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Abstract 

Structural and Functional Disruption of Mitochondrial Homeostasis by the  

Environmental Toxicant Vinyl Chloride 

 

 

Regina Schnegelberger, M.S. 

 

University of Pittsburgh, 2021 

 

 

 

 

Vinyl chloride (VC) is an environmental toxicant that directly causes liver injury at high 

concentrations. However, lower concentrations (< OSHA limits), which are not overtly 

hepatotoxic, enhance injury caused by high-fat diet (HFD), at least in part, via mitochondrial 

dysfunction and endoplasmic reticulum (ER) stress. Mitochondria and the ER closely interact via 

mitochondria-associated membranes (MAMs). Alterations in these contact sites are associated 

with mitochondrial dysfunction and ER stress. The purpose of this study was to investigate the 

impact of VC exposure on the damage, function and interaction (via MAMs) of these organelles. 

C57Bl/6J mice, fed HFD, or low-fat control diet (LFD), were exposed to VC (<1 ppm), or room 

air for 6 hrs/d, 5 d/wk for up to 12 wks. Alpha mouse liver 12 (AML12) cells were exposed to the 

VC metabolite, chloroacetaldehyde (CAA) for 20 hrs at 37°C. VC exposure modified 

mitochondrial morphology by increasing mitochondrial area, independent of diet while 

mitochondrial DNA content was unaffected. VC also decreased levels of key MAM complex 

proteins. CAA exposure increased mitochondrial size and altered the proximity between the ER 

and mitochondria in AML12 cells. Taken together, VC and CAA altered mitochondrial structure 

and organelle interactions. These stress responses may be causal in VC-mediated toxicity and 

sensitization. These data highlight that current safety restrictions may be insufficient to address 

VC-induced hepatotoxicity in humans. 
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1.0 Background and rationale for the study 

1.1 Obesity and fatty liver disease 

According to the World Health Organization (WHO) the prevalence of obesity has almost 

tripled since 1975 and there are over 650 million obese individuals worldwide. In the United States, 

34.2% of the adult population is overweight (BMI≥ 25) and 33.8% are obese (BMI≥ 30).1 Obesity 

is associated with detrimental health effects, including cardiovascular disease, type 2 diabetes, and 

metabolic syndrome.2 The major hepatic manifestation of metabolic syndrome is non-alcoholic 

fatty liver disease (NAFLD) and is as such closely correlated with incidence of obesity.  

NAFLD is a spectrum of liver diseases ranging from steatosis, to inflammation, to fibrosis 

and cirrhosis.3 The first stage in the development of NAFLD is characterized by lipid accumulation 

in the liver (steatosis).4, 5 Although eating a diet high in fatty acids is a major player in developing 

NAFLD,6 other risk-factors can promote the progression of NAFLD to more severe forms of liver 

injury such as steatohepatitis and cirrhosis. Such modifying risk factors include genetics, 

comorbidities, and xenobiotics.7 

The idea of multiple ‘hits’ in liver disease has been well-established.8, 9 We propose that 

low-dose vinyl chloride (VC) may serve as a risk-modifying factor in the progression of 

steatohepatitis. Indeed, data by our laboratory demonstrate that VC, at concentrations that are not 

hepatotoxic per se, exacerbates liver damage in animals fed high-fat diet (HFD).10, 11 Importantly, 

VC has recently been shown to be a risk factor for liver disease, independent from other causes.12  
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1.2 Vinyl chloride 

VC is a volatile organic compound (VOC) and can be formed as a degradation product 

from chlorinated chemicals such as trichloroethylene (TCE) and tetrachloroethylene (PCE).13, 14 

VC is used in industry to create the polymer polyvinyl chloride (PVC). Occupational exposure to 

VC occurs in facilities that produce PVC and has affected more than 80,000 American chemical 

workers.15, 16 The annual VC production has been estimated at 27 million metric tons.17 Therefore, 

VOCs are found in significant concentrations in the ambient air surrounding manufacturing 

complexes.14 There is a risk for widespread VC exposure, not only under occupational 

circumstances but also to the general population. The main environmental exposure risk occurs 

from contaminated groundwater in areas surrounding production facilities and superfund 

locations.14 VC is present in landfills and in natural gas fracking fluids that can leak into 

groundwater wells in close proximity.18 For example, up to 1,000,000 individuals (military, 

civilian personnel and their families) at Camp Lejeune alone have been exposed to VC.13 Owing 

to its widespread presence in EPA superfund sites, its usage in industry, and its known potential 

human risk, VC is ranked #4 on the Agency for toxic substance disease registry (ATSDR) 

Hazardous Substance Priority List.19 

VC can be ingested through contaminated ground water; however, it is primarily inhaled. 

VC is rapidly absorbed and widely distributed within the body. The main site for VC metabolism 

is the liver, as a consequence, the liver is sensitive to VC exposure. The liver is responsible for the 

removal of toxic compounds from the body in order to protect other organs from exposure.20 

Within the liver, VC is primarily metabolized by the cytochrome P450 enzyme, CYP2E1. This 

enzyme catalyzes the oxidation of VC to 2-chloroethylene oxide (CEO), a highly reactive epoxide. 

