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The Distributed Denial-of-Service (DDoS) attack is known as one of the most destructive
attacks on the Internet. With the advent of new computing paradigms, such as Cloud
and Mobile computing, and the emergence of pervasive technology, such as the Internet of
Things, on one hand, these revolutionized technologies enable the availability of services
and applications to everyone. On the other hand, these techniques also benefit attackers to
exploit the vulnerabilities and deploy attacks in more efficient ways. Latest network security
reports have shown that distributed Denial of Service (DDoS) attacks have been growing
dramatically in volume, frequency, sophistication and impact, making it one of the most
challenging threats in the Internet. An unfortunate state of affairs is that the remediation
strategies have fallen behind attackers. The severe impact caused by recent DDoS attacks
strongly indicates the need for an effective DDoS defense system.

We study the current existing solution space, and summarize three fundamental require-
ments for an effective DDoS defense system: 1) an accurate detection with minimal false
alarms; 2) an effective inline inspection and instant mitigation, and 3) a dynamic, distributed
and collaborative defense infrastructure. This thesis aims at providing such a defense system
that fulfills all the requirements.

In this thesis, we explore and address the problem from three directions: 1) we strive to
understand the existing detection strategies and provide a survey of an empirical analysis of
machine learning based detection techniques; 2) we develop a novel hybrid detection model
which ensembles a deep learning model for a practical flow by flow detection and a classic
machine learning model that is aware of the network status, and 3) we present the design and
implementation of an intelligent, distributed and collaborative DDoS defense system that
effectively mitigate the impact of DDoS attacks. The performance evaluation results show
that our proposed defense system is capable of effectively mitigating DDoS attacks impacts

and maintaining a limited disturbing for legitimate services.
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1.0 Introduction

Distributed Denial of Service (DDoS) attacks attempt to prevent legitimate users from
accessing information or services by overwhelming the server and saturating the network
connections through multiple compromised systems. DDoS attacks are typically launched
from a very large number of distributed, remotely controlled devices, organized into bot-
nets and aimed at attacking the same target [5,36]. With the advent and the emergence
of Cloud Computing and Internet of Things, on one hand, the revolutionized technology
enables the availability of services and applications to everyone. On the other hand, these
techniques also benefit attackers to exploit the vulnerabilities and deploy attacks in more ef-
ficient ways. A subscription-based business model, DDoS-as-a-service, also known as “boot-
ers” or “stressers”, even provides DDoS attacks as a low-cost service, and causes DDoS
attacks becoming accessible to the general public [33,63].

Recent events demonstrate the severe impact of DDoS attacks. October 2016, a series
of massive DDoS attacks were perpetrated against Dyn’s DNS servers, and caused the dis-
ruption of multiple major websites, including Airbnb, Netflix, and Spotify [22]. This attack
used the infamous Mirai, a self-propagating botnet virus, to compromise poorly protected
[oT devices. February 2018, GitHub was hit by a colossal 1.35 Thps flood of traffic, the
largest by that time, resulting in major websites across large portions of the US being out
of services for a number of hours [39]. September 2019, Wikipedia, suffered a disruptive
DDoS attack for almost three days [25]. Although the attacking strategy was an old-style
volumetric flooding attack, the attack has quantifiable exceeded 1 Tbps by leveraging the
increases of the network capacity.

In fact, a Cisco study predicts that the total number of DDoS attacks would reach 14.5
million annually by 2022 [19]. An effective DDoS defense system is needed now more than
ever. Despite extensive efforts have been made in both industry and academia, significant

potential remains in exploring an intelligent, distributed and collaborative defense system.



1.1 Problem Statement

To successfully defend and mitigate the impact of the increasingly sophisticated and
diversified DDoS attacks, the defense system must be carefully designed [58]. In this section,
we describe the fundamental requirements to achieve an effective DDoS defense and discuss
the challenges, the design and the deployment such a defense system entails. In summary,

to be effective, DDoS defense, in large scale systems, must meet the following requirements:

1. an effective inline inspection, and a rapid respond to mitigate attack’s impact;
2. an accurate attack detection with minimal false alarms;

3. a dynamic, distributed, and collaborative defense infrastructure.

1.1.1 Accurate Detection with Minimal False Alarms

Traditional DDoS detection approaches utilize stochastic analysis and exploit the entropy
of network traffic to identify anomalous intrusion events. When an attack event is identified,
traffic rate-limiting and filtering mechanism is applied to mitigate the impact. However,
any mitigation strategies that are applied indiscriminately will cause damage to legitimate
traffic. While the victim does not face overwhelming traffic, such an inappropriate response
can cause denial of service to legitimate users. Thus, the detection scheme should not only
be able to detect that a DDoS attack event is happening, but also should be capable of
distinguishing attack traffic from legitimate traffic.

Recently, the trend of DDoS detection is to apply machine learning techniques to classify
and detect malicious traffic. These techniques are capable to intelligently learn the underly-
ing data attributes without the need to explicitly describe normal and malicious activities.
While the use of machine learning based techniques hold promise, most approaches focus
on offline traffic analysis and struggle to capture the ever-evolving characteristics of DDoS
attacks [43].

Finally, the detection method should also minimize false alarms, which also lead to
collateral damage to well-behaving sources. Hence, the defense system dose not only prevent

attack traffic, but also provides reliable delivery of legitimate traffic to end users.



1.1.2 Effective Inline Inspection and Instant Mitigation

To mitigate the impact of DDoS attacks, large enterprises commonly adopt the scrubbing
center strategy [31,64]. When a suspicious DDoS attack is identified, all traffic is diverted
to a designated centralized data cleansing station, called scrubbing center, where further
traffic inspection and mitigation are applied [2]. Legitimate traffic is passed to the network
for delivery, and malicious traffic is blocked. Once the attack stops, all traffic is redirected
through routing updates. Although this solution is effective to protect victims from volu-
metric traffic, it has three major limitations. Firstly, it usually increases latency. All traffic
sent toward the victim is detoured to the scrubbing center. In addition to the latency caused
by detour, the scrubbing center could be a bottleneck and causes a significant amount of
latency, especially when the bandwidth of the scrubbing center is limited. Secondly, the
detouring strategy requires complicated mechanism to effectively reroute traffic, which could
be extremely expensive in both financial and computational [30,76]. Lastly, using scrubbing
center only allows for monitoring inbound traffic. For enterprises and service providers, who
seek to ensure they are not used as an unwitting DDoS attack platform, such a solution is
inadequate.

The ideal defense system should react instantly, without introducing delays. To this
end, we need an inline inspection and instant mitigation system. With inline inspection,
both inbound and outbound traffic passing over the guarded network are inspected. Any
identified attack traffic is then immediately blocked without the need for rerouting. While
inline inspection is an optimal solution, it raises one major challenge: how to achieve traf-
fic analysis at wire speeds and satisfy the stringent memory and complexity constraints?
Currently, most inline inspections relay on packet or flow sampling algorithms to address
this challenge. However, recent research has shown that sampling methods distort traffic

patterns and degrade the detection accuracy [4,28]. This major challenge remains open.

1.1.3 Dynamic, Distributed and Collaborative Defense

A typical DDoS attack is launched from widely distributed compromised devices, which

unwittingly host attack programs. These compromised devices work coordinately, so that the



attacking traffic converge at the target victim network. Therefore, the source of attacking
packets are highly distributed. Nowadays, with the emergence of IoT and mobile computing,
a large number of, potential insecure and vulnerable, devices are being weaponized by at-
tackers. The attacking sources are not only spread widely, but could originate from anywhere
around the world [33]. Additionally, the trend of DDoS attacks shows that the attacking
traffic does not only target the victims, but also the organizations on which they depend,
including Internet Service Providers (ISPs) and cloud service providers. Recent attacks ex-
hibited the characteristics of broad-reaching, high-impact and well-coordinated. We posit
that in order to effectively defense DDoS attacks before they can cause considerable damage
to both the attack target and the Internet infrastructures, a distributed and collaborative
defense system is needed.

According to observations of attacking paths, researchers have categorized the deploy-
ment of defense systems into three key locations: source-end network, core-end network and
victim-end network [52,60,90]. Each possible deployment location has its own strengths
and weaknesses. The source-end network is the most effective place to mitigate the attack
traffic, since attack traffic can be blocked before it enters the Internet core and consumes the
shared resources. However, it is difficult for differentiating the attack traffic from legitimate
traffic at this location. As described previously, DDoS attack traffic is highly distributed,
at the source-end, the detection scheme observes too little to perform a successful detec-
tion. In contrast to the source-end network, the victim-end network is a vantage point for
DDoS malicious traffic detection. Close to the victim, the detection mechanism observes
the aggregated attack traffic, so a malicious behavior and a degraded server performance
are relatively easier to be detected, regardless of the nature of the attack and the location
of the attackers. Unfortunately, at this location, it is often the case that it is too late to
mitigate the impact. In the core-end network, deployed defense systems can also observe the
aggregated traffic, and they are in a better position to effectively constrain the attack traffic.
However, due to the limited resources and heavy burdens on the core routers, they cannot
perform sophisticated detection and mitigation tasks.

It is clear that an effective defense system needed to have a distributed and collaborative

infrastructure. The detection of DDoS attack traffic could be done close to the wvictim-



end, then the identified attack traffic signature can be propagated upstream. As such, the
malicious traffic can be blocked as far away from the victim as possible. Additionally, a
distributed and collaborative mechanism can support early detection by exchanging selected
traffic information among different deployment locations. The ability to extend the traffic
observation range also benefits the detection accuracy. Finally, a distributed defense system
also provides scalability so that defenses can be quickly and affordably updated to respond
to the future evolution of DDoS threats.

