vh cos θ)

4v2vh
, κ222 =

m2
h2

(vh cos3 θ − v2 sin3 θ)

2v2vh
,

where v2 = mW̃+/g̃. These couplings are important for the DM annihilation at the early

Universe through the Higgs portal. The Higgs phenomenology at colliders is similar to

that of one real singlet scalar extension of the SM, which has been extensively studied

(see [192, 193, 194, 195] and references therein). The most relevant parameters are the

mixing angle θ and the mass of the second Higgs mh2 as shown in Eq. (6.41). The current

bounds on sin θ and mh2 from the Higgs phenomenology are shown in Fig. 22. We will discuss

the details of each bound in the following subsections.

6.2.4.1 Higgs invisible decay In the case that DM masses are larger than the half of

the Higgs boson mass, the invisible decay of the Higgs boson is to the DR W̃2 through the

SU(2)D charged scalar and gauge bosons loops as shown in Fig. 23. The decay width through

dark gauge bosons can be calculated as

ΓW̃ (h1 → W̃2W̃2) =
α̃3 sin2 θm3

h1

64π2m2
W̃+

(2 + 3τ−1 + 3τ−1(2− τ−1)f(τ))2, (6.43)

where

α̃ =
g̃2

4π
, τ =

m2
h1

4m2
W̃+

, and f(τ) =

arcsin−1(
√
τ) for τ ≤ 1,

−1
4
[ln1+

√
1−τ−1

1−
√

1−τ−1 − iπ]2 for τ > 1.

(6.44)

In the limit mh1 � mω+ , the decay width through dark scalars can be calculated as

Γω(h1 → W̃2W̃2) =
5α̃2c2

1

π3mh1

(
mh1

8
√

3mω+

)4, (6.45)
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Figure 23: Feynman diagrams for the Higgs invisible decay to the dark radiation.

where c1 is the coupling of vertex h1ω
+ω− given in Eq. (6.18). The Higgs invisible decay

width for our benchmark points shown in Table 9 are

BM1: Γ(h1 → W̃2W̃2) = 3.1× 10−7 MeV, (6.46)

BM2: Γ(h1 → W̃2W̃2) = 2.1× 10−5 MeV, (6.47)

which are dominated by the last two diagrams in Fig. 23. The Higgs invisible decay is

highly suppressed by the small mixing angle, dark-sector gauge coupling, and the one-loop

suppression. The branching fractions of the invisible Higgs decay are far beyond the reach

of current and future experiments.

6.2.4.2 Higgs coupling measurements Higgs couplings with SM particles have been

measured with good precisions at the LHC. The Higgs signal strength is defined as [196]

µh1 ≡
σh1 BR(h1 → SM)

σSM
h1

BRSM(h1 → SM)
, (6.48)

where σh1 = cos2 θσSM
h1

, BR(h1 → SM) =
ΓSM
h1

cos2 θ

ΓSM
h1

cos2 θ+ΓDS
h1

, and by definition BRSM(h1 → SM) ≡
1. Therefore, the signal strength can be written as

µh1 =
ΓSM
h1

cos4 θ

ΓSM
h1

cos2 θ + ΓDS
h1

. (6.49)

As we learned from the previous section, ΓDS
h1

are highly suppressed, as the SM-like Higgs

h1 can only decay to DR through one-loop diagrams in Fig. 23. The signal strength simply
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scales as cos2 θ. The bound on the mixing angle, from the Higgs couplings measurement by

ATLAS [4], is | sin θ| . 0.35, which is shown by the purple line in Fig. 22.

Of special interest is the SM-like Higgs triple coupling κ111 as in Eq. (6.42) because of its

sensitivity to the BSM new physics and its crucial role in EWPT. We write the derivation

from the SM prediction as

∆κ3 =
κ111 − κSM

111

κSM
111

= −1 + cos3 θ +
vh
v2

sin3 θ. (6.50)

We depict the resultant deviation of ∆κ3 in the v2-sin θ plane in Fig. 24 by the gray solid

lines. For most of the viable parameter space, the magnitude of ∆κ3 is less than 25%.

We also mark the predictions of our benchmark points BM1 for about −10% by the red-

cross and MB2 for about −2% by the blue-star, respectively. The achievable sensitivity to

probe ∆κ3 in the future collider experiments has been extensively studied. While the HL-

LHC will only have a moderate sensitivity to κ3 [197, 198], future improvements are highly

anticipated, reaching a 1σ sensitivity of 13% at a 1-TeV ILC [199] and 10% at CLIC [200],

and 2σ sensitivity of 5% at FCChh/SPPC [201], 2% at a multi-TeV muon collider [202]. The

precision measurement for κ3 would provide important indirect test of the model as well as

BSM theories in general.

6.2.4.3 Direct searches for the heavy Higgs boson The heavy Higgs boson in the

model, h2, can interact with the SM particles via the mixing as shown in Eq. (6.13). The

coupling strength is proportional to sin θ. The heavy Higgs searches at the high-energy

colliders can put strong constraints in this scenario. Heavy Higgs h2 mainly decay to heavy

particles when they are kinematically allowed, such as bb̄, top quarks, massive gauge bosons,

and the dark gauge bosons. The branching fractions of the heavy Higgs decay versus mh2 are

shown in Fig. 25, where the other parameters are fixed as BM1 in Table 9 for illustration.

The heavy Higgs decay channels are to di-bosons WW +ZZ until the threshold for W̃+W̃−

is open, as shown in Fig. 25.

The LHC di-boson resonance search in gluon-gluon fusion (ggF) and vector boson fusion

(VBF) [6] can put strong bounds on the mixing angle θ and the heavy Higgs mass mh2 . We
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Figure 24: Predicted deviation of ∆κ3 in the v2-sin θ plane as defined in Eq. (6.50). The

red-cross and blue-star indicate the predictions for our BM1 and BM2 points, respectively.

evaluate the resonance production rate as

σ(pp→ V V ) = σ(pp→ h2) BR(h2 → V V ). (6.51)

The bounds on the plane in mh2-sin θ with v2 = 1000 GeV are shown by the red (ggF) and

blue (VBF) shaded regions in Fig. 22. The dashed lines with the same color scheme are

the projected limit from HL-LHC with 3 ab−1 integrated luminosity, obtained by rescaling

the current bounds by the square root of luminosity ratio
√

3000/36.1. For the mass below

350 GeV, we adopted the bounds provided in Ref. [5] from a combination of various decay

channels at LEP and LHC with
√
s = 7 TeV. The bounds are shown by the yellow shaded

region.

6.3 Dark Radiation and Dark Matter Phenomenology

The dark sector in our model possesses rich phenomenology. There are two self-interacting

vector DM candidates W̃±. The massless state W̃2 is the DR. In addition, there is one scalar
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Figure 25: Branching fractions of heavy Higgs h2 decay versus mh2 . The other parameters

are fixed as BM1 in Table 9.

DM ω in the ST scenario, or there are three self-interacting scalar DM candidates ω± and ω2

in the TT scenario. The DM interactions with SM particles are through the mixing between

ϕ2 and h0. The relevant Lagrangian of DM-SM interactions are shown in Eq. (6.17). Due to

the non-Abelian nature of the dark sector, there exist nontrivial self-interactions inside the

dark sector among scalar DM, vector DM, and DR, which are from the dark gauge couplings

and the scalar potential. For simplicity we decoupled the scalar DM by assuming the mass

hierarchy to be mW̃+ � mω in ST, or mW̃+ � mω+ . mω2 in TT.

6.3.1 Dark radiation

The massless DR W̃2 associated with the unbroken U(1)D can contribute to the energy

density of the Universe, regulating the Universe expansion rate. In the radiation-dominated

era, the expansion rate of the Universe depends on the relativistic energy density

ρ = g∗(T )
π2

30
T 4, (6.52)
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where g∗ is the total relativistic degrees of freedom defined as

g∗(T ) ≡
∑
mi<T

Cigi(
Ti
T

)4, (6.53)

where the coefficients are Ci=1 (7/8) for bosons (fermions), and gi is the internal degrees of

freedom for particle i. W̃2 can contributes to g∗ and it is conventional to define this extra

energy density by

∆Neff ≡
ρW̃2

ρν
=

8

7
(
T̃

Tν
)4, (6.54)

where T̃ is the dark sector’s temperature, Tν is the SM neutrinos’ temperature. After

neutrinos decouple from the thermal bath, the ratio T̃ /Tν is fixed as they evolve in the same

way. We thus evaluate this temperature ratio at the epoch of neutrino decoupling. Before

the DM decouples, the dark sector and visible sector are in thermal equilibrium, T̃dec,χ =

Tdec,χ. After decoupling of DM, the dark sector and visible sector lost thermal contact, the

entropy is conserved in each sector separately. So we have [203]

gDS
∗s (T̃dec,ν)T̃

3
dec,ν

gDS
∗s (T̃dec,χ)T̃ 3

dec,χ

=
gSM
∗s (Tdec,ν)T

3
dec,ν

gSM
∗s (Tdec,χ)T 3

dec,χ

, (6.55)

where g∗s is the relativistic degrees of freedom for entropy

g∗s(T ) ≡
∑
mi<T

Cigi(
Ti
T

)3. (6.56)

At the DM decoupling, Tdec,χ � mχ. The only relativistic particle is the DR. So that

gDS
∗s (T̃dec,χ) = gDS

∗s (T̃dec,ν) = 2. In the visible sector, gSM
∗s (Tdec,χ) = 106.75, gSM

∗s (Tdec,ν) = 10.75.