CEO is rearranged to form a reactive aldehyde species, 2-chloroacetaldehyde (CAA). VC can also 
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be oxidized to form 2-chloroethanol (CE), which is metabolized to CAA via alcohol 

dehydrogenase. CAA then enters into a subsequent reaction catalyzed by aldehyde dehydrogenase 

to form chloroacetic acid (Figure 1). VC intermediates are detoxified via conjugation with 

glutathione and excreted as thioacetic acid in the urine.21, 22 VC metabolites are electrophilic and 

attack nucleophilic biomolecules such as lipids, nucleic acids, and proteins.22-25 Work from the 

Beier laboratory has shown that VC metabolites sensitize hepatocytes to injury from a second 

stimulus. Furthermore, sub-hepatoxic doses of CE altered hepatic metabolism and enhanced 

damage when combined with another factor in vivo.26, 27 These pathologic changes were mediated, 

at least in part, via CAA’s direct toxicity to the mitochondria via decreasing mitochondrial 

respiration, depletion of cellular ATP levels, and depolarization of the mitochondrial membrane 

potential.28 

1.3 Vinyl chloride and hepatic injury 

High occupational exposure to VC  causes toxicant-associated steatohepatitis (TASH) in 

human subjects.29-31 TASH is recognized as a unique hepatic disorder with its own etiology and 

pathophysiology.29 Although this direct hepatotoxic effect of VC has been identified, the 

mechanism(s) by which low concentrations of VC enhance hepatotoxicity, have not been 

determined.  
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1.4 Vinyl chloride and mitochondrial function 

Mitochondria are essential to overall function and health of all cell types. They respond 

dynamically to stress signals, nutrient availability and are responsible for many functions within 

the cell, including redox signaling, calcium homeostasis, programmed cell death, and energy 

metabolism through oxidative phosphorylation (OXPHOS). If any of these functions are disrupted, 

cellular processes can become dysfunctional, resulting in biochemical and physiological stress and 

ultimately lead to cell death. Therefore, maintenance and regulation of mitochondrial homeostasis 

is crucial to overall health of an organism.  

It is known that ingestion of a HFD causes mitochondrial metabolic disruption. Mitochondria 

play key roles in hepatic (mal)adaptation to NAFLD; however, the underlying mechanisms are 

incompletely understood. Mitochondrial-driven alterations in substrate supply, metabolism, and 

cell death have been consistently identified as likely players. Indeed, mitochondrial function and 

morphology are known to be altered both in experimental NAFLD and in humans presenting with 

NAFLD and non-alcoholic steatohepatitis (NASH).32, 33 

Mitochondria are a significant source of endogenous reactive oxygen species (ROS), as 

electron leakage occurs during normal oxidative respiration.34, 35  Mitochondrial-generated ROS 

are involved in physiological signaling cascades regulating various cellular functions.34, 35 

However, overproduction of ROS and the resulting oxidative stress are known to play a central 

role in the pathogenesis of many diseases, i.e. NAFLD.36,37 Moreover, our lab has shown that VC 

enhances NAFLD-induced oxidative stress.11, 26 This result suggests that one of the mechanisms 

by which VC exerts damage is by increasing ROS production, resulting in disruption of normal 

cellular funciton and sensitizes the hepatocytes to further damage.  
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1.5 Mitochondrial membrane potential 

Work from the Beier laboratory demonstrated that independent of diet, VC exposure 

significantly decreases mitochondrial respiration and maximum respiratory capacity in 

mitochondria.11 One mechanism by which oxidative phosphorylation is controlled is via the 

mitochondrial membrane potential (MMP), which is generated and maintained by the proton 

pumps of the electron transport chain (ETC) (complexes I, III and IV).38 The MMP and proton 

gradient form an electrical gradient, which together, form the transmembrane potential of 

hydrogen ions used by ATP synthase to form ATP.38 Previous work by our group has demonstrated 

that in vitro exposure to VC metabolites renders hepatocytes more sensitive to cell death.26 

Similarly, VC exposure in vivo decreases mitochondrial membrane potential and sensitizes 

hepatocytes to ex vivo cytotoxic stimuli resulting in cell death. We propose that these effects 

contribute, at least in part, to the overall phenotype. 

1.6 Mitochondrial-associated membranes 

Recent work suggests that stress to mitochondria and the ER is not distinct, but rather that 

mitochondrial/ER crosstalk is critically-involved in normal and altered function in both 

organelles.39-41 Mitochondria and the ER physically interact via specialized contact sites called 

mitochondria-associated membranes (MAMs).42-45 Importantly, MAMs house key components 

that impact cellular and organelle function by regulating and controlling mitochondrial function, 

ER stress signaling and autophagy,40 making them sensitive targets. It has been demonstrated that 

ER-mitochondria interactions are decreased in obese mice,39 leading to ER-mitochondria 



 6 

miscommunication. Therefore, a major goal of this work is to determine the role VC exposure on 

MAMs. 

