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Anti-Newtonian Expansions, Hadamard States, and the Spatial Functional

Renormalization Group

Rudrajit Banerjee, PhD

University of Pittsburgh, 2021

The validity of general relativity almost up to the Big Bang entails that the Einstein

equations themselves can be used to study the detailed structure of spacetime in the vicinity

of the singularity. Within the cosmological paradigm of a Friedmann-Lemâıtre spacetime,

where a description of physics in terms of quantum field theories (QFTs) on such a curved

background is deemed to be valid, this mandates the existence of a pre-inflationary epoch fol-

lowing the Big Bang. Accepting this physically well-motivated scenario of a pre-inflationary

phase as valid, this thesis aims to develop a customized theoretical framework for interacting

scalar QFTs on generic Friedmann-Lemâıtre backgrounds. Importantly, such a framework

cannot be in Euclidean signature (due to ill-definedness of a Wick rotation), nor should it be

tailored towards de Sitter spacetime. Motivated by the subdominance of spatial gradients

in the approach to the singularity, the major themes of this thesis are variants of spatial

averaging and spatial gradient expansions in relation to the dependence on the underlying

vacuum-like state.

The first of these themes is the Anti-Newtonian expansion in a spatially discretized set-

ting. In this framework, the solution of a QFT decouples into two sub-problems: (i) the

solution of the cosmological quantum mechanics; and (ii) the solution of the combinatorial

problem that allows one to analytically control the terms of a “spatial hopping” expansion.

The second theme is a novel manifestly Lorentzian formulation of the Functional Renormal-

ization Group. The key differences of this formulation compared to the standard Euclidean

setting are (i) it necessitates the incorporation of state-dependent aspects directly into the

flow equation formalism; and (ii) the purely spatial mode modulation leads to an additional

contribution to the renormalization of the Newton constant. In a full quantum gravity

computation, the latter would quantitatively affect the interplay between the matter and

gravity sectors. Within the asymptotic safety scenario, this interplay is believed to resolve
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the triviality of scalar field theories. This has found phenomenological applications, which

are however yet provisionary, because the infrared regime of the flow equation is neither

well-posed nor controlled. This thesis prepares the tools to address this situation.
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1.0 Introduction

The generic occurrence of singularities in general relativity [48, 14, 35] is one of its

most robust and remarkable features, signifying in a cosmological context the breakdown

of the classical description of the evolution of Lorentzian spacetime at the Big Bang (or

Big Crunch). However, the approach to this singularity in the past is hypothesized to

ultimately be curtailed by the appearance of yet-to-be-understood quantum gravity effects.

Following the Big Bang and the brief quantum gravity epoch, a description of physics in

terms of quantum field theory on a classical spacetime described by the Einstein equations

is presumed to be valid. The classical spacetime is thought to be well approximated by a

(spatially flat) Friedmann-Lemâıtre spacetime whose expansion is driven by a homogeneous

scalar field. In the modern cosmological paradigm, this evolution is hypothesized to have

entered a quasi-de Sitter phase known as inflation shortly after the Big Bang, thereby solving

the well-known horizon, flatness, and monopole problems [43, 64]. The linearized quantum

fluctuations of the gravity-scalar system, treated within the framework of quantum field

theory in curved spacetime, have notable consequences including seeding the inhomogeneities

observed in the Cosmic Microwave Background [75]. More recently, non-linearities in the

quantum fluctuations have been studied treating the quantum fields as evolving on a de

Sitter background [11, 10].

The presumed validity of general relativity almost up to the Big Bang has further impli-

cations, namely it can be used to study the detailed structure of spacetime in the vicinity of

the (spacelike) singularity. While the singularity theorems do not offer insight into spacetime

in this regime, other techniques offer the following qualitative picture. In the approach to a

spacelike singularity, spatial gradients become subleading compared to temporal ones. Fur-

ther, the temporal approach to the singularity almost always displays one of two behaviors:

either a rapid oscillatory (chaotic/mixmaster-type) approach or a power-like (quiescent) ap-

proach. Which of these two cases occurs depends on the matter content (and also on the

number of spatial dimensions). The paradigmatic cases are a vacuum where mixmaster

behavior is typical (as shown originally by Belinski-Khalatnikov-Lifshitz [12, 13]), and a
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massless scalar field where a quiescent approach is generic as rigorously proven by Ander-

sson and Rendall [2]. We draw on Penrose’s intuition that the Big Bang should be viewed

as being gravitationally simple in having low gravitational entropy (with respect to an ap-

propriate mathematical notion thereof), which disfavors the chaotic approach. While the

result of Andersson and Rendall only covers the free massless scalar, within the standard

paradigm of a Friedmann-Lemâıtre spacetime driven by a scalar field with generic potential,

stronger statements can be made. Mathematically rigorous arguments by Foster [38] as well

as a data-driven analysis of Hergt et al. [50] show that a pre-inflationary phase with kinetic

energy domination is preferred, i.e. the specific features of the scalar potential become ir-

relevant and the behavior resembles that of a Friedmann-Lemâıtre spacetime coupled to a

(homogeneous) free massless field.

Accepting this well-motivated physical scenario of the existence of a pre-inflationary

phase, during which the description of quantum field theories (QFT) on curved backgrounds

is expected to be valid, in this thesis we strive to develop a customized theoretical frame-

work for interacting scalar QFTs in this early kinetically dominated phase. Such a framework

cannot be in Euclidean signature as the expanding spacetime generically prohibits a Wick

rotation [6], nor should it be tailored towards de Sitter spacetime. Motivated by the subdom-

inance of spatial gradients in the BKL scenario, we aim at developing variants of a spatial

gradient expansion in the very early Universe. Moreover, since the classical potential un-

derlying the inflationary paradigm is typically non-renormalizable, we wish to de-emphasize

weak coupling and the specific form of the potential in the formalism. In renormalization

group language, this suggests a Wilsonian approach, where all interaction monomials com-

patible with some prescribed symmetry are initially treated on the same footing. However,

the standard approaches which are Wilsonian in spirit, namely lattice methods or the Func-

tional Renormalization Group, strongly rely on Euclidean signature. In the present context,

this necessitates a new adaptation of Wilsonian ideas to Friedmann-Lemâıtre spacetimes.

The overall strategy to be pursued in this thesis is summarized in Figure 1, and we briefly

comment on each of the elements here, and in more detail in the subsequent sections.

As displayed, the central idea is a form of spatial regularization or mode modulation.

On the left side of the figure the spatial slices of the Friedmann-Lemâıtre spacetime are
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Figure 1: Summary of strategy for QFT in the early Universe.

discretized, while leaving time continuous (thereby avoiding discretization issues with the

non-trivial temporal dynamics). This regularization lends itself to a novel expansion scheme

in the spirit of the Linked Cluster Expansion (LCE) from statistical physics. Upon dis-

cretization, the QFT may be considered to be a collection of spatially coupled self-interacting

quantum mechanical systems, one associated to each spatial lattice site. Perturbing in the

spatial interaction generates an expansion about the decoupled quantum mechanical systems,

the so-called Anti-Newtonian limit, where the lightcones shrink to lines. The solution of the

(regularized) QFT under consideration then reduces to the evaluation of the spatial LCE

or spatial hopping expansion, which may be efficiently developed utilizing graph theoretic

methods as detailed in Chapters 2 and 3 of this thesis, together with a solution of the self-

interacting quantum mechanics on the cosmological spacetime. Importantly, at no point is

a Wick rotation necessary, and the systematics of the spatial hopping expansion are largely

model independent thereby decoupling the details of the (typically non-renormalizable) po-

tential from the spatial expansion.

The complementary approach on the right side of the figure is a novel spatial adaptation
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of the Functional Renormalization Group (FRG) to Lorentzian spacetimes. The FRG is

a work-horse for non-perturbative QFT, exclusively developed in Euclidean signature, and

has found application in areas as diverse as solid-state physics, QCD, and quantum gravity

(leading to the revival of the asymptotic safety scenario of Weinberg [100]). The key idea

of the FRG approach (further detailed in Section 1.1.4) is to introduce an additional scale

k through an infrared mode regulator kernel Rk that effectively gives slow-modes a mass

of order k2, while leaving the fast-modes untouched. This yields a family of k-dependent

QFT functionals and equations for their k-flow, with modern approaches focussing on the

Wetterich equation [103]

k∂kΓk[φ] =
~
2

Tr
{
k∂kRk[Γ

(2)
k +Rk]

−1
}

(1)

for the flow of the scale dependent Legendre effective action Γk (also known as the “effective

average action”). While the Euclidean nature of the approach is innocuous for solid-state

physics or QCD as in principle Lorentzian QFT may be recovered through a Wick rotation

(appealing to the Osterwalder-Schrader reconstruction theorem), in the context of quantum

gravity or quantum field theory in curved spacetime it is known that a satisfactory general

notion of a Wick rotation ceases to exist [6]. Related to the absence of a Wick rotation is

the issue of vacuum state dependence in Lorentzian QFT, an aspect that is invisible in the

Euclidean setting, but is pertinent to recent studies of the phenomenology associated to the

non-Gaussian quantum gravity fixed point [32, 31]. Finally, the FRG may be used to obtain

the critical parameters for the continuum limit of the hopping expansion (see Chapter 4), as

well as offering an approach to the cosmological quantum mechanics.

In this thesis we reformulate the FRG equations manifestly in Lorentzian signature

through the introduction of a spatial mode modulation, thereby avoiding the aforementioned

issues with the problematic Wick rotation. The issues associated with vacuum state choice,

studied rigorously in the context of perturbative QFT on curved backgrounds (see [61] and

the references therein), may then be explored. In brief, in a Lorentzian setting the Hes-

sian Γ
(2)
k + Rk in (1) is not elliptic and therefore lacks an unique inverse, reflecting the

ambiguity in the choice of the two-point function for free QFTs on curved backgrounds. In

non-maximally symmetric spacetimes in the latter context, one is faced with a large class of
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physically admissible two-point functions, with the only requirement being that they satisfy

the Hadamard property [60, 87]. The Hadamard property translates to a universal short

distance singularity structure, but leaves the long range behavior unconstrained. In the con-

text of the FRG equations this translates into a universal large k flow, while the choice of

state will affect the flow to small k. Motivated by the schematic correspondence depicted in

Figure 2,

Figure 2: Correspondence between state choice in perturbative QFT and choice of flow

equation for non-perturbative FRG.

in Chapter 5 we study a particular class of Hadamard states, known as States of Low

Energy. Returning to the spatial FRG proper in Chapter 6, we study the RG flow of

the one-loop effective action on Friedmann-Lemâıtre backgrounds, which sets the boundary

conditions in the ultraviolet for the non-perturbative flow. We find that although the spatial

regulator kernel breaks covariance, remarkably only covariant counter-terms are required for

one-loop renormalization of a generic potential. Furthermore, the spatial averaging leads to

an additional contribution to the renormalization of the Newton constant gN , which in a full

quantum gravity computation would quantitatively affect the interplay between the gravity

and matter sectors.

The results presented in this thesis are based on the following publications:
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Chapter Article arXiv

3 J.Math.Phys. 60 (2019) 1, 013504 arXiv:1812.06602

4 PoS LATTICE 2018 (2018) 249 arXiv:1812.02251

5 J.Math.Phys. 61 (2020) 103511 arXiv:2006.08685

Table 1: Publication list.

1.1 Background

In the following sections we present brief self-contained reviews of the elements entering

Figure 1, and comment on how these relate to the original research in the subsequent chapters

of this thesis.

1.1.1 Kinetic energy domination in scalar field cosmologies

Consider a spatially flat 1+d dimensional Friedmann-Lemâıtre spacetime with line element

of the form

ds2 = −N(t)2 dt2 + a(t)2δijdx
idxi , (2)

where the lapse N(t) shall be treated as a degree of freedom so as to retain temporal repa-

rameterization invariance1. The Friedmann-Lemâıtre spacetime is coupled to a spatially

homogeneous field ϕ(t) governed by a largely arbitrary potential U(ϕ). Since the shift N i

has been set to zero in (2) the (0, i), i = 1, . . . , d, components of the field equations vanish

identically. The remaining field equations read

d(d−1)(∂taa
−1)2 − (∂tϕ)2 − 2N2(U(ϕ) + Λ) = 0 , (3a)

a−(d−1)N̄∂t[a
d−2N−1∂ta]− d−2

2
(∂taa

−1)2 +
(∂tϕ)2

2(d−1)
− N2

d−1
(U(ϕ) + Λ) = 0 , (3b)

1The lapse function N(t) can be conveniently used to encode useful choices of time parameter such as
cosmological time N(t) = 1, or conformal time N(t) = a(t).
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∂t(a
dN−1∂tϕ) +NadU ′(ϕ) = 0 , (3c)

without gauge fixing. As indicated, we attribute the cosmological constant Λ ≥ 0 to the

gravitational sector, and normally assume that U(ϕ) has no constant term. Using (3a) to

eliminate (∂tϕ)2 from (3b), it can be rewritten in the more familiar form 2

1

N
∂t

(ad
N

∂ta

a

)
− 2

d−1
ad[U(ϕ) + Λ] = 0 . (4)

The dependence on the scalar field may be reexpressed through the energy density ρ and the

pressure P

ρ =
1

2
N−2(∂tϕ)2 + U(ϕ) ,

P =
1

2
N−2(∂tϕ)2 − U(ϕ) , (5)

which parameterize the nonzero components of the energy momentum tensor via T00 =

ρ, Tij = δijP . We shall assume the weak energy condition throughout, ρ ≥ 0, ρ+P ≥ 0. Due

to (5), it is clear that non-negative potentials are sufficient for the weak energy condition to

hold. Moreover, in Friedmann-Lemâıtre spacetimes the Weyl tensor vanishes identically and

the singularity is signaled by the divergence of

[Rµν − 1

2
gµνR(g)][Rµν −

1

2
gµνR(g)] = [T µν − gµνΛ][Tµν − gµνΛ] = (ρ+ Λ)2 + d(P − Λ)2 , (6)

while the Ricci scalar may stay finite. Hence at least one of ρ+Λ,P−Λ must diverge at the

singularity, t→ tsing.

Since we consider strictly monotonically expanding spacetimes, N−1∂ta > 0, the Hubble

distance dH(t) := a(t)/[N−1∂ta] > 0 then sets an intrinsic length scale. It is instructive to

rewrite the equations (3) in terms of (5) and dH ,

1

d2
H

=
2

d(d−1)
(ρ+ Λ) , (7a)

N−1∂tdH
d2
H

=
1

d−1
(ρ+ P) , (7b)

N−1∂tρ = − d

dH
(ρ+ P) , (7c)

2The constraint (3a) is by construction preserved under the evolution (3c), (4).
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again without gauge fixing. On account of the second equation the Hubble distance is

nondecreasing for matter obeying the weak energy condition. Moreover

deceleration: 1 ≤ N−1∂tdH <∞ , acceleration: N−1∂tdH < 1 , (8)

where the shifted strong energy condition, (d−2)(ρ+Λ) + d(P−Λ) ≥ 0, d ≥ 3, implies

deceleration. As indicated, we exclude a diverging N−1∂tdH . Using (7a), (7b) in (6) one

finds for the right hand side d(d−1)[1/2 +N−1∂tdH ]/d2
H . Hence dH → 0 for t→ tsing. This

motivates the following definition of a pre-inflationary Friedmann-Lemâıtre spacetime:

Definition 1.1.1.

A spatially flat FL geometry (2) is called pre-inflationary if a,N : I → R+, I = [tsing, tf ],

tsing ∈ [−∞, 0], tf ∈ (tsing,∞], such that 1 ≤ N−1∂tdH <∞ for t ∈ I with a(t), dH(t)→ 0+

for t→ tsing.

Finally, remarkably general statements about the early time asymptotics of spatially flat

FL cosmologies driven by a scalar field can be made, from which follows the existence of a

pre-inflationary period. We consider smooth potentials of the following form

U(ϕ) ≥ 0 , U(ϕ) > 0 , ±ϕ > ϕ± > 0 for some ϕ± > 0 ,

lim
ϕ→±∞

U ′(ϕ)

U(ϕ)
− ε± = 0 , for some −∞ < ε± <

√
4d

d−1
. (9)

As seen before U(ϕ) ≥ 0 is a sufficient condition for the weak energy condition to hold, the

additional proviso eliminates potentials of compact support. The second condition restricts

the rate of growth of the potential at infinity to be less than exp{
√

4d/(d−1)|ϕ|}. This

class of potentials is very broad: it includes positive polynomials, linear combinations of

exponentials (subject to the growth conditions), and all logarithmic modifications thereof.

Examples of the latter are

U(ϕ) = U0 ϕ
n(logϕ)me−γϕ/(logϕ)l , U0, γ, l > 0 , m, n ∈ R , (10)

for ϕ > ϕ+, and similarly for negative ϕ. Virtually all explicit potentials discussed in the

literature on ‘single field inflation’ fall into the above class. In addition to (9) a technical

regularity assumption (“well behaved at infinity”) is needed on how infinity is approached.
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Under these conditions S. Foster [38] showed (in d = 3) the following important

Result: Let U(ϕ) be a potential of the form (9) well behaved at infinity and consider

the spatially flat FL equations (3) in N(t) = 1 gauge. Then almost all solutions have an

initial singularity at t=0 which they approach in the following universal manner:

∂ta

a
=

1

d t
+O(ε±U(t)) ,

ϕ(t) = ±
√
d−1

d
ln t/ti +O(tε±U(t)) ,

∂tϕ = ±
√
d−1

d

1

t
+O(ε±U(t)) , (11)

where ε±U(t) = t U(±
√

(d−1)/d ln t).

The leading asymptotics is that of a ‘stiff fluid’, a(t) ∝ t1/d. In other words, the influence

of the potential U(ϕ) on the scalar field cosmology is wiped out near the singularity and the

approach to it is the same as if matter consisted of a free massless field! This result provides

a mathematical backing for the existence of a ‘preinflationary phase’ where kinetic energy

dominates over potential energy. Moreover, it is arrived at within the same classical general

relativistic framework that underlies inflationary spacetimes.

1.1.2 Perturbative QFT in curved spacetime: the Hadamard Property

Perturbative quantum field theory begins with the quantization of the linear free field,

subsequently followed by the introduction of non-linearities. In this section we briefly review

the quantization of the Klein-Gordon field, referring to the standard texts [99, 40, 15, 81]

for further details. We begin with a quick summary of the Minkowski spacetime version,

[−ηµν∂µ∂ν +m2]ϕ = 0 (12)

tailored towards identifying the aspects that do or do not carry over to generic globally

hyperbolic manifolds. Following [40], we shall begin with the “particle” viewpoint and sub-

sequently “discover” the field. The translational invariance of Minkowski spacetime entails

the existence of the spacetime Fourier transform f∧(p) =
∫
d4y e−ipyf(y), such that the
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solutions of (12) in momentum space live on the upper and lower mass-shells

X±m := {p ∈ R4 | p2 = m2 , 0 ≶ p0} . (13)

Each mass-shell is an embedded submanifold of (R4, η), inheriting the hyperbolic metric from

the Minkowski metric η via pullback, and thereby the associated Lorentz invariant volume

form. Regarding the quantized Klein-Gordon theory as describing relativistic particles of

mass m, one applies the “physical” requirement that their energy be positive and hence de-

fines the one-particle Hilbert space as the space of square integrable functions on the positive

mass-shell, H = L2(X+
m), with Lorentz invariant inner product

〈f, g〉 =

∫
R3

d3p

(2π)3ωp
f(p)∗g(p) , ωp :=

√
p2 +m2 ∀ p ∈ R3 . (14)

Performing the inverse Fourier transform to position space, f∨(t, x) =
∫
R3

d3p
(2π)3ωp

e−iωpt+ipxf(p),

one readily sees that the position space representation ofH is the subspace S+ of the solution

space S of the Klein-Gordon equation (12) consisting of purely positive frequency solutions.

Moreover, when restricted to S+ the Klein-Gordon symplectic form ΩKG is actually an inner

product, specifically for f, g ∈ L2(X+
m)

〈f, g〉 =
i

2
ΩKG(f∨, g∨) :=

i

2

∫
t=0

d3x
[
f∨∗∂tg

∨ − ∂tf∨∗g∨
]
. (15)

It is precisely this choice of subspace S+ of the (complexified) solution space S of the Klein-

Gordon equation, on which ΩKG restricts to an inner product, that entails the non-uniqueness

of the vacuum on generic spacetimes [99], a point to which we return in a moment. The

standard QFT construction is then completed by defining the multiparticle Bosonic Fock

space F := C⊕H⊕H�2 ⊕ . . . as the direct sum of symmetric tensor products3, with the

Fock vacuum |0〉 = (1, 0, 0, . . .) in direct sum notation. Next, one introduces the creation

and annihilation operator (-valued distributions) a(p)∗, a(p) such that

[a(p), a(p′)∗] = (2π)3δ(3)(p− p′) , a(p)|0〉 = 0 ∀ p, (16)

3The closure being taken with respect to the inner-product induced by that on H.
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and subsequently the field operator

ϕ̂(t, x) =

∫
d3p

(2π)3

{e−iωpt+ipx√
2ωp

a(p) +
eiωpt−ipx√

2ωp
a(p)∗

}
. (17)

Being a linear combination of both creation and annihilation operators it is readily verified

that

[ϕ̂(t, x), ϕ̂(t′, x′)] = i∆(t, x; t′, x′) (18)

where ∆ is the Pauli-Jordan function. The vanishing of ∆(y, y′) for spacelike separated

coordinates thus entails the desired commutativity of field operators for spacelike separation.

Furthermore, this construction yields the standard unitary representation of the Poincaré

group for scalar fields, and the usual development of canonical perturbative QFT via normal

ordering and Wick products follows straightforwardly from this point.

While the above construction apparently makes heavy use of the spacetime Fourier trans-

form and associated particle interpretation (neither of which is generally available in curved

spacetime) these are not strictly necessary for quantization of the linear theory as stressed

by Wald [99]. From this perspective, the essential “physical” input is the identification of a

subspace S ′ of the (complexified) solution space S of the Klein-Gordon equation (12) such

that the symplectic form ΩKG restricted to S ′ is a positive-definite inner product. This

subspace S ′ together with the inner product then serves as the one-particle Hilbert space

underlying the Fock space construction and definition of the field operators. Thus, the choice

of S ′ is equivalent to the choice of vacuum state |0〉. On Minkowski spacetime, or indeed any

stationary spacetimes admitting a global timelike Killing vector field, the canonical identifi-

cation of S ′ as the subspace of positive frequency solutions yields the standard construction

[3, 59]. For the Friedmann-Lemâıtre spacetimes that are the focus of this thesis, such an

identification is not generically possible, rendering the choice of vacuum state inherently

ambiguous.

In order to disentangle the algebraic properties of the field operators from the specifics of a

Hilbert space representation (which are generically not unitarily equivalent due to the failure

of the Stone-von Neumann theorem in the infinite dimensional setting), modern formulations

of QFT on curved backgrounds take the algebraic approach [61]. Briefly, on a globally
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hyperbolic manifold (M, g), the Cauchy problem for the Klein-Gordon equation is well-

posed, hence so is the phase-space formulation. Canonical quantization allows a transition

to the algebra of observables A(M) generated by smeared field operators ϕ(f), f ∈ C∞c (M).

The quantization procedure of replacing Poisson brackets with commutators, {·, ·} 7→ i[·, ·]

then yields the commutation relation

[ϕ(f), ϕ(g)] = i∆(f, g) , (19)

where ∆ is the commutator function, determined entirely by classical data.

A vacuum-representation of the field algebra A(M) on a Hilbert space arises through the

selection of a “homogeneous pure quasi-free” state ω, which is a positive linear functional

over the field algebra A(M), followed by the Gelfand-Naimark-Segal (GNS) construction.

Here “pure” means that ω cannot be written as a convex combination of other states, while

“quasi-free” entails that all odd n-point functions vanish while the even n-point functions

can be expressed in terms of the two-point function W (y, y′) via Wick’s theorem. The GNS

construction selects a unique cyclic element Ωω in the reconstructed state space Fω such

that the n-point functions are realized as expectation values of (the GNS reconstructed)

field operators, e.g. W (y, y′) = (Ωω, ϕ(y)ϕ(y′)Ωω). Specializing to a 1 + d dimensional

spatially flat Friedmann-Lemâıtre spacetime for concreteness, the GNS vector Ωω turns out

to correspond to a Fock vacuum |0ω〉, annihilated by annihilation operators defined by a

mode expansion of the Heisenberg field operator

ϕ(t, x) =

∫
ddp

(2π)d
[
Tp(t)aT (p)eipx + Tp(t)

∗a∗T (p)e−ipx
]
,[

aT (p), a∗T (p′)] = (2π)dδ(p− p′) , aT (p)|0ω〉 = 0 , (20)

where Tp(t) is a Wronskian normalized complex solution of the spatially Fourier transformed

Klein-Gordon equation (12). Then the two-point function may be realized as

W (t, x; t′, x′) = 〈0ω|ϕ(t, x)ϕ(t′, x′)|0ω〉 =

∫
dp

(2π)d
Tp(t)Tp(t

′)∗ eip(x−x
′) . (21)

One sees that modulo phase choices a “homogeneous pure quasifree” state is characterized

by a choice of Wronskian normalized solution Tp(t) of the wave equation or, equivalently,
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by a choice of Fock vacuum |0ω〉 via (20), making manifest the ambiguity in state choice.

Due to this equivalence we shall refer to the Fock vacuum as |0T 〉 in Chapter 5 to explicitly

denote the dependence on Tp(t).

However, not all states ω are physically admissible as one wishes to define quadratic and

higher powers of the field operators in order to e.g. study the stress-energy tensor or develop

perturbation theory. As usual, the naive definition of objects like “ϕ(x)2” is obstructed by

the distributional nature of ϕ(x) and the associated short distance singularities. A gen-

eral consensus is that the free state ω on which perturbation theory is based should be a

Hadamard state, with the Hadamard property being by-and-large necessary and sufficient

for the existence of Wick powers of arbitrary order and hence for the perturbative series

to be termwise well-defined at any order, see [61, 36] for recent accounts. Physically, the

Hadamard property can be interpreted as an instance of the equivalence principle, i.e. at

small geodesic separation the singularity structure of a two-point function W (y, y′) should

be akin to that in Minkowski spacetime. The original rigorous formulation of the Hadamard

condition given by Kay and Wald [60] states that for sufficiently close spacetime coordinates

y, y′ (specifically lying in a convex normal neighborhood) the two-point function W matches

the Hadamard parametrix Hε,d up to a symmetric smooth part W̃ . Specifically,

W (y, y′) = Nd[Hε,d(y, y
′) + W̃ (y, y′)] , Nd =

Γ(d−1
2

)

2(2π)(d+1)/2
,

Hε,d(y, y
′) =


U(y, y′)

σε(y, y′)
d−1

2

+ V (y, y′) lnµ2σε(y, y
′) d odd

U(y, y′)

σε(y, y′)
d−1

2

d even

,

σε(y, y
′) := σ(y, y′) + iε[t(y)− t(y′)] +O(ε2) , (22)

for small ε > 0, with µ > 0 a mass parameter making the argument of the logarithm dimen-

sionless. The Synge function σ(y, y′) is defined as one half of the square of the geodesic dis-

tance between the points with coordinates y, y′. Further, U and V are smooth symmetric lo-

cal biscalar functions, determined entirely by the local geometry, and may hence be regarded

as “universal”, while the smooth piece W̃ encodes the ambiguity of state selection. The bi-
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scalars U and V are generally not exactly computable, but may be accessed through a double

power series in σε and its gradients, see e.g. [27]. In Friedmann-Lemâıtre spacetimes a far

simpler characterization of the Hadamard property is available through the Gelfand-Dickey

expansion presented in Section 5.4. Finally, although the formulation of the Hadamard

condition in (22) explicitly captures the short distance similarity to Minkowski spacetime, it

does not lend itself to analytic techniques. Thus contemporary formulations of the Hadamard

condition use the equivalent microlocal definition given by Radzikowski [87] in terms of the

wavefront set of the two-point function. We shall review this definition and the associated

microlocal notions in Section 5.6.

On the other hand, Hadamard states are surprisingly difficult to construct concretely

[24, 56, 17] even for background spacetimes with some degree of symmetry (other than

maximal). The well-known adiabatic iteration [81] has certain characteristics necessary for

the Hadamard property built in, but is not convergent and cannot be fruitfully extended

to small spatial momenta. The iteration can, however, serve as a conduit to establish the

existence of states locally indistinguishable from Hadamard states [56]. On Friedmann-

Lemâıtre spacetimes, a construction of exact Hadamard states has become available only

relatively recently [80]. These “States of Low Energy” (SLE) arise by minimizing the Hamil-

tonian’s expectation value after averaging with a temporal window function f . The temporal

averaging is crucial and avoids the pathologies [41] of the earlier instantaneous diagonaliza-

tion procedure. In Chapter 5 we prove that the SLE have a number of bonus properties

that make them mathematically even more appealing and which also render them good can-

didates for vacuum-like states in a pre-inflationary period. Specifically, we show that for a

given temporal averaging function f :

(a) The SLE two-point function W [S] based on a fiducial solution S of the spatially Fourier

transformed Klein-Gordon equation (193) is a Bogoliubov invariant, W [aS + bS∗] =

W [S], with a, b ∈ C , |a|2−|b|2 = 1. Hence W [S] is independent of the choice of fiducial

solution S.

(b) The minimization over Bogoliubov parameters relative to a given S can be replaced by a

minimization over initial data, without reference to any fiducial solution. The resulting

expression for the SLE solution T [∆] is fully determined by the (Bogoliubov invariant
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and state independent) commutator function ∆, making manifest the uniqueness of the

SLE. The minimization over initial data has a natural interpretation in the Schrödinger

picture.

(c) The SLE solution admits a convergent series expansion in powers of the (modulus of

the) spatial momentum, both for massive and for massless theories.

(d) In the massless case the leading infrared behavior is Minkowski-like for all cosmological

scale factors. This provides a new cure for the long standing infrared divergences in

Friedmann-Lemâıtre backgrounds with accelerated expansion [37].

(e) The modulus square of an SLE solution admits an asymptotic expansion in inverse odd

powers of the (modulus of the) spatial momentum, which is independent of the window

function f . The coefficients of the expansion are local, recursively computable, and

generalize the heat kernel coefficients. The asymptotics of the phase is governed by

single integrals of the same coefficients. This short cuts the detour via the adiabatic

expansion.

Finally, while the energy minimization property of the SLE is physically appealing, we show

that on a mathematical level the key aspect of the construction is not the minimization

but rather the temporal averaging in Section 5.6. Specifically we construct a one parameter

deformation of the SLE, dubbed “Generalized States of Low Energy” (GSLE) and prove

that they are exact Hadamard states.

1.1.3 The hopping expansion

Lattice systems are ubiquitous in statistical physics, and also provide a regularization

framework for (Euclidean) quantum field theories. We consider a bosonic theory defined on a

D-dimensional hypercubic lattice Λ with spacing a, whose complete (statistical) information

is encoded in the partition function

Z[J ] :=

∫ ∏
x∈Λ

dϕx e
−S[ϕ]+ϕ·J . (23)

and its related functionals. However, an exact evaluation of (23) is feasible only in extremely

special circumstances, necessitating the use of approximation schemes, such as series (or
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perturbative) expansions around an exactly soluble situation, to glean the properties of

the system. There are typically two limiting theories associated with (23) where an exact

computation of Z[J ]/Z[0] is feasible. The first is the familiar Gaussian theory where S[ϕ]

is a quadratic functional of ϕ; perturbation theory about this limit is a powerful tool, but

with the drawback that this expansion is only asymptotic (with zero radius of convergence).

The lattice formulation, however, allows for another exactly soluble limit – the single site

theory. This arises from expressing (23) schematically as

Z[J ] =

∫ ∏
x∈Λ

dϕx exp
{
− Ssingle

site
[ϕ]− Slinking[ϕ]

}
=

∫ ∏
x∈Λ

dµ(ϕx) e
−Slinking[ϕ] , (24)

where the single-site term consists only of terms living at a single lattice point x, while the

linking term consists of terms linking (potentially) distinct lattice points. The single site

theory (with no linking) can be computed exactly as a product of ordinary integrals

Zsingle
site

[J ] =

∫ ∏
x∈Λ

dµ(ϕx) =

[ ∫
dµ(ϕ)

]|Λ|
, (25)

and perturbation theory in the “number of neighbor links” can be developed about this lim-

iting case. When computing lnZ, the expansion can be efficiently represented as a sum over

connected graphs, hence the name “linked cluster expansion” (LCE). Alternatively the ex-

pansion is known as the “high temperature expansion” from the Ising model, or the “hopping

expansion” (so called because the excitations seemingly “hop” between lattice sites).

For illustrative purposes, we shall focus on a particular model, namely scalar ϕ4-theory

on a D-dimensional hypercubic lattice Λ = (aZ)D, with action

S[ϕ0] =
∑
x∈Λ

aD
{
− 1

2
ϕ0∇2ϕ0 + 1

2
m2

0ϕ
2
0 + 1

4!
g0ϕ

4
0

}
. (26)

Here ϕ0 is the dimensionful bare field, and ∇2 is the lattice Laplacian, which may be

expressed terms of the hopping matrix ` (which links only nearest neighbors) as −∇2 =

2Da−21 − 2a−2`. As usual, in order to set up the hopping expansion proper one rewrites

(26) in terms of dimensionless variables, viz

S[ϕ] =
∑
x

s(ϕx)−
κ

2

∑
x,y

ϕx`xyϕy ,
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s(ϕ) = ϕ2 + λ(ϕ2 − 1)2 − λ , `xy =
∑
i

(δx,y+aêi + δx,y−aêi) , (27)

g0

aD−4
=

24λ

κ2
, a2m2

0 =
2

κ
(1−2λ)− 2D , a

D−2
2 ϕ0(x) =

√
κϕx .

The partition function Zκ[J ] then depends parametrically on κ, λ and is exactly computable

via (25) for κ = 0. The hopping expansion is an expansion in powers of κ. Both the

generating functional of connected correlation functions Wκ[J ], or its Legendre transform

Γκ[φ], can in principle be expanded to any desired order in κ. As detailed in Chapters 2 and

3, these functionals satisfy κ-flow equations which can be used to recursively compute the

hopping expansion. Direct iteration of these recursions is however unwieldy, but they can be

solved using graph theoretic methods; the graph rules for Wκ are presented in [105], while

those for Γκ are proven in Chapter 3.

Among the quantities computable via the hopping expansion are the generalized suscep-

tibilities

χ2 :=
∑
x∈Λ

〈ϕxϕ0〉c , µ2 :=
∑
x∈Λ

x2〈ϕxϕ0〉c , x2 =
∑
i

x2
i ,

χ4 :=
∑

x,y,z∈Λ

〈ϕxϕyϕzϕ0〉c , (28)

where as usual

〈ϕx1 . . . ϕxn〉c :=
δnW [J ]

δJx1 . . . Jxn

∣∣∣∣
J=0

. (29)

The κ series for χ2, µ2, χ4 can be shown to be convergent on a finite lattice and to have finite

radius of convergence κ < κc in the ϕ 7→ −ϕ symmetric phase even for infinite lattice volume.

In the latter case the pole in the expansion lies on the positive real axis [73], indicating a

physical singularity or phase transition. This second order phase transition is characterized

by a diverging correlation length ξ, wherein the continuum limit of the lattice QFT may be

defined.

The radius of convergence is typically determined from the χ2 series via the ratio criterion:

κc = limn→∞ |χ2,n/χ2,n+1| where χ2 =
∑

n≥0 κ
nχ2,n. On the other hand from the scaling
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hypothesis one has χ2 ∝ (1− κ/κc)−γ, for κ→ κ−c . From its Taylor expansion one finds

χ2,n

χ2,n−1

=
1

κc

(
1 +

γ − 1

n
+ o(n−1)

)
, for n→∞ . (30)

In principle κc and γ can be determined from a fit of the ratios once the κ-series for χ2 has

been computed to sufficiently large order. Technically it is advantageous to express χ2, µ2 in

terms of a 1-particle irreducible χ1PI
2 , see [73]. The renormalized mass mR in lattice units,

the wavefunction renormalization constant ZR, and the renormalized coupling gR can be

expressed in terms of the above susceptibilities

m2
R = 2D

χ2

µ2

, ZR = χ2m
2
R , gR = 4D2 χ4

µ2
2

. (31)

We omit the derivation and merely note the defining relations in terms of the moments of the

effective action Γ in momentum space: Γ(2)(p,−p) = −Z−1
R [m2

R + p2 +O(p4)] defines ZR,mR

as p = (p0 = 0, ~p), with ~p → 0. Similarly Γ(4)(0, 0, 0, 0) = −gR/Z2
R defines gR. Finally,

the correlation length ξ is defined as 1/mR and equals the inverse pole mass 1/mP up to

higher orders in mP . By definition ξ diverges with the exponent ν at a second order phase

transition so that

ξ2 =
1

m2
R

∝
(

1− κ

κc

)−2ν

, κ→ κ−c . (32)

In a quantum field theory context, the hopping expansion was famously employed by Lüscher-

Weisz in their (de-facto quantitative) proof of the triviality of Euclidean lattice ϕ4
4-theory

[69], where the critical parameters of the theory (λ, κc) were computed by pushing the hop-

ping expansion to high orders. Moreover, the hopping series was used for κ = 0.95κc to

compute m2
R, gR, and these were subsequently evolved to the continuum limit under the

Callan-Symanzik equation. It should be noted, however, that the determination of κc and

the critical exponents from the radius of convergence of the hopping expansion requires con-

siderable effort: the classification of graphs, the computer generation of billions of them,

as well as estimates on the extrapolation of the expansion to infinite order. In Chapter

4 we present an alternative (and significantly simpler) computation of the critical lines of

Euclidean φ4
3- and φ4

4-theory using the Local Potential Ansatz (LPA) truncation of the Func-

tional Renormalization Group.
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Finally, we end this short review of the hopping expansion by noting that the Anti-

Newtonian expansion introduced in Chapter 2 amounts to a spatial variant of a LCE. The

evaluation of some correlation function is reduced to a combinatorial and a QM problem.

While the adaptation to a functional setting and the Friedmann-Lemâıtre spacetimes is not

immediate, the functional analytical raison d’être of the benign convergence properties of

(spatial) hopping expansion clearly remains valid: the perturbation (quadratic in the field)

is Kato bounded [58, 92] by the unperturbed Hamiltonian (more than quadratic in the field).

Irrespective of technical details one may reasonably expect the spatial LCE to have improved

convergence properties compared to perturbation theory.

1.1.4 The Functional Renormalization Group

The Functional Renormalization Group (FRG) is a widely used reformulation of quantum

field theory in the spirit of the Wilsonian Renormalization Group. Favored for its ability

to go beyond the weak-coupling expansions of standard perturbation theory, it has found

application in areas diverse as solid-state physics, particle physics, and quantum gravity. The

central objects of study in the FRG are one-parameter families of QFT functionals, whose

behavior is captured in the form of integro-differential flow equations. Thus, the usual QFT

problem of evaluating the functional integral for some bare action (33) is replaced with

integrating these flow equations. For a systematic exposition of the details of this technique

and its applications we refer to [63, 104, 82, 30, 74, 102], focussing here instead on a schematic

overview of the FRG as it pertains to the problems addressed in this thesis.

In order to construct the FRG equations and explicate the relevant issues, we focus on a

single scalar field χ on a D dimensional Riemannian manifold (M, g). One begins with the

source-dependent partition function ZΛ[J ] (or generating functional WΛ[J ] = lnZΛ[J ])

ZΛ[J ] ≡ eWΛ[J ] :=

∫
DχΛe

−SΛ[χ]+J ·χ , (33)

with momentum cutoff Λ as a UV regularization, and “·” denoting integration with respect

to the Riemannian volume form
∫
M
√
g. In the Wilsonian renormalization group proper

[83] the functional integral is performed piecemeal, integrating out fast-modes and retaining
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slow-modes (typically distinguished by the spectral value of the manifold Laplacian ∇2),

while keeping the low energy physics unchanged. This “coarse graining” operation generates

a flow in the Wilsonian actions SbΛ with b ∈ (0, 1), which are in general structurally different

from the original SΛ.

In the FRG formulation, on the other hand, the entire functional integral is performed

“at once”, but now explicitly equipped with a further infrared (IR) regularization in the

form of a low-momentum cutoff depending a scale k that is introduced by replacing the

bare action SΛ in (33) by Sk,Λ := SΛ + ∆Sk, with ∆Sk[χ] := χ · Rk(−∇2) · χ. In terms of

a spectral representation, the regulator kernel Rk(p
2) = k2r( p

2

k2 ) is required to satisfy the

following general properties (see Appendix E of [89])

Reg (i) Rk(p
2)→ 0 for k → 0, ensuring that the k → 0 limit of the various functionals

coincide with their usual definitions.

Reg (ii) Rk(p
2) ∼ k2 for p2 . k2, giving an effective O(k2) mass to the slow-modes.

Reg (iii) Rk(p
2) approaches zero sufficiently fast for p2 � k2, thereby leaving the fast-

modes to be integrated out in the functional integral without a suppression

factor.

The generic form of the regulator function Rk and its derivative k∂kRk, appearing in the

flow equations (35), (36), is depicted in Figure 3. Moreover, the quadratic nature of ∆Sk

leads to the appealing one-loop structure of the flow equations (35), (36).

The generating functional Wk,Λ[J ] and Legendre effective action Γk,Λ[φ] now carry both

IR and UV cutoffs in their definitions,

eWk,Λ[J ] :=

∫
DχΛe

−SΛ[χ]−∆Sk[χ]+J ·χ ,

Γk,Λ[φ] := Jk,Λ[φ] · φ−Wk,Λ

∣∣
J=Jk,Λ[φ]

−∆Sk[φ] ,
δWk

δJ

∣∣∣
J=Jk,Λ[φ]

!
= φ , (34)

and the associated flow equations, respectively the Polchinski and Wetterich equations, are

obtained by differentiating (34) with respect to k,

k∂kWk,Λ[J ] = −1
2
Tr
{
k∂kRk

[
δWk,Λ

δJ

δWk,Λ

δJ
+

δ2Wk,Λ

δJδJ

]}
, (35)

k∂kΓk,Λ[φ] = 1
2
Tr
{
k∂kRk ·Gk,Λ[φ]

}
, [Γ

(2)
k,Λ[φ] +Rk] ·Gk,Λ[φ]

!
= 1 . (36)
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Figure 3: Shape of generic regulator function Rk and its derivative k∂kRk.

Importantly, both flow equations require specification of a boundary functional at some

suitable k scale.

Modern applications focus on the flow of the Legendre effective action Γk,Λ, which has

proven to be more robust in combination with truncation Ansätze. Further the boundary

functional at k = Λ can by-and-large be identified with a bare Wilsonian action SΛ. Heuris-

tically, this can be seen from the fact that for large k = Λ the regulator adds a O(Λ2) mass

term to the action, which leaves the integrand of the functional integral sharply peaked

about the mean field φ. In a saddle-point evaluation, this yields SΛ up to a doubly regu-

larized trace-log term 1
2
(Tr log)Λ,k[S

(2) +Rk]. On the other hand, the regularized functional

integral is meant to integrate momentum modes between the IR cutoff k and UV cutoff Λ.

Thus, upon taking k = Λ, the doubly regularized trace-log term vanishes. In summary, Γk,Λ

interpolates between the bare action and the full effective action ΓΛ according to

SΛ
k→Λ←−−− Γk,Λ

k→0−−→ ΓΛ . (37)

Importantly, (36) is purely kinematical in nature, with the dependence on the bare action SΛ

entering only through the initial condition ΓΛ,Λ = SΛ (at large Λ). We note, however, that

the flow of Γk,Λ itself is typically not studied in the literature [63, 104, 82, 30, 74, 102, 89] as

21



therein the Λ→∞ limit is implicitly taken to yield the flow equation for Γk := limΛ→∞ Γk,Λ

k∂kΓk[φ] = 1
2
Tr
{
k∂kRk ·Gk[φ]

}
, [Γ

(2)
k [φ] +Rk] ·Gk[φ]

!
= 1 , (38)

with the claim that the RHS is well-defined without a UV regulator due to property Reg (iii)

of the regulator kernel. This seemingly benign transition contains an important subtlety that

is intimately tied to the issue of UV renormalizablity. Namely, Reg (iii) ensures that the

transition from (36) to (38) follows rigorously if Γ
(2)
k,Λ[φ] is independently known to have a finite

and non-trivial Λ→∞ limit. However, such a statement would require constructive control

over the quantum field theory, which remains beyond reach in four dimensions. Accordingly,

one has to be content with the following if. . .then statement (c.f. Appendix A.2 of [77])

If there exists a sequence of initial actions SnΛ0 [χ], n ∈ N, such that the solution ΓnΛ0,k[χ]

of (36) remains finite as n → ∞, then the limit Γk := limn→∞ ΓnΛ0,k obeys the UV-cutoff

independent (38).

Conversely, given this premise, (38) should have at least one solution with a finite limit

limk→∞ Γk[φ], which can be identified with the renormalized fixed point action since this

object is the inverse limit of coarse graining. Note that in relation to (37), the limit Λ→∞

needs to be taken at fixed k, and only afterwards can k be made large.

As outlined in the Introduction, this standard FRG technique hinges strongly on Eu-

clidean signature. On the other hand, for QFTs on an expanding Friedmann-Lemâıtre

spacetime, Lorentzian signature seems indispensable. Although Lorentzian signature FRGs

have been considered in Minkowski [94] and de Sitter [42] spacetimes, these constructions do

not carry over to generic Friedmann-Lemâıtre spacetimes. The route taken here is to replace

the covariant modulator by a merely spatial one throughRk(t, x; t′, x′) = δ(t, t′)Rk(t, x; t, x′),

while leaving the temporal dynamics unaffected. The Hessian Γ
(2)
k +Rk no longer possesses a

local elliptic principal part, rendering the construction of an inverse Gk[φ] in (36) non-trivial

and non-unique. The specialization to Friedmann-Lemâıtre spacetimes is detailed in Chapter

6. For spatially homogeneous mean-fields φ(t), the resulting flow equation reads

k∂kΓk[φ] = −i~
2

∫
dtddxNad

∫
ddp

(2π)d
k∂kRk(t, p)Gk[φ](t, p) . (39)
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Here N and a refer to the Friedmann-Lemâıtre line-element ds2 = −N(t)2dt2+a(t)2δijdx
idxj.

Further, by slight abuse of notation, Gk[φ](t, p) in (39) is the temporal coincidence limit of

the spatially Fourier transformed Green function in (36). For brevity we shall refer to (39)

as the FLFRG. It still requires specification of a boundary functional in the UV. Guided by

(37) we shall take the one-loop corrected bare action on the Friedmann-Lemâıtre background

as the UV boundary functional. The counterterms are obtained from studying the associated

one-loop effective action, which we show in Section 6.2 indeed has a finite Λ→∞ limit. This

holds in a Wilsonian sense for a general (even) pure scalar potential U(φ), that however,

necessitates the inclusion of an infinite tower of couplings to the Ricci scalar R. The one-loop

renormalization of this system is analyzed in detail, with the notable feature that the spatial

averaging induces an additional running of the Newton constant. With these boundary

conditions specified, the flow (39) can be studied through suitable truncation Ansätze.

This requires some degree of analytic control over Gk[φ] as a functional of φ for not

necessarily large k. Of course, the Gk[φ](t, p) cannot be computed in closed form even for

a conceptually given Hessian. The spatial hopping expansion in Chapter 2 circumnavigates

this problem. The other route is to use a simple truncation Ansatz (known as the Local

Potential Ansatz, or LPA) wherein Γk is taken to be of the same form as the bare action,

with k-dependent coupling functions whose flow is studied. The computation of Gk[φ] for

large k can be based on the general aforementioned one-loop computation. The extension to

small k is non-trivial for several reasons: It is here where the state dependence enters, and a

suitable Hadamard state needs to be constructed in the first place, see Figure 2. Even once

this is in place, analytical control over the φ dependence is technically challenging.
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2.0 The Anti-Newtonian Expansion

2.1 Introduction

Inflationary cosmology maintains validity of the classical Friedmann-Lemâıtre (FL) equa-

tions of general relativity for all stages of the cosmological evolution following the brief

quantum gravity epoch after the Big Bang, but sacrifices the strong energy condition. This

allows one to successfully address several puzzles of standard FL cosmology, but introduces

others in return: (i) based on the FL equations the inflationary period must be prefaced by

a period of non-accelerated expansion immediately following the Big Bang, where kinetic

rather than potential energy dominates. This can be seen in several complementary ways:

the inflationary period is geodesically incomplete and postulating (necessarily fine-tuned)

data at its beginning begs the question as to their origin. For single field inflation with only

minor constraints on the potential the structure of the FL equations themselves enforces a

stiff-fluid behavior near the Big Bang [38]. This fits within the broad class of inhomogeneous

quiescent cosmologies [2, 49]. (ii) Quantum aspects are usually incorporated on the level of

free fields on a classical FL background. The free fields arise from the quadratic part of the

inflaton coupled Einstein-Hilbert action and factorize into the well-known scalar, vector, and

tensor fluctuations. As far as the inflaton is concerned, a quadratic potential is disfavored by

PLANCK data. For non-quadratic potentials the expansion around a FL background will

produce a self-interacting scalar field theory with potential

U(ϕ+ χ) = U(ϕ) + U ′(ϕ)χ+
∑
n≥2

1

n!
U (n)(ϕ)χn . (40)

The leading term is part of the FL background dynamics, the linear term cancels on account

of the FL equations, all others remain. Beyond quadratic order in the fluctuations one is usu-

ally limited to perturbation theory. In addition to perturbation theory’s intrinsic limitations

it is also physically less suited in a cosmological context where the spatial inhomogeneities

on different scales are of primary interest, while the nature of the (inflaton) potential is sec-

ondary and inferred. On a conceptual level, this together with the subdominance of spatial
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gradients in the approach to the Big Bang in the BKL scenario [12, 13], suggests a spatial

gradient expansion for QFTs on Friedmann-Lemâıtre backgrounds. Since continuum gradi-

ent expansions are technically problematic, a lattice version of a spatial gradient expansion

(spatial hopping expansion) will be developed here. Compared to standard quantum field

theoretical techniques it has the following advantages:

(i) The cosmological time can be kept continuous and real; this avoids notorious issues with

Wick rotation (which is not well-defined on generic Friedmann-Lemâıtre backgrounds,

see [6]) and temporal discretization.

(ii) In this spatially discretized setting, the scalar QFT under consideration reduces to

two decoupled problems: (I) a combinatorial problem (the implementation of the spa-

tial hopping expansion), and (II) a quantum mechanical problem (the self-interacting

‘cosmological Quantum Mechanics’), which seeds the spatial hopping expansion.

Due to this decoupling, however, the specification of a potential (77) can be postponed,

as can be the solution for the lowest order input data.

In this chapter we present the graph theoretical techniques for the solution of the above

combinatorial problem in a cosmological setting. Indeed, much of technology carries over

from the covariant Euclidean signature, presented in Chapter 3, with physically significant

but technically easily traceable modifications. The solution of the explicitly time dependent

‘cosmological Quantum Mechanics’ is beyond the scope of this thesis. Importantly, however,

arbitrary polynomial self-interactions may be included without immediately having to worry

about (non-)renormalizeability. Moreover, backpropagated close to the Big Bang the quan-

tum mechanical correlation functions are expected to simplify. At later times a variety of

perturbative and non-perturbative techniques are available for quantum mechanical systems

with time-dependent Hamiltonians, which should render (II) above more tractable than the

full QFT.
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2.2 Scalar field action and its hopping decomposition

Consider the action of a self-interacting scalar field theory on a spatially flat Friedmann-

Lemâıtre background with line element ds2 = −N(t)2dt2 + a(t)2δijdx
idxj (in shift Na ≡ 0

gauge),

S[ϕ] = −
∫
dDy
√
−g
{1

2
gµν∂µϕ∂νϕ+ ξ(ϕ)R(g) + U(ϕ)

}
=

∫ tf

ti

dt

∫
Σ

dx
{ 1

2n(t)
(∂tϕ)2 − n(t)a(t)2d[U(ϕ) + ξ(ϕ)R(gFL)]

− 1

2
n(t)a(t)2d−2δij∂iϕ∂jϕ

}
, (41)

where ξ and U are real analytic potentials, and n = Na−d is the lapse anti-density. In the

second line, R(gFL) is the Ricci scalar of the Friedmann-Lemâıtre line element,

R(gFL) = 2d
(N−1∂t)

2a

a
+ d(d− 1)

(N−1∂ta)2

a2
. (42)

The form of the line element is preserved under Diff[ti, tf ]× ISO(d) transformations, where

the rotation group acts as global Diff(Σ) transformations connected to the identity. Un-

der temporal reparameterizations a(t) and ϕ(t, x) transform as scalars, while N(t) and

n(t) are temporal densities, n′(t′) = n(t)/|∂t′/∂t| etc. This is such that
∫ tf
ti
dtN(t)a(t)p =∫ tf

ti
dt n(t)a(t)p+d is invariant for any p. Finally, we remark that according to the standard

“QFT on curved backgrounds” viewpoint, the geometry is treated as external, i.e. n(t)

and a(t) are freely prescribed functions that are not required to satisfy any field equations.

Alternatively, one may study “classically consistent cosmologies” wherein the spatially ho-

mogeneous part of ϕ is expected to act as a matter source that affects the geometry through

the Einstein equations.