Combining Eqs. (6.54) and (6.55), ∆Neff can be evaluated as

∆Neff =
8

7
(

10.75

106.75
)4/3 ≈ 0.054. (6.57)

Currently, the strongest bounds on Neff come from the Planck satellite [204, 205] which

measured Neff = 2.99± 0.17 including baryon acoustic oscillation data. The projected limit

of CMB Stage IV experiments is ∆Neff = 0.03 [206], which has sufficient sensitivity to explore

this scenario.
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Figure 26: Representative Feynman diagrams for vector DM W̃+W̃− pair annihilation.

6.3.2 Relic density

The observed value of the DM relic density Ωobsh
2 ' 0.12 inferred by the Planck col-

laboration from the analysis of Cosmic Microwave Background (CMB) [207]. The vector

DM candidates W̃± and scalar DM candidates ω (ω± and ω2) in the ST (TT) model can

account for the DM relic density we observed today.2 By solving the Boltzmann equation

in the standard freeze-out scenario, the relic density of our DM candidates can be estimated

by [208]

ΩDMh
2 = 1.07× 109 xf GeV−1

(g∗S/
√
g∗)Mpl〈σvrel〉

, (6.58)

where xf ≡ mχ/Tf , which can be estimated by

xf = ln [0.038
g√
g∗
Mplmχ〈σvrel〉]−

1

2
ln ln [0.038

g√
g∗
Mplmχ〈σvrel〉]. (6.59)

Here g∗ (g∗S) is the effective degree of freedom in energy density (entropy) at freeze-out

defined in Eq. (6.53) ((6.56)). We evaluate the s-wave annihilation cross section at the

2An SU(2)D theory broken down to U(1)D by an adjoint scalar gives rise to dark magnetic monopoles,
which may also contribute to the relic density calculation [178]. However, for our choices of triplet VEVs
and g̃, it is unlikely that monopoles will contribute significantly to the observed relic density (see Fig. 3 of
Ref. [178]). Hence, for simplicity we do not include monopoles in our consideration.
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leading order [209]

〈σvrel〉 =
1

32π

√
1− 4M2

W/s

m2
χ

|Mannihilation(s)|2. (6.60)

The attractive longe-range force between the vector DM W̃± introduced by the exchange of

massless DR W̃2 can increase the annihilation cross section, which is the so-called Sommerfeld

enhancement. The Sommerfeld factor is given by [137]

Ŝ =
α̃π

v

1

1− exp[−α̃π/v]
. (6.61)

When the DM freezes out, xf ≈ 25, v = 1/
√
xf ≈ 0.2. With g ∼ 0.3, Ŝ − 1 ∼ 6 × 10−2.

So, we can safely ignore the effects of the Sommerfeld enhancement in this work for the relic

density calculation. We calculated the annihilation cross section of the process

W̃+W̃− → W+W−, ZZ, t̄t, h1h1, h1h2, h2h2, W̃2W̃2,

ω+ω− → W+W−, ZZ, t̄t, h1h1, h1h2, h2h2, W̃
+W̃−, W̃2W̃2,

ω2ω2 → W+W−, ZZ, t̄t, h1h1, h1h2, h2h2, W̃
+W̃−, ω+ω−.

The representative Feynman diagrams for the vector DM W̃± pair annihilation are shown

in Fig. 26. Scalar DM pair annihilations have similar diagrams.

Since we choose mω± ,mω2 � mW̃± , scalar DM candidates ω± and ω2 will be decou-

pled much earlier than vector DM W̃±. The scalar DM states in the TT model annihilate

dominantly into the vector DM W̃±. While, in the ST model, the scalar DM annihilation

channel is dominated by ωω → h2h2 as it does not carry any charge. At the decoupling of

ω± and ω2, nW̃± = neq

W̃±
. Therefore, including the DM self-interacting processes can further

reduce the relic density of ω± and ω2. The number densities of ω± and ω2 are much less

than W̃± at the decoupling of W̃±. Therefore, we ignore the processes ω+ω− → W̃+W̃−

and ω2ω2 → W̃+W̃− when we evaluate the number density of W̃±. The vector DM mainly

annihilates into the DR W̃2 except in the resonance region mW̃± ≈ mh2/2. The branching

fractions to a specific final state from an initial state annihilation of both vector and scalar

DM pairs are shown in Fig. 27.

The relic densities for some benchmark points are shown in the left panel of Fig. 28 as

functions of heavy Higgs mass mh2 . The vector DM relic density is highly suppressed at the
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Figure 27: Annihilation branching fractions of vector DM pair W̃+W̃− (upper left), scalar

DM pair ω+ω− (upper right), ω2ω2 (lower left), and ωω (lower right). The other

parameters are fixed as BM1 in Table 9.

resonance region. The scalar DM contributions to the total relic density are negligible. The

dashed green lines are the scalar DM from the ST scenario, which mostly overlaps with ω± as

they have the same masses and similar annihilation channel as shown in Fig. 27. We require

the DM not to be overly produced ΩDMh
2 . 0.12. The dashed horizontal line in the left

panel of Fig. 28 indicates the current relic density bound from PLANCK. In the resonance

region mW̃± ≈ mh2/2, the annihilation cross sections via an s-channel h2 are enhanced, and

the relic density is much less than the observed value. Away from the resonant region, W̃±

could be adequate as a CDM candidate.
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Figure 28: DM relic densities ΩDMh
2 (left) and the SI cross section σSI (right) for the

vector and scalar DM candidates versus mh2 . The dashed green lines are the scalar DM ω

from the ST model. The solid blue and magenta lines are the scalar DM ω±, ω2 from the

TT model, respectively. The solid red lines are from the vector DM W̃±. The dashed

horizontal lines indicate the current bounds from PLANCK (left) and XERNON1T (right),

respectively. The other parameters are fixed as BM1 in Table 9.

6.3.3 Direct detection

The null results of direct detection experiments can set strong bounds on our dark sector

parameter space. In this model, the DM candidates χ couple to the dark scalar ϕ2. ϕ2 couples

to the SM particles through the Higgs portal. The dominant contributions to the spin-

independent (SI) scattering cross section come from the exchange of the SM-like Higgs bosons

h1 and the heavy Higgs bosons h2. The effective interactions of DM (χ = W̃±, ω±, ω2, ω)

with light quarks and gluons are given as [28]

L eff
q,g =

∑
q=u,d,s

fχq mqχχq̄q + fχGχχ
αs
π
GaµνGa

µν , (6.62)
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where Ga
µν is the field strength tensor of gluon and αs is the strong coupling constant. fχq is

the effective couplings between DM χ and light quarks, which, in our model, are

f W̃
±

q = g̃2 v2

vh
sin θ cos θ(

1

m2
h2

− 1

m2
h1

), (6.63)

fω
±

q =
1

vh
(
c2 cos θ

m2
h2

− c1 sin θ

m2
h1

), (6.64)

fω2
q =

1

vh
(
d2 cos θ

m2
h2

− d1 sin θ

m2
h1

). (6.65)

The coupling between DM and gluon comes from the effective coupling after integrating-out

of heavy quarks

fχG = − 1

12

∑
Q=c,b,t

fχQ = −1

4
fχq . (6.66)

The interactions between DM and nucleon can be evaluated by using the nucleon matrix

elements

〈N |mq q̄q|N〉 ≡ fNTqmN , 〈N |
αs
π
GG|N〉 = −8

9
mNf

N
TG, (6.67)

where fNTq and fNTG are the mass-fraction parameters of the quarks and the gluon in the

nucleon N ,respectively. In our numerical calculations, we adopt fpTd = 0.0191, fpTu = 0.0153,

fpTs = 0.0447, and fpTG ≡ 1 −∑q=u,d,s f
p
Tq = 0.925 [210]. The effective interactions of DM

and nucleon can be expressed as

L eff
N = fχNχχN̄N, (6.68)

where the effective coupling fN can be calculated by

fχN = mN(
∑

q=u,d,s

fNTqf
χ
q −

8

9
fNTGf

χ
G). (6.69)

The SI cross section of DM with nucleon can be calculated with [211]

σ̂χSI =
1

π

(
mN

mχ +mN

)2

(fχN)2, (6.70)

where mN is the mass of nucleon and mχ is the mass of DM candidate. To derive the

experimental upper bound, we scale the SI cross sections with the density fractions

σSI =

(
Ωχh

2

Ωobsh2

)
σ̂χSI. (6.71)
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The XENON1T [30] and the SI cross sections are shown in the right panel of Fig. 28. In the

resonance region mW̃± ≈ mh2/2, the relic density is much less than the observed value, hence

the direct detection bound can be easily evaded. Away from the resonant region however,

W̃± could lead to a detectable cross section.