1.7 Statement of goals 

There are many known risk factors for liver disease progression including nutrient overload 

and toxicant exposure that need to be considered when studying disease development. Due to VC 

being a common industry toxicant and the high prevelance of obesity, these two factors need to be 

considered simultaneously. We aim to demonstrate that low-level VC exposure induces 

morphological and functional changes to the mitochondria and therefore lead to an exacerbation 

of NAFLD. Therefore, the purpose of this thesis is to further identify the underlying mechanisms.   
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Figure 1: Schematic illustration of VC metabolism in the liver. 
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2.0 Overall aim of the thesis 

 The overall aim of this thesis is to address the hypothesis that low- level VC exposure 

(sub-OSHA level) is sufficient to exacerbate mitochondrial dysfunction by altering mitochondrial 

morphology and disrupting mitochondria-ER communication in HFD induced liver disease. 

Recent data from this lab have determined that sub-hepatotoxic concentrations of VC/VC 

metabolites can induce mitochondrial dysfunction by depleting cellular ATP levels and decreasing 

oxygen consumption rate in the mitochondria. Furthermore, VC/VC metabolites increase ER 

stress. Therefore, the effect of sub-OSHA exposure to VC via inhalation on mitochondrial/ ER 

communication via MAMs was assessed. Mitochondrial structure and dynamics are crucial for 

whole cell homeostasis. As discussed in the Background, VC/VC metabolites have been shown to 

disrupt mitochondrial function and respiration. However, the effect on mitochondrial structure and 

integrity has yet to be determined. Thus, this will be addressed in this thesis. Taken together, the 

goal of this thesis is to provide further insight into sub-OSHA exposure of VC and its effect on 

mitochondrial function and integrity.  
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3.0 Introduction 

The current obesity epidemic in the United States is prevalent with over 1/3 of the 

population being considered obese (BMI > 30 mg/km2).46 There are several pathologies associated 

with obesity, including metabolic syndrome with the primary hepatic manifestation of metabolic 

syndrome being non-alcoholic fatty liver disease (NAFLD). The progression and severity of liver 

disease can be enhanced by other factors, such as environmental toxins/toxicants, which are only 

beginning to be understood as an important factor in contributing to the progression of liver 

disease, and the underlying mechanisms.8 Vinyl chloride (VC) is a potent, ubiquitous compound 

in which individuals can be exposed to environmentally or occupationally.47 VC is found as a 

degradation product of other chlorinated chemicals and is direct hepatotoxicant at high 

concentrations.13, 48 29, 49, 50 While most studies focus solely on the effect of VC exposure on human 

health alone, our lab takes into consideration the interaction of low-dose VC with risk-modifying 

factors, such as over nutrition.  

Our recent studies suggest that obesity and hepatic steatosis increase susceptibility to VC, 

making them vulnerable to worse hepatic pathology.10, 26, 27, 51 Since NAFLD is prevalent in the 

developed world,52 our lab is focused on defining the interactions between a high-fat diet (HFD) 

and VC exposure. Our lab has documented that sub-OSHA levels of VC inhalation cause oxidative 

stress and mitochondrial dysfunction leading to disruptions of hepatic energy metabolism and 

steatohepatitis.11 Furthermore, previous data from this group demonstrated that VC exposure leads 

to endoplasmic reticulum (ER) dilation,10 which activates ER stress pathways.53 We hypothesize 

that ER stress and mitochondrial dysfunction in the interaction of VC and HFD causes the 

metabolic derangements of the liver in this model, at least in part, via mitochondrial-ER 
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miscommunication. The purpose of the current study, therefore, was to elucidate the impact of VC 

exposure on the function and interaction (via mitochondria-associated membranes-MAMs) of 

these organelles and to further discern the impact of altered MAM proteins have on mitochondrial 

morphology. 
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4.0 Materials and Methods 

4.1 Animals and Procedures 

Six‐week‐old male C57BL/6J mice from Jackson Laboratory (Bar Harbor, ME) were held 

in a pathogen‐free barrier facility accredited by the Association for Assessment and Accreditation 

of Laboratory Animal Care, and procedures were approved by the local Institutional Animal Care 

and Use Committee. Animals were housed in shoebox cages with corncob bedding and were 

allowed food and water ad libitum on a 12‐hour light/dark cycle. 

4.1.1 Diets 

Low fat diet (LFD). 13% calories as fat; Casein 195.0 g/kg, DL-Methionine 3.0 g/kg, 

Sucrose 120.0 g/kg, Corn Starch 432.89 g/kg, Maltodextrin 100.0 g/kg, Anhydrous Milkfat 37.2 

g/kg, Soybean Oil 12.8 g/kg, Cellulose 50 g/kg, Mineral Mix, AIN-76 (170915) 35.0 g/kg, Calcium 

Carbonate 4.0 g/kg, Vitamin Mix, Teklad (40060) 10.0 g/kg, Ethoxyquin, antioxidant 0.01 g/kg; 

(Envigo Teklad Diets, Madison, WI). 

