
Title Page 

Mechanisms of Guanylyl Cyclase Gene Regulation by FoxO Transcription Factors 

 
Joseph Carl Galley 

 
University of Pittsburgh, 2021 

 
 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 
 

School of Medicine in partial fulfillment 
  

of the requirements for the degree of 
 

Doctor of Philosophy 
 

 
 
 
 
 
 

University of Pittsburgh 
 

2021 



 

 ii 

Committee Membership Page 

UNIVERSITY OF PITTSBURGH 
 

SCHOOL OF MEDICINE 
 
 
 
 

 
 
 
 

This dissertation was presented 
 

by 
 
 

Joseph Carl Galley 
 
 

It was defended on 
 

June 23, 2021 
 

and approved by 
 

Patrick J. Pagano, Professor of Medicine, Department of Pharmacology & Chemical Biology 
 

Edwin Jackson, Professor of Medicine, Department of Pharmacology & Chemical Biology 
 

Alessandro Bisello, Associate Professor, Department of Pharmacology & Chemical Biology 
 

Delphine Gomez, Assistant Professor of Medicine, Department of Pathology 
 

Aditi Gurkar, Assistant Professor of Medicine, Division of Geriatric Medicine 
 

Dissertation Director: Adam C. Straub, Ph.D., Associate Professor of Medicine, Department of 
Pharmacology & Chemical Biology 

 
 
 
 



 

 iii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by Joseph Carl Galley 
 

2021 
 
 



 

 iv 

Abstract 

Mechanisms of Guanylyl Cyclase Gene Regulation by FoxO Transcription Factors 

 

Joseph Carl Galley, PhD 

 

University of Pittsburgh, 2021 

 

Nitric oxide (NO) is a known vasodilator molecule produced in the vascular endothelium 

which freely diffuses to the smooth muscle cells (SMC) due to its small, non-polar nature. Once 

in the SMC, NO binds its cognate receptor, soluble guanylyl cyclase (sGC) to catalyze formation 

of cGMP to cause dilation. This process maintains healthy blood pressure and hemodynamic 

function. Therapeutic strategies have sought to target this pathway by elevating available NO 

treatment, stimulation of NO-sensitive sGC, or activation of NO-insensitive sGC. Despite 

successes of several sGC modulator clinical trials, little study had been devoted to transcription 

mechanisms responsible for sGC gene expression in SMC. We thus sought to identify 

transcriptional regulators of sGC in SMC tissue.  

We identified several predicted Forkhead box subclass O (FoxO) protein binding sites on 

sGC promoters. We then inhibited the FoxO proteins in aortic SMC and observed significant loss 

of sGC gene and protein expression as well as cGMP production. Treated ex vivo murine aortas 

showed loss of sGC expression and loss of NO-dependent vasodilatory function. We next 

showed that a murine 2-kidney-1-clip (2K1C) model of hypertension causes increased 

vasodilatory function and expression of sGC in the contralateral renal arteries. Because 
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angiotensin II (Ang II) causes many of the blood pressure effects in renovascular hypertension, 

we treated cultured renal SMC with Ang II and observed increased sGC expression through Ang 

II type 1 receptor (AT1R)-dependent agonism. This increase in sGC expression and downstream 

function was dependent upon functional FoxO transcriptional activity. We knocked down each 

FoxO protein in aortic SMC and showed that loss of FoxO1 and FoxO3 increase sGC expression 

and downstream function, while FoxO4 loss decreased sGC expression and function. We then 

used sGCβ promoter-luciferase vectors to show which regions are necessary for transcriptional 

function and again show that expression requires FoxO transcription. Finally, we show that 

FoxO4 binds several predicted locations using chromatin immunoprecipitation of the sGCβ 

promoter. Combined, we are the first to identify the FoxO family as transcriptional regulators of 

sGC in SMC, opening a new avenue for therapeutic innovation in basic and clinical vascular 

research.  
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1.0 Introduction 

The ability to alter the diameter of blood vessels is a tightly regulated process which is 

affected by a variety of environmental, genetic, and internal factors. Changes in the internal 

diameter of the blood vessels manifest in altered blood flow dynamics across the affected 

vascular beds, as the resistance to flow applied by the blood vessel is inversely proportional to 

the vessel’s diameter. In light of this knowledge, alterations which decrease blood vessel 

diameter will have vital impacts throughout the body, leading to pathological conditions which 

can cause high blood pressure or other conditions resulting from hypertensive stress. 

Relaxation of the vascular smooth muscle is one of the main methods the body has to 

mitigate pathologies which might restrict blood flow. These regulatory pathways often govern 

rapid changes to signaling events which control the vascular smooth muscle contractile and 

relaxation responses. The ability of the vasculature to respond to these stimuli via these many 

signaling mechanisms constitutes a necessary component for maintaining proper cardiovascular 

health. These pathways and those that influence them remain one of the most important areas of 

public health study.  

1.1 Public Health Burden of Hypertension 

Cardiovascular disease (CVD) represents the most prevalent cause of death in the world 

with more than 17.9 million global deaths annually,1 and more than 655,000 CVD-related deaths 

annually in the U.S.2In addition to deaths, CVD represents a tremendous economic cost across 
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the globe. In the U.S. alone annual spending on patients was $109.1 billion in 2012,3 and this 

figure is projected to increase to more than $200 billion in direct costs with $40 billion in 

indirect costs by the year 2030.4 Hypertension affects nearly one out of three adults in the U.S., 

making it the most preventable risk factor for CVD-related death.5-10 Moreover, the global 

number of those affected by hypertension was estimated to be 1.39 billion people in 2010, 

representing 31.1% of adults, up from 24% or approximately 918 million in 2000.11-12 This 

increase is irrespective of the new hypertension classification by the American College of 

Cardiology/American Heart Association Task Force on Clinical Practice Guidelines 2017,13 

which reclassified hypertensive patients from systolic blood pressure >140 mmHg or diastolic 

blood pressure >90 mmHg to systolic blood pressure >130 mmHg or diastolic blood pressure 

>80 mmHg based upon the findings of randomized clinical trials like the Systolic Blood Pressure 

Intervention Trial which showed that more aggressive systolic blood pressure target criteria 

(systolic BP ≤120 mmHg from ≤140 mmHg) reduces cardiovascular disease and all-cause 

mortality.14-17 These new criteria have amplified the number of people estimated as hypertensive 

from approximately 32% in the U.S. to 45.4%,18 and this change is even more profound in lower 

income nations like China where this results in an increase from 23.2% to 46.4%.19 This increase 

is consistent with global trends between 2000 and 2010, which showed that adults with ≥140 

mmHg systolic BP in countries classified by the World Bank to be of low or middle income 

increased from 23.8% to 31.5%.11 These data suggest that the global health burden of 

hypertension will continue to be an important area of study, especially as Asia and Africa 

develop further, shifting much of the public health burden from hunger to undernourishment, 

obesity, and hypertension.20 The growing population of hypertensive patients across the world 

highlights the importance of new cardiovascular research techniques to alleviate the large public 
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health burden, however, many significant questions still remain concerning the proper treatment 

methods to meet this emergent need.  

1.2 Function and Regulation of sGC 

Arterial dilation is one of the pivotal aspects of physiology necessary for mitigating high 

blood pressure. Many of the mechanisms responsible for potentiating these processes require 

communication between multiple cell types to cause relaxation of the vascular smooth muscle. 

One such heterocellular pathway involves the cleavage of L-arginine to create nitric oxide (NO) 

and L-citrulline.21-22 This production occurs primarily through nitric oxide synthase 3, also 

known as endothelial nitric oxide synthase (eNOS).23-24 This NO generated in the endothelium 

freely diffuses to the adjacent smooth muscle cells where it interacts with the heme iron group of 

its cytosolic receptor, soluble guanylyl cyclase (sGC).25 In order for sGC to have functional 

catalytic activity, it must form a heterodimeric structure with at least one α and one β subunit in 

order for the catalytic pocket to form at the C-termini of both subunits. Indeed, seminal studies 

by Andreas Friebe and his colleagues showed in mice that the loss of the β1 subunit of sGC 

indicate a lack of smooth muscle sGCβ1 protein in vascular smooth muscle is sufficient to cause 

hypertension,26 and a global deletion of sGCβ1 causes not only hypertension but also arrests 

intestinal peristaltic activity resulting in gut dysmotility and death.27 There are two α subunits 

and two β subunits capable of comprising sGC protein, though the β2 isoform has not been 

shown to be expressed in high amounts.28 Additionally, while some research has shown that it is 

possible for α2β1 heterodimers to form, α1β1 dimers predominate in most tissues.28 
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The heme moiety of sGC is held within the heme-nitric oxide/oxygen (H-NOX) region of 

the β subunit, and NO coordinates with the heme iron, causing the iron atom to be cleaved from 

the His-105 residue due to the change in distance between the peptide and the metal ion.29  

Moreover, binding of an NO molecule elicits confirmational changes within the coiled-coil 

domains of both the α and β subunit of sGC to properly align the catalytic domains of each to 

form the 5’-guanosine triphosphate (GTP) binding pocket.30-31 Seminal works by Dennis 

Stuehr’s group showed that heat shock protein 90 (Hsp90) drives the insertion of the heme 

moiety into the apo-sGCβ1 subunit during cellular development,32 however, they also 

demonstrated that NO promotes the rapid dissociation of sGCβ1 subunit from Hsp90 to allow the 

union of sGCα1 subunit to form enzymatically functional sGCα1β1 heterodimers.33 Further 

works have provided supporting data which indicated that the prolonged inhibition of Hsp90 

promotes accelerated proteasomal degradation of sGC protein.32,34 

Importantly, the heme-iron oxidation state is the key determinant in the binding 

capability of NO to promote the production of cGMP. The NO-sensitive state requires the iron to 

be in the Fe2+ (Ferrous) oxidation state in order to coordinate this interaction, while the Fe3+ 

(Ferric) oxidation state remains insensitive to NO and incapable of producing downstream 

cGMP.35 Exogenous compounds such as methylene blue, 1H-[1,2,4]oxadiazolo-[4,3-

a]quinoxalin-1-one (ODQ) or ferricyanide (FeCN) are capable of oxidizing the heme iron group 

of sGC, rendering it insensitive to NO binding.36-37 Similarly, endogenous oxidants hydrogen 

peroxide,38 superoxide,39 and peroxynitrite have been shown to impact the binding of NO to 

sGC.40 Further research by Dr. Adam Straub’s group demonstrated that Cyb5R3 is the key 

enzyme responsible for maintaining ferrous, NO-sensitive heme.41 They demonstrated that 

Cyb5R3 interacts directly with sGC protein following treatment with ODQ and that loss or 
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pharmacological inhibition of Cyb5R3 exacerbates the loss of cGMP production and promotes 

the loss of sGC protein and dysfunctional vasorelaxation in isolated blood vessels.41-42 

Furthermore, overexpression of Cyb5R3 rescues cGMP-dependent SMC function following 

oxidation.41,43 These data demonstrate that endogenous heme reduction mechanisms are essential 

to maintain NO-dependent vasodilation within blood vessels.   

Localization of proteins within cellular microdomains also play important roles in the 

redox environment and efficiency of signal transduction between cell types. 

Immunoprecipitation studies have shown that multi-protein complexes can form between Hsp90 

or Hsp70 and sGC to stabilize the oxidized isoform of the enzyme.44-45 Based on the findings that 

calveolar invaginations play important roles in cardiovascular diseases,46 studies in the heart 

have suggested that calveolar localization of sGC is critical for maintaining the heme in its NO-

sensitive, ferrous iron state.47-48 Moreover, since Cyb5R3 is a membrane-associated protein 

required for restoration of sGC heme redox state,41 it is likely that membrane association of sGC 

following redox stress represents another necessary component of NO-dependent sGC signaling 

within the vascular wall.  

Importantly, the class III family of cyclases have a broad range of structures with only a 

small homologous domain that links this group of adenylyl, guanylyl, and diguanylate cyclases.49 

Key redox-sensitive cysteines help to modulate the activity of the sGC heterodimer, with many 

helping to maintain structural integrity, while others are necessary to support the function of the 

respective domains. A recent study identified an oxidation-sensitive thiol/disulfide switch 

mechanism between Cys-489 and Cys-571 of sGCβ1 that can result in disulfide bridge formation 

due to coordination with Thioredoxin-1 (Trx1) and Protein Disulfide Isomerase (PDI) through 

mixed disulfide formation.50 This marks an important new finding in the field, explaining 
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seemingly incongruous data showing that treatment with reductants such as dithiothreitol (DTT) 

or Tris-(2-carboxyethyl)phosphine (TCEP) blunt responsiveness to NO,51-52 while isolated sGC 

enzyme is commonly incubated with DTT and glutathione (GSH) to preserve activity. Because 

the DTT and GSH mixture can form mixed disulfide intermediates,52 this mixture likely mimics 

the interaction which occurs with Trx1 and PD1 in specific domains of cytosolic sGC.  

Another redox-regulatory mechanism which governs sGC function is comprised of 

Cysteine S-nitrosation. This process provides a necessary negative feedback check on sGC 

activity, wherein excess NO production leads to inhibitory S-nitrosothiol (SNO) formation.53-55 

Just as this negative feedback regulation via SNO formation slows the production of cGMP, it is 

essential that this process be reversible. Interestingly, Trx1 not only serves to facilitate the 

formation of disulfide bonds, but also aids in the denitrosation of Cys residues to restore 

enzymatic activity.56 This study demonstrated that a mixed disulfide bond forms between Cys-73 

of Trx1 and Cys-609 of sGCα1. Furthermore, pharmacological inhibition of Trx1 using 1-chloro-

2,4-dinitrobenzene (DNCB) following nitrosocysteine (CSNO) treatment caused a significant 

decrease in cGMP production and also showed that overexpression of Trx1 significantly rescued 

cGMP production after CSNO treatment.56 Cys-609 of sGCα1 has recently been identified as a 

novel residue for S-nitrosation.57 Mutation of the Cys-609 of sGCα1 showed resistance to 

CSNO-mediated decreases in cGMP production, however, overexpression of Trx1 was incapable 

of rescuing deficient cGMP production, suggesting that Trx1-mediated disulfides may play an 

important role through Cys-609 of sGCα1.56   
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1.3 Drugs Targeting sGC and Their Clinical Impacts 

Two distinct drug mechanisms are capable of modulating the activity of sGC based upon the 

oxidation state of the iron of the β subunit. The first class, termed sGC stimulators, relies on the NO-

sensitive, Fe2+ (ferric) iron oxidation state for the production of cGMP and a number of these drugs have 

been recently approved for the treatment of cardiovascular diseases.58-60 YC-1 demonstrated synergistic 

increases in sGC activity when combined with the NO donor, sodium nitroprusside (SNP) in ex vivo 

tissue preparations.62 Additionally, this drug demonstrated NO-independent activation when used in 

conjunction with carbon monoxide (CO) by promoting dose-dependent increases in sGC activity.61 The 

authors concluded that because CO showed no dose-dependent increases in sGC activity when used 

alone, YC-1 likely owes its mechanistic effects to stabilization of an active confirmation of the enzyme 

upon diatomic molecular coordination with the heme iron of sGCβ1.61 Similarly, studies with sGC 

stimulators BAY 41-8543 and BAY 41-2272, both of which were designed using the chemical structure 

of YC-1, both displayed promising effects in the treatment of pulmonary hypertension.63-65 These 

molecules demonstrated synergistic effects with NO treatment that showed higher potency to produce 

cGMP-dependent effects.66-67 BAY 63-2521 (Riociguat) has recently been approved for the treatment of 

chronic thromboembolic pulmonary hypertension,59 and has also shown efficacy for the 

treatment of pulmonary arterial hypertension,60 though despite its promising synergistic effect with NO 

treatment, may have limited therapeutic capability due to its shorter half-life of 7 hours in healthy 

individuals and 12 hours in patients.68 A Phase III clinical trial using BAY 1021189 (Vericiguat) to 

treat chronic heart failure in patients with reduced ejection fraction showed lower incidence of mortality 

due to CVD and decreased hospitalizations due to CVD complications than the placebo.58 sGC stimulator 

drugs represent an encouraging new class of molecules capable of inducing sGC activity, however these 

drugs require NO-sensitive sGC in order to work.  
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The second class of sGC modulators, namely sGC activator drugs, are characterized by those 

capable of inducing sGC activity via NO-independent mechanisms. Mechanistic studies using HMR-

1766, also known as Ataciguat, and BAY 58-2667, also known as Cinaciguat, showed increased cGMP 

production following pre-treatment with a variety of oxidizing agents.69 Additionally, both drugs 

demonstrate a preference for heme-deficient enzyme based upon  in vitro studies.69-70 In recent Phase II 

clinical trials for acute decompensated heart failure, Cinaciguat showed effective decreases in cardiac 

load, however, trials ceased after Phase IIb due to a high incidence of hypotension in those treated with 

Cinaciguat over the placebo.71 Interestingly, a new study using BAY 60-2770 showed higher association 

with purified sGC enzyme by size exclusion chromatography and affinity than Cinaciguat and 

demonstrated higher sGC activity than Cinaciguat.72-73 Because BAY 60-2770 mimics the heme moiety of 

sGC,73 there may be therapeutic potential to examine its use in a similar manner to the clinical trials using 

Cinaciguat in the future. A recent study using an in vivo mouse model of sickle cell disease (SCD) 

evaluated the efficacy of sGC modular therapy and the sGC activator, BAY 54-6544, improved 

pulmonary vasorelaxation in an NO-independent manner.74 BAY 54-6544 also reversed pulmonary 

hypertension, cardiac remodeling and improved endothelial cell function in SCD mice,74 suggesting that 

sGC activator therapy may be an effective novel treatment strategy to alleviate age-related pathologies 

associated with SCD. With many sGC activator therapies in clinical trials, these compounds reveal a 

novel approach to treat patients where sGC function is compromised by oxidation or heme degradation. 

sGC-cGMP signaling within the vasculature is critical to sustain its proper dilatory function.  

sGC-cGMP signaling within the vasculature is critical to sustain its proper dilatory 

function. Redox regulation of sGC enzyme is modulated by a variety of events including heme 

iron oxidation, sGC membrane localization, coordination of sGC with various proteins to prevent 

oxidation or facilitate reduction, and modification of reactive Cys residues by S-nitrosation or 

formation of mixed disulfide bonds. Because many of these studies were performed using 

artificial systems, further investigation using in vivo models will be necessary to demonstrate the 
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mechanistic effects of these promising in vitro findings. Despite these findings, however, some 

major basic science questions still remain regarding the transcriptional regulation of the sGC 

enzyme both in cultured SMC and in vivo. Prior to our work, few studies had examined the 

transcriptional regulation of sGC,75-76 let alone within SMC,77 the tissue type where it is the most 

well-known. Furthermore, because there has been a significant amount of clinical progress using 

sGC stimulators and activators in the past few years, the marriage of the molecular research with 

the clinical efficacy proffers a novel approach to treat pathogenesis within the vascular wall and 

identification of the transcriptional regulators of sGC offer additional tools to clinicians to 

identify more effective treatment strategies for different vascular beds. 

1.4 A Brief Overview of the FoxO Transcription Factors 

One of the largest families of transcription factors, the forkhead box (Fox) family, is 

named for the ectopic “fork-shaped” head which developed in Drosophila with mutations in the 

fkh gene.78 Shortly thereafter, another group independently discovered the FoxA1 protein  in rats, 

identifying the first orthologous FoxO expressed in mammals.79 These discoveries initiated the 

study of this novel “forkhead” domain for transcription factors,80 a group which has more than 

50 members in mammals, comprising an immensely diverse group of genes which are classified 

into subfamilies FoxA to FoxS by sequence similarity.81-82 Because there are many Fox 

transcription factors, the gene targets regulated by this large family are broad and are involved in 

a multitude of cell types and regulate myriad pathways.83-84 These proteins contain a DNA 

binding domain which have a distinctive set of approximately 100 amino acids that are 

comprised of three α-helices that are flanked by two flexible loops,79 giving the appearance of 
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butterfly wings by X-ray crystallography experiments.85-89 This structure is the reason why the 

Fox family of transcription factors are often referred to as the “winged helix” transcription 

factors.   

The subclass O family (FoxO) of transcription factors are classified by their sequence 

similarity and their inhibition by phosphatidyl inositol 3-kinase (PI3K) and protein kinase B 

(PKB/Akt).90-97 The FoxO proteins and their ancestral orthologs appear to have played 

significant roles in organisms across the animal kingdom, as orthologs have been identified to 

have existed more than 500 million years ago.98 The most ancient identification of this pathway, 

found in C. elegans, shows that the FoxO ortholog called DAF-16, is regulated by the 

orthologous insulin pathway in nematodes (via the DAF-2 receptor) in the same manner as 

mammalian FoxO proteins and inactivation of this pathway can alter the lifespan of the animals 

by more than 3-fold.99-102 Similarly, when overexpressed in D. melanogaster, dFOXO, which is 

the fruit fly ortholog of mammalian FoxO transcription factors, extends the lifespan of flies.103 

Remarkably, mice lacking the insulin receptor in adipose tissue had a 30% longer lifespan than 

controls.104 Insulin signaling is the primary regulatory of the FoxO transcription factors in 

mammals, insects and nematodes, and the stress-response pathways are also preserved between 

invertebrates and mammals, suggesting an important position for this evolutionarily conserved 

pathway regulated by this transcription factor family.    