6.3.4 Dark matter self-interactions

The collision-less and cold DM can successfully describe the large scale structure of the

Universe [212]. There are, however, some challenges for the cold and collision-less DM model

at the small-scale (see Ref. [213] for a review). Rather than going to the warm DM scenario,

there are generally two mechanisms which can alleviate the CDM challenges: (i) DM-DR

interactions [36]; (ii) DM self-interactions [35].

In our model, the leading DM self-interaction is mediated by the massless DR. This

scenario has been studied carefully in Ref. [214, 215]. The most relevant DM self-interactions

are through t/u-channel mediated by the massless DR. The differential cross section of t-

and u-channel in the center-of-mass (CM) frame is

dσ

dΩ
∝ α̃2

16m2
W̃±

v4
r sin4 θcm

2

, (6.72)

leading to σ ∼ πα̃2/(m2
W̃±

v4
r), where vr is the relative velocity of the two colliding DM

particles in the CM frame. The cross sections of the DM self-interactions quickly drop at

higher velocities to evade impacts on the large scale structure, hence, maintain the effective

collision-less descriptions. From the observed ellipticity of galactic DM halos [214, 215], a

bound on the dark gauge couplings can be estimated as

(
g̃

0.1
)4(

200 GeV

mW̃±
)3 . 50. (6.73)

This constraint can potentially be overly strong and depends on the assumptions of DM

relic density [215]. The constraints from the Bullet Cluster are much weaker [214, 215].

To solve the small-scale structure problems, we need σ/mW̃ ∼ 0.1 − 10 cm2/g at dwarf

galaxies [216, 178], which gives

(
g̃

0.1
)4(

200 GeV

mW̃±
)3 ∼ 0.01− 1. (6.74)
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DM can also interact with themselves through four-gauge-boson contact and s-channel

interactions. The cross sections of contact interactions are σ ∼ πα̃2/m2
W̃±

; the s-channel cross

sections are σ ∼ πα̃2v4
r/m

2
W̃±

. Therefore they are irrelevant compared to the contributions of

u/t-channel for the DM self-interactions for low-velocity systems such as dwarf galaxies. It is

evident from the discussion above that the DM-DR interaction cross sections are suppressed

by the DM mass. So, for the parameter space of our interest in this work, DM and DR

are decoupled very early and cannot significantly change the small-scale structures of the

Universe. Before closing the DM section, we would like to mention that we will not study

the indirect detection aspects of this model due to the complication with the Sommerfeld

enhancement in low-velocity systems.

6.4 Electroweak Phase Transition and Gravitational Waves

6.4.1 Electroweak phase transition

The dynamics of the phase transition is determined by the effective potential at the finite

temperature (see, e.g., Ref. [217] for a recent review), which can be calculated perturbatively

or non-perturbatively on the lattice with dimensional reduction [218, 219, 220]. While the

latter approach provides a gauge independent result and is free of the infrared problem [221],

it is computationally expensive and so far has been adopted for only a few models with a

simple extended Higgs sector [222, 223, 224, 225, 226, 227]. Therefore the perturbative

method was predominant in the literature on the analysis of a thermal phase transition. In

the standard perturbative approach, the effective potential receives contributions from the

tree-level potential, the one-loop Coleman-Weinberg correction and its finite-temperature

counterpart, as well as Daisy resummations, which together leads to a gauge dependent

result (see, e.g., Refs. [228, 229] for a study of the uncertainties with this approach). A

gauge independent result nevertheless can still be obtained if only the leading order thermal

correction at the high temperature is kept [230]. This also makes an analytical understanding

of the otherwise complicated effective potential possible and can better guide the exploration
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of the phase history. Thus we follow this gauge independent perturbative approach. The

finite temperature effective potential can thus be written in the following simplified form

V (1)(T ) = Vtree + ∆V (1)(T ), (6.75)

where Vtree is given in Eq (6.23) and ∆V (1)(T ) is the leading thermal correction given by [231]

∆V (1)(T ) =
T 4

2π2

{∑
b

nbJB[
m2
b(φi)

T 2
]−
∑
f

nfJF [
m2
f (φi)

T 2
]

}
, (6.76)

where φi(i = 1, 2, 3) indicates any of the three fields. Here the functions JB and JF have the

following high-temperature limit, i.e., for y ≡ m/T � 1,

JB(y2) ' −π
4

45
+
π2

12
y2 − π

6
y3 +O(y4), JF (y2) ' 7π4

360
− π2

24
y2 +O(y4). (6.77)

Therefore at order y2, the thermal corrections reduce to a simpler polynomial form

∆V (1)(T ) =
T 2

24
[nsTr(MS

2) + nW̃Tr(MV
2) + nWm

2
W + nZm

2
Z +

nt
2
m2
t ], (6.78)

where MS and MV are the field-dependent masses for scalar and dark gauge bosons, which

are given in Appendix D. From the finite temperature effective potential, the details of the

phase transition can be studied. In particular, one can determine the thermal mass terms.

For the TT model, they are given by

m2
H(T ) = m2

H +
T 2

16
(g2

1 + 3g2
2 + 2(2λH + λH11 + λH22 + 2y2

t )), (6.79)

m2
11(T ) = m2

11 +
T 2

24
(12g̃2 + 5λ1 + 3λ3 + λ4 + 4λH11), (6.80)

m2
22(T ) = m2

22 +
T 2

24
(12g̃2 + 5λ1 + 3λ3 + λ4 + 4λH22). (6.81)

In the ST model, the thermal mass terms are

m2
H(T ) = m2

H +
T 2

16
(g2

1 + 3g2
2 + 2(2λH +

1

3
λH11 + λH22 + 2y2

t )), (6.82)

m2
11(T ) = m2

11 +
T 2

24
(3λ1 + 3λ3 + 4λH11), (6.83)

m2
22(T ) = m2

22 +
T 2

24
(12g̃2 + 5λ1 + 3λ3 + 4λH22). (6.84)
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Extrema Type h0 ω3 or ω ϕ2 potential value Vmin stableness

Type-1 0 0 0 0 condition ( E.1)

Type-2 vh 0 0 −m4
H

2λH
condition ( E.2)

Type-3 0 v1 0 −m4
11

2λ1
condition ( E.3)

Type-4 0 0 v2 −m4
22

2λ2
condition ( E.4)

Type-5 vh v1 0 −λHm
4
11−2λH11m

2
11m

2
H+λ1m4

H

2λ1λH−2λ2H11
condition ( E.5)

Type-6 0 v1 v2 −λ1m4
22−2λ3m2

11m
2
22+λ2m4

11

2λ1λ2−2λ23
condition ( E.6)

Type-7 vh 0 v2 −λHm
4
22−2λH22m

2
22m

2
H+λ2m4

H

2λ2λH−2λ2H22
condition ( E.7)

Type-8 vh v1 v2 see details in Ref. [232] Ref. [232]

Table 10: Eight possible types of stable vacuum extrema in the three VEVs scenario.

Even though those two scenarios have the same zero-temperature potential in Eq. (6.23),

the mass parameters evolve differently with temperature as shown in Eqs. (6.79) to (6.84).

The parameter space for FOPT in those two scenarios is not the same, though the phase

transition pattern should not be qualitatively different. For the rest of this chapter, we

will focus on the two BMs in Table 9 in the TT scenario as an illustration for the phase

transition and GW generation. Given the three possible non-zero VEVs (vh, v1, v2), there

are eight combinations of possible extrema. Those and their stable conditions are listed in

Appendix B and summarized in Table 10. With the desirable features from the extra DR,

we require that at T = 0, the stable vacuum be in Type-7: (vh, 0, v2). From the scanning,

we found mainly two possible paths of the phase transitions to achieve this pattern

two-step: (vh, v1, v2) : (0, 0, 0) → (0, v1, 0)⇒ (vh, 0, v2), (6.85)

three-step: (vh, v1, v2) : (0, 0, 0) → (0, v1, 0)⇒ (0, 0, v2)→ (vh, 0, v2), (6.86)

where “⇒” indicates a first-order phase transition and “→” for a continuous transition.3

3See a remark on this in Appendix F.
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Figure 29: The evolution of the vacuum (φ ≡
√
v2
h + v2

1 + v2
2, left) as a function of the

temperature T , and their corresponding potential values (right) are shown for BM1 (upper

panels) and BM2 (lower panels). Here the critical and nucleation temperatures are denoted

by the dashed vertical lines, respectively.

The two-step transition as in Eq. (6.85) can yield an electroweak FOPT [233], while the

second path in Eq. (6.86) would not lead to an electroweak FOPT and can wash out any

previously existing baryon asymmetry. To give a clearer picture of the above transitions,

we illustrate the vacuum evolution in detail for the case of BM1 as defined in Table 9. In

this case, the phase transition is a two-step process as shown in Eq. (6.85). The evolution

of the vacuum and the corresponding potential values in BM1 are shown in the upper panel

of Fig. 29. We see that at high temperatures, the stable vacuum is in a symmetric phase
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of Type-1: (0, 0, 0). At T ≈ 200 GeV, the field Φ1 develops a VEV and the stable phase

becomes of Type-3: (0, v1, 0) through a continuous transition, where the order parameter,

the VEV v1, undergoes a continuous change. As the temperature further decreases, another

minimum appears via Φ2 at (0, 0, v2), which eventually evolves into a minimum of Type-7

(vh, 0, v2) continuously. At T = Tc, corresponding to the right of the vertical dashed line in

the left panel of Fig. 29, these two types of vacua (0, v1, 0) and (0, 0, v2) are degenerate, and

are separated by a barrier, characteristic for a FOPT. At T < Tc, the initially stable vacuum

at (0, v1, 0) now becomes metastable while the phase corresponding to (0, 0, v2) becomes

energetically preferable, and the Universe becomes supercooled as T decreases. During the

coexistence of these two phases, while the probability for the Universe to make a transition

from the former to the latter becomes increasingly higher, it remains significantly small

during this period. The temperature at which the phase transition happens can be quantified

by the temperature when there is about one bubble per Hubble volume, and is called the

nucleation temperature Tn, corresponding to the left of the vertical dashed line in Fig. 29.

