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Relationships Between Spaces and Their Functional Generators

Alex Yuschik, PhD
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A subset G of the set C(X) of all continuous real valued functions on a Tychonoff space

X, is a generator if whenever x is a point of X not in a closed set C then there is a g

in G such that g(x) /∈ g(C). The set C(X) admits some natural topologies, including the

topology of pointwise convergence and the compact open topology. Generators, then, are

subspaces of these function spaces. In this work, we examine discrete, compact and first and

second countable generators.
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4.3.3 No Lindelöf Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.0 Discrete Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iv



5.1 Discrete Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Discrete (0, 6= 0)-Generators s . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Discrete (0,1)-Generators s . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.0 First and Second Countable Generators . . . . . . . . . . . . . . . . . . . 50

6.1 First Countable Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Examples: Spaces with a 1◦ Generator . . . . . . . . . . . . . . . . . . . . . 53

6.3 Second Countable Generators . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4 Examples: Spaces with a 2◦ Generator . . . . . . . . . . . . . . . . . . . . . 59

6.5 The Case X = Cp(Y ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.0 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

v



1.0 Acknowledgements

I am infinitely grateful to my advisor, Paul Gartside, for his keen insight and generous

mentorship over the years. Paul’s enthusiasm for the work is contagious, and I feel incredibly

lucky to have had the chance to think about so many fun, challenging problems with him.

I would also like to thank my committee: Jason DeBlois, Chris Lennard, and Peter

Nyikos, for their thoughtful questions and suggestions which have been of great help in

refining this work.

My deepest thanks to Ziqin Feng and Jeremiah Morgan: I am very privileged to have

you both as collaborators and this work owes you a great debt.

I am also sincerely grateful to my friends, both in Pittsburgh and abroad: Blake Bal-

lenger, Ben Blum, Joseph Briggs, Xiao Chang, Colleen Eagan, Benjamin Espinoza, David

Fortner, Drevin Galentine, Wade Gordon, Mackenzie Kelley, Julian Kessler, Erin Kressler,

Miko laj Krupski, Jake Lengyel, Alexander Muñoz, Allison Nedrow, Katherine Regan, Blair
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2.0 Introduction

To know the basis of a space is to understand how to generate its topology, to be given

the blueprint for what open sets look like within the space. With a base, it’s possible to

prove a space has certain properties, like metrizability, compactness, and more. But the

topology of a space can be encoded in other ways, for instance via continuous real-valued

maps – at least in Tychonoff spaces. (We assume all spaces are Tychonoff moving forward.)

Recall that a space is Tychonoff if it is T1 and the continuous real-valued functions,

C(X), ‘generate the topology’ of X, in the sense that the collection {g−1U : U open in

R, g ∈ C(X)} is a base for X. It is natural, then, to call any subset, G say, of C(X), a

generator if {g−1U : U open in R, g ∈ G} is a base for X. Equivalently, G is a generator

provided whenever x is a point of X not in a closed set C then there is a g in G such that

g(x) /∈ g(C). As all spaces here are Tychonoff, all have a generator.

Spaces with bases with a host of different combinatorial and topological properties have

been intensively studied by topologists. Similar questions can be raised about generators.

But for generators there is an entirely different class of questions, because C(X) carries a

number of natural topologies, which any generator then inherits. This thesis is dedicated

to understanding which spaces have a compact generator, a discrete generator, or a first or

second countable generator.

The most important topology on C(X) for us is the topology of pointwise convergence,

for which the basic open sets have the form B(f, F, ε) for finite subsets F of X, but we

also consider the compact-open topology, whose basic open sets are those B(f,K, ε) for

compact subsets K of X. Here, for any f in C(X), subset S of X and ε > 0 we define

B(f, S, ε) = {g ∈ C(X) : |f(x) − g(x)| < ε for all x ∈ S}. Write Cp(X) for C(X) with the

pointwise topology, and Ck(X) for C(X) with the compact-open topology.

The study, ‘Cp-theory’, of the function space Cp(X) has developed into a deep and active

area, lying between, and connecting, topology and analysis. See Arkhangel’skii’s classic text

[3], or the more recent book series of Tkachuk [21]. Generators feature in these books and

many other articles in the Cp-theory literature, but always in the background, as tools. Our
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aim here is to bring generators into the limelight.

There are a variety of reasons for investigating generators. First, by doing so we better

understand and sharpen a commonly used tool. Second, by examining the properties required

of a generator, we may reveal in detail the reasons why classic Cp-theory results hold. A

third, and perhaps most compelling, reason for studying generators is that they can have

significantly better topological properties than the full function space, making them more

convenient to use and allowing for more elegant proofs.

As mentioned above, in this research work, we focus on four properties for our generators,

namely compactness, discreteness, and first and second countability. Compactness is an

important and useful property in general, and we can think of a compact generator as

being one which is small and efficient. The topological polar opposite of compactness is

discreteness, and discrete generators are spread out, and in some sense have no topology.

Since every discrete space is first countable, while second countable spaces are small in a

different way to compact spaces, it is a natural further step to consider spaces with first and

second countable generators.

Working with generators one quickly realizes that it is often convenient, and sometimes

necessary, for a generator to have additional properties. Specifically, that it is more precise

in its separation of points and closed sets. A subset G of C(X) is a (0, 6= 0)–generator

(respectively, (0, 1)–generator) for X if whenever x is a point of X not in a closed set C then

there is a g in G such that g(x) 6= 0 (respectively, g(x) = 1) while g(C) ⊆ {0}.

We begin the thesis with some preliminaries in Chapter 3. The most important results

here - used in almost every theorem and example - are those allowing us to ‘upgrade’ genera-

tors (from ‘vanilla’ to (0, 6=0) or (0, 1)) or otherwise manipulate generators. Also important

is the construction of a generator for Cp(Y ) in terms of Y (Theorem 13).

Then we move into compact generators in Chapter 4. After, we explore discrete gener-

ators in Chapter 5 and then end with first and second countable generators in Chapter 6.

Ideas for future work and open questions follow. The results of these chapters are now

sketched.
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2.1 Compact Generators

We begin by asking what kinds of spaces lend themselves to compact generators. Clearly

Cp(X) itself is never compact, and Velichko showed Cp(X) is σ-compact if and only if X

is finite, see [22] for the extension to σ-countably compact. The problem of when Cp(X)

is Lindelöf is an important and challenging one, which we examine further in Section 4.3.

It is known for example, see [1, 12], that Cp(X) is Lindelöf for every Corson (hence, every

Eberlein) compact, X.

In Section 4.1 we show that a k-space has a compact generator in Ck(X) if and only if X

is metrizable (Propositions 19 and 20). While a space has a compact generator in Cp(X) if

and only if X is Eberlein-Grothendieck (Proposition 21). Specifically, Cp(Y ) has a compact

generator if and only if Y is σ-compact (Theorem 22).

In Section 4.2 we investigate which spaces have compact generator in Cp(X) of very

specific topological types (supersequences and convergent sequences of finite powers of su-

persequences). This is motivated by our understanding of Eberlein compacta.

Finally in Section 4.3 we look at the properties of spaces with a Lindelöf generator.

2.2 Discrete Generators

In Section 5.1, we develop and motivate the conjecture that a space X has a discrete

generator if and only if hc∗(X) = w(X). We show the conjecture holds for zero-dimensional

spaces, Theorem 40, and in some other cases, as well. In Section 5.2, we formulate an

analogous conjecture for spaces with a discrete (0, 6= 0)–generator, and deduce that there

are spaces with a discrete generator but no discrete (0, 6=0)–generator. Initially, we thought

that discrete (0, 1)–generators might only arise in very specific circumstances and would be

much harder to obtain than (0, 6= 0)–generators, but our work in Section 5.3 revealed that

every metrizable space has one. The converse is not true (all ordinals and several other

non-metrizable examples have a (0, 1)–generator). We show that the Michael line is a space

with a discrete (0, 6=0)–generator that does not have a discrete (0, 1)–generator.
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2.3 First and Second Countable Generators

In Section 6, we investigate when spaces have first or second countable generators of

various types. A point x in a space X is a point of first countability if it has a countable

local base. A space X is first countable, abbreviated 1◦, if every point is a point of first

countability, and is second countable, abbreviated 2◦, if it has a countable base.

When considering first and second countable generators the type of generator - ‘vanilla’,

(0, 6=0) or (0, 1) - becomes a critical factor. By untangling these dependencies we are led to

the central questions.

As an example, it is known that if Cp(X) is cosmic – that is, it has a countable network

– then X is also cosmic (and conversely). However, the standard proof requires only the

existence of a cosmic ‘vanilla’ generator.

For a second example, recall that if Cp(X) has a coarser second countable topology,

then every point of Cp(X) is a Gδ point, and this implies X is separable (moreover, both

implications reverse). In this case, having a generator with a coarser second countable

topology is not sufficient to conclude separability. For the standard proof to work, the

requirement for a space X to be separable is the existence of a (0, 6= 0)–generator G of

Cp(X) that contains the zero function, 0, that has all points Gδ.

As a third example, recall that Cp(X) is first or second countable only in very limited

circumstances, namely when X is countable. Here, the standard proof actually only requires

the existence of a first (or second) countable (0, 1)–generator G of Cp(X) that contains 0.

These three results, in light of the types of generator needed in each case, raise two

pairs of questions: Which spaces have a first countable (0, 6= 0)–generator containing 0?

Does separability suffice? And which spaces have a second countable (0, 6= 0)–generator

containing 0? Does cosmicity suffice?

In Sections 6.1 and 6.3 we establish the claims above about cosmic generators, and first

and second countable (0, 1)–generators containing 0. We show that separable spaces have a

(0, 6=0)–generator containing 0 as a point of first countability. We show that the requirement

that the generator contain the zero function, despite appearances, can be dropped. We also

investigate which spaces have a compact, second countable generator and show that they
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are precisely the subspaces of some Cp(K) where K is compact and second countable.

However, our questions remain unanswered. While we think it likely that there are

separable spaces without a first countable (0, 6= 0)–generator, and cosmic spaces without a

second countable (0, 6= 0)–generator, in Sections 6.2 and 6.4 we show that many ‘classical’

separable and cosmic spaces do have first and second countable generators, respectively.

Section 6.5 explores first and second countable generators for the space X = Cp(Y ).
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3.0 Background Material

3.1 Definitions and Notation

Our topological definitions and notation are largely standard. See, for example, Engelk-

ing [10] or Willard [26]. For completeness we recap some key concepts. The various types

of generator are less well-known, and do not have a standard nomenclature. We introduce

here our definitions and notation for generators.

3.1.1 Topological Properties

All spaces are Tychonoff. It is convenient to review, and generalize, the topological

properties of interest in this thesis via cardinal invariants. Let Y be a space. A cardinal

function or cardinal invariant is an assignment, f , of a cardinal, f(Y ), to any space Y so

that if Y and Z are homeomorphic then f(Y ) = f(Z).

The following cardinal invariants capture well-known global topological properties. De-

fine L(Y ), the Lindelöf degree of Y , to be the minimal κ such that every open cover of Y

has a subcover of size ≤ κ. Define d(Y ), the density of Y , to be the minimal size of a dense

set. Define c(Y ), the cellularity of Y to be the suprema of sizes of pairwise disjoint family

of open sets. Define e(Y ), the extent, to be the supremum of sizes of closed discrete subsets.

Define w(Y ), the weight of Y , to be the minimal size of a base for Y . Define nw(Y ), the

netweight of Y , to be the minimal size of a network for Y . Observe that a space is Lindelöf

if it has countable Lindelöf degree, separable if its density is countable, ccc if its cellularity

is countable, second countable if it has countable weight, and cosmic if it has countable

netweight.

To isolate local properties, define for a point y in Y : χ(y, Y ), the character of y in Y , to

be the minimal size of a local base at y; ψ(y, Y ), the pseudocharacter of y, ψ(y, Y ), to be

the minimal size of a family of open sets whose intersection is {y}; and the tightness of y in

Y , t(y, Y ), to be the minimal κ such that whenever y is in A then there is a subset A0 of A
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with |A0| ≤ κ such that y ∈ A0. Further set χ(Y ) (the character of Y ) to be the supremum

over y in Y of all χ(y, Y ), ψ(y, Y ) = sup{ψ(y, Y ) : y ∈ Y } (the pseudocharacter of Y ) and

t(Y ) = sup{t(y, Y ) : y ∈ Y } (the tightness of Y ). Now a space is first countable if it has

countable character, and countably tight if its tightness is countable. (Spaces with countable

pseudocharacter do not have a traditional name, typically one just says, ‘all points Gδ’.)

Given any cardinal function f we can define two additional cardinal invariants as follows.

First, define hf(Y ) = sup{f(A) : A ⊆ Y }, the hereditary version of f . In particular we

have, hc(Y ), the hereditary cellularity of Y , and note that this is also equal to the supremum

of sizes of discrete subspaces of Y . Clearly we always have f(Y ) ≤ hf(Y ). Second, define

f ∗(Y ) = sup{f(Y n) : n ∈ N}. Clearly we always have f(Y ) ≤ f ∗(Y ).

The following relationships between the cardinal invariants are well-known, and used

frequently, without further comment, below. For any space Y : hc(Y ) = he(Y ), h(c) ≤

max(hd(Y ), hL(Y )) ≤ nw(Y ) ≤ w(Y ), c(Y ) ≤ d(Y ), e(Y ) ≤ L(Y ) and max(c(Y ), e(Y ) ≤

hc(Y ) = he(Y ). Also, t(Y ) ≤ hd(Y ), ψ(Y ) ≤ hL(Y ) and χ(Y ) ≤ w(Y ).

Two additional topological properties arising in this thesis, but not naturally related

to a cardinal invariant are: metrizability and being a k-space. A space is metrizable if it

admits a compatible metric. While a space Y is a k-space if its compact subsets determine

its topology (a subset U of Y is open if U ∩K is open in K for every compact subset K of

Y ). Every discrete space is metrizable, every metrizable space is first countable, and every

first countable space is a k-space. For a family {Xλ : λ ∈ Λ} we write
⊕

λXλ for the sum of

the spaces Xλ.

3.1.2 Types of Generator

Generator: Let X be a space. A subset G of C(X) is a generator if whenever x is a point

of X not in a closed set C then there is a g in G such that g(x) /∈ g(C).

Some proofs using generators require that the generator have properties beyond those of

the definition. It is often desirable, for example, that we can separate the values of g(x) and

g(C) more precisely.

Zero, non-zero generator: A subset G of C(X) is a (0, 6=0)–generator for X if whenever

8



x is a point of X not in a closed set C then there is a g in G such that g(x) 6= 0 while

g(C) ⊆ {0}.

Zero, one generator: A subset G of C(X) is a (0, 1)–generator for X if whenever x is a

point of X not in a closed set C then there is a g in G such that g(x) = 1 while g(C) ⊆ {0}.

We show below that we can often ‘upgrade’ a plain generator to one which is (0, 6=0) or

even (0, 1). Less frequently we may need to functionally separate a finite set and a closed

set.

n-Generator: For a fixed n we say G is an n-generator if whenever x1, . . . , xn are points

not in a closed set C then there is a g in G such that g(xi) /∈ g(C) for all i. We further say

G is a (0, 1) n-generator (respectively, (0, 6=0) n-generator) if whenever x1, . . . , xn are points

not in a closed set C then there is a g in G such that g(xi) = 1 (respectively, g(xi) 6= 0) for

all i, while g(C) ⊆ {0}.

3.2 Fundamental Results on Generators

Here we gather together some key results on constructing and upgrading generators. But

we start by showing that nice generators exist, and prove some simple topological properties

of generators. We conclude by constructing a generator for X = Cp(Y ), which plays an

important role throughout this thesis. Some additional properties of this generator are then

explained.

3.2.1 Basic Examples and Facts

Our first lemma is intended to simplify the task of showing that a subset of C(X) is a

(0, 6=0)- (etc) generator. It also highlights the connection between generators and bases. For

the (0, 1) case, we introduce netbases. A collection of pairs of subsets of a space X is a pair

netbase if whenever a point x is in an open U , there is a pair (N,B) in the collection such

that x ∈ N ⊆ B ⊆ U where B is open.

Lemma 1. Let X be a space and G a subset of C(X). Then

9



(1) G is a generator if and only if B = {g−1U : g ∈ G and U open in R} is a base for X,

(2) G is a (0, 6=0)–generator if and only if B = {g−1(R \ {0}) : g ∈ G} is a base for X,

and

(3) G is a (0, 1)–generator if and only if P = {(N,B) : g ∈ G, N = g−1{1} and

B = g−1(R \ {0})} is a pair netbase.

Proof. These claims are almost immediate. We prove (2), and omit the others. Suppose

G is a (0, 6= 0)–generator. Let B = {g−1(R \ {0}) : g ∈ G}. We show B is a base for X.

Indeed if x is in some open U , then x /∈ X \ U , which is closed, so there is a g in G such

that g(x) 6= 0 but g(X \ U) ⊆ {0}. Now we see, B = g−1(R \ {0}) is open and in B, and

x ∈ B ⊆ U , as required for B to be a base. Conversely, suppose G is a subset of C(X) such

that B, as defined in (2), is a base for X. Take any x not in a closed set C. Then x is in

X \C, which is open, so there is a B = g−1(R\{0}) in B such that x ∈ B ⊆ X \C. But this

means that g(x) 6= 0 while g(C) is zero, as required for G to be a (0, 6=0)–generator.

Like bases, generators (plain or (0, 6= 0)) for a space can be ‘shrunk’ to have minimal

size, the weight of X.

Lemma 2. If G is a generator (respectively, (0, 6=0)–generator) for X then there is a subset

G′ of G of size w(X) which is also a generator (rep., (0, 6=0)–generator).

Proof. Suppose, to start, that G is a generator for X. Fix a countable basis, B = {Bn :

n ∈ N}, for R. For each g in G and n in N, set U(g, n) = g−1Bn. Then U = {U(g, n) :

g ∈ G, n ∈ N} is a base for X. It contains a subcollection U ′ which has size w(X) and is a

base for X. Let G′ = {g ∈ G : U(g, n) ∈ U ′ for some n}. Then G′ has size w(X) and is a

generator.

If G is a (0, 6=0)–generator then for each g in G set U(g) = g−1(R\{0}), and U = {U(g) :

g ∈ G}. Now proceed as above, and note that the G′ obtained is a (0, 6=0)–generator.

Note that the analogous result for (0, 1)–generators does not hold. Let X be the reals

with usual topology. For each x and n let gx,n be the function in Cp(X) which is piecewise

linear, has value 0 on (−∞, x−1/n]∪ [x+1/n,+∞), and value 1 at x. Then G = {gx,n : x ∈

R, n ∈ N} is a (0, 1)–generator for X. Since, for a fixed x, the gx,n’s are the only members

10



of G which take value 1 at x, it is clear that if G′ is a subset of G which is a (0, 1)–generator

then |G′| = |G| = c, while X has countable weight.

However every space does have a (0, 1)–generator of minimal size, and that generator

can additionally be assumed to be an n-generator for all n.

Lemma 3. Let X be a space. Then there is a subset G of C(X, [0, 1]) of size w(X) which

is a (0, 1) n-generator for all n in N.

Thus every separable metrizable space X has (1) a countable (0, 1) n-generator, for all n,

and (2) a (0, 6=0) n-generator, for all n, which is homeomorphic to the convergent sequence,

with limit point the zero function, 0.

Proof. Fix a base, B say, for X which has size w(X), is closed under finite unions, and

every member is a co-zero set. Fix, for the moment, B in B and pick gB ∈ C(X) such that

B = g−1B (R \ {0}). Define gB,n in C(X, [0, 1]) by gB,n(x) = n ·min(|g(x)|, 1/n). Note that if

|gB(x)| ≥ 1/n then gB,n(x) = 1 while if gB(x) = 0 then gB,n(x) = 0.

Set G = {gB,n : g ∈ G and n ∈ N}. Then |G| = w(X). We check G is a (0, 1) n-

generator for all n. To this end take any x1, . . . , xn not in a closed set C. As B is closed

under finite unions, there is a B in B such that x1, . . . , xn ∈ B and B ∩ C = ∅. Pick n so

that 1/n ≤ mini |gB(xi)|. Then gB,n is in G and gB,n(xi) = 1 for all i but gB,n(C) = {0}.

Now suppose X is separable metrizable, or equivalently, second countable. Clearly G

from above shows (1) holds. And G′ = {fm/m : fm ∈ G} ∪ {0} is easily seen to be as

required for (2).

Corollary 4. A space X is separable and metrizable if and only if it has a countable gener-

ator.

Proof. From Lemma 3 we know if X is separable, metrizable then it has a (nice) countable

generator. While from Lemma 2, since separable, metrizable spaces are those with countable

weight, they have a countable generator.