In mammals, there are 4 identified FoxO family members, named for the order they were 

discovered: FoxO1,105 FoxO3,106 FoxO4,107 and FoxO6.108 FoxO2 is identical to FoxO3 

(FoxO3A gene, as opposed to the FoxO3B pseudogene identified in humans),109 and FoxO5 is 

the FoxO3 ortholog found in zebrafish (Danio rerio).110 The mammalian FoxO proteins were 

first identified due to rhabdomyosarcomas and acute myeloid leukemias,105-108 identifying them 
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as important regulators of the cell cycle and cell proliferation. These proteins have been 

identified to play important parts in a multitude of pathways including oxidative stress 

mitigation,111-112 cell cycle progression,113-114 aging,115 and glucose metabolism.99,116 

Identification of the signaling threshold and contexts in which these different pathways become 

activated is an important component of ongoing FoxO transcription factor research. For example, 

some human cancers have been shown to have less functional FoxO3, leading to higher rates of 

proliferation and worse health outcomes.117-120 Similarly, expression of constitutively active 

forms of FoxO proteins inhibit cell growth in tumors in vivo,121-123 and the FoxO genes have 

shown to interact with key cell growth and apoptotic partners like p53 and SMAD transcription 

factors.124-128 These studies demonstrate the important role that the FoxO family play in the 

blocking hyperproliferation and induction of apoptosis.124-128  

In addition to the importance of tumor suppression, many of the stimuli which help FoxO 

genes regulate oxidative stress and metabolism have been linked to the post-translational 

modifications made to alter subcellular location and DNA-binding affinity.95,97,129 De-acetylation 

of FoxO3 by NAD-dependent deacetylase sirtuin-1 (SIRT1) following hydrogen peroxide 

showed that the increased SIRT1 interaction with FoxO3 increased gene expression of growth 

arrest and DNA damage response protein 45 alpha (Gadd45α), while also demonstrating that 

inhibition of SIRT1 and class I and II histone deacetylases (HDACs) led to increased expression 

of the apopotic marker, Bcl2-like protein 11 (Bim), and elevated cleaved caspase 3.129-130 These 

data suggest the interesting prospect that differential post-translational modifications not only 

alter the activity of the FoxO transcription factors, but also control the genetic targets of the 

FoxO proteins, adding another level of supervisory control over the expression of FoxO 

transcriptional targets.  
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While the FoxO transcription factors have long been identified as important regulators of 

cancer and aging,131 there is now emergent research that has identified some of the functional 

contributions in the context of vascular biology. Loss of FoxO1 in pulmonary vasculature has 

recently been shown to induce SMC hyperplasia and pulmonary hypertension.132 Additionally, 

FoxO1 and FoxO3a in endothelium have been shown to repress the expression of endothelial 

nitric oxide synthase and post-natal silencing of these two transcription factors has been shown 

to promote angiogenesis and proliferation of various vascular cell types in vivo.132-134 

Constitutive activity of the FoxO transcription factors have been shown to inhibit the growth of 

several different cell types,135-136 alluding to the fact that FoxO transcription factors are important 

for preventing hyperproliferation in a multitude of tissues. Increased production of cGMP in 

smooth muscle has been shown to have similar effects in suppressing cellular proliferation.137-138 

These data support the idea that both sGC function and FoxO transcription factor function both 

contribute to the regulation of smooth muscle quiescence. Finally, recent publications have 

shown that the different members of the FoxO family have distinct functions from one another in 

the vasculature despite similar regulatory processes.139-140 Our work herein suggests that the 

FoxO transcription factors are indispensable regulators of vascular function through their 

regulation of sGC expression.   

1.5 The Purpose of This Dissertation 

My goal for this dissertation is to inform you, the reader, about our discovery that the 

FoxO family of transcription factors play a vital role in the gene expression of sGC and the 

effects caused by changes to FoxO transcriptional activity or expression in SMC. sGC has been 
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shown to be necessary for survival in knockout mouse models due to lethal vascular 

malformation and lack of gut motility in early in development.27 Additionally, sGC is 

fundamental for the maintenance of homeostatic blood pressure, as SMC-specific knockout of 

sGCβ in adult animals leads to development of a severe hypertensive phenotype.26 As has been 

mentioned, the FoxO transcription factors are major regulators of mammalian aging, and aging is 

correlated with the loss of both sGC and FoxO expression.141-146 Therefore, it was on these 

grounds that I sought to identify how this enzyme was regulated at the level of transcription and 

the effects on downstream signaling when this regulation is disrupted.  

Here we explain our original research that is published as well as our data in preparation 

for peer review underscoring the contributions of the FoxO transcription factors in the regulation 

of sGC expression in multiple cell and tissue types. Studies in Chapter 2 outline our published 

results where we showed that loss of FoxO transcriptional activity using an inhibitory drug 

significantly decreases the mRNA expression of sGC leading to blunted sGC protein expression 

and downstream signaling both in isolated rat aortic SMC and in FoxO inhibitor-treated murine 

aortic tissue.147 Chapter 3 encapsulates our published research which demonstrated in a model of 

renal hypertension that sGC is elevated and dilatory function in the contralateral renal arteries of 

these animals are augmented compared to their respective controls. We go on to show that 

angiotensin II causes an increase in the expression of sGC in renal SMC through a mechanism 

dependent upon the FoxO transcription factors and that the loss of this activity not only blunts 

the increase in expression, but also impairs the downstream signaling.148 Our findings in Chapter 

4 show that FoxO4 is the primary FoxO protein responsible for the regulation of sGC in SMC 

across multiple species. Here we also identify the specific regulatory sites where the FoxO 

proteins interact with the sGC promoter. In Chapter 5, I discuss many of the questions that still 
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remain unanswered, the implications of our findings for the field of vascular research and the 

future research directions that may bear productive results for others henceforth. And finally, I 

discuss the impact our findings may have for clinical and pharmaceutical research for the 

treatment of hypertension.   
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2.1 Summary: 

Nitric oxide (NO) stimulates soluble guanylyl cyclase (sGC) activity leading to elevated 

intracellular cyclic guanosine 3′, 5′-monophosphate (cGMP) and subsequent vascular smooth 

muscle relaxation. It is known that downregulation of sGC expression attenuates vascular 

dilation and contributes to the pathogenesis of cardiovascular disease. However, it is not well 

understood how sGC transcription is regulated. Here, we demonstrate that pharmacological 

inhibition of Forkhead Box subclass O (FoxO) transcription factors using the small molecule 

inhibitor, AS1842856, significantly blunts sGC α and β mRNA expression by more than 90%. 

These effects are concentration-dependent and concomitant with greater than 90% reduced 

expression of the known FoxO transcriptional targets, glucose-6-phosphatase (G6Pase) and 

growth arrest and DNA damage protein 45 α (Gadd45α). Similarly, sGC α and sGC β protein 

expression showed a concentration-dependent downregulation. Consistent with the loss of sGC α 
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and β mRNA and protein expression, pre-treatment of vascular smooth muscle cells (VSMC) 

with the FoxO inhibitor decreased sGC activity measured by cGMP production following 

stimulation with an NO donor. To determine if FoxO inhibition resulted in a functional 

impairment in vascular relaxation, we cultured mouse thoracic aortas with the FoxO inhibitor 

and conducted ex vivo two-pin myography studies. Results show that aortas have significantly 

blunted sodium nitroprusside (SNP)-induced (NO-dependent) vasorelaxation and a 42% decrease 

in sGC expression after 48-hour FoxO inhibitor treatment. Taken together, these data are the first 

to identify that FoxO transcription factor activity is necessary for sGC expression and NO-

dependent relaxation. 

2.2 Introduction: 

Arterial blood vessel dilation is mediated, in part, through production of the endogenous 

endothelial vasodilator molecule, nitric oxide (NO). NO signals by binding to ferrous heme iron 

in soluble guanylyl cyclase (sGC) in vascular smooth muscle cells (VSMC) to catalyze the 

intracellular conversion of guanosine 5′-triphosphate to the second messenger molecule cyclic 

guanosine 3′, 5′-monophosphate (cGMP).149 Increased cGMP, in turn, activates protein kinase G 

(PKG) leading to vascular smooth muscle relaxation needed to govern tissue perfusion and blood 

pressure.150 Indeed, several prior studies conducted in spontaneous hypertensive rats showed 

sGC mRNA and protein expression to be downregulated and associated with impaired NO-

dependent vasodilation.142,151 Moreover, SMC-specific inducible knockout of sGC β in mice 

results in hypertension, suggesting sGC expression in SMC is critical for modulating vascular 

tone.26 Genome wide association studies of single nucleotide polymorphisms also identified 
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genetic variants within the sGC genes GUCY1A3 and GUCY1B3 as associated with a high risk 

for cardiovascular disease.152-154 Of translational importance, small molecule sGC modulators 

have been developed for clinical use to restore disease-associated loss of sGC activity and cGMP 

production to varying degrees of success.155-159 For example, Riociguat (BAY 63-2521), a heme-

dependent sGC stimulator, has been recently approved for treatment of pulmonary arterial 

hypertension and chronic thromboembolic pulmonary hypertension.59-60 Additionally, Cinaciguat 

(BAY 58-2667), a NO-independent sGC activator which increases cGMP when sGC heme is 

oxidized or resides in the heme-deficient state,35 but further studies were halted with BAY 58-

2667 after it showed risk for hypotension in a phase IIb clinical trial for treatment of acute heart 

failure syndrome.71 Importantly, the clinical efficacy of these sGC modulators is dependent on 

adequate sGC protein expression.  

While the NO-sGC-cGMP pathway continues to be extensively studied, there are a 

limited number of studies that have identified the mechanisms regulating sGC transcription. 

Prior work by Kloss et al has shown interacting partners with sGC transcripts, namely human 

antigen R (HuR), which stabilizes the sGC mRNA,143,160 and miR-34c-5p and ARE/poly(U)-

binding/degradation factor 1 (AUF1), which destabilize and promote the degradation sGC 

transcripts.161-162 Furthermore, CCAAT-binding factor deletion significantly blunts production of 

sGC mRNA expression in a neuroblastoma cell line.75 However, beyond these studies our 

knowledge of the transcription factor(s) responsible for the constitutive expression of sGC, 

particularly within VSMC, remain elusive.  

The Forkhead box subclass O (FoxO) family of transcription factors namely FoxO1, 

FoxO3 and FoxO4 are the predominant isoforms in VSMC (Salih and Brunet, 2008).115 Recent 

studies have identified the importance of this family of transcription factors in the vasculature, 
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including their role in the promotion of angiogenesis,133-134 inhibition of endothelial NO 

production,133,163 preventing pulmonary hypertension,132 and maintenance of pluripotency in a 

variety of different cell types.113-114,140 Additionally,  an important observation in the field has 

established that aging decreases the expression and capacity for FoxO signaling,99,103,115,164-165 

and has also been shown to decrease the expression of sGC within the vasculature.142,166-167 

However, a link connecting the sGC-cGMP and FoxO pathways has yet to be described. 

Therefore, with the use of in silico prediction analysis and a previously characterized FoxO 

inhibitor compound, AS1842856 (IUPAC name: 5-Amino-7-(cyclohexylamino)-1-ethyl-6-

fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid),168 we sought to determine if the FoxO 

transcription factor family regulates sGC transcription. Herein, we provide evidence that 

inhibition of FoxO transcription factors results in significant downregulation of sGC transcript 

and protein, decreased cGMP production, and impaired NO-induced vasodilation implicating 

FoxO transcription factors as a major regulator of sGC transcription. 

2.3 Materials and Methods: 

Cell culture and drug treatment:  

Rat aortic smooth muscle cells (RASMC, Lonza) were cultured as previously described.41 

In brief, RASMC were cultured at 37°C in Lonza Smooth Muscle Growth Medium-2 with 

SmGm-2 SingleQuot supplementation. Cells were passaged using Gibco Trypsin/EDTA up to 

passage 12. For treatment, FoxO inhibitor, AS1842856 (Cayman, A15871) was dissolved in 

DMSO at 10 mM stock concentration and diluted in DMSO for further experiments.  Control and 

treatment DMSO concentration was 0.1% of total volume for treatment periods.  



 

 19 

qRT-PCR: 

RASMCs were cultured in 6-well dishes until confluent and lysed in TRIzol reagent 

(Thermo Fisher). RNA was isolated from lysates according to the RNA purification protocol 

from the Direct-zol RNA miniprep plus kit (Zymo). Isolated RNA was reverse transcribed to 

cDNA using SuperScript III First Strand Synthesis System (Thermo Fisher). Quantitative PCR 

was performed using PowerUp SyBr Green Master Mix (Thermo Fisher), and 1 µM target 

primer (Table 1) were mixed and 40 PCR cycles with 95ºC melting temperature and 58ºC 

annealing temperature and 72ºC extension temperature was performed in QuantStudio 5 Real-

Time PCR System (Thermo Fisher).  

Western blot:  

RASMCs were lysed in ice-cold 1X Cell Lysis Buffer (Cell Signaling) containing 20 mM 

Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium 

pyrophosphate, 1 mM beta-glycerophosphate, 1 mM Na3VO4, 1 µg/ml leupeptin supplemented 

with additional protease and phosphatase inhibitors (Sigma). Protein lysate concentrations were 

quantified using a standard Bicinchoninic acid kit (Thermo-Fisher). Laemmli buffer was added 

for final concentration containing 31.5 mM Tris-HCl (pH 6.8), 10% glycerol, 1% SDS, and 

0.005% Bromophenol Blue. Lysates were boiled and subjected to electrophoresis on 4-12% 

BisTris polyacrylamide gels (Life Technologies). Proteins were transferred to nitrocellulose 

membrane and blocked for 1 hour at room temperature with 1% BSA in PBS. Membranes were 

rocked overnight with primary antibodies (Table 2) diluted in 1% BSA in PBST at 4°C. 

Membranes were washed and incubated with secondary antibodies from LI-COR (Table 2) 

diluted in 1% BSA in PBST for 1 hour at room temp followed by washing with PBST. 
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Visualization and analyses were completed utilizing a LI-COR Odyssey Imager and Image 

Studio Software.  

cGMP ELISA: 

Confluent RASMCs were cultured in 12-well dishes and pretreated with 10 µM sildenafil 

(Sigma) for 45 minutes and then stimulated with the NO-donor, diethylammonium (Z)-1-(N,N-

diethylamino)diazen-1-ium-1,2-diolate (DEA NONOate, Cayman), for 15 minutes. Baseline 

measurements were performed after 45 min treatment with 10 μM sildenafil. Cell samples were 

lysed in 125 µL ice-cold 1X Cell lysis buffer (Cell Signaling) supplemented with protease and 

phosphatase inhibitors (Sigma). cGMP production was determined via enzyme-linked 

immunosorbent assay (ELISA assay; Cell Signaling). 10 µL of sample (approximately 5-10 µg 

of protein) was added to each well and diluted with additional lysis buffer, and exact protein 

concentration of each sample was quantified using a standard BCA protein assay kit (Thermo-

Fisher). ELISA assays were performed hereafter according to the manufacturer’s protocol.  

Immunofluorescence staining: 

Twelve-week old C57BL/6J mice (Jackson Laboratories) were sacrificed via CO2 

asphyxiation.  Thoracic aortas were excised and placed in 4% paraformaldehyde solution for 24 

hours, followed by 24 hours in 30% sucrose in PBS. Tissues were then frozen in optimum 

cutting temperature compound fixative (OCT, Tissue-Tek) via liquid nitrogen and cryosectioned 

at 8 µM thickness with 3 sections/slide using a FSE Cryostat Microtome slicer (Thermo 

Scientific). Slides were permeabilized with -20ºC acetone for 10 minutes, air dried for 10 

minutes, washed thrice for 5 minutes each in PBS, and then blocked with PBS + 0.25% Triton-X 

100 + 10% horse serum + 1% fish skin gelatin (blocking buffer) for 1 hour. Slides were 

incubated with rabbit anti-sGC β primary antibody and anti-ACTA2 AlexaFluor 488 conjugated 
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primary antibody (Table 2) diluted in blocking buffer (40 µL/section) and placed overnight at 

4ºC in a darkened humidity chamber. Slides were then washed twice for 5 minutes in PBS + 

0.1% Tween-20, incubated with donkey anti-rabbit AlexaFluor 594 antibody for 1 hour at room 

temperature in a darkened humidity chamber (Table 2), then washed twice for 5 minutes in PBS 

+ 0.1% Tween-20. Coverslips were then mounted onto microscope slides using Duolink 

mounting medium containing 4',6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI). Aortas 

were imaged using an Olympus FluoView 1000 confocal microscope. Fluorescence semi-

quantitation was calculated by quantifying the fluorescent signal from each respective channel 

relative to area of aortic tissue imaged via ImageJ Software.  

Treatment of aortic rings and myography: 

The following treatment method was performed as previously described.42 In brief, 

isolated murine thoracic aortas were isolated from mice and incubated with 10 µM FoxO 

inhibitor for 48 hours in 1 part Lonza Smooth Muscle Growth Medium-2 supplemented with 

SmGM-2 SingleQuot kit to 9 parts unsupplemented Lonza Smooth Muscle Growth Medium-2. 

Following treatment, aortas were cut into 2 mm rings before being placed on a two-pin 

myograph (DMT [Danish Myo Technology]). Aortic rings were then incubated in a 

physiological salt solution (PSS) for 30 minutes of rest, after which 500 mg tension was applied 

to the vessels. Vessel viability was tested using potassium physiological salt solution (KPSS) for 

15 minutes, followed by a triplicate of PSS washes and a 60-minute resting period. Cumulative 

concentration responses to phenylephrine (PE 10-9-10-5) and sodium nitroprusside (SNP, 10-9-10-

4) determined vessel contractility and relaxation responses, respectively. Finally, relaxation 

percentage was determined by normalizing cumulative SNP relaxation to maximal contraction at 

10-5 M PE and maximal dilation at 10-4 M SNP in Ca2+ free PSS. 
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Statistics: 

TransFAC analysis software was used to predict FoxO binding sites on sGC promoter 

DNA utilizing settings to include the minimum number of false positives (Fig. 1). For drug 

response and time course cell culture experiments, a student’s t-test was used to determine 

significance for Fig. 5E-5G, Fig. 6A, and Fig. 7 using GraphPad Prism version 7.03 software, 

and a one-way ANOVA was used to determine significance for Fig. 2B-2C, 2E-2F, Fig. 3A-3E, 

Fig. 4A-4B, 4D-4E, and Fig. 8A-8F using GraphPad Prism version 7.03 software. A two-way 

analysis of variance (2-way ANOVA) test for Fig. 6B was performed for each data point to 

determine significance using GraphPad Prism version 7.03 software. Calculated p-values 

represent significant difference from control group and error bar represent standard deviation 

(s.d.) and symbols for confidence were represented by the following: * p<0.05, ** p<0.01, *** 

p<0.001, **** p<0.0001. 

2.4 Results: 

We began our study by analyzing the promoters for both sGC α and β subunits for 

potential transcription factor binding sites. TRANSFAC analysis software was used to evaluate 

the human sGC promoter using the GRCh38/hg38 reference genome,169-170 and 158 and 91 

predicted binding sites were identified on the DNA +/-10kbp flanking the sGC α and sGC β 

transcription start sites, respectively. We discovered an abundance of FoxO family transcription 

factor binding sites clustered around 47 binding regions for sGC α and 36 binding regions for 

sGC β. Binding domains for FoxO family proteins in coordination with at least one other 

transcription factor clustered around 55 regions for sGCα (Table 3) and 10 regions for sGC β 
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(Table 4). A fragment of each gene’s promoter, 2000 base pairs upstream and 200 base pairs 

downstream of the transcription start site (TSS) was analyzed and showed 25 FoxO binding sites 

on the sGC α promoter (Fig. 1A) and 15 binding sites on the sGC β promoter (Fig. 1B). FoxO 

binding sites on sGC α clustered around 4 locations, namely 1900, 1800, 1000, and 100 base 

pairs upstream of the TSS. Likewise, the 2200 base pair sGC β promoter fragment contained 3 

clusters of predicted binding sites 1600, 1500 and 1200 base pairs upstream of the TSS.  

The enrichment of the FoxO transcription factors based upon in silico analyses led us to 

investigate whether our predictive promoter analysis could be validated. We tested this by 

treating rat aortic smooth muscle cells (RASMC) with a FoxO inhibitor drug AS1842856, which 

has been shown to inhibit all three FoxO isoforms expressed in VSMC: FoxO1, FoxO3, and 

FoxO4.168 In 48-hour AS1842846 drug (Fig. 2A) treatment experiments in RASMC, we 

observed a stoichiometric loss of sGC α (Fig. 2B) and sGC β (Fig. 2C) mRNA expression of 90-

95% at concentrations of 1 µM or greater. Over the same treatment period, a loss of 80% in the 

protein expression of sGC α (Fig. 2D and E) and a 74% decrease in sGC β (Fig. 2D and F) was 

observed  at concentrations of 1 µM or greater. Increasing concentrations of AS1842856 were 

accompanied by no change in FoxO1 mRNA expression (Fig. 3A), while an increase in FoxO3 

(Fig. 3B) and FoxO4 (Fig. 3C) mRNA expression was observed.  Classical FoxO transcriptional 

targets, such as growth arrest and DNA damage inducible α (Gadd45α) and glucose-6-

phosphatase (G6Pase) expression exhibited the same degree of decreased gene expression 

(greater than 90%) at concentrations of 1 µM or greater (Fig. 3D and 3E). These drug 

experiments show that inhibition of FoxO transcriptional activity was commensurate with a loss 

of sGC expression, suggesting that the FoxO family plays a regulatory role in sGC gene 

expression. Additionally, measurement of the gene expression of other cyclic nucleotide 
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generating-enzymes adenylate cyclase (ADCY) and particulate guanylyl cyclase (pGC) showed 

that FoxO inhibition did not have a significant dampening effect on their expression. In fact, 

FoxO inhibition caused increased gene expression of ADCY1 and pGC1 with no significant 

changes in gene expression of ADCY3 or pGC2 (Fig. 7).  

Assessment of FoxO temporal activity on sGC expression was then assessed using 

cultured RASMC treated with 1 µM FoxO inhibitor. We observed that sGC α (Fig. 4A and Fig. 

8A) and sGC β (Fig. 4B and Fig. 8B) mRNA expression significantly decreased after initial 

inhibitor administration and continued to decline with increased drug exposure time. Moreover, 

suppression of sGC mRNA was observed throughout the treatment period, reaching 80-90% 

reduction by 48 hours (Fig. 4A and 4B). As with the drug response experiment, the loss of sGC α 

and β protein expression  over time (Fig. 4C-4E) mirrored the observations in mRNA. sGC 

protein expression was marginally affected during the first few hours after FoxO inhibition, 

diminished by 32% loss of sGC α and 40% loss of sGC β within 6 hours (Fig. 8D-F), while 

significant losses in gene expression of sGC α (Fig. 8A), sGC β (Fig. 8B) and G6Pase (Fig. 8C) 

were observed within 3 hours of drug treatment. This trend was also observed in the longer time 

course experiments, wherein it reached maximal loss of 78% sGC α and 76% sGC β by the end 

of the 48-hour treatment period (Fig. 4D and 4E). Combined, these experiments provide 

evidence that the loss of sGC expression in cultured RASMC via inhibition of FoxO 

transcriptional activity occurs rapidly and remains impaired throughout a 48 hour treatment 

period. 

We then assessed the impact of FoxO inhibition on sGC protein expression within 

isolated blood vessels. Mouse thoracic aortas were isolated and treated with 10 µM FoxO 

inhibitor drug for 48 hours and then immunostained for sGC β, smooth muscle alpha actin 
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(ACTA2), and nuclei (DAPI). A higher concentration compared to culture experiments was 

necessary for loss of sGC expression, as studies have shown that sGC protein is highly stable in 

vivo (Groneberg et al., 2010). We chose to treat ex vivo tissue to circumvent the extensive 

mechanisms to stabilize sGC protein in vivo. FoxO inhibitor treatment decreased sGC β protein 

expression by 48% (Fig. 5A-A’, and 5E), but had no significant effect on the expression of 

smooth muscle alpha actin (ACTA2) (Fig. 5B-B’ and 5F), or on the density of nuclei staining 

(DAPI) within these isolated blood vessels (Fig. 5C-C’ and 5G). Taken together, these data 

show that inhibition of FoxO activity in ex vivo tissue significantly lowers sGC expression, 

consistent with our previous studies in RASMCs (Fig 5D-5D’).  

Next, the extent to which FoxO inhibition impacts sGC signaling function was examined 

by measuring RASMC cGMP production and isolated aorta vessel relaxation. Cultured RASMC 

experiments showed that after 1 µM FoxO inhibitor treatment for 48-hours, cGMP production 

was reduced 85-90% after stimulation with 0.5 to 1 µM of NO-donor DEA-NONOate (Fig. 6A). 