As T decreases towards Tn, the minimum at (0, 0, v2) evolves into (vh, 0, v2). At T ≈ Tn, the

transition then proceeds through the formation of bubbles, with the vacuum inside being

the more stable one (vh, 0, v2), and that outside the metastable one (0, v1, 0). Thus the VEV

changes non-continuously. The BM2 has a three-step phase transition shown in Eq. (6.86)

and the lower panels of Fig. 29. It is similar to BM1 but different in that it has a prolonged

phase at (0, 0, v2) coexisting with the metastable (0, v1, 0). The tunneling probability is thus

high enough for a FOPT from (0, v1, 0) to (0, 0, v2) before the latter evolves into (vh, 0, v2).

After this step, the vacuum at (0, 0, v2) makes a further continuous electroweak transition

to (vh, 0, v2). Further description of the process is provided in an Appendix F.

6.4.2 Gravitational waves

From studies of the above phase transition and its evolution at different temperatures,

one can determine a set of portal parameters that determine the resulting GW signals [234]

Tn, α, β/Hn, vw, (6.87)
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where Tn, as introduced previously, is the nucleation temperature denoting roughly the

time for the onset of phase transition when there is one bubble per Hubble volume; α is a

dimensionless quantity characterizing the energy fraction released from the phase transition

in the unit of the total radiation energy density at Tn; β is roughly the inverse time duration

of the phase transition determining the peak frequency of the GWs and Hn is the Hubble

rate H at Tn; vw is the wall velocity.

The calculations start with the determination of the tunneling probability per unit time

per unit volume given by [235]

Γ(T ) ' T 4

(
S3

2πT

)3/2

e−S3/T , (6.88)

where S3 is the three-dimensional Euclidean action corresponding to the critical bubble:

S3 =

∫ ∞
0

dr r2

[
1

2
(
dφ(r)

dr
)2 + V (φ, T )

]
, (6.89)

with the scalar field minimizing the action and corresponding to the solution of the following

equation of motion:
d2φ

dr2
+

2

r

dφ

dr
=
dV (φ, T )

dr
, (6.90)

subjected to the bounce boundary conditions

lim
r→∞

φ(r) = 0,
dφ

dr

∣∣∣
r=0

= 0. (6.91)

In this work, we employ the CosmoTransitions [236] to solve the above bounce equa-

tion and thus compute the Euclidean action S3. From the nucleation rate, the nucleation

temperature is usually determined by solving the following equation,4∫ ∞
Tn

dT

T

Γ(T )

H(T )4
= 1, (6.92)

which says that there is about one bubble in a Hubble volume. A rough estimation of

nucleation temperature Tn is usually obtained using the condition S3(Tn)/Tn = 140 [238].

One can further calculate the parameter β where

β = H∗T∗
d(S3/T )

dT

∣∣∣
T∗
, (6.93)

4It can be more precisely determined by directly calculating the number of bubbles in a generic expanding
Universe as shown in Ref. [237].
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where T∗ is the GW generation temperature and is approximately equal to the nucleation

temperature Tn. Similar to the definition of Hn, H∗ is the Hubble rate H at T∗. The dimen-

sion of β is hertz and it is related to the mean bubble separation at the phase transition(see,

e.g., [239, 237] for the derivation in Minkowski and FLRW spacetimes), which in turn gives

the typical scale for GW production and thus its peak frequency. Moreover, α is the vacuum

energy released from the EWPT normalized by the total radiation energy density

α =
ρvac

ρ∗rad

=
1

ρ∗rad

[
T
∂∆V (T )

∂T
−∆V (T )

]∣∣∣
T∗
, (6.94)

where ∆V (T ) = Vlow(T ) − Vhigh(T ) is the difference between lower and higher phases, and

ρ∗rad = g∗π2T 4/30, g∗ is the relativistic degrees of freedom at T = T∗. For a phase transition

in a thermal plasma, as is considered here, the energy released goes in part into the kinetic

energy of the plasma, with energy fraction κv, which sources gravitational waves, and into

the heat of the plasma. The flow can also go turbulent, with energy fraction κturb, which

becomes another source for GW production. A fraction of released energy can also go into

the gradient of the scalar fields, which however is believed to be of negligible fraction [240]

and we will not consider it here.

With these portal parameters, we are ready to calculate the GW energy density spectrum.

The GW from a FOPT, as in most cosmic processes, is a stochastic background and can be

searched for using the cross correlation method− see recent reviews on theories [234, 241, 242]

and on detection methods [243, 244]. It is now generally accepted that there are mainly three

sources for GW production during a cosmological FOPT: bubble wall collisions, sound waves,

and magnetohydrodynamic (MHD) turbulence. For bubble collisions, the GW is sourced by

the stress energy located at the wall and can be understood very well both analytically [245]

and numerically [246] under the envelope approximation [247, 248, 249], where the wall is

assumed to be thin and contribution from the overlapped regions is neglected. There has also

been recent progress for simulations going beyond the envelope approximation [250, 251, 252].

However, for a phase transition proceeding in a thermal plasma, it is believed to be of

negligible contribution [240]. A significant fraction of the energy released from the phase

transition goes to the kinetic energy of the plasma, while the rest heats up the plasma. The

kinetic energy of the plasma corresponds to the velocity perturbations of the plasma, which

119



are sound waves in a medium consisting of relativistic particles. This relatively long-living

acoustic production of GW is generally accepted to be the dominant one. GW spectrum from

this source typically relies on large scale lattice simulations [253, 254, 255, 256]. However, an

analytical modeling reproduces the spectra from simulations reasonably well based on the

sound shell model [257, 239] (see Ref. [237] for the generalization to an expanding Universe),

which assumes the plasma velocity field is a linear superposition of the sound shells from all

bubbles. The fully ionized fluid can go turbulent for a sufficiently large Reynolds number

and corresponds to the third source [253, 254]. We will thus include only the contributions

from the sound waves and the MHD turbulence, with the present dimensionless GW energy

fraction spectrum given by

ΩGWh
2 ' Ωswh

2 + Ωturbh
2, (6.95)

where h ≈ 0.673, the Hubble rate today H0 in unit of 100 kms−1Mpc−1. The sound wave’s

contribution is [258, 234]

Ωswh
2 = 2.65× 10−6

(
H∗
β

)(
κvα

1 + α

)2(
100

gs

) 1
3

vw

(
f

fsw

)3 [
7

4 + 3(f/fsw)2

] 7
2

×Υ(τsw).

(6.96)

Here gs is the relativistic degrees of freedom for entropy; T∗ is the temperature right after

GW production stops; fsw is the present peak frequency:

fsw = 1.9× 10−2 mHz
1

vw

(
β

H∗

)(
T∗

100 GeV

)( gs
100

) 1
6
. (6.97)

Here, κv can be calculated from a semi-analytical hydrodynamic analysis of the velocity pro-

file of a single bubble for given vw and α [259]. This determination gives a good estimate of

κv for relatively weak transitions, i.e., α� 1. However, for strong transitions and for small

vw, a recent simulation found that κv as determined this way gives an overestimation [256].

Therefore care should be taken when calculating κv from the hydrodynamic analysis. More-

over, the multiplication factor Υ was only discovered in a recent study [237] (which was also

adopted in Ref. [217]), and originates from the finite lifetime of the source.

Υ = 1− 1√
1 + 2τswH∗

, (6.98)
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and the usually adopted spectrum corresponds to τsw → ∞ for which Υ takes the asymp-

totic value 1. However, the lifetime of the sound waves is certainly finite which leads to a

suppression of the spectrum. We note that before the discovery of Υ, a similar suppression

factor min(1, τswH∗) was adopted [260, 261, 262] based on a Minkowski derivation of the

spectrum [254], which corresponds to the limit of Υ when τswH∗ � 1. The lifetime τsw can

be taken as the time scale when the turbulence develops, roughly given by [263, 255]:

τsw ∼
R∗
Ūf
, (6.99)

where R∗ is the mean bubble separation and is related to β through the relation R∗ =

(8π)1/3vw/β for an exponential nucleation of the bubbles (see, e.g., Ref. [239] for a derivation

in Minkowski spacetime and see Ref. [237] for an analysis in the expanding Universe); Ūf is

the root-mean-squared fluid velocity and can be determined from the hydrodynamic analysis,

with the result Ūf =
√

(3κvα/4) [239, 258].

