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Data Exploration is a key ingredient in a widely diverse set of discovery-oriented applica-

tions, including scientific computing, financial analysis, and evidence-based medicine. It refers

to a series of exploratory tasks that aim to extract useful pieces of knowledge from data, and its

challenge is to do so without requiring the user to specify with precision what information is be-

ing searched for. The goal of assisting users in constructing their exploratory queries effortlessly,

which effectively reveals interesting data objects, has led to the development of a variety of intelli-

gent semi-automatic approaches. Among such approaches, Example-driven Exploration is rapidly

becoming an attractive choice for exploratory query formulation since it attempts to minimize the

amount of prior knowledge required from the user to form an accurate exploratory query.

In particular, this dissertation focuses on interactive Example-driven Exploration, which steers

the user towards discovering all data objects relevant to the users’ exploration based on their feed-

back on a small set of examples. Interactive Example-driven Exploration is especially beneficial

for non-expert users, as it enables them to circumvent query languages by assigning relevancy to

examples as a proxy for the intended exploratory analysis. However, existing interactive Example-

driven Exploration systems fall short of supporting the need to perform complex explorations over

large, unstructured high-dimensional data. To overcome these challenges, we have developed new

methods of data reduction, example selection, data indexing, and result refinement that support

practical, interactive data exploration.

The novelty of our approach is anchored on leveraging active learning and query optimiza-

tion techniques that strike a balance between maximizing accuracy and minimizing user effort in

providing feedback while enabling interactive performance for exploration tasks with arbitrary,

large-sized datasets. Furthermore, it extends the exploration beyond the structured data by sup-

porting a variety of high-dimensional unstructured data and enables the refinement of results when

iv



the exploration task is associated with too many relevant data objects that could be overwhelming

to the user. To affirm the effectiveness of our proposed models, techniques, and algorithms, we

implemented multiple prototype systems and evaluated them using real datasets. Some of them

were also used in domain-specific analytics tools.
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1.0 Introduction

Data Exploration is a key ingredient in a widely diverse set of discovery-oriented applica-

tions, such as scientific computing, financial analysis, evidence-based medicine, and genomics

[Sellam and Kersten, 2013, Çetintemel et al., 2013, Kersten et al., 2011]. As traditional DBMSs

are designed to answer well-formulated and precise queries, they are rather inappropriate for

exploratory discovery-oriented applications, in which queries are typically unknown in advance

(e.g., [Idreos et al., 2015, Mishra and Koudas, 2009]). Particularly, in data-driven analysis, there

is a need to perform data exploration tasks, in which the user often faces two non-trivial and in-

tertwined challenges, namely: 1) users are unfamiliar with the underlying database schema, and

2) users are unable to construct precise queries that represent their interests due to lack of prior

knowledge or capability [Sellam and Kersten, 2013, Mishra and Koudas, 2009]. Consequently, as

illustrated in Figure 1, such exploration tasks often involve a large number of tedious hit-and-trial

iterations, each requiring users to construct an exploratory query and then analyze its results. After

exploring the underlying database for a long time, the users will finally know which data is inter-

esting only after they find it. As the volume and complexity of the data sets keep increasing, users

will need assistance from the data exploration systems to guide them through the search.

Motivated by the need to address the challenges outlined above, recent research efforts have

been directed towards designing data exploration techniques that aim to assist users in formu-

lating and constructing their respective exploratory queries (e.g., [Anagnostopoulos et al., 2010,

Feild and Allan, 2013, Islam et al., 2013, Qarabaqi and Riedewald, 2014, Dimitriadou et al., 2014,

Diao et al., 2015, Li et al., 2015]). Examples of such techniques include Query Recommendation

(e.g., [Anagnostopoulos et al., 2010, Feild and Allan, 2013, Li et al., 2008, Eirinaki et al., 2014]),

Query Refinement (e.g., [Islam et al., 2013, Qarabaqi and Riedewald, 2014, Vartak et al., 2016,

Qarabaqi and Riedewald, 2016]), and Example-driven Exploration (e.g., [Dimitriadou et al., 2014,

Li et al., 2015, Dimitriadou et al., 2016, Ge et al., 2016b, Peng et al., 2017]). Among those tech-
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Figure 1: Illustration of the Manual Exploration Process.

niques, Example-driven Exploration is rapidly becoming an attractive choice for query formula-

tion, especially for non-expert users who can circumvent query languages by using examples as

input [Mottin et al., 2017]. As such, examples act as a proxy for the intended exploratory analysis

as they are representatives of the desired result set. This is as opposed to Query Recommendation

techniques that require intensive query logs and user profiles, which are often unavailable when

users are exploring datasets for the first time. Similarly, Query Refinement techniques require

the user to provide some initial imprecise queries to be progressively refined into a more certain

one, a process which clearly requires users to possess some good understanding of the underly-

ing database schema as well as the ability to formulate meaningful queries. The advantages of

Example-driven Exploration are further emphasized when combined with interactive techniques

(e.g., [Dimitriadou et al., 2014, Ge et al., 2016b, Mottin et al., 2017]).

The main idea underlying the interactive Example-driven Exploration techniques, which is the

focus of this thesis, is to automatically steer the user towards discovering all data objects relevant to

the users’ exploration based on their feedback on a small set of examples [Dimitriadou et al., 2014,

Diao et al., 2015, Li et al., 2015, Ge et al., 2016b]. For each exploration task, users are iteratively

presented by example objects (e.g., tuples or bar charts) from the database for feedback, and in

turn, the data exploration platform progressively constructs and refines their exploratory query. In
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particular, the user is asked to label a set of carefully selected example objects from the database

as either relevant (interesting) or irrelevant (not interesting) to their exploration task. Based on the

provided feedback, the exploration system generates a predictive model, which is used to determine

the next set of example objects to be presented to the user. In the background, the exploration

system leverages the predictive model to refine the exploratory query that retrieves more objects

relevant to the user’s task.

Challenges The effectiveness of Example-driven Exploration techniques rely on:

(1) Correctness maximizing the accuracy in predicting the user’s exploratory queries,

(2) Usability minimizing the number of examples that are presented to the user for their feedback,

(3) Efficiency minimizing the processing time needed to generate useful examples from an arbi-

trary large database.

Clearly, those three objectives are often in conflict! For instance, maximizing the accuracy of a

predictive model often requires a large number of labeled examples, whereas relying on a small set

of labeled examples results in a low-accuracy predictive model, and in turn, produces an imprecise

query formulation that falls short in capturing the user’s interests. Meanwhile, maximizing the

accuracy of a predictive model often involves more computations in selecting the best examples

to be presented to the user for labeling, whereas relying on less carefully selected examples re-

sults in either a low-accuracy predictive model or high-effort in labeling a large set of low-quality

examples.

1.1 Limitations of Existing Work

While research in data exploration based on examples is rapidly attracting attention, the ever-

increasing volumes of collected data, the growing complexity of exploration tasks, and the demand-

ing needs of data analysts highlight the shortcomings of existing approaches in terms of efficiency,

effectiveness, and richness of supported queries.
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The primary emphasis of current interactive Example-driven Exploration approaches was given

to establishing the foundations for effective exploration and focused on constructing simple selec-

tion range search queries, where the extracted data are a set of individual data tuples stored in

relational tables. However, users’ interest can range from a set of individual relevant tuples, a set

of tuples that collectively exhibit a useful aggregation property, or even a set of unstructured data

objects such as image, text, or graph. Consequently, supporting such rich and complex models

of queries and data objects goes beyond the capacity of existing approaches and is expected to

improve the expressiveness of future Example-driven Exploration solutions.

Additionally, current solutions (e.g., [Dimitriadou et al., 2014, Dimitriadou et al., 2016,

Huang et al., 2019]) are primarily based on semi-supervised active learning techniques, which are

well suited for offline learning rather than interactive online exploration. Hence, to balance accu-

racy and processing time, existing systems either require data to fit in main memory or fall short in

providing guaranteed interactive response time when data is stored on secondary storage. Clearly,

existing techniques cannot scale to interactively generate useful examples from arbitrarily large

databases, this points to the need for cross-layer optimizations for fast generation of examples

from data on secondary storage, and in turn, providing the desired efficiency needed for interactive

data exploration.

Lastly, current approaches aim to construct a precise query that describes the user’s interest.

However, even with queries that precisely captures the user’s interest, the amount of data returned

in many cases may still be overwhelming, and thus, impractical for the user to explore manually.

Obviously, to overcome such a challenge, a set of representative objects needs to be selected from

the set of initial results. As pointed out in previous studies [Drosou and Pitoura, 2015], to ensure

the original results are properly represented by the set of representative objects, the representative

set must consider a variety of aspects of the results such as relevance, dissimilarity, and coverage.

Such problem of producing the representative results has previously been named Top-k result diver-

sification problem [Drosou and Pitoura, 2015], such that the goal is for any large sets of data items

to produce a subset of non-redundant representative items of data based on the user’s processing
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capacity while minimizing the information loss in the produced representative subset. However, it

is known that the Top-k result diversification problem is NP-hard [Khan and Sharaf, 2015], thus, it

is challenging to leveraging the Top-k result diversification solutions for the Example-driven Ex-

ploration application, given its interactive nature, and even the state-of-the-art approximation ap-

proaches are still too expansive to compute for any system that requires real-time interaction with

the user [Drosou and Pitoura, 2015]. Therefore, novel solutions that enable efficient and effective

Top-k result diversification with a sub-second response time are undeniably needed to ensure the

exploration results can be properly interpreted by human users.

1.2 Hypothesis & Objective

The underlying hypothesis of this thesis is that in order to efficiently and effectively guide

users towards unearthing valuable insights from large datasets, data exploration must provide:

interactive efficiency, analysis-based effectiveness, and user-in-the-loop engagement.

In the context of Example-driven Exploration, and in the light of the challenges outlined above,

interactive efficiency captures the performance of the data exploration platform. A usable explo-

ration platform must offer well below one second response time in generating each set of exam-

ples presented to the user. Analysis-based effectiveness refers to the user’s ability to control and

customize the exploration process and the corresponding outputs based on the data analysis task in

hand and according to their preferences for achieved accuracy and invested effort. User-in-the-loop

engagement refers to actively involving the user in the exploration process by means of iteratively

providing feedback on the achieved results.

The objective of our work is to develop novel interactive Example-driven Exploration ap-

proaches to address the challenges outlined above and implement their corresponding prototype

platform that embodies our hypothesis and addresses the aforementioned limitation of existing ap-

proaches. Our developed approach support effective Example-driven Exploration that enables data

analysts to dig into their data to understand what’s in it with ease and extract new knowledge from
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it. The novelty of our approach is anchored on leveraging on active learning, query optimization,

and result refinement techniques to support practical data exploration.

1.3 Our Contributions

In this thesis, we provide the solutions to the challenges faced when developing and deploy-

ing next-generation data exploration platforms following the interactive Example-driven Explo-

ration paradigm that is practical, requiring no schema knowledge and little data analytics expertise.

Specifically, our solutions addressed its key modeling and algorithmic challenges:

Practical Query Learning The goal of seeking the most informative next example to be la-

beled from a large dataset is aligned with the existing approaches of active learning. Although

active learning is shown to be most suitable for accurate offline model training, it is impractical to

support query learning in interactive data exploration. The reason is that traditional active learning

approaches require an exhaustive search over the entire database before choosing the most infor-

mative example to be labeled by the user. In this thesis, we leveraged active learning along with

query optimization techniques to develop a novel Example-driven Exploration system, coined RE-

QUEST, which consists of both effective data reduction and efficient example selection methods

that strike a balance between maximizing accuracy and minimizing user effort in labeling while

providing interactive performance. Our results, on real-world datasets from Sloan Digital Sky

Survey [sds, 2021], show that our schemes on average require 1 - 2 orders of magnitude fewer

feedback questions than the random baseline and 3 - 16x fewer questions than the state-of-the-art

while maintaining interactive response time.

Scalable Exploration Beyond Main Memory To achieve desired interactiveness, existing

Example-driven Exploration systems operate on main-memory databases, which inherently limits

the scalability of these systems. In this thesis, we devised a novel indexing mechanism, called Un-

certainty Estimation Index (UEI), which supports the interactivity and scalability of the Example-

driven Exploration systems. UEI combines hierarchical in-memory indexing with a columnar
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and inverted-indexing-based secondary storage mechanism. It achieves scalability and efficiency

through a dynamic estimation of the set of data that are most beneficial to the current exploration.

By intelligently manage the in-memory cache, UEI enables Example-driven Exploration systems

to scale beyond the main memory restriction while maintains the desired accuracy and convergency

speed. Our experiments show that (1) UEI version outperforms the DBMS one by providing more

than 50x runtime efficiency when the size of the dataset exceeds the main memory capacity, and

(2) is capable of achieving sub-second interactive response time for data that is 100 times larger

than the available memory while achieving the desired exploration accuracy and effectiveness.

Flexible Unstructured Data Exploration Existing Example-driven Exploration systems fo-

cus solely on structured data, which represents a small portion of the data available today. In this

thesis, we developed novel data exploration approaches that enable the user to effortlessly explore

the world of unstructured data for insights that are often unreachable from traditional search and

exploration methods. In particular, we devised an Example-driven Exploration system tailored for

the unstructured dataset, called ExNav, which consists of effective exploration and space pruning

approaches that exploit the space of advanced machine learning, data embedding, and active learn-

ing algorithms. Our experimental evaluation using multiple real-world unstructured dataset (i.e.,

text, image, and graph) show that ExNav can reduce users’ effort by up to 9x while still achieving

the same accuracy as the state-of-the-art Example-driven Exploration systems that are not designed

for the unstructured data.

Informative Exploration Results Refinement The challenge of scalable data exploration can

be examined from two viewpoints. Traditionally, scalability has been seen from a systems point

of view, where challenges can be attributed to an increasing rate of data on the one hand, and

processing power, and storage limitation on the other hand. However, scalability can also be

viewed from a human point of view. Given the exponential volume of data, the challenge here

is how to avoid overwhelming users with irrelevant results. Existing Example-driven Exploration

systems aim to construct a precise query that describes the user’s interest. However, in many cases,

even with the most precise query, the amount of data returned may still be overwhelming, and
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thus, impractical for the users to comprehend. In this thesis, we devised a novel result refinement

algorithm, coined Preferential Diversity (PrefDiv), which addresses the problem of the Top-k result

diversification that lies in the center of such challenge. Our evaluation with multiple real-world

datasets indicates a speedup of up to 159x, and outperforms the state-of-the-art algorithms on

multiple fronts.

1.4 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 describes the necessary background

that is relevant to our work. Chapter 3 discusses the details of our REQUEST system, which is

the initial attempt in leveraging active learning for effective Example-driven Exploration. Chapter

4 discusses the details of our novel indexing mechanism Uncertainty Estimation Index (UEI),

and how it supports the interactivity and scalability of the Example-driven Exploration systems.

Chapter 5 discusses the details of our ExNav system, which, for the first time, tailors the Example-

driven Exploration specifically for the unstructured dataset. Chapter 6 discusses the details of a

novel result refinement algorithm, called Preferential Diversity (PrefDiv), which provides efficient

refinement of query and exploration results, and thus, enables the user to consume the exploration

results effortlessly. Chapter 7 concludes the thesis by summarizing our contributions and outlining

the potential open questions.
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2.0 Background

In this chapter, we provide an overview of the necessary background of this work and discuss

existing works that are closely related to ours.

2.1 Fully Automated vs. Semi-Automated Data Exploration

Data exploration techniques typically refer to a series of approaches that aims to assist

users in extracting useful pieces of knowledge from data without requiring explicit prior knowl-

edge of what the user is searching for. Such a challenging objective has led to numerous ap-

proaches to facilitate the process of data exploration. As illustrated in Figure 2, existing data

exploration techniques can be broadly distinguished based on the required degree of user in-

volvement into fully automated (e.g., [Tang et al., 2017, Vartak et al., 2015, Crotty et al., 2015,

Chirigati et al., 2016, Ehsan et al., 2016]) and semi-automated (e.g., [Dimitriadou et al., 2014,

Li et al., 2015, Dimitriadou et al., 2016, Ge et al., 2016b, Peng et al., 2017, Islam et al., 2013,

Qarabaqi and Riedewald, 2014]).

A fully automated data exploration approach usually requires the user to supply a subset of

data from the database, and then the system recommends useful insights (e.g., other similar or

diverse objects, visualizations, aggregates) based on the corresponding dataset provided. Such

approaches typically require little interaction with the users and are useful for a quick discovery

of insights. However, as pointed out in [Binnig et al., 2017], these approaches have a high risk

of providing recommendations that mislead users to consider random fluctuations as significant

discoveries. Furthermore, as the recommendation provided by these approaches are based solely on

some proposed metrics (e.g., deviation, p-value, etc...), thus they often fail to recommend insights

that are of users’ true interest.

In contrast, semi-automated data explorations techniques (e.g., [Dimitriadou et al., 2014,
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Figure 2: Illustration of the Taxonomy of Data Exploration Techniques. Each Left Node Refers to

One Example Data Exploration System. Our Contributions Are Marked With Squares.

Ge et al., 2016b, Islam et al., 2013, Qarabaqi and Riedewald, 2014, Anagnostopoulos et al., 2010,

Feild and Allan, 2013, Li et al., 2008, Eirinaki et al., 2014, Vartak et al., 2016,

Qarabaqi and Riedewald, 2016]) leverage on users’ interests to assist users in formulating

their exploratory queries through a dialogue-style exploration process. Specifically, during the

exploration process, both the user and the system are constantly providing and receiving feedback

from each other. In this way, users are steered towards the queries that capture their true interest,

avoiding the risk of being misled by false discoveries.

The design of semi-automated data explorations techniques can be generally divided into three

categories, 1) Query Recommendation (e.g., [Anagnostopoulos et al., 2010, Feild and Allan, 2013,

Li et al., 2008, Eirinaki et al., 2014]), 2) Query Refinement (e.g., [Islam et al., 2013,

Qarabaqi and Riedewald, 2014, Vartak et al., 2016, Qarabaqi and Riedewald, 2016]), and

3) Example-driven Exploration (e.g., [Dimitriadou et al., 2014, Dimitriadou et al., 2016,

Ge et al., 2016b, Peng et al., 2017]). As mention in our motivation, out of these techniques,

Example-driven Exploration stands out as the more suitable choice for non-expert users because

it automatically and progressively formulates the exploratory query through a series of simple
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feedback (provided by the user) on the relevance of example data without requiring any schema

knowledge or data analytics expertise.

2.2 Example-driven Exploration

In this thesis, we concentrate on the Example-driven Exploration, which supports a semi-

automated way of identifying relevant data objects and subsequently formulating queries for data

exploration tasks with high precision. Common exploratory queries are in the form of range selec-

tion queries that can select all the relevant objects to a user and the exploration task is to determine

the predicate values that define the ranges in the query. Figure 3 shows an example of an ex-

ploratory query on a 2-dimensional database, where each data object (i.e., tuple) is represented

by a 2-attribute data point and the dashed rectangles represent three regions (i.e., ranges) that are

determined by the exploration task. This range exploratory query could be:

SELECT (x,y)

FROM 2-D Database

WHERE (x10, y10) ≥ (x, y) ≥ (x25, y40) OR (x45, y10) ≥ (x, y) ≥ (x80, y30) OR (x40, y60) ≥ (x, y) ≥ (x50, y90);

Particularly, Example-driven Exploration constructs this query with an iterative conversation

between the user and the system. In each iteration, the system selects an example from the un-

derlying database and asks the user “is this object relevant?”. Based on the feedback that the user

provides, the system employs a predictive model to steer the exploration process, which repeatedly

refines the exploratory query until all (or most) interesting objects are captured.

Unfortunately, as discussed earlier, interactive Example-driven Exploration borns with three

conflicting objectives, 1) maximize the accuracy in determining the users’ exploratory queries,

2) minimize the number of user feedback, and 3) ensure interactive response time between each

subsequently presented examples. In particular, the accuracy is defined as follows:

11



Figure 3: 2-D Database With 3 Relevant Regions.

Definition 1. The accuracy of an example-driven style exploration system is measured with F -

measure. Such that the F -measure is defined as:

F (N) =
2 · Precision(N) · Recall(N)

Precision(N) + Recall(N)
(2.1)

Here, “Precision” measures the portion of truly relevant data objects among all the data objects

considered as relevant by the exploration system. If a data object is irrelevant but considered as

relevant by the exploration system, it is considered as false positive. “Recall” measures the ratio

between the truly relevant data objects captured by the current system to all the truly relevant data

objects in the entire dataset.

The reason for Example-driven Exploration to employ the F -measure as the way to measure

accuracy is because the number of objects that are relevant to a user’s exploration is often extremely

rare compares to the number of irrelevant data objects and the exploratory queries that Example-

driven Exploration seeks to construct are often highly selective queries. Therefore, the accuracy

measure must emphasize on the errors related to the relevant objects. If another accuracy measure

such as error rate was chosen, then for an exploratory query that has a 0.1% selectivity, even if the
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system constructs an exploratory query that returns an empty set of relevant objects (i.e., consider

all objects as irrelevant), it would still have an accuracy of 99.9%. For this reason, Example-driven

Exploration more appropriately rely on the F -measure as the way to measure the accuracy of an

exploratory query, because it does emphasize the accuracy regarding the relevant data objects.

Based on the above description, it is clear that the effectiveness of the Example-driven Exploration

heavily depends on its method to select examples for feedback (i.e., labeling).

Algorithm 1 Typical Workflow of Example-driven Exploration
Require: The raw data set D; Batch Size B

Ensure: A set of results R

1: Labeled set L← ∅

2: Unlabeled set U ← D

3: M ← initialize query strategy

4: while user continues the exploration do

5: for i = 1 to B do

6: Choose one x from U using M

7: Solicit user’s label on x

8: L← L ∪ {x}

9: U ← U − {x}

10: end for

11: M ← adjusted with L to update M .

12: end while

13: Return the set of results R classified as positive by M .

2.2.1 Typical Workflow of Example-driven Exploration

As shown in Algorithm 1, a typical Example-driven Exploration system works in the following

steps: first it incorporates a query strategy, which is used for selecting the example objects to be

presented to the user for labeling (line 3). As long as the user is willing to label more examples
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(line 4), Example-driven Exploration system will keep invoking the query strategy M to select a

new example object x from D, and present it to the user to label it as relevant or irrelevant (lines

5-9). Once the amount of labeled samples received from the user reaches a sample batch size

(denoted as B), which is a tunable parameter of the Example-driven Exploration system to balance

the effectiveness and efficiency, then the predictive model employed by the query strategy will be

updated according to the label assigned to x (line 11). In particular, the label assigned to x will

be used for adjusting the query strategy, which is an essential step towards selecting the object

presented to the user in the next iteration. Once the iterative labeling process is completed, the

obtained results will be returned to the user (line 13).