Lemma 5. Let G be a (0, 6=0)–generator for X. If 0 is not in G \ {0} - here the closure is

in the pointwise topology - then X is finite.
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Proof. Towards the contrapositive, suppose that is X is infinite. Take any B = B(0, F, ε) a

basic neighborhood of 0. Pick x ∈ X \F . As G is a (0, 6=0)–generator there is a g in G such

that g(x) 6= 0 but g(F ) = {0}. Then 0 6= g ∈ B ∩G. Thus 0 is in G \ {0}, as required.

We record the following well known result, see Arkhangel’skii [3, Proposition 0.5.4] for

example, which we use without further comment.

Lemma 6. If G is a generator for X then the evaluation map, e : X → Cp(G) defined by

e(x)(g) = g(x), is an embedding of X in Cp(G).

Okunev [16] proved the following informative technical theorem on embeddings of a

Cp(Y ) in a Cp(X). Let X be a space. Define KX to be the smallest class of spaces containing

X, all compacta, and which is closed under taking finite products, disjoint countable sums,

closed subspaces, and continuous images.

Theorem 7 (Okunev). If Cp(Y ) embeds in Cp(X) then Y is in KX .

For future reference, let us note: if Y is in KX and (1) X is σ-compact or (2) X has all

finite powers Lindelöf, then Y has the same property.

3.2.2 Creating and Upgrading Generators

Lemma 8. Let X be a space, and A a subspace. Let G be a subset of C(X), and define

GA = πA(G) = {g � A : g ∈ G}. If G has any of the following properties then so does GA:

(i) generator, (ii) (0, 6= 0)–generator, (iii) (0, 1)–generator; (iv) n-generator, (v) (0, 6= 0)

n-generator, (vi) (0, 1) n-generator.

Proof. We show (v). The other cases are similar. Let G be an n-generator for X. Take any

a1, . . . , an from A and any CA a closed subset of A not containing any ai. Write CA = C ∩A

where C is closed in X, and note no ai is in C. Hence there is a g in G such that g(ai) 6= 0

for all i but g(C) ⊆ {0}. Let gA = g � A. Then gA is in GA and gA(ai) = g(ai) 6= 0 for all i

while gA(CA) ⊆ g(C) ⊆ {0}.
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Lemma 9. (a) Let G be a generator in Ck(X) (respectively, Cp(X)) for X. Then G′ =

{1−min(λ|g − µ1|,1) : g ∈ G, λ, µ ∈ R} is a (0, 1)-generator for X in Ck(X) (respectively,

Cp(X)), and G′ is the continuous image of R2 ×G.

(b) Let G be an n-generator in Ck(X) (respectively, Cp(X)) for X. Then there is a subset

G′′ of Ck(X) (respectively, Cp(X)), which is the continuous image of (
⊕

nR2n) × G, and a

(0, 1) n-generator.

Proof. For (a), first note that min – as a function from C(X) × C(X) to C(X), where

either each C(X) has the pointwise topology or each has the compact-open topology – is

continuous, and similarly for absolute value and for linear combinations. Hence the map

((λ, µ), g) 7→ gλ,µ, where gλ,µ = 1 − min(λ|g − µ1|,1), is continuous, and G′ is indeed the

continuous image of R2 ×G.

Now take any x ∈ X and a closed C ⊆ X where x /∈ C. Since G is a generator for X,

then there is some function g ∈ G such that g(x) /∈ g(C). Let µ = g(x) and g1 = |g − µ1|

and note that g1(x) = 0, g1(x) /∈ g1(C), and g1 maps onto [0,∞). Pick ε > 0 such that

(−ε, ε) ∩ g1(C) = ∅. Let λ = 1/ε and define g2 = λg1. Note that g2(x) = 0 as before and

that g2(C) ⊆ [1,∞). Next, define g3 = min(g2,1) and observe g3(x) = 0 and g3(C) ⊆ {1}.

Define g′ = 1− g3 = gλ,µ. Then g′(x) = 1 and g′(C) ⊆ {0}, as desired.

For (b), G′′ is the image of (
⊕

nR2n)×G under the map taking ((λ1, µ1, . . . , λn, µn), g)

to gλ1,µ1 + · · ·+ gλn,µn . From part (a) we see this map is continuous.

Now take any x1, . . . , xn not in a closed set C. As G is an n-generator there is some g

in G such that g(xi) /∈ g(C) for i = 1, . . . , n. Pick pairwise disjoint open sets, U1, . . . , Un

such that xi ∈ Ui and Ui ∩ C = ∅. Applying part (a) to g, xi and X \ Ui, we get λi, µi such

that gi = gλi,µi maps xi to 1 and X \ Ui to 0. Since the Ui are pairwise disjoint and
⋃
i Ui is

disjoint from C, g′′ = gλ1,µ1 + · · · + gλn,µn is as required – g′′ ∈ G′′, g′′(xi) = 0 for all i, and

g′′(C) ⊆ g′′(X \
⋃
i Ui) ⊆ {0}.

Lemma 10. Let J be an open interval and h : R→ J a homeomorphism. Let G be a subset

of C(X). Let h ◦G = {h ◦ g : g ∈ G}.

(1) h ◦G is a subset of C(X, J) and, G and h ◦G are homeomorphic,

(2) if G is generator then h ◦G is also generator,
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(3) if G is a (0, 6=0)–generator and h(0) = 0 ∈ J then h ◦G is also a (0, 6=0)–generator,

and

(4) if G is a (0, 1)–generator, h(0) = 0 and h(1) = 1 then h◦G is also a (0, 1)–generator.

Proof. For (1), recall the sets in Cp(X, Y ) of the form O((x1, . . . , xn), U1×· · ·×Un) = {f ∈

C(X, Y ) : ∀i f(xi) ∈ Ui}, form a basis. Define φ : Cp(X)→ Cp(X, J) by φ(f) = h ◦ f . Then

φ is a homeomorphism. Indeed φ(O((x1, . . . , xn), U1 × · · · ×Un)) = {h ◦ f : ∀i f(xi) ∈ Ui} =

{h ◦ f : ∀i (h ◦ f)(xi) ∈ h(Ui)} = O((x1, . . . , xn), h(U1) × · · · × h(Un)). Now φ induces a

homeomorphism between G and h ◦G.

For (2), suppose x is in open U . As G is a generator there is a g in G and an open subset

V ′ of R such that x ∈ g−1V ′ ⊆ U . Let V = h(V ′), and note this is an open subset of both

J and R. Further, g−1V ′ = g−1h−1V = (h ◦ g)−1V . Hence x ∈ (h ◦ g)−1V ⊆ U , as required

for h ◦G to be a generator.

For (3), suppose x is in open U . As G is a (0, 6=0)–generator there is a g in G such that

g(x) 6= 0 but g is zero outside U . Now h ◦ g is in h ◦ G, and - recalling h(0) = 0 - we see

(h ◦ g)(x) = h(g(x)) 6= 0 and (h ◦ g)(X \ U) = h(g(X \ U)) ⊆ h({0}) = {0}, as required

for h ◦ G to be a (0, 6= 0)–generator. The argument for (4) is similar, and the details are

omitted.

Lemma 11. Let X be a space, (Fn)n an increasing sequence of non-empty finite subsets

of X, and (tn)n a sequence of reals strictly decreasing to 0. For each n ≥ 2, set εn =

min(tn − tn+1, tn−1 − tn)/2, and set ε1 = (t1 − t2)/2.

Suppose Gn is a subset of C(X, (−tn − εn/2, tn + εn/2)) such that for every g in Gn we

have |g(x)| ≥ tn for some x in Fn. Let G = {0} ∪
⋃
nGn.

Then (1) for each n the set Gn is clopen in G, and (2) the Gn’s are pairwise disjoint and

converge to 0 in G.

Proof. Observe, first, that the εn’s are defined so that the open intervals, (tn − εn, tn + εn)

are all pairwise disjoint. Fix n. Take any g in Gn. Then for some z in Fn, |g(z)| ≥ tn. Since

|g| has value at least tn at z, but has value no more than tn + εn/2 over all of X, we see that

g can not be in any Gm for m 6= n. Thus the Gn’s are pairwise disjoint.
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Let Ug = B(g, Fn, εn)∩G, a basic neighborhood of g in G. Any element of Ug is non-zero

at z, so 0 /∈ Ug. Suppose g′ ∈ Ug ∩ Gm. Then we can not have m > n because z ∈ Fn,

|g(z)| ≥ tn and g ∈ B(g, Fn, εn/2) imply |g′(z)| ≥ tn−εn/2, which means |g′| is too large at z

to be in Gm. But also we can not have m < n because as g′ ∈ Gm, for some z′ ∈ Fm ⊆ Fn we

have |g′(z′)| ≥ tm ≥ tn−1, and now g′ ∈ B(g, Fn, εn/2) forces |g(z′)| ≥ tn−1 − εn−1/2, which

means |g| is too large at z′ to be in Gn. Thus the basic neighborhood Ug of g is contained

in Gn. This means Gn is open in G.

Define, for each n, the basic neighborhood in G of the zero function, Bn = B(0, Fn, tn +

εn/2) ∩ G, and also set Tn = {0} ∪
⋃
m≥nGm. We check that in fact Bn = Tn. Indeed, if

g ∈ Bn, then for every m < n and every x in Fm ⊆ Fn we have |g(x)| < tn < tm, so g is not

in Gm. So Bn ⊆ Tn. Clearly 0 is in Bn, and for any g in Gm where m ≥ n, the function g

is in C(X, (−tn − εn/2, tn + εn/2)) which is contained in B(0, Fn, tn + εn/2). So Tn ⊆ Bn. It

follows that the complement of each Gn in G is open, and so Gn is clopen.

It remains to show that the Gn’s converge to 0. Take any basic neighborhood, B(0, F, ε),

of 0, where F is any finite subset of X, and ε > 0. Pick n so that tn + εn/2 < ε. Then

Bn = Tn is contained in C(X, (−tn − εn/2, tn + εn/2)), which is a subset of B(0, F, ε).

This result is used in two ways. The first is to help us explicitly construct interesting

first and second countable (0, 6= 0)–generators containing 0. In this case we typically take

tn = 1/n and have elements of Gn mapping into [0, 1/n] and taking value 1/n at some point

of Fn. We also use it to ‘tidy’ a given (0, 6= 0)–generator for a separable space, so that the

new (0, 6=0)–generator is made from pieces of the old and has 0 is a point of first countability.

It is for this application, presented next, that we need some added flexibility with the values

of members of each Gn.

Proposition 12. If a separable space X has a (0, 6= 0)–generator H, then X has another

(0, 6= 0)–generator G containing 0 such that (1) G \ {0} is a countable union of pairwise

disjoint subspaces that are each clopen in G and homeomorphic to a subspace of H, and (2)

0 is a point of first countability in G.

Proof. Fix a countable dense subset D = {xn : n ∈ N} of X, enumerated so that each

element is listed infinitely many times. For each n, let Fn = {x1, . . . , xn}, let tn = 1/n, let εn
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be as in the preceding lemma, and fix a homeomorphism hn : R→ (−1/n− εn/2, 1/n+ εn/2)

that is the identity on [−1/n, 1/n].

Define, G′n = {g ∈ H : for some x ∈ Fn, |g(x)| ≥ 1/n} and Gn = hn ◦ G′n for each n.

Observe that each Gn is homeomorphic to a subspace of H. Let G = {0} ∪
⋃
nGn.

By the preceding lemma, claims (1) and (2) hold for G. It remains to show that G is

a (0, 6= 0)–generator for X. To see this, take any x in an open subset U of X. As H is a

(0, 6= 0)–generator there is a g′ in H such that g′(x) 6= 0 and g′(X \ U) ⊆ {0}. Pick m so

that |g′(x)| > 1/m. The dense set D meets U , say at z. As z appears in the enumeration

infinitely often, there is an n > m so that z = xn ∈ Fn. Now g′ is in G′n, so g = hn ◦ g′ is

in Gn, and by choice of hn we see |g(x)| ≥ 1/n > 0 and g(X \ U) = g′(X \ U) ⊆ {0}, as

required.

3.2.3 A Generator for Cp(X)

LetX be any space. We define s(X) to be the space with the underlying set (
⊕

n(Xn × N))∪

{?} and whose basic open sets are of the form: U = (U1× · · · ×Un)×{m} for n,m ∈ N and

U1, . . . , Un open in X, and U = s(X) \
⊕

n,m≤N(Xn × {m}) for some N ∈ N. Define X(n)

as the n-th symmetric power of X, that is, (x1, . . . , xn) is in X(n) if and only if xi 6= xj if

i 6= j, considered as a subspace of Xn. Then define ss(X) to be the subspace of s(X) where

ss(X) =
(⊕

n(X(n) × N)
)
∪ {?}. We now show that certain continuous images of s(X) and

ss(X) are generators for Cp(X).

The maps come from generators for Rn, as follows. Let F =
⋃
nFn be a family of

functions so that Fn = {fn,m : m ∈ N} is contained in Cp(Rn, [0, 1]). Let k be in N. We

say F is k-generating if, for every n, Fn is a (0, 1) k-generator for Rn. Given an f in Cp(X)

and x = (x1, . . . , xn) in Xn, we write f(x) = (f(x1), . . . , f(xn)). Note that this function is

continuous. For any k-generating family of fn,m’s, define φ : s(X)→ Cp(Cp(X)) by φ(?) = 0

and φ(x,m)(f) = fn,m(f(x))/(2n3m). Let G′ = φ(s(X)) and G = φ(ss(X)).

By Lemma 3, applied to Rn, for each n, we can find a family F which is k-generating for

all k. In the sequel we always use such a family, but by selecting the family in other ways

we can adjust the properties of φ (see below).
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Theorem 13. For any space X and k-generating family F :

(1) φ is continuous and

(2) G is a (0, 6=0) k-generator for Cp(X) containing 0.

Hence G′ is also a (0, 6=0) k-generator for Cp(X) containing 0.

Proof. We first show that φ is continuous. Take any s ∈ s(X).

Suppose s 6= ?. Then s = ((x1, . . . , xn),m). Now take any subbasic neighborhood

B(φ(s), {f}, ε) of φ(s) in Cp(Cp(X)) where f is in Cp(X) and ε > 0. By continuity of the

composition of the continuous functions fn,m and f at (x1, . . . , xn) there exist open sets

U1, . . . , Un with xi ∈ Ui such that if x′i ∈ Ui for i = 1, . . . , n then |fn,m(f(x))/(2n3m) −

fn,m(f(x′))/(2n3m)| < ε. Let U = (U1 × · · · × Un) × {m} and note that s ∈ U and that

U is open in s(X). Take any s′ = ((x′1, . . . , x
′
n),m) ∈ U . Then |φ(s)(f) − φ(s′)(f)| =

|fn,m(f(x))/(2n3m) − fn,m(f(x′))/(2n3m)| < ε. Thus, if s′ ∈ U then φ(s′) ∈ B(φ(s), {f}, ε),

as required for continuity of φ at s.

Now suppose s = ?. Take any basic neighborhood around φ(?) = 0, say B(0, F, ε).

Pick N so that 1/(2n3m) < ε if either n and m is strictly greater than N . Set U = s(X) \⊕
n,m≤N(Xn×{m}). This is a basic neighborhood of ∗. Take any s′ = (x′,m) ∈ Xn×{m} ⊆

U , and note at least one of n,m is strictly larger than N . Then φ(s′) ∈ B(0, F, ε) because

fn,m maps into [0, 1] so for every f in F , |0−φ(s′)(f)| = |φ(s′)(f)| = |fn,m(f(x′))/(2n3m)| ≤

1/(2n3m) < ε, as required.

It remains to show (2). Evidently, φ(?) = 0 ∈ G. We show G is a (0, 6= 0) k-generator.

To this end, take any f1, . . . , fk from Cp(X), and disjoint closed set C. We can pick F =

{x1, . . . , xn} a finite subset of X and ε > 0 so that
⋃
iB(fi, F, ε) is disjoint from C. Set

x = (x1, . . . , xn). Note that x is in X(n). For each i, let y
i

= fi(x) = (yi,1, yi,2, . . . , yi,n) and

Ui = (yi,1 − ε, yi,1 + ε)× · · · × (yi,n − ε, yi,n + ε). Then, there is an m so that fn,m has value

one at each y
i

and fn,m(Rn \
⋃n
i=1 Ui) = {0}. Now g = φ(x,m) is in G. On the one hand,

we have g(fi) = fn,m(y
i
)/(2n3m) 6= 0, as fn,m(y

i
) = 1. While on the other hand, take any f ′

not in
⋃
iB(fi, F, ε). Then, for each i, for some j we have |fi(xj)− f ′(xj)| ≥ ε, and so, f ′(x)

is not in Ui. So f ′(x) /∈
⋃
i Ui, fn,m(f ′(x)) = 0 and g(f ′) = 0.

We present some additional results relating to ss(X), specifically we place constraints
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on the map φ, restricted to ss(X), to G. Passing to a subset of the k-generating family F

going into the definition of φ we may, and do, assume that every member fn,m of F attains

the value 1 somewhere, and has bounded support.

We start by showing that the map φ, when restricted to ss(X) has finite fibres. Choosing

the k-generating family, F =
⋃
nFn, carefully we can ensure that φ is injective. In this case,

Cp(X) has a generator which is a condensation of ss(X).

We unimaginatively call this carefully chosen family ‘special’. Let q be a quadruple of

increasing rationals, (q(1), q(2), q(3), q(4)). Write Uq = (q(2), q(3)) and Vq = (q(1), q(4)).

Enumerate all such quadruples q as q1, q2, . . . , qm, . . .. Define f1,m : R → [0, 1] to be zero

outside Vqm , one on Uqm , and to linearly interpolate between 0 and 1 on (qm(1), qm(2)) and

(qm(3), qm(4)). Observe that the family f1,m is a (0, 1)–generator for the reals.

For n ≥ 2, let fn,m enumerate all functions f of the form f =
∏n

i=1 f1,ki , so f(x1, . . . , xn)

equals f1,k1(x1).f1,k2(x2) . . . f1,kn(xn), and all the rationals associated with f1,k1 , . . . , f1,kn are

distinct (i.e. for all i 6= j, {qki(p) : p = 1, 2, 3, 4} ∩ {qkj(p) : p = 1, 2, 3, 4} = ∅). Observe that

the support of f =
∏n

i=1 f1,ki is
∏n

i=1 Vki and f−1{1} is the closure of
∏n

i=1 Uki . Hence the

family of all fn,m is 1-generating.

As above, define φ : s(X)→ Cp(Cp(X)) by φ(x,m)(f) = fn,m(f(x))/(2n3m) and φ(?) =

0. Let G′ = φ(s(X)) and G = φ(ss(X)). If the family is the special one then call φ ‘special’.

Theorem 14. For any space X, φ restricted to ss(X) has finite fibers. More precisely,

φ−1{0} = {∗} and φ((x1, . . . , xn),m) = φ((x′1, . . . , x
′
n′),m

′) if and only if n = n′, m = m′

and {x1, . . . , xn} = {x′1, . . . , x′n′}. Further, if φ is special then it is an injection.

Proof. Fix s, s′ ∈ ss(X) such that φ(s) = φ(s′).

Suppose, to start, s = ?, but, for a contradiction, that s′ 6= ?, so say s′ = (x,m) =

((x1, . . . , xn),m). Pick y = (y1, . . . , yn), such that fn,m(y) = 1. Noting that, as x is in X(n)

(so x1, . . . , xn are distinct), there is an f ∈ Cp(X) such that f(xi) = yi for each i ∈ {1, . . . , n}.

Now we see that φ(s′)(f) = fn,m(f(x))/(2n3m) = fn,m(y) = 1/(2n3m) 6= 0 = 0(f) = φ(?), so

φ(s) 6= φ(s′).

Now, suppose that neither s nor s′ is ?. Say s = (x,m) = ((x1, . . . , xn),m) and s′ =

(x′,m′) = ((x′1, . . . , x
′
n′),m

′). We first show that n = n′ and m = m′. Recall we have tn,m =
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(t1, . . . , tn) so that fn,m(tn,m) = 1. As above, pick f in Cp(X) such that f(xi) = ti for 1 ≤

i ≤ n. Since φ(s) = φ(s′) we have 1/(2n3m) = φ(s)(f) = φ(s′)(f) = fn′,m′(f(x′))/(2n
′
3m
′
) ∈

[0, 1/(2n
′
3m
′
)]. So 2n3m ≥ 2n

′
3m
′
. Symmetrically, interchanging s and s′, from φ(s′) = φ(s)

we see that 2n
′
3m
′ ≥ 2n3m. Combining the two inequalities, 2n3m = 2n

′
3m
′
, and hence n = n′

and m = m′.

Thus s = ((x1, . . . , xn),m) and s′ = ((x′1, . . . , x
′
n),m). It remains to show that the two

sets {x1, . . . , xn} and {x′1, . . . , x′n} are equal. If not then there is at least one x′j where

x′j 6= xi for all i ∈ {1, . . . , n}. Pick y
n,m

= (y1, . . . , yn) ∈ Rn such that fn,m(y
n,m

) = 1,

and recall that the support of fn′,m′ is bounded (in the max metric on Rn), say by M ′.

