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The Distributed Denial-of-Service (DDoS) attack is known as one of the most destructive

attacks on the Internet. With the advent of new computing paradigms, such as Cloud

and Mobile computing, and the emergence of pervasive technology, such as the Internet of

Things, on one hand, these revolutionized technologies enable the availability of services

and applications to everyone. On the other hand, these techniques also benefit attackers to

exploit the vulnerabilities and deploy attacks in more efficient ways. Latest network security

reports have shown that distributed Denial of Service (DDoS) attacks have been growing

dramatically in volume, frequency, sophistication and impact, making it one of the most

challenging threats in the Internet. An unfortunate state of affairs is that the remediation

strategies have fallen behind attackers. The severe impact caused by recent DDoS attacks

strongly indicates the need for an effective DDoS defense system.

We study the current existing solution space, and summarize three fundamental require-

ments for an effective DDoS defense system: 1) an accurate detection with minimal false

alarms; 2) an effective inline inspection and instant mitigation, and 3) a dynamic, distributed

and collaborative defense infrastructure. This thesis aims at providing such a defense system

that fulfills all the requirements.

In this thesis, we explore and address the problem from three directions: 1) we strive to

understand the existing detection strategies and provide a survey of an empirical analysis of

machine learning based detection techniques; 2) we develop a novel hybrid detection model

which ensembles a deep learning model for a practical flow by flow detection and a classic

machine learning model that is aware of the network status, and 3) we present the design and

implementation of an intelligent, distributed and collaborative DDoS defense system that

effectively mitigate the impact of DDoS attacks. The performance evaluation results show

that our proposed defense system is capable of effectively mitigating DDoS attacks impacts

and maintaining a limited disturbing for legitimate services.
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1.0 Introduction

Distributed Denial of Service (DDoS) attacks attempt to prevent legitimate users from

accessing information or services by overwhelming the server and saturating the network

connections through multiple compromised systems. DDoS attacks are typically launched

from a very large number of distributed, remotely controlled devices, organized into bot-

nets and aimed at attacking the same target [5, 36]. With the advent and the emergence

of Cloud Computing and Internet of Things, on one hand, the revolutionized technology

enables the availability of services and applications to everyone. On the other hand, these

techniques also benefit attackers to exploit the vulnerabilities and deploy attacks in more ef-

ficient ways. A subscription-based business model, DDoS-as-a-service, also known as “boot-

ers” or “stressers”, even provides DDoS attacks as a low-cost service, and causes DDoS

attacks becoming accessible to the general public [33,63].

Recent events demonstrate the severe impact of DDoS attacks. October 2016, a series

of massive DDoS attacks were perpetrated against Dyn’s DNS servers, and caused the dis-

ruption of multiple major websites, including Airbnb, Netflix, and Spotify [22]. This attack

used the infamous Mirai, a self-propagating botnet virus, to compromise poorly protected

IoT devices. February 2018, GitHub was hit by a colossal 1.35 Tbps flood of traffic, the

largest by that time, resulting in major websites across large portions of the US being out

of services for a number of hours [39]. September 2019, Wikipedia, suffered a disruptive

DDoS attack for almost three days [25]. Although the attacking strategy was an old-style

volumetric flooding attack, the attack has quantifiable exceeded 1 Tbps by leveraging the

increases of the network capacity.

In fact, a Cisco study predicts that the total number of DDoS attacks would reach 14.5

million annually by 2022 [19]. An effective DDoS defense system is needed now more than

ever. Despite extensive efforts have been made in both industry and academia, significant

potential remains in exploring an intelligent, distributed and collaborative defense system.
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1.1 Problem Statement

To successfully defend and mitigate the impact of the increasingly sophisticated and

diversified DDoS attacks, the defense system must be carefully designed [58]. In this section,

we describe the fundamental requirements to achieve an effective DDoS defense and discuss

the challenges, the design and the deployment such a defense system entails. In summary,

to be effective, DDoS defense, in large scale systems, must meet the following requirements:

1. an effective inline inspection, and a rapid respond to mitigate attack’s impact;

2. an accurate attack detection with minimal false alarms;

3. a dynamic, distributed, and collaborative defense infrastructure.

1.1.1 Accurate Detection with Minimal False Alarms

Traditional DDoS detection approaches utilize stochastic analysis and exploit the entropy

of network traffic to identify anomalous intrusion events. When an attack event is identified,

traffic rate-limiting and filtering mechanism is applied to mitigate the impact. However,

any mitigation strategies that are applied indiscriminately will cause damage to legitimate

traffic. While the victim does not face overwhelming traffic, such an inappropriate response

can cause denial of service to legitimate users. Thus, the detection scheme should not only

be able to detect that a DDoS attack event is happening, but also should be capable of

distinguishing attack traffic from legitimate traffic.

Recently, the trend of DDoS detection is to apply machine learning techniques to classify

and detect malicious traffic. These techniques are capable to intelligently learn the underly-

ing data attributes without the need to explicitly describe normal and malicious activities.

While the use of machine learning based techniques hold promise, most approaches focus

on offline traffic analysis and struggle to capture the ever-evolving characteristics of DDoS

attacks [43].

Finally, the detection method should also minimize false alarms, which also lead to

collateral damage to well-behaving sources. Hence, the defense system dose not only prevent

attack traffic, but also provides reliable delivery of legitimate traffic to end users.

2



1.1.2 Effective Inline Inspection and Instant Mitigation

To mitigate the impact of DDoS attacks, large enterprises commonly adopt the scrubbing

center strategy [31, 64]. When a suspicious DDoS attack is identified, all traffic is diverted

to a designated centralized data cleansing station, called scrubbing center, where further

traffic inspection and mitigation are applied [2]. Legitimate traffic is passed to the network

for delivery, and malicious traffic is blocked. Once the attack stops, all traffic is redirected

through routing updates. Although this solution is effective to protect victims from volu-

metric traffic, it has three major limitations. Firstly, it usually increases latency. All traffic

sent toward the victim is detoured to the scrubbing center. In addition to the latency caused

by detour, the scrubbing center could be a bottleneck and causes a significant amount of

latency, especially when the bandwidth of the scrubbing center is limited. Secondly, the

detouring strategy requires complicated mechanism to effectively reroute traffic, which could

be extremely expensive in both financial and computational [30,76]. Lastly, using scrubbing

center only allows for monitoring inbound traffic. For enterprises and service providers, who

seek to ensure they are not used as an unwitting DDoS attack platform, such a solution is

inadequate.

The ideal defense system should react instantly, without introducing delays. To this

end, we need an inline inspection and instant mitigation system. With inline inspection,

both inbound and outbound traffic passing over the guarded network are inspected. Any

identified attack traffic is then immediately blocked without the need for rerouting. While

inline inspection is an optimal solution, it raises one major challenge: how to achieve traf-

fic analysis at wire speeds and satisfy the stringent memory and complexity constraints?

Currently, most inline inspections relay on packet or flow sampling algorithms to address

this challenge. However, recent research has shown that sampling methods distort traffic

patterns and degrade the detection accuracy [4, 28]. This major challenge remains open.

1.1.3 Dynamic, Distributed and Collaborative Defense

A typical DDoS attack is launched from widely distributed compromised devices, which

unwittingly host attack programs. These compromised devices work coordinately, so that the

3



attacking traffic converge at the target victim network. Therefore, the source of attacking

packets are highly distributed. Nowadays, with the emergence of IoT and mobile computing,

a large number of, potential insecure and vulnerable, devices are being weaponized by at-

tackers. The attacking sources are not only spread widely, but could originate from anywhere

around the world [33]. Additionally, the trend of DDoS attacks shows that the attacking

traffic does not only target the victims, but also the organizations on which they depend,

including Internet Service Providers (ISPs) and cloud service providers. Recent attacks ex-

hibited the characteristics of broad-reaching, high-impact and well-coordinated. We posit

that in order to effectively defense DDoS attacks before they can cause considerable damage

to both the attack target and the Internet infrastructures, a distributed and collaborative

defense system is needed.

According to observations of attacking paths, researchers have categorized the deploy-

ment of defense systems into three key locations: source-end network, core-end network and

victim-end network [52, 60, 90]. Each possible deployment location has its own strengths

and weaknesses. The source-end network is the most effective place to mitigate the attack

traffic, since attack traffic can be blocked before it enters the Internet core and consumes the

shared resources. However, it is difficult for differentiating the attack traffic from legitimate

traffic at this location. As described previously, DDoS attack traffic is highly distributed,

at the source-end, the detection scheme observes too little to perform a successful detec-

tion. In contrast to the source-end network, the victim-end network is a vantage point for

DDoS malicious traffic detection. Close to the victim, the detection mechanism observes

the aggregated attack traffic, so a malicious behavior and a degraded server performance

are relatively easier to be detected, regardless of the nature of the attack and the location

of the attackers. Unfortunately, at this location, it is often the case that it is too late to

mitigate the impact. In the core-end network, deployed defense systems can also observe the

aggregated traffic, and they are in a better position to effectively constrain the attack traffic.

However, due to the limited resources and heavy burdens on the core routers, they cannot

perform sophisticated detection and mitigation tasks.

It is clear that an effective defense system needed to have a distributed and collaborative

infrastructure. The detection of DDoS attack traffic could be done close to the victim-

4



end, then the identified attack traffic signature can be propagated upstream. As such, the

malicious traffic can be blocked as far away from the victim as possible. Additionally, a

distributed and collaborative mechanism can support early detection by exchanging selected

traffic information among different deployment locations. The ability to extend the traffic

observation range also benefits the detection accuracy. Finally, a distributed defense system

also provides scalability so that defenses can be quickly and affordably updated to respond

to the future evolution of DDoS threats.

1.2 Research Overview

Aiming at developing a novel DDoS defense system that meets all the requirements and

solves the challenges discussed above, this thesis presents an intelligent, distributed and

collaborative DDoS defense system.

The core of the proposed defense system is an accurate and robust DDoS attack detection

model, which combines a deep learning approach and an classic machine learning model. The

proposed deep learning method has the ability to detect suspicious network flows by only

examining a relatively small number of a network flow packets header information, which

provides a practical solution for an effective and truly-inline inspection. The classic machine

learning model provides the network status detection, which complements with the deep

learning model to achieve better performance in identifying DDoS attack traffic. We further

augment the detection model with communication and collaboration functionalities, so that

detectors that are deployed in different locations are able to exchange information to expand

their observation across the network.

Relying on the accurate and robust detection model to distinguish attack traffic from

legitimate traffic, we propose a distributed and collaborative DDoS defense system. By

leveraging the flexibility, programmability and maintainability provided by Software-Defined

Network (SDN), we safely delegate the detection model to an application. However, naively

utilizing the centralized controller could cause the defense system itself become a bottleneck,

and result in paralyzation of the network. To address this challenge, we design the defense
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system comprising a network of specialized SDN controllers, referred to as Sentinels, which

help relieve both the computational and communication burdens from the controller. The

proposed defense system monitors ongoing network traffic, distinguishes malicious traffic

from legitimate traffic, and blocks attack traffic in an efficient and effective manner.

To study the viability of and provide the justification for the proposed solution, we

implement the prototype of the proposed defense system in a SDN environment, and carry

out a comparative analysis for assessing the performance in terms of the effectiveness of

DDoS attack impact mitigation, the quality of service for legitimate users and the overheads

added to the controller. The relationship between requirements and works included in this

thesis is depicted in Figure 1.

Figure 1: Fundamental requirements and thesis works
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1.3 Contributions

This dissertation consists of the following main contributions:

• Detailed analysis and empirical studies of current machine learning based DDoS detection

techniques, thus improving an understanding of the problem and current solution space.

• A novel detection approach using deep learning model. The proposed algorithm obviates

the need for feature engineering, and successfully learns the complex flow-level feature

representations embedded in raw input traffic. Most importantly, the algorithm needs to

examine only a short sequence of packets to detect DDoS attack flows, which provides a

practical solution for truly real-time inline inspection.

• A hybrid detection model, which combines a network flow by flow detector and a network

status detector. These two detectors complement with each other, and achieve more

accurate detection results in the emulation environment.

• The design of a distributed and collaborative SDN centric defense architecture to detect

DDoS attacks and mitigate their impact. The proposed defense architecture comprising

a network of peers, referred to as Sentinels, that dynamically and collaboratively defend

against DDoS attacks. With the distributed and collaborative mechanism, the proposed

defense system alleviates computational and communication burdens from the controller,

then avoids causing the bottleneck.

• A prototype implementation of the proposed defense system in a SDN environment,

without any modifications to the OpenFlow protocol features or OpenFlow switches.

This enhances the potential of deploying the proposed defense system in a practical

setting.

• The design of an evaluation framework to assess the performance of the proposed DDoS

defense system and carry out a comparative analysis of its performance with other

schemes. The experimental results demonstrate that the proposed defense system can ef-

fectively detect and throttle DDoS attack traffic without degrading the quality of service

of legitimate users. Additionally, the overheads caused by the proposed defense system

is minimal.
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1.4 Dissertation Outline

The rest of this thesis is organized as follow: Chapter 2 reviews literature. To better

understand the current existing DDoS detection solutions, Chapter 3 provides a thorough

study of existing DDoS detection techniques. In the study, a comparative analysis of the

overall performance, and a set of sensitivity analysis of the impact factors are carried out.

Inspired by the analysis result, in Chapter 4, we propose an inline hybrid detection model

to achieve an accurate detection with minimal false alarms. Chapter 5 proposes a DDoS

defense system, which fulfills all the requirements by leveraging a SDN-centric architecture

design. Chapter 6 presents a prototype implementation of the proposed defense system as

well as its performance evaluation. Finally, Chapter 7 concludes the thesis and and some of

the directions for future research.
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2.0 Related Works

To successfully protect a server or network from DDoS attacks, the capability of capturing

malicious traffic accurately is critical. However, DDoS detection alone is not enough. A suc-

cessful defense should also facilitate a real-time response so that the impact of DDoS attacks

can be mitigated effectively. This chapter provides an overview of necessary backgrounds of

this dissertation and discusses the related existing works from these two perspectives, one

in which is DDoS detection techniques and the other is DDoS defense systems, which bring

together detection approaches and mitigation strategies as a whole.

2.1 DDoS Detection Techniques

Numerous schemes have been proposed to detect DDoS attack traffic. The early schemes

focus on stochastic analysis to monitor network traffic flows’ behavior and exploit the en-

tropy of network traffic to identify normal behavior and detect anomalous intrusion events.

Recently, the trend to detect DDoS attack traffic is to leverage machine learning techniques

to classify and detect malicious traffic. In this section, we review both traditional and intel-

ligent based detection techniques.