Suitably interpreted the second and third lines in the Friedmann-Lemâıtre action (41)

carry different weights under a spatial scale transformation. To elucidate this, we view (41)

as the matter part of a gravity-matter action, where the former comes with an overall inverse

power of Newton’s constant κG. This motivates the following redefinition

ϕ̄ =
√
κGϕ , U(ϕ) =

1

κG
Ū(ϕ̄) , (43)
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where ϕ̄ is dimensionless and Ū(ϕ̄) has length dimension -2. When expressed in terms of

ϕ̄, Ū(ϕ̄) the matter action (41) carries an overall 1/κG pre-factor. In this form, consider the

following scale transformation

κG 7→ λdκG , a(t) 7→ λa(t) , ϕ̄ 7→ ϕ̄ , N 7→ N , (44)

for some λ > 0. It may be verified that this leaves the (reinterpretted) second line of (41)

unchanged, while the third line gains an additional factor of λ−2. On the otherhand, at the

level of the line element ds2 = −N(t)2dt2 + a(t)2δijdx
idxj the scale transformation enhances

spacelike distances compared to timeline ones. This makes it harder to travel from one

world-line to a neighboring world-line, equivalently the light cones appear to be squeezed

for large λ. This is opposite to the familiar “post-Newtonian” scaling where the light cones

are flattened to almost hypersurfaces of equal absolute time (i.e. the speed of light going

to infinity). An expansion in powers of λ−2 can therefore be seen as an Anti-Newtonian

expansion. Without referring to the scale transformation, the same rationale holds true for

an expansion in powers of the spatial gradient term −1
2
n(t)a(t)2d−2δij∂iϕ∂jϕ in (41).

As mentioned above, continuum gradient expansions are technically problematic, hence

we proceed with a lattice version thereof. The implementation of a spatial hopping ex-

pansion proceeds as follows. In a first step we discretize the flat spatial sections Σ into a

hypercubical lattice (asZ)d with spacing as. The discretization of the spatial gradient term

is straightforward as the coefficient of δij∂iϕ∂jϕ in (41) is only time dependent, so upon

discretization,

δij∂iϕ∂jϕ 7→
2d

a2
s

ϕ2 − 1

a2
s

ϕ(`sϕ), (45)

where the spatial hopping matrix `sxy acts by matrix multiplication on the discretized fields

ϕ(t, x) for fixed t. To make contact to the Functional Renormalization Group flow equations,

we replace the nearest neighbor `s by a generic, potentially long ranged, hopping matrix

`xy ∈ N0 for dist(x, y) > 0 , `xx = 0 . (46)

For bookkeeping purposes we also multiply `xy by a pseudo-hopping parameter κ̌ (‘pseudo’,

because the hopping parameter proper normally refers to a dimensionless reformulation of
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Euclidean φ4
4 theory). The discretized counterpart of (41) then reads

S[ϕ] =
∑
x∈Σ

ads

∫ tf

ti

dt
{ 1

2n
(∂tϕ)2 − 1

2
na2d−2 2d

a2
s

ϕ2 − na2d[U(ϕ) + ξ(ϕ)R(g)]
}

(t, x)

+
1

2
κ̌

∫ t2

t1

dt
∑
x∈Σ

ad−2
s n(t)a(t)2d−2ϕ(t, x)(`ϕ)(t, x) . (47)

Structurally, this is of the form

S[ϕ] =
∑
x∈Σ

s[ad/2s ϕ(·, x)] + κ̌V [ϕ], (48)

for some 1+0 dimensional action s[ϑ] invoking fields a single spatial site only,

s[ϑ] :=

∫ t2

t1

dt
{ 1

2n
(∂tϑ)2 − 1

2
na2d−2 2d

a2
s

ϑ2 − na2d[U(ϑ) + ξ(ϑ)R(g)]
}
, (49)

and a hopping term V [ϕ] that connects different sites

V [ϕ] :=
ad−2
s

2

∫ tf

ti

dt n(t)a(t)2d−2
∑
x1,x2

ϕ(t, x1)`x1x2ϕ(t, x2) . (50)

The single site function s[ϑ], ϑ = ϑ(t), can be viewed as the action of a quantum mechanical

system. The decomposition (46) is the starting point for an Anti-Newtonian expansion: the

expansion of a QFT around spatially decoupled (but in general self-interacting) quantum

mechanical systems.

2.2.1 Generating functionals

We introduce two different generating functionals for the QFT with action (47) : the free

energy W [J ] generating connected correlation functions, and the Legendre effective action

Γ[φ] generating one-particle irreducible correlation functions. Each reduces for κ̌ = 0 to sums

of decoupled quantum mechanical generating functionals, denoted by ω[], γ[ϕ], respectively.

Although the quantum mechanical quantities may be accessed through means other than a

path integral, to introduce the relevant concepts it is nevertheless convenient to refer to an

underlying path measure, formally written as dµ(ϑ) = Dϑ exp i
~s[ϑ]. Copies of this quantum

mechanical measure occur for each spatial lattice point and we write µx(ϕ) = dµ(a
d/2
s ϕ(·, x)),
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x ∈ (asZ)d. In terms of this we represent the free energy functional as

e−
i
~W [J ] =

∫ ∏
x∈Σ

{
dµx(ϕ)e−

i
~a
d
s

∫
dtn(t)a(t)2dϕ(t,x)J(t,x)

}
e
i
~ κ̌V[ϕ] , (51)

where the parameter κ̌ has been introduced to count powers of the hopping matrix `. The

induced κ̌ dependence is normally not indicated explicitly; occasionally we write Wκ̌[J ] for

W [J ], and similarly for other functionals. Note that J(t, x) must transform for each x as a

temporal scalar.

Without a hopping term, i.e. for κ̌ = 0, the functional integrals (51) factorize

W0[J ] =
∑
x∈Σ

ω
[
ad/2s J(·, x)

]
, e−

i
~ω[] =

∫
dµ(ϑ) exp

{
− i

~

∫ tf

ti

dt n(t)a(t)2dϑ(t)(t)
}
. (52)

By definition the moments of ω[] are the connected correlation functions of the associated

quantum mechanical system,

ω[] = ω[0] +
∑
n≥1

(i~)(n−1)

n!

∫
ds1 . . . dsn gcn(s1, . . . , sn) (s1) . . . (sn) . (53)

Normalizations for functional derivatives:

Since the flow equations and graph rules presented in the following section are expressed

in terms of functional derivatives of W and Γ, we fix normalizations here. A covariant source

coupling∫
dy
√
g(y)J(y)φ(y) =

∫
dtdxN

√
gJ(t, x)φ(t, x) =

∫
dt n(t)a(t)2d

∫
dx J(t, x)φ(t, x) (54)

in the continuum suggests to define

lim
ε→0

1

ε
(F [J + εH]− F [J ]) = ads

∑
x

∫
dt n(t)a(t)2dH(t, x)

δF [J ]

δJ(t, x)
=: H · δF

δJ
, (55)

where the measure contribution is taken out of the functional derivative. Often a con-

densed notation is convenient, where the “·” refers to a summation ads
∑

x and integration∫
dtn(t)a(t)2d that emulates generalized matrix multiplications and traces. The definition

(55) is such that for the source term in (51) it produces the unadorned ϕ(t, x) as its functional

derivative. Generally, δF/δJ(t, x) transforms as a temporal scalar and has length dimension

[δF/δJ ] = −(d+1)− [J ] = −(d−1)/2, for any dimensionless covariant functional F [J ]. As
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a mnemonic we note

δ

δJ(t, x)
=

1

adsn(t)a(t)2d

( δ

δJ(t, x)

)
naive

, (56)

and similarly (without the 1/ads) for δ/δ(t). The naive derivatives obey the finite dimensional

differentiation rules but are not covariantly defined. Defined as in (55) a ϑ(t) insertion into

the second equation of (52) results from i~δ/δ(t), while a ϕ(t, x) insertion into (51) is

produced by i~δ/δJ(t, x). We introduce the shorthand notation

a
md
2
s

δmW0[J ]

δJ(tm, x) . . . δJ(t1, x)
=

δmω[]

δ(tm) . . . δ(t1)

∣∣∣
(· ) 7→ad/2s J(· ,x)

=: ωm(tm, . . . , t1|x) . (57)

The ‘connected’, source dependent quantum mechanical correlators ωm are dimensionless

and transform for fixed x as temporal scalars, ω′m(t′m, . . . , t
′
1|x) = ωm(tm, . . . , t1|x), with

t′ = t′(t). While temporal translation invariance is of course lost on a generic Friedmann-

Lemâıtre background, one expects the ωm to decay rapidly for large relative ti’s and to have

at most integrable singularites when two coincide.

Next, we consider the Legendre effective action Γ[φ], i.e. the Legendre transform of W [J ].

For our purposes a slightly modified definition is useful:

Γ[φ] := φ · J [φ]−W [J [φ]]− κ̌V [φ] ,
δW

δJ

(
J [φ]

)
= φ , (58)

with a κ̌-independent mean field φ. The “·” refers to the condensed notation in (55), i.e. a

summation ads
∑

x and integration
∫
dtn(t)a(t)2d that emulates generalized matrix multipli-

cations and traces. The leading, κ̌ independent term, then is the above Γ0. Explicitly,

Γ0[φ] =
∑
x

γ[ad/2φ(·, x)] , γ[ϕ] = ϕ · [ϕ]− ω[[ϕ]],
δω

δ
([ϕ]) = ϕ . (59)

The effective action Γ[φ] codes the complete information about the QFT under consideration

but more efficiently than W [J ]. Its functional derivatives generate the “vertex functions”

linked to the moments of W [J ] by algebraic relations.
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2.3 Hopping flow equations, recursion relations, and graph rules

Being quadratic in the fields the hopping interaction V [ϕ] in (50) can be viewed as a

mode modulator akin to the ones externally introduced in the Functional Renormalization

Group (FRG) approach. The pseudo hopping parameter κ̌ merely modulates the amplitude

of the hopping term, but it can equally well serve as a control parameter. Differentiating

(51) with respect to κ̌ one finds

∂κ̌W [J ] = −a
d−2
s

2

∑
x,x′

`xx′

∫ tf

ti

dt n(t)a(t)2d−2

{
i~

δ2W [J ]

δJ(t, x)δJ(t, x′)
+

δW [J ]

δJ(t, x)

δW [J ]

δJ(t, x′)

}
. (60)

Here we used

δW [J ]

δJ(t, x)
= 〈ϕ(t, x)〉J ,

δ2W [J ]

δJ(t, x)δJ(t′, x′)
= 〈ϕ(t, x)ϕ(t′, x′)〉J , (61)

where 〈 · 〉J denotes normalized functional averages with the source extended measure from

(51). Anticipating that the temporal coincidence limits are unproblematic upon expansion,

one sees that (60) is invariant under temporal reparameterizations, precisely because the

correlators (61) are scalars. Inserting the power series ansatz

W [J ] = W0[J ] +
∑
l≥1

κ̌l

l!
Wl[J ] , (62)

converts (60) into the recursion

Wl+1[J ]=−a
d−2
s

2

∑
x,x′

`xx′

∫ tf

ti

dν(t)

{
i~

δ2Wl

δJ(t, x)δJ(t, x′)
+

l∑
m=0

(
l

m

)
δWm

δJ(t, x)

δWl−m

δJ(t, x′)

}
. (63)

Throughout, the reparameterization invariant temporal measure dν(t) = dtn(t)a(t)2d−2 will

occur. Clearly, the combinatorics of the recursion is the same as in flat space; the structure

of the terms generated as well as the numerical prefactors of the ωn’s. The only difference

is that the non-trivial temporal measure dν(t) replaces the translation invariant one dt. For

the first three orders one has explicitly

W1[J ] = −a−2
s

∫ tf

ti

dν(t)
∑
x1,x2

1

2
`x1x2 ω1(t|x1)ω1(t|x2) ,
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W2[J ] = a−4
s

∫ tf

ti

dν(t)dν(s)
{i~

2

∑
x1,x2

(`x1x2)2 ω2(t, s|x1)ω2(s, t|x2)

+
∑

x1,x2,x3

`x1x2`x2x3 ω1(t|x1)ω2(t, s|x2)ω1(s|x3)
}
,

W3[J ] = −a−6
s

∫ tf

ti

dν(t)dν(s)dν(s′)
{(i~)2

2

∑
x1,x2

(`x1x2)3 ω3(t, s, s′|x1)ω3(t, s, s′|x2)

+ 3i~
∑

x1,x2,x3

(`x1x2)2`x2x3 ω2(t, s|x1)ω3(t, s, s′|x2)ω1(s′|x3)

+ i~
∑

x1,x2,x3

`x1x2`x2x3`x3x1 ω2(t, s|x1)ω2(s, s′|x2)ω2(s′, t|x3)

+ 3
∑

x1,x2,x3,x4

`x1x2`x2x3`x3x4 ω1(s|x1)ω2(s, t|x2)ω2(t, s′|x3)ω1(s′|x4)

+
∑

x1,x2,x3,x4

`x1x2`x1x3`x1x4 ω3(t, s, s′|x1)ω1(t|x2)ω1(s|x3)ω1(s′|x4)
}
. (64)

At higher orders the recursive evaluation quickly becomes intractable. The recursion can

however be solved in graph theoretical terms and results in a modification of the graph rules

for the hopping expansion in flat Euclidean space [105]:

Graph rules for W [J ]’s spatial hopping expansion:

(a) At order l ≥ 1 draw all topologically distinct connected graphs C = (V,E) ∈ Cl with

l = |E| edges connecting 2, . . . , l + 1 vertices. Assign a dummy label i to each vertex

and a dummy label e to each edge.

(b) Multiply by l!(i~)c(C)/Sym(C), where Sym(C) is the symmetry factor of the graph and

c(C) is its cyclomatic number (number of loops).

(c) To each graph a weight µW (C) is assigned as follows: a vertex i of degree n is attributed

a weight ωn(en, . . . , e1|i), evaluated on ad/2J(·, i), where en, . . . , e1 are the labels of the

incident edges. An edge connecting i, j is attributed a factor −`ij/a2
s.

(d) Embed the graph into Λ|V | × R|E| by associating each vertex with a unique spatial

lattice point, i 7→ xi ∈ Λ, i = 1, . . . , |V |, the same lattice point may occur several times.

Associate to each edge label a unique real time variable, e 7→ te ∈ R, e = 1, . . . , l = |E|.

Perform an unconstrained sum over all x1, x2, . . . , x|V | and an unconstrained integration

over all t1, . . . , tl, with temporal measures dν(t1), . . . , dν(tl).
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For illustration consider the graphs in (a) divided by their symmetry factors in (b) to

O(κ3):

W [J ]
(a),(b)

= − 1

2
+
i~
4

+
1

2
(65)

− (i~)2

12
− i~

2
− i~

6
− 1

2
− 1

6
+O(κ4).

Upon application of steps (c), (d) this matches the recursively computed result in (64).

Generally, the result of (a), (b), (c) of the graph rule can be recast symbolically as:∑
C=(V,E)∈Cl

(−)ll!(i~)c(C)

Sym(C)

∏
e∈E

`θ(e)
∏
v∈V

ωd(v)(ed(v), . . . , e1|v) , (66)

where the double product comprises (−)lµW (C). The graph sum is over all connected graphs

C = (V,E) with |E| = l edges, θ(e) is the unordered pair of vertices connected by e, and d(v)

is the number of incident lines at vertex v. The definitions of the symmetry factor Sym(C)

and the cyclomatic number c(C) of C are standard, see the graph theory glossary in Section

3.2.1. Using for simplicity the same symbol µW (C) to denote the weight after embedding

into Λ|V | × R|E|, the averaging from (d) gives the final result:

Wl[J ] = a−2l
s

∑
C=(V,E)∈Cl

(−)ll!(i~)c(C)

Sym(C)

∑
x1,...,x|V |

∫
dν(tl) . . . dν(t1)µW [C] . (67)

This concludes our presentation of the graph rules for the free energy W [J ].

The transition to the effective action Γκ proceeds via (58), and the Wetterich equation

for Γκ can be obtained along the usual lines, replacing the Polchinski type (60). As in (60)

we take κ̌ as the control parameter and regard the Wetterich equation as describing the flow

in κ̌. For Euclidean signature on a hypercubic lattice no complications arise in the transition.

Since V in (48) contains fields at the same time, one will initially replace it with a temporally

point split version V̌ with kernel ˇ̀(t, x; t′, x′). The resulting “hopping FRG” reads

∂κ̌Γ[φ] =
i~
2
ad−2
s

∑
x,y∈(asZ)d

∫
dν(t) dν(s)ˇ̀(t, x; s, y)[Γ(2)(φ)+κ̌ˇ̀]−1(t, x; s, y) , (68)

where we recall that dν(t) = dt n(t)a(t)2d−2 is the reparameterization invariant tempo-

ral measure. The temporal coincidence limit as the original hopping term is restored,
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ˇ̀(t, x; s, y) 7→ `xxδ(t− t′)n(t)−1a(t)−2d+2, can be shown to exist termwise in the κ̌-expansion

of (68). The key aspect is that `xx′ = 0 for x = x′, which precludes the occurrence of prod-

ucts of temporal delta functions. This limit also restores the exact – not mode-modulated –

quantum mechanical dynamics. With this interpretation of (68) in place, the main deviation

from the standard uses is that the initial conditions are imposed at the ultralocal, κ̌ = 0,

scale

Γ[φ]
∣∣
κ̌=0

!
= Γ0[φ] =

∑
x∈(asZ)d

γ[ad/2s φ( ·, x)] . (69)

For the expansion we use the normalizations

Γ[φ] = Γ0[φ] +
∑
l≥1

κ̌l

l!
Γl[φ] , (70)

in parallel to (62). The leading κ̌ independent term is (69).

The expansion of the Wetterich equation (68) gives rise to a closed recursion for the Γl’s.

To low orders one finds

Γ2[φ] = a−4
s

∫
dν(t1)dν(t2)

i~
2

∑
x1,x2

(`x1x2)2$2(t1, t2|x1)$2(t2, t1|x2)

Γ3[φ] = −a−6
s

∫
dν(t1)dν(t2)dν(t3)

{(i~)2

2

∑
x1,x2

(`x1x2)3$3(t1, t2, t3|x1)$3(t1, t2, t3|x2)

+ i~
∑

x1,x2,x3

`x1x2`x2x3`x3x1 $2(t1, t2|x1)$2(t2, t3|x2)$2(t3, t1|x3)
}

(71)

Γ4[φ] = a−8
s

∫
dν(t1)dν(t2)dν(t3)dν(t4)

{(i~)3

2

∑
x1,x2

(`x1x2)4$4(t1, t2, t3, t4|x1)

× $4(t1, t2, t3, t4|x2)

+ 6(i~)2
∑

x1,x2,x3

(`x1x2)2 `x1x3 `x2x3 $3(t1, t2, t3|x1)$3(t1, t2, t4|x2)$2(t3, t4|x3)

+ 3(i~)2
∑

x1,x2,x3

(`x1x2)2 (`x2x3)2$2(t1, t2|x1)$2(t3, t4|x3)
[
$4(t1, t2, t3, t4|x2)

−
∫
a(s1)2dν(s1)a(s2)2dν(s2)$3(t1, t2, s1|x2)γ2(s1, s2|x2)$3(s2, t3, t4|x2)

]
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+ 3i~
∑

x1,x2,x3,x4

`x1x2 `x2x3 `x3x4 `x4x1$2(t1, t2|x1)$2(t2, t3|x2))

× $2(t3, t4|x3))$2(t4, t1|x4)
}
.

(72)

Here the quantum mechanical correlators (57) now have the source dependence replaced by

one on the mean field ϕ. We define

ωn(tn, . . . , t1|x)
∣∣
(·) 7→ad/2 ∂γ

∂ϕ
(ad/2φ(·,x))

=: $n(tn, . . . , t1|x) ,

γn(tn, . . . , t1|x) :=
δnγ

δϕ(tn) . . . δϕ(t1)
, n ≥ 2 . (73)

Again, these transform as scalars under temporal reparameterizations for fixed x. For n = 1

we identify $1(t|x) with a
d/2
s φ(t, x) and γ1(t|x) with [ϕ](t, x).

However, beyond these low orders, the direct recursion quickly becomes intractable. To

understand the structural aspects of the expansion, the following mixed recursion turns out

to be advantageous (see (90) in Chapter 3 for the covariant version)

Γl[φ] = −Wl[Γ
(1)
0 ]
∣∣∣
1PI
−

l−2∑
m=2

[m/2]∑
k=1

∑
m1 + . . . +mk = m

mi ≥ 1

(l−m)

lk!
W

(k)
l−m[Γ

(1)
0 ]
∣∣∣
1PI
· Γ(1)

m1
. . .Γ(1)

mk
, (74)

where the “ · ” initially refers to ads
∑

xi

∫
dtin(ti)a(ti)

2d, 1 ≤ i ≤ m; these arise from a

functional Taylor expansion of W . The recursion relation (74) then in principle determines

all Γl[φ] with the original hopping interaction. This mixed recursion (74) can be solved in

graph theoretical terms and then allows one to compute each Γl directly. The basic graph

rules are an adaptation of the results in Chapter 3:

Graph rules for Γl[φ]’s spatial hopping expansion:

(a) At order l ≥ 2 draw all topologically distinct 1LI graphs with l edges, L = (V,E) ∈ Ll.

Assign a dummy label i to each vertex and dummy label e to each edge.

(b) Multiply by l!(i~)c(L)/Sym(L), where Sym(L) is the symmetry factor of the graph and

c(L) is its cyclomatic number (number of loops).

(c) To each graph a weight µΓ(L) is assigned as follows: an edge connecting vertices i, j is
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attributed a factor −`ij/a2
s. A vertex i of degree n is attributed a factor µΓ

v (en, . . . , e1|i),

where e1, . . . , en are the edges incident on i.

(d) Embed the graph into Λ|V | × R|E| by associating each vertex with a unique spatial

lattice point, i 7→ xi ∈ Λ, i = 1, . . . , |V |, the same lattice point may occur several times.

Associate to each edge label a unique real time variable, e 7→ t ∈ R , e = 1, . . . , l = |E|.

Perform an unconstrained sum over all x1, x2, . . . , x|V | and an unconstrained integration

over all t1, . . . , tl, with temporal measures dν(t1), . . . , dν(tl).

The vertex functions µΓ
v are obtained from labelled tree graphs as described in Section 3.3.

As in the present case the expansion is about a spatially ultralocal functional, the following

modification is necessary: the ends of the dashed lines ending on open circles are given labels

sj. A dashed line with end labels s1, s2 connecting two open circles is attributed γ2(s1, s2|i),

while a m ≥ 3 valent dashed vertex is attributed a factor γm(sm, . . . , s1|i). The labeled open

circles are attributed factors of the form $n+m(tn, . . . , t1, sm, . . . , s1|i), where the t1, . . . , tn

are associated with the full edges, and the s1, . . . , sm are associated with the dashed edges.

An unconstrained integral is to be performed over the time arguments associated with the

dashed edges with temporal measure a(t)2dν(t).

As to the origin of the different temporal measures dν(t) and a(t)2dν(t) associated with

the full and dashed graphs (respectively) we recall that the dashed graphs are a systematic

solution of the recursion system (74), as detailed in Chapter 3. The “ · ” in (74) arises

from a functional Taylor expansion, and hence comes with temporal measure a(t)2dν(t)

due to the definition of the functional derivative in (55). The action of δ/δϕ(sm+1) on

γm(sm, . . . , s1) produces γm+1(sm+1, . . . , s1), while its action on $n+m(tn, . . . , t1, sm, . . . , s1)

yields
∫
a(s)2dν(s)$n+m+1(s, . . .)γ2(s, sm+1). This shows that each time label associated with

the dashed graphs must be integrated with temporal measure a(t)2dν(t), not dν(t).

For illustration, we present two examples of such vertex weights computed from the tree

graph rule.

(i) The vertex v in the pair of glasses graph:
v
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The weight of the labeled vertex v is

$4(t1, t2, t3, t4|v)−
∫
a(s1)2dν(s1)a(s2)2dν(s2)$3(t1, t2, s1|v)γ2(s1, s2|v)ω3(s2, t3, t4|v) ,

(75)

where t1, t2, t3, t4 are the time variables associated to the solid edges. Note that this coincides

with the recursively computed weight in (72).

(ii) A more complicated graph with two articulation vertices is:

v v′

The weights of the labeled vertices v, v′ are

µΓ
v (t1, t2, t3, t4, t5|v) = $5(t1, t2, t3, t4, t5|v) (76)

−
∫
a(s1)2dν(s1)a(s2)2dν(s2)$3(t1, t2, s1|v)γ2(s1, s2|v)ω3(s2, t3, t4, t5|v) ,

µΓ
v′(t3, t4, t5, t6, t7, t8, t9|v′) = $7(t3, t4, t5, t6, t7, t8, t9|v′)

−2

∫
a(s1)2dν(s1)a(s2)2dν(s2)$3(t6, t7, s1|v′)γ2(s1, s2|v′)ω6(s2, t3, t4, t5, t8, t9|v′)

−
∫
a(s1)2dν(s1)a(s2)2dν(s2)$4(t3, t4, t5, s1|v′)γ2(s1, s2|v′)ω5(s2, t6, t7, t8, t9|v′)

+

∫
a(s1)2dν(s1)a(s2)2dν(s2)a(s3)2dν(s3)a(s4)2dν(s4)γ2(s1, s2|v′)γ2(s3, s4|v′)

×$3(s1, t6, t7|v′)$3(s4, t8, t9|v′)$5(s2, s3, t3, t4, t5|v′)

+2

∫
a(s1)2dν(s1)a(s2)2dν(s2)a(s3)2dν(s3)a(s4)2dν(s4)γ2(s1, s2|v′)γ2(s3, s4|v′)

×$3(s4, t8, t9|v′)$4(s2, s3, t6, t7|v′)$4(s1, t3, t4, t5|v′)

+

∫
a(s1)2dν(s1)a(s2)2dν(s2)a(s3)2dν(s3)γ3(s1, s2, s3|v′)$3(s1, t6, t7|v′)$3(s2, t8, t9|v′)

×$4(s3, t3, t4, t5|v′).

Here t1, . . . , t9 and s1, . . . , s4 are the time variables associated with the solid and dashed

edges, respectively. Finally, from the definition of the functional derivative (55), it follows

that the vertex functions µΓ
v are scalars under temporal reparametrizations.
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2.4 Conclusions

We have presented the Anti-Newtonian expansion in a spatially discretized setting, where

the flat spatial sections of the Friedmann-Lemâıtre background are replaced with a hyper-

cubical lattice (asZ)d of spacing as. This discretized expansion amounts to a spatial hop-

ping (linked cluster) expansion, expanding around spatially decoupled quantum mechan-

ical systems, one associated with each lattice site. The rationale for the name “Anti-

Newtonian” follows because this expansion around spatially decoupled systems may be

conceptually associated with a scale transformation that at the level of the line element

ds2 = −N(t)2dt2 + a(t)2δijdxidxj enhances spacelike distances compared to timelike ones.

This makes it harder to travel from one world-line to a neighboring world-line, equivalently

the light cones appear to be squeezed. This is opposite to the “post-Newtonian” scaling

where the light cones are flattened to almost hypersurfaces of equal absolute time, and is

hence referred to as Anti-Newtonian. In this framework, the solution of the QFT decouples

into two sub-problems: (1) the solution of the cosmological quantum mechanics, conceptually

associated with the decoupled wordlines in the Anti-Newtonian limit; and (2) the solution

of the combinatorial problem that allows one to analytically control the terms of the linked

cluster expansion, which is conceptually associated with restoring the spatial interaction

between the neighboring world lines.

We have presented graph theoretical techniques for the solution of the combinatorial

problem (2) associated to the spatial hopping expansions of the QFT generating functionals

W [J ] and Γ[φ] on generic Friedmann-Lemâıtre spacetimes. We close this section by high-

lighting a number of key structural properties of the graph expansions:

(i) The graph rules for the spatial hopping expansion of W [J ] and Γ[φ] are to a large

extent model independent. The form of the scalar potential U(ϕ) does not enter, and

the embedding of the abstract graphs into (the spatially discretized) spacetime occurs

only in part (d) of both sets of graph rules.

(ii) The traditional hopping or linked cluster expansion mostly use connected graphs. The

expansion of Γ[φ] in terms of one-line-irreducible (1LI) graphs leads to a considerable

computational gain as there are far fewer 1LI graphs. For example, for edge-count
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l = 6 there are 101 connected but only 22 1LI graphs.

(iii) A notable feature of the Γ[φ] as compared to those for W [J ] is the additional structure

at the vertices encoded by the vertex weights µΓ
v . These are determined by purely local

data, depending only on the structure of the abstract graph at the vertex v, through

the pattern of incident subgraphs. As the same patterns reoccur in many 1LI graphs,

the µΓ
v ’s need to be generated only once and can be stored in a look-up table.

(iv) After embedding the graphs into spacetime, the result characterizes the Legendre ef-

fective action Γ’s nonlocality precisely to all orders.
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3.0 Graph Rules for the Linked Cluster Expansion of the Legendre Effective

Action

3.1 Introduction

The Legendre effective action is a central quantity in all areas of many-body quantum

physics. In particular, it features prominently in the functional renormalization group ap-

proach based on the flow equation

∂kΓk =
1

2
Tr
{
∂kRk[Γ

(2)
k +Rk]

−1
}
, (77)

describing its response to a modulation of the system’s mode content set by the kernel Rk.

The flow equation (77) is now being used in fields as diverse as: solid state physics, statistical

physics, and quantum gravity, see [63, 104, 82] for book-sized accounts. The response (77)

is itself kinematical in nature, dynamical information in injected exclusively through initial

conditions. As a consequence, the results obtained are only as non-perturbative as the initial

conditions are. An especially interesting choice of initial conditions are ultralocal ones as

they can in a lattice formulation be be computed exactly from single site integrals [70]. A

solution of (77) with such initial data, if feasible, will emulate a linked cluster or hopping

expansion but with a scale dependent long-ranged interaction

S[χ] =
∑
x

s[χx] +
κ

2

∑
x,y

χy`xy(k)χx . (78)

For definiteness we consider a self-interacting scalar field theory on a D-dimensional hyper-

cubic lattice (identified with ZD) in a dimensionless formulation. Here, s : R → R is a

function bounded from below that collects all terms from the original lattice action referring

to a single site. The hopping parameter κ > 0 arises as a dimensionless combination of

the original mass and coupling parameters and the lattice spacing. A fundamental lattice

action would only connect nearest neighbors on the lattice through `xy. In order to obtain a

solution of (77) we allow `xy to be long-ranged and be modulated by the control parameter
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k. The details of the modulation are inessential in the following as we take κ as the control

parameter and replace (77) by

∂κΓκ =
1

2

∑
x,y

`xy
[
Γ(2)
κ + κ`

]−1

xy
, Γκ = Γ0 +

∑
l≥2

κlΓl[φ] . (79)

Here Γ0[φ] =
∑

x γ(φx), where γ and its derivatives γn are computable at a single site from

s only. The O(κ) term vanishes, Γ2[φ] = −1
4

∑
x,y(`xy)

2γ2(φx)
−1γ2(φy)

−1, and all Γl, l≥ 3,

are then determined recursively; see (511) in Appendix A. Importantly the series can be

expected to have finite radius of convergence κ < κc; see the discussion below. Once the

series (79) has been constructed, an in principle exact solution of (77) arises simply by

substitution, Γk = Γκ| 7̀→`(k).

The direct iteration (511) becomes, however, impractical beyond O(κ6) or so (both in

manual computations and in automated symbolic implementations). The repeated functional

differentiations of Γ0[φ] lead to site identifications whose combinatorics is best recast in

graph theoretical terms. The graph theoretical analysis of hopping expansions of course

has a long history, see [105, 79, 52] and the references therein. The convergence proofs of

generalized Mayer expansions typically rely on tree graph bounds [18]. In the computational

uses of linked cluster expansions, the focus is normally on nearest neighbor interactions and

quantities of direct interest for critical behavior like generalized susceptibilities [79, 52]; a

convergence proof for them in scalar quantum field theory can be reduced to tree graph

bounds [85]. The effective action Γκ can alternatively be defined as a (slightly modified)

Legendre transform of the free energy functional Wκ. Graph theoretical rules for the linked

cluster expansion of Wκ have originally been presented by Wortis [105] and will be briefly

reviewed in Section 2. Graph theoretical expansions for Γκ[φ] have been discussed previously

but do not cover the material presented here: the rules and results of [97, 98] hinge on specific

features of the Ising model which do not generalize. Hybrid perturbative expansions have

been considered in [26]. A relevant combinatorial Legendre transform has been studied in

[53, 34] in a setting that emulates perturbation theory. Some of the results of [53] will

reoccur in our analysis of Γ0 in Appendix A. There are also abstract variants of a Legendre

transform formulated in terms of combinatorial species [19, 34]. None of these seem to bear

an obvious relation to our result.
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We present the solution of the recursion implied by (79) in graph theoretical terms. Let

Ll be the set of one-line irreducible connected graphs with l edges. For any L = (V,E) ∈ Ll
and any vertex v ∈ V consider the decomposition of L into one-vertex irreducible subgraphs,

|I(v)| of which each contain a copy of v. The set B(v) of copies is used to label a class of

tree graphs T (B(v), n), n = 1, . . . , |I(v)|. To each T ∈ T (B(v), n) two integers s(T ) and

PermB(v)/Sym(T ) are assigned, as detailed in Section 3.3. Then:

Theorem. For any l ≥ 2 the exact solution of the recursion implied by (79), i.e. (511), is

given by

Γl[φ] =
∑

L=(V,E)∈Ll

(−)l+1

Sym(L)

∏
e∈E

`θ(e)
∏
v∈V

µΓ(v|B)

µΓ(v|B) =

|I(v)|∑
n=1

∑
T∈T (B(v),n)

(−)s(T ) |Perm(B(v))|
Sym(T )

µ(T ) . (80)

In the first line an unconstrained sum over the lattice points associated with the vertices is

tacit. Further E is the edge list with θ(e) the pair of vertices connected by e, and Sym(L) is

the symmetry factor of L. In the second line, µ(T ) is a weight depending only on the value

of φ at v.

This chapter is organized as follows. In Section 3.2.1 we summarize known graph rules

for the free energy functional and set the terminology. A mixed recursion relation (98),

equivalent to the one implied by (79) is derived in Section 3.2.2, and used to derive the

first line of (80). The relevant class of labeled tree graphs is introduced in Section 3.3.1,

the graph rules for µΓ(v|L) are formulated and illustrated in Section 3.3.2, and an all-order

proof for their validity is given in Section 3.3.3. A simplified version of µΓ(v|B) obtained by

performing subsums with fixed µ(T ) is derived in Section 3.4. Appendix A presents explicit

and independently computed results for Γ2, . . . ,Γ5, and discusses the single site data together

with their combinatorics.

This chapter is based on [9].
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3.2 From connected graphs to articulation vertices

For convenience we refer to expansions in powers of κ`xy (with `xx = 0 but `xy 6= 0 for

dist(x, y) ≥ 1) as a long range hopping (LRH) expansion. The graph expansions considered

have two main ingredients: first, a class of graphs with some partial order consistent with

the order in κ. Second, a weight function that assigns to each graph of the class a numerical

value depending on certain input data. In addition to `xy itself, the input data are always

the derivatives ωm(h) = ∂mω/∂hm and/or γm(ϕ) = ∂mγ/∂ϕm of the single site functions

described in Appendix B. The class of graphs and the weight functions will depend on the

quantity considered. The goal of this section is to reduce the problem of identifying the graph

rules for Γκ’s LRH expansion to the determination of the weight associated to articulation

vertices.

3.2.1 Basics

The Γk flow equation (77) can be obtained as the Legendre transform of a Polchinski-type

flow equation for Wk, the mode modulated free energy functional. For an action of the form

(78) one may again take κ as the control parameter to obtain along the familiar lines

∂κWκ[H] = −1

2

∑
x,y

`xy

{
δ2Wκ[H]

δHxδHy

+
δWκ[H]

δHx

δWκ[H]

δHy

}
. (81)

Here we impose ultralocal initial data W0[H] =
∑

x ω(Hx), where ω(h) is determined by the

single site action s in (78). The ansatz Wκ[H] = W0[H] +
∑

l≥1 κ
lWl[H] converts (81) into

the recursive system

Wl+1[H] = − 1

2(l+1)

∑
x,y

`xy

{
δ2Wl[H]

δHxδHy

+
l∑

k=0

δWk[H]

δHx

δWl−k[H]

δHy

}
, l ≥ 0 . (82)

Explicitly, the first two orders read

W1[H] = −1

2

∑
x,y

`xy
δW0[H]

δHx

δW0[H]

δHy

,

W2[H] =
1

2

∑
x,y,z,w

`xy`zw
δ2W0[H]

δHyδHw

{
1

2

δ2W0[H]

δHxδHz

+
δW0[H]

δHx

δW0[H]

δHz

}
. (83)
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The repeated Hx, Hy, . . ., functional derivatives of W0[H] produce point identifications and

coefficients that are source-dependent derivatives of the single-site generating function ω(h).

The combinatorics of these point identifications is best formulated in graph theoretical terms.

Such rules have been formulated and proven by Wortis [105]; the relation to a Polchinski-type

flow equation was noted in [18] where subject to additional conditions also a convergence

proof is given.

Graph rules for W[H]:

(a) At order l ≥ 1 in κ draw all topologically distinct connected graphs C = (V,E) ∈ Cl
with l = |E| edges connecting 2, . . . , l + 1 vertices. Assign a dummy label to each

vertex.

(b) Divide by the symmetry factor Sym(C) of the graph.

(c) To each graph a weight µW (C) is assigned as follows: a vertex i of degree n is attributed

a weight ωn(Hi), an edge connecting i, j is attributed a factor −`ij.

(d) Embed the graph into the lattice ZD by associating each vertex with a unique lattice

point, i 7→ xi, i = 1, . . . , |V |, the same lattice point may occur several times. Perform

an unconstrained sum over all x1, x2, . . . , x|V |.

For illustration consider the graphs in (a) divided by their symmetry factors in (b) to

O(κ3):

Wκ[H]
(a),(b)

= − 1

2
+

1

4
+

1

2

− 1

12
− 1

2
− 1

6
− 1

2
− 1

6
+O(κ4). (84)

Upon application of parts (c),(d) this matches the recursively computed result. Generally,

the graph rule can be recast symbolically as:

Wl[H] =
∑

C=(V,E)∈Cl

(−)l

Sym(C)

∏
e∈E

`θ(e)
∏
v∈V

ωd(v)(Hv) , (85)

where the lattice summations from step (d) are tacit and the double product comprises

µW (C). The graph sum is over all connected graphs C = (V,E) with |E| = l edges, d(v) is
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the degree of the vertex v, θ(e) is the pair of vertices e ∈ E connects. A recent algorithm

that generates these graphs can be found in [72]. The symmetry factor Sym(C) of C is

defined below. Since also the graph terminology is not entirely standardized we compiled a

brief glossary at the end of this subsection.

Once W [H] is known to some order, the connected correlation functions (or cumulants)

can be obtained by differentiation. It is plain from (85) that the cumulants (W (k)[H])y1,...,yk ,

y1 6= . . . 6= yk, also have a graph expansion and that the contributing graphs are k-rooted,

i.e. have k external vertices eventually labeled by y1, . . . , yk. The relevant symmetry factor

thus is that of the k-rooted graph, where the isomorphisms have to leave the external vertices

individually invariant. The edges are assigned a −`ij factor as before, also for edges where

one of the vertices is an external vertex. The vertex weight can always be obtained by

differentiation from the ωd(v)(Hv) product in (85).

A brief graph glossary:

A graph is a pair G = (V,E) of nonempty disjoint sets equipped with a map θ that

associates to each e ∈ E an unordered pair θ(e) = {v, w}, v, w ∈ V . The elements of V are

called vertices (or nodes), those of E are called edges (or links, or lines). This definition allows

for several edges to be mapped into the same unordered pair of vertices, in which case the

edges are called multiple edges. Otherwise the graph is called simple, in which case we shall

identify E with a subset of V2 :=
{
{v, w} : v, w ∈ V

}
. The degree (or valency or number of

incident lines) d(v) of a vertex v ∈ V is the cardinality of the set {e ∈ E : v ∈ θ(e)}. If |V |k
is the cardinality of {v ∈ V : d(v) = k} one has 2|E| =

∑
k k|V |k.

Let (V,E) be a graph. A trail from v to w, v, w ∈ V is a sequence v0, e1, . . . , en, vn

with v0 = v, vn = w, such that the edges ei are distinct and θ(ei) = {vi−1, vi}. A graph

is connected if for every pair of its vertices v, w there is a trail from v to w. A connected

component of G is a maximal connected subgraph of G. A trail from v to w such that v and

w coincide is called a cycle. The cyclomatic number c(G) is the number of cycles of a graph

G. The Euler relation states

c(G) = |E| − |V |+ 1 . (86)

A tree T is a connected simple graph without cycles; in particular |V | − |E| = 1 holds.

Two graphs (V,E) and (V ′, E ′), with respective maps θ, θ′, are called isomorphic (or
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topologically equivalent) if there exist bijections π1 : V → V ′, π2 : E → E ′ such that

θ(e) = {v, w} iff θ′(π2(e)) = {π1(v), π1(w)}. These isometries form a group, Aut(G), which

with the above definition included permutations of multiple edges. The symmetry factor of

G is defined by

Sym(G) = |Aut(G)| . (87)

Often the automorphism group refers to the corresponding simple graph only, in which case

the permutation of multiple edges occurs as an extra factor in the definition of the symmetry

factor [105, 85].

The same notion of isometry applies if the elements of a subset R ⊂ V , called the rooted

vertices, are left individually invariant by the bijection. The elements of R can be viewed as

distinguishable and labeled, R = {r1, . . . , rk}, in which case G is called k-rooted.

A graph G′ = (V ′, E ′) is called a subgraph of G = (V,E) if V ′ ⊂ V and E ′ ⊂ E. For

a graph G let G\{v} be the subgraph obtained by deleting v and all edges containing v.

For a connected graph G = (V,E) a vertex v ∈ V is called an articulation point if the

G\{v} is disconnected. A connected graph without articulation points is called one-vertex

irreducible (1VI) (or two-connected). For a connected graph G a block G′ is a maximal

1VI subgraph, i.e. a graph G′ ⊂ G that is 1VI and such that for any 1VI subgraph G′′ the

inclusion G′ ⊂ G′′ ⊂ G entails G′′ = G′. The set of blocks {G1, . . . , Gk}, Gi = (Vi, Ei),

i = 1, . . . , k, of a connected graph G = (V,E) is referred to as G’s block decomposition [54].

The blocks induce a partition of the edge set E = E1 ∪ . . . ∪ Ek, with Ei ∩ Ej = ∅, i 6= j.

Each articulation point belongs to more than one Vi while non-articulation vertices belong

to exactly one.

A bridge in a connected graph is an edge whose omission produces a disconnected graph.

A one-line irreducible (1LI) graph is a bridgeless connected graph. A one-line irreducible

graph may still get disconnected upon removal of a vertex. The block decomposition of 1LI

graphs will be central later on.
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3.2.2 The role of one-line and one-vertex irreducible graphs

Our task will be to convert the above W -graph rules into ones directly applicable to

the Γκ expansion defined by (79). Both functionals are related by the following modified

Legendre transform

Γκ[φ] := φ ·Hκ[φ]−Wκ[Hκ[φ]]− κV [φ] ,
δWκ

δH

(
Hκ[φ]

)
= φ , (88)

for a κ-independent mean field φ. The modification by the V [φ] := 1
2

∑
x,y φx`xyφy term is

introduced so as to obtain the closed flow equation (79). Differentiating (88) with respect

to κ gives ∂κΓκ = −(∂κWκ)[Hκ[φ]]− V [φ]. Inserting the series expansions

Wκ[H] =
∑
l≥0

κlWl[H] , Γκ[φ] =
∑
l≥0

κlΓl[φ] , Γ1[φ] ≡ 0 ,

Hκ[φ] =
∑
l≥0

κlHl[φ] , Hl = Γ
(1)
l + δl,1V(1) , l ≥ 0 , (89)

one obtains Γ0[φ] = φ ·H0[φ]−W0[H0[φ]], Γ1[φ] = −W1[H0[φ]]− V [φ] ≡ 0, and for l ≥ 2

Γl[φ] = −Wl[H0[φ]]−
l−1∑
m=1

m∑
k=1

l−m
lk!

∑
m1 + ... +mk = m

mj ≥ 1

W
(k)
l−m[H0[φ]] ·Hm1 [φ] . . . Hmk [φ] . (90)

Note that W
(1)
κ [Hκ[φ]] = φ still enters (90) implicitly in defining the Hm[φ]. Upon expansion

one finds W
(1)
0 [H0[φ]] = φ, W

(2)
0 [H0[φ]] ·H1[φ] +W

(1)
1 [H0[φ]] = 0, and for l ≥ 2

Hl[φ] ·W (2)
0 [H0[φ]] +W

(1)
l [H0[φ]] +

δ

δH0

Fl−1[H0, H1, . . . , Hl−1]
∣∣∣
Hm=Hm[φ]

= 0 , (91)

where

Fl−1[H0, . . . , Hl−1] :=
l−1∑
m=1

m∑
k=1

B̌mk(H1, . . . , Hm−k+1) ·W (k)
l−m[H0]

+
l∑

k=2

B̌lk(H1, . . . , Hl+1−k) ·W (k)
0 [H0] , (92)

and the B̌m,k are modified Bell polynomials, k!B̌mk(H1, . . . , Hl−k+1) :=
∑

m1+...+mk=m,mj≥1

Hm1Hm2 . . . Hmk . These relations can be solved iteratively for the Hl[φ] and also show

inductively that Hl[φ] = Γ
(1)
l [φ].
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In (90), (91) and similar relations later on there are tacit summations over lattice sites,

summarily indicated by a “ · ”. A contraction of (W
(k)
l−m)y1...yk may contain subsums where

where one or more lattice points coincide. The graph rules for the cumulants outlined after

(85) then change slightly. Since multiple h derivatives can act on the same ωd(v)(h), the

number of rooted vertices r can be r = 1, . . . , k. The tacit lattice sums ensure that all

possible combinations will occur, so that W
(k)
l−m expands into a sum of r-rooted connected

graphs with l−m edges; we write C•rl−m for the set of such graphs. The topology of each graph

in C•rl−m is the same as its counterpart in Cl−m, only the rooted vertices have their ωn weight

shifted from n = d(v) to n = d(v) + #of h-derivatives, and the symmetry factor changes.

The contracted lattice sums in (90), (91) ensure that each graph in C•rl−m is paired with an

r-rooted product of Hm1 , . . . , Hmk ’s graph expansions, such that a term corresponding to an

unrooted Cl graph arises. This graph expansion of (90)’s right hand side allows for many

cancellations. In order to identify the underlying pattern we derive a property of the LRH

expansion of the effective action well-known for its perturbative expansion but not limited

to it:

Lemma 3.2.1. The graphs contributing to Γκ[φ]’s LRH expansion are 1LI, i.e. remain `-

connected even when any one `-line is cut.

Proof. The proof is an adaptation of the argument familiar for the Feynman diagrams

occurring in a perturbative expansion. In a first step one computes the linear response of

Γκ[φ] under a replacement of the hopping matrix

`xy 7→ `xy + εexey , (93)

where ex is a vector and ε ≥ 0. We momentarily change notation and write Wε[H], Γε[φ]

for the functionals obtained by the replacement (93) and W [H],Γ[φ] for the original ones,

without indicating the κ-dependence. Starting from the functional integral realization

expW [H] :=

∫ ∏
x

dχx exp{−S[χ] +
∑
x

Hxχx} .

S[χ] = S0[χ] + κV [χ] , S0[χ] =
∑
x

s(χx) , V [χ] =
1

2

∑
x,y

χx`xyχy . (94)
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and expanding in powers of ε one finds to linear order

Wε[H] = W [H]− εκ
2

∑
x,y

exey

(
δ2W

δHxδHy

+
δW

δHx

δW

δHy

)
+O(ε2) . (95)

For the altered functionals the definition of the modified Legendre transform (88) reads

Γε[φ] = φ ·Hε[φ]−Wε[Hε[φ]]− κ

2
φ · (`+εe⊗ e) · φ , δWε

δH

(
Hε[φ]

)
= φ . (96)

Differentiating with respect to ε gives ∂εΓε[φ] = κ
2
(e⊗e)·W (2)(H[φ])+O(ε). SinceW (2)(H[φ]) =

(Γ(2) + κv)−1 one obtains

Γε[φ] = Γ[φ] + ε
κ

2

∑
x,y

exey
[
Γ(2) + κ`

]−1

xy
+O(ε2) . (97)

The replacement (93) emulates the effect of cutting `-lines and to linear order in ε the

effect of cutting precisely one `-line is traced. Viewed as a function of H the response,

being proportional to W (2)[H], expands into `-connected LRH graphs by Section 3.2.1. The

recursion (91) shows that the κ expansion of H[φ] produces contracted functional derivatives

of the W0,W1, . . . ,Wl evaluated at H0[φ] for all Hl[φ], l ≥ 1. The W
(k)
m derivatives correspond

to r ≤ k-rooted `-connected diagrams and the contractions are pointwise with analogous

terms. Hence, also as a functional of φ the linear response (97) expands into `-connected

LRH graphs only.

The graph expansion of the right hand of (90) contains a large number of terms associated

with one-line reducible graphs. By Lemma 3.2.1 these must cancel which allows one to

simplify the right hand side considerably. In the sum each W
(k)
l−m expands into r-rooted,

r = 1, . . . , k, connected diagrams many of which are one-line reducible. The rooted vertices

are directly (without extra `xy link) attached to (and summed over the lattice point associated

with) possibly multiple copies of a 1-rooted graph representing a Γ
(1)
m + δm,1V(1). A term

occurring in the graph expansion of W
(k)
l−m[H0[φ]] ·Hm1 [φ] . . . Hmk [φ] will be one-line reducible

if (i) mi = 1 for one or more i ∈ {1, . . . , k}, since H1[φ]x =
∑

y `xyφy. (ii) the r-rooted W -

graph stemming from W
(k)
l−m is one-line reducible. (iii) if a W

(k)
1 term enters, as W1[H] =

−1
2

∑
x,y `xyω1(Hx)ω1(Hy). All these terms must cancel against the one-line reducible terms

in −Wl. We write W
(k)
l [Γ

(1)
0 ]|1LI for the quantity obtained from W

(k)
l [Γ

(1)
0 ]’s graph expansion
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by omitting all terms corresponding to one-line reducible graphs and [m] for the integer part

of m ∈ R+. Then Γ2[φ] = −W2[Γ
(1)
0 ]|1LI, Γ3[φ] = −W3[Γ

(1)
0 ]|1LI, and for l ≥ 4 the following

simplified version of (90) holds

Γl[φ] = −Wl[Γ
(1)
0 ]
∣∣∣
1LI
−

l−2∑
m=2

[m/2]∑
k=1

∑
m1 + . . . +mk = m

mi ≥ 2

(l−m)

lk!
W

(k)
l−m[Γ

(1)
0 ]
∣∣∣
1LI
· Γ(1)

m1
. . .Γ(1)

mk
. (98)

An immediate consequence of (98) is:

Lemma 3.2.2. Let L be a 1LI graph without articulation points and let µW (L), µΓ(L) be the

weight (including sign and symmetry factors) with which it occurs in the expansion of W,Γ,

respectively. Then

µΓ(L) = −µW (L)|
H0=Γ

(1)
0
. (99)

Proof. It suffices to show that all terms in the sum on the right hand side of (98) expand

into graphs with articulation points. As seen above, each W
(k)
l−m|1LI expands into r-rooted,

r = 1, . . . , k, 1LI graphs that are directly (without extra `xy link) attached to an r-rooted

product Γ
(1)
m1 . . .Γ

(1)
mk (with the same Γ

(1)
m ,m ≥ 2, possibly occurring several times) where

each factor expands into 1-rooted 1LI graphs. Each of the rooted vertices therefore is an

articulation point and the graphs contributing to a W
(k)
l−m|1LI term in the sum have at least

one articulation point.

On account of the previous results the problem of finding a graph rule for the LRH

expansion of Γκ has been reduced to understanding the weight µΓ(v) that ought to be

assigned to articulation points: by Lemma 3.2.1 we know that the graphs contributing to

Γl[φ] are one-line irreducible (1LI). As long as the 1LI graph considered has no articulation

points Lemma 3.2.2 straightforwardly provides the weight. The same reasoning shows that

the maximal number of articulation vertices in some L ∈ Ll is [(l−2)/2]. One may anticipate

a trade-off to occur: the vastly reduced number of graphs to be considered (compared to

W ) will be compensated in part by a more complicated weight assignment for articulation

vertices. Overall a very significant simplification is found to occur already at low orders; see
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Table 2 1.

l |Cl| |Ll| # art. vert.

3 5 2 0

4 12 4 1

5 33 8 2

6 101 22 8,1

Table 2: Number of connected, one-line irreducible, one-line irreducible graphs with 1, 2, . . .

articulation points, respectively, and l edges.

Up to l = 3 all 1LI graphs are also 1VI, so that the graph rules for Wl (with vertex

weights ωm(ϕ) := ωm(h)|h=h(ϕ), m ≥ 1) gives the correct answer for l ≤ 3. In the figure

below the weights from the W rule match the terms in the directly computed result (513):

Γ[φ] = − 1

4
+

1

12
+

1

6
+O(κ4). (100)

For l = 4 the same works for all but the second to last term, which corresponds to a “pair of

glasses” graph. The vertex in the middle is an articulation point and by inspection of (513)

one reads off the weight that should be attributed to it:

v
Symmetry factor = 23

µΓ(v) = ω4(ϕv)− γ2(ϕv)ω3(ϕv)
2 . (101)

In each case we also note the symmetry factor of the full graph next to it. For l = 5

there are two graphs with articulation points for which the explicitly computed weights are:

v
Symmetry factor = 2× 3!