The contributions from MHD turbulence can be modeled as [234]

Ωturbh
2 = 3.35×10−4

(
H∗
β

)(
κturbα

1 + α

) 3
2
(

100

gs

) 1
3

vw
(f/fturb)3

[1 + (f/fturb)]
11
3 (1 + 8πf/H0)

, (6.100)

where κturb is the energy going to turbulence and fturb is the present day peak frequency:

fturb = 2.7× 10−2 mHz
1

vw

(
β

H∗

)(
T∗

100 GeV

)( gs
100

) 1
6
. (6.101)

We note that the contribution from MHD is currently the least understood and might witness

significant changes in the future. Indeed recent direct numerical simulations show signifi-

cantly different result [264]. Also the value of κturb is unknown and we take tentatively

κturb ≈ (5 ∼ 10)%κv [254] . For both contributions, while in principle the wall velocity vw

can be calculated from micro-dynamics of particle interactions with the Higgs condensate,

its precise value remains undetermined due to the theoretical uncertainties in the calcu-

lations. On the other hand, if baryon asymmetry were to be generated during the phase

transition, then a subsonic value is needed. However a supersonic value of vw might still

be compatible with EWBG due to the outflowing fluid around the wall [265], as adopted

in [266, 267, 194, 268], though a definitive justification of this argument is still missing, which

would require a thorough scrutiny of the particle transport near the wall. So we choose ten-
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Figure 30: Gravitational wave energy spectrum versus the frequency for our two

benchmark points and experimental sensitivities of some GW detectors. The dashed color

lines indicate the corresponding spectrum without the suppression factor Υ.

tatively a value vw = 1. For the benchmark points in Table 9, the GW spectrum are shown

in Fig. 30. To illustrate the suppression effect of Υ, We present the results without con-

sidering it by the dashed lines. Some space-based interferometers sensitivities: LISA [269],

Taiji [270], TianQin [271], Big Bang Observer (BBO), DECi-hertz Interferometer GW Ob-

servatory (DECIGO) and Ultimate-DECIGO [272] are overlaid in Fig. 30. To quantify the

detectability of the signals, we define the signal-to-noise ratio (SNR) [234]:

SNR =

√
δ × T

∫ fmax

fmin

df [
h2ΩGW(f)

h2Ωexp(f)
]2, (6.102)

where T is the duration of the mission in years. Here we adopt T = 5. h2Ωexp(f) denotes the

experimental sensitivities as shown in Fig. 30. δ = 2 for BBO and UDECIGO, and δ = 1 for

the rest, indicating the number of independent channels for the GWs detector. The values
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of SNR with LISA and BBO configuration yield

BM1: SNR = 1.08× 102 (LISA), SNR = 8.56× 102 (BBO), (6.103)

BM2: SNR = 9.95× 10−3 (LISA), SNR = 8.25 (BBO). (6.104)

The threshold value of SNR for detection is 10 or 50 [234], and thus the BM1 can produce

strong GW signal which can be detectable at both LISA and BBO.

We summarize our results on the mh2-sin θ plane in Fig. 31, fixing the other parameters

according to our BM1 (left panel) and BM2 (right panel). The orange shaded regions are

allowed by the DM direct detections. Outside the cyan shaded regions, DM would over-close

our Universe. The black points are the viable FOPT points which can enable GW production.

The gray solid lines show the predicted deviation of the SM triple Higgs coupling. Our BM1

and BM2 points sit in the red-cross and blue-star symbols, respectively.
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Figure 31: Contour plot on sin θ - mh2 plane. The orange (cyan) shaded regions are allowed

by DM direct detection (relic density). The dashed lines indicate the value of ∆κ3 defined

in Eq. (6.50). The black points give strong FOPT. The red cross at left panel and blue star

at right panel are our BM1 and BM2 points, respectively.
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7.0 Conclusions

7.1 Conclusions in the GNI Studies

Next generation neutrino oscillation and CEνNS experiments will reach the sensitivity

to discover new physics parameterized in the form of GNI. We have considered two different

approaches to the GNI. One is in a UV-complet Z ′ model, which is discussed in chapter 2.

In chapter 3, we presented the ADMs of SMNEFT operators with gauge and Yukawa depen-

dence. In chapter 4, we studied new physics associated with neutrinos without theoretical

prejudice, with allowance for scalar, pseudoscalar, vector, axial-vector and tensor interac-

tions of neutrinos with SM fermions within SMNEFT framework. If the new physics scale

is much higher than the electroweak scale, it is appropriate to work in a model-independent

EFT framework below the new physics scale. GNI operators below the electroweak scale are

generated by EFT operators that respect the SM gauge symmetry.

In chapter 2, We considered three scenarios: B − 3Lµ (case A), B − 3
2
(Lµ + Lτ ) (case

B), and B − 3Lτ (case C). The Z ′ decay branching fractions are shown in Fig. 1. Our

main results are shown in Fig. 2. In Cases A and B, we mainly use neutrino oscillation,

CEνNS, and collider experiments to put constraints on the coupling g′ in the mass range,

5 MeV< MZ′ < 6 TeV. We found that neutrino oscillation and CEνNS experiments give the

most stringent bounds for masses below the dimuon threshold which is around 200 MeV.

Above the dimuon threshold up to 70 GeV, LHCb prompt-like dark photon searches provide

the strongest constraints except near the J/ψ, Υ resonances and in the vicinity of the Z-pole.

ATLAS dimuon searches give the strongest bounds in the mass range, 250 GeV ≤ MZ′ ≤ 6

TeV. The (g−2)µ favored region is excluded by a combination of the experiments in the mass

range considered. Our Case C is unconstrained by the COHERENT experiment. Neutrino

oscillation experiments set the strongest constraints up to 200 GeV. The LHC gives the

strongest constraints for 200 GeV ≤MZ′ ≤ 4 TeV. We estimated the sensitivity of the high

luminosity LHC with an integrated luminosity of 3 ab−1 and find the that the reach of the

Z ′ → µ+µ− channel is significantly improved in all of three scenarios; see Fig. 2. If the

124



new gauge boson couples to first and second generation leptons, future CEνNS data can set

stronger bounds than next-generation neutrino oscillation experiments in almost the entire

mass range. DUNE and T2HK have the best sensitivity for Z ′ masses between 5− 20 MeV

and 5−10 MeV for Cases A and B, respectively. DUNE and T2HK have the best sensitivity

for Z ′ masses between 5−20 MeV and 5−10 MeV for Cases A and B, respectively. Combining

CEνNS and collider data will help to limit MZ′ from above; see Fig. 4.

In chapter 3, we presented the Yukawa coupling contributions to the one-loop RGE for

all fourfermion SMNEFT operators, and the new RGE terms for the four-fermion SMEFT

operators due to the mixing between SMEFT and SMNEFT operators via the right-handed

neutrino Yukawa couplings Yn. The contributions from the fermionic operators come from

the Feynman diagrams in Figs. 8a to 8d, with contributions from Fig. 8d given by the

ξ parameters. We also presented the gauge terms of the one-loop anomalous dimension

matrix for the dimension-six operators of SMNEFT; see Eqs. (3.65) to (3.69). We found

that renormalization group evolution introduces interesting correlations among observables

in different sectors. We discussed a few phenomenological implications of our results. To

make contact with low energy observables we also included the matching of SMNEFT to

LNEFT at the weak scale and RGE below the weak scale. However, to be confident that

cancellations of terms between independent operators are absent, the full one-loop RGE

must be calculated.

In chapter 4, we studied scalar, pseudoscalar and tensor neutrino interactions in the

framework of SMNEFT, which extends SMEFT with right-handed neutrinos. At the dim-6

level, these interactions are produced by three less constrained and phenomenologically in-

teresting operators, namely ONLQu, ONLdQ, and O′NLdQ. Both neutral current and charged

current interactions can be induced by a single operator, which can be explored in various

experiments. To compare constraints from experiments at different energy scales, we per-

form the RG running above and below the weak scale, and map all the bounds into the

parameter space of three WCs CNLQu, CNLdQ, and C ′NLdQ at 1 TeV. The full gauge and

Yukawa terms of the one-loop anomalous dimension matrix for the dimension-six operators

of SMNEFT are presented in chapter 3. We summarize the current and projected exper-

imental bounds on the three WCs in Tables 7 and 8. The correlations between the three
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operators are shown in Fig. 12. Our main conclusions are as follows. Neutrino mass bounds

indicate that the SMNEFT operators involving the second and third families of quarks are

highly constrained, while the parameter space for neutrino interactions with the first quark

generation is relatively unconstrained. This conclusion, however, is model-dependent and

can be evaded. Bounds on the SMNEFT WCs from low-energy probes generally suffer from

degeneracies, which are induced by RG running and matching, as is evident from Eq. (4.15).

The high-energy probes set bounds directly on the SMNEFT WCs, and so are not subject

to degeneracies. Low-energy probes and high-energy colliders are complementary. Charged

pion decay is extremely sensitive to the LEFT pseudoscalar operators. But, there are de-

generacies when the bounds are mapped into the SMNEFT WCs. With the assumption of

only one nonzero operator at a time, the bounds on the electron flavor are at the 10−6 level.