1.2 Research Overview

Aiming at developing a novel DDoS defense system that meets all the requirements and
solves the challenges discussed above, this thesis presents an intelligent, distributed and
collaborative DDoS defense system.

The core of the proposed defense system is an accurate and robust DDoS attack detection
model, which combines a deep learning approach and an classic machine learning model. The
proposed deep learning method has the ability to detect suspicious network flows by only
examining a relatively small number of a network flow packets header information, which
provides a practical solution for an effective and truly-inline inspection. The classic machine
learning model provides the network status detection, which complements with the deep
learning model to achieve better performance in identifying DDoS attack traffic. We further
augment the detection model with communication and collaboration functionalities, so that
detectors that are deployed in different locations are able to exchange information to expand
their observation across the network.

Relying on the accurate and robust detection model to distinguish attack traffic from
legitimate traffic, we propose a distributed and collaborative DDoS defense system. By
leveraging the flexibility, programmability and maintainability provided by Software-Defined
Network (SDN), we safely delegate the detection model to an application. However, naively
utilizing the centralized controller could cause the defense system itself become a bottleneck,

and result in paralyzation of the network. To address this challenge, we design the defense



system comprising a network of specialized SDN controllers, referred to as Sentinels, which
help relieve both the computational and communication burdens from the controller. The
proposed defense system monitors ongoing network traffic, distinguishes malicious traffic
from legitimate traffic, and blocks attack traffic in an efficient and effective manner.

To study the viability of and provide the justification for the proposed solution, we
implement the prototype of the proposed defense system in a SDN environment, and carry
out a comparative analysis for assessing the performance in terms of the effectiveness of
DDoS attack impact mitigation, the quality of service for legitimate users and the overheads
added to the controller. The relationship between requirements and works included in this

thesis is depicted in Figure 1.

'W1. An empirical study of intelligent
approaches to DDoS detection in
large scale networks (completed)

R1. Accurate Attack Detection with
Minimal False Alarms

W2. A Hybrid Collaborative DDoS
Detection Model

W2.1. Long Short-Term Memory
— enabled framework for DDoS
detection

W2.2. A Hybrid DDoS detection

R2. Effective Inline Inspection and —
model

Instant Mitigation

W2.3. A Collaborative Hybrid DDoS
detection model

W3. A SDN-Centric DDoS defense
system

R3. Dynamic, Distributed and
Collaborative Defense System

'W4. An implementation and
Evaluation of the SDN-Centric
DDoS defense system

Figure 1: Fundamental requirements and thesis works



1.3 Contributions

This dissertation consists of the following main contributions:

Detailed analysis and empirical studies of current machine learning based DDoS detection
techniques, thus improving an understanding of the problem and current solution space.
A novel detection approach using deep learning model. The proposed algorithm obviates
the need for feature engineering, and successfully learns the complex flow-level feature
representations embedded in raw input traffic. Most importantly, the algorithm needs to
examine only a short sequence of packets to detect DDoS attack flows, which provides a
practical solution for truly real-time inline inspection.

A hybrid detection model, which combines a network flow by flow detector and a network
status detector. These two detectors complement with each other, and achieve more
accurate detection results in the emulation environment.

The design of a distributed and collaborative SDN centric defense architecture to detect
DDoS attacks and mitigate their impact. The proposed defense architecture comprising
a network of peers, referred to as Sentinels, that dynamically and collaboratively defend
against DDoS attacks. With the distributed and collaborative mechanism, the proposed
defense system alleviates computational and communication burdens from the controller,
then avoids causing the bottleneck.

A prototype implementation of the proposed defense system in a SDN environment,
without any modifications to the OpenFlow protocol features or OpenFlow switches.
This enhances the potential of deploying the proposed defense system in a practical
setting.

The design of an evaluation framework to assess the performance of the proposed DDoS
defense system and carry out a comparative analysis of its performance with other
schemes. The experimental results demonstrate that the proposed defense system can ef-
fectively detect and throttle DDoS attack traffic without degrading the quality of service
of legitimate users. Additionally, the overheads caused by the proposed defense system

is minimal.



1.4 Dissertation Outline

The rest of this thesis is organized as follow: Chapter 2 reviews literature. To better
understand the current existing DDoS detection solutions, Chapter 3 provides a thorough
study of existing DDoS detection techniques. In the study, a comparative analysis of the
overall performance, and a set of sensitivity analysis of the impact factors are carried out.
Inspired by the analysis result, in Chapter 4, we propose an inline hybrid detection model
to achieve an accurate detection with minimal false alarms. Chapter 5 proposes a DDoS
defense system, which fulfills all the requirements by leveraging a SDN-centric architecture
design. Chapter 6 presents a prototype implementation of the proposed defense system as
well as its performance evaluation. Finally, Chapter 7 concludes the thesis and and some of

the directions for future research.



2.0 Related Works

To successfully protect a server or network from DDoS attacks, the capability of capturing
malicious traffic accurately is critical. However, DDoS detection alone is not enough. A suc-
cessful defense should also facilitate a real-time response so that the impact of DDoS attacks
can be mitigated effectively. This chapter provides an overview of necessary backgrounds of
this dissertation and discusses the related existing works from these two perspectives, one
in which is DDoS detection techniques and the other is DDoS defense systems, which bring

together detection approaches and mitigation strategies as a whole.

2.1 DDoS Detection Techniques

Numerous schemes have been proposed to detect DDoS attack traffic. The early schemes
focus on stochastic analysis to monitor network traffic lows’” behavior and exploit the en-
tropy of network traffic to identify normal behavior and detect anomalous intrusion events.
Recently, the trend to detect DDoS attack traffic is to leverage machine learning techniques
to classify and detect malicious traffic. In this section, we review both traditional and intel-

ligent based detection techniques.

2.1.1 Traditional Detection Techniques

Traditional detection techniques characterize network traffic using statistical and infor-
mation theory based analysis. They usually assume a predefined model to represent normal
condition. For any traffic under monitoring, the statistics of the traffic are inferred and
compared with the predefined model periodically. Any non-complying traffic is considered
as an attack. In [23,51,80], the authors proposed detection schemes that monitor the ratios
between number of packets received-from and sent-to the guarded network. They believe

that the monitored ratio for the legitimate traffic should below a certain threshold for a spe-



cific protocol. DDoS attack traffic is then identified accordingly. In [11,29,75], the authors
observe the strong correlation presented by either attack or legitimate traffic from different
perspectives. They apply correlation coefficient analysis to network traffic parameters, then
they compare the monitored changes and make decisions. In [87], the authors assume that
legitimate users’ behavior, including web page request interval, browsing length, etc., follows
specific distributions. The detection scheme periodically calculates the standard deviation of
sampled flows. If the flow has a sufficiently large calculated value, then it will be identified
as attack traffic.

Information based metrics are also very popular in DDoS detection. Entropy can be
computed on several features, such as network flows, source/destination IP addresses, number
of packets, source/destination IP ports, etc., with a given time window [9,18,73,81,82]. The
changes on the calculated entropy values are evaluated using different information metrics,
and are used to identify the presence of DDoS attack traffic.

The challenge these methods face stems from the need to reliably define a normal profile
and accurately differentiate between normal and anomalous behaviors. With sufficient num-
ber of active compromised machines, the legitimate users’ statistical behavior is easily to be
mimicked [88]. Hence, the fundamental assumption of proposed works will be violated, and
the defense schemes are deceived. Additionally, the performance of these detection schemes

can be impacted severely by the location where the detection scheme is deployed [43].

2.1.2 Intelligent Based Detection Techniques

Recent DDoS detection research has shown the promising results by leveraging machine
learning techniques. These techniques are capable to intelligently learn the underlying data
attributes without the need to explicitly describe normal and malicious activities, thereby
overcoming the limitations of traditional detection schemes. Intuitively, DDoS detection
problem can be modeled as a binary classification problem, where the monitored traffic is
classified as either legitimate or attack traffic. Different classification algorithms have been
applied and tested on well-known benchmarks. To improve the detection accuracy while

minimizing the false alarms, researchers have also explored potential feature sets [26,56].

10



Deep learning, a broad family of machine learning techniques, has been successfully
applied to solve challenging problems in a number of fields, including computer vision, social
network filtering and video games, natural language processing and machine translation,
healthcare and bioinformatics, medical image analysis and drug discovery. Its application
to DDoS detection, however, has been limited. In this section, we discuss various recent
notable works in this field. Several works utilize autoencoder, an unsurpervised learning
technique, to discover non-linear representations from the input data, and then they apply
a classification method to distinguish malicious traffic from legitimate traffic [3,27,54, 68].

In [27], the authors combine an auto-encoder with a soft-max regression layer for network
intrusion detection. The proposed scheme exhibits promising performance in both binary
and multi-class classification task. The authors then extend their work by stacking two auto-
encoders to detect DDoS attacks [54]. In [68], the authors stack two autoencoders to learn
the complex relationships among features. They claim that soft-max layer is weaker than
classic classifiers, and combine the stacked auto-encoder with a Random Forest classifier for
intrusion detection. In [3], the authors utilize autoencoder not only for feature learning but
also to reduce the number of random variables under consideration. Instead of connecting
a classifier with the output layer of the autoencoder, a hidden layer, which represents the
compressed features, is used as input for the classifier. A Support Vector Machine (SVM) is
used as the classifier. The authors claim that the SVM outperforms other classic classifiers,
in terms of accuracy. Although they successfully overcome the difficulty of feature selection,
the proposed schemes do not address the challenges of feature extraction.