µΓ(v) = ω5(ϕv)− γ2(ϕv)ω3(ϕv)ω4(ϕv) . (102)

1|C6| = 101 corrects a typo in the published version.
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v Symmetry factor = 22

µΓ(v) = ω4(ϕv)− γ2(ϕv)ω3(ϕv)
2 . (103)

Clearly, the first term in the weight associated to an articulation point is the one ex-

pected from the W graph rules; it is the systematics of the additional terms that need to be

understood.

3.2.3 Recursive computation of the weights of articulation points

Our guiding principle in pinning down these systematics will be the relation (98). It

expresses Γl’s graph expansion in terms of those of Γ
(1)
2 , . . . ,Γ

(1)
l−2, modulo pieces known

from the W -graph rules. By construction (98) is equivalent to the closed recursion (511).

In contrast to (511) the mixed recursion (98) allows one to isolate directly contributions

from individual graphs, in particular those with articulation points. For example, for l= 4

one has Γ4 = −W4|1LI − 1
2
W

(1)
2 |1LI · Γ(1)

2 . Applying the graphical differentiation rules to

W2 and Γ2 one quickly recovers (101). Similarly, for l = 5 one obtains from (98) Γ5 =

−W5|1LI − 3
5
W

(1)
3 |1LI · Γ(1)

2 − 2
5
W

(1)
2 |1LI · Γ(1)

3 , and (102), (103) can be confirmed graphically.

With Γl, l = 2, . . . , 5, known explicitly from Appendix A the same procedure allows one to

obtain the weights of all l = 6, 7 graphs with articulation points. At l = 6 there are 8 graphs

with one articulation vertex and 1 with two articulation vertices, see Table 1. The l = 6

graph with two articulation vertices is the “triple bubble” graph and both have the same

weight associated to them as v in (101).

More interesting are the l = 7 graphs for which we present three examples:

v

Symmetry factor = 23 × 3!

µΓ(v) = ω7 − 2γ2ω3ω6 − γ2ω4ω5

+ γ2
2ω

2
3ω5 + 2γ2

2ω3ω
2
4 + γ3ω

2
3ω4 (104)

v v′

Symmetry factor = 23

µΓ(v) = µΓ(v′) = ω4 − γ2ω
2
3 (105)
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v v′
Symmetry factor = 23 × 3!

µΓ(v) = µΓ(v′) = ω5 − γ2ω3ω4 (106)

Here and below we omit the ϕ arguments of the ωm’s. Note that the weight in (104) is new

while those in (105) and (106) are recycled from (101), (103) and (102), respectively.

So far the graph expansion of the explicitly computed Γ2, . . . ,Γ5 from Appendix A could

be used as an input to obtain the results for all l = 6, 7 graphs. The recursion (98) also

allows one compute the weights of individual higher order graphs without knowing the full

results for the Γm’s at lower orders. We illustrate this with two l = 9 graphs chosen so that

the l = 7 input graphs are among the ones preciously displayed.

v v′ Symmetry factor = 24 × 3! ; input (104), (106)

µΓ(v) = ω5 − γ2ω3ω4

µΓ(v′) = ω7 − 2γ2ω3ω6 − γ2ω4ω5 (107)

+ γ2
2ω

2
3ω5 + 2γ2

2ω3ω
2
4 + γ3ω

2
3ω4

v′′

v v′

Symmetry factor = 23 × 3! ; input (105)

µΓ(v) = µΓ(v′) = µΓ(v′′) = ω4 − γ2ω
2
3 . (108)

These examples illustrate a pattern that holds generally. To formulate it we introduce a

natural grading for the quantities considered. It is induced by the derivatives of the single

site functions ω(h), γ(ϕ) and their interrelations discussed in Appendix B.

Lemma 3.2.3. For a monomial in ωm,m ≥ 3, ω−1
2 , define its degree by: degωm = m, degω−1

2 =

−2, and extended additively to products. Then:
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(a) degγm = −m, m ≥ 2.

(b) degW
(k)
l = 2l+k, degΓ

(k)
l = 2l−k, k ≥ 0, to all orders l ≥ 1 of the LRH expansion.

(c) The weight µΓ(v) assigned to an articulation vertex v has homogeneous degree deg[µΓ(v)]

which coincides with its degree in the W -graph rule, i.e. deg[µW (v)] = l, for an l-valent

vertex.

(d) The weight µΓ(v) assigned to an articulation vertex v of degree d(v) = m ≥ 4 can be

normalized such that

µΓ(v) = ωm −
∑

3i3+...+(m−1)im−1=m+2i2

di3...im−1 (ω−1
2 )i2ωi33 . . . ω

im−1

m−1 , (109)

and analogously in any mixed ωm, γm form.

Proof. (a) Manifest from (518). (b) W1[H] = −1
2

∑
x,y `xyω1(Hx)ω1(Hy) gives degW1 = 2,

each H derivative raises the degree by 1, so degWl = 2l follows from the recursion (82).

Similarly, degΓ2 = 4 from (513), each φ derivative lowers the degree by 1 (as ∂ϕ = γ2∂h), and

degΓl = 2l follows from the recursion (511). Since degW
(k)
l−m = 2(l−m)+k, deg[Γ

(1)
m1 . . .Γ

(1)
mk ] =

2(m1 + . . .+mk)−k, compatibility with (90) is ensured. (c) The weight µΓ(v) is in principle

determined by the recursion (90), (98). By (b) these relations preserve homogeneity which

implies deg[µΓ(v)] = deg[µW (v)]. (d) is a consequence of (c) and the gross structure of

(98).

In summary, let Ll be the set of one-line irreducible graphs with l = |E| links. Then

Γl[φ] =
∑

L=(V,E)∈Ll

(−)l+1

Sym(L)

∏
e∈E

`θ(e)
∏
v∈V

µΓ(v|L) , (110)

with a tacit unconstrained sum over the lattice points associated with the vertices upon

embedding. Here µΓ(v|L) is as in (109) where only the coefficients di3,...,im−1 remain to

be determined. These coefficients depend on the 1VI subgraphs that are joined at the

articulation vertex, not just on the degree of the vertex; so we write µΓ(v|L) from now on.

For completeness’ sake we justify in detail why the weights µΓ(v|L), L ∈ Ll, are deter-

mined recursively by (98). For the graphical evaluation of (98), graph rules for Γ
(1)
m ,m =

1, . . . , l−2, are needed. Differentiating (110) produces an analogous expansion in terms of
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1-rooted one-line irreducible graphs for which we write L•1m at order |E| = m. The product

over µΓ(v|L) extends over all but the rooted vertex, where ∂µΓ/∂ϕ occurs. In the context

of (98) the coefficients di1...im−1 entering the Γ
(1)
m , m = 1, . . . , l−2, are assumed to be known

and those for the graphs in Ll are to be determined. The additional piece of information

entering are the graph rules for W
(k)
l−m|1LI, 1 ≤ k ≤ [m/2]. These can be inferred from (85).

Since multiple h derivatives can act on the same ωd(v)(h), the number of rooted vertices

r can be r = 1, . . . , k. The tacit lattice sums ensure that all possible combinations will

occur, so that W
(k)
l−m|1LI expands into a sum of r-rooted 1LI graphs with l−m edges, the

set of which we denote by L•rl−m. The topology of each graph in L•rl−m is the same as its

counterpart in Ll−m, only the rooted vertices have their ωm weight shifted from m = d(v)

to m = d(v) + #of h-derivatives, and the symmetry factor changes. Each term in the graph

expansion of W
(k)
l−m[Γ

(1)
0 ]|1LI · Γ(1)

m1 . . .Γ
(1)
mk , then has the rooted subgraphs joined at the roots

so that an unrooted graph in Ll arises. In any concrete instance the procedure is evident and

has been used to work out the previous examples. The formulation of the general evaluation

principle for (98)’s right hand side justifies that the recursion works generally and just needs

to be ‘solved’.

3.3 Graph implementation of the Γκ[φ] LRH expansion

So far each Γl is known to expand into 1LI irreducible graphs L whose weights in (110)

are known modulo the coefficients di3,...im−1 in (109). These coefficients depend on the de-

composition of L into 1VI subgraphs, turn out to be integers, and can be understood in

terms a separate set of tree graphs. To preclude a possible confusion let us stress that these

tree graphs are conceptually and technically different from the ones governing the interplay

between vertex functions and connected correlation functions, see Appendix B for the latter.
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3.3.1 Labeled tree graphs

We begin by introducing a class of unlabeled tree graphs called ‘dashed’, which get

labeled in a second step.

Definition: The ‘dashed’ graphs are tree graphs where two types of vertices are con-

nected by dashed lines. The set of “open circle” vertices is denoted by ν0, the set of “dashed”

vertices is denoted by ν1, and the edge list ε ⊂ (ν0 ∪ ν1)2 is constrained as follows. The va-

lency of an open circle vertex is 1, 2, . . ., dashed vertices have valency 3, 4, . . ., and no two

dashed-vertices are connected by a single dashed line. The Euler relation for tree graphs

then holds in the form |ν0|+ |ν1| = |ε|+ 1. We write Tn for the set of topologically distinct

such graphs with n = |ν0| open circle vertices.

For example the graphs in T1, . . . , T4 are

T1 (111)

T2

T3 ,

T4 , , , .

The restriction that no two dashed-vertices can be connected by a single dashed line elimi-

nates from consideration graphs of the form

.

The graphs in Tn+1 can be obtained from those in Tn by adding one dashed leg with an

open circle in all topologically inequivalent ways to an open circle, a dashed line, or a dashed

vertex. Further, the constituents of a dashed graph can be attributed a “dashed degree
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ddeg” as follows:

|o|-valent open circle vertex o, |o| ≥ 1 ddeg = |o|+ dj ,

dashed line connecting two open circles ddeg = −2 ,

m-valent dashed vertex, m ≥ 3 ddeg = −m.

(112)

Here dj, j = 0, . . . , n−1, are integers whose significance will become clear shortly. Then:

ddeg(t) =
n−1∑
j=0

dj , for any dashed graph t ∈ Tn, n ≥ 2 . (113)

This can be seen by induction on n using the before mentioned recursive generation. Any

of the three operations generating a graph in Tn+1 from one in Tn is readily seen to preserve

ddeg. By inspection of (111) the assertion holds for n = 1, 2, 3 and (113) follows. Note that

this gives a more fine grained invariant than merely the Euler relation (86) for tree graphs.

Instead of viewing the dj as parameterizing the ddeg function one may also regard them as

labels for the dashed graphs themselves. We then write T Dn for the set of dashed graphs Tn
with an integer from the n-tuple D = (d0, d1, . . . , dn−1) assigned to each open circle vertex.

The use of an n-tuple is natural in the iteration of the map (115) below. Later on we use

the same notation T Dn when D is a multiset of integers of cardinality n.

Compatibility with differentiation:

Each τ ∈ T Dn can be assigned a weight µ(τ) as follows

ω|o|+dj to an |o|-valent open circle vertex o, |o| ≥ 1 ,

γ2 to a dashed line connecting two open circles ,

γm to an m-valent dashed vertex, m ≥ 3 .

(114)

The degree of each factor in µ(τ) equals the ddeg of the underlying graph, d(ω|o|+dj) =

|o|+ dj = ddeg(|o|-valent open circle vertex), etc. Hence d(µ(τ)) =
∑n−1

j=0 dj, for all τ ∈ T Dn .

We write µ(T Dn ) for the span of all µ(τ), τ ∈ T Dn . Augmenting a (n+1)-st integer dn we

claim that

ωdn+1(ϕ)∂ϕ : µ(T Dn )→ µ(T Dn+1) , (115)

with the understanding that D = (d0, . . . dn−1, dn) in the range. This follows from the basic
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differentiation rules ∂ϕωm = γ2ωm+1, ∂ϕγm = γm+1 and the way ωdn+1∂ϕ acts on the three

types of factors in each µ(τ): acting on ωdj+1 the operator produces ωdn+1γ2ωdj+1, equivalent

to adding a dashed edge with an open circle vertex to an existing open circle vertex. Acting

on γ2 it produces ωdj+1γ3, which adds a dashed edge with an open circle to a dashed line.

Finally, acting on γm, m ≥ 3, gives ωdj+1γm+1, which adds a line with an open circle to an

existing dashed vertex. These basic operations are in one-to-one correspondence to those

generating the unlabeled graphs Tn+1 from Tn, verifying that (115) has the correct range.

Starting at n = 1 with an ωd0 assigned to the open circle vertex, one may verify directly

that repeated action of (115) produces a sum of terms whose underlying graphs match those

in (111) but with integers |o|+ dj, j = 0, 1, 2 . . ., assigned to their open circle vertices. The

map (115) provides the raison d’être for the dashed graphs.

Lemma 3.3.1. The recursion (98) generates only vertex weights µΓ(v|L) in (110) that lie

in the (v-dependent) direct sum of µ(T Dn ), for n = 1, . . . , nmax, nmax ≤ d(v) − 3, for some

integer multiset Dn.

Proof. We proceed by induction on l with L ∈ Ll. The assertion holds by inspection of

(101), (102), (103) for l = 4, 5. For the l − 1 7→ l step in the recursion (98) we denote by

Lj ∈ Lmj one of the 1LI graphs in Γmj ’s graph expansion and by LW ∈ Ll−m one of the 1LI

graphs in Wl−m’s expansion. We focus on one of the vertices v where the graphs are joined

and write v0 for v’s copy in LW and vj for v’s copy in LΓ
j , j = 1, . . . , k. By the W -graph rule

the structure of LW is irrelevant only the weight ωd(v0)(h)|h=Hv (and the inverse symmetric

factor Sym(LW ) irrelevant here) enters. If r of the k functional differentiations with respect

to some Hi act on the chosen Hv site the weight will be shifted to ωd(v0)+r(h)|h=h(ϕv). The

associated graph will still be denoted by LW ; it now has one rooted vertex v0 to which we

attribute multiplicity r. The single differentiation of Γmj with respect to some φi will always

produce 1-rooted graphs, and for the ones rooted at vj we write LΓ
j ∈ L1•

mj
. In any one term

contributing to (98) at v, a v0 of multiplicity r will have r 1LI graphs attached, which are

selected from the LΓ
j ∈ L1•

mj
, j = 1, . . . , k. Without loss of generality we take LΓ

j ∈ L1•
mj

,

j = 1, . . . , r, as the graphs attached to v0. For fixed r the weight associated with v is by
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(110)

ωd(v0)+r

r∏
j=1

∂ϕµ
Γ(vj|Lj) . (116)

By the induction hypothesis all µΓ(vj|Lj) have an expansion in the (vj-dependent) direct

sum of µ(T Dn ), n = 1, . . . , nmax. Focus on a term with nj open circle vertices in µΓ(vj|Lj).

For r = 1 the product (116) is directly of the form (115) and the assertion follows. For r ≥ 2

one notices that each ∂ϕµ
Γ(vj|Lj) has one degree lower and can be attributed to tree graphs

with nj open circle vertices and an extra edge without open circle (so that these trees are

not dashed graphs as defined above). The product (116) contains 1+n1+ . . .+nr ωm factors

and expands into terms that can again be attributed to dashed graphs. This is because the

extra r dashed edges are joined at the extra open circle vertex associated with ωd(v0)+r. In

other words, the set of dashed graphs is closed under a gluing operation that first creates an

external dashed edge and then joins any number of such trees at an extra open circle vertex.

As 1 ≤ r ≤ k ≤ [m/2] runs through all possible values allowed by (98) only terms that can

be associated with dashed graphs T Dn , for some n are generated. Comparison with (109)

shows that the maximal n that can occur in a normalized weight µΓ(v|L) is nmax ≤ d(v)− 3

(while the actual nmax turns out to be much smaller).

It remains to understand the coefficients with which the various dashed graphs occur in

µΓ(v|L). To this end a different type of labeling turns out to be useful.

Assignment of labels:

The labels are set partitions of vertices as frequently used in other contexts. In the

situation at hand, the vertex set {b1, . . . , bI} will later be identified with the one associated

with an articulation vertex v in the block decomposition (as defined at the end of Section

3.2.1) of the underlying one-line irreducible graph L. For now we ignore the origin of the

set B = {b1, . . . , bI} and consider its set partitions. If all elements of B are distinct, a set

partition of B is a set of non-empty disjoint subsets of B whose union is B. An element of

a partition is called a cell; we write S(B, k) for the set partitions of B with k cells. The

number of partitions of a set B with I distinct elements into n cells is given by S(I, n),

the Stirling number of the second kind. The total number of set partitions is given by the

Bell number B(I) =
∑I

n=1 S(I, n). A convenient generating function is exp{y(ex−1)} =
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∑
I,n≥0 S(I, n) ynxI/I!. Generalizations have been considered in [33].

The same concept applies to multisets, i.e. sets of pairs (bi,mi) where mi ∈ N, specifies

the multiplicity with which bi occurs. We write

B = {bm1
1 , . . . , bmJJ } = {bi : i ∈ I} , I = {1, ..., 1︸ ︷︷ ︸

m1

, . . . , J, ..., J︸ ︷︷ ︸
mJ

} , (117)

for the multiset with multiplicities (m1, . . . ,mJ) ∈ NJ . In the alternative notation with

explicitly repeated elements the indexing I is viewed as a multiset. Two multisets are

identical iff they contain the same elements with the same multiplicities. The partitions of

a multiset are defined as the set partitions of a |I| =
∑

jmj element set where mj copies

of bj are identified afterwards and ‘duplicates’ are omitted from the list. There are several

notions of ‘duplicates’ one can use; we allow both repeated cells and repeated elements

within a cell but eliminate duplicates of the same partition. For example, S({a, b, c2}, 3)

has 4 elements, {{a}, {b}, {c2}}, {{a}, {b, c}, {c}}, {{a, b}, {c}, {c}}, {{a, c}, {b}, {c}}, as

opposed to |S({a, b, c, d}, 3)| = 6.

Unless specified otherwise we allow B in the following to be a multiset of the form (117).

A partition of B with n cells is then used to label the open circle vertices of a graph in Tn.

One may think of each open circle vertex as a ‘bag’ that contains a cell. Technically, the

labeling map is for each partition π ∈ S(B, n), a bijection ν0 7→ νπ0 , of sets of cardinality

n. While the vertices ν0 of the unlabeled graph may be assigned ‘dummy’ labels that can

be freely permuted in probing for isomorphisms the elements of νπ0 can only be permuted if

their labels coincide. Isomorphic labeled graphs are defined as in Section 3.2.1, with V = νπ0

as vertex set. We write T (B, n), 1 ≤ n ≤ I, for the set of topologically inequivalent dashed

graphs with n open circle vertices labeled by S(B, n). Further, for some unlabeled t ∈ Tn
we write T ∈ T (B, n) for one of its labeled counterparts.

As an illustration consider n = 3. The set partitions of B = {b1, b2, b3} are{
{b1, b2, b3}

}
,{

{b1}, {b2, b3}
}
,
{
{b2}, {b1, b3}

}
,
{
{b3}, {b1, b2}

}
,{

{b1}, {b2}, {b3}
}
. (118)
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These are then assigned as labels to the open circle vertices of the graphs in T1, T2, T3:

{b1, b2, b3} ∈

{b1} ∈ 3 {b2, b3} , {b2} ∈ 3 {b1, b3} , {b3} ∈ 3 {b1, b2} ,

{b1} ∈

{b2}

3 {b3} , {b2} ∈

{b1}

3 {b3} , {b1} ∈

{b3}

3 {b2} ,

{b1} ∈

{b2}

3 {b3} (119)

Clearly, none of the labeled graphs (119) allows for nontrivial automorphisms. This may

change when multisets are used to generate the labels.

Symmetry factors:

Each unlabeled t ∈ Tn has an automorphism group which we define in the obvious way:

let ν0 be the set of open circle vertices, ν1 the set of dashed vertices, and ε ⊂ (ν0 ∪ ν1)2 the

edge list, subject to the constraints in the definition. An automorphism of t is a permutation

of ν0 ∪ ν1 that leaves ν0, ν1 and the edge list separately invariant. These form a group for

which we write Aut(t).

The labeling process described above precludes nontrivial permutations except when B

has repeated elements. For a multiset (117) the mi copies of bi can be permuted giving

rise to a direct product Perm(B) := Sm1 × . . . × SmJ of symmetric groups acting on B.

For a partition π ∈ S(B, n) let νπ0 = {(oi, ci) : i = 1, . . . , n} be the set of n labeled open

circle vertices. Note that each dummy labeled oi is paired with non-dummy ci, the index

i merely enumerates the list of pairs. Each cell ci, i = 1, . . . , n may again be a multiset

{bci,11 , . . . , b
ci,J
J } with multiplicities ci,1, . . . , ci,J ∈ N0, where we set the multiplicity to zero

if the element does not occur. A subgroup Perm(ci) = Sci,1 × . . . × Sci,J ⊂ Perm(B) (with

factors absent whose multiplicity is zero) will still permute copies of the same elements that

ci may contain. By the very process of forming set partitions the direct product fix(νB0 ) :=

Perm(c1) × . . . × Perm(cn) ⊂ Perm(B) is still a subgroup, with Sc1,1 × . . . × Scn,1 ⊂ Sm1 ,

etc. In other words, fix(νB0 ) is the subgroup of Perm(B) that maps individual labels of

T ∈ T (B, n) into themselves. Writing |fix(νB0 )| for its order, one has by Lagrange’s theorem
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|Perm(B)|/|fix(νB0 )| ∈ N.

An automorphism of T ∈ T (B, n) is defined as in the unlabeled case, except that the

unlabeled set ν0 of t ∈ Tn is replaced with the labeled one νπ0 = {(oi, ci) : i = 1, . . . , n},

π ∈ S(B, n). Since the oi labels are dummy two elements of νπ0 are regarded as equal iff their

cells ci are equal as multisets. The n labeled vertices can thus be grouped into subsets with

the same label. An automorphism of the underlying unlabeled graph t that affects only sets

of equally labeled vertices is also an automorphism of T , and all automorphisms of T arise

in that way. They form again a group, denoted by Aut(T ), which is a subgroup of Aut(t).

Finally, the symmetry factor of a labeled tree graph T ∈ T (B, n) is defined by

Sym(T ) = |Aut(T )||fix(νB0 )| . (120)

As an illustration of these concepts, reconsider the graphs in (119) but now labeled by

the set partitions of {b, b, b′}. The symmetry factors (120) may differ from 1 and are noted

to the right of each graph:

{b, b, b′} ∈ Sym = 2

{b} ∈ 3 {b, b′} Sym = 1 , {b′} ∈ 3 {b, b} Sym = 2 ,

{b} ∈

{b}

3 {b′} Sym = 1 , {b} ∈

{b′}

3 {b} Sym = 2 ,

{b} ∈

{b}

3 {b′} Sym = 2 (121)

We now claim that

|Perm(B)|/Sym(T ) ∈ N , (122)

We present a direct proof on the level of multisets here. In Section 3.4 the result is recovered

along different lines. Suppose that p̃ of the elements of νπ0 of T are equally labeled, and that

there is a subgroup A of Aut(t) that acts transitively on {o1, . . . , op} of t, with p ≤ p̃. A may

act on vertices other than {o1, . . . , op}, once these are labeled only a subgroup A0 of A may

act on the equally labeled {(oj, cj) : j = 1, . . . , n}, c1 = . . . = cp. Note that p!/|A0| is an
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integer. We wish to lift this A0 ⊂ Aut(t) to an automorphism group of the labeled version

T of t with the p equally labeled {(oj, cj) : j = 1, . . . , p}. Focus on one of the elements

of the p identical cells cj with nonzero multiplicity, say b
cj,1
1 , cj,1 = n1 ≥ 1, j = 1, . . . , p,

without loss of generality. Overall these are pn1 copies of b1 which arose by distributing the

original m1 ≥ pn1 copies from (117) to the cells under consideration and possibly others.

Hence there is a subgroup Spn1 ⊂ Sm1 that permutes the copies of b1 within each cell and

mixes the b1 sectors of different cells. The permutations within each cell are part of fix(νB0 )

and have total order (n1!)p. The other permutations implement the desired automorphisms

of T within Spn1 . The relevant ratio thus is p!/|A0| ∈ N times (pn1)!/[p!(n1!)p]. The latter is

indeed an integer for all n1 ∈ N. Repeating the argument for all elements of the p identical

cells with nonzero multiplicities one arrives at |Perm(B)|/Sym(T ) ∈ N. This argument does

not rely on a group structure of the permutations of elements across cells.

3.3.2 Formulation and illustration of the graph rule

We now return to the previous result (110) and provide a graph rule for the missing

ingredient µΓ(v|L), where L ∈ Ll is a 1LI graph with l edges and v is one of its vertices.

Recall the notion of a block decomposition from the end of Section 3.2.1. Each L ∈ Ll
is either itself 1VI or has a block decomposition {L1, . . . , LN}, in terms of maximal 1VI

subgraphs Lj = (Bj, Ej), j = 1, . . . , N , which must also be 1LI. Each articulation vertex

occurs in more than one Bj, while non-articulation vertices occur in precisely one Bj. For

a fixed articulation vertex v let B(v) = {Li(v) = (Bi, Ei), i ∈ I(v)}, with 2 ≤ |I(v)| ≤ N ,

be the subset of blocks with v ∈ Bi. Isometric blocks can be permuted, we denote this

permutation group by Perm(B(v)) and its order by |Perm(B(v))|. We write bi(v) for the

copy of v in Bi, i ∈ I(v), and treat the copies bi(v) as identical, bi(v) = bi′(v), iff Li(V ) and

Li′(v) are isomorphic. Viewed as a vertex in Li(v) each bi(v) has a degree (with respect to

the full lines) d(bi(v)) ≥ 2 such that
∑

i∈I(v) d(bi(v)) = d(v). Non-articulation points can

formally be included in this setting by allowing |I(v)| = 1.

With this convention the edge sets are redundant and we also write B(v) = {bi(v) :

i ∈ I(v)}, on which the same permutation group Perm(B(v)) acts. In general B(v) will
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be a multiset for which use the notations (117). Then Perm(B(v)) is a direct product

Sm1×. . .×SmJ of symmetric groups. Next we generate the set partitions S(B(v), n) with n =

1, . . . , |I(v)| cells. Each cell ci = {bci,11 , . . . , b
ci,J
J } may again be a multiset whose multiplicities

obey
∑n

i=1 ci,j = mj and
∑n

i=1

∑J
j=1 ci,j = |I(v)|. The cells are used to label the open circle

vertices of the tree graphs in Tn, 1 ≤ n ≤ |I(v)|, as in Section 3.3.1; coinciding labels are

allowed and correspond to cells coinciding as multisets. We write T (B(v), n) for the set of

topologically distinct labeled dashed graphs with n open circle vertices labeled by S(B(v), n).

Individual labeled graphs are denoted by T ∈ T (B(v), n), with Sym(T ) the symmetry factor.

Theorem 3.3.2 (Graph rules for vertex weights). The weights µΓ(v|L) in (110) depend only

on the block decomposition B(v) of L at v and can be obtained by the following graph rule:

(a) A weight µ(T ) is assigned to each labeled graph T ∈ T (B(v), n), 1 ≤ n ≤ |I(v)|, as

follows: for an |o|-valent (with respect to the dashed lines) open-circle vertex o labeled

by the cell ci = {bci,11 , . . . , b
ci,J
J } write a factor ω|o|+d(ci)(ϕv), d(ci) :=

∑J
j=1 ci,jd(bj), for

each dashed line connecting two open circle vertices a factor γ2(ϕv), and for each vertex

with m ≥ 3 intersecting dashed lines a factor γm(ϕv) (the dashed lines that intersect

at the dashed-vertex do not contribute a factor). The resulting monomial µ(T ) in

γ2, ωm, γm,m ≥ 3, has by (113) degree
∑n

i=1 d(ci) =
∑J

j=1mj d(bj) = d(v).

(b) Multiply µ(T ) by

(−)s(T ) |Perm(B(v))|
Sym(T )

, (123)

where s(T ) is the sum of the number of dashed lines and the number of dashed vertices.

Further, |Perm(B(v))| is the order of the permutation group of the blocks at v, and

Sym(T ) is the symmetry factor of the labeled dashed graph as defined in Section 3.3.1.

(c) Sum the contributions from (a),(b) over all n and T ∈ T (B(v), n) to obtain µΓ(v|L) =

µΓ(v|B) as

µΓ(v|B) =

|I(v)|∑
n=1

∑
T∈T (B(v),n)

(−)s(T ) |Perm(B(v))|
Sym(T )

µ(T ) . (124)

This is normalized such that µΓ(v|L) = ωd(v)(ϕv) for a non-articulation vertex (|I(v)| =

1) of degree d(v).
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Illustration of the graph rule:

(i) The simplest case is the “pair of glasses” graph in (101). It has two isomorphic blocks

, joined at the articulation point. Hence |Perm(B(v))| = 2. The vertex set B(v)

contains two copies of the same element, {b, b}, say, with d(b) = 2. The set partitions of B(v)

are {{b, b}} and {{b}, {b}}. Thus the labeled dashed graphs T ∈ T (B(v), 1), T (B(v), 2), are

{b, b} ∈ , {b} ∈ 3 {b}. (125)

They have each Sym(T ) = 2, and contribute ω4(ϕ), −γ2(ϕ)ω3(ϕ)2, respectively, in the sum

(124). This reproduces the weight in (101).

(ii) As a more complicated exemplification consider (107). At v′ three block are joined: two

copies of , and . Hence |Perm(B(v′))| = 2. The vertex set B(v′) = {b, b, b′}

with d(b) = 2, d(b′) = 3, gives rise to the labeled tree graphs presented in (121). The sum

(124) evaluates to

µ(v′|L) =
2

2
ω7(ϕv′)−

2

1
γ2(ϕv′)ω3(ϕv′)ω6(ϕv′)−

2

2
γ2(ϕv′)ω4(ϕv′)ω5(ϕv′) (126)

+
2

2
γ2

2(ϕv′)ω
2
3(ϕv′)ω5(ϕv′) +

2

1
γ2

2(ϕv′)ω3(ϕv′)ω
2
4(ϕv′) +

2

2
γ3(ϕv′)ω

2
3(ϕv′)ω4(ϕv′),

in agreement with (107). At v two distinct blocks are joined, and . Hence

|Perm(B(v))| = 1. The vertex set is B(v) = {b, b′}, with d(b) = 2, d(b′) = 3. The labeled

tree graphs are as in (125) but with distinct elements b, b′. Both have symmetry factor 1 and

the sum (124) gives µ(v|L) = ω5(ϕv)− γ2(ϕv)ω3(ϕv)ω4(ϕv), again in agreement with (107).

3.3.3 Proof of the graph rule

We first bring into focus what needs to be shown. By Lemma 3.3.1 each weight µΓ(v|L)

lies in the direct sum of µ(T Dn ), n = 1 . . . , nmax, nmax ≤ d(v) − 3, for some integer multiset

Dn. It is convenient to introduce a projection operation

pr : T (B(v), n) −→ T (D(v), n) , T 7→ pr(T ) , (127)

whereD(v) = d(B(v)), as a multiset. Further, each cell ci labeling T ∈ T (B(v), n) is replaced

by its integer degree sum d(ci). The result is an element of T Dn , where the integers Dn are
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d(π) := {d(c1), . . . , d(cn)} (viewed as a multiset), if π = {c1, . . . , cn} is the partition labeling

T . Note that each Dn is drawn from the n-element partitions of D(v) = {d(bi) : i ∈ I(v)},

with each integer in Dn equal to the sum of the integers in the cell. Since distinct bi’s can

have the same degree and many degree sums d(ci) can be equal as well, the projected label

set S(D(v), n) will in general be of much smaller cardinality than S(B(v), n). We write

T (D(v), n) for the set of topologically inequivalent labeled dashed graphs with n open circle

vertices labeled by some Dn ∈ S(D(v), n).

Clearly, µ(T ) = µ(τ), for τ = prT , if µ(τ) is formed according to (114). The graph rule

is therefore compatible with Lemma 3.3.1 and the projection (127). What remains to be

shown is: nmax = |I(v)|, and

coefficient of µ(T ) = (−)s(T ) |Perm(B(v))|
Sym(T )

, T ∈ T (B(v), n) , n = 2, . . . nmax . (128)

The case n = 1 is accounted for by (109) and can be omitted. Indeed, for n = 1 the only

T ∈ T (B(v), 1) graph is an open circle labeled by c1 = B(v), the groups Perm(B(v)) and

fix(νB0 ) coincide and the coefficient of µ(T ) = ωd(v) is 1, in agreement with (109). By Lemma

3.2.2 we can also match the situation where only the ωd(v) term in (127) is present to graphs

L without articulation points, in agreement with the graph rule. The key step is:

Lemma 3.3.3. For 1LI graphs with one articulation point (128) and hence the graph rule

(a),(b),(c) is compatible with the recursion (98).

Proof. We proceed by induction in l by assuming that (a), (b), (c) of the graph rule produce

the correct vertex expressions for orders 1, . . . , l−1. Let L ∈ Ll be a 1LI graph with a single

articulation vertex v, and L1(v), . . . , LI(v) is its block decomposition. The Li(v) are viewed

as 1-rooted graphs, with roots bi regarded as identical iff the Li(v) are isomorphic as 1VI

graphs. With this convention B(v) is a multiset of the form (117) which codes the structure

of L at v. In the recursion (98) the contribution coming from L is reassembled from its block

decomposition by gluing together various blocks arising from the graph expansion of the

W
(k)
l−m, Γ

(1)
m1 , . . . ,Γ

(1)
mk pieces. The weights associated with non-articulation vertices are known

from Lemma 3.2.2 so we can focus on v.

At v the structure of the 1LI graph LW induced by W
(k)
l−m is irrelevant (as in the proofs
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of Lemmas 3.3.1 and 3.3.4) and only the shifted weight ωd0+k enters, where d0 = d(v0) is

the valency (wrt the full lines) of v’s copy v0 in the 1LI graph associated with Wl−m. The

shift counts the number of h-derivatives acting on ωd0(h)|h=Hv ; since L has by assumption

only one articulation point all k derivatives in W
(k)
l−m must act on the same vertex weight, viz

ωd0(h). In particular v0 should be viewed a rooted vertex with multiplicity k. Attached to

v0 will be k 1LI graphs LΓ
j ∈ L1•

mj
that arise from the graph expansion of Γ

(1)
mj , respectively,

and that are rooted at some vj. Each of the LΓ
j may decompose into several blocks at vj,

in the above convention we may write B(vj) for the set of blocks stemming from LΓ
j ∈ L1•

mj
.

Similarly, LW may decompose into several blocks at v0 and we write B(v0) for their vertex

set. Then B(v) is the union of the B(vj), j = 0, 1, . . . , k, as k runs through all possible

values in (98). For fixed k the weight associated with v can be written in terms of its copies

in B(vj) as

ωd(v0)+k

k∏
j=1

∂ϕµ
Γ(vj|B(vj)) , k = 1, . . . , [m/2] , (129)

where by induction hypothesis each µΓ(vj|B(vj)) is given by (124). In particular, each

µΓ(vj|B(vj)) expands into contributions associated with dashed graphs in T (B(vj), nj), nj =

1, . . . , |I(vj)|, labeled by the set partitions of B(vj) with nj cells, j = 1, . . . , k. The minimal

number of cells is k, the maximal number of cells is
∑k

j=1 |I(vj)| = |I(v)| − 1. The blocks in

B(v0) are not subject to the Γ graph rule but to the W graph rule and thus only give rise to

the ωd(v0)+k factor in (129). In terms of the integer labeled dashed graphs d(v0) labels a k-

valent open circle vertex o ∈ ν0 and conversely every k-valent open circle vertex in an integer

labeled dashed graph can be associated with a W
(k)
l−m induced piece. Each of the k-subtrees

joined to it has a dashed edge generated by ∂ϕ without open circle vertex, while all of its nj

open circle vertices are labeled by the set partitions in S(nj, B(vj)), j = 1, . . . , k. The result

is a dashed graph T ′ with n = 1 +
∑k

j=1 nj ∈ {k + 1, . . . , |I(v)|} open circle vertices, all but

one of which are labeled by set partitions drawn from those of the individual B(vj)’s. In the

setting of (128) this fixes nmax = |I(v)|. Subject to the degree constraint d(c0) = d(v0) the

so far only integer labeled vertex v0 can also be labeled by some vertex set c0.

We are free to postulate that T ′ ought to be relabeled – while preserving the weight – by

the much larger set of set partitions of B(v), viewed as the union of B(vj), j = 0, 1, . . . , k,
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to produce a graph in T ∈ T (B(v), n), n = k+ 1, . . . , |I(v)|. For later reference we mark the

transition from T ′ to T with µ(T ′) = µ(T ) by (∗). Summing the contributions (129) over all

k = 1, . . . , [m/2], m = 2, . . . , l − 2, we know that the result must be of the form (124) but

with a yet undetermined coefficient of µ(T ). As noted after (127) the weight only depends

on the projection pr(T ) of the graph, but we are free to stipulate that the integers occurring

are the degree sums of the cell partitions of B(v), i.e. di = d(ci). Then part (a) of the graph

rule holds by construction and only the assertion about coefficient (128) needs to be shown.

By the induction hypothesis each the Γ
(1)
mj induced pieces comes with a 1/Sym(LΓ

j ) factor

where LΓ
j ∈ L1•

mj
is a 1-rooted 1LI graph. Similarly, by the W graph rule the W

(k)
l−m induced

piece carries a 1/Sym(LW ) factor, where LW is also a 1-rooted 1LI graph but with the root

attributed multiplicity k, as seen above. Since we focus on 1LI graphs that combine to L (and

L has only one articulation point) all LW , LΓ
1 , . . . , L

Γ
k , have a clover-like block decomposition

with the blocks joined at a central vertex v0, v1, . . . , vk, respectively. Each block is treated as

1-rooted and arranged in some lexicographic order that they can be identified with the blocks

L1, . . . , LI of L at v. The prefactor of a term on the right hand side of (98) contributing to

L via the k+1 1LI subgraphs is thus

1

Sym(LW )

k∏
j=1

1

Sym(LΓ
j )

=
k∏
j=0

1

|Perm(B(vj))|

I∏
i=1

1

Sym(Li)
. (130)

This collects all the pre-factors arising from (85), (110) and we proceed to the normalized

weight for the articulation vertex v obtained from (98).

Each ∂ϕµ(vj|B(vj)) in (129) expands into tree graphs {Tj} which we regard as 1-rooted,

{Tj} ⊂ T 1•
nj

, and the root as the endpoint of a dashed edge without open circle. The

normalized weight at vj carries the coefficient

(−)|ν1(Tj)|+|ε(Tj)| |Perm(B(vj))|
Sym(Tj)

, {Tj} ⊂ T 1•
nj
, (131)

with the symmetry factor defined in (120). For j = 1, . . . , k the |Perm(B(vj))| cancels against

that in (130). Suppose now for fixed j ∈ {1, . . . , k} there are kj isomorphic subtrees Tj (not

separately named) attached to the W
(k)
l−m vertex, with

∑
j kj = k. Then accounting for the

1/k! in (98) and omitting the
∏I

i=1 1/Sym(Li) from (130) we obtain the full prefactor of the
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choice of W
(k)
l−m vertex

1

|Perm(B(v0))|

k∏
j=1

(
(−)kj(|ν1(Tj)|+|ε(Tj)|)

kj! Sym(Tj)kj

)
. (132)

Let T ∈ T (B(v), n), n = 1 +
∑k

j=1 nj, (in the notation introduced after (129)) be the graph

reassembled from the rooted subtrees Tj at the vertex o with weight ωk+d(v0). The total

weight is ωk+d(v0) times the products of the weights of the subtrees, and is of the form µ(T )

in part (a) of the graph rule. The overall sign is (−)|ν1(T )|+|ε(T )| = (−)s(T ). A straightforward

application of the orbit stabilizer theorem shows that the modulus of (132) equals

1

|fix(νB0 )||Aut(T 1)|
, (133)

where T 1 is T seen as rooted at the open circle vertex o. Further, we used that fix(νB0 ) is

a direct product over cells and treated the Perm(B(v0)) from (132) as the factor in fix(νB0 )

associated with the v0 cell. There may be several identical choices for the k-valent open

circle vertex o introduced after (129) and this is just orb(o), the orbit of o under Aut(T ).

Taking into account (120) and the (l −m)/l from (98) the net coefficient is

(−)s(T )

Sym(T )
|orb(o)| × l −m

l
. (134)

Each of these k-valent open circle vertices o is labeled by a cell containing the vertices

bi(v) ∈ Bi of some subset of blocks Li = (Bi, Ei), i ∈ Io, and we usually omit the edge set Ei.

Restoring some of the information we may attribute to o the total number l(o) =
∑

i∈Io |Ei|

of solid lines in the blocks labeling it. Then
∑

o∈νB0
l(o) = |E| is the total number of edges

in the original graph with one articulation vertex.

We now apply this to the clover like 1LI graph LW with l−m edges. After the relabeling

T ′ 7→ T described at (∗) the relevant vertex set is νB0 , B = B(v), with the blocks attributed

to o such that l(o) = l −m. The point of the re-interpretation is each orbit in νB0 /Aut(T )

corresponds to a distinct choice of the W
(k)
l−m piece, and the contribution (134) of T to µ(v|L)

involves ∑
[o]∈νB0 /Aut(T )

|orb(o)|l(o) =
∑
o∈νB0

l(o) = l . (135)
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Summing (134) using (135) the coefficient of µ(T ) is (−)s(T )/Sym(T ). Finally, restoring the

I∏
i=1

1

Sym(Li)
=
|Perm(B)|
Sym(L)

, (136)

from (130) and the µ(T ) itself the normalized contribution of the articulation vertex v is

(−)s(T ) |Perm(B(v))|
Sym(T )

µ(T ), (137)

as claimed by the graph rule.

Next we show a ‘locality’ result which allows one to reduce the case with multiple artic-

ulation points to that with just one.

Lemma 3.3.4. (Locality) The recursion (98) implies that the weights µΓ(v|L), L ∈ Ll,

depend only on the block decomposition B(v) = {Li(v) = (Bi, Ei) : i ∈ I(v)} of L at v,

symbolically

µΓ(v|L) = µΓ(v|B) , (138)

where on the right hand side µΓ(v| · ) is regarded as a map from B(v) to the smooth functions

in ϕv.

Proof. By (109) we know the structure of µΓ(v|L) but the coefficients could in principle

depend on all aspects of the graph L to which v belongs. To exclude this, we retain the

notation from the preceeding Lemma and trace the changes that occur if the original L has

more than one articulation point. We single out one articulation point v write v0 for its copy

in the 1LI graph LW . In the paragraph leading to (129) then any number r = 1, . . . , k of

h derivatives can act on the ωd0(h)|h=Hv , in which case v0 should be viewed as a root with

multiplicity r. Attached to v0 will be r 1LI graphs selected from the LΓ
j ∈ L1•

mj
, j = 1, . . . , k.

Without loss of generality we may take LΓ
j , j = 1, . . . , r, as the 1LI graphs attached to v0.

We write again B(vj) for the vertex set blocks stemming from LΓ
j and B(v0) for the vertex

set of the LW blocks at v0. Then B(v) is the union of B(v0) and B(vj), j = 1, . . . r, as

1 ≤ r ≤ k ≤ [m/2] runs through all possible values allowed by (98). For any fixed r the
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weight associated with v is

ωd(v0)+r

r∏
j=1

∂ϕµ
Γ(vj|B(vj)) . (139)

With the replacement of k by r the reasoning after (129) carries over and establishes in

particular nmax = |I(v)|. The relabeling (∗) from T ′ to T proceeds as before, with k replaced

by r. Summing the contributions (139) over all allowed 1 ≤ r ≤ k ≤ [m/2] must result in

a weight of the form (127) with nmax = |I(v)|. The µ(T ) obtained is solely determined by

block structure of L at v and adheres to the graph rule. The way the coefficient of µ(T ) is

computed by the recursion (98), however, initially refers to pieces of information not localized

at v.

In pinning down the coefficient of µ(T ) the key difference to the previous Lemma is that

the relevant 1-rooted 1LI graphs LW (multiplicity r) and LΓ
1 , . . . , L

Γ
r (all multiplicity 1) no

longer have to have a clover like structure. That is, in addition to articulation vertex v0 and

v1, . . . , vr in focus these graphs can have other articulation vertices. This complicates the

reduction of the symmetry factors Sym(LW ), Sym(LΓ
1 ), . . . , Sym(LΓ

r ), to those of the con-

stituent blocks. However (130) remains valid if the Li on the right hand side are interpreted

as the not necessarily 1VI subgraphs that arise by disassembling the LW , LΓ
1 , . . . , L

Γ
r , at

v0, v1, . . . , vr, respectively. With this reinterpretation the structure of the LW , LΓ
1 , . . . , L

Γ
r ,

remains clover-like at the vertex in focus. The line of reasoning from (131) to (134) carries

over with k replaced by r and so does the remainder of Lemma 3.3.3. In summary, the pieces

of information (130), (134), (136) referring to the global structure of the reassembled graph

L cancel out in the final result for the coefficient of µ(T ), which has the form demanded in

(128).

Combined, Lemma 3.3.3 and Lemma 3.3.4 imply Theorem 3.3.2.

3.4 Reduction to integer labeled trees

Our formula (124) for the µΓ(v|L) weight at v renders the ‘locality’ of the data B(v)

determining it manifest. The labeling of the tree graphs T (B(v), n), n = 1, . . . , |I(v)|, by the
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set partitions of B(v) is a convenient way to account for the coefficients with which a certain

monomial in γ2, γm, ωm, m ≥ 3, occurs. Comparing with (127), (128) one may suspect that

the labeling by vertex set partitions {c1, . . . , cn} ∈ S(B(v), n) somewhat overspecifies the

necessary data. Indeed, upon identifying the integers di in (114), (115) with di = d(ci), the

sum of the vertex degrees in cell ci, one expects µΓ(v|B) to depend only on these integers,

not on the details of the labeling cells ci themselves. This turns out to be the case because

subsums in (124) with fixed µ(T ) can be performed and manifestly depend only the unlabeled

tree and the d(ci). To avoid complications due to accidental degeneracies we sum over a

subset of graphs whose defining criterion is sufficient but not necessary for the constancy of

µ(T ).

We return to the projection (127) and note that the weight µ(T ) depends only on pr(T ) =

τ . Indeed, with µ(τ) formed according to (114), one has µ(T ) = µ(τ) = m(t)
∏n

i=1 ωri , where

m(t) collects the γm, m ≥ 2, factors that depend only on the unlabeled graph. The integers

ri = ddeg(oi, d(ci)) lie in the range of the ddeg function (112) and depend only on the integer

labeled vertex set prνπ0 = ν0(τ), τ ∈ T d(π)
n . Here d(π) can be any element of the projected

label set S(D(v), n) as defined after (127). It is convenient to introduce for given t ∈ Tn,

Dn ∈ S(D(v), n), the range of ddeg acting on the vertex set ν0(τ) of some τ ∈ T Dn

ρ(t,Dn) = {ddegν0(τ) : τ ∈ T Dn } . (140)

For n ≥ 2 elements ρn of ρ(t,Dn) are of the form ρn = {3 ≤ ri ∈ N : i = 1, . . . , n} and

the weight µ(τ) = µ(t, ρn) only depends on t and ρn ∈ ρ(t,Dn). We seek to identify labeled

graphs T ∈ T (B(v), n) with fixed µ(T ); by the previous considerations this requires to hold

for given t,Dn the ρn ∈ ρ(t,Dn) fixed. We thus write T (t, B(v), n) for the set of topologically

inequivalent dashed graphs that arise by labeling t ∈ Tn with S(B(v), n). Defining

T B(t,Dn, ρn) := {T ∈ T (t, B(v), n) : prT = τ ∈ T Dn , ddeg(prνπ0 ) = ρn} , (141)

all its elements have the same weight µ(t, ρn). Further, the full set of labeled dashed graphs

can be partitioned according to

T (t, B(v), n) =
⋃

Dn∈S(D(v),n)

⋃
ρn∈ρ(t,Dn)

T B(t,Dn, ρn) . (142)
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The image under pr of the union of (142) over all t ∈ Tn is partitioned analogously,

T (D(v), n) =
⋃

Dn∈S(D(v),n)

⋃
t∈Tn

⋃
ρn∈ρ(t,Dn)

T Dn (ρn) , (143)

with T Dn (ρn) := {τ ∈ T Dn : ddegν0(τ) = ρn}. In the graph rule formula (124) the decom-

position (142) allows one to ‘pull in’ the sub-sub over T B(t,Dn, ρn). The evaluation of this

subsum is the main result of this section:

Theorem 3.4.1. In the graph rule (124) the sum over graphs T ∈ T (B(v), n) labeled by

partitions of the vertex set B(v) can be replaced with a sum over integer labeled trees.

Specifically, µΓ(v|B) = µΓ(v|D), with D(v) = d(B(v)) and

µΓ(v|D) =

|I(v)|∑
n=1

∑
Dn∈S(D(v),n)

∑
t∈Tn

(−)s(t)
∑

ρn∈ρ(t,Dn)

c(t,Dn, ρn)µ(t, ρn) ,

c(t,Dn, ρn) =
∑

T∈T B(t,Dn,ρn)

Perm(B(v))

Sym(T )
=
|ν0(Dn, ρn)|
|Aut(t)|

P (D(v), Dn) . (144)

Here P (D(v), Dn) is the number of partitions of |I(v)| distinct labels {b1, . . . , b|I(v)|} into n

cells such that the sum of the d(bj) in the i-th cell cell equals the given di, and |ν0(Dn, ρn)| is

the cardinality of {νπ0 : ddeg(prνπ0 ) = ρn, π ∈ S(B(v), Dn)}. For the latter one has explicitly

|ν0(Dn, ρn)| =
( k∏
i=1

ni!
) n∏
j=1

sj!

sj,1! . . . sj,k!
, (145)

where n1, . . . , nk,
∑k

i=1 ni = n, are the numbers of equally valent open circle vertices in t,

and sj,i is the number of equally valent open circle vertices of type i labeled by dj, where

Dn = {ds11 , . . . , d
sn
n }.

The notational complexity notwithstanding, the formula (144) is in fact a simplification

compared to (124) as a much smaller set of labeled trees need to be considered. Before turning

to the proof we illustrate the statement in the examples from Sections 2.2 and 2.3. The possi-

ble D(v)’s for the examples considered in Sections 2.2, 2.3 are D(v) = {2, 2}, {2, 3}, {2, 2, 3}.

Theorem 3.4.1 produces the correct weights for each D(v) with cardinality 2 by inspection.

As a simple illustration of Theorem 3.4.1, we detail the constituents for D(v) = {2, 2, 3}.
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n = 1: D1 = {7}, P (D(v), D1) = 1.

7 ρ1 = {7} |ν0(D1,ρ1)|
|Aut(t)| = 1

(146)

n = 2 : D2 = {2, 5}, P (D(v), D2) = 2.

2 5 ρ2 = {3, 6} |ν0(D2,ρ2)|
|Aut(t)| = 2!

2!
= 1

(147)

D2 = {3, 4}, P (D(v), D2) = 1.

3 4 ρ2 = {4, 5} |ν0(D2,ρ2)|
|Aut(t)| = 2!

2!
= 1

(148)

n = 3 : D3 = {2, 2, 3}, P (D(v), D3) = 1.

2

3

2
ρ3 = {3, 3, 5} |ν0(D3,ρ3)|

|Aut(t)| = 2!
2!

= 1

2

2

3
ρ3 = {3, 4, 4} |ν0(D3,ρ3)|

|Aut(t)| = 2!2

2!
= 2

2

2

3
ρ3 = {3, 3, 4} |ν0(D3,ρ3)|

|Aut(t)| = 3!
3!

= 1
(149)

This yields ω7−2γ2ω3ω6−γ2ω4ω5 +γ2
2ω

2
3ω5 +2γ2

2ω3ω
2
4 +γ3ω

2
3ω4, in agreement with the result

in (104) and (107).

In preparation of the proof of Theorem 3.4.1 we note that prT = τ ∈ T Dn implies that

the set partitions π labeling T ∈ T (B(v), n) are constrained to lie in S(B(v), Dn) := {π ∈

S(B(v), n) | d(π) = Dn}. These are viewed as (constrained) multiset partitions in the sense

explicated after (117). For the subsequent proofs a realization of the multisets as sets of

distinct elements B = {b1, . . . , bI} modulo an equivalence relation is convenient (to avoid

further complicating the notation we write B(v) for the multiset and B for {b1, . . . , bI}

equipped with an equivalence relation). For the moment we merely stipulate the existence

of an equivalence relation “∼” on B compatible with the degree assignments, i.e. bi ∼ bj
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implies d(bi) = d(bj) but not necessarily vice versa. We denote by Perm(B) the subgroup of

SI that permutes equivalent bi’s. In this setting the counterpart of the constrained multiset

partitions S(B(v), Dn) is S̄(B,Dn) = S(B,Dn)/Perm(B), while S({b1, . . . , bI}, Dn) does

not depend on the equivalence relation and neither does its cardinality P (D(v), Dn). The

counterpart of T B(t,Dn, ρn) is T B(t,Dn, ρn), the set of labeled graphs obtained by labeling

t ∈ Tn with C ∈ S̄(B,Dn) such that ddeg(prνC0 ) = ρn. The latter condition defines the

vertex set ν0(Dn, ρn). In this setting we later show:

Proposition 3.4.1. Let B = {b1, . . . , bI} be a set of distinct vertices equipped with an equiv-

alence relation “∼” that is compatible with the degrees, i.e. bi ∼ bj only if d(bi) = d(bj).

Define T (Dn, ρn), ν0(Dn, ρn), and P (D(v), Dn), as above. Then:∑
T∈T B(t,Dn,ρn)

|Perm(B)|
Sym(T )

=
P (D(v), Dn)|ν0(Dn, ρn)|

|Aut(t)|
, (150)

is independent of the equivalence relation on B.