The strongest current bounds on the three SMNEFT operators are from LHC charged lepton

+Emiss
T searches, and are at the 10−4−10−3 level depending on the energy range of validity of

the EFT. HL-LHC can improve the bounds by a factor of a few and reach 10−4 in the HNP

case. For LNP, the improvement is minor because systematic uncertainties dominate for low

mT . Current LHC data can exclude κ & 0.14 for Λ = 1 TeV and κ & 0.63 for Λ = 10 TeV.

Future HL-LHC data can exclude κ & 0.13 for Λ = 1 TeV and κ & 0.55 for Λ = 10 TeV.

For strong interactions with κ = 4π, the new physics scale can be excluded up to 200 TeV.

A future COHERENT experiment with LAr can set strong bounds on the scalar operators,

comparable with that from the HL-LHC with the LNP assumption, especially when the

muon flavor is involved. LHeC will be important to study tensor interactions involving the

electron flavor, and can place bounds at the 10−4 level.

7.2 Conclusions in the WIMP Studies

The next research topics in PhD study are related to DM and electroweak phase transi-

tion. We considered two different WIMP models in chapter 5 and chapter 6, in which DM

candidates carry SU(2)L and dark SU(2)D charges, respectivily.

In chapter 5, we studied the NLO electroweak corrections to spin-independent DM nu-
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cleon scattering, in scenarios where the tree-level predictions for these rates are very small.

Such small leading order rates are obtained generically in DM models where the DM state

results from the mixing of electroweak singlet and doublet states, due to cancellations in DM

coupling to the Higgs boson, which is the primary mediator of SI interactions for Majorana

fermion WIMPs. A well-known example of these DM blind spots is the case of bino-Higgsino

mixed DM in the MSSM. To understand the impact of radiative corrections to DM-nucleon

scattering in such a setup, we adopted a simple model for DM with one Majorana fermion

singlet, and two electroweak doublets with opposite hypercharge, the neutral components of

which mix after electroweak symmetry breaking. This corresponds to the MSSM neutralino

sector with all the sfermions, heavy scalars and wino decoupled. We evaluated, adopting

an on-shell renormalization scheme for the DM sector, the set of triangle and box diagrams

for the radiative corrections to the DM-quark scalar effective operator, that could directly

modify the predictions near the blind spots. We observed that the contribution to the DM-

nucleon effective coupling fN from the triangle diagrams dominates near the tree-level blind

spot, as the leading order contribution is vanishingly small in this region. As expected, the

one-loop contributions “unblind” the tree-level blind spots, as seen in Fig. 18. Away from

the blind-spot region, the one-loop electroweak effects are still found to be appreciable. For

example, the triangle diagrams considered can shift the tree-level value of fN by upto 10%.

We also find that the box diagram contribution can become comparable to the triangles in

some parameter regions. There are values of parameters around which both the triangle

and the box contributions can also change sign, and therefore have their own blind spots.

Importantly, we always find a new blind spot at the NLO level where the sum of the tree-

level and one-loop amplitudes go to zero. This leads to a shifted location for the blind-spot

point, the amount of the shift in the values of the doublet mass mixing parameter MD being

almost linearly proportional to the value of the singlet mass MS. This shift is found to be

larger for large values of tan β (the ratio of the Yukawa couplings of the two doublets, y1/y2)

and small values of y (=
√
y2

1 + y2
2), and can be around O(1%). These features are shown

in Fig. 19. On taking into account the impact of the radiative corrections to SI scattering,

the prospects of testing such tree-level blind-spot scenarios in future multi-ton scale liquid

Xenon experiments improve considerably. In particular, we find that for smaller values of
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tan β, e.g., tan β = 2, σSI takes values in the range of about 10−47 cm2 to 10−50 cm2, for Mχ̃0
1

values in the interval 100 GeV − 2 TeV, and coupling coefficient y in the range 0.3 − 1.5.

For this range of couplings, the future projection of the LZ experiment is expected to probe

a DM mass upto about 500 GeV, while the reach can be further extended by the DARWIN

experiment upto a DM mass of 1250 GeV. On the other hand, for higher values of tan β,

as seen with tan β = 10, the expected cross-section is smaller, with a maximum of around

10−49 cm2, which may not be accessible to DARWIN. Thus, the small tan β scenario leads to

similar σSI as in the case of wino-like real triplet DM, while the intermediate tan β scenario

predicts cross-sections similar to the case of Majorana Higgsino-like doublets. These results

are presented in Fig. 20. On the other hand, as already examined in Ref. [150], the SD

scattering cross-sections may be observable in certain SI blind-spot regions. Thus, combined

tests of both the SI one-loop predictions and the tree-level SD cross-sections are feasible,

thereby probing all the relevant effective operators for DM-nucleon interaction. With the

increasing sensitivity of the DM direct detection experiments, resulting from the construc-

tion of bigger and ultra-low noise detectors, it is important to define benchmark targets

for these near future multi-ton scale experiments. As we found in this study, higher order

electroweak corrections to scenarios with mixed electroweak DM states present one such

target, where the tree-level rates can be very small due to the vanishing of relevant DM

effective couplings in certain parameter regions. In order to thoroughly probe interesting

and well-motivated WIMP scenarios, it is therefore necessary to have theoretical predictions

with increased accuracy that could match up to the future expected experimental precision.

In chapter 6, we extended the SM with a dark SU(2)D gauge sector and a dark scalar

sector. We imposed Z2 symmetry in the dark scalar sector. We considered two different

scalar scenarios under the dark SU(2)D gauge charge, namely, a model with two scalar

triplets (TT) and one with a scalar singlet plus a scalar triplet (ST). The dark sector couples

to the SM through the Higgs portal − the mixing between the SM Higgs boson and the dark

scalars. We worked out the existing constraints on the dark sector model-parameters from

the vacuum stability, perturbative unitarity, Higgs physics at the LHC, and the cosmological

bounds from CMB measurements and the DM relic abundance and its direct detections. For

illustration, we chose two representative benchmark points as shown in Table 9, which satisfy
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all the constraints, possess the desirable features, and could lead to observable effects. Via

the Higgs portal, the properties of the SM Higgs boson would be modified, including the

couplings and an invisible decay. It is particularly interesting to test the potentially large

deviation of the Higgs boson triple-self coupling from the SM prediction. Direct searches for

the heavy Higgs boson decaying to the SM heavy particles may also be fruitful. We showed

those in Figs. 22, 24, and 25. Because of the existence of a massless DR associated with

the unbroken subgroup U(1)D, it can introduce the velocity-dependent DM self-interaction,

which would be desirable to resolve the small-scale structure problems. The two stable

massive gauge bosons associated with the broken dark gauge group and the pseudo-Goldstone

boson can serve as cold DM candidates. The acceptable relic densities were shown in the

left panel of Fig. 28. We explored the prospects of their detection in the direct DM searches

as shown in the right panel of Fig. 28. The nontrivial scalar potential has eight types of

vacuum pattern for the vacuum structure as shown in Table 10. We have found both the

two-step and three-step phase transitions with the cooling of the Universe. Due to the rich

vacuum pattern, the scalar sectors can introduce a strong FOPT, as illustrated in Fig. 29

for the benchmark points BM1 with a successful EW FOPT, and BM2 with a FOPT in the

dark sector. Our benchmark GW spectra are shown in Fig. 30. We found that the two-

step EWPT in our BM1 can produce strong GW signals and can be detectable using the

future space-based interferometers LISA and BBO, while the GW signal for BM2 may be

difficult to observe at LISA due to the rather low signal-to-noise ratio. Given the outstanding

puzzles we are facing now such as the identity of the DM and the nature of the EWPT, it is

prudent to consider the possibility of a dark sector uncharged under the SM interactions. We

demonstrated with a well-motivated example of a dark SU(2)D sector, that rich physics may

exist that is potentially observable with the current and future measurements at colliders,

DM experiments, and GW interferometers.
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Appendix A Details of On-shell Renormalization Scheme

The Lagrangian of the DM sector in the mass basis can be written as

L = χ̃+
(
/pPL + /pPR − ηMD

)
χ̃+

0 +
1

2
χ̃0
i

(
/pPLδij + /pPRδij −

[
U>MNU

]
ij

)
χ̃0
j , (A.1)

where η is a phase factor and i, j are summed over 1 to 3. We specify the on-shell renormal-

ization scheme adopted for the DM sector in the following.