Choose f ∈ Cp(X) such that f(xi) = yi for i ∈ {1, . . . , n}, and f(x′j) = M ′ + 1. Then

fn,m(f(x)) = fn,m(tn,m) = 1. However, as f(x′j) = M ′ + 1, f(x′) is not in the support of

fn′,m′ (whatever values f takes on x′i for i 6= j), so fn′,m′(f(x′)) = 0. Hence φ(s) 6= φ(s′) as

φ(s)(f) = 1/(2n3m) 6= 0 = φ(s′)(f).

Now let us assume that φ is special. We show φ is injective. Suppose, for a contra-

diction, that φ(s) = φ(s′) but s 6= s′. From the above we know s = ((x1, . . . , xn),m),

s′ = ((x′1, . . . , x
′
n),m), and {x1, . . . , xn} = {x′1, . . . , x′n}. An alternative way of stating the

latter condition is that there is a non-trivial permutation, π, of {1, . . . , n} such that x′ = π(x),

where we have abused notation and written π(x) for (xπ(i), . . . , xπ(n)).

Take any y in Rn. Pick f in Cp(X) such that f(x) = y. Note that f(x′) = f(π(x)) =

π(y). Then fn,m(y)/(2n3m) = fn,m(f(x))/(2n3m) = φ(s)(f) = φ(s′)(f) and φ(s′)(f) =

fn,m(π(y))/(2n3m). Thus fn,m(y) = fn,m(π(y)). In particular, fn,m has value one if and only

if fn,m ◦ π has value one.

However, the construction of the ‘special’ family of fn,m means we know that fn,m has

value one precisely on a product of n closed intervals with rational endpoints all of which

are different. So fn,m ◦ π has value one precisely on a product of n closed intervals with

rational endpoints, but – because π is non-trivial – a different product. This is the desired

contradiction to φ not injective.

Thus the map φ from ss(X) to the generator G for Cp(X) is continuous and finite-to-one

(even, one-to-one for special k-generators). It would have been pleasant if φ were an open
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map. Open maps preserve first and second countability, for example. However we now show

that φ is never open.

For any set X let ∆ = {(x, x) : x ∈ X}, the diagonal of X. A straightforward induction

on the number of rectangles, establishes the following.

Lemma 15. Let X be an infinite set. Then X2 \∆ is not a finite union of proper rectangles

(if R1 = S1 × T1, . . . , Rn = Sn × Tn are subsets of X2 \∆ then
⋃n
i=1Ri 6= (X2 \∆)).

Theorem 16. Let X be an infinite space. Then φ is not an open mapping from ss(X) onto

G.

Proof. Let n = 2. Pick m so that the support of fn,m is contained in a rectangle R = P ×Q

which is disjoint from the diagonal, ∆, of R2. Set N = max(2,m). Note that n,m ≤ N . Set

U = UN = ss(X) \
⊕

n′,m′≤N(X(n′) × {m′}). This is a basic neighborhood of ?. We show

φ(U) is not open in G because 0 = φ(?) is in φ(U), but no basic neighborhood, B(0, F, ε)∩G,

of it is contained in φ(U).

To see this, fix the basic neighborhood, B(0, {f1, . . . , fn}, ε) ∩G. For i = 1, . . . , n let Ai

be the set of all points (x1, x2) in X(n) = X2 \∆ such that fn,m(fi(x1), fi(x2))/(2
n3m) ≥ ε.

Note that if (x1, x2) is in Ai then (fi(x1), fi(x2)) must be in the support of fn,m, and so must

be in R. In other words, Ai ⊆ Ri where Ri = f−1i P × f−1i Q, which is a rectangle in X2 not

meeting the diagonal.

By the preceding lemma, the rectangles R1, . . . , Rn do not cover X2 \ ∆. So there is

an (x1, x2) in X(2) which is not in any Ai. From the latter property, as s = ((x1, x2),m)

is in X(n) × {m}, we see that φ(s) is in B(0, {f1, . . . , fn}, ε) ∩ G. However, according to

Theorem 14, φ−1φ(s) is contained in X(n) × {m}, which is disjoint from U , so φ(s) /∈ φ(U),

as required.
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4.0 Compact Generators

Which spaces have a compact generator? Or for that matter a σ-compact generator? The

answer potentially depends on the generator’s topological property (compact or σ-compact),

the type of generator ((0, 1), (0, 6= 0), or plain) and the topology of the function space

(compact-open or pointwise). Fortunately, these twelve potential combinations form just

three equivalent groups.

The first case is when the generator is compact and (0, 1). Then, by Lemma 17, inde-

pendently of the function space topology, the space must be discrete (and conversely). Next,

we see (Theorem 18) that - for a fixed function space topology - all the remaining combina-

tions of type and topological property are equivalent. In subsection 4.1.2 we focus on the

second case, when the function space topology is the compact-open topology, showing in

this scenario a space is metrizable if and only if it is a k-space and has a compact generator

(Propositions 19 and 20). In subsection 4.1.3 we turn to the last case, the pointwise topology,

establishing that a space has a compact generator if and only if it is Eberlein-Grothendieck

(Proposition 21).

Next, we examine compact generators of highly specific types in Section 4.2. Motivated

by our understanding of compact Eberlein-Grothendieck spaces, or Eberlein compacta, we

focus on spaces with a generator homeomorphic to some supersequence, A(κ) (Section 4.2.1),

or with a generator homeomorphic to a continuous image of some s(A(κ)) (Section 4.2.2).

We end with results for Lindelöf generators in Section 4.3. It’s well known that a finite

power of σ-compact spaces remains σ-compact, while even the square of a Lindelöf space may

not be Lindelöf. We give an example of a Lindelöf generator whose square is not Lindelöf.

(The corresponding result for Cp(X) is a famous open problem.) We show that any space

with a Lindelöf generator is countably tight. However a space with a Lindelöf generator need

not have a countably tight square (unlike the situation with Cp(X)). And a space with all

finite powers countably tight need not have a Lindelöf generator.
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4.1 General Compact Generators

4.1.1 Grouping Generators

Lemma 17. A space X has a compact (0, 1)–generator in Ck(X) if and only if it has a

compact (0, 1)–generator in Cp(X) if and only if X is discrete.

Proof. First observe that every discrete space, X say, has a compact (0, 1)-generator in

Ck(X). To see this, let G = {χ{x} : x ∈ X} ∪ {0}, and observe that any neighborhood of 0

contains all but finitely many of the χ{x}.

It remains to show that if a space has a non-isolated point, x0 say, then any (0, 1)-

generator, G say, in Cp(X) for X contains the discontinuous function f = χ{x0} in its

closure, and so G can not be compact. Take any basic neighborhood, B(f, F, ε) say, of f in

RX . Let F ′ = F \ {x0}. As G is a (0, 1)-generator and F ′ is closed, there is a g = gF,ε in G

such that g(F ′) = 0 but g(x0) = 1. Then f and g coincide on F , so g ∈ G ∩ B(f, F, ε), as

required.

Theorem 18. Let X be a space then for generators in Ck(X) (respectively, Cp(X)) the

following are equivalent:

(1) X has a σ-compact (0, 1)–generator, (2) X has a σ-compact (0, 6= 0)–generator, (3)

X has a σ-compact generator, (4) X has a compact (0, 6= 0)–generator, and (5) X has a

compact generator.

Proof. Evidently, (1) implies (2) and (2) implies (3). As finite products and continuous

images of σ-compact space are again σ-compact, from Lemma 9 we immediately deduce: if a

space X has a σ-compact generator in Ck(X) (respectively, Cp(X)) then it has a σ-compact

(0, 1)-generator. Thus (1)-(3) are equivalent.

Evidently, (4) implies (5) and (5) implies (3). We show: if a space X has a σ-compact

(0, 6= 0)–generator in Ck(X) (respectively, Cp(X)) then it has a compact (0, 6= 0)–generator

in Ck(X) (respectively, Cp(X)). In other words, (3) implies (4), from which equivalence of

all (1)-(5) follows.
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Let G =
⋃
nGn be a (0, 6= 0)–generator for X, where each Gn is compact. Fix n and

define mn : C(X) → C(X) by mn(f)(x) = mid(−1/n, f(x), 1/n). Then mn is continuous

(with both copies of C(X) either both taking the pointwise or compact-open topologies). Let

G′n = mn(Gn), and note G′n is a compact subset of C(X, [1/n,−1/n]) (with the appropriate

topology). Let G′ =
⋃
nG
′
n ∪ {0}. As G is a (0, 6=0)–generator, and if g is Gn and g(x) 6= 0,

for some point x, then mn(g)(x) 6= 0, we see G′ is also a (0, 6= 0)–generator for X. Further

G′ is compact. To see this observe that any basic open neighborhood of 0, say B(0, F, 1/n),

contains all G′m where m > n, and each of G′1, . . . , G
′
n is compact.

4.1.2 The Compact Open Topology

Proposition 19. Every metrizable space X has a compact (0, 6=0)–generator in Ck(X) (and

hence in Cp(X)).

Proof. Let (X, d) be a metric space with d bounded by 1. Let B be a basis where B =⋃
n∈N Bn with each Bn locally finite. Let B′ ⊆ B and define gB′ =

∑∞
n=1 gB′,n/2

n where

gB′,n(x) = sup
(
{0} ∪DB′,n,x

)
with DB′,n,x = {d(x,X \B) : B ∈ (B′ ∩ Bn)}.

Since Bn is locally finite, x 7→ d(x,X \B) is continuous and d(x,X \B) 6= 0 means x ∈ B,

we see gB′,n is continuous for each n ∈ N. Also, range(gB′,n) ⊆ [0, 1], as d is bounded by 1. It

follows that gB′ is continuous and range(gB′) ⊆ [0, 1]. Define G = {gB′ ∈ Ck(X) : B′ ⊆ B}.

To show that G is a (0, 6= 0)–generator, consider any x ∈ X and open set U 3 x. Since

B is a basis for X, we may find B ∈ BN ⊆ B for some N ∈ N where x ∈ B ⊆ U . Let

B′ = {B} ⊆ B and note that gB′ ∈ G. Since x ∈ B ∈ B′ ∩ BN , then d(x,X \ B) 6= 0

and gB′(x) 6= 0. Now take any z ∈ X \ U . Then d(z,X \ B) = 0. For any n ∈ N, as

B′ = {B}, we see B′ ∩ Bn ⊆ {B}, so DB′,n,z ⊆ {0} and sup
(
{0} ∪ DB′,n,z

)
= 0. Hence

gB′(z) =
∑∞

n=1 gB′,n(z)/2n = 0. Thus gB′(X \ U) ⊆ {0}, as required.

We now show G is compact in Ck(X). Toward this end, define Γ : {0, 1}B → Ck(X, [0, 1])

by Γ(χB′) = gB′ . Observe G = Γ({0, 1}B), the product space, {0, 1}B, is compact, and so G

is compact provided that Γ is continuous.

Take an arbitrary B′ ⊆ B and a basic open set B(gB′ , K, ε) where K is compact, ε > 0.

We will find a finite collection F ⊆ B such that B(χB′ ,F) maps into the basic open set

23



B(gB′ , K, ε).

Pick N ∈ N such that
∑∞

n=N+1 1/2n < ε. For each n ≤ N , then let Fn = {B ∈ Bn :

B ∩K 6= ∅}. Note that Fn is finite because each Bn is locally finite and K is compact. Last,

let F =
⋃
n≤N Fn. It is finite.

Now take any B′′ ∈ B(χB′ ,F). In other words, B′′ ∩ F = B′ ∩ F . We want to show

Γ(χB′′), which is gB′′ , satisfies the following: for every x ∈ K, |gB′(x) − gB′′(x)| < ε. Take

any x ∈ K.

Take any n ≤ N . Consider D−B′,n,x = {d(x,X \B) : B ∈ B′∩Bn \F}. When B ∈ Bn \F ,

x /∈ B, so d(x,X\B) = 0 and we see thatD−B′,n,x ⊆ {0}. Similarly, setD−B′′,n,x = {d(x,X\B) :

B ∈ B′′ ∩ Bn \ F} and note D−B′′,n,x ⊆ {0}. On the other hand, as B′ ∩ F = B′′ ∩ F ,

B′∩Bn∩F = B′′∩Bn∩F . So D+
B′,n,x = {d(x,X \B) : B ∈ B′∩Bn∩F} = {d(x,X \B) : B ∈

B′′ ∩Bn ∩F} = D+
B′′,n,x. Thus, gB′(x) = sup

(
{0} ∪DB′,n,x

)
= sup

(
{0} ∪D−B′,n,x ∪D

+
B′,n,x

)
=

sup
(
{0} ∪D−B′′,n,x ∪D

+
B′′,n,x

)
= sup

(
{0} ∪DB′′,n,x

)
= gB′′(x).

Hence, |gB′(x)− gB′′(x)| <
∑N

n=1 |(gB′,n(x)− gB′′,n(x)|/2n + ε = 0 + ε, as required.

We now prove the converse with the assistance of the Collins-Roscoe Metrization The-

orem [8]: a T1-space X is metrizable if (and only if) for each x in X there is a decreasing

sequence {W (n, x)}n of neighborhoods of x such that: (A) if x ∈ U , where U is open, then

there is an s = s(x, U) and an open V = V (x, U) containing x such that x ∈ W (s, y) ⊆ U

whenever y is in V . (Note that as x is in V , it immediately follows from (A) that {W (n, x)}n
is a base at x.)

Proposition 20. Let X be a k-space with a σ-compact generator G in Ck(X). Then X is

metrizable.

Proof. We show X has a family {W (n, x)}n satisfying (A) of the Collins-Roscoe theorem.

According to Theorem 18 we can assume X has a compact (0, 6= 0)–generator G in

Ck(X). As G is compact in the compact-open topology and X is a k-space the evaluation

map e : G × X → R, e(g, x) = g(x), is continuous. For any n set Gn = {(g, x) ∈ G × X :

|g(x)| ≥ 1/n}, and note it is closed. Further, for any x set Gn,x = {g ∈ G : |g(x)| ≥ 1/n}, and

note it is closed in G, and hence compact. Now define W (n, x) = {x′ : ∀g ∈ Gn,x |g(x′)| > 0},
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and note it is a neighborhood of x. Clearly W (n + 1, x) ⊆ W (n, x). This gives the family

{W (n, x)}n.

To show the family satisfies (A), fix x and any open U containing x. As G is a (0, 6=0)–

generator there is a gx,U in G such that gx,U(X \U) = 0 but |gx,U(x)| > 0. Pick s = s(x, U) ≥

2 such that |gx,U(x)| ≥ 1/(s(x, U) − 1). Let V = V (x, U) = V1 ∩ V2, where V1 and V2 are

defined as follows.

Pick V1 = V1(x, U) an open set containing x and contained in U such that if y ∈ V1

and g ∈ Gs−1,x then |g(y)| ≥ 1/s. (Here we use compactness of Gs−1,x and continuity of

e.) Take any y ∈ V1. Take any z ∈ W (s, y). Then for all g in Gs,y we have |g(y)| ≥ 1/s.

But, as y ∈ V1 and gx,U ∈ Gs−1,x, we see |gx,U(y)| ≥ 1/s. Now, as z is in W (s, y), we have

|gx,U(z)| > 0, and hence z is in U . Thus we have: (A1) if y ∈ V1 then W (s, y) ⊆ U .

Pick V2 = V2(x, U) an open subset of X containing x and open subset T of G such that:

(a) e(·, x)−1{0} ⊆ T , and (b) (T × V2) ∩ Gs = ∅. (This is possible because Gs is closed

and disjoint from e(·, x)−1{0} × {x}, which is compact.) We show: (A2) if y ∈ V2 then

x ∈ W (s, y). To this end, take any y in V2. Take any g ∈ Gs,y. We require |g(x)| > 0.

Suppose, for a contradiction, g(x) = 0. Then by (a) we have g ∈ T . Thus (g, y) ∈ T × V2,

so by (b) we see (g, y) is not in Gs, in other words |g(y)| < 1/s. This contradicts g in Gs,y.

Now (A) clearly holds for V = V1 ∩ V2 by (A1) and (A2), and we are done

4.1.3 The Pointwise Topology

A space is Eberlein-Grothendieck if it embeds in a Cp(K) where K is compact.

Proposition 21. Let X be a space. Then X has a compact generator if and only if X is

Eberlein-Grothendieck.

Proof. Suppose X has a compact generator G. Then X embeds in Cp(G) via the evaluation

map, and so X is Eberlein-Grothendieck.

Now suppose, X is Eberlein-Grothendieck, and specifically that X embeds in Cp(K),

where K is compact. By Theorem 13 Cp(K) has a generator, G say, homeomorphic to a

continuous image of s(K). And since K is compact, s(K) is clearly compact, and so the

generator G is compact. By Lemma 8 as Cp(K) has a compact generator then so does X.
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The class of Eberlein-Grothendieck spaces is not well understood. We do know that

Eberlein-Grothendieck spaces have all finite powers countably tight (see the discussion of

Asanov’s theorem in Section 4.3), and Eberlein-Grothendieck spaces are monolithic: for

every subspace A we have nw(A) ≤ |A|, in particular every separable subspace has a count-

able network ([4]). Nevertheless, there is no known internal characterization of Eberlein-

Grothendieck spaces, and finding such a characterization is a major open problem, see

Arkhangel’skii [3, Problem III.1.9] for example.

When the space X is a Cp(Y ) we have a complete answer to the question of when X is

Eberlein-Grothendieck (equivalently, has a compact generator).

Theorem 22. A space X = Cp(Y ) has a compact generator if and only if Y is σ-compact.

Proof. Suppose Cp(Y ) has a compact generator G. Then, Cp(Y ) embeds in Cp(G), and

by Okunev’s Theorem 7 it follows that Y is σ-compact. Conversely, if Y is σ-compact

then a continuous image of s(Y ) is a generator for Cp(Y ), which is σ-compact. Hence, by

Theorem 18, Cp(Y ) has a compact (0, 6=0)–generator.

4.2 Special Compact Generators

In this section, we investigate when spaces have compact generators of highly spe-

cific types. This is motivated by our understanding of Eberlein compacta. A space is

Eberlein compact if it is a compact Eberlein-Grothendieck space. Unlike general Eberlein-

Grothendieck spaces, Eberlein compacta are extremely well understood, and have a variety

of descriptions, including effective internal characterizations.

Each of the following four conditions is necessary and sufficient for a compact space X to

be Eberlein compact: (0) X has a separator homeomorphic to some A(κ), (1) X embeds in

some Cp(A(κ)), (2) X has a generator homeomorphic to a continuous image of some s(A(κ)),

and (3) X has a σ-point finite almost subbase.

Here A(κ) is the one point compactification of the discrete space of size κ. A super-

sequence is any space homeomorphic to an A(κ). Since supersequences are compact, any
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compact space satisfying (1) above is evidently Eberlein compact. Amir & Lindenstrauss [2]

proved the foundational result that the converse is true.

Now if X is a subspace of some Cp(A(κ)), then it is easy to check that the evaluation

map e : A(κ)→ Cp(X) has image some supersequence which is a separator : a subspace S of

Cp(X) such that whenever distinct x and x′ are in X then s(x) 6= s(x′) for some s in S. Thus

(1) implies (0). For the converse suppose S is a separator for X and S is a supersequence.

Then the evaluation map e : X → Cp(S) is continuous, injective (because S is a separator)

and so an embedding (because X is compact). This means (0) implies (1).

Next suppose X is a subspace of some Cp(A(κ)), then (Theorem 13) some continuous

image of s(A(κ)) is a generator for Cp(A(κ)), and so (Lemma 8) its subspace also has a

generator which is the continuous image of s(A(κ)). So (1) implies (2). Clearly, s(A(κ)) is

compact, so any space with a generator as in (2) is Eberlein-Grothendieck (Proposition 21),

and any compact such space is Eberlein compact.

Dimov [9] introduced almost subbases and showed a compact space is Eberlein compact

if and only if it has a σ-point finite almost subbase. A family U of open subsets of a space X

is called an almost subbase if there are sets Vm(U) ⊆ U for each m ∈ N and U ∈ U satisfying:

(i) U =
⋃
m∈N Vm(U), (ii) Vm+1(U) ⊆ Vm(U), (iii) Vm(U) is a cozero set if m is even, and

(iv) Vm(U) is a zero set if m is odd, such that U ∪ {X \ V2m−1(U) : m ∈ N and U ∈ U} is a

subbase for X. An almost subbase U is σ-point finite if and only if we can write U =
⋃
n Un

where each Un is point finite (for each x in X the set {U ∈ Un : x ∈ U} is finite).

Our focus is on spaces with a generator (rather than separator) homeomorphic to some

supersequence, A(κ), or with a generator homeomorphic to a continuous image of some

s(A(κ)). Specifically, a space has generator homeomorphic to some supersequence if and

only if it has a σ-point finite base of cozero sets (Theorem 23); while the equivalence of (1),

(2) and (3) above holds for all spaces, not just compact ones (Theorem 27).