2.2.2 Existing Example-driven Exploration Approaches

AIDE [Dimitriadou et al., 2014] was the first interactive Example-driven Exploration ap-

proach, which proposed a rule-based query strategy. In each exploration iterations, it performs

the following three operations. Misclassified Exploitation: If a new data object was discovered

as relevant in the previous iteration, AIDE will randomly select more objects around this newly

discovered relevant object and present to the user for labeling. Boundary Exploitation: AIDE also

randomly selects examples from around the boundaries of each relevant region (i.e., each set of

conjunctive predicates in the exploratory query). Relevant Object Discovery: For the areas of the

data space that are considered irrelevant by the current exploratory query, AIDE selects some ex-

amples to further ensure their (ir)relevance. Particularly, for those areas AIDE partitions the space

with d-dimensional grids, then randomly picks a sample from the center of each grid cell. The grid

size is adjusted with each refinement of the exploratory query, to further split each grid cell into

smaller grid cells in subsequent iterations. Given the operations described above, in each iteration

AIDE will present the user with a batch of examples to label which is the union of all the examples

generated by those three operations. The set of feedbacks that the user provided will then be used

to construct and refine the underlying exploratory query. During the exploration, AIDE uses a

decision tree as the internal representation of the exploratory query, which would be transformed
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into the actual exploratory query once the exploration is finished.

AIDE’s rule-based predictive model has three major limitations: 1) it relies on a heavily pa-

rameterized model for navigating the search space, which makes it rather difficult to deploy in

practice, 2) it reduces the search space of unlabeled data at the expense of requiring the user to

label more samples to achieve high accuracy, 3) it lacks the capability to capture very small rele-

vant regions (i.e., less than 0.01% of the cardinality of the whole dataset), and 4) it rely on main

memory to cache the entire exploration dataset, which hinders the scalability of the system.

More recently in [Huang et al., 2019], an enhancement of AIDE called Dual-Space Model has

been proposed, which uses a new uncertainty sampling-based query strategy and a new dual-space

pruning technique that focuses solely on exploration tasks with a single relevant region. It also

optimizes these tasks for faster model convergence. However, Dual-Space Model only works with

exploration tasks that consist of only a single relevant region, which renders it less useful in real-

world scenarios, since it is almost impossible to know in advance the number of relevant regions

associated with a explore task prior to the exploration task.

2.3 Active Learning

Active learning approaches can be distinguished into offline (Section 3.2.1) and online (Section

3.2.2) based on whether the data volume is dynamically expanding as in the context of streaming

data.

2.3.1 Offline Active Learning

As the goal of the predictive model in Example-drive Exploration is to seek the most informa-

tive next example to be labeled from a large dataset, it is aligned with the existing approaches of

Active Learning [Settles, 2009]. Active Learning is an interactive learning framework to achieve

accurate classification with minimum human supervision. Particularly, a typical active learning
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Figure 4: Illustration of Uncertainty Sampling.

approach would employ a query selection method to sequentially select which unlabeled example

(i.e., object) in the database should be presented to the user next for labeling. A query selec-

tion method attempts to minimize the labeling costs by selecting the most informative examples

for building the classification model. Different query selection methods to define the “informative-

ness” of examples have been proposed in the literature, among which the most popular two are Un-

certainty sampling [Lewis and Gale, 1994] and query-by-committee (QBC) [Seung et al., 1992].

Uncertainty Sampling Uncertainty sampling is arguably the most popular query selec-

tion method employed by active learning approaches (e.g., [Settles, 2009, Lewis and Gale, 1994,

Settles and Craven, 2008]). As illustrated in Figure 4, the intuition underlying uncertainty sam-

pling is that patterns with high uncertainty are hard to classify, and thus if the labels of those

patterns are obtained, they can boost the accuracy of the classification models. Particularly, in

binary classification models (e.g., with class labels 0 and 1), the most uncertain example x is the

one which can be assigned to either class label z(x) with probability 0.5.

Inspired by such idea of uncertainty, also known as least confidence, [Lewis and Gale, 1994]
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proposes a measurement of uncertainty for binary classification models:

u(lc)(x) = 1− p(ŷ|x) (2.2)

where u(lc)(x) is the uncertainty score with least confidence measurement of x. ŷ means the pre-

dicted class label of the unlabeled x. Accordingly, after measuring the uncertainty of each unla-

beled sample, the unlabeled sample with highest uncertainty is selected:

x∗ = argmaxxu(x) (2.3)

where u(x) can be any other measurement of informativeness over the unlabeled sample x.

Query-by-committee Another widely used query selection method

is the well known query-by-committee (QBC) ([Seung et al., 1992],

[Sarawagi and Bhamidipaty, 2002],[Abe and Mamitsuka, 1998]). QBC is basically a voting

strategy, in which the uncertainty score is calculated based on a committee of multiple classifica-

tion models, where each model is trained over a subset of the labeled set. The prediction of an

unlabeled point under this voted uncertainty is calculated as:

p(1|x) =

∑
i∈C ŷ

(i)

|C|
(2.4)

where p(1|x) indicates the probabilistic prediction that x belongs to class 1, C indicates the com-

mittee, |C| indicates the size of the committee and ŷ(i) indicates the prediction of x using the ith

model in the committee. In this case, the uncertainty score is calculated as:

u(v)(x) = 1− p(ŷ|x) (2.5)

where u(v)(x) is the uncertainty score with voted measurement of x. ŷ indicates the predicted class

label of the unlabeled sample x.

Traditional Active Learning vs. Data Exploration On the one hand, active learning ap-

proaches have been shown to be effective in terms of: 1) maximizing classification accuracy, and

2) minimizing number of user-labeled samples. On the other hand, applying traditional active
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learning approaches has the drawback of introducing long delays as it requires performing multi-

ple iterations of exhaustive search over the database. For instance, in uncertainty sampling, pre-

senting one example to the user for labeling requires computing the uncertainty scores for all the

unlabeled objects in the database to select the one with the highest uncertainty score. This process

is repeated with each example selection, resulting in long waiting time before the user is able to

label the next example, which in turn renders that approach impractical for many applications that

access relatively large volumes of data.

2.3.2 Stream-Based Active Learning

In addition to the above-discussed offline active learning techniques, there is one set of

active learning techniques that focus on streaming data. As the data volume under consid-

eration grows continuously in data streams, labeling all data objects in a data stream is con-

sidered expensive and impractical. Consequently, several stream-based active learning tech-

niques have been proposed to facilitate the training of classifiers in the streaming context (e.g.,

[Zhu et al., 2007, Zliobaite et al., 2011, Mohamad et al., 2018]). In [Zhu et al., 2007], the author

proposed a stream-based active learning technique that seeks to build a classifier ensemble by se-

lectively label instances from different portions of data streams. It does so by first divided the

data stream into a series of data chunks. Subsequently, one classifier for each data chunk is built

by leveraging an active learning strategy that deliberately selects the data object with the largest

disagreement (i.e., ensemble variance) between all previously created classifiers. Although such

a technique creates the classifier in an online streaming fashion, for each chunk, an exhaustive

search is still required to find the data object that has the largest ensemble variance. Therefore,

it cannot be adopted directly for the interactive data exploration setting. Furthermore, since find-

ing the object with the largest ensemble variance requires to exam every object in the chunk with

each classifier in the current classifier ensemble, it is computationally more intensive than most

mainstream query selection methods such as the uncertainty sampling.

In [Zliobaite et al., 2011], the author proposed a new active learning technique that leverages
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uncertainty sampling as the query selection method for stream-based active learning. Unlike the

previous approach [Zhu et al., 2007], this technique does not require the stream to be split into

chunks, and thus, only one classifier is built for the entire data stream. To ensure the quality of the

classifier, [Zliobaite et al., 2011] selects only the data objects that have an uncertainty score higher

than an uncertainty threshold that is auto-adjusted accordingly to the average uncertainty score for

a given period of time. However, despite the more efficient uncertainty sampling has been adopted

as the query selection method, similar to the [Zhu et al., 2007], the stream-based active learning

technique proposed in [Zliobaite et al., 2011] also requires to exam the uncertainty score of each

data object, and thus, is equivalent to performing an exhaustive search in a non-streaming context.

More recently, in [Mohamad et al., 2018], the author has proposed to leverages the approxima-

tion of the expected error as the query selection method for more robust training of the classifiers.

Similar to [Zliobaite et al., 2011], [Mohamad et al., 2018] does not require the data stream to be

split into chunks and seeks to build a classifier by select the examples that provide a large reduc-

tion in expected error. Specifically, each example object that needs to be labeled is selected with a

probability that is computed by comparing its expected error with the labeled data object that has

the largest reduction in the error among all labeled data objects. Since this method also requires

examining each data objects for their expected error reduction, and thus, cannot be adopted directly

for the interactive data exploration due to its exhaustive scan.

2.4 Other Interactive Exploration Approaches

A recent tutorial [Mottin et al., 2017] on data exploration included a nice overview of ex-

isting interactive exploration approaches. Among these, two approaches are closely related to

our work: (1) Faceted search is a query refinement technique that iteratively suggests query

attributes, which helps the user drill down into structured databases. It requires the user to

either continuously provide attribute values until the desired set of relevant data objects are

discovered [Roy et al., 2008, Roy et al., 2009, Niranjan Kamat, 2014], or provide certain qual-
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ity measurements and its corresponding threshold [Dash et al., 2008]. (2) Semantic windows

[Kalinin et al., 2014] is a query recommendation technique that allows the user to interactively

explore the data space with multidimensional shape-based and content-based predicates that are

pre-defined. Unfortunately, the utility of this approach is restricted only to the case where such

shape-based, or content-based patterns exactly match the user’s interest. Both faceted search and

semantic windows require the user to manually control the exploration direction, as opposed to our

proposed approach, where the system automatically steers the user towards all interesting tuples.

2.5 Interactive Search for Unstructured Data

Another set of works that are relevant to ours is the interactive search for unstructured data,

which has generated a lot of interest in the current era of Big Data, especially in searching for image

objects. In [Ferecatu and Geman, 2007], the authors proposed an early work of interactive image

search. Specifically, in this method, the author proposed to present a set of exemplar images in each

iteration, and these examples are selected by finding images that are predicted as most likely to be

the target image with a customized Bayesian model. To increase the coverage of the set of selected

exemplar images, the author pre-computes a large set of clusters based on the similarity of the

images, and the query selection is conducted at the granularity of clusters instead of at the image

level. Consequently, once a cluster is selected by the Bayesian model, the representative image

with the highest posterior will be selected to represent the entire cluster that it belongs to. The

limitation of this work is that it still requires to perform an exhaustive search over the entire space

of the clusters, and as the clusters are pre-computed before the search, therefore, the effectiveness

of the method heavily depends on the quality of the clustering, which can be hard to control in

real-world scenarios.

More recently, in [Kovashka and Grauman, 2013], the author proposed an alternative interac-

tive image search method that allows users to refine their results by giving feedback on exemplar

images. It does so by actively select “pivot” exemplars for which the user feedback will most
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reduce the system’s uncertainty. One uniques aspect of this approach is in its exemplars that are

presented to the user. Instead of presenting just the image, the system presents both the image and

a question that builds on one of the metadata attributes of the image. For instance, after present-

ing an exemplar image, the system will ask the user whether the presenter image is more or less

“crowded” than his/her target image. Here, the “crowdedness” is one of the metadata attributes

of the image. Underneath the system, a set of binary search trees is built on each of the metadata

attributes of the image objects to allow the system to prune the search space according to the feed-

back that the user has provided. Consequently, the exploration process will be similar to the process

of building a decision tree classifier, where each user feedback helps to prune part of the search

space along the line of one of the metadata attributes. A selection function is further leveraged to

determine the metadata attribute that will be involved in the subsequent questions by predicting

the information gain of choosing each metadata attributes’ corresponding binary search trees with

all the user feedback obtained so far. However, due to its pruning process, such approach is only

ideal for data that contains all or mostly numerical metadata attributes and search tasks with only

one set of relevant objects, and is less effective for data that consist mostly categorical data with

large variance, and when the user is seeking for multiple distinct sets of relevant objects. Further-

more, as the approach assumes a set of human-understandable metadata attributes are available to

support the exploration, it not easily applicable to unstructured data that does not support effective

derivation of such metadata information (e.g., text documents, interconnected graphs, and voice

recordings).

Most recently, in [Modi and Kovashka, 2017], an enhancement of the above-mentioned

method (i.e., [Kovashka and Grauman, 2013]) has been proposed, which introduces additional

constraints to the above interactive searching process to account for both the model confidence

and question diversity when selecting the questions. Consequently, these additional constraints

appear to have improved the results in searching the user’s target image as compared to the orig-

inal method [Kovashka and Grauman, 2013]. However, the limitations of the original method, as

mentioned above, have not been addressed. Therefore, it is still not suited to be adopted directly

21



for the interactive data exploration problem.

In this thesis, to ensure effective exploration can be conducted on a variety of different un-

structured data types, our unstructured data exploration system ExNav (Chapter 5) relies only on

the embeddings of the corresponding unstructured data and does not require the support of any

additional human interpretable metadata.

2.6 Result Refinement Techniques

Example-driven Exploration techniques seek to assist the users in discovering all of the target

objects associated with their exploration task and return the data object in either raw data format

or in a query that precisely captures the target data objects. Despite being strongly relevant to the

exploration, the set of results discovered through the Example-driven Exploration techniques can

still be overwhelmingly large, and thus, impractical to be interpreted by the users. Note that such

a problem is not exclusive to the Example-driven Exploration as any user queries can potentially

suffer from similar issues. To address this challenging problem, numerous result refinement tech-

niques (e.g., ranking, diversification) have been proposed to optimize the viewing orders of the

results. Below we will discuss some of the result refinement techniques that are relevant to our

work.

2.6.1 Relevance Ranking Techniques

As comprehensively surveyed in [Stefanidis et al., 2011], a typical result ranking technique

can be distinguished based on the type of preferences they support for filtering and ordering data.

Most of the ranking techniques primarily handle only one type of preference, either quantitative

or qualitative. However, each preference type has its own advantages and disadvantages. Hybrid

schemes (e.g., [Kiessling and Kostler, 2002, Gheorghiu et al., 2014, Gheorghiu et al., 2015]) that

support both qualitative and quantitative preferences have been proposed in an attempt to exploit

22



the advantages of both types of preferences while eliminating their disadvantages.

Among the hybrid schemes, HYPRE model [Gheorghiu et al., 2015] is one recently developed

model that integrates qualitative and quantitative preferences by means of preference strength or

intensity. In other words, a preference in the HYPRE model is not seen as a binary option; instead,

it allows users to express their preferences along with the intensity of that particular preference, i.e.,

how “strongly” a user feels about a fact. In the HYPRE model, users submit both qualitative and

quantitative preferences along with an intensity value. In order to incorporate the qualitative prefer-

ences into the total order generated by the quantitative preferences, the qualitative preferences are

converted into quantitative preferences by deriving an intensity value based on the existing quali-

tative preference intensity value and a quantitative preference intensity value (or a default value if

this does not exist). The HYPRE model stores preferences in a labeled directed and acyclic graph.

Each node in the graph represents a query predicate. Quantitative preferences are represented us-

ing edges that have the same starting and ending point. Qualitative preferences are represented by

edges between two different nodes. Each edge is labeled with a value that represents the prefer-

ence’s intensity. Preference intensity is a decimal value between 0 and 1 and is used to express

either a negative preference, a positive preference, or equality/indifference.

More recently, in [Celis et al., 2018], the author studied the problem of producing rankings

while preserving a given set of fairness constraints. In particular, the proposed algorithm takes as

input a utility function, a collection of sensitive attributes (e.g., gender, race), and a collection of

fairness constraints that restrict the number of items with each sensitive attribute that are allowed

to appear in the final results. It outputs a ranking that maximizes the relevance with respect to the

given utility function while respecting the fairness constraints.

2.6.2 Diversity Techniques

Result diversification has been studied in many different contexts and with various definitions

[Drosou and Pitoura, 2012b], such as similarity, semantic coverage [Agrawal et al., 2009], and

novelty [Clarke et al., 2008]. In our work, we focus on the similarity definition and use MaxMin
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and MaxSum, which are two widely used diversification models, as baselines.

The goal of these two diversification models is to select a subset S from the object space R,

so that the minimum or the total pairwise distances of objects in S is maximized. Recently, a

number of variations of the MaxMin and MaxSum diversification models have also been proposed

(e.g., [Panigrahi et al., 2012, Drosou and Pitoura, 2012a]) to address the problem of diversifying

continuous data. Formally, MaxMin and MaxSum are defined as follows:

Definition 1. MaxMin generates a subset of R with maximum f = minpi,pj∈Sdt(pi, pj) where dt

is some distance function pi 6= pj for all subsets with the same size.

Definition 2. MaxSum generates a subset of R with maximum f = Σoi,oj∈Sdt(oi, oj) where dt is

some distance function oi 6= oj for all subsets with the same size.

DisC Diversity [Drosou and Pitoura, 2012b] is the most recently proposed diversity framework

and solves the diversification problem from a different perspective. In DisC Diversity, the number

of retrieved diverse results is not an input parameter. Instead, users define the desired degree of

diversification in terms of a tuning parameter r (radius). DisC Diversity considers two objects oi

and oj in the query result R to be similar objects if the distance between oi and oj is less than or

equal to a tuning parameter r (radius). It selects the representative subset S ∈ R according to the

following conditions: (1) For any objects in R, there should be at least one similar object in S;

and (2) All objects in S should be dissimilar to each other. These two conditions ensure both the

coverage and the dissimilarity property of a diverse result set.

In addition, DisC Diversity also introduces two problems, Covering and CoveredBy

[Drosou and Pitoura, 2015]. These can be used to model the issue of generating a representative

result set that is both diverse and relevant to a user’s individual preference (without using prefer-

ences). The Covering problem is used to model the case where users want highly relevant items to

cover a large area around them. In order to achieve this goal, a relatively larger radius is assigned

to items with larger weights. The CoveredBy problem is used to model a case where a user wants

to see more relevant objects. In that case, a smaller radius is assigned to items with larger weights.

These two problems together illustrate the possibility of using DisC to handle relevance together
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with diversity.

Another way to generate a diverse, representative set of results is through clustering. One

example of this would be k-Medoids, which is a well-known clustering algorithm that attempts to

minimize the distance between points in a cluster and the center point (medoid element) of that

cluster. The k-Medoids algorithm can be classified into two stages: In its first stage, it generates a

set of k clusters C = {c1, c2, ..., ck} based on some distance function dt. In the second stage, one

element from each cluster is selected to be part of the result set R. Several strategies for selecting

an element from each cluster could be employed. For instance, one strategy is to choose the center

point of each cluster that is expected to deliver high diversity, and another strategy would be to

choose the point that has the highest intensity value for each cluster. However, since there is no

parameter that can be tuned, either manually or automatically, to balance the trade-off between

relevance and diversity, k-Medoids is unable to balance such a trade-off in fine granularity.

2.6.3 Multi-Criteria Objective Optimization

In the past, diversification and retrieval of relevant results have often been studied together as

a multi-objective optimization problem with two objectives, where the first objective is relevance,

and the second objective is dissimilarity [Ziegler et al., 2005]. The following are some representa-

tive techniques that are related to our work.

In [Qin et al., 2012], the authors considered the optimization of the diversified Top-K problem

as finding the optimal solution for the maximum weight independent set problem, which has been

proven to be an NP-hard problem. The authors proposed an approach, called div-astar, which uses

a diversity graph that consists of N nodes, where each node corresponds to one item in the original

data. This diversity graph is sorted according to the relevance score, and an a∗ algorithm is used

to find the optimal solution for diversifying Top-K Results. In addition to the div-astar solution,

two enhancements have also been proposed, called div-dp and div-cut: div-dp takes advantage of

dynamic programming to divide the initial graph into disconnected components, and div-cut is a

cutpoint-based approach that further decomposes each disconnected component based on loosely
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connected sub-graphs.

One widely used approach that was targeted directly at optimizing the trade-off between diver-

sity and relevance was introduced by [Carbonell and Goldstein, 1998]. In this chapter, the authors

proposed the famous twin-objective function called Maximal Marginal Relevance (MMR), which

combines both relevance and diversity aspects in a single comprehensive objective function. For-

mally, MMR defines its objective function as:

argmax
Di∈RnS

[λ(Sim1(Di, Q)− (1− λ) max
Dj∈S

Sim2(Di, Dj))] (2.6)

where λ is a scaling factor that specifies the preference between relevance and diversity. When

λ = 1, the MMR function equals a standard relevance ranking function. When λ = 0, it computes

a maximal diversity ranking.

Recently, a new bi-criteria objective optimization approach based on MMR has been proposed

[Hussain et al., 2015]. This approach integrates regret minimization with traditional MMR to gen-

erate a new relevance score that takes into consideration the case of minimizing the disappointment

of users when they see k representative tuples rather than the whole database. In this chapter, the

authors proposed two approximation algorithms called ReDi-Greedy and ReDi-SWAP, which find

the set of items consisting of k items having the highest score with respect to their MMR function.

In [Stefanidis et al., 2010], the author has conducted a study on personalized, keyword-based

search over relational databases, which includes the notion of diversity and coverage. Specifically,

the author provided good discussions on modeling the relevance, user preferences, diversity, and

coverage for keyword-based searches over relational databases by means of Join Tree of Tuples.

Join Tree are trees of tuples connected through primary to foreign key dependencies.

Swap is another recent Top-K diversification technique that is related to ours [Yu et al., 2009];

Swap starts with K items with the highest relevance scores. Among these K items, Swap picks

an item with the lowest contribution to the diversity of the entire set, then swaps this item with the

item that has the next highest relevance score. A candidate is successfully swapped with one of

the items in the Top-K set if and only if it can contribute more in terms of the overall diversity of
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the result set. In order to preserve the relevance aspect, Swap introduces an optional pre-defined

threshold called UB that specifies how much decrease in relevance can be tolerated. UB can serve

as a terminal condition that stops the algorithm when the item with the highest relevance among

the remaining set is no longer high enough for the algorithm to perform a swap operation.

2.6.4 Data Summarization

Some recent works [Wen et al., 2018, Manas Joglekar, 2016] have studied the problem of pro-

viding interactive exploration and summarization support for tuples in a given table. The goal of

this type of approach is to produce an informative hierarchy that organizes the underlying tuples

essentially in k clusters. In order to display tuples as clusters, each cluster is folded into a single,

representative tuple, with only the common attribute values among all members of the cluster being

displayed. The rest of the attributes are shown as “?”, which indicates that there are objects with

different values with respect to these attributes inside the cluster. To explore each cluster, the user

can gradually expand each “?” symbol contained in the current representative tuple of a cluster.

Each time the user expands a “?” symbol, more tuples that contain a different value with respect to

the corresponding attributes will be displayed.

2.7 Summary

In this chapter, we reviewed the related work in interactive data exploration and result refine-

ment, and provided a taxonomy of available data exploration techniques that can be broken down

into fully automated and semi-automated data exploration techniques. From the large volume of

existing literature, it is certain that effective and efficient data exploration techniques are in high

demand. We provided a brief overview of the fully automated data exploration technique and

pointed out some of its’ limitations, which essentially render it inappropriate for many real-world

exploration workloads. For semi-automated data exploration techniques, we have further broken
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down the existing approaches into three main categories: Query Recommendation, Query Refine-

ment, and Example-driven Exploration, and provided necessary background on each of them. As

our work is focused on Example-driven Exploration, we provided a detailed analysis of the exist-

ing works (e.g., active learning) that are strongly related to ours and shown their limitations, which

are addressed by our new techniques presented in this dissertation (Chapters 3 - 5). Additionally,

we summarized the related work in result refinement since it is essential to the usability of the

Example-driven Exploration system, especially in the case where the results are to be consumed

directly by the user (i.e., not fed into subsequent applications). These works in result refinement

provided the foundation of our novel result refinement technique PrefDiv (Chapter 6).