Theorem 3.4.1 is an easy consequence of Proposition 3.4.1: Using (142) in (124) (and the

fact that s(T ) = s(t) is manifestly labeling independent) one finds (144) with the c(t,Dn, ρn)

given by the sum over T ∈ T B(t,Dn, ρn). Since
∑

T∈T B(t,Dn,ρn) |Perm(B(v))|/Sym(T ) =∑
T∈T B(t,Dn,ρn)

|Perm(B)|/Sym(T ), the second line of (144) follows from (150). The formula

(145) is straightforward combinatorics.

Keeping the integer labels from Dn fixed, the dummy labels of the equally valent open

circle vertices may be permuted while preserving ρn. This contributes the factor
∏k

i=1 ni!.

The remaining factor follows from the number of ways the sj labels with degree dj can be

distributed amongst the n1, . . . , nk equally labeled vertices. Application of the multinomial

theorem gives the contribution
∏n

j=1 sj!/(sj,1! . . . sj,k!), and hence the result (145).

It remains to establish Proposition 3.4.1. Its proof is broken up into several lemmas,

some of them more general than needed.

Lemma 3.4.2. Let B, “∼”, and Perm(B) be as in Prop. 3.4.1 and Sym(T ) as in (120).

Then the ratios |Perm(B)|/Sym(T ) are integers, and so are the di3,...im−1 in (109).

Proof. The second part follows trivially from the first. The µ(T ) in (124) refer to a mixed

basis of γ2, ωm, γm, m ≥ 3. By Appendix B the transition from ωm(ϕ) to γn(ϕ)’s involves
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integer coefficients only. It follows that the coefficients in (109) are also integers, di3,...im−1 ∈

Z.

For the first part, recall that labels are generated from the set partitions S(B, n) of B

into n cells. Any resulting partition π = {c1, . . . , cn} carries an induced equivalence relation

defined by ci ∼ ci′ iff there is a (possibly non-unique) σ ∈ Perm(B) such that σ(ci) = ci′ .

This implies that the subset

stab(π) = {σ ∈ Perm(B) : ∀i ∃i′ ∈ {1, . . . , n} s.t. σ(ci) = ci′}, (151)

is a subgroup of Perm(B). The case i = i′ in (151) is allowed and gives rise to a subgroup

fix(π) ⊂ stab(π), which in the multiset formulation corresponds to fix(νB0 ). In fact,

fix(π) = {σ ∈ stab(π) : ∀i σ(Ci) = Ci} is a normal subgroup of stab(π). (152)

Recall, H ⊂ G is a normal subgroup if ∀g ∈ G, g−1Hg = H. Here, let σ ∈ Φ(π), σ1 ∈ Φ1(π).

For each i, σ(ci) = ci′ , σ
−1(ci′) = ci with ci ∼ ci′ . Note that σ may not be unique but

any given σ has a unique inverse. Hence, σ1σ(ci) = ci′ and σ−1σ1σ(ci) = ci, valid for all σ,

implies (152).

Since fix(π) is a normal subgroup of stab(π), the quotient group stab(π)/fix(π) is well

defined. Moreover, as “∼” induces an equivalence relation on the partition π = {c1, . . . , cn},

we may define Perm(π) as the subgroup of Sk comprising only those elements that permute

equivalent cells. Both groups are naturally isomorphic

stab(π)/fix(π) ∼= Perm(π) . (153)

We can set up an isomorphism as follows. Use the fix(π) subgroup to permute in each cell

ci the equivalent elements it contains into some lexicographic order. Then cells ci, ci′ are

equivalent iff they contain lexicographically ordered strings of equal cardinalities for each

“∼” equivalence class. The quotient group permutes equivalent cells while preserving the

lexicographic order of the strings. As such it gives one realization of Perm(π) and hence (153).

Since |fix(π)| = |fix(νB0 )| it follows that |stab(π)| = |Perm(π)||fix(νB0 )|. When treating π as

a label set for the graphs T ∈ T (B(v), n) the automorphism group Aut(T ) is a subgroup of
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Perm(π). Lagrange’s theorem

|Perm(B)|
|fix(νB0 )||Aut(T )|

=
|Perm(B)|
|stab(π)|

|Perm(π)|
|Aut(T )|

∈ N , (154)

completes the argument.

We proceed with labeling the dashed graphs t ∈ Tn by an abstract n element label

set C = {c1, . . . , cn}. Later on the ci will be identified with the cells of a set partition in

S(B(v), n), for now the origin of the ci’s is irrelevant. In order to model the equivalence of

cells we assume that C carries an equivalence relation “∼” and that a subgroup Perm(C) of

Sn acts by permuting equivalent ci’s. As before, only the open circle vertices ν0 of t ∈ Tn are

labeled, technically via the graph of a bijection σ : ν0 → C. Each graph is referred to as a

labeling set (or pairing) and corresponds to a permutation σ ∈ Sn, so for ν0 = {o1, . . . , on}

and C = {c1, . . . , cn} we write a labeling set as νσ0 = {(oi, cσ(i)) : i = 1, . . . , n}, by slight

abuse of notation. For fixed C we now consider the set of all pairings

νC0 = {νσ0 : σ ∈ Sn} , |νC0 | = n! . (155)

Recall that an unlabeled graph t ∈ Tn may be written as t = (ν0∪ν1, ε), for one of its labeled

counterparts we write T = (νσ0 ∪ ν1, ε). As σ runs through Sn the set of labeled dashed

graphs generated is denoted by T Cn .

The product group Aut(t) × Perm(C) : νC0 → νC0 acts termwise on the elements of νσ0 :

for (g, h) ∈ Aut(t) × Perm(C) and νσ0 = {(oi, cσ(i)) : i = 1, . . . , n} define (g, h)(oi, cσ(i)) :=(
g(oi), h(cσ(i))

)
. We note that two distinct labeling sets νσ1

0 , νσ2
0 ∈ νC0 with σ1 6= σ2 can

correspond to the same labeled T ∈ T Cn . This occurs if there is an element of Aut(t) ×

Perm(C) that maps between the labeling sets. As an illustration consider t ∈ T3 with open

circle vertex set ν0 = {o1, o2, o3}

o1

o3

o2

t

(156)

With labels C = {c1, c2, c3} two distinct labeling sets are νσ1
0 =

{
(o1, c1), (o2, c2), (o3, c3)

}
and νσ2

0 =
{

(o1, c2), (o2, c1), (o3, c3)
}

, and the resulting labeled graphs T1 and T2 are shown
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in (157). On inspection it is clear that T1 and T2 are the same labeled graph as one can be

mapped into the other by interchanging o1 and o2.

(o1, c1)

(o3, c3)

(o2, c2)

T1

(o1, c2)

(o3, c3)

(o2, c1)

T2

(157)

Generally, labeling sets related by the above action of Aut(t) × Perm(C) give rise to the

same labeled graph. This underlies the following

Lemma 3.4.3. Let t ∈ Tn be an unlabeled graph and C = {c1, . . . , cn} be a set of distinct

labels equipped with an equivalence relation “∼”. Let Perm(C) be the subgroup of Sn that

permutes equivalent ci’s, and let T Cn (t) be the set of all topologically distinct labeled dashed

graphs obtained by labeling t with C. Then:∑
T∈T Cn (t)

|Perm(C)|
|Aut(T )|

=
n!

|Aut(t)|
, (158)

i.e. this sum is independent of the equivalence relation “∼” on C.

Proof. We consider the orbit orb(νσ0 ) of some νσ0 ∈ νC0 under the action of Aut(t)×Perm(C).

By the comment after (157) the orbit is the subset of νC0 whose elements correspond to the

same labeled graph T . Hence there exists a bijection between labeled graphs in T Cn (t)

and equivalence classes in νC0 /[Aut(t) × Perm(C)], i.e. orbits. The orbits are disjoint and

their union is νC0 . A sum over T ∈ T Cn (t) may be reexpressed as a sum over orbits [νσ0 ] ∈

νC0 /[Aut(t)× Perm(C)].

Next we claim that Aut(T ) for a labeled T ∈ T Cn (t) is isomorphic to some subgroup

Aut(t) × Perm(C). Suppose an element of Aut(T ) permutes two labeled vertices (o, c) and

(o′, c′) while preserving adjacency. This is possible iff there is a g ∈ Aut(t) that exchanges

v, v′, and there is a h ∈ Perm(C) that exchanges c, c′. For a labeling set νσ0 corresponding

to T , then (g × h)(νσ0 ) = νσ0 . Conversely, suppose there is an element of Aut(t) × Perm(C)

that leaves νσ0 invariant. This is a permutation of the pairs in νσ0 labeling T that preserves

adjacency in t, and so there is a corresponding element in Aut(T ). Thus Aut(T ) is isomorphic
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to the subgroup stab(νσ0 ) of Aut(t)×Perm(C) that leaves any labeling set νσ0 corresponding

to T invariant.

The stabilizer subgroups of two elements νσ0 , ν
σ′
0 of the same orbit are related by con-

jugation with the group element linking them. In particular, |stab(νσ0 )| = |stab(νσ
′

0 )|, for

νσ0 , ν
σ′
0 ∈ orb(νσ0 ). We may write∑

T∈T Cn (t)

|Perm(C)|
|Aut(T )|

=
∑

[νσ0 ]∈νC0 /[Aut(t)×Perm(C)]

|Perm(C)|
|stab(νσ0 |

. (159)

The orbit-stabilizer theorem implies |Aut(t)× Perm(C)| = |stab(νσ0 )||orb(νσ0 )|, i.e.

|Perm(C)|/|stab(νσ0 )| = |orb(νσ0 )|/|Aut(t)|. Thus∑
T∈T Cn (t)

|Perm(C)|
|Aut(T )|

=
1

|Aut(t)|
∑

[νσ0 ]∈νC0 /[Aut(t)×Perm(C)]

|orb(νσ0 )| = |νC0 |
|Aut(t)|

, (160)

as claimed.

We proceed to a variant of Lemma 3.4.3 where the equivalence relation on C is compatible

with an integer grading d : C → Nn. Each element of the label set C = {c1, . . . , cn}

is assigned an integer d(ci) ∈ N. The range d(C) = {d(c1), . . . , d(cn)} will in general be

a multiset Dn = {ds11 , . . . , d
sn
n }, with

∑n
i=1 si = n, si ∈ N0. If C is used to label some

t ∈ Tn, the weight assignment to its open circle vertices will by (112), (114) depend only

on the valency of the o ∈ ν0 and some integers which we will now draw drom the range

d(C). To this end we extend the ddeg function in (112) to the labeled vertices (oi, cσ(i)) by

ddeg(oi, cσ(i)) = |oi|+d(cσ(i)). In other words, the sum |oi|+d(cσ(i)) is viewed as an instance

of (112) where the integers arise from the degrees of the labeling set. This carries over to

ddegνσ0 := {ddeg(oi, cσ(i)) : i = 1, . . . , n} and we define

T C(ρn) := {T ∈ T Cn (t) : ddegνσ0 = ρn} ,

ν0(ρn) := {νσ0 ∈ νC0 : ddegνσ0 = ρn} , (161)

for some fixed ρn ∈ ρ(t, d(C)) in the range of the ddeg function

ρ(t, d(C)) := {ddegνσ0 : σ ∈ Sn} . (162)
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By the weight assigments (114) all T ∈ T C(ρn) have the same µ(T ). Equivalently, elements

νσ0 , ν
σ′
0 of the same orbit in νC0 /[Aut(t) × Perm(C)], have the same ρn and hence lie in the

same ν0(ρn). Clearly, T Cn (t) is partitioned by T C(ρn) as ρn runs through ρ(t, d(C)).

Lemma 3.4.4. Let t ∈ Tn be an unlabeled graph and C = {c1, . . . , cn} be a set of distinct

labels equipped with a grading d : C → Nn and a compatible equivalence relation “∼”, i.e.

ci ∼ cj only if d(ci) = d(cj). Then:∑
T∈T C(ρn)

|Perm(C)|
|Aut(T )|

=
|ν0(ρn)|
|Aut(t)|

, (163)

i.e. the sum is independent of the equivalence relation “∼” on C.

Proof. As noted in the proof of Lemma 3.4.3, there is a bijection between the labeled graphs

in T Cn (t) and the orbits in νC0 /[Aut(t)× Perm(C)]. Therefore we may write∑
T∈T (t,ρn)

|Perm(C)|
|Aut(T )|

=
∑

[νσ0 ]∈ν0(ρn)/[Aut(t)×Perm(C)]

|Perm(C)|
|stab(νσ0 )|

=
1

|Aut(t)|
∑

[νσ0 ]∈ν0(ρn)/[Aut(t)×Perm(C)]

|orb(νσ0 )| = |ν0(ρn)|
|Aut(t)|

. (164)

In the first identity the constancy of ρn within orbits entered, in the second the orbit-stabilizer

theorem was used as in the proof of Lemma 3.4.3. The elements of ν0(ρn) depend on the

grading but not on the specific equivalence relation “∼” compatible with it.

We now return to the graph rule, where the label set C originates from partitioning the

vertex set B into n cells. We adopt the equivalence class setting from Proposition 3.4.1: given

a vertex set B = {b1, . . . , bI} of I distinct elements its n-cell set partitions {c1, . . . , cn} ∈

S(B, n) are formed. The cardinality |S(B, n)| = S(I, n) is the second Stirling number. We

stipulate the existence of an equivalence relation “∼” on B, and take Perm(B) to permute

equivalent elements of B. An action Perm(B) : S(B, n)→ S(B, n) is induced, and we write

orb(π) for the orbit of π ∈ S(B, n) under Perm(B). Observe that for given π ∈ S(B, n), all

elements of orb(π) correspond to the same label set C. We omit a formal proof and instead

present an illustrative example: let B = {b1, b2, b3, b4, b5}, with b1 ∼ b2. The partitions

π1 =
{
{b1, b4}, {b2, b3, b5}

}
and π2 =

{
{b2, b4}, {b1, b3, b5}

}
are distinct, but they correspond
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to the same label set C by virtue of b1 ∼ b2. We define S̄(B, n) := S(B, n)/Perm(B), the

set of distinct label sets C.

Lemma 3.4.5. Let B = {b1, . . . , bI} be a set of distinct vertices equipped with an equivalence

relation “∼”, and let Perm(B) be the subgroup of SI that permutes equivalent vertices. For

given t ∈ Tn let T Bn (t) be the set of topologically distinct labeled dashed graphs obtained by

labeling t with C ∈ S̄(B, n). Then:∑
T∈T Bn (t)

|Perm(B)|
Sym(T )

= S(I, n)
n!

|Aut(t)|
. (165)

Proof. We may trivially rewrite the left hand side of (165)∑
T∈T Bn (t)

|Perm(B)|
Sym(T )

=
∑

C=[π]∈S(B,n)/Perm(B)

∑
T∈T Cn

|Perm(B)|
Sym(T )

. (166)

From (154) we know
|Perm(B)|
Sym(T )

=
|Perm(B)|
|stab(π)|

|Perm(C)|
|Aut(T )|

, (167)

where stab(π) is the subgroup of Perm(B) leaving π ∈ S(B, n) invariant. It follows from the

definition of S(B, n)/Perm(B) that if π1, π2 ∈ orb(π) then |stab(π1)| = |stab(π2)|. Combin-

ing successively (167), Lemma 3.4.3, and the orbit-stabilizer theorem gives the assertion:∑
C=[π]∈S(B,n)/Perm(B)

∑
T∈T Cn

|Perm(B)|
Sym(T )

=
∑

C=[π]∈S(B,n)/Perm(B)

(
|Perm(B)|
|stab(π)|

∑
T∈T Cn

|Perm(C)|
|Aut(T )|

)
=

n!

|Aut(t)|
∑

[π]∈S(B,n)/Perm(B)

|orb(π)| = n!

|Aut(t)|
S(I, n). (168)

Note that Lemma 3.4.5 is the counterpart of Lemma 3.4.3 for C induced by set partitions.

Similarly, Proposition 3.4.1 is the counterpart of Lemma 3.4.4. Instead of holding C fixed

we take it to range over all C ∈ S(B,Dn), as defined before Proposition 3.4.1. Indicating all

dependencies in the notation we set

T B(t,Dn, ρn) :=
⋃

C∈S(B,Dn)

T C(ρn)

= {T ∈ T Bn (t) : ddegνσ0 = ρn , ν
σ
0 ∈ νC0 , C ∈ S(B,Dn)} . (169)
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Proof of Proposition 3.4.1. We begin as in the proof of Lemma 3.4.5 and rewrite the left

hand side of (150) as∑
T∈T B(t,Dn,ρn)

|Perm(B)|
Sym(T )

=
∑

C=[π]∈S(B,Dn)/Perm(B)

∑
T∈T C(ρn)

|Perm(B)|
Sym(T )

=
∑

C=[π]∈S(B,Dn)/Perm(B)

(
|Perm(B)|
|stab(π)|

∑
T∈T C(ρn)

|Perm(C)|
|Aut(T )|

)
. (170)

To the subsum in round brackets we apply Lemma 3.4.4 to obtain∑
T∈T B(t,Dn,ρn)

|Perm(B)|
Sym(T )

=
|ν0(ρn)|
|Aut(t)|

∑
[π]∈S(B,Dn)/Perm(B)

|Perm(B)|
|stab(π)|

, (171)

using that |ν0(ρn)| is independent of equivalence relation on C = [π]. On account of the orbit-

stabilizer theorem |Perm(B)|/|stab(π)| = |orb(π)| the sum over [π] produces the cardinality

of the set S({b1, . . . , bI}, Dn), i.e. P (D(v), Dn) and establishes (150). Its right hand side is

manifestly independent of the (degree compatible) equivalence relation “∼” on B.

3.5 Conclusions

Motivated by the widespread use of the FRG equation (77) we formulated a program for

its graph theoretical solution. Subject to ultralocal initial conditions (77) can be replaced by

the iteratively soluble (79) producing a long range hopping expansion (LRH) for Γκ = Γ0 +∑
l≥1 κ

lΓl, from which a solution Γk of (77) can be obtained by substitution, Γk = Γκ|`→`(k).

As the iteration of (511), or its equivalent mixed form (98), is only feasible to moderate

orders we formulated graph rules for the direct evaluation of an arbitrary order Γl. The

derivation, computational test, and proof of these graph rules constitute the main result of

this chapter.

By the results of Section 3.4 the subsums over vertex labeled trees T ∈ T (B(v), n) with

fixed weight µ(T ) have a combinatorial meaning in terms of the number of integer labeled

tree graphs of the same topology as T . The graph rule could therefore optimized once explicit

results for the number of set partitions P (D(v), Dn) are available; see [33] for some related
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results.

The construction so far only holds in the formal series sense. Guided by a variety

of convergence results for hopping expansions in the literature (see [18, 85, 54] and the

references therein) we expect that the LRH expansion for Γκ has finite radius of convergence

under natural conditions. From a computational perspective it would also be desirable to

identify subclasses of one-line irreducible graphs that can be analytically summed and lead

to controlled approximate solutions of (77), replacing the traditional ad-hoc Ansätze.
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4.0 Critical Behavior of the Hopping Expansion from the Functional

Renormalization Group

4.1 Introduction

The functional renormalization group (FRG) has become one of the most widely and

fruitfully used techniques in quantum many body physics, and is now applied to areas as

diverse as quantum gravity, particle physics, and solid state physics [63, 104, 82]. The

FRG is a reformulation of quantum field theory that focusses on the non-linear response of

functionals to a scale dependent mode modulation introduced by replacing the bare action

S[χ] with S[χ] + 1
2
χ ·Rk ·χ in the functional integral. The regulator kernel Rk supresses low

energy modes and vanishes at k = 0, such that the scale k smoothly interpolates between

the bare theory and the renormalized theory. Modern formulations focus on the Legendre

effective action Γk, whose flow satisfies

∂kΓk[φ] =
1

2
Tr
{
∂kRk[Γ

(2)
k +Rk]

−1
}
. (172)

The versatility of the flow equation (172) is partly due to its kinematical nature; dynam-

ical information is injected solely through initial conditions. As a consequence, fully non-

perturbative results require some such initial conditions. An especially good choice are

ultralocal initial conditions as they can, in a lattice formulation, be computed exactly from

single site integrals [70]. A solution of (172) with such initial data, if feasible, will emulate

a linked cluster or hopping expansion but with a scale dependent long-ranged interaction

S[χ] =
∑
x

s[χx] +
κ

2

∑
x,y

χy`xy(k)χx . (173)

For definiteness we consider here a self-interacting, one-component, scalar field theory on a

D-dimensional hypercubic lattice (identified with ZD) in a dimensionless formulation. Then,

s : R → R is a real even function bounded from below that collects all terms referring to

a single site. The hopping parameter κ > 0 is a dimensionless combination of the original
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mass, the coupling parameters, and the lattice spacing. A fundamental lattice action has

the form (173) with a k-independent `xy that connects only nearest neighbors. In order to

relate (172) to a hopping expansion we take κ itself as the control parameter and replace

(172) by

∂κΓκ =
1

2

∑
x,y

`xy
[
Γ(2)
κ + κ`

]−1

xy
, Γκ[φ] = Γ0[φ] +

∑
l≥2

κlΓl[φ] . (174)

Here Γ0[φ] =
∑

x γ(φx), where γ and its derivatives γn are computable at a single site x from

s only. The O(κ) term vanishes, Γ2[φ] = −1
4

∑
x,y(`xy)

2γ2(φx)
−1γ2(φy)

−1, and all Γl, l≥3, are

then determined recursively. The direct recursion turns out to become intractable beyond

O(κ6), say. However, in the previous chapter we presented a closed graph theoretical solution

of the recursion that yields Γl for any l ≥ 1. Importantly, the series in (174) can be expected

to have finite radius of convergence κ < κc, at least as far as the associated vertex functions

are concerned [85]. Once the series (174) has been constructed, an in principle exact solution

of (172)’s lattice counterpart arises simply by substitution, Γk = Γκ|`7→`(k), for suitable `(k)

playing the role of Rk. This differs from the standard uses of the FRG [63, 104, 82] in the way

initial conditions are imposed: Rk is chosen such that Γk0 [φ], for some finite k = k0, is (up

to kinematical factors) determined by the above Γ0[φ] =
∑

x γ(φx). In overview, we propose

to use the graph rule of Chapter 3 for the computation of vertex (and other correlation)

functions but determine bulk quantities from the FRGs (172), (174).

This chapter is based on [8].

4.2 Critical behavior from the LPA’s unstable manifold

For the hopping expansion the locus of infinite correlation length (approached from the

symmetric phase) is deemed to coincide with the radius of convergence κc of the (two-point

and then all other) susceptibilities. Traditionally, κc has been estimated by pushing their

hopping expansion to high orders, at considerable effort. Our proposed alternative rests on

two simple observations: (i) any bulk quantity other than a susceptibility should give the

same κc, in particular Γκ for constant field (identified with the lattice average) should be a
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legitimate choice. (ii) For κ < κc, specialization to constant fields and resummation in (174)

are commuting operations. The FRG (172) specialized to constant fields (up to kinematical

factors) is known as the Local Potential Approximation (LPA), or its modified version LPA’

(see [63]). On general grounds, the relation between the bare and renormalized parameters

can be found by injecting initial data (determined by the bare parameters) at the ultralocal

scale k = k0, and running the flow equation for (truncations of) Γk to the fixed point at

k ≈ 0. This yields the correlated values of the bare parameters in the action tuned to ensure

that Γ[φ] is based on the fixed point, i.e. the unstable manifold of the fixed point in question.

In summary, one should be able to determine κc from the unstable manifold of the LPA (or

LPA’) approximation to the FRG (172).

Explicitly, the following LPA ansatz Γk[φ0] = aD
∑

x{−
1
2
φ0(x)(∆φ0)(x) + Uk(φ0(x))}, is

taken as the starting point, where ∆ is the lattice Laplacian and a the lattice spacing. The

flow equation (172) then specializes to

∂kUk(φ0) =
1

2

∫ π/a

−π/a

dDp

(2π)D
∂kRk(p)

p̂2 +Rk(p) + U ′′k (φ0)
, (175)

where the k differentiation is at fixed φ0 and p̂2 = 4
a2

∑
j sin2 pja

2
. Next we fix lattice units

(a = 1) and choose Rk(p) to be the lattice step function Rk(p) = (k2 − p̂2)θ(k2 − p̂2). Then

k∂kUk(φ0) =
k2 Vol(k)

k2 + U ′′k (φ0)
, Vol(k) :=

∫ π

−π

dp

(2π)D
θ(k2−p̂2) . (176)

The above flow equations and the fields have been dimensionful, and as such they do

not lend themselves to a fixed point analysis. In particular the dimensionful LPA potential

Uk(φ0) will not itself reach a fixed point, but rather exhibit a characteristic scaling behavior.

To proceed we transition to a dimensionless LPA formulation by rescaling both the field and

potential,

Vk(φ) :=
1

µDkD
Uk(φ0(φ)) , φ0(φ) := k

D−2
2
√
µDφ , µD :=

1

(4π)D/2Γ(D
2

+ 1)
. (177)

The new potential Vk(φ) is a dimensionless function of the dimensionless field φ. The con-

stants are adjusted such that only the dimensionless volume function vol(s) := Vol(k0s)

µDk
D
0 s

D ,

0 ≤ s := k/k0 ≤ 1, k0 :=
√

4D, occurs. It is determined numerically, and is roughly
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bell shaped with a maximum of O(1). The normalizations are such that vol(0) = 1 and

vol(1) = 1/µDk
D
0 .

The dimensionful flow equation (176) translates into

s∂sVs(φ) = −DVs(φ) +
D−2

2
φV ′s (φ) +

vol(s)

1 + V ′′s (φ)
. (178)

In this form one can now search meaningfully for a s→ 0 fixed point potential solving

0 = −DV∗(φ) +
D−2

2
φV ′∗(φ) +

1

1 + V ′′∗ (φ)
. (179)

To proceed, insertion of the Taylor series Vs(φ) =
∑

i≥0
g2i(s)
(2i)!

φ2i into (178) produces the beta

functions for the couplings g2i(s),

s∂sg2i = β2i(g2, . . . , g2i+2) , i ≥ 1 ,

β2 = −2g2 −
vol(s)

(1 + g2)2
g4 , β4 = (D−4)g4 −

vol(s)

(1 + g2)2
g6 +

6vol(s)

(1 + g2)3
g2

4 , (180)

etc. Truncating via g2N+2 ≡ 0 at some order N a closed system of N + 1 ordinary differ-

ential equations (ODEs) arises. The lowest order equation s∂sg0 = −Dg0 + vol(s)/(1 + g2)

determines g0 once g2 is known.

Clearly, the behavior of the dimensionless couplings in the vicinity of the fixed point is

instrumental for the critical behavior. The fixed couplings themselves obey a simple recursion

relation of the form g∗2i = −2g∗2(1+g∗2)iPi−2(g∗2), where generally Pn is a polynomial of degree

n. The value of g∗2 is constrained by the truncation condition g∗2N+2 = 0, i.e. it is the root

of the high order polynomial equation 2g∗2(1 + g∗2)n+1Pn−1(g∗2) = 0. In general this equation

produces many spurious ‘fixed points’, but the ‘correct’ solution can be selected by requiring

that its corresponding stability matrix,

M(g∗)ij :=
∂β2i

∂g2j

∣∣∣∣
g=g∗

, (181)

have precisely one negative eigenvalue, conventionally denoted by −θ1. For D ≥ 3 one always

has a Gaussian fixed point with −θ1 = −2. In D = 3 one finds in addition the Fisher-Wilson

fixed point with −θ1 ≈ −1.5396.

The stability matrix M determines the flow pattern in the vicinity of the fixed point.
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Writing δg = (δg2, δg4, . . . , δg2N) for a perturbation about the fixed point g∗ and expanding

the truncated system (180) to linear order in the perturbation gives s∂sδg = M(g∗)δg. The

solution of this linearized flow can be written in terms of the eigensystem (v(j),−θj) of M as

δg(s) =
N∑
j=1

cjv
(j)s−θj , (182)

where the boundary constants c1, . . . , cN are set at some scale 0 < s0 � 1. For small s and

c2 6= 0 the sum will be dominated by the j = 1 term (as −θ1 < 0) and thus blow up, taking

the couplings away from the fixed point. Conversely, the locus of linearized couplings that

flow to g∗ for s → 0 is characterized by c2 = 0. More intrinsically, there exists a unique

linear combination such that

a0 +
N∑
i=1

ai g2i(s) = const c2 s
−θ1 , 0 < s ≤ s0 � 1 . (183)

For c2 = 0 this linear combination describes the “linearized unstable manifold”, i.e. the codi-

mension one hyperplane from which the couplings flow into the fixed point. The coefficients

of the unstable manifold can be computed analytically for the Gaussian fixed point in D = 4,

and come out as a0 = 0, ai = 1/[2i−1(i− 1)!], for 1 ≤ i ≤ N .

So far no action-specific information has entered. The fixed point, the critical exponents,

and the linearized unstable manifold are computable solely in terms of the field content

(here: one scalar field), the dimensionality D, the nature of the truncation (here: LPA), and

the mode modulator (here: the lattice step function). Action-specific information is in the

present setting injected by specifying initial data g2i(s = 1), computed from the ultralocal

part of the theory’s action.

In order to obtain this intial data, we first note that at any scale k, the Legendre effective

action Γk in (172) satisfies the functional integro-differential equation

e−Γk[φ0] =

∫ ∏
x

dχ0(x)e
−S[χ0]− 1

2
(φ0−χ0)·Rk·(φ0−χ0)−(φ0−χ0)· δΓk

δφ0 , (184)

where S[χ0] = 1
2

∑
x

{
−χ0(x)(∆χ0)(x)+m2

0χ0(x)2 +λ0χ0(x)4/12
}

is the bare action, and ‘·’

denotes a sum over lattice sites. Although this equation cannot in general be solved exactly,
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at the ultralocal scale k0 =
√

4D where Rk0(x, y) = k2
0δxy + ∆xy, (184) transcribes to

e−
∑
x Uk0

(φ0(x)) =

∫ ∏
x

dχ0(x)e−S0[χ0]− k
2
0
2

(φ0−χ0)·(φ0−χ0)−(φ0−χ0)·U ′k0 . (185)

Here S0[χ0] is the ultralocal part of the bare action, and Uk0 is the effective potential at

k = k0. Since all the quantities in (185) are ultralocal, the functional integral factorizes.

After transitioning to a dimensionless potential Vs(φ) viz. (177), and hopping parametrizing

the bare action, we obtain the ordinary integro-differential equation satisfied by Vs=1(φ)

e−vol(1)−1Vs=1(φ) =

∫
dχe

− 1−2λ−Dκ
4Dvol(1)κ

χ2− λ
(4Dvol(1)κ)2

χ4− 1
2vol(1)

(φ−χ)2−vol(1)−1(φ−χ)V ′s=1(φ)
. (186)

Inserting the truncation ansatz Vs=1(φ) =
∑N

i=0
g2i(s=1)

(2i)!
φ2i into (186) then determines the

initial couplings g2i(s = 1) as functions of the bare parameters κ, λ via exactly computable

single site integrals.

With the initial data known, the integration of the flow equations (180) (truncated at

some order N) proceeds as follows. Since the initial data g2i(s = 1), 1 ≤ i ≤ N , are

prescribed functions of κ, λ, a well-defined evolution via the ODE system will render the

g2i(s) = g2i(s|κ, λ) parametrically dependent on κ, λ for all s for which the evolution is

regular. For generic κ, λ the flow will not come close to the fixed point; it will do so however

once it reaches the linearized unstable manifold at some 0 < s0 � 1. In a given polynomial

approximation of order N one therefore needs to solve

a0 +
N∑
i=1

aig2i(s0|κ, λ) = 0 =⇒ κ = κc(λ) . (187)

In the present context this will ensure that the flow very nearly reaches the fixed point, with

limitations only set by numerical accuracy.

4.3 Results for φ4
3 and φ4

4 and concluding remarks

The above technique has been applied to determine κc(λ) for φ4 theories in both D =

3 and D = 4. The shooting technique has been implemented in Mathematica without
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encountering significant obstructions from stiffness for reasonably large N . Related results

have been obtained in [20], [21] in a different LPA formulation but without relation to (174)

and the hopping expansion’s radius of convergence.

As a proof of principle we first applied the shooting technique in D= 3, aiming at the

Fisher-Wilson fixed point. Since in D = 3 the anomalous dimension η is non-zero, the

neglection of a wavefunction renormalization constant in the LPA (as opposed to the LPA’

ansatz) induces a systematic error. Nevertheless, the comparison of the LPA results with

Monte-Carlo data [47] shows reasonable agreement.

λ κc,MC κc λ κc,MC κc

0.1 0.37341 0.3732 0.9 0.38451 0.3854

0.2 0.3884 0.3882 1.3 0.36522 0.3659

0.4 0.3975 0.3975 1.4 0.36028 0.362

0.7 0.39253 0.3926 1.5 0.3553 0.358

0.8 0.3887 0.3898 2.5 0.3134 0.3149

Table 3: Critical values for φ4
3 theory in D = 3. Left, κc,MC from [47] with only significant

digits displayed. Right κc from LPA at truncation order N = 20. The LPA errors are a com-

bination of numerical and estimated truncation effects, only significant digits are displayed.

The discrepancy can plausibly be attributed to the neglected anomalous dimension.

In D = 4 only the Gaussian fixed point is found. By working with the LPA the η = 0

contention [90] is probed for self consistency. As an illustration of the shooting technique we

depict in Figs. 1(a) and 1(b) the flow of the couplings g2(s), g4(s), g6(s), g8(s), and g10(s)

in the φ4
4 theory towards the Gaussian fixed point. The truncation order is N = 20, with κ

adjusted at fixed λ such that the g2i(s0 = 0.001|κ, λ) satisfy (187), with coefficients a0 = 0,

ai = 1/[2i−1(i− 1)!], for 1 ≤ i ≤ N .

As noted earlier, the critical line κc(λ) has been previously computed from the radius of

convergence of the hopping expansion in [69]. A comparison of our results with the κc(λ)

values of Lüscher-Weisz (taken from Table 1 in [69]) is presented in Table 2.
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Figure 4: φ4
4: flow of couplings g2(s), g4(s), g6(s), g8(s), g10(s) for (a) (λ, κ) =

(0.48548, 0.2828), and (b) (λ, κ) = (4.3303, 0.1834). Red: g2, Blue: g4, Orange: g6, Black:

g8, Dashed: g10.

In summary, the critical behavior in the hopping expansion, traditionally set by the

radius of convergence [69], [85], can alternatively be obtained simply from the LPA or LPA’

approximation to the FRG.
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λ κc,LW κc/2

0 0.1250(1) 0.1250(1)

2.4841×10−2 0.1294(1) 0.12928(3)

3.5562×10−2 0.1308(1) 0.13068(3)

1.3418×10−1 0.1385(1) 0.1381(4)

2.7538×10−1 0.1421(1) 0.1416(4)

4.8548×10−1 0.1418(1) 0.1414(4)

7.7841×10−1 0.1376(1) 0.1374(4)

1.7320 0.1194(1) 0.1190(5)

2.5836 0.1067(1) 0.1066(5)

4.3303 0.09220(9) 0.0917(7)

∞ (LW) or 100 (LPA) 0.07475(7) 0.0722(1)

Table 4: Critical values for φ4
4 theory in D = 4. Left, κc,LW from Lüscher-Weisz [69]. Right

κc/2 from LPA at truncation order N = 20. The errors in the LPA results are a combination

of numerical and estimated truncation errors.
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5.0 Hadamard States on Friedmann-Lemâıtre Spacetimes: States of Low Energy

5.1 Introduction

For perturbatively defined quantum field theories on globally hyperbolic spacetimes there 

is a general consensus that the free state on which perturbation theory is based should be a 

Hadamard state. By-and-large the Hadamard property is necessary and sufficient for the 

existence of Wick powers of arbitrary order and hence for the perturbative series to be 

termwise well-defined at any order, see [61, 36] for recent accounts. On the other hand, 

Hadamard states are surprisingly difficult to construct concretely [24, 56, 17] even for back-

ground spacetimes with some degree of symmetry (other than maximal). The well-known 

adiabatic iteration [81] has certain characteristics necessary for the Hadamard property to be 

built in, but is not convergent and cannot be fruitfully extended to small spatial momenta. 

The iteration can, however, serve as a conduit to establish the existence of states locally 

indistinguishable from Hadamard states [56].

An important class of backgrounds are generic Friedmann-Lemâıtre cosmologies, where a 

construction of exact Hadamard states has become available only relatively recently [80]. 

These States of Low Energy (SLE) arise by minimizing the Hamiltonian’s expectation value 

after averaging with a temporal window function f . The temporal averaging is crucial and 

avoids the pathologies [41] of the earlier instantaneous diagonalization procedure. The 

construction of a SLE takes some fiducial solution S of the homogeneous wave equation as a 

starting point, considers arbitrary Bogoliubov transformations thereof, and then minimizes 

the temporal average of the energy with respect to them. Olbermann’s theorem [80] states 

that (for a massive free quantum field theory on a Friedmann-Lemâıtre background) the 

minimizing solution T [S] gives rise to an exact Hadamard state. For given S the minimizer T 

[S] is unique up to a phase.

Here we show that the SLE have a number of bonus properties that make them mathe-

matically even more appealing and which also render them good candidates for vacuum-like
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states in a pre-inflationary period. Specifically, we show that for a given temporal averaging

function f :

(a) The SLE two-point function W [S] based on a fiducial solution S is a Bogoliubov invari-

ant, W [aS + bS∗] = W [S], with a, b ∈ C , |a|2 − |b|2 = 1. Hence W [S] is independent

of the choice of fiducial solution S.

(b) The minimization over Bogoliubov parameters relative to a given S can be replaced by a

minimization over initial data, without reference to any fiducial solution. The resulting

expression for the SLE solution T [∆] is fully determined by the (Bogoliubov invariant

and state independent) commutator function ∆, making manifest the uniqueness of the

SLE. The minimization over initial data has a natural interpretation in the Schrödinger

picture.

(c) The SLE solution admits a convergent series expansion in powers of the (modulus of

the) spatial momentum, both for massive and for massless theories.

(d) In the massless case the leading infrared behavior is Minkowski-like for all cosmological

scale factors. This provides a new cure for the long standing infrared divergences in

Friedmann-Lemâıtre backgrounds with accelerated expansion [37].

(e) The modulus square of an SLE solution admits an asymptotic expansion in inverse odd

powers of the (modulus of the) spatial momentum, which is independent of the window

function f . The coefficients of the expansion are local, recursively computable, and

generalize the heat kernel coefficients. The asymptotics of the phase is governed by

single integrals of the same coefficients. This short cuts the detour via the adiabatic

expansion.

Since linearized cosmological perturbations are described by massless free fields, the

property (d) renders SLE a legitimate choice for a vacuum-like state in the early universe.

Specifically, we argue that within the standard paradigm (classical Friedmann-Lemâıtre back-

grounds with selfinteracting scalar field) inflation must have been preceded by a period of

non-accelerated expansion, for which the type with kinetic energy domination is mathemat-

ically preferred. The occurrence of the Bunch-Davies vacuum at the onset of inflation then

requires extreme fine tuning. In contrast, postulating a SLE for the primordial vacuum in
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the pre-inflationary phase is shown to automatically produce a qualitatively realistic power

spectrum at the end of inflation.

This chapter is organized as follows. After introducing the SLE in the Heisenberg and

the Schrödinger pictures we establish properties (a) and (b) in Sections 5.2.2 and 5.2.3,

respectively. The existence of a convergent small momentum expansion is shown in Section

5.3.1, with the massless case detailed in Section 5.3.2. For large momentum, the existence of

the WKB type expansion governed by generalized heat kernel coefficients is shown in Section

5.4. Next, we study the viability of massless SLE as pre-inflationary vacua in Section 5.5.

Finally, in Section 5.6 we generalize the SLE construction to a one-parameter family of exact

Hadamard states.

This chapter is based on [7].

5.2 SLE in the Heisenberg and Schrödinger pictures

A State of Low Energy (SLE) was originally defined in the Heisenberg picture by min-

imizing with respect to Bogoliubov parameters relating the corresponding solution of the

wave equation to a reference solution S. As such, the SLE construction depends on the

reference solution. Here we show that the SLE two-point function (which specifies the state

completely) is independent of S. Next, the energy functional in the Schrödinger picture is

naturally regarded as a function of the wave function’s initial data. By minimizing over

initial data an alternative explicit expression for the SLE is obtained, which depends only

on the (Bogoliubov invariant and state independent) commutator function.

5.2.1 Homogeneous pure quasifree states in Heisenberg and Schrödinger pic-

tures

Throughout, the background geometry will be a 1+d dimensional, spatially flat Friedmann-

Lemâıtre (FL) cosmology with line element

ds2 = −N̄(t)2dt2 + a(t)2δijdx
idxj , (188)
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where N̄ : R+ → R+ is the lapse function, a : R+ → R+ is the cosmological scale factor,

and xi, i = 1, . . . , d are adapted spatial coordinates. The form of the line element (188) is

preserved under Diff[ti, tf ]×ISO(d) transformations, where Diff[ti, tf ] are endpoint preserving

reparameterizations of some time interval [ti, tf ], 0 < ti < tf <∞, and the Euclidean group

ISO(d) acts via global spatial diffeomorphisms connected to the identity. On this background

we consider a scalar field χ : R+ × Rd → R, which is minimally coupled and initially

selfinteracting with potential U(χ). Under the temporal reparameterizations a(t) and χ(t, x)

transform as scalars, while N̄(t) and n̄(t) := N̄(t)/a(t)d are temporal densities, n̄′(t′) =

n̄(t)/|∂t′/∂t|, etc.. This is such that
∫ tf
ti
dtN̄(t)a(t)p =

∫ tf
ti
dt n̄(t)a(t)p+d is invariant for any

p. Next, we expand the minimally coupled scalar field action on [ti, tf ]×Rd around a spatially

homogeneous background scalar ϕ(t) to quadratic order in the fluctuations φ(t, x) := χ(t, x)−

ϕ(t). This gives a leading term S̄ϕ (multiplied by a spatial volume term) whose field equation

is one of the evolution equations for a FL cosmology. For ϕ(t) solving it (with prescribed

a(t)) the term linear in the φ reduces to a boundary term and may be omitted. The quadratic

piece reads

Sφ =
1

2

∫ tf

ti

dt

∫
Σ

dx
{ 1

n̄(t)
(∂tφ)2 − n̄(t)a(t)2dU ′′(ϕ)φ2 − n̄(t)a(t)2d−2∂iφδ

ij∂jφ
}
. (189)

So far, ϕ is for prescribed a(t) a solution of ∂t(n̄
−1∂tϕ) + εgn̄a

2dU ′(ϕ) = 0, but a(t) itself is

unconstrained. As far as the homogeneous background is concerned one could now augment

the missing gravitational dynamics by the other FL field equations. This would turn a(t), ϕ(t)

into a solution of the Einstein equations and classical backreaction effects would be taken

into account in the homogeneous sector. The standard “Quantum Field Theory (QFT)

on curved background” viewpoint, on the other hand, treats the geometry as external, in

which case (189) adheres to the minimal coupling principle only if U ′′(ϕ) = m2
0 is identified

with a constant mass squared. In order to be able to switch back and forth between both

settings we shall view U ′′(ϕ) = m(t)2 formally as a time dependent mass and carry it along,

specifying its origin only when needed. In the field equations δSφ/δφ = 0 a spatial Fourier

transform is natural, φ(t, x) =
∫
dp(2π)−deipxφ(t, p). Then −∂iδij∂j acts like p2 := piδ

ijpi,

which converts the field equation into an ordinary differential equation for each p mode, viz

[(n̄−1∂t)
2 + a(t)2dm(t)2 + a(t)2d−2p2]φ(t, p) = 0.
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Homogeneous pure quasifree states:

On a FL background geometry there are, in general, infinitely many physically viable

vacuum-like states for a QFT. A vacuum-like state is in particular a “homogeneous pure

quasifree” state. A “state” is normally defined algebraically as a positive linear functional

over the Weyl algebra [61]. For the present purposes a “state” can be identified with the set of

multi-point functions it gives rise to. Then “quasifree” means that all odd n-point functions

in the state vanish while the even n-point functions can be expressed in terms of the two-

point function W (t, x; t′, x′) via Wick’s theorem. Being a “state” entails certain properties

of the two-point function that allow one to realize it via the Gelfand-Naimark-Segal (GNS)

construction in the form (Ω, u(t, x)u(t′, x′)Ω), for field operators u(t, x) on vectors Ω in the

reconstructed state space. “Pure” means that Ω cannot be written as a convex combination

of other states. Finally, for a spatially flat FL background, “homogeneous” just means

“translation invariant”, i.e. W (t, x; t′, x′) depends only on x−x′.

The GNS reconstructed field operators u(t, x) turn out to coincide with the Heisenberg

field operators φ(t, x) (which are denoted by the same symbol as the classical field, as the

latter will no longer occur.) The GNS vector Ω turns out to correspond to a Fock vacuum

|0T 〉, annihilated by annihilation operators defined by a mode expansion of the Heisenberg

field operator

φ(t, x) =

∫
dp

(2π)d
[
Tp(t)aT (p)eipx + Tp(t)

∗a∗T (p)e−ipx
]
,[

aT (p), a∗T (p′)] = (2π)dδ(p− p′) , aT (p)|0T 〉 = 0 , (190)

where Tp(t) is a complex solution of the above classical wave equation, and in the massless

case p = 0 needs to be excluded in the definition of |0T 〉. In order for the equal time

commutation relations [φ(t, p), (n̄−1∂tφ)(t, p′)] = i(2π)dδ(p + p′) to hold, this solution must

obey the Wronskian normalization condition (n̄−1∂tTp)(t)Tp(t)
∗ − (n̄−1∂tTp)(t)

∗Tp(t) = −i.

Then

W (t, x; t′, x′) = 〈0T |φ(t, x)φ(t′, x′)|0T 〉 =

∫
dp

(2π)d
Tp(t)Tp(t

′)∗ eip(x−x
′) . (191)

One sees that modulo phase choices a “homogeneous pure quasifree” state is characterized
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by a choice of Wronskian normalized solution Tp(t) of the wave equation or, equivalently, by

a choice of Fock vacuum |0T 〉 via (190).

Conventions:

We briefly comment on our choice of conventions. In (190) often the a∗T (p) is paired with

Tp(t) not with Tp(t)
∗. Then the sign in the Wronskian normalization condition has to be

flipped correspondingly. More importantly, we seek to preserve temporal reparameterization

invariance by carrying the lapse-like n̄(t) = N̄(t)/a(t)d along. Since in the wave equation n̄

only occurs in the combination n̄−1∂t, it is convenient to introduce a new time function

τ :=

∫ t

ti

dt′n̄(t′) , ∂τ = n̄(t)−1∂t , (192)

for some ti. Note that τ(t) = τ ′(t′) is a scalar under reparameterizations t′ = χ0(t) of

the coordinate time t, and that dτ = dtn̄(t), n̄(t)−1δ(t, t′) = δ(τ, τ ′) are likewise invariant.

Here t′ = χ0(t) with χ0(ti) = ti < tf = χ0(tf ) must be strictly increasing to qualify as a

diffeomorphism. We write a(τ) for the cosmological scale factor viewed as a function of τ

rather than t, and similarly for m(τ) as well as Tp(τ). The defining relations for Tp(τ) then

read

[
∂2
τ + ωp(τ)2]Tp(τ) = 0 , ωp(τ)2 := a(τ)2dm(τ)2 + p2a(τ)2d−2 ,

∂τTp T
∗
p − ∂τT ∗p Tp = −i . (193)

This setting has the advantage that the results in different time variables can be obtained

by specialization:

Cosmological time : n̄(t) = a(t)−d gauge, i.e. N̄(t) = 1 ,

Conformal time : n̄(t) = a(t)1−d gauge, i.e. N̄(t) = a(t) ,

Proper time : n̄(t) = 1 gauge, i.e. N̄(t) = a(t)d . (194)

The first two gauges are standard; commonly one writes η for t in conformal time gauge.

The last gauge is the FL counterpart of the proper time gauge ∂tn(t, x) = 0 often adopted

for the evolution of generic foliated spacetimes.

Generally, (n̄−1∂t)
2 = n̄−2(∂2

t − n̄−1∂tn̄∂t) and the first order term can be removed by the
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redefinition Tp(t) = n̄(t)1/2χp(t). This gives

[
∂2
t + n̄(t)2ωp(t)

2 + s̄(t)
]
χp(t) = 0 ,

s̄(t) :=
1

2

∂2
t n̄

n̄
− 3

4

(∂tn̄
n̄

)2

,

∂tχpχ
∗
p − (∂tχp)

∗χp = −i . (195)

In conformal time, n̄(t) = a(t)1−d the coefficient of p2 is unity and after renaming t into η

one has [
∂2
η + p2 +

m(η)2

a(η)2
+ s̄(η)

]
χp(η) = 0 ,

s̄(η) := −d−1

2

∂2
ηa

a
− (d−3)(d−1)

4

(∂ηa
a

)2

,

∂ηχpχ
∗
p − (∂ηχp)

∗χp = −i . (196)

We shall occasionally discretize the flat spatial sections of (188), which are isometric to Rd, in

order to regularize momentum integrals. A hypercubic lattice Λ = {x = as(n1, . . . , nd), nj =

0, . . . , L−1} suffices, with dual lattice Λ̂ = {p = 2π
asL

(n1, . . . , nd) , nj = 0, . . . , L−1}, where

as > 0 is the spatial lattice spacing and L ∈ N is large. A discretized Fourier transform

f̂ : Λ̂→ C is defined for real valued functions f : Λ→ R with periodic boundary conditions

f(x+ asLı̂) = f(x), i = 1, . . . , d. The direct and inverse transforms read

f̂(p) = ads
∑
x∈Λ

e−ipxf(x) , f(x) =
1

(asL)d

∑
p∈Λ̂

eip·xf̂(p) . (197)

The continuum limit is taken by first sending L→∞, which converts (asL)−d
∑

p∈Λ̂ into an

integral (2π)−d
∫
ddp over the Brillouin zone p ∈ [−π/as, π/as]d, and then taking as → 0. As

usual, the lattice Laplacian ∆s acts by multiplication in Fourier space

−∆s e
ip·x = p̂2eip·x , p̂2 :=

d∑
j=1

p̂2
j =

4

a2
s

d∑
j=1

sin2
(pjas

2

)
. (198)

Unless confusing we shall set as=1 and omit the ‘hat’ on the Fourier transformed functions.

Heisenberg picture:

Time evolution in the Heisenberg picture is generated by the canonical Hamiltonian
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derived from (189) with the field operators (190) inserted. After Fourier decomposition this

leads to

H(τ) =

∫
dp

(2π)d
Hp(τ) , ωp(τ)2 := m(τ)2a(τ)2d + p2a(τ)2d−2 ,

Hp(τ) =
1

2
|π(τ, p)|2 +

1

2
ωp(τ)2|φ(τ, p)|2 (199)

=
1

2

(
|∂τTp|2 + ωp(τ)2|Tp|2

)(
aT (−p)a∗T (−p) + a∗T (p)aT (p)

)
+

1

2

(
(∂τTp)

2 + ωp(τ)2T 2
p

)
aT (−p)aT (p) +

1

2

(
(∂τT

∗
p )2 + ωp(τ)2(T ∗p )2

)
a∗T (p)a∗T (−p) .

In particular

∂τφ(τ, p) = i[H(τ), φ(τ, p)] = π(τ, p) ,

∂τπ(τ, p) = i[H(τ), π(τ, p)] = −ωp(τ)2φ(τ, p) , (200)

are the Heisenberg picture evolution equations. For later use we prepare their solution in

terms of the (real, anti-symmetric) commutator function ∆p(τ
′, τ) defined by

[
∂2
τ + ωp(τ)2

]
∆p(τ, τ0) = 0 =

[
∂2
τ0

+ ωp(τ0)2
]
∆p(τ, τ0) ,

∆p(τ, τ0) = −∆p(τ0, τ) , ∂τ∆p(τ, τ0)
∣∣
τ=τ0

= 1 . (201)

The terminology of course refers to the relations

i[φ(τ, p), φ(τ0, p0)] = (2π)dδ(p+ p0)∆p(τ, τ0) ,

∆p(τ, τ0) := i
(
Tp(τ)Tp(τ0)∗ − Tp(τ)∗Tp(τ0)

)
, (202)

so that ∂τ∆p(τ, τ0)|τ=τ0 = 1 codes the equal time commutation relations. Note that any

other Wronskian normalized complex solution defines the same commutator function, see

Lemma 5.2.3. The solution of the evolution equations (200) then reads

φ(τ, p) = ∆p(τ, τ0)π(τ0, p)− ∂τ0∆p(τ, τ0)φ(τ0, p) ,

π(τ, p) = ∂τ∆p(τ, τ0)π(τ0, p)− ∂τ∂τ0∆p(τ, τ0)φ(τ0, p) . (203)
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The central object later on will be the Hamilton operator (199) averaged with a smooth

positive window function f(τ)2 of compact support in (τi, τf ). This may be normalized so

that
∫
dτf(τ)2 = 1. We write∫

dτf(τ)2 Hp(τ) = Ep[T ]
(
aT (−p)a∗T (−p) + a∗T (p)aT (p)

)
+ Dp[T ] aT (−p)aT (p) +Dp[T ]∗ a∗T (p)a∗T (−p) , (204)

with

Ep[T ] :=
1

2

∫
dτ f(τ)2

{
|∂τTp|2 + ωp(τ)2|Tp|2

}
> |Dp[T ]| ,

Dp[T ] :=
1

2

∫
dτf(τ)2

{
(∂τTp)

2 + ωp(τ)2T 2
p

}
. (205)

The above formulation preserves temporal reparameterization invariance through the use of τ

from (192). As a consequence, the solutions of the wave equation (193) can be interpreted as

functions of the coordinate time t with a functional dependence on n̄. We shall occasionally

do so and then (by slight abuse of notation) keep the function symbols, writing Tp(τ) = Tp(t),

etc.. When fixing a gauge as in (194) one will however normally absorb additional powers of

a(t) into a redefined averaging function and frequency. Specifically,

Ep[T ] =
1

2

∫
dt f(t)2n̄(t)−1

{
|∂tTp|2 + (n̄(t)ωp(t))

2|Tp|2
}
, (206)

motivates

f cosm(t)2 := f(t)2a(t)d , ωcosm
p (t) := a(t)−dωp(t) ,

f conf(t)2 := f(t)2a(t)d−1 , ωconf
p (t) := a(t)1−dωp(t) ,

fprop(t)2 := f(t)2 , ωprop
p (t) := ωp(t) . (207)

In cosmological time gauge this matches the conventions in [80].