In addition to autoencoders, RNN is a popular choice for intrusion detection [35,70, 72,
85,89]. RNN, an extension of a conventional neural network, is widely used for modeling
sequential data to solve time-series problems. Most schemes apply RNN models to well
formatted datasets, such as KDD99 and NSL-KDD, which use hand-crafted flow-level feature
engineering. In these datasets, each record corresponds to a specific network flow, and is
represented by a set of attributes, such as duration, number of packets, number of bytes,
etc. Most proposed schemes treat the set of attributes for each flow as a sequential data,
which is then used as input for the RNN models [35,70,72,85]. To improve the classification

accuracy and other evaluation metrics, these works apply different types of RNN models.
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A simple RNN is adopted in [85]. In [35,70], the authors use LSTM RNN, and focus on
selecting a minimal subset of features. In [72], the authors used Gated Recurrent Unit (GRU)
RNN. Although the performance of these proposed schemes surpasses traditional machine
learning methods, they fail to address the challenge of feature extraction. More importantly,
assuming temporal order among features in RNN models is questionable. The advantage
of RNNs in modeling sequential data is that they have a memory cell which can remember
data received earlier and capture the temporal dependency among data. Although features
are not independent of each other, preserving order among data is not necessary.

In [89], the authors propose a RNN-based model, referred to as DeepDefense. Unlike
previously discussed methods, the model does not use flow-level statistical features. Instead,
the authors extracted 20 features from packet headers and applied sliding windows to sep-
arate continues network traffic into sequences of network packets. For a given sequence of
packets, the model classifies the last packet either as a legitimate or attack traffic. Their
proposed deep learning model achieves lower error rate than traditional machine learning
techniques. However, reliance on packet-by-packet inspection may not be practical in a
real-world setting.

Although the use of machine learning based approaches holds promise, most published
works remain offline in nature, with potentially prohibitive high overhead. Additionally, im-
proving the detection performance by tailoring features, models and parameters for specific
datasets does not benefit our community any further to solve the practical problem. For de-
tailed description of related works in this category, we refer interested readers to our recently
published survey paper, in which we reviewed highly cited schemes that have been proposed
over the last decade, and empirically studied the advantages and limitations exhibited by

intelligent based detection techniques [44].

2.2 DDoS Defense Systems

Building an effective DDoS defense system is a non-trivial problem for both the network

administrator and network security researchers. Traditionally, the defense system is deployed
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on dedicated devices to monitor network traffic, identify malicious activities and mitigate
the potential adversarial impacts. Recently, SDN has emerged as a powerful platform for
enabling innovation in networking research and development. With the separation of the
control logic from the data plane, SDN provides more flexibility to network managing. In
this section, we review DDoS defense systems in both platforms to present the state-of-the-

art in the field of combating DDoS attacks.

2.2.1 Router-Based Defense System

Over the past few decades, academia has proposed numerous defense systems to defend
against DDoS attacks. In a conventional network, the defense system is usually deployed on
routers, so that malicious network traffic can be blocked before they enter a domain.

Filtering-based systems are among the earliest works [6,7,10,17,47,65,79]. A filter is
essentially a rule explicitly telling the router to drop traffic that is identified as undesirable.
Hence, the effectiveness of these systems heavily relies on a mechanism to differentiate attack
traffic and legitimate traffic. Theoretically, any detection mechanisms can be integrated into
this type of system and guide the filtering rules. However, routers are facing large scale
and intensive network traffic, sophisticated detection algorithms are usually not affordable
to be deployed on them. Most approaches try to identify the spoofed packets, and propa-
gate filter rules to block them close to the source. In [6,7,17,47,65], the authors employ
different packet marking algorithms to trace the path of spoofed IP packets. Using marking
algorithms, routers mark packets along their path to the destination. At the edge router
close to the destination, the detection scheme utilizes the aggregated information to recon-
struct the routing path, and identify the spoofed traffic. In [79], the authors leverage the
hop counting to identify spoofed malicious packets. These schemes usually cause low router
overheads and are easy to implement. However, today’s DDoS attacks, which are usually
well distributed with a fairly large botnet, increase the chance of wrong construction of the
path. Furthermore, due to large number of compromised devices, the attackers disclose real
IPs of zombie machines. The packet marking and other traceback methods would not be

able to identify attack traffic.
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Another type of approach is called capability-based systems. In these systems, the sender
has to request and receive explicit permissions from the destination, also called capabilities,
before further sending out any traffic [48,59,83,84]. The capabilities are used as a form of
authentication, and are stamped on traffic packets. The router, which is a deployed point,
will verify the authentication along the path. To avoid the collusion and attack against
the request channel, researchers also proposed self-created capabilities, without cooperating
with remote routers [34,53,77]. These systems rely on unpractical assumption and incur
significant upgrade in the Internet core.

From an industrial perspective, few academic proposals have been deployed. Many secu-
rity service provide companies, such as Akamai, Cloudflare, etc., provides DDoS-Protection-
as-a-service. They leverage the capacity of their geographically distributed cloud servers,
and use DNS or BGP to redirect traffic when under attack [16]. In section 1.1.2, we have
discussed limitations of this scrubbing center technique.

In a conventional network, defense systems have to be deployed on special designed
hardwares, such as network routers or middlebox devices. The need for high computational
and resource requirement, due to continuous analysis of network traffic, remains a challenge.
Additionally, how to deploy defense systems with little changes and cost to the current

network infrastructure is still an open question.

2.2.2 SDN-Based Defense System

SDN is a new network paradigm, which physically separates the control and data planes
in traditional network devices [38]. Specifically, the control plane is removed from a network
device and implemented on a specialized central controller. Comparing to legacy networking
architectures, SDN provides more flexibility and ease in network management, and offers
new opportunities for enhancing the performance of network security.

In [66], authors developed a detection module, which continuously monitors the Packet_In
messages rate, memory usage and CPU utilization rate of switches, and decides whether the
network is under an attack accordingly. When an attack is identified, the defense system

detours traffic to the neighbor switches to relieve the bandwidth pressure. Detoured traffic
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will be analyzed. The identified attack packets will be filtered out, and legitimate traffic
will be delivered to the destination. Although the solution could effectively protect the
victim, the introduced delay and intensive communication burden between switches and the
controller are not desired.

In [32], researchers proposed a security scheme using joint entropy for both DDoS detec-
tion and mitigation. When a congestion is detected, switches send packet header information
to the controller. The detection module calculates the joint entropies for feature pairs and
creates the current status profile. If the difference between the calculated current profile and
the normal profile exceeds a certain threshold, the feature pair is identified as suspicious and
sent to switches. With the given feature pair, switches calculate and update the suspicious
feature pairs profile, and send back to the controller. The mitigation rules will be then gener-
ated. Before a mitigation rule is generated, switches have to communicate with the controller
twice for each feature pair. Additionally, switches are required to apply extra calculations
with their limited computational resources. The overheads brought by the proposed system
are heavy, even disregarding the challenge of how to reliably define a normal profile.

Recently, the trend to mitigate the impact of DDoS attacks is to incorporate “intelli-
gence” into the defense architecture, leveraging machine learning techniques to classify and
detect malicious traffic [43]. In [61], researchers employed SVM and Self-Organizing Map
for attack detection. The detection module periodically requires flow statistics from the
switches, including flow duration, number of packets, bytes and etc. Based on the flow infor-
mation, the detection model labels the inspecting flow as legitimate or attack, and a history
based filtering rules are applied to mitigate the attack traffic. In [24,41], researchers em-
ployed Convolutional Neural Networks for detecting DDoS attacks. Both papers extracted
flow-level features for the detection model, such as backward packet length standard devi-
ation, average packet size, flow duration and flow inter arrival time. In [45], the authors
combined the signature attack databases and several machine learning techniques to achieve
a high accurate detection results. All these proposed approaches are evaluated with well
formatted datasets, in which statistical features of network flows are provided. However, in
reality, flows features are not known in advance. Approaches usually periodically extract flow

statistics from switches, the extracted incomplete flow statistics may distort traffic patterns
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and degrade the detection accuracy. This problem is widely neglected in machine learning
based approaches, which is elaborated in our results discussion.

Different from other machine learning based defense approach, in [55], the authors do
not use machine learning model for detection. They utilized LSTM model for predicting
network traffic status, such as bits/s, packets/s, source IP entropy, and etc. Then applied
fuzzy logic to identify anomalies based on the prediction. After anomaly is detected, the
mitigation rule will be installed in switches. As discussed in section 1.1, applying mitigation
policy without distinguishing malicious traffic from legitimate traffic will degrade the quality
of service for legitimate users, although attack target could be protected.

Characteristics of SDN architecture, such as the logically centralized control, the pro-
grammatic framework, and vendor agnostic implementation interfaces, solve the challenges
that router-based defense systems are struggled to overcome. These systems capitalize on the
centralized controller of SDN, and usually simply assume that the global view of the network
traffic is available via the centralized controller, without considering the limited computation
and communication resources host by the controller. The detection and mitigation strategies
are, naturally, designed and implemented as applications attached to a centralized controller.
However, naively utilizing the centralized controller could cause the defense system itself be-
come a bottleneck. The tremendous and heterogenous data required from switches could
cause the communication channel between switches and controllers under congestion, and

further exhaust resources of both the controller and switches.
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2.3 Summary

This chapter reviews related work in the fields of both DDoS detection and DDoS defense
system. We begin with the traditional DDoS detection approaches. Then, the recent trends
of leveraging machine learning techniques for DDoS detection are discussed, each with its
advantage and limitations. Lastly, we survey the existing works for DDoS defense system,
including router-based defense systems and SDN-based defense systems. We recognize the
opportunities offered by SDN, but also point out that given the heavy duty, naively attach
designed defense system as an application to the centralized controller could easily the and
would result in paralyzation or misbehaving of all switches under the controller.