Similarly, ex vivo vessel myography studies on isolated murine aortas treated with 10 µM FoxO 

inhibitor for 48 hours had impaired vasodilation in response to concentrations of the NO donor 

sodium nitroprusside (SNP) greater than 100 nM (Fig. 6B). Collectively, these data suggest that 

the loss of sGC expression following FoxO inhibition results in a corresponding loss of NO-

dependent, sGC-mediated cGMP production and vasoreactivity.  

2.5 Discussion: 

sGC is crucial for NO-dependent relaxation to maintain cardiovascular health. To date, 

few studies have investigated the transcriptional regulation of sGC, and none have identified the 
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transcription factors responsible for the constitutive expression of sGC within the vasculature. 

Prior work showed the CCAAT binding factor regulates sGC gene expression within a 

neuroblastoma cell line.75 However, no such regulation of sGC was observed in VSMC, which 

prompted us to search for other transcription factors capable of initiating sGC transcription. One 

candidate family, the Forkhead box subclass O (FoxO) family of transcription factors, is known 

to regulate the development of new blood vessels and has been implicated in the prevention of 

pulmonary arterial hypertension.132,134,171 Our predictive analysis of the human GUCY1A3 and 

GUCY1B3 promoters show that a plethora of potential FoxO binding sites are found along the 

upstream genetic regions of both sGC subunits. These findings inspired further exploration of the 

impact of FoxO proteins on the expression and downstream function of sGC. 

In this study, we inhibited FoxO transcriptional activity using a pan-FoxO inhibitor 

(AS1842856) and observed significant decreases in the gene expression of sGC and well-

established targets of FoxO proteins. The decrease in sGC mRNA transcription demonstrated a 

stoichiometric decrease in both sGC α and sGC β gene expression. This inhibition rapidly 

attenuated sGC gene expression and signifies that the decrease in expression of one gene 

matched the expression of the other. Proportionate expression of sGC α and sGC β protein 

expression is necessary for optimal enzymatic activity of the obligate heterodimeric protein. 

Therefore, a symmetrical decrease in both sGC α and sGC β mRNA and protein suggests dual α 

and β regulation by FoxO transcriptional activity. Alternatively, it is possible that mechanisms 

which destabilize or stabilize sGC mRNA have the capability to alter sGC expression. For 

example, increases in the mRNA destabilizer, ARE/poly(U)-binding/degradation factor 1 

(AUF1), or loss of an sGC mRNA chaperone, human antigen R (HuR),  could contribute to the 
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observed loss of sGC mRNA,143,160-161 but exploration of these hypotheses requires further 

investigation.  

In a similar manner to the observations in sGC mRNA expression, FoxO inhibitor 

treatment decreased sGC α and β protein expression in cultured RASMC commensurate with the 

swift concentration-dependent loss of sGC mRNA expression.  Moreover, FoxO inhibition in 

mouse aortas caused a loss of sGC β protein expression and vascular reactivity. This likely 

suggests that the loss of protein expression and downstream activity occurs as a direct result of 

the loss of sGC mRNA, and not through post-translational regulatory mechanisms. Signaling 

molecules identified to have effects on sGC protein expression, such as transforming growth 

factor β (TGF β) in the developing lung, have decreased the expression of sGC α1 protein, 

however, no change was observed on the expression of sGC mRNA in response to hypoxia-

induced TGF β expression.172 Furthermore, the chaperone-dependent E3-ligase protein, C 

terminus of heat shock cognate 70-interacting protein (CHIP), which is responsible for 

degradation of sGC protein, also targets the FoxO proteins for proteasomal degradation,173-174 

Previous studies also indicated that the half-life of sGC β in cultured cells due to CHIP 

breakdown is roughly 7 hours,173 which was consistent with the observed rate of sGC protein 

loss after our FoxO inhibition experiments and acted as the reasoning for longer drug treatment 

to observe a loss of protein expression and functional responses in the vasculature. As a result, an 

effect of FoxO inhibitor treatment alone on CHIP activity would presumably affect both sGC and 

the FoxO proteins while mRNA expression would not be directly affected.  In response to the 

effects on sGC mRNA expression, the observed loss of sGC protein expression comes due to the 

lack of sGC transcript production. Additionally, FoxO inhibition caused a 90% reduction of 

cGMP production by sGC which presumably led to the observed increase in gene expression of 
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pGC1 as a compensatory mechanism. Despite this increase in pGC1 gene expression, the 

predominant method of cGMP production in smooth muscle is derived from sGC,26 thus it is 

unclear whether this compensatory increase would rescue lost function due to impaired NO-

dependent cGMP signaling. This effect on sGC protein expression both in culture and ex vivo 

tissue manifests in a loss of cGMP production and subsequent blunting of NO-dependent 

vasodilation. 

We hypothesize that multiple FoxO proteins play a role in the physiological transcription 

of sGC mRNA due to partial redundancy of the transcription factors, as well as a non-selective 

effect of the inhibitor drug on all FoxO family members. While we cannot rule out off-target 

effects of the FoxO inhibitor, our data thus far do not suggest an off-target effect is responsible 

for the regulation of sGC that we observe. Based upon our pharmacological data and that of 

Nagashima and colleagues when characterizing this FoxO inhibitor drug, disparate effects on 

transcriptional activity each of the FoxO proteins are observed after treatment.168 

Pharmacodynamic studies indicate that FoxO1 is 70% inhibited, FoxO4 is 20% inhibited, and 

FoxO3 is 3% inhibited at a treatment concentration of 100 nM.168 A recent study also used 

several in silico modeling methods to predict a -6.3 kcal/mol binding energy of AS1842856 to 

FoxO1 and identified 10 amino acids in the transactivation domain which constitute drug-protein 

hydrogen bonding and hydrophobic interactions.175 These studies suggest that AS1842856 is 

specific for the transactivation domain of FoxO1 which governs the activity of the transcription 

factor after binding the target DNA sequences. Additionally, the lower affinity for AS1842856 to 

elicit FoxO3 and FoxO4 inhibition likely explain the necessity for higher drug concentration to 

induce the loss of sGC transcription both in cultured cells and isolated tissue. Our experiments 

also showed that FoxO3 and FoxO4 mRNA expression are elevated in response to drug 
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treatment. These differential effects of the inhibitor drug on each of the isoforms suggest a 

complicated mechanism with multiple contributing factors in the compensatory expression of 

FoxO3 and FoxO4. Promoter analyses also showed that the FoxO transcription factors share 

affinity for the same conserved “TTGTTTAC” DNA motifs, which is supported by previous 

research.176-178 This detail may indicate that loss of one transcription factor alone may not be 

sufficient to achieve the observed knock down of sGC expression in this study. Further 

investigation is required to elucidate the contributions of each FoxO protein on the transcription 

of sGC.  

Many therapies available today, which include nitrovasodilator compounds that increase 

the bioavailability of NO,149 and drugs that target sGC directly,59-60,65,71,155 both promote second 

messenger cGMP signaling to improve cardiovascular health. Deficits in sGC transcription can 

eliminate the protein target of current therapeutic drugs, rendering many of them ineffective. 

Discovery of FoxO transcription factors as key regulators of the NO-sGC-cGMP signaling 

pathway within VSMC also presents a potential contraindication that should be monitored when 

considering FoxO inhibitor drugs such as AS1842856. Anomalies in blood pressure and other 

cardiovascular characteristics will be important biomarkers in future drug development studies 

involving the FoxO proteins. Taken together, the identification of the key transcription factors 

responsible for production of sGC mRNA is a vital component to our understanding how 

cardiovascular homeostasis is regulated.  

In summary, our study is the first to identify a family of transcription factors, namely the 

FoxO family, capable of regulating sGC expression in vascular smooth muscle. This reveals a 

pivotal new role for the FoxO transcription factors in modulating vascular tone and our next 

studies will investigate the specific role of each FoxO transcription factor in the regulation of 
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sGC transcription. The discovery of the FoxO family as transcriptional regulators for sGC not 

only provides an alternative therapeutic approach for blood pressure control, but also reveals a 

potentially novel mechanism that may impact sGC – related cardiovascular diseases.  
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Figure 1 

In silico analysis of human sGC promoter. 

Transcription factor binding site analysis of human A) sGC α and B) sGC β promoter sequence show predicted 

FoxO transcription factor binding sites for 2200 bp promoter fragments flanking the sGC transcription start sites. 

Numbers indicate distance from transcription start site (TSS). Arrows facing right indicate binding sites on the 

positive (+) DNA strand; Arrows facing left indicate binding sites on the negative (-) DNA strand.  
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Figure 2 

Treatment of RASMC with FoxO inhibitor drug, AS1842856 shows concentration-dependent 

decrease in sGC mRNA and protein expression. 

AS1842856 FoxO inhibitor A) drug structure and effect on B) sGC α mRNA expression or C) sGC β mRNA 

expression following 48-hour drug treatment. D) Western blot and quantification of 48-hour treatment with FoxO 

inhibitor on E) sGC α protein expression and F) sGC β protein expression. n=3 for all samples. One-way ANOVA 

test was used for determination of significance. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. Error bars 

represent s.d. 
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Figure 3 

Treatment of RASMC with FoxO inhibitor drug, AS1842856 shows concentration-dependent decrease in 

canonical FoxO targets with compensatory increase in FoxO3 and FoxO4 mRNA expression. 

qRT-PCR from RASMC treated with FoxO inhibitor. Response for 48-hour FoxO inhibitor treatment measuring A) 

FoxO1, B) FoxO3, C) FoxO4, D) Gadd45α, or E) G6Pase mRNA expression. n=3 for all samples. One-way 

ANOVA test was used for determination of significance. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. Error 

bars represent s.d. 
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Figure 4 

Treatment of RASMC with FoxO inhibitor drug, AS1842856 shows decrease in sGC mRNA and 

protein expression occurs rapidly. 

qRT-PCR of 1 µM FoxO inhibitor treatment for 12, 24, and 48 hours on A) sGC α mRNA expression or B) sGC β 

mRNA expression. C) Western blot and quantification of 1 µM FoxO inhibitor treatment for 12, 24, and 48 hours on 

D) sGC α protein expression and E) sGC β protein expression. n=3 for all samples. One-way ANOVA test was used 

for determination of significance. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. Error bars represent s.d. 
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Figure 5 

sGC expression in ex-vivo murine aortas treated with FoxO inhibitor is decreased. 

Representative staining for ex vivo murine aortas treated with 10 µM FoxO inhibitor for 48 hours showing A and 

A’) sGC β protein, B and B’) Smooth muscle α-actin (ACTA2), C and C’) DAPI, and D and D’) merged channels. 

Quantification of immunostaining for E) sGC β protein, F) ACTA2 protein, or G) DAPI staining. n=3 animals. 

Student’s unpaired t-test was used for determination of significance. * p<0.05. Error bars represent s.d. 

 
 

 



 

 36 

 

Figure 6 

NO-dependent signaling in RASMC and murine aortas is blunted after treatment with AS1842856. 

A) cGMP produced by cultured RASMC treated with AS1842856 and stimulated with NO donor DEA NONOate, 

n=4. Student’s unpaired t-test was used for determination of significance. B) Ex vivo murine aortic vessels treated 

with 10 μM FoxO inhibitor or DMSO for 48 hours and dilated using the NO donor, sodium nitroprusside (SNP), 

n=5. Two-way ANOVA was used to determine significance. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 

Error bars represent s.d. 
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Table 1: qRT-PCR Primers 

Primer Sequence 

Rat sGC α Forward CTC CCG TGA CCG CAT CAT 

Rat sGC α Reverse CCG GTG TTG ATG TTG ACT GA 

Rat sGC β Forward AAT TAC GGT CCC GAG GTG TG 

Rat sGC β Reverse GCA GCA GCC ACC AAG TCA TA 

Rat FoxO1 Forward CAC CTT GCT ATT CGT TTG C 

Rat FoxO1 Reverse CTG TCC TGA AGT GTC TGC 

Rat FoxO3 Forward CGG CTC ACT TTG TCC CAG AT 

Rat FoxO3 Reverse TCT TGC CAG TCC CTT CGT TC 

Rat FoxO4 Forward AGG CTC CTA CAC TTC TGT TAC TGG 

Rat FoxO4 Reverse CTT CAG TAG GAG ATG CAA GCA CAG 

Rat Gadd45 α Forward GCA GAG CAG AAG ATC GAA AG 

Rat Gadd45 α Reverse AAC AGA AAG CAC GAA TGA GG 

Rat G6Pase Forward GGC TCA CTT TCC CCA TCA GG 

Rat G6Pase Reverse ATC CAA GTC CGA AAC CAA ACA G 

Mammalian 18S Forward ACG GAC AGG ATT GAC AGA TTG 

Mammalian 18S Reverse TTA GCA TGC CAG AGT CTC GTT 

Rat ADCY1 Forward GTC GGA TGG ATA GCA CTG GG 

Rat ADCY1 Reverse TTG ACG CTG ACT TTG CCT CT 

Rat ADCY3 Forward AGC TCT GAG CGT GGC TAT TC 

Rat ADCY3 Reverse AGG CAG CTT CAT CCC ACA TC 

Rat GUCY2A Forward ACT CCT GGG GCA AGC G 
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Table 1 Continued 

Rat GUCY2A Reverse AAA TTG GGA GCG TCC GAG AG 

Rat GUCY2B Forward TCT CCT CGA CCA CCA AGG AT 

Rat GUCY2B Reverse GAT AAG GCA GGG GGA TTG TGT 

 

Table 1 Abbreviations: 

sGC - soluble guanylate cyclase, FoxO1 - forkhead box transcription factor class O1, FoxO3 - 
forkhead box class O3, FoxO4 - forkhead box class O4, Gadd45 α - growth arrest and DNA 
damage 45 α, G6Pase - glucose-6-phosphatase, 18S - 18S small ribosomal subunit, ADCY1 – 
adenylate cyclase 1, ADCY3 – adenylate cyclase 3, GUCY2A – guanylyl cyclase receptor 2A 
(aka [atrial] natriuretic peptide receptor 1), and GUCY2B – guanylyl cyclase receptor 2B (aka 
[brain] natriuretic peptide receptor 2).  
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Table 2: Antibodies 

Antibody Species Application Concentration Company Cat. Number 

sGC β rabbit WB, IHC 1:1000, 1:250 Cayman 160897 

sGC α rabbit WB 1:500 Sigma G4280 

α-tubulin mouse WB 1:10000 Sigma T6074 

Rabbit 

Alexafluor

594 

donkey IHC 1:250 Life 

Technologies 

A21207 

Goat 

Alexafluor

647 

donkey IHC 1:250 Life 

Technologies 

A21447 

Rat 

Alexafluor

647 

donkey IHC 1:250 Jackson 

Immuno 

Research 

712-605-153 

ACTA2 

conjugated 

Alexafluor

488 

mouse IHC 1:250 Sigma F3777 

 

Table 2 Legend: 

sGC denotes soluble guanylate cyclase, ACTA2 denotes smooth muscle α-actin, WB denotes 

western blot, and IHC denotes immunohistochemistry.  
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Table 3: Map of FoxO Binding on Human GUCY1A3 Region 

GUCY1A3 Promoter FoxO Binding (Table 3 Continued) 
Transcription 
Factor(s) 

Location start from 
TSS 

Location end from 
TS 

Length 
(bp) 

DNA 
Strand 

FoxO1:PDEF -9815 -9803 13 + 
GCMa:FoxO1 -9588 -9575 14 + 
FoxO1 -9177 -9172 6 - 
FoxO1 -9162 -9149 14 + 
FoxO1 -9162 -9149 14 - 
FoxO1 -9142 -9137 6 - 
FoxO1 -8915 -8910 6 - 
FoxO1 -8792 -8787 6 - 
ERF:FoxO1 -8530 -8517 14 - 
FoxO1:Elf-1 -8508 -8495 14 - 
FoxO1:HoxA10 -8458 -8445 14 - 
FoxO1:Elf-1 -8429 -8416 14 - 
FoxO1 -8345 -8332 14 - 
FoxO1:Elf-1 -8336 -8323 14 - 
FoxO1 -8209 -8204 6 - 
FoxO1 -7857 -7844 14 + 
FoxO1 -7854 -7849 6 - 
FoxO1 -7730 -7725 6 - 
FoxO3 -7479 -7468 12 + 
FoxO1 -7164 -7151 14 - 
FoxO3 -7164 -7151 14 + 
FoxO1:HoxA10 -7164 -7151 14 + 
FoxO3 -7164 -7151 14 - 
FoxO1:PDEF -7066 -7054 13 - 
FoxO1:HoxA10 -6659 -6646 14 - 
FoxO1:HoxA10 -6643 -6630 14 - 
FoxO4 -6545 -6535 11 - 
FoxO3 -6545 -6534 12 - 
FoxO4 -6545 -6532 14 + 
FoxO3 -6545 -6532 14 + 
FoxO1 -6545 -6532 14 + 
FoxO1 -6544 -6534 11 + 
FoxO1 -6542 -6537 6 - 
FoxO3 -6542 -6535 8 - 
FoxO1 -6542 -6535 8 - 
FoxO6 -6541 -6535 7 - 
FoxO3 -6541 -6535 7 - 
GCMa:FoxO1 -5953 -5940 14 + 
GCMa:FoxO1 -5749 -5736 14 - 
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GUCY1A3 Promoter FoxO Binding (Table 3 Continued) 
Transcription 
Factor(s) 

Location start from 
TSS 

Location end from 
TS 

Length 
(bp) 

DNA 
Strand 

FoxO1 -5522 -5517 6 - 
FoxO1 -5362 -5355 8 - 
FoxO1 -5360 -5355 6 + 
FoxO1:Elf-1 -5352 -5339 14 + 
FoxO1:Elf-1 -5092 -5079 14 - 
GCMa:FoxO1 -5059 -5046 14 - 
FoxO1:HoxA10 -5036 -5023 14 + 
FoxO1 -4995 -4990 6 - 
FoxO1:Elf-1 -4680 -4667 14 - 
FoxO1 -3416 -3411 6 - 
FoxO1:ETV7 -2794 -2774 21 - 
FoxO1 -2587 -2582 6 + 
FoxO1 -2450 -2445 6 + 
FoxO1:Elf-1 -2135 -2122 14 - 
FoxO1:HoxA10 -1941 -1928 14 - 
FoxO1 -1905 -1898 8 - 
FoxO1 -1905 -1897 9 + 
FoxO1 -1903 -1898 6 + 
FoxO1 -1812 -1799 14 + 
FoxO3 -1807 -1794 14 + 
FoxO3 -1807 -1794 14 + 
FoxO1 -1807 -1794 14 + 
FoxO3 -1807 -1794 14 - 
FoxO1 -1807 -1794 14 - 
FoxO1:PDEF -1549 -1537 13 - 
GCMa:FoxO1 -1497 -1484 14 - 
FoxO1 -1277 -1272 6 + 
GCMa:FoxO1 -1253 -1240 14 + 
FoxO1 -1078 -1073 6 - 
FoxO1 -1000 -993 8 - 
FoxO1:HoxA10 -1000 -987 14 + 
FoxO1:ETV7 -1000 -980 21 + 
FoxO1 -998 -993 6 + 
FoxO1 -124 -111 14 + 
FoxO1 -113 -105 9 - 
FoxO1 -112 -107 6 - 
FoxO1 -112 -105 8 + 
FoxO1:ETV7 -81 -61 21 - 
FoxO1:ETV7 38 58 21 + 
FoxO1:Elf-1 96 109 14 - 
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GUCY1A3 Promoter FoxO Binding (Table 3 Continued) 
Transcription 
Factor(s) 

Location start from 
TSS 

Location end from 
TS 

Length 
(bp) 

DNA 
Strand 

FoxO1:Elf-1 326 339 14 + 
E2F-3:FoxO6 643 659 17 + 
FoxO1:PDEF 667 679 13 - 
FoxO1:ETV7 1222 1242 21 + 
E2F-3:FoxO6 1313 1329 17 - 
FoxO1:Elf-1 1363 1376 14 - 
FoxO1:ETV7 1854 1874 21 - 
FoxO1:Elk-1 1861 1874 14 - 
FoxO1:Net 1861 1874 14 - 
ERF:FoxO1 1861 1874 14 - 
GCMa:FoxO1 1870 1883 14 + 
FoxO1 2157 2162 6 + 
FoxO1:ETV7 2263 2283 21 + 
FoxO1 2339 2344 6 + 
FoxO1:HoxA10 2720 2733 14 + 
FoxO1 2804 2810 7 - 
FoxO1 2804 2811 8 + 
FoxO1 2805 2810 6 + 
FoxO1 2918 2923 6 + 
FoxO1:ETV7 3193 3213 21 + 
FoxO1 3473 3486 14 + 
FoxO1 3473 3486 14 - 
FoxO3 3473 3486 14 - 
FoxO1 3501 3514 14 - 
FoxO3 3537 3548 12 + 
FoxO1 3538 3545 8 - 
FoxO1 3538 3546 9 + 
FoxO1 3540 3545 6 + 
FoxO1 3618 3623 6 - 
FoxO1 4036 4041 6 + 
FoxO1 4052 4057 6 + 
FoxO1:Elk-1 4135 4148 14 + 
FoxO1:Net 4135 4148 14 + 
E2F-3:FoxO6 4145 4161 17 + 
FoxO1:HoxA10 4391 4404 14 - 
FoxO4 4424 4434 11 - 
FoxO3 4424 4435 12 - 
FoxO1 4426 4435 10 - 
FoxO1 4427 4432 6 - 
FoxO1:Elk-1 4650 4663 14 - 
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GUCY1A3 Promoter FoxO Binding (Table 3 Continued) 
Transcription 
Factor(s) 

Location start from 
TSS 

Location end from 
TS 

Length 
(bp) 

DNA 
Strand 

ERF:FoxO1 4650 4663 14 - 
FoxO1:Net 4650 4663 14 - 
GCMa:FoxO1 4830 4843 14 - 
FoxO1:PDEF 4888 4900 13 + 
FoxO1 4923 4929 7 - 
FoxO1:Elf-1 5104 5117 14 - 
FoxO1:Elf-1 5183 5196 14 - 
FoxO1:PDEF 5563 5575 13 + 
FoxO1:HoxA10 5574 5587 14 + 
FoxO1 5853 5860 8 - 
FoxO1 5853 5861 9 + 
FoxO1 5855 5860 6 + 
FoxO1 6070 6076 7 - 
FoxO1 6267 6272 6 - 
FoxO1 6291 6296 6 + 
FoxO1 6296 6301 6 + 
FoxO1:Net 6313 6326 14 - 
ERF:FoxO1 6313 6326 14 - 
FoxO1:ETV7 6423 6443 21 + 
FoxO1:ETV7 6428 6448 21 - 
E2F-3:FoxO6 6581 6598 18 + 
FoxO1 6802 6807 6 + 
FoxO1:PDEF 6809 6821 13 + 
FoxO1:HoxA10 7167 7180 14 - 
E2F-3:FoxO6 7512 7528 17 - 
FoxO1 7668 7673 6 + 
FoxO1 7676 7681 6 + 
FoxO1 7745 7758 14 + 
E2F-3:FoxO6 8396 8412 17 - 
GCMa:FoxO1 8670 8683 14 + 
FoxO1 8754 8767 14 - 
FoxO1 8754 8767 14 - 
FoxO3 8754 8767 14 + 
FoxO1 8790 8795 6 + 
FoxO1 8969 8974 6 - 
FoxO1:HoxA10 9382 9395 14 - 
FoxO1:Elf-1 9454 9467 14 + 
FoxO1:Elf-1 9542 9555 14 + 
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Table 3 Legend 