We remark that not every space with a compact generator (equivalently, Eberlein-

Grothendieck space) has a generator as in (2) above, homeomorphic to a continuous image

of some s(A(κ)). A specific example is Cp(I), see Example 29.
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4.2.1 Supersequences as Generators

Theorem 23. A space X has a compact (0, 6=0)–generator homeomorphic to a supersequence

if and only if it has a σ-point finite base of cozero sets.

Proposition 24. If X has a σ-point finite base of cozero sets, then X has a compact (0, 6= 0)-

generator in Cp(X) which is homeomorphic to a supersequence, with 0 as the limit point.

Proof. Let B =
⋃
n∈N Bn be a base of cozero sets where each Bn is point finite. Then, for

any B ∈ Bn, fix some xB in B and fB ∈ Cp(X, [0, 1/n]) such that B = f−1B (R \ {0}) and

fB(xB) = 1/n. For each n ∈ N, let Kn = {fB | B ∈ Bn}, and define K =
⋃
n∈NKn ∪ {0}. It

is clear that K is a (0, 6=0)–generator for X.

To see that K is compact let U be an open cover of K. Then there is a U0 ∈ U such

that 0 ∈ U0, and so there is a basic open set V0 = B(0, F, ε) ⊆ U0, where F ⊆ X is finite

and ε > 0. Pick N such that 1/N < ε. Observe that, for all n ≥ N , since each member of

Kn maps into [0, 1/n], the set Kn is a subset of V0, and so U0. Take any n < N . The set

An = {fB ∈ Kn | B ∩ F 6= ∅} is finite since F is finite and Bn is point finite. Now for every

fB ∈ Kn \An, we have B∩F = ∅, so fB(F ) ⊆ fB(X \B) = {0}, which means fB ∈ V0 ⊆ U0.

And since An is finite, then there is a finite Un ⊆ U covering An. Hence, {U0}∪Un is a finite

subset of U covering Kn. Now {U0} ∪
⋃
n<N Un is a finite subcover of K from U , as desired

for compactness of K.

It remains to show that each f in K ′ is isolated in K, and for this it suffices (as Cp(X)

is T1) to find an open neighborhood of f meeting only finitely many elements of K ′. Fix

f in K ′. Then f is in some Kn and is associated with some B ∈ Bn, so f = fB. Let

UB = B(fB, {xB}, 1/n− 1/(n+ 1)). This is an open neighborhood of fB.

For any g in UB we have g(xB) > 1/(n+1). As Km ⊆ Cp(X, [0, 1/m]) we have UB∩Km =

∅ for m > n. Now fix m ≤ n. If fB′ ∈ UB ∩ Km then fB′(xB) > 1/(n + 1) > 0, so

xB ∈ B′ ∈ Bm. As Bm is point finite we see UB ∩Km is finite. Hence UB does indeed only

meet finitely many members of K.

Proposition 25. If X has a compact (0, 6= 0)–generator K which is a supersequence, then

X has a σ-point finite base of cozero sets.
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Proof. If X is finite, then the claim is immediate. Hence, assume X is infinite. By Lemma 5

the unique limit point of K must be the zero function, 0. Let K ′ = K \ {0}. Let Bn,f =

f−1(R \ [−1/n, 1/n]) for each n ∈ N and f ∈ K ′. Note that each Bn,f is a cozero set. Then

set Bn = {Bn,f : f ∈ K ′} and B =
⋃
n∈N Bn. If x ∈ U ⊆ X and U is open, then is f ∈ K

such that fα(X \ U) = {0} and fα(x) 6= 0. Note f 6= 0, so f ∈ K ′. Choose n ∈ N such

that 1/n < |f(x)|, so x ∈ Bn,f ∈ B. And X \ U ⊆ f−1(0) ⊆ f−1([−1/n, 1/n]) implies

Bn,f = X \ f−1([−1/n, 1/n]) ⊆ U . So B is a base for X.

Fix n ∈ N and x ∈ X. Since V = B(0, {x}, 1/n) is an open neighborhood of 0, which

is the limit of the supersequence K, then we have f ∈ V for all but finitely many f ∈ K ′.

So there are only finitely many f such that f(x) 6∈ [−1/n, 1/n], and so x is in only finitely

many Bn,f . Thus each Bn is point finite, and B is σ-point finite.

Uspenskii, see [25], has shown that pseudocompact spaces with a σ-point finite base are

compact and metrizable.

Corollary 26. A pseudocompact space has a supersequence generator if and only if it is

compact and metrizable.

4.2.2 Compact Generators Related to s(A(κ))

Theorem 27. Let X be a space. Then the following are equivalent:

(1) X embeds in some Cp(A(κ)),

(2) X has a generator homeomorphic to a continuous image of some s(A(κ)), and

(3) X has a σ-point finite almost subbase.

Proof. [11, Theorem 1.3], and also see [11, Theorem 1.17], says that (3) holds if and only if

X embeds in some Cp(A(κ) × N), and since this latter space embeds in Cp(A(κ)), we have

the equivalence of (1) and (3).

Next suppose (1) holds and X is a subspace of some Cp(A(κ)), then (Theorem 13) some

continuous image of s(A(κ)) is a generator for Cp(A(κ)), and so (Lemma 8) its subspace X

also has a generator which is the continuous image of s(A(κ)). So (1) implies (2).
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Now suppose (2) holds. We will show X embeds in Cp(A(κ))N = Cp(A(κ) × N), and

so done as in the first paragraph. Fix, then, a generator, G say, of X homeomorphic to a

continuous image of some s(A(κ)), say via φ. Then the dual map, φ] : Cp(G) → s(A(κ))

where φ](f) = f ◦ φ embeds Cp(G) in Cp(s(A(κ))). Thus, as X embeds in Cp(G), X

also embeds in Cp(s(A(κ))). As s(A(κ)) is the countable union of copies of A(κ)n, and ∗,

Cp(s(A(κ))) embeds in R×
∏

nCp(A(κ)n) (apply the dual map). The factor R is absorbed,

so we are done once we know Cp(A(κ)n) embeds in Cp(A(κ)). However, in Proposition 30

below we show that Cp(A(κ)n) has a σ-point finite almost subbase, and so we can apply the

equivalence of (1) and (3) to finish the proof.

From [11] we know (see paper for definitions) that a space with a σ-point finite almost

subbase has a nice base (σ-additively Noetherian), network (σ-point finite expandable net-

work) and point-network (σ-finite). We also note here a restriction on the cardinal invariants.

Lemma 28. Let X have a generator homeomorphic to a continuous image of some s(A(κ)).

Then (1) hc(X) = w(X) and (2) if X is Baire then c(X) = w(X).

Proof. From above we know X has a σ-point finite almost subbase. It is well known that

if hc(X) ≤ κ then any point-finite family of open sets has size no more than κ. So the

almost subbase has size no more than κ. That almost subbase naturally generates a base

of the same size, which implies w(X) ≤ κ. If X is Baire then Dimov [9] has shown this,

combined with the σ-point finite almost subbase, means X has a dense metrizable subspace,

D. Hence, c(X) = c(D) = d(D) and so c(X) = d(X). Again from above we know X is

Eberlein-Grothendieck and so monolithic. Thus nw(X) ≤ nw(D) ≤ d(D) = c(X). Since

hc(X) ≤ nw(X) we deduce from part (1) that indeed c(X) = d(X) = hc(X) = w(X).

By Theorem 13, Cp(I) has a generator homeomorphic to a continuous image of s(I),

which is compact. But Cp(I) is hereditarily ccc while not second countable, so by the

preceding lemma it does not have a generator homeomorphic to a continuous image of any

s(A(κ)).

Example 29. The space Cp(I) has a compact generator but does not have a generator

homeomorphic to a continuous image of a s(A(κ)).
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Jeremiah Morgan [15] has shown the following.

Proposition 30. For every n and κ, the space Cp(A(κ)n) has a σ-point finite almost subbase.

4.3 Lindelöf Generators

Now we turn to the problem of which spaces have a Lindelöf generator in the pointwise

topology. Note that if a space has a Lindelöf generator in the compact-open topology then

that generator is also Lindelöf in the pointwise topology. Since R2 is σ-compact and the

product of σ-compact space with a Lindelöf space is Lindelöf, by Lemma 9, we can always

upgrade a given Lindelöf generator to a Lindelöf (0, 1)–generator, and thus all the types of

generator are equivalent.

A critical difference between Lindelöf spaces and the σ-compact spaces of the previous

sections, is that a finite power of σ-compact spaces is again σ-compact, but the square of

a Lindelöf space need not be Lindelöf. One might hope that the additional structure of

generators would lead to better productivity properties. Indeed it is a famous open problem

whether Cp(X)2 is Lindelöf when Cp(X) is Lindelöf. But Example 32 dispels any such hope

for generators. However, having a Lindelöf generator does have consequences. Asanov [6]

proved that if Cp(X) is Lindelöf then all finite powers of X are countably tight. (A space

X is countably tight if whenever a point x is in A then there countable subset A0 of A such

that x ∈ A0.) It follows from Proposition 33 (with n = 1) that any space, X, with a Lindelöf

generator is countably tight. To deduce that Xn is countably tight it suffices that X has a

Lindelöf n-generator. In Example 34 we see the restriction to n-generators is necessary.

It is well known that Asanov’s theorem does not have a converse. The double arrow space,

DA, is a well-behaved first countable space (hence countably tight in all finite powers) such

that Cp(DA) is not Lindelöf. We show in Proposition 35 that DA does not have a Lindelöf

generator.
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4.3.1 Finite Powers Lindelöf

Theorem 31. Let Y be a space. Then X = Cp(Y ) has a generator all of whose finite powers

are Lindelöf if and only if all finite powers of Y are Lindelöf.

Proof. If all finite powers of Y are Lindelöf then, by Theorem 13, Cp(Y ) has a generator

which is the continuous image of s(Y ), and has all finite powers Lindelöf. For the converse,

suppose G is a generator for Cp(Y ) all of whose finite powers are Lindelöf. Then Cp(Y )

embeds in Cp(G). Since all finite powers of G are Lindelöf, Okunev’s Theorem 7 guarantees

that all finite powers of Y are Lindelöf.

Let X be space and A a subspace. Denote by X(A) the space obtained from X by isolating

all points of X \ A. In [19] Przymusiński showed that, for any m ≥ 1, any uncountable

compact metric space X can be partitioned into subsets A0, . . . , Am such that each X(Ai) has

all finite powers Lindelöf, but
∏m

i=0X(Ai) is not Lindelöf (or even normal). This construction

is the key ingredient in the next two examples.

Example 32. There is a space X such that X has a Lindelöf generator G with G2 not

Lindelöf.

Proof. Partition the Cantor set, C, into A0, A1 so that all finite powers of each Yk = C(Ak) is

Lindelöf, but Y0 × Y1 is not Lindelöf. For k = 0, 1, let Xk = Cp(Yk), let Hk be the generator

for Xk given by Theorem 13, and observe that Hk is Lindelöf. For k = 0, 1, the evaluation

map embeds a closed copy, Zk say, of Yk in Cp(Cp(Yk)), and note the zero function is not

in Zk. For k = 0, 1, set Gk = Hk ∪ Zk, note that each Gk is a Lindelöf generator for Xk

which contains a closed copy of Yk not containing the zero function. Define X = X0 ⊕X1.

For k = 0, 1 let G′k be the subset of Cp(X) obtained from Gk by extending each g in Gk so

that it is constantly equal to zero on X1−k. Note each G′k is naturally homeomorphic to Gk,

and so is Lindelöf, and G′0 ∩ G′1 = {0}. Finally define G = G′0 ∪ G′1. Now we see that G

is a Lindelöf generator for X such that G2 contains a closed copy of Y0 × Y1, and so is not

Lindelöf.
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4.3.2 Finite Powers Countably Tight

Recall from Section 3.1.1 the two cardinal invariants of a space Y , Lindelöf degree, L(Y ),

and tightness, t(Y ). Note L(Y ) ≤ ℵ0 if and only if Y is Lindelöf and t(Y ) ≤ ℵ0 if and only if

Y is countably tight. Now the following result generalizes Asanov’s theorem: for any space

X we have, for all n, t(Xn) ≤ L(Cp(X)).

Proposition 33. If X has an n-generator G with L(G) ≤ κ, then t(Xn) ≤ κ.

Proof. By Lemma 9 we can suppose that G is a Lindelöf (0, 1)–generator.

Take any subset A of Xn and any x = (x1, . . . , xn) ∈ A. Let Gx = {g ∈ G : g(xi) = 1

for i = 1, . . . , n}, and note - as it is closed in G - it has Lindelöf degree ≤ κ. For each

a = (a1, . . . , an) in A, let Ua = B(1, {a1, . . . , an}, 1/2) ∩ Gx. For any g ∈ Gx, by continuity

of g at each xi, where it has value 1, and recalling that x ∈ A, we have that there is an

bg = (bg1, . . . , b
g
n) in A such that |g(bgi ) − 1| < 1/2, for i = 1, . . . , n, in other words, g ∈ Ubg .

Thus U = {Ua : a ∈ A} is an open cover of Gx, and so contains a subcover of size ≤ κ, say

{Ub : b ∈ B} where B ⊆ A, |B| ≤ κ.

We verify that x ∈ B. Take any basic open neighborhood, V = V1 × · · · × Vn, of

x. Recalling that G is an n-generator, there is a g in G such that g(X \
⋃
i Vi) = 0 and

g(xi) = 1 for i = 1, . . . , n. Note g is in Gx. For some b = (b1, . . . , bn) in B, we must have

g ∈ Ub. But then g(bi) 6= 0 for i = 1, . . . , n, and b is forced to be in V . Thus V ∩ B 6= ∅, as

desired.

Example 34. For each n there is a space X with a Lindelöf n-generator so that (Xn is

countably tight, but) Xn+1 is not countably tight.

Proof. Partition the Cantor set, C, into A0, . . . , An so that all finite powers of each C(Ak) is

Lindelöf. Define, for each k, Yk to be C with the points of Ak isolated. Let Y = Y0 ⊕ · · ·Yn.

For each k, let Xk = Cp(Yk). Let X = X0 ⊕ · · · ⊕Xn.

Fix in this paragraph, k ∈ {0, . . . , n}. Since for every j 6= k the identity map from

C(Ak) to Yj is continuous, we see that any finite product with factors from {Yj : j 6= k} is

Lindelöf. Hence
∏

j 6=k s(Yj) is Lindelöf. Further, for each j, a continuous image, say Hj, of

s(Yj) is an n-generator for Cp(Yj) = Xj. Thus Gk =
∏

j 6=kHj is a Lindelöf n-generator for
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⊕
j 6=kXj. Let G′k be the subset of Cp(X) obtained from Gk by extending each g in Gk so

that it is constantly equal to zero on Xk. Then G′k is naturally homeomorphic to Gk, and

so is Lindelöf.

Define G =
⋃
{G′k : 0 ≤ k ≤ n}. Then G is Lindelöf. And it is an n-generator for X.

(To see this observe that any n-element subset of X is contained in some
⊕

j 6=kXj, and so

can be separated from any closed set by an element of G′k.)

It remains to show that Xn+1 is not countably tight. Since Xn+1 contains Cp(Y0) ×

Cp(Y1) × · · · × Cp(Yn) = Cp(Y ), it suffices to show this latter space is not countably tight.

For each k, let ik : C → Yk be the identity map. For any F = (F0, . . . , Fn), where Fk is

a finite subset of Ak, and any U = (U0, , . . . , Un), where the Uk’s form a pairwise disjoint

partition of C by clopen sets, define a function fF,U : Y → {0, 1} as follows: fF,U(ik(y)) = 0

if y ∈ Fk or y ∈ Uj for some j 6= k (and 1 otherwise). Noting that each ik(Fk) is clopen in

Y we see that fF,U is continuous. Let S be the set of all fF,U . Note that S is a subset of

Cp(Y ), the zero function, 0, is not in S, and |S| = c.

To verify that Cp(Y ) is not countably tight (indeed has tightness c), we show (1) if S ′ ⊆ S

and |S ′| < |S| then 0 /∈ S ′, but (2) 0 ∈ S.

Towards (1), fix S ′ ⊆ S with |S ′| < |S|. Let T =
⋃
{
⋃n
k=0 Fk : fF,U ∈ S ′}. Then

|T | < |S| = c, so we can pick some y′ ∈ C \ T . We will show that the basic neighborhood

of 0, B = B(0, {i0(y′), . . . , in(y′)}, 1/2) is disjoint frm S ′. Suppose, for a contradiction, that

f = fF,U ∈ B∩S ′. Then fF,U(ik(y
′)) = 0 for all k. But now, for each k: as y′ /∈ T , y′ /∈ Fk so

y′ must be in some Uj where j 6= k – and, in particular, y′ /∈ Uk. This is impossible because

the (U0, . . . , Un) partition C.

Now for (2). Take any basic neighborhood, B(0, KY , ε), of 0 in Cp(Y ). We can suppose

KY =
⋃n
k=0 ik(K) for some finite subset K of C. We will find f = fF,U in S such that f is

zero on KY , and so f ∈ B ∩ S, as required. For each k, let Fk = K ∩ Ak. As F0, . . . , Fn

are pairwise disjoint and finite, we can find a clopen partition, (U0, . . . , Un) of C such that

Fk ⊆ Uk for each k. Then f = fF,U is in S where F = (F0, . . . , Fn) and U = (U0, . . . , Un).

Take any ik(y) in KY . Then y ∈ Aj for some j, and so y ∈ K ∩ Aj = Fj. If j = k then

y ∈ Fj = Fk and so f(ik(y)) = 0 in this case. While if j 6= k then x ∈ Fj ⊆ Uj and so

f(ik(y)) = 0 in this case, as well.
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4.3.3 No Lindelöf Generator

The double arrow space, DA, has underlying set I × {0, 1} and topology coming from

the lexicographic order. For notational convenience, we write ta for (t, a) ∈ DA. Then a

basic neighborhood of t1 has the form {t1} ∪ ((t, t+ ε)× {0, 1}), while basic neighborhoods

of t0 are {t0} ∪ ((t − ε, t) × {0, 1}), where ε > 0. Taking the basic neighborhoods with

ε = 1/n for n in N, we see directly that DA is first countable. The double arrow space is

compact, hereditarily Lindelöf, hereditarily separable but not metrizable. (Note that a space

is hereditarily ccc if every discrete subset is countable.)

Proposition 35. The double arrow space, which is first countable and so countably tight in

all finite powers, has no generator which is Lindelöf or one that is hereditarily ccc.

Proof. Suppose, for a contradiction, that the double arrow space had a Lindelöf genera-

tor. Then by Lemma 9 it would also have a Lindelöf (0, 1)–generator G ⊆ Cp(DA, [0,∞)).

Similarly, if the double arrow space had a hereditarily ccc generator, then by Lemma 9 it

would also have a hereditarily ccc (0, 1)–generator G ⊆ Cp(DA, [0,∞)). We show that ev-

ery (0, 6= 0)–generator G for DA with G ⊆ Cp(DA, [0,∞)) contains an uncountable closed

discrete subspace, and so is neither Lindelöf or hereditarily ccc.

For each t ∈ I, define the basic open neighborhoods Bt,ε = ((t, t + ε)× {0, 1}) ∪ {t1} of

t1. In particular, let Bt = Bt,1/3 for each t ∈ [1/3, 2/3]. For each t ∈ [1/3, 2/3], there is some

ht ∈ G such that ht(DA \Bt) = {0} and αt = ht(t
1) > 0. Since [1/3, 2/3] =

⋃
n∈NAn, where

An = {t ∈ [1/3, 2/3] : αt > 1/n}, then there is some m ∈ N such that Am is uncountable.

Let α = 1/m. For each t ∈ Am, since ht(t
1) = αt > α, then by continuity, there is a δt > 0

such that ht(Bt,δt) ⊆ (α,∞). Now Am =
⋃
n∈NDn, where Dn = {t ∈ Am : δt > 1/n}, so

there is a k ∈ N such that Dk is uncountable. Let δ = 1/k.

Let H = {ht : t ∈ Dk}. We will show that H is an uncountable closed discrete subspace

of G. First, H is uncountable since t 7→ ht is one-to-one. To see that H is discrete, fix

t ∈ Dk, define the open neighborhood Ut = B(ht, {t0, t1} ∪ (P × {1}), α/2), of ht, where

P = {(iδ)/2 : i = 0, . . . , 2k}, and we show Ut ∩ H = {ht}. Take any other s ∈ Dk. Three

cases arise. If s > t, then hs(t
1) = 0 while ht(t

1) = αt > α, so hs 6∈ Ut. Next if s < t < s+ δ,

then hs(t
0) > α while ht(t

0) = 0, so hs 6∈ Ut. Finally in the case when (∗) s + δ ≤ t, then
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pick r ∈ P ∩ (s, s+ δ). Now, hs(r
1) > α, but ht(r

1) = 0 since r < s+ δ ≤ t. Hence, hs 6∈ Ut.