These existing approaches fall well short of desired capabilities as an efficient and effective

DDoS defense system, which motivate this thesis to address the challenges.
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3.0 An Empirical Study on Machine Learning Based DDoS Detection

Techniques

An in-depth understanding of existing detection strategies is demanded for developing
an effective detection approach. Traditional methods have been studied extensively. Both
their advantages and disadvantages have been well analyzed, and their performances have
been systematically evaluated by researchers [60,90]. However, there is a lack of a such
analysis for machine learning based techniques. Although a couple of research works have
studied several published schemes, it is lack of a “holistic” analysis of the performance for
these detection strategies. In this chapter, we set to investigate the performance of machine

learning based DDoS detection techniques to reveal the advantages and limitations.

3.1 Introduction

A number of research works have studied DDoS attack detection with machine learning
based solutions [12,57,69]. These works often focus on specific schemes, with the aim to carry
out a comparative analysis of their performance. Although informative of the state-of-the-
art in intelligent techniques to detect DDoS attacks, the intricacies of the studied schemes
add significant complexity to the analysis, and often affect the outcome. Furthermore, the
focus on specific schemes constrain the applicability of the results to other schemes. Lastly,
very little research work addressed “holistically” the performance evaluation of intelligent
solutions to DDoS defense. As such, the outcome of these studies remains inconclusive. A
closer look at intelligent DDoS defense schemes reveals that at the core of the proposed
schemes is a set of commonly used machine learning based “building blocks” for DDoS
detection and prevention. To this end, a representative class of intelligent techniques, which
capture main trends in DDoS detection, is carefully selected. Rather than carrying out an
exhaustive comparative analysis of specific schemes, we take a different approach, focusing

the impact of incorporating machine learning techniques to the DDoS defense.
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3.2 Selected Techniques

To select a representative set of machine learning based techniques, a thorough search
of the academic publications using Google Scholar, IEEE Xplore and Science Direct, is
carried out. The search space was limited to the publishing period ranging from 2008 to
2018. Additionaly, only publications with high citation numbers were considered. Using this
process, 49 academic publications are included in this work. These publications are used to
extract the building blocks underlying their DDoS detection schemes. Furthermore, to gain
better understanding of the capabilities of machine learning based techniques compare to
traditional techniques, we include D-WARD [51], a statistics based DDoS defense scheme,

into this study. Table 1 lists the evaluated techniques, and categorizes them into four groups.

Table 1: Detection Techniques Taxonomy

Categories Techniques ‘
Support Vector Machine (SVM)
Classification Artificial Neural Network (ANN)
Decision Tree (DT)
Naive Bayes (NB)
Clustering K-Means
Nearest-Neighbor Based | K-Nearest Neighbor (KNN)
Statistical D-WARD

3.3 Benchmark Dataset

In order to carry a meaningful and fair comparative analysis, an ideal benchmark that
closely reflects the real-life network traffic, with clearly labeled legitimate and attack traffic, is
necessary. In this study, we combine two widely accepted and extensively used benchmarks.
The first benchmark is CAIDA DDoS dataset, collected from an actual DDoS attack event
[15]. The most significant advantage of this dataset is that the traffic consists of a real-
world DDoS attack scenario. Moreover, DDoS is exclusively recorded in this dataset, thus

making it appropriate for evaluating intrusion detection schemes solely for DDoS. However,
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the non-attack traffic was removed from the dataset. To augment the CAIDA benchmark

with legitimate traffic, a second benchmark, DARPA dataset [21], is used. The DARPA

benchmark contains total of 5 weeks traffic. The first and third weeks do not contain any

attacks.

—a— Average Packet Rate
Data Byte Rate

Log2 Ratio

Attack vs. Legitimate Traffic

1 2 3 4 5 6 7 8 g 10 11 12 13 14

Index of Traffic Collecting Time Interval (k)

Figure 2: Packet Rates of Legitimate and Attack Traffic

The attack traffic, obtained from the CAIDA benchmark, is split into 14 sets, each

containing roughly five minutes traffic traces. The legitimate traffic is selected from DARPA

first week attack-free dataset. We use tcpreplay [74] to replay the attack and legitimate

traffic, and recapture the combined traffic for analysis. Now, we denote the structure of our

datasets, D, as:

D = {d(I;),1 < k < 14} where,
d(Iy,) = {traffic that collected over the kth time interval I}

[|I|| = 5 minutes
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Figure 2 displays the ratio of attack traffic to legitimate traffic for each dataset dy(I), in
terms of average packets rate (packets/second) and Byte rate (Bytes/second). In the figure,
X-axis presents the index of the time interval (k), and Y-axis presents the average packets
rate in a base-2 logarithm scale. It is clearly shown that, for & < 6 (the first 25 minutes), the
volume of attack traffic is less than the legitimate traffic, however, starting from k£ = 6 (the
6th 5-minutes period), the attack traffic volume is dramatically increased. During k£ = 10
period, the attack traffic volume is reduced obviously, then followed by another gradually
increase. We believe these patterns reflect different attacking phases of the DDoS event. We

will explore the impact of these observations in the section of Experiments and Results.

3.4 Performance Evaluation

3.4.1 Comparative Analysis

In this experiment, we conduct a comparative analysis of the overall performance of the
selected techniques. We assume that the entire network traffic is available for each DDoS
detection technique. Although the assumption is usually impractical, it provides a strong
base to evaluate and compare the detection capabilities of these techniques. The benchmark

datasets, D, is divided into T} and T}, for training and testing purposes, respectively.

Ty = {dy(I),ds(I),du(I), ..., d14(I)}

Classification models are usually trained offline with historical data. The trained model
is then applied online to classify future data. In our benchmark datasets, d;(/) contains
the network traffic that is captured during the first 5 minutes of the monitoring interval.
It is considered to be the historical data and used to form 7,.. T, is composed of the
traffic captured over the remaining 13 5-minute intervals. The 13 traffic sets are tested
independently for each evaluated technique, using the accuracy, sensitivity and specificity
metrics. Boxplots are used to illustrate the assessed performance, so that the performance

variation of these evaluated DDoS detection techniques is also quantified.
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3.4.1.1 TCP Traffic

Results for TCP traffic using packet-header features are shown in Fig. 3. In the figure,
Boxplots are used to illustrate the performance of each evaluated technique. Values of mini-
mum, maximum, median (solid line in box), mean (dot line in box), first quartile, and third
quartile are displayed by the box for the 13 test cases. X-axis presents each evaluated de-
tection technique. Subplots present Accuracy, Sensitivity and Specificity, respectively. The
results show that DT outperforms all other techniques, with respect to the defined perfor-
mance metrics. Furthermore, the results show that DT performs consistently across different
testing sets. These results show the high potential of rule-based strategies to efficiently detect
DDoS TCP attack traffic in the packet level. In this experiment, NB and RBF-SVM exhibit
the worst performance when it comes to distinguishing attack packets from legitimate traffic

packets.

Performance Comparison -- TCP Packet Header Features
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Figure 3: Performance Comparison — TCP Traffic with Packet Header Features

The NB classifier is a simple classifier based on Bayes’ theorem, assuming a strong inde-

pendence among the features. As such, given the packet-header features, the NB classifier is
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biased towards labeling most samples as attack traffic during the testing phase. This results
in an extremely high sensitivity score, but a poor specificity score.

The RBF kernel maps features into an infinite dimensional space to solve non-linearly
separable samples. This may lead to a lose of generalization, if the training samples are
underrepresented. In other words, the trained model fits the training samples too closely,
causing the model to become very sensitive to the input data. Fig. 4 presents the performance
of RBF-SVM in each test case. For the first four test cases k, (k = 2,3,4,5), RBF-SVM
shows a good performance. However, for test cases k, k > 6, its accuracy and sensitivity
scores are significantly decreased. Recall that in the attack event, presented in Fig. 2, the
attack volume increases significantly starting from & = 6. The increase in volume affect the
distribution of traffic attributes, which in turn causes the underlying patterns of the input

dataset to become significantly different from that was learned during the training phase.
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Figure 4: RBF-SVM Performance Using Packet Header Features

Focusing on the sensitivity score, the results achieved by SVM, Poly-SVM, KNN and
KMeans, shown in Figure 3, are comparable to those achieved by DT. They all outperform D-
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WARD. However, the poor specificity scores of the these machine learning based techniques
suggest a potentially high rate of false alarms which can incorrectly prevent legitimate users

from accessing resources.

Performance Comparison -- TCP Flow Level Features

Accuracy

Sensitivity

0.6 %

Specificity

UDT_Gini DT_IG Poly-SVM SVM RBF-SVM KNN KMeans NB ANN D-WARD

Evaluated Techniques

Figure 5: Performance Comparison — TCP Traffic with Flow Level Features

Results for TCP traffic using flow-level features are shown in Figure 5. DT no longer
demonstrates the observed superiority over all other machine learning based techniques.
Moreover, its accuracy and sensitivity scores are highly varied across all datasets. Examining
closely its performance on each test case, DT suffers the over-fitting problem, similar to the
pattern of the RBF-SVM behavior, shown in Figure 4. Additionally, using flow-level features,
which represent features from the aggregated packet data between a source and a destination,
significantly improves NB’s accuracy and specificity. The performance consistency of NB
across multiple test cases is also enhanced by using flow-level features. In comparison with
packet-header features, flow-level features provide statistic attributes that capture the traffic
behavior. Hence, the distribution assumption and the probability inferring of NB classifier
is more reasonable.