High fat diet (HFD). 42% calories as fat; Casein 195.0 g/kg, DL-Methionine 3.0 g/kg, 

Sucrose 341.31 g/kg, Corn Starch 75.0 g/kg, Maltodextrin 75.0 g/kg, Anhydrous Milkfat 210.0 

g/kg, Cholesterol 1.5 g/kg, Cellulose 50.0 g/kg, Mineral Mix, AIN-76 (170915) 35.0 g/kg, Calcium 

Carbonate 4.0 g/kg, Vitamin Mix, Teklad (40060) 10.0 g/kg, Ethoxyquin, antioxidant 0.04 g/kg; 

(Envigo Teklad Diets, Madison, WI). 
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4.1.2 Chronic model of VC exposure 

The in vivo results generated in this study were used from preexisting samples. The 

exposure paradigm used was modified from Drew et al.54 Mice were chronically exposed to VC at 

0.85 ± 0.1 ppm, or room air, for 6 hours per day, 5 days per week, for a maximum of 12 weeks.54 

Mice were exposed in a state-of-the-art 2-tiered inhalation chamber system capable of performing 

simultaneous exposures with up to 100 mice at one time (50 mice/tier) housed at the University of 

Louisville, in the Clinical Translational Research Building barrier facility designed with extensive 

housing capacity, card-coded entry, and separate HVAC system to maintain barrier, temperature 

and humidity condition.54 Mice were allowed food and water ad libitum the entire course of the 

study. Mice were fed low fat diet or high fat diet (Envigo, Teklad Diets, Madison, WI). Body 

weight for each animal was measured once per week and food consumption was monitored and 

recorded twice per week. Animals were euthanized at 6 and 12 weeks of exposure. 

4.1.3 Key chemicals and resources 

VC obtained from Kin-Tek (La Marque, TX) was validated by the Kentucky Institute for 

the Environment and Sustainable Development of the University of Louisville and was stored at -

20°C in the barrier facility when not in use. The VC concentration in the inhalation chamber was 

measured by gas chromatography/mass spectrometry (GC/MS) in full scan mode according to the 

EPA method TO-15, using a quadrupole GD (HP 6890) with a HP 5973 Mass Selective Detector. 

Grab air samples from the inhalation chamber were collected as the air exited the chamber into 

pre-evacuated six-liter Silcosteel canisters.  
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4.1.4 Animal sacrifice, tissue collection, and storage 

At the time of sacrifice, 4 hour fasted animals were anesthetized with ketamine/xylazine 

(100/15 mg/kg, i.p.). Blood was collected from the inferior vena cava just prior to sacrifice by 

exsanguination and citrated plasma was stored at -80°C for further analysis. Portions of liver tissue 

were snap-frozen in liquid nitrogen, embedded in frozen specimen medium (Sakura Finetek, 

Torrance, CA), or were fixed in 10% neutral buffered formalin for subsequent sectioning and 

mounting on microscope slides.  

4.2 Cell Culture 

  AML12 cells (ATCC # CRL-2254, American Type Culture Collection, Manassas, Virginia) 

were maintained in Dulbecco’s modified Eagle’s medium (DMEM) with phenol red, 

supplemented with 10% heat-inactivated fetal bovine serum, 100 IU/ml penicillin, 10 µg/ml 

streptomycin, 10µg/ml insulin, 40ng/ml dexamethasone. Cells were grown in 25-cm2 cell culture 

flasks at 37°C with 5% CO2 in a humidified incubator.  

4.2.1 Mitochondrial Reconstruction 

  For determination of mitochondrial volume changes, mitochondrial reconstruction was 

performed as previously described.55 AML12 cells in 8-well chamber slides were pre-incubated 

for 1 hr with Szeto-Schiller (SS)-31, followed by an incubation with chloroacetaldehyde (CAA) 

for 20 hrs in the presence or absence of SS-31. Cells were fixed in 4% paraformaldehyde (PFA). 
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Fixed cells were stained using anti-TOM20 (Invitrogen, PA5-52843) to label the mitochondria. 

Cells were co-stained with DAPI (nuclei). Confocal z-stacks were collected using 60X (1.49NA) 

optic on a Nikon A1 equipped with GASP detectors and NIS Elements software (Nikon Inc., 

Melville NY). The confocal datasets were deconvoluted using 3D Landweber capabilities of 

Nikon Elements (Nikon Inc., Melville, NY) and then surface rendering and calculation of 

mitochondrial volume were collected.  

4.2.2 Proximity Ligation Assay (PLA) 

PLA was performed as described previously.56, 57 AML12 cells were fixed in 4% PFA. 

Samples were incubated with anti-Tom20 (Invitrogen, PA5-52843) primary antibody at room 

temperature for 1 hr then incubated with anti-Calnexin (Invitrogen, MA3-027) primary antibody 

at 4°C overnight. Secondary antibodies conjugated with oligonucleotides were added to the 

reaction and incubated at 37°C for 1 hr. Ligation solution, consisting of two oligonucleotides and 

ligase, was added and incubated at 37°C for 45 min. In this assay, the oligonucleotides hybridize 

to the two PLA probes on the secondary antibodies and join to a closed loop if they are within 40 

nm of each other. Amplification solution, consisting of nucleotides and fluorescently labeled 

oligonucleotides, was added together with polymerase and incubated at 37°C for 1 hr and 40 min. 