It remains to show H is closed. We establish this in two steps. We say that f ∈ G

jumps at t ∈ I if f([0, t) × {0, 1}) = {0} and f(Bt,δ) ⊆ [α,∞). Define F = {f ∈ G :

f jumps at some tf ∈ [1/3, 2/3]}. Note that for each f , tf is unique. Also, note that

H ⊆ F . Indeed, for any t ∈ Dk ⊆ [1/3, 2/3], ht jumps at t. In fact, H is closed in

F . To see this, fix f ∈ F \ H, and note that f(t0f ) = 0 by continuity, so consider Uf =

B(f, {t0f , t1f} ∪ (P × {1}), α/2). By essentially the same 3-case argument as above, one can

show that hs 6∈ Uf for any s ∈ Dk \ {tf}. If tf ∈ Dk, then there is an open nbhd Vf of f

such that htf 6∈ Vf . Otherwise, let Vf = Cp(DA), so in any case, f ∈ Uf ∩ Vf ∩ F ⊆ F \H,

and H is closed in F .

Hence, it suffices to show F is closed in G. But F is contained in the closed subspace

G′ = {g ∈ G : g([0, 1/3) × {0, 1}) = {0}}, so we only need to show F is closed in G′. Fix

g ∈ G′ \ F and let tg = sup{t ∈ I : g([0, t)× {0, 1}) = {0}} ≥ 1/3.

If tg > 2/3, let Ug = B(g, (P ∪ {2/3}) × {1}, α/2). Then for any f ∈ F , there is an

x = s1 ∈ ((P ∪ {2/3}) × {1}) ∩ Btf ,δ such that s < tg. Hence, g(x) = 0 while f(x) > α, so

f 6∈ Ug, which means g ∈ Ug ∩G′ ⊆ G′ \ F .

If tg ≤ 2/3, then since g 6∈ F , g does not jump at tg. Hence, there is an x1 = ta1 ∈ Btg ,δ

such that g(x1) < α. By continuity, we may assume t1 6= tg, so tg < t1 < tg + δ. Then

by definition of tg, there is an x2 = tb2 with tg < t2 < t1 such that g(x2) > 0. Let Ug =

B(g, {x1, x2, t0g}∪ (P ×{1}), ε), where ε = min{g(x2), α− g(x1)}/2. Note that ε ≤ α/2 since

g(x1) ≥ 0. We show Ug∩F = ∅. To this end, fix any f ∈ F . Four cases arise. If t2 < tf , then

f(x2) = 0, so f 6∈ Ug. Next, if tf < tg ≤ tf + δ, then f(t0g) ≥ α, but g(t0g) = 0 by continuity,

so f 6∈ Ug. While if tf + δ ≤ tg, then as with (∗) above, f 6∈ Ug. Otherwise tg ≤ tf ≤ t2, so

tf ≤ t2 < t1 < tg + δ ≤ tf + δ. In particular, tf < t1 < tf + δ gives f(x1) ≥ α, so f 6∈ Ug.
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5.0 Discrete Generators

What spaces have a discrete generator? In this chapter we only consider the point-

wise topology, but note that a set discrete in the compact-open topology is discrete in the

pointwise topology. We start in Section 5.1 by looking at spaces with a discrete ‘vanilla’

generator. We show that a necessary condition for a space X to have a discrete genera-

tor is that w(X) = hc∗(X), and we show that in a wide range of situations, for example

when X is zero-dimensional, that this condition is sufficient. In Section 5.2 we move from

plain generators to (0, 6= 0)–generators. We establish a necessary condition – for all open

subsets U we have hc∗(U) = w(U) - for a space to have a discrete (0, 6= 0)–generator. We

apply the condition to exhibit a variety of spaces with a discrete generator but no discrete

(0, 6=0)–generator. We show that the condition is sufficient in some limited cases. Generally,

constructing discrete (0, 6= 0)–generators is more taxing than the task of making discrete

generators. With this in mind we give results showing that large classes of spaces do indeed

have discrete (0, 6=0)–generators.

In the final section, Section 5.3, we explore which spaces have a discrete (0, 1)–generator.

We show that metrizable space, all ordinals and the Alexandrov duplicate of a space with

a discrete (0, 1)–generator all have discrete (0, 1)–generators. But we also show that the

Michael line is a space with a discrete (0, 6=0)–generator but no discrete (0, 1)–generator.

5.1 Discrete Generators

Applying Lemma 2 we see:

Lemma 36. If X has a discrete generator then Cp(X) contains a discrete subset of size

w(X).

Question 1. Is the converse true: if Cp(X) contains a discrete subset of size w(X) then X

has a discrete generator?
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Question 2. Can we characterize in terms of X when Cp(X) contains a discrete subset of

size w(X)?

Lemma 37. If Cp(X) has a discrete set of infinite size κ then in
⊕

nX
n there is a σ-discrete

subset S of size κ.

Proof. Fix a countable basis, B, for R. For any x = (x1, . . . , xn) ∈ Xn and B = (B1, . . . , Bn)

in Bn set O(x,B) = {f ∈ Cp(X) : f(xi) ∈ Bi for i = 1, . . . , n}. Then the collection of all

O(x,B) is a basis for Cp(X). Let T = {fα : α < κ} be discrete, say witnessed by O(xα, Bα).

For each B = (B1, . . . , Bn) ∈ Bn let SB = {xα : Bα = B} ⊆ Xn. Let S be the countable

union of all SB. Note that S has size κ. We complete the proof by showing that each SB is

discrete.

Fix B = (B1, . . . , Bn) ∈ Bn. For each xα = (xα,1, . . . , xα,xn) ∈ SB, let Uα = g−1α B1×· · ·×

g−1α Bn. Then xα is in the open set Uα. But if xβ = (xβ,1, . . . , xβ,xn) is in SB where β 6= α,

then as O(xβ, B) witnesses discreteness of T for gβ, for some i we have gα(xβ,i) not in Bi, so

xβ is not in Uα. Thus the Uα’s witness discreteness of the xα’s in SB.

Observing that for any space X and infinite cardinal κ, there is a σ-discrete subset of⊕
nX

n of size κ if and only if hc∗(X) ≥ κ, we can combine Lemmas 36 and 37, and derive

a necessary condition on a space to have a discrete generator.

Theorem 38. If X has a discrete generator then w(X) = hc∗(X).

Question 3. Is the converse true: if w(X) = hc∗(X) then must X have a discrete generator?

When the space is zero-dimensional or when the space (and not one of its higher powers)

contains a suitably large discrete set, then the answer is positive.

Theorem 39. If X contains a discrete subset S with |S| = w(X) then X has a discrete

generator.

Proof. For any point x in an open U fix bx,U ∈ Cp(X, [0, 1]) such that bx,U(x) = 1 and bx,U is

zero outside U . Let κ = w(X). Enumerate S = {xα : α < κ} and fix Uα such that xα ∈ Uα
open and (β 6= α =⇒ xβ /∈ Uα). Next, fix {fα : α < κ} ⊆ Cp(X, [0, 1]) such that whenever

x is not in a closed set C there is an fα such that fα(x) = 1 but fα is zero on C.
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Fix α. Shrink Uα so that if fα(xα) > 0 then fα(Uα) ⊆ (0, 1] (using continuity of fα at xα)

while if fα(xα) = 0 then Uα ∩ f−1α {1} = ∅. If fα(xα) > 0 then set λα = 2− fα(xα) and note

1 ≤ λα < 2. While if fα(xα) = 0 then let λα = −1. Define gα = fα + λαbxα,Uα . Note that

gα = fα outside Uα. Define Bα, a basic open neighborhood of gα, by Bα = B(gα, {xα}, 1).

Let G = {gα : α < κ}. Then G is a generator for X. To see this take any point x not

in closed C. For some α we know fα(x) = 1 but fα is zero on C. Now, by construction,

gα(x) ≥ fα(x) = 1, while for z in C we have gα(z) ≤ fα(z) = 0 - and gα(x) is not in gα(C),

as required.

It remains to show that the Bα’s witness discreteness of G. Suppose, then, some gβ is

in Bα, so |gβ(xα)− gα(xα)| < 1. By the choice of λα there are only two possibilities for the

value of gα(xα), namely 2 or −1. If gα(xα) = 2 then gβ(xα) > 1, and since (i) gβ = fβ outside

Uβ but (ii) fβ maps into [0, 1], we see xα must be in Uβ, forcing β = α in this case. In the

other case gα(xα) = −1, then gβ(xα) < 0, and again because (i) gβ = fβ outside Uβ but (ii)

fβ maps into [0, 1], we see xα must be in Uβ, forcing β = α in this case, as well.

Theorem 40. Let X be zero-dimensional. Then the following are equivalent:

(1)
⊕

nX
(n) contains a σ-discrete subset S of size w(X),

(2) Cp(X) contains a discrete subset of size w(X),

(3) X has a discrete generator, and

(4) X has a σ-discrete generator.

Proof. Lemma 41 below says (4) implies (3) (without restriction on the dimension), while

the results above say (3) implies (2) and (2) implies (1). We show (1) implies (4).

Let κ = w(X). Fix a clopen base, C = {Cα : α < κ} for X. Enumerate S = {xα : α < κ},

write S =
⋃
m,n Sm,n where Sm,n is a discrete subset of X(n), and let Λm,n = {α : xα ∈ Sm,n}.

Fix m and n. For each α in Λm,n, write xα = (xα,1, . . . , xα,n), fix Uα = Uα,1 × · · · × Uα,n
a product of pairwise disjoint, clopen sets such that if β ∈ Λm,n and xβ ∈ Uα then β = α.

Shrink each Uα,i, if necessary, so that it is either contained in Cα or in X \ Cα. Define

gα ∈ C(X, {0, . . . , n+ 1}) by gα is i on Uα,i, n+ 1 on Cα \
⋃
i Ui and 0 everywhere else. Set

Bα, a basic neighborhood of gα, to be B(gα, {xα,1, . . . , xα,n}, 1). Let Gm,n = {gα : α ∈ Λm,n}.
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We show the Bα’s witness that Gm,n is discrete. But if β ∈ Λm,n and gβ ∈ Bα, then

gβ(xα,i) = gα(xα,i) = i, and so xα,i ∈ Uβ,i for i = 1, . . . , n, which forces β = α.

Let G =
⋃
m,nGm,n. This is σ-discrete. To complete the proof we show G is a generator.

Towards this end suppose a point x is not in closed C. Pick Cα from the clopen base so

that x ∈ Cα and Cα is disjoint from C. Then gα is in some Gm,n ⊆ G, and gα(Cα) and

gα(C) ⊆ gα(X \ Cα) are finite and disjoint (because each Uα,i is either contained in Cα or

X \ Cα), as required.

Lemma 41. A space X has a discrete generator if and only if it has a σ-discrete generator.

Proof. Let G be a generator for X, where G =
⋃
nGn and each Gn is discrete. Fix home-

omorphisms hn : R → (2n, 2n + 1), and set Hn = hn ◦ Gn. Then, by Lemma 10, Hn is

homeomorphic to Gn, and hence discrete. Let H =
⋃
nHn. Since Hn ⊆ C(X, (2n, 2n + 1))

it is clear that H is discrete, and since G =
⋃
nGn is a generator then evidently so is

H =
⋃
nHn.

The results above easily give examples of spaces with and without discrete generators.

For instance, the Stone-Cech compactification of the natural numbers, and its remainder,

βN and βN \ N, are compact spaces with weight c which contain a discrete space of size c.

Hence, perhaps unexpectedly, by Theorem 5.1, they have discrete generators.

In the other direction, any cosmic not metrizable space X has hc∗(X) = ℵ0 < w(X), and

so by Theorem 38 does not have a discrete generator. Specific examples include the bowtie

space and Cp(I), and - as we have shown elsewhere - these spaces do have compact, second

countable (0, 6=0)–generators.

We now give a stronger example of a space without a discrete generator. This answers

Question 2.7 of [7]. A subspace S of Cp(X) is a separator if for any two distinct elements x

and y of X there is an s in S such that s(x) 6= s(y). Evidently generators are separators.

Buzyakova and Okunev showed in [7] that if a space X has a discrete separator then iw(X) ≤

hc∗(X), where iw(X) is the minimal weight of a Tychonoff topology on X coarser than the

given topology. Their Question 2.7 asks for a ZFC example of a space without a discrete

separator.
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Example 42. (ZFC) There is a space X which has no discrete separator.

Proof. In ZFC, Todorcevic [23] and independently Shelah [20], have constructed spaces Y

such that hL∗(Y ) < hd(Y ). Passing to a left-separated subset we get hL∗(Y ) < d(Y ).

Let X = Cp(Y ). Then hd∗(X) = hL∗(Y ) (Zenor, [27]) and d(Y ) = iw(Cp(Y )) = iw(X)

(Arkhangel’skii, [5]). So we have hc∗(X) ≤ hd∗(X) < iw(X). But if X had a discrete

separator then iw(X) ≤ hc∗(X).

5.2 Discrete (0, 6= 0)-Generators s

Since the cardinal invariant restriction of Theorem 38 was so useful in the context of

spaces with a discrete generator we start by formulating an analogous restriction for spaces

with a discrete (0, 6=0)–generator.

Theorem 43. If X has a discrete (0, 6= 0)–generator then for all open subsets U of X we

have w(U) = hc∗(U).

Proof. Let G be a discrete (0, 6= 0)–generator for X. Take any non-empty subset U of X.

Let G′U = {g ∈ G : g is zero outside U}. Let GU = πU(G′U) = {g � U : g ∈ G′U}. Then it is

easy to see that GU and G′U are homeomorphic, and so GU is discrete. Further, it is clear

GU is a (0, 6=0)-generator for U . Thus w(U) = hc∗(U) by Theorem 5.1.

Question 4. If for all open subsets U of X, we have w(U) = hc∗(U), then does X have a

discrete (0, 6=0)–generator?

We give now one (limited) situation where the question has a positive answer, and the

cardinal invariant restriction of Theorem 43 is sufficient. This in turn allows us to find a

variety of examples related to spaces with or without discrete (0, 6=0)–generators.

Let X be a set, F a free filter on X. Define X(F) to be the space with underlying set

X ∪ {∗}, and topology where each x in X is isolated and neighborhoods of ∗ have the form

{∗} ∪ F for F ∈ F .
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Theorem 44. The following are equivalent: (1) X(F) has a discrete (0, 1)–generator, (2)

X(F) has a discrete (0, 6=0)–generator, (3) for all open subsets U of X(F) we have w(U) =

hc∗(U), and (4) for all F ∈ F we have |F | ≥ χ(∗, X(F)).

Proof. We know (1) implies (2), and (2) implies (3). It is also easy to check that (3) and

(4) are equivalent. So it remains to show (4) implies (1).

Assume (4) holds, let κ = χ(∗, X(F)), and B = {Bα : α < κ} a cofinal family in F . By

assumption, for each α we have |Bα| ≥ κ, so we can pick xα in Bα so that if β 6= α then

xβ 6= xα.

For each α define gα ∈ C(X(F)) by gα is 1 at ∗ and on Bα \ {xα}, 1/2 at xα, and 0

everywhere else. For each x in X define hx ∈ C(X(F)) to be the characteristic function of

{x}. Then it is easy to check that G = {gα : α < κ} ∪ {hx : x ∈ X} is a (0, 1)–generator for

X(F).

Further, G is discrete. For hx this is witnessed by B(hx, {∗, x}, 1/2). Any g in this set

has g(∗) < 1/2 and g(x) > 1/2. The first fact eliminates g and gα. The second eliminates

all hy except y = x. For gα this is witnessed by B(gα, {xα}, 1/2). Any g in this set has

g(xα) ∈ (0, 1/2). But, recalling that xβ 6= xα if β 6= α, gα is the only member of G with

value at xα in this range.

Now for the promised examples.

Example 45. There is a space X with a discrete generator, but no discrete (0, 6= 0)–

generator.

Proof. Let d be the cofinality of NN with the pointwise order, f ≤ g if and only if f(n) ≤ g(n)

for all n in N. Let X = N2 ∪ d. Let F be the filter on X with base all Bf = {(m,n) : m ≥

f(n)}.

Then |X(F)| = d = χ(∗, X(F)), so X(F) has a discrete generator. But F = N2 is in F ,

while |F | = ℵ0 < d = χ(∗, X(F)), so X(F) does not have a discrete (0, 6=0)–generator.

Example 46. (Consistently) There is a compact space X with a discrete generator, but no

discrete (0, 6=0)–generator.
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Proof. Under (CH) Kunen in [13] constructed a space, whose one compactification Y is

a ‘compact strong S-space’: Y is compact, hd∗(Y ) = ℵ0 < w(Y ). Todorcevic, [23], has

weakened the Continuum Hypothesis to b = ℵ1.

Let X be the one point compactification of the disjoint sum of w(Y )-many copies of

Y . Then X is compact. As w(X) = w(Y ) = hc(X) (pick one point from each copy of Y )

we see from Theorem 39 that X has a discrete generator. But X has open subspaces U

homeomorphic to Y , and so hc∗(U) ≤ hd∗(U) < w(U), which (Theorem 43) tells us that X

does not have a discrete (0, 6=0)–generator.

Further examples of spaces with a discrete (0, 6= 0)–generator can be constructed from

existing ones by isolating points of any given subset. Let X be a space and A a subset.

Define X(A), the Michael line space of X over A, to be X with the points of X \A isolated.

Theorem 47. If X has discrete (0, 6= 0)–generator then X(A) also has a discrete (0, 6= 0)–

generator.

Proof. Let G be a discrete (0, 6= 0)–generator for X. We can suppose (Lemma 10) that

G ⊆ Cp(X, (−∞, 1/2)) \ {0}. As G is a discrete subset of Cp(X), for each g in G, there is a

basic neighborhood, say B(g, Fg, εg), witnessing discreteness.

For each x in X define gx to be 1 at x and 0 elsewhere. Let H1 = {gx : x ∈ X} and

H = H1 ∪G. Clearly H is a (0, 6=0)–generator for X(A). We show H is discrete.

Take any gx in H1. Then Bx = B(gx, {x}, 1/2) is an open neighborhood of gx. Clearly

Bx ∩ H1 = {gx}. And if g ∈ Bx then g(x) > gx(x) − 1/2 = 1/2 and so g can not be in

G ⊆ Cp(X, (−∞, 1/2)).

Now take any g in G. Since g is not identically zero, pick xg in X so that g(xg) 6= 0. Let

Bg = B(g, Fg ∪ {xg}, δg) where δg = min(εg, 1/2, |g(xg)|). This is a basic neighborhood of g

in Cp(X(A)). By choice of Fg and δg ≤ εg we have Bg ∩G = {g}. Further, Bg ∩H1 = ∅. For,

if gx ∈ Bg ∩ H1 then |g(xg) − gx(xg)| < |g(xg)| so gx(xg) 6= 0, while |g(xg) − gx(xg)| < 1/2

combined with g(xg) < 1/2 forces gx(xg) 6= 1 - but gx only takes on values 0 and 1.

An interesting open question is when spaces of the type X = Cp(Y ), for some Y , have

discrete generators or discrete (0, 6= 0)–generators. (Recall we used a space of this form in
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Example 42.) We know: hc∗(Cp(Y )) = hc∗(Y ) ([27]) and w(Cp(Y )) = |Y |. Further, every

basic open B(0, F, ε) clearly contains Cp(Y, (−ε, ε)), which is homeomorphic to Cp(Y ). Hence,

for every open subset U of Cp(Y ) we know hc∗(U) = hc∗(Cp(Y )) and w(U) = w(Cp(Y )). So

we are led to ask the following question.

Question 5. Are the following equivalent: (1) Cp(Y ) has a discrete (0, 6= 0)–generator, (2)

Cp(Y ) has a discrete generator, (3) Cp(Y ) contains a discrete subset of size |Y |, and (4)

hc∗(Y ) = |Y |?

Here we know, of course, that (1) =⇒ (2) =⇒ (3) =⇒ (4). But also, from the

discussion above, that (4) =⇒ (3), and if (3) implies (2) then they are all equivalent.

5.3 Discrete (0,1)-Generators s

We started by believing that spaces would have a discrete (0, 1)–generator only in rare

cases. Indeed, our proof that every metrizable space has a discrete (0, 1)–generator took some

effort. But then we added all ordinals to the list of spaces with a discrete (0, 1)–generator,

followed by all Alexandrov duplicates of spaces with a discrete (0, 1)–generator.

In particular, as the unit inteval, I, is metrizable it has a discrete (0, 1)–generator, and

so its Alexandrov duplicate, AD(I), has a discrete (0, 1)–generator. However we show its

subspace the Michael line does not have a discrete (0, 1)–generator, although the Michael

line does have a discrete (0, 6=0)–generator. It appears that the dividing line between spaces

with a discrete (0, 6=0)–generator and a discrete (0, 1)–generator is delicately placed.

Theorem 48. Let X be a metrizable space. Then X has a discrete (0, 1)–generator.