Finally, it is worth noting that the traditional method, D-WARD, performs competitively
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in comparison to machine learning based techniques. However, it failed to identify attack
traffic in two datasets, as indicated by the poor sensitivity score for these two cases. Overall,
it can be concluded that ML-based techniques can achieve high performance in detecting
TCP attack traffic. Furthermore, ML-based techniques outperform D-WARD in most test

cases.

Performance Comparison -- ICMP Packet Header Features
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Figure 6: Performance Comparison — ICMP Traffic with Packet Header Features

3.4.1.2 ICMP Traffic

Results for ICMP traffic using packet-header features are shown in Figure 6. The re-
sults show that all ML-based techniques achieve near optimal values with respect to all
performance metrics, but only for some datasets. Contrarily, the performance consistency
of D-WARD is relatively higher. For ICMP traffic, D-WARD detects attack by monitoring
the paired messages of ICMP requests and the corresponding relies. If the monitored ratio
exceeds the threshold, the alarm is raised. The results show that this simple mechanism
works effectively. Features that capture this type of information should be able to improve

the performance of ML-based techniques.
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Performance Comparison -- ICMP Flow Level Features
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Figure 7: Performance Comparison — ICMP Traffic with Flow Level Features

Results for ICMP traffic using flow-level features are shown in Figure 7. The results
exhibit a similar performance pattern as the one in TCP traffic, underscoring the fact that
using sophisticated features does not necessarily improve the performance of all ML-based
techniques. As indicated by the results, only specific ML-based techniques, such as Poly-
SVM and NB, are improved. The use of these features did not significantly improve the
performance of the other schemes. In some cases, the performance of these latter schemes
has decreased.

In summary, the outcome of this experiment shows that it is not clear that a single
technique outperforms all others in all test cases, especially when focusing on the ICMP
traffic. The experiment shows that different techniques perform better when using certain
types of features, suggesting that feature selection should be method specific. Furthermore,
the capability of detecting attack traffic shown by ML-based techniques is evident. On the
other hand, the performance inconsistency exhibited by ML-based techniques in dealing with
different types of attack traffic raise doubts about their ability to efficiently detect DDoS

attack in real world scenarios.
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3.4.2 Impact of Observable Traffic Proportions

In the comparative experiment, the entire network traffic is assumed to be available for
each DDoS detection scheme. In practice, however, it is infeasible for a detection scheme to
have access to the entire network traffic. Actually, the detection scheme is usually deployed
on, or attached with, routers or switches. Consequently, a detection scheme can only observe
the network traffic passing through the network device on which it is deployed. The purpose
of this experiment is to investigate the ability of a detection technique to only access a limited
portion of network traffic.

To emulate a realistic network environment, we randomly select a proportion p of the
total traffic for testing. The selected traffic is then analyzed by the detection techniques,
and the performance for each metric is evaluated. Two selection criteria, namely packet- and
flow-level, are used to generate a specified portion, p, of the network traffic, For packet-level,
a proportion, p, of the total traffic packets is randomly selected without any consideration
of the flows to which the selected packets belong. For flow-level, however, a proportion, p,
of the total traffic flows is randomly selected and only packets belonging to these flows are
made available to the DDoS detector. It is to be noted that the total number of packets
selected is different for each case.

The same training data set T, used in experiment 1, is also used for this experiment.
The traffic proportion p is selected from a set P = {1%, 5%, 10%, 20%, 50%, 75%}. We
do not use separate symbols to differentiate packet- and flow-level datasets, since they are
structurally the same. The random traffic selection of DDoS detector observed traffic is
repeated 10 times, with different random seeds, to avoid data bias. The dataset used for
testing is denoted by Deypo, where Dy = dim([), 1<r<10,pe Pand2<k<14. In
total, 780 test cases are used to assess the performance of each technique, for both packet-
and flow-level selections.

To quantitatively evaluate the impact of the observable traffic proportions, Pearson Cor-
relation Coefficient test is applied to measure the strength of the linear correlation between
each evaluated metric and the observed proportion. For both packet- and flow-level traffic

selections, the performance of D-WARD presents a strong correlation with the increasing
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observed traffic proportion. Conversely, only a weak correlation between traffic proportions
and performance is exhibited by ML-based techniques. Table 2 shows results for packet- and

flow-level traffic selections.

Table 2: Correlation Coefficient Scores with Observable Traffic Proportions

Packet-Level Flow-Level
Techniques Correlation Score with Correlation Score with
Accuracy Sensitivity Specificity | Accuracy Sensitivity —Specificity

DT-Gini -0.0024 -0.0123 -0.0117 -0.2698 0.0232 -0.3496
DT-1G -0.0103 -0.0103 0.0 0.0549 -0.0159 0.0253
SVM -0.0002 -0.0074 0.0006 -0.0177 0.2045 0.0147
RBF-SVM | -0.0002 -0.0022 0.0057 -0.2732 -0.2384 0.2769
Poly-SVM | -0.0003 -0.0065 0.0008 -0.2473 0.0666 -0.0661
KNN -0.0016 -0.0088 -0.0024 -0.1760 0.0885 0.01744
KMeans -0.0011 -0.0058 -0.0008 -0.0912 0.0300 -0.1349
NB <0.0001* 0.0215 -0.0011 -0.0946 0.1870 -0.4023
ANN 0.0001 -0.0012 0.0008 -0.1283 -0.0456 -0.0857
D-Ward 0.5458 0.8008 -0.5519 0.7703 0.8055 0.6329

*The value is negative, and |[value|| < 0.0001

Recall that traditional detection techniques, represented by D-WARD, usually infer net-
work status through monitoring two-way traffic. As such, D-WARD gains a relatively com-
plete picture of the network status given a higher proportion of observed traffic packets or
flows. This leads to more accurate attack detection. Ideally, D-WARD should be deployed
at the only boarder router, so that both directions of flows can be observed by the detector.
However, this is impractical, a limitation also reported by the authors of D-WARD [51].
Comparing to the traditional detection method, the weak correlation, presented by ML-
based techniques, shows that the deployment location does not impact the performance of

ML-based detection techniques.

3.4.3 Impact of Attack Intensities

The focus of the previous experiment was on the proportion of network traffic observed by
a detector. In this experiment, we further refine the previous experiment to focus exclusively

on the intensity of the attack traffic observed by the detector. Consequently, legitimate traffic
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is kept unchanged, and attack traffic is increasingly injected into the network. Specifically,
we randomly select a% of total attack traffic, measured in both packet- and flow-level. As
the value of a increased, so does the attack intensity.

The same training dataset 7)., used in previous experiments, is also used in this exper-
iment. The increase of the attack traffic is cumulatively achieved, whereby the increased
attack traffic contains the previous attack traffic. The traffic injection procedure is repeated
10 times with different random seeds. We do not use separate symbols to differentiate packet-
and flow-level datasets, since they are structurally the same. Hence, dataset used in this ex-
periment is denoted as Dy = df (1), where 1 <7 <10, a € {1%, 5%, 10%, 25%, 50%, 75%}
and 2 < k < 14. In total, 780 test cases are used to assess the performance of each DDoS
detection technique, for both packet- and flow-level attack traffic injections.

Similarly as in experiment 2, we use Pearson Correlation Coefficient test to quantitatively
evaluate the impact of the attack intensities. Results of packet- and flow-level injections are
shown in Table 3. As expected, D-WARD presents a strong positive correlation with the
increasing attack intensities in terms of accuracy and sensitivity. With the attack intensity
increases, the amount of observed traffic increases as well, which is critical for D-WARD to

detect attack traffic correctly.

Table 3: Correlation Coefficient Scores — Attack Intensity

Packet-Level Flow-Level
Techniques Correlation Score with Correlation Score with
Accuracy Sensitivity Specificity | Accuracy Sensitivity Specificity

DT-Gini -0.2880 -0.0098 <0.0001 -0.2862 -0.0759 <0.0001
DT-1G 0.2901 -0.0103 <0.0001 0.2856 -0.0657 <0.0001
SVM 0.5777 -0.0039 <0.0001 0.5777 -0.0100 <0.0001
RBF-SVM | -0.4309 -0.0023 <0.0001 -0.4309 -0.0045 <0.0001
Poly-SVM | 0.5314 -0.0026 <0.0001 0.5314 -0.0070 <0.0001
KNN -0.0013 -0.0079 <0.0001* | -0.0008 -0.0255 <0.0001*
KMeans 0.6209 -0.0003 <0.0001* | 0.6209 -0.0033 <0.0001*
NB 0.3873 0.0117 <0.0001* | 0.3875 0.0568 <0.0001*
ANN 0.0795 -0.0010 <0.0001 0.0795 -0.0069 <0.0001
D-Ward 0.5728 0.7936 <0.0001* | 0.5636 0.8101 <0.0001*

*The value is negative, and |[value|| < 0.0001
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3.4.4 Impact of the Class Imbalance Problem

The class imbalance problem is frequently encountered in practice, where the number of
observations of one class is far less than the other class. When this problem occurs in the
testing phase, accuracy alone is no longer enough to assess the performance of the detection
scheme. Different types of evaluation metrics, such as sensitivity and specificity used in this
work, need to be used to complement the accuracy to better assess performance. When the
class imbalance problem occurs in the training dataset, it may hinder the learning process of
classification algorithms [37]. Practically, if the imbalanced class distribution in the training
dataset matches the native class prevalence in the test scenario, then the dataset bias in
the learning process can be neglected. Yet, the described scenario does not apply to DDoS

attack detection.
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Figure 8: Class Imbalance Problem Analysis — Linear SVM

! The subtitle of each figure depicts the ratio of attack and legitimate traffic in the training sets.
X-axis present the ratio of attack and legitimate traffic in the testing case.