28



3.0 Effortless Exploring of Structured Data

The work covered in this chapter was published in the Proceedings of 2016 IEEE International

Conference on Big Data (IEEE BigData) [Ge et al., 2016b].

In this chapter, we discuss our solution that seeks to minimize the user effort when exploring

large structured data with Example-driven Exploration. Our solution leverages and adopts the

technique of active learning [Settles, 2009], which refers to a family of algorithms that seeks to

minimize the number of labels needed when training a predictive model.

3.1 Introduction

The main idea underlying the Example-driven Exploration techniques is to automatically iden-

tify all data objects relevant to the user’s exploration task based on their feedback on a small set

of sample objects [Dimitriadou et al., 2014, Li et al., 2015]. In particular, the user is iteratively

presented by sample tuples (i.e., objects) from the database, and in turn, the data exploration plat-

form progressively constructs and refines their exploratory query. Clearly, this is an example of

a “human-in-the-loop” task, in which the typical setting is to start asking the user “If you are in-

terested in some object or not?”, followed by repeatedly refining the questions until all (or most)

interesting objects are discovered. As discussed in Chapter 2, to achieve the desired effectiveness,

Example-driven Exploration approaches need to achieve both: maximizing the accuracy of the

employed model in predicting the users’ exploratory queries, minimizing the number of samples

that are presented to the users for their feedback, and minimizing the processing time needed to

generate useful examples from an arbitrary large database. However, these objectives are often in

conflict. For instance, maximizing the accuracy of a predictive model often requires a large num-

ber of labeled samples, whereas relying on a small set of labeled samples results in a low-accuracy

predictive model, and in turn imprecise query formulation that falls short in capturing the user’s

interests.
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In this chapter, we propose a novel solution for Example-driven Exploration, called RE-

QUEST (Data Reduction and Query Selection), designed to address the conflicting objectives

outlined above to enable both effective and efficient example-driven data exploration. In partic-

ular, REQUEST aims to assist users in constructing highly accurate exploratory queries while

at the same time minimizing the number of samples presented to them for labeling. To achieve

that goal, REQUEST integrates the following two components: 1) Data Reduction: it em-

ploys efficient data reduction techniques to minimize the amount of explored data, and in turn

the number of required labeled samples (e.g., [Mozafari et al., 2014, Haas et al., 2015]), and 2)

Query Selection: it employs effective active learning query selection methods to maximize the

accuracy of the predictive model, and in turn the preciseness of the constructed queries (e.g.,

[Settles, 2009, Settles and Craven, 2008, Sarawagi and Bhamidipaty, 2002]).

Given our REQUEST general framework (Section 3.2), we further proposed several specific

schemes that provide different levels of efficiency and effectiveness as guided by the user’s pref-

erences (Section 3.3). Our experimental evaluation using the Sloan Digital Sky Survey (SDSS)

[sds, 2021] dataset shows that our schemes can achieve the same accuracy as state-of-the-art

schemes while reducing the user’s efforts incurred in providing feedback (i.e., labeling samples)

by up to 93% (Section 3.4). Moreover, our schemes are also able to construct, with high accuracy,

queries that are often undetectable by current techniques, even when a large number of samples

are explored.

3.2 The REQUEST Framework

REQUEST is designed to achieve the following goals: 1) minimize the number of example

objects that are presented to the user for labeling, 2) minimize the processing cost and delays

incurred in selecting those examples, and 3) maximize the accuracy of the constructed query in

capturing the user’s interests. The main idea underlying REQUEST is to combine the advantages

of data reduction techniques (used in data exploration platforms) with the advantages of query
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Algorithm 2 The REQUEST Framework
Require: The raw data set D; Batch Size B

Ensure: A range query Q

1: Subset Ds ← D

2: Labeled set L← ∅

3: Unlabeled set U ← Ds

4: M ← initialize query selection method

5: while user continues the exploration do

6: for i = 1 to B do

7: Choose one x from U using M

8: Solicit user’s label on x

9: L← L ∪ {x}

10: U ← U − {x}

11: end for

12: M ← trained with L to update M .

13: Train a decision tree with L to obtain Q

14: end while

15: Return the most recently obtained Q.

selection methods (used in active learning approaches).

As shown in Algorithm 2, REQUEST works in two stages, namely: data reduction and query

selection. In the first stage, REQUEST reduces the original dataset D to a subset Ds, such that

|Ds| < |D| (line 1). In order to achieve effective data reduction, we consider different methods,

including traditional sampling and user-guided sampling based on the multi-instance active learn-

ing (MIAL) approach. Then REQUEST initializes two sets of data objects L and U for storing the

labeled and unlabeled data objects, respectively (lines 2-3).

REQUEST also incorporates a query selection method that is used for selecting the example
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objects to be presented to the user for labeling (line 4). In this chapter, we employ and extend

variants of the well-known uncertainty query selection methods, which are described in detail in

Section 3.2.2. As long as the user is willing to label more examples (line 5), REQUEST will keep

invoking the query selection method M to select a new example object x from Ds, and present

it to the user to label as relevant or irrelevant (lines 6-11). Once the amount of labeled samples

received from the user reaches a sample batch size (denoted as B), which is a tunable parameter of

the REQUEST to balance the effectiveness and efficiency, then the classifier model employed by

the query selection will be updated according to the label assigned to x (line 12).

In particular, the label assigned to x will be used for retraining the classifier model, which is

an essential step towards selecting the object presented to the user in the next iteration. Once the

iterative labeling process is completed, a decision tree classifier is trained on all the labeled data,

and a range selection query Q is constructed based on that tree, as described in Section 2.2 (line

13).

Next, we describe in detail the different methods for data reduction and query selection con-

sidered under our framework.

3.2.1 Data Reduction

In active learning approaches, query selection methods are applied over the entire set of unla-

beled data objects to select the next example to be presented to the user for labeling. As discussed

earlier, such exhaustive search incurs high processing costs and leads to users experiencing long

delays between the presented examples. To the contrary, data exploration approaches employ data

reduction techniques for minimizing the number of unlabeled objects to be searched. However,

current data reduction approaches, such as the ones employed by AIDE (see Section 2.2) have the

drawback of presenting the user with a large number of examples in order to construct a query

with high accuracy. In the REQUEST framework, we consider simple yet effective data reduc-

tion methods that overcome the aforementioned limitations, namely: Data-Driven Sampling, and

User-Driven Pruning.
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3.2.1.1 Data-Driven Sampling In traditional sampling, a small subset of data objects Ds is

randomly extracted from the complete database D. As such, the query selection method for select-

ing examples for labeling is applied on the sample Ds to reduce the processing cost and waiting

delays (see Algorithm 2). For example, if N is the size of the complete data and p is the sampling

ratio, then Ds will include p×N tuples, and the remaining tuples are discarded. Note that p = 1.0

is a special case referred to as None, in which no sampling is applied and all the database tuples are

considered, which is equivalent to traditional active learning approaches in which no data reduction

is employed.

3.2.1.2 User-Driven Pruning Inspired by the Multi-Instance Active Learning (MIAL)

[Settles et al., 2008], we introduce another method for selectively reducing the search space of

unlabeled objects. In MIAL, objects are grouped into a set of bags, and the user is requested to

give their feedback on a bag of objects rather than an individual object. Accordingly, MIAL as-

sumes that a bag is irrelevant if every object in that bag is of no interest to the user; otherwise, the

bag is interesting.

Such property of MIAL making it well-suited to exploration tasks for which the volume of

available data objects is large but the target is represented by only a small set of data objects. In

[Settles, 2009], it was shown with examples that as fully labeling all data objects is expensive, it is

possible to obtain labels both at the bag level and directly at the data object level, which inspires

us to take advantage of coarse labelings to quickly eliminate irrelevant subspaces, then use finer

query selection strategies at the object-level to polish the answer.

In REQUEST, we employ MIAL as the User-Driven Pruning (UDP) technique to prune sub-

spaces that are completely irrelevant to the exploration task, and in turn, reduce the amount of

data considered for labeling. To achieve this, REQUEST divides the multi-dimensional data space

evenly into a number of d-dimensional hyper-rectangles. That is, each dimension of the data space

is split evenly into a certain number of bins. Thus, if each dimension is split into m bins, there

will be md hyper-rectangles in total. Then the user is presented with the ranges covered by each
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hyper-rectangle and is asked to label the rectangle as negative if it does not contain any relevant

objects or as positive otherwise. All negative rectangles are discarded, and all remaining positive

ones are passed to the query selection method.

3.2.2 Query Selection

Query Selection is the one component of our REQUEST framework that aims to minimize the

labeling effort while maximizing the accuracy of the constructed queries. It is worth mentioning

that in this context, a “query” refers to the process of selecting an example object to be presented

to the user for labeling. In REQUEST, we use uncertainty sampling to quickly learn the interest of

the user and steer them towards the relevant data regions.

3.2.2.1 Uncertainty Sampling As mentioned in Section 2.3, uncertainty sampling is a popular

active learning technique that aims to choose the data points which are most beneficial to build a

classification model that precisely captures both relevant and irrelevant data regions.

According to Equation 2.2, to measure the uncertainty of a data object x, we need a model that

would always report the probability of x being positive or negative. The decision tree classifier

(that we employed for range query) is not strictly a probabilistic model, and therefore in most

cases, the decision tree is not an ideal choice for calculating the uncertainty score. Thus, another

probabilistic classification model, such as the Naive Bayes Classifier, is needed to determine the

uncertainty score. This model will be built on the same labeled dataset as the decision tree so that

they can reflect the same “knowledge” of the interest objects.

3.2.2.2 Naive Bayes Classifier Naive Bayes classifier [Lowd and Domingos, 2005] is a clas-

sification model, which can be perceived as a mixture of multiple logistic regression models. In

that sense, Naive Bayes generates similar decision boundaries to a decision tree (because multiple

hyperplanes form an enclosed decision boundary similar to hyper-rectangle or hyper-ball) with

probabilistic scores for calculating uncertainty. Accordingly, REQUEST trains our Naive Bayes
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classifier on the same set of data (all user labeled objects) at the same time it trains the decision

tree classifier. Therefore for a given time point T the probabilistic score given by Naive Bayes

classifier reflects the uncertainty of any unlabeled data object at time T .

To be more precise, the uncertainty of a data object under Naive Bayes classifier is determined

as follows. Given an unlabeled data sample to be predicted, represented by x, it assigns to this

probability:

p(Ck|x) (3.1)

for each hidden class Ck. Another assumption of Naive Bayes classifier is the conditional inde-

pendence, such that Naive Bayes classifier assumes that each feature is conditionally independent

of every other feature:

p(xi|xi{ , Ck) = p(xi|, Ck) (3.2)

where xi is the ith feature of x and i{ is x without the ith feature.

Thus, the joint probability can be expressed as:

p(Ck|x1, x2, . . . , xm)

∝p(Ck, x1, x2, . . . , xm)

∝p(Ck)
m∏
i=1

p(xi)

where i is the enumeration of all features. This means that under the above independent assump-

tions, the conditional distribution over the hidden variable is:

p(Ck|x1, x2, . . . , xm) =
1

Z
p(Ck)

m∏
i=1

p(xi) (3.3)

where Z = p(x) is the normalization factor.

Such conditional distribution reflects the likelihood of a data object x being positive or negative

(in our case, relevant or irrelevant), which is essentially the uncertainty score of x.
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3.2.2.3 Committee of Naive Bayes Classifiers Following the voted uncertainty method men-

tioned in Section 2.3, a small committee of Naive Bayes classifiers x can be used as an alternative

way to determine the uncertainty score of an unlabeled object [Sarawagi and Bhamidipaty, 2002].

Under this method, the uncertainty score is calculated through Equation 2.5. Additionally, accord-

ing to [Settles, 2009, Seung et al., 1992, Settles and Craven, 2008], a small committee (less than

6) work well in practice for such method.

In REQUEST, we employ both Naive Bayes Classifier and Committee of Naive Bayes Classi-

fiers for calculating the uncertainty score. However, traditional uncertainty sampling suffers from

two major drawbacks 1) shortsightedness (as pointed out in [Brachman et al., 2012]), and 2) low

scalability. Shortsightedness refers to the issue that the uncertainty score of unlabeled samples

is based only on the information obtained from labeled samples, which usually is a tiny portion

compared to the unlabeled objects, therefore, causes a biased when selecting samples for labeling.

Low scalability is caused by the fact that traditional uncertainty sampling requires performing an

exhaustive search over all unlabeled datasets for every sample that is presented to the user.

3.2.2.4 Randomized Uncertainty To address the first drawback mentioned above, the work in

[Xue and Hauskrecht, 2016] combines uncertainty with some degree of randomness. Particularly,

for each query, an example is probabilistically selected from all the unlabeled objects for the user

to label. The probability that an unlabeled point x is selected is proportional to its uncertainty

score:

p(x is selected) =
u(x)∑

xu∈U u(xu)
(3.4)

where U is the unlabeled set and u(x) is the uncertainty score of an unlabeled sample x.

Since the probability that an unlabeled point x is chosen to be presented to the user is equal to

its normalized uncertainty score, therefore, less uncertain samples may still have a small chance of

being accepted, which has the effect of reducing the bias introduced by the labeled samples.

36



3.2.2.5 Randomized Accept/Reject Uncertainty (RARU) When exploring large datasets,

randomized uncertainty still suffers from low scalability for the fact that each example selection

must go over all the unlabeled object to compute their normalized score. Thus, to address the sec-

ond drawback of uncertainty sampling, we introduce an accept/reject example selection approach.

Particularly, to choose an unlabeled sample to be presented to the user, we first randomly pick an

unlabeled object x, then calculate the uncertainty score of x. To decide whether x can be presented

to the user we use the uncertainty score of x as the way to determine its acceptance, such that the

probability of an unlabeled data sample x being accepted under RARU is:

p(x is selected) = argmin
k∈0,1

Pr(Ck|x)

0.5
(3.5)

where Pr(Ck|x) is the probability of x being assigned a binary class label Ck, and 0.5 is a nor-

malizing factor since a prediction score of 0.5 indicates the classifier is most uncertain about an

object.

If x is accepted, it will be presented to the user for labeling. Otherwise, RARU will continue

to select other unlabeled objects randomly until one object is accepted (according to Equation 5.4)

and presented to the user.

Such Randomized Accept/Reject Uncertainty strategy provided an early termination to pre-

vent the enumeration of all unlabeled data items while still preserving the feature of randomized

uncertainty that mitigates the shortsightedness of the traditional uncertainty sampling.

3.3 The REQUEST Schemes

In this section, we introduce four specific schemes to support the Example-driven Exploration

style of data exploration that are based on our REQUEST framework. These schemes are: 1) The

None+RARU Scheme, 2) The None+VotedRARU Scheme, 3) The MIAL+RARU Scheme, and 4)

The MIAL+VotedRARU Scheme.
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3.3.1 The None+RARU Scheme

This scheme focuses on the Randomized Accept/Reject Uncertainty (RARU) as the query

selection method with no data reduction techniques used. In None+RARU, a single Naive Bayes

Classifier is employed to compute the uncertainty scores. An issue of this scheme is the initial

sample acquisition, since initially no relevant objects are discovered. Therefore no uncertainty

score can be computed. To solve this issue, we randomly sample unlabeled data objects from the

database for labeling until the first relevant object is discovered, thus, enables the Naive Bayes

classifier to compute the uncertainty score of unlabeled objects. Once the first relevant object is

discovered, the choice of selecting subsequent samples for labeling would be determined according

to Equation 5.4.

3.3.2 The None+VotedRARU Scheme

The None+VotedRARU scheme is similar to the None+RARU Scheme except the way how

uncertainty score is computed. In None+RARU Scheme, a single Naive Bayes classifier is used to

determine whether to reject/accept a sample from being presented to the user. In the case of the

None+VotedRARU Scheme, this decision is co-decided by a committee of Naive Bayes classifiers.

In particular, given the labeled data L, we use the k-fold cross-training method to train k different

classifiers, and the uncertainty score of an unlabeled object is computed according to Equation 2.5.

3.3.3 The UDP+RARU Scheme

For this scheme, we employ the User-Driven Pruning (UDP) technique based on MIAL as the

data reduction technique. We start with a partition of d-dimensional data space into multiple d-

dimensional grids with a tunable parameter δ, such that each of the attributes is split into δ equal

width ranges, and each grid covers a range of 100/δ of the domain for each attribute. We then query

the user on the ranges covered by each grid and prune those grids that are labeled as irrelevant. For

each of the relevant grids, we would visit them in a round-ribbing fashion and apply the RARU
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strategy (with Naive Bayes classifier) to select samples from each grid for labeling. Later, each

labeled sample from any positive grids would be feed into a decision tree model to capture relevant

regions.

3.3.4 The UDP+VotedRARU Scheme

This scheme is the same as the UDP+RARU Scheme, except that the VotedRARU strategy is

used to compute the uncertainty score.

3.4 Experimental Evaluation

In this section, we will present the results of our experiments. We start this section by intro-

ducing the experiment setup. Then we demonstrate the performance of our schemes and other

alternatives.

3.4.1 Experiment Setup

SDSS Dataset In our experiments, we used 40 GiB of the real-world dataset from Sloan Digital

Sky Survey (SDSS) [sds, 2021] that consists of 10× 106 tuples.

Environment Since we are unable to obtain the original implementation of AIDE, we faith-

fully implemented all algorithms with Java JRE 1.7, and all the experiments were run on an Intel

Core i7 4-core CPU with 24GiB RAM. We used the Weka [Witten and et al., 1999] library for exe-

cuting the J48 decision tree algorithm. All experiments reported are averages of 10 complete runs.

We have considered five numerical attributes rowc, colc, ra, field and fieldID of the PhotoObjAll

table.

Target Interest Regions The exploration task characterizes user interests and eventually pre-

dicts the interest regions by iteratively gathering user-labeled tuples. As mentioned before, we
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Table 1: Experimental Parameters of REQUEST Schemes

Total number of data objects 10× 106

Number of runs per result 10

Number of dimensions considered 2, 3, 4, 5

Number of relevant regions 1, 3, 5

Number of Committees 5

Cardinality of the relevant regions 0.1% (S), 0.4% (M), 0.8% (L)

Data Reduction Strategies Sampling, UDP

Number of grids 3D (D = Number of Dimensions)

Query Selection Methods RARU, VotedRARU

Uncertainty Sampling algorithm Naive Beyes

Decision Tree Algorithm J48 (C4.5)

Considered Sample Batch Sizes 50

Baseline Schemes AIDE, Random

Our Schemes None+RARU, None+VotedRARU

UDP+RARU, UDP+VotedRARU

focus on predicting range queries (the user interest regions), and in our experiments, we exper-

iment with three different interest region amounts {1, 3, 5}. Further, we vary the single region

complexity based on the data space coverage of the relevant regions. Specifically, we categorize

relevant regions to small, medium, and large. Small regions have cardinality with an average of

0.1% of the entire experimental dataset, medium regions have a cardinality of 0.4%, and large

regions have a cardinality of 0.8%.

User Simulation Given a target interest region, we simulate the user by executing the corre-

sponding range query to collect the exact target set of relevant tuples. We rely on this “oracle” set
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to label the tuples we extract in each iteration as relevant or irrelevant depending on whether they

are included in the target region. We also use this set to evaluate the accuracy, i.e., F-measure (Sec-

tion 2.2), of our final predicted range queries. Further, we consider each sample as one question to

the user. Thus, the questions asked by the data reduction strategy (e.g., UDP) are also counted as

one sample.

Parameters Table 1 shown a list of all settings and schemes of the experiment. By default, we

use 1× 106 distinct tuples, a batch size of 50, a committee size of 5, and attributes rowc and colc,

unless otherwise specified. The words “f-measure” and “accuracy” are interchangeable in the text

below.

Figure 5: Accuracy, 2D, 1 Small Region Figure 6: Accuracy, 2D, 1 Medium Region

3.4.2 Experimental Results

Accuracy Comparison Figures 5-15 shown the number of samples needed to reach an accu-

racy (f-measure) of 60% and 80% of all participating algorithms with different range queries. Here

we vary the target region size from small to large and change the target region numbers with three

different settings 1, 3, and 5. From these figures, we observed that our scheme UDP+VotedRARU

consistently demonstrates the highest effectiveness when compared to other alternatives. Such that,

to reach an accuracy of 60% UDP+VotedRARU only 150-200 samples for small regions, less than
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Figure 7: Accuracy, 2D, 3 Small Regions Figure 8: Accuracy, 2D, 3 Medium Regions

Figure 9: Accuracy, 2D, 5 Small Regions Figure 10: Accuracy, 2D, 5 Medium Regions

Figure 11: Accuracy, 2D, 1 Large Region Figure 12: Runtime, 2D, 1 Small Region
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Figure 13: Accuracy, 2D, 3 Large Regions Figure 14: Runtime, 2D, 1 Medium Region

Figure 15: Accuracy, 2D, 5 Large Regions Figure 16: Runtime, 2D, 1 Large Region

80 samples for medium regions, and less than 70 samples for large regions on average. To reach

an accuracy of 80%, UDP+VotedRARU requires, on average, 350 samples for small regions, 140

samples for medium regions, and 120 samples for large regions. Further, our UDP+RARU also

shown excellent performance and is only slightly behind the UDP+VotedRARU.

Although, None+RARU and None+VotedRARU without using UDP do not achieve the same

effect as working with UDP. However, they still demonstrate an acceptable performance due to the

efficiency of RARU and are fully usable when facing medium and large regions, as both of them

only require less than 800 samples and 370 samples to achieve an accuracy of at least 80% for

medium and large regions.
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AIDE also showed a good performance for medium and large regions, especially for 60%

of accuracy, as in the most case, it requires 400 samples for medium and 330 samples for large

regions to achieve an accuracy of 60%. For large regions, it requires less than 360 samples to

achieve an accuracy of 80%. But AIDE fails to discover really small regions as it requires 1450-

3500 samples to achieve a 60% of accuracy and would require more than 5500 samples to achieve

80% accuracy for small regions. The reason for such behavior is that when discovering very small

regions, AIDE would generate a large number of samples due to its costly “zoom-in” operations.

Comparing AIDE to our UDP+VotedRARU, our scheme requires 9x-16x fewer samples for small

target regions, 5x-10x fewer samples for medium target regions, and 3x-5x fewer samples for large

target regions than AIDE.

We also compare all algorithms with Random, which is a baseline algorithm that randomly

(based on uniform distribution) selects samples from the exploration space, presents them to the

user for feedback, and then builds a decision tree classifier based on these samples. The result

shows that Random fails to discover small regions. Even when we increase the number of samples

to 9000, it still fails to reach an accuracy of 60%. Random can discover medium and large regions

but with a great cost, such that it requires 2000−3000 samples for medium regions and 1200−1800

samples for a large region to reach an accuracy of 80%.