Proof. Fix a compatible metric d for X. Recursively we build sequences of open covers Un,

Bn, B−n , Vn and V ′n, a sequence of closed covers Cn, and for each B in Bk a map gB, possibly

along with a point cB, as follows. Only the definition of Uk differs between the base case

(n = 1) and the inductive step (n+ 1), so we deal with this first and separately.

Now take any n ≥ 1. Let Bn be a locally finite open refinement of Un. Let Vn = {Vx :

x ∈ X, x ∈ Vx ⊆ Vx ⊆ some member of Bn}. Let V ′n be a locally finite open refinement of
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Vn, consisting of non-empty sets.

For each B in Bn define C(B) =
⋃
{V : V ∈ V ′k and V ⊆ B}. Since Bn is locally

finite, we have C(B) =
⋃
{V : V ∈ V ′n and V ⊆ B}. Then C(B) is a closed subset of B. If

C(B) ( B, then we can pick cB ∈ B \ C(B) and, gB in C(X, [0, 1]) so that g−1B {1} = C(B),

g−1B {0} = X \B and gB(cB) = 1/4. If C(B) = B, then let gB = χB. Let B− = g−1B (3/4,∞).

Note B− is open, C(B) ⊆ B− ⊆ B− ⊆ B, and - if defined - cB is in B \B−.

Let Cn = {C(B) : B ∈ Bn}. Since Cn is a shrinking of Bn, which is locally finite, we see

Cn is locally finite. Let B−n = {B− : B ∈ Bn}, and note it is locally finite.

Let U1 = {B1/1(x) : x ∈ X}. At stage n + 1 we define Un+1 inductively. Take any x in

X. As Ck is locally finite for each k < n+ 1, there is an open set containing x and meeting

only finitely many elements of
⋃
k<n+1 Ck. So we can pick εx > 0 such that εx < 1/(n + 1)

and

if k < n+ 1, B ∈ Bk and Bεx(x) ∩ C(B) 6= ∅ then

(∗) Bεx(x) ⊆ B−, and

(∗∗) if B− is not a singleton then Bεx(x) ( B−.

Let Un+1 = {Bεx(x) : x ∈ X}.

With the recursive construction complete, define Gn = {gB : B ∈ Bn} and G =
⋃
nGn.

We verify G is a discrete (0, 1)–generator for X.

To see this take any point x in X and basic open neighborhood, Bε(x), and find g in G

taking x to 1 and X \Bε(x) to 0. Pick n such that 2/n < ε. Since V ′n covers X, by definition

of Vn,V ′n and Cn we see that Cn covers X, so there is a B in Bn such that x ∈ C(B) ⊆ B.

Since the diameter of B is strictly less than 2/n and x ∈ B we see B ⊆ B2/n(x) ⊆ Bε(x).

Of course, gB ∈ Gn ⊆ G. By definition of gB, as x ∈ C(B), we have gB(x) = 1, and as

B ⊆ Bε(x), we have gB(X \Bε(x)) ⊆ {1}. Thus gB is as required.

Take any g = gB in G, where B ∈ Bn (so gB is in Gn). As Cp(X) is T1, for discreteness

it suffices to find an open neighborhood of gB meeting G in a finite set.

Pick aB in C(B), and note gB(aB) = 1. Fix, for the moment, m. If B′ ∈ Bm and

gB′ ∈ Gm ∩ B(gB, {aB}, 1) then gB(aB) = 1 forces gB′(aB) > 0, so aB ∈ B′. But Bm is
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locally finite, so aB is in only finitely many B′ from Bm, and we see that Gm∩B(gB, {aB}, 1)

is finite. Hence it is sufficient to show that there is a neighborhood UB = B(gB, FB, 1/4)

disjoint from
⋃
m>nGm.

Towards this, fix m > n. Suppose, for a contradiction, that gB′ is in UB ∩ Gm (and

B′ ∈ Bm). Our FB will contain aB. Then, since g(aB) = 1, aB ∈ FB and gB′ ∈ UB, we have

that |1− gB′(aB)| < 1/4, so aB ∈ (B′)−, and in particular, (B′)− ∩C(B) 6= ∅. By (∗) in the

definition of Um, and as Bm is a refinement of Um, we have B′ ⊆ B−.

To complete the proof we consider three cases depending on the relationship between B

and C(B).

Case: C(B) is a proper subset of B. Let FB = {aB, cB}. We know B′ ⊆ B−. By

definition of cB and gB, we have gB(cB) = 1/4. But, as B′ ⊆ B−, and cB /∈ B− (by

definition), we have cB /∈ B′ and so gB′(cB) = 0. Hence |gB(cB)− gB′(cB)| = 1/4, and since

cB is in FB we have gB′ /∈ UB, contradiction.

Case: C(B) = B = {aB}. Let FB = {aB}. We know B′ ⊆ B−. But B− = B = {aB}. So

gB′ = χ{aB} = gB, and done.

Case: C(B) = B but B is not a singleton. By local finiteness of Bn+1 there is a

neighborhood VB of aB meeting only finitely many B′′ in Bn+1. For each such B′′, applying

our case assumption and (∗∗), pick y′′ in B \ B′′, and gather these together in the (finite)

set F ′′.

Let FB = {aB} ∪ F ′′. Again we show there is a contradiction to gB′ being in UB. Since

B′′ ∈ Bm and m > n, we know B′ ⊆ B′′ for some B′′ in Bn+1. If B′′ ∩ VB = ∅ then aB /∈ B′′,

so gB′′(aB) = 0, while gB(aB) = 1 - which is impossible because aB is in FB. On the other

hand, if B′′ ∩ VB 6= ∅ then the y′′ corresponding to B′′ is in FB and in B \ B′′ - which is

impossible because we have gB′(y
′′) = 0 (y′′ /∈ B′′) while gB(y′′) = 1 (y′′ ∈ B = C(B)).

Proposition 49. Every ordinal has a discrete (0, 1)–generator.

Proof. Let ε be an ordinal.

Take any α in ε. If α = 0 then define Fα = {0, 1}, Cα = {0}, and gα = χCα . If α = β+ 1

then define Fα = {β, α, α+ 1}, Cα = {α}, and gα = χ{α}. If α is a limit then for every δ < α

define Fα,δ = {δ, δ + 1, α, α + 1}, Cα,δ = [δ + 1, α] and gα,δ = χCα,δ .
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Let G1 = {gα : α not a limit}, G2 = {gα,δ : δ < α a limit} and G = G1 ∪ G2. We claim

G is a (0, 1)–generator. This is clear because every element of G only takes on the values

0 or 1, and {g−1{1} : g ∈ G} = {Cα : α not a limit} ∪ {Cα,δ : δ < α a limit} which is the

standard base of clopen sets for ε.

We complete the proof by showing that the basic open sets Bα and Bα,δ demonstrate

that G is discrete.

First we check Bα ∩ G = {gα} for every α = β + 1 in ε. (The proof for α = 0 is almost

identical, and so omitted.) Suppose g is in Bα ∩ G. Then g is 0 at β and β + 2, and 1 at

α = β + 1. Elements of G1 take value 1 exactly once, so in this case g = gα. Elements of

G2, on the other hand, if they take the value 1 at some successor γ + 1 then they also have

value 1 at either γ or γ + 2, and so can not be g.

Now let α be a limit and δ < α. We check Bα,δ ∩G = {gα,δ}. Suppose g is in Bα,δ ∩G.

Then g(δ + 1) = 1 = g(α). Noting that the successor δ + 1 6= α, a limit, and that elements

of G1 take value 1 exactly once, we see g is not in G1. Hence g = gα′,δ′ for some limit α′ and

δ′ < α. Again because g(δ + 1) = 1 = g(α), from the definitions, we see δ′ ≤ δ and α ≤ α′.

But we also know that g(δ) = 0 = g(α + 1). This implies, from the definitions, that δ ≤ δ′

and α′ ≤ α. All together we see g = gα,δ, as required.

Define AD(X), the Alexandrov duplicate of X, to have underlying set X × {0, 1}, all

points of X ×{1} isolated and basic open neighborhoods of (x, 0) to be U ×{0, 1} \ {(x, 1)}

for any open neighborhood U of x in X. Observe that AD(I) is the usual ‘Alexandrov

duplicate’ of the unit interval.

Theorem 50. If X has a discrete (0, 1)–generator then so does AD(X).

Proof. Let G be a discrete (0, 1)–generator for X. For each g in G fix a basic open neigh-

borhood B(g, Fg, εg) in Cp(X) witnessing discreteness, where Fg is a finite subset of X and

0 < εg < 1/2.

Fix x in X. Define hx to be 1 at (x, 1) and zero elsewhere. For g in G such that g(x) = 1

define g(x) : X × {0, 1} → R by ‘copying’ g, specifically, g(x)(z, i) = g(z) - and note this is

continuous on AD(X) - and then modifying this by specifying, g(x)(x, 1) = 0 - and note this
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is still continuous on AD(X), because (x, 1) is isolated. Now set Hx = {g(x) : g ∈ G and

g(x) = 1}.

Define H = H1 ∪
⋃
xHx, where H1 = {hx : x ∈ X}. Then H is a subset of Cp(AD(X)).

It is a (0, 1)–generator for AD(X). This is realized for any (x, 1) by hx. While if (x, 0) is in

basic open U × {0, 1} \ {(x, 1)} then pick g in G so that g(x) = 1 but g is zero outside U ,

and now g(x) is as required.

It remains to show that H is discrete. Fix x. Now B(hx, {(x, 0), (x, 1)}, 1/2)∩H = {hx}

because if h is in this set then h(x, 1) > 1/2 and h(x, 0) < 1/2, and for h equal to some

hz this forces z = x, while for h equal to some g(z) this is impossible as g(z) has the same

values at (x, 0) and (x, 1) unless, possibly, when g(z)(x, 1) = 0. Now take any g(x) in Hx.

Consider B = B(g(x), {(x, 0), (x, 1)} ∪ (Fg ×{0, 1}), εg), a basic open neighborhood of g(x) in

Cp(AD(X)). Since εg < 1/2, g(x)(x, 0) = 1 and g(x)(x, 1) = 0, it is clear H1 ∩ B = ∅. Now

take any g′(x′) in Hx′ ∩B. Because g(x) and g′(x′) restricted to X × {0} are, essentially, g and

g′, respectively, and since B(g, Fg, εg) witnesses discreteness for g in Cp(X), we clearly have

that g′ must equal g. We complete the proof by showing x′ = x. As g(x)(x, 1) = 0, we know

g(x′)(x, 1) < 1/2 (recall, εg < 1/2). As g(x)(x, 0) = 1, g(x′)(x, 0) > 1/2. But now if x 6= x′

then g(x′)(x, 1) = g(x′)(x, 0) > 1/2, contradiction.

Suppose X is metrizable. Then X(A) (the space obtained by isolating all points not in A)

is metrizable if and only if A is a Gδ subset of X. (This is well known, and easily follows from

Bing’s version of the Bing-Nagata-Smirnov metrization theorem: a T3 space is metrizable if

it has a σ-discrete base.)

Theorem 51. Let X be a metrizable space and A a subset. Then:

X(A) has a discrete (0, 1)–generator if and only if X(A) is metrizable.

Proof. Fix d a compatible metric forX. As metrizable spaces have discrete (0, 1)–generators,

by Theorem 48, the reverse direction is clear.

Suppose, for a contradiction,X(A) has a discrete (0, 1)–generator G, but is not metrizable.

Let B = X \ A. For each x ∈ B, {x} is an open set, so there is a gx in the (0, 1)–generator

G such that gx(x) = 1 but gx(X \ {x}) ⊆ {0}. By discreteness of G there is a basic open
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neighborhood of gx witnessing this, say Bx = B(gx, Fx, 1/mx) where Fx is a finite subset of

X which, we may assume, contains x. Let F ′x = Fx\{x} and pick nx so that d(x, F ′x) > 1/nx.

Let Sm,n = {x ∈ B : mx = x and nx = n}. Note B =
⋃
m,n Sm,n. As A is not a Gδ set

in X, B is not an Fσ, and not every Sm,n can be closed. So there is a pair m,n such that

Sm,n ∩ A 6= ∅, say y is in this intersection.

As G is a (0, 1)–generator there is a gy in G such that gy(y) = 1 and gy maps X \

Bd(y, 1/(2n)) to 0. As gy is continuous at y there is an 0 < ε < 1/(2n) such that

gy(Bd(y, ε)) ⊆ (1− 1/m, 1 + 1/m). As y ∈ Sm,n there is an x in Sm,n such that x ∈ Bd(y, ε).

Clearly gy 6= gx and we now show that gy ∈ Bx, contradicting that Bx witnesses discreteness

at gx.

Well, Bx = B(gx, Fx, 1/m) and for any z in Fx two cases arise. If z = x then as

x ∈ Bd(y, ε) gy(x) ∈ (1− 1/m, 1 + 1/m) and so |gx(x)− gy(x)| = |1− gy(x)| < 1/m. While if

z 6= x, so z ∈ F ′x, as d(x, F ′x) > 1/nx = 1/n and x ∈ Bd(y, 1/(2n)), we see z /∈ Bd(y, 1/(2n))

so gy(z) = 0, from which it follows that |gx(z) − gy(z)| = |0 − 0| = 0. Thus gy is indeed in

Bx, as required.

Example 52. There is a space X with a discrete (0, 6= 0)–generator but no discrete (0, 1)–

generator.

Proof. Let X be the Michael line. Metrizable spaces have a discrete (0, 1)–generator (The-

orem 48). Hence the Michael line has a discrete (0, 6= 0)–generator (Theorem 47). But

Theorem 51 tell us that there is no discrete (0, 1)–generator for the Michael line.

Question 6. Is there a compact space with a discrete (0, 6= 0)–generator but no discrete

(0, 1)–generator?
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6.0 First and Second Countable Generators

When does a space have a 1◦ or 2◦ generator? More specifically, we examine the two

pairs of questions we raised in the introduction: Which spaces have a first countable (0, 6=0)–

generator containing 0? Is separability sufficient? Likewise, which spaces have a second

countable (0, 6=0)–generator containing 0? Is cosmicity enough?

In Sections 6.1 and 6.3, we explore the connections between first and second countable

generators and separable and cosmic spaces (respectively). As to compact, second countable

generators, the spaces which have these are subspaces of some Cp(K) where K is compact

and second countable.

In Sections 6.2 and 6.4 we demonstrate that many ‘classic’ separable spaces do have a

first countable (0, 6= 0)–generator (containing 0) and many ‘classic’ cosmic spaces have a

second countable (0, 6= 0)–generator (containing 0). Finally, in Section 6.5 we examine the

special case when our space X itself is Cp(Y ) for some Y . We show that X = Cp(Y ) has

a compact, second countable generator if and only if Y is cosmic and σ-compact; and we

show that if Y is first countable (respectively, second countable) then X = Cp(Y ) has a first

(respectively, second) countable (0, 6=0)–generator.

6.1 First Countable Generators

Lemma 53. The following are equivalent: (1) X is countable, (2) Cp(X) is second countable,

(3) Cp(X) is first countable, (4) X has a first countable (0, 1)–generator containing 0, and

(5) X has a (0, 1)–generator which contains 0 and 0 is a point of first countability in G.

Proof. The implications (1) =⇒ (2), (2) =⇒ (3), (3) =⇒ (4), and (4) =⇒ (5), are all

clear. It remains to show that (5) =⇒ (1).

Suppose G is a (0, 1)–generator containing 0, and 0 has a countable local base in G say,

B(0, Fn, εn) where each Fn is finite and 0 < εn < 1. Let X ′ =
⋃
n Fn. Then X ′ is countable.

We complete the proof by showing X ′ = X. If not then we can pick x ∈ X \ X ′. As
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B(0, {x}, 1/2)∩G is a neighborhood of 0 in G, there is some m so that L = B(0, Fm, εm)∩G

is contained in R = B(0, {x}, 1/2)∩G. But G is a (0, 1)–generator, so there is a g in G such

that g(x) = 1 but g(Fm) = 0, and this g is in L but not in R, which yields a contradiction.

The argument given above is the ‘standard’ one that if Cp(X) is first countable, then

X is countable. Regarding item (4), note that we have a variety of spaces (any metrizable

space, the Alexandrov duplicate, etc.) with discrete (0, 1)–generators not containing the zero

function. So for the preceding argument, we do need to know that our generator contains 0.

From item (5), we know that 0 being in the generator and being a point of first countability is

sufficient to deduce that the space X is countable provided the generator is a (0, 1)–generator.

A related basic Cp-theory result is that if Cp(X) has countable pseudocharacter (all

point Gδ), then X is separable, and this implies that Cp(X) has a coarser second countable

topology.

Lemma 54. The following are equivalent: (1) X is separable, (2) Cp(X) has a coarser

second countable topology, (3) Cp(X) has countable pseudocharacter, (4) X has a (0, 6= 0)–

generator containing 0 with countable pseudocharacter, and (5) X has a (0, 6= 0)–generator

containing 0 with countable pseudocharacter at 0.

Proof. The only part which requires proof is (5) =⇒ (1).

Let X have a (0, 6= 0)–generator G containing 0, and suppose we have basic open sets

Bn = B(0, Fn, εn) ∩ G in G such that {0} =
⋂
nBn. Let D =

⋃
n∈N Fn, which is countable.

We claim that X = D. Suppose for the sake of contradiction that D 6= X. Then pick

x ∈ X \D. Since G is a (0, 6=0)–generator there is a function g ∈ G such that g(x) 6= 0 and

g(D) = {0}. Notice, however, that g 6= 0, but it is also in every Bn since it is zero on each

Fn. This is a contradiction.

From the previous two results we might wonder if we can relax ‘(0, 1)–generator’ to

‘(0, 6= 0)–generator’ in Lemma 53. The answer is no. From Lemma 54 we know if a space

does have a first countable (0, 6=0)–generator containing 0, or even just a (0, 6=0)–generator

with 0 as a point of first countability, then the space must be separable. In the next section
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we give an array of uncountable, separable spaces – many, indeed, compact and separable –

with a first countable (0, 6=0)–generator containing 0.

Tacking in the opposite direction, we might consider, instead, whether every separable

space has a first countable (0, 6= 0)–generator containing 0, or at least a (0, 6= 0)–generator

with 0 as a point of first countability. This latter question has a positive answer. Since

every space has a (0, 6=0)–generator, namely Cp(X), applying Proposition 12 we deduce the

following.

Theorem 55. A space X is separable if and only if it has a (0, 6=0)–generator containing 0

which is first countable at 0.

But the stronger version of our question remains unanswered.

Question 7.

(A) Which spaces have a first countable (0, 6=0)–generator containing 0?

(B) Does every separable space have a first countable (0, 6=0)–generator containing 0?

Although we don’t know answers to these questions, we can show that the requirement

that 0 be in the generator is not necessary, even though the standard proofs do require that.

Theorem 56. Let X be a separable space.

(1) If X has a first countable (0, 6= 0)–generator, then it has a first countable (0, 6= 0)–

generator containing 0.

(2) If X has a discrete (0, 6=0)–generator, then it has a first countable (0, 6=0)–generator

G such that G \ {0} is discrete.

Proof. Recalling that subspaces of first countable (respectively, discrete) are first countable

(respectively, discrete), and a space is first countable (respectively, discrete) if it is the

countable union of open subspaces that are first countable (respectively, discrete), we see

this easily follows from Proposition 12.
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6.2 Examples: Spaces with a 1◦ Generator

We present some illustrative examples of separable spaces with first countable genera-

tors. In Section 6.4 we give additional examples of cosmic spaces with second countable

generators, so our focus here is on non-cosmic spaces. Our first example is the famous

Sorgenfrey line, which is first countable, hereditarily separable, and hereditarily Lindelöf.

Our remaining examples are all compact and separable: the double arrow space (which, like

the Sorgenfrey line, is first countable, hereditarily separable, and hereditarily Lindelöf), the

one-point compactification of Ψ-space (which fails to be first countable at just one point),

and separable Cantor cubes ({0, 1}κ for κ ≤ c, which are nowhere first countable).

The Sorgenfrey line is the real line with the ‘half-open topology’. We use a homeo-

morphic copy, and distinguish between the the left and right looking Sorgenfrey topologies.

Specifically, we let S+ and S− both have underlying set (0, 1), and the basic open sets in

S+ have the form [x, x+ ε), while in S− they have the form (x− ε, x], where x ∈ (0, 1) and

ε > 0. Then S+, S−, and the usual Sorgenfrey line are all homeomorphic. Also note that

they are all homeomorphic to the convergent sequence of clopen copies of themselves.

Example 57. The Sorgenfrey line has a (0, 6= 0)–generator containing 0 which is homeo-

morphic to itself and, hence, first countable.