From the perspective of a DDoS attack detector, attack traffic usually represents a very
small subset of all network traffic it observed, particularly in stealth attacks. However, when
an attack happens, the attack traffic may become the majority class among the traffic that
is observed by the detector. Hence, it is common that the detection scheme is dealing with

highly imbalanced dataset, and the dominant class is non-stationary. Represented in our
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benchmark, the attack traffic is the minority class during the training phase, but it becomes

the majority class after the attacker increases the attacking volume, shown in Figure 2.

Poly-SVM Training with Different Percentage of Attack Traffic
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Figure 9: Class Imbalance Problem Analysis — SVM with Polynomial Kernel

To assess the impact of the class imbalance problem in the training datasets, we gener-
ate a set of training data with different degrees of imbalance. We apply a simple random
under-sampling method to create five subsets from the training dataset 7,. Each subset
contains 70,000 packets, and the percentage of attack traffic in each subset is drawn from
{10%, 30%, 50%, 70%,90%}. All ML-based techniques are trained with each subset indepen-
dently. Five models are then built for each technique. Due to the limited number of ICMP
legitimate traffic, only TCP traffic is considered in this experiment. For testing, we apply
five trained models on the testing dataset T, from Exp.1. The results show that the family
of SVM techniques exhibits the strongest sensitivity to the imbalanced training datasets,
while other techniques are affected slightly.

To further study the correlation between the class imbalance of the training data and the
performance, we generate nine subsets from 7T with different ratios of attack to legitimate
traffic packets. Each subset contains 100,000 packets, and the percentage of attack traffic
in each subset is drawn from {10%, 20%, 30%, ..., 90%}. The procedure of generating testing
samples is repeated 10 times. In total, 90 test cases are used to assess the impact of the

imbalanced and balanced training models on the performance of each technique. Figure 8- 10

displays the results of linear SVM, Poly-SVM and RBF-SVM. Trained with small percentage
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of attack traffic, all SVM models tend to label most samples as legitimate traffic. Using a
relatively balanced training dataset, the results show that the robustness of the model is
improved. It is worth noting, however, that a balanced dataset does not necessarily achieve
the best performance. A sophisticated kernel, such as RBF-SVM, can identify the hidden in-
formation by mapping features into higher dimensions. Specifically, RBF-SVM outperforms
linear SVM when extremely imbalanced training data is used, although its overall perfor-
mance remain less than optimal. On the other hand, the sophisticated kernel exhibits higher
sensitivity to the data balancing, making it difficult to optimize its performance without

degrading the robustness of the model.

RBF-SVM Training with Different Percentage of Attack Traffic
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Figure 10: Class Imbalance Problem Analysis — SVM with RBF Kernel

In summary, the results clearly show that the impact of the class imbalance problem
in datasets should not be neglected. Carefully designing the training process, analyzing
the application scenario and choosing the appropriate method are critical for a successful
intelligent DDoS detection scheme. Additionally, detection DDoS attacks in dynamically

changing environment remains a challenge for ML-based detection methods.
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3.5 Summary

In this chapter, we conduct a series of experiments to explore the advantages, limitations
and influential factors for ML-based DDoS detection techniques. The detection capabilities
exhibited by ML-based techniques are evident, although no single technique that outperforms
all others in all test cases. Additionally, different techniques exhibit different preferences over
feature types, emphasizing the significance of feature selection and suggesting that feature
selection should be model oriented.

The sensitivity analysis illustrates the observed traffic proportions severely impact the
performance of traditional detection methods that rely on monitoring the two-way traffic.
Although ML-based techniques display weak correlation with the proportion of the observed
traffic, the observed portion does indeed cause higher performance variance.

Lastly, we explored the impact of the class imbalance problem on the performance of
ML-based techniques. The results show that the impact of the class imbalance problem
should not be underestimated, especially with respect to the dynamically evolving nature
of DDoS attacks. Future work can be focused on investigating an ensemble of intelligent
schemes, strategically distributed across the network, using an appropriate feature selection

model for an adaptive and efficient DDoS detection.
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4.0 A Hybrid DDoS Detection Model

Machine learning techniques exhibit inevitable capability of offering high flexibility in the
classification process, consequently improving the detection of DDoS attack traffic. These
techniques are capable to intelligently learn the underlying data attributes without the need
to explicitly describe normal and malicious activities. However, traditional machine learning
techniques struggle to capture the evolving nature of DDoS attacks. We believe that a
significant part of the problem stems from the failure of hand-crafted feature engineering
to represent traffic behaviors. However, extracting desired features is costly, which is not
affordable for an effective inline inspection for every single on-going network flows. To
overcome these limitations, a light-weight Deep Learning approach is proposed in section 4.1,
which is capable of distinguishing malicious traffic flow by inspecting only a small number
of raw packets header information from each flow. As such, a truly real-time and affordable
inline inspection is provided.

Although machine learning based techniques, such as the deep learning approach pro-
posed in this chapter, hold great promises for accurately detecting DDoS attack traffic, most
proposed DDoS detection solutions lost the connection to the problems that are required
to address in the real world. Detailed challenges are discussed in section 4.2. Additionally,
adapting a machine learning apporach to mitigate DDoS attack is not an easy job. Any
assumptions or expectations for proposed machine learning approaches to be “ready-to-use”
will lead to an ineffective mitigation system. To further address the challenges and fit the
detection model to a distributed defense system, we introduce a network status awareness
model, which plays a complementary role to the flow based detection model, and then ex-

tended the proposed detection model to facilitate a network-wide coordinate defense system.
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4.1 A Long Short-Term Memory Enabled Framework for DDoS Detection

In this section, we describe a novel deep learning DDoS detection scheme, which only
uses raw packet header information as input and does not require feature engineering. At
the core of the scheme is Long Short-Term Memory, a Recurrent Neural Network(RNN)
architecture, used to learn the network traffic behavior, and distinguish attack network flows
from legitimate flows, by examining a relatively small number of packets from each flow.
We start with the motivation behind this proposed scheme, then describe the details of
the proposed detection model, and summarize this section with the detection performance

discussion.

4.1.1 Motivation

A machine learning based traffic classification workflow usually requires a two-stepped
process for feature engineering. In the first step, an appropriate set of features is extracted
to characterize the signature of the collected data. In the second step, a feature selection
algorithm is applied to eliminate irrelevant features [14]. This process is not only labour
intensive, but also prone to errors. Firstly, generating a feature set that captures previously
unseen attacks behavior is challenging, and often involves deep understanding of the net-
work traffic behaviours and characteristics. Secondly, most feature selection algorithms are
based upon the strong assumption that features are independent from each other [42,46,71],
erroneously ignoring the intrinsic temporal and spatial correlations between the features.
Lastly, training and feature selection, which are treated as two separate phases of the clas-
sification workflow, cannot be jointly optimized, thereby hindering the overall performance
of the detection scheme. Deep learning holds promise for addressing these key limitations.

Deep learning methods stack multiple layers of non-linear transformation hierarchically,
so that these methods can automatically extract complex representations hidden inside the
raw input [40]. For the task of classification, with ascending the layers, representations that
are important for class discrimination are amplified, and the irrelevant representations are

suppressed [91]. This process inherently embeds feature selection. As a result, both the
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transformations of the raw data into the distinctive representations and the classification
of these data into legitimate and malicious traffic are optimized jointly within the training
process. In addition to address these limitations, most importantly, the capability of deep
learning methods to automatically extract features from raw input data offers a practical
solution for a real-time flow by flow inspection.

To mitigate the DDoS attacks impact effectively without causing collateral damage to
legitimate users, a desired detection model should be capable of providing network flow
by flow based detection. A network flow is usually characterized as a sequence of packets
that share the same ( source IP, source Port, destination IP, destination Port, Protocol
). The ability of RNN to learn non-linear representations from sequential data makes it
a natural fit to determine if a sequence of packets is or is not malicious. RNN extends
the traditional feed-forward neural network by introducing a directional loop, so that the
sequential dependence between the current packet and the historical information carried by
previously observed packets is preserved. Thus, we propose to use a RNN model for DDoS

attack traffic detection.

4.1.2 Proposed Detection Scheme

Formally, a network flow, which consists of N network packets, can be described as a

sequence:

F={pW p® . p? My pl® e R™

where p@(1 < i < N) represents the ith packet of F. Each packet p®) € R™ is an m-
dimensional vector contains stored information p® = {p1 , pg), v ng)}. In our proposed de-
tection scheme, the stored information is extracted from packets headers, including: source
Port, destination Port, packet length, Time To Live, FIN, SYN, RST, PSH,
ACK, URG, ECE, and CWR. To adequately explore the temporal information, we also
include three temporal features, which are: time past since last packet, time past since
the first packet, and average time interval between consecutive packets.