According to the multiplicative renormalization procedure, we perform the following

replacements of the parameters and the fields:

MS → MS + δMS, MD → MD + δMD, (A.2)

y1 → y1 + δy1, y2 → y2 + δy2, (A.3)

PLχ̃
+ →

[
1 +

1

2
δZL

χ̃+

]
PLχ̃

+, PRχ̃
+ →

[
1 +

1

2
δZR

χ̃+

]
PRχ̃

+, (A.4)

PLχ̃
0
i →

[
1 +

1

2
δZχ̃0

]
ij

PLχ̃
0
j , PRχ̃

0
i →

[
1 +

1

2
δZ∗χ̃0

]
ij

PRχ̃
0
j . (A.5)

We note that the transformation matrix U is not renormalized in our scheme, so that, the

mass matrix in the gauge basis MN is replaced by

MN → MN + δMN = MN +


δMS δ∆2 δ∆1

δ∆2 0 δMD

δ∆1 δMD 0

 , (A.6)

where δ∆1,2 = δ(y1,2v/
√

2). Then the mass matrix in the mass basis can be expressed as

Mχ̃0 → Mχ̃0 + δMχ̃0 = diag
(
Mχ̃0

1
,Mχ̃0

2
,Mχ̃0

3

)
+ U>δMNU. (A.7)

In the following, we use Σ and Σ̂ to denote un-renormalized and renormalized self-energies

respectively. Decomposing into the following form

Σ̂(p) = Σ̂L(p2)/pPL + Σ̂R(p2)/pPR + Σ̂SL(p2)PL + Σ̂SR(p2)PR, (A.8)
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the renormalized self-energies of the charged and neutral states are given by

Σ̂L
χ̃+(p2) = ΣL

χ̃+(p2) +
1

2
(δZL

χ̃+ + δZL∗
χ̃+), (A.9)

Σ̂R
χ̃+(p2) = ΣR

χ̃+(p2) +
1

2
(δZR

χ̃+ + δZR∗
χ̃+), (A.10)

Σ̂SL
χ̃+(p2) = ΣSL

χ̃+(p2)− 1

2
(Mχ̃+δZL

χ̃+ + δZR∗
χ̃+Mχ̃+ + 2δMχ̃+), (A.11)

Σ̂SR
χ̃+ (p2) = ΣSR

χ̃+ (p2)− 1

2
(Mχ̃+δZR

χ̃+ + δZL∗
χ̃+Mχ̃+ + 2δM∗

χ̃+), (A.12)[
Σ̂L
χ̃0(p2)

]
ij

=
[
ΣL
χ̃0(p2)

]
ij

+
1

2

[
δZχ̃0 + δZ†χ̃0

]
ij
, (A.13)[

Σ̂R
χ̃0(p2)

]
ij

=
[
ΣR
χ̃0(p2)

]
ij

+
1

2

[
δZ∗χ̃0 + δZ>χ̃0

]
ij
, (A.14)[

Σ̂SL
χ̃0 (p2)

]
ij

=
[
ΣSL
χ̃0 (p2)

]
ij
− 1

2

[
Mχ̃0δZχ̃0 + δZ>χ̃0Mχ̃0 + 2δMχ̃0

]
ij
, (A.15)[

Σ̂SR
χ̃0 (p2)

]
ij

=
[
ΣSR
χ̃0 (p2)

]
ij
− 1

2

[
Mχ̃0δZ∗χ̃0 + δZ†χ̃0Mχ̃0 + 2δM†

χ̃0

]
ij
. (A.16)

We choose the on-shell renormalization scheme by imposing (for i, j = 1, 2, 3)[
R̃eΣ̂χ̃+(p)

]
χ̃+(p)

∣∣∣
p2=M2

χ̃+

= 0, lim
p2→M2

χ̃+

1

/p−Mχ̃+

[
R̃eΣ̂χ̃+(p)

]
χ̃+(p)= 0, (A.17)

[
R̃eΣ̂χ̃0(p)

]
ij
χ̃0
j(p)

∣∣∣∣
p2=M2

χ̃0
j

= 0, lim
p2→M2

χ̃0
i

1

/p−Mχ̃0
i

[
R̃eΣ̂χ̃0(p)

]
ii
χ̃0
i (p) = 0, (A.18)

where R̃e takes only the real part of the loop integrals appearing in the self energies but not

of the mixing matrix elements or couplings appearing therein. We further fix the imaginary

parts of the wave-function renormalization constants by choosing

Im
[
δZL

χ̃+

]
= Im

[
δZR

χ̃+

]
= Im [δZχ̃0 ]

ii
= 0. (A.19)
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Thus, Eqs. ( A.17− A.19) yield the counterterms

δZL
χ̃+ =− ΣL

χ̃+(M2
χ̃+)−M2

χ̃+

[
ΣL′

χ̃+(M2
χ̃+) + ΣR′

χ̃+(M2
χ̃+)
]

−Mχ̃+

[
ΣSL′

χ̃+ (M2
χ̃+) + ΣSR′

χ̃+ (M2
χ̃+)
]
,

(A.20)

δZR
χ̃+ =− ΣR

χ̃+(M2
χ̃+)−M2

χ̃+

[
ΣL′

χ̃+(M2
χ̃+) + ΣR′

χ̃+(M2
χ̃+)
]

−Mχ̃+

[
ΣSL′

χ̃+ (M2
χ̃+) + ΣSR′

χ̃+ (M2
χ̃+)
]
,

(A.21)

δMD = η∗δMχ̃+ =
η∗

2
Mχ̃+

[
ΣL
χ̃+(M2

χ̃+) + ΣR
χ̃+(M2

χ̃+)
]

+ η∗ΣSL
χ̃+(M2

χ̃+), (A.22)

[δZχ̃0 ]
ii

=− 1

2

[
ΣL
χ̃0(M2

χ̃0
i
) + ΣR

χ̃0
i
(M2

χ̃0
i
)
]
ii

−M2
χ̃0
i

[
ΣL′

χ̃0(M2
χ̃0
i
) + ΣR′

χ̃+(M2
χ̃0
i
)
]
ii
−Mχ̃0

i

[
ΣSL′

χ̃0 (M2
χ̃0
i
) + ΣSR′

χ̃0 (M2
χ̃0
i
)
]
ii
,

(A.23)

[δZχ̃0 ]
ij

=
2

M2
χ̃0
i
−M2

χ̃0
j

[
M2

χ̃0
j
ΣL
χ̃0(M2

χ̃0
j
) +Mχ̃0

i
Mχ̃0

j
ΣR
χ̃0(M2

χ̃0
j
) +Mχ̃0

i
ΣSL
χ̃0 (M2

χ̃0
j
)

+Mχ̃0
j
ΣSR
χ̃0 (M2

χ̃0
j
)−Mχ̃0

i
δMχ̃0 −Mχ̃0

j
δM†

χ̃0

]
ij
, for i 6= j,

(A.24)

[δMχ̃0 ]
ii

=
1

2
Mχ̃0

i

[
ΣL
χ̃0(M2

χ̃0
i
) + ΣR

χ̃0(M2
χ̃0
i
)
]
ii

+
[
ΣSL
χ̃0 (M2

χ̃0
i
)
]
ii
, (A.25)

where Σ′(p2) is the derivative of the self-energy Σ′(p2) = ∂Σ(p2)/∂p2. All the un-renormalized

self-energies Σ in Eqs. ( A.20− A.25) should be understood as R̃eΣ. The counterterms δ∆1,

δ∆2 and δMS in Eq. ( A.6) are then fixed by solving the equations

[δMχ̃0 ]
ii

=
[
U>δMNU

]
ii
. (A.26)

The relevant counterterms to the DM-Higgs coupling can be expressed as

δΓct
(
χ̃0

1, χ̃
0
1, h
)

=

[
δSL +

1

2
δZ>χ̃0SL +

1

2
SLδZχ̃0 +

1

2
SLδZh

]
11

PL

+

[
δSR +

1

2
δZ†χ̃0S

R +
1

2
SRδZ∗χ̃0 +

1

2
SRδZh

]
11

PR.

(A.27)

where

[
SL
]
ii

= − y1√
2
U3iU1i −

y2√
2
U2iU1i, (A.28)[

SL
]
ij

= − y1√
2
U3iU1j −

y2√
2
U2iU1j + (i↔ j), for i 6= j, (A.29)

SR = S†L. (A.30)
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The counterterms δy1 and δy2 are related to δ∆1 and δ∆2 through the relations

δy1 =
√

2
δ∆1

v
− y1

δv

v
, δy2 =

√
2
δ∆2

v
− y2

δv

v
, (A.31)

with δv and δZh calculated in the on-shell scheme following the conventions in Ref. [273].
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Appendix B DM-nucleon Scattering: Computational Framework

In this Appendix, we briefly review the formalism adopted for computing the DM-nucleon

scattering cross-sections [28], and the values of the relevant nuclear matrix elements used.

The effective interactions of a non-relativistic Majorana WIMP X with light quarks and

gluons are given as

Leff =
∑

q=u,d,s

(
dqXγ

µγ5Xq̄γµγ
5q + fqmqXXq̄q

)
+ fGXX

αs
π
Ga
µνG

aµν , (B.1)

where, Ga
µν is the gluon field strength tensor and αS is the strong coupling constant. Here,

the operator involving axial-vector currents of the DM and the quark fields leads to spin-

dependent interactions, while the other two operator structures lead to spin-independent

scattering with nuclei.