The proximity ligated signal is visible as a distinct fluorescent spot and confocal images were 

collected using 60X (1.49NA) optic on a Nikon A1 equipped with GASP detectors and NIS 

Elements software (Nikon Inc., Melville NY). The confocal datasets were deconvoluted using 3D 

Landweber capabilities of Nikon Elements (Nikon Inc., Melville, NY). Then deconvoluted 

confocal images were analyzed using NIS elements (Duolink; Sigma Aldrich).  
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4.3 Electron Microscopy (EM) 

EM analysis was performed as previously described.58 Briefly, liver tissues were fixed with 

2.5% glutaraldehyde in 0.1 mol/L phosphate buffer (pH 7.4), followed by 1% OsO4. After 

dehydration, thin sections were stained with uranyl acetate and lead citrate for observation under 

a JEM 1011CX electron microscope (JEOL). Images were acquired digitally at the University of 

Kansas Medical Center. 

4.4 Immunoblots 

Liver samples were homogenized in buffer containing protease and phosphatase inhibitor 

cocktails (Sigma-Aldrich, St. Louis, MO) as previously described.59 Sodium dodecyl sulfate–

polyacrylamide gel electrophoresis was followed by Western blotting. Primary antibodies against 

MFN2 (ab56889), Disc-1 (ab192258), Calnexin (ab22595) (1:1,000, Abcam, Cambridge, MA), 

OPA1 (80471), GRP75 (3593), DRP1 (8570), SERCA (4388), glyceraldehyde 3‐phospohate 

dehydrogenase (GAPDH) (5174s) (1:1,000, Cell Signaling Technologies, Danvers, MA), and 

IP3R-1 (1:1,000, Invitrogen, PA1-901) were used. Results were visualized using the iBright 1500 

imager (Thermo Fisher Scientific, Waltham, MA). Densitometric analysis was performed using 

iBright analysis software (Thermo Fisher Scientific, Waltham, MA).  
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4.5 Statistical Analysis 

Power analysis was used to calculate the number of animals required for the experiments. 

Based on previous studies and preliminary data, we estimated that we needed a minimum of five 

animals per group to compare the primary endpoint (i.e., levels of organ injury) in HFD and VC‐

exposed mice to get an 85% power for detecting a difference of at least 20% with P < 0.05 between 

experimental groups. Results are reported as means ± SEM (n = 4‐12). Analysis of variance with 

Bonferroni's post‐hoc test (for parametric data) or Mann–Whitney Rank Sum test (for 

nonparametric data) were used for the determination of statistical significance among treatment 

groups, as appropriate. P < 0.05 was selected before the study as the level of significance. 



 17 

5.0 Results 

5.1 In vivo studies 

5.1.1 VC induces enlarged mitochondria 

Our lab has previously shown that liver injury caused by HFD can be enhanced by sub-

hepatotoxic concentrations of VC or its metabolites, in part, by dysregulating hepatic energy 

metabolism and decreasing respiration.10, 27, 51 Altered mitochondrial integrity has been shown to 

cause an overall decrease in respiration.60 It is now known that mitochondrial integrity not only 

encompasses functional but also structural attributes.61 Analysis of EM pictures demonstrated that 

overall area of the mitochondria was significantly increased by VC alone (Figure 2B), while 

remaining spherical (length/width ratio, Figures 2B and 2C). Moreover, VC alone significantly 

increased the length/width ratio of the mitochondria (Figure 2B). In line with previous reports,62 

morphometric analysis of these mitochondria showed that HFD caused an elongation of the 

mitochondria. Furthermore, HFD+VC dramatically altered this morphology resulting in strongly 

enlarged, spherical mitochondria (Figure 2A). Interestingly, the ratio of mitochondrial to nuclear 

DNA (mtDNA: nuDNA) was unaffected (Figure 2D).  
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Figure 2: Effect of VC on mitochondrial morphology. A: Representative EM photomicrographs 

depict elongated organelles in the HFD group and enlarged mitochondria (width, length >1 mm) 

in the HFD+VC group. Arrow denotes mitochondria, LD denotes lipid droplet, and N denotes 

nucleus. B: Total mitochondrial area (µm2) and mitochondrial length/width ratio are shown. C: 

Distribution of the size of 70 mitochondria/group is shown. D: Hepatic mRNA expression of 

mitochondrial DNA is shown as fold of control compared to LFD control animals at the 6-week 

time point. a, p<0.05 compared to LFD control; b, p<0.05 compared to absence of VC. Samples 

size per group n =8-10. 
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5.1.2 VC alters protein levels of mitochondrial-associated membranes (MAMs) 

The mitochondria and ER physically interact with each other through MAMs (Figure 3A). 

MAMs, are key to cell survival or death through the transfer of calcium, proteins, and lipids.63 Our 

lab has shown that VC induces ER stress and causes mitochondrial dysfunction.11 We hypothesize 

that VC causes this effect, in part, by disrupting proper communication between these organelles 

via MAM proteins. To investigate if VC impacts ER-mitochondria interactions through altering 

protein levels of MAMs, whole liver lysates and mitochondrial extracts were used for Western blot 

analyses. The expression of Calnexin, Ip3R1, Serca, and Disc-1 (all localized on the ER), Grp75 

(localized on the ER and mitochondria), as well as Opa1, Mfn2 and Drp1 (all localized on the 

mitochondria) were analyzed. These proteins are involved in Ca2+ transport, protein assembly, 

mitochondrial fission and fusion, and integration of ER-mitochondrial communication, ER 

homeostasis and autophagy. In isolated mitochondrial extracts, VC alone did not significantly 

change the protein expression. However, HFD increased MAM protein expression in these 

samples (Figure 3C). VC exposure blunted HFD induced expression of these markers. In whole 

liver lysates, VC alone significantly increased Mfn2 expression, required for mitochondrial fusion 

(Figure 3B). These data support our hypothesis that VC exposure alters mitochondrial 

morphology.  