2.1.1 Traditional Detection Techniques

Traditional detection techniques characterize network traffic using statistical and infor-

mation theory based analysis. They usually assume a predefined model to represent normal

condition. For any traffic under monitoring, the statistics of the traffic are inferred and

compared with the predefined model periodically. Any non-complying traffic is considered

as an attack. In [23,51,80], the authors proposed detection schemes that monitor the ratios

between number of packets received-from and sent-to the guarded network. They believe

that the monitored ratio for the legitimate traffic should below a certain threshold for a spe-
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cific protocol. DDoS attack traffic is then identified accordingly. In [11, 29, 75], the authors

observe the strong correlation presented by either attack or legitimate traffic from different

perspectives. They apply correlation coefficient analysis to network traffic parameters, then

they compare the monitored changes and make decisions. In [87], the authors assume that

legitimate users’ behavior, including web page request interval, browsing length, etc., follows

specific distributions. The detection scheme periodically calculates the standard deviation of

sampled flows. If the flow has a sufficiently large calculated value, then it will be identified

as attack traffic.

Information based metrics are also very popular in DDoS detection. Entropy can be

computed on several features, such as network flows, source/destination IP addresses, number

of packets, source/destination IP ports, etc., with a given time window [9,18,73,81,82]. The

changes on the calculated entropy values are evaluated using different information metrics,

and are used to identify the presence of DDoS attack traffic.

The challenge these methods face stems from the need to reliably define a normal profile

and accurately differentiate between normal and anomalous behaviors. With sufficient num-

ber of active compromised machines, the legitimate users’ statistical behavior is easily to be

mimicked [88]. Hence, the fundamental assumption of proposed works will be violated, and

the defense schemes are deceived. Additionally, the performance of these detection schemes

can be impacted severely by the location where the detection scheme is deployed [43].

2.1.2 Intelligent Based Detection Techniques

Recent DDoS detection research has shown the promising results by leveraging machine

learning techniques. These techniques are capable to intelligently learn the underlying data

attributes without the need to explicitly describe normal and malicious activities, thereby

overcoming the limitations of traditional detection schemes. Intuitively, DDoS detection

problem can be modeled as a binary classification problem, where the monitored traffic is

classified as either legitimate or attack traffic. Different classification algorithms have been

applied and tested on well-known benchmarks. To improve the detection accuracy while

minimizing the false alarms, researchers have also explored potential feature sets [26, 56].
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Deep learning, a broad family of machine learning techniques, has been successfully

applied to solve challenging problems in a number of fields, including computer vision, social

network filtering and video games, natural language processing and machine translation,

healthcare and bioinformatics, medical image analysis and drug discovery. Its application

to DDoS detection, however, has been limited. In this section, we discuss various recent

notable works in this field. Several works utilize autoencoder, an unsurpervised learning

technique, to discover non-linear representations from the input data, and then they apply

a classification method to distinguish malicious traffic from legitimate traffic [3,27,54,68].

In [27], the authors combine an auto-encoder with a soft-max regression layer for network

intrusion detection. The proposed scheme exhibits promising performance in both binary

and multi-class classification task. The authors then extend their work by stacking two auto-

encoders to detect DDoS attacks [54]. In [68], the authors stack two autoencoders to learn

the complex relationships among features. They claim that soft-max layer is weaker than

classic classifiers, and combine the stacked auto-encoder with a Random Forest classifier for

intrusion detection. In [3], the authors utilize autoencoder not only for feature learning but

also to reduce the number of random variables under consideration. Instead of connecting

a classifier with the output layer of the autoencoder, a hidden layer, which represents the

compressed features, is used as input for the classifier. A Support Vector Machine (SVM) is

used as the classifier. The authors claim that the SVM outperforms other classic classifiers,

in terms of accuracy. Although they successfully overcome the difficulty of feature selection,

the proposed schemes do not address the challenges of feature extraction.

In addition to autoencoders, RNN is a popular choice for intrusion detection [35, 70, 72,

85, 89]. RNN, an extension of a conventional neural network, is widely used for modeling

sequential data to solve time-series problems. Most schemes apply RNN models to well

formatted datasets, such as KDD99 and NSL-KDD, which use hand-crafted flow-level feature

engineering. In these datasets, each record corresponds to a specific network flow, and is

represented by a set of attributes, such as duration, number of packets, number of bytes,

etc. Most proposed schemes treat the set of attributes for each flow as a sequential data,

which is then used as input for the RNN models [35,70,72,85]. To improve the classification

accuracy and other evaluation metrics, these works apply different types of RNN models.
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A simple RNN is adopted in [85]. In [35, 70], the authors use LSTM RNN, and focus on

selecting a minimal subset of features. In [72], the authors used Gated Recurrent Unit (GRU)

RNN. Although the performance of these proposed schemes surpasses traditional machine

learning methods, they fail to address the challenge of feature extraction. More importantly,

assuming temporal order among features in RNN models is questionable. The advantage

of RNNs in modeling sequential data is that they have a memory cell which can remember

data received earlier and capture the temporal dependency among data. Although features

are not independent of each other, preserving order among data is not necessary.

In [89], the authors propose a RNN-based model, referred to as DeepDefense. Unlike

previously discussed methods, the model does not use flow-level statistical features. Instead,

the authors extracted 20 features from packet headers and applied sliding windows to sep-

arate continues network traffic into sequences of network packets. For a given sequence of

packets, the model classifies the last packet either as a legitimate or attack traffic. Their

proposed deep learning model achieves lower error rate than traditional machine learning

techniques. However, reliance on packet-by-packet inspection may not be practical in a

real-world setting.

Although the use of machine learning based approaches holds promise, most published

works remain offline in nature, with potentially prohibitive high overhead. Additionally, im-

proving the detection performance by tailoring features, models and parameters for specific

datasets does not benefit our community any further to solve the practical problem. For de-

tailed description of related works in this category, we refer interested readers to our recently

published survey paper, in which we reviewed highly cited schemes that have been proposed

over the last decade, and empirically studied the advantages and limitations exhibited by

intelligent based detection techniques [44].

2.2 DDoS Defense Systems

Building an effective DDoS defense system is a non-trivial problem for both the network

administrator and network security researchers. Traditionally, the defense system is deployed
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on dedicated devices to monitor network traffic, identify malicious activities and mitigate

the potential adversarial impacts. Recently, SDN has emerged as a powerful platform for

enabling innovation in networking research and development. With the separation of the

control logic from the data plane, SDN provides more flexibility to network managing. In

this section, we review DDoS defense systems in both platforms to present the state-of-the-

art in the field of combating DDoS attacks.

2.2.1 Router-Based Defense System

Over the past few decades, academia has proposed numerous defense systems to defend

against DDoS attacks. In a conventional network, the defense system is usually deployed on

routers, so that malicious network traffic can be blocked before they enter a domain.

Filtering-based systems are among the earliest works [6, 7, 10, 17, 47, 65, 79]. A filter is

essentially a rule explicitly telling the router to drop traffic that is identified as undesirable.

Hence, the effectiveness of these systems heavily relies on a mechanism to differentiate attack

traffic and legitimate traffic. Theoretically, any detection mechanisms can be integrated into

this type of system and guide the filtering rules. However, routers are facing large scale

and intensive network traffic, sophisticated detection algorithms are usually not affordable

to be deployed on them. Most approaches try to identify the spoofed packets, and propa-

gate filter rules to block them close to the source. In [6, 7, 17, 47, 65], the authors employ

different packet marking algorithms to trace the path of spoofed IP packets. Using marking

algorithms, routers mark packets along their path to the destination. At the edge router

close to the destination, the detection scheme utilizes the aggregated information to recon-

struct the routing path, and identify the spoofed traffic. In [79], the authors leverage the

hop counting to identify spoofed malicious packets. These schemes usually cause low router

overheads and are easy to implement. However, today’s DDoS attacks, which are usually

well distributed with a fairly large botnet, increase the chance of wrong construction of the

path. Furthermore, due to large number of compromised devices, the attackers disclose real

IPs of zombie machines. The packet marking and other traceback methods would not be

able to identify attack traffic.
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Another type of approach is called capability-based systems. In these systems, the sender

has to request and receive explicit permissions from the destination, also called capabilities,

before further sending out any traffic [48, 59, 83, 84]. The capabilities are used as a form of

authentication, and are stamped on traffic packets. The router, which is a deployed point,

will verify the authentication along the path. To avoid the collusion and attack against

the request channel, researchers also proposed self-created capabilities, without cooperating

with remote routers [34, 53, 77]. These systems rely on unpractical assumption and incur

significant upgrade in the Internet core.

From an industrial perspective, few academic proposals have been deployed. Many secu-

rity service provide companies, such as Akamai, Cloudflare, etc., provides DDoS-Protection-

as-a-service. They leverage the capacity of their geographically distributed cloud servers,

and use DNS or BGP to redirect traffic when under attack [16]. In section 1.1.2, we have

discussed limitations of this scrubbing center technique.

In a conventional network, defense systems have to be deployed on special designed

hardwares, such as network routers or middlebox devices. The need for high computational

and resource requirement, due to continuous analysis of network traffic, remains a challenge.

Additionally, how to deploy defense systems with little changes and cost to the current

network infrastructure is still an open question.

2.2.2 SDN-Based Defense System

SDN is a new network paradigm, which physically separates the control and data planes

in traditional network devices [38]. Specifically, the control plane is removed from a network

device and implemented on a specialized central controller. Comparing to legacy networking

architectures, SDN provides more flexibility and ease in network management, and offers

new opportunities for enhancing the performance of network security.

In [66], authors developed a detection module, which continuously monitors the Packet In

messages rate, memory usage and CPU utilization rate of switches, and decides whether the

network is under an attack accordingly. When an attack is identified, the defense system

detours traffic to the neighbor switches to relieve the bandwidth pressure. Detoured traffic
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will be analyzed. The identified attack packets will be filtered out, and legitimate traffic

will be delivered to the destination. Although the solution could effectively protect the

victim, the introduced delay and intensive communication burden between switches and the

controller are not desired.

In [32], researchers proposed a security scheme using joint entropy for both DDoS detec-

tion and mitigation. When a congestion is detected, switches send packet header information

to the controller. The detection module calculates the joint entropies for feature pairs and

creates the current status profile. If the difference between the calculated current profile and

the normal profile exceeds a certain threshold, the feature pair is identified as suspicious and

sent to switches. With the given feature pair, switches calculate and update the suspicious

feature pairs profile, and send back to the controller. The mitigation rules will be then gener-

ated. Before a mitigation rule is generated, switches have to communicate with the controller

twice for each feature pair. Additionally, switches are required to apply extra calculations

with their limited computational resources. The overheads brought by the proposed system

are heavy, even disregarding the challenge of how to reliably define a normal profile.

Recently, the trend to mitigate the impact of DDoS attacks is to incorporate “intelli-

gence” into the defense architecture, leveraging machine learning techniques to classify and

detect malicious traffic [43]. In [61], researchers employed SVM and Self-Organizing Map

for attack detection. The detection module periodically requires flow statistics from the

switches, including flow duration, number of packets, bytes and etc. Based on the flow infor-

mation, the detection model labels the inspecting flow as legitimate or attack, and a history

based filtering rules are applied to mitigate the attack traffic. In [24, 41], researchers em-

ployed Convolutional Neural Networks for detecting DDoS attacks. Both papers extracted

flow-level features for the detection model, such as backward packet length standard devi-

ation, average packet size, flow duration and flow inter arrival time. In [45], the authors

combined the signature attack databases and several machine learning techniques to achieve

a high accurate detection results. All these proposed approaches are evaluated with well

formatted datasets, in which statistical features of network flows are provided. However, in

reality, flows features are not known in advance. Approaches usually periodically extract flow

statistics from switches, the extracted incomplete flow statistics may distort traffic patterns
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and degrade the detection accuracy. This problem is widely neglected in machine learning

based approaches, which is elaborated in our results discussion.

Different from other machine learning based defense approach, in [55], the authors do

not use machine learning model for detection. They utilized LSTM model for predicting

network traffic status, such as bits/s, packets/s, source IP entropy, and etc. Then applied

fuzzy logic to identify anomalies based on the prediction. After anomaly is detected, the

mitigation rule will be installed in switches. As discussed in section 1.1, applying mitigation

policy without distinguishing malicious traffic from legitimate traffic will degrade the quality

of service for legitimate users, although attack target could be protected.

Characteristics of SDN architecture, such as the logically centralized control, the pro-

grammatic framework, and vendor agnostic implementation interfaces, solve the challenges

that router-based defense systems are struggled to overcome. These systems capitalize on the

centralized controller of SDN, and usually simply assume that the global view of the network

traffic is available via the centralized controller, without considering the limited computation

and communication resources host by the controller. The detection and mitigation strategies

are, naturally, designed and implemented as applications attached to a centralized controller.

However, naively utilizing the centralized controller could cause the defense system itself be-

come a bottleneck. The tremendous and heterogenous data required from switches could

cause the communication channel between switches and controllers under congestion, and

further exhaust resources of both the controller and switches.
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2.3 Summary

This chapter reviews related work in the fields of both DDoS detection and DDoS defense

system. We begin with the traditional DDoS detection approaches. Then, the recent trends

of leveraging machine learning techniques for DDoS detection are discussed, each with its

advantage and limitations. Lastly, we survey the existing works for DDoS defense system,

including router-based defense systems and SDN-based defense systems. We recognize the

opportunities offered by SDN, but also point out that given the heavy duty, naively attach

designed defense system as an application to the centralized controller could easily the and

would result in paralyzation or misbehaving of all switches under the controller.

These existing approaches fall well short of desired capabilities as an efficient and effective

DDoS defense system, which motivate this thesis to address the challenges.
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3.0 An Empirical Study on Machine Learning Based DDoS Detection

Techniques

An in-depth understanding of existing detection strategies is demanded for developing

an effective detection approach. Traditional methods have been studied extensively. Both

their advantages and disadvantages have been well analyzed, and their performances have

been systematically evaluated by researchers [60, 90]. However, there is a lack of a such

analysis for machine learning based techniques. Although a couple of research works have

studied several published schemes, it is lack of a “holistic” analysis of the performance for

these detection strategies. In this chapter, we set to investigate the performance of machine

learning based DDoS detection techniques to reveal the advantages and limitations.

3.1 Introduction

A number of research works have studied DDoS attack detection with machine learning

based solutions [12,57,69]. These works often focus on specific schemes, with the aim to carry

out a comparative analysis of their performance. Although informative of the state-of-the-

art in intelligent techniques to detect DDoS attacks, the intricacies of the studied schemes

add significant complexity to the analysis, and often affect the outcome. Furthermore, the

focus on specific schemes constrain the applicability of the results to other schemes. Lastly,

very little research work addressed “holistically” the performance evaluation of intelligent

solutions to DDoS defense. As such, the outcome of these studies remains inconclusive. A

closer look at intelligent DDoS defense schemes reveals that at the core of the proposed

schemes is a set of commonly used machine learning based “building blocks” for DDoS

detection and prevention. To this end, a representative class of intelligent techniques, which

capture main trends in DDoS detection, is carefully selected. Rather than carrying out an

exhaustive comparative analysis of specific schemes, we take a different approach, focusing

the impact of incorporating machine learning techniques to the DDoS defense.
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3.2 Selected Techniques

To select a representative set of machine learning based techniques, a thorough search

of the academic publications using Google Scholar, IEEE Xplore and Science Direct, is

carried out. The search space was limited to the publishing period ranging from 2008 to

2018. Additionaly, only publications with high citation numbers were considered. Using this

process, 49 academic publications are included in this work. These publications are used to

extract the building blocks underlying their DDoS detection schemes. Furthermore, to gain

better understanding of the capabilities of machine learning based techniques compare to

traditional techniques, we include D-WARD [51], a statistics based DDoS defense scheme,

into this study. Table 1 lists the evaluated techniques, and categorizes them into four groups.