The functional Ep[T ] can be related to a point-split subtracted version of the 00-component

of the energy momentum tensor [80, 45] and as such can be interpreted as the energy density

of a given p mode. The same interpretation arises when the spatial sections are discretized.

In the conventions of (197), the main change is that the commutation relations in (190) are
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replaced by [aT (p), a∗T (p′)] = Ldδp,p′ . This gives Ep[T ] (without subtractions) the interpreta-

tion as the energy density of the Hamiltonian’s temporal average. Indeed, from (204) one

has

〈0T |
∫
dτf(τ)2Hp(τ)|0T 〉 = LdEp[T ] . (208)

Schrödinger picture:

Recall that the Heisenberg picture and the Schrödinger picture are related by a unitary

transformation implemented by the propagation operator U(τ, τ0). The Schrödinger picture

is designed such that expectation values are the same as in the Heisenberg picture but the

dynamical evolution is attributed to the states. Whence

|ψ; τ〉s := U(τ, τ0)−1|ψ〉 , As(τ) := U(τ, τ0)−1A(τ)U(τ, τ0) . (209)

Here A(τ) carries both the dynamical and potentially an explicit time dependence while

As(τ) carries only the residual explicit time dependence. The states |ψ〉 are normalizable

and time independent while the Schrödinger picture states evolve according to

i∂τ |ψ; τ〉s = Hs(τ)|ψ; τ〉s , Hs(τ) := U(τ, τ0)−1H(τ)U(τ, τ0) . (210)

This is such that 〈ψ|A(τ)|ψ〉 = s〈ψ; τ |As(τ)|ψ; τ〉s. As the propagation operator’s generator

one can alternatively take H(τ) or Hs(τ); in terms of the path ordered exponentials one

formally has

U(τ, τ0) = exp+

{
i

∫ τ

τ0

dsH(s)
}

= exp−

{
i

∫ τ

τ0

dsHs(s)
}
, (211)

where exp+ orders the operators from left to right in decreasing order of the argument and

vice versa for exp−. Similar relations exist for the inverse. Note that only the exp+ versions

will satisfy the usual composition law. Results on convergence properties will not be needed.

For the basic operators of our scalar QFT the Schrödinger picture operators can be

identified with the initial values of the Heisenberg picture operators. We transition to a

lattice description (in order for the Schrödinger picture to be rigorously defined) with as = 1
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and write

φs(p) = φ(τ0, p) =: u(p) , πs(p) = π(τ0, p) =: −iLd δ

δu(−p)
, p ∈ Λ̂ . (212)

For the Hamiltonian this gives

Hs(τ) =
1

2Ld

∑
p∈Λ̂

{
− L2d δ2

δu(p)δu(−p)
+ ωp(τ)2u(p)u(−p)

}
. (213)

The matrix elements of the time averaged Heisenberg picture Hamiltonian become the time

averages of the Schrödinger picture matrix elements

〈ψ|
∫
dτf(τ)2 H(τ)|ψ〉 =

∫
dτ f(τ)2

s〈ψ; τ |Hs(τ)|ψ; τ〉s

=

∫
dτ f(τ)2

s〈ψ; τ |i∂τ |ψ; τ〉s . (214)

We state without derivation the counterpart of the Fock vacuum |0T 〉 in the Schrödinger

picture, see [44, 65, 66, 62] for related accounts.

Proposition 5.2.1. The Schrödinger picture state |ΩT ; τ〉s := U(τ, τ0)−1|0T 〉 evaluates on a

finite lattice Λ to

ΩT [u] = N (τ) exp
{ i

2Ld

∑
p∈Λ̂

Ξp(τ)u(p)u(−p)
}
.

Ξp(τ) =
∂τTp(τ)∗

Tp(τ)∗
=
i+ ∂τ |Tp(τ)|2

2|Tp(τ)|2
, (215)

with N (τ) = ΩT [0]. Separating modulus and phase, ΩT [u] = |ΩT [u]|eiAT [u], one has

|ΩT [u]| = |Ω0(τ)|
∏
p 6=0

|Ωp(τ)| , AT [u] = A0(τ) +
∑
p6=0

Ap(τ)

|Ω0(τ)| =
1

(2πLd)1/4

1√
T0(τ)

exp
{
− u2

0

4Ld|T0(τ)|2
}
,

|Ωp(τ)| =
1

(πLd)1/4

1√
Tp(τ)

exp
{
−

u2
p

4Ld|Tp(τ)|2
}
,

A0(τ) =
1

2
arg T0(τ) +

1

2Ld
∂τ ln |T0(τ)|u2

0 ,

Ap(τ) =
1

2
arg Tp(τ) +

1

2Ld
∂τ ln |Tp(τ)| |up|2 , (216)

103



with normalization∫ ∏
p

du(p)|ΩT [u]|2 :=

∫
du0|Ω0(τ)|2

∫ ∏
pd>0

du(p)|Ωp(τ)|4 = 1 . (217)

With this in place we can return to (214) and evaluate

s〈ΩT ; τ |i∂τ |ΩT ; τ〉s =

∫ ∏
p

du(p)
{ i

2
∂τ |ΩT [u]|2 − ∂τAT [u]|ΩT [u]|2

}
. (218)

The imaginary part vanishes because ΩT [u] is L2 normalized. The real part essentially is a

Gaussian with a |u|2 insertion. We interpret |Ω[u]| as in (216) and find

s〈ΩT ; τ |i∂τ |ΩT ; τ〉s = −1

2

∑
p

{
|Tp(τ)|2∂2

τ ln |Tp(τ)|+ ∂τ arg Tp(τ)
}
. (219)

Next we use

∂τ arg Tp(τ) =
1

2i
∂τ ln

Tp(τ)

Tp(τ)∗
= − 1

2|Tp(τ)|2
, ∂2

τ ξp + ωp(τ)2ξp =
1

4ξ3
p

, (220)

with ξp(τ) := |Tp(τ)|. The differential equation for ξp is the Ermakov-Pinney equation.

Together

s〈ΩT ; τ |i∂τ |ΩT ; τ〉s =
1

2

∑
p

{
(∂τξp)

2 + ωp(τ)2ξ2
p +

1

4ξ2
p

}
=

1

2

∑
p

{
|∂τTp(τ)|2 + ωp(τ)2|Tp(τ)|2

}
. (221)

Upon temporal averaging the right hand side equals
∑

p Ep[T ], with Ep[T ] from (205). Hence

∫
dτ f(τ)2

s〈ΩT ; τ |i∂τ |ΩT ; τ〉s =
∑
p

Ep[T ] . (222)

As expected, the right hand side equals the L−d
∑

p summation over p-fibres of (208) in the

Heisenberg picture. The Schrödinger picture, however, lends itself to a different minimization

procedure described in Section 5.2.3.
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5.2.2 SLE in Heisenberg picture and independence of fiducial states

So far Tp has been an arbitrary solution of (193). We now regard Ep[T ] from (205) as a

functional of Tp and aim at minimizing it for fixed p. This is a finite dimensional minimization

problem because the solutions of (205) are in one-to-one correspondence to their Wronskian

normalized complex initial data. We shall pursue this route towards minimization in Section

5.2.3.

SLE via fiducial solutions:

Alternatively, one can fix a fiducial solution Sp(τ) of (193) and write any solution in the

form

Tp(τ) = λpSp(τ) + µpSp(τ)∗ , |λp|2 − |µp|2 = 1 . (223)

With Sp and p held fixed the minimization is then over the parameters λp, µp ∈ C. Since

e−iArgµpTp(τ) is a solution of (193) if Tp(τ) is we may assume without loss of generality that

µp is real. Since |λp| =
√

1 + µ2
p, only µp and the phase of λp are real parameters over which

the minimum of Ep[Tp] is sought. Inserting (223) with the simplified parameterization into

(205) one has

Ep[T ] = (1 + 2µ2
p)Ep[S] + µp

√
1 + µ2

p

(
ei arg λpDp[S] + e−i arg λpDp[S]∗

)
,

Dp[T ] = (1 + µ2
p)e

2i arg λpDp[S] + µ2
pDp[S]∗ + 2µp

√
1 + µ2

pe
i arg λpEp[S] . (224)

Clearly, the minimizing phase is such that ei arg λpei argDp[S] = −1. The minimization in µp

then is straightforward and results in [80]

µp =

√
c1

2
√
c2

1 − |c2|2
− 1

2
, λp = − e−iArg c2

√
c1

2
√
c2

1 − |c2|2
+

1

2
, (225)

where whenever the fixed fiducial solution is clear from the context one sets

c1 := Ep[S] =
1

2

∫
dτf(τ)2

[
|∂τSp|2 + ω2

p|Sp|2
]
> |c2| ,

c2 := Dp[S] =
1

2

∫
dτf(τ)2

[
(∂τSp)

2 + ω2
pS

2
p

]
. (226)

Since only a phase choice has been made in arriving at (226) it is clear that the minimizing
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linear combination is unique up to a phase, for a fixed fiducial solution S. It is called the

State of Low Energy (SLE) solution of (193) with fiducial solution S. We write

TS,p(τ) := λp[S]Sp[τ ] + µp[S]Sp(τ)∗ , (227)

with λp[S], µp[S] the functionals from (225), (226). Olbermann’s theorem [80] states that the

homogeneous pure quasifree state associated with TS(τ) via (191) is an exact Hadamard state.

This is an important result which improves earlier ones based on the adiabatic expansion in

several ways, as noted in the introduction. Its practical usefulness is somewhat hampered

by the fact that one still needs to know an exact solution S of the wave equation to begin

with and that the resulting Hadamard state off-hand depends on the choice of S. The

second caveat is addressed in Theorem 5.2.1 below. In preparation, we note the following

proposition, where we omit the subscript p for simplicity.

Proposition 5.2.2. Consider the following functionals: I : C[τi, τf ] → R+ ∪ {0}, and J ,K :

C[τi, τf ]→ C[τi, τf ]

I[S] := E [S]2 − |D[S]|2 ,

J [S](τ) := 2E [S]|S(τ)|2 −D[S]∗S(τ)2 −D[S]S(τ)∗2 ,

K[S](τ) := 2E [S]|∂τS(τ)|2 −D[S]∗[∂τS(τ)]2 −D[S][∂τS(τ)∗]2 . (228)

For a, b ∈ C they obey

I[aS + bS∗] = (|a|2 − |b|2)2 I[S] ,

J [aS + bS∗](τ) = (|a|2 − |b|2)2 J [S](τ) ,

K[aS + bS∗](τ) = (|a|2 − |b|2)2K[S](τ) . (229)

This may be proven by lengthy direct computations; we shall present a more elegant

derivation based on properties of the commutator function in Section 5.2.3.
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Theorem 5.2.1.

(a) The SLE two-point function based on a fiducial solution S

W [S](τ, x; τ ′, x′) :=

∫
ddp

(2π)d
eip(x−x

′)TS,p(τ)TS,p(τ
′)∗ , (230)

is a Bogoliubov invariant, i.e. W [aS + bS∗] = W [S], with a, b ∈ C, |a|2 − |b|2 = 1.

Hence W [S] is independent of the choice of the fiducial solution S.

(b) The modulus of an SLE solution can be written as a ratio of Bogoliubov invariants

from Proposition 5.2.2.

|TS,p(τ)|2 =
Jp[S](τ)

2
√
Ip[S]

. (231)

This also implies (a).

Proof.

For readability’s sake, we omit the subscript p in the following.

(a) We first show that a minimum T of E is a zero of D. Assume to the contrary that T

minimizes E but D[T ] 6= 0. Consider µT +λT ∗, with µ > 0, λ = ei arg λ
√

1 + µ2 and compute

E [µT + λT ∗] as in (224)

E [µT + λT ∗] = (1 + 2µ2)E [T ] + 2µ<
(
λD[T ]

)
. (232)

Then there exists a µ 6= 0 such that E [µT + λT ∗] < E [T ], contradicting the assumption that

T minimizes E . Subject to the minimizing phase choice e−i arg λei argD[S] = −1 one can also

see from (224) that (∂E [T ]/∂µ) is proportional to D[T ].

Let now TS1 , TS2 be two minimizers of E associated with fiducial solutions S1, S2. Then

there exist some a, b ∈ C with |a|2−|b|2 = 1 such that TS2 = aTS1 +bT ∗S1
. Further, e−i arg bTS2

is of the form used in (232) so that

E [e−i arg bTS2 ] = E [TS2 ] = (2b2 + 1) E [TS1 ] + 2bR[aD(TS1)] . (233)

By the previous step, D(TS1) = 0 as TS1 is a minimizer of E . Therefore (233) reduces to

E [TS2 ] = (2b2 + 1) E [TS2 ]. Since E [TS2 ] = E [TS1 ] we must have b = 0. Hence e−i arg bTS2 = TS1 ,

which implies (a).

(b) The expression (231) follows by direct computation. Hence (229) implies (a) via

107



|TS1(τ)| = |TS2(τ)|, as any two fiducial solutions S1, S2 must be related by S2 = aS1 + bS∗2 ,

|a|2 − |b|2 = 1. This also implies (a) since a Wronskian normalized solution of (193) is

uniquely determined by its modulus, up to a time independent (but potentially p dependent)

phase.

Remarks:

(i) Uniqueness up a phase of the SLE modes has been asserted in Theorem 3.1 of [80]

and justified (in the line preceding it) by noting that only a phase choice is being made

in the process of obtaining the solution formulas (225). In itself, however, this only yields

uniqueness relative to a choice of fiducial solution, as indicated in (227). We are not aware

of a presentation of SLE [80, 45, 28, 96] alluding to results of the above type. Lemma 4.5 of

[80] shows the independence of a SLE solution from the order of the adiabatic vacuum used

as a fiducial solution. This, however, only concerns the large momentum behavior, while

Theorem 5.2.1 ascertains the independence (up to a phase) from any fiducial solution at all

momenta.

(ii) Writing momentarily ES(µ, arg λ) for the right hand side of E [T ] in (224) one can

of course trade a Bogoliubov transformation in S for one in the parameters. This gives

ES1(µ1, arg λ1) = ES2(µ2, arg λ2) for any two fiducial solutions. For this to imply the existence

of a unique minimum the gradients of ES1 and ES2 must be related by a 2× 2 matrix which

remains nonsingular on a zero of one (and then both) gradient(s). Further, the Hessian must

be positive definite on a zero of the gradient. The above proof validates these properties, but

they are not consequences merely of the fact that (225) is unique up to a choice of phase.

(iii) By rewriting (224) in matrix form one finds the minimizing parameters (225) to

diagonalize the original c1 = E [S], c2 = D[S] matrix E [TS] D[TS]

D[TS]∗ E [TS]

 =

λ µ

µ λ∗

c1 c2

c∗2 c1

λ∗ µ

µ λ

 =

√c2
1 − |c2|2 0

0
√
c2

1 − |c2|2

 .

(234)

The off-diagonal entries confirm the “Minimizer of E is a zero of D” assertion in part (a) of

the proof of Theorem 5.2.1; the diagonal entries display the value of the minimizing energy

E [TS]. In fact, the relation (234) could be taken as an alternative definition of the coefficients
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λ, µ with solution (225).

Minimization in Fock space:

We temporarily return to the lattice formulation. The minimization of Ep[T ] already

assumed that the time averaged Hamiltonian
∫
dτf(τ)2Hp(τ) is evaluated in the coordinated

Fock vacuum |0T 〉, see (208). The operator (204) itself has well-defined expectation values on

a dense subspace F0 of the Fock space on which it is also selfadjoint and positive semidefinite.

Hence

inf
ψ∈F0

〈ψ|
∫
dτ f(τ)2 Hp(τ)|ψ〉
〈ψ|ψ〉

= Einf
p , (235)

is well defined with some Einf
p ≥ 0. By the min-max theorem for (possibly unbounded)

selfadjoint operators [88], the quantity Einf
p also coincides with the infimum of the spectrum

of
∫
dτ f(τ)2 Hp(τ). In order to determine the infimum of the spectrum one can try to

diagonalize the operator. Using (204), (234), one has

∫
dτf(τ)2 Hp(τ) =

(
aS(−p), a∗S(p)

) Ep[S] Dp[S]

Dp[S]∗ Ep[S]

a∗S(−p)

aS(p)


= Ep[TS]

(
aTS(−p)a∗TS(−p) + a∗TS(p)aTS(p)

)
. (236)

From (236) it is clear that the infimum of the spectrum is a minimum and is assumed if

|ψ〉 = |0TS〉 is the Fock vacuum associated with the SLE solution. Hence

Einf
p = Ep[TS] =

√
Ep[S]2 − |Dp[S]|2 . (237)

Since the operator in (235) can be written in an arbitrary Bogoliubov frame one would expect

that the infimum is a Bogoliubov invariant. By Proposition 5.2.2 this indeed the case.

Instantaneous limit:

In general, the Fock vacuum aT (p)|0T 〉 = 0 is not an eigenstate of Hp(τ). At any fixed

time τ0 one has however:

|∂τTp(τ0)|2 + ωp(τ0)2|Tp(τ0)|2 !
= min ,

iff Tp(τ0) =
eiν0√

2ωp(τ0)
, (∂τTp)(τ0) = −ieiν0

√
ωp(τ0)

2
.

iff [∂τTp(τ0)]2 + ωp(τ0)2Tp(τ0)2 = 0 , (238)
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for some ν0 ∈ [0, 2π). Note that in Minkowski space the minimization reproduces Tp(t) =

e−itωp/
√

2ωp, ωp =
√
p2 +m2

0. Generally, the value of the minimum in the first line is ωp(τ0).

With the choice (238) of minimizing mode ‘functions’ the Hamilton operator at τ0 simplifies

to

H(τ0) =
1

2

∫
dp

(2π)d
ωp(τ0)

(
aτ0(p)a∗τ0(p) + a∗τ0(p)aτ0(p)

)
. (239)

On a finite lattice this also turns the Fock vacuum aτ0(p)|0τ0〉 = 0 into the ground state of

H(τ0). This “instantaneous diagonalization” has originally been pursued in an attempt to

introduce a particle concept at each instant. The “instantaneous Fock vacuum” |0τ0〉 does

however not give rise to a physically viable state, as for τ 6= τ0 the norm-squared of the

normal-ordered Hamiltonian, 〈0τ0| : H(τ) : : H(τ) : |0τ0〉, in general diverges [41, 36]. The

temporal averaging resolves this problem in a simple and satisfactory manner.

Consistency requires that in the instantaneous limit f(τ)2 → δ(τ−τ0) the SLE solution

(227) reduces to the one in (238). One can check that this indeed the case

TS,p(τ0) = λp[S]Sp(τ0) + µp[S]S∗p(τ0) −→ 1√
2ωp(τ0)

,

∂τTS,p(τ0) = λp[S](∂τSp)(τ0) + µp[S](∂τSp)
∗(τ0) −→ −i

√
ωp(τ0)

2
. (240)

5.2.3 SLE in Schrödinger picture and minimization over initial data

As seen in (235), (237) a SLE can be obtained by a minimization over the state space in

the Heisenberg picture. The relevant matrix element can be transcribed into the Schrödinger

picture via (214). Since the state vectors now evolve, the natural minimization is over their

initial vectors |ψ; τ0〉S, which can be identified with the Heisenberg picture states. The

minimization in the Schrödinger picture therefore assumes the form

inf
|ψ;τ0〉s∈F0

∫
dτ f(τ)2

s〈ψ; τ |i∂τ |ψ; τ〉s . (241)

The Fock vacua correspond to time dependent Gaussians (215), (216) satisfying the func-

tional Schrödinger equation. The identity (222) shows that the functional Ep on the space

of solutions of the wave equation to be minimized is the same as in the Heisenberg picture.
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However, the relevant parameters are now the initial data.

In order to reformulate the minimization problem as one with respect to the initial data

we proceed as follows. The solution formula (203) can be applied to the mode functions

themselves giving

Tp(τ) = ∆p(τ, τ0)∂τ0Tp(τ0)− ∂τ0∆p(τ, τ0)Tp(τ0) . (242)

Inserting (242) and its time derivative into the definitions of Ep and Dp gives

Ep = Jp(τ0)|wp|2 +Kp(τ0)|zp|2 − ∂τ0Jp(τ0)<(wpzp) ,

Dp = Jp(τ0)w2
p +Kp(τ0)z2

p − ∂τ0Jp(τ0)wpzp , (243)

with zp := Tp(τ0), wp := ∂τ0Tp(τ0), subject to wpz
∗
p − w∗pzp = −i. The coefficients

Jp(τ0) =
1

2

∫
dτ f(τ)2

[(
∂τ∆p(τ, τ0)

)2
+ ωp(τ)2∆p(τ, τ0)2

]
,

Kp(τ0) =
1

2

∫
dτ f(τ)2

[(
∂τ∂τ0∆p(τ, τ0)

)2
+ ωp(τ)2

(
∂τ0∆p(τ, τ0)

)2]
, (244)

are manifestly positive and are invariant under Bogoliubov transformations because the

commutator function is. They are also independent of the initial data because ∆p(τ, τ0) is

uniquely characterized by (201). No reference to any fiducial solution is made, instead Ep,Dp
in (243) are functions of the constrained complex initial data zp, wp.

Neither the sign nor the modulus of of ∂τ0Jp(τ0) is immediate. For the subsequent analysis

we anticipate the inequality

4Kp(τ0)Jp(τ0)− (∂τ0Jp(τ0))2 > 0 . (245)

Further we momentarily simplify the notation by writing K, J, J̇ for Kp(τ0), Jp(τ0), ∂τ0Jp(τ0),

respectively. In addition we omit the subscripts p from zp, wp, Ep,Dp. Since Tp(τ) in (242)

can be multiplied by a τ -independent phase we may assume z to be real and positive. The

solution of the Wronskian condition then gives

w = wR −
i

2z
, wR, z > 0 . (246)
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Inserting (246) into the above E one is led to minimize

E = J
(
w2
R +

1

4z2

)
+Kz2 − J̇zwR , (247)

which gives

(zmin)2 =
J√

4KJ − J̇2
, wmin

R =
zmin

2

J̇

J
. (248)

On general grounds the minimizer should be a zero of D. Since

wmin

zmin
=

J̇

2J
− i
√

4KJ − J̇2

2J
, (249)

this is indeed the case. Reinserting (248) into E gives

Emin =
1

2

√
4KJ − J̇2 . (250)

Since E in the original form (205) is manifestly non-negative this shows the selfconsistency

of (245). The solution is unique up to a constant phase left undetermined by choosing z > 0.

Upon insertion of (244) in (248), (249) the minimizing initial data become functionals of ∆,

for which we write zp[∆](τ0) = zmin, wp[∆](τ0) = wmin. In summary

Theorem 5.2.2.

(a) A SLE can be characterized as a solution |ψ; τ〉s of the time dependent Schrödinger

equation (210), (213) with initial data |ψ; τ0〉s that minimize (for fixed window function

f) the quantity
∫
dτf(τ)2

s〈ψ; τ |i∂τ |ψ; τ〉s. The minimizing wave function is a Gaussian

ΩT [u] of the form (215) with T = T SLE, which is up to a time independent, potentially

p dependent, phase uniquely determined by the commutator function.

(b) Specifically

T SLE
p (τ) = ∆p(τ, τ0)wp[∆](τ0)− ∂τ0∆p(τ, τ0)zp[∆](τ0) ,

zp[∆](τ0) =

√
Jp(τ0)

2ESLE
p

= T SLE
p (τ0) ,

wp[∆](τ0) = ∂τ0T
SLE
p (τ0)− i

√
ESLE
p

2Jp(τ0)
= (∂τT

SLE
p )(τ0) , (251)
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where Jp(τ0) is as in (244), and ESLE
p is the minimal energy given by

(
ESLE
p

)2
=

1

8

∫
dτdτ ′f(τ)2f(τ ′)2

{(
∂τ∂τ ′∆p(τ, τ

′)
)2

+ 2ωp(τ
′)2(∂τ∆p(τ

′, τ)
)2

+ ωp(τ)2ωp(τ
′)2∆p(τ, τ

′)2
}
. (252)

For the modulus and the phase this gives

∣∣T SLE
p (τ)

∣∣2 =
Jp(τ)

2ESLE
p

, tan
(
arg T SLE

p (τ)
)

= −
ESLE
p ∆p(τ, τ0)

Jp(τ, τ0)
, (253)

with

Jp(τ, τ0) :=
1

2

∫
dτ1 f(τ1)2

[
∂τ1∆p(τ1, τ)∂τ1∆p(τ1, τ0) + ωp(τ1)2∆p(τ1, τ)∆p(τ1, τ0)

]
.

(254)

We note that Jp(τ0) coincides with Jp(τ0, τ0).

Proof.

(a) This follows from (214), (235), (237) and (222).

(b) Eq. (251) is the explicit form of (242) with minimizing parameters (248), (250). In

the explicit expressions (253) with (252) and (254) a reduction of order occurs: where naively

terms fourth or third order in ∆ and its derivatives appear, repeated use of

∂τ0∆p(τ, τ0)∆p(τ
′, τ0)−∆p(τ, τ0)∂τ0∆p(τ

′, τ0) = ∆p(τ, τ
′) , (255)

(as well as its ∂τ , ∂τ ′ and ∂τ∂τ ′ derivatives) leads to results merely quadratic in ∆ and its

derivatives. In detail, by inserting the definitions into (ESLE
p )2 = Kp(τ0)Jp(τ0)−(∂τ0Jp(τ0))2/4,

one obtains an expression which is initially quartic in ∆. Repeated application of (255) then

leads to (252). Since the right hand side of (252) is manifestly non-negative also the an-

ticipated inequality (245) follows (without presupposing the minimization procedure). The

result for the modulus-square follows from

Kp(τ0)∆(τ, τ0)2 + Jp(τ0)(∂τ0∆(τ, τ0))2 −∆(τ, τ0)∂τ0∆(τ, τ0)∂τ0Jp(τ0) = Jp(τ) (256)

and can be verified along similar lines. Finally, the ratio =T SLE
p /<T SLE

p can be read off from

(251) and gives the tan of the phase. Initially the ratio has as denominator the left hand
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side of

2Jp(τ0)∂τ0∆p(τ0, τ)−∂τ0Jp(τ0)∆p(τ0, τ) = 2Jp(τ, τ0) . (257)

The reduction of order occurs as before.

Remarks:

(i) Modulo the dependence on the averaging function the expression (251) realizes the goal

of constructing a Hadamard state solely from the state independent commutator function in

a way different from [1, 17].

(ii) The parts (a) and (b) are logically independent and (b) can be obtained solely from

minimizing Ep in (243). A minimization over initial data in the Heisenberg picture is however

less compelling because for selfinteracting QFTs the fields (as operator valued distributions)

do in general not admit a well-defined restriction to a sharp constant time hypersurface.

On the other hand, the Schrödinger picture in QFT is frequently by default defined on a

spatial lattice, see Proposition 5.2.1 here. The Gaussian (215) is then uniquely determined

by the parameters zp = Tp(τ0), wp = (∂τTp)(τ0) in its initial value ΩT [u]|τ=τ0 . Conceptually,

therefore (b) is naturally placed in the context of (a).

(iii) The relation |T SLE
p (τ)| ∝

√
Jp(τ) also implies that J(τ) solves the Ermakov-Pinney

equation with very specific f -dependent initial conditions implicitly set by those of ∆p.

(iv) In terms of the data in (253) the SLE two-point function can be expressed as

T SLE
p (τ)T SLE

p (τ ′)∗

=

√
Jp(τ)Jp(τ ′)

2ESLE
p

(
Jp(τ, τ0)− iESLE

p ∆p(τ, τ0)

Jp(τ, τ0) + iESLE
p ∆p(τ, τ0)

)1/2(
Jp(τ

′, τ0) + iESLE
p ∆p(τ

′, τ0)

Jp(τ ′, τ0)− iESLE
p ∆p(τ ′, τ0)

)1/2

.(258)

(v) In principle, the equivalence of (251) to the original expression (227) is a consequence

of the respective, independently established, uniqueness and the identity (222). It is never-

theless instructive to verify the equivalence of (251) and (227) directly. The main ingredient

is the postponed proof of Proposition 5.2.2 to which we now turn.

We begin with a simple basic fact

Lemma 5.2.3. Let ∆ : C([τi, τf ]) → C([τi, τf ]
2) be the following commutator functional
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∆[S](τ, τ0) = i(S(τ)S(τ0)∗ − S(τ)∗S(τ0)). Then ∆[S] is real valued, antisymmetric in τ, τ0,

and obeys ∆[aS + bS∗](τ, τ0) = (|a|2 − |b|2)∆[S](τ, τ0), a, b ∈ C. On a solution S of the

differential equation (193) ∆[S] becomes the commutator function, which is characterized by

(201) and is independent of the choice of Wronskian normalized fiducial solution.

Proof of Proposition 5.2.2.

We can regard Jp(τ0), Kp(τ0) as functionals over the differentiable functions C1([τi, τf ]),

by replacing the commutator function by the commutator functional ∆p(τ, τ0) 7→ ∆p[S](τ, τ0) =

i(S(τ)S(τ0)∗−S(τ)∗S(τ0)). Inserting this into (244) and comparing with the definitions (226)

one finds

Jp(τ0) = 2|Sp(τ0)|2c1 − [Sp(τ0)∗]2c2 − Sp(τ0)2c∗2 = J [S](τ0) ,

Kp(τ0) = 2|∂τ0Sp(τ0)|2c1 − [∂τ0Sp(τ0)∗]2c2 − [∂τ0Sp(τ0)]2c∗2 = K[S](τ0) . (259)

Using (259) one can compute the left hand side of (245) in terms of c1, c2. The result is

4Kp(τ0)Jp(τ0)− (∂τ0Jp(τ0))2 = 4(c2
1 − |c2|2) = 4I[S] . (260)

Since c1 ≥ |c2| this reconfirms (245). The invariance (229) of I,J ,K follows from Lemma

5.2.3.

Finally, we verify the equivalence of (251) and (227). For a general solution Tp(τ) one

can match the parameterizations (223) and (242) by realizing the commutator function in

terms of S. This gives

λ = i
(
Sp(τ0)∗w − ∂τ0Sp(τ0)∗z

)
,

µ = i
(
∂τ0Sp(τ0)z − Sp(τ0)w

)
. (261)

The same must hold for the minimizing parameters. A brute force verification of the latter

is cumbersome. Instead we compare the modulus square computed from (224), i.e. (|µ|2 +

|λ|2)|Sp(τ)|2 + µλ∗S(τ)2 + λµ∗[S(τ)∗]2 with Jp(τ)/(2
√
c2

1 − |c2|2), taking advantage of the

directly verified Eq. (256). Inserting (256) for Jp(τ) and comparing coefficients of |Sp(τ)|2,
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Sp(τ)2, one finds

|µmin|2 + |λmin|2 =
c1√

c2
1 − |c2|2

, (λmin)∗µmin = − c∗2

2
√
c2

1 − |c2|2
. (262)

These can be solved for µmin, λmin, and with the choice of phase arg λmin = π − arg c2 one

recovers (234). This provides a direct verification – modulo phase choices – of (261) for the

minimizers (248) and (234). The phases are however not necessarily matched, in particular

real µ does not automatically correspond to real z.
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5.3 Convergent small momentum expansion for SLE

The SLE have been introduced on account of their Hadamard property, which relates

to a Minkowski-like behavior at large spatial momentum. Here we show that SLE admit

a convergent small momentum expansion, both for massive and for massless theories. Re-

markably, the momentum dependence turns out to Minkowski-like also for small momentum.

In the massless case this provides a cure for the infrared divergences plaguing the two-point

functions on FL cosmologies with accelerated expansion. In fact, for any scale factor the

leading terms are given by

T SLE
p (τ)T SLE

p (τ ′)∗ =
ā

2p
− i

2
(τ − τ ′) +O(p) , ā :=

( ∫
dτf(τ)2∫

dτf(τ)2a(τ)2d−2

) 1
2

. (263)

5.3.1 Fiducial solutions and their Cauchy product

A SLE can be defined either in terms of a fiducial solution Sp or in terms of the Com-

mutator function ∆p. Here we prepare results establishing uniformly convergent series for

these solutions as well as their Cauchy products. Throughout we consider the differential

equation

[∂2
τ + ωp(τ)2]Sp(τ) = 0 , ωp(τ)2 = ω0(τ)2 + p2ω2(τ)2 , (264)

where ω0, ω2 are continuous real-valued functions on [τi, τf ] and ω2 is not identically zero. The

case ω0(τ)2 = m(τ)2a(τ)2d, ω2(τ)2 = a(τ)2d−2 corresponds to the dispersion relation arising

from the Klein Gordon equation; the function m(τ) may have zeros or vanish identically

(massless case). Throughout we write p for the modulus of the spatial momentum.

Proposition 5.3.1. The differential equation (264) admits convergent series solutions with a

radius of convergence p∗ > 0 on [τi, τf ], such that for any p < p∗

Sp(τ) =
∞∑
n=0

Sn(τ)p2n , and ∂τSp(τ) =
∞∑
n=0

∂τSn(τ)p2n , (265)

and the sums converge uniformly on [τi, τf ].
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These solutions in particular have IR finite initial data

lim
p→0

Sp(τ0) =: z0 <∞ , lim
p→0

∂τ0Sp(τ0) =: w0 <∞ . (266)

The proof below entails that the subspace of solutions described by the proposition can

be characterized by (266). In order to prove the proposition, we shall need the following

standard existence and uniqueness result for the solutions of a second order linear ODE

(which we state without proof):

Lemma 5.3.1. Consider the initial value problem

y′′(τ) + α(τ)y′(τ) + β(τ)y(τ) = g(τ) , y(τ0) = u , y′(τ0) = v . (267)

If α, β, g are continuous functions on an open interval I 3 τ0, then there exists a unique

solution of this initial value problem, and this solution exists throughout the interval I.

Proof of Proposition 5.3.1.

First consider the “p = 0” equation, i.e. [∂2
τ + ω0(τ)2]S0(τ) = 0. Lemma 5.3.1 implies

that there exists a complex solution S0(τ), which may be Wronskian normalized to satisfy

∂τS0 S
∗
0−S0∂τS

∗
0 = −i. In the case ω0(τ) = 0 on [τi, τf ], the solution with initial data w0, z0

is S0(τ) = w0(τ − τ0) + z0, w0z
∗
0 − z0w

∗
0 = −i. Remaining with general ω0(τ) we reformulate

(264) as an integral equation. Defining the kernel1

K(τ, τ ′) := iθ(τ − τ ′)S0(τ)S0(τ ′)∗ + iθ(τ ′ − τ)S0(τ)∗S0(τ ′) , (268)

a function S(τ) satisfying

S(τ) = S0(τ)− p2

∫ τf

τi

K(τ, τ ′)ω2(τ ′)2S(τ ′)dτ ′ (269)

solves (264). Further, ∂τS(τ) satisfies

∂τS(τ) = ∂τS0(τ)− p2

∫ τf

τi

∂τK(τ, τ ′)ω2(τ ′)2S(τ ′)dτ ′ . (270)

1This is the (generalized) Feynman Greens function. Any other choice of Greens function also renders L
in (273) a contraction, merely the value of p∗ may change.
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In terms of

S(τ) :=

S(τ)

S̃(τ)

 , S0(τ) :=

 S0(τ)

∂τS0(τ)

 , K(τ, τ ′) :=

 K(τ, τ ′)ω2(τ ′)2 0

∂τK(τ, τ ′)ω2(τ ′)2 0

 , (271)

we search for a solution of the integral equation

S(τ) = S0(τ)− p2

∫ τf

τi

K(τ, τ ′)S(τ ′)dτ ′ . (272)

As the underlying Banach space we take (X, ‖·‖) :=
(
C([τi, τf ],C2), ‖·‖)sup

)
, where C2 is

being equipped with the sup-norm. Next, we define the linear operator L : X → X

∀u ∈ X :
(
Lu
)
(τ) := S0(τ)− p2

∫ τf

τi

K(τ, τ ′)u(τ ′)dτ ′ , (273)

and show that for sufficiently small p, this map is actually a contraction.

Since S0 is a C1 function, it is clear that both K(τ, τ ′) and ∂τK(τ, τ ′) are bounded

functions on [τi, τf ]
2. As ω2 is also continuous, there is R > 0 such that |K(τ, τ ′)ij| < R on

[τi, τf ]
2. Then for any u, v ∈ X

|Lu(τ)− Lv(τ)|max = p2
∣∣∣ ∫ τf

τi

K(τ, τ ′)
(
u(τ ′)− v(τ ′)

)
dτ ′
∣∣∣
max

≤ p2

∫ τf

τi

∣∣∣K(τ, τ ′)
(
u(τ ′)− v(τ ′)

)∣∣∣
max

dτ ′

=⇒ ‖Lu− Lv‖sup ≤ p2(τf − τi)R ‖u− v‖sup , (274)

and so there is p∗ > 0 such that for all p < p∗, L is a contraction.

Assuming that p < p∗, the Banach Fixed Point theorem implies that there exists a unique

Sp = (Sp, S̃p)
T ∈ X such that LSp = Sp, i.e.

Sp(τ) = S0(τ)− p2

∫ τf

τi

K(τ, τ ′)ω2(τ ′)2Sp(τ
′)dτ ′ ,

S̃p(τ) = ∂τS0(τ)− p2

∫ τf

τi

∂τK(τ, τ ′)ω2(τ ′)2Sp(τ
′)dτ ′ . (275)

Comparing (275) and (270), it is clear that ∂τSp(τ) satisfies the second equation above. The

uniqueness of the fixed point Sp then implies that S̃p = ∂τSp.

Further, the iterated sequence LmS0, m ∈ N, converges to Sp in the sup-norm. It is then
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easily verified that there is a sequence of C1 functions Sn(τ) such that we have the uniformly

convergent power series representations of the form asserted in (265).

Next we consider the product of two series solutions and state, without proof, the fol-

lowing slight generalization of Merten’s theorem.

Lemma 5.3.2. Let

A(τ) =
∞∑
n=0

an(τ)p2n , B(τ) =
∞∑
n=0

bn(τ)p2n , (276)

be power series in the Banach space C([τi, τf ],C) with (uniform) radius of convergence p∗ > 0.

Consider the map C : [τi, τf ] × [τi, τf ] → C defined by C(τ1, τ2) := A(τ1)B(τ2), and the

coefficients of the unequal time Cauchy product of A and B,

cn(τ1, τ2) :=
n∑
i=0

ai(τ1)bn−i(τ2) . (277)

Then for any p < p∗

∞∑
n=0

cn(τ1, τ2)p2n = C(τ1, τ2) , (278)

with uniform convergence in [τi, τf ] × [τi, τf ]. The same holds for the equal time Cauchy

product (τ1 = τ2 in (277), (278) ) with uniform convergence in [τi, τf ].

An immediate corollary of Proposition 5.3.1 and Lemma 5.3.2 is:

Corollary 5.3.3. The Commutator function ∆p(τ, τ
′) and the Greens functions defined in

terms of it have uniformly convergent series expansions in p < p∗ for distinct (τ, τ ′) ∈

[τi, τf ]× [τi, τf ].

So far these are mostly existence results. For the actual construction of these series

solutions one will solve the implied recursion relations. For a solution Sp(τ) of the form

(265) one has

[∂2
τ + ω0(τ)2]S0(τ) = 0 ,

[∂2
τ + ω0(τ)2]Sn(τ) = −ω2(τ)2Sn−1(τ) , n ≥ 1 . (279)
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Each Sn is only unique up to addition of a solution of the homogeneous equation, character-

ized by two complex parameters. These ambiguities account for the initial data of the series

solution

Sp(τ0) =
∑
n≥0

znp
2n =: zp , ∂τ0Sp(τ0) =

∑
n≥0

wnp
2n =: wp ,

with
n∑
j=0

(wjz
∗
n−j − w∗jzn−j) = 0 , n ≥ 1 , (280)

where the constraint stems from the Wronskian normalization. One can use the same Greens

function G0(τ ′, τ) at each order and adjust the initial data of the additive modification such

that Sn(τ0) = zn, (∂τSn)(τ0) = wn holds, for given zn, wn ∈ C, mildly constrained by (280).

Later on a series solution of this form will play the role of the fiducial solution in the

construction of the SLE. Theorem 5.2.1 ensures that any such solution will produce the same

SLE solution (within the implied radius of convergence) up to a phase. We are therefore

free to choose one with especially simple, namely p-independent, initial data for τ0 = τi:

zn = 0 = wn, n ≥ 1. In this case the relevant Greens function is the retarded Greens

function G∧0 (τ, τ ′) := θ(τ − τ ′)∆0(τ, τ ′), with ∆0 the commutator function for ∂2
τ + ω0(τ)2.

Further, no additive, order dependent, modification is needed and the solution of the iteration

is simply

Sn(τ) =

∫ τf

τi

dτ ′Kn(τ, τ ′)S0(τ ′) , n ≥ 1 , (281)

K1(τ, τ ′) := −G∧0 (τ, τ ′)ω2(τ ′)2 ,

Kn+1(τ, τ ′) := (−)n+1

∫ τf

τi

dτ1...dτnG
∧
0 (τ, τ1)ω2(τ1)2G∧0 (τ1, τ2)ω2(τ2)2 . . . G∧0 (τn, τ

′)ω2(τ ′)2 .

The kernel Kn is manifestly real and satisfies Kn(τi, τ
′) = 0 = ∂τKn(τ, τ ′)|τ=τi , for τ ′ ∈

(τi, τf ]. The associated series solution Sp(τ) therefore satisfies Sp(τi) = z0, (∂τSp)(τi) = w0,

for p-independent constants with w0z
∗
0 − w∗0z0 = −i.

The commutator function ∆p(τ, τ
′) is likewise independent of the choice of the Wronskian

normalized solution used to realize it, see Lemma 5.2.3. We are thus free to use the solution
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(281) for this purpose. Writing ∆p(τ, τ
′) =

∑
n≥0 ∆n(τ, τ ′)p2n, one finds

∆n(τ, τ ′) = i

n∑
j=0

(
Sj(τ)S∗n−j(τ

′)− S∗j (τ)Sn−j(τ
′)
)

=

∫ τf

τi

ds[Kn(τ, s)∆0(s, τ ′)−Kn(τ ′, s)∆0(s, τ)]

+

∫ τf

τi

ds1ds2

n−1∑
j=1

Kj(τ, s1)Kn−j(τ
′, s2)∆0(s1, s2) . (282)

One can check that the coefficients satisfy all the relations implied by the expansion of the

defining conditions (201)

[∂2
τ + ω0(τ)2]∆n(τ, τ ′) = −ω2(τ)2∆n−1(τ, τ ′) , ∂τ∆n(τ, τ ′)

∣∣
τ=τ ′

= 0 ,

[∂2
τ ′ + ω0(τ ′)2]∆n(τ, τ ′) = −ω2(τ ′)2∆n−1(τ, τ ′) , n ≥ 1 . (283)

The two recursion relations follow from [∂2
τ + ω0(τ)2]Kn(τ, τ ′) = −ω2(τ)2Kn−1(τ, τ ′), n ≥ 2.

For the third relation it is convenient to first verify ∂τ [∂τ∆n(τ, τ ′)|τ=τ ′ ] = 0. Then, it

suffices to show ∂τ∆n(τ, τi)|τ=τi = 0, which follows from Kn(τi, τ
′) = 0 = ∂τKn(τ, τ ′)|τ=τi ,

for τ ′ ∈ (τi, τf ].

5.3.2 IR behavior of States of Low Energy

We use the formulas from Theorem 5.2.2 to derive convergent series expansions for the

SLE. The basic expansion is ∆p(τ
′, τ) =

∑
n≥0 ∆n(τ ′, τ)p2n, with coefficients from (282). In

terms of it convergent expansions for the Jp(τ0), ∂τ0Jp(τ0), Kp(τ0) in (244) can be derived. The

uniform convergence of the various pointwise products is ensured by the results of Section

5.3.1 and allows one to exchange the order of summation and integration. The following

notation is convenient

C(τ, τ0) =
∑
n≥0

Cn(τ, τ0) p2n =⇒ C(τ, τ0)2 =
∑
n≥0

C(τ, τ0)2
n p

2n

with C(τ, τ0)2
n :=

n∑
j=0

Cj(τ, τ0)Cn−j(τ, τ0) . (284)
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In this notation one has

Jp(τ0) =
∑
n≥0

Jn(τ0) p2n , Kp(τ0) =
∑
n≥0

Kn(τ0) p2n , (285)

J0(τ0) =
1

2

∫
dτ f(τ)2

[(
∂τ∆0(τ, τ0)

)2
+ ω0(τ)2∆0(τ, τ0)2

]
,

Jn(τ0) =
1

2

∫
dτ f(τ)2

[(
∂τ∆(τ, τ0)

)2

n
+ ω0(τ)2∆(τ, τ0)2

n + ω2(τ)2∆(τ, τ0)2
n−1

]
,

K0(τ0) =
1

2

∫
dτ f(τ)2

[(
∂τ∂τ0∆0(τ, τ0)

)2
+ ω0(τ)2

(
∂τ0∆0(τ, τ0)

)2
]
,

Kn(τ0) =
1

2

∫
dτ f(τ)2

[(
∂τ∂τ0∆(τ, τ0)

)2

n
+ ω0(τ)2

(
∂τ0∆(τ, τ0)

)2

n
+ ω0(τ)2

(
∂τ0∆(τ, τ0)

)2

n−1

]
,

and ∂τ0Jp(τ0) =
∑

n≥0 ∂τ0Jn(τ, τ0) p2n with the implied coefficients. Interpreting (252) as

(ESLE
p )2 =

1

4

∫
dτ0f(τ0)2

[
Kp(τ0) + ωp(τ0)2Jp(τ0)

]
=:
∑
n≥0

ε2
n p

2n ,

ε2
0 =

1

4

∫
dτ0f(τ0)2

[
K0(τ0) + ω0(τ0)2J0(τ0)

]
, (286)

ε2
n =

1

4

∫
dτ0f(τ0)2

[
Kn(τ0) + ω0(τ0)2Jn(τ0) + ω2(τ0)2Jn−1(τ0)

]
, n ≥ 1 ,

one sees that the energy’s expansion is determined by the same coefficients. As a consequence

all quantities in Theorem 5.2.2(b) admit convergent series expansions in powers of p whose

coefficients can be expressed in terms of those in (285) only.

In the following we focus on the expansion of the energy ESLE
p and the modulus squared

|T SLE
p (τ)|2. It is useful to distinguish two cases (where the terminology will become clear

momentarily).

Massive: ε0 > 0 and K0(τ0) > 0.

ESLE
p = ε0 +

ε2
1

2ε0

p2 − ε4
1 − 4ε2

0ε
2
2

8ε3
0

p4 +O(p6) ,

|T SLE
p (τ)|2 =

J0(τ)

2ε0

+
2J1(τ)ε2

0 − J0(τ)ε2
1

4ε3
0

p2 (287)

+
1

16ε5
0

(
8J2(τ)ε4

0 − 4J1(τ)ε2
0ε

2
1 + 3J0(τ)ε4

1 − 4J0(τ)ε20ε
2
2

)
p4 +O(p6) .
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Massless: ε0 = 0 and K0(τ0) = 0 and ε1 > 0.

ESLE
p = ε1p+

ε2
2

2ε1

p3 − ε4
2 − 4ε2

1ε
2
3

8ε3
1

p5 +O(p7) ,

|T SLE
p (τ)|2 =

J0(τ)

2ε1

1

p
+

2J1(τ)ε2
1 − J0(τ)ε2

2

4ε3
1

p (288)

+
1

16ε5
1

(
8J2(τ)ε4

1 − 4J1(τ)ε2
1ε

2
2 + 3J0(τ)ε4

2 − 4J0(τ)ε21ε
2
3

)
p3 +O(p5) .

The massive case corresponds to ω0(τ) = m(τ)2a(τ)2d, ω2(τ)2 = a(τ)2d−2. Even the

lowest order commutator function ∆0(τ, τ ′) can then in general no longer be found in closed

form. All other aspects of the expansions are however explicitly computable in terms of ∆0:

the ∆n’s via (282), the Jn, Kn’s via (285), the εn’s from (286), and hence everything else.

Two-point function of massless SLE:

The massless case corresponds to ω0(τ) = 0, ω2(τ)2 = a(τ)2d−2. The lowest order wave

equation in (279) is then trivially soluble: S0(τ) = w0(τ−τ0) + z0, with w0z
∗
0 − w∗0z0 = −i.

The coefficients of the commutator function are explicitly known

∆0(τ ′, τ) = τ ′ − τ ,

∆1(τ ′, τ) =

∫ τf

τi

ds[θ(τ−s)− θ(τ ′−s)](τ−s)(τ ′−s)a(s)2d−2 , (289)

etc. This entails K0(τ0) = 0, ε0 = 0, and

ε2
1 =

1

4

∫
dτf(τ)2

∫
dτ ′f(τ ′)2a(τ ′)2d−2 ,

J0(τ0) =
1

2

∫
dτf(τ)2 , J1(τ0) =

∫
dτf(τ)2

[
∂τ∆1(τ, τ0) + (τ−τ0)2a(τ)2d−2

]
,

K1(τ0) =
1

2

∫
dτf(τ)2a(τ)2d−2 . (290)

This gives

|T SLE
p (τ)|2 =

ā

2p
+O(p) , ESLE

p =
p

2ā

∫
dτf(τ)2 , ā :=

( ∫
dτf(τ)2∫

dτf(τ)2a(τ)2d−2

) 1
2

, (291)

as claimed in (263). Since the leading term is τ independent one obtains from (251)

T SLE
p (τ) = ∆p(τ, τ0)wmin

p − ∂τ0∆p(τ, τ0)zmin
p =

√
ā

2p
− i(τ − τ0)

√
p

2ā
+O(p3/2) .
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zmin
p =

√
ā

2p

(
1 +O(p2)

)
, wmin

p = −i
√

p

2ā

(
1 +O(p2)

)
. (292)

This holds up an undetermined p-dependent phase which is fixed in the initial value formu-

lation of the minimization procedure by taking z real. This phase ambiguity disappears in

the two-point function, for which one obtains

T SLE
p (τ)T SLE

p (τ ′)∗ =
ā

2p
− i

2
(τ − τ ′) +O(p) . (293)

The same result can alternatively be obtained from (258).

Remarks:

(i) Based on (perhaps misled by) the exactly soluble case of power-like scale factors one

normally regards the IR behavior of the solutions as directly determined by the cosmological

scale factor. From the small argument expansion of the Bessel functions one has

|Sp(τ)|2 ∝ p−2|ν| for a(τ) ∝ τ
1−2ν

2(d−1)ν . (294)

Here d/2 < ν < ∞ corresponds to acceleration while −∞ < ν < 1/2 corresponds to

deceleration. The interval 1/2 ≤ ν ≤ d/2 does not give rise to a curvature singularity;

the boundary values ν = 1/2 and ν = d/2 model Minkowski space and deSitter space,

respectively. The inverse Fourier transform is infrared finite whenever
∫ 1

0
dp pd−1|Sp(τ)|2 is

finite. For the solutions (294) this is the case only in part of the decelerating window,

0 < ν < 1/2, see [37] for the original discussion.

(ii) The leading IR behavior of the massless SLE solution (292) is constant, pointwise

in τ . This corresponds to the expected freeze-out of the oscillatory behavior on scales much

larger than the Hubble radius. The universality of the 1/
√
p behavior is however surprising,

as is the simple coefficient
√
ā/2, valid for any scale factor. The result (292) could not have

been obtained based on the traditional adiabatic iteration, which is incurably singular at

small momentum.

(iii) In arriving at (292) we took the expressions from Theorem 5.2.2 as the starting

point. It is instructive to go through the derivation based on the original parameterization

(223), (225). The fiducial solution is constructed via (281) from its leading order, S0. In the

massless case the general (Wronskian normalized) solution to the leading order equation is
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S0(τ) = w0(τ−τ0) + z0, w0z
∗
0 − w∗0z0 = −i. A somewhat longer computation then gives

µp = |w0|
√

ā

2p
− 1

|w0|

√
p

8ā
+O(p

3
2 ) ,

λp = −w
∗
0

w0

|w0|
√

ā

2p
− w∗0
w0

1

|w0|

√
p

8ā
+O(p

3
2 ) . (295)

T SLE
p (τ) = −i w

∗
0

|w0|

√
ā

2p
− 1

|w0|w0

√
p

8ā

[
2|w0|2(τ − τ0) + 2<(z0w

∗
0)
]

+O(p
3
2 ) .

One sees that all intermediate results depend on the parameters w0, z0 of the fiducial solution.

In the two-point function, however, these drop out and one recovers (293).

(iv) While in the massive case minimization of Ep and expansion in p2 are commuting

operations, this is not true in the massless case. In the SLE construction via a fiducial

solution we chose one with a regular p → 0 limit, which is evidently not the case for (292).

The independence of the SLE solution from the choice of fiducial solution is crucial for the

result.