MAMs are important for mitochondrial dynamics by marking sites of mitochondrial fission 

and fusion; that is the joining and separating of the organelle.64 The balance of mitochondrial 

fission and fusion is imperative for regulating mitochondrial bioenergetics and removing damage 

during periods of internal stress.65, 66 We hypothesize that the HFD and VC interaction further 

disrupts mitochondrial fission and fusion processes by increasing fusion and decreasing fission, 
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resulting in more changes in mitochondrial morphology (i.e. enlarged mitochondria) and more 

damaged mitochondria. 
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Figure 3: VC alters MAMs protein levels. A: Schematic illustration of functional and structural 

MAM proteins. B: Representative Western blots and densitometric analysis for whole liver lysates 

of Mfn2, Disc-1, Opa1, Grp75, Drp1, and Serca are shown and C: Western blots of crude 

mitochondrial extracts of Calnexin, Grp75, IP3R-1, and Drp1 are shown. a, p<0.05 compared to 

LFD control; b, p<0.05 compared to absence of VC. Samples size per group n =4. 
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5.2 In vitro studies 

5.2.1 Chloroacetaldehyde (CAA) increases mitochondrial size 

Mitochondria are highly dynamic and functionally versatile organelles that fuse and 

fragment continuously. The morphology of mitochondria (fragmented and extensive fusion) has 

been shown to strongly influence mitochondrial function.67 To determine if VC/VC metabolite 

exposure causes morphologic changes, mitochondrial reconstruction was performed. AML12 cells 

were incubated with CAA (0µM- 20µM) for 20 hrs. Exposure to CAA significantly increased 

mitochondrial volume at low concentrations (≤ 2.5 µM) up to 10 µM of CAA in a concentration-

dependent manner (Figure 4B). The mitochondrial phospholipid, cardiolipin, plays a central role 

in many mitochondrial processes, including mitochondrial morphology and dynamics.68-70 SS-31 

is a mitochondrial specific peptide that has been shown to selectively bind to cardiolipin on the 

inner mitochondrial membrane. We hypothesize that VC/VC metabolites destabilize cardiolipin 

leading to altered mitochondrial morphology and that stabilization of cardiolipin with SS-31 

treatment will attenuate the increase in mitochondrial volume caused by CAA exposure. AML12 

cells were pre-treated with 1µM of SS-31 for 1 hr, then cells were exposed to CAA ± 1µM of SS-

31 for 20 hrs and mitochondrial reconstruction was performed. Increasing concentrations of CAA 

increased mitochondrial volume in a dose dependent manner. Addition of SS-31 mitigated this 

effect at lower concentrations, but did not compensate past 10µM (Figure 4B). 
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Figure 4: Effect of CAA on mitochondrial volume. AML12 cells were grown on 8-well chamber 

slides and incubated with 0µM, 1µM, 2.5µM, 5µM, and 10µM of CAA ± 1µM of SS-31 for 20 

hrs. A: Confocal microscopy images of mitochondria (red) from AML12 cells. B: Images were 

deconvoluted to better enable resolution of individual mitochondria. Mitochondrial volume was 

quantified by multiplying the number of voxels by the voxel volume and expressed as fold of 

control and as µm3/ cell. a, p<0.05 compared with absence of CAA. b, p<0.05 compared with 

absence of SS-31. n =3. 
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5.2.2 CAA alters the proximity between the ER and mitochondria  

The mitochondria and ER are both essential to the cell and proper communication of these 

organelles requires close proximity. Dysfunction of either organelle, or a change in proximity, can 

disrupt metabolite transport, lipid metabolism, and induce apoptosis.41 Data from our lab illustrated 

that VC/VC metabolites changed MAM protein expression (Figure 3), increased mitochondrial 

size (Figure 2) and volume (Figure 4), and induced ER stress in vivo.11 In order to determine if the 

VC metabolite, CAA, affects the distance between the ER and mitochondria, AML12 cells were 

incubated with 0µM- 10µM of CAA and a proximity ligation assay (PLA) was performed. Tom20 

antibody was used to label the mitochondria and Calnexin antibody was used to label the ER. 