Proof. We work with S+. For each x in (0, 1) and n ∈ N, let Bx,n = [x, x + 1/n) and

gx,n = (1/n) · χBx,n . Note g−1x,n(R \ {0}) = Bx,n. For each n, let Gx,n = {gx,n : x ∈ (0, 1)},

Fn = {i/(n + 1) : 1 ≤ i ≤ n} and tn = 1/n. Clearly Gn ⊆ Cp(S
+, {0, 1/n}), and for

any x in (0, 1), [x, x + 1/n) meets Fn, so gx,n has value 1/n at some member of Fn. Now

Lemma 11 tells us that G = {0} ∪
⋃
nGn is the convergent sequence of clopen copies of the

Gn, converging to 0.

Since B = {g−1(R \ {0}) : g ∈ G} = {Bx,n : x ∈ (0, 1) and n ∈ N}, which is a base for

S+, from Lemma 1(2) we see G is a (0, 6=0)–generator for S+.

To complete the example we need to show that each Gn is homeomorphic to S−. Fix

n. Take any x and ε > 0. Then B(gx,n, {x, x − ε}, 1/2) ∩ Gn = {gx′,n : x, x − ε ∈ Bx′,n,

which is {gx′,n : x′ ∈ (x− ε, x]} (a). Further, take any basic neighborhood of gx,n in Gn, say
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B = B(gx,n, F, δ)∩Gn, where we may suppose 0 < δ < 1, and F contains x and meets (0, x).

Let ε be the smaller of min{x− x′ : x′ ∈ F and x′ < x} and min{(x+ 1/n)− x′ : x′ ∈ F and

x ≤ x′ < x+1/n}. Then it is straight forward to check that B = B(gx,n, {x, x−ε}, 1/2)∩Gn

(b). From (a) and (b) it follows that the map h : S− → Gn given by h(x) = gx,n is a

homeomorphism.

The double arrow space, DA, has underlying set I × {0, 1}. A basic open neighborhood

of (x, 0) is Uε(x, 0) = (x − ε, x) × {0, 1} ∪ {(x, 0)}, and a basic open neighborhood of and

(x, 1) is Uε(x, 1) = (x, x+ ε)×{0, 1}∪ {(x, 1)}, where ε > 0. Note that these basic open sets

are clopen.

Example 58. The double arrow space, DA, has a first countable (0, 6= 0)–generator G

containing 0, such that G \ {0} is discrete.

Proof. For each (x, i) in DA and n ∈ N, let Bx,i,n = U1/n(x, i) and gx,i,n = (1/n) · χBx,i,n .

Note g−1x,i,n(R \ {0}) = Bx,i,n. For each n, let Gi,n = {gx,i,n : (x, i) ∈ DA} (for i = 0, 1),

Gn = G0,n ∪G1,n, F ′n = {j/(n+ 1) : 0 ≤ j ≤ n+ 1}, Fn = F ′n×{0, 1} and tn = 1/n. Clearly

Gn ⊆ Cp(DA, {0, 1/n}), and for any (x, i) in DA, Bx,i,n meets Fn, so gx,i,n has value 1/n

at some member of Fn. Now Lemma 11 tells us that G = {0} ∪
⋃
nGn is the convergent

sequence of clopen copies of the Gn, converging to 0.

Since B = {g−1(R \ {0}) : g ∈ G} = {Bx,i,n : (x, i) ∈ DA and n ∈ N}, which is a base

for DA, from Lemma 1(2) we see G is a (0, 6= 0)–generator for DA. Summarizing, G is a

(0, 6=0)–generator for DA, containing the zero function, which is first countable at 0.

As each Gn is an open subset of G, it remains to show that Gn is discrete (in itself). But

if gx′,i′,n is in B(gx,0,n, {(x, 0), (x, 1)}, 1/2) then gx′,i′,n((x, 0)) = 1 while gx′,i′,n((x, 1)) = 0,

and the only gx′,i′,n with this combination of values at these two points is gx,i,n. Similarly,

B(gx,1,n, {(x, 0), (x, 1)}, 1/2) witnesses discreteness of gx,1,n in Gn.

Now we turn to the one-point compactification of Ψ-space. We show it has a first

countable (0, 6= 0)–generator containing 0 which is discrete away from 0. Let A be an

almost-disjoint family of subsets of ω (so, for any A1, A2 ∈ A, A1 ∩ A2 is finite). Let Ψ(A),

the Ψ-space associated with A, have underlying set A ∪ ω, and topology where points of ω
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are isolated and the other basic open sets have the form AF = {A} ∪ (A \F ) for A ∈ A and

F a finite subset of ω.

Denote by α(Ψ(A)) the one-point compactification of Ψ(A). In α(Ψ(A)) there are three

kinds of basic open set. The first two are the open sets of Ψ(A) mentioned above. The

third kind is the open sets around the added point at infinity, ?. These sets take the form of

α(Ψ(A)) \K, where K is a compact subset of Ψ(A). For our convenience we make a couple

of remarks about coding compact subsets of Ψ(A) (and hence neighborhoods of ?) and basic

neighborhoods of A in Ψ(A).

Lemma 59. If K is a compact subset of Ψ(A) then K is a subset of a set K ′ where K ′ is

the finite union of sets of the form A∅ along with a finite subset of ω, and such a K ′ is a

compact subset of Ψ(A).

Proof. Let K be a compact subset of Ψ(A). Since A is a closed discrete subset of Ψ(A),

we have K ∩A finite, say {A1, . . . , An}. Let F = K \ (A∅1 ∪ . . .∪A∅n). Then F is a compact

subset of ω, and so finite. Now we see that K is a subset of K ′ = F ∪
⋃n
i=1A

∅
i . Since K ′ is

a finite union of compact sets it is compact.

Below, we’ll adopt the following notation for compact sets. Let A0 = {A1, . . . , An} be a

finite subset of A. Let KA0 =
⋃n
i=1A

∅
i ∪ (n + 1). Observe that from the preceding lemma

the collection of all KA0 is a cofinal family in the compact subsets of Ψ(A).

Lemma 60. The following is a local base of clopen sets at an A ∈ A: all sets of the form

Bn(A) = {A} ∪ ({n} ∪ A \ {0, . . . , n− 1}).

Proof. Note that the Bn(A) are indeed clopen neighborhoods of A. Take any basic U =

{A}∪ (A\F ). Let m = max(F ) and let F ? = m+ 1 = {0, . . . ,m}. Let n = min(A\F ?) and

note that n ∈ U . We check Bn(A) is contained in U . Take any x ∈ Bn(A). If x = A, then

x ∈ U , done. If x = n then x ∈ U , done. Otherwise, x ∈ A \ {0, . . . , n− 1} then x ∈ A \F ?,

as (A \ {0, . . . , n− 1}) ⊆ A \F ?. So then x ∈ U in this case, as well. Thus, Bn(A) ⊆ U .

From the above the following is a base for α(Ψ(A)): B = Bω ∪ BA ∪ B?, where Bω =

{{n} : n ∈ ω}, BA = {Bn(A) : A ∈ A} and B? = {α(Ψ(A)) \KA0 : finite A0 ⊆ A}.

55



Example 61. The one-point compactification of Ψ-space, α(Ψ(A)), has a first countable

(0, 6=0)–generator containing 0, such that G \ {0} is discrete.

Proof. Let X = α(Ψ(A)). For each n in ω, let Bn = {n} and gn = (1/(3n + 1))χBn . For

each A in A and n ∈ ω, let BA,n = Bn(A) and gA,n = (1/(3n + 2))χBA,n . For each finite

subset A0 of A of size n, let BA0 = X \KA0 and gA0 = (1/(3n + 3))χBA0
. For each n in ω,

let G3n+1 = {gn}, G3n+2 = {gA,n : A ∈ A} and G3n+3 = {gA0 : finite A0 ⊆ A, |A0| = n}.

Let Fn = {?} ∪ (n+ 1) and tn = 1/(n+ 1). Clearly Gn ⊆ C(X, {0, 1/(n+ 1)}) and for each

g in Gn the sets Fn and g−1(R \ {0}) meet (indeed both contain n, or both contain ? – here

we use the specific properties of the Bn(A)). Now Lemma 11 tells us that G = {0} ∪
⋃
nGn

is a sequence of clopen copies of the Gn, converging to 0.

Since B = {g−1(R \ {0}) : g ∈ G} is precisely the base for X stated above, from

Lemma 1(2) we deduce that G is a (0, 6=0)–generator for X containing 0, and first countable

at 0.

It remains to show that each Gm is discrete. This is evident for G3n+1. Now for G3n+2.

Take any gA,n ∈ G3n+2. Suppose gA′,n is in the basic neighborhood, B(gA,n, {A}, 1/(3n+ 2)),

of gA,n. Then as gA,n(A) = 1/(3n + 2) also gA′,n(A) = 1/(3n + 2). But this forces A′ = A,

as desired. And finally, G3n+3. Take any gA0 in G3n+3. So A0 is a subset of A of size n.

Observe, using the specific properties of KA0 , that A0 = KA0 ∩ A and gA0 is zero precisely

on KA0 . Now suppose gA′0 ∈ G3n+3 is in B(gA0 ,A0, 1/(3n+ 3)). Then, for each A in A0, as

gA0(A) = 0 also gA′0(A) = 0, and so A is in A′0. But since A0 and A′0 have the same (finite)

size, it follows that they are equal, and so gA′0 = gA0 , as required for discreteness.

Example 62. For every cardinal κ, the compact space {0, 1}κ has a discrete (0, 1)–generator.

Further, {0, 1}κ has a first countable (0, 6=0)–generator containing 0 if and only if κ ≤ c.

Proof. Since {0, 1}κ is separable if and only if κ ≤ c, the ‘further’ claim follows from the

first combined with Theorem 56(2).

We show {0, 1}κ has a discrete (0, 1)–generator. We may suppose κ is infinite. For any

f in {0, 1}κ and pair (α, k) define f‖(α, k) to be the function which is f except at α where

it has value k. Fix σ a function whose domain, domσ, is a finite subset of κ of size at least

two, and whose range is contained in {0, 1}. Then Bσ = {f ∈ {0, 1}κ : f � domσ = σ} is a

56



basic clopen set in {0, 1}κ. Fix some fσ in Bσ and ασ ∈ κ \ domσ. Define σi = σ ∪ {(ασ, i)}

and fσ,i = f‖(ασ, i), for i = 0, 1. Define, for i = 0, 1, gσ,i in Cp({0, 1}κ) by gσ,i(f) is 1 if

f ∈ Bσ1−i , (−1)i · |σ| if f ∈ Bσi and 0 otherwise (f /∈ Bσ).

Let Gn,i = {gσ,i : |σ| = n} and G =
⋃
n≥2,i=0,1Gn,i. Since g−1σ,0{1} ∪ g−1σ,1{1} = Bσ and

g−1σ,0{0} = g−1σ,1{0} = {0, 1}κ \ Bσ, we see G is a (0, 1)–generator for {0, 1}κ. We show G is

discrete.

Fix σ and i. Let U0 = B(gσ,i, {fσ,i}, 1/2) a neighborhood of gσ,i. If gτ,k is in U0 then

gτ,k(fσ,i) = (−1)i · |σ|. Since gτ,k only takes on the values 0, 1 and (−1)k · |τ |, we see that

k = i and |τ | = |σ|. Now let U = U0 ∩U1, where U1 = B(gσ,i, {fσ,1−i‖(α, k) : α ∈ domσ, k ∈

{0, 1}}, 1/2). Then U is a neighborhood of gσ,i. If gτ,k is in U then from above k = i

and |τ | = |σ|. Take any α ∈ domσ. Then gσ,i(fσ,1−i‖(α, σ(α))) = 1 but gσ,i(fσ,1−i‖(α, 1 −

σ(α))) = 0. Hence gτ,i(fσ,1−i‖(α, σ(α))) = 1 and gτ,i(fσ,1−i‖(α, 1− σ(α))) = 0, equivalently,

fσ,1−i‖(α, σ(α)) ∈ Bτ1−i ⊆ Bτ and fσ,1−i‖(α, 1−σ(α)) /∈ Bτ . This forces α to be in dom τ (so

that Bτ1−i can ‘see’ the difference between fσ,1−i‖(α, σ(α)) and fσ,1−i‖(α, 1 − σ(α)), which

differ only at α). Thus domσ ⊆ dom τ . As |σ| = |τ | we see that τ = σ, and so gτ,k = gσ,i, as

required for discreteness.

6.3 Second Countable Generators

We know from Lemma 53 that a space has a second countable (0, 1)–generator containing

the zero function if and only if the space is countable. What happens if we weaken ‘(0, 1)–

generator’ to ‘(0, 6=0)–generator’? Recalling that every second countable space is cosmic, a

sufficient condition is given by the next result.

Lemma 63. Let X be any space. The following are equivalent: (1) X is cosmic, (2) Cp(X)

is cosmic and (3) X has a cosmic generator.

Proof. It is a standard result (see [3, Theorem 1.1.3]) that for any space Y , Cp(Y ) is cosmic

if and only if Y is cosmic. Hence (1) and (2) are equivalent and imply (3) (since Cp(X)

is a generator). Now, suppose X has a cosmic generator G. Then X embeds into Cp(G).
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However, since G is cosmic, then Cp(G) must be cosmic, and so X is cosmic as well.

Further, every second countable space has a compact, second countable (0, 6=0)–generator

containing 0. In fact, we showed in Lemma 3 that if X is second countable, then X has a

(0, 6= 0)–generator containing 0 homeomorphic to a convergent sequence. But many more

spaces have second countable generators. In the next section we present a range of cosmic,

non-second countable spaces with a second countable (0, 6=0)–generator containing 0, some

even compact and second countable. As in the case of first countability, we can drop the

requirement that our second countable (0, 6=0)–generator contain 0.

Theorem 64. If a space has a second countable (0, 6= 0)–generator, then it has a second

countable (0, 6=0)–generator containing 0.

Proof. Let X have a second countable (0, 6=0)–generator. Then X is cosmic by Lemma 63

and, hence, separable. From Proposition 12, we know X has a (0, 6= 0)–generator G con-

taining 0 as a point of first countability such that G \ {0} is a countable union of open

subspaces, each of which is second countable (as each is homeomorphic to a subspace of the

given second countable generator). The union of the countable bases for each of those open

subsets, along with a countable local base at 0, gives a countable base for G.

The above leads us to three questions.

Question 8.

(A) Which spaces have a second countable (0, 6=0)–generator?

(B) Does every cosmic space have a second countable (0, 6=0)–generator?

(C) Which spaces have a compact, second countable (0, 6=0)–generator?

Regarding (C) we can tap into our knowledge of spaces with a compact generator.

Proposition 65. The following are equivalent: (1) X has a σ-compact, cosmic generator,

(2) X has a compact, second countable (0, 6= 0)–generator, (3) X embeds in Cp(K) where

K is compact and second countable, and (4) X embeds in Cp(Y ) where Y is σ-compact and

cosmic.

Proof. We prove this by cycling through (1)-(4).
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Suppose (1) holds and G is a σ-compact, cosmic generator for X. Then we can suppose

(via Lemma 9) G is a (0, 6= 0)–generator and G =
⋃
nGn where each Gn is compact and

cosmic. Fix n and define mn : Cp(X) → Cp(X) by mn(f)(x) = mid(−1/n, f(x), 1/n).

Then mn is continuous. Let G′n = mn(Gn), and note G′n is a compact, cosmic subset of

Cp(X, [1/n,−1/n]). Let G′ =
⋃
nG
′
n ∪ {0}. As G is a (0, 6=0)–generator, and if g is Gn and

g(x) 6= 0, for some point x, then mn(g)(x) 6= 0, we see G′ is also a (0, 6= 0)–generator for

X. To see this observe that any basic open neighborhood of 0, say B(0, F, 1/n), contains

all G′m where m > n, and each of G′1, . . . , G
′
n is compact. As a countable union of cosmic

spaces G′ is cosmic. Combining cosmicity with the compactness, we see that G′ is compact

and second countable. Thus we have (2).

Now if G is a compact, second countable generator for X, then we know X embeds in

Cp(G). Thus (2) implies (1). Evidently (2) implies (3).

Now suppose (3) holds and X is a subspace of Cp(Y ) where Y is σ-compact, cosmic.

We show below in Proposition 69 ((1) =⇒ (3)) that Cp(Y ) has a σ-compact and cosmic

generator, say G. Then GX = πX(G) = {g � X : g ∈ G} is a (0, 6=0)–generator for X, which

is the continuous image of G, and is σ-compact and cosmic. Thus (4) holds.

Since every compact, second countable space K is the continuous image of the Cantor

set C, then Cp(K) embeds in Cp(C) via the dual map. Thus, in the preceding result we

may assume the compact, second countable space is the Cantor set. We are not aware of an

internal characterization of subspaces of Cp(C).

6.4 Examples: Spaces with a 2◦ Generator

Recall that every second countable space has a compact, second countable (0, 6= 0)–

generator containing 0. Every countable space, X, has a second countable (0, 1)–generator

containing 0, simply because Cp(X) is second countable. However, not every countable

space has a compact, second countable generator. Indeed many countable spaces do not

embed in any Cp(K) where K is compact (in other words, are not Eberlein-Grothendieck).

Specifically, the Frechet-Urysohn fan (X = Y/A where Y = S × N, S is the convergent
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sequence, say S = {0} ∪ {1/n : n ∈ N}, and A = {0} × N) and ultrafilter space N ∪ {p}

(subspaces of βN for p ∈ βN \ N), are known to be not Eberlein-Grothendieck. Uspenskii

[24] has given a characterization of those countable spaces with exactly one non-isolated

point which are Eberlein-Grothendieck. But this characterization is not internal, again

highlighting the difficulties in characterizing internally the spaces with a compact, second

countable generator.

Example 66. Every countable space has a second countable (0, 1)–generator containing the

zero function. The spaces N ∪ {p} and the Frechet-Urysohn fan do not have a compact,

second countable generator.

We now present two examples of nice generators for uncountable cosmic spaces which

are not second countable. In the first example, the space has a compact, second countable

generator. The second has a second countable (0, 6= 0)–generator containing 0, but no

compact generator.

Towards the first example, in the plane, R2, let Wx,n be the set containing (x, 0) along

with all points that lie strictly between the two lines passing through (x, 0) with slope of

±1/n, and the two vertical lines through (x − 1/n, 0) and (x + 1/n, 0). McAuley’s bow tie

space [14] is the plane with the usual topology and all Wx,n, for x ∈ R and n ∈ N, added as

basic open sets. For any subset, S, of R2 we call S with the subspace topology from the bow

tie space, the bow tie space on S. The bow tie space is a classic example of a first countable,

cosmic space which is not second countable.

One can show that the bow tie space has a compact, second countable (0, 6=0)–generator

containing 0, and that every subspace of the bow tie has a second countable (0, 6=0)–generator

containing 0. For simplicity we sketch a particular case.

Example 67. The bow tie space on [−1, 1]2 has a compact, second countable (0, 6= 0)–

generator containing 0.

Proof. Let X be the bowtie space on [−1, 1]2. Fix a countable basis, B = {Bn : n ∈ N}, for

[−1, 1]2 with the usual topology, and pick zn in Bn and gn ∈ Cp(X, [0, 1/(2n− 1)]) such that

gn(zn) = 1/(2n− 1) and g−1n (R \ {0}) = Bn. Let G2n−1 = {hn}, and F ′2n−1 = {zn}. For each

x in [−1, 1] and n, define gx,n ∈ Cp(X) such that gx,n(Wx,n+1) = 1/(2n), gx,n(X \Wx,n) = 0,
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and gx,n goes linearly to 0 on Wx,n \Wx,n+1. Note g−1x,n(R \ {0}) = Wx,n. Let G2n = {gx,n :

x ∈ [−1, 1]}, and F ′2n = {(i/n, 0) : −n ≤ i ≤ n}. Note that F ′2n meets Wx,n.

Now set Fn =
⋃
i≤n F

′
i and tn = 1/n. Clearly Gn ⊆ Cp(X, [0, 1/n]) and for each g in Gn

the sets Fn and g−1(R\{0}) meet. Since B = {g−1(R\{0}) : g ∈ G} is B∪{Wx,n : x ∈ [−1, 1]

and n ∈ N} - a base for X - from Lemma 1(2) we know that G is a (0, 6= 0)–generator for

X containing 0. While from Lemma 11 we deduce that G = {0} ∪
⋃
nGn is a sequence of

clopen copies of the Gn, converging to 0.

It remains to show each G2n is homeomorphic to [−1, 1], for then G is homeomorphic to

a convergent sequence of compact intervals (odd ones being singletons), and so is compact

and second countable. However it is not hard (albeit, a little detailed) to verify that, for

each n, the map ψn taking x to gx,n is a homeomorphism from [−1, 1] to G2n.

Example 68. Let Y = I ×N, A = {1}×N, and X = Y/A. Then X has a second countable

(0, 1)–generator, and a second countable (0, 6= 0)–generator containing 0. However, X does

not have a compact (second countable) generator.

Proof. To see that X does not have a compact generator, note that the Frechet-Urysohn

fan embeds in X, and if X had a compact generator then so would the fan, but - as discussed

above - this is false. For the positive claims, according to Theorem 64, it suffices to show X

has a second countable (0, 1)–generator.