Table 1: Detection Techniques Taxonomy

Categories Techniques

Classification

Support Vector Machine (SVM)
Artificial Neural Network (ANN)
Decision Tree (DT)
Naive Bayes (NB)

Clustering K-Means

Nearest-Neighbor Based K-Nearest Neighbor (KNN)

Statistical D-WARD

3.3 Benchmark Dataset

In order to carry a meaningful and fair comparative analysis, an ideal benchmark that

closely reflects the real-life network traffic, with clearly labeled legitimate and attack traffic, is

necessary. In this study, we combine two widely accepted and extensively used benchmarks.

The first benchmark is CAIDA DDoS dataset, collected from an actual DDoS attack event

[15]. The most significant advantage of this dataset is that the traffic consists of a real-

world DDoS attack scenario. Moreover, DDoS is exclusively recorded in this dataset, thus

making it appropriate for evaluating intrusion detection schemes solely for DDoS. However,
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the non-attack traffic was removed from the dataset. To augment the CAIDA benchmark

with legitimate traffic, a second benchmark, DARPA dataset [21], is used. The DARPA

benchmark contains total of 5 weeks traffic. The first and third weeks do not contain any

attacks.

Figure 2: Packet Rates of Legitimate and Attack Traffic

The attack traffic, obtained from the CAIDA benchmark, is split into 14 sets, each

containing roughly five minutes traffic traces. The legitimate traffic is selected from DARPA

first week attack-free dataset. We use tcpreplay [74] to replay the attack and legitimate

traffic, and recapture the combined traffic for analysis. Now, we denote the structure of our

datasets, D, as:

D = {d(Ik), 1 ≤ k ≤ 14} where,

d(Ik) = {traffic that collected over the kth time interval I}

||I|| = 5 minutes
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Figure 2 displays the ratio of attack traffic to legitimate traffic for each dataset dk(I), in

terms of average packets rate (packets/second) and Byte rate (Bytes/second). In the figure,

X-axis presents the index of the time interval (k), and Y-axis presents the average packets

rate in a base-2 logarithm scale. It is clearly shown that, for k < 6 (the first 25 minutes), the

volume of attack traffic is less than the legitimate traffic, however, starting from k = 6 (the

6th 5-minutes period), the attack traffic volume is dramatically increased. During k = 10

period, the attack traffic volume is reduced obviously, then followed by another gradually

increase. We believe these patterns reflect different attacking phases of the DDoS event. We

will explore the impact of these observations in the section of Experiments and Results.

3.4 Performance Evaluation

3.4.1 Comparative Analysis

In this experiment, we conduct a comparative analysis of the overall performance of the

selected techniques. We assume that the entire network traffic is available for each DDoS

detection technique. Although the assumption is usually impractical, it provides a strong

base to evaluate and compare the detection capabilities of these techniques. The benchmark

datasets, D, is divided into Tr and Ts, for training and testing purposes, respectively.

Tr = {d1(I)};

Ts = {d2(I), d3(I), d4(I), ..., d14(I)}

Classification models are usually trained offline with historical data. The trained model

is then applied online to classify future data. In our benchmark datasets, d1(I) contains

the network traffic that is captured during the first 5 minutes of the monitoring interval.

It is considered to be the historical data and used to form Tr. Ts is composed of the

traffic captured over the remaining 13 5-minute intervals. The 13 traffic sets are tested

independently for each evaluated technique, using the accuracy, sensitivity and specificity

metrics. Boxplots are used to illustrate the assessed performance, so that the performance

variation of these evaluated DDoS detection techniques is also quantified.
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3.4.1.1 TCP Traffic

Results for TCP traffic using packet-header features are shown in Fig. 3. In the figure,

Boxplots are used to illustrate the performance of each evaluated technique. Values of mini-

mum, maximum, median (solid line in box), mean (dot line in box), first quartile, and third

quartile are displayed by the box for the 13 test cases. X-axis presents each evaluated de-

tection technique. Subplots present Accuracy, Sensitivity and Specificity, respectively. The

results show that DT outperforms all other techniques, with respect to the defined perfor-

mance metrics. Furthermore, the results show that DT performs consistently across different

testing sets. These results show the high potential of rule-based strategies to efficiently detect

DDoS TCP attack traffic in the packet level. In this experiment, NB and RBF-SVM exhibit

the worst performance when it comes to distinguishing attack packets from legitimate traffic

packets.

Figure 3: Performance Comparison – TCP Traffic with Packet Header Features

The NB classifier is a simple classifier based on Bayes’ theorem, assuming a strong inde-

pendence among the features. As such, given the packet-header features, the NB classifier is
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biased towards labeling most samples as attack traffic during the testing phase. This results

in an extremely high sensitivity score, but a poor specificity score.

The RBF kernel maps features into an infinite dimensional space to solve non-linearly

separable samples. This may lead to a lose of generalization, if the training samples are

underrepresented. In other words, the trained model fits the training samples too closely,

causing the model to become very sensitive to the input data. Fig. 4 presents the performance

of RBF-SVM in each test case. For the first four test cases k, (k = 2, 3, 4, 5), RBF-SVM

shows a good performance. However, for test cases k, k ≥ 6, its accuracy and sensitivity

scores are significantly decreased. Recall that in the attack event, presented in Fig. 2, the

attack volume increases significantly starting from k = 6. The increase in volume affect the

distribution of traffic attributes, which in turn causes the underlying patterns of the input

dataset to become significantly different from that was learned during the training phase.

Figure 4: RBF-SVM Performance Using Packet Header Features

Focusing on the sensitivity score, the results achieved by SVM, Poly-SVM, KNN and

KMeans, shown in Figure 3, are comparable to those achieved by DT. They all outperform D-
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WARD. However, the poor specificity scores of the these machine learning based techniques

suggest a potentially high rate of false alarms which can incorrectly prevent legitimate users

from accessing resources.

Figure 5: Performance Comparison – TCP Traffic with Flow Level Features

Results for TCP traffic using flow-level features are shown in Figure 5. DT no longer

demonstrates the observed superiority over all other machine learning based techniques.

Moreover, its accuracy and sensitivity scores are highly varied across all datasets. Examining

closely its performance on each test case, DT suffers the over-fitting problem, similar to the

pattern of the RBF-SVM behavior, shown in Figure 4. Additionally, using flow-level features,

which represent features from the aggregated packet data between a source and a destination,

significantly improves NB’s accuracy and specificity. The performance consistency of NB

across multiple test cases is also enhanced by using flow-level features. In comparison with

packet-header features, flow-level features provide statistic attributes that capture the traffic

behavior. Hence, the distribution assumption and the probability inferring of NB classifier

is more reasonable.

Finally, it is worth noting that the traditional method, D-WARD, performs competitively
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in comparison to machine learning based techniques. However, it failed to identify attack

traffic in two datasets, as indicated by the poor sensitivity score for these two cases. Overall,

it can be concluded that ML-based techniques can achieve high performance in detecting

TCP attack traffic. Furthermore, ML-based techniques outperform D-WARD in most test

cases.

Figure 6: Performance Comparison – ICMP Traffic with Packet Header Features

3.4.1.2 ICMP Traffic

Results for ICMP traffic using packet-header features are shown in Figure 6. The re-

sults show that all ML-based techniques achieve near optimal values with respect to all

performance metrics, but only for some datasets. Contrarily, the performance consistency

of D-WARD is relatively higher. For ICMP traffic, D-WARD detects attack by monitoring

the paired messages of ICMP requests and the corresponding relies. If the monitored ratio

exceeds the threshold, the alarm is raised. The results show that this simple mechanism

works effectively. Features that capture this type of information should be able to improve

the performance of ML-based techniques.
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Figure 7: Performance Comparison – ICMP Traffic with Flow Level Features

Results for ICMP traffic using flow-level features are shown in Figure 7. The results

exhibit a similar performance pattern as the one in TCP traffic, underscoring the fact that

using sophisticated features does not necessarily improve the performance of all ML-based

techniques. As indicated by the results, only specific ML-based techniques, such as Poly-

SVM and NB, are improved. The use of these features did not significantly improve the

performance of the other schemes. In some cases, the performance of these latter schemes

has decreased.

In summary, the outcome of this experiment shows that it is not clear that a single

technique outperforms all others in all test cases, especially when focusing on the ICMP

traffic. The experiment shows that different techniques perform better when using certain

types of features, suggesting that feature selection should be method specific. Furthermore,

the capability of detecting attack traffic shown by ML-based techniques is evident. On the

other hand, the performance inconsistency exhibited by ML-based techniques in dealing with

different types of attack traffic raise doubts about their ability to efficiently detect DDoS

attack in real world scenarios.
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3.4.2 Impact of Observable Traffic Proportions

In the comparative experiment, the entire network traffic is assumed to be available for

each DDoS detection scheme. In practice, however, it is infeasible for a detection scheme to

have access to the entire network traffic. Actually, the detection scheme is usually deployed

on, or attached with, routers or switches. Consequently, a detection scheme can only observe

the network traffic passing through the network device on which it is deployed. The purpose

of this experiment is to investigate the ability of a detection technique to only access a limited

portion of network traffic.

To emulate a realistic network environment, we randomly select a proportion p of the

total traffic for testing. The selected traffic is then analyzed by the detection techniques,

and the performance for each metric is evaluated. Two selection criteria, namely packet- and

flow-level, are used to generate a specified portion, p, of the network traffic, For packet-level,

a proportion, p, of the total traffic packets is randomly selected without any consideration

of the flows to which the selected packets belong. For flow-level, however, a proportion, p,

of the total traffic flows is randomly selected and only packets belonging to these flows are

made available to the DDoS detector. It is to be noted that the total number of packets

selected is different for each case.

The same training data set Tr, used in experiment 1, is also used for this experiment.

The traffic proportion p is selected from a set P = {1%, 5%, 10%, 20%, 50%, 75%}. We

do not use separate symbols to differentiate packet- and flow-level datasets, since they are

structurally the same. The random traffic selection of DDoS detector observed traffic is

repeated 10 times, with different random seeds, to avoid data bias. The dataset used for

testing is denoted by Dexp2, where Dexp2 = dpk,r(I), 1 ≤ r ≤ 10, p ∈ P and 2 ≤ k ≤ 14. In

total, 780 test cases are used to assess the performance of each technique, for both packet-

and flow-level selections.

To quantitatively evaluate the impact of the observable traffic proportions, Pearson Cor-

relation Coefficient test is applied to measure the strength of the linear correlation between

each evaluated metric and the observed proportion. For both packet- and flow-level traffic

selections, the performance of D-WARD presents a strong correlation with the increasing
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observed traffic proportion. Conversely, only a weak correlation between traffic proportions

and performance is exhibited by ML-based techniques. Table 2 shows results for packet- and

flow-level traffic selections.

Table 2: Correlation Coefficient Scores with Observable Traffic Proportions

Techniques
Packet-Level Flow-Level

Correlation Score with Correlation Score with
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

DT-Gini -0.0024 -0.0123 -0.0117 -0.2698 0.0232 -0.3496

DT-IG -0.0103 -0.0103 0.0 0.0549 -0.0159 0.0253

SVM -0.0002 -0.0074 0.0006 -0.0177 0.2045 0.0147

RBF-SVM -0.0002 -0.0022 0.0057 -0.2732 -0.2384 0.2769

Poly-SVM -0.0003 -0.0065 0.0008 -0.2473 0.0666 -0.0661

KNN -0.0016 -0.0088 -0.0024 -0.1760 0.0885 0.01744

KMeans -0.0011 -0.0058 -0.0008 -0.0912 0.0300 -0.1349

NB <0.0001* 0.0215 -0.0011 -0.0946 0.1870 -0.4023

ANN 0.0001 -0.0012 0.0008 -0.1283 -0.0456 -0.0857

D-Ward 0.5458 0.8008 -0.5519 0.7703 0.8055 0.6329

*The value is negative, and ‖value‖ < 0.0001

Recall that traditional detection techniques, represented by D-WARD, usually infer net-

work status through monitoring two-way traffic. As such, D-WARD gains a relatively com-

plete picture of the network status given a higher proportion of observed traffic packets or

flows. This leads to more accurate attack detection. Ideally, D-WARD should be deployed

at the only boarder router, so that both directions of flows can be observed by the detector.

However, this is impractical, a limitation also reported by the authors of D-WARD [51].

Comparing to the traditional detection method, the weak correlation, presented by ML-

based techniques, shows that the deployment location does not impact the performance of

ML-based detection techniques.

3.4.3 Impact of Attack Intensities

The focus of the previous experiment was on the proportion of network traffic observed by

a detector. In this experiment, we further refine the previous experiment to focus exclusively

on the intensity of the attack traffic observed by the detector. Consequently, legitimate traffic

28



is kept unchanged, and attack traffic is increasingly injected into the network. Specifically,

we randomly select a% of total attack traffic, measured in both packet- and flow-level. As

the value of a increased, so does the attack intensity.

The same training dataset Tr, used in previous experiments, is also used in this exper-

iment. The increase of the attack traffic is cumulatively achieved, whereby the increased

attack traffic contains the previous attack traffic. The traffic injection procedure is repeated

10 times with different random seeds. We do not use separate symbols to differentiate packet-

and flow-level datasets, since they are structurally the same. Hence, dataset used in this ex-

periment is denoted as Dexp3 = dak,r(I), where 1 ≤ r ≤ 10, a ∈ {1%, 5%, 10%, 25%, 50%, 75%}

and 2 ≤ k ≤ 14. In total, 780 test cases are used to assess the performance of each DDoS

detection technique, for both packet- and flow-level attack traffic injections.

Similarly as in experiment 2, we use Pearson Correlation Coefficient test to quantitatively

evaluate the impact of the attack intensities. Results of packet- and flow-level injections are

shown in Table 3. As expected, D-WARD presents a strong positive correlation with the

increasing attack intensities in terms of accuracy and sensitivity. With the attack intensity

increases, the amount of observed traffic increases as well, which is critical for D-WARD to

detect attack traffic correctly.