AML12 incubated with 2.5µM of CAA significantly decreased the distance between the ER and 

mitochondria as imaged by using confocal microscopy and measured by analyzing the overall 

number of puncta per cell (Figure 5B). However, as the CAA concentration increased the distance 

did not differ compared to control group.  
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Figure 5: CAA alters the distance between the mitochondria and ER. AML12 cells were 

grown on coverslips and incubated with 0µM, 2.5µM, 5µM, and 10µM, of CAA for 20 hrs. A: 

Proximity ligation assay showing interaction between mitochondria (TOM20) and ER (Calnexin), 

indicated by green puncta. B: Quantification of the mitochondrial-ER proximity ligation signal 

expressed as fold of control and object count per cell. a, p<0.05 compared with absence of CAA. 

n =3. 
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6.0 Discussion 

Occupational exposure levels to VC have been regulated since the 1970’s. While these 

regulations lessen concerns about direct hepatotoxicity of high occupational exposure to VC, we 

have demonstrated that lower exposure levels of VC and metabolites that are not overtly toxic, per 

se, can augment liver injury caused by another insult.10, 26, 27 Although low VC exposure alone did 

not cause overt pathology, it damaged mitochondria, leading to decreased oxygen consumption 

rates (OCR) in hepatocytes.10 Mitochondria have been identified to play key roles in hepatic 

(mal)adaptation to NAFLD. Indeed, mitochondrial function and morphology are known to be 

altered both in experimental NAFLD and in humans presenting with NAFLD and NASH.32, 33 

Although the underlying mechanisms are incompletely understood, mitochondrial-driven 

alterations in substrate supply, metabolism, and cell death have been consistently identified as 

likely players. We hypothesize that VC-induced mitochondrial damage may impede the liver’s 

ability to appropriately adapt to the biochemical stresses caused by experimental NAFLD and 

thereby exacerbate damage. The findings of the current study support this hypothesis. We have 

demonstrated here that VC causes significant architectural changes to the mitochondria, even in 

the absence of HFD (Figure 2). This may, in part, be mediated by changes in organelle interaction 

(Figure 3). The major goal of this thesis was too further decern the mechanistic impact on the ER 

and mitochondria following VC-induced liver injury. 

Recent studies have indicated that altered mitochondrial morphology may be a key 

mechanism in mitochondria-mediated cellular injury. Mitochondrial morphology and functionality 

are strictly correlated, and mitochondrial dynamics are constantly adjusting mitochondrial shape 

to maintain homeostasis.71 However, these responses can also be dysfunctional, and drive 
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pathogenesis. Changes in mitochondrial morphology caused by different insults (e.g., fatty diets 

or alcohol), are mediated, at least in part, by mitochondrial remodeling, including elongation or 

overall enlargement of the mitochondria.61, 62 Enlarged mitochondria can be caused by fusion (i.e. 

mitochondrial hypertrophy), or by mitochondrial swelling.72, 73 Mitochondrial hypertrophy is 

associated with normal cristae, normal matrix density and normal oxidative phosphorylation, 

whereas mitochondrial swelling is associated with abnormal cristae, irregular matrix density and 

uncoupled oxidative phosphorylation. In the current model, VC exposure significantly changed 

mitochondrial shape (Figure 2) towards a more spherical morphology, suggesting swelling more 

than hypertrophy. Furthermore, VC metabolite CAA significantly increased mitochondrial volume 

in AML12 cells (Figure 4), also suggesting an enlargement of the mitochondria. However, 

additional experiments are needed to determine whether these results are due to mitochondrial 

swelling or hypertrophy.  

The mitochondrial structural changes observed under these conditions correlated with 

altered function. We have demonstrated that liver injury enhanced by VC is associated with VC-

induced mitochondrial dysfunction, leading to increases in oxidative stress and energy 

dysmetabolism, which was demonstrated by significantly decreasing the oxygen consumption 

rate.10 One of the possible mechanisms of VC-induced changes to mitochondrial respiration is via 

decreased protein expression of electron transport chain complexes. Moreover, mtDNA content, 

which is known to be increased in experimental NAFLD, was not altered following VC exposure 

(Figure 2D). These data suggest, that VC induces post-translational modifications, which results 

in mitochondrial dysfunction rather than directly impacting the mtDNA copy number.  

Mitochondrial quality and abundance affect the cell’s bioenergetic capacity and overall 

resistance to stress.74 Mitochondrial damage has also been linked to the induction of ER stress, 
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which can indirectly affect cellular function. In particular, the ER regulates fundamental 

metabolites (e.g., lipids) and messengers (e.g., Ca2+) that control mitochondrial function and the 

fate of the cell,  suggesting mitochondrial stress is closely associated with ER stress.42 

Mitochondria and the ER also physically interact via specialized contact sites called mitochondria-

associated membranes (MAMs).42-45 It has been demonstrated that ER-mitochondria interactions 

are decreased during obesity (i.e., in ob/ob mice),39 leading to ER-mitochondria 

miscommunication. VC exposure has previously been shown to cause ER stress and mitochondrial 

dysfunction.11, 51, 75, 76 Here, we show in mitochondrial extracts that VC exposure decreases 

expression of proteins involved in ER-mitochondria interaction, including ER-associated proteins 

(Figure 3B and 3C), suggesting a decrease in physical contact and resulting in potential 

miscommunication, ER stress, and mitochondrial dysfunction. However, 2.5 µM of CAA 

decreased the proximity between the mitochondria and ER (Figure 5). Increasing concentrations 

of CAA, including 5µM and 10µM, showed no significant difference when compared to control. 

These results could be explained by the increase in mitochondrial volume seen in CAA-exposed 

cells.  

Taken together, our results support the hypothesis that low-level (sub-OSHA limit) VC 

exposure via inhalation enhances liver injury caused by HFD, mechanistically involving 

structurally and functionally dysregulated mitochondria and their interactions with the ER. 