First, let ? denote the image of A in X, and identify each point of Y \A with its image

in X, so that Y \ A = X \ {∗}. Note that Y \ A = [0, 1) × N has the usual topology,

which is separable metrizable. So by Theorem 48 it has a discrete (0, 1)–generator which,

by separability, must be countable. The subspace consisting of those functions, g, whose

support, g−1(R\{0}), is contained in a proper subinterval of some [0, 1)×{i}, is also discrete

and a (0, 1)–generator for [0, 1)×N. And these functions can be extended continuously over

X (by giving them value 0 at ?). In summary, there is a countable, discrete subspace, G0,

of Cp(X) such that every g in G0 is zero at ? and, whenever a point x ∈ X \ {?} is in an

open U then there is a g in G0 such that g(x) = 1 but g(X \ U) = {0}.

Now we deal with the neighborhoods of ?. For any n ∈ N, let fn ∈ Cp(I) be given by:

fn is zero on [0, 1 − 1/n], one on [1 − 1/(n + 1), 1], and linearly interpolates from 0 to 1
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between 1 − 1/n and 1 − 1/(n + 1). Then for any n = (nk)k ∈ NN, define f ′n ∈ Cp(Y ) by

f ′n((t, k)) = fnk(t). Since f ′n(a) = 1 for any a ∈ A, then f ′n induces a well-defined fn ∈ Cp(X),

namely, fn((t, k)) = fnk(t) for each (t, k) ∈ X \ {?} and fn(?) = 1.

Define F : NN → Cp(X) by F (n) = fn, which is clearly injective since fn 6= fm for any

n 6= m ∈ N. We show F is an embedding.

To see that F is continuous, let n = (nk)k ∈ NN and fix a basic open neighborhood V =

B(fn, {(t1, k1), . . . , (tl, kl), ?}, ε) of fn, where (ti, ki) ∈ Y \ A. Then consider the basic open

neighborhood U = B(n, {k1, . . . , kl}, 1/2) of n. For each m = (mk)k ∈ U and i = 1, . . . , l,

we have mki = nki . Hence, fm((ti, ki)) = fmki (ti) = fnki (ti) = fn((ti, ki)) for each i, and

since fm(?) = 1 = fn(?), then fm ∈ V , so F (U) ⊆ V .

Let G1 = F (NN) and fix fn ∈ G1. Let V = B(n, {k1, . . . , kl}, ε) be any basic open

neighborhood of n = F−1(fn). Then consider the basic open neighborhood U = B(fn, S, 1/2)

of fn, where S = {x1, . . . , xl, z1, . . . , zl}, xi = (ti, ki), zi = (si, ki), ti = 1 − 1/nki , and

si = 1 − 1/nki + 1. For each fm ∈ U and i = 1, . . . , l, we have fm(xi) = fmki (ti) ∈

{0, 1} since fm(1 − 1/n) 6∈ (0, 1) for any n,m ∈ N. But since fn(xi) = fnki (ti) = 0 and

|fm(xi) − fn(xi)| < 1/2, then fmki (ti) = 0. Similarly, fmki (si) = 1. Thus, 1 − 1/nki ≤

1− 1/mki < 1− 1/(mki + 1) ≤ 1− 1/(nki + 1), so mki = nki for all i, which means m ∈ V .

As F−1(U) ⊆ V , we see F−1 : G1 → NN is continuous.

Hence, G1, being homeomorphic to NN, is second countable. Note that G0 and G1 are

disjoint open sets in G = G0 ∪G1, since g(?) = 0 for all g ∈ G0 and f(?) = 1 for all f ∈ G1.

So G is also second countable.

Finally, to check that G is a (0, 1)–generator, let x ∈ U with U open in X. If x 6= ?, then

we are done by construction of G0. If x = ?, then there is some n = (nk)k ∈ NN such that

V = {?}∪(
⋃
k∈N(1−1/nk, 1)×{k}) ⊆ U , so fn(?) = 1 and fn(X \U) = {0}, as required.

6.5 The Case X = Cp(Y )

Next, we ask: when does a space of the type X = Cp(Y ) have a first or second countable

generator? In Section 4.1.3 we introduced a natural generator, s(Y ), for Cp(Y ). Using this

62



generator, we give a complete solution, see Proposition 69, to the problem of when Cp(Y )

has a compact, second countable generator. However neither s(Y ), nor its subspace ss(Y ),

work well with first or second countability, see Theorem 16 and the preceding discussion.

Consequently, to give sufficient conditions for Cp(Y ) to have a first (Theorem 72) or second

countable generator (Theorem 71) we need to develop an entirely different generator for

Cp(Y ), see Theorem 70.

The details of the definition of s(Y ) are not needed here. All that we need to know is

that s(Y ) \ {0} is the continuous image of
⊕

n(Y n × N). Recall that both σ-compact and

cosmic spaces are preserved under finite products, continuous images, and countable unions;

and a compact space is second countable if and only if it is cosmic.

Proposition 69. The following are equivalent: (1) Y is σ-compact and cosmic, (2) Cp(Y )

has a compact, second countable (0, 6= 0)–generator, and (3) Cp(Y ) has a σ-compact and

cosmic generator.

Proof. If (1) holds, and Y is σ-compact and cosmic, then the generator s(Y ) for Cp(Y ) is

also σ-compact and cosmic, so (3) holds. If (3) holds and X = Cp(Y ) has a σ-compact and

cosmic generator, then by Proposition 65 ((1) =⇒ (2)), X = Cp(Y ) has a compact, second

countable (0, 6= 0)–generator. Now suppose (2) holds and Cp(Y ) has a compact, second

countable generator G. Then Cp(Y ) embeds in Cp(G). As G is second countable, hence

cosmic, Cp(G) is cosmic, and hence so is Cp(Y ), and in turn, so must Y be cosmic. Also,

by Okunev’s theorem, as Cp(Y ) embeds in Cp(G) and G is compact, we see Y is σ-compact.

Thus (1) holds.

To introduce our second generator for Cp(Y ), we need a little background on hyperspaces.

For any space Y , let 2Y be the space of non-empty, closed subsets of Y with the Vietoris

topology. For each n ∈ N, let Fn(Y ) denote the subspace of 2Y consisting of all n-element

subsets of Y . If F = {y1, . . . , yn} in Fn(Y ), then its basic open neighborhoods have the form

O[F,U1, . . . , Un] = {A ∈ Fn(Y ) : A ⊆
⋃
i Ui, A∩Ui 6= ∅ for each i}, where each Ui is an open

neighborhood of yi, and the Ui’s are pairwise disjoint.

Theorem 70. If X = Cp(Y ) is separable, then it has a (0, 6= 0)–generator G containing 0

such that (1) 0 is a point of first countability in G, and (2) G \ {0} is a countable union
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of subsets that are clopen in G, each of which is homeomorphic to a subspace of Fn(Y ) for

some n.

Proof. For a fixed k in N define βk : [0,∞) → [0, 1] by βk(t) = max{0, 1 − 2kt}. As X is

separable, we may fix a countable dense subset {xm : m ∈ N} of X. For any F ∈ Fn(Y ) and

m ∈ N, define dm,F ∈ Cp(X) by dm,F (x) = max{|x(y) − xm(y)| : y ∈ F}, and let hk,m,F =

δk,m,n · βk ◦ dm,F ∈ Cp(X, [0, δk,m,n]), where δk,m,n = 1/(2k3m5n). Observe that dm,F (x) = 0

if and only if x � F = xm � F , and dm,F (x) ≥ 1/2k if and only if |x(y) − xm(y)| ≥ 1/2k for

some y ∈ F . Hence hk,m,F (x) = 0 if and only if x /∈ B(xm, F, 1/2
k), and hk,m,F (x) = δk,m,n if

and only if x � F = xm � F . In particular, hk,m,F (xm) = δk,m,n.

For each k,m, n ∈ N, define Hk,m,n = {hk,m,F : F ∈ Fn(Y )} and let H =
⋃
k,m,nHk,m,n.

We will show that H is homeomorphic to
⊕

n Fn(Y )× N.

Our first objective is to use Lemma 11 to show that the Hk,m,n are pairwise disjoint

and clopen in H. For each i ∈ N, there is a unique choice of ki,mi, ni ∈ N such that the

map N → N3, i 7→ (ki,mi, ni) is bijective and (2ki3mi5ni)i is a strictly increasing sequence.

Note that this implies mi ≤ i for each i, since otherwise there would need to be at least i

terms in this sequence smaller than 2ki3mi5ni . Let Hi = Hki,mi,ni for each i. It follows that

{Hi : i ∈ N} = {Hk,m,n : k,m, n ∈ N}, the sequence (ti = δki,mi,ni)i is strictly decreasing to

0, and each xmi is in the corresponding Fi = {xm : m ≤ i}. Now each Hi ⊆ Cp(X, [0, ti]),

and for every h = hki,mi,F ∈ Hi, we have h(xmi) = ti, so Lemma 11 implies that the Hi are

pairwise disjoint and clopen in H, as desired.

Fix k,m, n ∈ N, we will next show that φ = φk,m,n : Fn(Y ) → Hk,m,n, F 7→ hk,m,F is a

homeomorphism. To verify that φ is bijective, let F, F ′ ∈ Fn(Y ) with F 6= F ′. Without loss

of generality, we can find y′ ∈ F ′ \F . Then there exists x in X such that x � F = xm � F but

x(y′) 6= xm(y′). Then hk,m,F (x) = δk,m,n but hk,m,F ′(x) 6= δk,m,n, so hk,m,F 6= hk,m,F ′ . Thus, φ

is one-to-one, and it is clearly also onto.

To see that φ is continuous, fix any F = {y1, . . . , yn} in Fn(Y ), and take any sub-basic

neighborhood of φ(F ) = hk,m,F , say V = B(hk,m,F , {x}, ε) ∩ Hk,m,n. Since δk,m,n · βk is

continuous at dm,F (x), then there is an η > 0 such that |δk,m,n · βk(t) − hk,m,F (x)| < ε

whenever |t − dm,F (x)| < η. By the continuity of xm and x, there exist pairwise disjoint
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open neighborhoods Ui of the yi such that, for each i = 1, . . . , n, we have |(x−xm)(y)− (x−

xm)(yi)| < η for all y ∈ Ui. Consider the basic neighborhood O = O[F,U1, . . . , Un] of F in

Fn(Y ).

We show φ(O) ⊆ V and deduce that φ is continuous. Take any F ′ ∈ O. Write F ′ =

{y′1, . . . , y′n}, where y′i ∈ Ui for each i. Now, |(x− xm)(y′i)− (x− xm)(yi)| < η for each i, so

|dm,F ′(x)− dm,F (x)| < η as well. Hence |hk,m,F ′(x)− hk,m,F (x)| < ε, so φ(F ′) = hk,m,F ′ is in

V , as required.

To check continuity of φ−1, let hk,m,F ∈ Hk,m,n and write F = {y1, . . . , yn}. Take any

basic neighborhood O = O[F,U1, . . . , Un] of F , where each Ui is an open neighborhood of yi,

and the Ui are pairwise disjoint. For i = 1, . . . , n, choose wi ∈ X such that wi(Y \Ui) = {0}

and wi(yi) = 1, and set zi = xm + wi. Define V = Hk,m,n ∩ B(hk,m,F , {z1, . . . , zn}, δk,m,n),

which is a neighborhood of hk,m,F in Hk,m,n.

We will show φ−1(V ) ⊆ O, and thus φ−1 is continuous. Take any hk,m,F ′ ∈ V ⊆ Hk,m,n.

We need to show that φ−1(hk,m,F ′) = F ′ is in O. Since |F ′| = n and U1, . . . , Un are pairwise

disjoint, it suffices to verify that F ′ meets every Ui. Take any i ∈ {1, . . . , n}. Note that

wi(yi) = 1 > 1/2k implies zi /∈ B(xm, F, 1/2
k), so hk,m,F (zi) = 0. Now suppose F ′ ∩ Ui = ∅

for some i. Then wi is zero on F ′, so zi � F ′ = xm � F ′, and hence hk,m,F ′(zi) = hk,m,F ′(xm) =

δk,m,n. Thus |hk,m,F (zi) − hk,m,F ′(zi)| = δk,m,n, which contradicts the fact that hk,m,F ′ ∈ V ,

so F ′ must meet each Ui and φ−1(V ) ⊆ O, as required.

We have shown that each Hk,m,n is homeomorphic to Fn(Y ), and since the Hk,m,n are

pairwise disjoint and clopen in H =
⋃
k,m,nHk,m,n, then H is homeomorphic to

⊕
n Fn(Y )×N.

To see that H is a (0, 6=0)–generator, fix x in X and a basic open neighborhood B(x, F, ε),

where F ⊆ Y is finite and ε ∈ (0, 1). Let n = |F |, choose m ∈ N such that xm ∈ B(x, F, ε/4),

and pick k ∈ N such that ε/4 ≤ 1/2k < ε/2. Then hk,m,F ∈ Hk,m,n ⊆ H. We have

x ∈ B(xm, F, ε/4) ⊆ B(xm, F, 1/2
k) ⊆ B(xm, F, ε/2) ⊆ B(x, F, ε). But B(xm, F, 1/2

k) =

h−1k,m,F (R \ {0}), and hence, hk,m,F (X \ B(x, F, ε)) = {0} while hk,m,F (x) 6= 0, as required of

a (0, 6=0)–generator.

Finally, Proposition 12 implies that X has another (0, 6= 0)–generator G that contains

0 as a point of first countability such that G \ {0} =
⋃
j Gj, where the Gj are pairwise

disjoint and clopen in G, and each Gj is homeomorphic to a subspace of
⊕

n Fn(Y ) × N.
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Hence, each Gj is itself the union of countably many subsets that are each clopen in G and

homeomorphic to a subspace of some Fn(Y ).

Let Y (n) = {(y1, . . . , yn) ∈ Y n : yi 6= yj if i 6= j}, and note it is an open subset of Y n.

Then it is well known that the map Y (n) → Fn(Y ), (y1, . . . , yn) 7→ {y1, . . . , yn} is continuous

and open. It follows that if Y is first countable (respectively, second countable) then so is

Fn(Y ) (for every n). Recalling that Cp(Y ) is separable if and only if Y has a coarser second

countable topology, we immediately deduce broad sufficient conditions on Y for Cp(Y ) to

have a first or second countable generator.

Theorem 71. If Y is second countable, then X = Cp(Y ) has a second countable (0, 6= 0)–

generator containing 0.

Theorem 72. If Y is first countable and has a coarser second countable topology, then

X = Cp(Y ) has a first countable (0, 6=0)–generator containing 0.
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7.0 Future Directions

Despite the results presented in this thesis a number of our central questions remain only

partially answered. In addition our results raise new questions, problems and directions. In

this final chapter we outline what we think are the key areas for future research, and present

some specific questions to ponder.

In Section 4, we offered as a characterization of spaces X with a compact generator in

Cp(X) that they are those which are Eberlein-Grothendieck. Unfortunately the definition of

Eberlein-Grothendieck spaces, they embed in a Cp(K) where K is compact, is not intrinsic,

and there is no known internal characterization. It seems natural to start by trying to

characterize those spaces which embed in a Cp(K) where K is compact and second countable.

This same problem arose in Section 6.3 (see discussion at the end) where we observed that

what was a required was an internal characterization of the subspaces of Cp(C), for C the

Cantor set. In light of the results on special compact generators, see Section 4.2, perhaps

there is a characterization in terms of some kind of ‘nice’ almost subbase?

At the end of Chapter 3, in Section 4.3, we generalized from (σ-) compact spaces to

Lindelöf spaces. The result was a mix of the positive theorems (restrictions on the tightness,

Proposition 33) and negative examples (related to behavior in powers). It seems likely that

results for spaces with a Lindelöf Σ generator would be better, and proving - or disproving

- this would be a natural extension of our results on spaces with a compact generator.

We were hopeful in Section 5.1 that the condition w(X) = hc∗(X) might be both neces-

sary and sufficient for X to have a discrete generator, but we have only been able to show

necessity. On the one hand we have sufficiency for all zero-dimensional spaces, Theorem 40,

and in set-theoretic topology almost all examples are zero-dimensional (or at the very least,

have zero-dimensional versions). This certainly gives strong support to the conjecture. On

the other hand the proof of Theorem 5.1 works in dimension 1 (the discrete subset is a

subspace of X1) but runs into (potential) problems in dimension 2 - and these problems

arise when X is connected, and the Intermediate Value Theorem undermines our control

of values. We see the difference in size of discrete subsets with the Sorgenfrey line, S. All
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discrete subsets of S are countable, but the anti-diagonal of S2 is a discrete subset of size

|S|. Now S is zero-dimensional, so we know it has a discrete generator, but the cone of S

((S × [0, 1])/A where A = S × {1}) has similar properties to S and is connected. Does it

have a discrete generator? If not then we have a counter-example to our conjecture. If it

does then how does it ‘evade’ the problem of being connected?

Beyond the cone of the Sorgenfrey line, we have a whole family of possible counter-

examples, namely X = Cp(Y ) (and note these are connected). Specifically, does Cp(Y )

containing a discrete subset of size |Y | imply that Cp(Y ) has a discrete generator? If there

is a counter-example then perhaps there is another condition that needs to be imposed for

the converse.

Likewise, we are also interested in a different version of this in terms of open subsets of

a space and (0, 6= 0)–generators: if, for all open U of a space X, w(U) = hc∗(U), does this

mean X has a discrete (0, 6=0)–generator? Are there other conditions that need to be added

to assure this? Regrettably, we don’t even have a conjectural characterization of spaces

with a discrete (0, 1)–generator. We know, in general, that there are spaces with a discrete

(0, 6= 0)–generator but no discrete (0, 1)–generator (the Michael line, Example 52). So the

condition given above certainly does not suffice. But is there a compact X with a discrete

(0, 6=0)–generator but no discrete (0, 1)–generator?

Last, Section 6 raised two central pairs of questions. First, what spaces have first count-

able generators? Is it enough for these spaces to be separable to guarantee the existence

of such a generator? Second, what spaces have second countable generators? Is it enough

for these spaces to be cosmic? While we were able to answer the first half of each pair

of questions (a first countable generator implies a separable space, and likewise for second

countable and cosmic), sufficiency eluded us.

We were, however, able to come up with a stable of examples of separable spaces with

first countable generators and cosmic spaces with second countable ones. Still, the problem

remains thorny: there does not appear to be a pattern in our proofs of these examples,

and each space seems to require new techniques to construct a generator. We suspect that

counterexamples exist. Continuing our approach of looking at specific spaces, a natural

‘next target’ would be βN, the Stone-Cech compactification of the integers. It is compact
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and separable. Since it is also zero-dimensional and w(βN) = c = hc(βN) we know from

Theorem 40 that it has a discrete generator. Since w(U) = hc(U) for all open subsets of βN,

our conjecture says that it should have a discrete (0, 6=0)–generator. However, a preliminary

investigation has not uncovered such a generator. Indeed we suspect βN does not have a

discrete (0, 6=0)–generator, even that it may not have a first countable (0, 6=0)–generator.

However another, likely better, approach to finding a separable space without a first

countable (0, 6= 0)–generator or a cosmic space without a second countable generator, is to

find something additional - beyond ‘separable’ or ‘cosmic’ - that having a first or second

countable generator implies. (Then the plan, of course, would be to construct a separable

or cosmic space without that additional property.) It seems so plausible that we could find

and prove that ‘extra something’. And yet, to date, no success.
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spaces and function spaces, Fund. Math. 106 (1980), pp. 175-180.

72


	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	1.0 Acknowledgements
	2.0 Introduction
	2.1 Compact Generators
	2.2 Discrete Generators
	2.3 First and Second Countable Generators

	3.0 Background Material
	3.1 Definitions and Notation
	3.1.1 Topological Properties
	3.1.2 Types of Generator

	3.2 Fundamental Results on Generators
	3.2.1 Basic Examples and Facts
	3.2.2 Creating and Upgrading Generators
	3.2.3 A Generator for Cp(X)


	4.0 Compact Generators
	4.1 General Compact Generators
	4.1.1 Grouping Generators
	4.1.2 The Compact Open Topology
	4.1.3 The Pointwise Topology

	4.2 Special Compact Generators
	4.2.1 Supersequences as Generators
	4.2.2 Compact Generators Related to s(A(kappa))

	4.3 Lindelöf Generators
	4.3.1 Finite Powers Lindelöf
	4.3.2 Finite Powers Countably Tight
	4.3.3 No Lindelöf Generator


	5.0 Discrete Generators
	5.1 Discrete Generators
	5.2 Discrete (0,nonzero)-Generators
	5.3 Discrete (0,1)-Generators 

	6.0 First and Second Countable Generators
	6.1 First Countable Generators
	6.2 Examples: Spaces with a First Countable Generator
	6.3 Second Countable Generators
	6.4 Examples: Spaces with a Second Countable Generator
	6.5 The Case X = Cp(Y) 

	7.0 Future Directions
	Bibliography