Table 3: Correlation Coefficient Scores – Attack Intensity

Techniques
Packet-Level Flow-Level

Correlation Score with Correlation Score with
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

DT-Gini -0.2880 -0.0098 <0.0001 -0.2862 -0.0759 <0.0001

DT-IG 0.2901 -0.0103 <0.0001 0.2856 -0.0657 <0.0001

SVM 0.5777 -0.0039 <0.0001 0.5777 -0.0100 <0.0001

RBF-SVM -0.4309 -0.0023 <0.0001 -0.4309 -0.0045 <0.0001

Poly-SVM 0.5314 -0.0026 <0.0001 0.5314 -0.0070 <0.0001

KNN -0.0013 -0.0079 <0.0001* -0.0008 -0.0255 <0.0001*

KMeans 0.6209 -0.0003 <0.0001* 0.6209 -0.0033 <0.0001*

NB 0.3873 0.0117 <0.0001* 0.3875 0.0568 <0.0001*

ANN 0.0795 -0.0010 <0.0001 0.0795 -0.0069 <0.0001

D-Ward 0.5728 0.7936 <0.0001* 0.5636 0.8101 <0.0001*

*The value is negative, and ‖value‖ < 0.0001
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3.4.4 Impact of the Class Imbalance Problem

The class imbalance problem is frequently encountered in practice, where the number of

observations of one class is far less than the other class. When this problem occurs in the

testing phase, accuracy alone is no longer enough to assess the performance of the detection

scheme. Different types of evaluation metrics, such as sensitivity and specificity used in this

work, need to be used to complement the accuracy to better assess performance. When the

class imbalance problem occurs in the training dataset, it may hinder the learning process of

classification algorithms [37]. Practically, if the imbalanced class distribution in the training

dataset matches the native class prevalence in the test scenario, then the dataset bias in

the learning process can be neglected. Yet, the described scenario does not apply to DDoS

attack detection.

Figure 8: Class Imbalance Problem Analysis – Linear SVM

1 The subtitle of each figure depicts the ratio of attack and legitimate traffic in the training sets.
X-axis present the ratio of attack and legitimate traffic in the testing case.

From the perspective of a DDoS attack detector, attack traffic usually represents a very

small subset of all network traffic it observed, particularly in stealth attacks. However, when

an attack happens, the attack traffic may become the majority class among the traffic that

is observed by the detector. Hence, it is common that the detection scheme is dealing with

highly imbalanced dataset, and the dominant class is non-stationary. Represented in our
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benchmark, the attack traffic is the minority class during the training phase, but it becomes

the majority class after the attacker increases the attacking volume, shown in Figure 2.

Figure 9: Class Imbalance Problem Analysis – SVM with Polynomial Kernel

To assess the impact of the class imbalance problem in the training datasets, we gener-

ate a set of training data with different degrees of imbalance. We apply a simple random

under-sampling method to create five subsets from the training dataset Tr. Each subset

contains 70,000 packets, and the percentage of attack traffic in each subset is drawn from

{10%, 30%, 50%, 70%, 90%}. All ML-based techniques are trained with each subset indepen-

dently. Five models are then built for each technique. Due to the limited number of ICMP

legitimate traffic, only TCP traffic is considered in this experiment. For testing, we apply

five trained models on the testing dataset Ts from Exp.1. The results show that the family

of SVM techniques exhibits the strongest sensitivity to the imbalanced training datasets,

while other techniques are affected slightly.

To further study the correlation between the class imbalance of the training data and the

performance, we generate nine subsets from Ts with different ratios of attack to legitimate

traffic packets. Each subset contains 100,000 packets, and the percentage of attack traffic

in each subset is drawn from {10%, 20%, 30%, ..., 90%}. The procedure of generating testing

samples is repeated 10 times. In total, 90 test cases are used to assess the impact of the

imbalanced and balanced training models on the performance of each technique. Figure 8- 10

displays the results of linear SVM, Poly-SVM and RBF-SVM. Trained with small percentage
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of attack traffic, all SVM models tend to label most samples as legitimate traffic. Using a

relatively balanced training dataset, the results show that the robustness of the model is

improved. It is worth noting, however, that a balanced dataset does not necessarily achieve

the best performance. A sophisticated kernel, such as RBF-SVM, can identify the hidden in-

formation by mapping features into higher dimensions. Specifically, RBF-SVM outperforms

linear SVM when extremely imbalanced training data is used, although its overall perfor-

mance remain less than optimal. On the other hand, the sophisticated kernel exhibits higher

sensitivity to the data balancing, making it difficult to optimize its performance without

degrading the robustness of the model.

Figure 10: Class Imbalance Problem Analysis – SVM with RBF Kernel

In summary, the results clearly show that the impact of the class imbalance problem

in datasets should not be neglected. Carefully designing the training process, analyzing

the application scenario and choosing the appropriate method are critical for a successful

intelligent DDoS detection scheme. Additionally, detection DDoS attacks in dynamically

changing environment remains a challenge for ML-based detection methods.
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3.5 Summary

In this chapter, we conduct a series of experiments to explore the advantages, limitations

and influential factors for ML-based DDoS detection techniques. The detection capabilities

exhibited by ML-based techniques are evident, although no single technique that outperforms

all others in all test cases. Additionally, different techniques exhibit different preferences over

feature types, emphasizing the significance of feature selection and suggesting that feature

selection should be model oriented.

The sensitivity analysis illustrates the observed traffic proportions severely impact the

performance of traditional detection methods that rely on monitoring the two-way traffic.

Although ML-based techniques display weak correlation with the proportion of the observed

traffic, the observed portion does indeed cause higher performance variance.

Lastly, we explored the impact of the class imbalance problem on the performance of

ML-based techniques. The results show that the impact of the class imbalance problem

should not be underestimated, especially with respect to the dynamically evolving nature

of DDoS attacks. Future work can be focused on investigating an ensemble of intelligent

schemes, strategically distributed across the network, using an appropriate feature selection

model for an adaptive and efficient DDoS detection.
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4.0 A Hybrid DDoS Detection Model

Machine learning techniques exhibit inevitable capability of offering high flexibility in the

classification process, consequently improving the detection of DDoS attack traffic. These

techniques are capable to intelligently learn the underlying data attributes without the need

to explicitly describe normal and malicious activities. However, traditional machine learning

techniques struggle to capture the evolving nature of DDoS attacks. We believe that a

significant part of the problem stems from the failure of hand-crafted feature engineering

to represent traffic behaviors. However, extracting desired features is costly, which is not

affordable for an effective inline inspection for every single on-going network flows. To

overcome these limitations, a light-weight Deep Learning approach is proposed in section 4.1,

which is capable of distinguishing malicious traffic flow by inspecting only a small number

of raw packets header information from each flow. As such, a truly real-time and affordable

inline inspection is provided.

Although machine learning based techniques, such as the deep learning approach pro-

posed in this chapter, hold great promises for accurately detecting DDoS attack traffic, most

proposed DDoS detection solutions lost the connection to the problems that are required

to address in the real world. Detailed challenges are discussed in section 4.2. Additionally,

adapting a machine learning apporach to mitigate DDoS attack is not an easy job. Any

assumptions or expectations for proposed machine learning approaches to be “ready-to-use”

will lead to an ineffective mitigation system. To further address the challenges and fit the

detection model to a distributed defense system, we introduce a network status awareness

model, which plays a complementary role to the flow based detection model, and then ex-

tended the proposed detection model to facilitate a network-wide coordinate defense system.
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4.1 A Long Short-Term Memory Enabled Framework for DDoS Detection

In this section, we describe a novel deep learning DDoS detection scheme, which only

uses raw packet header information as input and does not require feature engineering. At

the core of the scheme is Long Short-Term Memory, a Recurrent Neural Network(RNN)

architecture, used to learn the network traffic behavior, and distinguish attack network flows

from legitimate flows, by examining a relatively small number of packets from each flow.

We start with the motivation behind this proposed scheme, then describe the details of

the proposed detection model, and summarize this section with the detection performance

discussion.

4.1.1 Motivation

A machine learning based traffic classification workflow usually requires a two-stepped

process for feature engineering. In the first step, an appropriate set of features is extracted

to characterize the signature of the collected data. In the second step, a feature selection

algorithm is applied to eliminate irrelevant features [14]. This process is not only labour

intensive, but also prone to errors. Firstly, generating a feature set that captures previously

unseen attacks behavior is challenging, and often involves deep understanding of the net-

work traffic behaviours and characteristics. Secondly, most feature selection algorithms are

based upon the strong assumption that features are independent from each other [42,46,71],

erroneously ignoring the intrinsic temporal and spatial correlations between the features.

Lastly, training and feature selection, which are treated as two separate phases of the clas-

sification workflow, cannot be jointly optimized, thereby hindering the overall performance

of the detection scheme. Deep learning holds promise for addressing these key limitations.

Deep learning methods stack multiple layers of non-linear transformation hierarchically,

so that these methods can automatically extract complex representations hidden inside the

raw input [40]. For the task of classification, with ascending the layers, representations that

are important for class discrimination are amplified, and the irrelevant representations are

suppressed [91]. This process inherently embeds feature selection. As a result, both the
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transformations of the raw data into the distinctive representations and the classification

of these data into legitimate and malicious traffic are optimized jointly within the training

process. In addition to address these limitations, most importantly, the capability of deep

learning methods to automatically extract features from raw input data offers a practical

solution for a real-time flow by flow inspection.

To mitigate the DDoS attacks impact effectively without causing collateral damage to

legitimate users, a desired detection model should be capable of providing network flow

by flow based detection. A network flow is usually characterized as a sequence of packets

that share the same 〈 source IP, source Port, destination IP, destination Port, Protocol

〉. The ability of RNN to learn non-linear representations from sequential data makes it

a natural fit to determine if a sequence of packets is or is not malicious. RNN extends

the traditional feed-forward neural network by introducing a directional loop, so that the

sequential dependence between the current packet and the historical information carried by

previously observed packets is preserved. Thus, we propose to use a RNN model for DDoS

attack traffic detection.

4.1.2 Proposed Detection Scheme

Formally, a network flow, which consists of N network packets, can be described as a

sequence:

F = {p(1), p(2), ..., p(i), ..., p(N)}, p(i) ∈ Rm

where p(i)(1 ≤ i ≤ N) represents the ith packet of F . Each packet p(i) ∈ Rm is an m-

dimensional vector contains stored information p(i) = {p(i)1 , p
(i)
2 , ..., p

(i)
m }. In our proposed de-

tection scheme, the stored information is extracted from packets headers, including: source

Port, destination Port, packet length, Time To Live, FIN, SYN, RST, PSH,

ACK, URG, ECE, and CWR. To adequately explore the temporal information, we also

include three temporal features, which are: time past since last packet, time past since

the first packet, and average time interval between consecutive packets.

The above defined sequence of packets can be viewed as the language of network. Inspired

by the success of natural language processing, we employ LSTM as our detection model,
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which is one of the most popular and efficient variants of RNN [62].

Figure 11: The Architecture of Proposed Deep Learning DDoS Detection Model

There is not a standard guidance for choosing the number of hidden layers for LSTM

models. The rule of thumb is that two hidden layers should be enough for detecting complex

features. To choose the proper number of layers and architecture for the LSTM model, we

explored and evaluated multiple LSTM architectures, including one hidden layer, two hidden

layers and with an embedded layer. The one hidden layer LSTM architecture and the LSTM

model with an embedded layer are depicted in Appendices Figure 33 and A, respectively.

The LSTM model with two hidden layers outperforms the other two architecture, hence, is
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selected as the DDoS attack traffic flow-by-flow detector. Detailed description of the other

LSTM models architecture and the performance evaluation can be found in Appendix A.

The selected two hidden layers LSTM model is depcited in Figure 11, which is a four-

layered architecture, namely two LSTM layers, a dropout layer, and a fully connected layer.

The LSTM layers learn both temporal and spacial representations from the input sequential

data. Each unit in the LSTM layer contains three gates, namely input, forget and output,

which work together to learn the transformation of input values, the relevant information

from previously observed data, and the non-linear representation of the current state during

training. The dropout layer masks a random fraction of the input units at each update

step, while training the network. It adds noises to the LSTM layer, to avoid over-fitting and

improve the robustness of the trained model. A fully connected layer is used for classification.

For each network flow, F , a subsequence of n packets, S = {p(j), ..., p(j+n−1)}, S ⊂ F , is

inspected. Using S, the model classifies the traffic flow as either legitimate or malicious. The

value of n is pre-defined. If a flow does not have enough packets, S will be padded with fake

packets. A fake packet is an m-dimensional vector with values of zeros. If a flow has more

than n packets, only the first n packets are examined. The remaining packets are discarded.

To reduce the detection delay, a time window threshold is applied. The network flow is

examined when either n packets are observed or the time window threshold is reached. The

sensitivity of the scheme to n is discussed in section IV.

4.1.3 Dataset & Data Preprocessing

The experimental evaluation framework uses a widely accepted benchmark datasets,

CICIDS 2017 [67]. It was published by the Canadian Institute of Cybersecurity in 2017, and

contains realistic background network traffic and a variety of attack traffic. The datasets

cover five days of network traffic, two of which have DoS and DDoS attacks. We use these

two days’ traffic, denoted as Wednesday and Friday, as the evaluation benchmark. Table 4

presents the detailed attack types for each traffic collection.

Attack traffic in Wednesday was generated by four different tools. Three of them gen-

erated low-bandwidth application layer attack. These attacks require little bandwidth, and
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Table 4: Attacks in the Experiment Dataset

Traffic
Collection

Attack Gener-
ated Tools

Brief Description of Attacks

CICIDS 2017
Wednesday

HTTP Unbear-
able Load King
(Hulk)

Volumetric Attack.
Generate volumes of HTTP GET requests with
randomly generated header values.

slowloris Low-Bandwidth Application Layer Attack.
Open multiple HTTP connections. Continu-
ously send partial HTTP requests

slowHTTP Low-Bandwidth Application Layer Attack.
Send HTTP requests in pieces slowly, one at a
time to a Web server.

Golden Eye Low-Bandwidth Application Layer Attack.
Open multiple HTTP connections, and use
”keep alive” packets.

CICIDS 2017 Friday Low Orbit Ion
Cannon (LOIC)

Volumetric Attack.
Open multiple HTTP connections and continu-
ously send HTTP request messages

very stealthy. They aim to keeping the HTTP connections as long as possible using sim-

ilar but different strategies. Wednesday’s traffic also contains a volumetric attack, which

was generated by a tool named “Hulk”. Hulk can flood the victim with huge HTTP GET

requests from a single device. The packet header values of these requests are generated ran-

domly to confuse the victim, and make it hard to be detected. Friday’s attack was generated

by Low Orbit Ion Cannon (LOIC). LOIC floods targeted server using junk TCP, UDP and

HTTP GET requests through numerous attacking devices. Although classified as volumetric

attack, the traffic behavior is more similar to low bandwidth application attack than traffic

generated by Hulk, from the perspective of a single flow.