(v) The IR behavior of (293) is Minkowski-like for all scale factors a. This means that

massless SLE are automatically IR finite and provide an elegant solution to the long standing

IR divergences in Friedmann-Lemâıtre backgrounds with accelerated expansion [37].

(vi) The existence of a pre-inflationary epoch with non-accelerated expansion typically

removes the IR singularity. For generic powerlike scale factors the mode matching can (with

some effort) be controlled analytically [55]; typically one focuses on a radiation dominated

(ν = −1/2 in (294)) [25, 71] or kinetic energy dominated (ν = 0 in (294)) [23, 86] pre-

inflationary period. Another take on the IR issue is to regard it as an artifact of using

non-gauge invariant observables [51, 39].

(vii) The mathematical principle underlying (293) is very different from the ones in (vi).

As detailed in Section 5.5, there are independent reasons to regard the existence of a pre-

inflationary period as part of the standard paradigm. Positing a massless SLE as primordial

vacuum in this period then ought to be consistent with the qualitative properties of the

power spectrum at seed formation. This physics requirement will be taken up in Section

5.5.2.

(viii) As a consequence of (293) the long range properties of the SLE position space

126



two-point function will be similar to that of its Minkowski space counterpart. Further, the

shift symmetry, φ(τ, x) 7→ φ(τ, x)+const, turns out to be spontaneously broken for d ≥ 2, as

it is for the massless free field in Minkowski space. A proper proof can be based on Swieca’s

Noether charge criterion [57, 67] and is omitted here.

5.4 WKB type large momentum asymptotics

Any Wronskian normalized solution of the basic wave equation is uniquely determined

by its modulus

Sp(τ) = |Sp(τ)| exp
{
− i

2

∫ τ

τ0

ds
1

|Sp(s)|2
}
, (296)

up to a choice of τ0 where Sp(τ0) is real. In this section we show that for each N > 1 there

exists an exact ‘order N ’ solution with a certain N -term positive frequency asymptotics.

These solutions are such that |Sp(τ)|2 is asymptotic up to O(p−2N−1) to a polynomial in odd

inverse powers of p, whose coefficients are local differential polynomials in ω0, ω2 generalizing

the heat kernel coefficients. The resulting order N solutions will be referred to as WKB type

solutions.2 An SLE solution will then be shown to be a WKB type solution of infinite order.

Throughout this section we assume ω0, ω2 to be smooth.

5.4.1 Existence of solutions with WKB type asymptotics

As a starting point the relation (296) is cumbersome because the exponential needs to

be re-expanded. In the following we establish the existence of asymptotic expansions of all

quantities needed by starting from a simplified formal series ansatz for Sp’s large momentum

asymptotics

Sp(τ) =
exp

{
− ip

∫ τ
τi
ds ω2(s)

}√
2pω2(τ)

{
1 +

∑
n≥1

(ip)−nsn(τ)
}
, (297)

2A WKB ansatz proper is one where only the integrand of the exponent is formally expanded in terms
of local coefficients.
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with real-valued sn. As in Section 5.3 we consider the basic differential equation [∂2
τ +

ωp(τ)2]Sp(τ) = 0 with generic time dependent frequency ωp(τ) = ω0(τ)2 + p2ω2(τ)2. The

leading term in (297) is a positive frequency wave. The latter is known to be a necessary

(but by no means sufficient property) for a solution to comply with the Hadamard condition.

Upon insertion of (297) into the basic wave equation one finds the following recursion

relations

∂τsn = ∂τs1sn−1 + ∂τ

(∂τsn−1

2ω2

)
, n ≥ 2 ,

∂τs1 =
ω2

0

2ω2

− 1

4ω2

(
∂2
τω2

ω2

− 3

2

(
∂τω2

ω2

)2
)
. (298)

Clearly, each sn can be obtained simply by integration and the only ambiguity arises from

the choice of integration constants sn(τi). We claim that

sn(τi) = 0 , n odd , (299)

uniquely determines all sn(τi), n even, such that the Wronskian normalization condition

holds. The stipulation sn(τi) = 0, n odd, goes hand in hand with the fact (seen later on)

that |Sp(τ)|2 admits an asymptotic expansion in odd inverse powers of p. Comparing with

the |Sp(τi)|2 series arising from (297) one sees that the odd sn must vanish at τ = τi. The

stipulation is also consistent with the flat space limit a(τ) ≡ 1.

The second part of the claim is that the sn(τi) for n even are determined by imposing

the Wronskian normalization condition

∂τSp(τ)Sp(τ)∗ − Sp(τ)∂τSp(τ)∗
!
= −i . (300)

Using momentarily a ‘′’ to denote a ∂τ derivative and setting s0 := 1, a formal computation

shows (300) to hold subject to (299) iff∑
m,n≥0 ,m+n=N

(s2ns2m)(τi)−
∑

m≥0, n≥1, 2m+n=2N−1

(ω−1
2 s′n s2m)(τi)

!
= 0 , N ≥ 1 . (301)

To low orders,

N = 1 : 2s2(τi)− ω2(τi)
−1s′1(τi)

!
= 0
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N = 2 : 2s4(τi) + s2(τi)
2 − ω2(τi)

−1s′3(τi)− ω−1
2 s′1(τi)s2(τi)

!
= 0 . (302)

Clearly, s2(τi) is determined by the unambiguous s′1(τi) from (298). In terms of it s4(τi)

is determined by the unambiguous s′3(τi), and so forth. Hence (301) iteratively fixes the

integration constants sn(τi) for n even, as claimed. Finally, we note that the recursion (298)

entails that if (301) holds at τi, then (300) holds formally for all τ .

Assume now that to some order N the s1(τ), . . . sN(τ) have been computed by the re-

cursion (298) with initial data (299), (301). Then

S(N)
p (τ) :=

exp
{
− ip

∫ τ
τ0
ds ω2(s)

}√
2pω2(τ)

{
1 +

N∑
n=1

(ip)−nsn(τ)
}
, (303)

is unambigously defined. It enters our work horse Lemma:

Lemma 5.4.1. For some N > 1 let S
(N)
p (τ) be as in (303). Then, the differential equa-

tion [∂2
τ + ωp(τ)2]Sp(τ) = 0 admits an exact (though implicitly N-dependent), Wronskian

normalized (∂τSp(τ)Sp(τ)∗ − Sp(τ)∂τSp(τ)∗ = −i), complex solution Sp, such that

Sp(τ) = S(N)
p (τ)

[
1 +O(p−N)

]
∂τSp(τ) = ∂τS

(N)
p (τ)

[
1 +O(p−N)

]
, (304)

uniformly in τ ∈ [τi, τf ] as p→∞.

Here and below the O remainders refer to the supremum of the modulus of the function

f ∈ C[τi, τf ] estimated, i.e. f(τ) = O(p−N) means ‖f‖)sup = O(p−N). The existence of such

estimates for an order dependent function in terms of partial sums will below be indicated

by the “�N ” relation for the infinite series. For example, Lemma 5.4.1 amounts to the

“�N ” equality of both sides in (297). The asymptotic expansion of a fixed (N -independent)

function will be denoted by “� ”.

Proof.

To establish the existence and asymptotics of the solution Sp, we substitute

Sp(τ) = S(N)
p (τ) ·Rp(τ) , (305)
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into the differential equation [∂2
τ + ωp(τ)2]Sp(τ) = 0 to obtain

∂2
τRp + 2

∂τS
(N)
p

S
(N)
p

∂τRp + F (τ, p)Rp = 0 , with

Fp(τ) :=
∂2
τS

(N)
p + ωp(τ)2S

(N)
p

S
(N)
p

. (306)

It is readily verified from the recursion relations (298) that ∂2
τS

(N)
p +ωp(τ)2S

(N)
p = O(p−N−1/2),

while S
(N)
p = O(p−1/2), uniformly in τ ∈ [τi, τf ] as p→∞. This entails

Fp(τ) = O(p−N) uniformly in τ ∈ [τi, τf ] as p→∞ . (307)

Defining the kernel

Kp(τ, τ
′) :=

∫ τ

τ ′
S(N)
p (τ ′)2 S(N)

p (τ ′′)−2dτ ′′ , (308)

it is easy to see that a function Rp(τ) satisfying the integral equation

Rp(τ) = 1 + rp −
∫ τ

τi

Kp(τ, τ
′)Fp(τ

′)Rp(τ
′)dτ ′ , (309)

solves (306). Here rp ∈ R is a constant, satisfying Rp(τi) = 1 + rp, that will be determined

later on. Further, Kp = O(1) uniformly on [τi, τf ]
2; so for sufficiently large p it follows from

(307) that the map

u(τ) 7→ 1 + rp −
∫ τ

τi

Kp(τ, τ
′)Fp(τ

′)u(τ ′)dτ ′ , (310)

is a contraction on the Banach space
(
C([τi, τf ],C), ‖·‖)sup

)
; c.f (274). Hence (309) has a

unique solution by the Banach Fixed Point theorem. Moreover, Rp(τ) is differentiable, with

∂τRp(τ) = −
∫ τ

τi

S(N)
p (τ ′)2 S(N)

p (τ)−2F (τ ′, p)Rp(τ
′)dτ ′ . (311)

We now determine the constant rp by imposing the Wronskian condition (303). Since

Sp(τ) = S
(N)
p (τ) · Rp(τ) solves [∂2

τ + ωp(τ)2]Sp(τ) = 0, the Wronskian is conserved in time.

Thus it is sufficient to demand that the normalization (303) holds for τ = τi. One has

(
∂τSp S

∗
p − Sp ∂τS∗p

)
(τi)
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=
[
∂τS

(N)
p S(N) ∗

p − S(N)
p ∂τS

(N) ∗
p

]
(τi) ·Rp(τi)Rp(τi)

∗

+ S(N)
p (τi)S

(N) ∗
p (τi) ·

[
∂τRpR

∗
p −Rp ∂τR

∗
p

]
(τi)

= (1 + rp)
2
[
∂τS

(N)
p S(N) ∗

p − S(N)
p ∂τS

(N) ∗
p

]
(τi) . (312)

The expression [∂τS
(N)
p S

(N) ∗
p −S(N)

p ∂τS
(N) ∗
p ](τi) may be expanded in powers of p−2 as before.

Although this is a finite sum, in order to make contact to the formal Wronskian normalization

(300), (301), it is convenient to regard the sum as being infinite, with the understanding that

sn ≡ 0 for n > N . With this understanding

[
∂τS

(N)
p S(N) ∗

p − S(N)
p ∂τS

(N) ∗
p

]
(τi)

= −i+ i
∑
k≥1

(−)k+1p−2k
{ ∑
m,n≥0,m+n=k

(s2ns2m)(τi)−
∑

m,n≥0, 2m+n=2k−1

(ω−1
2 s′n s2m)(τi)

}
=: i(−1 + δp) (313)

Then

(
∂τSp S

∗
p − Sp ∂τS∗p

)
(τi) = −i+ i

[
(1 + rp)

2(−1 + δp) + 1
]
, (314)

and the appropriate normalization is thus ensured by choosing rp such that the term in

square brackets vanishes. In order to determine the large p behavior of rp, that of δp is

needed. To this end we decompose the sum in (313) as

δp =

bN/2c∑
k≥1

(−)k+1p−2k
{ ∑
m,n≥0,m+n=k

(s2ns2m)(τi)−
∑

m,n≥0, 2m+n=2k−1

(ω−1
2 s′n s2m)(τi)

}
+

∑
k>bN/2c

(−)k+1p−2k
{ ∑
m,n≥0,m+n=k

(s2ns2m)(τi)−
∑

m,n≥0, 2m+n=2k−1

(ω−1
2 s′n s2m)(τi)

}
,

(315)

again with the understanding that sn ≡ 0, n > N . The highest index of sn appearing in the

first sum is s2bN/2c, leaving it unaffected by setting sn ≡ 0 for n > N . Hence the first sum in

(315) vanishes as before, while the remainder contains only a finite number of nonzero terms

δp =
∑

k>bN/2c

(−)k+1p−2k
{ ∑
m,n≥0,m+n=k

(s2ns2m)(τi)−
∑

m,n≥0, 2m+n=2k−1

(ω−1
2 s′n s2m)(τi)

}
.
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(316)

In general this remainder is nonzero, but it manifestly obeys δp = O(p−N−1). Solving (1 +

rp)
2(−1 + δp) + 1 = 0 for rp and choosing the positive square root one has

rp = −1 +

√
1 +

δp
1− δp

= O(p−N−1) , (317)

on account of δp = O(p−N−1).

Having established the normalization (300) we now proceed to establish (304). It follows

from (307), (309), and (317) that

Rp(τ) = 1 +O(p−N) uniformly in τ ∈ [τi, τf ] as p→∞ , (318)

proving the existence of an exact Sp(τ) such that Sp(τ) = S
(N)
p (τ)[1 +O(p−N)]. On account

of the same estimates (311) entails ∂τRp(τ) = O(p−N), from which it follows that

∂τSp(τ) = ∂τS
(N)
p (τ)

[
Rp(τ) +

S
(N)
p (τ)

∂τS
(N)
p (τ)

∂τRp(τ)

]
= ∂τS

(N)
p (τ)

[
1 +O(p−N)

]
. (319)

This completes the proof.

Remarks:

(i) Using the results of [68] one can show that sn, n = 1, . . . N , coincide with the ones

induced by the adiabatic iteration for sufficiently large order upon expansion in 1/p. The

recursion (298) with initial data (299), (301) in this sense replaces the adiabatic iteration.

(ii) A WKB ansatz of the form (297) has been analyzed in [76] recently, and was shown

to be Borel summable under additional assumptions. These assumptions are typically not

satisfied in massive theories, but may be attainable in massless ones. Our Lemma gives a

weaker result which however directly applies to both situations.

(iii) The Lemma implies analogous asymptotic expansions for products of Sp(τ)’s, both

at identical and at distinct times. We prepare below the requisite notation for the two-point

function (320), the modulus square (322), and the commutator function (323).
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For the two-point function’s Fourier kernel the Lemma implies

Sp(τ)Sp(τ
′)∗ �N

exp
{
− ip

∫ τ
τ ′
ds ω2(s)

}
2p
√
ω2(τ)ω2(τ ′)

∑
n≥0

Vn(τ, τ ′)(ip)−n

Vn(τ, τ ′) =
n∑
j=0

(−)n−jsj(τ)sn−j(τ
′) , n ≥ 0 . (320)

To low orders V0 = 1, V1(τ, τ ′) = s1(τ)− s1(τ ′), V2(τ, τ ′) = s2(τ)− s1(τ)s1(τ ′) + s2(τ ′), etc..

Generally, the coefficients obey

V2j(τ, τ
′) = V2j(τ

′, τ) , V2j+1(τ, τ ′) = −V2j+1(τ ′, τ) , j ≥ 0 . (321)

They can be evaluated from (298), (299), (301) recursively to any desired order and are

increasingly nonlocal; see (348) for n = 1, 2, 3.

For the modulus square this results in an asymptotic expansion in odd inverse powers of

p,

|Sp(τ)|2 �N
1

2ω2(τ)

∑
n≥0

(−)nV2n(τ, τ)
1

p2n+1
. (322)

When used in (296) this establishes the existence of WKB type asymptotic expansions.

For the commutator function the Lemma implies

∆p(τ, τ
′) = Λ+

p (τ, τ ′) sin
(
p

∫ τ

τ ′
ds ω2(s)

)
+ Λ−p (τ, τ ′) cos

(
p

∫ τ

τ ′
ds ω2(s)

)
.

Λ+
p (τ, τ ′) �N

1√
ω2(τ)ω2(τ ′)

∑
j≥0

p−2j−1(−)jV2j(τ, τ
′) ,

Λ−p (τ, τ ′) �N
1√

ω2(τ)ω2(τ ′)

∑
j≥0

p−2j−2(−)jV2j+1(τ, τ ′) . (323)

5.4.2 Generalized resolvent expansion

As highlighted in (296), a Wronskian normalized solution of the basic wave equation is

fully determined by its modulus square. By (322) we know the form of the modulus square’s

asymptotic expansion. The coefficients V2n(τ, τ) are in principle determined by the basic

recursion (298). Since at each order an additional integration enters, one would expect these

coefficients to be highly nonlocal in time. Remarkably, this is not the case: the V2n(τ, τ)
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turn out to be local differential polynomials in the frequency functions ω0(τ)2, ω2(τ)2 of the

differential operator ∂2
τ + ω0(τ)2 + p2ω2(τ)2.

The main ingredient in the derivation is the Gelfand-Dickey equation. Using only the

basic differential equation and the Wronskian normalization (193) one finds |Sp(τ)|2 to satisfy

the (nonlinear form of the) Gelfand-Dickey equation

2|Sp|2∂2
τ |Sp|2 −

(
∂τ |Sp|2

)2
+ 4ω2

p|Sp|4 = 1 . (324)

In view of the expected relation to (297) it is convenient to set

|Sp(τ)|2 =: iGip(τ) . (325)

Then

2Gz∂
2
τGz − (∂τGz)

2 + 4[ω2
0 − z2ω2

2]G2
z = −1 ,

∂3
τGz + 4[ω2

0 − z2ω2
2]∂τGz + 2∂τ [ω

2
0 − z2ω2

2]Gz = 0 . (326)

Here the second, linear version of the Gelfand-Dickey equation follows by differentiating

the nonlinear form. For ω2
2 = 1 and ω2

0 = v the same equations govern the diagonal of

the resolvent kernel of the differential operator ∂2
τ + v, with z2 = −p2 playing the role of

the resolvent parameter [29]. The diagonal of the resolvent kernel is known to admit an

asymptotic expansion in inverse powers of z, whose coefficients coincide with the heat kernel

coefficients on general grounds, see e.g. [4]. The generalization to [∂2
τ +ω0(τ)2]S = z2ω2(τ)2S,

with non-constant ω2(τ)2 can be treated as follows.

Inserting the ansatz

Gz(τ) =
∑
n≥0

Gn(τ)

2ω2

z−2n−1 , G0 = 1 , (327)

into the nonlinear Gelfand-Dickey equation results in the recursion

Gn =
∑

k,l≥0,k+l=n−1

{1

4

Gk

ω2

∂2
τ

(Gl

ω2

)
− 1

8
∂τ

(Gk

ω2

)
∂τ

(Gl

ω2

)
+

1

2

ω2
0

ω2
2

GkGl

}
− 1

2

∑
k,l≥1,k+l=n

GkGl.

(328)
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This expresses Gn in terms of Gn−1, . . . , G1, and involves only differentiations. It follows

that all Gn are differential polynomials in v := ω2
0, w := ω2

2. Denoting ∂τ differentiations

momentarily by a “ ′ ” one finds:

G1 =
v

2w
+

5

32

w′2

w3
− 1

8

w′′

w2
,

G2 =
3

8w2

(
v2 +

1

3
v′′
)
− 5

16w3

(
vw′′ + v′w′ − v7w′2

4w

)
+

1

32w3

(
− w(4) +

21w′′2

4w
+

7w(3)w′

w
− 231w′2w′′

8w2
+

1155w′4

64w3

)
. (329)

The recursion (328) is easily programmed in Mathematica and produces the Gn to reasonably

high orders. The Gn can be seen as generalized heat kernel coefficients. For ω2 = 1,

v = ω2
0 plays the role of the potential and (329) reproduces the well-known expressions

[4] (up to overall normalizations). In the massless case v = ω2
0 = 0, and only the purely

w dependent parts of the Gn remain. From the viewpoint of the initial expansion (297),

(298) the concise differential polynomials (329) are surprising: Gn = V2n(τ, τ) must hold by

construction, but would seem to suggest highly nonlocal coefficients. At low orders one can

see the cancellation of the nonlocal terms directly. For example, the n = 2 recursion (298)

integrates to s2 = s2
1/2 + ∂τs1/(2ω2). Hence G1 = 2s2 − s2

1 = ∂τs1/ω2, which is indeed local.

One can also relate the Gn’s more directly to the standard heat kernel coefficients. To this

end, we transform the basic differential equation (193) into conformal time as in (196), but

for generic frequency functions: ∂η = ω2(τ)−1∂τ , χp(τ) = ω2(τ)1/2Sp(τ)|τ=τ(η). This replaces

the differential operator ∂2
τ +ω0(τ)2 + p2ω2(τ)2 by ∂2

η + 2E1(η) + p2, with E1(η) = G1(τ(η)),

the image of G1 in (329). The coefficient of p2 is now unity and 2E1(η) plays the role of the

potential. Inserting the η-version of the ansatz (327) into the linear Gelfand-Dickey equation

results in the one-step differential recursion

∂ηEn+1 = ∂ηE1En + 2E1∂ηEn +
1

4
∂3
ηEn , n ≥ 1 . (330)

This defines (up to a conventional normalization) the standard heat kernel coefficients with

potential 2E1. Undoing the transformation one has

Gn = En
∣∣
E1 7→G1,∂η 7→ω2(τ)−1∂τ

. (331)
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For example, for n = 2 this gives

G2 =
3

2
G2

1 +
1

4ω2

∂τ

(∂τG1

ω2

)
, (332)

which is indeed satisfied by (329). Generally, the agreement of (328) with (331) provides a

welcome check.

An analogous interplay exists for the asymptotics of the phase as induced by the basic

expansion (297) and the resolvent expansion (327), respectively. Starting from the basic

expansion (297) the phase is determined by tan(argSp(τ)) = =Sp(τ)/<Sp(τ). One finds

tan
(

argSp(τ)
)

= −
S−p (τ)Cp + S+

p (τ)Sp

S+
p (τ)Cp − S−p (τ)Sp

,

Sp = sin
(
p

∫ τ

τ ′
ds ω2(s)

)
, Cp = cos

(
p

∫ τ

τ ′
ds ω2(s)

)
. (333)

with

S+
p (τ) �N

1√
2pω2(τ)

∑
j≥0

(−)js2j(τ)p−2j ,

S−p (τ) �N
1√

2pω2(τ)

∑
j≥0

(−)js2j+1(τ)p−2j−1 , (334)

To low orders

tan
(
argSp(τ)

)
�N −

Sp
Cp

− 1

p
s1(τ)

1

C2
p

− 1

p2
s1(τ)2 Sp

C3
p

− 1

p3
s1(τ)3

S2
p

C4
p

− 1

p3
(s1s2 − s3)(τ)

1

C2
p

+O
( 1

p4

)
. (335)

Writing s1s2 − s3 = s3
1/3− u3, the ratios of trigonometric functions are just the derivatives

of the tan function; so (335) is equivalent to

argSp(τ) �N −p
∫ τ

τ0

ds ω2(s)− s1(τ)

p
+
u3(τ)

p3
+O

( 1

p5

)
,

u3(τ) =
∂τG1

4ω2

+
1

2

∫ τ

τ0

ds ω2(s)G1(s)2 , G1(τ) =
∂τs1

ω2

, (336)

where the explicit form of u3 follows from the recursion (298). Proceeding along these lines,

it is not immediate that at higher orders no oscillatory terms will occur in the phase itself
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and that the coefficients will be single integrals of local quantities.

This is, however, the case and can be seen from the alternative realization of the phase

entailed by (296) and (325)

argSp(τ) = −1

2

∫ τ

τ0

ds
1

iGip(s)
. (337)

Here the expansion (327) can be used. It follows that argSp(τ) admits an asymptotic

expansion in odd inverse powers of p whose coefficients are single integrals of polynomials in

the Gn. To low orders

1

iGip(τ)
�N 2ω2(τ)p

{
1 +

G1(τ)

p2
+

(G2
1 −G2)(τ)

p4
+O

( 1

p6

)}
. (338)

The equivalence to (336) is ensured by (332).

5.4.3 Induced asymptotic expansion of SLE

Using the formulas from Theorem 5.2.2 and (323) all SLE related quantities have induced

asymptotic expansions in inverse powers of p at some finite order N > 1. The order can be

increased arbitrarily, but in general the exact reference solution in Lemma 5.4.1 needs to be

changed in order to do so. Here we show that the (unique, N -independent) SLE solution is

asymptotic �N to the previously constructed series for all N . In particular, the asymptotic

expansion is independent of the window function f .

Theorem 5.4.2. The modulus-square of the SLE solution admits an asymptotic expansion

in odd inverse powers of p, whose coefficients are independent of the window function f and

are given by generalized heat kernel coefficients. Specifically

|T SLE
p (τ)|2 � 1

2pω2(τ)

{
1 +

∑
n≥1

(−)n

p2n
Gn(τ)

}
, (339)

where the Gn are determined recursively by (328). The phase has an asymptotic expansion

obtained from

arg T SLE
p (τ) � −p

∫ τ

τ0

ds ω2(s)

{
1 +

∑
n≥1

(−)n

p2n
Gn(τ)

}−1

. (340)
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The massless limits are regular and have coefficients Gn|ω2
0=0.

Proof.

We mostly need to show that |T SLE
p (τ)|2 admits an asymptotic expansion of the form (339)

with some coefficients G̃n(τ). Since the SLE solution is a Wronskian normalized solution of

the basic wave equation, its modulus square solves the nonlinear Gelfand-Dickey equation

(324). The coefficients G̃n(τ) therefore also have to obey the recursion (328). It then suffices

to check by direct computation that G̃0 = 1. The latter will be done separately following

the proof. Since G̃0 = 1 determines all other coefficients, it follows that G̃n = Gn, for all

n ∈ N. The relation (340) between phase and modulus holds on account of the Wronskian

normalization.

In order to show that |T SLE
p (τ)|2 has an asymptotic expansion in odd inverse powers of

p, we use the realization as Jp(τ)/(2ESLE
p ) from (253). The integrands of Jp(τ) and (ESLE

p )2

are built from ∆p(τ, τ0), ∂τ∆p(τ, τ0), ∂τ∂τ0∆p(τ, τ0). For these we prepare

∆p(τ, τ
′) = Λ+

p (τ, τ ′)Sp + Λ−p (τ, τ ′)Cp ,

∂τ∆p(τ, τ
′) = ∩+

p (τ, τ ′)Sp + ∩−p (τ, τ ′)Cp ,

∂τ∂τ ′∆p(τ, τ
′) = u+

p (τ, τ ′)Sp + u−p (τ, τ ′)Cp , (341)

with Sp, Cp as defined in (333), and

∩±p (τ, τ ′) = ∂τΛ
±(τ, τ ′)∓ pω2(τ)Λ∓(τ, τ ′) ,

u±p (τ, τ ′) = ∂τ ′∂τΛ
±
p (τ, τ ′)± p[∂τΛ∓(τ, τ ′)ω2(τ ′)− ∂τ ′Λ∓(τ, τ ′)ω2(τ)]

+ p2ω2(τ)ω2(τ ′)Λ±(τ, τ ′) . (342)

Note that Λ±p (τ, τ ′) = ±Λ±p (τ ′, τ), u±p (τ, τ ′) = ± u±p (τ ′, τ), while ∩±p (τ, τ ′) has no manifest

symmetry. The normalization of the commutator function implies, however, ∩−p (τ, τ) = 1.

The definitions in combination with (323) imply that Λ+
p ,∩+

p ,u+
p have an asymptotic �N

expansion in odd inverse powers of p, while Λ−p ,∩−p ,u−p have an asymptotic �N expansion in

even inverse powers of p. Crucially, while the fiducial solutions SN provided by Lemma 5.4.1

are implicitly N -dependent, Theorem 5.2.1 ensures that the induced expansion of |T SLE
p (τ)|2
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is independent thereof. Schematically, |T SLE
p [SN ]|2 is the same for all N , which allows one

to take N arbitrarily large.

Next we use (341) to evaluate the integrands of Jp(τ
′) from (244) and (ESLE

p )2 from (252).

In a first step we merely insert (341) and replace all powers of oscillatory terms by linear

ones using

S2
p =

1

2
(1−C2p) , C2

p =
1

2
(1 + C2p) , SpCp =

1

2
S2p . (343)

This gives

(∂τ∆p(τ, τ
′))2 + ωp(τ)2∆p(τ, τ

′)2

=
1

2

[
∩+
p (τ, τ ′)2 + ∩−p (τ, τ ′)2 + ωp(τ)2

(
Λ+
p (τ, τ ′)2 + Λ−p (τ, τ ′)2

)]
−1

2

[
∩+
p (τ, τ ′)2 − ∩−p (τ, τ ′)2 + ωp(τ)2

(
Λ+
p (τ, τ ′)2 − Λ−p (τ, τ ′)2

)]
C2p

+
[
(∩+

p ∩−p )(τ, τ ′) + ωp(τ)2(Λ+
p Λ−p )(τ, τ ′)

]
S2p . (344)

The integrand of (ESLE
p )2 is of course symmetrized in τ, τ ′; for brevity’s sake we use the

non-symmetric version

(
∂τ∂τ ′∆p(τ, τ

′)
)2

+ 2ωp(τ
′)2
(
∂τ∆p(τ, τ

′)
)2

+ ωp(τ)2ωp(τ
′)2∆p(τ, τ

′)2

=
1

2

[
u+
p (τ, τ ′)2 + u−p (τ, τ ′)2 + 2ωp(τ

′)2
(
∩+
p (τ, τ ′)2 + ∩−p (τ, τ ′)2

)
+ωp(τ)2ωp(τ

′)2
(
Λ+
p (τ, τ ′)2 + Λ−p (τ, τ ′)2

)]
−1

2

[
u+
p (τ, τ ′)2 − u−p (τ, τ ′)2 + 2ωp(τ

′)2
(
∩+
p (τ, τ ′)2 − ∩−p (τ, τ ′)2

)
+ωp(τ)2ωp(τ

′)2
(
Λ+
p (τ, τ ′)2 − Λ−p (τ, τ ′)2

)]
C2p

+
[
(u+

p u−)(τ, τ ′) + 2ωp(τ
′)2(∩+

p ∩−p )(τ, τ ′)

+ωp(τ)2ωp(τ
′)2(Λ+

p Λ−p )(τ, τ ′)
]
S2p . (345)

The coefficients of the oscillatory terms have asymptotic expansions in inverse powers of p

which are uniform the both variables. Focussing on the integration variable we write Ap(τ)

for such a coefficient. For smooth ω0, ω2 also Ap will be smooth in τ . By repeated use of the
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integrations-by-parts identities

S2p = − 1

2pω2(τ)
∂τC2p , C2p =

1

2pω2(τ)
∂τS2p ,∫

dτf(τ)2Ap(τ)S2p =
1

2p

∫
dτ∂τ

(
f(τ)2Ap(τ)

ω2(τ)

)
C2p ,∫

dτf(τ)2Ap(τ)C2p = − 1

2p

∫
dτ∂τ

(
f(τ)2Ap(τ)

ω2(τ)

)
S2p , (346)

the oscillatory terms can therefore be made subleading at any desired order of the asymptotic

expansion.

It follows that at any order the asymptotic expansion of Jp(τ
′) and (ESLE

p )2 is generated

by the non-oscillatory terms in (344), (345). By inspection of the orders induced by (323)

and (342) one sees that the non-oscillatory term in (344) has an expansion in even inverse

powers of p, starting with a O(p0) term. Similarly p−2 times the non-oscillatory term in

(345) has an expansion in even inverse powers of p, starting with a O(p0) term. Hence Jp(τ
′)

has an asymptotic expansion in even inverse powers of p, starting with an O(p0) term. The

square root of the non-oscillatory term in (345) governs the expansion of p−1ESLE
p , which

therefore likewise has an asymptotic expansion in even inverse powers of p, starting with a

O(p0) term. Together, Jp(τ)/(2ESLE
p ) admits a asymptotic expansion in odd inverse powers

of p, as claimed. Augmented by the explicit computation of the leading order, this implies

the result.

Remarks:

(i) The exponent in exp{i arg T SLE
p (τ)} can be re-expanded in powers of 1/p to obtain a

simplified expansion of the form (297). Theorem 5.4.2 implies that T SLE
p (τ) has the property

described in Lemma 5.4.1 for any N > 1. This replaces Olbermann’s Lemma 4.5, where the

adiabatic vacua of order N play a role analogous to our approximants S
(N)
p (τ) (though not

necessarily with matched orders). The adiabatic vacua are however far less explicit: first, the

adiabatic iteration produces more complicated formulas of which only the large p expansion

is actually used. Second, the iterates are only well-defined for sufficiently large p, so for

technical reasons they need to be extended in an ad-hoc manner to small momenta [68].

Third, the result then enters an integral equation whose iteration produces the required
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exact solution, dubbed adiabatic vacuum of order N . The Lemma 5.4.1 short cuts these

three steps. The ansatz (297) only processes the information relevant for large p and the

iteration (298) is manifestly well-defined without modifications. In combination with (327),

(328) this yields a practically usable expansion.

(ii) The simplified expansion from (i) for the product T SLE
p (τ)T SLE

p (τ ′)∗ can be viewed as

the Fourier space version of the (state independent) Hadamard parametrix. The Hadamard

parametrix also has a truncated version where only the solution of the recursion to some finite

order is kept, see e.g. [61]. These truncations converge in a certain sense to the Hadamard

parametrix proper, which in turn is a distributional solution of the wave equation in both

arguments modulo a smooth piece. The fact that the inverse Fourier transform of the state

independent WKB expansion has the form of the Hadamard parametrix was verified (in d = 3

and in conformal time) by an instructive if formal computation in [84]. In Olbermann’s proof

of the Hadamard property this step is rigorously supplied by appealing to a general result of

Junker and Schrohe [56], describing the wave front set of adiabatic vacua of order N . Since

our approximants have the same large p asymptotics as the adiabatic vacua (though not

necessarily with matched orders) this step carries over. It may be worthwhile to attempt a

direct, simplified proof, specific for SLE and including the massless case.

(iii) Assuming that the massless case can be treated along these lines the SLE would

provide very relevant examples of infrared finite Hadamard states. Their relevance stems

from the following Proposal: The primordial vacuum-like state (of a massless free QFT and

the perturbation theory based on it) should be chosen to be an infrared finite Hadamard state

and conceptually be associated with a pre-inflationary period of non-accelerated expansion.

The rationale for this proposal is detailed in Section 5.5.

Direct verification of Theorem 5.4.2 to subleading order:

The proof of Theorem 5.4.2 hinges on the direct verification of the leading order asymp-

totics. Here we present an ab-initio evaluation of the |T SLE
p (τ |2 asymptotics to subleading

order, starting from Eq. (253) and the asymptotics (323) of the commutator function. We

prepare to subleading order

Λ+
p (τ, τ ′) =

1

p
Ṽ0(τ, τ ′)− 1

p3
Ṽ2(τ, τ ′) +O

( 1

p5

)
,
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Λ−p (τ, τ ′) =
1

p2
Ṽ1(τ, τ ′)− 1

p4
Ṽ3(τ, τ ′) +O

( 1

p6

)
,

∩+
p (τ, τ ′) =

1

p

[
∂τ Ṽ0(τ, τ ′)− ω2(τ)Ṽ1(τ, τ ′)

]
− 1

p3

[
∂τ Ṽ2(τ, τ ′)− ω2(τ)Ṽ3(τ, τ ′)

]
+O

( 1

p5

)
,

∩−p (τ, τ ′) = ω2(τ)Ṽ0(τ, τ ′) +
1

p2

[
∂τ Ṽ1(τ, τ ′)− ω2(τ)Ṽ2(τ, τ ′)

]
+O

( 1

p4

)
,

u+
p (τ, τ ′) = p ω2(τ)ω2(τ ′)Ṽ0(τ, τ ′) +

1

p

[
∂τ∂τ ′Ṽ0(τ, τ ′) + ∂τ Ṽ1(τ, τ ′)ω2(τ ′)− ∂τ ′Ṽ1(τ, τ ′)ω2(τ)

− ω2(τ)ω2(τ ′)Ṽ2(τ, τ ′)
]

+O
( 1

p3

)
,

u−p (τ, τ ′) = −∂τ Ṽ0(τ, τ ′)ω2(τ ′) + ∂τ ′Ṽ0(τ, τ ′)ω2(τ) + ω2(τ)ω2(τ ′)Ṽ1(τ, τ ′)

+
1

p2

[
∂τ∂τ ′Ṽ1(τ, τ ′) + ∂τ Ṽ2(τ, τ ′)ω2(τ ′)− ∂τ ′Ṽ2(τ, τ ′)ω2(τ)

− ω2(τ)ω2(τ ′)Ṽ3(τ, τ ′)
]

+O
( 1

p4

)
, (347)

with

Ṽn(τ, τ ′) :=
Vn(τ, τ ′)√
ω2(τ)ω2(τ ′)

, V0 = 1 ,

V1(τ, τ ′) = s1(τ)− s1(τ ′) , V2(τ, τ ′) =
1

2
V1(τ, τ ′)2 +

1

2
[G1(τ) +G1(τ ′)] ,

V3(τ, τ ′) =
1

6
V1(τ, τ ′)3 + V1(τ, τ ′)

[
G1(τ) +G1(τ ′)

]
+

∂τG1(τ)

2ω2(τ)
− ∂τ ′G1(τ ′)

2ω2(τ ′)
− 2

∫ τ

τ ′
ds ω2(s)G1(s)2 . (348)

As described in the proof, it suffices to focus on the non-oscillatory in (344), (345). Keeping

up to subleading terms in (344) one finds

(∂τ∆p(τ, τ
′))2 + ωp(τ)2∆p(τ, τ

′)2

� ω2(τ)2Ṽ0(τ, τ ′)2 +
1

p2

{1

2
(∂τ Ṽ0(τ, τ ′))2 +

1

2
ω0(τ)2Ṽ0(τ, τ ′)2

+ω2(τ)
(
Ṽ0∂τ Ṽ1 − ∂τ Ṽ0Ṽ1

)
(τ, τ ′) + ω2(τ)2

(
Ṽ 2

1 − 2Ṽ0Ṽ2

)
(τ, τ ′)

}
+O

( 1

p4

)
. (349)

Upon integration this gives

Jp(τ
′) � ω̄2

2ω2(τ ′)

{
1 +

1

p2

[
−G1(τ ′) +

1

2ω̄2

∫
dτf(τ)2

(ω2
0

ω2

+
1

4

(∂τω2)2

ω2
2

)]
+O

( 1

p4

)}
. (350)
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Here we used

Ṽ 2
1 − 2Ṽ0Ṽ2 = −G1(τ) +G1(τ ′)

ω2(τ)ω2(τ ′)
,

1

2
(∂τ Ṽ0)2 +

1

2
ω0(τ)2Ṽ 2

0 =
1

2ω2(τ)ω2(τ ′)

(
ω2

0 +
1

4

(∂τω2)2

ω2
2

)
,

2ω2
2G1 = ω2

0 +
1

4

(∂τω2)2

ω2
2

− 1

2
∂τ

(∂τω2

ω2

)
. (351)

Similarly, keeping up to subleading terms in (345) one has

(
∂τ∂τ ′∆p(τ, τ

′)
)2

+ 2ω2(τ ′)2
(
∂τ∆p(τ

′, τ)
)2

+ ωp(τ)2ωp(τ
′)2∆p(τ, τ

′)2

� p2 2ω2(τ)2ω2(τ ′)2Ṽ 2
0 +

(1

2
ω0(τ)2ω2(τ ′)2 +

3

2
ω0(τ ′)2ω2(τ)2

)
Ṽ 2

0

+ω2(τ)ω2(τ ′)Ṽ0∂τ∂τ ′Ṽ0 + ω2(τ ′)2(∂τ Ṽ0)2 +
1

2

[
∂τ Ṽ0ω2(τ ′)− ∂τ ′Ṽ0ω2(τ)

]2
+ 3ω2(τ)ω2(τ ′)2

(
Ṽ0∂τ Ṽ1 − Ṽ1∂τ Ṽ0

)
− ω2(τ)2ω2(τ ′)

(
Ṽ0∂τ ′Ṽ1 − Ṽ1∂τ ′Ṽ0

)
+ 2ω2(τ)2ω2(τ ′)2

(
Ṽ 2

1 − 2Ṽ0Ṽ2

)
+O

( 1

p2

)
. (352)

For the simplification we use (351) as well as

Ṽ0∂τ Ṽ1 − Ṽ1∂τ Ṽ0 =
G1(τ)

ω2(τ ′)
, Ṽ0∂τ ′Ṽ1 − Ṽ1∂τ ′Ṽ0 = −G1(τ ′)

ω2(τ)
, (353)

For the O(p0) term in (352) this results in

ω2(τ)ω2(τ ′)
(
G1(τ)−G1(τ ′)

)
+

1

2

ω0(τ)2

ω2(τ)
ω2(τ ′) +

3

2

ω0(τ ′)2

ω2(τ ′)
ω2(τ)

+
3

8

(∂τω2)2

ω2(τ)3
ω2(τ ′) +

1

8

(∂τ ′ω2)2

ω2(τ ′)3
ω2(τ) . (354)

Finally,

(ESLE
p )2 =

p2

4
ω̄2

2 +
ω̄2

4

∫
dτ f(τ)2

(
ω2

0

ω2

+
1

4

(∂τω2)2

ω3
2

)
+O

( 1

p4

)
. (355)

This results in

|T SLE
p (τ)|2 � 1

2pω2(τ)

{
1− 1

p2
G1(τ) +O

( 1

p4

)}
. (356)

The leading term confirms G̃0 = 1 in the proof of Theorem 5.4.2. The subleading term

143



verifies the assertion at this order by an ab-initio computation.

As seen previously, the relation (340) between phase and modulus holds on account

of the Wronskian normalization. However, it is not immediate how the expression (253)

for tan(arg T SLE
p (τ)) reproduces this simple answer. As a final check on the framework we

verified the equivalence to subleading order by direct computation. Omitting the details,

the result is

tan
(

arg T SLE
p (τ)

)
= −
ESLE
p ∆p(τ, τ0)

Jp(τ, τ0)
� − Sp

Cp

− s1(τ)

p

1

C2
p

+O
( 1

p3

)
. (357)

This agrees with (335) and hence (337), (338) to the order considered.

5.5 SLE as pre-inflationary vacua

One of the key empirical facts about the Cosmological Microwave Background (CMB) is

its near scale invariance at large values of the multipole expansion. This feature, realized at

t = tdecoupl, is thought to be rooted in a similar behavior of the primordial power spectrum

Pζ(t∗, p) at the (cosmological) time t∗ � tdecoupl when the seeds for structure formation are

laid, for any of the relevant fluctuation variables ζ. In terms of the spatial Fourier momentum

a behavior Pζ(t∗, p) ∼ |p|−2ν is needed, with ν close to d/2. Such a behavior is seemingly

incompatible with the momentum dependence of the massless SLE modes. We show here

that a qualitatively correct power spectrum arises at t = t∗, if a pre-inflationary period is

followed by one of near-exponential expansion.

It must be stressed that general relativity demands a period of non-accelerated expansion

following the Big Bang, i.e. for some interval t ∈ (tsing, t1]. In particular, variants of the cos-

mological singularity theorems remain valid for generic inflationary spacetimes with positive

cosmological constant [91]. For FL spacetimes a pre-inflationary phase with kinetic energy

domination is preferred [38, 46]. As a consequence, the time-honored purely positive fre-

quency Bunch-Davies vacuum, traditionally postulated at the beginning of the inflationary

period cannot be physically realistic: the modes from the pre-inflationary period (whether

themselves positive frequency or not close to the singularity) will generically not be positive
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frequency at t1. As a consequence the modes at t = t1 can also not comply with deSitter in-

variance. This is because an admixture of positive and negative frequency modes compatible

with deSitter invariance (known as α vacua) fails to define a Hadamard state. Perturbation

theory in an α vacuum suffers from incurable UV divergences already at one loop order. One

is thus led to search for Hadamard states on an FL background in the interval (tsing, t1] with

implicitly defined bonus properties that lead to a qualitatively correct power spectrum at

t = t∗. We propose massless SLE states as viable candidates.

5.5.1 Asymptotics of massless modes versus power spectrum

We return to the basic wave equation in conformal time (196) and specialize to the

massless case and d = 3[
∂2
η + p2 −

∂2
ηa

a

]
χp(η) = 0 , ∂ηχpχ

∗
p − (∂ηχp)

∗χp = −i . (358)

The wave equation (358) bears a two-fold relation to lowest order cosmological perturbation

theory, see e.g. [101], Chapter 10: (a) it coincides precisely with the wave equation satisfied by

the tensor perturbations, with χp playing the role of either of the coefficient functions h+(η, p)

or h×(η, p) in the polarization decomposition hij(η, x) = h+(η, x)e+
ij + h×(η, x)e×ij, and ds2 =

a(η)2[−dη2 + (δij + hij)dx
idxj]. (b) With the replacement of a by z, the Mukhanov-Sasaki

variable, it coincides with wave equation satisfied by the scalar (curvature) perturbations,

where χp is often denoted by vp(η) = z(η)Rp(η).

The equation (358) can be solved for small p and large p as detailed in Sections 5.3.1

and 5.4.1, respectively. For small p one has a convergent power series expansion χp(η) =∑
n≥0 χn(η)p2n, which corresponds to the massless case of (279). Since τ =

∫ η
ds a(s)−2 and

Sp(η) = χp(η)/a(η), the leading order S0(τ) from before (289) reads

χ0(η) = a(η)
[
z0 + w0

∫ η

η0

ds

a(s)2

]
, w0z

∗
0 − w∗0z0 = −i . (359)

The higher orders then are determined recursively by transcribing (281). Heuristically, the

leading order can be expected to be a good approximation if p� ∂ηa/a, p2 � ∂η(∂ηa/a), so

that 2p2 � ∂2
ηa/a. In other words, the wavelength 1/p of the mode needs to be uniformly
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much larger than the comoving Hubble distance a/∂ηa. Under these conditions
∫ η
ds a(s)−2 ∝

1/(pa(η)2) (with a small constant of proportionality) is selfconsistent and shows that the

second term in χ0 will be decreasing in η, while the first term is increasing. With the

replacement of a(η) by z(η) the same applies to the scalar perturbations. It must be stressed

that the low momentum behavior (359) is not generic; there are relevant solutions with a

different behavior, as highlighted by the SLE solution (362) below.

In order to transcribe the WKB ansatz (297) we note
∫ τ
τi
dτ ′a(τ ′)2 = η − ηi and ∂τ =

a(η)2∂η, for d = 3. Specializing also (298) to ω0(η) = 0, ω2(η) = a(η)2 the WKB solution for

(358) reads

χp(η) �N
e−ip(η−ηi)√

2p

{
1 +

∑
n≥1

(ip)−nsn(η)
}
,

∂ηsn = ∂ηs1sn−1 +
1

2
∂2
ηsn−1 , ∂ηs1 = −1

2

∂2
ηa

a
. (360)

For the modulus square this gives 2p|χp(η)|2 �N 1+p−2∂2
ηa/(2a)+O(p−2), see (363). Heuris-

tically, the WBK approximation is expected to be good in the regime opposite to (359),

i.e. whenever the wave length 1/p of the mode is uniformly much smaller than the comoving

Hubble distance a/∂ηa, entailing ∂2
ηa/a � 2p2. Again, simply replacing a(η) by z(η) gives

the corresponding result for the scalar perturbations.

The quantity of interest is the power spectrum at the time of seed formation η∗. Per

tensor mode it is defined by

Pχ(p) := lim
η→η∗

p3

2π2

|χp(η)|2

a(η)2
, (361)

and similarly with z replacing a for the scalar perturbations. The time η∗ is often identified

with the Hubble crossing time ηp, defined by (∂ηa/a)(ηp) = p. This lies in the cross-over

region of the (η, p) plane not directly accessible via the small or large momentum expansions.

A nearly scale invariant power spectrum is one where Pχ(p) ∝ p−2ε for a small positive

coefficient ε > 0. As indicated, the power spectrum also depends on the choice of solution

χp. The principles of QFT in curved spacetime require its large momentum behavior to be

constrained by the Hadamard property. A necessary but by no means sufficient condition

for a solution to be Hadamard it that it approaches a positive frequency wave for p → ∞.
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The low momentum behavior is somewhat constrained along the lines discussed at the end

of Section 5.3. In the present context, an additional constraint arises from the requirement

that p3|χp(η)|2/a(η)2 is approximately scale invariant in the cross-over region of the (η, p)

plane.

The SLE have been shown to meet the first two criteria. Here we explore the satisfiability

of the last requirement. We first note the low and high momentum behavior by appealing

to the results from Sections 5.3.2 and 5.4.2. For the low momentum expansion the formulas

(289), (290), (291) require as input the directly transcribed massless commutator function

∆0(η, η′) =
∫ η
η′
ds a(s)−2. It solves (a(η)2∂η)

2∆0(η, η′) = 0, where the field redefinition is not

yet taken into account. (The latter generates an effective mass term and the computation

would have to proceed differently). This leads to

|χSLE
p (η)|2

a(η)2
=

ā

2p
+O(p) , ā =

∫
dη a(η)−4f conf(η)2∫

dη f conf(η)2
, (362)

and similarly for z replacing a. For large momentum the modulus square has the generic

WKB asymptotics

|χSLE
p (η)|2

a(η)2
� 1

2pa(η)2

{
1 +

1

2p2

∂2
ηa

a
+O

( 1

p4

)}
, (363)

and similarly for z replacing a. As usual, the cross-over region needed for the power spectrum

is not directly accessible via these expansions.

5.5.2 A model with pre-inflationary SLE

To proceed, we consider an analytically soluble model, adopted from [23], where the seed

formation time η∗ is p-independent and coincides with the end of a deSitter period. The

deSitter period is preceded by one with kinetic energy domination. Computations of the

power spectrum where a positive frequency solution in a pre-inflationary era is matched to a

solution corresponding to accelerated expansion have been considered in [23, 86, 55, 25, 71].

Following [23], we use conformal time η and consider an instantaneous transition between

147



a kinetic dominated pre-inflationary period and de Sitter expansion. The scale factor reads

a(η) =


√

1 + 2Hη , η ∈ (− 1
2H
, 0) ,

1
1−Hη , η ∈ [0, 1

H
) ,

(364)

with the transition occurring at η1 = 0, and H denoting the (physical) Hubble parameter

during inflation. The time of seed formation is η∗ = 1/H and the price to pay for the analytic

solubility is the formal pole in the line element.

As seen in Section 5.2 the modulus square of an SLE solution is strictly independent

of the choice of fiducial solution. We are thus free to choose a convenient one, Sp(η) =

χp(η)/a(η), in the process of evaluating |χSLE
p (η)/a(η)|2 for a given window function f ∈

C∞c (−1/(2H), 1/H). A useful choice adhering to the traditional Bunch-Davies solution dur-

ing the deSitter period is

Sp(η) =


αpS

kin
p (η) + βpS

kin
p (η)∗ , − 1

2H
< η ≤ 0 ,

SBD
p (η) , 0 ≤ η < 1

H
,

(365)

where

Skin
p (η) :=

√
π

8H
H

(2)
0

(
pη +

p

2H

)
,

SBD
p (η) :=

e−ip(η−
1
H

)

√
2p

(1−Hη)
(

1 +
iH

p

1

1−Hη

)
, (366)

are solutions of (358) in their respective regimes. The matching coefficients αp , βp are de-

termined by demanding continuity of Sp and ∂ηSp at the transition,

αp = eip/H
√

πp

16H

[
H

(1)
0

( p

2H

)
−
(H
p
− i
)
H

(1)
1

( p

2H

)]
,

βp = eip/H
√

πp

16H

[
−H(2)

0

( p

2H

)
+
(H
p
− i
)
H

(2)
1

( p

2H

)]
, (367)

with |αp|2 − |βp|2 = 1 from the Wronskian condition.

This fiducial solution enters the SLE parameters c1, c2 and λp, µp from Section 5.2.1.

The advantage of the choice (365) is that it leads to a relatively simple expression for the
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power spectrum in terms of the (numerically computed) SLE parameters c1 and c2. The

SLE solution will however not be of the Bunch-Davies type during the deSitter period,

χSLE
p (η)

a(η)
= λpS

BD(η) + µpS
BD(η)∗ . (368)

For η∗ = 1/H the SLE’s power spectrum (361) is given by

PχSLE(p) =
H2

(2π)2
|λp − µp|2 =

H2

(2π)2

c1 + <c2√
c2

1 − |c2|2
. (369)

Here

c1 =
1

2

∫
dη f(η)2a(η)2

{
|∂ηSp(η)|2 + p2|Sp(η)|2

}
,

c2 =
1

2

∫
dη f(η)2a(η)2

{
(∂ηSp(η))2 + p2Sp(η)2

}
, (370)

are determined by (365). With some slight caveats it follows from the earlier results that the

right hand side is indeed a Bogoliubov invariant: by (260) this holds for
√
c2

1 − |c2|2 and since

limη0→1/H S
BD
p (η0) = iH/

√
2p3 one can interpret the first line of (259) as limη0→1/H Jp(η0) =

(H2/p3)(c1 + <c2). Further, the relation (362) immediately suggests the low momentum

asymptotics, while (363) in combination with limη→1/H a(η)−2 = 0, limη→1/H a(η)−3∂2
ηa =

2H2, suggests limη→1/H |χSLE
p (η)/a(η)|2 = H2/(2p3) + O(p−5) for large p. The caveats are:

that η = 1/H lies at the boundary of the interval [0, 1/H), that the line element (364) has a

pole there, and that the window function may not have support in the deSitter phase only.

We therefore present a more careful analysis of the small and large momentum behavior of

PχSLE(p), allowing for a generic window function with support in both the kinetic dominated

and the deSitter period, thereby demonstrating that the above conclusions are indeed valid.

Proposition 5.5.1. Let f ∈ C∞c (− 1
2H
, 1
H

) be a window function for (370). Then

(a) PχSLE(p) =
H2

(2π)2
+O(p−2) as p→∞ .

(b) PχSLE(p) = p2 ā

(2π)2
+O(p4) as p→ 0 .

Proof.

(a) The large p asymptotics are conveniently analyzed in terms of (369), where the λp, µp
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coefficients refer to (365), (366), (367) as the fiducial solution for the SLE construction.