Runtime Comparison Figures 12-16 shown the runtime (in logarithmic scale) of each algo-

rithm to reach an accuracy of at least 60% and 80%. In all cases, a smaller target region would

increase the runtime. Naturally, random is overall the fastest scheme as it requires almost no

computation. Other than random, the runtime is acceptable for all of our schemes, such that for

UDP+RARU and UDP+VotedRARU the runtime to achieve 80% of accuracy is only 1-2 seconds

for small regions and less than 0.5 seconds for both medium and large region, which is expected

as our schemes only generate a small number of query samples.

None+RARU, None+VotedRARU, and AIDE would require higher runtime than UDP+RARU

and UDP+VotedRARU as they require more samples to reach 80% accuracy. But the runtime for

both None+RARU and None+VotedRARU are still acceptable as they require less than 10 seconds
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Figure 17: UDP+VotedRARU with Increasing

Regions Sizes (1 Region)

Figure 18: UDP+VotedRARU with Increasing

Regions Numbers (Large Region)

for small and less than 1 seconds for medium and large regions to achieve 80% accuracy. Note that

although we have implemented AIDE accurately and faithfully, some optimization may be missed.

As a result, the runtime may be two times slower than a fully optimized version (according to the

runtime reported in [Dimitriadou et al., 2014]). In all runtime experiments, we only report the real

runtime that we have measured based on our implementation.

Zoom into the Best Scheme Figures 17-18 shown a closer look at the effectiveness of the best

scheme UDP+VotedRARU as we increase the complexity of range query by varying the number

of relevant regions and the size of the relevant region. We noticed that UDP+VotedRARU achieves

a remarkable performance as it only requires 110 samples in medium and large regions and 350

samples (out of 10×105 tuples) for small regions to reach 80% accuracy. Further, the performance

of UDP+VotedRARU only decreases slightly when the number of relevant regions is increased.

Traditional Uncertainty VS. RARU We compare our RARU with the traditional Uncertainty

Sampling, both strategies employ Naive Bayes Classifier to compute uncertainty. Figures 19-24

show the effectiveness and efficiency of both schemes. In these figures, we used U to denote

Uncertainty and VU to denote Voted Uncertainty. These experiments are based on a small dataset

that contains only 100k tuples (due to the time complexity of traditional uncertainty sampling)

and small target regions. Note that, for Figures 20-24 the runtimes are in logarithmic scale. As

expected, the traditional Uncertainty Sampling overall reaches the same level of accuracy with less
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Figure 19: Accuracy,1 Small Region, Small

Dataset

Figure 20: Runtime, 1 Small Region, Small

Dataset

Figure 21: Accuracy, 3 Small Regions, Small

Dataset

Figure 22: Runtime, 3 Small Regions, Small

Dataset

number of samples than RARU. Such that compare to RARU; the traditional uncertainty saves up

to 35% of samples when UDP is employed and up to 50% of samples when UDP is not employed.

However, traditional Uncertainty Sampling can be up to 60 times slower than RARU when UDP is

employed and up to 100 times slower than RARU when UDP is not employed. As the efficiency

of traditional Uncertainty Sampling is extremely low, it is still unfeasible to apply it directly on the

modern database systems for real-world interactive data exploration tasks.

Impact of the Data Reduction Further, the effectiveness of data reduction techniques is

demonstrated with UDP, such that apply UDP as data reduction on average requires 3×-10× fewer
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Figure 23: Accuracy, 5 Small Regions, Small

Dataset

Figure 24: Runtime, 5 Small Regions,

Small Dataset

Figure 25: 1 Small Region, F-Measurement of

UDP+VotedRARU, Different Dimensions

Figure 26: 1 Small Region, Runtime (sec) of

UDP+VotedRARU, Different Dimensions

samples than no data reduction for both traditional Uncertainty Sampling and RARU. We also ob-

served the same amount of reduction in runtime (to achieve 60% of accuracy) when UDP is em-

ployed, which is as expected since both the data space and the number of samples generated are

reduced.

Dimensionality Figures 25-26 demonstrate the effectiveness and efficiency of

UDP+VotedRARU as we increase the dimensionality of our exploration space from 2-D to

5-D with one small target region. Our target range query has conjunctions on two attributes. Our

solution has correctly identified the two attributes that define the target region, thus, able to discard
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Figure 27: 1 Small Region, F-Measurement of

UDP+VotedRARU, Different Dataset Sizes

Figure 28: 1 Small Region, Runtime (sec) of

UDP+VotedRARU, Different Dataset Sizes

not related attributes from the decision tree to obtain the target range query. As expected, high

dimensions would require more samples to reach the same accuracy as low dimensions. However,

the number of samples only increased slightly from 2D to 3D and 4D. Even for 5D, the number of

samples needs to achieve 60% of accuracy only increased 35% compare to 4D, and the number of

samples needed for 80% is still within 700 samples even for 5-dimensional space.

Database Size Figures 27-28, illustrates the scalability of UDP+RARU as we increasing the

dataset size from 1 millions to 10 millions. The result has shown that our method is highly scalable

as both the effectiveness and efficiency are independent of the size of the data set. This is because in

RARU the time taken to generate one sample to present to the user is dependent on the distribution

of the uncertainty score of all objects in the dataset and is independent of the size of the dataset.

3.5 Summary

Motivated by the challenge of reducing human effect in exploring large datasets, in this chapter,

we discussed REQUEST, a novel framework for the example-driven style of data exploration.

The REQUEST framework consists of two key components, namely, data reduction and query

selection.
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We show the applicability of REQUEST by proposing an efficient user-guided data reduction

technique with Multi-Instance Active Learning (MIAL) and a novel query selection method, called

Randomized Accept/Reject Uncertainty (RARU), that aims to provide high scalability. Specifi-

cally, we designed and experimented with four schemes: None+RARU, None+VotedRARU,

MIAL+RARU, and MIAL+VotedRARU as solutions to the example-driven data exploration.

Our experimental results have shown that our proposed schemes achieve much higher perfor-

mance in both effectiveness and efficiency when compared to the state-of-the-art. Further, the

human efforts incurred in providing feedback were reduced by up to 93%.
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4.0 Towards Scalable Interactive Data Exploration

The work covered in this chapter was published in the 2021 Proceedings of International

Conference on Extending Database Technology (EDBT) [Ge and Chrysanthis, 2021].

In the previous chapter we presented our first contribution, the REQUEST framework. In

REQUEST (Section 3.2), the proposed query selection strategy leverages the technique of active

learning to effectively and efficiently steer the exploration process. In this chapter, we discuss our

solution to address the scalability issue that is critical to the active learning-based Example-driven

Exploration through a rather traditional strategy: indexing.

4.1 Introduction

As discussed in Section 2.3, numerous active learning techniques [Settles, 2009,

Lewis and Gale, 1994, Seung et al., 1992, Cai et al., 2013, Zhang et al., 2017, Freytag et al., 2014]

have been proposed to boost the convergence of training a predictive model. Among these query

strategies, uncertainty sampling is the most commonly used one because of its simplicity and ef-

ficiency, as pointed out in [Settles, 2009]. Uncertainty sampling trains each predictive model in

an iterative fashion, where in each iteration, it identifies the unlabeled items that are closest to the

current decision boundary of the predictive model as these items are believed to be most uncertain.

Uncertainty Sampling then solicits the user’s label on the identified sample and utilizes it in the

training of the predictive model.

Due to the above-mentioned benefits of uncertainty sampling, we have adapted it in our solu-

tions to reduce users’ effort and enable desired effectiveness and efficiency for interactive Example-

driven Explorations. However, despite being more efficient than alternative active learning meth-

ods, in order to find the most uncertain object, uncertainty sampling still needs to perform an

exhaustive search over the entire database. Therefore, in the case where the size of the data is

larger than the main memory capacity, those additional data that resides on the secondary storage

must be loaded into memory at each iteration. Due to the limitation imposed by physical I/O of

50



the secondary storages, it will take a significant amount of time for active learning techniques to

scan datasets that are considerably larger than the main memory capacity. This essentially makes

it impossible for any active learning-based Example-driven Exploration system to explore datasets

that are larger than the available memory. As pointed in [Liu and Heer, 2014], run time efficiency

is critical for any human-in-the-loop interactive systems as a response time excesses 500ms will

severely impact the user’s engagement and hence hinders the usability of the system. Moreover,

as the exploration could occur on any subset of the attributes of the dataset, it is nearly impos-

sible to apply any typical indexing in advance to support the exploration task over any arbitrary

combination of the attributes.

In order to achieve interactiveness, existing Example-driven Exploration systems rely on main

memory to cache the entire dataset, otherwise, the exploration will become extremely slow and

unusable from the user’s perspective. For datasets that are larger than the main memory, a subset

of data objects will need to be sampled from the original dataset on secondary storage. While

simple and intuitive, this approach could easily lead to very inaccurate results and a waste of user

effort since the boundaries of the interesting data regions in the sampled space is likely to be

different from the original space [Ge et al., 2016b]. Moreover, small sets of relevant data regions

may even be ignored in the resulting sample set.

To overcome this problem, we propose a novel indexing mechanism coined Uncertainty Esti-

mation Index (UEI) to facilitate the interactivity and scalability of active learning-based Example-

driven Exploration systems (Section 4.2). Instead of relying solely on the main memory to cache

the whole dataset during the exploration, UEI caches in memory only the necessary parts of the

data that are needed by the current stage of the exploration. This is achieved through the combina-

tion of an effective estimation of the uncertainty of each data object and an efficient data storage

mechanism. The essential observation that UEI is based on is that data objects often have addi-

tional information that can be used to infer their relationship with other objects, one of which is

the similarity among data objects. Since the uncertainty essentially represents its distance to the

current decision boundary in the high-dimensional data space, thus the uncertainty of an object
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x is strongly related to the uncertainty of the surrounding objects [Lewis and Gale, 1994]. This

observation allows UEI to informatively select the set of highly uncertain data objects to be loaded

into memory before it is needed by the predictive model. Hence, the amount of memory needed to

explore a dataset in real-time has been significantly reduced.

To evaluate UEI, we employed our data exploration system REQUEST (Chapter 3), and com-

pare the performance of UEI against MySQL, which is commonly used by the existing interactive

data exploration systems [Dimitriadou et al., 2016, Huang et al., 2019] (Section 4.3). Our results

on large real-world dataset Sloan Digital Sky Survey (SDSS) [sds, 2021], show that UEI outper-

forms existing solutions by more than 50X in runtime efficiency when the size of the dataset goes

beyond the main memory capacity, and is well capable of meeting the sub 500 millisecond inter-

active response time requirement for data that are at least 100 times larger than the main memory

capacity while achieving minimum impact on the convergence of the predictive model. Further-

more, we have provided a discussion on the the wide applicability of UEI beyond interactive data

exploration (Section 4.4).

4.2 Uncertainty Estimation Index

Maintaining interactive response time for large datasets that are beyond the main memory

capacity has always been one of the major challenges of active learning-based interactive data

exploration systems (e.g., Example-driven Exploration systems). In tackling this problem, we

focused our efforts on uncertainty sampling and proposed a novel index approach coined Uncer-

tainty Estimation Index (UEI). In the next section (Section 4.2.1) we provide the details of UEI’s

main component, and discuss how UEI leverages the inverted index-based data secondary stor-

ages to support scalable exploration. Following that, in Section 4.2.2, we provide a walkthrough

of a complete example to illustrate how a typical active learning-based interactive data exploration

workflow performs when enhanced with UEI.
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Figure 29: Illustrates UEI With a 2D Data Space, Each Grid Represents a Subspace, the Dot in the

Center of Each Grid Represents a Symbolic Point p. With Chunks Stored As Separated Files on

the Secondary Storage.

4.2.1 UEI Components

A key observation underlying UEI is that data objects often have additional information that

can be used to inference their relationship with other objects, one of which is the similarity (i.e.,

distance) between data objects [Lewis and Gale, 1994]. In other words, the uncertainty value of

an object x is strongly related to the uncertainty of the surrounding objects. For example, if x

is located near to one of the current decision boundaries, then x would have higher uncertainty

due to a mixed set of relevant and irrelevant neighbors. More precisely, we observed that the

uncertainty of a data object x can be approximated through its spatial relationships with the labeled

data objects. UEI explores this spatial relationship to load into memory the set of highly uncertain

data objects before they are needed by the query strategy.

Specifically, as illustrated in Figure 29, the main idea of UEI is to divide the exploration space

D into equal-size subspaces (i.e., d-dimensional grids) gi’s of D (gi ∈ D), and build a set of
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Figure 30: Before Storing the Data, UEI Vertically Decompose the Data Into an Inverted Index

Form, and Then Store Them in Separate Chunks.

symbolic (virtual) index points P = {p1, ...pc}, such that each index point pi represents a subspace

gi. In each iteration, UEI estimates the uncertainty of each subspace based on the uncertainty of its

corresponding index point p, then loads only the data in the subspace that is predicted to be most

uncertain into memory.

To do so, UEI comprises five components: 1) an index set P of symbolic index points pi; 2)

a mapping method m : p 7−→ C that maps each index point p to a set of data chunk C; 3) a data

cache U that caches a subset of uniformly sampled unlabeled data; 4) a set of labeled data L that

contains all data that has been labeled by the user, and 5) the exploration dataset D stored in a fully

inverted columnar format on a hard drive. The first four components reside in the main memory.

UEI divides the operation of exploration into two phases: an Index Initialization phase, and

Interactive Exploration phase. The first phase only needs to be executed once per each new dataset.

The second phase is specific to each exploration and discussed in the next section (Section 4.2.2).

Index Initialization Phase As illustrated in Algorithm 3, to work with a new dataset, UEI

first vertically (i.e., attribute-wise) decompose the whole data set and sort each dimension (i.e.,

attribute) based on the values in ascending order (lines 2 - 4). Since each dimension of a typical

exploratory dataset (e.g., scientific, business analysis) can contain values of an arbitrary length, and

one specific value for a dimension may appear multiple times, we compress the data by organizing
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Algorithm 3 Typical Exploration Flow with UEI
Require: The raw data set D
Ensure: Result set T

1: P ← ∅, L← ∅, U ← ∅
2: DC ← verticalDecompose(D)

3: for d = 1 to |DC| do
4: sort(DCd)

5: C ← splitIntoChunks(DCd)

6: end for
7: G← splitIntoSubspaces(D)

8: for each grid gi ∈ G do
9: pi ← computeCenter(gi)

10: P ← P ∪ {pi}
11: end for
12: U ← sample(D, γ)

13: M ← initialize predictive model for uncertainty estimation
14: while user continues the exploration do
15: drop any previously loaded data regions from U

16: M ← trained with L to update M
17: P ← updateUncertainty(P,M)

18: p∗i ← choose the most uncertainty index point from P

19: g∗i ← load data region with m(p∗i )

20: U ← U ∪ gi
21: choose one x from U using M
22: solicit user’s label on x
23: L← L ∪ {x}
24: U ← U − {x}
25: end while
26: T ← resultRetrieval(L)

27: Return the set of interesting data objects T

it in a key-value fashion (< key, {values} >), where each value of the dimension would be used

as a key and the ids of the corresponding objects as values (as illustrated in Figure 30).

During the process of storing the data, UEI splits the distinct values of each dimension d into

a set of equal-sized data chunks Cd = {cdi, ..., cdu}, where each chunk will be stored as a separate

file on the disk, and the size of each chunk can be adjusted based on the size of the data and the

available hardware resources (line 5). UEI also ensures that the values of each dimension are
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stored in sequential order, meaning values stored in each subsequence chunk cdi+1 will be larger

than the values that have been stored in cdi for efficient lookup.

Once the data are partitioned and stored on the disk, UEI would start construct the set of

symbolic index points P by divide the original data space D into a set of equilateral d-dimensional

subspacesG = {gi, ..., gj}, where |G| = |P |, then for each subspace gi, UEI constructs a symbolic

index point pi that represents gi by using the coordinates of the “virtual” center point of gi (lines

7-11). To ensure UEI can be deployed in resource restricted environments, the number of symbolic

index points can be adjusted based on the size of the dataset and the available hardware resources.

In order to construct and load each subspace gi into memory, UEI employed a hash-based

mapping method m that records for each symbolic index point pi, the set of chunks that are

needed to construct gi. As chunks are stored separately on the disk, this approach allows UEI

to quickly identify the data that needs to be loaded. Since each data subspace g is stored as series

of one-dimensional data chunks, to reconstruct each g when needed, UEI utilizes a hash table for

efficiently merge of those data chunks. During the merge process, UEI iterates through each di-

mension and loads the corresponding chunks to the memory one at a time, and each entry in the

chunk would be visited in a sequential manner. For each object ID that is recorded in a loaded data

chunk ci, the value associated with the ID will be inserted into the corresponding entry in the hash

table. Once a chunk has been examined, UEI will release the memory space used to hold the data

chunk and reuse the space for the subsequent chunk.

4.2.2 UEI in Action

In the previous section, we have discussed the components of UEI, as well as how the data are

being stored and indexed, which essentially covers the first half (i.e., lines 1 - 11) of the exploration

workflow, shown in Algorithm 3. In this section, we will discuss the interactive exploration phase

of UEI, which illustrates how a typical active learning-based interactive data exploration task can

be performed when incorporating UEI (lines 12 - 27, Algorithm 3).

Interactive Exploration Phase After the index set has been constructed, UEI begins the ex-
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ploration by filling the unlabeled set U . Specifically, for the original data space D, UEI would

uniformly sample a set of data from the underlying dataset (line 12), where the size of the samples

γ can be adjusted based on the system hardware specs (e.g., available main memory size). As a

result, a set of unlabeled objects U would be sampled and cached in the main memory. These

unlabeled objects will then be used in the acquisition of the set of initial examples that will be

labeled by the user to construct the initial predictive model M0 for uncertainty estimation. Query

strategy will randomly sample examples from U until the set of initial examples contains at least

one positive example and one negative example (line 13).

In each iteration, UEI updates the uncertainty of all index points pi ∈ P based on the most

recently trained predictive model Mt−1 (line 17), which serves as the uncertainty estimator. Here

the uncertainty of a data object essentially equals to the probability of one object being either

positive or negative class, with a value that equal to 50% being the most uncertain. Then, the index

point p∗i for which the current exploration model is most uncertain, will be chosen (line 18), such

that:

p∗i = argmax
pi∈P

Mt−1(Y |pi) (4.1)

where Y = {0,1} is set of binary labels.

Based on the chosen p∗i , UEI uses the mapping method m to identify and load (into the mem-

ory) all data chunks that correspond to the subspace g∗i , which was represented by p∗i (line 19). As

mentioned earlier, the mapping method m is simply a hash table that maps a single index point

p into a set of data chunks located on the disk. Later, the data of subspace g∗i together with the

unlabeled dataset U will be used by the query strategy (i.e., uncertainty sampling) in the selection

of the example to be labeled in the current iteration (lines 20 - 22). To reduce memory usage, by

default UEI kept only one uncertain data region g∗i in the memory at any given time. Once the user

is satisfied with the exploration result, the resultRetrieval method will be invoked to retrieve the

exploration results and present them to the user (lines 26 - 27).

Tuning Interactive Exploration In addition to the above typical exploration flow, UEI further

allows the user to specify a response latency threshold σ that determines the latency between each
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exploration iteration (i.e., two subsequent examples). Using the user-specified σ, UEI determines

whether or not to defer the swap between the current in-memory uncertain region g∗i and the next

uncertain region g∗i+1, when g∗i is no longer the most uncertain region.

In the case when an extremely low σ is specified that makes it impossible for the system to load

the entire subspace g∗i into main memory, UEI would start fetching the corresponding data chunks

that associated with g∗i+1 (in the background) θ iterations before g∗i+1 is loaded into the memory.

Here, θ is a tunable variable that can also be inferred based on the average loading time τ of data

regions, and the configurable latency threshold σ, such that θ =
⌈
τ
σ

⌉
.

4.2.3 Time Complexity of UEI

Clearly, the time complexity of UEI is dominated by the interactive exploration phase. As

discussed in Section 4.2.1, the initialization phase is done once for each dataset and the time

required for UEI to prepare and store a datasetD on secondary storage is simply linear with respect

to the number items n stored in D. s As discussed in Section 4.2.2, each iteration of the interactive

exploration phase in UEI is dominated by the time taken to load the data from the chunks stored

on the disk into the memory, which is linear with respect to the number of dimensions k and the

number entries e stored in the loaded chunks. In contrast, each iteration in the current interactive

data exploration approaches needs to load and examine all data items n (e <<< n).

Therefore, the time complexity of the UEI-enhanced data exploration generally is reduced

from O(kn) where n is the number of data objects to O(ke) where e is the number of entries

associated with the loaded chunks for the current most uncertain subspace g∗i .

4.3 Experimental Evaluation

In our experimental evaluation of our UEI, we use our REQUEST prototype as introduced in

previous chapter 3, with two schemes, one incorporating UEI, and one utilizing a commonly used
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relational DBMS, namely, MySQL. After describing our experimental setup in Section 4.3.1, we

present the findings of our experimental evaluation in Section 4.3.2.

4.3.1 Experiment Setup

The experimental setup was similar to the one used to evaluate REQUEST (Section 3.4). Below

we will discuss the details of our experimental setup.

Dataset We used 40 GB of real-world datasets from Sloan Digital Sky Survey (SDSS)

[sds, 2021] that consists of 10× 106 tuples.

Interactive Data Exploration System In our experiments, we employed our REQUEST

framework with traditional uncertainty sampling and the dual weighted k-nearest neighbor

(DWKNN) [Gou et al., 2012] as the uncertainty estimator.

Environment All the experiments were run on a machine with Intel Core i7 Processor, 32

GiB RAM, and 2 TB of NVMe SSD. The fast NVMe SSD was used to eliminate any potential

bottleneck due to physical IO limitations. All experiments reported are averages of 10 complete

runs. We have considered five numerical attributes rowc, colc, ra, dec and field of the PhotoObjAll

table.

Target Interest Regions The exploration task characterizes user interests and eventually pre-

dicts the relevant regions by iteratively gathering user labeled tuples. We experimented with 1

region per each exploration task. In addition, we vary the single region complexity based on the

data space coverage of the relevant regions. Specifically, we categorize relevant regions to small,

medium, and large. Small regions have cardinality with an average of 0.1% of the entire exper-

imental dataset, medium regions a cardinality of 0.4%, and large regions a cardinality of 0.8%.

Furthermore, the dimensionality of the target interest regions is the same as the dimensionality of

the dataset across the entire experiment.

User Simulation For experiment evaluation purposes, we simulate the user behavior using the

following method. For each target interest region, we simulate the user by executing the corre-

sponding range query to collect the exact target set of relevant tuples. We rely on this “oracle” set
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Table 2: Experimental Parameters of UEI

Number of runs per result 10
Number of dimensions (D) 5
Number of relevant regions 1
Cardinality of relevant regions 0.1% (S), 0.4% (M), 0.8% (L)
Uncertainty Estimator DWKNN [Gou et al., 2012]
Label Type Binary
Data Storage Engine UEI, MySQL
Size of Individual Data Chunk 470KB
Number of Symbolic Index Points 3125
Latency Threshold 500ms
Performance Measurement F-Measure (Accuracy)

to assign confidence scores p to the tuples we extract in each iteration based on their location in

the data space against the target region.