E2F-3 denotes E2F transcription factor 3, Elf-1 denotes erythroblast transformation-specific-like 

factor 1, Elk1 denotes erythroblast transformation-specific-like gene 1, ERF denotes erythroblast 

transformation-specific domain-containing factor, Erm denotes erythroblast transformation-

specific related molecule, ETV7 denotes erythroblast transformation variant 7, FoxO1 denotes 

forkhead box class O1, FoxO3 denotes forkhead box class O3, FoxO4 denotes forkhead box 

class O4, FoxO6 denotes forkhead box class O6, GCMa denotes glial cell missing motif, 

HoxA10 denotes homeobox protein A10, Net denotes erythroblast containing transformation-

specific repressor protein, and PDEF denotes prostate-derived erythrocyte transformation-

specific factor.   
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Table 4: Map of FoxO Binding on Human GUCY1B3 Region 

GUCY1B3 Promoter FoxO Binding (Table 4 Continued) 
Transcription 
Factor(s) 

Location start from 
TSS 

Location end from 
TSS 

Length 
(bp) 

DNA 
Strand 

FoxO1 -9807 -9802 6 - 
FoxO1 -9807 -9800 8 + 
FoxO1 -8902 -8897 6 + 
Erm:FoxO1 -7513 -7501 13 + 
FoxO1:PEA3 -7513 -7500 14 + 
FoxO1 -6347 -6339 9 - 
FoxO1 -6346 -6341 6 - 
FoxO1 -6346 -6339 8 + 
FoxO1 -6340 -6335 6 - 
FoxO1 -6197 -6192 6 - 
FoxO1 -5912 -5899 14 - 
FoxO3 -5910 -5903 8 + 
FoxO1 -5910 -5900 11 - 
FoxO6 -5909 -5903 7 + 
FoxO4 -5909 -5903 7 + 
FoxO3 -5909 -5902 8 + 
FoxO1 -5909 -5902 8 + 
FoxO1 -5659 -5654 6 + 
FoxO1:HoxA10 -5330 -5323 8 - 
FoxO1 -5330 -5317 14 + 
FoxO1:PEA3 -5328 -5323 6 + 
FoxO1 -5135 -5122 14 + 
FoxO1 -5066 -5058 9 - 
FoxO1 -5065 -5060 6 - 
FoxO1 -5065 -5058 8 + 
FoxO1:HoxB13 -4726 -4710 17 + 
FoxO3 -4536 -4525 12 + 
FoxO1 -4533 -4528 6 + 
FoxO3 -4305 -4294 12 - 
FoxO1 -4302 -4297 6 - 
FoxO3 -4246 -4235 12 - 
FoxO1 -4244 -4235 10 - 
FoxO1 -4243 -4238 6 - 
FoxO1 -3617 -3612 6 + 
FoxO1 -2878 -2873 6 + 
FoxO1 -2763 -2756 8 - 
FoxO1 -2761 -2756 6 + 
FoxO1 -1347 -1342 6 - 
FoxO3 -1276 -1265 12 - 
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GUCY1B3 Promoter FoxO Binding (Table 4 Continued) 
Transcription 
Factor(s) 

Location start from 
TSS 

Location end from 
TSS 

Length 
(bp) 

DNA 
Strand 

FoxO1 -1273 -1268 6 - 
FoxO1 -1266 -1261 6 + 
FoxO1 -1187 -1182 6 - 
FoxO1 -1182 -1177 6 - 
FoxO1 -1178 -1173 6 - 
FoxO1 -1100 -1095 6 - 
FoxO1:HoxA10 -945 -932 14 + 
ERF:FoxO1 -923 -910 14 - 
FoxO1:PEA3 -923 -910 14 - 
FoxO1:ETV1 466 477 12 + 
FoxO1:ETV1 1416 1427 12 + 
FoxO1 2087 2092 6 + 
FoxO1 2241 2246 6 - 
FoxO4 3467 3477 11 - 
FoxO3 3467 3478 12 - 
FoxO3 3467 3480 14 + 
FoxO3 3468 3480 13 - 
FoxO1 3469 3478 10 - 
FoxO1 3470 3475 6 - 
FoxO1 3696 3701 6 + 
FoxO1 4677 4682 6 + 
FoxO1 4681 4686 6 + 
FoxO1 5432 5440 9 - 
FoxO1 5433 5438 6 - 
FoxO1 5433 5440 8 + 
FoxO1 5907 5912 6 - 
FoxO1 5960 5965 6 + 
FoxO1 5964 5969 6 + 
FoxO1 6469 6474 6 + 
FoxO1:HoxA10 7151 7164 14 + 
FoxO3 7303 7314 12 - 
FoxO3 7303 7316 14 + 
FoxO3 7304 7316 13 - 
FoxO1 7305 7314 10 - 
FoxO1 7306 7311 6 - 
FoxO1 7708 7721 14 - 
FoxO3 7710 7717 8 + 
FoxO1 7710 7720 11 - 
FoxO4 7711 7717 7 + 
FoxO6 7711 7717 7 + 
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GUCY1B3 Promoter FoxO Binding (Table 4 Continued) 
Transcription 
Factor(s) 

Location start from 
TSS 

Location end from 
TSS 

Length 
(bp) 

DNA 
Strand 

FoxO1 7711 7718 8 + 
FoxO1 9377 9382 6 - 
FoxO1 9428 9441 14 + 
FoxO1 9429 9439 11 + 
FoxO1 9431 9437 7 - 
FoxO6 9432 9438 7 - 
FoxO3 9432 9439 8 - 
FoxO1:HoxA10 9861 9874 14 - 
FoxO3 9864 9875 12 - 
FoxO1 9866 9875 10 - 
FoxO1 9867 9872 6 - 
FoxO1 9915 9920 6 - 
 

Table 4 Legend: 

ERF denotes erythroblast transformation-specific domain-containing factor, Erm denotes 

erythroblast transformation-specific related molecule, ETV1 denotes erythroblast transformation 

variant 1, FoxO1 denotes forkhead box class O1, FoxO3 denotes forkhead box class O3, FoxO4 

denotes forkhead box class O4, FoxO6 denotes forkhead box class O6, HoxA10 denotes 

homeobox protein A10, HoxB13 denotes homeobox protein B13, and PEA3 denotes erythrocyte 

transformation-like factor PEA3. 
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Figure 7 

Treatment of RASMC with FoxO inhibitor drug, AS1842856 shows changes in gene expression with 

decrease in sGC mRNA. 

qRT-PCR of 1 µM FoxO inhibitor treatment measuring the gene expression of cyclic nucleotide producers or 

classical FoxO target, G6Pase. n=3 for all samples. Student’s unpaired t-test was used for determination of 

significance. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. Error bars represent s.d.  

 

  



 

 49 

 

 

Figure 8 

Treatment of RASMC with FoxO inhibitor drug, AS1842856 shows rapid decrease in sGC mRNA  

followed by loss of protein expression. 

qRT-PCR of 1 µM FoxO inhibitor treatment for 1.5, 3, and 6 hours on A) sGC α mRNA 

expression or B) sGC β mRNA expression. C) Western blot and quantification of 1 µM FoxO 

inhibitor treatment for 1.5, 3, and 6 hours on D) sGC α protein expression and E) sGC β protein 

expression. n=3 for all samples. One-way analysis of variance test was used for determination of 

significance. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. Error bars represent s.d.  
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3.0 Angiotensin II Augments Renovascular sGC Expression Via an AT1R - FoxO 

Transcription Factor Signaling Axis 

Joseph C. Galley, B.A.,1,2 Scott A. Hahn, M.S.,1 Megan P. Miller, B.S.,1 Brittany G. 
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1Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, 
Pennsylvania; 

 
2Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, 

Pennsylvania; 
 

3Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, 
Pennsylvania 

 

Copyright British Journal of Pharmacology, 2021 

3.1 Summary: 

Background and Purpose: Reduced renal blood flow triggers activation of the renin-

angiotensin-aldosterone system (RAAS) leading to renovascular hypertension. Renal vascular 

smooth muscle expression of the nitric oxide (NO) receptor, soluble guanylyl cyclase (sGC), 

modulates the vasodilatory response needed to control renal vascular tone and blood flow. Here, 

we tested if angiotensin II (Ang II) impacts sGC expression via an Ang II type 1 receptor 

(AT1R)-forkhead box subclass O (FoxO) transcription factor dependent mechanism. 

Experimental Approach: Using a murine two-kidney-one-clip (2K1C) renovascular 

hypertension model, we measured renal artery vasodilatory function and sGC expression. 

Additionally, we conducted cell culture studies using rat renal pre-glomerular smooth muscle 
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cells (RPGSMCs) to test the in vitro mechanistic effects of Ang II treatment on sGC expression 

and downstream function. Key Results: Contralateral, unclipped renal arteries in 2K1C mice 

showed increased NO-dependent vasorelaxation compared to sham control mice. 

Immunofluorescence studies revealed increased sGC protein expression in 2K1C contralateral 

renal arteries over sham controls. RPGSMCs treated with Ang II caused a significant 

upregulation of sGC mRNA and protein expression as well as downstream sGC-dependent 

signaling. Ang II signaling effects on sGC expression occurred through an AT1R and FoxO 

transcription factor-dependent mechanism at both the mRNA and protein expression levels. 

Conclusion and Implications: Renal artery smooth muscle, in vivo and in vitro, upregulate 

expression of sGC following RAAS activity. In both cases, upregulation of sGC leads to elevated 

downstream cGMP signaling, suggesting a previously unrecognized protective mechanism to 

improve renal blood flow in the uninjured contralateral renal artery.   
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3.1.1  Graphical Summary: 

Renal artery stenosis causes elevated circulating Angiotensin II. This, in turn, leads to contraction and hypertrophy 

of smooth muscle and elevated blood pressure. Additionally, soluble guanylyl cyclase (sGC) expression and cGMP 

in the non-stenotic renal artery increases allowing for increased blood flow to the healthy kidney. 
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3.2 Introduction: 

Renovascular hypertensive patients constitute 24.2% of all patients with drug resistant 

hypertension,179 a condition characterized by uncontrolled hypertension despite treatment with 

three or more adequately dosed anti-hypertensive therapies.180 While the prevalence in the 

general population is low (1-2%),181 renovascular hypertension is more common in elderly 

patients over age 65 (6.8%) and is present in nearly 40% of individuals with established 

peripheral or coronary artery disease.182-183 Approximately 90% of renovascular hypertension 

stems from atherosclerotic renal artery stenosis (ARAS).184-185 ARAS leads to obstruction of 

renal artery blood flow, resulting in renin-angiotensin-aldosterone-system (RAAS) activation and 

subsequent elevation of circulating blood plasma angiotensin II (Ang II).186 In response, the non-

stenosed renal artery is subjected to increased blood flow leading to augmented sodium and 

water excretion by the kidney. This process, known as pressure natriuresis, helps to mitigate 

increased fluid retention, volume overload, and systemic blood pressure.187  

A main contributor to pressure natriuresis is endothelial-derived nitric oxide (NO), which 

has been shown to play a critical role in the dilation of the renal vasculature.188-191 NO diffuses to 

vascular smooth muscle cells (VSMCs) where it binds its cognate receptor, soluble guanylyl 

cyclase (sGC), which produces cGMP to elicit vasorelaxation.23,149,192 Of clinical importance, 

sGC modulating compounds, which enhance cGMP production, have been approved for 

treatment of pathologies such as pulmonary arterial hypertension, chronic thromboembolic 

pulmonary hypertension, and heart failure with reduced ejection fraction,58-60 and many are 

currently under investigation for treatment of renal and cardiovascular diseases.193 In addition, 

we have recently shown that basal sGC expression is regulated by the forkhead box subclass O 

(FoxO) transcription factors in aortic VSMCs.147  
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Based on this evidence, we hypothesized that renal artery smooth muscle responds to 

elevated RAAS signaling with amplified sGC-mediated production of cGMP. In this study, we 

used a two-kidney-one-clip (2K1C) hypertension model, wherein blood flow to one renal artery 

is reduced,186 as a model of RAAS activation and renal hypertension. We find that renal smooth 

muscle responds to increased levels of Ang II by increasing the expression of sGC. This 

increased sGC expression occurs in an Ang II type 1 receptor (AT1R) and FoxO transcription 

factor-dependent manner. Consequently, this results in enhanced downstream cGMP signaling 

and increased smooth muscle relaxation. These studies are the first to show that exposure of 

renal smooth muscle to elevated Ang II results in a protective mechanism whereby sGC 

expression is increased, leading to elevated cGMP production and vasorelaxation. 

3.3 Methods: 

Statement on Ethical Use of Animals: 

Rodent models were used in this study, as they have physiological mechanisms similar to 

the mechanisms of human blood pressure control. Mechanistic studies to understand the changes 

in multi-organ signaling and physiology were then studied in more detail at the molecular level 

in cell culture studies. These two main approaches complement one another and reduce the 

number of animals used. All animals were used in ethical compliance with the University of 

Pittsburgh’s Institutional Animal Care and Use Committee (Protocol #IS00016317 and 

IS00015180). For all experiments, a priori power analyses were performed to determine the 

number of animals necessary to determine whether differences observed were significant. For ex 



 

 55 

vivo procedures, blinding occurred post tissue harvesting and kidney removal so that the identity 

of clip vs. sham groups were unknown for myography to avoid bias.  

2K1C Renal Stenosis Model: 

Renovascular hypertension through a 2K1C model was produced as described 

previously.194-195 C57B6/J male mice (Jackson Laboratories) were fed a 0.1% NaCl diet 

(D17020) for 1 week prior to 2K1C surgery and thereafter. Mice were anesthetized with 2-3% 

isoflurane in 100% O2. Through a retroperitoneal incision, the right renal artery was carefully 

isolated from the renal nerve. A 0.5-millimeter polytetrafluoroethylene catheter (ID: 0.008 X 

OD: 0.014; Braintree Scientific, SUBL140) was cut longitudinally and placed around the renal 

artery, distal to the adrenal artery. The catheter was then secured in place with two 10-0 sutures 

to attenuate blood flow and induce renal stenosis. The mice that received this procedure are the 

renal clip group of mice. For sham control procedures, renal arteries were isolated from the renal 

nerve, but a catheter was not placed. Post-surgery, animals were treated by subcutaneous 

injection of 0.03 mg/kg buprenorphine twice/day for 48 hours (Henry Schein Inc.) and 2 mg/kg 

enrofloxacin (Norbrook Laboratories) as previously published. Mice were then sacrificed 19-21 

days following renal clip or sham surgery. Vascular reactivity for the aorta and mesenteric 

arteries using these mice was reported previously.195 The renal arteries from these same animals 

are analyzed herein. A separate, second cohort of animals using this model (n=6 for each group) 

were used for immunohistochemical analyses in this study. 

Animal harvesting for immunohistochemical analysis: 

Male C57BL6/J mice with or without renal stenosis were sacrificed via CO2 asphyxiation 

followed by cervical dislocation. The artery contralateral to renal clip (left renal artery) was 

excised and placed in 4% paraformaldehyde in PBS for 24 hours then placed in 100% ethanol for 
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processing.152 Tissues were embedded in paraffin and sectioned at 8 micron thickness. 

Immunohistochemical analysis was performed as previously described.43 Tissue sections were 

deparaffinized with xylenes and rehydrated by sequentially decreased concentrations of ethanol 

(100%-70%) followed by deionized distilled water. Heat-mediated antigen retrieval was then 

performed using citric acid-buffer (Vector Laboratories, H-3300) for 20 minutes, then sections 

cooled for 30 minutes at 4ºC. Sections were then blocked in 10% horse serum (Sigma H1138) in 

PBS (MilliporeSigma, H1270) at room temperature for 1 hour. For Figure 10, primary antibodies 

(See Table 6) for sGCβ (Abcam, ab154841, 1:100) and von Willebrand Factor (vWF; Abcam, 

ab11713, 1:250) were incubated on sections in PBS containing 10% horse serum overnight at 

4ºC in a humidity chamber. One section per slide was stained with rabbit (Vector Laboratories, I-

1000) IgG control to match the corresponding sGCβ antibody concentration. Tissue sections 

were washed thrice for 5 minutes with PBS. For Figure 15, incubation for sGCα (Cayman, 

160895, 1:80) and corresponding IgG control were performed on tissue sections in 10% horse 

serum in PBS overnight at 4ºC in a humidity chamber. Tissue sections were then washed thrice 

for 5 minutes in PBS and then incubated for 1 hour at room temperature using PBS containing 

10% horse serum and vWF primary antibody. These samples were washed thrice again in PBS 

for 5 minutes before the next steps. For all tissues used in Figure 10 and Figure 15, sections were 

then incubated in PBS containing 10% horse serum with smooth muscle α-actin (ACTA2) 

primary antibody pre-conjugated to FITC fluorophore (MilliporeSigma, F3777 clone 1A4, 

1:500), 4′,6-diamidino-2-phenylindole (DAPI, D3571, Thermo Fisher Scientific, 1:100) and 

secondary antibodies (See Table 6) donkey anti-rabbit AlexaFluor 594 (Invitrogen, A-21207, 

1:250) and donkey anti-sheep AlexaFluor 647 (Invitrogen, A-21447, 1:250) for 1 hour at room 

temperature in a humidity chamber. Tissue sections were then washed thrice in PBS for 5 
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minutes before being mounted on coverslips using Prolong Gold Antifade mounting medium 

with DAPI reagent (Invitrogen, P36931). Immunohistochemistry staining of renal arteries were 

imaged using a Nikon A1 Confocal Laser Microscope at the University of Pittsburgh Center for 

Biological Imaging. Images were taken with 40X objective magnification with 1024 x 1024 pixel 

resolution. Increments for Z-stacks of 1 μm were applied for stained and IgG controls. In ImageJ, 

a region of interest was drawn around ACTA2+ areas representing the smooth muscle cell tunica 

media then superimposed on sGCβ images for quantification of medial smooth muscle sGCα and 

sGCβ expression per medial area.  

Treatment of Renal Artery Rings and Myography: 

The following treatment method was performed as previously described.43 In brief, 

murine renal arteries were rapidly cleaned, excised and placed in room temperature physiological 

salt solution (PSS) which contains: 119 mM NaCl, 4.7 mM KCl, 1.17mM MgSO4, 1.18 mM 

KH2PO4, 5.5 mM D-glucose, 25 mM NaHCO3, 0.027 mM EDTA, and 2.5 mM CaCl2. Arteries 

were cut into 2-millimeter rings, then placed on a small vessel wire myograph (DMT 620M) 

filled with PSS (pH 7.4 when bubbled with 95% O2 5% CO2 at 37°). Following a 30 minute rest, 

arteries were gradually stretched to a tension corresponding to a transmural pressure of 

80mmHg. Arteries were then constricted with a dose response of phenylephrine (50nM-50mM). 

Blood vessels that failed to constrict in response to phenylephrine were excluded from the 

experiments on the grounds that they could not produce any contractile response. Rings were 

washed 3 times with PSS and allowed to rest for 30 minutes. A final wash was performed, and 

arteries were rested for an additional 10 minutes. Following the final 10 minute rest period, 

arteries were constricted with a single dose of phenylephrine (1 mM) wherein all vessels reached 

at least 50% of maximal contraction. After reaching a plateau, increasing concentrations of 
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acetylcholine (ACh; 10 nM - 1 μM, Sigma, MA6625) or sodium nitroprusside (SNP; 10 nM - 10 

μM, Sigma, 71778) were administered to assess endothelium-dependent and NO-dependent 

relaxation, respectively. Subsequently, 100 μM SNP in Ca2+-free PSS was added to the vessels to 

determine their maximal dilatory responses. The percentage relaxation reported represents the 

data normalized to the difference between maximal dilation and maximal constriction. For the 

cohort of animals where renal arteries were treated with ACh vasodilator, n=7 animals for sham 

surgery and n=8 animals for 2K1C (renal clip) surgery. For the cohort of animals where renal 

arteries were treated with SNP vasodilator, n=5 animals for sham surgery and n=8 animals for 

2K1C (renal clip) surgery.   