CICIDS 2017 datasets provide well formatted data files. In these files, each network flow

is characterized by more than 80 statistical features, and associated with a label indicating

whether it is a malicious flow. In addition to the well formatted network flow files, the raw

trace files (in pcap format) are also provided. Since the raw data is not labeled, we need

to reverse engineer the process to find the corresponding set of packets for each network

flow. We carefully check the timestamp, the number of forward and backward packets, the
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time duration, to make sure the mapping is correct and precise. However, the timestamp

granularity is not fine enough to find all the mappings. We discard the network flows and

packets that we did not find exact matches that satisfy our criteria.

4.1.4 Performance Evaluation

The goal of experiment 1 is to carry out a comparative analysis of the performance of

the proposed scheme, which only use the raw packet header information, and the traditional

machine learning methods, which rely on manually selected sophisticated features. In this

experiment, we split the benchmark datasets into three parts: training, validation and test-

ing, which contains 70%, 10% and 20% of the original data, respectively. We applied cross

validation to optimize the hyperparameters for each model. The training and testing process

is applied for Wednesday and Friday’s traffic collection, separately. To decided the value of

n for the proposed LSTM scheme, we analyze the number of packets associated with each

flow in the training datasets. We choose 10 as the value of n, which is the round up value

of the median. Hence, the LSTM model examines a sequence of 10 packets from each flow

and then classifies the flow as either legitimate or malicious.

The proposed LSTM detection model is compared with the state-of-the-art traditional

machine learning models, including Decision Tree (DT), Artificial Neural Networks (ANN)

and Support Vector Machine (SVM). Results are represented in Table 5. It shows that

both traditional machine learning methods and our proposed LSTM scheme are capable to

achieve nearly perfect performance on the testing case. It is worth noting that without using

flow-level statistical features, the proposed LSTM scheme can achieve not only competitive,

but slightly better performance in terms of all evaluation metrics.

Experiment 1 – A Standard Evaluation Experiment

The goal of experiment 1 is to carry out a comparative analysis of the proposed scheme, which

only use the raw packet header information, and the traditional machine learning methods,

which rely on manually selected sophisticated features. In this experiment, we split the

benchmark datasets into three parts: training, validation and testing, which contains 70%,

10% and 20% of the original data, respectively. We applied cross validation to optimize the
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hyperparameters for each model. The training and testing process is applied for Wednesday

and Friday’s traffic collection, separately. To decided the value of n for the proposed LSTM

scheme, we analyze the number of packets associated with each flow in the training datasets.

We choose 10 as the value of n, which is the round up value of the median. Hence, the

LSTM model examines a sequence of 10 packets from each flow and then classifies the flow

as either legitimate or malicious.

The proposed LSTM detection model is compared with the state-of-the-art traditional

machine learning models, including Decision Tree (DT), Artificial Neural Networks (ANN)

and Support Vector Machine (SVM). Results are represented in Table 5. It shows that

both traditional machine learning methods and our proposed LSTM scheme are capable to

achieve nearly perfect performance on the testing case. It is worth noting that without using

flow-level statistical features, the proposed LSTM scheme can achieve not only competitive,

but slightly better performance in terms of all evaluation metrics.

Table 5: Experiment 1 Results

Models
Wednesday Friday

P R F1 P R F1

DT 0.9986 0.9985 0.9985 0.9998 0.9991 0.9995

ANN 0.9971 0.9992 0.9982 0.9996 0.9998 0.9997

SVM 0.9505 0.5135 0.5925 0.8818 0.4543 0.5997

LSTM 0.9995 0.9997 0.9991 0.9998 1 0.9999

On one hand, the result confirms that the capability of machine learning techniques to

recognize patterns is evident. Taking a closer look at the results, it finds that except for

SVM, all other methods only mis-classified less than 20 flows for Friday’s dataset. It is

impressive, especially considering that tens of thousands of flows are contained in the test

data. On the other hand, the results does not benefit our community any further to solve the

practical problem by splitting the same dataset into training and testing. In this experiment,

the training and testing set are generated by a same (set of) tools. We can assume all testing
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samples are sufficiently represented in the training set, so the learning models can capture

the inherited patterns in the testing set successfully. However, in the real-world detection

scenario, the unseen attack is usually under-represented, if not un-represented at all, in the

available training data. The challenge in DDoS detection is to capture the dynamic traffic

behavior so that the similar attacking strategies can be identified in the future.

Experiment 2 – Testing on Unknown Dataset

In this experiment, we evaluate the proposed scheme’s capability to capture the dynamic at-

tack traffic behaviors. Specifically, we train the models on Wednesday and Friday’s datasets

separately, and test them on Friday and Wednesday’s datasets, respectively. For conve-

nience, we denote training on Wednesday’s datasets and testing on Friday’s datasets as

“WeTrFrTest”, and the other task as “WeTrFrTest”. As discussed in section IV, attacks in

these two days’ datasets are generated by different tools but with similar attacking strategies.

From the perspective of a single flow, the embedded attacking behavior should be similar.

A successful detection scheme is expected to capture the commonalities.

Figures 12 and 13 represent the results for “WeTrFrTest” and “FrTrWeTest” respectively.

The high variance presented by the performance of SVM shows that it is not a stable and

trustworthy detection scheme in this evaluated scenario. Thus, we leave SVM out in the

following discussions.

Training with Wednesday’s dataset, the traditional machine learning methods intend to

label more Friday’s traffic as legitimate rather than malicious, shown as high precision scores

and low recall scores. Differently, our proposed LSTM model intends to label more traffic

as malicious rather than legitimate, causing a high recall score but a lower precision score.

Balancing between the precision and recall, LSTM model slightly outperforms DT and ANN,

shown by the highest F1 Score.

Training with Friday’s dataset, the traditional machine learning methods fail to detect the

attack traffic in Wednesday’s dataset. The extremely low recall score presented by DT reveals

that it classifies most traffic flows into the category of legitimate. ANN performs better than

DT, but the similar conclusion can be drawn from the result. The proposed LSTM performs

equally good in all measurements, and it shows the significantly improvements in both recall

and F1 score.
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Figure 12: Training with Wednesday’s Dataset, and Testing on Friday’s Dataset

Experiment 3 – The Impact of Different Values of n

To classify network traffic, our proposed detection scheme needs to examine n packets of a

network flow. In this experiment, we study the impact of different values of n on the perfor-

mance. We train the proposed models with different values of n ∈ {3, 5, 10, 20, 30, 40, 50}.

Examining only the first 3 and 5 packets, the model lose the capability to distinguish

attack and legitimate traffic. It simply label all traffic as attack traffic. Analyzing the training

data, we observe that flows, which have large number of packets, are usually legitimate traffic

flows. The model may have learned this specific feature, and simply make the decision

accordingly.

Table 6 and 7 present the results for “WeTrFrTest” and “FrTrWeTest”, respectively.

From the table, it is observed that allowing the model to examine more packets for each

flow, with increasing n values, does not necessarily improve the performance. In Table 7,

examining 50 packets significantly degrade the scheme’s performance. Additionally, examin-
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ing larger number of packets increases the standard deviation of all measured metrics, which

indicates the consistency of the performance is also degraded by a larger value of n.

Figure 13: Training with Friday’s Dataset, and Testing on Wednesday’s Dataset

It seems to benefit the detection scheme by examining higher number of packets from

each flow, since more data is provided for the model to learn traffic behaviors. However,

if network flows are mostly short, such as in our benchmark, then the short flows will be

padded with zeros. These padding values may confuse the system and cause the performance

degradation.

4.2 A Hybrid DDoS Detection Model

Machine learning techniques, including deep learning approaches, hold great promises for

accurately detecting DDoS attack traffic. As illustrated in the previous section, using only
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Table 6: Evaluating the Impact of Different Values of n – WeTrFrTest

n Ave* P Ave R Ave F1 STD* P STD R STD F1

10 0.6823 0.9999 0.8111 1.0584 1.74e-05 7.86e-6

20 0.7125 0.9999 0.8321 0.0005 1.46e-5 0.0003

30 0.7205 0.9981 0.8368 0.0143 0.0041 0.0081

40 0.6271 0.8752 0.7283 0.2241 0.3294 0.2729

50 0.7321 0.9949 0.8432 0.0259 0.0064 0.0146

the raw packet header information, the proposed LSTM model even presents the potential to

capture the involving attack behaviors. However, most proposed DDoS detection solutions

lost the connection to the problems that are required to be addressed in the real world.

Table 7: Evaluating the Impact of Different Values of n – FrTrWeTest

n Ave P Ave R Ave F1 STD P STD R STD F1

10 0.8026 0.7235 0.7610 9.04e-6 2.87e-5 1.42e-5

20 0.8889 0.6010 0.7171 4.49e-6 1.01e-5 6.24e-6

30 0.8870 0.5957 0.7132 0.0007 0.0138 0.0103

40 0.8889 0.6010 0.7171 1.20e-5 7.87e-6 7.17e-6

50 0.8077 0.2821 0.2920 0.0127 0.3636 0.3756

Firstly, the detection capability of a proposed machine learning tool is usually evaluated

by a well-formatted dataset. Although the evaluation metrics are well studied and truly

represent the detection capability, it does not translate to real-world DDoS attack mitiga-

tion affects. Secondly, due to the special sensitive information that network traffic could

carry on, most datasets are either simulated or emulated in a research lab. The simulation

environment plays a critical role which are broadly neglected in the detection evaluation.
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The collected datasets could contain biases, and be built into the trained model. As such, a

poor performance will be observed, when the approach is applied in the real-world, or even

under a different simulation environment. Lastly, adapting a machine learning approach to

mitigate DDoS attack is not an easy job. Any assumptions or expectations for proposed ma-

chine learning approaches to be “ready to use” will lead to an ineffective mitigation system.

In Chapter 6, we use experiments further discuss these issues.

To improve the performance of the proposed LSTM detection model in real-world detec-

tion, and reduce the effect, In this section, we propose to have an additional detector, which

is aware of the current network status. When the LSTM model first introduce a network

status detection approach, which plays a complementary role to the LSTM model. Further-

more, we extend the stand alone detection model to a distributed and hybrid scheme, so

that it facilitates the coordinate detection mode and could also better serve in the proposed

distributed defense system.

4.2.1 A Network Status Detection

Numerous works have been published to discuss how to statically characterize network

status, indicating whether an anomaly or an intrusion event is taking place. In Chapter 2, we

have reviewed and discussed the limitations of traditional approaches on identifying abnormal

status of the network. One of the major challenges comes from the difficulty of defining a

reliable normal profile of the network. Fortunately, leveraging machine learning techniques,

the characteristics can be learned automatically. Additionally, the objective of this extra

detector is to identify network status, rather than specifically distinguish between the benign

and DDoS attack traffic. With this relaxed objective, challenges of feature engineering that

are faced by machine learning techniques for developing an effective DDoS detection are

actually relieved. Furthermore, with SDN, which offers the logically centralized view of the

entire network, the severe impact caused by the observation location is also alleviated.

DDoS attacks are typically launched from a very large number of distributed, remotely

controlled devices, organized into botnets and aimed at attacking the same target [5]. It is

often the case that a significant number of these devices are unwitting members of botnets,
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operating with spoofed network addresses. From the perspective of a network administrator,

when such attack events are happening, you likely to experience dramatically increased

number of source IP addresses that are targeting a small range of, if not the same, destination

IP addresses. These compromised devices usually have been injected with malware, with the

objective of rendering the target unresponsive to legitimate users. Different from people’s

response, the injected malware usually doesn’t response properly to the slow responsive

caused by connection congestion or overwhelmed computational resource exhaustion. By

analyzing the traffic, increased number of asymmetric traffic flows could be observed.

Figure 14: Network Status Detection Performance

According to the above observations and published works, we selected a set of features

for the network status detector. Firstly, we use entropy, which measures the randomness, to

represent the variance of the distribution of source IP addresses and source ports. Entropy

is a popular information metric in capturing the changes of network status. In [82], the

authors demonstrate that the entropy values of both source IP addresses and source port

numbers are significantly increased under a DDoS attack, comparing with a normal status.

Secondly, we measure the number of packets and the packet size carried by each flow within
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the pre-defined time interval. With genuine traffic, number of packets or number of bytes

for different flows could vary dramatically. However, traffic sent by a program may have

junk packets with similar sizes. Lastly, we count the number of asymmetric traffic flows. All

features selected are summarized as below:

(1) entropy of the source IP addresses

(2) entropy of the source Port

(3) standard deviation of the number of packets carried by each flow.

(4) standard deviation of the number of bytes carried by each flow.

(5) the proportion of interactive flow entries, which is calculated by the number of interactive

flow entries divided by the total number of flow entries.

These five selected features are applied with three classifiers: Naive Bayes classifier,

Support Vector Machine, and Decision Tree. The dataset used to evaluate the detector’s

performance is also from CICIDS 2017. The Friday’s data, which contains DDoS attack

traffic, is chosen to assess these three classifiers’ performance. The dataset is split into three

sets: training, evaluation and testing, the same as described in the previous section. The

traffic trace of each dataset is divided into a series of 10 seconds intervals. If attack traffic is

observed inside an interval, then the interval is labeled as an attack sample, otherwise, it is

considered as a legitimate sample. The standard evaluation process is conducted to choose

the best hyper-parameters for each classifier, and then compare their performance against

the test dataset. The performance comparison results, F1 score, is presented in Figure 14.

Appendix B shows the performance comparison results for Precision and Recall scores.

Naive Bayes classifier outperforms the other two, and is chosen to form the hybrid detector

with the LSTM model.

4.2.2 The Hybrid Detection Scheme

Due to the reasons that are discussed at the beginning of this section, features learned

by the LSTM model could be biased, which will degrade the detection accuracy when it is

deployed in a real-world defense system, or even in a different emulation environment. In

the Chapter 6, we use experiments to further elaborate this issue. To reduce this undesired
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effect, we propose having a detector, which is aware of whether the network is under an

DDoS attack event or not, as a guidance that complements to the LSTM model, especially

when it is not confident about the predicted results.

The workflow for the hybrid detection scheme is illustrated in Figure 15. The LSTM

detection model is a flow by flow detector. The input data is from the raw packets, which are

mirrored from switches. The mechanism of which packets and how the packets are mirrored

from switches are described in Chapter 5. Based on given packets, the detector extracted

header information, and store them for the corresponding flows. After receiving a pre-defined

number of packets from a specific flow, the detector is triggered. It reports the probability of

the given flow being malicious. As a binary classification model, the threshold is usually set

as 0.5. If the probability score is higher than this threshold, the flow is classified as malicious,

otherwise it is classified as legitimate. In our proposed hybrid detection scheme, we define

three value ranges for the reported probability, which represent malicious, suspicious and

legitimate. If the inspected flow is identified as an attack flow, then an alarm is raised, and

the detection model immediately installs the dropping rule for this malicious flow. If the

LSTM model does not have sufficient confidence to classify the flow as attack, but labels it

as suspicious. Then collaboration mode will be invoked. The LSTM detector consults the

current network status. If there is no DDoS attack event undergoing, the suspicious flow will

be labeled as legitimate, otherwise, it will be labeled as malicious, and the corresponding

dropping rule will be installed into switches.