The above defined sequence of packets can be viewed as the language of network. Inspired

by the success of natural language processing, we employ LSTM as our detection model,
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which is one of the most popular and efficient variants of RNN [62].
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Figure 11: The Architecture of Proposed Deep Learning DDoS Detection Model

There is not a standard guidance for choosing the number of hidden layers for LSTM
models. The rule of thumb is that two hidden layers should be enough for detecting complex
features. To choose the proper number of layers and architecture for the LSTM model, we
explored and evaluated multiple LSTM architectures, including one hidden layer, two hidden
layers and with an embedded layer. The one hidden layer LSTM architecture and the LSTM
model with an embedded layer are depicted in Appendices Figure 33 and A, respectively.
The LSTM model with two hidden layers outperforms the other two architecture, hence, is
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selected as the DDoS attack traffic low-by-flow detector. Detailed description of the other
LSTM models architecture and the performance evaluation can be found in Appendix A.
The selected two hidden layers LSTM model is depcited in Figure 11, which is a four-
layered architecture, namely two LSTM layers, a dropout layer, and a fully connected layer.
The LSTM layers learn both temporal and spacial representations from the input sequential
data. Each unit in the LSTM layer contains three gates, namely input, forget and output,
which work together to learn the transformation of input values, the relevant information
from previously observed data, and the non-linear representation of the current state during
training. The dropout layer masks a random fraction of the input units at each update
step, while training the network. It adds noises to the LSTM layer, to avoid over-fitting and
improve the robustness of the trained model. A fully connected layer is used for classification.
For each network flow, F, a subsequence of n packets, S = {pV), ..., pti*t"=D1 S C F, is
inspected. Using S, the model classifies the traffic flow as either legitimate or malicious. The
value of n is pre-defined. If a flow does not have enough packets, S will be padded with fake
packets. A fake packet is an m-dimensional vector with values of zeros. If a flow has more
than n packets, only the first n packets are examined. The remaining packets are discarded.
To reduce the detection delay, a time window threshold is applied. The network flow is
examined when either n packets are observed or the time window threshold is reached. The

sensitivity of the scheme to n is discussed in section IV.

4.1.3 Dataset & Data Preprocessing

The experimental evaluation framework uses a widely accepted benchmark datasets,
CICIDS 2017 [67]. It was published by the Canadian Institute of Cybersecurity in 2017, and
contains realistic background network traffic and a variety of attack traffic. The datasets
cover five days of network traffic, two of which have DoS and DDoS attacks. We use these
two days’ traffic, denoted as Wednesday and Friday, as the evaluation benchmark. Table 4
presents the detailed attack types for each traffic collection.

Attack traffic in Wednesday was generated by four different tools. Three of them gen-
erated low-bandwidth application layer attack. These attacks require little bandwidth, and
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Table 4: Attacks in the Experiment Dataset

Traffic Attack Gener- | Brief Description of Attacks
Collection ated Tools
CICIDS 2017 | HTTP  Unbear- | Volumetric Attack.
Wednesday able Load King | Generate volumes of HIT'TP GET requests with
(Hulk) randomly generated header values.
slowloris Low-Bandwidth Application Layer Attack.
Open multiple HTTP connections. Continu-
ously send partial HT'TP requests
slowHTTP Low-Bandwidth Application Layer Attack.
Send HTTP requests in pieces slowly, one at a
time to a Web server.
Golden Eye Low-Bandwidth Application Layer Attack.
Open multiple HTTP connections, and use
"keep alive” packets.
CICIDS 2017 Friday | Low Orbit Ion | Volumetric Attack.
Cannon (LOIC) Open multiple HTTP connections and continu-
ously send HTTP request messages

very stealthy. They aim to keeping the HTTP connections as long as possible using sim-
ilar but different strategies. Wednesday’s traffic also contains a volumetric attack, which
was generated by a tool named “Hulk”. Hulk can flood the victim with huge HTTP GET
requests from a single device. The packet header values of these requests are generated ran-
domly to confuse the victim, and make it hard to be detected. Friday’s attack was generated
by Low Orbit Ion Cannon (LOIC). LOIC floods targeted server using junk TCP, UDP and
HTTP GET requests through numerous attacking devices. Although classified as volumetric
attack, the traffic behavior is more similar to low bandwidth application attack than traffic
generated by Hulk, from the perspective of a single flow.

CICIDS 2017 datasets provide well formatted data files. In these files, each network flow
is characterized by more than 80 statistical features, and associated with a label indicating
whether it is a malicious flow. In addition to the well formatted network flow files, the raw
trace files (in pcap format) are also provided. Since the raw data is not labeled, we need
to reverse engineer the process to find the corresponding set of packets for each network

flow. We carefully check the timestamp, the number of forward and backward packets, the
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time duration, to make sure the mapping is correct and precise. However, the timestamp
granularity is not fine enough to find all the mappings. We discard the network flows and

packets that we did not find exact matches that satisfy our criteria.

4.1.4 Performance Evaluation

The goal of experiment 1 is to carry out a comparative analysis of the performance of
the proposed scheme, which only use the raw packet header information, and the traditional
machine learning methods, which rely on manually selected sophisticated features. In this
experiment, we split the benchmark datasets into three parts: training, validation and test-
ing, which contains 70%, 10% and 20% of the original data, respectively. We applied cross
validation to optimize the hyperparameters for each model. The training and testing process
is applied for Wednesday and Friday’s traffic collection, separately. To decided the value of
n for the proposed LSTM scheme, we analyze the number of packets associated with each
flow in the training datasets. We choose 10 as the value of n, which is the round up value
of the median. Hence, the LSTM model examines a sequence of 10 packets from each flow
and then classifies the flow as either legitimate or malicious.

The proposed LSTM detection model is compared with the state-of-the-art traditional
machine learning models, including Decision Tree (DT), Artificial Neural Networks (ANN)
and Support Vector Machine (SVM). Results are represented in Table 5. It shows that
both traditional machine learning methods and our proposed LSTM scheme are capable to
achieve nearly perfect performance on the testing case. It is worth noting that without using
flow-level statistical features, the proposed LSTM scheme can achieve not only competitive,
but slightly better performance in terms of all evaluation metrics.

Experiment 1 — A Standard Evaluation Experiment
The goal of experiment 1 is to carry out a comparative analysis of the proposed scheme, which
only use the raw packet header information, and the traditional machine learning methods,
which rely on manually selected sophisticated features. In this experiment, we split the
benchmark datasets into three parts: training, validation and testing, which contains 70%,

10% and 20% of the original data, respectively. We applied cross validation to optimize the
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hyperparameters for each model. The training and testing process is applied for Wednesday
and Friday’s traffic collection, separately. To decided the value of n for the proposed LSTM
scheme, we analyze the number of packets associated with each flow in the training datasets.
We choose 10 as the value of n, which is the round up value of the median. Hence, the
LSTM model examines a sequence of 10 packets from each flow and then classifies the flow
as either legitimate or malicious.

The proposed LSTM detection model is compared with the state-of-the-art traditional
machine learning models, including Decision Tree (DT), Artificial Neural Networks (ANN)
and Support Vector Machine (SVM). Results are represented in Table 5. It shows that
both traditional machine learning methods and our proposed LSTM scheme are capable to
achieve nearly perfect performance on the testing case. It is worth noting that without using
flow-level statistical features, the proposed LSTM scheme can achieve not only competitive,

but slightly better performance in terms of all evaluation metrics.

Table 5: Experiment 1 Results

Wednesday Friday
Models
P R F1 P R F1
DT 0.9986 | 0.9985 0.9985 | 0.9998 | 0.9991 | 0.9995
ANN 0.9971 | 0.9992 0.9982 | 0.9996 | 0.9998 | 0.9997
SVM 0.9505 | 0.5135 0.5925 | 0.8818 | 0.4543 | 0.5997
LSTM | 0.9995 | 0.9997 0.9991 | 0.9998 | 1 0.9999

On one hand, the result confirms that the capability of machine learning techniques to
recognize patterns is evident. Taking a closer look at the results, it finds that except for
SVM, all other methods only mis-classified less than 20 flows for Friday’s dataset. It is
impressive, especially considering that tens of thousands of flows are contained in the test
data. On the other hand, the results does not benefit our community any further to solve the
practical problem by splitting the same dataset into training and testing. In this experiment,

the training and testing set are generated by a same (set of) tools. We can assume all testing
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samples are sufficiently represented in the training set, so the learning models can capture
the inherited patterns in the testing set successfully. However, in the real-world detection
scenario, the unseen attack is usually under-represented, if not un-represented at all, in the
available training data. The challenge in DDoS detection is to capture the dynamic traffic
behavior so that the similar attacking strategies can be identified in the future.

Experiment 2 — Testing on Unknown Dataset
In this experiment, we evaluate the proposed scheme’s capability to capture the dynamic at-
tack traffic behaviors. Specifically, we train the models on Wednesday and Friday’s datasets
separately, and test them on Friday and Wednesday’s datasets, respectively. For conve-
nience, we denote training on Wednesday’s datasets and testing on Friday’s datasets as
“WeTrFrTest”, and the other task as “WeTrFrTest”. As discussed in section IV, attacks in
these two days’ datasets are generated by different tools but with similar attacking strategies.
From the perspective of a single flow, the embedded attacking behavior should be similar.
A successful detection scheme is expected to capture the commonalities.

Figures 12 and 13 represent the results for “WeTrFrTest” and “Fr'TrWeTest” respectively.
The high variance presented by the performance of SVM shows that it is not a stable and
trustworthy detection scheme in this evaluated scenario. Thus, we leave SVM out in the
following discussions.

Training with Wednesday’s dataset, the traditional machine learning methods intend to
label more Friday’s traffic as legitimate rather than malicious, shown as high precision scores
and low recall scores. Differently, our proposed LSTM model intends to label more traffic
as malicious rather than legitimate, causing a high recall score but a lower precision score.
Balancing between the precision and recall, LSTM model slightly outperforms DT and ANN,
shown by the highest F1 Score.

Training with Friday’s dataset, the traditional machine learning methods fail to detect the
attack traffic in Wednesday’s dataset. The extremely low recall score presented by DT reveals
that it classifies most traffic flows into the category of legitimate. ANN performs better than
DT, but the similar conclusion can be drawn from the result. The proposed LSTM performs
equally good in all measurements, and it shows the significantly improvements in both recall

and F1 score.
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Training with Wednesday's Dataset, Testing on Friday's Dataset
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Figure 12: Training with Wednesday’s Dataset, and Testing on Friday’s Dataset

Experiment 3 — The Impact of Different Values of n
To classify network traffic, our proposed detection scheme needs to examine n packets of a
network flow. In this experiment, we study the impact of different values of n on the perfor-
mance. We train the proposed models with different values of n € {3, 5, 10, 20, 30, 40, 50}.