Cell culture, drug, and peptide treatments:  

Renal pre-glomerular smooth muscle cells (RPGSMCs) were isolated from Wistar-Kyoto 

rats as previously described,196 cultured at 37ºC in SmGm-2 fully supplemented growth medium 

(Lonza, CC-3181) containing 5% FBS and SmGm-2 SingleQuot (Lonza, CC-3182) reagents and 

passaged using 1X trypsin–EDTA (Gibco, 10779413) dissolved in 1X PBS. RPGSMCs were 

used between passages 2-7 for all experiments, after which they were discarded. Cells were 

cultured to approximately 90% confluency (approximately 48-72 hours) prior to any drug 

treatment. During drug treatments, RPGSMCs were washed twice with 1X PBS and cultured in 

serum and growth factor starved Dulbecco’s Modified Eagle Medium/Ham’s F12 (DMEM/F12, 

Sigma, D6421) media containing: 100 U/mL penicillin/streptomycin (Gibco, 15140-122), 1.6 

mM L-glutamine (Gibco, 25030-081), 200 μM L-ascorbic acid (Sigma, 50-81-7), 5 μg/mL apo-

transferrin (Sigma, 11096-37-0), and 6.25 ng/mL sodium-selenite (Sigma, 10102-18-8). Losartan 

(Cayman, 124750-99-8), PD123319 (Sigma, 136676-91-0), and AS18428456 FoxO inhibitor 

(Cayman, A15871) were dissolved in dimethyl sulfoxide (DMSO, D8418), while Angiotensin II 
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(Ang II, Sigma, A9525) peptide was dissolved in sterile deionized distilled water for stock 

solutions prior to treatment. Treatment concentrations were 100 nM Losartan, 100 nM 

PD123319, 1 μM AS1842856, and 1 μM Ang II. Control treatments involved 0.1% DMSO 

treatment for 48 hours prior to harvesting. For NO stimulation experiments, cells were pretreated 

with 10 μM sildenafil citrate (Sigma, PZ0003) for 45 minutes to inhibit cGMP-specific 

phosphodiesterase 5 activity, and then stimulated with the NO-donor, diethylammonium (Z)-1-

(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA-NONOate, Cayman, 82100) for 15 minutes. 

qRT-PCR: 

RPGSMCs were cultured in 6-well culture plates until approximately 90% confluent 

before being washed and switched to serum and growth factor starved media. Cells were then 

subjected to 48-hour drug and/or peptide treatment before lysis in TRIzol reagent 

(ThermoFisher, 15596026). The Direct-zol RNA miniprep plus (Zymo, R2051) manufacturer’s 

protocol was used to isolate RNA from cells. For cDNA synthesis, the SuperScript IV First 

Strand Synthesis (ThermoFisher,18091050) kit manufacturer’s protocol was used. For 

quantitative real time PCR analysis, the PowerUp SYBR Green Master Mix (ThermoFisher, 

A25742) and 1 μM target primer (Table 7) were mixed according to manufacturer’s protocol 

with settings for 40 PCR cycles, 95°C melting temperature, 58°C annealing temperature, and 

72°C extension temperature set on a QuantStudio 5 Real-Time 384-well PCR System 

(ThermoFisher A28140) for amplification. The Δ-Δ-ct value fold change in expression was used 

in order to control for cell number and RNA quality with values normalized to an 18S 

housekeeping gene transcript. 
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Western blot: 

RPGSMCs were cultured in 12-well culture dishes until approximately 90% confluent 

before being switched to serum and growth factor starved media for 48 hours. Cells were then 

washed with PBS and 1X Cell Lysis Buffer (Cell Signaling, 9803) containing: (pH 7.5) 20 mM 

Tris-HCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton, 1 mM β-glycerophosphate, 1 mM 

Na3VO4, 1 μg/mL leupeptin, 2.5 mM sodium pyrophosphate, and additional 1X protease 

(MilliporeSigma, P8340) and phosphatase inhibitors (MilliporeSigma, P5726) at 4ºC. A 

bicinchoninic acid kit (ThermoFisher, 23225) was used according to the manufacturer’s protocol 

to quantify lysate protein concentration and approximately 15 μg of protein was used for each 

western blot lane. Lysates were boiled at 100ºC for 10 minutes and Laemmli buffer was added 

such that final lysates contained: (pH 6.8) 31.5 mM Tris-HCl, 10% glycerol, 1% SDS, 2.5% β-

mercaptoethanol and 0.005% Bromophenol Blue before being loaded onto 4-12% gradient 

BisTris polyacrylamide gels (Invitrogen Life Technologies, NP0335BOX). Proteins were 

transferred from polyacrylamide gels to nitrocellulose membranes (LiCor, 926-31092) and 

blocked for approximately 30 minutes at room temperature with 1% bovine serum albumin 

(BSA) in PBS. Membranes were incubated in primary antibody (Table 6) solution containing 1% 

BSA in PBS with 0.1% Tween 20 overnight at 4ºC. Blots were then washed with 1X PBS with 

0.05% Tween 20. Membranes were then incubated for one hour at room temperature in 

secondary antibody solutions containing 1:1 LiCor Intercept Buffer (LiCor, 927-70001): 1X PBS 

with 0.2% Tween 20 and corresponding secondary antibodies (Table 6). An Odyssey CLx 

Imager (LiCor, 9140) was used for fluorescence visualization and semi-quantitative analysis was 

performed using Image Studio software.  
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Immunocytochemical analysis of hypertrophy: 

RPGSMCs were cultured on a single 24 x 50 millimeter cover glass (VWR, 16004-322) 

to approximately 90% confluency and then serum starved for 48 hours in the DMEM/F12 

starvation media described above. Media was then gently aspirated by hand and the cover glass 

washed with PBS containing 0.1% Triton X-100 for 5 minutes. Cells were then fixed in 4% 

paraformaldehyde in PBS for 30 minutes at room temperature and then gently washed twice with 

PBS containing 0.1% Triton X-100. RPGSMCs blocking was carried out in PBS with 10% horse 

serum for 1 hour at room temperature. Primary antibody incubation for rabbit-sGCβ (Cayman, 

160897, 1:200) antibody (See Table 6)  was carried out in PBS with 10% horse serum overnight 

at 4ºC in a humidified chamber. Cells were then gently washed thrice with PBS for 5 minutes 

each time before being incubated in donkey anti-rabbit (AlexaFluor, A21207, 1:250) secondary 

antibody (See Table 6) for 1 hour at room temperature in PBS containing 10% horse serum. PBS 

was used to wash cells twice for 5 minutes and AlexaFluor 488-conjugated phalloidin 

(ThermoFisher, A12379, 1:100) in PBS with 10% horse serum was added for 20 minutes to stain 

for filamentous (F)-actin. Cells were gently washed twice for 5 minutes in PBS before applying 

Prolong Gold Antifade mounting medium with DAPI reagent (Invitrogen, P36931) with 

coverslips applied to stained cells. Immunocytochemistry images of RPGSMCs were taken using 

a Leica DM1000 microscope at 40X objective with 2X zoom applied and cell area was 

quantified using ImageJ software. 

Statistics: 

Statistical analyses were performed using Graphpad Prism Software 8.0d. For wire 

myography, two-way analysis of variance (ANOVA) and an unpaired two-tailed t-test for each 
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treatment concentration. This allowed for determination of significance between groups overall 

and at specific treatment concentrations. For Figure 9, listed (numerical) P-values represent 

significance by two-way ANOVA test, while * is indicative of a P < 0.05 by unpaired two-tailed 

t-test to assess differences between groups at each vasodilator concentration. Data normality was 

assessed via Shapiro-Wilk test. The P-values reported for the qPCR, Western blot,  

immunostaining analysis, and calculated EC50 and Emax values were assessed using an unpaired 

two-tailed t-test for data that was normally distributed, an unpaired two-tailed t-test with Welch’s 

correction to account for data normally distributed but with unequal variance, or Mann-Whitney 

U-test was applied when data was non-normal and/or bimodally distributed. Symbols were 

consistent throughout wherein * denotes P < 0.05. 

3.4 Results: 

To determine the effects of RAAS activation on the renal vasculature, we used a two-

kidney-one-clip (2K1C) model (Figure 9A), which involves placing a surgical cuff around a 

single renal artery which clips the artery to restrict blood flow and induce unilateral renal 

stenosis. To assess the vasoreactivity responses of the 2K1C unclipped contralateral renal 

arteries compared to their sham counterparts, wire myography was performed on the renal 

arteries contralateral to the surgical procedures of clipped and sham animals to compare the two 

groups. We observed that the 2K1C contralateral arteries contracted significantly less to 1 mM 

phenylephrine (PE) than their sham counterparts (Figure 9B). We also observed an increase in 

endothelium-dependent vasodilation in response to 10-7 M acetylcholine (ACh) treatment (Figure 

9C). A significant difference in NO-dependent vasodilation in response to the NO-donor, sodium 
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nitroprusside (SNP), was observed between sham and clip groups with significant increases in 

vasorelaxation in the clip groups following 10-7 M and 10-6 M SNP treatment (Figure 9D). Emax 

and EC50 values for ACh and SNP responses for sham control and renal clip groups are listed in 

Table 5. Together, the findings of the responses to both ACh and SNP indicate an improvement 

in the vasorelaxation responses of the contralateral arteries from 2K1C animals over sham 

controls.  

We then quantified renal artery protein expression to explore the causes of the increased 

NO-sensitivity of 2K1C contralateral renal arteries (Figure 10A-E; Figure 15A-F). No significant 

changes in vessel nuclei staining (Figure 10A,F; Figure 15A,F), smooth muscle α-actin (ACTA2; 

Figure 10B,G; Figure 15B,G), or the endothelial marker, Von Willebrand Factor (vWF; Figure 

10D,I; Figure 15D,I) expression were observed. We did, however, observe a significant increase 

in sGCβ protein expression (Figure 10C,H) and sGCα protein expression (Figure 15C,H) in the 

contralateral arteries of 2K1C animals over controls. In addition, no changes were observed in 

medial area (Figure 10J; Figure 15J). These data indicate the increases in sGC expression in 

contralateral renal arteries compared to sham controls likely drive the increased NO-sensitive 

vasodilation response. 

Next, we sought to determine what drives sGC expression changes in renal artery smooth 

muscle. It is well established that reduced renal blood flow increases angiotensin II (Ang II) in 

models of 2K1C.197-198 Therefore, we treated rat renal pre-glomerular smooth muscle cells 

(RPGSMCs) with vehicle or 10-6 M Ang II to test if Ang II increased sGC expression (Figure 

11A-D). Ang II treatment led to no differences in cell number (Figure 11A,E) but increased 

filamentous (F)-actin expression (Figure 11B, F), and cell area (Figure 11D,H) indicating 

RPGSMC are hypertrophic (Stephenson, et al., 1998). Additionally, Ang-II resulted in a 1.7 fold 
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increase in sGCβ protein expression via immunofluorescence (Figure 11B,F). We also observed 

an increase in sGCα by 1.9-fold (Figure 16A,C) and a 4-fold increase in sGCβ protein expression 

via western blot analyses (Figure 11I, J). To test if increased sGC expression impacted cGMP 

production and PKG activity, RPGSMCs were treated with Ang II or vehicle and then subjected 

to treatment with the NO donor, DEA-NONOate, for 15 minutes prior to harvest to induce sGC-

mediated cGMP production. Quantification of vasodilator stimulated protein (VASP) 

phosphorylated at the serine 239 position, a surrogate indicator of cGMP-dependent protein 

kinase activity,199 showed an 8-fold increase in VASP serine 239 phosphorylation (pVASP) in 

Ang II-treated cells stimulated with DEA-NONOate compared to vehicle controls (Figure 

11I,K). Taken together, these data show that Ang II in vitro augments sGC expression and cGMP 

signaling, indicating that elevated RAAS activity increases sGC expression and downstream 

signaling in vivo.  

We next tested whether the  angiotensin II type 1 (AT1R) or type 2 receptor (AT2R) was 

responsible for increasing sGC levels. Consistent with increased sGC protein expression, we 

found that Ang II treatment also caused a 3.6-fold increase in sGCα mRNA (Figure 12A) and a 

4.4-fold increase in sGCβ mRNA (Figure 12B). RPGSMCs co-treated Ang II and Losartan, an 

AT1R antagonist,200 showed inhibition of Ang II – induced increases in sGCα mRNA (Figure 

12A), sGCβ mRNA (Figure 12B), sGCα protein expression (Figure 16A,C) and sGCβ protein 

expression (Figure 12C, D). Conversely, RPGSMCs co-treated with Ang II and AT2R antagonist, 

PD123319,201 showed no significant impact on the Ang II-induced increases in sGCα mRNA 

(Figure 12A), sGCβ mRNA (Figure 12B), sGCα protein expression (Figure 16A,C) or sGCβ 

protein expression (Figure 12C, D). Combined, these data indicate that the Ang II mediated 

increase in sGC expression occurs through activation of AT1R. 
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Recently, we published evidence that the FoxO family of transcription factors regulate 

the mRNA expression of sGC in aortic smooth muscle cells.147 To determine whether the FoxO 

family of transcription factors can also influence the function of renal smooth muscle, we treated 

RPGSMCs with 10-6 M of the FoxO transcription factor inhibitor, AS1842856 (Nagashima, et 

al., 2010), alone and in conjunction with Ang II. When AS1842856 was administered alone to 

RPGSMCs, a significant reduction in sGCα mRNA (Figure 13A), sGCβ mRNA (Figure 13B), 

and sGCβ protein expression (Figure 13C,D) was observed. When co-administered with Ang II, 

AS1842856 was significantly reduced compared to Ang II treatment, but produced no 

significantly different effect on either sGCα mRNA (Figure 13A), sGCβ mRNA (Figure 13B), 

sGCα protein expression (Figure 16A,C) or sGCβ protein expression (Figure 13C,D) when 

compared to controls. Treatment with AS1842856 also significantly blunted the expression of 

the downstream FoxO protein target, glucose-6-phosphatase (G6Pase), indicating that FoxO 

protein activity is potently suppressed (Figure 17A). Additionally, this experiment showed that 

Ang II, Losartan and PD123319 had no significant effect on the expression of G6Pase. This 

suggests that Ang II-mediated changes do not universally impact FoxO activity (Figure 17A). 

These data indicate the FoxO transcription factors are necessary for the Ang II-mediated sGC 

expression increases in renal smooth muscle. 

Next, we tested how cGMP production in RPGSMCs was influenced by Ang II receptor 

antagonists and FoxO inhibitors in the absence and presence of NO-stimulation with DEA-

NONOate. In the absence of DEA-NONOate-stimulation, the vehicle-treated cells showed no 

significant differences in cGMP production or VASP phosphorylation were observed between 

the control, Ang II, AS1842856, Ang II + AS1842856, Ang II + Losartan, or Ang II + PD123319 

treatment groups (Figure 14A-C). Similar to the observed effect in sGC expression, Ang II and 
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PD123319 co-treatment followed by DEA-NONate stimulation produced significant increases in 

downstream sGC function via cGMP production (Figure 14A) and VASP phosphorylation 

(Figure 14B,C) compared to solely DEA-NONOate-stimulated controls. Treatment with 

AS1842856 or Ang II + Losartan followed by DEA-NONOate stimulation caused a decrease in 

cGMP production (Figure 14A) and showed no significant differences in VASP phosphorylation 

(Figure 14B,C) or total VASP expression (Figure 10B, D) compared to control cells stimulated 

solely with DEA-NONOate. We also examined the expression of PDE5 and PKG1 and found 

that there were no significant changes in mRNA expression, suggesting that the changes in 

cGMP production and downstream signaling are due solely to changes in sGC expression 

(Figure 17B,C). Combined, these data show that PD123319 has no significant effect on Ang II-

mediated sGC signaling and that the blunting effects of Losartan or AS1842856 on the Ang II-

mediated sGC expression also inhibited downstream cGMP signaling following NO-dependent 

stimulation.  

3.5 Discussion: 

Renal artery stenosis remains a pervasive cause of secondary hypertension and a 

condition significantly correlated with high morbidity and mortality.202-205 NO plays an important 

role in maintaining renal blood flow and glomerular filtration rate following single renal artery 

stenosis.189-190,206 In addition, there is emerging pre-clinical evidence that sGC stimulator drugs 

which have had notable anti-fibrotic effects, in conjunction with RAAS blockade confer 

resistance to end stage renal disease and chronic kidney disease.207-208 Such therapies have 

demonstrated an ability to elevate blood flow and/or improve cardiac outcomes as a result of 
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decreased vascular tone and decreased blood pressure.65,156,209 Our previous study, in accordance 

with previous 2K1C models, showed that our 2K1C renal artery stenosis model causes increased 

blood pressure without altering body weight or plasma electrolyte concentrations.194-195 Here we 

provide the first evidence that sGC expression increases in the vascular smooth muscle of the 

renal artery contralateral to stenosis to preserve renal blood flow in the 2K1C model.  

In this study, we observed a significantly increased vasodilation in the contralateral renal 

arteries of 2K1C animals. Interestingly, vasodilatory function of the aorta and mesenteric arteries 

was not different between these sham versus 2K1C mice.195 This increased vasodilation of the 

contralateral renal artery was likely due to the significant increase in sGC expression observed in 

unobstructed renal artery smooth muscle from 2K1C animals compared to their sham controls. 

We also observed an increase vasodilation of renal clip animals over the sham controls when 

treated with 10-7 M ACh, suggesting some contribution of the endothelium in this response. 

However, as indicated by the SNP results, the  response of the smooth muscle appears to be the 

predominant change in the renal vasculature. This response may indicate that NO-dependent 

signaling, which has been established to be a pivotal player in promoting regulation of 

renovascular homeostasis of blood pressure and fluid retention,188,191 is enhanced in the 

contralateral (non-stenotic) renal arteries compared with other vascular beds following elevated 

RAAS activity. Others have noticed the significance of endothelial-derived NO, specifically in 

the context of the 2K1C model, showing that inhibition of endothelial NO signaling exacerbates 

the high blood pressure and reduced renal blood flow of the 2K1C model.55,210 Additionally, this 

pressor response occurs irrespective to RAAS blockade, suggesting that while the regulation of 

these two pathways remain distinct, the interaction between them has vital implications.210 

Moreover, studies of the 2K1C model suggest that Losartan-mediated RAAS blockade following 
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NO-inhibition further diminishes blood flow to the contralateral renal artery instead of the 

expected increase in renal blood flow following RAAS inhibition.211 Our study builds upon this 

data, suggesting that the reason for the worsening of the phenotype when blocking Ang II 

signaling is due to an inability of the renal smooth muscle to mobilize a compensatory increase 

in sGC expression. 

In the 2K1C model, it is possible that there are multiple factors which contribute to the 

changes observed in sGC expression, including RAAS signaling peptides such as Ang II. 

Therefore, we treated isolated renal pre-glomerular smooth muscle cells (RPGSMCs) with Ang 

II, to test the response of the renal vasculature to RAAS activation. Following treatment of 

cultured (RPGSMCs) with Ang II for 48 hours, the increase observed in sGC mRNA and protein 

expression suggests that RPGSMCs respond differently from aortic smooth muscle. Aortic 

smooth muscle and endothelial cells exhibit decreased functional NO signaling with excess Ang 

II exposure, via pathological overproduction of reactive oxygen species (ROS).212-213 Moreover, 

aortic sGC protein expression decreases with Ang II,214-215 and Ang II impairs aortic smooth 

muscle sGC function.215-216 Furthermore, sGC activator therapy has been shown to rescue heart 

function in patients with acute decompensated heart failure, many of whom were on RAAS 

pathway drugs to treat their heart failure, hypertension and other vasculopathies.217 However, the 

trial was halted because the dosage used for this study resulted in hypotension in patients. It may 

be possible that other signaling molecules like catecholamines, prostacyclins, and others may 

contribute to the physiological responses we observe following 2K1C, however, further research 

is needed to test these possibilities. Our studies are the first to show that treatment with Ang II in 

conjunction with NO-stimulation caused elevated cGMP signaling in RPGSMCs, as indicated by 

increased cGMP production and VASP phosphorylation. This indicates uniquely enhanced renal 
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smooth muscle sGC-cGMP signaling following Ang II treatment in renal vascular smooth 

muscle.  

Remarkably, other known responses to Ang II treatment were noted in RPGSMCs, such 

as elevated F-actin expression and increased cell size. These patterns have been observed in 

aortic smooth muscle both in vivo following infusion with Ang II and in vitro following Ang II 

treatment in culture.218-219 This suggests that while the increases in sGC expression responses are 

unique to renal smooth muscle, the hypertrophic responses to Ang II conform to the patterns that 

have been observed by others.  

Specifically, our data shows that the AT1R, but not the AT2R, is responsible for the 

elevated expression of sGC observed in renal smooth muscle in response to Ang II. Indeed, co-

treatment with Losartan and Ang II was sufficient to reverse all of the Ang II-induced 

phenotypes we observed in RPGSMCs. In contrast, Ang II co-treatment with PD123319 did not 

impact any of the phenotypes facilitated by Ang II treatment alone. This response may be due to 

the high density of AT1Rs that have been observed in the adventitia of the renal 

vasculature,213,220 and the increased constriction of renal vasculature and, to a smaller extent, gut 

vasculature following acute Ang II infusion.221 Curiously, this contrasts with the role for the 

AT2R in cardiac function, which has been shown to improve outcomes following treatment with 

AT2R-specific agonists following myocardial infarction.222 Our findings suggest that the 

observed effect on sGC expression and function are largely independent of AT2R activation. It is 

also possible that truncation products such as angiotensin 1-7 or angiotensin IV may also play 

role, albeit minor, in this phenomenon.223-224 Taken together, the data herein suggest that renal 

smooth muscle responds uniquely to Ang II via the AT1R to promote increased sGC expression 



 

 70 

and sGC-cGMP induced vasodilation while maintaining the canonical hypertrophic responses 

associated with elevated Ang II exposure. 

Consistent with our previous work in aortic SMCs,147 Ang II studies in RPGSMCs 

showed that inhibition of the forkhead box subclass O (FoxO) transcription factors significantly 

impair sGC expression. This finding indicates FoxO regulation of sGC expression likely applies 

to multiple branches of the vascular tree. The FoxO protein(s) responsible for sGC expression 

regulation are not yet known and the specific role of the FoxO transcription factors in the 

development and pathology of renal artery stenosis requires further study to assess their diverse 

functions in vascular physiology. It is nevertheless clear that the Ang II-mediated increases in 

sGC function cannot occur without functional FoxO transcription factor activity. Ang II can 

activate Akt,225 and Akt-mediated phosphorylation is a common regulatory mechanism known to 

modulate FoxO transcriptional activity.90-91,226 In addition, Ang II has been shown to cause 

increases in ROS, and oxidative stress is known to impact FoxO transcription factor activity 

through acetylation/deacetylation.227-230 These findings suggest that there could be an indirect 

regulatory mechanism between the AT1R and FoxO transcription factors. Future research in this 

area should investigate the potential mechanistic links between agonism of the AT1R and 

activation of the FoxO transcription factors. Moreover, our research has shown that oxidation or 

loss of sGC heme iron leads to NO insensitivity, making the protein more responsive to sGC-

activating compounds which target oxidized or heme-deficient sGC to produce cGMP.41,43 

Investigation of Ang II-mediated ROS production may reveal a novel therapeutic target for sGC 

activating drugs under conditions where high RAAS activity promotes oxidative stress. 

Collectively, we show for the first time that in response to elevated RAAS activity, renal 

smooth muscle responds through an AT1R and FoxO transcription factor-dependent mechanism 
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to increase sGC expression and cGMP signaling. These responses likely constitute a 

compensatory response to allow for maintenance of homeostatic blood volume and electrolyte 

balance to counteract Ang II-dependent increases in systemic blood pressure, and a means of 

preserving homeostatic fluid volume and electrolyte balance. These findings will have important 

clinical implications for the use of NO, FoxO transcription factor activating compounds, or sGC 

modulators for therapeutic treatment of renal hypertension. Our data suggest that these methods 

may offer a targeted approach to improve renal blood flow in RAAS-mediated renal stenosis. 

Combined, this study marks an important discovery of how the renal vasculature responds 

uniquely to elevated circulating plasma Ang II, advancing our understanding of renal vascular 

hypertension and the regulation of cGMP signaling within the renal vascular wall.  
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Figure 9 

2K1C mouse model contralateral renal arteries have improved vasodilation compared to sham 

controls. 

A) Schematic of 2K1C renovascular hypertension model and experimental design showing wire myography 

protocol. Black circles represent sham animals while red bars and squares represent contralateral renal arteries from 

2K1C (clip) animals. B) Maximal constriction of sham (white bars) or clip (red bars) animal contralateral renal 

arteries following treatment with 10-3 M phenylephrine (PE). The * indicates P < 0.05 by unpaired two-tailed t-test. 

C) Vasodilatory responses to acetylcholine (ACh; 10-8 -10-6 M) in isolated contralateral renal arteries from mice 

subjected to 2K1C (n=8) or sham (n=7) surgery. D) Vasodilatory responses to sodium nitroprusside (SNP; 10-8 -10-5 

M) in isolated contralateral renal arteries from mice subjected to 2K1C (n=8) or sham surgeries (n=5). Numerical P-

values represent statistical differences between contralateral renal artery response curves from 2K1C versus sham 

animals by two-way ANOVA with the * indicative of P < 0.05 by unpaired two-tailed t-test at individual doses 

between groups. Error bars are ± SEM.  
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Figure 10 

Immunohistochemistry of contralateral renal arteries from 2K1C (renal clip) animals show an 

increase in sGCβ expression over sham controls. 