Importantly, these data raise concerns about potential synergistic effects of fatty diets and exposure 

to VC to enhanced liver injury. Thus, the health implications of this co-exposure for humans need 

to be considered. It also indicates that current safety restrictions may be insufficient to account for 

other environmental factors that can influence hepatotoxicity. 
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7.0 Strengths and Weaknesses 

7.1 Strengths  

 There are many strengths of the work presented in this thesis. This work utilized a well-

established animal model that closely mimics human exposure to VC and concomitant exposure 

to a high fat diet. With this animal model, a chronic administration of sub-OSHA concentrations 

of VC was used. The in vivo results showed here illustrate the importance for continued research 

using relevant exposure concentrations to better understand the impact of environmental toxicants 

have on underlying liver disease. The work presented here builds on previous data and further 

supports the hypothesis that VC exacerbates liver injury induced by HFD by causing mitochondrial 

dysfunction. This research further demonstrates VC-induced mitochondrial dysfunction by 

altering mitochondrial architecture and disrupting communication of the mitochondria with other 

organelles. This work utilized both in vitro and in vivo models to illustrate that VC/VC metabolite 

exposure induces architectural changes to the mitochondria which, in part, leads to mitochondrial 

dysfunction.  

7.2 Weaknesses 

 This research builds on previous work illustrating VC-enhanced liver injury in order to 

further determine the mechanism of VC induced hepatotoxicity. The experiments described here 

in which mitochondrial protein are analyzed used only crude mitochondrial extracts. Therefore, it 
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is important to note that isolating pure mitochondria may yield different results. Furthermore, 

isolation of the ER would also be beneficial to fully discern VC impact on MAMs. While the in 

vivo parts of this thesis used an animal model that is comparable to human exposure, the in vitro 

data would need to be recapitulated in the in vivo model or in primary hepatocytes in order for the 

results to be more comparable to human studies. Lastly, the higher concentrations of CAA may be 

increasing the distance between these organelles and the PLA fails to provide that information. 

The PLA has a limitation that it can only detect within a 40nm and will not detect any changes in 

proximity beyond that distance. Furthermore, while CAA alters the proximity, future experiments 

will need to be performed to explore the mechanistic impact of this alteration. 
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8.0 Future Directions  

 While the experiments in this thesis aided in our understanding of chronic, low-level VC-

induced liver injury, it has also led to new research questions which need to be addressed in future 

studies. Some of these questions are addressed below.  

8.1 Does VC exacerbate mitochondrial dysfunction via dysregulation of cardiolipin?  

 This thesis demonstrated that VC exposure alters mitochondrial morphology causing 

enlarged, spherical mitochondria. Morphometric analysis of these mitochondria demonstrated that 

the overall area of the mitochondria was increased by VC, independent of diet. Previous data 

showed that VC also caused mitochondrial dysfunction.11 The mitochondrial phospholipid, 

cardiolipin, has been shown to have a central role in several mitochondrial processes, including 

respiration, energy production, apoptosis, morphology, and stability.69, 70, 77-80 It has also been 

shown to play a key role in mitochondrial dynamics (fission and fusion), which drive organelle 

morphology and size.80-82 Based on the previous data and the observations of this thesis, it would 

be of interest to determine if the VC-induced mitochondrial dysfunction and changes in 

mitochondrial morphology are caused, at least in part, by dysregulation of cardiolipin as 

destabilized cardiolipin has been shown to cause instability of the membrane and increase 

mitochondrial size.83 
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8.2 Will prevention of altered mitochondrial morphology protect against VC-induces 

hepatotoxicity?  

 Results from this thesis illustrate that VC-induced mitochondrial morphological changes 

may be a driving factor in liver injury progression. Therefore, it would be of interest to determine 

if preventive measures could be taken to mitigate injury progression in this model. There are 

several mitochondrial specific small molecules being studied due to their ability to prevent injury. 

One of these molecules is SS-31, which is a water-soluble peptide, which directly targets the 

mitochondrial membrane.84, 85 It can access the inner mitochondrial membrane and selectively bind 

to cardiolipin. The interaction of SS-31 and cardiolipin has been shown to reduce ROS production 

while also stabilizing the ETC supercomplexes and increases respiratory function through 

oxidative phosphorylation.84, 85 Therefore, it would be of interest to determine if the hepatotoxicity 

induced by the combination of VC and HFD can be attenuated by this molecule.  
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9.0 Summary and Conclusions 

 Taken together, this thesis supports the hypothesis that low-level (sub-OSHA-limit) chronic 

exposure to VC via inhalation enhances liver injury caused by HFD, mechanistically involving 

structural, functional and dynamically dysregulated mitochondria and their interactions with other 

organelles. Furthermore, this thesis illustrates that VC metabolite, CAA, induced architectural 

changes to the mitochondria. This research provides potential mechanisms by which injury can be 

exacerbated following VC/VC metabolite exposure. Importantly, these data raise concerns about 

potential for overlap between fatty diets and exposure to VC and the health implications of this 

co-exposure for humans. It also emphasizes that current safety restrictions may be insufficient to 

account for other factors that can influence hepatotoxicity. 
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