More specifically, for each relevant region, there is a region center and a set of region widths,

one for each dimension. We define the maximum relative distance d of an example against the

region center as:

d = maxi=1..l(|xi − ci|/wi) (4.2)

where l is the dimension number, | · | is the absolute value operator, xi, ci and wi are the attribute

value of the example, of the center and region width in each dimension.

Parameters Table 2 summarizes the important settings in the experiments.

4.3.2 Experiment Results

To test UEI ability to provide an interactive response time for datasets that are beyond the size

of main memory capacity, in our experiments, we stored 10 million data objects with both UEI

and MySQL, and restricted the memory footprint for both UEI and MySQL to be within 400MB,

which is approximately 1% of the entire dataset. Figures 31 to 34 illustrates the effectiveness and
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Figure 31: UEI vs. MySQL Accuracy

(Small Target Region).

Figure 32: UEI vs. MySQL Accuracy

(Medium Target Region).

Figure 33: UEI vs. MySQL Accuracy

(Large Target Region).
Figure 34: UEI vs. MySQL Response Time.

efficiency of our proposed indexing method UEI.

UEI Accuracy (Figures 31 to 33) Compared to MySQL, we have noticed that our proposed

UEI requires more labeled examples in the early stage of the experiment (e.g., below 70% of

accuracy). This is due to the fact that in the early stage, the classifier does not have enough training

samples to learn an accurate uncertainty estimator (i.e., DWKNN classifier) that captures precisely

the user’s interesting regions. This causes the predictive model to select less informative examples
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to be labeled by the user. Since UEI uses uncertainty as the criteria for both the example selection

and the loading of data regions (i.e., subspaces), therefore the negative effect of an inaccurate

classifier has been magnified.

However, as the accuracy of the uncertainty estimator improves with more labeled examples,

we observed a significant boost in performance of UEI in the later stages (e.g., above 80% accu-

racy) of the exploration. This is expected as the the predictive model gets more and more accurate

with respect to the decision boundaries, and thus can estimate more accurate uncertainties. Since

UEI rely on the uncertainty estimation for both the query strategy and cache management, there-

fore, it benefits more noticeably than the MySQL, which only rely on uncertainty estimation for

query strategy.

UEI Response Time (Figure 34) Finally, we have measured the response time for both UEI

and MySQL based schemes. As shown in Figure 34, UEI achieves 50x faster response time than

MySQL, and ensures the sub-second interactive response time across all data region sizes. Note the

response time remains the same across all three target interest regions sizes, which is as expected

because the runtime complexity of the uncertainty sampling-based systems only depends on the

size of the dataset and not the size of the target interest regions.

From the experiments, it is clear that due to the fact that uncertainty sampling requires an ex-

haustive search over the entire data spare, thus the physical bandwidth of the secondary storage has

become the major bottleneck that severely limits the scalability of active learning-based interactive

data exploration systems.

Even though in our experiments, we have used NVMe based SSD with I/O throughput of

around 3.4GB/s, the uncertainty sampling still takes over 12 seconds to complete the exhaustive

search in each iteration. Therefore, it is still impossible to explore datasets that exceed the main

memory capacity without UEI.
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4.4 Applicability of UEI

Traditionally, indexing has been the core technique for optimizing response time in database

systems. Recently, main-memory indexing and specialized access methods have been proposed

to support domain-specific query processing and analytics (e.g., [Chatzigeorgakidis et al., 2019,

Peng et al., 2020]). UEI is based on similar principles as these specialized access methods. How-

ever, UEI, to the best of our knowledge, is the first domain-specific access method with in-memory

and disk components that support interactivity and scalability of active learning-based interactive

data exploration systems.

In addition to the active learning-based interactive data exploration systems, UEI can also

be utilized in other active learning-based Human-in-the-loop (HIL) systems. For example, in

[Qian et al., 2019], the authors have proposed an active learning-based HIL system, called Sys-

temER, for learning Entity Resolution models through user interactions. By leveraging a human

in the loop and active learning, SystemER effectively reduced the number of labeled examples

needed to learn high-quality ER models, and thus, reduced human effort. Another example of an

active learning-based HIL application is fact-checking. In [Bhattacharjee et al., 2017], the author

has proposed an effective active learning-based HIL system for identifying various types of po-

tentially misleading or false information for news contents. Most recently, [Qian et al., 2020] has

proposed to use active learning for learning the implicit structured representations of entity names,

which can be useful for many entity-related tasks such as entity normalization and variant genera-

tion. To facilitate the process of learning such structured representations, a user-friendly interface

called PARTNER has been designed to enhance the user’s interaction experience. Although the

above-mentioned systems have effectively utilized active learning in reducing user efforts, how-

ever, similar to active learning-based interactive data exploration systems, they require the data to

be cached in main memory. Similar to active learning-based interactive data exploration, our UEI

can be leverage in the above-mentioned HIL systems to effectively reduce the memory require-

ment, and in turn, enable these systems to scale out for larger datasets.
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4.5 Summary

In this chapter, we present the Uncertainty Estimation Index (UEI), the first indexing mecha-

nism that enables active learning-based interactive data exploration systems to explore datasets that

exceed the main memory capacity. Instead of requiring all data to be loaded into the main memory

as in existing active learning-based interactive data exploration systems for sub-second response

times, UEI enables scalability by dynamically identify and caching the set of objects that are most

uncertain to the current stage of the exploration. It achieves this by maintaining a small in-memory

index that estimates the aggregated uncertainty value of the data items in the entire data subspaces.

UEI also employees columnar-based secondary storage and combines it with an inverted index to

support efficient loading of the necessary data items at each iteration.

Our experimental evaluation using real-world data show that a state-of-the-art interactive data

exploration system using UEI greatly outperform a DBMS-based version of the same interactive

data exploration system by providing more than 50x runtime efficiency when the size of the dataset

exceeds the main memory capacity and is capable of achieving sub-second response time for data

that is 100 times larger than the available memory while achieving the desired exploration accuracy

and effectiveness.

Although, UEI is primarily focused on the interactive data exploration systems (e.g., Example-

driven Exploration), where response time and run time efficiency is critical, but it can also be used

in combination with any active learning-based human-in-the-loop (HIL) applications to achieve

significantly higher scalability by removing the main memory restriction.
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5.0 Exploring Big Unstructured Data

The work covered in this chapter was published in the Proceedings of 2020 IEEE International

Conference on Big Data (IEEE BigData) [Ge et al., 2020].

In this chapter, we discuss our solution that extended the Example-driven Exploration beyond

just the structured data. In particular, we discuss how our solutions address the unique challenges

associated with exploring the unstructured data given its high-variety and high-dimensional nature.

5.1 Introduction

Despite being effective in retrieving relevant data items, existing Example-driven Exploration

systems focus only on structured data with low dimensionality, which does not apply to unstruc-

tured data (e.g., image, text, and graph) due to their more complex nature and much higher dimen-

sionality. However, such a paradigm can also be leveraged for searching and exploring unstructured

data. For instance, in the case where the user has a mental representation of the characteristics of

the COVID-19 articles that suit their interest, but they are not fully acquainted with the actual

keywords, author, or topic that would select these interesting articles. Given the fact that a simple

keyword of “COVID-19” leads to a deluge of COVID-19 news and articles, mining all or most

relevant articles, news, and tweets that satisfy the user’s specific interest becomes another “mis-

sion impossible”. However, if we show the same user an example article or news title that they

have seen and ask them “Is this the type of article that you have in mind? Yes or no?”, people

can answer such ordinal questions with more ease than absolute judgments (i.e., finding the exact

words or queries to describe their interest).

The aforementioned scenario is not restricted to searching for articles or news only. Browsing

for images, videos, or searching for nodes in large interconnected graphs, users face the same

challenge of not being able to accurately describe items that are of interest using traditional search

interfaces. However, a user can easily provide a relative judgment based on an actual example, that

is, answering questions such as “Do you find this image example interesting: Yes or No?”, rather
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than describing in detail the characteristics of their intended images.

In this chapter, we describe our framework, coined ExNav (Exploration Navigator), which

is the first interactive data exploration framework that leverages Example-driven Exploration

paradigm for unstructured data (Section 5.2). ExNav is capable of supporting any form of unstruc-

tured data as long as an underlying vector representation of the data can be created. It dynamically

refines the exploration space based on a set of interactions with the user, such that in each inter-

action, the user is presented with an example and is asked to provide only binary feedback (e.g.,

interesting or not interesting) on each example. Furthermore, it implements a number of optimiza-

tions that further improve its exploration efficiency and ensures the desired interactive performance

during the exploration.

We experimentally evaluated ExNav on three real-world unstructured datasets (i.e., [tex, 2021,

ima, 2021, gra, 2021]), each with different data types (Section 5.3). The experimental results show

that ExNav can reduce users’ effort by up to 92.3% while still achieving the same accuracy as the

state-of-the-art alternative. Moreover, ExNav is also able to identify with high accuracy relevant

data items that are often undetectable by current techniques, even when a large number of samples

are explored.

5.2 The Exploration Navigator (ExNav)

5.2.1 The ExNav Solution

Our solution ExNav is designed to be independent of the underlying types of the unstructured

data and similar to our REQUEST for structured data, ExNav aims at the following goals 1) min-

imize the user labeling effort during an exploration task, and 2) obtain all data objects relevant to

user exploration with the highest accuracy.

As shown in Algorithm 4, ExNav identifies relevant objects through an iterative interaction
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Algorithm 4 The Exploration Navigator
Require: The raw data set D
Ensure: The set of relevant objects R

1: Convert D into a set of embeddings E
2: Es ← dataReduction(E)

3: L← obtain initial set of samples
4: Unlabeled set U ← Es
5: M ← initialize query selection method
6: while user continues the exploration do
7: Choose one x from U using M
8: Solicit user’s label on x
9: L← L ∪ {x}

10: U ← U − {x}
11: M ← trained with L to update M
12: end while
13: Return relevant objects R captured by the most recent M

with the user. In each iteration, ExNav presents the user with one example (e.g., an image, a news

title) from the entire dataset and requests the user’s feedback on the relevance of this example to

his/her exploration. Inside the system, ExNav decides and utilizes the data embedding method

based on the data type involved in the exploration to cover each data item into its corresponding

feature representations (i.e., embeddings) (Line 1). Leveraging these embeddings, ExNav employs

a predictive model to wisely select the example to be presented that will maximize the benefit to

the exploration task once its relevance with respect to the exploration is provided by the user (Lines

5-7). Once labeled, this example, along with its label (i.e., user feedback) will be incorporated with

all previously labeled examples to update the predictive model for better subsequent explorations

(Lines 8-11). The user terminates the exploration once they are satisfied with the exploration

results, and the set of relevant data objects captured by the most recent predictive model will be

returned (Line 13). In the following sections, we will present each main component of ExNav in

detail.
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5.2.2 Data Embedding

Currently, there exists a large body of embedding algorithms that encompasses various meth-

ods for learning of feature representations of different unstructured data types (e.g., image, graph,

text) in numerical vector space. Typically, embedding methods aim to create embeddings (i.e., vec-

tor representations) based on the assumption that the similarity between data items in their original

form should be reflected in the learned feature representations. To achieve this goal, a large variety

of algorithms have been proposed for a wide range of data types using both supervised and un-

supervised learning methods. For instance, Word2vec [Mikolov et al., 2013], Universal sentence

encoder [Yang et al., 2020], and GloVe [Pennington et al., 2014] are some well recognized meth-

ods for embedding text into its corresponding vector space. Similarly, for image data, there exists

a large body of embedding methods that range from deep learning-based methods (e.g., Resnet-18

and Alexnet) to more traditional keypoint-based embedding methods (e.g., Scale Invariant Feature

Transform (SIFT), Speeded Up Robust Features (SURF)). Even for more complex data types such

as graphs, the problem of embedding each data node into its vector space is also well studied (e.g.,

[Tang et al., 2015, Grover and Leskovec, 2016]). These embedding methods provide good repre-

sentations of its data items in the corresponding vector space that preserves the relative similarity

between the data items in its original space. In our work, we leveraged these data embedding algo-

rithms and designed ExNav to be a generic interactive data exploration framework that works with

any unstructured data as long as an embedding representation can be produced.

Different embedding methods may produce embeddings with different dimensionality, which

can range from 128 dimensions to 32768 dimensions [Hong et al., 2017]. Such a large variation in

the length of the embeddings can lead to inconsistent performance in the subsequent exploration

task and slow convergence of the predictive model. Furthermore, many of these embeddings are

loosely embedded, and thus, many of their attributes (i.e., dimensions) do not provide much value

in identifying relevant data items. To address this challenge, in ExNav, we use dimensionality

reduction algorithms to compress each high dimensional embedding into more condensed lower-

dimensional vector representations. In particular, we used a well-known dimension reduction al-
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gorithm called Principal Component Analysis (PCA), which aims to minimize the reconstruction

error between the compressed low dimensional vector and its original high dimensional represen-

tation.

5.2.3 Exploration Space Pruning

In a typical active learning setting, query strategies are applied over the entire set of unlabeled

data objects to select the next example to be presented to the user for labeling. However, such

exhaustive search incurs high processing costs, causing delays between each user-machine inter-

action, and leads to slower convergence of the predictive model. To address this challenge, data

exploration approaches typically employ space pruning techniques for minimizing the number of

unlabeled objects to be searched. Extending our idea of User-Driven Pruning (Section 3.2.1.2),

in the ExNav framework, we developed simple yet effective space pruning methods, called Multi-

Instance Space pruning (MIS pruning). Our MIS pruning is inspired by the Multi-Instance Active

Learning (MIAL) [Settles et al., 2008], which is a set of popular approaches for reducing user

labeling effort.

The idea in MIAL is that data objects can be grouped into a set of bags, and the user is

asked to label each bag as positive or negative. Accordingly, MIAL assumes that a bag is

negative if every object in that bag is negative; otherwise, the bag is positive. Subsequently,

these bag-level labels will be used in the training of either bag-level, or instance-level classifiers

[Carbonneau et al., 2019]. Compared to the more traditional instance-level active learning, MIAL

has proven to be very effective in further reducing the labeling cost in many domains, and appli-

cations [Carbonneau et al., 2019]. For instance, in a text document, image, or biological sequence,

consider the case where individual instances tend to form very distinct clusters. In such cases, it

may often be easier to label a group of strongly similar objects rather than each individual one, and

all objects of the group inherit this label. Previous works have shown that MIAL efficiently reduces

annotation costs in various applications such as object detection [Ren et al., 2016], web search re-

sults [Zhu et al., 2015],and medical analysis [Quellec et al., 2017], as well as different data types
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such as text [Ray and Craven, 2005, Zhang et al., 2013], image [Quellec et al., 2017], and audio

[Briggs et al., 2012].

In contrast to MIAL that uses the bag-level labels for the training of classifiers, our MIS prun-

ing uses the bag-level labels to identify and prune sub exploration spaces that are completely

irrelevant to the exploration task, and in turn, reduces the amount of data that needs to be searched

during the exploration. In particular, MIS pruning first uses the popular K-Means clustering algo-

rithm to divide the items in the current exploration space into a set of bags based on their similarity.

Given that each bag is created by grouping similar items, it ensures that the items within each bag

are much more similar to each other compared to items across different bags. Thus, users only

need to quickly skim through the items in each bag to see whether the bag is far away from the

regions that contain relevant objects without needing to closely examine each object of the bag.

Such pruning technique enables us to leverage the benefit of MIAL and bag-level labels while still

preserving the high precision capability of instance-level active learning in identifying precisely

all relevant regions.

5.2.4 Query Strategy

Query Strategy is the component of our ExNav framework that aims to minimize the labeling

effort while maximizing the accuracy in discovering relevant objects. Recall as in Section 3.2.2, a

“query” refers to the process of selecting an example object to be presented to the user for labeling.

In ExNav, we leverage uncertainty sampling to quickly learn the interest of the user and steer them

towards all relevant data regions.

5.2.4.1 Uncertainty Sampling As previously mentioned in Section 2.3, uncertainty sampling

is a popular active learning technique, which aims to choose the data points which are most benefi-

cial to build a classification model that precisely distinguishes relevant and irrelevant data objects.

According to Equation 2.2, to measure the uncertainty of a data object x, we need a probabilistic-

based predictive model that would report the probability of x being positive or negative. Based on
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empirical studies, we selected a probabilistic-based classification model, called Gradient Boosting

Decision Tree Classifier, [Ke et al., 2017] to determine the uncertainty score.

5.2.4.2 Gradient Boosting Trees Gradient boosting [Friedman, 2001] is a machine learning

technique for regression and classification problems, which produces a prediction model in the

form of an ensemble of weak prediction models. Gradient boosting is typically used with decision

trees, and the trees are trained in a sequential fashion, such that the subsequent tree is trained

towards the residual (i.e., the difference between the observed value and the predicted value) of the

current tree. For a binary classification problem, the observed value is 1.0 for positive (relevant)

data points and 0.0 for the negative (irrelevant) data points. And the predicted value is the predicted

relevance probability of the data point.

For example, to build the mth tree, the algorithm would first calculate the residuals from the

(m− 1)th tree using:

rim = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

for i = 1, . . . , n. (5.1)

where L(yi, F (xi)) is the loss function and Fm−1(x) is the output from the (m − 1)th tree in log-

odds form. Next, the algorithm would fit a new decision tree (i.e., the mth tree) to the residuals

rim, which will have Jm terminal regions (i.e., leaves),R1m, . . . , RJmm. Then, the algorithm would

calculate an output for each region using:

γjm = arg min
γ

∑
xi∈Rjm

L(yi, Fm−1(xi) + γ) (5.2)

where xi’s are the data points, yi is the observed value for xi, and Fm−1(xi) is the predicted value

for xi in log-odds form from the (m− 1)th tree.

Finally, the output of the mth tree would be:

Fm(x) = Fm−1(x) + ν

Jm∑
j=1

γjm1Rjm
(x) (5.3)
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where ν is the learning rate to prevent over-fitting, and the summation is in place in case a data

point ends up in multiple leaves.

Equation 5.3 is also used for the prediction of new data points, and the output is converted

to probability using the sigmoid function. The predicted probability will, in turn, be used in the

uncertainty calculation for the data point.

5.2.4.3 Randomized Accept/Reject Uncertainty (RARU) As mentioned in Section 3.2, to

address the low scalability drawback of uncertainty sampling, we employed an accept/reject query

strategy approach, called Randomized Accept/Reject Uncertainty (RARU). Particularly, in each

iteration, RARU chooses the example to be presented to the user by randomly picking unlabeled

objects from the entire set of unlabeled data, and then for each picked object x, RARU calculates

the uncertainty score of x. Subsequently, RARU uses the uncertainty score of x as the way to

determine its acceptance (i.e., whether to request user’s feedback on x), such that the probability

of an unlabeled data sample x being accepted under RARU is:

p(x is selected) = min
k∈0,1

Pr(Ck|x)

0.5
(5.4)

where Pr(Ck|x) is the probability of x being assigned a binary class label Ck, and 0.5 is a nor-

malizing factor since a prediction score of 0.5 indicates the classifier is most uncertain about an

object.

RARU randomly visits each unlabeled object until one object is accepted according to the

above Equation 5.4, and the accepted object (i.e., example) will then be presented to the user for

labeling. Clearly, RARU provides an early termination to the exhaustive search of the unlabeled

data objects while still preserving the feature of randomized uncertainty, which alleviates the issue

of the shortsightedness of the traditional uncertainty sampling.
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5.3 Experimental Evaluation

In this section, we will present the results of our experiments. We begin this section by intro-

ducing the experimental setup. Then we demonstrate the performance of our schemes and of other

alternatives, in terms of accuracy, response time, and scalability.

5.3.1 Experiment Setup

Datasets In our experiments, we used three real-world unstructured datasets. The CBC news

dataset (Text) contains 6786 news articles about COVID-19 [tex, 2021]. The Caltech-256 image

dataset (Image) contains 30607 images of 256 different categories [ima, 2021]. The Mashup PPI

dataset (Graph) contains information of 16,143 nodes and 300181 edges in a protein-protein inter-

action graph [gra, 2021].

Learning Representation We used off-the-shelf algorithms to generate the learning represen-

tations for the data.

• For the Text dataset, we used the Universal Sentence Encoder [Yang et al., 2020] to generate a

512-dimensional vector for each article.

• For the Image dataset, we used the ResNet [He et al., 2016] to generate a 512-dimensional

vector for each image.

• For the Graph dataset, we used the pre-trained 500-dimensional vector from the Mashup

project [Cho et al., 2016] for each node.

Each vector is a compact representation of a node that accurately captures the topological patterns

of the corresponding node in the original graph. All vectors in each dataset are projected to a

32-dimensional space using PCA as the final learning representation for that dataset and are used

across all models.

Schemes We experimented with one baseline scheme, one state-of-the-art scheme, and four

ExNav schemes. The baseline scheme is the random scheme (RANDOM), where the system se-
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Table 3: Experimental Parameters of ExNav

Number of data objects 6786 (All datasets)
Number of dimensions 32
Number of target relevent regions 1, 2, 3
Pruning question count 16
Example batch size 5
Max example allowed 3000
Target region cardinality 0.5% (S), 1.0% (M), 2.0% (L)
Considered Query Strategies Traditional, RARU
Predictive Model GBDT
Performance measure F-Measure (Accuracy)
Schemes RANDOM, REQUEST,

ExNav TU, ExNav RARU,
ExNav TU P, ExNav RARU P

Number of runs per result 10

lects examples randomly (based on uniform distribution) from the unlabeled set. The REQUEST

scheme with all the default settings as described in Section 3.4.

• ExNav TU is the the first scheme for ExNav. It uses traditional uncertainty sampling

[Settles, 2009] to select examples.

• ExNav RARU is the second scheme for ExNav. It uses RARU as the query strategy for exam-

ple selection.

• ExNav TU P is the third scheme for ExNav that denote ExNav TU with MIS pruning.

• ExNav RARU P is the forth scheme for ExNav that denote ExNav RARU with MIS pruning.

Target Interest Regions The exploration task characterizes user interests and eventually pre-

dicts the interest regions by iteratively gathering user-labeled tuples. As mentioned before, we

focus on predicting the user interest regions. Particularly, in our experiments, we generate each

target interest region (i.e., relevant region) with random range queries and experimented with three

different interest region amounts {1, 2, 3}. Further, we vary the single region complexity based

on the data space coverage of the relevant regions. Specifically, we categorize relevant regions as
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small, medium, and large. Small regions have cardinality with an average of 0.5% of the entire ex-

perimental dataset, medium regions have a cardinality of 1.0%, and large regions have a cardinality

of 2.0%.

User Simulation Given the target relevant regions, we simulate the user by collecting the exact

target set of relevant tuples in the region. We rely on this “oracle” set to simulate user feedback

for the multi-instance space pruning questions and the example relevance questions. For a pruning

question, the user will give positive feedback if the bag covers at least one tuple in the “oracle”

set, and a negative feedback if the bag does not cover any tuple in the “oracle” set. For a relevance

question, the user will give positive feedback if the example is in the “oracle” set, and negative

feedback is the example if not in the “oracle” set. This “oracle” set is also used as the ground truth

set to evaluate the accuracy (F-measure) of our final predicted relevant regions.