As the window function f is allowed to have support both in the kinetic dominated and

de Sitter periods, it is convenient to split the integrations in (370)

c1 = c<1 + c>1 and c2 = c<2 + c>2 , (371)

with the < (>) denoting the contribution from the kinetic dominated (de Sitter) regime.

This takes into account the distinct forms of our fiducial solution (365) in the respective

regimes. We may readily read off

c>1 =
p

2

∫ 1
H

0

dη f(η)2a(η)2(1−Hη)2 +
1

2

H2

2p

∫ 1
H

0

dη f(η)2a(η)2 ,

c>2 =
1

2

∫ 1
H

0

dη f(η)2a(η)2e−2ip(η− 1
H

)

[
iH − iH2η − H2

2p

]
. (372)

For the analysis of the c<1 , c
<
2 terms, it will prove helpful to define

c̄1 :=
1

2

∫ 0

− 1
2H

dη f(η)2a(η)2
{
|∂ηSkin

p (η)|2 + p2|Skin
p (η)|2

}
,

c̄2 :=
1

2

∫ 0

− 1
2H

dη f(η)2a(η)2
{

(∂ηS
kin
p (η))2 + p2Skin

p (η)2
}
, (373)

in terms of which we may express

c<1 = (|αp|2 + |βp|2)c̄1 + 2<
[
αpβ

∗
p c̄2

]
,

c<2 = α2
pc̄2 + β2

p c̄
∗

2 + 2αpβpc̄1 . (374)

The e−2ip(η− 1
H

) term in the integrand of c>2 entails that c>2 ∼ O(p−n) for any n ∈ N as p→∞.

Hence, c>2 is negligible compared to c>1 , for large enough p. Next, in order to understand

the asymptotic behavior of (373), (374), it is sufficient to consider the leading asymptotic

behavior of Skin
p (η) as p→∞,

Skin
p (η) ∼ 1√

4Hp

(
η +

1

2H

)− 1
2

e−ip(η+ 1
2H

)+iπ/4
(
1 +O(p−1)

)
, (375)
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leading to

c̄1 ∼
p

2

∫ 0

− 1
2H

dη f(η)2 , (376)

c̄2 ∼
1

2

∫ 0

− 1
2H

dη f(η)2a(η)2e−2ip(η+ 1
2H

)

[
H

(1 + 2Hη)2
− iH

2p(1 + 2Hη)3

](
1 +O(p−1)

)
.

As before, the presence of the e−2ip(η+ 1
2H

) entails that c̄2 � c̄1 as p→∞.

Using (374) to express |c2|2/c2
1 in terms of c>1 , c

>
2 , c̄1, c̄2, we may disregard relative con-

tributions of c>2 , c̄2 to |c2|2/c2
1, and find

|c2|2 = 4|βp|2(1 + |βp|2)c̄2
1 ,

c2
1 = (c̄1 + c>1 )2 + 4|βp|2

[
(1 + |βp|2)c̄2

1 + |βp|2c̄1c
>
1

]
, (377)

where we have used the fact that |αp|2 − |βp|2 = 1 to write αp in terms of βp. Examining

(372) and (376), it is clear that c̄1 and c>1 have the same leading large p behavior, and from

(367) it follows that |βp|2 ∼ 9H4

16p4 +O(p−6). Thus we use (377) to estimate

|c2|2

c2
1

∼ O(p−4) . (378)

Since

µp =
1√
2

√
1

1− |c2|2
c21

− 1 , |λp| =
√

1 + µ2
p , (379)

this establishes part (a) of Proposition 5.5.1.

(b) The main obstruction to using (362) to infer the result is that the limit η → 1/H

of the small p SLE expansion is not a-priori well-defined. We remove this obstruction by a

small modification of Proposition 5.3.1.

In both the kinetic dominated and deSitter regimes, the mode equation reads S ′′p (η) +

2a
′

a
S ′p(η) + p2Sp(η) = 0. Consistent with (359) we choose the following solution for the p = 0
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equation

S0(η) =


1√
2

[
ln(1+2Hη)

2H
− 1

3H
+ i
]
, kinetic domination ,

1√
2

[
− 1

3H
(1−Hη)3 + i

]
, deSitter .

(380)

Both cases satisfy [∂ηS0 S
∗
0 − S0 ∂ηS

∗
0 ](η) = −ia(η)−2, as well as

lim
η→1/H

S0(η) =
i√
2

and lim
η→1/H

∂ηS0(η) = 0 . (381)

This shows that S0 extends uniquely to a continuous function on (−1/(2H), 1/H].

Choosing some 0 < ηi < 1/H such that supp f ⊂ [ηi, 1/H], it clear that a solution of

the integral equation

S(η) = S0(η)− p2

∫ 1/H

ηi

K(η, η′)S(η′)dη′ ,

K(η, η′) = iθ(η − η′)S0(η)S0(η′)∗ + θ(η′ − η)S0(η)∗S0(η′) , (382)

is a solution of the mode equation on (ηi, 1/H). Since S0 extends to a C1 function on the

closed interval [ηi, 1/H], the proof of Proposition 5.3.1 carries over on the Banach space(
C([ηi, 1/H],C2), ‖·‖)sup

)
.

Hence we have a convergent series Sp(η) =
∑∞

n=0 p
2nSn(η), which we take as the fiducial

solution for the SLE in the small p regime. This then has a well-defined limit as η → 1/H,

namely

lim
η→1/H

T SLE
p (η) = λp lim

η→1/H
Sp(η) + µp lim

η→1/H
Sp(η)∗

= λpSp(1/H) + µpSp(1/H)∗ . (383)

Both p
1
2λp and p

1
2µp admit convergent power series expansions as in (295), leading to

|T SLE
p (1/H)| = ā

2p
+O(p) , (384)

which proves part (b).

The proposition provides an analytical description of the power spectrum’s small and

large momentum behavior. For intermediate momenta we evaluate χSLE
p (η) numerically. For
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the numerical implementation a choice of window function in C∞c (− 1
2H
, 1
H

) enters. A useful

one-parametric family arises as follows. From the standard smoothened step function

h(y) :=


0 y ≤ 0 ,

e−1/y

e−1/y+e−1/(1−y) 0 < y < 1 ,

1 y ≥ 1 ,

(385)

we define the bump function of width 1 + w centered at the origin,

bump(y, w) := 1− h
(

y2 − w2

(w + 1)2 − w2

)
, (386)

where w is the ratio of “plateau” of the bump to the “walls” of the bump. Finally we define

F (η, η1, η2;w) := bump

(
η − (η1+η2

2
)

η1+η2

2(w+1)

, w

)
, (387)

a positive smoothened “top hat” function centered at η1+η2

2
. Here η1 < η2 are the “ends” of

the hat, specifying the cosmological period over which F = (f cosm)2 has support. The results

of the power spectrum for various values of η1, η2 and w = 0.5 are shown in the following

figure

5.6 Generalized States of Low Energy

The SLE discussed in the previous sections are exact Hadamard states, and have the

physically appealing “average energy minimization” property. Moreover, the SLE construc-

tion (223)-(225) has the feature of “elevating” any fiducial solution S of (193) to a unique3

Hadamard state. As far as the Hadamard property is concerned, however, this minimization

is far from necessary on a mathematical level. We shall demonstrate this by generalizing the

SLE construction to a simple one-parameter family of homogeneous quasi-free states for the

Klein-Gordon field of mass m > 0 on Friedmann-Lemâıtre spacetimes that are (1) unique,

and (2) exact Hadamard states, depending on a freely specifiable parameter m.

3Unique up to the choice of the window function f .
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Figure 5: Power spectrum for a primordial SLE and window function (387) with support in

[−0.3, 0.5]/H. The insert shows in red the comparison with a situation where the window

function has support in the pre-inflationary period [−0.3, 0]/H only.

We begin with the (spatially Fourier transformed) Klein-Gordon equation (193) with

mass m instead of m,

[
∂2
τ + ωp,m(τ)2]Sp,m(τ) = 0 , ωp,m(τ)2 := a(τ)2dm2 + p2a(τ)2d−2 ,

∂τSp,m S
∗
p,m − ∂τS∗p,m Sp,m = −i . (388)

A solution will parametrically depend on p and m, which we indicate by a subscript, Sp,m.

This mass m ≥ 0 need not a priori have any relation to the particle mass m in (193), except

that we obtain a vacuum state of our original theory through the specialization Sp,m=m.

To distinguish these, we shall refer to solutions of the original wave equation (193) as “m-

modes”, and solutions of (388) as “m-modes”.

For a fiducial m-mode Sp,m, the Bogoliubov coefficients (λ[S], µ[S])p,m yielding the m-SLE

T SLE
p,m that minimizes the m-mode smeared energy,

Ep,m[T SLE] :=

∫
dτ f(τ)2

{
|∂tT SLE

p,m (τ)|2 + ωp,m(τ)2|T SLE
p,m (τ)|2

}
, (389)
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are clearly those in (225), with the particle mass m2 replaced by the deformed mass scale m2.

Given these Bogoliubov coefficients, we define the Generalized State of Low Energy (GLSE)

solution of (193) with fiducial solution S,

Tp,m,m[S](τ) := λp,m[S]Sp,m=m(τ) + µp,m[S]Sp,m=m(τ)∗ , (390)

which depends on both m and m. For m = m this is the standard SLE and is hence

independent of the choice of fiducial solution by Theorem 5.2.1. However, the above proof

only applies to the SLE proper, and hence the GLSE off-hand might depend on the choice

of fiducial solution S used to realize it. We address this in the following theorem:

Theorem 5.6.1 (Uniqueness of GSLE).

The GSLE two-point function based on a fiducial solution S

W [S](τ, x; τ ′, x′) :=

∫
ddp

(2π)d
eip(x−x

′)Tp,m,m[S](τ)Tp,m,m[S](τ ′)∗ , (391)

is a Bogoliubov invariant, i.e. W [aS + bS∗] = W [S] with a, b ∈ C, |a|2 − |b|2 = 1. Hence the

GSLE defines a homogeneous pure quasi-free, independent of the choice of fiducial solution

used to realize it.

Proof.

In the proof presented in Section 5.2.2 (as well as in [80]) the claimed Bogoliubov invari-

ance follows from the minimization property of the SLE. Here we present a simple algebraic

argument that is more general, resting on the Bogoliubov transformation properties of the

functionals Ep,m, Dp,m.

Let Sp,m and S̃p,m be two fiducial solutions of (388), related by a Bogoliubov transforma-

tion

Sp,m(τ) = aS̃p,m(τ) + bS̃p,m(τ)∗ , a, b ∈ C, |a|2 − |b|2 = 1 , (392)

and

Ep,m[S] =

∫
dτ f(τ)2

{
|∂τSp,m(τ)|2 + ωp,m(τ)2|Sp,µ(τ)|2

}
,

Dp,m[S] =

∫
dτ f(τ)2

{
(∂tSp,m(τ))2 + ωp,m(τ)2Sp,m(τ)2

}
. (393)
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Since we shall (until further notice) be concerned exclusively with the m-modes, we omit the

p,m subscripts. These will be reinstated once again when the distinction from the m-modes

is necessary.

Observe that the functionals E , D can be understood as the diagonal of two bi-functionals,

E [S] = C1(S, S) , D[S] = C2(S, S) , (394)

with C1 sesquilinear and C2 bilinear, which are related by C1(S∗, S) = C2(S, S) and C2(S∗, S) =

C1(S, S). Inserting the Bogoliubov transformation (392), application of bi/sesqui-linearity

yields

C1(aS̃ + bS̃∗, aS̃ + bS̃∗) = |a|2C1(S̃, S̃) + a∗bC1(S̃, S̃∗) + ab∗C1(S̃∗, S̃) + |b|2C1(S̃∗, S̃∗)

= (|a|2 + |b|2)C1(S̃, S̃) + a∗bC2(S̃, S̃)∗ + ab∗C2(S̃, S̃)

= (|a|2 + |b|2)E [S̃] + ab∗D[S̃] + a∗bD[S̃]∗ , (395)

C2(aS̃ + bS̃∗, aS̃ + bS̃∗) = a2C2(S̃, S̃) + abC2(S̃, S̃∗) + abC2(S̃∗, S̃) + b2C2(S̃∗, S̃∗)

= a2C2(S̃, S̃) + b2C2(S̃, S̃)∗ + 2abC1(S̃, S̃)

= a2D[S̃] + b2D[S̃]∗ + 2abE [S̃] . (396)

In summary, under a Bogoliubov transformation, the functionals E andD therefore transform

as

E [aS̃ + bS̃∗] = (|a|2 + |b|2)E [S̃] + ab∗D[S̃] + a∗bD[S̃]∗ ,

D[aS̃ + bS̃∗] = a2D[S̃] + b2D[S̃]∗ + 2abE [S̃] . (397)

and hence

E [aS̃ + bS̃∗]2 − |D[aS̃ + bS̃∗]|2 = (|a|2 − |b|2)(E [S̃]2 − |D[S̃]|2) = E [S̃]2 − |D[S̃]|2 , (398)

i.e. E [S]2 − |D[S]|2 is Bogoliubov invariant.

Now we consider the GSLE Tp,m,m determined by mode function Sp,m,

Tp,m,m[S](τ) = λp,m[S]Sp,m=m(τ) + µp,m[S]Sp,m=m(τ)∗ ,
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∣∣Tp,m,m[S](τ)
∣∣2 = (|λp,m[S]|2 + µp,m[S]2)|Sp,m=m(τ)|2

+ λp,m[S]µp,m[S]Sp,m=m(τ)2 + λp,m[S]∗µp,m[S]Sp,m=m(τ)∗ 2

=
1

2
√
Ep,m[S]2 − |Dp,m[S]|2

{
2Ep,m[S]

∣∣Sp,m=m(τ)
∣∣2

− Dp,m[S]∗Sp,m=m(τ)2 −Dp,m[S]Sp,m=m(τ)∗ 2
}
. (399)

Inserting the transformation (392), together with (397), (398) yields

∣∣Tp,m,m[aS̃ + bS̃∗](τ)
∣∣2 =

|a|2 − |b|2

2
√
Ep,m[S̃]2 − |Dp,m[S̃]|2

{
2Ep,m[S̃]

∣∣S̃p,m=m(τ)
∣∣2

− Dp,m[S̃]∗S̃p,m=m(τ)2 −Dp,m[S̃]S̃p,m=m(τ)∗ 2
}

= (|a|2 − |b|2)
∣∣Tp,m,m[S̃](τ)

∣∣2
=

∣∣Tp,m,m[S̃](τ)
∣∣2 , (400)

establishing Bogoliubov invariance.

5.6.1 GSLE are Hadamard states

Having established that the GSLE are well-defined vacua, we now turn to the question

of their physical viability, established by the following theorem:

Theorem 5.6.2.

Let ω2 be the homogeneous pure quasifree state associated to the GSLE mode functions

Tp,m,m in (390). Then ω2 has the Hadamard property.

We shall refer to these vacuum states as Generalized States of Low Energy and write

ω2 = ωGSLE
2 .

Radzikowski [87] gave a geometrical reformulation of the original definition of a Hadamard

state by Kay and Wald [60] in terms of the wavefront set of its two-point distribution.

Definition 5.6.1.

Consider the Klein-Gordon equation on a globally hyperbolic manifold M , with algebra
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of observables A(M). A quasifree state ω on the A(M) is said to be a Hadamard state if the

wavefront set of its two-point distribution ω2 satisfies WF(ω2) = C+, where C+ is a subset

of T ∗(M ×M), the cotangent bundle over M ×M , defined as

C+ :=
{

(y1, ξ1; y2,−ξ2) ∈ T ∗(M ×M) \ {0}
∣∣(y1, ξ1) ∼ (y2, ξ2), ξ1 ∈ V +

}
, (401)

Here the relation (y1, ξ1) ∼ (y2, ξ2) means that there exists a null-geodesic in M connecting

y1 and y2, ξ1 is the covector to this geodesic at y1, and ξ2 ∈ T ∗y2
M is the parallel transport

of ξ1 along the geodesic. Finally, V + is the closed forward lightcone of T ∗y1
M .

The wavefront set of a distribution captures not only the location of the distribution’s

singularities, but also the direction(s) in which they are propagated. While this definition of

the Hadamard property is seemingly more abstract than the original formulation in terms of

the Hadamard parametrix, modern formulations of QFT on curved spacetimes use Definition

5.6.1 due to its suitability for mathematical analysis.

Our proof that the GSLE are Hadamard states, i.e. WF(ωGSLE
2 ) = C+, proceeds along by-

now standard lines [80, 96, 17]. In order to show that the wavefront set of the GSLE coincides

with that of a generic Hadamard state, we use adiabatic vacuum states as a “conduit” by

appealing to a result of Junker-Schrohe [56] that establishes a connection between the Sobolev

wavefront sets of adiabatic vacuum states and a generic Hadamard state. Specifically we

shall show that the Sobolev wavefront sets of the GSLE coincides with that of the adiabatic

vacua of sufficiently high orders, and hence (by the aforementioned result of Junker-Schrohe)

coincides with the Sobolev wavefront set of a generic Hadamard state.

5.6.1.1 A brief wavefront set glossary

We present a brief overview of the aspects of wavefront sets required for the proof of the

Hadamard property for the GSLE, referring to [61, 95] for a more detailed treatment.

To introduce the notion of the wavefront set consider a distribution on Rn, u ∈ D′(Rn)4.

This distribution may be “localized” about some y0 ∈ Rn by multiplying with some h ∈

C∞c (Rn) with h(y0) 6= 0, yielding a distribution hu of compact support. Now suppose

4Here D′(Rn), the space of distributions, is the topological dual of D(Rn) ≡ C∞c (Rn).
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that this distribution were smooth, i.e. hu ∈ C∞c (Rn). Then it is a standard property of

the Fourier transform that (hu)∧ and all its derivatives are smooth and rapidly decreasing.

Conversely, the failure of u to be smooth in a neighborhood of y0 translates to a failure of

the smoothness and rapid descent properties of (hu)∧ in certain directions in Fourier space.

This singularity structure of u is quantified in its C∞-wavefront set WF(u), which identifies

both the locations of the singularity, as well as the directions in which they propagate.

We now present the definition of the C∞-wavefront set on Rn. Due its local character, the

generalization to smooth manifolds follows straightforwardly through the use of coordinate

charts.

Definition 5.6.2 (The C∞-wavefront set of a distribution).

Let u ∈ D′(U) with U ⊆ Rn open. A point (y0, ξ0) ∈ T ∗Rn is called a regular directed

point of u if there exists h ∈ C∞c (Rn) and an open conic neighborhood Γξ0 of ξ0 in T ∗yRn ∼= Rn,

such that for every n ∈ N there is Cn > 0 and

sup
ξ∈Γξ0

∣∣(hu)∧(ξ)
∣∣ ≤ Cn(1 + |ξ|)−n . (402)

The C∞-wavefront set WF(u) is then defined as the complement of the set of regular directed

points in T ∗Rn \ {0}.

An important property of wavefront sets is their behavior when considering the sum of

distributions, namely

WF(u+ v) ⊆WF(u) ∪WF(v) . (403)

Although the C∞-wavefront set is sufficient to characterize the Hadamard property, it is

advantageous to consider also the Sobolev wavefront sets WFs. These contain information

about the degree of a distribution’s singularities, in addition to their location and direction.

Sobolev wavefront sets were used in [56] to rigorously define adiabatic vacuum states, as well

as characterize their relation to Hadamard states.

Sobolev spaces generalize the notion of a derivative to Lp spaces through the weak-

derivative. For L2 spaces an equivalent characterization may be given through the Fourier

transform. The essential notion is that of a local Sobolev space Hs
loc.
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Definition 5.6.3 (Local Sobolev spaces).

First we consider Rn, where for s ∈ R

Hs
loc(Rn) :=

{
u ∈ D′(Rn)

∣∣∣ ∀h ∈ C∞c (Rn) :

∫
dnξ (1 + |ξ|2)s|(hu)∧(ξ)|2 <∞

}
, (404)

where D′(RN) is the topological dual of C∞c (RN).

Next, let M be an arbitrary smooth manifold. Then we say that u ∈ D′(M) is in Hs
loc(M)

for s ∈ R if for any chart (U,Φ) and any h ∈ C∞c (U)∫
dnξ (1 + |ξ|2)s|(Φ∗(hu))∧(ξ)| <∞ , (405)

with Φ∗ denoting the pull-back. Recall that D′(M) is the topological dual of C∞c (M).

The Sobolev wavefront set is defined as usual through a complement:

Definition 5.6.4 (Sobolev wavefront set).

Let u ∈ D′(Rn), y0 ∈ Rn, ξ ∈ Rn \
{

0
}

and s ∈ R. Then (y0, ξ0) /∈WFs(u) if there exists

h ∈ C∞c (Rn) with h(y0) 6= 0 and an open conic neighborhood Γ of ξ0 ∈ RN \
{

0
}

such that∫
Γ

dNξ (1 + |ξ|2)s|(ϕu)∧(ξ)|2 <∞ . (406)

The generalization to smooth manifolds through the use of charts is immediate.

We end this glossary with a few remarks.

Remarks:

(1) It is clear that WFs(u) = ∅ is equivalent to u ∈ Hs
loc(M). It also follows from the

definition (404), (405) of local Sobolev spaces and standard properties of the Fourier

transform that all functions of sufficiently high differentiability are contained therein,

specifically

∀ s < j − 1
2
dim(M) : Cj(M) ⊆ Hs

loc(M) , (407)

with the 1
2
dim(M) arising from the measure in (405).

(2) The analog of (403) for the Sobolev wavefront sets is

∀ s ∈ R : WFs(u+ v) ⊆WFs(u) ∪WFs(v) . (408)
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(3) The C∞-wavefront set is related to the Sobolev wavefront sets by

WF(u) =
⋃
s∈R

WFs(u) . (409)

5.6.1.2 Proof of the Hadamard property of the GSLE

We begin with the definition of the adiabatic iteration and adiabatic vacua, adapted from

[68]. Inserting the WKB ansatz

Sp,m(τ) =
1√

2Ωp,m(τ)
exp

{
− i
∫ τ

dτ ′Ωp,m(τ ′)
}

(410)

into (388) yields the following relation for the frequency

Ωp,m(τ)2 = ωp,m(τ)2 +
[3(∂τΩp,m)2

4Ω2
p,m

− ∂2
τΩp,m

2Ωp,m

]
(τ) . (411)

Solving this iteratively yields the recursion

(Ω
(0)
p,m)2 := ωp,m(τ)2 , (Ω

(n+1)
p,m )2 = ωp,m(τ)2 +

[3(∂τΩ
(n)
p,m)2

4(Ω
(n)
p,m)2

− ∂2
τΩ

(n)
p,m

2Ω
(n)
p,m

]
(τ) , (412)

and thereby the adiabatic iterate of order n ∈ N0

W
(n)
p,m(t) =

1√
2Ω

(n)
p,m(t)

exp
{
− i
∫ τ

dτ ′Ω
(n)
p,m(τ ′)

}
. (413)

We remark that as long as m2 > 0 the iteration procedure (412) yields well-defined Ω
(n)
p,m for

all n ∈ N0 and momenta p (which may, however, be complex for small p). The adiabatic

iterates W
(n)
p,m are therefore also well-defined for all p (though not a genuine solution of (388)).

An exact solution S
(n)
p,m of (388), the adiabatic mode of order n ∈ N0, may be defined by using

the iterates (413) as initial data on a Cauchy surface at time coordinate τ0,

S
(n)
p,m(τ0)

!
= W

(n)
p,m(τ0) , ∂τS

(n)
p,m(τ0)

!
= ∂τW

(n)
p,m(τ0) . (414)

For m2 > 0 the adiabatic modes S
(n)
p,m are well-defined for all momenta. Moreover, the

adiabatic vacua S
(n)
p,m may be expressed in terms of the adiabatic iterates W

(n)
p,m ,

S
(n)
p,m(τ) = α

(n)
p,m(τ)W

(n)
p,m(τ) + β

(n)
p,m(τ)W

(n)
p,m(τ)∗ . (415)
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An argument along the lines of the proof of Lemma 5.4.1 yields the estimates

α
(n)
p,m(τ) = 1 +O(p−2n−1) , ∂τα

(n)
p,m(τ) = O(p−2n−1) ,

β
(n)
p,m(τ) = O(p−2n−1) , ∂τβ

(n)
p,m(τ) = O(p−2n−1) . (416)

In turn these imply the following estimates on the large momentum asymptotics of the

adiabatic modes,

S
(n)
p,m(τ) = O(p−1/2) , ∂τS

(n)
p,m(τ) = O(p1/2) , ∀ j ≥ 2 : ∂jτS

(n)
p,m(τ) = O(pj−1/2) , (417)

with the final estimate following from the first two by repeated differentiation of (388).

Having introduced the adiabatic vacua of order n, we may use these as fiducial solutions

for the construction of the GSLE, assured by Theorem 5.6.1 that the resulting state is

independent of the choice of adiabatic order. Given an adiabatic mode of order n ∈ N0, the

proof of Lemma 4.5 in [80] shows that λp,m[S(n)], µp,m[S(n)] in (390) have the following large

momentum asymptotics,

λp,m[S(n)] = 1 +O(p−2n) , µp,m[S(n)] = O(p−2n) . (418)

Now suppose that ωH,2 be the two-point function of some Hadamard state. By (403)

WF(ωGSLE
2 ) = WF(ωGSLE

2 − ωH,2 + ωH,2) ⊆WF(ωGSLE
2 − ωH,2) ∪WF(ωH,2)

= WF(ωGSLE
2 − ωH,2) ∪ C+ , (419)

with C+ defined in (401). Thus, to prove ω2 is a Hadamard state, it is sufficient to show

that WF(ω2 − ωH,2) = ∅. To demonstrate this we shall need the following characterization

of adiabatic vacua in terms of Sobolev wavefront sets from [56].

Lemma 5.6.3 (Lemma 3.3 from [56]).

Let ωH,2 and ωn,2 be the two-point functions of an arbitrary Hadamard state and the

adiabatic vacuum of order n ∈ N0 (respectively) associated to the Klein-Gordon field on the

four dimensional spacetime (M, g). Then

∀ s < 2n+
3

2
: WFs(ωH,2 − ωn,2) = ∅ . (420)
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Specializing henceforth to d = 3, fixing arbitrary s ∈ R and n ∈ N0 we have

WFs(ωGSLE
2 − ωH,2) = WFs(ωGSLE

2 − ωn,2 + ωn,2 − ωH,2)

⊆ WFs(ωGSLE
2 − ωn,2) ∪WFs(ωn,2 − ωH,2) , (421)

and hence by Lemma 5.6.3

∀ s < 2n+
3

2
: WFs(ωGSLE

2 − ωH,2) ⊆WFs(ωGSLE
2 − ωn,2) . (422)

We shall now show that for every s ∈ R it is possible to choose n sufficiently large so that the

RHS of (422) is empty. This together with (409) above establishes that WF(ωGSLE
2 −ωH,2) =

∅.

Consider the (formal) kernel of ωGSLE
2 − ωn,2,

∆W (n)(τ, x; τ ′, x′) :=

∫
d3p

(2π)3
eip(x−x

′)[Tp,m,m(τ)Tp,m,m(τ ′)∗ − S(n)
p,m=m(τ)S

(n)
p,m=m(τ ′)∗] . (423)

Writing Tp,m,m(τ) = S
(n)
p,m=m(τ) + δp,m,m(τ), the estimates (417) and (418) imply Tp,m,m =

S
(n)
p,m=m +O(p−2n− 1

2 ) and hence

Tp,m,µ(t)Tp,m,µ(t′)∗ − S(n)
p,µ=m(t)S(n)

p,µ=m(t′)∗ = O(p−2n− 1
2 ) . (424)

Moreover, as long as m2 > 0 the integrand of (423) is continuous at the origin (as follows

from an analysis of the small p behavior of the GSLE analogous to that in Section 5.3,

thereby bridging a gap in the proof of [80]). Thus (424) entails that ∆W (n)(τ, x; τ ′, x′) is

bounded by an absolutely convergent integral for all sufficiently large n, specifically for all

points (τ, x), (τ ′, x′) ∈M

∀n > 5

4
: ∆W (n)(τ, x; τ ′, x′) ∈ C . (425)

Having proven that ∆W (n) is a bi-function, we now prove that it is continuously differentiable.

Consider a multi-index α and the mixed derivative ∂α(y,y′)∆W
(n)(y, y′). Pushing the derivative

inside the integral in (423), we may bound this by an estimate on∫
d3p

(2π)3
∂α(x,x′)e

ip(x−x′)∂α(τ,τ ′)[Tp,m,m(τ)Tp,m,m(τ ′)∗ − S(n)
p,m=m(τ)S

(n)
p,m=m(τ ′)∗] , (426)
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where clearly ∂α(x,x′)e
ip(x−x′) = O(p|α|) . It follows once more from (417) and (418) that

∂jτδp,m,m(τ) = O(pj−2n−1/2), and hence

∂α(τ,τ ′)[Tp,m,m(τ)Tp,m,m(τ ′)∗ − S(n)
p,m=m(τ)S

(n)
p,m=m(τ ′)∗]

= ∂α(τ,τ ′)[δp,m,m(τ)S
(n)
p,m=m(τ ′)∗ + S

(n)
p,m=m(τ)δp,m,m(τ ′)∗ + δp,m,m(τ)δp,m,m(τ ′)∗]

= O(p|α|−2n−1) . (427)

This yields the estimate∣∣∣∣ ∫ d3p

(2π)3
∂α(x,x′)e

ip(x−x′)∂α(τ,τ ′)[Tp,m,m(τ)Tp,m,m(τ ′)∗ − S(n)
p,m=m(τ)S

(n)
p,m=m(τ ′)∗]

∣∣∣∣
≤ const.

∫ ∞
0

dp p2(1 + p)|α|−2n−1 , (428)

and thus the integral is absolute convergent as long as |α| ≤ j(n) := 2n− 3.

Finally, since the action of the derivative ∂α(y,y′) under the integral in (423) is integrable

for |α| ≤ j(n), it follows that ∆W (n) ∈ Cj(n)(M ×M), and so it follows from (407) that

∆W (n) ∈ H
j(n)−3/2
loc (M). Hence we have proven that for any s ∈ R, and for every n ∈ N0

with

s < 2n− 9/2 : ωGSLE
2 − ωn,2 = ∆W (n) ∈ Hs

loc(M ×M) . (429)

Equivalently, for every s ∈ R there exists an adiabatic order n ∈ N0 such that WFs(ωGSLE
2 −

ωn,2) = ∅. Combined with (422) this entails

∀ s ∈ R : WFs(ωGSLE
2 − ωH,2) = ∅ . (430)

Finally, we recall (409)

WF(ωGSLE
2 − ωH,2) =

⋃
s∈R

WFs(ωGSLE
2 − ωH,2) = ∅ , (431)

which completes the proof that the GSLE ω2 is a Hadamard state.
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5.7 Conclusions

The States of Low Energy (SLE) were introduced as Hadamard states [80] on generic

Friedmann-Lemâıtre spacetimes with a physically appealing defining property. Here we

showed that SLE have several bonus properties which make them mathematically and phys-

ically even more attractive. These bonus properties (a) – (e) have been listed in the intro-

duction and need not be repeated here. Instead, we comment on some extensions and future

directions.

As seen, the minimization over initial data results in an instructive alternative expres-

sion for the SLE solution solely in terms of the commutator function. A minimization over

boundary data would likewise be relevant and occurs naturally when placing the basic wave

equation into the setting of a regular Sturm-Liouville problem. Taking advantage of the

literature on non-regular Sturm-Liouville problems might allow one to extend the SLE con-

struction systematically to situations where the coefficient functions become singular within

the interval considered. Covering the big bang singularity is of prime interest, but other

singular points may be worthwhile treating as well, as the model from Section 5.5 illustrates.

The computation of the power spectrum requires access to the cross-over regime in the

(time, momentum) plane. Ideally, one would be able to treat also the cross-over regime

analytically by a suitable expansion. For physical reasons one would want to treat fully real-

istic cosmic evolutions where a pre-inflationary SLE replaces the positive frequency Hankel

functions [86, 25, 71] and to propagate the resulting primordial power spectrum to the actual

CMB.

Finally, our construction of the Generalized States of Low Energy shows explicitly that

energy minimization, while physically appealing, is not at the mathematical core of obtaining

a Hadamard state. One use of the GSLE we envision is in the context of the FLFRG, where

the Hessian Γ
(2)
k [φ] − Rk is field dependent. Constructing the inverse as a SLE via some

fiducial solution S would entail a technically cumbersome field dependence of the Bogoliubov

coefficients in (223), while in the GSLE construction the auxiliary scale m may be identified

with the FRG flow parameter k, leaving the Bogoliubov coefficients in (388) independent of

φ.
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6.0 The Spatial FRG on Friedmann-Lemâıtre Spacetimes

6.1 Introduction

The Functional Renormalization Group (FRG) is a widely used reformulation of quan-

tum field theory (QFT) in the spirit of the Wilsonian Renormalization Group. Favored for

its ability to go beyond the weak-coupling expansions of standard perturbation theory, it

has found application in areas diverse as solid-state physics, particle physics, and quantum

gravity. The central objects of study in the FRG are one-parameter families of QFT function-

als, whose behavior is captured in the form of functional integro-differential flow equations.

Thus, the usual QFT problem of evaluating the functional integral for some bare action

(435) is replaced with integrating these flow equations. We refer to [63, 104, 82, 30, 74, 102]

for a systematic exposition of its standard formulation in Euclidean signature, focusing in

this chapter on its formulation in Lorentzian Friedmann-Lemâıtre spacetimes.

For generality of presentation, we adopt the background field formalism on a generic

Friedmann-Lemâıtre background with line element ds2 = εgN(t)2dt2 + a(t)2δijdx
idxj. Both

metric signatures are treated in parallel using εg = ±1, highlighting the difference between

a geometrically meaningful “Wick flip” (εg 7→ −εg) and a pathological “Wick rotation”

(t 7→ −it) that complexifies the line element, with conventions

Euclidean: εg = 1 ,
√
εg = 1 ,

Lorentzian: εg = −1 ,
√
εg = i . (432)

A meaningful notion of a Wick rotation on a generic globally hyperbolic manifold would

have to meet a number of desiderata, see e.g. [6]. Any known notion fails to meet one or

more of these criteria. In contrast, the Wick flip is a weaker notion that simply maps a given

Lorentzian manifold onto a Riemannian one, with no claims to analyticity or bijectivity.

To fix ideas, our starting point is the action S + Sgrav in D = 1 + d dimensions

S[χ̃; g] = εg

∫
dDy
√
εgg
{1

2
gµν∂µχ̃∂νχ̃+ ξ(χ̃)R(g) + U(χ̃)

}
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Sgrav[g] = εg

∫
dDy
√
εgg
{ 1

2κ

(
2Λcosm −R

)
+

1

2s
C2 + ω0R

2 − θ

s
G
}
, (433)

where the inclusion of general even potentials U , ξ in the matter action is motivated by

the Wilsonian framework. The fourth order gravity action is conveniently parameterized in

terms of the Weyl tensor squared C2 and the Gauss-Bonnet term G. We note, however, that

for a 1 + 3 dimensional Friedmann-Lemâıtre cosmology C2 = 0 and G is a total derivative.

Expanding the matter action around a background field φ(t, x), the one-parameter fam-

ily of functionals is then defined via the introduction of a term ∆Sk that modulates the

fluctuation field χ,

Sk[χ; g, φ] = S[φ+ χ; g] + ∆Sk[χ; g] , ∆Sk[χ; g] =
εg
2
χ · Rk · χ , (434)

where as usual the “·” represents an integration with respect to the standard (pseudo)

Riemannian volume density. The regulator kernel Rk is taken to modulate the eigenvalues

of the full Laplacian ∇2 in Euclidean signature, or those of the spatial Laplacian ∇2
s in

Lorentzian signature. In the Riemannian setting, the ellipticity of ∇2 enables discrimination

between large and small momentum modes (where by “large/small” we refer to the individual

momentum components) by the corresponding eigenvalues of ∇2. Hence, modulating the

mode content according to the eigenvalues of ∇2 leads to a well defined covariant coarse-

graining procedure. On the other hand, the existence of null-momenta in a Lorentzian

spacetime renders such an identification untenable, excepting a Wick rotation. However,

since a sufficiently general notion of a Wick rotation is unavailable for generic Friedmann-

Lemâıtre backgrounds [6], the route pursued here is to replace the covariant modulation with

a merely spatial one through Rk(t, x; t′, x′) = δ(t, t′)Rk(t, x; t, x′), while leaving the temporal

dynamics unaffected. Moreover, the kernel Rk modulates only the spatial modes according to

the eigenvalues of the spatial Laplacian ∇2
s, yielding a well defined form of mode-blocking. In

terms of a spectral representation in the Lorentzian setting, the regulator kernel Rk(t, p
2) is

required to satisfy the following general properties (see Appendix E of [89] for the Euclidean

case)

Reg (i) Rk(t, p
2)→ 0 for k → 0, ensuring that the k → 0 limit of the various functionals

coincide with their usual definitions.
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Reg (ii) Rk(t, p
2) ∼ k2 for p2 . k2, giving an effective O(k2) mass to the slow-modes.

Reg (iii) Rk(t, p
2) approaches zero sufficiently fast for p2 � k2, thereby leaving the fast-

modes to be integrated out in the functional integral without a suppression

factor.

Having introduced the mode modulation, the background field generating functional

Wk[J ;φ] and effective average action Γk[ϕ;φ] are defined as usual,

e
1√
εg~

Wk[J ;φ]
=

∫
Dχ e−

1√
εg~

(S[φ+χ]+∆Sk[χ])+ 1√
εg~

J ·χ
, (435)

Γk[ϕ;φ] = Jk[ϕ;φ] · ϕ−Wk

∣∣
J=Jk[ϕ;φ]

−∆Sk[ϕ] ,
δWk

δJ

∣∣∣
J=Jk[ϕ;φ]

!
= ϕ . (436)

In general the regulator Rk may depend on the background field φ, in which case the action

(434) depends the fluctuation field and the background field separately, i.e. not just through

their sum. On the level of the effective action (436) this means that the splitting symmetry

Γk[ϕ + ζ;φ − ζ] = Γk[ϕ;φ] is violated. However, it is readily verified that as long as Rk is

independent of the background field φ that splitting symmetry is maintained, i.e. Γk[ϕ;φ] =

Γk[ϕ+ φ] (by slight abuse of notation)1.

Differentiating Wk[J ;φ] with respect to k yields the familiar Polchinski equation

k∂kWk[J ;φ] = −εg
2

Tr

{
k∂kRk

[
δWk

δJ

δWk

δJ
+
√
εg~

δ2Wk

δJδJ

]}
, (437)

where we note that the trace over spacetime indices is with respect to the usual volume

density. Implementing the modified Legendre transformation in (436),

k∂kΓk[ϕ;φ] = k∂kJk[ϕ;φ] · ϕ− k∂kJk[ϕ;φ] · δWk

δJ

∣∣∣
J=Jk

− k∂kWk

∣∣
J=Jk

− k∂k∆Sk[ϕ]

= −k∂kWk

∣∣
J=Jk

− εg
2

Tr

{
k∂kRk

δWk

δJ

δWk

δJ

}
=

εg
√
εg~

2
Tr

{
k∂kRk

δ2Wk

δJδJ

∣∣∣∣
J=Jk[ϕ;φ]

}
. (438)

1In the context of quantum gravity, the regulator typically depends on the background metric ḡ, breaking
splitting symmetry. However, a Ward identity for splitting symmetry holds, see Section 2.4 of [89].
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Moreover, it follows from the definition of the (modified) Legendre transformation that

δ2Wk

δJδJ

∣∣∣
J=Jk[ϕ;φ]

=

[
δ2Γk
δϕδϕ

+ εgRk

]−1

. (439)

For our purposes a background independent Rk suffices and we can set the mean field ϕ to

zero, writing Γk[φ] = Γk[0;φ]. Further, splitting symmetry entails δ2Γk
δϕδϕ

= δ2Γk
δφδφ

, yielding the

Wetterich equation

k∂kΓk[φ] =
εg
√
εg~

2
Tr
{
k∂kRkGk[φ]

}
,

[
δ2Γk
δφδφ

+ εgRk

]
·Gk[φ] = 11 . (440)

Motivated by the role of the one-loop effective action in setting the UV boundary data for the

(otherwise kinematical) Wetterich equation (see Figure 2), as well as the recent interest in

the recovery of perturbative results from the FRG [22], we shall use (440) to renormalize the

more general action (441) to one-loop order on a generic Friedmann-Lemâıtre background,

highlighting key differences to the standard covariant computation.

6.2 One-loop effective action on Friedmann-Lemâıtre spacetimes

Adopting a Wilsonian standpoint, in this section we consider the one-loop renormal-

ization for a scalar theory with general even potential U(χ̃) on a Lorentzian Friedmann-

Lemâıtre background in d = 3 spatial dimensions. As we shall discover, this generically

necessitates the inclusion of non-minimal gravity couplings to all orders, specifically we gen-

eralize our bare action from the fourth order gravity action of (433) to

S[χ̃; g] = −
∫
d4y
√
−g
{1

2
gµν∂µχ̃∂νχ̃+

∑
n≥0

nU(χ̃)Rn
}
, (441)

with even (bare) potentials

nU(χ̃) =
∑
j≥0

1

(2j)!
nu2jχ̃

2j , n ≥ 0 . (442)

Note that nu2j has mass dimension 4− 2(j + n), and hence for any N ∈ N0 there are N + 1

couplings of mass dimension 4 − 2N . In particular, only the ones with N = 0, 1, 2 have
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non-negative mass dimension, which are

0u0 =
Λcosm

κ
, 0u2 = m2 , 0u4 = λ ,

1u0 = −1

κ
, 1u2 = ξ ,

2u0 = ω0 , (443)

where we have indicated the conventional notation, see (433).

Next, we introduce the general structure of the counterterm Lagrangian. Throughout we

denote bare quantities (diverging as Λ→∞) by a subscript Λ while renormalized quantities

carry no subscript but tacitly refer to a finite renormalization scale µ. Both are as usual

related by a renormalization constant where the subscript Λ is omitted. Writing

−LΛ = −1

2
φΛ∇2φΛ +

∑
n≥0

nUΛ(φΛ)Rn , (444)

the bare field φΛ is related to the renormalized one φ by φΛ = Z1/2φ. The bare potentials

nUΛ(φΛ) then expand according to

nUΛ(φΛ) =
∑
j≥0

1

(2j)!
nu2j,Λφ

2j
Λ =

∑
j≥0

1

(2j)!
nZ2j

nu2jφ
2j ,

Zj nu2n,Λ = nZ2j
nu2j , n ≥ 0 , j ≥ 0 , (445)

where all the renormalization constants are 1 +O(~), and hence LΛ = L+ ~Lct.

6.2.1 Identifying the ultraviolet divergences

We shall use the Wetterich equation (440) to isolate the UV-divergent contributions to the

effective action associated to (441). Proceeding manifestly in Lorentzian signature with line

element ds2 = −N(t)2dt2 +a(t)2δijdx
idxj, the regulator Rk(t, x; t′, x′) = δ(t, t′)Rk(t, x; t, x′)2

now modulates only spatial modes. In a spatial momentum space representation the kernel

is

Rk(t, x; t, x′) =

∫
d3p

(2π)3
eip(x−x

′)Rk(t, p
2) , Rk(t, p

2) = k2r( p2

a(t)2k2 ) , (446)

2The temporal delta function is normalized δ(t, t′) = N(t)a(t)dδ(t− t′).

170



with the time dependence entering through the “physical momentum” p2/a(t)2. Inserting the

~-expansion Γk[φ] = Γk,0[φ] +
∑

n≥1 ~nΓk,n[φ] into the Wetterich equation readily yields that

Γk,0[φ] ≡ Γ0[φ] is k-independent. It follows from a saddle-point evaluation of the functional

integral that Γ0[φ] coincides with the “renormalized action” S =
∫
dvol(g)L,

Γk,0[φ] ≡ Γ0[φ] = S[φ] . (447)

In turn, the S determines the k-flow of the one-loop correction Γk,1,

k∂kΓk,1[φ] = − i
2

Tr
{
k∂kRkGk[φ]

}
,
[
S(2)[φ]−Rk] ·Gk[φ] = 11 . (448)

Specializing to conformal time gauge N(η) = a(η), and restricting to spatially homoge-

neous mean fields φ(η), this reads

k∂kΓk,1[φ] = − i
2

∫
dηd3x a(η)4

∫
d3p

(2π)3
k∂kRk(η, p)Gk(η, p) . (449)

By slight abuse of notation we write Gk(η, p) for the temporal coincidence limit of the Fourier

transformed green function Gk(η, η
′; p), which satisfies

[
a−4∂η(a

2∂η) + a−2p2 +Rk(η, p) + V (η)
]
Gk(η, η

′; p) = −δ(η, η′) , (450)

where we have defined the “potential”

V (η) :=
∑
n≥0

nU ′′(φ(η))R(η)n . (451)

Recalling the covariant normalization of δ(η, η′) = a(η)−4δ(η − η′), the first order term may

be removed by defining Gk(η, η′; p) := a(η)a(η′)Gk(η, η
′; p). This yields

[
∂2
η + p2 + a(η)2Rk(η, p) + a(η)2(V (η)−R(η)/6)

]
Gk(η, η′; p) = −δ(η − η′) , (452)

together with the corresponding flow equation

k∂kΓk,1[φ] = − i
2

∫
dηd3x

∫
d3p

(2π)3
k∂k(a

2Rk)(η, p)Gk(η, p) . (453)
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The computation of the full one-loop correction to the effective action

Γ0,1[φ] = ΓΛ,1[φ]−
∫ Λ

0

dk ∂kΓk,1[φ] (454)

then requires specification of the Green function Gk(η, η′; p) satisfying (452) for all k ∈ (0,Λ).

It is clear from (452) that such a specification is analogous to choice of vacuum state for a free

QFT on the Friedmann-Lemâıtre background, and is hence highly non-unique. Thus, unlike

the standard Euclidean FRG where ellipticity of the Hessian Γ
(2)
k + Rk entails a unique

Green function, the spatial formulation necessitates the incorporation of state-dependent

aspects into the flow equation, which will impact the flow pattern for small k (see Figure

2). However, in order to identify the one-loop counterterms ΓΛ,1[φ] required to render the

(454) UV-finite, only universal state-independent information enters. Specifically, splitting

the integral (454) according to

Γ0,1[φ] = ΓΛ,1[φ]−
∫ Λ

µ

dk ∂kΓk,1[φ]−
∫ µ

0

dk ∂kΓk,1[φ] , (455)

it is sufficient to study the flow of (453) for Λ ≥ k ≥ µ with µ sufficiently large. The form

of Gk(η, p) in this regime is determined by the generalized resolvent expansion, presented in

Section 5.4.2. This is implemented by first rescaling p = k℘ in (452), (453), and then taking

k to be large, with the Gelfand-Dickey equation (326) for Gk(η, ℘) := Gk(η, p)|p=k℘ reading

2Gk(η, ℘)∂2
ηGk(η, ℘)− (∂ηGk(η, ℘))2 + 4

[
k2ω2(η, ℘)2 + ω0(η)2

]
Gk(η, ℘)2 = −1 , (456)

ω2(η, ℘)2 := ℘2 + a(η)2r( ℘2

a(η)2 ) , ω0(η)2 := a(η)2
[
V (η)−R(η)/6

]
,

and the flow equation

∂kΓk,1[φ] = − 8ik4

(4π)2

∫
dηd3x

∫ ∞
0

d℘℘2
[
r(℘2/a2)− ℘2/a2r′(℘2/a2)]Gk(η, ℘) . (457)

Inserting the large k expansion

Gk(η, ℘) � − i

2ω2(η, ℘)k
[1 +

∑
n≥1

(−)nḠn(η, ℘)k−2n] (458)
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converts (456) into the recursion (cf. (328) from Section 5.4.2)

Ḡn =
∑

j,l≥0,j+l=n−1

{1

4

Ḡk

ω2

∂2
η

(Ḡl

ω2

)
− 1

8
∂η

(Ḡk

ω2

)
∂η

(Ḡl

ω2

)
+

1

2

ω2
0

ω2
2

ḠjḠl

}
− 1

2

∑
j,l≥1,j+l=n

ḠjḠl.

(459)

Thus Ḡn may be expressed in terms of Ḡn−1, . . . , Ḡ1, and involves only differentiations. It

follows that all Ḡn are differential polynomials in v := ω2
0, w := ω2

2. Moreover, by inserting

the resolvent expansion (458) into the flow equation (457) and performing the large-k integral

(455), it follows that only Ḡ1, Ḡ2 contribute to the UV-divergences. We recall from (329)

their explicit expressions

Ḡ1 =
v

2w
+

5

32

w′2

w3
− 1

8

w′′

w2
,

Ḡ2 =
3

8w2

(
v2 +

1

3
v′′
)
− 5

16w3

(
vw′′ + v′w′ − v7w′2

4w

)
+

1

32w3

(
− w(4) +

21w′′2

4w
+

7w(3)w′

w
− 231w′2w′′

8w2
+

1155w′4

64w3

)
, (460)

where we momentarily denote ∂η differentiations with a “ ′ ” for brevity. The flow equation

of the UV-divergent part Γdiv
k,1 of Γk,1 is

∂kΓ
div
k,1[φ] = − 4k3

(4π)2

∫
dηd3x a(η)4

∫ ∞
0

d% %2 [r(%2)− %2r′(%2)]

[%2 + r(%2)]1/2

{
1− G1(η, %)

k2
+
G2(η, %)

k4

}
,

(461)

where we have redefined ℘ = a(η)% and Gj(η, %) := Ḡj(η, ℘)|℘=a(η)%
3. Upon insertion into

(455), evaluating −
∫ Λ

µ
dk ∂kΓ

div
k,1[φ] yields the UV-divergent contribution to the one-loop

correction,

Γdiv
1 [φ] =

1

(4π)2

∫
dηdx a(η)4

{
q0(Λ4 − µ4) + g1(η)(Λ2 − µ2) + g2(η) ln(Λ/µ)

}
, (462)

where we have kept the terms from the lower integration boundary to maintain Γdiv
1 [φ]|Λ=µ =

3It is to be understood that the redefinition ℘ = a(η)% is to be performed after all the time derivatives in
(460) have been performed.
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0. Further

q0 =

∫ ∞
0

d% %2 [r(%2)− %2r′(%2)]

[%2 + r(%2)]1/2
,

g1(η) = −2

∫ ∞
0

d% %2 [r(%2)− %2r′(%2)]

[%2 + r(%2)]1/2
G1(η, %) ,

g2(η) = 4

∫ ∞
0

d% %2 [r(%2)− %2r′(%2)]

[%2 + r(%2)]1/2
G2(η, %) , (463)

The expressions for g1(η) and g2(η)

g1(η) = q1,1R + q1,2(V −R/6)

g2(η) =
1

2
(V −R/6)2 − 1

6
∇2(V −R/6)

+ B1
a(4)

a5
+B2

a(1)a(3)

a6
+B3

a(2) 2

a6
+B4

a(1) 2a(2)

a7
+B5

a(1) 4

a8

+
(
B6
R

6
+B7

a(1) 2

a4

)
(V −R/6) +B8

a(1)

a3
∂η(V −R/6) , (464)

carry a dependence on the regulator r(x) arising from the %-integrals in (463), which is

contained in the coefficients q1,1, q1,2, Bj. We have also left the η dependencies implicit, and

denote by a(n) := ∂nη a.

As may be expected from our use of a non-covariant spatial regulator, the structure of

the logarithmic divergence from the second and third lines of g2(η) above has a non-covariant

form. Remarkably, it follows from the properties of the regulator function (Reg(i)-(iii) in

Section 6.1) that g2(η) can be “covariantized” and expressed

R =
6a(2)

a3
, ∇2R = −6

a(4)

a5
+ 24

a(1)a(3)

a6
+ 18

a(2) 2

a6
− 36

a(1) 2a(2)

a7
(465)

−RµνR
µν +

1

3
R2 = −12

a(1) 4

a8
+ 12

a(1) 2a(2)

a7
=

4

a4
∂η

(a(1) 3

a3

)
, (466)

for generic regulator functions r(x). This is the content of the following lemma.

Lemma 6.2.1.

Let r(x) be a generic FRG regulator function as defined in (446).
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(i) The regulator dependent coefficients B1, B2, B3 always satisfy the ratio

B1 : B2 : B3 = −1 : 4 : 3 , (467)

and hence can be expressed in terms of a single regulator dependent constant q0,1,

B1 = −6q0,1 , B2 = 24q0,1 , B3 = 18q0,1 . (468)

(ii) B4 + 36q0,1 +B5 = 0.

(iii) B6 = B7 = B8.

The proof of Lemma 6.2.1, as well as explicit expressions for q1,1, q1,2 and q0,1, q0,2, q0,3

(defined below) are relegated to Appendix B.