The input for network status detector is the rule table statistics from switches. The

sentinel, which hosts the detection scheme (details are described in Chapter 5), periodically

requests flow stats from switches. After receiving the flow stats, the detector first extracts

desired features, and then identifies the current network status. If an DDoS attack event

is identified, the detector immediately updates the network status to be “under an attack

event”. If no DDoS attack event is detected, the detector does not update the network status

instantly. It will check whether the normal network status has been observed globally. Two

reasons are behind this design: first, even under a DDoS attack event, not all switches are

experiencing attack traffic. To better protect the network wide hosts and servers, the network

status should be updated in a more conservative fashion; second, the network status should
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be protected from constantly swaying. If an attack event is observed, the network should

keep cautious for a while until a reliable and stable normal state is confirmed. An unstable

complementary consultant could interfere the LSTM detection and raise the number of false

negative, which could cause the most unintended consequences.

Figure 15: The Hybrid Detection Scheme
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4.3 Summary

In this chapter, we introduce a hybrid DDoS detection approach, which combines a

LSTM-based networ traffic flow-by-flow DDoS detector and a network status detector.

The LSTM detection model avoids manual feature engineering, thereby addressing a sig-

nificant shortcoming of classic machine learning methods. The ability of the scheme to auto-

matically learn complex representations to successfully classify legitimate and attack traffic

flows is empirically confirmed. Using unknown traffic, the results also show the potential

to capture the involving DDoS attack traffic behaviours. Most importantly, the proposed

LSTM model offers a practical solution for real-time inline inspection.

The network status detector uses a classic machine learning model. In stead of identifying

specific attack network flow, it leverages network statistics to be aware of the network status.

It plays a role in improving the LSTM detection results, especially when the LSTM detector

is not confident about the decision.

Finally, we introduce a novel mechanism that unites both the deep learning and the

network status detector to construct a hybrid DDoS attack detection scheme. Two models

are complement each other. Their empirical performance is evaluated in Chapter 6.
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5.0 A SDN-Centric Infrastructure Design

SDN physically separates the control plane and the data plane of the networking protocol

stack [38]. The disaggregation of these two planes adds flexibility to the network architecture,

enabling the controller to develop a global view of the network and share information about

the entire state of the network with the applications. Thus, SDN offers a new opportunity

to effectively defend against DDoS attacks ascribing to its flexibility, programmability and

maintainability.

Harnessing the availability of network state information, a number of SDN-based ap-

proaches have been proposed to detect and defend against DDoS attacks [13, 20, 78, 86].

Although improvement has been reported, a number of fundamental challenges remain to

be addressed. First, SDN centralized controller does not only provide a global view of the

network, but also facilitates a variety of dynamic responses. By leveraging this property, a

defense system is, naturally, designed as an application attached to a centralized controller.

Via the centralized controller, these defense systems are capable of collecting real-time net-

work traffic statistics from switches, and integrating mitigation rules into switches. However,

naively utilizing the centralized controller could cause the defense system itself become a

bottleneck. The tremendous and heterogenous data required from switches could cause the

communication channel between switches and controllers under congestion, and further ex-

haust resources of both the controller and switches. To this end, an effective defense system

must be lightweight to avoid excessive communication costs and processing power usage,

especially, at the peak of an attack. Second, a SDN switch is only able to report basic flow

counter information [1]. Detection approaches that rely on sophisticated flow statistics need

to deploy extra appliances or implement flow information pre-processing [92], which incurs

extra deployment costs and makes inefficient use of the resources. The potential of high

speed transmission provided by SDN is, thereby, wasted. Thus, how to make full use of the

SDN characteristics and smartly mitigate the DDoS attack using basic flow information is

still a challenge problem.

In this chapter, we introduce a lightweight distributed and collaborative DDoS defense

52



system, which circumvents the above challenges. By leveraging a distributed architecture,

both the computational and communication burdens are relieved from the controller. This

defense system monitors ongoing network traffic, distinguishes malicious traffic from legiti-

mate traffic, and blocks attack traffic in an efficient and effective manner.

5.1 Backgrounds

Before introducing the defense system in detail, this section describes the basic working

mechanism of the SDN. Figure 16 depicts the layered architecture of a distributed SDN. The

infrastructure layer contains network elements and devices, such as routers, switches, virtual

switches, etc., which provide network packets forwarding in accordance with the instructions

from the control plane. The middle layer of the architecture is the control layer, which is

regarded as the network operating system. It supervises the network forwarding behavior

through south bound open interface. To improve the scalability and reliability of SDN, the

control layer is usually a distributed system [8]. The communications among controllers

are enabled by the East-West bound APIs. The top layer is the application layer, which

comprises end-user applications. These applications are designed for the network control

logic and management. Routing, traffic engineering, intrusion detection, and load balancing

are typical examples. The boundary between the application layer and the control layer is

traversed by the northbound open interface.

Having these separate layers, how does a single network packet get across the network?

As the first standard communication protocol defined between the control and forwarding

layers, OpenFlow has been adopted the most in SDNs. In Figure 17, we use OpenFlow

as an example protocol to demonstrate how the controller guides the switches to forward

packets. When a new packet comes (step 1), which does not match any rules in the switch’s

flow tables, the switch sends a PacketIn message to the controller (step 2). The controller

could send the switch a PacketOut message to indicate the forwarding action directly or a

flow mod message (step 3) to add a new entry into flow tables (step 4). In both manners,

the correct forwarding port is included inside the action list, and the switch forwards the
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packet via the required port (step 5). If a new entry, also known as a forwarding rule, is

installed in the switch, then future packets from the same network flow do not need to be

sent to the controller. The switch is capable of applying the matched action automatically.

With this programmatic framework, SDN enables security applications to tailor the network

behaviors for mitigating DDoS attack impact and further protect connected hosts.

Figure 16: A Three Layer Distributed SDN Architecture

5.2 Traffic Flow Setup in SDN with DDoS Detection

Taking advantage of SDN’s programmability, the proposed DDoS detection model could

be implemented as an application, which is attached with the SDN controller. The workflow

of how the controller guides the switches to forward packets is then updated and shown in

Figure 18 and 19. Figure 18 illustrates when a new packet comes, which does not match

any rules in the switch’s flow tables, how the controller guides the switch to forward the

packet. First, the switch forwards the packet to the controller via a PacketIn message (step
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1), same as without the DDoS detection model. After receiving the PacketIn message, the

controller sends out the forwarding rules to the switch via the flow mod message (step 3).

This forwarding rule does not only include the forwarding port to the destination, but also

include the forwarding port to the controller. The switch installs the rule as a new entry in

its flow tables (step 4). The packet is forwarded via the required port to its target destination

(step 5.2). Additionally, the packet header information is forwarded to the DDoS detection

model by the controller (step 5.1).

Figure 17: Network Flow Set-up in SDN

Installed with the forwarding rule, how does switches deal with packets from the same

network flow is depicted in Figure 19. When a known packet comes to the switch, the switch

forwards the packet to its destination through the desired port, which is indicated by the

entry in the flow table (step 2.1). At the same time, the packet is also forwarded to the

controller (step 2.2), since the port to the controller is also part of the flow entry’s action

list. The controller forwards the packet header information to the DDoS detection model

(step 3). The LSTM detector is triggered after receiving N packets from the same network

flow, meanwhile it sends out a message to the controllers for stopping forwarding future

packets from the same network flow (step 4). To eliminate the controller’s port from the

action list, another flow mod message is sent to the switch (step 5), so that packets will
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not be mirrored to the controller any more. Additionally, the DDoS detection application

periodically sends out the flow statistics request via the controller (step 6), which requires

the switch to send flow statistics based on its flow tables (step 9). With both flow statistics

information and the packet header information, the DDoS detection model classifies the

assessed network flow with either the label of legitimate or attack. If an attack network flow

is detected, an attack alert will be sent to the controller immediately (step 8). As soon as the

controller receives the attack alert, a new flow mod message is broadcast to all associated

switches (step 9) to drop malicious network flows via adding a flow entry, which guides the

switch to drop packets from the malicious network flow (step 10). If the examined flow is

legitimate, the detection model does not communicate with controllers, and then no actions

are sent to switches. Readers may notice that with the introduced workflow, the controller

has to handle a number of extra messages for each single network flow. Considering the huge

number of network flows a switch deals with, the tremendous data sent to the controller

could cause the communication channel between switches and controllers under congestion,

and further exhaust resources of the controller. In the next section, we describe our design

of a distributed and collaborative SDN centric defense architecture, which relieves both the

computational and communication burdens from the controller.
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Figure 18: Network Flow Set-up in SDN – with DDoS Detection Model

5.3 System Design Architecture

SDN offers a great opportunity to effectively defend against DDoS attacks ascribing to its

logically centralized control, programmatic framework, and vendor agnostic implementation

interfaces. However, simply assuming that these characteristics can provide any desired flow

statistics and easily gather tremendous data from switches may cause the defense system

itself become a bottleneck. In this section, we leverage SDN features further and propose

a distributed infrastructure, which coordinately defenses against DDoS attacks and obvi-

ates the burden from both the switch-to-controller communication channels and controller’s

computational resources.

An instance of the proposed infrastructure is depicted in Figure 20. The network ele-
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ments in the proposed infrastructure can be roughly classified into three categories, namely

the controller, sentinels, and switches. This proposed system does not need to modify the

current packet forwarding diagram. We use OpenFlow [49], which is one of the most widely

adopted open standards for SDN architecture, as a representative of network control APIs

of SDN. Switches in this proposed architecture could be any off-the-shelf OpenFlow com-

pliant switches. This enhances the potential of deploying the proposed defense system in a

practical setting. A controller refers to an SDN controller, which acts as the network oper-

ating system. It interacts with OpenFlow switches to instruct switches with the forwarding

rules, and request network statistics from switches’ flow tables, as discussed in previous sec-

tions. Sentinels are simplified controllers, which are dedicated to make all decisions driving

network-wide security, including DDoS detection, dynamic installation of throttling rules and

Figure 19: Network Packets Forwarding – with DDoS Detection Model
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communication of throttling signals across different sub-networks. The lightweight DDoS de-

tection model is equipped as an application for each sentinel. As such, sentinels are capable

to make independent decisions regarding its monitored network traffic. As shown in the

graph, each sentinel guards a subset of the switches, so that the high demand of the com-

putational resources and communication tasks can be distributed into several sentinels. The

number of sentinels can be decided by multiple factors, such as the size of the network, the

cost budget, the expected traffic volume, and etc.

Communication channels among sentinels are built with the “publish and subscribe”

messaging paradigm to facilitate information exchange among sentinels. Each sentinel is

subscribed to its neighboring sentinels for receiving messages, at the meantime, itself is a

publisher for sending out messages. With this communication channel, sentinels are easily to

obtain a global view of the network without interacting with the controller. Additionally, we

also build a communication channel between sentinels and the controller, so that sentinels

are capable of installing a network-wide throttling policy via the controller.

Figure 20: The Architecture of the Proposed Defense System
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The workflow diagram for a particular network flow is shown in Figure 21. When a new

packet arrives at the switch and does not match any rules in the switch’s flow tables, the

switch will consult the controller about the action for this packet via OpenFlow Packet In

message. The controller, relies on the network topology, sends back a Flow Mod message

to inject a forwarding rule into the switch’s flow tables. This forwarding rule does not

only indicate the desired forwarding port to the destination for this coming packet, but also

instruct the switch to mirror future packets from the same network flow to the sentinel.

Upon receiving the forwarding policy from the controller, the switch forwards the packet to

the desired destination and also mirrors the packet to the sentinel. After N packets from

the same network flow have been observed, or a pre-defined time window has reached, the

DDoS detection application, which is attached with the sentinel, is triggered. Then, the

sentinel informs the switch to stop mirroring future packets. Due to the space limitation,

Figure 21 only depicts one situation that N packets have been observed. As soon as the N

packets have been forwarded to the sentinel, sentinel will remove the forwarding rule from

the switch, so that future packets from the same flow won’t be forwarded to the sentinels

any more. If the detection model identifies the examined network flow as attack traffic,

the sentinel will immediately inform the controller, and the controller installs a drop action

for this identified malicious network flow globally. If the detection model identifies the

network flow as legitimate traffic, no further actions will be applied. The installed rules

are kept valid for guiding future packets with correct forwarding path to its destination.

Given this proposed defense system, the burdens of continuous traffic monitoring and extra

communication between switches and controllers are carried out by sentinels.

5.4 Extended Collaborative Detection Models

Since DDoS attack is distributed across the whole network by nature, a coordinate mon-

itoring and detection system is required to efficiently defend against DDoS attacks. To this

end, we extend the detection model described in Chapter 4 to facilitate collaborations among

detection nodes. This collaboration, which overlays different areas of the network, is capable
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of providing more comprehensive view of the network traffic status, hence lead to more accu-

rate detection results [43]. In this section, we present two collaborative detection modes, one

is only extending LSTM model alone without the involvement from network status detector,

and the other is extending the network status detector to be aware of the global network.

Figure 21: The Workflow Diagram for a Sequence of Packets

In our proposed defense system architecture, the detection model is implemented as an

application attached to a specialized controller device, which is called sentinels (as described

in the previous section). In a large network, each sentinel is associated with multiple switches.

In each sentinel, information observed by these multiple guarded switches can easily be

shared. The collaboration should not only be facilitated inside each sentinel, but also should

be conceived among sentinels. Hence, the network traffic monitoring can be realized in a

truly globally fashion. To achieve this goal, we implement a communication channel among

sentinels, so that the collaboration does not only happen inside each sentinel, but also among

different sentinels across network areas.

When the detection model is triggered, based on given packets’ header information, it

reports the probability of the given network flow being malicious. As a binary classification
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model, the threshold is usually set as 0.5. If the probability score is higher than this threshold,

the flow is classified as malicious, otherwise it is classified as legitimate. In our proposed

detection model, we define three value ranges for the reported probability, which represent

malicious, suspicious and legitimate. The two collaborative modes react differently when a

suspicious network flow is detected.

Figure 22: Collaborative Detection Workflow – LSTM Model Alone

In the LSTM alone mode, the collaboration mode will be invoked. The sentinel gathers

information from its neighbored sentinels, and the LSTM model concatenates these addi-

tional data and applies the classification algorithm again. With the obtained centralized

information, if LSTM model is still not confident with the classification result, in other

words, the probability of examined network flow being malicious still falls in the range of

suspicious, 0.5 will be used as the threshold for making the final decision. Figure 22 illustrates

the collaborative detection loop with the LSTM model alone.