Examining only the first 3 and 5 packets, the model lose the capability to distinguish
attack and legitimate traffic. It simply label all traffic as attack traffic. Analyzing the training
data, we observe that flows, which have large number of packets, are usually legitimate traffic
flows. The model may have learned this specific feature, and simply make the decision
accordingly.

Table 6 and 7 present the results for “WeTrFrTest” and “FrTrWeTest”, respectively.
From the table, it is observed that allowing the model to examine more packets for each
flow, with increasing n values, does not necessarily improve the performance. In Table 7,

examining 50 packets significantly degrade the scheme’s performance. Additionally, examin-
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ing larger number of packets increases the standard deviation of all measured metrics, which

indicates the consistency of the performance is also degraded by a larger value of n.

Training with Friday's Dataset, Testing on Wednesday's Dataset
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Figure 13: Training with Friday’s Dataset, and Testing on Wednesday’s Dataset

It seems to benefit the detection scheme by examining higher number of packets from
each flow, since more data is provided for the model to learn traffic behaviors. However,
if network flows are mostly short, such as in our benchmark, then the short flows will be
padded with zeros. These padding values may confuse the system and cause the performance

degradation.

4.2 A Hybrid DDoS Detection Model

Machine learning techniques, including deep learning approaches, hold great promises for

accurately detecting DDoS attack traffic. As illustrated in the previous section, using only
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Table 6: Evaluating the Impact of Different Values of n — WeTrFrTest

n | Ave* P | Ave R | Ave F1 | STD* P | STD R | STD F1
10 | 0.6823 | 0.9999 | 0.8111 | 1.0584 1.74e-05 | 7.86e-6
20 | 0.7125 | 0.9999 | 0.8321 | 0.0005 1.46e-5 | 0.0003
30 | 0.7205 | 0.9981 | 0.8368 | 0.0143 0.0041 0.0081
40 | 0.6271 | 0.8752 | 0.7283 | 0.2241 0.3294 0.2729
50 | 0.7321 | 0.9949 | 0.8432 | 0.0259 | 0.0064 | 0.0146

the raw packet header information, the proposed LSTM model even presents the potential to
capture the involving attack behaviors. However, most proposed DDoS detection solutions

lost the connection to the problems that are required to be addressed in the real world.

Table 7: Evaluating the Impact of Different Values of n — Fr'TrWeTest

n |AveP | Ave R | Ave F1 | STD P | STD R | STD F1
10 | 0.8026 | 0.7235 | 0.7610 | 9.04e-6 | 2.87e-5 | 1.42e-5
20 | 0.8889 | 0.6010 | 0.7171 | 4.49e-6 | 1.01e-5 | 6.24e-6
30 | 0.8870 | 0.5957 | 0.7132 | 0.0007 | 0.0138 | 0.0103
40 | 0.8889 | 0.6010 | 0.7171 | 1.20e-5 | 7.87e-6 | 7.17e-6
50 | 0.8077 | 0.2821 | 0.2920 | 0.0127 | 0.3636 | 0.3756

Firstly, the detection capability of a proposed machine learning tool is usually evaluated
by a well-formatted dataset. Although the evaluation metrics are well studied and truly
represent the detection capability, it does not translate to real-world DDoS attack mitiga-
tion affects. Secondly, due to the special sensitive information that network traffic could
carry on, most datasets are either simulated or emulated in a research lab. The simulation

environment plays a critical role which are broadly neglected in the detection evaluation.
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The collected datasets could contain biases, and be built into the trained model. As such, a
poor performance will be observed, when the approach is applied in the real-world, or even
under a different simulation environment. Lastly, adapting a machine learning approach to
mitigate DDoS attack is not an easy job. Any assumptions or expectations for proposed ma-
chine learning approaches to be “ready to use” will lead to an ineffective mitigation system.
In Chapter 6, we use experiments further discuss these issues.

To improve the performance of the proposed LSTM detection model in real-world detec-
tion, and reduce the effect, In this section, we propose to have an additional detector, which
is aware of the current network status. When the LSTM model first introduce a network
status detection approach, which plays a complementary role to the LSTM model. Further-
more, we extend the stand alone detection model to a distributed and hybrid scheme, so
that it facilitates the coordinate detection mode and could also better serve in the proposed

distributed defense system.

4.2.1 A Network Status Detection

Numerous works have been published to discuss how to statically characterize network
status, indicating whether an anomaly or an intrusion event is taking place. In Chapter 2, we
have reviewed and discussed the limitations of traditional approaches on identifying abnormal
status of the network. One of the major challenges comes from the difficulty of defining a
reliable normal profile of the network. Fortunately, leveraging machine learning techniques,
the characteristics can be learned automatically. Additionally, the objective of this extra
detector is to identify network status, rather than specifically distinguish between the benign
and DDoS attack traffic. With this relaxed objective, challenges of feature engineering that
are faced by machine learning techniques for developing an effective DDoS detection are
actually relieved. Furthermore, with SDN, which offers the logically centralized view of the
entire network, the severe impact caused by the observation location is also alleviated.

DDoS attacks are typically launched from a very large number of distributed, remotely
controlled devices, organized into botnets and aimed at attacking the same target [5]. It is

often the case that a significant number of these devices are unwitting members of botnets,
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operating with spoofed network addresses. From the perspective of a network administrator,
when such attack events are happening, you likely to experience dramatically increased
number of source I[P addresses that are targeting a small range of, if not the same, destination
IP addresses. These compromised devices usually have been injected with malware, with the
objective of rendering the target unresponsive to legitimate users. Different from people’s
response, the injected malware usually doesn’t response properly to the slow responsive
caused by connection congestion or overwhelmed computational resource exhaustion. By

analyzing the traffic, increased number of asymmetric traffic flows could be observed.

- SVM
mmm Decision Tree

Network Status Detection Performance
mmm Naive Bayes Classifier

m | | |

TestCasel Test Case 2 Test Case 3 Test Case 4 TestCase 5

=
@

=
@

Fl Score

=
=

=
¥

=

Test Cases

Figure 14: Network Status Detection Performance

According to the above observations and published works, we selected a set of features
for the network status detector. Firstly, we use entropy, which measures the randomness, to
represent the variance of the distribution of source IP addresses and source ports. Entropy
is a popular information metric in capturing the changes of network status. In [82], the
authors demonstrate that the entropy values of both source IP addresses and source port
numbers are significantly increased under a DDoS attack, comparing with a normal status.

Secondly, we measure the number of packets and the packet size carried by each flow within

47



the pre-defined time interval. With genuine traffic, number of packets or number of bytes
for different flows could vary dramatically. However, traffic sent by a program may have
junk packets with similar sizes. Lastly, we count the number of asymmetric traffic flows. All
features selected are summarized as below:

(1) entropy of the source IP addresses

(2) entropy of the source Port

(3) standard deviation of the number of packets carried by each flow.

(4) standard deviation of the number of bytes carried by each flow.

(5) the proportion of interactive flow entries, which is calculated by the number of interactive
flow entries divided by the total number of flow entries.

These five selected features are applied with three classifiers: Naive Bayes classifier,
Support Vector Machine, and Decision Tree. The dataset used to evaluate the detector’s
performance is also from CICIDS 2017. The Friday’s data, which contains DDoS attack
traffic, is chosen to assess these three classifiers’ performance. The dataset is split into three
sets: training, evaluation and testing, the same as described in the previous section. The
traffic trace of each dataset is divided into a series of 10 seconds intervals. If attack traffic is
observed inside an interval, then the interval is labeled as an attack sample, otherwise, it is
considered as a legitimate sample. The standard evaluation process is conducted to choose
the best hyper-parameters for each classifier, and then compare their performance against
the test dataset. The performance comparison results, F'1 score, is presented in Figure 14.
Appendix B shows the performance comparison results for Precision and Recall scores.
Naive Bayes classifier outperforms the other two, and is chosen to form the hybrid detector

with the LSTM model.

4.2.2 The Hybrid Detection Scheme

Due to the reasons that are discussed at the beginning of this section, features learned
by the LSTM model could be biased, which will degrade the detection accuracy when it is
deployed in a real-world defense system, or even in a different emulation environment. In

the Chapter 6, we use experiments to further elaborate this issue. To reduce this undesired
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effect, we propose having a detector, which is aware of whether the network is under an
DDoS attack event or not, as a guidance that complements to the LSTM model, especially
when it is not confident about the predicted results.

The workflow for the hybrid detection scheme is illustrated in Figure 15. The LSTM
detection model is a flow by flow detector. The input data is from the raw packets, which are
mirrored from switches. The mechanism of which packets and how the packets are mirrored
from switches are described in Chapter 5. Based on given packets, the detector extracted
header information, and store them for the corresponding flows. After receiving a pre-defined
number of packets from a specific flow, the detector is triggered. It reports the probability of
the given flow being malicious. As a binary classification model, the threshold is usually set
as 0.5. If the probability score is higher than this threshold, the flow is classified as malicious,
otherwise it is classified as legitimate. In our proposed hybrid detection scheme, we define
three value ranges for the reported probability, which represent malicious, suspicious and
legitimate. If the inspected flow is identified as an attack flow, then an alarm is raised, and
the detection model immediately installs the dropping rule for this malicious flow. If the
LSTM model does not have sufficient confidence to classify the flow as attack, but labels it
as suspicious. Then collaboration mode will be invoked. The LSTM detector consults the
current network status. If there is no DDoS attack event undergoing, the suspicious flow will
be labeled as legitimate, otherwise, it will be labeled as malicious, and the 