Immunofluorescent staining of representative maximum intensity projection images and quantification of sham 
control (n=6, white bars) or renal clip (n=6, red bars) animals for A,F) DAPI (nuclei, blue),  B,G) ACTA2 (vascular 
smooth muscle, green), C,H) sGCβ (red) and D, I) vWF (endothelium, grey). E) Merge image from all channels. J) 
Quantification of medial area (µm2). The * indicates a P < 0.05 statistically significant differences between renal 
clip and sham groups by unpaired two-tailed t-test. Error bars are ± SEM. 
  



 

 74 

 
Figure 11 

Immunocytochemistry of Ang II treated renal pre-glomerular smooth muscle cells show an increase 

in F-actin, sGC protein expression, and VASP phosphorylation compared to control-treated cells. 

Immunocytochemistry staining and quantification resulting from control (n=10, white) or Ang II (10-6 M, n=10, 
light blue) treatment for A, E) DAPI (blue, nuclei), B, F) F-actin (green), C, G) sGCβ (red), D) Merged image of 
channels, or H) area/cell analyzed. I-K) Image and quantification of sGCβ band density/β-actin density, 
phosphorylated serine 239 vasodilator stimulated protein (pVASP) band density/β-actin density from Western blot 
for control (n=5 samples, white) or Ang II (10-6 M, n=5 samples, light blue)-treated RPGSMCs following DEA-
NONOate treatment (10-6 M). NS denotes a non-specific band. The * indicates a P < 0.05  statistically significant 
difference between control and Ang II-treated cells by unpaired two-tailed t-test. Error bars are ± SEM. 
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Figure 12 

Losartan, but not PD123319, prevents Ang II-mediated increase of sGC expression in renal smooth 

muscle cells. 

RPGSMCs were subjected to treatment with control (DMSO), Ang II (10-6 M), Losartan (10-7 M), and/or PD123319 
(10-7 M). A) sGCα1 mRNA (n=6 samples per group), B) sGCβ1 mRNA (n=6 samples per group) and C, D) sGCβ 
protein expression (n=5 samples per group) was quantified relative to α-tubulin expression. NS denotes a non-
specific band. The * indicates a P < 0.05  significant statistical difference between identified sample groups by 
unpaired two-tailed t-test. Error bars are ± SEM. 
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Figure 13 

AS1842856 treatment causes a decrease in sGC expression and blunts Ang II-mediated increases in 

sGC expression in renal smooth muscle cells. 

RPGSMCs were treated with control (DMSO), Ang II (10-6 M), and/or AS1842856 (10-6 M) and expression of A) 
sGCα1 mRNA  (n=6 samples per group), B) sGCβ1 mRNA (n=6 samples per group) and C, D) sGCβ protein 
expression (n=5 samples per group) quantified relative to α-tubulin protein expression. NS denotes a non-specific 
band. The * indicates a P < 0.05 statistically significant difference between identified sample groups by unpaired 
two tailed t-test or Mann-Whitney U-test. Error bars are ± SEM.  
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Figure 14 

Losartan or AS1842856 blunt Ang II-mediated increases in downstream cGMP signaling in renal 

smooth muscle cells following NO-stimulation. 

A) Quantification of cGMP production by ELISA following treatment of RPGSMCs with control, Ang II (10-6 M), 
AS1842856 (10-6 M), Losartan (10-7 M), PD123319 (10-7 M) and then stimulated with vehicle or DEA-NONOate for 
15 minutes (10-6 M). B, C) Quantification and representative western blot of phosphorylated serine 239 VASP 
(pVASP) protein following the same treatment as in A (n=5 samples per group). The * indicates a P < 0.05 
statistically significant differences between identified sample groups by unpaired two-tailed t-test. Error bars are ± 
SEM.  
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Figure 15 

Immunohistochemistry of contralateral renal arteries from 2K1C (renal clip) animals show an 

increase in sGCα expression over sham controls. 

Immunofluorescent staining of representative images and quantification of sham control (n=6, white bars) or renal 
clip (n=6, red bars) contralateral arteries for A, F) DAPI (nuclei, blue) B, G) ACTA2 (vascular smooth muscle, 
green), C, H) sGCα (red),and D, I) vWF (endothelium, grey). E) Merge image of maximum intensity projections 
from all channels. J) Quantification of medial area (µm2). The * indicates a P < 0.05 statistically significant 
difference between renal clip and sham by unpaired two-tailed t-test. Error bars are ± SEM. 
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Figure 16 

sGCα protein expression is AT1R and FoxO-dependent, hypertrophy only requires AT1R agonism, 

and tVASP expression remains unaffected in renal smooth muscle. 

Western blot analysis and total protein expression in RPGSMCs following treatment with Control, Ang II (10-6 M), 
AS1842856 (10-6 M), Losartan (10-7 M), and/or PD123319 (10-7 M). A, C) Representative western blot and 
quantification of sGCα protein expression relative to β-actin expression (n=5 samples per group).B, D) 
Representative western blot and quantification of total vasodilator stimulated protein (tVASP) protein expression 
relative to β-actin expression (n=5 samples per group). E) Total protein quantified using a bicinchoninic acid protein 
assay (n=5 samples per group). The * indicates a P < 0.05 statistically significant difference between indicated 
groups by unpaired two-tailed t-test with or without Welch’s correction. Error bars are ± SEM.  
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Figure 17 

mRNA expression of sGC pathway and FoxO pathway-related genes. 

qRT-PCR of genes expressed by RPGSMCs following treatment with Control, Ang II (10-6 M), AS1842856 (10-6 
M), Losartan (10-7 M), and/or PD123319 (10-7 M). Graphs represent mRNA expression of A) glucose-6-phosphatase 
(G6Pase), B) cGMP-specific phosphodiesterase type 5 (PDE5), and C) cGMP-activated protein kinase 1 (PKG1). 
For each group there are n=6 samples. The * indicates a P < 0.05 statistically significant difference between control 
and treated groups by unpaired two-tailed t-test with Welch’s correction or Mann-Whitney U-test. Error bars are ± 
SEM.  
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Table 5: Calculations for vasodilatory responses of renal arteries to ACh and SNP 

Vasodilator 

Drug 

Treatment 

Group 

Emax (%) SEM 

(%) 

P-value EC50 (M) SEM (M) P-value 

ACh  Sham 66.1 4.06 0.2951 1.04x10-7 ±3.94x10-8 0.2881 

Clip 73.4 5.37 5.63x10-8 ±1.45x10-8 

SNP  Sham 44.2 6.16 0.0592 7.77x10-7 ±3.12x10-7 0.1943 

Clip 63.0 5.90 2.70x10-7 ±1.52x10-7 

 
Vasodilator drugs acetylcholine (ACh) and sodium nitroprusside (SNP) were used to induce vasorelaxation of 
contralateral renal arteries for animals receiving 2K1C (renal clip) or sham surgery. Effective maximum dilation 
(Emax), standard error of the mean (SEM), and effective concentration to produce 50% of maximal response (EC50) 
are shown above. P-values are calculated from unpaired t-test or unpaired t-test with Welch’s correction to account 
for unequal variances.  
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Table 6: Catalogue of primary and secondary antibodies. 

Antibody Species Application Concentration Company Cat. 

Number 

sGCα rabbit WB, IHC 1:200, 1:80 Cayman 160895 

sGCβ rabbit WB, ICC,  1:1000, 1:200,  Cayman 160897 

sGCβ rabbit IHC 1:100 Abcam ab154841 

β-actin mouse WB 1:500 Santa Cruz sc-47778 

α-tubulin mouse WB 1:10,000 Sigma T6074 

Anti-rabbit 

Alexafluor-

594 

donkey IHC, ICC 1:250, 1:250 Life 

Technologies 

A21207 

Anti-goat 

Alexafluor-

647 

donkey IHC 1:250 Life 

Technologies 

A21447 

ACTA2 

conjugated 

Alexafluor-

488 

mouse IHC 1:500 Sigma F3777 

Von 

Willebrand 

Factor  

sheep IHC 1:250 Abcam ab11713 

AlexaFluor 

488 

Phalloidin 

N/A ICC 1:100 ThermoFisher A12379 
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Table 6 Continued 
Phospho- 

VASP (S239) 

rabbit WB 1:1000 Cell 

Signaling 

3114S 

VASP rabbit WB 1:500 Proteintech 13472-1-AP 

Rabbit IgG rabbit IHC concentration 

matched 

Vector 

Laboratories 

I-1000 

 
Soluble guanylyl cyclase α-subunit (sGCα), soluble guanylyl cyclase β-subunit (sGCβ), smooth muscle α-actin 
(ACTA2), vasodilator-stimulated protein (VASP), and immunoglobulin (IgG) antibodies which were used for 
western blots (WB), immunohistochemistry (IHC), and/or immunocytochemistry (ICC). 
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Table 7: Catalogue of PCR primer sequences used. 

Primer Sequence (5’3’) 

Rat sGCα1 F CTC CCG TGA CCG CAT CAT 

Rat sGCα1 R CCG GTG TTG ATG TTG ACT GA 

Rat sGCβ1 F AAT TAC GGT CCC GAG GTG TG 

Rat sGCβ1 R GCA GCA GCC ACC AAG TCA TA 

Mammalian 18S F ACG GAC AGG ATT GAC AGA TTG 

Mammalian 18S R TTA GCA TGC CAG AGT CTC GTT 

Rat PDE5 F GCC GAT CTG GGC TGA ACT AAC 

Rat PDE5 R GCT CAC GGT TCC CTC AGA AT 

Rat PKG1 F ATG AGC GAA CTG GAG GAA GAC 

Rat PKG1 R GTC GAT CAA TGG CCC AGA GT 

Rat G6Pase F GGC TCA CTT TCC CCA TCA GG 

Rat G6Pase R ATC CAA GTG CGA AAC CAA ACA G 

 
Primers for soluble guanylyl cyclase α-subunit type 1 (sGCα1),  soluble guanylyl cyclase β-subunit type 1 (sGCβ1), 
18S small subunit ribosomal RNA (18S), cGMP-specific phosphodiesterase type 5 (PDE5), cGMP-activated protein 
kinase type 1 (PGK1) and glucose-6-phosphatase (G6Pase), listed here were used in our analyses. For primers, F 
denotes forward primer and R denotes reverse primer with sequences reported in 5’ – 3’ direction. 
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4.0 FoxO4 Regulates sGCβ Transcription in Vascular Smooth Muscle 

Joseph C. Galley, B.A.1,2 , Megan P. Miller, B.S.1, Subramaniam Sanker, Ph.D.2, 
Mingjun Liu, M.S.1,3, Iraida Sharina,Ph.D.,4 Emil Martin, Ph.D.,4 Delphine H. Gomez, Ph.D.1,3, 

and Adam C. Straub, Ph.D.1,2,5 
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5Center for Microvascular Research, University of Pittsburgh, Pittsburgh, Pennsylvania; 

4.1 Summary: 

The nitric oxide (NO) receptor, soluble guanylyl cyclase (sGC), produces cyclic 

guanosine 3’, 5’ – monophosphate (cGMP) primarily to cause rapid dilation of smooth muscle 

cells (SMC). Because of the importantance of sGC for proper SMC function, many new sGC 

activity modulator drugs have been approved for the treatment of cardiovascular diseases,58-60 

however, transcriptional regulation of sGC remains incompletely understood. We recently 

showed that functional Forkhead box subclass O (FoxO) transcription factor activity is required 

for expression of sGC within SMC.147-148 We sought to investigate which FoxO transcription 

factor is responsible for gene expression of the heme-containing sGCβ subunit, as loss of this 

subunit is necessary and sufficient to cause severe hypertension and lethal gut dysmotility.26-27 

FoxO shRNA knockdown adenoviruses show FoxO1 or FoxO3 knockdown causes greater than 
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2-fold increases in sGCα and sGCβ mRNA expression, with no change in NO-dependent cGMP 

production or cGMP-dependent phosphorylation. FoxO4 knockdown produced 50% loss of 

sGCα and sGCβ mRNA and sGCβ protein expression. Loss of FoxO4 expression decreased 

cGMP production and cGMP-dependent phosphorylation by more than 50%. Triple FoxO 

knockdown exacerbated the loss of sGC-dependent function, phenocopying our previous 

findings with FoxO inhibition. Transfection of sGCβ promoter – luciferase constructs showed 

that the 0.5kb upstream of the transcriptional start site are key for its gene expression, and that 

inhibition of the FoxO transcription factors abolishes luciferase activity. Chromatin 

immunoprecipitation experiments confirm that FoxO4 binds the sGCβ promoter at several 

locations. Taken together, our data show FoxO4 is the indispensable regulator of sGCβ 

expression in SMC. 

4.2 Introduction: 

Soluble guanylyl cyclase (sGC) is the nitric oxide (NO) receptor within smooth muscle 

cells (SMC) responsible for initiating one of the key dilatory mechanisms for arterial blood 

vessels through the enzymatic formation of 3’,5’-cyclic guanosine monophosphate (cGMP).23,149 

The critical function of sGC within this dilatory cascade makes this enzyme a promising 

potential medicinal target, though many challenges still remain. Therapeutic strategies using 

sGC-stimulating drugs have recently been approved for the treatment of heart failure,58 chronic 

thromboembolic pulmonary hypertension,59 and pulmonary arterial hypertension,60 however the 

regulation of sGC gene mechanisms which govern the resistance to various stressful stimuli. 

expression in smooth muscle remains largely unknown.  
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Studies show that the sGC protein functions as an obligate heterodimer, requiring both a 

functional α and β subunit in order to form cGMP. While there are multiple sGC genes, 

heterodimer pools have been shown to commonly form out of α1β1 or α2β1 dimers, as the β2 

subunit is seldom found in SMC.28 Loss of the heme-containing β1 subunit has been shown to be 

sufficient to cause lethal gut dysmotility in mice at 3-4 weeks of age,231 which can be prevented 

with diets lacking fiber. These mice develop severe hypertension, with the aorta demonstrating a 

lack of dilation to NO-stimulation and a lack of NO-dependent platelet aggregation inhibition, 

both of which were rescuable with non-hydrolyzable cGMP analog treatment. Additionally, 

SMC-specific knockout of sGCβ1 causes severe NO-insensitive hypertension as well,26 

demonstrating the importance of the sGCβ1 protein that is uniquely important to the SMC for the 

proper maintenance of blood pressure. Together, these studies highlight the significance of 

sGCβ1 for proper SMC function and serve as the basis for our targeting of the sGCβ1 gene. 

We have recently identified that inhibition of the Forkhead box subclass O (FoxO) family 

of transcription factors in vascular smooth muscle cells results in the loss of sGC expression and 

downstream function in multiple cell types.147-148 This family of transcription factors is known 

for its control over resistance to oxidative stress,111-112 cell cycle progression,113-114 governance of 

the progression through the cell cycle,113-114 and apoptosis in circumstances where these cellular 

mitigation strategies prove disadvantageous survival.124-128 Previous studies have identified 

significant regulation of function by post-translational modifications, primarily through the 

insulin signaling pathway to abolish transcriptional activity and alter DNA binding affinity.99-102 

Developmental research indicates functionally diverse roles for the FoxO transcription factors 

found in mammalian tissues, suggesting that there may be differing contributions of each FoxO 

transcription factor in the regulation of sGC expression.139 The highly conserved DNA-binding 
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domain (DBD) of the FoxO transcription factors has been well-characterized to identify the 

consensus sequences commonly recognized by this family of transcription factors, however, 

recent studies have sought to identify the changes that may govern the structural differences that 

adjust observed changes in transcription.176  This study sought to identify which transcription 

factors were important for the regulation of sGC and the regulatory loci within the human sGCβ1 

promoter within SMC.  

4.3 Methods: 

Cell culture:  

Rat aortic SMC (RASMC) and human aortic SMC (HASMC) were cultured as previously 

described.147 Cells were cultured at 37ºC in SmGm-2 fully supplemented growth medium 

(Lonza, CC-3181) containing 5% FBS and SmGm-2 SingleQuot (Lonza, CC-3182) reagents and 

passaged using 1X trypsin–EDTA (Gibco, 10779413) dissolved in 1X PBS. Cells were cultured 

to approximately 90% confluency. Cos7 cells were cultured in DMEM (Gibco, 11995-065) with 

10% FBS (Gibco, 10438-026) and 100 U/mL penicillin/streptomycin (Gibco, 15140-122) to 90% 

confluency before being passaged using 1X trypsin-EDTA dissolved in 1X PBS for experiments. 

Virus and drug treatments: 

During drug treatments, RASMCs were washed twice with 1X PBS and cultured in 

serum and growth factor starved Dulbecco’s Modified Eagle Medium/Ham’s F12 (DMEM/F12, 

Sigma, D6421) media containing: 100 U/mL penicillin/streptomycin (Gibco, 15140-122), 1.6 

mM L-glutamine (Gibco, 25030-081), 200 μM L-ascorbic acid, 5 μg/mL apo-transferrin, and 

6.25 ng/mL sodium-selenite. AS18428456 FoxO inhibitor (Cayman, A15871) was dissolved in 
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dimethyl sulfoxide (DMSO, D8418) prior to treatment. Treatment concentration for AS1842856 

was 10-6 M. Control treatments involved 0.1% DMSO treatment for 48 hours prior to harvesting. 

Adenovirus (AV) constructs were designed as previously described.41 For knockdown 

experiments, RASMCs were transduced with AV containing non-targeting (NT, 1.95x109 

copies/mL), rat FoxO1 shRNA (1.38x107 copies/mL), rat FoxO3a shRNA (1.18x107 copies/mL), 

or rat FoxO4 shRNA (1.1x109 copies/mL) for 24 hours in SmGm-2 fully supplemented growth 

media before having the media replaced with serum and growth factor starved Dulbecco’s 

Modified Eagle Medium/Ham’s F12 media for 48 hours. For NO stimulation experiments 

measuring cGMP, cells were pretreated with 10 μM sildenafil citrate (Sigma, PZ0003) for 45 

minutes to inhibit cGMP-specific phosphodiesterase 5 activity, and then stimulated with the NO-

donor, diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA-NONOate, 

Cayman, 82100) at a concentration of 10-6 M, for 15 minutes prior to lysis. NO-dependent VASP 

phosphorylation was assessed using DEA-NONOate treatment without sildenafil citrate 

treatment.  

For luciferase-reporter experiments, Cos7 cells were cultured in DMEM with 10% FBS 

to 70% confluency in 6-well dishes. Media was then removed from cells and replaced with Opti-

MEM serum-free media (Gibco, 31985-062) and transfected with 2 μg of the indicated pGL3 

luc+ vector using Lipofectamine 3000 reagent mixture according to manufacturer’s protocol 

(Invitrogen, L3000-015) for 8 hours. Opti-MEM media was then removed and replaced with 

DMEM media and cells were allowed to grow for 40-48 hours.  

qRT-PCR: 

RASMCs were grown in 6-well plates until approximately 90% confluent before being 

washed and switched to serum and growth factor starved media. Cells were then subjected to 48-



 

 91 

hour drug and/or peptide treatment before lysis in TRIzol reagent (ThermoFisher, 15596026). 

The Direct-zol RNA miniprep plus (Zymo, R2051) manufacturer’s protocol was used to isolate 

RNA from cells. For cDNA synthesis, the SuperScript IV First Strand Synthesis (ThermoFisher, 

18091050) kit manufacturer’s protocol was used. For quantitative real time PCR analysis, the 

PowerUp SyBr Green (ThermoFisher, A25742) and 1 μM target primer (Table 8) were mixed 

according to manufacturer’s protocol with settings for 40 PCR cycles, 95°C melting temperature, 

58°C annealing temperature, and 72°C extension temperature set on a QuantStudio 5 Real-Time 

384-well PCR System (ThermoFisher A28140) for amplification. The Δ-Δ-ct value fold change 

in expression was used in order to control for cell number and RNA quality with values 

normalized to an 18S housekeeping gene transcript. 

Western blot: 

RASMCs were cultured in 12-well culture dishes until approximately 90% confluent 

before being switched to serum and growth factor starved media for 48 hours. Cells were then 

washed with PBS and 1X Cell Lysis Buffer (Cell Signaling, 9803) containing: (pH 7.5) 20 mM 

Tris-HCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton, 1 mM β-glycerophosphate, 1 mM 

Na3VO4, 1 μg/mL leupeptin, 2.5 mM sodium pyrophosphate, and additional 1X protease 

(MilliporeSigma P8340) and phosphatase inhibitors (MilliporeSigma, P5726) at 4ºC. A 

bicinchoninic acid kit (ThermoFisher, 23225) was used according to the manufacturer’s protocol 

to quantify lysate protein concentration and approximately 15 μg of protein was used for each 

western blot lane. Lysates were boiled at 100ºC for 10 minutes and Laemmli buffer was added 

such that final lysates contained: (pH 6.8) 31.5 mM Tris-HCl, 10% glycerol, 1% SDS, 2.5% β-

mercaptoethanol and 0.005% Bromophenol Blue before being loaded onto 4-12% gradient 

BisTris polyacrylamide gels (Invitrogen Life Technologies, NP0335BOX). Proteins were 
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transferred from polyacrylamide gels to nitrocellulose membranes (LiCor, 926-31092) and 

blocked for approximately 30 minutes at room temperature with 1% BSA in PBS. Membranes 

were incubated in primary antibody (Table 9) solution containing 1% BSA in PBST overnight at 

4ºC. An Odyssey CLx Imager (LiCor, 9140) was used for fluorescence visualization and semi-

quantitative analysis was performed using Image Studio software.  

sGCβ promoter-luciferase vector generation and luciferase assays: 

Human GUCY1B3 promoter DNA was generated as previously described.75 Promoter 

DNA was truncated from a 2396 bp total length GUCY1B3 fragment upstream of the 

transcription start site (TSS) to generate fragments ranging from 400 bp to 2396 bp upstream of 

the TSS (Figure 3A). Each DNA sequence was confirmed by Sanger sequencing and GUCY1B3 

DNA promoter-luciferase constructs were inserted into a pGL3 luciferase vector (modified Luc+ 

Firefly luciferase gene, Promega PR-E1761) with NheI and XhoI restriction enzymes.  