Environment We implemented all algorithms with Python 3.8 and all the experiments were

run on an Intel Core-i9 7980XE processor with 128GB RAM. All experiments reported are aver-

ages of 10 complete runs.

Parameters Table 3 shows a list of all settings and schemes of the experiment. In order to

assess the impact of different data types accurately, by default, we extract 6786 distinct data objects

for each data set, which is the size of the text data. Note using the same data object size across all

three data sets allows us to show clearly the impact of different data types, as having inconsistent

dataset size can influence the number of examples needed to achieve a certain accuracy level.

In addition, the default batch size is 1. Note that the default size of the target relevant region

cardinality is 1.0%, and the default target relevant region size is 1 unless otherwise specified. The

words “F-measure” and “accuracy” are used interchangeably in the text below.

5.3.2 Experimental Results

Accuracy Comparison Figures 35-51 show the number of examples needed to reach an accu-

racy (F-measure) of 60%, 70%, and 80% of all participating schemes with different target region

numbers and three different datasets (i.e., text, image, and graph). Here we also vary the target
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Figure 35: Accuracy 1 Large Region (Text) Figure 36: Accuracy 1 Small Region (Text)

Figure 37: Accuracy 1 Large Region (Image) Figure 38: Accuracy 1 Small Region (Image)

region size from large to small. From these figures, we observe that both ExNav schemes have

consistently demonstrated significantly higher effectiveness compared to REQUEST and RAN-

DOM.

In particular, for the text data set, 1 relevant region, and ExNav TU, for example, to reach an

accuracy of 60%, ExNav TU only requires around 125 examples for the large region, around 125

examples for the medium region, and around 250 examples for the small region on average. To

achieve the same level of accuracy for the three target region sizes, REQUEST requires 2x, 3x, and
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Figure 39: Accuracy 1 Large Region (Graph) Figure 40: Accuracy 1 Small Region (Graph)

Figure 41: Accuracy 1 Medium Region (Text) Figure 42: Accuracy 2 Medium Region (Text)

5x more examples, and RANDOM requires 8x, 11x, and 5x more examples, respectively. To reach

an accuracy of 80%, ExNav TU only requires around 180 examples for the large region, around

225 examples for the medium region, and around 325 examples for the small region on average.

To achieve the same level of accuracy for the three target region sizes, REQUEST requires 10x,

8x, and>9x more examples, and RANDOM requires 13x, 9x, and 9x more examples, respectively.

When we compare the performance for one relevant region, the largest deviation we see between

ExNav and REQUEST is for image data set with one medium-sized relevant region, such that
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Figure 43: Accuracy 1 Medium Region 

(Image)

Figure 44: Accuracy 2 Medium Region 

(Image)

Figure 45: Accuracy 1 Mediums Region 

(Graph)

Figure 46: Accuracy 2 Mediums Region 

(Graph)

REQUEST requires 13x more examples than ExNav in order to reach an accuracy of 60%. Here,

we would like to point out that 13x more examples required by REQUEST can be translated to

a 92.3% reduction in users’ effort when switching from REQUEST to ExNav. Note that in our

experiment, we set the example limit to be 3000 as we believe it is not meaningful to label more

examples beyond this point. We use the > sign to indicate that the scheme is not able to reach the
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Figure 47: Accuracy 3 Medium Region 

(Text)

Figure 48: Accuracy 3 Medium Regions 

(Text)

Figure 49: Accuracy 3 Medium Region 

(Image)

Figure 50: Accuracy 3 Medium Regions 

(Image)

required accuracy level at 3000 examples.

Moreover, for different medium target region numbers, to reach an accuracy of 60%, Ex-

Nav TU requires around 125 examples for 1 region, around 150 examples for 2 regions, and around

450 examples for 3 regions on average. To achieve the same level of accuracy for the three target

region numbers, REQUEST requires 3x, 9x, and 5x more examples and RANDOM would require

11x, 7x, and 3x more examples. To reach an accuracy of 80%, ExNav TU only requires around
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Figure 51: Accuracy 3 Mediums Region 

(Graph)

Figure 52: Accuracy 3 Medium Regions 

(Graph)

225 examples for 1 region, around 670 examples for 2 regions, and around 1050 examples for 3

regions on average. To achieve the same level of accuracy for the three target region numbers,

REQUEST requires 8x, >4x, and >3x more examples and RANDOM would require 9x, 4x, and

3x more examples, respectively. During the experiment, we also observed that one of the main

reasons for REQUEST to perform poorly is due to its predictive model Naive Bayes, which is not

able to overfit well with respect to these high dimension embeddings.

Furthermore, when looking at the two ExNav schemes, we observed that ExNav TU on aver-

age performs better than ExNav RARU in the case of only 1 relevant region. This is to be expected

as ExNav TU performs an exhaustive search over the entire exploration space in each iteration to

find the most uncertain object for labeling. However, such benefit fades when more relevant re-

gions exist in the space, such that we see ExNav RARU on average outperforms ExNav TU with

2 and 3 relevant regions by a noticeable margin. This is again as expected, since its limitation of

shortsightedness, as discussed in Section 5.2, will hinder its capability to discover multiple discrete

relevant regions.

Lastly, as shown in the Figures 35-51, the results for the other two datasets also show similar

trends for the accuracy comparison. To summarize, all ExNav schemes have similar performance

and consistently and significantly outperform REQUEST and RANDOM with respect to accuracy.
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Table 4: ExNav Runtime with Different Query Strategies

Query Strategy 10,000 instances 100,000 instances 1,000,000 instances
Traditional Uncertainty 5.88 ms 61.02 ms 675.04 ms

RARU 0.51 ms 5.44 ms 52.79 ms

Scalability Table 4, illustrates the runtime per iteration of ExNav under different query strate-

gies. In particular, we extracted 10000 images from the Caltech-256 dataset and then duplicated

the data in order to assess the runtime. The runtime for other data types is similar, as it is indepen-

dent of a particular data type. The result showed that RARU helps to improve the scalability and

the efficiency of the exploration by up to an order of magnitude. This is due to the fact that RARU

does not require an exhaustive search over the entire exploration space, and thus, can deliver exam-

ples much quicker than traditional uncertainty sampling. These results, combined with the results

of accuracy comparison, confirmed RARU’s claim that addresses both the shortsightedness and

low scalability drawback of the traditional uncertainty sampling as discuss in Section 3.2.2.3. Fur-

thermore, as Explore-by-Examples systems are often used as a post enhancement to the traditional

keyword, faceted, or query search results, in these scenarios, the efficiency of ExNav can be further

improved due to fewer data involved in the exploration.

Zoom-in into ExNav Schemes In order to better illustrate the comparison between our pro-

posed schemes, in Figures 48-52, we zoom into the two ExNav schemes and show the number of

examples needed to reach different levels of accuracy from 30% to 90%. For this set of compar-

isons, we consider a relatively complex scenario with three medium relevant regions. Compared

to ExNav TU, we have noticed that ExNav RARU typically requires more labeled examples in the

early stages of the experiment (e.g., below 70% of accuracy). This is due to the fact that in the

early stages, to raise accuracy, it does not require all relevant regions to be identified accurately.

However, when improving accuracy beyond 70%, ExNav TU appears to be more struggled than

ExNav RARU (i.e., has a larger slope), which is expected due to its limitation of shortsightedness.
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Figure 53: Accuracy 1 Medium Region (Text) Figure 54: Accuracy 3 Medium Regions (Text)

Figure 55: Accuracy 1 Medium Region (Im-

age)

Figure 56: Accuracy 3 Medium Regions (Im-

age)

Impact of Multi-instance Space Pruning As mentioned in the experiment setup, we have

evaluated the effectiveness of our MIS pruning strategy. In particular, we created 16 bags by

grouping similar objects and asking the user to tell us if any of the 16 bags are far away from the

relevant region (i.e., contain no relevant objects). These regions will then be pruned from subse-

quent exploration. Note that the number of examples reported in the figures for ExNav TU P and

ExNav RARU P does not include the 16 bags question, which has been applied as a fixed pre-

process for these two schemes. The accuracy comparison between the ExNav schemes with and

82



Figure 57: Accuracy 1 Medium Region

(Graph)

Figure 58: Accuracy 3 Medium Regions

(Graph)

without pruning is shown in Figures 53-58. We can see that, for ExNav TU P, the pruning can re-

duce or save around 25%, 27%, and 40% user effort on average for the three datasets, respectively.

For ExNav RARU P, the pruning can save around 26%, 21%, and 36% user effort on average for

the three datasets, respectively. These results indicate that Multi-instance Space Pruning is effec-

tive in reducing the exploration space as well as the amount of feedback needed for exploration.

Therefore, as discussed early in Section 5.2, when exploring any data domains where group labels

are inexpensive to provide, using ExNav with MIS Pruning is recommended.

5.4 Summary

Motivated by the challenge of reducing human effect in exploring large unstructured datasets,

in this chapter, we proposed ExNav, a novel generic Example-driven Exploration framework for

interactive exploration of unstructured data. ExNav effectively navigates users through the large

exploration space to find relevant data items that are often undiscoverable by many traditional

exploration or search methods.
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Our ExNav enables the exploration of any unstructured data as long as an embedding represen-

tation can be obtained. In addition, we described in detail two key components of ExNav, namely,

Multi-instance Space Pruning and Query Strategy, along with a set of optimization techniques that

helps to improve the effectiveness of ExNav.

We implemented a prototype of ExNav and experimentally verified its performance with three

real-world datasets. The results have shown that our proposed ExNav exhibits significantly bet-

ter performance when compared to the state-of-the-art while achieving desired interactive per-

formance. Specifically, ExNav can reduce users’ effort by up to 92.3% (i.e., 13x less than the

state-of-the-art) while still achieving the same accuracy as the state-of-the-art alternative.
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6.0 Exploration Result Refinement

The work covered in this chapter was published in the Proceedings of 2020 International

Conference on Extending Database Technology (EDBT) [Ge and Chrysanthis, 2020].

Even with the “most precise” set of results discovered by the Example-driven Exploration

systems, the volume of the results can still be overwhelming to the users. In this chapter, we present

our final contribution, which is a solution to address this challenging problem that is fundamental

to the usability of the Example-driven Exploration systems.

6.1 Introduction

As mentioned earlier, the challenge of scalable data exploration can be examined from two

viewpoints. Traditionally, scalability has been seen from a systems point of view, where challenges

can be attributed to an increasing rate of data on the one hand, and processing power, and storage

limitation on the other hand. However, scalability can also be viewed from a human point of view.

Given the exponential volume of data, the challenge here is how to avoid overwhelming users with

irrelevant results. Existing Example-driven Exploration systems aim to construct a precise query

that describes the user’s interest, however, the amount of data objets obtained by such query may

still be overwhelming, and thus, impractical for the users to comprehend. In this thesis, we devised

a novel result refinement algorithm, coined Preferential Diversity (PrefDiv), which addresses the

problem of the Top-k result diversification that lies in the center of such challenge.

To begin, we will first discuss the notion of result refinement, which is a well-known solution

for dealing with such a challenge, which often happens at two different levels:

• Ranking – Ranking techniques utilize user preferences with the aim of providing the most rele-

vant results to the users (e.g., [Stefanidis et al., 2011]). These techniques can be distinguished

as quantitative-based, qualitative-based, or hybrid, based on the type of user preferences that

they can support.
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• Diversification – Diversification techniques aim to reduce the amount of redundant information

in the results. These techniques typically group data in sets that are most ”dissimilar” with each

other (e.g., [Santos et al., 2015, Angel and Koudas, 2011, Fraternali et al., 2012]).

Since items ranked highly by ranking algorithms can be similar, thus, Top-k result diversifi-

cation has recently drawn significant attention as a result refinement technique to facilitate appli-

cations such as keyword search, recommendation systems, and online shopping. The key idea of

result diversification is to output a subset of representative results from the original in an informa-

tive way since the user most probably will not view results beyond a small number. As illustrated

in Section 6.2, this requires the representative top-k results to be relevant, diverse, and maintain

good coverage of the original answers (i.e., able to cover different underlying aspects of the origi-

nal results). One thing to note is that the definitions of both relevance and diversity are subjective;

thus, they can vary depending on the query and the user.

Our goal in this chapter is to present an approach to efficiently compute the representative

result set for arbitrary top-k queries under user-definable relevance and diversity definitions. We

name this as the Diversified Top-k (DT-k) problem (Section 6.3).

To effectively address the DT-k problem, we present an extremely efficient online algorithm,

called Preferential Diversity (PrefDiv), for producing representative result sets with sufficient rel-

evance, diversity, and coverage of the original answers (Section 6.4). PrefDiv is a top-k bounded

general diversification approach that can be applied to any existing relevance ranking model and

datasets to retrieve a diversity-aware top-k representative subset of results.

To the best of our knowledge, PrefDiv is the first general approach to deliver representative

results that explicitly consider relevance, diversity, and coverage with an interactive speed that is

independent of the underlying database and data set.

To optimize multiple conflicting objectives such as relevance and diversity, a common ap-

proach taken by most diversification algorithms utilize a number of tunable parameters. This could

be a major drawback for an algorithm, because with the increase of the number of required parame-

ters, the complexity of the algorithm increases as well, making it more difficult to use in real-world
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scenarios. Consequently, we extended PrefDiv into a family of algorithms. These include two

novel algorithms that automatically determine the two main tunable parameters of PrefDiv: 1) the

corresponding diversity thresholds DIV = {div1, div2, ..., divn} given the set of diversity con-

straints Ψ, and 2) the tunable parameters A that balance the trade-off between the relevance and

diversity, respectively.

Furthermore, we experimentally evaluated our PrefDiv algorithms in terms of normalized rel-

evance, coverage, and execution time. Our evaluation indicates a speedup of up to 159x, and

outperforms the state-of-the-art algorithms on multiple fronts (Section 6.5).

6.2 Problem Challenges

Before presenting our solutions, we will first illustrate the challenges to our proposed approach

by means of three examples.

Example 1. Assume a tourist who is currently visiting Athens wants to find an affordable

restaurant with great taste. So she visits a publicly available database that contains the relation

RESTAURANT (Name, Food Type, Cost, Score), where Name indicates the official name of the

restaurant; Food Type indicates the type of food (e.g., Greek, Japanese, Chinese); Cost is the

average expense per person, and Score is a numeric number between 1 and 10 that indicates the

quality of the food and services offered at the restaurant. To find the ideal place for dinner, she,

therefore, obtains the following SQL-like query that describes her initial desire through either the

help of data exploration systems (e.g., Example-driven Exploration) or by handcraft it manually:

SELECT * FROM RESTAURANT

WHERE Score ≥ 6 AND Cost ≤ 20

ORDER BY Cost ASC;

However, these kinds of queries may produce thousands of results, among which the top 5 and
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Table 5: Top-5 and Bottom-5 Tuples With Respect to the Cost

Name Food Type Cost Score
McDonald Fast Food 8 7

KFC Fast Food 8 7
Burger King Fast Food 8 7

Arby’s Fast Food 8 7
Oinomageireio H Epirus Greek 8 9

......
Scala Vinoteca Greek 20 9

Ta Karamanlidika tou Fani Greek 20 10
A Little Taste of Home Greek 20 9

Liondi Traditional Greek Greek 20 9
Dio Dekares i Oka Greek 20 9

bottom 5 results are listed in Table 5. The problem is that users are typically only interested in

seeing a small portion of these results, not to mention many of these results are, in fact, redundant

(e.g., differ only in the name). Simply fetching a certain top number (e.g., top 5) of results does

not help improve their usefulness. Instead, the user might be better served with the right amount

of diverse (i.e., dissimilar) items from the original answer with good coverage of different aspects

(e.g., Food Type, Cost, Score). Furthermore, among those representative subsets with good diver-

sity and coverage, the one that is most relevant to the user’s interest should be preferred, such that

the relevance refers to criteria that can be used to rank the answers. These may be obtained by

interoperating the SQL-like query itself (e.g., through the ”Order By” predicates), or derived from

external user profiles (e.g., query histories, crowdsourcing).

One immediate challenge raised is how to define diversity, which clearly changes based on the

user and the query being performed. In our work, we associate diversity with the similarity between

pairs of answers (i.e., data items). To address this challenge, we propose a tunable definition that

can be adjusted with a set of diversity thresholds DIV . Each threshold div in DIV is a real

number between [0, 1], which specifies the threshold between “similar” and “dissimilar” data items
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Name Food Type Cost Score

McDonald Fast Food 8 7

Beer Garden Ritterburg German 8 9
Nolan Japanese 9 8

Oinomageireio H Epirus Greek 10 10

Dosirak Korean 12 6

with respect to the normalized distance given by the specified distance measure (e.g., Euclidean, 

Manhattan, and Hamming) and attributes. |DIV | = 0 results in the traditional top-k query, while 

more diversity thresholds with higher values increase the diversity of the result set.

Example 2. With the above diversity parameter, the previous sample query in Example 1 could 

be expanded accordingly:

SELECT * FROM RESTAURANT

WHERE Score ≥ 6 AND (Cost ≤ 20)

ORDER BY Cost DESC

DIVERSE BY div = 0.2 ON ‘Food Type’ (Hamming)

AND div = 0.3 ON ‘Score’ (Euclidean) LIMIT 5;

where Food Type and Score are the attributes on which the diversity is calculated, and Hamming 

and Euclidean are the corresponding distance measures. The idea here is to generate a set of 

results that follow the diversity constraints DIV specified within the query 1. The result of the 

above query is illustrated in Table 6. Although the above example produces some compelling 

results with its information representative subset, it could be difficult to see how the coverage is 

contributing differently to the results than the dissimilarity. To illustrate the importance of the 

coverage, let us consider a simple example:
1Note that our PrefDiv algorithms take the set of diversity constraints DIV as one of their inputs, and it is up to the 

design of the actual system that integrates the PrefDiv to determine how DIV will be integrated with its user query.
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Figure 59: Single Vertex v1 With 100% Cov-

erage.

Figure 60: A Set of Vertices {v4, v5} With

60% Coverage.

Example 3. Consider the nodes in Figures 59 and 60. In these two figures, each node represents

an item in the dataset, and an edge exists between a pair of nodes iff the similarity between these

two nodes is close enough according to some pre-defined threshold. On the one hand, in Figure

60, a set of dissimilar items {v5, v4} is selected. However, only {v1, v5, v4} are considered to be

covered by {v5, v4}, as {v2, v3} are not connected with either v5 or v4. On the other hand, in Figure

59, a single vertex v1 is connected to all four vertices, hence achieving 100% coverage. In this

case, one can see that vertex v1 better represents the entire graph when compared with {v5, v4},

thus indicating coverage is another valuable aspect to the quality of the representative results.

The above two examples (i.e., Example 2 and 3) illustrate the key advantages and desired fea-

tures of an effective approach that provides a meaningful and representative subset of the original

query results. First, the representative subset is relevant to the intention of the query and contains

items that would be ranked highly in the original results. Second, the chosen representative items

are diverse, each contributing additional novelty to the answer. Third, the representative items are

selected in a way that most items in the original answers are reachable with a small distance (i.e.,

change) from one of the representative answers. Clearly, simply applying ranking, diversification,

or clustering on the original result sets could not achieve the above properties. Thus, techniques

that consider multiple aspects of the representative results are needed to address this challenge.
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Unfortunately, as we will discuss in more detail in Section 6.3.2.3, finding the optimal solution

that maximizes both the “relevance” and “diversity” is an NP-Hard problem by itself, let alone

with the addition of the other aspect “coverage” that should also be considered when producing

the representative results.

6.3 Problem Formulation

In our work, we assume that the database DB is composed of N items over a D-dimensional

space (d1, d2, ..., dD), where each dimension d ∈ D can be either numerical or categorical at-

tributes. Note that the above assumption enables us to handle any data type (e.g., structured,

semi-structured, unstructured) as long as they are vectorized. The user specifies a query Q that

aims to retrieve a set of k representative items from DB over a subset of dimensions S, such that

S ≤ D. The goal here is to produce a set of k items that maximizes the relevance while ensuring

the diversity (i.e., ensuring each item is diverse with respect to one another). Below, we will first

provide the necessary background and basic concepts of our problem and then present our prob-

lem definition and analyze its complexity. The list of symbols used in the following sections of the

chapter is shown in Table 7.

6.3.1 Background

6.3.1.1 Relevance The relevance of R represents the degree of the relevancy of each data item

x ∈ R and is typically represented with a utility function U(x) that measures the “goodness” of

each data item with respect to certain metrics.

Definition 3. Relevance – Given a database DB and a utility function U(x), the relevance is

measured as the outcome of U(x), which is an intensity value Ix ∈ (0, 1) ⊂ R for item x ∈ DB

that is used to express the degree of benefit from retrieving x.
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Table 7: List of Notations Used in Chapter 6

Symbol Explanation

RQ a set of initial query results

R a set of representative results

k the number of item in the result-set

L the number of iterations to obtain R with PrefDiv

Ψ a set of diversity constraints

ψ the diversity constraint

div a diversity threshold

divopt an optimal diversity threshold

∆ a set of dimensions

A a relevance parameter

υ a self-adjustable relevance parameter

Ix the intensity value of item x

U(x) a utility function that produces the Ix

simΨ(xi, xj) xi and xj are similar w.r.t Ψ

dissimΨ(xi, xj) xi and xj are dissimilar w.r.t Ψ

A higher intensity value indicates that a data item is more desired than those items with a lower

intensity value.

The intensity value (i.e., relevance score) enables database systems to produce a total order of

each data item in a given data set and thus allow the extraction of top-k data items. This is simply

achieved by retrieving k data items with the highest intensity value.

6.3.1.2 Diversity In our work, the diversity of a set of data items R is achieved by enforcing

each pair of data items in R to be dissimilar with respect to each other, such that two data items xi,
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Figure 61: Illustration of Similarity and Dissimilarity.

and xj are said to be dissimilar if for a given set of user-specified diversity constraints Ψ, xi and xj

satisfy all constraints ψ ∈ Ψ. Formally, we can define a diversity constraint as follows:

Definition 4. Diversity Constraint – For a given pair of items xi and xj , a set of attributes ∆, a

distance threshold div, and a distance function dist(xi, xj,∆) that measures the distance between

xi and xj with respect to the set of dimensions specified in ∆. A diversity constraint ψ is satisfied

iff dist(xi, xj,∆) > div.

Based on the above definition of diversity constraints, we now define dissimilarity as:

Definition 5. Dissimilarity – Let X be a set of data items. For a given set of diversity constraints

Ψ, two items xi and xj ∈ X are dissimilar to each other, denoted as dissimΨ(xi, xj), if they satisfy

each diversity constraint ψ in Ψ.

Consequently, the similarity can simply be defined as the opposite of the dissimilarity, such

that:

Definition 6. Similarity – Let X be a set of data items. For a given set of diversity constraints Ψ,
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two items xi and xj ∈ X are similar to each other, denoted as simΨ(xi, xj), if they fail to satisfy

at least one diversity constraint in Ψ.