With the hybrid detection model, if the LSTM detector is not confident about the classi-

fication results, it consults the network status. The workflow has been thoroughly described
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in Chapter 4. The network status detector periodically collects network statistics from at-

tached switches. Based on the extracted features, the detector keeps the network status

profile updated, which indicates whether the network is under a DDoS attack or not. Same

as the LSTM model, three value ranges are designed for the network status detector. If the

network status detector cannot make the assured decisions, it seeks help from neighbored

sentinels. Depends on other neighbor networks status, the detector adjusts its uncertain

decisions. The abstracted detection loop is illustrated in Figure 23.

Figure 23: Collaborative Detection Workflow – Hybrid Model
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5.5 Summary

In this chapter, we demonstrate the system architecture design for our proposed DDoS

defense system in SDN networks environment, which leverages the OpenFlow protocol capa-

bilities to maintain a global view of the network, without causing a bottleneck. Specifically,

we illustrate in detail the workflow of a single controller communicates with both switches

and detection models to accomplish the detection and mitigation tasks. To alleviate the

communication and computational burdens from the controllers, we introduce a specialized

controller, sentinel, and present how sentinels work in a large-scale networks. To maintain

the logically global view and fully exploit SDN’s potential for DDoS defense, we extend the

detection models to allow them to be operated under a distributed and collaborative manner.
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6.0 Evaluation of the Proposed DDoS Defense System

DDoS defense system is a complex system, the effectiveness of its mitigation capability is

subject to multiple factors, such as attack detection, percentage of legitimate traffic delivered

during an attack, overhead introduced to controllers, and etc. It is difficult for an analytical

framework to precisely capture all these measuring aspects of a DDoS defense system in a real

environment. Therefore, a functional prototype is necessary to analyze its validity as well

as measure its actual performance. In this chapter, we provide a prototype implementation

of the proposed defense system in a SDN environment, and evaluate its effectiveness of

mitigating the impact of DDoS attacks on target hosts.

6.1 Experimental Setup

The proposed DDoS defense system is implemented using Mininet [50], an emulator for

deploying large networks on limited resources. Mininet provides convenience and realism

at very low cost, and have been widely used to evaluate the performance and demonstrate

the functionalities in the research field of SDN. With Mininet, we construct the whole SDN

architecture, including all three layers: the application layer, the control layer and the data

layer. We choose OpenFlow protocol [49] as a representative of network control APIs for

SDN, which governs the communication between controller/sentinels and the network for-

warding devices (switches). OpenFlow is one of the most widely adopted open standards for

SDN architecture, and has already become the de facto standard. The OpenFlow switches

created by Mininet provide the same packet delivery semantic that would be provided by

a hardware switch. Both user-space and kernel-space switches are available. Switches in

this proposed architecture could be any off-the-shelf OpenFlow compliant switches. This

enhances the potential of deploying the proposed defense system in a practical setting. Us-

ing Mininet, we implement the proposed detection model, or called security module, upon

POX controller, which is a well-known and widely adopted SDN controller platform. The
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detection model is equipped as an application to each sentinel. Communication channels are

also built among sentinels, and between sentinels and the controller.

Figure 24: Topology of the Testing Scenario

Mininet does not only provide a handful default topologies, but also allows developers

to customize topologies as needed. Figure 24 depicts our testing scenario’s topology, which

consists of a SDN controller, two sentinels, six OpenFlow switches and 12 hosts. The de-

tection module is implemented as an application attached with each sentinel, so that one

sentinel has the capability of making independent security decisions. The six switches are

connected to a single controller, and guarded by two sentinels. Host 7 in the topology is

the destination for all network traffic, including both legitimate and attack traffic. Hosts 1,

3, 9 and 12 are the sources to send out network traffic. Green colored path indicates the

legitimate traffic, and the red colored paths are the attack traffic traversing paths. Sentinels

in different positions are observing different types of traffic, some of them, such as s1 and s2,
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only observe one type of the traffic, while others, such as s3 and s4, observe mixed types of

traffic. Actually, s4 is the last switch before the traffic is delivered to the destination host,

which experiences the aggregated traffic. We believe this reflects the realistic situations.

Figure 25: Individual Defense Scheme

To emulate the realistic network environment with this simple topology, we preserve all

IP addresses from the original datasets, so that switches are dealing with significant diverse

network traffic flows. To replay the traffic among hosts, we modify the MAC address. When

switches forward the unseen packets to the controller, the controller determines the correct

forwarding path based on packets’ MAC address. At the same time, a forwarding rule, which

is matching the IP address, is installed in switches.
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6.2 Comparative Schemes

In order to compare our proposed collaborative defense systems with other non-collaborative

and “ideal” systems, we implement three different defense schemes. In scheme 1, which is

called “individual” mode, we attach the detection sentinel to each switch. Sentinels apply

their detection role individually. Although sentinels follow the same work flow to inform

the controller any identified attack flows, they do not collaborate with their peers to gather

network traffic/status information. Additionally, the detection model implemented within

sentinels does not maintain the suspicious range. If the probability of the inspected flow be-

ing malicious is higher than 0.5, then the flow is identified as an attack flow. Otherwise, it is

labeled as a legitimate flow. Figure 25 depicts this scheme. This is a very expensive scheme,

due to the resources allocated for each sentinel. Although there are no communication costs

among sentinels, it requires that one sentinel fully guards only one switch.

Scheme 2 is a “semi-collaborative” mode, in which each sentinel guards a couple of

switches. Within the same sentinel, information observed among the guarded switches is

shared in the detection model. However, the collaboration among peer sentinels is not

provided. Figure 26 illustrates this scheme.

In Scheme 3, we implement a “centralized” scheme, in which one sentinel is able to

monitor the entire network, and the detection model is attached as an application to the

centralized sentinel. This actually represents an “ideal” scheme, disregarding the intensive

communication and computational burdens and the potential risk of introducing a bottleneck

to the network. In this case, we assume the system has infinite buffering and computational

resources. In this scheme, the global status is easily to be obtains, without the need of

building any communication channels. Figure 27 depicts scheme 3 applied in our testing

topology.
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6.3 Dataset and Evaluation Metrics

The dataset, CICIDS 2017, we used in this evaluation framework is the same dataset we

used for assessing the detection performance. This dataset was published by the Canadian

Institute of Cybersecurity in 2017, and is a widely accepted benchmark datasets. It contains

realistic background network traffic and a variety of attack traffic. The datasets cover five

days of network traffic, one of which has DDoS attacks. We use this one days’ traffic

as the evaluation benchmark. The recorded DDoS attacks were generated by Low Orbit

Ion Cannon (LOIC). LOIC floods targeted server using junk TCP, UDP and HTTP GET

requests through numerous attacking devices.

Figure 26: ‘Semi-Collaborative’ Defense Scheme

CICIDS 2017 datasets provide well formatted data files. In these files, each network flow

is characterized by more than 80 statistical features, and associated with a label, indicating
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whether it is or not a malicious flow. In addition to the well formatted network flow files,

the raw trace files (in pcap format) are also provided. Since the raw data is not labeled,

we need to reverse engineer the process to find the corresponding set of packets for each

network flow. To ensure the correctness of the mapping, we carefully check the timestamp,

the number of forward and backward packets, and the time duration for each flow. However,

the granularity of the timestamp provided in the well formatted data is not fine enough to

find all the mappings. We discard the network flows and packets that we could not find

exact matches that satisfy our mapping criteria. The number of packets for each teat cases

is summarized in table 8.

The evaluation for detection models has been discussed in Chapter 4, and is omitted

from this chapter. Here, we focus on evaluating the effectiveness of the impact mitigation

Figure 27: ‘Ideal’ Centralized Defense Scheme
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Table 8: Number of Packets in Each Test Case

Test Cases Total Packets Legitimate Packets Attack Packets

1 395,757 278,129 117,628

2 243,026 41,699 201,327

3 250,873 43,518 207,355

4 245,139 66,339 178,800

5 395,344 335,648 59,696

provided by the overall defense system. Ideally, from the perspective of the targeted host,

an efficient and effective defense system should be able to protect the host from receiving

attack traffic as much as possible, at the meantime, it should also deliver the legitimate traffic

to the desired destination as much as possible. To evaluate how effective the capability of

mitigating the DDoS attack impact, we use the following performance metrics:

• Mitigation Rate (MR): to measure the percentage of blocked attack traffic in all attack

traffic.

• Delivery Rate (DR): to measure the percentage of legitimate traffic has been successfully

delivered in all legitimate traffic.

• Overheads (OH): to measure the number of extra communication messages received and

have to be dealt by the controller.

6.4 Evaluation Results

In this section, we describe and discuss the attack traffic mitigation effectiveness in

terms of the three performance evaluation metrics: the attack traffic mitigation effectiveness,

the legitimate traffic deliver rate and the overhead for controllers. We first examine the

performance of using the LSTM model alone as the detector, then examine the performance
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of the hybrid model as the detection module. Both detection models are evaluated based

on their extend modes, which facilitate the collaboration among different detection nodes

across the whole network.

6.4.1 Attack Traffic Mitigation Effectiveness

We capture the replayed traffic at the destination host, which is host 7 (refer to Figure 24)

in our testing topology. We measure the number of delivered attack packets, and calculate

the mitigation rate by using the number of dropped attack packets divided by the number of

total attack packets. The higher the mitigation rate the better the defense system performed

in reducing the impact of the DDoS attack traffic.

Figure 28: Mitigation Effectiveness Evaluation 1

Let’s first discuss the LSTM model alone as the detection module. Figure 28 presents

the attack traffic mitigation rate of four evaluated schemes. Focusing on the LSTM col-

laborative scheme first, which is labeled “collaborative” in the figure. Among the five test

cases, the highest mitigation rate mean value is around 70%, while the lowest mitigation
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rate mean value is around 40%. Specifically, using the proposed defense system, at least

40% of the attack packets are throttled for all test cases. Comparing with other schemes,

our proposed scheme outperforms both individual and semi-collaborative modes in all test

cases, and slightly worse than the centralized mode. For test case 4, the proposed defense

systems performs even better than the centralized mode, although it has higher variance.

Additionally, the individual mode performs the worst in all test cases. This result proves

that collaboration indeed helps the detection model better understand the network traffic

and make more accurate decisions.

Figure 29: Mitigation Effectiveness Evaluation 2

Including the hybrid detection model into the comparison, the result is represented in

Figure 29. Obviously, being aware of the network status significantly improves the attack

traffic mitigation rate, even surpasses the “ideal” scheme with LSTM detector alone. It

raises the lowest mitigation rate across all test cases to be around 50%, which means at least

50% of attack traffic has been filtered out before reaching the target destination. It achieves

almost 90% mitigation rate in test case 1, in which case the victim is well protected.
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Although at least 50% of the attack packets have been filtered out, higher attack mit-

igation rate is expected from the employed detection model, especially observing the near-

faultless detection results. Recall that the detection model uses the first N packets to trig-

ger the detection. Although the network status detector periodically actively investigating

whether a DDoS attack event is happening, it could not set up flow drop rules to mitigate

the attack impact. Hence, for the simplified topology that we used in this evaluation work,

these first N packets could already be delivered when the flow is recognized as an attack

flow, no matter whether the classification of the inspecting flow is correct or not. If attack

flows are short, then the mitigation would not be efficient enough, even though it achieves

high accuracy when testing alone.

Figure 30: Mitigation Effectiveness Evaluation 3

6.4.2 Legitimate Traffic Delivery Rate

The calculation of legitimate traffic delivery rate is also based on the captured replayed

traffic at the destination end, using the number of delivered legitimate packets divided by the
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number of total legitimate packets. Using LSTM model alone, results of four evaluated modes

are represented in Figure 30. With the collaborative LSTM detector, the defense system has

successfully delivered at least 80% of the legitimate packets to the desired destination for

all test cases. For some cases, such as test cases 3 and 5, the delivery rate is even close to

100%. Comparing with other modes, the proposed collaborative scheme clearly outperforms

individual and semi-collaborative modes, and even slightly surpasses the centralized mode

in certain test cases. This results prove that the proposed defense system is capable of

maintaining a fine balance between providing security and not causing collateral damage to

legitimate services.

Including the hybrid detection model into the comparison, Figure 31 represents the

legitimate delivery rate for all schemes. Except for test case 4, in which the defense system

achieves almost 100% legitimate traffic delivery rate, being aware of the network status

actually degrade the performance of the proposed defense system in terms of legitimate

delivery rate. Specifically, in test case 1 and 5, with network status detector, the legitimate

traffic delivery rate is slightly worse than the collaborative and ‘ideal’ modes, but still better

than individual and semi-collaborative modes. However, in test case 2 and 3, with hybrid

detector, more damages are caused to legitimate users than any other modes.

It worth noting that, again, better performance is expected according to the detection

evaluation result. This raises an open challenge for machine learning based DDoS detection

models, which is widely neglected. Most published DDoS machine learning based detection

models present the promising results for certain given test datasets. In these datasets, flow

features for the entire flow are summarized and provided. However, to achieve a real-time

detection and mitigation, decisions have to be made in fly. It is impossible to know any

summarized flow features or statistics in advance. Great performance in an off-line stand

alone testing does not guarantee the efficiency in reality.

6.4.3 Overhead

In our proposed defense system, we leverage the specially designed “sentinels” to alleviate

the burden of traffic monitoring and malicious traffic detection from the controller. In other
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words, controllers neither need to collect packet information nor request flow statistics from

switches to support the DDoS detection. The only extra event that is introduced by the DDoS

defense system and needs to be handled by the controller is messages sent from sentinels.

When an attack flow is detected, sentinels inform the controller to install throttling rules for

the identified attack flow globally. Hence, from the perspective of a controller, the overhead

brought by the proposed defense system is the number of messages received from sentinels.

Figure 31: Mitigation Effectiveness Evaluation 4

Under the OpenFlow protocol, for packets that cannot be found matched entry in any

flow tables in switches, the default action is to forward these packets to the controller, which

creates Packet In events. The controller instructs the switch to install new flow entries

in the rule table. Each entry has two associated time-out fields: idle time-out and hard

time-out. The number of Packet In messages sent to the controller is obviously affected

by the values of these two parameters. If a reliable security application is equipped, for

any confirmed malicious flows, the idle and hard time-out values could be enlarged, which

leads to reducing the Packet In events. With an effective defense system, although extra
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messages are introduced by the deployed security application, the overall messages dealt by

the controller could be actually decreased.

Figure 32: Number of Messages Received in the Controller

We measure the number of messages received by the controller, including messages cre-

ated by both Packet In events and attack alert events. In our experiment, we follow the

POX controller’s default settings, in which the idle time-out and hard time-out are set as 10

and 30 seconds, distinctively. If flows have been confirmed as an attack or legitimate flow,

the controller installs the flow entry with idle time-out and hard time-out set as 100 and 300

seconds.