Luciferase assays were performed using a Veritas luminometer (Turner Biosystems 998-

9100) 96-well plate reader system. Cells were washed twice with PBS and lysed in 1X Promega 

Lysis Buffer (Promega, E1531) according to manufacturer’s protocol and 100 μL of lysates were 

added to black 96-well clear bottom plates (Corning, 07-200-567). 100 μL of fresh Promega 

luciferin reagent (E1501) was added individually to each well using Veritas automated injector 

system and luminescence was measured 0.1 seconds to 2 seconds after the addition of luciferin 

substrate and total luminescence was recorded using Veritas software and Luciferase assay 

system with injector protocol. Adjusted measurements were determined by subtracting the 

luminescence readings from samples with no luciferin reagent added to remove any potential 

background. 
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DNA Cross-Linking and Sonication: 

HASMC were grown to 90% confluency before being washed twice in 1X PBS and 

cultured in serum and growth factor starved Dulbecco’s Modified Eagle Medium/Ham’s F12 

media, as described above,232 for 48 hours in 15 cm culture dishes. Cells were then washed twice 

with 1X PBS and removed from culture dishes using a cell scraper and centrifuged at 300 rpm 

for 5 min in 5 mL 1X PBS. Cells were then resuspended in 10 mL 1X PBS for chromatin 

immunoprecipitation experiments at approximately 106 cells/tube. Cells were spun down at 2000 

rpm for 5 min at 4ºC and PBS was aspirated. Each group of cells was then resuspended in 500 

μL preparatory solution containing 1X PBS with 20 mM sodium butyrate (MilliporeSigma, 156-

54-7), 1 mM phenylmethylsulfonyl fluoride (PMSF, MilliporeSigma, 329-98-6), and 1X protease 

inhibitors (MilliporeSigma, P8340). To each tube, 25 μL of 2.5 M glycine (MilliporeSigma, 56-

40-6) and 31.25 μL of 16% paraformaldehyde (Fisher, F75P-20) were added and incubated at 

room temperature for 10 minutes. Cells were then centrifuged at 2000 rpm for 5 minutes at 4ºC 

and supernatant was removed. Pellets were then resuspended in preparatory solution. Cells were 

centrifuged and resuspended in preparatory solution two additional times to wash pellets of 

paraformaldehyde. Cell pellets following third centrifugation were resuspended in 120 μL of 

complete lysis buffer containing 50 mM Tris-HCl (pH=8.0; Manufacturer), 10 mM EDTA 

(Manufacturer), 1% SDS, 20 mM sodium butyrate, 1 mM PMSF, and 1X protease inhibitors in 

water. These contents were vortexed and placed on ice for 5 min. Contents were then transferred 

to sonication tubes (Diagenode C300010016) and sonicated in a Picoruptor sonicator (Diagenode 

B01060010) at 0ºC for 11 minutes (alternating 30 seconds sonication/30 seconds rest) and cooled 

in a water bath at 4ºC (Diagenode B02010003). 400 μL of RIPA ChIP lysis buffer containing 10 

mM Tris-HCl (pH=7.5), 140 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.1% 
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SDS, 0.1% Na-Deoxycholate, 20 mM sodium butyrate, 1 mM PMSF, and 1X protease inhibitors 

in water was added to each sample and the solution was mixed by vortex and centrifuged at 

11000 RPM for 10 min at 4ºC. The supernatant was then carefully transferred to a clean 

Eppendorf tube. 410 μL RIPA ChIP lysis buffer was then added to the remaining pellet and the 

mixture was vortexed and centrifuged at 11000 RPM for 10 min at 4ºC. The supernatant was 

then added to the previous 400 μL and vortexed. Each 800 μL solution of cellular material was 

subdivided into 8 aliquots of 100 μL/each. Aliquots were stored at -80ºC until next steps.  

Immunoprecipitation Bead Preparation: 

For 16 ChIP samples, 180 μL of Protein G Dynabeads (Invitrogen 100040) solution were 

resuspended and collected in a 1.5 mL Eppendorf tube and placed on a magnetic rack (Invitrogen 

12321D). Beads were then captured by the magnetic rack, buffer was removed, and tubes were 

removed from the rack. 500 μL of RIPA ChIP lysis buffer without sodium butyrate, protease 

inhibitors or PMSF was added to the Dynabeads for 5 min and the solution was continuously 

rotated. Dynabead solutions were centrifuged at 200 rpm for 10 seconds, tubes were placed on 

the magnetic rack, solution was removed from the beads and this washing procedure was 

repeated two additional times. Beads were then resuspended in 170 μL of ChIP RIPA lysis buffer 

without sodium butyrate, PMSF or protease inhibitors. 10 μL of washed beads was then added to 

90 μL ChIP RIPA buffer without sodium butyrate, PMSF or protease inhibitors. Primary or IgG 

control antibody was then added to each respective tube at a concentration of 1 

μg/immunoprecipitation experiment and rotated at room temperature for 2 hours.  

Immunoprecipitation: 

One aliquot of chromatin (100 μL) was added to the magnetic bead/antibody mix and 

rotated overnight at 4ºC. Tubes were then centrifuged and placed on a magnetic rack. 
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Supernatant was then removed and 100 μL of ice-cold ChIP RIPA buffer was added and used to 

resuspend beads. This wash step was repeated two additional times. To each tube 100 μL of Tris-

EDTA (TE) buffer containing 10mM Tris-HCl and 1mM EDTA at pH=8.0 was added to the 

beads. The TE/bead mixture was resuspended in the tube and the transferred to a clean PCR tube 

and rotated for 5 minutes at room temperature. Another 100 μL ChIP aliquot (this will be the 

input sample) was then added to a clean PCR tube without being subject to immunoprecipitation. 

To each immunoprecipitation sample 150 μL of elution buffer containing 20 mM Tris-HCl 

(pH=7.5), 5 mM EDTA, 50 mM NaCl, 20 mM sodium butyrate, 1 mM PMSF and 1 X protease 

inhibitors was added and 200 μL was added to each input sample before each tube was placed on 

a heating block at 68ºC for 2 hours. Every 30 minutes the samples were mixed by vortexing. 

Input samples were then removed from heat and centrifuged before being moved to a clean 1.5 

mL tube. 200 μL of elution buffer was then added to the PCR tube, vortexed to mix, centrifuged 

and then added to the previous 300 μL in the 1.5 mL tube. Immunoprecipitation samples were 

then removed from heat, centrifuged, and placed on the magnetic rack to collect the beads. 

Supernatant was then removed from the tubes and placed in a clean 1.5 mL tube. 150 μL of 

elution buffer was then added to the PCR tubes with the beads and incubated at 68ºC for 5 

minutes. PCR tubes were then placed on the magnetic rack and the supernatant was removed and 

added to the previous 150 μL of immunoprecipitated sample in the 1.5 mL tube. 200 μL of 

additional elution buffer were added to these tubes to bring the total volume to 500 μL.  

DNA extraction: 

500 μL of phenol-chloroform was added to each sample (immunoprecipitated and input) 

and samples were vortexed and incubated at room temperature while rotating for 5 minutes. 

Tubes were then centrifuged at 12000 rpm for 10 minutes at 4ºC. The infranatant solution was 
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then carefully removed and discarded from the tube. 460 μL of chloroform was added to each 

tube and then vortexed and incubated at room temperature for 5 minutes while rotated. Mixtures 

were centrifuged for 10 minutes at 4ºC at 12000 rpm and the infranatant was again removed and 

discarded. A solution of 938 μL of 96% EtOH at -20ºC, 50 μL of 5 M NaCl, and 12 μL linear 

acrylamide (Invitrogen AM9520) was added to each tube and incubated overnight at -80ºC. 

Tubes were then centrifuged at 14000 rpm for 15 minutes at 4ºC. Supernatant was carefully 

removed from the pellet and allowed to completely evaporate at room temperature. DNA was 

then dissolved in 50 μL Ultrapure water (Invitrogen 10977023) and then stored at -20ºC for qRT-

PCR reactions. qRT-PCR reactions were performed as described above following cDNA 

synthesis. Enrichment % was determined by the amount of IP sample detected by PCR compared 

to the input amount for each ChIP primer. ChIP primer sequences can be found in Table 8 which 

designate DNA sequences spanning specific regions of human DNA upstream of the GUCY1B3 

gene as shown in Figure 4B.  

Statistics: 

Statistical analyses were performed using Graphpad Prism Software 8.0d. Based upon 

normality using a Shapiro-Wilk test, p-values for statistics in qPCR, Western blot, and 

immunostaining were assessed using an unpaired t-test with or without Welch’s correction to 

account for unequal variance following Shapiro-Wilk test results. Symbols were consistent 

throughout wherein * denotes p≤0.05, ** denotes p≤0.01, *** denotes p≤0.001 and **** denotes 

p<0.0001.  
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4.4 Results: 

We first sought to identify which FoxO transcription factor was responsible for the 

regulation of sGC expression in smooth muscle cells (SMC). We began by creating adenoviral 

shRNA constructs targeting either FoxO1, FoxO3a or FoxO4. Rat aortic SMCs were then treated 

with each FoxO shRNA construct individually. FoxO1, FoxO3a and FoxO4 RNA were measured 

by RT-qPCR to validate knockdown of expression, respectively, showing a 56% decrease in 

FoxO1 mRNA expression (Figure 22A), 67% decrease in FoxO3a mRNA expression (Figure 

22D), and a 58% decrease in FoxO4 mRNA expression (Figure 22G), respectively. Somewhat 

surprisingly, we observed a 2.9-fold increase in sGCα and sGCβ mRNA expression following 

FoxO1 shRNA treatment (Figure 18A), and a 2.3-fold increase in sGCα mRNA and 2.1-fold 

increase in sGCβ mRNA expression following FoxO3a shRNA treatment by RT-qPCR (Figure 

18B). Conversely, following FoxO4 shRNA treatment we observed a 54% decrease in sGCα 

mRNA and 56% decrease in sGCβ mRNA expression (Figure 18C), indicating antagonistic 

regulatory roles for FoxO1 and FoxO3a as compared to FoxO4. Likewise, western blot analyses 

validated knockdown of targets showing 78% knockdown of FoxO1 (Figure 22B-C), 43% 

knockdown of FoxO3a (Figure 22E-F), and 85% knockdown of FoxO4 (Figure 22H-I). FoxO1 

or FoxO3a shRNA knockdown both resulted in elevated sGCβ protein expression (Figure 18D, 

F), while FoxO4 shRNA caused a 49% decrease in sGCβ protein expression (Figure 18E, G), 

consistent with both the loss of FoxO4 mRNA (Figure 22G) and protein expression (Figure 22H-

I), and the loss of sGCα and sGCβ mRNA (Figure 18C) expression following FoxO4 shRNA 

treatment. We observed no off-target knockdown of FoxO genes from each specific FoxO 

shRNA (Figure 23A-C), and each FoxO shRNA showed significant knockdown of the known 

gene target, glucose-6-phosphatase (Figure 22A, D ,G).116 These data indicate the effects on 
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FoxO expression were specific to each gene and suggest a complex interaction for the regulation 

of sGC. 

Additionally, we treated rat aortic SMC and measured cGMP production and 

phosphorylation of the protein kinase G specific-serine 239 residue of vasodilator stimulator 

protein (VASP) as indicators of direct and downstream sGC function  following treatment with 

FoxO shRNAs or the FoxO inhibitor, AS1842856,168 (Figure 19A). Whereas FoxO1 or FoxO3a 

shRNA treatment showed no significant differences in cGMP production from controls, FoxO4 

shRNA, triple FoxO shRNA treatment, and FoxO inhibition all showed significant decreases in 

NO-stimulated cGMP production  (Figure 19B). Similarly, cGMP production causes 

phosphorylation of the cGMP-activated protein kinase target, vasodilator stimulated 

phosphoprotein (VASP) at serine 239.199 When we measured the phosphorylation of this residue 

by western blot, we observed no significant change at baseline following FoxO1 or FoxO3a 

shRNA treatment and likewise observed no significant change after stimulation with the nitric 

oxide (NO) donor molecule, 2-(N,N-Diethylamino)-diazenolate-2-oxide, diethylammonium 

(DEA-NONOate). After treatment with FoxO4 shRNA, triple FoxO shRNA or FoxO inhibition, 

we observed significant decreases in baseline phosphorylated VASP and significant decreases in 

phosphorylated VASP following DEA-NONOate stimulation (Figure 19C).  

Based upon our data, we sought to identify where FoxO4 was capable of regulating the 

expression of sGC. To do this, we transfected a pGL3 Luciferase – reporter vectors containing 

various lengths of sGC promoter DNA upstream to the reported transcription start site into Cos7 

cells, which do not express any sGC, thereby avoiding confounding influences of endogenous 

expression (Figure 20A). Upon transfection of these vectors, we observed the highest luciferase 

activity in vectors containing promoter lengths of 1400-1800 bp upstream of the sGCβ 
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transcription start site with no significant differences between these vectors, an intermediary 

(85% of maximum) luciferase activity in the vector containing 900 bp of DNA upstream of the 

sGCβ transcription start site, and the least amount of luciferase activity (62% of maximum) was 

observed in the vectors containing between 400 and 500 bp of DNA upstream to the sGCβ 

transcription start site (Figure 20B). Cos7 cells were then transfected with both pGL3 Luciferase 

– reporter vectors and treated with either DMSO or AS1842856, as previously reported to have 

pleiotropic efficacy to inhibit multiple FoxO proteins.168 Treatment of SMC has also been shown 

to dramatically decrease sGC expression.147-148 Following FoxO inhibitor treatment, luciferase 

activity was significantly blunted by 70% – 93%, as compared to the controls (Figure 20C). 

We next cultured human aortic smooth muscle cells and performed chromatin 

immunoprecipitation (ChIP) experiments with primers designed to span 2400 bp upstream of the 

human GUCY1B3 gene transcription start site (Figure 21A). These experiments reveal multiple 

sites of FoxO4 binding to the human sGCβ promoter (Figure 21B), as 3 primer regions show 

significantly enriched DNA pulldown by FoxO4 immunoprecipitation over the IgG control 

pulldowns (Figure 21C). These sites suggest that FoxO4 is present at the predicted FoxO4 DNA 

binding locations found within Primer 2, Primer 4 and Primer 5.  

These data show that FoxO4 plays a crucial role in the maintenance of smooth muscle 

expression of sGC at the transcriptional and protein level. This loss of sGC precipitated by 

FoxO4 loss causes deficits in cGMP production and PKG-dependent phosphorylation. 

Additionally, sGCβ luciferase-reporter experiments indicate that sGC transactivation requires 

FoxO transcription factor activity, and ChIP experiments indicate that FoxO4 binds at multiple 

locations within the sGCβ promoter near the TSS.  Together, this indicates that FoxO4 is a 
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critical transcription factor for sGC expression and downstream function due to the binding 

which occurs on the promoter.  

4.5 Discussion: 

In this study we identify FoxO4 as the key regulatory FoxO transcription factor for sGCβ 

in vascular smooth muscle. We also demonstrate that FoxO4 is necessary for the proper 

transcriptional and protein expression of sGCβ and function of downstream signaling in the NO-

sGC-cGMP pathway.  Additionally, we show that sGCβ promoter-luciferase activity requires 

FoxO transcription factor activity and that FoxO4 binding occurs within the promoter region 

examined by promoter-luciferase experiments. Together, these data show that FoxO4 is an 

important transcription factor necessary for the regulation of sGCβ in vascular smooth muscle in 

humans as well as animal models.  

Our study shows that the loss of FoxO4 results in impaired expression of sGC at the 

mRNA and protein level, while showing a surprising increase in sGC mRNA and protein 

following FoxO1 or FoxO3a knockdown. These data are in line with the disparate functions that 

have been observed between the FoxO transcription factors during development,139 and these 

findings may be indicative of the structural differences that have been observed.176 Because the 

loss of FoxO1 and FoxO3a caused elevations in expression of sGC, these FoxO transcription 

factors may act to prevent excess sGC expression in smooth muscle via competitive sGC 

regulation. Indeed, crystal structures of the DBD of the FoxO transcription factors demonstrate 

almost identical DNA recognition sequences with most variation in affinity stemming from the 

surrounding bases.88,233-234 
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Analysis of downstream sGC function also demonstrated the importance of FoxO4 in the 

NO-sGC-cGMP signaling pathway. These data showed that loss of FoxO4 significantly impairs 

the amount of cGMP produced and PKG-dependent phosphorylation of VASP. Notably, triple 

FoxO shRNA further decreased cGMP production and VASP phosphorylation over FoxO4 

shRNA treatment alone and phenocopied our previous data showing loss of sGC expression and 

function following FoxO inhibition.147-148 These data allude to diminished, but not absent, roles 

for FoxO1 and FoxO3a in the regulation of sGC expression and downstream function in vascular 

SMC.134-136  

Experimental analysis of the sGCβ promoter further reinforces the importance of the 

FoxO transcription factors in the regulation of the human sGCβ gene. Transfection with sGCβ-

luciferase causes effective luciferase activity, however, inhibition of the FoxO transcription 

factors in transfected cells abolishes this luciferase activity. Previous study of the sGCβ promoter 

region in a neuroblastoma cell line also identified that the first 0.5kb of DNA upstream of the 

transcriptional start site were critical to its gene expression.75 Additionally, FoxO4 ChIP 

experiments demonstrate that FoxO4 interacts with the human sGCβ promoter at several 

locations that showed FoxO activity-dependence. Many of these FoxO4-bound sGCβ promoter 

regions align with those identified previously to be necessary for the expression of sGC by 

promoter-luciferase experiments.75 Previous data has demonstrated that the NO-sGC-cGMP 

pathway is critical to proper nerve cell function,235 though further study will be necessary to 

identify whether the regulation of sGC is mediated by FoxO4 across multiple tissue types. 

Together, these data are the first to identify FoxO4 as a key regulatory transcription 

factor for SMC expression and downstream of sGC. Moreover, our findings suggest a 

competitive interaction between the other FoxO proteins and FoxO4 at regulatory sites. We 
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identified several important FoxO-regulated regions along the human sGCβ promoter where 

FoxO4 binds to interact with the chromatin. All of this establishes that FoxO4 plays an essential 

role in the expression and function of sGC in smooth muscle.   

 

Figure 18 

Knockdown of FoxO transcription factors reveal opposing sGC regulation by FoxO1 or FoxO3a and 

FoxO4. 

RT-qPCR experiments from RASMCs showing expression of sGCα or sGCβ mRNA following treatment with non-

targeting (NT) shRNA control vs. A) FoxO1 shRNA treatment, B) FoxO3a shRNA, or C) FoxO4 shRNA. Western 

blots for D) sGCβ protein expression and F) quantification following NT shRNA vs. FoxO1 FoxO3a shRNA-

treatment or E) sGCβ protein expression and G) quantification following NT shRNA vs. FoxO4 shRNA. Error bars 

represent S.E.M.  
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Figure 19 

Loss of FoxO4 or all FoxO transcription factor activity blunts downstream sGC function. 

A) Vasodilatory signaling contributors and downstream targets in vascular SMC. B) ELISA assay measuring total 

cGMP production in RASMCs stimulated with vehicle or DEA-NONOate following treatment with shRNA or FoxO 

inhibitor. Western blot C) and quantification D) of phosphorylated VASP in RASMCs stimulated with vehicle or 

DEA-NONOate following treatment with shRNA or FoxO inhibitor.  
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Figure 20 

sGCβ promoter-luciferase shows that sGCβ expression requires FoxO transcriptional activity. 

A) Map of human GUCY1B3 (sGCβ1) gene fragments into pGL3 luciferase-reporter vectors used for transfection 

with putative FoxO and pseudo-FoxO binding sequences labeled in yellow and green, respectively. B) Luciferase 

activity of cells transfected with different length luciferase-reporter vectors. C) Fold change in luciferase activity of 

transfected cells treated with vehicle or FoxO inhibitor.   
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Figure 21 

FoxO4 binds the human sGCβ promoter at locations of predicted FoxO binding sequences. 

A) Protocol for chromatin immunoprecipitation experiments using FoxO4 pulldown to identify interactions on 

human DNA. B) Map of human sGCβ1 promoter DNA with predicted FoxO and pseudo-FoxO binding sequences 

and PCR products from the respective labeled primer sets upstream of the transcription start site. C) Chromatin 

immunoprecipitation experiments from human aortic SMC for five locations on human sGCβ1 promoter region and 

previously identified FoxO binding location on SOD2 promoter.  
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Figure 22 

FoxO shRNAs show effective knockdown of target mRNA and protein expression. 

RASMCs treated with NT shRNA or FoxO1 shRNA showing RT-qPCR or Western blot analyses from RASMCs. 

RT-qPCR showing expression of each respective FoxO gene and G6Pase following treatment with non-targeting NT 

shRNA control vs. A) FoxO1 shRNA treatment, B) FoxO3a shRNA, or C) FoxO4 shRNA. Western blots for D) 

sGCβ protein expression and F) quantification following NT shRNA vs. FoxO1 FoxO3a shRNA-treatment or E) 

sGCβ protein expression and G) quantification following NT shRNA vs. FoxO4 shRNA.  
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Figure 23 

FoxO shRNAs show specific knockdown of the intended target transcription factor. 

RT-qPCR following treatment with NT, FoxO1, FoxO3a, or FoxO4 shRNA showing A) FoxO1 mRNA, B) FoxO3a 

mRNA, or C) FoxO4 mRNA expression.  
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Table 8: Primer Sequences for RT-qPCR and ChIP 

Primer Usage Primer Identity Sequence (5’3’) 

RT-qPCR 

Rat sGCα1 F CTC CCG TGA CCG CAT CAT 
Rat sGCα1 R CCG GTG TTG ATG TTG ACT GA 
Rat sGCβ1 F AAT TAC GGT CCC GAG GTG TG 
Rat sGCβ1 R GCA GCA GCC ACC AAG TCA TA 

Mammalian 18S F ACG GAC AGG ATT GAC AGA TTG 
Mammalian 18S R TTA GCA TGC CAG AGT CTC GTT 

Rat G6Pase F GGC TCA CTT TCC CCA TCA GG 
Rat G6Pase R ATC CAA GTG CGA AAC CAA ACA G 
Rat FoxO1 F CAC CTT GCT ATT CGT TTG C 
Rat FoxO1 R CTG TCC TGA AGT GTC TGC 
Rat FoxO3 F CGG CTC ACT TTG TCC CAG AT 
Rat FoxO3 R TCT TGC CAG TCC CTT CGT TC 
Rat FoxO4 F AGG CTC CTA CAC TTC TGT TAC TGG 
Rat FoxO4 R CTT CAG TAG GAG ATG CAA GCA CAG 

ChIP 

Human SOD2 Promoter 
Primer F 

GTC CCA GCC TGA ATT TCC 

Human SOD2 Promoter 
Primer R 

CTA GGC TTC CGG TAA GTG 

Human sGCβ1 Promoter 
Primer 1 F 

CGC GTG CTA GCT AGT GCT GG 

Human sGCβ1 Promoter 
Primer 1 R 

GCA TGC ATG TGC CTT TAT GG 

Human sGCβ1 Promoter 
Primer 2 F 

GCC TGT GTT ATT ACC CAC ATA GC 

Human sGCβ1 Promoter 
Primer 2 R 

CAA TTA ACC ACT GAT TTT GAA CC 

Human sGCβ1 Promoter 
Primer 3 F 

GGT TCA AAA TCA GTG GTT AAT TG 

Human sGCβ1 Promoter 
Primer 3 R 

GCT GAC ATC AGC ACC GAG AG 

Human sGCβ1 Promoter 
Primer 4 F 

CTC TCG GTG CTG ATG TCA GC 

Human sGCβ1 Promoter 
Primer 4 R 

GAG GAA CAG GAA GTG GCA GC 

Human sGCβ1 Promoter 
Primer 5 F 

GCC AGC AAC AGA GGA TAT TCC 

Human sGCβ1 Promoter 
Primer 5 R 

GGA GAA GCC CCA GCC GTG C 
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Table 9: Catalog of Antibodies for Western Blot and ChIP 

Antibody Species Application Concentration Company Cat. 
Number 

sGCβ rabbit WB 1:1000 Cayman 160897 

FoxO1 rabbit WB  1:1000  Cell Signaling 2880S 

FoxO3a rabbit WB 1:1000 Cell Signaling 2497S 

FoxO4 rabbit WB, ChIP 1:1000, 4 μg Abcam ab128908 

α-tubulin mouse WB 1:10,000 Sigma T6074 

β-actin mouse WB 1:500 Santa Cruz sc-47778 

Phospho- 
VASP (S239) 

rabbit WB 1:1000 Cell Signaling 3114S 

Rabbit IgG rabbit ChIP concentration 
matched 

Abcam ab171870 
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5.0 Conclusions and Future Directions 

5.1 Conclusions of Our Work 

In this dissertation, my work and that of my colleagues has established several 

fundamental new findings that have important basic science and clinical implications for our lab 

and those of others in our field. Our goals were to identify the transcription factors responsible 

for the regulation of sGC within the SMC. To this end, we analyzed the sGC promoter regions 

and hypothesized that the FoxO family of transcription factors are capable of governing sGC 

expression.147 To this end, we inhibited the FoxO transcription factors in aortic SMC and 

discovered that loss of their activity abolishes sGC mRNA and protein expression. Furthermore, 

loss of FoxO transcriptional activity blunted cGMP production and NO-dependent 

vasorelaxation of isolated mouse aortas. Our next work sought to identify the mechanisms for the 

elevated renovascular function in contralateral arteries of those with renal hypertension. In a 

2K1C model of renal hypertension we showed that renal stenosis causes increased NO-

dependent vasorelaxation and expression of sGC within the contralateral renal artery.148 In 

cultured renal SMC, we showed that this process occurs through an Ang II-dependent manner, 

surprisingly via agonism of the AT1R and established that not only is sGC expression increased 

at the genetic and protein level, but that it also impacts downstream cGMP production as well. 