Next, it follows from the explicit expressions (465), (466) for the curvature invariants,

together with Lemma 6.2.1(i), (ii) that

B1
a(4)

a5
+B2

a(1)a(3)

a6
+B3

a(2) 2

a6
+B4

a(1) 2a(2)

a7
+B5

a(1) 4

a8

= q0,1∇2R + (B4 + 36q0,1)
a(1) 2a(2)

a7
+B5

a(1) 4

a8

= q0,1∇2R− B5

12

[
12
a(1) 2a(2)

a7
− 12

a(1) 4

a8

]
= q0,1∇2R + q0,2

[
−RµνR

µν +
1

3
R2
]
. (469)

Moreover, Lemma 6.2.1(iii) entails that the final line of g2(η) in (464) may be expressed in

terms of a single coefficient q0,3 := B8,(
B6
R

6
+B7

a(1) 2

a4

)
(V −R/6) +B8

a(1)

a3
∂η(V −R/6) = q0,3a

−4∂η
[
aa(1)(V −R/6)

]
. (470)

In summary g1 and g2 are expressible in terms of curvature invariants and total derivatives,

g1(η) = q1,1R + q1,2(V −R/6) ,

g2(η) =
1

2
(V −R/6)2 − 1

6
∇2(V −R/6)

+ q0,1∇2R + q0,2

[
−RµνR

µν +
1

3
R2
]

+ q0,3a
−4∂η

[
aa(1)(V −R/6)

]
. (471)
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Finally, the second and third lines of g2(η) in (471) are a total derivative, which follows from

the explicit expressions (465), (466). Hence upon
∫
dηd3xa(η)4 integration in (462) these

evaluate to a boundary term, which may be omitted. Thus, up to boundary terms, the

UV-divergent correction to the one-loop effective action is

~Γdiv
1 [φ] =

∫
dηdx a4Ldiv

1

Ldiv
1 :=

~
(4π)2

{
q0(Λ4 − µ4) +

[
q1,1R + q1,2(V −R/6)

]
(Λ2 − µ2)

+
1

2
(V −R/6)2 ln(Λ/µ)

}
(472)

with V from (451). We remark that this divergence structure is akin to that obtained in a

covariant setting, up to an additional quadratic divergence proportional to q1,1R originating

from the time dependence of the regulator Rk(η, p). These divergences ought to be absorbed

by counterterms in ΓΛ,1. We anticipate that the novel q1,1 term will lead to an additional

renormalization of Newton’s constant.

6.2.2 Renormalization study

We now examine the general structure of the counterterm Lagrangian. It is clear from

(472) that the one-loop divergence structure does not necessitate a non-trivial wavefunction

renormalization, i.e. Z = 1 +O(~2). Thus the bare and renormalized couplings in (445) are

related by

nu2n,Λ = nZ2j
nu2j , n ≥ 0 , j ≥ 0 , (473)

and we choose appropriate Ansätze for the renormalization constants:

0Z0 = 1 +
~

(4π)2

{
0z0,0 + 0z0,1 ln Λ/µ+ 0z0,2(Λ/µ)2 + 0z0,4(Λ/µ)4

}
,

0Z2j = 1 +
~

(4π)2

{
0z2j,0 + 0z2j,1 ln Λ/µ+ 0z2j,2(Λ/µ)2

}
, j ≥ 1 ,

nZ2j = 1 +
~

(4π)2

{
nz2j,0 + nz2j,1 ln Λ/µ+ nz2j,2(Λ/µ)2

}
, n ≥ 1, j ≥ 0 . (474)
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In all cases O(~2) corrections are implicit. The Ansätze (474) contain non-divergent terms,

which are however related to the coefficients of the powerlike terms by the “matching prin-

ciple” of [78]: we seek to identify the renormalized couplings with the bare ones at scale µ.

This constrains the coefficients of the non-logarithmic terms as follows

0z0,0 + 0z0,2 + 0z0,4 = 0 , 0z2j,0 + 0z2j,2 = 0 , j ≥ 1 ,

nz2j,0 + nz2j,2 = 0 , n ≥ 1, j ≥ 0 . (475)

The counterterm action thus reads

LΛ = L− ~
(4π)2

{
µ−4 0u0

0z0,4 Λ4 + F2 Λ2 + F4 ln(Λ/µ) +O(Λ0)
}
. (476)

Here

F2 = µ−2
∑
n≥0

∑
j≥0

1

(2j)!
nz2j,2

nu2jφ
2jRn ,

F4 =
∑
n≥0

∑
j≥0

1

(2j)!
nz2j,1

nu2jφ
2jRn . (477)

Then, the finiteness condition LΛ + Ldiv
1 = finite as Λ→∞ amounts to

0u0
0z0,4 = µ4q0 , (478)

F2 = q1,1R + q1,2(V −R/6) , (479)

F4 =
1

2
(V −R/6)2 . (480)

The occurrence of the V − R/6 in (479), (480) makes it convenient for notational purposes

to define the potentials nŪ(φ) and couplings nū2j,

nŪ(φ) =
∑
n≥0

∑
j≥0

1

(2j)!
nū2jφ

2jRn ,

1Ū(φ) := 1U(φ)− 1

12
φ2 , nŪ(φ) := nU(φ) , n 6= 1 ,

1ū2 = 1u2 −
1

6
, nū2j = nu2j else . (481)
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Re-expressing (479), (480) in terms of these yields

F2
!

= q1,2
0Ū ′′(φ) +

[
q1,1 + q1,2

1Ū ′′(φ)
]
R + q1,2

∑
n≥2

nŪ ′′(φ)Rn (482)

2F4
!

= 0Ū ′′(φ)2 + 2 0Ū ′′(φ) 1Ū ′′(φ)R +
[
2 0Ū ′′(φ) 2Ū ′′(φ) + 1Ū ′′(φ)2

]
R2

+
∑
n≥3

[ ∑
n1+n2=n

n1Ū ′′(φ) n2Ū ′′(φ)
]
Rn . (483)

Before matching the coefficients of φ2jRn to obtain expressions for the renormalization con-

stants nZ2j, and subsequently the beta functions, we add several remarks on the renormal-

ization structure implied by (482), (483):

Remarks:

(i) The divergence structure of the pure scalar potential 0U(φ) ≡ 0Ū(φ) in Ldiv
1

~
(4π)2

{
q1,2

0U ′′(φ)Λ2 +
1

2
0U ′′(φ)2 ln(Λ/µ)

}
, (484)

where we have omitted the cosmological constant term (478), is identical to that in

flat spacetime. Thus the renormalization of the pure scalar couplings 0u2j, detailed

below, is unaffected by the higher order couplings to the Ricci scalar.

(ii) It follows from the F2-relation (482) that as far as the quadratic divergence is con-

cerned, the renormalized couplings nu2j in the potential nU(φ) =
∑

j≥0
1

(2j)!
nu2jφ

2j

affect only the renormalization constants nZ2j, i.e. there is no mixing in the Ricci-

coupling order n.

(iii) The structure of the logarithmic divergence (483), on the other hand, exhibits an

“upward cascade” in orders of the Ricci-coupling. Namely, the 0u2j couplings will

affect 1Z2j, and more generally the renormalization constants nZ2j associated to

nU(φ)Rn will be affected by all renormalized couplings of lower Ricci-coupling order

0u2` , . . . ,
nu2`.

(iv) This upward cascade in order of the Ricci-coupling halts within the “conformal sector”,

i.e.

1U(φ) =
1

12
φ2 , nU(φ) ≡ 0 , n ≥ 2 , (485)
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but with general even scalar potential 0U(φ).

(v) In the standard case of a φ4-theory, one may set nuj = 0 for all n ≥ 1, j ≥ 0 except

for ξ = 1u2, which corresponds to non-minimal coupling 1
2
ξφ2R [81].

(vi) For a generic scalar potential 0U(φ) and non-conformal coupling 1u2 6= 1/6, the need

to include Ricci-couplings of all orders in the action (441) follows from the structure of

the logarithmic divergence, as can be readily seen by the following simple argument.

Consider a sextic potential 0U(φ) = 1
2
m2φ2+ 1

4!
λφ4+ 1

6!
gφ6 for non-conformal coupling.

Then the logarithmic divergence in (472) contains the term

~
(4π)2

1

4!
ln(Λ/µ)(1u2 − 1/6)gφ4R , (486)

to absorb which requires 1u4 6= 0 in the action (474). This in turn leads to the

logarithmic divergence

~
(4π)2

1

2
ln(Λ/µ)(1u2 − 1/6) 1u4φ

2R2 , (487)

which necessitates 2u2 6= 0, and so on.

(vii) In an attempt to avoid the infinite tower of Ricci couplings, one might try to remove

some of the Rn divergences in (472) by a non-linear field renormalization

φΛ = φ+
~

(4π)2
ln(Λ/µ) ζ(φ)R +O(~2) ,

ζ(φ(η)) =
∑
n≥0

nζ(φ(η))Rn . (488)

In fact, since the upward cascade is triggered by the R2 term in (487), removing this

term would go a long way. However, since

SΛ[φΛ] = SΛ[φ] +
~

(4π)2
ln(Λ/µ)

∫
dηd3x a4 δS

δφ
[φ]ζ(φ) +O(~2) , (489)

such a field renormalization does not produce any counterterms for on-shell background

fields with δSΛ/δφ = 0. When keeping the background off-shell, a non-trivial ζ(φ)

clashes with a standard kinetic term and would require further modifications.
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(viii) The tower ∑
n≥0

∑
j≥0

1

(2j)!
nu2jφ

2jRn (490)

is best organized by mass dimension. As noted after (442), the couplings

nu2j , n+ j = N , n , j ≥ 0 (491)

have mass dimension 4− 2N , and all but the N = 0, 1, 2 ones are expected to become

quickly subleading at large renormalization scale. In the following we compute the

beta functions of these 1 + 2 + 3 power counting non-irrelevant (i.e. power counting

relevant and marginal) couplings,

0u0 =
Λcosm

κ
, 0u2 = m2 , 0u4 = λ , (492)

1u0 = −1

κ
, 1u2 = ξ , (493)

2u0 = ω0 . (494)

As usual we proceed by computing the renormalization constants nZ2j by matching

powers of φ2jRn between (477) and (479), (480). From the F2-relation for the quadratic

divergence (479) we obtain

0z2j,2
0u2j = µ2q1,2

0ū2j+2 , j ≥ 0 ,

1z0,2
1u0 = µ2(q1,1 + q1,2

1ū2) ,

1z2j,2
1u2j = µ2q1,2

1ū2j+2 , j ≥ 1 ,

nz2j,2
nu2j = µ2q1,2

nū2j+2 , n ≥ 2 , j ≥ 0 , (495)

while the logarithmic divergence (480) yields

nz2j,1
nu2j =

1

2

∑
n1+n2=n
n1,n2≥0

∑
j1+j2=j
j1,j2≥0

(2j)!

(2j1)!(2j2)!
n1ū2j1+2

n2ū2j2+2 . (496)

Beginning with the pure scalar sector, the renormalization constants for the power counting
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non-irrelevant couplings (492) are

0Z0 = 1 +
~

(4π)2 0u0

{1

2
0u2

2 ln(Λ/µ) + q1,2
0u2(Λ2 − µ2) + q0(Λ4 − µ4)

}
,

0Z2 = 1 +
~

(4π)2 0u2

{
0u2

0u4 ln(Λ/µ) + q1,2
0u4(Λ2 − µ2)

}
,

0Z4 = 1 +
~

(4π)2 0u4

{(
0u2

0u6 + 3 0u2
4

)
ln(Λ/µ) + q1,2

0u6(Λ2 − µ2)
}
, (497)

while those of the higher couplings are

0Z2j = 1 +
~

(4π)2 0u2j

{1

2

∑
j1+j2=j
j1,j2≥0

(
(2j)!

(2j1)!(2j2)!
0u2j1+2

0u2j2+2

)
ln(Λ/µ)

+ q1,2
0u2j+2(Λ2 − µ2)

}
, j ≥ 3 . (498)

Next, we present the renormalization constants for (493), (494)

1Z0 = 1 +
~

(4π)2 1u0

{
0u2

(
1u2 − 1

6

)
ln(Λ/µ) +

[
q1,1 + q1,2

(
1u2 − 1

6

)]
(Λ2 − µ2)

}
, (499)

1Z2 = 1 +
~

(4π)2 1u2

{[(
1u2 − 1

6

)
0u4 + 0u2

1u4

]
ln(Λ/µ) + q1,2

1u4(Λ2 − µ2)
}
, (500)

2Z0 = 1 +
~

(4π)2 2u0

{[1

2

(
1u2 − 1

6

)2
+ 0u2

2u2

]
ln(Λ/µ) + q1,2

2u2(Λ2 − µ2)
}
. (501)

Of course, O(~2) corrections are implicit in all relations.

The flow equations for the couplings are derived by differentiating the defining relations:

bare coupling = (renormalization constant) × (renormalized coupling) with respect to the

scale µ. For the original (usually dimensionful) couplings, the response is always O(~) so

that only the explicit µ-dependence needs to be taken into account. In a second step we

then transition to dimensionless counterparts of the dimensionful couplings and rewrite the

flow equations in terms of them. In preparation, we recall that the couplings nu2j have mass

dimension 4− 2(n+ j), and we denote their dimensionless counterparts by

nv2j := µ−4+2(n+j) nu2j . (502)

181



The flow equations for the dimensionful pure scalar couplings are

µ
d

dµ
0u0 =

~
(4π)2

{
4q0µ

4 + 2q1,2
0u2µ

2 +
1

2
0u2

2

}
, (503)

µ
d

dµ
0u2 =

~
(4π)2

{
2q1,2

0u4µ
2 + 0u2

0u4

}
,

µ
d

dµ
0u4 =

~
(4π)2

{
2q1,2

0u6µ
2 + 3 0u2

4 + 0u2
0u6

}
,

µ
d

dµ
0u2j =

~
(4π)2

{
2q1,2

0u2j+2µ
2 +

1

2

∑
j1+j2=j
j1,j2≥0

(2j)!

(2j1)!(2j2)!
0u2j1+2

0u2j2+2

}
, j ≥ 3 ,

while those of their dimensionless counterparts read

µ
d

dµ
ε = −4ε+

~
(4π)2

{
4q0 + 2q1,2

0v2 +
1

2
0v2

2

}
, (504)

µ
d

dµ
0v2 = −2 0v2 +

~
(4π)2

{
2q1,2

0v4 + 0v2
0v4

}
,

µ
d

dµ
0v4 =

~
(4π)2

{
2q1,2

0v6 + 3 0v2
4 + 0v2

0v6

}
,

µ
d

dµ
0v2j = (2j − 4) 0v2j

+
~

(4π)2

{
2q1,2

0v2j+2 +
1

2

∑
j1+j2=j
j1,j2≥0

(2j)!

(2j1)!(2j2)!
0v2j1+2

0v2j2+2

}
, j ≥ 3 ,

where we denote the dimensionless vacuum energy by ε := 0v0 = µ−4 0u0. These equations

are precisely those obtained on a flat spacetime, and are not closed as the one for 0v2j also

invokes 0v2j+2, j ≥ 0. In order to solve them a truncation is required that sets all 0v2j to

zero for all j ≥ j0, for some j0 ∈ N. Truncation at order j0 = 4 yields the fixed point

ε∗ =
~

(4π)2
q0 ,

0v∗2 = 0v∗4 = 0v∗3 = 0 , (505)

consistent with the existence of only a Gaussian fixed point for a scalar theory in four

spacetime dimensions. It is noteworthy, however, that the dimensionless vacuum energy ε

has a mass independent positive fixed point that depends only mildly on the choice of the

regulator. This is also a feature of the local potential approximation (LPA) truncation of

the FRG, but it cannot be seen in dimensional regularization.
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Next, we proceed to the power counting non-irrelevant higher order (dimensionful) Ricci

couplings (493), (494), whose running is determined by (499)-(501)

µ
d

dµ
1u0 =

~
(4π)2

{(
0u2 + 2q1,2µ

2
)(

1u2 − 1/6
)

+ 2q1,1µ
2
}
,

µ
d

dµ
1u2 =

~
(4π)2

{(
1u2 − 1/6

)
0u4 + 0u2

1u4 + 2q1,2
1u4µ

2
}
,

µ
d

dµ
2u0 =

~
(4π)2

{1

2

(
1u2 − 1/6

)2
+ 0u2

2u2 + 2q1,2
2u2µ

2
}
. (506)

The first equation transcribes into a flow equation for the dimensionless Newton constant

gN = µ2κ via 1v0 = −1/(2gN),

µ
d

dµ
gN = 2gN +

~
(4π)2

{
4q1,1g2

N +
(

0v2 + 2q1,2

)(
1v2 − 1/6

)
g2
N

}
, (507)

while the remaining two yield

µ
d

dµ
1v2 =

~
(4π)2

{(
1v2 − 1/6

)
0v4 + 0v2

1v4 + 2q1,2
1v4

}
,

µ
d

dµ
2v0 =

~
(4π)2

{1

2

(
1v2 − 1/6

)2
+ 0v2

2v2 + 2q1,2
2v2

}
. (508)

The flow equation (507) admits a nontrivial fixed point that is best interpreted as the one

for the 1/gN flow,

1/g∗N = − ~
2(4π)2

{
4q1,1 +

(
0v∗2 + 2q1,2

)(
1v2 − 1/6

)}
, (509)

where typically 0v∗2 = 0 by (505). We note that compared to the covariant formulation, the

beta function (507) and fixed point (509) feature an additional contribution proportional

to q1,1 arising from the time dependence of the spatial regulator (446). Since q1,1 > 0 this

contribution (as is typical of matter) tends to drive the Newton coupling to negative values.

However, in a full quantum gravity plus matter computation one expects that the quantum

gravity will turn g∗N positive again. Furthermore, it is noteworthy that this additional

contribution from the spatial averaging does not vanish for conformal coupling to matter.

183



6.3 Conclusions

In this chapter, we have presented the FLFRG or spatial FRG, which is a novel mani-

festly Lorentzian formulation of the (normally Euclidean) Functional Renormalization Group

technique. The transition from Euclidean to Lorentzian signature necessitates the use

of a merely spatial mode modulator, which has not been studied for generic Friedmann-

Lemâıtre spacetimes. UV boundary data for the flow equation has been prepared through

a one-loop computation, with these boundary data injecting the form of the bare action.

Instead of the usual regularized trace-log computation, one can use the spatial FRG itself to

extract the divergent parts of the one-loop effective action. In this way, consistency with the

subsequent use of the one-loop computation as setting boundary data is built in. This was

accomplished utilizing generalized resolvent expansion from Chapter 5, thereby the avoiding

the ill-defined pseudo-heat kernel techniques. These UV divergent parts were subsequently

cancelled by counterterms in the bare action, as usual. Among the infinitely many Wilso-

nian couplings, only six are power counting non-irrelevant, and their renormalization flow

has been presented. We further highlight several noteworthy features:

(i) Surprisingly, although the spatial regulator breaks spacetime covariance, only covariant

counterterms are needed to renormalize the effective action associated to the bare

action (441) to one-loop order.

(ii) One-loop renormalization of a pure scalar potential beyond quartic order generically

necessitates an infinite tower of Ricci couplings in the bare action (441). The only

exception is the strictly conformal coupling of gravity to matter, wherein a general

scalar potential can be renormalized.

(iii) The renormalization structure entailed by (476), (482), (483) exhibits an “upward

cascading” in the Ricci-coupling order n, i.e. the couplings 0u2j, . . . ,
nu2j determine

the running of nu2j.

(iv) The time dependence of the spatial regulator kernel Rk through the cosmological scale

factor (446) induces an additional quadratic divergence that affects the running of

the Newton constant. In particular, the Newton constant runs even for conformally
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coupled gravity and matter fields. In a full quantum gravity computation, this would

quantitatively affect the interplay between the matter and gravity sectors.

(v) In the context of the FLFRG proper, the one-loop renormalization flow studied would

set the boundary conditions for the spatial LPA (39). The numerical evolution of

the coupling flow will draw on the overall framework developed in earlier chapters, in

particular analytical control of the field dependence in the Green function. It is here

where the specifics of the state enters, which will affect the small k behavior of the

flow.
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7.0 Conclusions

The current cosmological paradigm posits the validity of general relativity almost up to

the Big Bang. This entails that the Einstein equations can be used to study the detailed

structure of spacetime in the vicinity of the (spacelike) singularity. A major qualitative

feature of these studies is that spatial gradients become subleading compared to temporal

ones. Combined with the presumed gravitational simplicity of the Big Bang singularity, one

is led to model it as a quiescent (i.e. non-oscillatory) singularity. This ties into the narrower

cosmological paradigm wherein the classical spacetime is thought to be well approximated

by a (spatially flat) Friedmann-Lemâıtre spacetime driven by a homogeneous scalar field,

and a description of physics in terms of quantum field theories on such a curved background

is deemed to be valid. Within this narrower framework, the focus is normally on the expo-

nentially expanding deSitter-like period. However, it must be stressed that within the same

premises a non-accelerated pre-inflationary period is mandated by general relativity [38, 2].

Accepting this physically well-motivated scenario of the existence of a pre-inflationary

phase, during which the description of QFT on curved backgrounds is expected to be valid,

the aim of this thesis has been to develop a customized theoretical framework for interacting

scalar QFTs on generic Friedmann-Lemâıtre backgrounds. Such a framework cannot be in

Euclidean signature as the expanding spacetime generically prohibits a Wick rotation [6],

nor should it be tailored towards de Sitter spacetime. Motivated by the subdominance of

spatial gradients, we aimed at developing variants of a spatial gradient expansion in the very

early Universe. Moreover, since the classical potential underlying the inflationary paradigm is

typically non-renormalizable, we wish to de-emphasize weak coupling and the specific form of

the potential in the formalism. In renormalization group language, this suggests a Wilsonian

approach, where all interaction monomials compatible with some prescribed symmetry are

initially treated on the same footing. However, the standard approaches which are Wilsonian

in spirit, namely lattice methods or the Functional Renormalization Group, strongly rely on

Euclidean signature. In the present context, this necessitates a new adaptation of Wilsonian

ideas to Friedmann-Lemâıtre spacetimes.

186



In Chapter 2 we presented the Anti-Newtonian expansion in a spatially discretized set-

ting, where the flat spatial sections of the Friedmann-Lemâıtre background are replaced with

a hypercubical lattice (asZ)d of spacing as. This discretized expansion can be recast as

a spatial hopping (linked cluster) expansion, which allowed us to partially adapt existing

methodology. In this framework, the solution of the QFT decouples into two sub-problems:

(1) the solution of the cosmological quantum mechanics, conceptually associated with the

decoupled wordlines in the Anti-Newtonian limit; and (2) the solution of the combinatorial

problem that allows one to analytically control the terms of the linked cluster expansion,

which is conceptually associated with restoring the spatial interaction between the neigh-

boring world lines. With the goal of making contact to the Functional Renormalization

Group, we focused in Chapter 3 on developing a linked cluster expansion for the Legendre

effective action. The resulting graph rules are largely model independent (unlike Feynman

rules). Moreover, the covariant Euclidean results from Chapter 3 can easily be adapted to

the spatially discretized setting on a generic Friedmann-Lemâıtre background, see Section

2.2.

In Chapter 4 we have presented a “proof-of-principle” study showing that the Functional

Renormalization Group can be applied to efficiently calculate the critical parameters of the

hopping expansion of Euclidean φ4
3, φ

4
4 theory. Motivated by this, as well as the role of the

FRG in the asymptotic safety scenario, we proceeded to develop the elements needed for a

manifestly Lorentzian formulation of the FRG. One of the key differences of this formulation

compared to the Euclidean setting is that it necessitates the incorporation of state-dependent

data directly into the flow equation formalism. Specifically, in the local potential approxi-

mation (LPA) to the FRG, the right hand side of the flow equation is governed by a Green

function of a mode modulated free wave operator. As a consequence, choices analogous to

the selection of a state for perturbative QFTs on curved backgrounds need to be made (see

Figure 2). One is thus led to construct Green functions on a Friedmann-Lemâıtre background

with the Hadamard property. The Hadamard property entails a universal UV behavior of

the resulting LPA flow, while the infrared properties will inevitably be state-dependent.

In Chapter 5 we therefore studied a well-motivated class of vacuum states defined on

generic Friedmann-Lemâıtre backgrounds, so-called States of Low Energy (SLE). In addition
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to being Hadamard states, we prove that they have a number of additional properties that

make them even more appealing. In particular, they allow for a controlled infrared expansion

on generic Friedmann-Lemâıtre backgrounds. In the context of the FRG, this mathematically

defines the LPA at all scales, in sharp contrast to the commonly used (pseudo-) heat kernel

methodology, which inevitably reorganizes only ultraviolet information. One application is a

novel resolution of the infrared divergences that plague massless modes on many Friedmann-

Lemâıtre backgrounds. In this setting, SLE have the remarkable property of a universal

Minkowski-like infrared behavior, yielding infrared finite two-point functions. This feature

impacts the primordial power spectrum, computed for modes based on a SLE, modifying the

low angular momentum parts in a way compatible with current CMB data. We close this

chapter by presenting a simple generalization of the SLE construction to a one-parameter

family of Hadamard states, which we envision as being fruitful for the LPA.

Finally, in Chapter 6 we presented the spatial FRG and prepared UV boundary data for

it. These boundary data inject the Wilsonian one-loop flow associated to the bare action.

Instead of the usual regularized trace-log computation, one can use the spatial FRG itself to

extract the divergent parts of the one-loop effective action. In this way, consistency with the

subsequent use of the one-loop computation as setting boundary data is built in. Technically,

this was done by utilizing generalized resolvent expansion from Chapter 5, thereby avoiding

the ill-defined pseudo-heat kernel techniques. Despite the non-covariant spatial regulator,

the UV divergent parts come out as spacetime covariant (although slightly different from the

formal use of a covariant regulator). These UV divergent parts were subsequently cancelled

by counterterms in the bare action, as usual. Among the infinitely many Wilsonian cou-

plings, only six are power counting non-irrelevant, and their renormalization flow has been

presented. Of particular note is the additional contribution to the renormalization of the

Newton constant, induced by the time dependence of the regulator through the cosmological

scale factor. In a full quantum gravity computation, this would quantitatively affect the

interplay between the matter and gravity sectors. Within the context of the asymptotic

safety scenario, it is believed that the interplay between the gravity and matter couplings

resolves the triviality of scalar field theories. This has found phenomenological applications,

which are however as yet provisionary, because the infrared regime of the flow equation is
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neither well-posed or controlled. This thesis prepares the tools to address this situation.
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Appendix A Graph Rules for the Linked Cluster Expansion of the Legendre

Effective Action

A.1 Recursive results to fifth order

Here we present explicit results for Γl, l = 2, . . . , 5, and various checks on them. A closed

recursion arises from the expansion of the κ-flow equation in (79). In preparation we define

polynomials ml = ml(u1, . . . , ul) in non-commuting variables un, n ∈ N, by(
1+
∑
n≥1

κnun

)(
1−
∑
l≥1

ml(u)κl
)

= 1 =

(
1−
∑
l≥1

ml(u)κl
)(

1+
∑
n≥1

κnun

)
,

ml(u) =
l∑

n=1

∑
i1+...+in=l,ij∈N

(−)n+1 ui1 . . . uin . (510)

At low orders: m1 = u1, m2 = u2 − u2
1, m3 = u3 − u1u2 − u2u1 + u3

1. Inserted into (79) one

has Γ1 ≡ 0 and

Γl =
1

2l

l−1∑
n=1

∑
i1+...+in=l−1

(−)n Tr[u1ui1 . . . uin ] , l ≥ 2 , (511)

with Γ
(2)
0 · u1 = `, Γ

(2)
0 · ui = Γ

(2)
i , i ≥ 2. Here Γ

(2)
0 [φ] is invertible

Γ
(2)
0 [φ]x,y = γ2(φx)δx,y , γ2(ϕ)−1 = ω2|h=h(ϕ) . (512)

In slight abuse of notation we set ωi(ϕ) := ωi(h(ϕ)), ωi(h) = ∂iω/∂hi, i ≥ 2, and find:

Γ2[φ] = −
∑
x1,x2

1

4
ω2(φx1)ω2(φx2)(`x1x2)2

Γ3[φ] =
∑
x1,x2

1

12
ω3(φx1)ω3(φx2) (`x1x2)3 (513)

+
∑

x1,x2,x3

1

6
ω2(φx1)ω2(φx2)ω2(φx3)`x1x2 `x2x3 `x1x3

Γ4[φ] = −
∑
x1,x2

1

48
ω4(φx1)ω4(φx2)(`x1x2)4
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−
∑

x1,x2,x3

1

4
ω3(φx1)ω3(φx2)ω2(φx3)(`x1x2)2 `x1x3 `x2x3

−
∑

x1,x2,x3

1

8
ω2(φx1) [ω4 − ω3γ2ω3](φx2)ω2(φx3)(`x1x2)2 (`x2x3)2

−
∑

x1,x2,x3,x4

1

8
ω2(φx1)ω2(φx2)ω2(φx3)ω2(φx4)`x1x2 `x2x3 `x3x4 `x4x1 .

Γ5[φ] =
∑
x1,x2

1

120
ω5(φx1)ω5(φx2)(`x1x2)5

+
∑

x1,x2,x3

1

12
ω4(φx1)ω4(φx2)ω2(φx3)(`x1x2)3`x1x3`x2x3

+
∑

x1,x2,x3

1

12
ω2(φx1)

[
ω5−ω3γ2ω4

]
(φx2)ω3(φx3)(`x1x2)2(`x2x3)3

+
∑

x1,x2,x3

1

8
ω3(φx1)ω3(φx2)ω4(φx3)`x1x2(`x1x3)2(`x2x3)2 (514)

+
∑

x1,x2,x3,x4

1

4
ω2(φx1)ω2(φx2)ω3(φx3)ω3(φx4)`x1x2`x2x3(`x3x4)2`x4x1

+
∑

x1,x2,x3,x4

1

4
ω3(φx1)ω2(φx2)ω3(φx3)ω2(φx4)`x1x2`x2x3`x3x4`x4x1`x1x3

+
∑

x1,x2,x3,x4

1

4
ω2(φx1)ω2(φx2)

[
ω4−ω3γ2ω3

]
(φx3)ω2(φx4)`x1x2`x2x3`x3x1(`x3x4)2

+
∑

x1,x2,x3,x4,x5

1

10
ω2(φx1)ω2(φx2)ω2(φx3)ω2(φx4)ω2(φx5)`x1x2`x2x3`x3x4`x4x5`x5x1 .

A computational point worth mentioning is that the (Γ
(2)
m )xy, m ≥ 2, have in general diagonal

elements. In evaluating the traces one has to split off at intermediate steps subsums contain-

ing (Γ
(2)
m )xx contributions. Such contributions combine with others and lead to unrestricted

sums in the final result, but with modified coefficients.

The corresponding Wl’s are readily obtained from the Wortis graph rule and are not

displayed explicitly. In line with table 1 the expressions for the Γl are (at matching orders)

more concise than the Wl’s and yet code the same information. These results have been

tested and compared with partial results in the literature in various ways. (i) W1, . . . ,W4

and Γ2, . . . ,Γ5 are related by the mixed recursion (90). (ii) Specialized to the Ising model
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Γ2, . . . ,Γ4 agree with the resuls of [97].

The W1, . . . ,W4 themselves can be specialized to a nearest neighbor hopping matrix and

matched to results in the literature. (iii) For H = 0 the textbook result for the free energy is

reproduced. (iv) The 2-point susceptibility χ2 =
∑

xW
(2)
x,0 |H=0 and the 4-point susceptibility

χ4 =
∑

x1,x2,x3
W

(4)
x1,x2,x3,0

|H=0 match (in d = 2) the results in [5].

A.2 Single site data and zero-dimensional Legendre transform

The function γ(ϕ) entering the ultralocal initial functional Γ0[φ] =
∑

x γ(φx) can be

characterized by the functional relation

exp
(
− γ(ϕ)

)
=

∫ ∞
−∞

dχ exp
{
− s(χ) + (χ−ϕ)

∂γ

∂ϕ

}
, (515)

where s is the single site action. By shifting the argument ϕ 7→ ϕ + α and expanding in

powers if α one can express the derivatives γn(ϕ) = ∂nγ/∂ϕn in terms of the cumulants

ωn(h) = ∂nω/∂hn of the measure dχe−s(χ). The latter have generating function eω(h+k) =∫
dχ exp{−s(χ) + (h+ k)χ} upon expansion in powers of k. To low orders one finds

γ2(ϕ) = ω−1
2 |h=h(ϕ) , γ3(ϕ) = −ω−3

2 ω3|h=h(ϕ) , γ4(ϕ) = [−ω4ω
−4
2 + 3ω2

3ω
−5
2 ]h=h(ϕ) . (516)

Augmented by ω1|h=h(ϕ) = ϕ and γ1(ϕ) = h(ϕ) the inverse relations are obtained by flipping

the roles of the ωm’s and γm’s. This reflects the fact that the generating functions ω(h+k)

and γ(ϕ+α) are Legendre transforms of each other. In quantum field theoretical terminology

the γl(ϕ) are zero-dimensional vertex functions with non-zero mean field and the ωl(h) are

the zero-dimensional cumulants with non-zero source.

The combinatorial patterns arising through the Legendre transform can be analyzed

in closed form in the zero dimensional case. The integral realization does not enter, so

ω : R→ R, can be any smooth function with nonzero second derivative, ω(2)(h) > 0, say. We

assume that ω(1)(h) = ϕ can be solved for h(ϕ), where h is likewise smooth and h(1)(ϕ) > 0.

We define the Legendre transform by γ(ϕ) := ϕh(ϕ) − ω(h(ϕ)). Then γ(1)(ϕ) = h(ϕ) and
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the primary assertion is that ω(1) and γ(1) are compositional inverses of each other

ω(1)(γ(1)(ϕ)) = ϕ , γ(1)(ω(1)(h)) = h . (517)

By repeated differentiation of these basic formulas one can generate relations between the

derivatives γl(ϕ) := γ(l)(ϕ) and the ωl(h) := ω(l)(h). For now we focus on ω(1)(γ(1)(ϕ)) = ϕ,

where the first few relations generated are (516). Since the resulting ω(h) derivatives are

always evaluated at h = h(ϕ) = γ(1)(ϕ) it is convenient to set ωm(ϕ) := ωm(h)|h=h(ϕ) by

slight abuse of notation. In this notation ∂ϕ is a linear derivation acting via ∂ϕωn = ωn+1γ2

and ∂ϕγn = γn+1 on the constituents. The differentiation rule implies that the l-th order

relation has the form

ωl2γl = −ωl +
∑

−2i2+3i3+...+(l−1)il−1=l

(−)i3+...+il−1ci3...il−1
(ω−1

2 )i2ωi33 . . . ω
il−1

l−1 , l ≥ 4 , (518)

for ik ∈ N and integer coefficients ci3...il−1
∈ N. Unless noted otherwise the ωm in the following

are the ωm(ϕ) = ωm(h)|h=h(ϕ) regarded as functions of ϕ.

The coefficients ci3...il−1
are indirectly characterized by the duality property (517): solving

(518) recursively for the ωl in terms of γ2, . . . , γl, the same formula arises. An explicit formula

for them arises from the known combinatorial expressions for the compositional inverse:

ci3...il−1
=
(
l−2 +

∑l−1
j=3 ij

)
!
l−1∏
j=3

1

ij!(j−1)! ij
. (519)

This has been obtained in [53] in a setting that mimics perturbation theory; the functions

are power series in the fields and the numerical coefficients are related as in (519). A

little thought shows that the coefficients arising through repeated differentiation of arbitrary

smooth functions without setting the argument to zero are the same. For later reference we

sketch the argument.

The basic input is an explicit expression for the compositional inverse of a formal power

series. There are several variants of such formulas and their tree-graph interpretation; the

version most directly leading to (519) is Eq. (4.6) in [93]. Given a(z) =
∑

n≥1 an z
n, a1 6= 0,
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the series b(w) =
∑

n≥1
bn
n!
wn is the compositional inverse of a, i.e. a(b(w)) = w, iff

bn =
∑

k2,k3,...≥0,
∑
j(j−1)kj=n−1

(−)
∑
j kj a

−(1+
∑
j jkj)

1

(∑
j

jkj

)
!
∏
j

a
kj
j

kj!
, (520)

where all sums and products range over j ≥ 2 and are rendered finite by the Euler relation∑
j(j−1)kj = n−1. For the application here we shift the arguments of ω and γ and re-expand.

For the first derivatives this gives

ω(1)(h+ k) =
∑
n≥0

kn

n!
ωn+1(h) =: ω(1)(h; k) ,

γ(1)(ϕ+ α) =
∑
n≥0

αn

n!
γn+1(ϕ) =: γ(1)(ϕ;α) . (521)

By (517) we require both series to be compositional inverses of each other as series in k, α.

The result (519) then follows from (520).

The formula (520) has several known combinatorial and tree graph interpretations, see

[33, 93, 53] and the references therein. In the remainder of this appendix we present a graph

theoretical interpretation of (518), (519) which, together with its proof, mirrors some aspects

of its quantum field theoretical counterpart in Section 3.3.

Graph rules for γl:

(i) At order l ≥ 4 draw all topologically distinct connected tree graphs t ∈ Tl with l = |ν0|

external vertices of order 1 and any number |ν1| of k-valent vertices, k = 3, . . . , l, joined

by dashed lines. Multiply by l!/|Aut(t)| ∈ N, where Aut(t) is the automorphism group

of the graph.

(ii) Attribute to each t ∈ Tl a weight (−)|ν1|µ(t) as follows: a factor ω−1
2 to each dashed

line, 1 to an 1-valent vertex, and −ωk to an k-valent vertex, k ≥ 3.

(iii) Sum over all contributions to obtain

γl =
∑
t∈Tl

(−)|ν1| l!

|Aut(t)|
µ(t) , i.e. ci3...il−1

= l!
∑

t∈Ti3...il−1

1

|Aut(t)|
, (522)

where the c’s are those in (518) and the graphs contributing to a fixed µ(t) with labels

(i3 . . . il−1) are denoted by Ti3...il−1
⊂ Tl.
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The automorphism group in (i) is defined as in Section 3.2.1, with ν0 the set of external

vertices, ν1 the set of multi-valent vertices, and edge list ε ⊂ (ν0 ∪ ν1)2. The Euler relations

holds in the form |ν0| + |ν1| = |ε| + 1 and
∑l

k=1 k|v|k = 2|ε|, where |v|k is the number of

k-valent vertices, k = 1, 3, 4, . . .. The second form ensures that the degrees and signs in

(518) are correctly reproduced by (ii) and only the coefficients ci3...il−1
in (iii) need to be

understood in graph theoretical terms. Importantly, for l ≥ 6 several topologically distinct

tree graphs contributing to a fixed a (i3 . . . il−1) configuration can occur. As an example, the

tree graphs contributing to γ5 are displayed below

ω−5
2 ω5 |Aut(t)| = 5!

ω−6
2 ω3ω4 |Aut(t)| = 3!2!

ω−7
2 ω3

3 |Aut(t)| = 23 (523)

A proof of (522) can be based on the known tree graph interpretation of (520), see [53, 93]

and the references therein. Below we provide an alternative ab-initio proof without reference

to the compositional inverse formula. The key ingredient is the following mixed recursion

relation

γl(ϕ) = −
l∑

j=2

ωj(ϕ)
l!

j!

∑
k1+...+kj=l, 1≤ki≤l−2

γ
(1)
k1

(ϕ)

k1!
· · ·

γ
(1)
kj

(ϕ)

kj!
, l ≥ 3 . (524)

This is the zero-dimensional counterpart of the recursions (90), (98) instrumental for our

analysis of the Γκ graph rules. It can be derived along similar lines starting from γ(ϕ+α) =

(ϕ+ α)γ(1)(ϕ;α)− ω(γ(1)(ϕ;α)) and (521).

Ab-initio proof of γl graph rule based on (524). We proceed by induction in l, assuming

that (522) is known to produce the correct coefficients (522) for k = 1, . . . , l−1. To ob-

tain the result at order l we first note a simple generation recipe (∗): the set of tree graphs

in Tk−1 can be obtained from those in Tk−2 by insertion of a line in all possible ways either

at a multi-valent vertex or in the middle of an existing line. In fact, differentiating a weight
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of order k−2 from part (ii) of the graph rule, ∂ϕµ(t), produces a sum of terms whose inter-

pretation as order k−1 tree graphs follows the pattern (∗). The terms occur with integer

multiplicities which by the origin of (518) from (517) must be compatible with (522).

The recursion (524) also mirrors the pattern (∗). Fix some t ∈ Tl generated from order

l−1 graphs as indicated. The contribution of t to γl/l! can be matched to terms on the right

hand side of (524) in the following way. Case 1: any 3 ≤ j-valent internal vertex can be

seen as the ωj piece, and the j subtrees it connects to as the 1-rooted γ
(1)
ki
/ki! pieces. Case

2: the middle of an internal line with adjacent vertices of weights ωn1 , ωn2 can be seen as an

ω2 pseudo-vertex via ωn1ω
−1
2 ωn2 = ∂ϕωn1−1ω2∂ϕωn2−1, and the two subtrees it connects to

as 1-rooted γ
(1)
ki
/ki! pieces. The full contribution of t obtained from (524) is then the sum

of reassembled rooted graph weights produced by each distinct choice of the ωj, j ≥ 2, and

γ
(1)
ki

pieces. Our task is to keep track of the coefficients.

Case 1: j-valent vertex as ωj, j ≥ 3. By induction hypothesis each of the γki has a graph

realization in Tk1 via (i),(ii),(iii). Its derivative γ
(1)
ki

has the same structure where initially

the differentiated weights ∂ϕµ(t) occur. By the remark following (∗) each ∂ϕµ(t) expands

into tree graphs of one order higher which we regard as 1-rooted, t′ ∈ T 1•
ki+1 (with the rooted

vertex always an internal one). The regrouping leads to coefficients of the µ(t′)’s that must

by the differentiation compatibility be given by the graph rule (at lower orders) applied to

rooted trees. In summary, each term in the graph expansion of γ
(1)
ki
/ki! carries the coefficient

(−1)|ν1(t′)|

|Aut(t′)|
, t′ ∈ T 1•

ki+1 . (525)

Suppose that there are ji isomorphic subtrees t′i, i = 1, . . . n attached to the ωj vertex. Then,

accounting for the 1/j! in (524) we obtain the full prefactor for the choice of ωj, j ≥ 3, as

vertex
n∏
i=1

(
(−1)ji|ν1(t′i)|

ji!|Aut(t′i)|ji

)
. (526)

Let t ∈ Tl be the graph reassembled from the rooted subtrees t′i at the vertex with weight ωj.

The total weight is ωj times the product of the weights of the subtrees and is of the form µ(t)

as in part (ii) of the graph rule. The overall sign (−)|ν1(t)|, with |ν1(t)| the number of internal

vertices of t. A straightforward application of the orbit stabilizer theorem shows that the
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modulus of (526) equals the symmetry factor of t rooted at our choice of ωj vertex. As an

unrooted graph the overall coefficient is (−)|ν1(t)|/|Aut(t)|. There may be several choices of

ωj vertices contributing equally, so the net coefficient for Case 1 is

(−)|ν1(t)|

|Aut(t)|
×# of ωj choices with fixed t. (527)

Case 2: middle of an internal line as ω2 pseudo-vertex. As before, each of the two subtrees

attached to ω2 contributes with coefficient (525). While two subtrees may be distinct or

identical, their contribution to the overall symmetry factor will be accounted for by the 1/2!

prefactor in (524). Again we write t ∈ Tl for the graph obtained by reassembling the two

subtrees at the ω2 pseudo-vertex. The overall symmetry factor obtained is that for t rooted at

the two ends of the internal line. When reassembled to t via ∂ϕωn1−1ω2∂ϕωn2−1 = ωn1ω
−1
2 ωn2

(with ωn1 , ωn2 the weights of the rooted vertices) the overall coefficient is −(−)|ν1(t)|/|Aut(t)|.

The extra sign accounts for the fact that in the graph rule ω−1
2 carries no sign while in (524)

the ω2 term does. There may be several equivalent internal lines in t that are reassembled

in this way. The net coefficient for Case 2 then is

−(−)|ν1(t)|

|Aut(t)|
×# of equivalent internal lines in t. (528)

The full contribution to γl/l! associated with t is obtained from (524) by summing over the

contributions from Case 1 and Case 2 with weight µ(t) and coefficients (527),(528). This

gives
(−)|ν1(t)|

|Aut(t)|
×
(
|ν1| − |ε1|

)
, (529)

where |ν1|, |ε1| are the total number of internal vertices and internal lines of t, respectively.

For the tree graphs considered the number of external lines and vertices coincide, |ν0| = l =

|ε0|, so that the Euler relation reduces to |ν1| − |ε1| = 1.

A multi-dimensional version of the above graph rule would similarly relate the vertex

functions of a lattice quantum field theory to its connected correlation functions (even at

non-zero mean field or source). This is implicit in many text books; a proof can be read

off from [53, 16] and also the above derivation carries over. We briefly comment here on

this multi-dimensional version in order to highlight that the trees invoked are unrelated to
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those in Section 3.3 and 3.4. We denote the standard (unmodified) Legendre transform by

Γ̃[φ] := φ ·H[φ]−W [H[φ]], with W (1)[H[φ]] = φ. Then, Γ̃(1)[φ] = H[φ] and the counterpart

of (517) reads

W (1)
[
Γ̃(1)[φ]

]
= φ , Γ̃(1)

[
W (1)[H]

]
= H . (530)

Throughout a superscript (n) denotes n-fold differentiation of a functional of one field with

respect to its argument. By repeated differentiation with respect to φ or H one obtains in

principle mutually equivalent relations between the Γ̃(l)[φ] (vertex functions in non-zero mean

field) and W (l)[H] (cumulants with non-zero source). These coincide essentially with those in

the zero-dimensional case (518), just that different lattice sum contractions will remove most

of the degeneracies that give rise to non-unit coefficients. That is, in the QFT counterpart

of (518) there will be ci3...il−1
structurally similar terms (with W (m)[H[φ]], Γ̃(m)[φ] replacing

ωm, γm, respectively) where the indices in the lattice sums are contracted differently. The

graph rule producing these correctly contracted terms in the Γ(l)[φ] expansion invokes the

previous tree graphs Tl, but now labeled by lattice points. The external points x1, . . . , xl

will be taken distinct but the lattice points summed over in the products of W
(k)
y1,...,yk , k ≥ 3,

vertices may coincide. This may occasionally produce coinciding labels for the internal ver-

tices but the tree structure precludes nontrivial automorphisms. A counterpart of the above

graph rule can then easily be formulated, see [72, 16] for related Hopf algebraic constructions.

Despite the occurrence of labeled tree graphs in this context it is Γ̃(l[φ], the l-th functional

derivative of Γ̃[φ], that is related to its W (k) counterparts, not the order in a `xy expansion.

Performing a κ expansion of both sides of (518)’s multi-dimensional counterpart is of no

immediate help in understanding the graph rule underlying Γ’s hopping expansion.
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Appendix B The Spatial FRG on Friedmann-Lemâıtre Spacetimes

In this appendix we present a proof of Lemma 6.2.1, together with explicit formulae

for the regulator dependent coefficients q1,1, q1,2, q0,1, q0,2, q0,3. We begin by recalling the

statement of the lemma:

Lemma 6.2.1. Let r(x) be a generic FRG regulator function as defined in (446).

(i) The regulator dependent coefficients B1, B2, B3 always satisfy the ratio

B1 : B2 : B3 = −1 : 4 : 3 , (531)

and hence can be expressed in terms of a single regulator dependent constant q0,1,

B1 = −6q0,1 , B2 = 24q0,1 , B3 = 18q0,1 . (532)

(ii) B4 + 36q0,1 +B5 = 0.

(iii) B6 = B7 = B8.

Before proceeding to the proof, we note the explicit expressions for B1, . . . , B8 from

Mathematica.

B1 = −
∫ ∞

0

d% %2

[
r(%2)− %2r(1)(%2)

]2
4
[
%2 + r(%2)

]7/2 , (533)

B2 = −
∫ ∞

0

d% %2

[
r(%2)− %2r(1)(%2)

]2
2
[
%2 + r(%2)

]9/2 {
%4r(2)(%2)

(
%2 + r(%2)

)
(534)

− 4
(
r(%2)− %2r(1)(%2)

)(
5r(%2)− %2(2 + 7r(1)(%2))

)}
,

4B3 = 3B2 (535)

B4 =
3

8

∫ ∞
0

d% %2

[
r(%2)− %2r′(%2)

]2[
%2 + r(%2)

]9/2 {
− 35r(%2)3 (536)

+ %2r(%2)2
[
42 + 147r′(%2) + 108%2r′′(%2) + 16%4r(3)(%2)

]
+ %6

[
42r(1)(%2)2 + 77r(1)(%)3 + 24%2r(2)(%2)− 84%2r(1)(%2)r(2)(%2)

199



+ 16%4r(3)(%2)
]

+ %4r(%2)
[
132%2r(2)(%2)− 21r(1)(%2)

(
4 + 9r(1)(%2) + 4%2r(2)(%2)

)
+ 32%2r(3)(%2)

]}
B5 = −

∫ ∞
0

d% %2 r(%
2)− %2r′(%2)

32
[
%2 + r(%2)

]9/2{− 315r(%2)4 (537)

+ 4%2r(%2)3
[
189 + 504r(1)(%2) + 606%2r(2)(%2)

+ 192%4r(3)(%2) + 16%6r(4)(%2)
]

+ %8
[
− 924r(1)(%2)3 − 1155r(1)(%2)4 + 240%2r(2)(%2)

+ 84r(1)(%2)2
(
22%r(2)(%2)− 1

)
− 112r(1)(%2)

(
3%2r(2)(%2) + 4%4r(3)(%2)

)
+ 16%4

(
4%2r(4)(%2) + 20r(3)(%2)− 21r(2)(%2)2

)]
+ 4%6r(%2)

[
924r(1)(%2)3 + 264%2r(2)(%2)

+ 21r(1)(%2)2
(
31 + 22%2r(2)(%2)

)
− 14r(1)(%2)

(
16%4r(3)(%2) + 78%2r(2)(%2)− 3

)
+ 8%2

(
6%r(4)(%2) + 44r(3)(%2)− 21r(2)(%2)

)]
+ 2%2r(%2)2

[
− 2121r(1)(%2)2 + 6

(
270%2r(2)(%2)− 7

)
− 14r(1)(%2)

(
16%4r(3)(%2) + 144%2r(2)(%2) + 87

)
+ 8%2

(
12%2r(4)(%2) + 116r(3)(%2)− 21r(2)(%2)2

)]}
,

and

B6 =

∫ ∞
0

d% %2 r(%
2)− %2r′(%2)

2
[
%2 + r(%2)

]7/2{− 3r(%2) + %2
(
2 + 5r(1)(%2)(%2)

)}
, (538)

B7 =

∫ ∞
0

d% %2 r(%
2)− %2r′(%2)

4
[
%2 + r(%2)

]9/2{− 9r(%2)2 (539)

+ 2%2r(%2)
[
11 + 20r(1)(%2) + 10%2r(2)(%2)

]
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+ %4
[
20%2r(2)(%2)− 5r(1)(%2)

(
6 + 7r(1)(%2)

)
− 4
]}

,

B8 = B6 . (540)

Proof. (Lemma 6.2.1)

(i) The ratio B2 : B3 = 4 : 3 is clearly manifest in (535), so it remains to show

4B1 +B2 = 0 . (541)

Indeed, it follows by direct computation that

4B1 +B2 =
1

2

∫ ∞
0

d%
∂

∂%

{
%3r(%2)2 − 2%5r(%2)r(1)(%2) + %7r(1)(%2)2[

%2 + r(%2)
]7/2 }

= lim
%→∞

%3r(%2)2 − 2%5r(%2)r(1)(%2) + %7r(1)(%2)2

2
[
%2 + r(%2)

]7/2 . (542)

By Property Reg (iii) of the regulator function Rk(t, p
2), it follows that r(%2) and its

derivatives must approach zero as %→∞ faster than any polynomial in %. Thus (542)

vanishes, i.e. 4B1 +B2 = 0, establishing Lemma 6.2.1(i).

(ii) Similarly, one finds

B4 + 36q0,1 +B5 =

∫ ∞
0

d%
∂

∂%

{
%3

32
[
%2 + r(%2)

]11/2

[
5r(%2)4

− 4%2r(%2)3
(
22 + 27r(1)(%2) + 36%2r(2)(%2) + 8%4r(3)(%2)

)
+ %8

(
112r(1)(%2)3 + 105r(1)(%2)4 − 16%4r(2)(%2)2

+ 4r(1)(%2)2[3− 28%2r(2)(%2)] + 32%2r(1)(%2)[r(2)(%2) + %2r(3)(%2)]
)

+ 2%4r(%2)2
(

6 + 153r(1)(%2)− 88%2r(2)(%2)

− 8%2[r(2)(%2)2 + 4r(3)(%2)] + 16r(1)(%2)[9 + 8%2r(2)(%2) + %4r(3)(%2)]
)

− 4%6r(%2)
(

77r(1)(%2)3 + 2r(1)(%2)2[39 + 14%2r(2)(%2)]

+ 8%2r(2)(%2)(%2) + 8%2[r(2)(%2)2 + r(3)(%2)]

− 2r(1)(%2)[8%2r(3)(%2) + 36%2r(2)(%2)− 3]
)]}

, (543)
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which vanishes for a generic regulator function r due to the same reason as (542). This

establishes Lemma 6.2.1(ii).

(iii) As above, direct computation yields

B6 −B7 = −
∫ ∞

0

d%
∂

∂%

{
5%3
[
r(%2)− %2r(1)(%2)

]2
4
[
%2 + r(%2)

]7/2 }
= 0 . (544)

Together with (540) this completes our proof of Lemma 6.2.1.

We end this appendix with a summary of the expressions for the regulator dependent

coefficients in (471).

q1,1 =
1

12

∫ ∞
0

d% %2

[
r(%2)− %2r(1)(%2)

]2[
%2 + r(%2)

]5/2 , q1,2 = −
∫ ∞

0

d% %2 r(%
2)− %2r(1)(%2)[
%2 + r(%2)

]3/2 , (545)

q0,1 =
3

2

∫ ∞
0

d% %2

[
r(%2)− %2r′(%2)

]2[
%2 + r(%2)

]7/2 , q0,2 = −B5

12
,

q0,3 =

∫ ∞
0

d% %2 r(%
2)− %2r′(%2)

2
[
%2 + r(%2)

]7/2{− 3r(%2) + %2
(
2 + 5r(1)(%2)(%2)

)}
. (546)
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