Figure 32 compares the number of messages received in the controller between with and

without the proposed DDoS defense system. The bars in the color of green series represent

the number of Packet In messages, which is sent from switches due to unmatched entry. The

bars in the color of red series represent the number of attack alert messages sent by sentinels

to the controller. We stack the number of Packet In messages and attack alert messages,

so that it is easy to compare the total number of messages received in the controller side.

The performances of the proposed defense system using the LSTM detection model and the
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hybrid detection model are represented separately. As shown in the graph, for all test cases,

with deploying the proposed DDoS defense system, the total number of messages is reduced,

no matter which detection model is equipped. If only considering the number of attack alert

messages sent to the controller, it occupies a very small percentage of the total messages.

The result confirms that the proposed defense system is indeed a lightweight scheme.

6.5 Summary

In this chapter, we present a prototype implementation of the proposed defense system

in a SDN environment, without any modifications to the OpenFlow protocol features or

OpenFlow switches. This enhances the potential of deploying the proposed defense system

in a practical setting. Additionally, we illustrate the design of an evaluation framework to

assess the performance of the proposed scheme and carry out a comparative analysis of its

performance with other schemes. The experimental results demonstrate that the proposed

scheme can effectively detect and throttle DDoS attack traffic without degrading the quality

of service for legitimate users. The comparative analysis also shows that collaboration among

sentinels across the network indeed improves the detection accuracy, and leads to a more

effective mitigation of DDoS impacts than stand alone systems. Furthermore, the overheads

caused by the proposed defense system is limited.
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7.0 Conclusion and Future Directions

A DDoS attack is an attempt to disrupt legitimate access to targeted computing re-

sources, including computer systems, network devices, servers and web applications. It is

known as one of the most destructive attacks on the Internet. With the advent and the

emergence of Cloud Computing and Internet of Things, on one hand, the revolutionized

technology enables the availability of services and applications to everyone. On the other

hand, these techniques also benefit attackers to exploit the vulnerabilities and deploy attacks

in more efficient ways. A subscription-based business model, DDoS-as-a-service, also known

as “booters” or “stressers”, even provides DDoS attacks as a low-cost service, and causes

DDoS attacks becoming accessible to the general public. Despite significant advances in the

state-of-the-art of system and network security, defending against DDoS attacks remains a

challenging problem.

This thesis presents an intelligent, distributed and collaborative DDoS defense system

to address the challenge. The proposed defense system unifies SDN and machine learning

techniques to provide a practical, yet efficient and effective solution to mitigate DDoS impact.

Detection plays a critical role in a DDoS defense system. Any mitigation strategies, which

are applied without successfully distinguish malicious traffic from legitimate traffic, will lead

to a service degradation from the perspective of legitimate users, and could further cause

sever collateral damages. The detection model that is integrated into the proposed defense

system takes advantage of machine learning techniques, and combines a network flow by

flow detector and a network status detector. Its ability to distinguish between attack and

legitimate flows by only examining a relatively small number of a network flow packets

enables the defense system to achieve a truly real-time inspection.

Leveraging the flexibility and the programmability of SDN, this thesis proposes a novel

defense system architecture comprising a network of peers, referred to as Sentinels, that

dynamically and collaboratively defend against DDoS attacks. Each sentinel, which is a

specialized controller, monitors a sub-area of the network, and is capable of making decisions

driving network-wide security control and policies individually. The communication and
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collaboration functionalities among sentinels are also provided by the proposed architecture

to achieve more effective DDoS mitigation.

This thesis systematically studies the effectiveness of and the overheads brought by the

proposed defense system. As a first step, a prototype implementation is provided in the

context of SDN. To compare with non-collaborative and “ideal” models, different modes are

also implemented. Then, the empirical evaluation with various measure metrics confirms that

the proposed DDoS defense system can effectively detect and throttle DDoS attack traffic

without degrading the quality of service to legitimate users. Additionally, the overheads

caused by the proposed defense system is minimal.

The study of defending against DDoS attack and mitigating its impact in this thesis is

not meant to be complete. Using the current detection model, although only a small number

of packets is inspected for flow level detection, a faster detection is favored. For example, if

the path from the detection point to the victim is really short, the delay caused by triggering

the detection module could lead to install a useless throttling rule, even though attack flow

is correctly identified. This observation points to the future direction of improving the

detection model with examining even less number of packets.

In current design, each detector was trained with the same training data. This is ignorant

of the influence of the locations where the sentinels are deployed at. Based on the analysis

conducted in [43], locations indeed affect the performance of detection approaches. To fully

explore the capability of machine learning models, and further utilize the SDN control plane,

customized training procedure for detection model according to its designed deployment

location is desired. Additionally, the sentinel should be aware of the difference between in-

bound and out-bound traffic. As such, not only the decision threshold for the detection model

could be dynamically adjusted, but also adaptive mitigation strategies could be applied.

Lastly, the idea of collaboration among sentinels can be applied to security policies

installation as well. Instead of having throttling rules installed in swithces only by the

controller, sentinels can utilize the collaboration channels and propagate the attack flow

information, and install security policies globally without sending any extra messages to the

controller. Hence, sentinels form an autonomous DDoS defense system.
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Appendix A Different LSTM Models

To select the proper number of hidden layers for the proposed LSTM detection model,

we have assessed multiple options. In addition to the described model in chapter 4, we also

evaluate LSTM models with one hidden layer and with an embedded layer. Considering the

complexity of our detection problem, we start with one hidden layer. Figure 33 depicts the

architecture of the LSTM model with one hidden layer. Furthermore, inspired by the word

embedding from natural language processing, we add one embedded layer for the FLAGS

fefatures, which is depicted in Figure A. We applied the K-fold evaluation to select the

optimal hyper-parameters of learning rate and the dropping rate. The learning rate is set

in range [0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001], and the dropping rate is set in range

[0, 0.01, 0.02, 0.03, 0.04, 0.05]. When the dropping rate is 0, the drop out layer is actually

ignored. After obtaining the best hyper-parameters for each model, we test and compare

them.

LSTM model with two hidden layers outperforms both the one hidden layer model, and

the model with an embedded layer. Due to the similarity between the one hidden layer and

two hidden layers structures, we draw the ROC curve to see whether a proper threshold

selection could achieve better results using one hidden layer LSTM. Among all 20 test cases

we analyzed, most test cases show the same pattern as test case 5 that is illustrated as

an example in Figure 36. It is obvious that the two hidden layers LSTM performs better,

no matter what threshold is chosen. Only one exception is observed, which is shown in

Figure A. In this exceptional case, when threshold is chosen around 0.15 and 0.2, which is a

rarely chosen and narrowed range, the one hidden layer LSTM slightly outperforms the two

hidden layers LSTM model. Hence, LSTM model described in Chapter 4 is chosen as the

flow-by-flow DDoS attack traffic detector in the proposed defense system.
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Figure 33: LSTM Model with Single Hidden Layer
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Figure 34: LSTM Model with Embedded Layer
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Figure 35: ROC Curve of One Hidden Layer

Figure 36: ROC Curve of Two Hidden Layers
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Appendix B Network Status Detection Performance

We applied three classifiers, Naive Bayes Classifier, Decision Tree and Support Vector

Machine, for network status detection. In Section 4.1, the F1-score of each classifier’s per-

formance is presented. In this appendix session, the precision and recall scores are shown in

Figure 37 and 38. These three classifiers all perform well in detecting whether DDoS attack

event is happening in the network. Naive Bayes classifier slightly outperforms the other two,

and, hence, become the choice for our network status detector.
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Figure 37: Network Status Detection Results – Precision

Figure 38: Network Status Detection Results – Recall

86



Bibliography

[1] OpenFlow switch specification: Version 1.3.0.

[2] Sharad Agarwal, Travis Dawson, and Christos Tryfonas. Ddos mitigation via regional
cleaning centers. Technical report, Sprint ATL Research Report RR04-ATL-013177,
2003.

[3] Majjed Al-Qatf, Yu Lasheng, Mohammed Al-Habib, and Kamal Al-Sabahi. Deep
Learning Approach Combining Sparse Autoencoder with SVM for Network Intrusion
Detection. IEEE Access, 6:52843–52856, 2018.

[4] Sardar Ali, Irfan Ul Haq, Sajjad Rizvi, Naurin Rasheed, Unum Sarfraz, Syed Ali
Khayam, and Fauzan Mirza. On mitigating sampling-induced accuracy loss in traffic
anomaly detection systems. ACM SIGCOMM Computer Communication Review,
40(3):4–16, 2010.

[5] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime
Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis Kallit-
sis, et al. Understanding the mirai botnet. In 26th USENIX Security Symposium
(USENIX Security 17), pages 1093–1110, 2017.

[6] Katerina Argyraki and David R Cheriton. Scalable network-layer defense against
internet bandwidth-flooding attacks. IEEE/ACM Transactions on Networking (ToN),
17(4):1284–1297, 2009.

[7] Katerina J Argyraki and David R Cheriton. Active internet traffic filtering: Real-time
response to denial-of-service attacks. In USENIX annual technical conference, general
track, volume 38, 2005.

[8] Fetia Bannour, Sami Souihi, and Abdelhamid Mellouk. Distributed sdn control:
Survey, taxonomy, and challenges. IEEE Communications Surveys & Tutorials,
20(1):333–354, 2018.

[9] Sunny Behal and Krishan Kumar. Detection of ddos attacks and flash events using
novel information theory metrics. Computer Networks, 116:96–110, 2017.

87



[10] Steven Michael Bellovin, Marcus Leech, and Tom Taylor. Icmp traceback messages.
2003.

[11] Sajal Bhatia, Desmond Schmidt, and George Mohay. Ensemble-based ddos detection
and mitigation model. In Proceedings of the Fifth International Conference on Security
of Information and Networks, pages 79–86. ACM, 2012.

[12] Monowar H Bhuyan, Hirak Jyoti Kashyap, Dhruba Kumar Bhattacharyya, et al.
Detecting distributed denial of service attacks: methods, tools and future directions.
The Computer Journal, 57(4):537–556, 2013.

[13] Rodrigo Braga, Edjard de Souza Mota, and Alexandre Passito. Lightweight ddos
flooding attack detection using nox/openflow. In LCN, volume 10, pages 408–415,
2010.

[14] Anna L Buczak and Erhan Guven. A Survey of Data Mining and Machine Learning
Methods for Cyber Security Intrusion Detection. IEEE Communications Surveys &
Tutorials, 18(2):1153–1176, 2016.

[15] CAIDA. The CAIDA ucsd ‘DDoS Attack 2007’ Dataset. https://www.caida.org/

data/passive/ddos-20070804_dataset.xml, 2007. Accessed: Sep.2019.

[16] Yuan Cao, Yuan Gao, Rongjun Tan, Qingbang Han, and Zhuotao Liu. Understanding
internet ddos mitigation from academic and industrial perspectives. IEEE Access,
6:66641–66648, 2018.

[17] Ruiliang Chen, Jung-Min Park, and Randolph Marchany. Nisp1-05: Rim: Router
interface marking for ip traceback. In IEEE Globecom 2006, pages 1–5. IEEE, 2006.

[18] Ashley Chonka, Jaipal Singh, and Wanlei Zhou. Chaos theory based detection against
network mimicking ddos attacks. IEEE Communications Letters, 13(9):717–719, 2009.

[19] Cisco. Cisco visual networking index: Forecast and trands, 2017-2022 white paper.
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/white-paper-c11-741490.html, 2019. Accessed:
Sep.2019.

[20] Yunhe Cui, Lianshan Yan, Saifei Li, Huanlai Xing, Wei Pan, Jian Zhu, and Xiaoyang
Zheng. SD-Anti-DDoS: Fast and efficient ddos defense in software-defined networks.
Journal of Network and Computer Applications, 68:65–79, 2016.

88

https://www.caida.org/data/passive/ddos-20070804_dataset.xml
https://www.caida.org/data/passive/ddos-20070804_dataset.xml
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html


[21] DARPA. 1999 DARPA Intrusion Detection Evaluation Data Set. https://www.ll.

mit.edu/ideval/data/1999data.html. Accessed: Sep.2019.

[22] Darrell Etherington and Kate Conger. Large ddos attacks cause outages
at twitter, spotify, and other sites. https://techcrunch.com/2016/10/21/

many-sites-including-twitter-and-spotify-suffering-outage/, 2018. Ac-
cessed: Sep. 2019.

[23] Thomer M Gil and Massimiliano Poletto. Multops: A data-structure for bandwidth
attack detection. In USENIX Security Symposium, pages 23–38, 2001.

[24] Shahzeb Haider, Adnan Akhunzada, et al. A deep CNN ensemble framework for
efficient DDoS attack detection in software defined networks. Ieee Access, 8:53972–
53983, 2020.

[25] Alex Henthorn-Iwane. Analyzing the Wikipedia DDoS attack. https://blog.

thousandeyes.com/analyzing-the-wikipedia-ddos-attack/, 2019. Accessed:
Sep.2019.

[26] Félix Iglesias and Tanja Zseby. Analysis of network traffic features for anomaly de-
tection. Machine Learning, 101(1-3):59–84, 2015.

[27] Ahmad Javaid, Quamar Niyaz, Weiqing Sun, and Mansoor Alam. A Deep Learn-
ing Approach for Network Intrusion Detection System. In Proceedings of the 9th EAI
International Conference on Bio-inspired Information and Communications Technolo-
gies, pages 21–26. ICST, 2016.

[28] Hossein Hadian Jazi, Hugo Gonzalez, Natalia Stakhanova, and Ali A Ghorbani. De-
tecting http-based application layer dos attacks on web servers in the presence of
sampling. Computer Networks, 121:25–36, 2017.

[29] Zhu Jian-Qi, Fu Feng, Yin Ke-Xin, and Liu Yan-Heng. Dynamic entropy based dos
attack detection method. Computers & Electrical Engineering, 39(7):2243–2251, 2013.

[30] Lei Jiao, Ruiting Zhou, Xiaojun Lin, and Xu Chen. Online scheduling of traffic
diversion and cloud scrubbing with uncertainty in current inputs. In ACM MOBIHOC,
2019.

89

https://www.ll.mit.edu/ideval/data/1999data.html
https://www.ll.mit.edu/ideval/data/1999data.html
https://techcrunch.com/2016/10/21/many-sites-including-twitter-and-spotify-suffering-outage/
https://techcrunch.com/2016/10/21/many-sites-including-twitter-and-spotify-suffering-outage/
https://blog.thousandeyes.com/analyzing-the-wikipedia-ddos-attack/
https://blog.thousandeyes.com/analyzing-the-wikipedia-ddos-attack/


[31] Mattijs Jonker, Anna Sperotto, Roland van Rijswijk-Deij, Ramin Sadre, and Aiko
Pras. Measuring the adoption of ddos protection services. In Proceedings of the 2016
Internet Measurement Conference, pages 279–285. ACM, 2016.
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