Figure 61 illustrates the concept of similarity and dissimilarity with four 2-dimensional data

items x1, .., x4, and a single diversity constraint that requires the Euclidean distance between each

data object with respect to both dimensions (i.e., ∆ = d1, d2) to be at least div apart. Let us

take point x1 as an example. According to Definition 6, points {x2, x3} are similar to x1, since

dist(x2, x1,∆) ≤ div and dist(x3, x1,∆) ≤ div. In contrast, x4 is dissimilar with respect to x1,

as dist(x4, x1,∆) > div.

6.3.1.3 Coverage As pointed out in the previous literature [Drosou and Pitoura, 2015], the cov-

erage is another aspect that is important to the quality of the representative results. Since the size

of the representative results is very restricted compared to the original answers, having a set of

representative results with good coverage increases the chance for the user to get meaningful in-

formation from the selected representation items. Furthermore, coverage enables the system to

organize all the answers in a cluster-like fashion, where each original answer of query Q can still

be retrieved by “zoom-in” into one of the representative items. Such that the “zoom-in” operation

will reveal all answers that are “similar” to the selected representative item. The actual implemen-

tation of this “zoom-in” operation has been well discussed in [Drosou and Pitoura, 2015], thus it

is omitted from the discussion of this chapter.

Clearly, the coverage is defined completely based on the definition of the similarity and thus

related heavily to the diversity constraints when the number of representative results is fixed to

a certain number k. When k is fixed, a set of more relaxed diversity constraints (i.e., with a

higher diversity threshold) will help the representative set to include more original answers into

its coverage, and a set of stricter diversity constraints will certainly decrease the coverage of the

representative set. In particular, given the definition of similarity, if item xj satisfies simΨ(xi, xj),

xj is said to be covered by the item xi. Consequently, we can define the coverage of a set of items

as follows:
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Definition 7. Coverage – Given a set of original answers RQ and a representative result set R,

where R ⊆ RQ, the coverage of R corresponds to the percentage of items in RQ that satisfies

simΨ(xi, xj), such that xi ∈ R and xj ∈ RQ.

6.3.2 Diversified Top-k (DT-k) Problem

Based on the above discussions and definitions, we name our problem the Diversified Top-k

(DT-k) problem.

6.3.2.1 Problem Formulation Consider a database DB that consists of N data items dis-

tributed over a multi-dimensional space with mixed numeric and categorical dimensions. Given

a query Q and its corresponding initial results set RQ over DB, the desired result cardinality of

k, a utility function U(x), and a set of diversity constraints Ψ, the solution of DT-k produces a

k-sized representative subset R from the original results RQ, whose relevance, according to U(x)

is maximum, while satisfying the set of diversity constraints Ψ.

We name the above k-sized subset of representative results as the Diversified Top-k (DT-k) set.

6.3.2.2 Problem Complexity Finding the optimal DT-k Set for the Diversified Top-k problem

is computationally hard, which can be shown by mapping it to the well-known Maximum-weight

Independent Set problem [Ind, 2021]. We can achieve the mapping by forming a graph of G that

corresponds to the original results RQ. Each data item xi in RQ maps to a vertex vi in G. An

edge e is added between two vertices vi and vj if the distance between these two vertices is close

enough such that not all diversity constraints are satisfied, and the intensity value Ixi of an item

xi represents the weights of the corresponding vertex in G. Some tractable solutions have been

proposed in the literature [Keil et al., 2015, Grohe, 1999], but these solutions require either a very

specific type of graph (e.g., Outerstring graphs) or have strict restrictions (e.g., sparsity, outcome

degree of each vertex). Thus, they are not practical in our environment.
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6.3.2.3 Secondary Objective As discussed above, coverage is another important aspect of re-

sult diversification, which is dependent completely on the diversity threshold specified inside each

diversity constraint. Given that diversity constraints are typically defined by the user, this may

lead to sub-optimal results if the user fails to define reasonable constraints. Consequently, our

secondary objective is to address this challenge by automatically adapting the diversity constraints

based on the type of query being performed and the initial result set. Later, in Section 6.4.4, we

will present a general optimization that helps determine the most suitable diversity constraints for

different user queries.

6.4 PrefDiv Algorithms

In this section, we introduce our solution to the Diversified Top-k problem. First, we start with

the discussion of a naive approach to the problem and then propose our solution to this problem,

namely, Preferential Diversity (PrefDiv) algorithm. Finally, we discuss some optimizations that

improve the effectiveness of our proposed PrefDiv algorithm and reduce its number of tunable

parameters.

6.4.1 Naive Solution

Before we discuss our solutions, one naive solution to the Diversified Top-k problem work as

follows: given a new user query Q, a k, a set of initial results RQ = {x1, ..., xt}, a utility function

U(x) and a set of diversity constraints Ψ, for each item in RQ of q, we first compute and sort each

item in RQ according to the intensity value computed by the U(x). We pick the item xi ∈ RQ with

the highest intensity value; for each remaining items xj in RQ, we mark them as “Eliminated” if

they are similar to the xi (i.e., simΨ(xi, xj)). We then add xi into the final result set R and remove

xi from RQ. Afterward, a new unmarked item with the highest intensity value will be picked from

RQ, and the previous steps will be repeated until either |R| = k or all remaining items in |RQ| are

marked as “Eliminated”.
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This naive solution is a greedy approach that will eventually produce a set of items that satisfy

all diversity constraints with relatively high-intensity values. Clearly, the naive solution is compu-

tationally expensive, especially when the size of RQ is large. Furthermore, it does not guarantee

the resulting set to contain at least k items. However, we use this naive solution as a foundation and

propose an efficient online solution that achieves better performance with much less computational

cost.

6.4.2 Preferential Diversity

Our Preferential Diversity algorithm is an online solution for the DT-k problem. As discussed

in the previous section, finding the optimal solution to the DT-k problem is computationally ex-

pensive. Thus we chose a greedy approach in the PrefDiv design. To maximize the efficiency of

PrefDiv, we need to develop it as an online algorithm that accesses database tuples (i.e., items)

incrementally. The main idea underlying PrefDiv is minimizing as much as possible the number

of data items being examined.

PrefDiv builds the DT-k set R by starting with a set of k highest ranked data item (with respect

to the relevance score/intensity value), and then gradually replacing items that fail the diversity

constraints with slightly less relevant but diverse items outside of R that satisfy the diversity con-

straints. This process continues until all items in R satisfy the specified diversity constraints.

One potential issue is that relevant items in the DT-k set tend to be similar to each other. Thus

strictly enforcing diversity constraints may eliminate too many items that are highly beneficial to

the user. To address this issue, we propose a relevance parameter A that allows PrefDiv to produce

representative results with partial diversity. When A = 1, R would simply be the top k items

from the initial set, i.e., the items with the k highest intensity values. When A = 0, R contains

k dissimilar items from the initial set. When A is between 0 and 1 and given that PrefDiv is an

iterative algorithm, considering k objectives each iteration, the final result will have at least A ∗ k

items from every iteration, and in each iteration A will be divided by half. For example, when

A = 0.5 and k = 20, the first iteration will select at least 20 ∗ 0.5 items for the final result set, the
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Algorithm 5 PrefDiv
Require:

Initial result set RQ, target result cardinality k, relevance parameter A, a set of diversity con-

straints Ψ

Ensure:

One subset R of RQ

1: T ← ∅

2: while exists unexamined items in RQ and |R| < k do

3: T ← Pick k items with highest intensity from RQ

4: for all xi ∈ T do

5: if DissimΨ(xi, xj) : ∀xj ∈ R then

6: R← R ∪ xi

7: else

8: Mark xi as “redundant”

9: end if

10: end for

11: while number of promoted items in R from T ¡ A ∗ k do

12: R← R ∪ xmax, s.t., xmax is marked & ∀xj ∈ T, Ixmax ≥ Ixj

13: T ← T − xmax

14: end while

15: A← A/2

16: RQ = RQ − T

17: end while

18: Return R

second iteration will select at least 20 ∗ (0.5 ∗ 0.5) items, and so on. Consequently, the user is able

to control the trade-off between relevance vs. diversity by enabling partial diversity on demand.
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As illustrated in Algorithm 5, the basic logic of PrefDiv is as follows: PrefDiv takes as input

a set of initial results RQ sorted according to the descending of their intensity value, the desired

result cardinality of k, partial diversity parameter A, and a set of diversity constraints Ψ. It outputs

a DT-k set that represents the original answers RQ. In each iteration, PrefDiv fetches and removes

k items with the highest intensity value fromRQ and places them in a temporary set T . Each of the

items in T is then compared with items currently in R, such that any item in T that fails to satisfy

all diversity constraints with respect to all items in R will be marked as “Redundant”; else, it will

be added into R immediately. This process will continue until all items in T are either moved into

R or marked as “Redundant”. Once all k items fetched in the current iteration have been examined,

PrefDiv will check if a sufficient number of items were moved intoR according to parameter A. In

case the number is not sufficient, the difference will be covered by the highest-ranked items (with

respect to intensity value) that are marked as “Redundant” in the current iteration. Afterward, the

above iteration will be repeated until k representative items are produced (|R| = k).

Time Complexity According to the above discussion, we can observe that the worst-case

complexity of PrefDiv is O(kN), since each of the N unlabeled items will be compared at most

k−1 times with the items that are currently in the result set before being included or discarded from

the final result. Fortunately, as the size of k is usually a small number, PrefDiv should typically

behave as a linear algorithm. Furthermore, as we will show in our empirical studies (Section 6.5),

depending on the diversity constraints, PrefDiv typically does not need to examine all original

items in RQ. That is, a very small set of the item would be sufficient enough to produce R if Ψ are

appropriately defined.

6.4.3 Relevance Proportionality

From the above discussions, it should be clear that having a good balance between relevance

and diversity is important to the quality of the representative result set. In PrefDiv, we have intro-

duced the relevance parameter A to enable the partial diversity, which helps preserve the relevance

of the representative results. Our empirical study shows that such a parameter does help improve
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Algorithm 6 PrefDiv-PR
Require:

Initial result set RQ, target result cardinality k, a set of diversity constraints Ψ

Ensure:

One subset R of RQ

1: L ← 0

2: T ← ∅

3: while exists unexamined items in RQ and |R| < k do

4: T ← Pick k items with highest intensity from RQ

5: for all xj ∈ T do

6: if DissimΨ(xj, xt) : ∀xt ∈ R then

7: R← R ∪ xj

8: end if

9: end for

10: RQ = RQ − T

11: BL ← T −R

12: Increase L by one

13: end while

14: for ` = 1→ L do

15: υ` ← Compute υ` according to Equation 6.1

16: while the number of items in R from B` ¡ υ` ∗ |R| do

17: R← R− xj , s.t. xj ∈ R, Ixj < Ixk : ∀xk ∈ R

18: R← R ∪ xi, s.t. xi ∈ B`, Ixi ≥ Ixt : ∀xt ∈ B`

19: B` ← B` − xi

20: end while

21: end for

22: Return R
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the quality of the result set R. However, it is up to the user to define A for any query, and this

may increase user efforts when using our algorithm. This motivated us to introduce a new self-

adjusted parameter υ to replace the manual relevance parameter A, which led to a new variation

of PrefDiv called Preferneral Diversity with Proportional Relevance (PrefDiv-PR). As illustrated

in Algorithm 6, the idea here is to automatically compute the right amount of items that should be

promoted into the final result set based on the proportion of the relevance of each iteration.

In particular, υ adapts to the aggregated intensity value of all items in each iteration and can

be computed as follows: Assume a given set of original results RQ, a DT-k subset R ⊆ RQ and

a number of iterations L needed for PrefDiv to obtain the result set R. For each iteration `., s.t.

` < L, a set of items with the highest intensity value from the remaining items of RQ are reserved

into a separated set B`, s.t. B` ⊆ RQ and |B`| = k. The υ` of an iteration ` is calculated through

the following equation:

υ` =

∑
x∈B`

Ix∑L
j=1

∑
xc∈Bj

Ixc
(6.1)

Recall from Section 6.3.1.1, Ix is the intensity value of data item x. The idea here is that at least υ`

proportion (i.e., percent) of the item in the final representative result set should be extracted from

iteration `, as early iterations would always have a higher aggregated intensity value, and thus,

would occupy a bigger portion of the final representative set R. Our empirical results show that

by employing υ to compensate for the loss of relevance, we can prevent too many relevant results

from being dropped.

To actually generate the final representative results according to υ`, PrefDiv-PR needs to first

run PrefDiv to obtain the initial representative set R, as well as records the number of iterations

L taken to obtained R. During each iteration of PrefDiv, the items that are initially extracted

from RQ (before applying the diversity constraints) will also be recorded into a separate set B`.

Afterward, PrefDiv-PR will examine the set of items in R that are extracted from each B` with the

corresponding υ` to determine if additional items need to be extracted from B` and added into R.

Note that if such extraction is necessary, depending on the number of items needed to be extracted,

the set of items with the highest intensity value in B` that have not been included in R will be
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chosen from B` and placed in R. Finally, once all υ are satisfied for each iteration, the set of k

items with the highest intensity value in R will be retrieved as the final results.

6.4.4 Optimize Diversity Constraints for Coverage

As discussed previously in Section 6.3.1.3, coverage is yet another important property of the

representative set. It gives us two major benefits. First, it helps to ensure that the underlying data

space (i.e., the original set) has been well represented by the selected representative items. Second,

it enables the possibility for the user to retrieve items that are not in the representative result set

by performing “zoom-in” operations—each representative item can be seen as the leader of a set

of similar items, and by “zooming-in” to one of the leaders, similar items around the leader can be

revealed.

Since the definition of coverage depends on the similarity between data objects, it is defined by

the set of diversity constraints. In order to boost coverage, a set of appropriate diversity constraints

must be defined. Below, we will discuss a general approach to determine such diversity constraints

through an example.

Example 4. Consider a set of initial resultsRQ that contains 100 items, each with two dimensions,

k = 30, a single diversity constraint ψ that considers both dimensions, and the Euclidean distance

as the diversity measure. Furthermore, assume that no partial diversity is allowed, meaning the

final representative set produced must be a strict DT-k set. Obviously, whether it is possible to

produce a DT-k set with 30 items is dependent on the definition of diversity constraints, such that

if the diversity constraint consists of a diversity threshold that is beyond the maximum pair-wise

distance between any pair of items in the original result set, then only a single item can be included

inR, as the rest of the data items would be discarded due to the violation of the diversity constraint.

Clearly, returning a result set with a single item when k = 30 is not ideal, and thus, the diversity

threshold should be adjusted lower. In contrast, a minimum possible diversity threshold (i.e., 0)

would lead to an arbitrary set of k items, which gives no guarantee of either diversity or coverage.

Clearly, from the example, an optimal diversity constraint should include a diversity threshold
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Figure 62: Illustration of the Optimal Radius, When k = 2.

that exhibits the following properties: (1) be as large as possible to improve the coverage; and (2)

be small enough to allow a strictly diverse representative set (i.e., DT-k set) with k mutually dis-

similar items being formed. With the these observations, we define the optimal diversity constraint

as:

Definition 8. Optimal Diversity Constraint. For a given set of item R, an integer number k, and

a distance function dist(x1, x2), an optimal diversity constraint must contain the largest possible

distance threshold, denoted as divopt, that exists between a pair of items in R that can be used

to generate a DT-k subset RQ from R, such that |RQ| >= k and no two item in RQ are similar

according to dist(x1, x2) and divopt.

As illustrated in Figure 62, assume we have a set of points P = {x1, ..., x4}, such that each

point consists of a 2-D coordinate and a diversity constraint ψ that consist of both dimensions and

uses Euclidean distance. In such case, if k = 2, then div = 3 will be the divopt (i.e., optimal

diversity threshold) for ψ. If any value less than 3 is chosen to be the divopt, then at least three

points will remain after removing all similar points because only p2 and p3 are considered to be
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Algorithm 7 SearchOptimalDiversityThreshold
Require:

A set of items RQ, a size k, a set of attribute ∆, and a distance function dist(x1, x2,∆)

Ensure:

A diversity threshold divopt

1: S ← an initial item x ∈ RQ

2: divopt ← ∅

3: while |S| ¡ k do

4: x∗ ← argmaxx∈(RQ−S)(min(dist(x, xj,∆) : ∀xj ∈ S))

5: S ← S ∪ x∗

6: end while

7: Θ← minimum distance between any pair of items in S

8: xR ← argmaxx∈(RQ−S)(min(dist(x, xj,∆) : ∀xj ∈ S, s.t.dist(x, xj,∆) < Θ))

9: divopt ← min(dist(xR, xj,∆) : ∀xj ∈ RQ)

10: Return divopt

similar with respect to a diversity threshold of 2. If any value larger than 3 is chosen to be the

divopt, then only one point will remain in P after removing all similar points. Thus, 3 is the only

option for divopt, as no other distance threshold would be able to produce a result with three items.

Unfortunately, finding the optimal diversity threshold for a given distance measure and a set of

attributes is NP-hard.

According to Definition 5, two items xi, xj are dissimilar iff they fail to satisfy a diversity

constant Ψ with a diversity threshold div and distance function dist(x1, x2). Since an item, xi

can be included in a DT-k subset R if and only if xi satisfies all diversity constraints with respect

to other items in R, the maximum distance d between any pair of items in R increases along

with the diversity thresholds inside each diversity constraints. Based on the Definition 8 of the

optimal diversity constraint, the problem of finding the optimal diversity thresholds (i.e., divopt)
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for a given diversity constraint can be mapped to the MaxMin Diversity Problem, which aims to

select a representative subset R ⊆ RQ, such that |R| = k, and the minimum distance between any

pair of items in R is maximized. As the MaxMin Diversity problem has been previously proven to

be an NP-hard problem [Carbonell and Goldstein, 1990], finding the optimal diversity threshold is

also an NP-hard problem.

Inspired by the MaxMin Diversity problem, we adopt a greedy heuristic (Algorithm 7), which

automatically computes an approximation of the optimal diversity thresholds for a given set of

diversity constraints. As illustrated in Algorithm 7, we first find a subset S ⊆ RQ that maximize

the minimum distance between items in R (Lines 5 - 7). Then, we generate the optimal diversity

threshold by comparing the pair-wise distance of all items that are in RQ but not in S (Lines 8

- 11). The optimal diversity threshold is defined as the largest distance between a pair of items

in RQ that is smaller than the minimum distance between any pair of items in R. As proven

in [Ravi et al., 1991], the result produced by this greedy heuristic has a
1

2
approximation of the

optimal solution and a quadratic complexity, and no other polynomial algorithm can provide a

better guarantee.

6.5 Experimental Evaluation

To study the effectiveness of our PrefDiv and PrefDiv-PR algorithms, we compare them

to the two most effective diversified top-k algorithms, namely Swap [Yu et al., 2009] and

MMR [Carbonell and Goldstein, 1998], as suggested in [Thang et al., 2015]. We also compare

them to four diversity-focused algorithms, MaxSum, MaxMin, K-Medoids, and DisC Diversity,

to assess how well diversity has been preserved when relevance is taken into account. All the

algorithms in our evaluation are discussed in Section 2.6.

105



6.5.1 Experimental Testbed

Environment We implemented all of the algorithms with JDK 8.0 on an Intel machine with

Core i7 2.5Ghz CPUs, 16GB RAM, and 512GB SSD.

Algorithms We implemented MMR and Swap based on their published descrip-

tions [Carbonell and Goldstein, 1998] and [Yu et al., 2009], respectively. The MaxMin and Max-

Sum algorithms used in our experiments are based on Definitions 1 and 2 (in Section 2.6), respec-

tively, and DisC Diversity is taken directly from the original author [Drosou and Pitoura, 2012b].

However, DisC Diversity is not a top-k bounded algorithm, and the size of the result set that DisC

Diversity produces is heavily dependent on the radius. To allow for a comparison, we modified the

DisC Diversity to stop when the size of the result set equals k. We also included one well-known

clustering algorithm, K-Medoids [Park and Jun, 2009], which aims to group a set of data objects

into clusters through some distance measure, so objects within a cluster are close to each other,

and objects outside of the cluster are unrelated to the objects inside the cluster.

In our experiment, we implemented K-Medoids based on [Park and Jun, 2009]. Since K-

Medoids does not capture the relevance in any regard, we improved the performance of K-Medoids

in balancing the relevance vs. diversity trade-off by choosing the object with the highest intensity

value as the final recommendation from each of its k clusters. This improvement significantly en-

hances the performance of the K-Medoids with respect to relevance while exhibiting the minimum

decrease in diversity.

Parameters Most of the diversification techniques involved in our experiments require some

parameters since finding the best parameters for each technique that are optimum under all situ-

ations would be too difficult. For the purpose of comparison, in all of our experiments, there is

only one diversity constraint ψ for any given set of experiments, which is used by all algorithms

that require a diversity constraint during its execution. We fixed the diversity threshold div used

in ψ for each set of the experiments, which is computed with the optimal radius by Algorithm 7.

All other parameters except ψ and r are fixed for all runs and adjusted according to the suggestion

of the original authors, or based on the best overall performance. For MMR, we set λ = 0.3, for
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Swap, we set the UB = 0.1, and for PrefDiv, we set A = 0.6.

Datasets We ran our tests on two real-world datasets: Cameras [Drosou and Pitoura, 2012b],

and Foursquare. We selected these datasets in order to experiment with two different distance

functions, Hamming with Cameras and Euclidean with Foursquare. The Cameras dataset con-

sists of 579 records and seven attributes per record. The Foursquare dataset is collected from

the major location-based social network, Foursquare. We obtained real-life user preferences,

used Foursquare’s public venue API, and queried information for 14,011,045 venues. In order

to build realistic user profiles for our evaluations, we used a dataset collected by Cheng et al.

[Cheng et al., 2011] that includes geo-tagged user-generated content from a variety of social media

between September 2010 and January 2011. This dataset includes 11,726,632 check-ins generated

by 188,450 users. Accordingly, each reading in our Foursquare dataset has the following tuple

format: ¡ID, latitude, longitude, # check-ins, # unique users¿. In our experiments, we consider

only data items (i.e., venues) from New York City (NYC), which consists of 10912 items, and San

Francisco (SF), which consists of 7859 items. In our experiments, we will be using NYC and SF

to denote Foursquare’s NYC data and Foursquare’s SF data, respectively.

User Preferences The intensity values (I) for each individual dataset is generated as follows:

For the Cameras dataset, we generated 100 different sets of user preferences, such that in each

profile, the preference intensity value for each individual camera is generated based on a uniform

distribution, and each individual user preference is represented as one unique query.

For the Foursquare dataset, we obtained the real-life user preferences based on the hierarchy of

the Foursquare dataset, such that every individual venue v in the dataset is associated with a type Tv.

For example, an Italian restaurant belongs to the category “Italian restaurant”, which can belong to

the higher level category “Restaurants”, which can itself belong to the category “Food”, and so on.