This process was also found to require functional FoxO transcription, as their inhibition 

abolished all increases in expression and downstream function of sGC. Finally, we identified in 

aortic SMC that loss of FoxO1 or FoxO3 remarkably increase sGC mRNA and protein 

expression, while only FoxO4 knockdown alone produced loss of sGC expression. These data 
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suggest that there is a complex regulatory interaction within the sGC promoter for governance of 

sGC expression. We then show that loss of FoxO4 triggers a loss of downstream sGC-dependent 

signaling; a process that was exacerbated via concomitant knockdown of FoxO1 and FoxO3 in a 

manner that phenocopied pharmacological inhibition of the FoxO transcription family.147-148 

Because sGCβ is the integral NO-binding subunit and clinical target for many sGC modulator 

therapies being investigated or approved for treatment of CVD,58-60,71,208,217 we sought to identify 

which, if any, predicted FoxO binding sequences are important for the regulation of sGCβ 

expression. sGCβ promoter-luciferase experiments show that the 0.5kb of DNA upstream of the 

transcription start site represents an essential, FoxO-dependent function. We next used FoxO4 

ChIP in human aortic SMC and show that FoxO4 binds several locations predicted by in silico 

and luciferase-reporter experiments, demonstrating that FoxO4 interacts directly with the human 

sGCβ promoter to regulate its function.  

5.2 What are Some of the Additional Non-Transcriptional Mechanisms of sGC? 

There are several mechanisms by which sGC is regulated at the post-transcriptional level 

which govern the functional capacity of the enzyme under various physiological circumstances. 

Because the FoxO transcription factors are involved in a multitude of different signaling 

pathways, it is possible that these other regulatory pathways represent indirect methods to alter 

the expression and function of sGC. Additional regulatory pathways may work to counteract the 

activity of the FoxO transcription factors, and the scale of this competition may provide future 

insight for the overall regulation of sGC.  
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Redox signaling phenomena such as the excess production of hydrogen peroxide,38 

superoxide,39 and peroxynitrite have been shown to oxidize sGC heme to “turn off” the 

production of cGMP by desensitizing the enzyme to NO.40 Because of the redox-sensitive 

cysteine residues and heme iron group within sGC, numerous pathways possess the potential to 

affect sGC expression and function in physiologically relevant ways. Rahaman, et al. recently 

identified Cyb5R3 activity as necessary for the maintenance of the reduced (NO-sensitive) redox 

state of the heme group found within sGCβ.41 Indeed, the loss of Cyb5R3 expression not only 

leads to blunted cGMP production by sGC, it also leads to loss of sGC protein expression and 

targeted degradation as a result.  

As discussed in Chapter 1, Hsp90 plays an integral role in the proper insertion of a heme 

moiety into several proteins which require heme for proper function.32-34,44,236 The sGCβ1 

subunit was first identified to interact with Hsp90 in the early 2000’s where it was presumed 

only to be a necessary step in the proper formation of the enzyme.44 As more research has 

investigated the interaction between Hsp90 and sGC, it now appears that Hsp90 can keep sGCβ1 

stabilized under unfavorable circumstances and may act as a mechanism of keeping additional 

sGC pools sensitive that do not conform to the conditions which may be found in reducing 

environments.32 Moreover, the interaction between Hsp90 and sGCβ must be interrupted by the 

presence of NO in order for sGCα to form with sGCβ to form a functional cGMP-producing 

enzyme.33 This interaction provides an supplementary method for control of sGC in the 

vasculature, though more research is necessary to elucidate the complete how Hsp90 is regulated 

and how it, in turn regulates sGC.  

Another mechanism shown to affect sGC signaling is the regulatory matricellular protein, 

thrombospondin-1 (TSP-1), which has been shown to act through the cluster of differentiation 47 
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(CD47) in multiple vascular cell types.237-239 Treatment with TSP-1 even at low concentrations 

was found not only to inhibit the production of NO-dependent sGC activity, but also to inhibit 

the production of cGMP following treatment with sGC modulator drugs which work independent 

of NO exposure.240 The mechanism by which this process occurs is not fully elucidated, 

however, it has been predicted that the TSP-1/CD47 interaction works to elevate Ca2+-dependent 

phosphorylation of sGC.241-242 While the putative phosphorylation residue(s) have yet to be 

identified, phosphorylation of SGC has been shown to be capable of inhibiting enzymatic 

activity,243 and the importance of these data were confirmed by knockout of CD47, which 

demonstrated the necessity of CD47 to transduce the inhibitory effect of TSP-1 treatment on 

sGC.240,244 These findings have therapeutically relevant implications, as TSP-1/CD47 have been 

shown to be upregulated in some pulmonary hypertension,245 presenting a potential barrier for 

the use of the recently approved sGC modulator therapies for treatment. 

Elevated second messenger signaling may also play an important role in sGC gene 

expression, as some reports have previously reported changes in their transcription following 

extended treatment with cAMP and cGMP analogs.246 Interestingly, treatment with forskolin for 

periods less than 24 hours did not inhibit NO-dependent production of cGMP or decrease sGC 

mRNA while treatment for 1-2 days produced significantly blunted production of sGC mRNA 

and NO-dependent production of cGMP. Similar results showing significant reduction in sGC 

mRNA of fetal rat lung fibroblasts were observed with treatment of the non-specific PDE 

inhibitor, isobutylmethylxanthine (IBMX). Similarly, 6-hour treatment of rat aortic smooth 

muscle cells with IBMX significantly decreased the NO-dependent accumulation of cGMP, 

though there is a possibility that this data is confounded by another method of cGMP clearance 

and depletion of GTP substrate which causes this blunted response. Treatment with protein 
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kinase A (PKA) inhibitors in cells treated with forskolin rescued the ability of rat aortic SMC to 

produce cGMP in response to NO, suggesting that PKA is integral in this downregulatory 

response to elevated cAMP. These data are in line with previous studies which showed that 4-

hour pre-treatment with norepinephrine, which decreases the amount of available cAMP, 

markedly increased the dilatory responses of blood vessels stimulated with SNP.247 Interestingly, 

there was no difference in dilatory responses between the vessel groups when treated with the 

non-hydrolyzable cGMP analog, 8-br-cGMP, indicating that the dilatory differences were due to 

changes in sGC-dependent activity rather than a blockage downstream.246   

A recent study identified Cullin-3, a member of E3-ubiquitin ligases, as a significant 

regulator of sGC expression in smooth muscle.248 This conditional SMC-specific deletion of 

Cullin-3 caused a significant loss of sGC expression at both the mRNA and protein levels, 

leading to hypertension and vascular dysfunction in these animals. Interestingly, no other 

changes in eNOS or PDE5 were observed in these animals, suggesting no additional changes to 

the NO-sGC-cGMP pathway were found in these animals, and because changes were observed in 

sGC mRNA expression, changes in transcriptional regulation are heavily implicated. 

Furthermore, no changes in proteins identified to regulate the stability of sGC mRNA, namely 

human antigen R (HuR) or AU-rich element RNA-binding protein 1 (AUF1),143,161 were 

observed in this study.248 To date, no connections have been identified between the FoxO 

transcription factors and Cullin-3, however, due to the many post-translational regulatory sites 

present on the FoxO proteins, it is possible that Cullin-3 is responsible for mediating the 

degradation of one of the kinases that restrict FoxO activity. Similar connections have been made 

with Cullin-1 and the control of the PI3K/Akt  pathway, which are well-characterized to act as a 

brake on FoxO-dependent transcription.249 Finding a potential connection between these two 
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pathways may provide a solid hypothesis which explains the phenomenon observed following 

SMC-specific knockout of Cullin-3 and the hypertensive phenotypes that present in patients with 

mutations in the CUL3 gene.  

5.3 What Are the Implications of sGC Activator/Modulator Treatment on RAAS Inhibited 

Patients? 

As was discussed in Chapter 1, sGC modulator therapies represent a promising new 

therapeutic option for the treatment of several specific cardiovascular pathologies. It is therefore 

worthwhile to investigate the interactions between many of the common drugs used in the clinic 

for patients with CVD. Based upon our findings layed out in Chapter 3, we believe that there will 

be a number of important pharmacological changes in patients treated with drugs that impact the 

RAAS pathway and those that affect sGC activity.  

With the recent FDA approval for sGC stimulator therapy in heart failure patients with 

preserved ejection fraction,58 there is an increasing likelihood that more data will become 

available concerning potential differences in those with reduced renal blood flow to one or both 

of the kidneys. While most patients on angiotensin converting enzyme (ACE) inhibitors or Ang 

II receptor antagonists (aka angiotensin receptor blockers ARBs), will have beneficial inhibition 

of the Ang II-dependent effects on heart rate, contractility of heart and vascular smooth muscle, 

and decreased blood pressure,250 our findings may indicate some secondary effects which result 

from the loss of Ang II-dependent signaling within the renal vasculature in a manner similar to 

the relief that has been observed for renal fibrosis patients using sGC modulators.208  Because we 

observed increases in renal SMC expression of sGC as a direct result of Ang II, we believe that 
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renal blood flow will be augmented in patients that receive sGC stimulator drugs due to 

increased initial expression of sGC protein. Andreas Friebe’s work indicated that sGC protein is 

highly stable in vivo,26 suggesting that Ang II-mediated elevation of renal sGC expression may 

be capable of remaining long after the signal to boost sGC has been inhibited or suppressed. 

Future studies should therefore explore the differences between patients treated with sGC 

stimulators and RAAS blockers and those treated with RAAS blockers alone.  

5.4 What are the Implications for Renal Transplant Patients? 

For patients facing the prospect of severe kidney malfunction, renal transplantation is 

often the best chance to improve both quality of life and health outcomes. In such patients, total 

kidney function is below 10-15% of normal glomerular filtration rate.251 The available options 

make dialysis inevitable unless sufficient glomerular filtration is restored. An interesting 

component of renal transplantation surgery is that the damaged or diseased kidneys often remain 

within the patient while the donor kidney is surgically attached below them to one of the iliac 

arteries.252 This procedure allows the native kidneys to remain intact within the body to assist – 

insofar as that is possible – while the patient heals, and the donor kidney begins to increase renal 

function.  

The benefits of leaving the native kidneys in place stem primarily from the risks 

associated with removing them in the short term and the risks associated with rejection. Removal 

at the time of surgery increases the recovery time by 4-6 weeks, increasing the risk of infection 

during that period.253-254 This procedure often causes the recipient to need blood transfusions, 

which can exacerbate the risk of rejection of the newly acquired donor kidney. Finally, this 
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process forces the patient to begin dialysis treatment immediately,255 which may not be necessary 

for all patients if some kidney function still remains in the native kidneys. There are, however, 

certain scenarios like recurring infections,256 cancer,257 severe renal hypertension,255 or pains 

caused by conditions like polycystic kidney disease where removal may be necessary to help 

increase the patient’s chances of survival or increase quality of life.258  

Because most patients will keep the diseased or damaged kidneys following 

transplantation,259 these organs can perpetuate certain signaling events to occur within the body. 

As was discussed in Chapter 3, restricted renal blood flow leads to elevated RAAS signaling. 

Since nearly all kidney transplant patients have reduced blood flow to their native kidneys,259 

there is likely elevated RAAS signaling. Based upon the preliminary evidence for efficacy of 

sGC stimulators and activators in renal diseases and the findings that the AT1R increases renal 

smooth muscle expression of sGC, elevated RAAS signaling from native kidneys has the 

potential to improve renal blood flow to donor kidneys and increase the potency of sGC 

stimulators or activators on transplant patients that keep their native kidneys.  

5.5 Similarities and Differences Between the FoxO Transcription Factors? 

Many different structural studies have identified a high degree of similarity between the 

winged helix Fox transcription factors, which constitute more than 100 proteins found within the 

animal kingdom.260 Every member of the FoxO family contains a high degree of forkhead 

homology, at the N-terminal region in particular. This region is generally characterized by the 

amino acid sequence Arg-X-Arg-Ser-Cys-Thr-Trp-Pro-Leu.261 Additionally, all Forkhead 

proteins generally contain three N-terminal α-helices (symbolized as H1-H3) which help to 
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coordinate and bind to DNA,86,176,262 as well as two flexible loop structures that give the 

appearance of “wings” (W1-W2) which participate to varying degrees in the stability of DNA-

protein interactions.86 Importantly, many of these proteins have orthologous transcription factors 

which have existed for hundreds of millions of years, as is evident from their initial identification 

in Drosophila. The FoxO transcription factors are no exception to this rule, and their orthologs 

have been identified in C. elegans as important regulators of lifespan that have existed for more 

than half a billion years.93,99,103,164 These proteins, despite the recognition of core sequences show 

differential regulation of genetic targets and demonstrate different interacting partners and post-

translational modifications which may affect the differences we observe following knockdown of 

each FoxO transcription factor in SMC.  

One of the first indicators of differential function of the FoxO transcription factors in 

mammals comes from the knockout studies performed in mice which showed that deletion of 

individual FoxO transcription factors from birth produce different responses in mouse models.139 

FoxO1 knockout mice develop severely malformed blood vessels which result in embryonic 

lethality around E10.5, while FoxO3 and FoxO4 knockout mice survive to birth. Deletion of 

FoxO3 in female mice causes age-dependent infertility though the male mice appear to be no less 

fertile than their littermate controls. FoxO4 deletion, interestingly enough, does not appear to 

have a significant phenotype different from littermate control animals. This may indicate the 

importance of the different FoxO transcription factors at various stages of development, while 

also leaving open the possibility that significant compensation may occur when one or possibly 

multiple transcription factors are absent.  

Studies have identified the DNA binding domains of each FoxO protein and the most 

likely DNA sequences bound by each. Moreover, it appears that FoxO proteins possess two 
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“core” binding DNA sequences that are recognized by all family members and have been the 

topic of many studies in the early 2000’s.91,134,226 These studies identified a Daf-16 family 

member binding element (DBE) between all members which demonstrates the highest affinity 

for the sequence “5’-AACAAATG-3’.” Another binding element has recently been identified as 

the insulin responsive element (IRE), most well characterized in FoxO1 was identified on the 

promoter of insulin like growth factor binding protein to recognize a similar “5’-AACAAAAC-

3’” DNA sequence.86 The H3 of the FoxO proteins and their orthologs has been shown to 

possess key residues which interact with the major groove of the DNA strand, forming a large 

number of hydrogen bonds as well as van Der Waals interactions to stabilize the connection.233-

234 Furthermore, the flexible W2 domain of the FoxO transcription factors have been shown to 

enhance the interaction of the H3 domain with the DNA structure.177 In particular, they found 

that thymine bases flanking these sequences form interactions with the highest affinity due to the 

hydrogen bonding capabilities capable of forming with the W2 domain. Finally, the H2 domain 

and the disordered W1 domain also contribute to binding nearby DNA and appear to help 

stabilize distal interactions between the FoxO protein and DNA, though these contacts 

undoubtedly require more study due to the flexibility of the W1 domain.86  

Despite this high degree of similarity between the FoxO family members, there are a 

number of important differences that likely inform the functional differences we observe. For 

one, the crystal structure shows that the five amino acid sequence between H2 and H3 is capable 

of interacting with the DNA via its phosphate backbone.233 The Ser142 residue of FoxO4 has 

been shown through crystal structures to stabilize the protein-DNA interaction, however, the 

structures from FoxO1 and FoxO3 show that these residues are too far away to allow interaction 

to occur despite the more similar residues between FoxO1 and FoxO4. This is likely due to the 
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larger H2 domains and N-termini found within FoxO1 and FoxO3 prevent the same amount of 

flexion of the residues between H2 and H3 to coordinate with the DNA backbone of the major 

groove. Additionally, DNA-FoxO4 crystal structures have demonstrated that several residues of 

its N-terminus, namely Arg94, Asn95 and Ser101 and the hydroxyl group of Tyr102 of the 

FoxO4 H1 domain form hydrogen bond bridges with water molecules that bring the phosphate 

backbone into close proximity to enhance the DNA-protein interaction.233-234 

Post-translational modifications of the FoxO transcription factors have been shown to be 

diversified from one another leading to altered function and gene targeting following 

modifications. As has been mentioned before, phosphorylation of the FoxO transcription factors 

at conserved residues by PKB/Akt is an important negative regulator of FoxO function that 

affects the DNA binding affinity,177,263 cytosolic sequestration due to masking of the conserved 

NLS,90,226,264-265 and targeting for polyubiquitination and degradation.266 Many other 

phosphorylation sites appear to have a unique phosphorylation profile for different FoxO 

transcription factors because of non-conserved amino acids that serve as the target for 

phosphorylation. FoxO1 has been shown to be phosphorylated and inhibited from DNA binding 

by PKG at a unique cluster of 4 serine residues (Ser152-Ser155) that is absent from FoxO3 and 

FoxO4 and has also shown to be phosphorylated at Ser184,267 a residue which is also absent 

from FoxO4.176 Because these residues are found near the helical regions that interact with DNA, 

it is plausible that the PKG-dependent phosphorylation could interfere with the ability of the 

FoxO protein to interact at these locations. FoxO3 contains the Ser181 that corresponds to the 

Ser184 of FoxO1 and 2 of 4 serine residues at the serine cluster location identified in FoxO1 

(Ser151-Ser152), and FoxO4 contains only one serine at this cluster location (Ser96), however 

no PKG-dependent phosphorylation has been identified in either FoxO3 or FoxO4 to date. 
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Phosphorylation of FoxO proteins by mammalian Ste-20 like kinase-1 (Mst-1) has shown to 

increase transcriptional activity in response to oxidative stress stimuli by phosphorylating FoxO3 

at the highly conserved Ser209, Ser215, Ser231 and Ser232 residues.234,268 The Ser209 and 

Ser215 residues lie within the H3 domain of the DBD, while Ser231 and Ser232 are part of the 

W1 domain, suggesting that all four residues can contribute to the transcriptional function of 

FoxO3. Intriguingly, Brent, et al. showed that phosphorylation of FoxO1 by Mst-1 abolished all 

DNA-binding interaction, suggesting that there may be a de-phosphorylation of one or multiple 

residues in order for an increase in transcription to occur.177 Cyclin-dependent kinase-2 (CDK2), 

which regulates progression through the cell cycle, phosphorylates FoxO1 at Ser249,269 which is 

a non-conserved residue within the W2 domain, suggesting that this site is a unique site of 

regulation that exists for FoxO1. This study revealed that phosphorylation of Ser249 leads to 

cytosolic shuttling and inactivation of FoxO1 and also showed through electrophoretic mobility 

shift assay (EMSA) that the phosphomimetic Ser-249-Glu mutant FoxO1 showed no decrease in 

DNA binding capability. This suggests Ser249 of FoxO1 does not participate in the DNA 

binding of the W2 domain and that phosphorylation by CDK2 acts as a signal for nuclear export 

and cytosolic sequestration.  

In addition to FoxO transcriptional modulation by phosphorylation of serine or threonine 

residues, several lysine residues have been identified to play important roles in the function of 

FoxO transcription factors. Proteolysis and mass spectrometry show that the residues Lys245, 

Lys248, Lys262, and Lys265 of FoxO1 are acetylated by cAMP-responsive element binding 

protein (CBP) or p300, while previous research suggested they are de-acetylated by SIRT1.270 

Mutation of these lysine residues to alanines showed a decrease in DNA binding affinity, likely 

because the loss of these positive charges destabilizes the protein-DNA interactions. There is 
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some controversy regarding the precise role of acetylation of the FoxO proteins, as EMSA assays 

have shown decreased DNA binding following acetylation of FoxO1.271 On the other hand, 

increased CBP/P300 recruitment by FoxO proteins leads to higher histone acetylation and 

transcriptional initiation. Additionally, de-acetylation of FoxO proteins have also been shown to 

be both activating,230 and inhibitory,229 depending on the source. These data undoubtedly require 

more study, as the acetylation/de-acetylation of FoxO proteins and the nearby histones may act 

as buffers on excessive or deficient transcription at specific regions.  

The highly conserved structures of the FoxO proteins allows for in-depth study of 

differences caused by the minor changes in other domains. Structurally, the FoxO4 protein 

contains a smaller N-terminal domain and C-terminal transactivation domain than FoxO1 or 

FoxO3.176 Changes within these regions affect the DNA binding capability as well as the number 

and influence of specific regulatory sites that make up the fundamental differences between the 

FoxO transcription factors. Because the FoxO transcription factors are a highly dynamic group of 

proteins that act swiftly in response to various stimuli, the ability to modulate activity positively 

or negatively is essential for their proper function. In addition, because of the broad number of 

transcriptional targets governed by the FoxO family, rapid post-translational modification, 

primarily through phosphorylation/dephosphorylation and acetylation/de-acetylation, causes 

modulation of DNA binding affinity and alters subcellular localization. These small variations in 

amino acid structures between the FoxO transcription factors represent important modes for 

signal transduction that promote or inhibit gene expression by FoxO proteins to adjust the 

production of specific transcripts to modify cellular function.  
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