To begin with, we define the matrix element (ME) of the scalar operator q̄q between

nucleon states N (where N is either a proton or a neutron) as follows:

〈N |mq q̄q|N〉 ≡ fNTqmN . (B.2)

The corresponding ME of the gluon operator can be obtained by using the trace of the energy

momentum tensor T µµ , which is given by

T µµ =
∑

q=u,d,s

mq q̄q +
∑
Q=b,c,t

mQQ̄Q−
7αs
8π

GG. (B.3)

Here, we have used the shorthand GG to stand for Ga
µνG

aµν . Utilizing the fact that

〈N |T µµ |N〉 ≡ mN , (B.4)

where, mN is the nucleon mass, and by integrating out the heavy quarks using

〈N |mQQ̄Q|N〉 = 〈N | − αs
12π

GG|N〉, (B.5)

we obtain the ME of the gluon operator

〈N |αs
π
GG|N〉 = −8

9
mNf

N
TG. (B.6)
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Here, fNTG is related to fNTq as

fNTG ≡ 1−
∑

q=u,d,s

fNTq. (B.7)

Similarly, the nucleon ME of the axial-vector quark current is defined as

〈N |q̄γµγ5q|N〉 ≡ 2sµ∆qN , (B.8)

where sµ is the nucleon spin. Combining these results, the effective interaction of Majorana

WIMPs with nucleons is given by

Leff =
∑
N=n,p

(
fNXXNN + aNXγ

µγ5XNγµγ
5N
)
, (B.9)

with the Wilson co-efficients,

fN/mN =
∑

q=u,d,s

fqf
N
Tq −

8

9
fGf

N
TG and aN =

∑
q=u,d,s

dq∆qN . (B.10)

For our computations, we adopt the following values of the nuclear matrix elements for

proton: fpTu = 0.0153, fpTd = 0.0191, and fpTs = 0.0447, where we have used the lattice results

for the strange quark content of the nucleon [274, 275, 210]. For spin-dependent scattering,

we use the following inputs: ∆up = 0.842, ∆dp = −0.427, and ∆sp = −0.085 [210].
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Appendix C Mapping the Singlet-doublet Model to MSSM

The analysis presented in Sec. 5.1 can be translated to the neutralino sector in the

minimal supersymmetric standard model (MSSM), with the wino state decoupled. In such

a scenario, the neutralino mass matrix in the basis (B̃, H̃0
d , H̃

0
u) is given by

MN =


M1 −MZsW cos β MZsW sin β

−MZsW cos β 0 −µ
MZsW sin β −µ 0

 . (C.1)

The phenomenology of tree-level spin-independent DM-quark interactions is then similar to

what we obtained for the singlet-doublet model, with the following mapping between the

couplings,

y → −
√

2
MZsW
v

. (C.2)

The singlet and doublet fermion mass parameters MS and MD are replaced by the bino and

Higgsino mass parameters, M1 and µ, respectively. The coupling of the lighter Higgs boson

state to the lightest neutralino is then given by

g0
hχ1χ1

' eMZ tan θW
µ2 −M2

1

(M1 + µ sin(2β)) . (C.3)

In the MSSM, we also have the following DM coupling to the heavier CP-even Higgs boson

g0
Hχ1χ1

' −eMZ tan θW
µ2 −M2

1

µ cos(2β). (C.4)

Combining with the Higgs-quark Yukawa couplings and taking the alignment limit, at the

leading order the DM-quark scalar effective couplings are then obtained to be

fu = −
g0
hχ1χ1

vm2
h

+
g0
Hχ1χ1

vm2
H

cot β, fd = −
g0
hχ1χ1

vm2
h

− g0
Hχ1χ1

vm2
H

tan β. (C.5)

In the scenario with the heavy Higgs decoupled, we can now obtain the SI blind-spot condi-

tion for MSSM:

M1 + µ sin(2β) = 0, (C.6)

with sgn (M1/µ) = −1.
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Appendix D Field-dependent Mass

The field-dependent masses for the scalar degrees of freedom with nS = 1 are

m2
h = m2

H +
3λH

2
h2

0 +
λH11

2
ω2

3 +
λH22

2
ϕ2

2, (D.1)

m2
G0

= m2
G1

= m2
G2

= m2
H +

λH
2
h2

0 +
λH11

2
ω2

3 +
λH22

2
ϕ2

2, (D.2)

m2
ϕ1

= m2
22 +

λH22

2
h2

0 +
λ2

2
ϕ2

2 +
λ3

2
ω2

3, (D.3)

m2
ϕ2

= m2
22 +

λH22

2
h2

0 +
3λ2

2
ϕ2

2 +
λ3

2
ω2

3, (D.4)

m2
ϕ3

= m2
22 +

λH22

2
h2

0 +
λ2

2
ϕ2

2 +
λ3 + λ4

2
ω2

3, (D.5)

m2
ω1

= m2
11 +

λH11

2
h2

0 +
λ3

2
ϕ2

2 +
λ1

2
ω2

3, (D.6)

m2
ω2

= m2
11 +

λH11

2
h2

0 +
λ3 + λ4

2
ϕ2

2 +
λ1

2
ω2

3, (D.7)

m2
ω3

= m2
11 +

λH11

2
h2

0 +
λ3

2
ϕ2

2 +
3λ1

2
ω2

3. (D.8)

Similarly the field-dependent masses for the vector degrees of freedom with nW̃ = nZ = 3

and nW = 6 are

m2
W̃1

= g̃2(ϕ2
1 + ϕ2

2), m2
W̃2

= g̃2ϕ2
1, m

2
W̃3

= g̃2ϕ2
2,

m2
W =

g2
2

4
h2, m2

Z =
g2

2 + g2
1

4
h2.

(D.9)

Finally, the field-dependent masses for the fermion degrees of freedom with nt = 12 is

m2
t =

y2
t

2
h2. (D.10)
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Appendix E Stable Conditions for All the Minima

The stable conditions for the extrema in Table 10 are

Type-1 scenario: m2
H , m

2
11, m

2
22 > 0, (E.1)

Type-2 scenario: m2
H < 0, λH11m

2
H − λHm2

11 < 0, λH22m
2
H − λHm2

22 < 0 (E.2)

Type-3 scenario: m2
11 < 0, λH11m

2
11 − λ1m

2
H < 0, λ3m

2
11 − λ1m

2
22 < 0 (E.3)

Type-4 scenario: m2
22 < 0, λH22m

2
22 − λ2m

2
H < 0, λ3m

2
22 − λ2m

2
11 < 0 (E.4)

Type-5 scenario: λHλ1 − λ2
H11 > 0, λH11m

2
H − λHm2

11 > 0, λH11m
2
11 − λ1m

2
H > 0,

m2
22 +

λ3(λH11m
2
H − λHm2

11)

λHλ1 − λ2
H11

+
λH22(λH11m

2
11 − λ1m

2
H)

λHλ1 − λ2
H11

> 0 (E.5)

Type-6 scenario: λ1λ2 − λ2
3 > 0, λ3m

2
2 − λ2m

2
11 > 0, λ3m

2
22 − λ2m

2
11 > 0,

m2
H +

λH11(λ3m
2
22 − λ2m

2
11)

λ1λ2 − λ2
3

+
λH22(λ3m

2
11 − λ1m

2
22)

λ1λ2 − λ2
3

> 0, (E.6)

Type-7 scenario: λHλ2 − λ2
H22 > 0, λH22m

2
H − λHm2

22 > 0, λH22m
2
22 − λ2m

2
H > 0,

m2
11 +

λ3(λH22m
2
H − λHm2

22)

λHλ2 − λ2
H22

+
λH11(λH22m

2
22 − λ2m

2
H)

λHλ2 − λ2
H22

> 0. (E.7)

Those cases are summarized in Table 10. For Type-8 scenario, we refer to Ref. [232] due to

the complicity and irrelevance.
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Appendix F Further Description for the Phase Transition Process

The effective potential is a polynomial of the fields (h0, ω3, ϕ2) up to quartic terms by

renormalizibility. The coefficients of the quartic terms are required to be positive as the

potential is bounded from below. For the quadratic terms, they can be generically put into

the form

V ∼ Di(T
2 − T 2

i )φ2
i (F.1)

with φi denoting one of the three fields. For Di > 0 and T > Ti, this term remains

positive and enforces a minimum at φi = 0, which is in a symmetric phase. As T decreases

below Ti, the minimum at φi = 0 will roll away from the origin and takes a non-zero

value, corresponding to a continuous phase transition. This is indeed what happens for the

continuous transitions in Eq. (6.85) and Eq. (6.86), where the potential minimum corresponds

to a non-zero field value at some temperature. The same story can happen to any of the

three fields. If the parameters are such that two minima coexist across a time duration,

then a first order phase transition can happen when the universe tunnels from one minimum

to another, characteristic for a first-order phase transition (FOPT), as shown in these two

benchmarks in the text. This analytical understanding can provide a way of identifying

the parameter space giving a first order phase transition, as demonstrated in [276, 186].

In practice, however, there is a challenge in this procedure. Whether or not a transition

takes place between two coexisting minima depends on the tunneling probability and it is

sensitive to the potential shape such as the height of the barrier separating them and the

potential difference at the two minima, which however is difficult to understand analytically

(see [277, 268] for relevant analyses and discussions). This presents an uncertainty for the

presence of a FOPT even if we perceive the coexistence of two minima at the same time.

As such, some numerical techniques, such as scanning over a large parameter space, may be

unavoidable, as we did in our analyses.

There are also subtleties in classifying second-order/higher-order phase transitions and a

smooth cross-over. A proper classification could be specified by a dimensionless susceptibility,

see, e.g. Ref. [227].
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