In order to build highly personalized and specific profiles, we use the bottom layer of the hierarchy,

as well as the specific venues visited. In particular, given the set of check-ins Cu of user u, we build

a hierarchical profile P where at the top level, the preferences of the user are expressed in terms

of the (normalized) frequencies of this user’s visitations with respect to the types of venues. The
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second layer of the user profiles further provides the normalized frequencies of venues for the

different types of locations visited by u. Since our user profile is sparsely gathered during a short

period of time, to resemble a real-world user profile, we merged the 1000 sparse Foursquare user

profiles to create one superuser profile. We performed our experiments by randomly selecting 50

query points from each city (100 query points in total). For each query point, we considered all

venues located within a 1.5 kilometer radius of the query location.

6.5.2 Evaluation Metrics

In our experimental evaluation, we evaluate the performance of all models based on three

well-known and commonly used metrics: Normalized Relevance [Tong et al., 2011], Cover-

age [Drosou and Pitoura, 2012b] (Definition 7), and Execution Time. Note, there are two other

commonly used metrics for evaluating ranking algorithms, such as DCG and Spearman rho. How-

ever, both metrics focus on measuring the correctness of the order of the results produced by the

ranking algorithm. Thus, they are not the ideal evaluation metrics for evaluating the effectiveness

of result diversification algorithms. As stated in previous sections, our proposed PrefDiv algo-

rithms are post-processing steps of initial query results, which do not impact the relative order

of the original result set. In other words, the produced representative result set of PrefDiv algo-

rithms essentially follows the original order of the initial results. Thus, metrics that focus on the

correctness of the ranking order do not fit the context of this evaluation.

Definition 9. Normalized Relevance. Let S be a set of items and S∗k ⊆ S such that |S∗k | = k. The

Normalized Relevance of a subset S∗k is defined as the sum of the intensity value of items in S∗k over

the sum of k items with highest intensity value in S.

nRev(S∗k) =

∑
x∈S∗

k
Ix

maxSk⊆S,|Sk|=k
∑

x∈Sk
Ix

(6.2)

In order to calculate the coverage for the Foursquare dataset, given that it is difficult to find a

fixed radius that would work with any query location, we calculate the coverage with respect to
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the optimal radius generated by Algorithms 7 for every output size k. In the case of a Camera

dataset, where the hamming distance is employed, the coverage is calculated with a fixed diversity

threshold/radius div = 3 (which is the mid-point of the maximum distance allowed). For a fair

comparison, all algorithms are evaluated with respect to the same diversity threshold/radius. Note

that Normalized Relevance and Normalized Intensity Value would be used interchangeably in the

following sections.

6.5.3 Experimental Results

6.5.3.1 Normalized Relevance As demonstrated in Figures 63, 64, and 69, we can see a clear

separation between two groups of algorithms for all datasets, where PrefDiv, PrefDiv-PR, Swap,

MMR, and K-Medoids tend to group together, and MaxMin, MaxSum, and DisC Diversity form

another group. The reason for this is that the second group does not take relevance into account;

hence, it would be unlikely for them to retrieve a representative subset that has a high total intensity

value. In contrast, the first group of algorithms takes relevance into account, and, as such, it

achieves a significantly higher performance in terms of retrieving relevant items.

6.5.3.2 Coverage Figures 65, 66, and 71 show that our PrefDiv and PrefDiv-PR exhibit better

coverage on average when compared with MMR and Swap by 20% and 42%, respectively. The

reason could be because both MMR and Swap optimize dissimilarity as their definition of diversity.

In contrast, both PrefDiv and PrefDiv-PR are coverage-aware algorithms, which seek an optimal

radius that directly improves the coverage of the representative result set. Therefore, both PrefDiv

and PrefDiv-PR can perform much better than Swap and MMR. We also observed that on average

PrefDiv is able to outperform MaxSum in terms of coverage by 160%, which could be explained

because MaxSum as pure dissimilarity-based algorithm fails to cover the entire space of the dataset.

K-Medoids demonstrates good coverages for both datasets. However, both PrefDiv and PrefDiv-

PR still exhibit slightly better coverage in general.

The MaxMin algorithm performs well in terms of the Foursquare dataset, although the per-
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Figure 63: Normalized Intensive Value of
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Figure 64: Normalized Intensive Value of
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Figure 65: Coverage of Cameras.
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Figure 66: Coverage of NYC

formance dropped significantly for the cameras dataset. The reason could be because, in the

Foursquare dataset, the average number of venues around each query point is about 90 venues.

In contrast, the Cameras dataset consists of 579 tuples. This shows that MaxMin is able to ob-

tain good coverage with a relatively small dataset and Euclidean distance that takes a wide range

of values as distance, but fails to cover the space with large datasets and hamming distance that
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Figure 67: Execution Time of Cameras
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Figure 68: Execution Time of NYC
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Figure 69: Normalized Intensive Value of
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Figure 70: Result Set Coverage, With the

Optimal Radius and K = 30.

only takes the number of attributes + 1 distinct values as distance. In both datasets, DisC Diver-

sity demonstrated the highest coverage, which is to be expected since DisC Diversity is the only

algorithm in the experiment that directly optimizes coverage as the only objective.

Another interesting observation is that, in the Foursquare dataset, except PrefDiv, PrefDiv-
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Figure 72: Result Set Normalized Relevance,

With the Optimal Radius and K = 30.
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Figure 73: Execution Time of Foursquare’s
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Figure 74: Result Set Execution Time, With

the Optimal Radius and K = 30.

PR, and DisC Diversity, other algorithms appear to have a drop in coverage when the value of k

increases, although, in general, with the increase in result size, the coverage should increase as

well. The reason for such behavior is that in the Foursquare dataset, we employed the optimal

radius as the criterion for determining the similarity between items. Therefore, with the increase
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in result size, the optimal radius becomes smaller, thus leading to a decrease of coverage for some

algorithms.

6.5.3.3 Execution Time We have measured the execution time required by all algorithms. As

shown in Figures 67, 68, and 73, our PrefDiv and PrefDiv-PR appears to be the overall fastest

algorithm when compared to all other alternatives. In general, PrefDiv and PrefDiv-PR perform

near identically in terms of runtime, which is expected as the additional computation overhead

introduced in PrefDiv-PR is negligible. To illustrate the efficiency of our proposed greedy heuristic

for searching the optimal diversity threshold, we have included its runtime in the PrefDiv-PR, so

the runtime difference between PrefDiv and PrefDiv-PR reflects the runtime of the search optimal

diversity threshold algorithm. With that in mind, PrefDiv-PR is still on average faster than both

MMR and Swap by up to 72% and 116%, respectively. Specifically, in the Camera dataset, PrefDiv

is able to execute 57 times faster than K-Medoid, 127 times faster than MMR, and 159 times faster

than Swap. In the Foursquare dataset, most algorithms tend to be faster when compared with

Cameras, because the number of venues near each query point in Foursquare is much smaller than

in the Cameras dataset. However, we still observed that, on average, PrefDiv is able to outperform

MMR and Swap by 30 and 36 times, respectively. When compared to K-Medoid, which is also

very efficient when dealing with this type of dataset, PrefDiv still appears to be 2.7 times faster

than K-Medoid on average. As mentioned previously, if the optimal radius for most frequent

queries is stored, PrefDiv-PR would not need to calculate the optimal radius for these queries

again. Furthermore, for the fairness of the comparison, all of the algorithms run in a single-threaded

mode. Since the optimal radius computation method that we adopted is fully parallelizable, it can

take advantage of the modern multi-threaded CPU architecture to speed up the computations. In

fact, we have observed linear speed up with respect to the number of CPU cores in the system up to

16 cores (the highest we have experimented). One interesting remark here is that, in the Foursquare

dataset, the execution time of DisC Diversity drops when k increases from 10 to 20. The reason

is that the runtime of DisC Diversity is also affected by the length of the radius, therefore, with
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smaller output sizes, the optimal radius will become larger, which leads to the relativity longer

execution time of DisC.

6.5.3.4 Parameter A of PrefDiv As illustrated in Figures 65 to 69, a performance difference

between PrefDiv and PrefDiv-PR exists due to the existence of the accuracy parameter A in the

PrefDiv algorithm. In this section, we conducted an experiment to study the effect of parameter

A in PrefDiv with the Camera dataset and k = 30. As shown in Figures 70, 72, and 74, when A

increases from 0 to 1, we observed an improvement of normalized relevance, albeit with a decrease

in coverage. This is as expected since, with higher values of A, PrefDiv will select more relevant

items, and with lower values of A, more diverse items will be selected that lead to an increase in

coverage. However, this would be at the expense of lower relevance. The execution time appears

to be stable regardless of the value of A. This is because, for each iteration, PrefDiv only requires

a tiny amount of execution time. Therefore, the additional iterations introduced by the low value

of A would not have a large impact on the overall runtime.

6.5.3.5 Relevancy vs. Diversity Lastly, as a summary, we present three scatterplots that cap-

ture the trade-off between relevance and diversity. Each point in Figures 75 and 76 are corre-

sponding to the average of over 50 different query locations with one value of k, and each point in

Figures 77 are corresponding to the average of over 100 different user profiles with one value of

k. As shown in the figures, we have Normalized Intensity Value as the y-axis and Coverage as the

x-axis. Algorithms located in the upper left corner of the figure exhibit the best coverage result,

while those in the lower right corner have the highest relevance scores. As we can observe, both

PrefDiv and PrefDiv-PR are located towards the upper right corner (circled) for all three scatter

plots, which indicates that both PrefDiv and PrefDiv-PR exhibit better ability to handle the trade-

off between relevance and diversity with respect to both datasets and distance measures. One may

notice that in the Camera dataset, the advantage of PrefDiv and PrefDiv-PR with respect to other

alternatives is relatively smaller compared to that in the Foursquare dataset. This is because the
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Figure 75: Relevance VS. Diversity (NYC).

Cameras dataset uses the Hamming distance as the distance measure, which has a much smaller

domain than the Euclidean distance used in the Foursquare dataset, thus weakening the benefit of

the optimal diversity threshold. These results also indicate that the relational proportionality intro-

duced in PrefDiv-PR does effectively improve the quality of the result, since PrefDiv-PR is able to

outperform (although slightly) the PrefDiv with manually configured relevance parameter A.

6.5.3.6 Additional Observations Despite the fact that both PrefDiv and PrefDiv-PR run up

to 159 times faster than other alternatives, the greedy heuristic (Algorithm 7) that we proposed

for finding the optimal diversity threshold/radius runs at a quadratic time complexity, and thus,

it is much slower. Although it is not required to run this heuristic before each execution of the

PrefDiv/PrefDiv-PR, it certainly helps improve its performance. However, this is not an issue with

our PrefDiv/PrefDiv-PR algorithm because other algorithms (e.g., DisC Diversity) also benefit
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Figure 76: Relevance VS. Diversity (SF).

Figure 77: Relevance VS. Diversity (Cameras).
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from the optimal diversity threshold as much as PrefDiv/PrefDiv-PR.

Fortunately, this greedy heuristic only needs to run once for each query, and thus, it can simply

be cached to boost the runtime of frequent queries significantly.

6.6 Impacts of PrefDiv

The ability of PrefDiv to produce an informative and diversified representative subset of re-

sults significantly benefits the Example-driven Exploration as it helps to overcome the scalabil-

ity issue from a human point of view and thus, enables users to effectively interpret and con-

sume the exploration results. However, the efficiency of PrefDiv and its ability to balance the

trade-offs between relevance, diversity, and coverage can also benefit the design of other real-

world systems that need to produce highly informative representative subsets or require interac-

tive efficiency in producing the representative results (e.g., [Raghu et al., 2017, Ge et al., 2016a,

Ge et al., 2017b, Ge et al., 2017a, Raghu et al., 2019]). One example is a novel mobile recom-

mendation service that provides a set of diverse points-of-interest (POI’s) recommendations

[Ge et al., 2016a, Ge et al., 2017b, Ge et al., 2017a], where the interactive efficiency has been

weighted equally important as the quality of the produced recommendations. Other examples

are in the scientific domain, and dimensionality reduction, in which PrefDiv has been employ as a

novel way to select subsets of highly informative dimensions for high-dimensional gene expression

datasets [Raghu et al., 2017, Raghu et al., 2019]. Those selected dimensions will then be used to

enable effective downstream analysis in a variety of medical and bioinformatics research.

6.7 Summary

Scalability from a human point of view is a very challenging problem for Example-driven

Exploration as it consists of finding the perfect balance between the conflicting objectives of rele-
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vance and diversity. To produce a set of representative objects, traditional top-k result diversifica-

tion approaches focus on producing a subset of results that balance the trade-off between selecting

highly relevant items and items that are dissimilar with respect to each other. In order to achieve

the above-mentioned objectives, most algorithms rely on a number of tunable control parameters,

making them harder to configure (and be adopted). Coverage is another important factor of diver-

sity, which has been mostly ignored in previous top-k result diversification algorithms.

In this chapter, we addressed these problems and proposed an efficient online solution called

Preferential Diversity (PrefDiv). PrefDiv produces a set of high-quality representative items from a

large set of initial answers, where each representative item is chosen to optimize both the relevance

and diversity (i.e., dissimilarity, and coverage). We also proposed a number of optimizations that

further improve PrefDiv’s usability, efficiency, and effectiveness.

We theoretically analyzed and experimentally compared our algorithms to the state-of-the-

art, top-k diversification algorithms. Our evaluation showed that our algorithms achieve similar

performance in terms of normalized relevance but outperform the state-of-the-art algorithms in

terms of coverage by a noticeable margin while achieving a speedup of the runtime up to two

orders of magnitude.

118



7.0 Conclusions

7.1 Our Contributions

Exploration over large datasets is a key first step in data analysis, as users may be unfamiliar

with the underlying database schema and unable to construct precise queries that represent their

interests. Such data exploration task usually involves forming and executing numerous ad-hoc

queries, which requires a considerable amount of time and human effort. In this thesis, we focused

on a novel interactive data exploration approach, called Example-driven Exploration, which has

generated a lot of attention for its capabilities to identify effectively high-value content from the

data that are often hidden using the traditional search methods without the need to specify any

form of queries.

Our hypothesis has been that in order to efficiently and effectively guide users towards un-

earthing valuable insights from large datasets, data exploration must provide: interactive efficiency,

analysis-based effectiveness, and user-in-the-loop engagement. This led us to study and propose

solutions to enable effective, scalable, and generic Example-driven Exploration, where the ob-

jective is to minimize user effort in exploration and searching desired information from both big

structured and unstructured data. The main contributions of this thesis as illustrated in Figure 78

are summarized as follows:

• We proposed REQUEST, a novel framework that is designed to minimize the human effort and

enable both effective and efficient data exploration. REQUEST supports the Example-driven

Exploration style of data exploration by integrating two key components: 1) Data Reduction

and 2) Query Selection. As instances of the REQUEST framework, we developed several

highly scalable schemes, which employ active learning techniques and provide different levels

of efficiency and effectiveness as guided by the user’s preferences. Our results, on real-world

datasets from Sloan Digital Sky Survey, show that our schemes on average require 1-2 orders of
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Figure 78: Illustration of the Taxonomy of Data Exploration Techniques and Our Contributions.

Each Left Node Refers to One Example Data Exploration System. Our Contributions Are Marked

With Squares.

magnitude fewer feedback questions than the random baseline and 3-16× fewer questions than

the state-of-the-art while maintaining interactive response time. Moreover, our schemes are

able to construct, with high accuracy, queries that are often undetectable by current techniques.

• We devised a novel indexing mechanism, called Uncertainty Estimation Index (UEI), which

supports the interactivity and scalability of the active learning-based interactive data explo-

ration systems. UEI combines hierarchical in-memory indexing with columnar and inverted-

indexing based secondary storage mechanism. It achieves scalability and efficiency through a

dynamic estimation of the set of data that are most beneficial to the current exploration. By

intelligently manage the in-memory cache, UEI enables active learning-based interactive data

exploration systems to scale beyond the main memory restriction while maintains the desired

accuracy and convergency speed. We experimentally evaluated UEI using a state-of-the-art in-

teractive data exploration system with two schemes, one incorporating UEI and one utilizing a

standard DBMS. We measure the efficiency of the proposed solution using a large real-world

120



dataset placed on the secondary storage. Our experiments show that (1) UEI version outper-

forms the DBMS one by providing more than 50x runtime efficiency when the size of the

dataset exceeds the main memory capacity, and (2) is capable of achieving sub-second interac-

tive response time for data that is 100 times larger than the available memory while achieving

the desired exploration accuracy and effectiveness.

• We presented a novel data exploration framework, namely ExNav (Exploration Navigator),

which enables the user to effortlessly explore the world of unstructured data for insights that are

often unreachable from traditional search and exploration methods. In particular, we exploit

the space of advanced machine learning, data embedding, and active learning algorithms to

design effective exploration and space pruning approaches tailored for unstructured datasets.

Our experimental evaluation using multiple real-world unstructured datasets (i.e., text, image,

and graph) show that ExNav can reduce users’ effort by up to 9x while still achieving the same

accuracy as the state-of-the-art alternative. Moreover, ExNav is also able to identify relevant

data items that are often undetectable by current techniques, even when a large number of

samples are explored.

• We formulated an extended version of the result diversification problem, considering three

objectives—relevance, diversity, and coverage—and present a novel approach named PrefDiv

that produces better-diversified results. Our approach PrefDiv takes a large set of possible an-

swers generated from a user query and outputs a representative subset of results that are highly

ranked according to the preference of the user. The data items contained in the representative

set are diverse, such that each item is different from the rest and provides good coverage of

the underlying aspects of the original results. Our approach also suggests a set of appropriate

parameters for each user query to achieve a balance between our conflicting objectives and is

efficient enough to ensure an interactive experience. We study the complexity of our algorithms

and experimentally evaluate them in terms of normalized relevance, coverage, and execution

time. Our evaluation indicates a speedup of up to 159x, and outperforms the state-of-the-art

algorithms on multiple fronts.
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7.2 Open Questions

We have proposed approaches to perform efficient and scalable Example-driven Exploration

that assist the user in effectively finding the desired data objects with the need to specify any form

of explicit queries. Our approaches show superior performance compared to existing approaches

in multiple regards. However, there are still multiple challenges and open problems that require

further investigation. In the following, we briefly summarize some of these interesting new direc-

tions.

• As discussed in the Introduction and illustrated in previous works of literature (e.g.,

[Juslin et al., 1998, Griffin and Tversky, 1992]), human labels are subject to noise (i.e., la-

beling noise). Consequently, the performance of the data exploration system will degrade

greatly without having methods specifically designed to handle labeling noise. However, it

is hard to estimate labeling noise because it does not depend on model or training data. To

address this challenge, one idea is to use soft labels with more than two possible categories

of relevance as follows: First, using ensemble methods like Bagging and Randomization

[Dietterich et al., 2000] to average out the influence of labeling noise. Second, using a labeling

system with multiple categories [Xue and Hauskrecht, 2017] to reduce the range of influence

of labeling noise. Third, estimating the labeling noise explicitly and acquiring labels multiple

times for examples with high noise [Sheng et al., 2008]

• The number of region pruning questions asked by the current approaches grows exponentially

with the dimensionality, which renders its usage impractical for datasets with high dimension-

ality. In addition, a question with too many features involved will also become hard, if not

impossible, for the user to perceive. Based on this observation, reducing the number of dimen-

sions involved in the exploration space becomes a promising solution. However, two obstacles

still stand in the way of solving the problem. First, the number of dimensions needs to be

reduced below the user’s perception limit. Second, the retained dimensions should still be

meaningful to the user. With these in mind, it will be beneficial to Example-driven Exploration
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to design a novel feature selection method, which will help the user to find the combination of

features (i.e., dimensions) that match his/her interest.

Inspired by previous work on view recommendation [Ehsan et al., 2016, Ehsan et al., 2017]

(Section 4.2), one idea is to create a score function that captures the importance of a combina-

tion of features. The more dataset information that is preserved by a combination, the higher

its score should be. Consequently, it would be useful to devise an algorithm to obtain the set of

k most informative combination of features, out of the huge amount of possible combinations,

to be presented to the user. Using this set, the user will be able to effectively define the k

attribute exploration space that is most suitable with respect to his/her exploration task. This

new functionality will likely to improve the performance of query selection, reducing the time

of selecting useful examples while preserving the dataset information to the greatest extent.

• The existing Example-driven Exploration system essentially relies on the user to determine

the termination of an exploration task. Thus, the user is required to frequently examine the

exploratory query that is currently constructed by the platform to determine whether or not

the exploratory query is sufficient (i.e., accurate) enough for his/her exploration task. Such a

requirement can dramatically increase the effort of a user during the exploration tasks, thus

harming the effectiveness of the exploration platform. Furthermore, as users do not have a

clear idea of what they are looking for, it is usually difficult for them to determine the accuracy

of the current exploratory query correctly. Therefore, one way to overcome such a challenge is

to design methods that can indicate the current exploration progress to reduce the user’s effort

in determining the termination of the exploration task, and to increase the accuracy of the final

exploratory query that is aligned with the user’s expectations. There are several approaches

(e.g., [El-Yaniv and Wiener, 2012, Hanneke, 2011, Hanneke, 2016]) to trace the convergence

of an active learner that can be used as an indication for determining the termination of an ac-

tive learning task. However, these approaches cannot be adopted to solve the above challenge,

as they are focused on error rate as the accuracy measure of a classification model, which is

inappropriate for data exploration. Recall that the F-measure used to measure accuracy in data
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exploration systems. Furthermore, convergence detection methods that rely on a single mea-

sure of the classification model can easily fall into local optimal, and in turn, fail to detect the

true convergence. Therefore, an efficient and robust model that combines multiple measures

of the predictive model (e.g., model change rate and approximated maximum uncertainty) to

capture the trans of the convergence for data exploration tasks will be beneficial to strengthen

the usability of Example-driven Exploration approaches.

7.3 Broader Impact

Intelligent and efficient means of data exploration has far-reaching implications for a large vari-

ety of data-intensive application areas such as commerce, intelligent transportation, environmental

modeling, astronomy, learning analytics, financial risk assessments, health and population plan-

ning, and even on daily life activities in the current data-rich society. In this thesis, we presented

our novel solutions that aim at addressing a fundamental roadblock in the use of large datasets,

namely the ability to efficiently explore and understand the value and relevance of unfamiliar data

before it is submitted for intensive analytical processes. Consequently, our solutions on effective

Example-driven Exploration can enable more opportunities in developing cutting-edge technolo-

gies that have the capacity to make a wide-ranging impact on the way data is utilized and consumed

in business, social, and scientific settings.

In addition to facilitating the Example-driven Exploration, some of our proposed techniques

can be leveraged to benefit other active learning-based or data-driven applications. For instance,

our indexing technique UEI can be leveraged in a wide range of active learning-based human-

in-the-loop systems (e.g., [Qian et al., 2019, Bhattacharjee et al., 2017, Qian et al., 2020]) to ef-

fectively reduce the memory requirement, and in turn, enable these systems to scale out for

larger datasets. Furthermore, our result refinement technique PrefDiv and its ability to bal-

ance the trade-offs between relevance, diversity, and coverage can also benefit the design of

other real-world systems and scientific applications that need to produce highly informative rep-
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resentative subsets or require interactive efficiency in producing the representative results (e.g.,

[Raghu et al., 2017, Ge et al., 2016a, Ge et al., 2017b, Ge et al., 2017a, Raghu et al., 2019]).
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